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Abstract 

GRAPHENE-BASED CHEMICAL VAPOR SENSORS FOR ELECTRONIC NOSE 
APPLICATIONS 

Eric C. Nallon, Ph.D. 

George Mason University, 2016 

Dissertation Director: Dr. Qiliang Li 

 

An electronic nose (e-nose) is a biologically inspired device designed to mimic the 

operation of the olfactory system.  The e-nose utilizes a chemical sensor array consisting of 

broadly responsive vapor sensors, whose combined response produces a unique pattern for 

a given compound or mixture.  The sensor array is inspired by the biological function of the 

receptor neurons found in the human olfactory system, which are inherently cross-reactive 

and respond to many different compounds.  The use of an e-nose is an attractive approach 

to predict unknown odors and is used in many fields for quantitative and qualitative analysis.  

If properly designed, an e-nose has the potential to adapt to new odors it was not originally 

designed for through laboratory training and algorithm updates. This would eliminate the 

lengthy and costly R&D costs associated with materiel and product development.  Although 

e-nose technology has been around for over two decades, much research is still being 

undertaken in order to find new and more diverse types of sensors.   
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Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a 

hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties 

due to its 2D, sp2-bonded structure.  Graphene has much potential as a chemical sensing 

material due to its 2D structure, which provides a surface entirely exposed to its surrounding 

environment.  In this configuration, every carbon atom in graphene is a surface atom, 

providing the greatest possible surface area per unit volume, so that electron transport is 

highly sensitive to adsorbed molecular species.  Graphene has gained much attention since 

its discovery in 2004, but has not been realized in many commercial electronics.  It has the 

potential to be a revolutionary material for use in chemical sensors due to its excellent 

conductivity, large surface area, low noise, and versatile surface for functionalization. 

In this work, graphene is incorporated into a chemiresistor device and used as a 

chemical sensor, where its resistance is temporarily modified while exposed to chemical 

compounds.  The inherent, broad selective nature of graphene is demonstrated by testing a 

sensor against a diverse set of volatile organic compounds and also against a set of 

chemically similar compounds.  The sensor exhibits excellent selectivity and is capable of 

achieving high classification accuracies.  The kinetics of the sensor’s response are further 

investigated revealing a relationship between the transient behavior of the response curve 

and physiochemical properties of the compounds, such as the molar mass and vapor 

pressure.  This kinetic information is also shown to provide important information for 

further pattern recognition and classification, which is demonstrated by increased 

classification accuracy of very similar compounds.  Covalent modification of the graphene 

surface is demonstrated by means of plasma treatment and free radical exchange, and 

sensing performance compared to an unmodified graphene sensor. Finally, the first example 
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of a graphene-based, cross-reactive chemical sensor array is demonstrated by applying 

various polymers as coatings over an array of graphene sensors.  The sensor array is tested 

against a variety of compounds, including the complex odor of Scotch whiskies, where it is 

capable of perfect classification of 10 Scotch whiskey variations.
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Chapter 1 Electronic Nose Technology 

1.1  The Olfactory System 
 

The olfactory system is the sensory system in mammals responsible for the ability to 

smell and has a remarkable capability to distinguish a wide range of odors.  For instance, 

humans have approximately 6 million receptors and have typically been known to be capable 

of distinguishing approximately 10,000 odors.1  Recent research suggests that this number 

has been severely underestimated.  Through empirical studies, it is estimated that humans 

can discriminate at least 1 trillion odors.2  Canines have always been known for their keen 

sense of smell and are often regarded as the best method of chemical detection to date.  The 

olfactory system of a dog is believed to be capable of detecting odorant concentration levels 

at 1-2 ppt, which is roughly 10,000 – 100,000 times more sensitive than the sensitivity of a 

human.  Also, Canines poses somewhere in the range of 125 – 250 million receptors and 

have a larger percentage of their brain dedicated to olfactory processing.3  In either case, the 

major components of each olfactory system are quite similar.  The differences include the 

number of sensory neurons, the nasal flow path, and the actual sniffing action during 

olfaction.   

Two major components that are common to the olfactory system of humans, 

canines, and others are olfactory receptor neurons (ORNs) and the olfactory bulb.  The 

ORNs operate in such a way that they are not activated by specific compounds, but rather 
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that an odorant can activate multiple receptors, and a receptor can be activated by multiple 

odorants.  This cross-reactive design of the receptors is at the foundation of electronic nose 

(e-nose) systems and is of fundamental importance for designing such systems.  One 

important and remarkable distinction between the ORNs and artificial sensors is that these 

receptor neurons are continuously regenerated, unlike most other neurons, which die and are 

never replaced.1 

Odors are typically characterized as being hydrophobic, volatile compounds with a 

molecular weight of less than 300 g/mol.4  Most odors are mixtures of hundreds of 

compounds opposed to a single compound.  The ability to identify and differentiate odors 

starts with the detection of odor molecules at ORNs. When the odor molecules bind to 

ORNs, an electrical signal is triggered, and then travels along olfactory axons to the olfactory 

bulb.  The overall function of the olfactory bulb is to receive, process, and relay olfactory 

information to the limbic region of the brain where further pattern recognition is performed 

to identify the odor.  The operations that occur inside the olfactory bulb remain unclear at 

this point, but it appears that the received activated neuron signals are encoded as sensory 

information, which describes the spatial and temporal response pattern of the ORNs.  The 

encoded sensory information is then passed to the limbic region of the brain where patterns 

are recognized, and the odor is either learned for the first time or identified as a previously 

encountered odor.  Shown in Figure 1.1 is an illustration of the olfactory system showing 

where the ORNs and olfactory bulb reside, and the connections between the receptor 

neurons and the olfactory bulb.5    
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Figure 1.1  Illustration of the human olfactory system 
 

Another astonishing attribute of this process is the fact that, normally, the brain only 

needs to be trained once on a given odor before it can accurately predict that odor in the 

future, as opposed to artificial olfaction, which often needs to be trained many times in order 

to accurately predict an odor in the future.  This is most likely attributed to the inability to 

properly design a highly dimensional sensor-array response with cross-reactive 

characteristics, and also the inefficient translation of sensor signals into meaningful response 

patterns. 

  

1.2  The Electronic Nose 
 

An e-nose is a biologically inspired device designed to mimic the olfactory system.  

The concept and design of this type of sensor system is very different from the lock-and-key 

approach of designing a sensor to detect a very specific compound.  Sensor arrays comprised 

of multiple specifically designed sensors have been successfully created, but the major 

limitation lies in detecting new compounds outside their originally intended design.  The e-
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nose, being inspired by the biological functions of the olfactory system, is designed to 

contain an array of broadly responding (i.e., cross-reactive) sensors.  The array elements 

respond to a broad number of compounds, with specificity being achieved by relationships 

and patterns across the array.  Sensory information is encoded in features which are 

extracted from each sensor. This depends on the type of sensor technology being used.  The 

main attraction of this type of sensor design is that if the sensor array is designed with 

enough dimensionality, it would be capable of detecting and classifying new, previously 

unforeseen compounds.  This is a powerful concept since it would allow for a sensor system 

to have the ability to adapt to new scenarios, adding additional capability without the need 

for costly and time consuming hardware development.  The sensor array in an en-nose is a 

very important piece, but is not able to provide direct classification of compounds on its 

own.  The important elements of an e-nose are illustrated in Figure 1.2, showing a sensor 

array, a feature extraction method, and pattern classification. 

 

 

Figure 1.2  Typical elements that comprise an electronic nose. 
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As previously described, the sensor array is comprised of cross-reactive array 

elements, where each sensor is broadly responsive.  In this case, a change in resistance (∆ܴ) 

for each sensor is recorded.  The ∆ܴ feature needs to be extracted to describe the response 

of that sensor to the compound.  In some cases, certain features of the sensor response can 

be directly related to physiochemical properties of the compound.  This process is where 

most of the human-in-the-loop interaction takes place since a sensor designer may intimately 

understand the sensor material and have insight into the physical and chemical mechanisms 

involved with the interaction of the compound with the sensing material.  Once the features 

have been extracted from each sensor response, they are formatted into a specific feature 

vector format and then supplied to a pattern recognition and machine learning algorithm.  

During classification, the feature vector data is typically split into training and testing sets, 

where the training set is used to train the algorithm to learn the provided features, while the 

testing set is used to test the ability of the trained algorithm to correctly classify the 

compounds.  This train/test process is used to validate the overall classification accuracy of 

the sensor system so that when the sensor has collected new data, a level of confidence as to 

how it will perform can be trusted.  For sensor systems that are used in real-world 

applications, the sensor is often trained in a laboratory on the anticipated set of compounds 

it can detect under various environmental conditions, along with common compounds 

which may confuse or interfere with the correct classification of the target compounds.  

These variables induce noise into the classification system and can help to tune the 

prediction algorithm to be more robust.  
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1.3  Data Analysis and Pattern Recognition Methods 
 

Besides programs such as Matlab and Microsoft Excel, many programming 

languages exists which can be used to perform data analysis by reading data, performing 

analysis, then creating visualizations and generating consolidated reports.  According to 

www.codeeval.com, the most popular programming language in 2015 is Python, followed by 

Java, C++, and Javascript.  The breakdown of the popularity of 19 different programming 

languages analyzed by processing of over 600,000+ coding tests and challenges is shown in 

Figure 1.3.6  The popularity of Python has risen over the years to make it into this position. 

It can most likely be attributed to no monetary cost to obtain, a vast amount of library 

modules available, and a large active development and user community.    

 

 

Figure 1.3  Bubble chart representing the most popular coding languages of 2015.6 
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Throughout this dissertation, Python will be used exclusively with some of its many 

libraries that are related to numerical manipulation and machine learning, such as SciPy,7 

Numpy,8 Pandas,9 Scikit-learn,10,11 and Matplotlib.12  The Scipy library contains modules for 

optimization, linear algebra, integration, interpolation, various transforms, signal/image 

processing, and many more modules for scientific computing.  Numpy is a library primarily 

used for multi-dimensional array and matrix mathematical manipulation and creation, and is 

an efficient way to handle and perform operations on large data sets.  The Pandas library can 

be used for reading and writing of data in multiple formats, data alignment, 

reshaping/transposing, data slicing, and structure manipulation such as merging and joining.  

Pandas also has some statistical and signal processing features such as data smoothing.  

Scikit-learn is a library solely built for machine learning based functions;  Common 

procedures that it can perform include data preprocessing, clustering, dimensionality 

reduction , classification, regression, and model selection.  Matplotlib is a Matlab-style 

plotting library capable of producing publication quality visualizations such as time-series 

plots, bar plots, scatter plots, histograms, and 3D contours. 

 

Data Analysis, Pattern Recognition, and Classification 

The first step of data analysis is the collection of sensor data in a suitable format.  

Sensor data should be collected in its most raw form in order to maintain the integrity of the 

original measurement.  On-board signal processing such as filtering and averaging can work 

very well, but these operations are usually permanently applied to the measured data, unless 

custom hardware/software outputs raw measurements as well.  A generic illustration of the 
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overall data analysis process flow is shown in Figure 1.4, which consists of 5 main steps: 

collection of sensor data, preprocessing, feature extraction, dimensionality reduction, and 

classification.  This is not a strict definition for achieving the end goal of classifying sensor 

data into a decision, but rather a general guide to the steps needed to achieve this.  The 

actual collection of sensor data will be described in much detail in later chapters.  At this 

point, we can consider that sensor data has been collected from either a single sensor or an 

array of sensors, and is represented by an array of resistance and timestamp values which 

have been read into an appropriate data analysis platform such as Python.  The measured 

sensor data is in its most raw form and contained in a data matrix array format for ease of 

further processing.  The next step is to perform data preprocessing on the raw sensor data in 

order to condition the data for further steps. 

 

 

Figure 1.4  Data analysis process flow showing preprocessing, feature extraction, 
dimensionality reduction, and classifying of chemical sensor data. 

 

Data preprocessing broadly refers to any transformation performed on the raw 

sensor data prior to building the analysis model and can largely be broken into processes to 



 
9 

 

reduce noise/drift and to perform numerical preconditioning.  Examples of noise/drift 

reduction may include smoothing, drift correction, and baseline manipulation, while 

examples of numerical preconditioning usually deal with applying normalization and scaling 

operations to the sensor data.  Smoothing of data can be performed by using a moving 

window average with a defined smoothing window (e.g., boxcar, blackman, hamming) and a 

specified window size.  This can be accomplished with the Python Pandas module.9  An 

example of applying smoothing at different window sizes is shown in Figure 1.5, where a 

boxcar type window with window sizes of 5, 10, and 15 points was used to smooth the 

original data.  A clear difference can be even be observed between the original sensor data 

and the data with 5-point smoothing performed.  Beyond the 5-point smoothing, minimal 

differences can be seen and one must be careful not to simply smooth at a higher window 

size, since this would increase the likelihood of smoothing or smearing an important feature.  

Statistical techniques can be helpful to determine a range of smoothing parameters by 

analyzing the noise in the signal and taking into account the data collection rate. 

  

 

Figure 1.5  Example of smoothing sensor data at different smoothing window sizes. 
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Sensors of all kinds almost always exhibit some kind of drift over time.  This affect is 

particularly prevalent in sensors that contain a reactive material, such as a chemical sensor.  

Not only does drift occur as the sensor recovers from a previous exposure, but chemical 

sensors are often prone to temperature and humidity changes due to interaction with the 

sensing material.  One method to correct this drift is to apply a first-degree linear fit to the 

baseline data before the sensor responds, then determine the difference in slope of this line 

relative to a horizontal line, which represent zero drift.  Once this difference is found, it can 

be used to adjust the original data into drift corrected data.  Shown in Figure 1.6 are two 

examples of how applying a drift correction technique can significantly correct a drifting 

signal.  This step is important for further processing when features are extracted from the 

response signal, and is especially important when performing feature calculations such as the 

maximum change in resistance and areas under a curve.  Drift correcting does not change 

the dynamics of the original sensor response, but rather creates a common reference, which 

calculations can be compared to. 

    

 

Figure 1.6  Drift correction with a first-order linear fit applied to the sensor baseline data. 
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Another important preprocessing step is the manipulation of the sensor response 

with respect to its baseline for the purposes of contrast enhancement and scaling.4  Three of 

the most commonly used scaling techniques are differential, relative, and fractional.  The 

differential method subtracts the baseline from the sensor response, and as a result, any 

additive noise that may be present in the sensor signal is removed.  The relative method 

divides the sensor response by the baseline, which eliminates the effect of multiplicative drift 

and creates a dimensionless response.  Finally, the fractional method subtracts the baseline 

then divides by the baseline, creating a normalized, dimensionless response represented in 

per-unit change.  The equations for the described differential, relative, and fractional scaling 

methods can be seen in equations 1, 2, and 3, respectively.    

ܴ஽௜௙௙௘௥௘௡௧௜௔௟ = ܴ − ܴ஻௔௦௘௟௜௡௘    (1) 

ܴோ௘௟௔௧௜௩௘ = ோ
ோಳೌೞ೐೗೔೙೐

    (2) 

ܴி௥௔௖௧௜௢௡௔௟ = ோିோಳೌೞ೐೗೔೙೐
ோಳೌೞ೐೗೔೙೐

   (3) 

The next step in the data analysis process is the extraction of features from the 

sensor response data.  Feature extraction is also sometimes referred to as feature 

engineering. It deals with the process of gaining information from the sensor data by 

describing features which characterize the sensor response.  The features are used to train 

the classification algorithm and are also the same features that will be extracted from 

unknown sensor data.  This step is probably the most important step in the entire process 

since the features are what truly describe the response of the sensor.  This is also the step 

which requires the most human intuition, and knowledge of the type of sensor and the 

physical response mechanisms that produce the sensor response.  The underlying 
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mechanisms that govern the physical and chemical interactions between the compound and 

the sensor are principles that can be used to develop meaningful features.  Three examples 

of types of features that can be extracted from temporal chemical sensor response data are 

shown in Figure 1.7.  Parameter extraction refers to the calculation of features such as the 

maximum change in signal, and areas calculated for the sampling (AS) and recovery (AR) 

periods of the response.  This method requires either knowing when the sample and 

recovery period begin via a hardware trigger, or a detection algorithm capable of finding 

these points of transition.  The next technique, labeled at sub-sampling, simply takes the 

drift-corrected data and samples it at a lower rate, pulling out equally spaced resistance 

values.  This method can be used on the entire response signal or can be limited to only the 

sample and recovery regions.  The last method deals with applying fitting models to the 

sample and recovery portions of the response in order to extract fitting coefficients.  The 

sample and recovery regions of the response curve can be fit with exponential or polynomial 

equations, where the fitting coefficients describe the shape of each response.  This method 

could be very powerful since the fitting coefficients could be indirectly related to the actual 

compound being sensed due to absorption and desorption kinetics.  This method is 

computationally expensive and could be prone to mistakes if integrated into an automated 

fashion, due to the fitting of anomalies in the signal that can occur. 
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Figure 1.7  Feature extraction techniques using a) parameters such as maximum change in 
resistance and signal areas, b) sub-sampling of original response data, and c) transient fitting 

of response curve. 
 

Subsequent pattern recognition, clustering, and classification techniques require the 

data to be in a specific format.  The features that were previously described are extracted for 

each measurement and assigned a label corresponding to the true identity of the class for 

that measurement.  The feature are put into an M x N array, with M measurements and N 

features; this array is called the feature vector.  Shown in Figure 1.8 is an example of the 

structure of a feature vector for 18 measurements with max change, area response, and area 

recovery extracted from each.  Each measurement is contained in a row and the columns 

represent the label, max change, area response, and area recovery. 
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Figure 1.8  Example of the structure of a feature vector with rows for each measurement 
and columns for the label and features.  In this case, the features that were extracted from 

each measurement are max change, area response, and area recovery. 
 

A powerful technique for exploring a data set and structure that may exist in the data 

is principal component analysis (PCA).  PCA is a linear transformation into an alternate 

coordinate system which highlights similarities and differences in the underlying structure of 

the data.  The input data to PCA is the feature vector, where the features are used to 

describe the data.  The data is measured in terms of its principal components (PC), which 

represent the variance contained in that particular direction.  The PCs are arranged in 

descending order, with PC1 representing the direction that contains the most variance in the 

system.  Each PC is a linear combination from all features in the original feature vector and 

each PC is orthogonal to each other.  PCA is computed by finding the eigenvectors and 

eigenvalues of the covariance matrix, where the covariance matrix is used to measure how 
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much the dimensions vary from the mean with respect to each other.  The eigenvalues are 

used to define the magnitude of each PC and the eigenvectors are used to define the 

direction.  The most common uses of PCA are to explore a data set for structure and 

grouping and to reduce high dimensionality data to a lower dimension.  Reducing the 

dimensionality of a large dataset by PCA can be a very useful technique.  The transformed 

data can have a significantly lower dimension, but still contain a very large amount of the 

variance contained within the data, which is important for developing learning algorithms 

and when making predictions.  Features can grow rapidly, which also requires the amount of 

training data to grow as well.  It is often not possible to obtain more training data or is too 

costly, so to avoid the curse of dimensionality,13 the size of the feature space must be 

reduced.  Figure 1.9 is an example demonstrating the amount of variance that can be 

maintained in a smaller number of PCs.  The feature vector used for PCA in this case 

contained 14 features.  This plot shows that if the first PC is kept, then 51% of variance will 

be represented by this single PC.  Similarly, if 5 PCs are kept, then 99% of the variance will 

be contained in the first 5 PCs.  So in this case, a feature space of 14 can be reduced to 5, 

while still maintaining 99% of the variance in the data. 
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Figure 1.9  The cumulative percent variance for the number of principal components for a 
PCA transformation. 

 

Many techniques exists that can learn the structure of a set of data so well that when 

the model is applied to the data on which the model was built, it correctly predicts every 

sample.  In addition to learning the general patterns in the data, the model also learns the 

characteristics of each measurement’s unique noise.  This type of model is said to be overfit 

and will usually have poor accuracy when predicting a new sample.14  It is tempting to use 

the entire data as the training set; however, that results in a model that overfits to the 

training data, and is unable to be generalized to new data.  The problem of overfitting is 

exacerbated with classifiers which have a large number of paramters.15  A commonly used 

technique to better validate the prediction accuracy of a model is k-fold cross-validation.  

When this technique is utilized, the data set is split into training and test sets for each k-fold 

iteration, where the training and test sets are different for each fold.  In this manner, a 

prediction accuracy is obtained for each fold from the prediction outcomes on the test set, 

which can then be averaged to obtain an overall prediction accuracy.  Figure 1.10 illustrates 
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the process of k-fold cross-validation using 5 folds.  This example is generic and does not 

define the size of the training and test set, but in a real example the size of these are defined 

with values such as a training size of 70% and a test size of 30%.  For each fold show in this 

example, it can be seen that a different training and test set are chosen and a prediction 

accuracy is determined for each fold.  This example purposely shows that the range of 

accuracies can vary widely, with in this case, a minimum of 73% and maximum of 93%.  

Without using k-fold validation these are the results that one would obtain if choosing just 

that specific training, and test sets from the data and would give an inaccurate representation 

on how the model may perform on new data.  The average prediction accuracy for this 

model using 5-fold cross-validation is 84%, with a standard deviation of 6.7%. 

  

 

Figure 1.10  Illustration of k-fold cross-validation using 5 folds.  Each row represents a 
separate prediction performed on that specific testing and train set. 
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1.4  State-of-the-Art:  Electronic Nose and Graphene Sensors 
 

The types of sensors used in an e-nose are not necessarily limited to those providing 

a direct electrical output, but rather those in which the sensor response is some measureable 

phenomenon that can be converted into an electrical signal.  More important than the type 

of sensor used is if the sensor can be utilized in an array format.  The diversity needed for an 

e-nose is made possible by creating a cross-reactive array, which contains multiple broadly 

responsive sensors.  The various types of sensors can be largely grouped into sensors that 

produce a direct electrical change (e.g., voltage, resistance, current, capacitance), and sensors 

that transduce physical change, temperature change, or optical changes into an electrical 

signal of some form.  The following is a brief summary of various approaches of novel 

materials and devices for sensor applications.  

(i)  Silicon nanowire field effect transistors (SiNW FETs) have been used for 

selective detection of gas phase compounds.  The SiNW FETs are individually 

functionalized by various molecular layers containing carboxyl, phenyl, and methyl 

functional groups, providing a variety of electron-donating and electron-withdrawing 

functionalities.  The extracted features from each modified sensor output include the voltage 

threshold, hole mobility, subthreshold swing, and on-current, which are derived from the 

measurement of the drain-current versus gate-voltage.  These features are used directly as 

inputs to an artificial neural network (ANN) model for classification of the target 

compounds.16   

(ii)  Carbon nanotubes (CNT) vapor sensors has shown great promise, with high 

sensitivity conferred by the small dimensionality and exceptional electronic properties of the 

CNT.  This type of device relies on the change in resistance of the CNT upon exposure to 
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an analyte.  One approach used to create a cross-reactive array based on CNTs is to 

functionalize each element with single-stranded DNA.  In this work, four different DNA 

oligomers were used to create a sensor array capable of detecting target analytes in 

backgrounds of volatile interferents and discriminating between highly similar molecules.17   

(iii)  Carbon black-polymer composites have been used fairly extensively for chemical 

vapor sensing.  Carbon black is combined with a polymer at a certain weight ratio to create a 

conductive composite, and is typically deposited over a pair of electrodes.  Upon exposure to 

chemical vapors, the conductive film swells, causing an increase in film resistance due to 

increased distance between carbon black particles.  Arrays of carbon black-polymer 

composites vapor sensors have been created by utilizing a variety of organic polymers with 

varying properties that have been selected to provide a broad responsivity.  Theses arrays 

have shown excellent discrimination ability when used with proper pattern recognition 

methods and have been compared to mammalian olfaction.18   

(iv)  Metal oxide semiconductor (MOS) materials used in a chemiresistor format are 

widely used sensing materials in e-nose design and can be found commercially from 

companies such as Alpha-MOS and Applied Sensor.4  These sensors also rely on a change in 

the resistance of the sensing material, but this change occurs under different conditions and 

mechanisms.  The target gas interacts with the surface of the metal oxide film, which results 

in a change in the carrier concentration of the semiconducting film and ultimately serves to 

alter the conductivity.19  These sensors have shown to be very sensitive when larger surface 

areas are used, but can lack selectivity.  Selectivity can be gained by adding catalytic metals to 

the film and varying the operating temperature.  MOS sensors have been applied extensively 
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in the food industry for the analysis of products such as meats, fish, dairy, grains, fruit, and 

beverages.20   

(v)  Surface acoustic wave (SAW) devices have long been popular for vapor phase 

gas sensing.  These devices are completely reliant on a polymer coating, which is modified in 

the presence of a chemical compound, causing a modification to the reference frequency of 

the device.  Since these devices are reliant on the polymer properties, statistical methods can 

be used to attempt to determine the similarity of polymer coatings by analyzing their 

solvation parameters according to the linear solvation energy relationship.  In one specific 

example, data mining approaches are used to select optimal polymers from a group of 22 

polymers used to coat SAW devices for vapor phase detection of TNT and DNT in the 

presence of interferent background compounds.21   

(vi)  A sensor technology related to SAW sensors are quartz crystal microbalance 

(QCM) sensors. QCM sensors also rely on the absorption of gas molecules into a polymer 

coating applied to the device, which in-turn causes a shift in frequency from a baseline 

resonant frequency.  The polymer coatings used for a QCM array can be similar, if not 

identical, to those used for SAW and carbon black sensors.22   

(vii)  A mass-based sensing system based on a microfabricated silicon cantilever array 

translates physical and chemical processes into nanomechanical motion of a cantilever.  The 

motion of the cantilever is represented by a signal magnitude based on its overall movement.  

In this example, eight cantilevers are contained in the array, each with a single polymer 

coating or a combination of the single polymer coatings.  Signal values at five points in time 

are extracted from each of the eight sensors; the combined features are reduced by PCA to 
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obtain a reasonable dimension feature vector, which is then used as an input to an ANN for 

learning and classification.23 

(viii)  Fluorescent polymers have become popular for sensing of chemical 

compounds due to their fluorescence amplifying effect, which can produce dramatic changes 

when exposed to low concentrations of chemical compounds.  In this approach, glass beads 

were coated with five fluorescent polymers with distinct spectral emissions and packed in a 

flow cell.  Water was passed over the beads while continuously monitoring the fluorescence 

intensity of each section of beads with separate spectrometers.  The array was challenged 

with 17 different analytes, including explosive and explosive-related compounds.  The array 

displayed excellent ability to discriminate between explosives and explosive-related 

compounds such as TNT, DNT, RDX, DNB, and tetryl.  Although this work used water as 

the carrier of the analytes, this same idea could be used directly in the vapor phase.24   

(ix)  An additional fluorescent based sensing material that can used for array-based 

sensing is quantum dots (QD), also known as nanocrystals.  In terms of fabrication and 

deposition, they are similar to polymers and are usually contained in a solvent solution.  They 

can be deposited into solid-state films on their own or combined with non-fluorescent 

polymers to form a composite.  Recently, QD polymer composite films were created in a 

cross-reactive array by ink-jet printing five composite films, each with a different composite 

polymer.  The fluorescent QD array was tested against 14 functionalized benzenes and 14 

compounds related to security concerns, and displayed excellent discrimination ability.  

(x) Cross-reactive colorimetric arrays are based on a chemically diverse range of 

chemically responsive dyes, where the color change of each dye is monitored over time.  

This approach converts olfactory-like responses to a visual output, which is monitored with 
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a flatbed scanner to convert the image into digital data that can be further processed.  The 

dyes are of three primary types used to target different types of reactions: meal-ion 

containing dyes, pH indicating dyes, and dyes with large permanent dipoles.  These 

colorimetric arrays have successfully been able to discriminate between various targets such 

as beers, soft drinks, and VOCs.25,26     

Graphene has been used in many different chemical and biological sensing 

applications, but still remains to be actualized in a cross-reactive array for applications such 

as an electronic nose.  Graphene has certainly been used for chemical vapor sensing, but 

most of the shortcomings have revolved around modification schemes to create multiple 

sensors on a single substrate in order to increase selectivity.  The only reported case of a 

graphene-based sensor array uses reduced graphene oxide as the sensing material and creates 

an array of sensors across the reduced graphene oxide film due to the irregularity across the 

film.27  This approach is not an appropriate way to create a sensor array and does not contain 

any cross-reactivity between sensors. Furthermore, this work is very prone to device-to-

device variations since the array is based on irregularities across the film.    

Schedin et al. demonstrated, for the first time, the detection of individual gas 

molecules adsorbed onto graphene.28  In this groundbreaking work they showed the 

incredible sensitivity of graphene as a gas sensitive material.  Detecting a single molecule is 

the ultimate level in sensitivity for a chemical sensor.  Much of the graphene-based chemical 

sensor work after this point focused on increasing the sensor selectivity while maintaining 

the sensitivity.  There is often a direct tradeoff between sensitivity, selectivity, and sensor 

performance, such as response and recovery time.  A gain in one of these areas usually 

results in a loss in one or more of the other areas.   
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Graphene’s surface can be modified by many different methods, and this is often the 

approach taken to create a sensor or sensor array with increased selectivity.  Outside the area 

of chemical sensing, many cases of graphene functionalization have been reported, with a 

focus on attempting to induce a bandgap in graphene for use in semiconductor devices.  

Although these modifications are not intended for sensor applications, the approach of 

graphene functionalization can be applied to graphene gas sensors for the purpose of 

extending the sensitivity to certain compounds or overall selectivity.   

One potentially versatile modification scheme is the use of single stranded DNA, 

where the DNA provides sequence dependent chemical recognition capability by varying the 

length of sequence of the DNA.  If changing the sequence of the DNA translates into a 

gained selectivity of the sensor output response, an almost endless number of sequence 

combinations could be established.  The first reported case of using DNA in this manner 

used two different coded single stranded DNA sequences to create sensors which display 

fast response times, complete and rapid recovery to baseline at room temperature, and 

discrimination between several similar vapor analytes.29  Additional research done by the 

same group demonstrated the scalability of this technique by applying additional sequences 

to the same device type.30  The detection of nitrogen dioxide (NO2) is important for 

environmental applications because it plays a role in the formation of ozone and acid 

precipitation.31  Graphene has been reported to be highly sensitive to NO2 when the sensor 

has been treated with an oxygen plasma, which imparts oxygen functionality groups at the 

graphene edges and on the surface.  In this work substantial increase in sensitivity when 

compared to pristine graphene is reported, with an approximate 8x increase in sensitivity for 

oxygen treated graphene.32  In addition, research of NO2 sensing using graphene grown by 
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epitaxy on SiC was used to create ultrasensitive sensors with an estimated sensitivity of 0.6 

ppt.  In this research an annealing process is performed at 120 oC with a carrier gas flow, and 

improvements in sensitivity were over tenfold when compared to an un-annealed device.33   

The research described in the previous works predominately focused on increasing 

the sensitivity of a graphene-based sensor towards a specific compound and largely ignore 

how it may respond to chemically and structurally similar compounds.  One of the first 

reports of using a single sensor based on graphene to detect and discriminate against 

multiple compounds was done by Rumyanstev et al., who used an innovative approach to 

gain further information from the graphene device.34  In this work, they used a pristine 

graphene transistor without surface modification and monitored not only the change in 

resistance of the device upon exposure to seven compounds, but also measured the low-

frequency noise spectra of the device simultaneously.  The low-frequency noise spectra, also 

referred to as 1/f noise, displayed characteristic frequency peaks for most of the 

compounds.  This additional information complements the change in resistance values and 

can effectively be used to help discriminate the individual compounds.  Although very 

innovative, this approach has the drawback of requiring a completely separate measurement 

of 1/f noise spectra, which can be difficult to perform, especially when it is needed for a 

compact device or wearable electronics.   
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Chapter 2 Graphene and its Use as a Chemical Sensing 
Material 

2.1  Graphene Properties 
 

Graphene is a carbon-based material with extraordinary electrical, mechanical, 

thermal, and optical properties mostly attributed to its 2-dimensional (2D), sp2-bonded 

structure.35  It is currently one of the strongest known materials, with excellent thermal and 

electrical conductivity, mechanical flexibility, and optical transparency.  Some of these 

important properties can be seen in Table 2.1.  In graphene, sp2 hybridized orbitals are 

responsible for bonding in the X-Y plane, which bond to three neighboring carbon atoms.  

These bonds are very strong and contribute to the mechanical strength of graphene.  The 

remaining 2p orbital exists perpendicular to the plane, contributing one conduction electron 

per carbon atom.  This electron, located perpendicular to the surface of each carbon atom, 

forms a delocalized electron cloud above or below each carbon ring.  The electron clouds 

from each carbon ring overlap to form a continuous π-orbital system across the graphene 

layer, which provides its outstanding electrical conductivity.  This electron cloud formed 

above and below the graphene is illustrated in Figure 2.1.36  Disruption of the graphene 

lattice by physical or chemical means changes the electronic configuration of the carbon 

atoms and the overall conductivity.  
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Figure 2.1  Electron cloud configuration above and below graphene.36 
 

Table 2.1  Mechanical and electrical properties of graphene 

 

 

Of all other carbon-based materials, carbon nanotubes have been used most 

extensively for chemical sensing applications,37 and upon discovery of graphene, it also 

became a candidate material for chemical sensing.  Graphene has a high potential for use in 

this area owning to its 2D geometry, which provides a surface entirely exposed to its 

surrounding environment.  In this configuration every carbon atom in graphene is a surface 

atom, providing the greatest possible surface area per unit volume.  Therefore, electron 

transport in graphene is highly sensitive to adsorbed molecular species.38  Graphene has 

already been shown to be extremely sensitive to various gaseous compounds and detection 
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of single gas molecules has been reported.28  An additional property of graphene which is 

important for sensor design is its pure carbon makeup.  A carbon surface offers much 

potential for surface functionalization by polymer modification, covalent attachments, bio 

molecules, and many other chemical processes.  Surface functionalization can provide 

additional sensitivity and selectivity and also can be used as the basis to create cross-reactive 

arrays.  

 

2.2  Graphene Production 
 

Graphene is produced by a wide variety of methods ranging from mechanical 

exfoliation to silicon carbide sublimation.  The method used to produce graphene has 

profound effects on its quality, with each method having its respective strengths and 

differences.  The commercialization and realization of any graphene-based device will not 

only be dependent on the maturity of the device itself, but also the scalability and 

manufacturability of the device on a mass production scale.  This chapters aims to provide 

an overview of various graphene production methods, and insight into why some methods 

may be more desirable over others.    

2.2.1  Graphite Exfoliation 
 

Graphite is easily sheared into single graphene layers due to the weak Van der Waals 

forces which keep layers together.39  The Scotch-tape method uses standard scotch tape to 

remove layers of graphite from a bulk graphite piece.  The tape is repeatedly folded and 

unfolded to exfoliate graphene layers.  Graphene is then transferred to a final substrate such 

as SiO2.  This method produces high quality graphene layers but suffers from small, 
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unpredictable sizes and is often difficult to reproduce.  For small-scale research purposes 

and to probe the fundamental properties of graphene, this method was used. Single 

graphene layers were able to be isolated and then patterned with metal contacts to create 

devices.  Shown in Figure 2.2 is the exfoliation process of graphene, where scotch tape is 

used to exfoliate graphene layers from a piece of bulk graphite which are then transferred 

from the scotch tape to a final substrate.40 

 

 

Figure 2.2  Mechanical exfoliation process of graphene using the scotch tape method.40 
 

2.2.3  Chemical Vapor Deposition 
 

The deposition of graphene over metal films by chemical vapor deposition (CVD) is 

one of the most popular synthesis routes, if not the most popular.41  This technique has the 

advantages of being a widely available and understood fabrication method and allows the use 

of large substrates to create large area graphene.  This method is fundamentally different 

than exfoliation, and while it can produce much larger continuous graphene films, the quality 

is less than that of exfoliated graphene flakes.  The CVD process begins by passing a 

feedstock gas over a catalytic metal substrate (e.g., Ni, Cu) held at an elevated temperature in 

range of 800 – 1200 oC, depending on the metal substrate.  At this elevated temperature the 
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carbon feedstock decomposes, providing a source of carbon.  For the case of a Ni substrate, 

the carbon is absorbed into the Ni, or if carbon solubility is limited, then sp2-carbon 

formation can occur as a surface process, as in the case of a Cu substrate.  After carbon 

decomposition and absorption or surface formation of carbon, the substrate is moved to a 

heating zone with a decreased temperature and then to room temperature.  A transfer 

polymer such Poly(methyl methacrylate)  (PMMA) is then applied to the metal/graphene 

substrate and the metal is then etched away with a wet chemical etch solution, leaving the 

graphene attached to the PMMA.  The transfer polymer containing the graphene can now be 

applied to the final substrate, which is then followed by an acetone rinse to remove the 

PMMA layer or other organic removal techniques such as reactive plasma treatment.  The 

process of synthesizing graphene on copper foil and its transfer to a final substrate by 

PMMA acetone removal is illustrated in Figure 2.3.42 

 

 

Figure 2.3  Chemical vapor deposition growth of graphene and transfer process with steps 
a) synthesis of graphene on copper foil, b) spin-coating of PMMA onto the Cu foil to 
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protect graphene, c) etching of Cu, d) transfer of graphene/PMMA film onto glass, e) 
removal of PMMA in acetone.42 

 

2.2.4  Epitaxial Growth on SiC 
 

Graphene can be grown directly on commercially available silicon carbide (SiC) 

substrates and the process is capable of producing high quality, clean graphene films.  The 

growth process is based on controlled sublimation of silicon from the SiC substrate.  A SiC 

sample is typically heated at temperatures near 1600 oC, resulting in a direct transformation 

of silicon in the solid phase to vapor phase.  When the silicon sublimates, it leaves behind a 

few layers of nearly free carbon which reconstruct on the surface to minimize bonding 

energy.41 

2.2.5  Graphene Oxide 
 

Graphene oxide is still considered a type of graphene but will not produce nearly the 

quality of the previously described graphene films.  To create graphene oxide, graphite is 

exfoliated chemically with a strong oxidizer.  This creates a solution of single layer flakes 

typically suspended in water or ethanol.  The solution can then be spun onto many different 

substrates, but in this state is an insulator due to the large number of insulting functional 

groups created during chemical exfoliation which disrupts the sp2 bonding.  A graphene 

oxide film can be reduced in an attempt to restore its properties.  Reduction of graphene 

films can be done by a variety of methods but two of the most popular are thermal 

reduction, performed in a furnace, and chemical reduction via hydrazine vapor.43 
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2.2.6  Roll-to-Roll Processing 
 

Roll-to-roll (R2R) processing of high quality graphene is currently the most advanced 

method of graphene production and is mostly developed for flexible, conductive substrates 

for displays and a higher throughput manufacturing method.  One recent report 

demonstrates R2R processing of 30” graphene films onto a flexible substrate for transparent 

electrode applications.44  Shown in Figure 2.4 is an image of the procedure used in this 

report and depicts R2R production by attaching graphene on copper foil to a polymer 

support, followed by copper etching, and finally polymer support release and graphene 

transfer to a final flexible substrate.  This process is very similar to that of CVD graphene 

but is done in a continuous fashion for application in high volume production. 

 

 

Figure 2.4  Roll-to-roll production of graphene onto a flexible substrate.44 
 

2.3  Sensor Design 
 

The sensor design consists of a simple chemiresistor device comprised of a pair of 

metal contacts deposited onto a graphene substrate, where the substrate is comprised of 

silicon (Si), thermally grown silicon dioxide (SiO2), and graphene.  The metal contacts are a 
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series of interdigitated electrodes (IDE) with a specified length, width, and separation.  A 

resistance is established due to the separation of the electrode fingers and resistive properties 

of the graphene.  To operate the sensor a constant bias is applied across the electrodes and a 

resulting current is measured.  When a chemical compound is presented to the sensor 

surface, the resistance of the graphene is temporarily modified, resulting in a time-dependent 

change in resistance.  Upon removal of the compound from the sensor, the resistance begins 

to return to its baseline value.  Shown in Figure 2.5 is an illustration of a graphene sensor 

device, where a chemical compound comes in contact with its surface, producing a change in 

resistance of the graphene film over time. 

 

 

Figure 2.5  a) Sensor design consisting of interdigitated electrode contacts deposited on an 
Si/SiO2/Graphene substrate and b) typical time-dependent change in resistance of the 

graphene chemical sensor. 
 

2.4  Sensor Fabrication 
 

All sensor devices used throughout this work were fabricated from purchased 

Si/SiO2/graphene substrates.  The graphene was produced through CVD and physically 
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transferred to the Si/SiO2.  4” single layer graphene substrates were purchased from 

Graphenea (Cambridge, MA) and cleaved into approximate 1.3 cm x 1.3 cm pieces using a 

diamond scribe.  Other graphene samples consisting single layer, single double layer, and few 

layer films were purchased from Graphene Supermarket and come pre-cleaved as 1 cm x 1 

cm pieces (Calverton, NY) and were used as noted.  Pressurized nitrogen was then used to 

remove any particles on the surface before photoresist application.  AZ nLOF 2035 negative 

photoresist was then applied to the sample and spun at 500 rpm for 4 s, followed by a 30 s 

spin at 3000 rpm.  A laboratory swab wetted with acetone was then used to remove the edge 

bead formed around the perimeter of the sample.  The sample was then soft baked on a hot 

plate for 60 s at 110 oC to remove residual solvents.  A photolithography mask of the IDE 

design was then used the expose the photoresist for 4 s.  A post exposure bake was then 

performed for 60 s at 100 oC.  The exposed sample was then developed in AZ 300 MIF 

developer for approximately 35 s or until the pattern visually appeared.  Following 

photoresist development, the sample was rinsed in deionized water and dried with 

pressurized nitrogen.  The patterned sample was then mounted to a Si carrier wafer and 

loaded into a Temescal BJD-1800 electron beam evaporator where a layer of Ti/Au (25 

nm/300 nm) was deposited once an appropriate base pressure was achieved. Following 

metal deposition, metal lift-off is achieved by soaking the sample in an acetone bath for ~2 

hrs.  After the metal patterned sample was rinsed with deionized water and dried, it was 

mounted in a leadless chip carrier and wire bonded.  The described fabrication steps are 

visually shown in the process diagram in Figure 2.6 and images of graphene substrates, 

photolithography design, and a completed device are shown in Figure 2.7.   
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Figure 2.6  Graphene sensor fabrication process steps. 
 

 

Figure 2.7  a) Cleaved graphene pieces, b) photolithography pattern for a single device, and 
c) completed sensor wire bonded in leadless chip carrier. 

 

2.4.1  Fabrication Issues 
 

Two main fabrication issues were encountered: 1) the lifting of the deposited metal 

from the substrate during wire bonding and 2) unintentional removal of the graphene during 

photoresist development.  Graphene produced through CVD is not directly grown on the 
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SiO2, but rather by a transfer process using a carrier polymer.  Given these reasons, it is not 

inconceivable that the bond strength between the graphene and SiO2 is weak relative to the 

bond between the Ti/Au layer and graphene.  During wire bonding the first bond contacts 

directly to a Ti/Ai bonding pad and the second bond to the inner perimeter of the LCC.  

When transitioning from the first bond to the second, the tension can cause the metal 

pattern to lift from the surface, or in some cases be completely removed.  Figure 2.8 

contains SEM images detailing the lifting of the metal IDE during wire bonding with a) gold 

wire bond attached to a bonding pad that has lifted off of the surface, b) IDE lifting from 

the surface and removing the graphene layer, and c) complete removal of the metal IDE and 

underlying graphene.  This issue is particularly challenging when working with FLG.  The 

many graphene layers are still able to be easily exfoliated and the metal deposited on the top 

most graphene layer promotes this exfoliation during the bonding process.  An image taken 

with a confocal laser scanning microscope of FLG is shown in Figure 2.9 and clearly shows 

the removal of the majority of the electrode pattern and underlying graphene in a very sharp, 

defined pattern.  In this case, it still appears that the graphene is completely removed even 

though this is FLG, further indicating that the bond between the graphene and the SiO2 

substrate is weak. 
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Figure 2.8  SEM images of a) wire bond attached to lifted metal pad, b) IDE pattern lifting 
from the substrate, and c) complete removal of metal IDE. 

 

 

Figure 2.9  Confocal laser scanning microscope image showing the removal of the metal 
contact pattern from few-layer graphene. 

 

During the photoresist development step performed for lift-off, the developer 

removes the portions of the photoresist which were masked from the UV light until it 

reaches the underlying layer.  The development time is typically determined by manufacturer 

guidelines and experimentally, which takes into account the actually temperature and 

humidity.  Shown in Figure 2.10 are SEM images of a graphene sample that has been 

patterned for metal deposition, but instead of depositing the metal, the photoresist was 

stripped with acetone, revealing a deteriorated surface.  This developer, along with many 

others, consists of water and Tetramethylammonium hydroxide (TMAH).  No obvious cases 

of interactions between TMAH and graphene have been reported. 
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Figure 2.10  SEM images of graphene appearing to have been unintentionally etched during 
photoresist development. 

 

This effect was further investigated by optical spectroscopy and Raman spectroscopy 

during the fabrication process.  Following photoresist development for metal lift-off, the 

sample was imaged with an optical microscope to look for damage.  Shown in Figure 2.11a is 

the surface where metal deposition will occur and clearly shows a disrupted film.  The 

previous SEM images appear to show an etched film, but in this image the film appears to 

have lifted from the SiO2 surface, and in some areas, folded on top of itself, creating 

wrinkles.  Figure 2.11b shows the same device after metal deposition and liftoff, where the 

same features in the previous image are visible in the metal film.  It is important to note in 

Figure 2.11b that the graphene under the photoresist during photoresist development is not 

damaged and can be seen in the magnified view of Figure 2.11b.  From a manufacturing 

standpoint this is an issue that would need to be addressed, but in the case of this sensor, the 

graphene makes good electrical contact with the metal and the graphene between electrodes 

is undamaged. 
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Figure 2.11  Microscope images of processed graphene device a) before metal deposition 
and b) after metal deposition. 

 

To confirm that the graphene was indeed removed during photoresist development 

as shown in the previous figures and that the graphene between electrodes was in intact, the 

Raman spectra of three different regions were measured.  Three measured Raman spectra 

are shown in Figure 2.12: 1) where graphene appears to be removed from after photoresist 

removal, 2) area which appears undamaged after photoresist removal, and 3) between the 

metal electrodes after metal liftoff.  The spectra of the apparently removed graphene area 

shown in blue confirms no graphene is present due to the lack of any characteristics peaks.  

The spectra for the undamaged area and the area between metal electrodes are characteristic 

Raman spectra for graphene and only differ by a small change in the D-peak. 
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Figure 2.12  Raman spectra of processed graphene device taken before metal deposition and 
after metal deposition. 

 

2.5  Gas Sensing Setup 
 

Once the graphene sensor is mounted and wire bonded in the LCC, it is ready to be 

placed into the texting fixture used for experimental gas sensing.  The testing fixture is 

shown in Figure 2.13 with its various components.  It consists of a printed circuit board 

(PCB) with a socket matched to the pin layout of the LCC used.  A 2” aluminum lens tube 

cap has been machined to fit around the LCC socket and is adhered to the PCB. The lens 

tube also has four tapped screw holes which allow a Teflon flow channel to be secured to 

the PCB.  With the LCC placed in the socket and the Teflon gasket and the flow cell secured 

with the four screws, a seal is created, allowing access to only the cavity of the LCC where 
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the sensor is located.  An inlet and outlet port are used to introduce a gaseous chemical 

vapors across the sensor surface. 

 

 

Figure 2.13  Gas Sensing test fixture showing a) LCC socket with LCC and Teflon gasket, 
b) bottom of Teflon flow cell, and c) top of Teflon flow cell. 

 

The PCB provides connections from the internal sensor cavity to the outside world.  

For a single sensor measurements, the resistance is measured using a Keithley 2450 source 

meter.  This measurement instrument is capable of sourcing a current or voltage while 

measuring the resulting voltage or current, respectively.  The Keithley 2450 is shown in 

Figure 2.14a.  The Keithley 2450 is only capable of measuring a single channel and would 

require multiplexing to measure multiple channels.  When multiple channels are needed, as 

in the case of a sensor array, a United Electronics Industry (UEI) data acquisition cube was 

used (Shown in Figure 2.14b).  The UEI unit was equipped with two UEI AI-222 resistance 

measurement cards.  Each AI-222 card provides 12 fully differential analog input channels 

with 24-bit resolution and an input resistance range of 0 – 40 kΩ, and is capable of collecting 

measurements at a maximum of 100 Hz.   

For each measurement, the resistance is continuously measured over a specified 

interval.  Figure 2.15 illustrates a typical sensor response curve with three distinct regions 
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consisting of a baseline, sample, and recovery period.  The response exhibits a characteristic 

exponential-like rise which reaches a steady-state maximum change in resistance, followed by 

a similar exponential-like decay as it recovers back to towards the baseline resistance value.  

   

 

Figure 2.14  a) Keithley 2450 source meter used for single device measurements and b) 
United Electronics Industry data acquisition cube. 

 

 

Figure 2.15  Typical sensor response showing change in resistance for baseline (I), sample 
(II), and recovery (III) regions. 
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The response of the chemical sensor is influenced by the design of the entire gas 

system including the temperature, flow cell volume, and flow rate.  It was experimentally 

determined that certain response ranges exist for the given flow cell being used.  This was 

determined by testing a sensor against a single compound under the same conditions while 

varying the flow rate.  Shown in Figure 2.16 is a plot of a graphene sensor in response to 

chloroform vapor introduced to the sensor at various flow rates ranging from 1 mL/min to 

50 mL/min.  A fairly distinct group can be observed for the flow rates 50 mL/min, 40 

mL/min, 30 mL/min, and 20 mL/min.  These four response curves have a sharp peak that 

occurs almost immediately after the introduction of the chloroform vapor, where it reaches 

it maximum value then begins to decay.  In this case, the flow rate is most likely too high, 

causing the most highly concentrated portion of the vapor to pass over the sensor before it 

has adequate time to respond.  This can also be seen in the recovery portion of the response 

when the vapor is removed and air begins to flow again.  At 10 mL/min the shape of the 

response takes on a completely different shape and a slight decay can be noticed at the 

introduction of the vapor.  As the flow rate continues to decrease the response continues to 

approximately reach the maximum response value, but takes on more shape during sampling 

and recovery.  This continues until 3 mL/min where the maximum value of the response 

begins to become decrease significantly and the time delay between vapor introduction and 

the beginning the response becomes larger.  Choosing a flowrate is a trade-off between 

maintaining a reasonable time between when the vapor begins and when the response 

begins, and obtaining enough of the kinetic information in the sensor response.  The start 

and stop points of the response are important for proceeding data analysis steps which 

queue off of these points to determine where to look for certain features. For this type of 
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sensor and the design of the flow cell, flow rates between 5-10 mL/min appear to be 

appropriate.  An additional consideration when choosing a flow rate is if dilution will be 

used to test concentration dependence.  For instance, diluting a total flow rate of 5 mL/min 

to 1% saturated vapor would require a dilution stream with a flow rate of 0.05 mL/min, 

which is not reasonable for a mass flow controller to maintain accurately and consistently. 

 

 

Figure 2.16  Time-series plot of a graphene sensor exposed to various flow rates of 
chloroform vapor ranging from 1 mL/min to 50 mL/min. 

 

Generating and supplying chemical vapors of many different chemical compounds at 

controlled rates and concentrations is typically accomplished by methods such as headspace 

sampling, diffusion method, permeation method, bubbler method, and sampling bag 

method.4  Each method has its strengths and weaknesses, usually revolving around 

contamination potential, desired concentration levels, and design complexity.  When 
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considering a vapor generation system capable of producing many compounds, the issues 

associated with contamination quickly arise.  In the case of this dissertation, two methods 

were used; the headspace and bubbler methods.   

Shown in Figure 2.17a is a bubbler system with the graphene sensor flow cell 

connected to the top of a Teflon manifold.  In this system, a carrier gas, such as air or 

nitrogen is passed through a vial containing the liquid form of the compound.  A fritted 

alumina solvent filter lies in the bottom of each vial, where the carrier gas is forced through 

the porous material, creating very small bubbles which travel through the solvent.  The 

generated vapor is then passed through chemically resistant tubing to a 16-input, low-volume 

Teflon manifold, where each input is connected with a PEEK check-valve to prevent 

contamination.  Each vial bubbler is addressed by means of an Ethernet controlled relay 

switch and Teflon mixing valves constructed of low-volume Teflon ports and solenoid 

valves.  In this manner, each bubbler vial can be addressed electronically and allows for the 

process to be automated.  The carrier gas supply for both the vial bubblers and for a dilution 

line input are precisely controlled by digital mass flow controllers (MFC).  

The other vapor generation and sampling system used throughout this work is a 

variation of a headspace system and can be seen in Figure 2.17b.  This system uses MFCs, 

smart motors, and an electromagnetic capper to automatically uncap a vial containing each 

compound and introduce the sensor to the headspace contained within the vial.  Two MFCs 

are used; the first is connected to a vacuum pump and is used to draw air across the sensor 

from the input nozzle; the second is connected to compressed air and is used to dilute the 

sample flow.  The sensor head and sample vial tray are both mounted to smart motors, 

allowing their position to be electronically addressed with precise control.  The sensor head 
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is mounted to a vertical smart motor and is used to lower the input nozzle into the 

headspace of each vial.  The sample vial tray is mounted to a rotating smart motor and is 

used to select the desired vial.  Before the vial is moved into a position just below the sensor 

nozzle, an electromagnetic capper removes a metallic cap from the vial to be sampled.  The 

opened vial is then moved to the position just below the sensor nozzle and the sensor is 

lowered into the vial headspace, where it samples the generated headspace for a specified 

amount time then moves back to its original position and the vial is capped.  Both the 

bubbler and headspace systems are controlled over USB and Ethernet by custom Python-

based software. 
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Figure 2.17  Vapor generation and sampling systems utilizing a a)bubbler method and b) 
headspace method. 

 

The sampler software takes a user input CSV file specifying the parameters for each 

measurement.  The software then has the ability to choose if the input sample list should be 

randomized and repeated.  For single device measurements, the Keithley 2450 is used and 
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the input CSV file takes the vial number, compound, baseline time, sample time, recovery 

time, sample flow rate, dilution flow rate, and device voltage.  When multiple channel 

measurements are needed, the UEI AI-222 resistance measurement boards are used and the 

input CSV file takes the vial number, compound, baseline time, sample time, recovery time, 

sample flow rate, dilution flow rate, and selected channels.  Throughout execution of each 

measurement data is collected for the resistance, time, flow rates, temperatures, motor 

positions, bubbler solenoid state, and other metadata.  All data is stored in a universal binary 

file which is used for subsequent data processing. 

 

2.6  Issues and Challenges 

2.6.1  Substrate Effects 
 

To date, a technique used to directly grow or deposit graphene onto the final 

substrate surface has not been developed, requiring graphene to be produced by other means 

and transferred to the final substrate.  The type of substrate and its condition can have a 

profound effect on the properties of the graphene film. Quality, cleaning, or other treatment 

of the substrate prior to graphene transfer is important for the operation and reproducibility 

of further fabricated devices.  Device-to-device variability, though in this case used in a 

positive manner,45 can make realization of graphene devices difficult.  Wang et al. developed 

a model to describe the reactivity of the graphene surface based on the surface energy of the 

underlying substrate.46  They transferred graphene via CVD grown and PMMA transfer to 

various substrates with different surface energies and performed Raman spectroscopy on the 

surface of each sample.  They discovered the surface reactivity, represented by the ratio of 

D-band intensity peak (ID) to the G-band intensity peak (IG), varied with the contact angle of 
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the surface and a more reactive surface results from a more hydrophilic surface.  The results 

of their findings can be seen in Figure 2.18, which illustrates a plot of surface reactivity 

versus contact angle for Plasma-cleaned SiO2, piranha-cleaned SiO2, as-received SiO2, 

aluminum oxide, and octadecyltrichlorosilane surfaces, showing decreasing reactivity when 

going from hydrophilic to hydrophobic surfaces.  In fact, it has been shown for a suspended 

graphene device, without a substrate in contact with the graphene layer, that no measured 

response is observed when various chemical compounds are introduced to its surface.47 

 

 

Figure 2.18  Plot illustrating the effect of different substrates on the surface reactivity of 
graphene.46 
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2.6.2  Noise 
 

Graphene is a unique material system in the context of 1/݂ noise owing to its 2D 

nature.  1/݂noise, also commonly referred to as flicker or excess noise, is usually found at f 

< 100 kHz and is now generally accepted that different fluctuation processes can be 

responsible for this noise  in different materials and devices.48  The 2D structure of graphene 

allows the entire surface to be exposed to its surrounding environment, making it desirable 

for chemical sensing applications.  The conduction electrons located on the graphene surface 

are largely responsible for its overall conductivity, and can also be heavily influenced by 

surrounding conditions such as the presence of a chemical compound or charge impurities 

from the underlying substrate.  These external effects lead to fluctuation in the conduction 

mobility, and ultimately to modification of the noise level.  The ability to change the number 

of graphene layers allows for the study of noise effects as a function of umber of layers.  

Balandin et al. demonstrated that the 1/݂ noise dependence on the number of atomic planes 

in FLG devices can shed light on the physical mechanism of 1/݂ noise.48  They showed that 

the 1/݂ noise level continues to decrease with increasing thickness of FLG conductors and 

therefore, for constant area film, noise in inversely proportional to its thickness.  This is an 

important relationship to discover and has great impact when designing and developing 

devices.  In the area of chemical sensing using graphene devices, it has been shown that the 

vapors of different chemicals produce distinguishably different effects on the low-frequency 

noise spectra of graphene, providing an additional feature for distinguishing between 

chemical compounds.49  The experimental results from this experiment can be seen in Figure 

2.19, showing the low-frequency noise spectra for a graphene device while exposed to 
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tetrahydrofuran, methanol, acetonitrile, chloroform, and open air.  A fairly characteristic 

peak can be observed for each compound, which can be used in addition to the change in 

resistance of device while exposed to chemical compounds. 

 

 

Figure 2.19  Low-frequency noise spectra of a graphene device while exposed to various 
chemicals.49 

 

2.6.3  Fabrication Contamination 
 

Surface contamination by polymer residues is a critical problem, hindering the ability 

to probe the intrinsic properties of graphene.50  PMMA is arguably the most widely used 

polymer for transferring CVD graphene from its metal substrate and is used by many 

commercial suppliers of graphene.  The removal of the PMMA layer can be done by 
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methods such as an acetone bath or oxygen plasma treatment.  Much debate still exists in 

this area as to whether PMMA residue still exists on the surface and how it affects the 

graphene properties.  Additional processing often required for creating graphene-based 

devices, such as photolithography for metal deposition or etching, can leave photoresist 

residues even after cleaning.  Residual photoresists left on the surface can modify the 

graphene’s electrical properties such as its mobility and overall conductivity.  The most 

successful technique to remove such residual contaminants has been thermal annealing at 

temperatures near 400  oC in vacuum.51  This is dependent on the nature of the device at the 

current processing step and if it is compatible with this level of temperature. 
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Chapter 3 Characterization and Sensor Response 

3.1  Raman Spectroscopy 
 

Graphene continues to become more and more available from commercial suppliers 

in various forms.  Most commonly, as-supplied graphene is grown by CVD and transferred 

to Si/SiO2 substrate where graphene itself can be single-layer graphene (SLG), single/double 

layer graphene (SDLG), or few-layer graphene (FLG).  Raman spectroscopy is a classic 

technique for probing graphene and determining important properties such as number of 

layers, presence of defects, and defect density.  The Raman spectra of graphite and graphene 

contains three main bands of interest: the D, 2D, and G bands.  The G-band is an in-plane, 

carbon-carbon stretching mode and exists in sp2 carbon systems.  The 2D-band is a second-

order breathing-like mode and is the strongest peak in graphene films with few layers.  The 

D-band is not present in all graphene systems and is only present when a defect exists.  A 

defect is described as any breaking of the symmetry of the graphene lattice, such as vacancy 

or the attachment of a functional group.  The D, 2D, and G bands are found at a Raman 

shift of 1350 cm-1, 2690 cm-1, and 1580 cm-1, respectively, and are used to identify the 

number of layers and the extent of defects.  The number of layers in the measured graphene 

film can be found by taking the ratio of the 2D and G peaks, where a ratio of 2, along with a 

lack of a D-band peak and a sharp symmetrical 2D-band indicate SLG.  This relationship is 

shown in Equation 4 and holds true for lower numbers of graphene layers.  Although the 

2D-band is always present in graphene, the D-band is not because this band appears when 

defects in the carbon lattice are present.  The level of defects or defect concentration is 

proportional to the ratio of intensities of the D-band and G-band; this relationship is shown 
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in Equation 5.  Recent research indicates that the lesser reported on D’-band, found near the 

G-band peak, can be used in conjunction with the D-band to create a ratio to describe the 

nature of the sp3-defects.52 

Number of Layers ∝  ூమವ
ூಸ

  (4) 

Defect Concentration ∝  ூವ
ூಸ

  (5) 

Figure 3.1 displays Raman spectra collected for graphite, SLG and double layer 

graphene.53  In Figure 3.1a, graphite and SLG are compared, where the main differences are 

seen in the ratios of the previously described bands and also the shape of the 2D-band.  In 

graphite, the 2D-band contains an extra hump compared to the spectra for SLG; both 

graphite and SLG exhibit little to no D-band and a very symmetrical G-band.  Shown in 

Figure 3.1b are the normalized G-band Raman spectra for graphite, SLG, and double layer 

graphene, where the Raman shift increases when moving from graphite to SLG.  Similarly, 

shown in Figure 3.1c is the relative increase in intensity of the G-band when graphene layers 

are increased.    
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Figure 3.1  Raman spectra for graphene samples comparing a) graphite and single-layer 
graphene for all bands, b) shift in the G-band for graphite, single-layer, and double layer 

graphene, and c) the change in G-band intensity for graphite, single-layer, and double layer 
graphene.53 

 

Experimental Raman measurements were performed using a Thermo Fisher 

Scientific DXR Raman microscope equipped with a 532 nm laser source.  The graphene 

samples used throughout this work consist of CVD graphene of various layers transferred 

onto a Si/SiO2 substrate.  Figure 3.2 shows experimentally measured Raman spectra for 

graphite, SLG, SDLG, and FLG, which were purchased from Graphene Supermarket.  The 

results for graphite and SLG, as compared to those shown in Figure 3.1 which were taken at 

the manufacturer, match very closely.  This confirms that this microscope is capable to 

perform precise measurements and also confirms that graphene used in our research has 

high quality.  Looking closer at the D-band, G-band, and 2D-band for each material shows 

differences that occur.  In the D-band, a negligible intensity is seen for graphite, SLG, and 

SDLG, while a large D-band peak is obvious for FLG.  The presence of a D-band peak is 

indicative of defects which could certainly be possible for CVD produced graphene of many 
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layers.  The G-band for each measurement displays an increase in the Raman shift when 

moving from graphite to SLG, as seen in the previous example.  

 

 

Figure 3.2  Raman spectra for graphite and Graphene Supermarket CVD single layer, single 
double layer, and few layer graphene. 

 

Another popular supplier of CVD graphene is Graphenea, which supplies a 4” 

Si/SiO2 wafer with SLG.  This product has the advantage of being supplied as a wafer so 

that it can be cleaved or diced into a desired sizes, unlike similar graphene from Graphene 

Supermarket which comes pre-diced into 1 cm x 1 cm pieces.  Three 4” SLG wafers were 

purchased at different periods and Raman measurements taken on each to look at their 

consistency.  Figure 3.3 displays the spectra for three separate batches of SLG purchased at 

different dates.  Besides some slight differences in intensity of the G-band and 2D-band, 
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which can be attributed to sample focusing during the measurement, the consistency among 

different batches is very good.  A small D-band peak can be seen that has approximately the 

same shape and intensity for each batch and may indicate that it could be a substrate effect 

or due to their method of production. 

 

 

Figure 3.3  Raman spectra for single layer graphene, purchased from Graphenea, from three 
separate batches. 

 

3.2  Response Voltage Dependence and Linearity 
 

A current-voltage measurement was taken to determine if any contact barriers appear 

to exist between the deposited Ti/Au contacts and the graphene layer.  Shown in Figure 3.4 

is a current-voltage measurement with voltage swept from -0.1 V to 0.1 V in 5mV steps.  
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Excellent linear behavior is shown with no indication of contact barriers at the Ti/Au-

graphene interface. 

 

 

Figure 3.4  Current versus voltage measurement for graphene sensor 
 

Although the sensor displayed linear current-voltage characteristics, it is worth 

investigating the response of the sensor to chemical compounds at different operating 

voltages to determine if a noticeable variation occurs.  If a particular voltage or voltage range 

produced larger responses, it could be difficult to reproduce and device-to-device 

reproducibility could be difficult.  Current-voltage measurements were performed by 

sweeping the applied voltage from -0.1 V to 0.1 V with a voltage step of 5 mV while 

exposed to air, diethyl ether, 4-chlorotoluene, acetonitrile, and chloroform.  For each of the 

measurements while exposed to a chemical compound, the sensor was allowed to reach it 

saturated response value.  Shown in Figure 3.5 is the measured resistance value for each 
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applied operating voltage while exposed to the described chemical compounds.  For each 

measurement the sensor displays a linear relationship between measured resistance and 

applied operating voltage.  Measurements shown for 4-chlorotoluene and chloroform display 

a negative slope over the voltage range, which is attributed to drifting of the supplied 

compounds’ concentrations.  

 

 

Figure 3.5  Resistance values while exposed to various chemical compounds for different 
operating voltages. 

 

3.2  Response Stability 
 

The ability of a chemical sensor to maintain a stable response over a period of time is 

important for reproducible response behavior and sensor longevity.  The sensor drift 

consists of small and non-deterministic temporal variations of the sensor response when it is 

exposed to the same analytes under identical conditions.54  A drift in the sensor’s response 

will change the sensitivity and selectivity of the sensor over time, ultimately leading to the 
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inability to sense compounds and improper recognition and classification of already learned 

compounds.  Shown in Figure 3.6 is the response characteristics of a graphene sensor 

subjected to acetone, acetonitrile, chloroform, isopropanol, methanol, and toluene for 60 

different measurements.  The measurements were conducted consecutively under the same 

experimental conditions and executed in a randomized order.  Figure 3.6a shows the time-

series plot for each compound and their 60 measurements.  It can be seen visually in this 

plot that the response span for each compound is relatively low, with acetone showing the 

largest variance.  Figure 3.6b displays the maximum change in resistance for each 

measurement, showing a relatively linear response that is either flat or shows a slight increase 

in response magnitude over time.  The variation in the response magnitude can not only be 

attributed to potential drift of the sensor, but also to variations in the concentration of the 

supplied compound vapor.  Table 3.1 summarizes the values used to create this plot and 

numerically indicates that chloroform has the largest deviation in response, while toluene has 

the lowest. 
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Figure 3.6  Time-series plot of the change in resistance and b) sample-to-sample variation 
of the response for a graphene sensor exposed to acetone, acetonitrile, chloroform, 

isopropanol, methanol, and toluene for 60 exposures each. 
 

Table 3.1  Average change in resistance and corresponding standard deviation values of a 
graphene sensor when exposed to acetone, acetonitrile, chloroform, isopropanol, methanol, 

and toluene for 60 exposures each. 
 

 

 

3.3  Response Magnitude and Signal-to-Noise 
 

Although graphene is strictly defined as a single atomic layer of carbon, it often 

comes in bi-layer and few-layer varieties.  These varieties could either be intentional or 

unintentional due to the manufacturing process.  Characteristics of the sensor response such 

as magnitude and noise could potentially be affected by the number of graphene layers.  
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Figure 3.7 provides a comparison of measured sensor response for a device using single layer 

graphene and few-layer graphene.  The devices were fabricated in the same manner with 

identical IDE pattern and measurements were performed under the same experimental 

conditions and for the same chemical set.  The single layer graphene sensor response is 

larger than that of the few-layer graphene sensor for every compound by at least 2x and up 

to 7x.  For each compound it can also be observed that the shape of the response remains 

approximately the same even though the magnitudes differ. 

 

 

Figure 3.7  Sensor response for device using  a) single-layer graphene and b) few-layer 
graphene. 

 

Although the magnitude of response is larger for the single-layer device, this 

comparison metric does not take into account the noise contained in the baseline 

measurements before the chemical compound is introduced to the sensor.  This is important 

to consider especially when trying to determine limits of detection, and is commonly used to 

determine if a signal can be resolved from the measurement noise.  Figure 3.8a summarizes 

the change in resistance values for single layer and few-layer graphene sensors.  As 
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previously discussed, it can easily be seen that the response values obtained using a single 

layer device are much larger than those obtained from a few-layer device.  Figure 3.8b 

summarizes the calculated signal-to-noise ratio (SNR) values for each sensor type and 

chemical compounds.  This comparison contradicts what is seen when strictly looking at the 

magnitude of the response, where the SNR for the few-layer graphene sensor is either very 

comparable to or larger than the SNR for the single layer sensor.  This could be attributed to 

low-frequency, 1/݂ noise caused by impurity charges in the substrate.  This noise is believed 

to be less prevalent in graphene devices with more graphene layers due to the ability of the 

additional layers to screen the top conducting layer from substrate effects.  Since the top 

graphene layer is contact with the surrounding environment, it is conceivable that less noise 

would be contained in the steady-state baseline measurement region of the chemical sensor 

response, leading to higher SNR values. 

 

 

Figure 3.8  a) Change in resistance and b) signal-to-noise ratio for single layer graphene and 
few layer graphene . 
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3.4  Concentration Effects 
 

Most chemical sensors possess a linear dependence with the concentration of the 

present compound.  This is a useful relationship for determining the limit of detection, but 

causes issues for sensor systems which rely on the maximum change in resistance as a 

discriminating feature for chemical classification.  To demonstrate this effect, a graphene 

sensor was exposed to acetonitrile, chloroform, and toluene in a series of decreasing 

concentrations.  Shown in Figure 3.9a is a time series-plot containing responses to 10 

different concentrations for each compound, ranging from 1% - 10% saturated vapor in 1% 

increments.  To illustrate the effect of choosing a feature, such as maximum change in 

resistance, which is dependent on concentration, a PCA plot was created which uses the 

maximum change in resistance as the feature.  Figure 3.9b shows a PCA plot for the 

concentration dependent response data, using the maximum change in resistance as the 

feature.  For all compounds it can be observed that as the concentration of each compound 

decreases, each point travels closer to the 1% point, where they eventually converge.  At this 

low concentration it would be more difficult to distinguish the compounds from each other, 

unless additional descriptive features were contained in the response curve and could be 

used to aid in their discrimination. 

 



 
64 

 

 

Figure 3.9  Concentration dependent response characteristics for acetonitrile, chloroform, 
and toluene showing a) variation in the change in resistance and b) PCA plot with wandering 

points which eventually converge at low concentrations. 
 

3.5  Residual Transfer Polymer Effects 
 

The current process using graphene prepared by CVD growth on metal substrates 

requires the use of a transfer polymer.  After the metal substrate is removed by chemical 

etching, the graphene remains attached to the transfer polymer, which can then be applied to 

a final substrate.  Once the graphene is transferred to the final substrate the transfer polymer 

can be removed with either solvents or reactive plasma treatments.  The most widely used 

and accepted transfer polymer is PMMA. 

ACS materials offers a Trivial Transfer Graphene product that is advertised to allow 

transfer of graphene film to any substrate in seconds.  The graphene layer(s) come as a 1 cm 

x 1 cm square on a polymer sponge.   The graphene film, which is covered in a PMMA layer, 

is released from the sponge by applying water around its perimeter.  Once the film begins to 

lift it is placed in a water bath where it floats until scooped up with a substrate.  Since 
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PMMA is a fairly common polymer, it is often used in chemical sensing as a composite 

material,55,56 it is worth investigating the response of a graphene sensor with the PMMA 

coating still intact.  Shown in Figure 3.10 are the response curves of a graphene sensor with 

the PMMA layer and then with the PMMA removed by soaking in acetone.  For each 

compound exposure, a time delay of the sensor response can clearly be seen.  The time 

difference, ∆ݐ, was found for each compound by finding the point at which the sensor just 

begins to respond and calculating the difference in time between the sensor with PMMA and 

without PMMA.  The calculated time difference for chloroform, diethyl ether, acetone, 

acetonitrile, and formaldehyde were found to be 11.04 s, 10.90 s, 4.95 s, 4.61 s, and 2.51 s, 

respectively.  Table 3.2 summarizes the calculated time difference for each compound and 

also lists each molar mass.  It is not surprising that the molar mass is positively correlated 

with time difference between responses since the compound needs to make its way through 

the polymer before it interacts with the sensitive graphene film. 
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Figure 3.10  Comparison of sensor response with and without PMMA transfer polymer for 
chloroform, diethyl ether, acetone, acetonitrile, and formaldehyde. 

 

Table 3.2  Relationship between the molar mass and the calculated time difference between 
the sensor response with and without PMMA.   

 

 

 

3.6  Response Mechanism 
 

The interaction of chemical compounds with graphene and the mechanisms which 

cause electrical changes is not well understood. Typically, this process is generalized by 

eluding to a charge transfer process, but lacks the details to support this basis.  In one of the 

first reported applications of using graphene as a chemical sensing material, Schedin et al. 



 
67 

 

reported single molecule detection and attributed the change in conductivity of the device to 

compounds acting as either electron acceptors or electron donors, causing a charge 

transfer.28  For example, different gases caused different effects on the resistivity, with 

electron acceptors (e.g., NO2, H2O, and I2) and electron donors (e.g., CO, ethanol, and NH3) 

causing a decrease and increase in resistivity, respectfully.  The change in carrier 

concentration is the basic mechanism describing the operation of all electrical conductivity-

based graphene gas sensors, where the conductivity is proportional to the product of 

number of charge carriers and mobility.   

Modification of the graphene surface can largely be categorized into covalent and 

non-covalent modifications.  Covalent modification typically involves physical disruption of 

the in-plane, sp2 carbon-carbon bonds, which are converted into covalent sp3 bonds with the 

modifying compound.  This is usually considered a permanent modification and alters the 

properties of the graphene, such as its electrical conductivity and surface reactivity.  Non-

covalent modification is a more temporary modification process and involves weaker bonds, 

which may be disrupted or removed with elevated temperatures, UV light treatments, or 

application of chemical compounds.  With respect to graphene used as a chemical sensing 

material, the interaction of a chemical compound with the graphene surface is most likely a 

weak, non-covalent interaction based on physisorption.  Much of this can be inferred from 

inspection of the sensor response to various chemicals.  If no additional techniques are 

needed to drive off the sampled compounds, such as elevated temperatures or UV light 

treatments, and the sensor signal recovers to its baseline value, it is reasonable to assume that 

a non-covalent interaction has occurred.  On the other hand, if the sensor response does not 

recover well, it is possible that some degree of covalent attachment has occurred.  This 
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modification will build over time, causing a modification to the baseline, and over an 

extended period of time it may cause the sensor to become non-responsive or change its 

characteristics entirely.   

Due to the 2D, sp2 hybridized structure of graphene, a single electron remains 

perpendicular to the surface and is responsible for graphene’s conductivity.  Graphene is 

ultimately mated to a substrate in order to create useful devices and is typically not 

suspended due to the difficulties of obtaining and the fragile state of a suspended 2D 

material.  The underlying substrate on which graphene is placed has a profound effect on its 

electrical properties, and some of the electrical defects that may be present in the substrate 

can be mirrored on the graphene surface.  Strano et al. introduced the idea of electron-hole 

puddles, which are induced by the underlying graphene substrate.46  By placing graphene 

over substrates with various levels of surface energy ranging from hydrophilic (plasma 

cleaned SiO2) to hydrophobic (Octadecyltrichlorosilane) and performing Raman 

spectroscopy measurements, they were able to show that graphene placed over substrates 

with a polar, hydrophilic surface caused a more reactive graphene surface.  The increase in 

graphene surface reactivity is attributed electron-hole puddling which is mirrored to the 

graphene surface from charged impurities in the SiO2 substrate.  This theory has potential to 

describe interactions at the surface of graphene-based chemical sensors.   

Consider Figure 3.11, where a non-polar, aromatic compound and a polar compound 

approach the surface of a continuous single layer of graphene.  Figure 3.11a illustrates the 

case when the conductivity of graphene is increased, which may be attributed to additional 

electron contribution from π-π stacking.  Aromatic compounds, such as toluene, tend to 

stack themselves parallel to the surface of other materials with a π-electron system.  The 
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additional π-electron cloud from the toluene may contribute additional electrons, causing a 

temporary increase in conductivity.  Besides toluene, eleven other aromatic compounds with 

various functional groups also caused the graphene’s resistance to decrease.  The direction of 

response produced by these compounds appears to be independent of the nature of the 

functional group.  Although the direction of the response is the same for all of these 

compounds, many of the response curves have additional features that may be a 

consequence of the functional group, such as response magnitude, response time, and 

recovery time.  The functional group may cause the aromatic compounds to stack at 

different distances from the graphene surface, which could explain the presence of these 

additional features.  Figure 3.11b presents the opposite case, where the conductivity of the 

graphene is decreased.  Here, acetone, a polar compound, causes electrons to be pushed 

away from the surface to the opposing face of the graphene which is in contact with the 

substrate.  In addition to acetone causing an increase in graphene resistance, other related 

polar compounds such as cyclohexanone, diethyl ether, dimethyl sulfoxide, and 

tetrahydrofuran also cause an increase in resistance.  Each of these compounds are related by 

an electron rich oxygen that is bonded in different configurations.  The commonly used 

charge transfer theory makes sense in certain cases but has not been extensively applied.  

The described theory herein attributes the chemically induced change of the graphene 

conductivity to a temporary electrostatic disruption of the π-electron system.    
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Figure 3.11  Proposed graphene sensor response mechanism for when the graphene 
becomes a) more conductive and b) less conductive. 
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Chapter 4 Chemical Discrimination with an Unmodified 
Graphene Chemical Sensor 

4.1  Abstract 
 

A graphene chemical vapor sensor with an unmodified surface has been fabricated 

and thoroughly characterized upon exposure to headspace vapor of a variety of solvents and 

related compounds. The vapor sensor exhibits excellent discrimination towards a variety of 

chemical compounds.  Principle component analysis (PCA) was performed to explore the 

extent of grouping for each compound and separation between compounds and chemical 

classes.  The prediction accuracy of the sensor is evaluated with linear discrimination 

analysis, k-nearest neighbor, random forest, and support vector classifiers.  The combination 

of PCA and prediction accuracies demonstrate the discrimination capability of an 

unmodified graphene chemical vapor sensor. Such a vapor sensor is very attractive for 

application in small, low-power, robust, and adaptable cross-reactive arrays in electronic 

noses. 

 

 

 

 

 

 

* This chapter is reproduced according to American Chemical Society copyright guidelines, from “Chemical Discrimination with an 
Unmodified Graphene Chemical Sensor” by Eric C. Nallon, Vincent P. Schnee, Collin J. Bright, Michael P. Polcha, and Qiliang Li, ACS 
Sensors, 2015. Copyright 2015, American Chemical Society. 
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4.2  Introduction 
 

Materials based on carbon allotropes have been heavily explored in recent years and 

have found their way into chemical vapor sensors.  Some of the most successful materials 

used in this type of sensing application include carbon black,57–60 carbon nanofibers,61–63 

carbon nanotubes,17,64–68 and graphene,28,30,38,69–72.  Although much impressive research has 

been accomplished in this area, a great need still exists for simple, low-cost, low-power, 

reliable, and easy-to-manufacture chemical sensors. Such versatile sensors can be utilized 

across different areas, such as environmental monitoring,73,74 medical diagnostics,75 drug 

screening,76,77 process monitoring,78 food and beverage quality assurance,26,79,80 automotive 

and aerospace applications,4 and detection of chemical warfare81 and explosive82,24 

compounds for military and homeland security applications.     

Graphene is of particular interest for chemical sensing applications mainly due to its 

2D structure and carbon composition.  Every carbon atom in graphene is a surface atom, 

providing the greatest possible surface area per unit volume so that electron transport is 

highly sensitive to adsorbed molecular species.38  The carbon makeup of graphene also 

provides many avenues to perform surface modifications, including the attachment of 

organic groups, metal nanoparticles, enzymes, biomolecules, polymers, and many more.83  

The ability to modify sensor elements to be broadly responsive is desirable when considering 

their use in cross-reactive arrays towards such applications as an electronic nose. 

Obtaining broad selectivity with a single chemical sensor is difficult. It is generally 

achieved with metal-oxide based sensors, which rely on temperature modulation to gain 

selectivity. However, this strategy increases system complexity.  Dobrokhotov84 reports 



 
73 

 

vapor recognition with a single zinc oxide chemiresistor for acetone, ethanol, and toluene, 

which is primarily accomplished through processing the chemiresistor response data with a 

fast Fourier transform combined with quadratic discriminant analysis.  Rumyantsev et al. 

reported selective gas sensing with a single pristine graphene transistor,34 which used the 

vapor-induced change in low frequency noise spectra as an additional sensing parameter to 

enhance selectivity.  This is a novel method for gaining additional discrimination information 

from the same device, although this type of measurement can be difficult to perform and 

may be impractical for handheld and small footprint applications.   

In this work, we report that, graphene chemical vapor sensors with an unmodified 

surface possess an intrinsic, broad selective nature capable of discriminating between both 

chemically diverse and chemically similar compounds.  The sensors also exhibit other 

desirable characteristics such as room temperature operation, rapid response and recovery, 

reversibility, reproducibility, stable operation, low cost, and low power consumption.  A 

chemically diverse set of compounds consisting of ketones, ethers, hydrocarbons, 

organosulfurs, and acids was used to study the broad, but diverse sensing response that is 

achievable.  An additional set of mono-substituted benzene compounds was used to 

investigate how the sensor responds to chemically similar compounds.   

 

4.3  Experimental Methods 
 

The graphene sensors fabricated for all experiments consisted of monolayer CVD 

graphene on an insulating Si/SiO2 subtrate with Ti/Au interdigitated electrode contacts, 

creating a chemiresistor device.  Monolayer graphene on 1 cm x 1 cm Si/SiO2 substrates 

were purchased from Graphenea (Cambridge, MA) and used as received.  Devices were 
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created by performing standard photolithography to define interdigitated electrode contacts.  

A Temescal BJD-1800 electron beam evaporator was used to deposit Ti/Au (25 nm/300 

nm), followed by successive soaking in acetone, isopropanol and deionized water to achieve 

metal lift-off.  The interdigitated electrode pattern consisted of 16 fingers with a length of 

1000 µm, width of 50 µm, and separation of 50 µm, producing a total sensor area of 0.8 

mm2.  After nitrogen drying, the patterned device was mounted in a 68-pin leadless chip 

carrier and wire bonded.  The bonded device was loaded into a 68-pin breakout board 

outfitted with a custom machined Teflon block to provide a low volume flow channel of 

0.25 mL to the sensor surface.  The entire sampling process was automated using a custom 

headspace sampling system, where the sensor was brought to the opening of a 40 mL vial 

containing the analytes shortly after it was unsealed.  The sampling system and sensor were 

contained in a custom enclosure outfitted with a fume extraction system which was located 

in an ambient laboratory area.  Each measurement was conducted under the same 

experimental conditions.  A Keithley 2450 (Cleveland, OH) source meter was used for 

resistance measurements, collecting data at approximately 14 Hz. 

A Python script was used to read a user generated input CSV file specifying the 

measurement parameters for a single measurement; which are baseline time, sample time, 

recovery time, device voltage, and sample flow rate.  In this manner, many repetitions can be 

performed in a standardized and reproducible manner, generating large volumes of highly 

reproducible data.  Features were extracted from each change in resistance response curve by 

calculating the maximum resistance change and the area of the response and recovery 

portion of the curve.  For statistical purposes, 20 repetitions of each compound were 

collected and principal component analysis (PCA) was performed to visually explore the 
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discrimination ability of the sensor.  The resulting grouping from PCA showed excellent 

separability, especially when considering results are based on a single sensor opposed to a 

sensor array.  The ability of the sensor to correctly classify unseen measured response data 

was evaluated by a combination of cross-validation and linear discrimination analysis (LDA), 

k-nearest neighbor (kNN), random forest (RF), and support vector machine (SVM) 

classifiers.  All post processing, data analysis and plotting was performed using Python 2.7 

with scipy, numpy8, pandas9, scikit-learn10,85,86 and matplotlib12 modules. 

 

4.4  Sensor Response Data Processing 
 

Resistance values were computed by using the applied bias voltage and measured 

current from the Keithley 2450 source meter.  The start and stop times for each 

measurement were stored during each measurement, and were subsequently used to 

automatically calculate the maximum change in resistance (∆R), area of the response signal 

(AResp), area of the recovery signal (ARecov), and a ratio of the response to recovery area 

(AResp/Recov).  Preprocessing procedures included correction of drift by means of a first order 

linear fit and calculation of fractional change in resistance.4  The illustration in Figure 4.1 

shows three typical regions of response to a chemical analyte, where the response is 

represented by a change in resistance over time.  Region I is the baseline period during 

which room air flows over the sensor without any analyte present.  Region II represents the 

sampling period during which the sensor head is lowered into the headspace of an open vial 

and the headspace vapor flows over the sensor at the same flowrate as in the baseline period.  

The recovery phase shown in region III begins when the sensor head is removed from the 

vial headspace and room air again flows over the sensor.  Various features can be extracted 
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from the response curve, and are used as discriminators in further data exploration and 

classification.  The maximum change in resistance is calculated by taking the difference 

between the maximum signal change in signal value and the average value of the baseline 

resistance points contained within region I.  The area contained in region II and region III is 

calculated by using the trapezoidal rule to approximate the area under the curve, with AResp 

calculated between ta and tb and ARecov calculated between tb and tc ,as marked in Figure 4.1. 

 

 

Figure 4.1  Typical sensor response curve with regions I) baseline, II) sample, and III) 
recovery.  Potential features that can be extracted include the maximum change in resistance 
 .area of the response (red shaded area), and area of the recovery (green shaded area) ,(܀∆)
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4.5  Results and Discussion 
 
Sensor Response:  Chemically Diverse Compounds  

The sensor response was investigated by measuring the fractional change in 

resistance upon exposure to a set of 11 chemically diverse analytes: 2-nitrotoluene (2NT), 4-

chlorotoluene, acetic acid, acetone, chloroform, cyclohexanone, diethyl ether, dimethyl 

sulfoxide (DMSO), hexane, tetrahydrofuran (THF), and toluene.  The sensor was biased at a 

constant voltage of 10 mV and the current recorded continuously for each individual 

measurement from which the resistance change was calculated.  The baseline, sample, and 

recovery times were set to 60 s, 30 s, and 120 s, respectively, with a flow rate of 10 mL/min.  

Each compound was repeated twenty times in a randomized order under the same 

experimental conditions.  Response curves representing the change in resistance upon 

exposure to each analyte are shown in Figure 4.2a.  For the purpose of highlighting the 

shape and direction of each response, the resistance values have been normalized using 

vector normalization, where the y-axis is now represented by arbitrary values.  Initial sensor 

response upon exposure to an analyte occurs within approximately 1 s, regardless of analyte. 

The magnitude, direction, and shape of the response, however, do vary as a function of 

analyte.  An increase in resistance was observed for ethers (e.g., diethyl ether, THF), ketones 

(e.g., acetone, cyclohexanone), and DMSO, an organosulfur compound.  Similarly, a 

decrease in resistance was observed for chlorinated hydrocarbons (e.g., chloroform, 4-

chlorotoluene), hydrocarbons (e.g., toluene, hexane), 2NT, and acetic acid.  Looking beyond 

the magnitude and direction of the response and towards the shape of the curve reveals the 

diversity between each analyte response.  PCA was performed to further explore the 
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relationship between the tested analytes, including grouping of each compound and 

separations between compounds.   

The ∆R, AResp, ARecov, and AResp/Recov features were calculated for each measurement 

(11 compounds, 20 repetitions) to create a 4 x 220 feature vector as the input to PCA.  Each 

row represents a single measurement and each column represents a feature calculated for 

that particular measurement.  Vector normalization was then performed on the feature 

vector in order to bring the values of each feature on the same scale.  The PCA 

transformation for all response curves from Figure 4.2a is represented in Figure 4.2b, with 

the same coloring scheme and corresponsing chemical structure.  Excellent grouping can be 

seen for the repetitions of each analyte, and good separability exists between analyte classes.  

Some general observations can be made: ethers and ketones group closely together, with 

DMSO slightly outside of that group; the relatively non-polar compounds toluene, hexane, 

chloroform, and 4-chlorotoluene form a group; while 2NT is not near any other analyte. 

 

 

Figure 4.2  a) Normalized sensor response to a chemically diverse set of compounds and b) 
corresponding PCA transform. 
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The values in Table 4.1 summarize the average ∆R and signal-to-noise ratio (SNR) values for 

each analyte, along with their respective standard deviations.  The percentage change in 

resistance was largest for chloroform with a value of -4.73%, and smallest for 2NT with a 

value of -0.22%.  Although some of the changes in resistance values are small, the SNR 

values are large in every case, even when considering the worst case of subtracting the 

maximum standard deviation. 

 

Table 4.1  Maximum change in resistance, SNR values, and corresponding standard 
deviations for the responses shown in Figure 4.2.  The mean and standard deviation were 

calculated for twenty measurements of each analyte. 
 

 

 

Sensor Response:  Chemically Similar Compounds 

Under the same experimental conditions described previously, the graphene sensor 

was exposed to a group of mono-substituted benzene compounds consisting of: 

benzonitrile, bromobenzene, chlorobenzene, ethylbenzene, iodobenzene, nitrobenzene, 

phenol, propylbenzene, and toluene.   The fractional change in resistance for each 
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compound is shown in Figure 4.3a, along with the PCA transformation for all response 

curves in Figure 4.3b.  The same coloring scheme and corresponding chemical structure are 

shown for direct comparison.   

 

 

Figure 4.3  a) Sensor response to a group of substituted benzene compounds and b) 
corresponding PCA transform. 

 

The values in Table 4.2 summarize the average ∆R and SNR values for each analyte, 

along with their standard deviations for each set of repetitions.  The percentage change in 

resistance was largest for the halogenated substituted compounds, with bromobenzene at a 

value of -0.78% and chlorobenzene very close at -0.76%. Upon inspection of the PCA 

transformation shown in Figure 4.3b, some trends can be seen between compounds with 

similar properties.  Two of the three halogenated compounds, bromobenzene and 

chlorobenzene, clearly form a group by themselves and both have similar vapor pressure and 

dipole moment values.  On the other hand, the third halogenated compound, iodobenzene 

does not cluster with the other two likely do the addition of the heaver iodine substituent, 

giving the compound an order of magnitude lower vapor pressure, decreasing the 
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concentration reaching the sensor.  The aliphatic substituted benzenes; Toluene, 

ethylbenzene, and propylbenzene also cluster amongst themselves.  The iterative addition of 

one carbon to the substituted chain leads to an increasing dipole moment and decreasing 

vapor pressure.  These changes are presumably represent in the PCA plot, where these three 

compounds order along the major principle component in accordance with the described 

trends.  Both phenol and nitrobenzene are grouped by themselves, which may be attributed 

to longer recovery portion of the signal seen in Figure 4.3a.  The longer recovery of phenol 

and nitrobenzene may be the result of their relatively low vapor pressures of 0.4 mmHg and 

0.15 mmHg, respectively, causing slow desorption from the graphene surface.  Although 

some similarities can be seen, a general relationship between response characteristics and 

physical properties does not appear to apply to all compounds. 

 

Table 4.2  Maximum change in resistance, SNR values, and corresponding standard 
deviations for the responses shown in Figure 4.3.  The mean and standard deviation were 

calculated for twenty measurements of each analyte. 
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4.6  Classification Accuracy 
 

The previously described PCA plots display excellent separation, but only provide a 

visual representation of the extracted sensor features.  The goal of a predictive sensor system 

is to create a generalized model during a training phase with known data, then when unseen 

data is encountered, the model attempts to predict its class.  In this fashion, the previously 

described data sets were used to train various machine learning classification algorithms and 

then tested on unseen data to determine classification accuracy.  The same feature vectors 

used as inputs to the PCA transformations in Figure 4.2b and Figure 4.3b were used an 

inputs to kNN, linear SVM, RF, and LDA classification algorithms.10  The chemically 

diverse set (Set A) consists of 220 total measurements, while the substituted benzene set (Set 

B) consists of 180 total measurements, with each set containg 20 repetititions of each 

compound.  To avoid overfitting, k-fold cross-validation was implemented with a training 

size of 60%, testing size of 40%, and k-fold value of 10.  The training and testing 

percentages correspond to a train/test count of 132/88 and 108/72 for Set A and Set B, 

respectively.  Each classification algorithm was trained on the training data and used to 

predict the class of the unseen testing portion.  The resulting classification accuracy for each 

classifier and data set are shown in Figure 4.4.  For Set A, the overall classification accuracy 

was above 90% for every classifier with an accuracy of 95%, 95%, 96%, and 92% for kNN, 

SVM, RF, and LDA, respectively. Similarly, for Set B, the classification accuracies were 89%, 

92%, 88%, and 92% for kNN, SVM, RF, and LDA, respectively. 
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Figure 4.4  Classification accuracy comparison for the chemically diverse and substituted 
benzene data sets using K-Nearest Neighbors, Linear SVM, Random Forest, and Linear 

Discrimination Analysis classifiers. 
 

The classification accuracies shown in Figure 4.4 are averages for classification of all 

compounds in each set.  A confusion matrix is used to itemize the the classification accuracy 

for each indiviual compound and can provide insight into what compounds are commonly 

being confused with each other.  For the eight possible classification values shown in Figure 

4.4, two were chosen which best represent the overall trend of misclassified compounds.  

Figure 4.5a represents the confusion matrix for Set A, using the kNN classifier, which 

produced an accuracy of 95%.  The most frequent misclassifications in this set were diethly 

ether as cyclohexanone, hexane as toluene, and toluene as hexane.  These misclassifications 

are not surprising considering the relative PCA grouping of diethyl ether and cyclohexanone 

and the higher amount of noise found in the hexane and toluene response curves, which is 

higher than all other.  For Set B, the most encountered missclassifications were iodobenzene 

as benzonitrile, chlorobenzene as bromobenzene, ethylbenzene as propylbenzene, and 
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toluene as ethylbenzene.  Similarly, the relative PCA groupings of the misclassified 

compounds in this case are close to each other, causing an uncertain decision boundary 

between compounds.  Taking into consideration the structure of chlorobenzene and 

bromobenzene, which are both halogenatedsubstitued benzenes, and toluene and 

ethylbenzene, which are both aliphatic substited benzenes, it can been understood why a 

misclassification may occur. 

 

 

Figure 4.5  Confusion matrix showing correctly and incorrectly classified compounds for a) 
substituted benzene set using LDA and b) chemically diverse set using kNN. 
 

4.7  Conclusions 
 

A chemiresistive device based on a single layer of unmodified CVD graphene was 

shown to exhibit excellent selectivity towards both chemically diverse and chemically similar 

compounds.  The sensor used throughout each experiment did not have any surface 
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modifications to enhance selectivity; and therefore, the observed responses were inherent to 

the material and device itself.  Other notable characteristics of the sensor include room 

temperature operation, rapid response and recovery, reversibility, reproducibility, and stable 

operation.  The capability of the sensor to discriminate between various compounds was 

first evaluated by PCA, which displayed excellent separation between compounds.  Further 

studies using machine learning based classification algorithms were used to evaluate the 

capability of the sensor to correctly classify chemically diverse and chemically similar 

compounds.  In this work, the sensor was capable of classifying 11 chemically diverse 

compounds and 9 mono-substituted benzene compounds with an accuracy of 96% and 

92%, respectively.  These results are compelling for a single sensor and indicate a promising 

future for graphene based sensor arrays.  Such a level of selectivity and discrimination for a 

single sensor has not yet been reported.  In addition, such a high-performance device is an 

excellent candidate to serve as a platform for surface modified elements in a cross-reactive 

array to further increase discrimination and classification towards a versatile, adaptable 

system capable of being used across multiple fields. 
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Chapter 5 Discrimination Enhancement with Transient Feature 
Analysis of a Graphene Chemical Sensor 

5.1  Abstract 
 

A graphene chemical sensor is subjected to a set of structurally and chemically 

similar hydrocarbon compounds consisting of toluene, o-xylene, p-xylene, and mesitylene.  

The fractional change in resistance of the sensor upon exposure to these compounds 

exhibits a similar response magnitude among compounds, while large variation is observed 

within repetitions for each compound, causing a response overlap.  Therefore, traditional 

features depending on maximum response change will cause confusion during further 

discrimination and classification analysis.  More robust features which are less sensitive to 

concentration, sampling, and drift variability would provide higher quality information.  In 

this work, we have explored the advantage of using transient based exponential fitting 

coefficients to enhance the discrimination of similar compounds.  The advantages of such 

feature analysis to discriminate each compound is evaluated by using principle component 

analysis (PCA).  In addition, machine learning based classification algorithms were used to 

compare the prediction accuracies when using fitting coefficients as features.  The additional 

features greatly enhanced the discrimination between compounds while performing PCA, 

and also improved the prediction accuracy by 34% when using linear discrimination analysis. 

 

 

* This chapter is reproduced according to American Chemical Society copyright guidelines, from “Discrimination Enhancement with 
Transient Feature Analysis of a Graphene Chemical Sensor” by Eric C. Nallon, Vincent P. Schnee, Collin J. Bright, Michael P. Polcha, and 
Qiliang Li, Analytical Chemistry, 2015. Copyright 2015, American Chemical Society. 
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5.2  Introduction 
 

The changes in electrical, photophysical, and mechanical properties of a device can 

be used as the transduction mechanism of a chemical sensor. Generally, the magnitude of 

the signal change is used as a key discriminating feature.  This value varies strongly with 

analyte concentration and chemical properties of the compound, causing the interpretation 

of similar compounds to become convoluted.87  In realistic environments the concentration 

is unknown and can vary due to external factors such as temperature and humidity.  Even in 

a controlled laboratory environment analyte vapor concentrations can vary, ultimately 

producing variations in the sensor response.  The maximum steady-state change is the most 

popular feature used in chemo-sensory data processing and has been used in many types of 

chemical sensors including, but not limited to graphene,29,88 carbon nanotubs,17,89–91 carbon 

black,92 non-fluorescent organic polymers,93,94 fluorescent organic polymers,24 metal oxide 

semiconductor,95 metal organic frameworks,96 surface acoustic wave,97 and recent 2D 

material systems.98,99  Two practical issues exist in capturing this value: first, it becomes 

available late in the response, and second, it is susceptible to drift.100  Depending on the 

sensing material and sensor type, the response time can range from fractions of a second to 

minutes, which in the latter case causes the steady-state response to be available late after 

sampling begins.  Response drift can be attributed to both sensor related issues such as aging 

and fouling, and measurement related issues such as temperature, flow, and humidity 

fluctuations.  Similar chemicals also tend to produce similar steady-state responses, especially 

for single devices opposed to sensor arrays, further convoluting the interpretation of the 

sensor output. 
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Many chemical sensors tend to exhibit time-dependent exponential behavior during 

their response and recovery phase.  The interaction of a chemical species with a chemical 

sensor can either be confined to the surface of the sensing layer, or it can take place in the 

volume of the sensitive coating.  Surface interaction implies that the species of interest is 

adsorbed at the surface or interfaces and can be described by solid-gas molecular kinetics.  

Adsorption rate relationships and isotherms such as Langmuir, Freundlich, or Brunauer-

Emett-Teller may be used to model the adsorption and desorption process at the solid-gas 

interface of graphene and other chemical sensors.101  An empirically fitted relationship 

between the transient sensor response and a physical adsorption/desorption model can 

indirectly provide information about the adsorbed analytes’ physical and/or chemical 

properties.  This type of information is less susceptible to drift and concentration 

fluctuations, and would provide excellent discriminative information. 

Ideally, chemical sensor time-series response data would be processed in a manner 

which provides chemical and physical properties of the analyte.  For example, the dipole 

moment of an analyte has been related to the response of various chemical sensors including 

the change in resistance of an epitaxial graphene sensor69 and tungsten oxide nanosensor,102 

and change in drain current of an organic field effect transistor.103  

In this work, a resistive graphene chemical sensor is exposed to the chemically and 

structurally similar compounds: mesitylene, o-xylene, p-xylene, and toluene.  We 

demonstrate the advantages of using exponential fitting coefficients as features to enhance 

discrimination and classification.  For these compounds, we have also investigated 

relationships between the extracted fitting coefficients and the analytes’ vapor pressure and 
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molar mass.  The fractional change in resistance of the graphene sensor exhibits similar 

magnitudes between compounds and significant variation of this magnitude for repeated 

exposures of each compound.  Traditional identifying features based on the maximum 

response change adopt these variations, which eventually results in misclassification.  The 

advantage of using exponential fitting coefficients is explored by fitting all features, including 

those based on the steady-state response, to a random forest classifier and evaluating the 

feature importance contribution through a weighted contribution method.  Principal 

component analysis (PCA) was then used to visually demonstrate the effect of the additional 

features on the spatial separation and grouping of each compound.  Additionally, the k-

nearest neighbor (kNN), random forest, and linear discrimination analysis (LDA) learning 

algorithms were fit to each set of features to determine if the additional features lead to 

increased classification accuracy.  

 

5.3  Materials and Methods 
 

In this work, monolayer graphene on 1 cm x 1 cm Si/SiO2 substrates was used as 

purchased from Graphenea (Cambridge, MA).  Devices were fabricated by performing 

standard photolithography to define interdigitated electrode contacts.  A Temescal BJD-

1800 electron beam evaporator was used to deposit Ti/Au (25 nm/300 nm), followed by 

successive soaking in acetone, isopropanol, and deionized water to achieve metal lift-off.  

The interdigitated electrode pattern consisted of 16 fingers with length 1000 µm, width 50 

µm, and separation of 50 µm, for a total sensor area of 0.8 mm2.  After nitrogen drying, the 

patterned device was mounted in a 68-pin leadless chip carrier and manually wire bonded.  

The bonded device was loaded into a 68-pin breakout board outfitted with a custom-
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machined Teflon block to provide a low volume flow channel of 0.25 mL to the sensor 

surface.  The entire sampling process was automated using a custom headspace sampling 

system, where the sensor was brought to the opening of a 40 mL vial containing the desired 

analyte as soon as the vial was unsealed.  Each measurement was conducted under ambient 

laboratory conditions for temperature and humidity, with each repeated measurement carried 

out under identical experimental conditions.  A Keithley 2450 (Cleveland, OH) source meter 

was used for resistance measurements collecting data at approximately 14 Hz.  A Python 

script was used to read a user-generated input CSV file specifying the measurement 

parameters for a single measurement.  The parameters include: baseline time, sample time, 

recovery time, bias voltage, and sample flow rate.  In this manner, many repetitions could be 

performed in a standardized and reproducible way, generating large volumes of highly 

reproducible data.  All post processing, data analysis, and plotting was performed using 

Python 2.7 with scipy, numpy,8 pandas,9 scikit-learn,10,85,86 and matplotlib12 modules. 

One of the primary components of a prediction model is providing meaningful and 

informative features to the classification algorithm so it may be properly trained.  This 

process, commonly referred to as feature engineering, is one of the most important and 

challenging tasks in the fields of pattern recognition, data mining, machine learning, and 

predictive modeling in general.104  Ranking features according to importance can aid in the 

feature engineering process by highlighting the factors which directly impact the 

classification accuracy.  A random forest is an ensemble method which combines several 

individual decision trees.  This ensemble method provides a feature importance measure and 

has been shown to be a sensible means for variable selection in many applications.105   
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5.4  Data Processing 
 

For each measurement, resistance values were computed with the applied bias 

voltage and measured current from the Keithley 2450 source meter.  The start and stop 

times for each sample were stored during each measurement, and were subsequently used to 

automatically calculate the maximum change in resistance (∆ܴ), area of the response during 

sampling (AS), and area of the response during recovery (AR).  The start and stop points also 

provided bounding points for applying exponential fitting models to correctly fit the sample 

and recovery portions of the response.  Preprocessing procedures included correcting for 

drift using a first order linear fit to the baseline points, and calculating fractional change in 

resistance.4  The illustration in Figure 5.1 shows the regions of a typical response to a 

chemical analyte, where the response is presented as change in resistance over time.  The 

baseline period represents the period during which room air flows over the sensor without 

any analyte present.  The sampling period occurs when the sensor head is lowered into the 

headspace of an open vial and the headspace vapor flows over the sensor at the same 

flowrate as in the baseline period.  The recovery phase begins when the sensor head is 

removed from the vial headspace and room air again flows over the sensor.  Various features 

are extracted from each response curve and used as discriminators in further data 

exploration, discrimination, and classification.  The maximum change in resistance is 

calculated by taking the difference between the maximum signal value and the average value 

of the baseline resistance.  The area for each of these regions is calculated by using the 

trapezoidal rule to approximate the area under the curve for that region. The area of the 

sample region was calculated between points ta and tb, which represent the start and stop of 
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the sampling period, while the area of the recovery region was calculated between points tb 

and tc, which represent the start and stop of the recovery period.  Exponential fitting models 

were applied to the sample and recovery portions of the response using Equations 6 and 7, 

respectively.  The features extracted from the fitting of the sample region were ߙௌ, ߚௌ, and 

ௌߛ , while those extracted from the fitting of the recovery region were ߙோ, ߚோ , and ߛோ . 

ܴௌ(ݐ) = ௌ൫1ߙ − ݁ିఉೄ௧൯ +  ௌ   (6)ߛ

ܴோ(ݐ) = ோ݁ିఉೃ௧ߙ + ோߛ   (7) 

 

 

Figure 5.1  Typical sensor response curve with regions I) baseline, II) sample, and III) 
recovery.  Features include the maximum change in resistance (∆ࡾ), area of the response 

(red shaded area), area of the recovery (green shaded area), and exponential fitting 
coefficients from the sample (ࡿࢽ ,ࡿࢼ ,ࡿࢻ) and recovery (ࡾࢽ ,ࡾࢼ ,ࡾࢻ) regions. 
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5.5  Results and Discussion 
 
Sensor Response: Chemically and Structurally Similar Compounds 

The response of the sensor was tested by continuously measuring its resistance 

during exposure to four chemically and structurally similar compounds: mesitylene, o-xylene, 

p-xylene, and toluene. These analytes are shown in Table 5.1, along with their structure, 

formula, mass, and vapor pressure.  The sensor was biased at a constant voltage of 10 mV 

and the current recorded continuously for each individual measurement, from which the 

resistance change was calculated.  The baseline, sample, and recovery times were set to 60 s, 

30 s, and 120 s, respectively, with a flow rate of 10 mL/min.  This procedure was repeated 

eighteen times for each compound in a randomized order under the same experimental 

conditions.  The calculated fractional change in resistance for all eighteen measurements for 

each analyte is shown in Figure 5.2. 

 

Table 5.1  Chemical information for mesitylene, o-xylene, p-xylene, and toluene. 
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The eighteen repetitions for each compound exhibit significant overlap among their 

response magnitudes.  A particularly large amount of overlap can be seen between o-xylene, 

p-xylene, and toluene.  It is not surprising that the sensor response to o-xylene and p-xylene 

is similar, as they are structural isomers with identical molecular weight and similar vapor 

pressure.  The maximum change in resistance will be influenced by these variations, and 

other features such as calculated areas will also inherit these variations, since they are based 

on the maximum steady-state change.  This inter-dependence of higher-order features can 

subsequently lead to confusion for further separation and discrimination analysis.  

   

 

Figure 5.2  Sensor response to a group of analytes highlighting the overlap that can be 
encountered between responses. 
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Transient Fitting Methods 

The sample and recovery portions described in Figure 5.1 have characteristic 

transients which are well fit by a first-order exponential.  For every compound, the sensor 

response for each of the eighteen measurements was normalized by the ℓ 2 norm shown in 

Equation 8.   

ℓ௡௢௥௠ଶ = ඥ∑ ௞|௡ݔ|
௞ୀଵ   (8) 

After normalization, the sample and recovery portions of each response were fit 

according to the first-order exponential models shown in equation 6 and equation 7, 

respectively, using a non-linear least squares optimization.  Figure 5.3 provides a summary of 

the exponential fit for each sensor response, a comparison of importance for each feature, 

and the mean and standard deviation (STD) values of each feature.  Figure 5.3a displays a 

plot of the exponential fit for each response during both the sample and recovery phase of 

the measurement.  Visually, a clear distinction can be seen between mesitylene and o-xylene.  

Toluene and p-xylene appear to have very similar fits during the sample phase, but have 

differing trajectories during the recovery phase.  For each fit applied to the sample and 

recovery phase the extracted coefficients were ߙௌ, ߚௌ, ߛௌ , and ߙோ, ߚோ ோߛ , , respectively.   

To evaluate the relative importance of the feature data generated in this work, a 

feature vector consisting of a combination of the fitting coefficients (ߙௌ, ߚௌ, ߛௌ ோߚ ,ோߙ , , and 

 ோ) and the maximum change based parameters (∆ܴ, AS, and AR) was created and then fit toߛ

an optimized random forest classifier, producing a set of feature importance weights 

associated with the highest classification accuracy.  In Figure 5.3b the features are shown on 

the x-axis with their respective feature importance shown on the y-axis in percent.  The 
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features shown in red (∆ܴ, AS, and AR) account for 16% of the total feature importance, 

with most of that percentage dominated by ∆ܴ.  Although the calculated areas, AS and AR 

provide discriminative information, their higher standard deviations, as we will soon see, 

may hinder their usefulness.  The rest of the features, shown in green, consist of the 

exponential fitting terms and together account for 84% of the total feature importance, with 

the exponential coefficients ߚௌ and ߚோ  ranked most important in both the sample and 

recovery phase.  To further demonstrate the potential advantages of the fitting terms, Figure 

5.3c summarizes the mean and standard deviation for each feature, calculated from each 

compound’s eighteen repetitions.  The largest STD values arise from the sample and 

recovery areas, which are also reflected in the random forest feature importance.  The lowest 

STD values appear mostly in the three fitting terms from the recovery phase.  The STD is a 

meaningful evaluation metric, since these features are used to eventually train the algorithm, 

and a large STD can lead to overlap between feature values and ultimately result in 

confusion during further discrimination and classification. 
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Figure 5.3  a) Plotted fitting coefficients for each compound, b) feature importance weights 
for each feature determined by a random forest classifier, and c) standard deviation values 

for each feature. 
 

Physicochemical Relationships 

The exponential nature of the sensor response can be modeled with a solid-gas 

adsorption and desorption process which can be related to physical/chemical properties of 

the compounds.  The simplest form of adsorption was derived by Langmuir using kinetic 

theory where solid-gas surface adsorption kinetics are a product of the surface coverage and 

the molecular flux of the compound.106  This process can be described by Equation 9, 

where (1 −  is the fraction of sites not covered, s* is a sticking coefficient term, P is (ߠ

pressure, NA is the Avogadro constant, T is temperature, m is mass, R is the gas constant, 

and ܧ௔ௗ௦ is the activation energy of adsorption.  Since the device surface area is fixed, and 

the temperature and pressure are held constant in this experiment, the pre-exponential 

becomes a function of the mass.  When the constants are separated, the pre-exponential 

frequency term then varies as 1 √݉⁄ .  Figure 5.4a shows the relationship between the mass 

of each tested compound and the calculated pre-exponential term ߙௌ, from the sample phase 
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of the response, where the x-axis shows each compound, and the y-axis shows both 1 √݉⁄  

and ߙௌ values.  A correlation coefficient of 0.9893 was calculated between these two 

parameters, indicating they have a strong positive correlation.  This appears to hold true 

even for o-xylene and p-xylene, which are structural isomers and consequently have the same 

mass, and an almost identical fitting term. 

 

݊݋݅ݐ݌ݎ݋ݏ݀ܣ ݂݋ ݁ݐܴܽ = ௉ேಲ
√ଶగ௠ோ்

(1− ି݁∗ݏ(ߠ
ಶೌ೏ೞ
ೃ೅   (9) 

 

In a similar manner, Figure 5.4b shows the relationship between each compound’s 

vapor pressure and the calculated exponential term ߚோ  from the recovery phase of the 

response, where the x-axis again represents each compound and the y-axis shows both the 

vapor pressure and ߚோ .  The modeled Langmuir rate of desorption can be expressed by 

Equation 10, where ݇ௗ is a desorption rate constant, ߠ is the fraction of sites occupied, R is 

the gas constant, T is temperature, and ܧௗ௘௦ is the activation energy of desorption.  In this 

case we are showing the relationship between the exponential fitting term and the desorption 

rate, which is also described by an exponential.  For the four compounds tested, a 

correlation coefficient of 0.9844 was calculated between these two parameters indicating 

they also have a strong positive correlation.  

The greater complexity of desorption seen in this work between isomers of xylene 

on graphene is mirrored by the desorption process of butane isomers on silicon. The 

conformation difference of the butane isomers has a minor importance in the adsorption 

kinetics, but steric conformation effects were responsible for a difference in the stability of 
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the adsorbed layers, leading to differences in the desorption process.107 The strong 

correlation between the measured exponential coefficients and the known analyte masses 

suggest that this system is accurately modeled by the Langmuir isotherm, with an activation 

energy of desorption higher than that of adsorption.  Evidence of this adsorption behavior 

can be seen in Figure 5.4a, where the diffusion based adsorption of the xylene isomers on 

the graphene surface doesn’t change mass, which is the same for the two isomers.  

Desorption is a more complex process that is governed by a multitude of interactions, 

including surface-molecule and molecule-molecule interactions which have a steric 

dependence.  The complexity of the desorption reaction is suggested in Figure 5.4b by the 

varying values for the two xylene isomers despite their identical masses.  

݊݋݅ݐ݌ݎ݋ݏ݁ܦ ݂݋ ݁ݐܴܽ = ݇ௗ݁ߠ
ି
ಶ೏೐ೞ
ೃ೅   (10) 
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Figure 5.4  Relationship between a) compound mass (૚/√ܕ) and adsorption frequency 
factor fitting term (હ܁) and b) vapor pressure (VP) and desorption exponential fitting term 

(઺܀). 
 

5.6  Discrimination and Classification 
 

To demonstrate the effectiveness of using exponential fitting coefficients as 

discrimination features, a PCA transformation was performed on the described data set.  

Figure 5.5a shows the PCA transformation of a feature vector containing the ∆ܴ, AS, and AR 

features extracted from the responses in Figure 5.2.  Mesitylene is the only compound that 

appears to form a noticeable group. This is not surprising since its magnitude of response is 

the lowest and its variation in response does not overlap much with the other compounds.  

On the other hand, toluene, o-xylene, and p-xylene form a large cluster, with all three 

compounds almost equally distributed.  Figure 5.5b shows a PCA transformation containing 
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the first three principal components of a feature vector containing the same features as those 

used in Figure 5.5a, but supplemented with the ߙௌ, ߚௌ, ߛௌ ோߚ ,ோߙ , , and ߛோ  fitting 

coefficients.  The PCA transformation was performed in an identical manner and viewed 

from the same frame of reference.  Visual comparison of the two PCA plots clearly shows 

significantly better grouping and separation of the four compounds, with the most overlap 

seen between o-xylene and p-xylene.  The larger separation between compounds and tighter 

grouping within each group result from the additional information provided by the fitting 

coefficients and the smaller STD values associated with each. 

 

 

Figure 5.5  PCA transform for a feature vector containing a) ∆ࡾ, AS, AR and b) 
supplemented exponential fitting coefficients ࡾࢼ ,ࡾࢻ ,ࡿࢽ ,ࡿࢼ ,ࡿࢻ, and ࡾࢽ. 

 

The comparison in Figure 5.5 indicates that including exponential fitting coefficients 

in the feature vector provides better grouping and separation among the compounds.  

Although this looks promising visually, it is worth performing a similar comparison using 

classification accuracy as the metric.  The three classifiers used were k-nearest neighbors 
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(kNN), random forest, and linear discrimination analysis (LDA).  The entire data set 

collected for this analysis consisted of 72 samples (4 compounds, 18 repetitions each).  In 

order to avoid overfitting, k-fold cross-validation (k = 10) was performed with a training size 

of 50%, producing train and test sets with 36 measurements each.  The results from each 

classifier’s prediction accuracy are summarized in Figure 5.6.  Compared to a feature vector 

containing the fitting coefficients, a feature vector containing only ∆ܴ, AS, and AR exhibits a 

lower classification accuracy for each classifier type.  Further comparison of the results show 

that for kNN, random forest, and LDA the classification accuracy increased by 39%, 23%, 

and 34%, respectively.  The improved classification accuracy is mostly attributed to 

decreased misclassifications of toluene, o-xylene, and p-xylene. 

 

 

Figure 5.6  Classification accuracy comparison using parameters features only and 
supplementing with transient features from exponential fitting. 
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5.7  Conclusions 
 

Traditional feature engineering methods for chemical sensor analysis based on 

maximum change are subject to fluctuations such as concentration variations and drift 

caused by sensor aging.  Time-dependent features can be extracted from the same response 

curve by exponential fitting, where the fitting coefficients are directly used as additional 

discriminators.  In this work, a comparison between feature vectors with and without 

exponential fitting coefficients by PCA clearly showed an excellent improvement in 

separation between chemically and structurally similar analytes.  This technique was further 

validated by comparing prediction accuracies produced while using each feature vector.  The 

addition of the exponential fitting coefficients resulted in improvement of classification 

accuracy across three separate classifiers.  Additional research in the area of simulations and 

surface analysis could provide additional insights of the mechanisms involved between 

chemical vapors and the graphene surface.  These results demonstrate a robust method to 

extract features from time based chemical response data, which could be applied to 

individual sensors, or sensor arrays of various sensor types.   

 
 

 



 
104 

 

Chapter 6 Surface Functionalization of Graphene for Sensor 
Applications 

6.1  Types of graphene modification 
 

The pure carbon structure of graphene provides a platform for surface 

functionalization with many possibilities.  Generally speaking, functionalization of graphene 

can be separated into three approaches: covalent, noncovalent, and immobilization.  

Covalent functionalization of the graphene surface involves the direct attachment of organic 

or inorganic groups to the graphene surface.  This type of functionalization is destructive in 

the sense that the sp2 bonding is changed to sp3, disrupting the aromatic bonding, and can 

dramatically change electrical and other properties.  Figure 6.1 illustrates the difference 

between noncovalent and covalent functionalization, highlighting the disruption of the 

carbon sp2 bonding to form sp3 bonding.108   Many covalent methods exist and some of the 

most widely reported methods consist of cycloaddition reactions, addition of free radicals, 

organometallics, biopolymers, antibodies, and nucleic acids.  Noncovalent functionalization 

offers an approach to retain the extraordinary properties of graphene while inducing 

additional desirable properties.  The exposed π-electrons of graphene can be exploited to 

form this bond, while not disturbing the sp2 hybridization of the carbon bonding which 

attributes to much of graphene’s properties.  Some noncovalent functionalities are made 

possible through π-π stacking, electrostatic interactions, and hydrogen bonding include 

polycyclic molecules, biomolecules, polymers, and other organic/inorganic molecules.  

Related to noncovalent functionalization, but often categorized separately, is immobilization.  

An important immobilization technique that can be applied to graphene, with applications in 
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sensor applications, is the use of metal and metal oxide nanoparticles.  It is generally 

accepted that the extraordinary properties of graphene might enhance the effects of 

nanoparticles in the composite material.109   

 

 

Figure 6.1  a) Noncovalent and b) covalent functionalization of graphene.108 
 

6.2  Oxygen plasma modification 
 

The treatment of graphene with a plasma is a simple, fast, and scalable process, 

which can be easily integrated into common semiconductor fabrication production lines.110  

It also does not require new or highly specialized equipment, as much of the equipment 

already in use for reactive ion etching and plasma cleaning processes would be cross-

compatible.  Plasmas can be generated from commonly used gases such as oxygen, 

hydrogen, nitrogen, and other fluorinated gases.  For the application of using graphene in 

semiconducting devices, this process could be used to functionalize the graphene surface in 

order to induce a band-gap.  From the perspective of the work presented here, this same 
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surface functionalization can be used to modify the graphene surface in order to gain 

sensitivity or selectivity.  The Raman spectra of monolayer graphene contains two main 

peaks: the G-band around 1580 cm-1 and the 2D-band around 2700 cm-1.  After oxygen 

plasma exposure, new features emerge due to defect activation with the most prominent 

bands appearing at ~1340 cm-1 and 1620 cm-1, corresponding to the D-band and D’-band, 

respectively.   

Before testing oxygen functionalized graphene as a chemical sensor, a series of 

graphene samples were subjected to an oxygen plasma for different amounts of time.  Four 

single-layer graphene samples were cleaved, where three were subjected to an oxygen plasma 

at a power of 15 W and a pressure of 1.5 Torr for 60 s, 90 s, and 180 s.  The remaining piece 

was used as a control sample.  Shown in Figure 6.2 is the Raman spectra for pristine single-

layer graphene, along with single-layer graphene which has been treated with an oxygen 

plasma for 60 s, 90 s, and 180 s. The D-band shows the largest increase for the 60 s 

exposure, then a decrease for 90 s exposure which eventually turns into a complete lack of 

signal for 180 s exposure.  As the exposure time increases, the intensity of all relevant bands 

decreases, and for the 180 s exposure no peaks are present indicating most likely destruction 

of the graphene layer.  The most prominent feature, besides that of the D-band increase, is 

the appearance of a D’ peak on the side of the G-band. 
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Figure 6.2  Raman spectra of single-layer graphene subjected to oxygen plasma for different 
amounts of time. 

 

Based on the previous oxygen plasma exposure study, a SLG sensor was exposed to 

an oxygen plasma at a power of 15 W and a pressure of ~1.5 Torr for 60 s.  The sensor, 

along with a reference sensor cleaved from the same piece before oxygen plasma exposure, 

was tested against the vapors of various chemicals.  Some of the most notable sensor 

response differences are shown in Figure 6.3 for 3-nitrotoluene, 4-chlorototluene, 

chlorobenzene, and nitrobenzene.  Each of these compounds are nitro- and chloro-

containing aromatic compounds and the change in sensor response between the modified 

and unmodified sensors was significant, with a change of 18%, 11%, 8.5%, and 15% for 3-

nitrotoluene, 4-chlorototluene, chlorobenzene, and nitrobenzene, respectively. 
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Figure 6.3  Comparison of oxygen plasma treated sensor response to 3-nitrotoluene, 4-
chlorototluene, chlorobenzene, and nitrobenzene. 

 

Three other interesting examples for the oxygen plasma treated sensor are for 

exposure to phenol, 4-chlorophenol, and 4-chloroanaline.    As shown in Figure 6.4, the un-

treated sensor has little to no response when exposed to these compounds, but the oxygen 

plasma treated sensor exhibits a significant response towards these compounds. 
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Figure 6.4  Comparison of oxygen plasma treated sensor response to phenol, 4-
chlorophenol, and 4-chloroanaline. 

 

The reasons for the observed response behavior may be attributed to a combination of 

plasma induced defects to the graphene lattice, and also the addition of oxygen 

functionalities, causing increased sensitivity to certain compounds.  A SEM image of the 

oxygen treated graphene sensor is shown in Figure 6.5 and appears to show a network of 

defects that appear to be connected to each other.  This image, along with the previous 

Raman spectra measurements, points towards plasma induced defects as the likely outcome 

of the oxygen plasma treatment.   
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Figure 6.5  SEM image of graphene sensor treated with an oxygen plasma for 60s at 10 W. 
 

6.3  Modification with Diazonium Compounds 
 

Free radicals are very reactive organic intermediates, and are capable of attacking the 

sp2 carbon atoms found in graphene to form covalent bonds.109  One such compound group 

capable of producing a free radical and also containing various functional groups are 

diazonium compounds.  These compounds are capable of covalently attaching to the 

graphene surface via an electron transfer mechanism.  The reaction occurs when a 

delocalized electron is transferred from the graphene to the aryl diazonium cation, which 

becomes an aryl radical after releasing a molecule of N2.  The radical then forms a covalent 

bond with a carbon atom in the graphene lattice, changing its hybridization to sp3 and 

displacing it out of the graphene plane.111  Diazonium salts provide many functional groups 

that can be used to change the surface energy of graphene or other materials.  Some of the 

potential functional groups and their relative dipole moments are shown in Figure 6.6 and 

include nitro, bromo, chloro, di-chloro, and methoxyl with dipoles 3.9, 1.6, 1.7, 1.8, and -0.3, 
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respectively.112  Creating a sensor array consisting of individual sensors with varying surface 

dipole moments could be an attractive approach to a cross-reactive array. 

 

 

Figure 6.6  Various diazonium compound functional groups with their relative dipole 
moments.112 

 

Following the methods of Sharma et al.113, a SLG sensor was functionalized with  4-

nitrobenzene diazonium tetrafluoroborate (NBD) and tested against various compounds, 

along with a control sensor cleaved before functionalization.  For the reaction solution, 200 

mL of 1% sodium dodecyl sulfate was combined with 20 mM NBD and heated to 35 – 45 

oC.  The sensor sample was submerged in the reaction solution for ~12 h with constant 

stirring.  Many accounts of diazonium functionalization have been reported and include 

Raman spectroscopy to quantify covalent attachments of the compound to the 

surface.111,114–116  Raman spectra were taken on an un-treated control sample and an NBD 

treated graphene sensor.  The measured spectra for both samples can be seen in Figure 6.7, 

where a very strong D-band peak and also a D’-band feature are revealed.  The high intensity 

of the D-band indicates a large number of defects are present, but can be difficult to tell if 

they are due to sp3 modifications to the graphene lattice or vacancy type defects.  Recent 
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research suggests that the intensity ratio of the D and D’ peak is maximum (~13) for sp3-

defects, decreases for vacancy-like defects (~7), and it reaches a minimum for boundaries in 

graphite (~3.5).52  The calculated ratio of the D to D’ peaks for the NBD modified graphene 

gives a value of 5.74, which according to this, would classify it as vacancy-like defects.   

 

 

Figure 6.7  Raman spectra of graphene sensor modified with nitrobenzene diazonium 
tetrafluoroborate. 

 

Following the reaction time period, the sensor was rinsed with deionized water, then 

mounted and wire bonded in an LCC, along with the control sensor for direct comparison.  

Shown in Figure 6.8 is the sensor response comparison for unmodified and NBD-

functionalized SLG sensors.  The sensors were exposed to acetone, tetrahydrofuran (THF), 

dimethyl sulfoxide (DMSO), toluene, nitrotoluene, and acetonitrile. 
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Figure 6.8  Response comparison of an unmodified and NBD-functionalized SLG sensor. 
 

6.4  Polymer modification 
 

Polymers cover a wide field of chemistry and many types can be synthesized for 

multiple applications.  The use of polymers in chemical sensor related applications is highly 

confined to carbon black-polymer composites,117 quartz-crystal microbalances,118 and 

acoustic wave devices.119  The polymer in these devices adds diversity when configured in a 
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sensor array format by taking advantage of the different physiochemical properties of the 

polymer, which affect the interaction of the chemical compound with the sensor.  The 

selection of polymers for use in sorption based chemical sensors is commonly approached 

by considering the linear solvation energy relationships (LSER) of the polymer and analytes, 

and has been extensively modeled.  The LSER model is based on a linear combination of 

solvation parameters consisting of the effective hydrogen-bond acidity, hydrogen bond 

basicity, dipolarity/polarization parameters, and dispersion parameter.120  Polymers are 

usually soluble is a variety of polar and non-polar solvents, depending on their structure and 

properties.  From a manufacturing standpoint, this offers a flexible way to deposit or 

incorporate polymers with sensors by technique such as spin-casting, spraying, drop-casting, 

and stamping.  For deposition of a single polymer over an entire substrate, spin-coating is a 

simple procedure capable of producing large area uniform films with the ability to control 

film thickness by the spin speed and spin time.  Figure 6.9 illustrates SEM images of five 

different polymers solutions cast from a 5 mg/mL chloroform solution directly onto the 

graphene sensor electrode array.  Overall, the images indicate a uniform coating of each 

polymer, but for polymer 4 and polymer 5, larger chunks of the solid polymer are present, 

most likely due to not being completely solvated in the chloroform.  This is particularly 

evident in the higher magnification image for polymer 5 where multiple chunks of polymer 

are almost as wide as the 25 µm metal trace.  The image of polymer 3 also shows an 

interesting detail; a pattern emerges at the edges of the metal electrode, and when it meets 

the graphene layer, it appears to align with the direction of the outward spinning of the 

polymer at that point. 
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Figure 6.9  SEM images of five different polymers spin-cast from a chloroform solution 
over the graphene sensor electrode array. 

 

Although spin-cast deposition of polymers can produce uniform films, it is not 

feasible to use this technique to deposit multiple polymers on a single substrate without 

interference among polymers.  For a sensor array, such as those used in an electronic nose, 

single element devices are usually fabricated on the same substrate, eliminating spin-casting 

as a polymer deposition method.  Shown in Figure 6.10a is a sensor array consisting of 24 

identical devices with routed bonding pads.  Each device consists of 12 finger-like electrodes 

with a spacing and width of 25 µm each.  Shown in Figure 6.10b is a second mask used with 

SU8 negative photoresist to create a permanent structure with openings to each sensor and 

its bonding pads.  The SU8 used for this step is thick at approximately 5µm, which serves 
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the purpose of creating wells in which polymers can be deposited.  The completed device 

wired bonded to a LCC is shown in Figure 6.10c. 

 

 

Figure 6.10  24-element sensor array a) photolithography metallization mask design, b) 
photolithography SU8 mask design, and c) completed device in LCC. 

 

To better illustrate the structure of the sensor with the SU8 well, confocal laser 

scanning microscope images were taken for of a single device.  This instrument uses a UV 

laser and a precision x/y/z stage to create a depth profile of a surface by taking point by 

point laser measurements.  Post-processing software can then be used to created intensity 

and false color images to represent height changes of the surface.  Shown in Figure 6.11 are 

a color, intensity, and false color height image generated from an Olympus Confocal laser 

scanning microscope.  The color image is taken with a color camera, while the intensity 

image is generated from the laser measurements, which is used to generate the false color 

image.  The false color image in Figure 6.11c illustrates the various layers of the device 

structure showing the SiO2/Graphene, Ti/Au contacts, and SU8 layer.  This image shows 

more clearly the SU8 layer that creates a well around the sensor area and allows openings for 
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the bonding pads.  The bonding pad openings serve an extra purpose; during wire bonding 

the metal can remove the graphene from the substrate and this SU8 well helps to anchor the 

metal at the perimeter and prevent lifting.  

 

 

Figure 6.11  Confocal laser scanning microscope images of a single sensor element in a) 
color, b) intensity, and c) false height coloring along with the d) step profile along the 

electrode array. 
 

The addition of the SU8 well to the device design allows for very small amounts of 

polymers to be deposited via drop-casting from solution.  To demonstrate the ability to 

deposit multiple polymers on a single substrate and the resulting multivariate output sensor 

response, a sensor array device as show in Figure 6.10c was fabricated and 5 polymers were 

drop-casted onto individual sensors.  The five polymers used were tetraethylene glycol 

dimethyl ether (TEGDME), poly(dimethylsiloxane-co-alkylmethylsiloxane) (PDMS-Alk), 

polyethylene glycol (PEG), poly(benzyl methacrylate) (PBMA), and poly(ethylene-co-vinyl 

acetate) (PEVA).  TEGDME and PEG solutions were used as-is, while PDMS-Alk, PBMA, 
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and PEVA were created at a concentration of 20 mg/mL in chloroform. Individual sensors 

were created by drop-casting ~0.4 µL of each polymer into separate sensor wells and 

followed by baking on a hotplate at 70 oC for 5 minutes.  Examples of the output response 

of the five polymer-coated sensors, along with a non-coated control sensor are shown in 

Figure 6.12.  Shown in this figure is the response of the sensor array to chloroform and 

formaldehyde, which demonstrates the variety of achievable output.  For both chloroform 

and formaldehyde, the polymer-coated sensors provide an output response with either a 

different sensitivity or selectivity, when compared to the un-coated sensor.  The TEGDME 

and PDMS-Alk coatings cause a reversal in the response direction when exposed to 

chloroform and the PEG, PBMA, and PEVA coatings provide a reversal in the response 

direction for formaldehyde.  Not only do the coated sensors exhibit signal magnitude and 

direction differences, but also contain important sorption based information contained in 

the response and recovery portions of the signal.  This combination of information will 

prove to be very important for further discrimination and classification of complex 

compounds and odors. 
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Figure 6.12  Sensor array output response towards chloroform and formaldehyde for an 
array containing an un-coated sensor along with 5 polymer-coated sensors. 

 

In Chapter 4, a single graphene sensor without any surface modification was 

thoroughly evaluated and tested against a variety of VOCs.  The prediction accuracy of the 

sensor peaked at 96% for these compounds, and the misclassification of compounds was 

due to confusion between toluene and hexane and also between cyclohexanone and diethyl 

ether.  The sensor response towards each of these compounds for each of their 20 

measurements is shown in Figure 6.13, where much similarity can be seen between these two 

pairs of compounds.  Cyclohexanone and diethyl ether contain some kinetic information in 

their response and recovery which may be further exploited to decrease misclassification.  

On the other hand, hexane and toluene have very similar response patterns in their 

magnitude, direction, and kinetic shape, making them very difficult to separate from each 

other.  Correct classification becomes increasingly more difficult for a single sensor 

challenged against compounds with similar chemical and physical properties. 

 



 
120 

 

 

Figure 6.13  Single graphene sensor without surface modification to cyclohexanone, diethyl 
ether, hexane, and toluene, highlighting the similar response patterns that cause 

misclassifications during the classification process. 
 

To demonstrate how increased diversity could be achieved from a sensor array, two 

polymer coatings were identified for this example which could be used to provide additional 

information for correctly classifying cyclohexanone, diethyl ether, hexane, and toluene.  

Shown in Figure 6.14 is the response of sensors with a Polyepichlorohydrin (PECH) and 2-

Hydroxyethyl cellulose (OHcell) coating to cyclohexanone, diethyl ether, hexane, and 

toluene.  The sensor coated with PECH shown in Figure 6.14a provides much more 

diversity for these compounds when compared to the un-coated sensor, especially in the 

response and recovery kinetics.  A disadvantage of using a coating such as this one is the lack 

of full recovery of the signal over the shown time period.  More in-depth testing would also 

need to be done to optimize the polymer layer thickness to determine if the lack of recovery 

is related to the thickness.  Figure 6.14b shows a sensor coated with OHcell and tested 

against the same compounds.  The most obvious difference when compared against an un-
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coated sensor exposed to these same compounds is the reversal in signal direction for 

cyclohexanone and diethyl ether.  Another noticeable difference is the magnitude of the 

signal for hexane and toluene which is -8.9% and -5.5%, respectively, compared to only -

0.2% for the un-coated sensor. 

 

 

Figure 6.14  Sensor array output response towards cyclohexanone, diethyl ether, hexane, 
and toluene. 
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Chapter 7 Cross-Reactive Graphene Sensor Array 

7.1  Abstract 
 

As chemical and biological sensors continue to be integrated into our everyday lives, 

the demand for a highly dimensional, adaptable sensor array becomes increasingly important.  

In this work, a cross-reactive, graphene-based chemical sensor array is fabricated and its 

performance evaluated against single compounds and complex odors.  An array of resistive 

graphene sensors are created on a single substrate and various polymer coatings applied to 

each individual sensor, creating a sensor output with cross-reactive response characteristics.  

A group of 23 polymer coatings are investigated by measuring the change in resistance 

among sensors, and the array response diversity evaluated using hierarchal clustering analysis 

and correlation analysis.  We demonstrate the chemical diversity afforded by the addition of 

the polymer coatings, which provides not only information rich, sorption-based changes in 

each sensor response, but also electrical modification to the graphene, resulting in substantial 

enhancements in the sensing response and often a complete reversal in the resistance change 

direction.  A variety of single volatile organic compounds and 10 Scotch whiskies were 

identified with 100% accuracy using only a portion of the sensing elements, suggesting that 

the array contains much more potential for identification of additional and more complex 

compounds.  These results demonstrate for the first time, a cross-reactive graphene chemical 

sensor array, applicable to compact, low-cost, low-power, and adaptable sensing needs for 

electronic nose systems. 
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7.2  Introduction 
 

An electronic nose (e-nose) is designed to mimic the human olfactory system by 

taking the pattern-based response of biological sensors and replacing them electronically 

with a chemical sensor array.55  The olfactory sensory system is cross-reactive by nature, 

where the olfactory receptors are not highly selective toward specific analytes, and in fact, 

one receptor responds to many analytes and many receptors respond to any given analyte.121  

The pattern generated by this response and associated recognition of this pattern are critical 

to the operation of the overall olfactory system.  Likewise, when considering an e-nose 

system, the sensor array should be designed in a cross-reactive manner, so that the collection 

of sensors contains as much chemical diversity as possible, providing an array which 

responds to the largest possible cross-section of analytes.  In this manner, the array can 

adapt to new and previously unforeseen compounds and odors.    

The type of sensor used in a cross-reactive array is broad and includes materials and 

devices such as metal oxide devices,122 fluorescent organic polymers,24 acoustic wave 

oscillators,119 quantum dot composites,56 colorimetric dyes,25 carbon nanotubes,89 and 

carbon black composites.123  Although carbon-based materials such as carbon nanotubes 

and carbon black have been used in a cross-reactive format, the potential of graphene 

remains unrealized in this area.  Recent research on single element graphene chemical 

sensors is promising, and capable of discrimination of multiple compounds, but the sensor 

will only perform to a certain extent before misclassifications occur due to similar response 

behavior.49,124  In the case of graphene, covalent surface functionalization can provide 

diversity across sensor elements by modifying the graphene surface energy using 
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functionalization methods such as radicals, nitrenes, carbenes, arynes, and reactive plasma, to 

name a few.111,115,125,126  Although these methods can provide the desired diversity, the 

process to apply multiple functionalities on a monolithic substrate for a sensor array is 

challenging and can cause much variation.  A more reproducible and manufacturable 

approach to generating chemically diverse graphene sensors can be achieved by overcoating 

polymers directly onto array elements.  Polymers can possess chromatographic properties, 

which aid in selectivity and separation of compounds, mixtures, and complex odors.  This 

process is similar to the thin mucous layer found over the receptors in the human nose, 

which performs a degree of chromatographic separation of complex mixtures.127  

Unlike carbon black, surface acoustic wave, and quartz crystal microbalance sensors, 

whose response is solely based on the polymer sorption properties, polymer coated graphene 

sensors appear to have a phenomenology containing response mechanisms due to both 

polymer sorption and modification of the graphene’s electrical properties.  The sorption 

based influence can be seen in the response shape during sampling and recovery, while 

modification of the graphene’s electrical behavior is evident in the change in magnitude and 

direction of the resistance, sometimes causing dramatic effects.  Carbon black polymer 

composites rely on swelling of the film, which in-turn causes the separation between carbon 

black particles to increase, effectively increasing the film resistance.  The underlying 

operation of this type of sensor does not allow for a reversal in the resistance direction as 

seen with polymer coated graphene sensors.  The temporal based information gained from 

polymer sorption properties, along with the change in magnitude and direction of the 

resistance response can be exploited for added diversity. 
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In this work, we demonstrate the first example of a graphene-based, cross-reactive 

chemical sensor array.  The array is fabricated by overcoating polymers directly onto 

individual sensor elements contained on a monolithic substrate.  The multivariate output 

response of the array displays phenomenology influenced by sorption properties of the 

polymers and modification of the electrical properties of the graphene.  The array is tested 

against single compounds and the complex odors from scotch whiskies.  The change in 

resistance among sensors is compared by traditional bar plots, hierarchical clustering, and 

correlation analysis to identify trends and relationships.  The broadly responsive behavior of 

the sensor array suggests that multiple graphene sensors, combined with a diverse range of 

polymer coatings, is capable of being used as an adaptable universal electronic nose which 

can be used across multiple sensing disciplines.   

 

7.3  Experimental Section 
 
Sensor Array Design and Fabrication 
 

The sensor array consists of a 1.3 cm x 1.3 cm Si/SiO2 substrate with monolayer 

graphene, 24-element Ti/Au interdigitated electrodes (IDE), and a final SU8 layer with 

openings for each individual sensor and its respective bonding pads.  The Si/SiO2/Graphene 

substrates were cleaved into approximately 1.3 cm x 1.3 cm pieces from a larger 4” wafer 

(Graphenea, Cambridge, MA) by use of a diamond scribe.  Conventional lift-off 

photolithography was then used to pattern the graphene substrate with the IDE design 

which consists of 24 identical devices, each comprised of 12 electrode fingers with length, 

width, and separation of 750 µm, 50 µm, and 50 µm, respectively, producing a total sensor 

area of 0.44 mm2.  The patterned device was then transferred to a Temescal BJD-1800 
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electron beam evaporator, where a layer of Ti/Au (25nm/300nm) was deposited once an 

appropriate base pressure was achieved.  Following metal deposition, the device was left in 

an acetone bath for approximately two hours to achieve metal lift-off.  The metal patterned 

sensors were then rinsed with isopropanol and deionized water and dried with nitrogen.  

Once the metal deposition process was complete, a layer of SU8-2005 photoresist 

(MicroChem, Westborough, MA) was spun onto the device at a thickness of approximately 5 

um.  An additional photolithography mask design was used to provide an opening well to 

each sensor with length, width, and depth of 1300 um, 1200 um, and 5 um, respectively.  

The device was then hard baked at 150 oC for 5 minutes to further harden the SU8 layer and 

create a permanent structure.  Lastly, the device was mounted in a 68-pin leadless ceramic 

chip carrier and each individual sensor wire bonded.  Shown in Figure 7.1a is the 

photolithography mask design for the 24-element array used to create a completed device 

(Figure 7.1b), which contains 23 individual sensors with polymer coatings and a single 

uncoated sensor. 
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Figure 7.1  24-element graphene sensor array a) photolithography mask design and b) 
completed device, mounted and wire bonded in a leadless chip carrier with polymers applied 

to each sensor element. 
 

Polymer Coating Preparation and Application 

Polymer coating solutions were created at a concentration of 20 mg/mL according 

to the 23 polymers and their respective solvents shown in Table 7.1.  All polymers were 

purchased from Sigma Aldrich and used as-is or with a solvent as noted (Table 7.1).  

Following wire bonding, the sensor array was completed by drop casting ~0.4 uL of a single 

polymer solution into an SU8 well with a Hamilton microliter syringe, and baking the device 

on a hotplate at 70 oC for 5 minutes once all polymers were deposited.  Each well created by 

the SU8 layer allows for the polymer solution to be contained to each individual sensor, and 

helps to prevent accidental mixing of the solutions.  For the given concentration and 

deposition volume, approximately 8 ug of the polymer is estimated to be left on the sensor 

surface after solvent evaporation. 
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Table 7.1  Selected polymers and their respective solvents used as coatings to create a cross-
reactive graphene sensor array. 
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Instrumentation 

The bonded device was then loaded into a 68-pin breakout board outfitted with a 

custom machined Teflon block to provide a low volume flow channel of 0.25mL to the 

sensor surface.  The sampling of all compounds was performed using a custom headspace 

sampling system where the sensor was brought to the opening of a 40mL vial containing 

each compound, allowing the accumulated headspace vapor to pass over the sensor at the 

specified flow rate.  The sampling system and sensor were contained in a custom enclosure 

outfitted with a fume extraction system which was located in an ambient laboratory area.  

Each measurement was conducted under the same experimental conditions.  The resistance 

of each sensor was measured using a data acquisition and control cube configured with two 

12-channel, fully isolated resistance input boards (United Electronics Industry, Walpole, 

MA), creating 24 total channels with simultaneous data collection.  Each channel was 

configured to operate in 4-wire mode, collecting resistance measurements at a rate of 

approximately 15 Hz.  A Python script was used to read a user generated input CSV file 

specifying the measurement parameters for a single measurement which are: baseline time, 

sample time, recovery time, active channels, minimum/maximum resistance, and sample 

flow rate. 

7.4  Results and Discussion 
 
Evaluation of Polymer Coating  

The selection of polymers for use in sorption based chemical sensors is commonly 

approached by considering the linear solvation energy relationships (LSER) of the polymer 

and analytes, and has been extensively modeled.  The LSER model is based on a linear 



 
130 

 

combination of solvation parameters consisting of the effective hydrogen-bond acidity, 

hydrogen bond basicity, dipolarity/polarization parameters, and dispersion parameter.120  

Properly choosing combinations of polymers that cover a broad range of chemical 

interactions can provide the needed diversity to produce a broadly responding multivariate 

output.  Unlike sensors which are solely dependent on the polymer sorption properties, 

polymer-coated graphene sensors exhibit a response which contains mechanisms due to 

both polymer sorption and modification of the graphene’s electrical properties.  While LSER 

parameters have proven useful in evaluating the relationships between purely sorption based 

sensors and analytes of interest, the modification of electronic properties of the graphene in 

the present study make the interaction significantly more complex.  For this reason, the use 

of LSER parameters is not directly applicable to the coated graphene sensors.  Additional 

statistical techniques such as hierarchal clustering analysis (HCA) and correlation analysis can 

be used to determine linear dependence among sensor channels, and aid in determining 

relationships among the effects each polymer has on the measured output response. 

 

Cross-Reactive Array Response:  Single Compounds 

The cross-reactive responsivity of the sensor array was first tested by exposing the 

array to singular compounds covering a wide variety of chemical families consisting of 

ethanol, methanol (MeOH), acetone, cyclohexanone, tetrahydrofuran (THF), diethyl ether, 

formaldehyde, 2-nitrotoluene (2NT), 4-chlorotoluene, toluene, hexane, chloroform, 

acetonitrile (ACN), and dimethyl sulfoxide (DMSO).  The sensor array was comprised of 24 

individual sensors, where 23 sensors were coated with the polymers described in Table 1 and 

the remaining sensor was left uncoated to serve as a control.  For each measurement the 
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baseline, sample, and recovery periods were set to 60 s, 30 s, and 60 s, respectively, with a 

flow rate of 20 mL/min.  The resistance of each channel was measured simultaneously at a 

continuous rate of approximately 15 Hz.  The maximum change in resistance (∆ܴ) was 

extracted from each sensor response and is summarized in Figure 7.2a.  For the purpose of 

illustrating the diverse output response, while displaying a manageable amount of 

information, the bar plot in Figure 7.2a contains response data for acetone, THF, MeOH, 

and ACN.  Additional response data for all other compounds can be found in the 

Supporting Information.  Figure 7.2a consolidates the ∆ܴ values for the 24 sensors while 

exposed to acetone, THF, MeOH, and ACN, with a color coding legend to indicate the 

respective polymer coating.  Excellent diversity across the sensor array is observed for all 

compounds, even when only considering the extracted ∆ܴ feature and disregarding temporal 

information due to sorption kinetics captured by features such as response and recovery 

areas, and fitting coefficients.  Figure 7.2b and Figure 7.2c are time-series plots of the change 

in resistance with time in seconds and ∆ܴ in percent as the x-axis and y-axis, respectively.  

Figure 7.2b shows the response pattern to ACN for sensors coated with PVPh, PVPyd, PCl, 

PEG, and PVBP, along with an uncoated sensor.  Similarly, Figure 7.2c shows the response 

pattern to MeOH for sensors coated with TEGDME, PDMS-Alkm, PVPyd, PCl, PEG, and 

an uncoated sensor.  These plots demonstrate the diversity that is observed not only in the 

magnitude and direction of the sensor array response, but also in the shapes of the response 

curves which contain important kinetic information.   
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Figure 7.2  a) Cross-reactive response behavior of the graphene sensor array with 23 
different polymer coatings, comparing the maximum change in resistance upon exposure to 
acetone, acetonitrile, methanol, and tetrahydrofuran.  Time-series plots of maximum change 

in resistance for coatings b) PVPh, PVPyd, PCl, PEG, and PVBP while exposed to 
acetonitrile and c) TEGDME, PDMS, PVPYd, PCl, and PEG while exposed to methanol. 

 

Changes from the measured ∆ܴ for the uncoated sensor displayed dramatic changes 

(both increases and decreases) in sensitivity, often resulting in a complete reversal in the 

resistance signal.  Table 7.2 summarized the most significant changes when compared to the 

uncoated sensor response for each compound. 
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Table 7.2  Comparison of uncoated and coated sensor responses for a specific coating 
which produced a notable change for each single compound. 

 

 

 

A combination of HCA and correlation heat maps was used to determine the 

relationships among polymer-coated sensor channels.  ∆ܴ of each channel was chosen as the 

metric to produce a visually comprehensible comparison of sensor performance.  HCA was 

performed using squared Euclidean distance as the dissimilarity metric and a complete 

linkage criterion.  A correlation matrix was calculated from the same ∆ܴ feature vector used 

for HCA and was visually represented by a heat map.  The correlation matrix contains values 

which range from -1 to +1, with values closer to +1 signifying a strong positive correlation 

and values closer to -1 signifying a strong negative correlation.  Shown in Figure 7.3 is a 

correlation heatmap and HCA plot for all compound/polymer combinations, where the 

maximum change in resistance was extracted from each sensor response.  Figure 7.3a 
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represents the Pearson product-moment correlation coefficients calculated between each 

sensor’s ∆ܴ, which is used to describe the linear correlation between each sensor output.  

The colorbar ranges from -1.0 to +1.0, corresponding to colors blue and red, respectively.  

Shown to the left of the colorbar in Figure 7.3a is an average Pearson correlation value 

calculated for each coating.  This value gives an overall correlation for each coating 

compared against all other coatings being evaluated.  An uncoated sensor labeled “No 

Coating” is included as a control to compare selectivity and sensitivity changes.  The sensor 

with no coating is uncorrelated with many of the other coated sensors such as PDMS-Alk, 

PVA, P4tBS, TEGDME, OHcell, PEG, PVBP, PBrS, and PACN, mainly due to either large 

changes in the ∆ܴ or reversal in ∆ܴ value.  On the other hand, the uncoated sensor is most 

correlated with PVS, PS, PVPy, and PVPyd, which also agrees with the HCA grouping.  

Figure 7.3b displays a dendrogram for HCA performed on the same data array and is used to 

visualize how coatings group together based on a specified response feature.  In Figure 7.3b, 

the x-axis and y-axis represent the polymer coatings and relative calculated dissimilarity, 

respectively.  The level of dissimilarity is calculated by taking the squared Euclidean distance 

between the ∆ܴ value found for each coating, while considering the entire compound set.  

The two-component groups which display the most similarity are P6DS/PVBCl, PVPy/PS, 

PVS/No Coating, PIB/PEVA, PVBP/PBrS, and PCl/PEG.  On the other hand, groups 

that display the least similarity are PDMS-Alk/TEGDME, PBMA/PVPh, and 

PMMA/Nafion.  Examples of this dissimilarity can further be seen in Figure 7.4 for coatings 

PECH and PDMS-Alk, which are from two very different portions of the dendrogram (plots 

of this type for every coating can be found in the Supporting Information).  The time-series 
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plots show the response of each sensor with its respective coating to the same set of 

compounds. 

 

 

Figure 7.3  Analysis of graphene sensor array with a) a correlation heatmap and b) 
hierarchical cluster analysis dendrogram. 
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Figure 7.4  Time-series plots of PECH and PDMS-Alk coated sensors demonstrating the 
variations that can be seen for sensors with different polymer coatings. 

 

In our previous work we tested a single graphene sensor without modification or 

coating against 2NT, 4-chlorotoluene, acetic acid, acetone, chloroform, cyclohexanone, 

diethyl ether, DMSO, hexane, THF, and toluene, where a classification accuracy of 96% was 

achieved for 20 measurements of each compound.124  Although this uncoated sensor 

produced a diverse range of outputs, we believe that the limits of its capability were 

approached.  Using the same testing conditions, measurement repetitions, response feature 

types, and classification algorithm, we were able to achieve 100% classification by using only 

a single graphene sensor with a Nafion coating.  When considering two coated sensors, 
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100% classification was achieved with a Nafion coating along with either P4tBS, PVBCl, 

PVPy, PVPh, or OHcell for the same set of compounds. 

 

Cross-Reactive Array Response:  Complex Odors 

The sensor array was tested against the complex volatile mixture contained in the 

headspace of various Scotch whiskies.  Scotch has very unique and distinguishable smells, 

with many compounds found in its headspace odor such as higher alcohols, ethyl and 

isoamyl esters, acetates, fatty acids, ketones, monoteropenes, and phenols.128  An uncoated 

graphene sensor displayed little or no diversity when exposed to ethanol and the following 

Scotch whiskies: Gordon & Mcphail, Jura, Macallan, Dewar’s, Kilchoman, Laphroig, 

Exclousive Malts, Johnnie Walker Blue (JW Blue), Johnnie Walker Black (JW Black), and 

Johnnie Walker Spice Road (JW Spice Road), as shown in Figure 7.5a.  While not all 

previously described polymers were evaluated against this set of Scotch whiskies, a few were 

identified as potentially discriminating coatings and are provided here.  Sensors coated with 

Nafion, OHcell, and PBrS are shown in Figure 7.5b, 5c, and 5d, respectively, with each 

displaying a degree of diversity.  The Nafion coating produced a reversal in signal direction 

for ethanol and each Scotch, and also a substantial increase in magnitude.  The OHcell 

coating shown in Figure 7.5c exhibits the capability to isolate ethanol from the Scotch 

“smell,” which indicates that the response seen for the Scotch samples are caused by 

compounds other than ethanol.  To test the discrimination ability of the sensor array 

towards these complex odors, 15 measurements were taken for ethanol and each Scotch 

whiskey, which were then supplied to a feedforward neural network.  A classification 
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accuracy of 100% was achieved using OHcell, Ncell, PACN, and PBrS sensor coatings (refer 

to Supporting Information for further classification details). 

 

 

 

 

Figure 7.5  Graphene sensor response to the headspace of various Scotch whiskies for an a) 
uncoated sensor and sensors coated with b) Nafion, c) 2-Hydroxyethyl cellulose, and d) 

Poly(4-tert-butylstyrene). 
 

7.5  Conclusions 
 

A cross-reactive chemical sensor array, based on polymer coated resistive graphene 

sensors, was fabricated then tested and characterized against a variety of single compounds 

and complex odors.  The most remarkable attribute of the sensor array is the diverse output 

response, which is not only influenced by the sorption properties of the polymer, but also by 
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electronic interactions between the polymer and graphene.  This dual-phenomenology is 

fundamentally different compared to other similar widely used sensor arrays such as carbon 

black, which rely solely on swelling of the polymer to cause an increase in the sensor 

resistance.  To our knowledge, this is first reported case of using graphene in a cross-reactive 

array and may open the door to additional research to further develop graphene into a viable 

electronic nose material.   

 

7.6  Supporting Information 
 

For the purpose of displaying the collected data in a way to demonstrate the diversity 

of the graphene sensor array, only a portion of the tested analytes were previously presented.  

The entire analyzed dataset is presented here.  Figure 7.6 is a bar plot consolidating the 

maximum change in resistance (∆ܴ) for each sensor channel while exposed to all 

compounds: ethanol, methanol (MeOH), acetone, cyclohexanone, tetrahydrofuran (THF), 

diethyl ether, formaldehyde, 2-nitrotoluene (2NT), 4-chlorotoluene, toluene, hexane, 

chloroform, acetonitrile (ACN), and dimethyl sulfoxide (DMSO).  Ethanol, 2NT, 4-

chlorotoluene, and toluene show the least diversity in terms of coatings which produce a 

reversal in the response direction, but still provide adequate diversity when considering the 

magnitude and shape of each respective response. 
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Figure 7.6  Cross-reactive behavior of the graphene sensor array, with 23 different polymer 
coatings, comparing the maximum change in resistance response pattern towards ethanol, 

methanol, acetone, cyclohexanone, tetrahydrofuran, diethyl ether, formaldehyde, 2-
nitrotoluene, 4-chlorotoluene, toluene, hexane, chloroform, acetonitrile, and dimethyl 

sulfoxide. 
 

The values extracted from each polymer coated sensor, including an uncoated 

sensor, used to create the plot in Figure 7.6 are shown in a heat map table in Figure 7.7.  The 

x-axis and y-axis display the polymer coating labels and tested compound, respectively.  A 

∆ܴ value for every combination between coating and compound is shown in numerical 

format, and also with a corresponding color which is weighted according to the provided 

colorbar.  A positive ∆ܴ is shown in red with a maximum of 68%, and a negative ∆ܴ is 

shown in blue with a maximum of 35%.  Time-series plots for all 24 sensors can be seen in 

Figure 7.8.  Each plots contains that particular sensor’s response to 2NT, 4-chlorotoluene, 
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acetone, CAN, chloroform, cyclohexanone, diethyl ether, DMSO, ethanol, formaldehyde, 

hexane, methanol, THF, and toluene. 

 

 

Figure 7.7  Array maximum change in resistance response values shown with actual value 
and also represented by color mapping, with red indicating an increase in resistance and blue 

indicating a decrease in resistance. 
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Figure 7.8  Times-series change in resistance for each sensor type towards 2-Nitrotoluene, 
4-Chlorotoluene, Acetone, Acetonitrile, Chloroform, Cyclohexanone, Diethyl Ether, 

Dimethyl Sulfoxide, Ethanol, Formaldehyde, Hexane, Methanol, Tetrahydrofuran, and 
Toluene. 

 

The measured resistance values for each sensor output were sub-sampled by taking 

50 equally spaced points from each output to compile a 165 x 200 feature vector, with 165 

observations and 200 features.  The feature vector was then scaled to zero mean and unit 

variance (autoscale).  Linear discrimination analysis (LDA) was then used to reduce the 

dimension of the feature space to 9 features, which are linear combinations of all original 
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features.  The plotted LDA transformation can be seen in Figure 7.9 showing excellent class 

separation.  The LDA transformed feature vector was then supplied to a multilayer 

perceptron feedforward neural network using 10-fold cross-validation and a training 

percentage of 70%, which was able to achieve a classification of 100%. 

 

 

Figure 7.9 Linear discrimination transform of Scotch whisky data displaying excellent class 
separation. 
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Chapter 8 Future Graphene-Based Sensing Work 

Graphene has been shown to have astonishing properties and great potential for use 

in applications which span many fields.  Graphene-based chemical or biological sensors are 

the most promising applications of graphene.  This is because graphene has less constrictive 

constraint and is more competitive in the area of sensors in comparison with semiconductor 

devices which are dominant in CMOS technology.  These are many different paths in 

research and development to integrate graphene in new, innovative sensing designs.   

For example, microfluidic based sensor designs are important for biological sensing 

applications where the sample to be analyzed is in a liquid form (e.g., saliva, blood, urine).  In 

this case, graphene can be modified with DNA, peptides, and other biological functionalities 

in order to target specific diagnosis needs.  Basic resistive based graphene sensors could be 

designed on the micro or nano-level and placed directly in the fluidic flow path in an array 

format. 

Raman spectroscopy is a powerful tool for characterization and investigation of the 

graphene’s surface.  Currently the major application is to characterize growth quality and 

extent of surface functionalization.  In the case where surface modification is done in liquid, 

it may be possible to directly monitor the reaction at the graphene surface as it happens with 

a Raman microscope.  By selecting the correct magnification, confocal depth, and 

subtracting background from the modification solution, a time-series spectra of the 

modification process may be captured.  In addition, Raman spectroscopy also has the 

potential to gain insight to how gaseous chemical compounds temporarily modify the 

graphene surface, which would provide further details to the mechanisms involved during 
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chemical sensing.  Designing a flow cell with an optical window which can be positioned 

under a Raman microscope could allow in-situ measurements of the graphene surface while 

being exposed to chemical vapor.  Comparing and aligning these results with the 

simultaneous resistive based response measurement could provide further details of the 

response mechanism between graphene and chemical compounds. 

The research presented in this work will be extended by continuing and expanding 

on the concepts from Chapter 7.  The study of polymer-coated graphene sensors indicates 

that it is quite possible to create a broadly responsive sensor array by applying multiple 

polymer coatings directly on graphene sensors.  The results from this were very compelling, 

but more research needs to be done to better understand the effect of the polymer.  

Characterization of the polymers used in this research and others will be important to 

identify a set of polymers that provide increased selectivity and increased sensitivity.  

Additionally, the selected polymers can be used in a different configuration with a graphene 

derivative.  Graphene nanoplatelets can be combined with a polymer to make a conductive 

graphene nanoplatelet-polymer composite, similar to carbon black-polymer composite.  The 

graphene nanoplatelets can provide additional unique properties to the polymer and would 

allow for an easy to manufacture and inexpensive sensor array.  The concept of using 

graphene as a chemical sensor will also be extended to the biological world by 

functionalizing the graphene surface with nanoparticles, peptides, and other biological 

functionalizations.  The same device structure and processing concepts will be applied and 

adapted from previous lessons learned to quickly adapt to sensing biological analytes. 
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