
APPLICATIONS OF LOGIC COVERAGE CRITERIA AND LOGIC MUTATION TO

SOFTWARE TESTING

by

Garrett K. Kaminski

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

In Partial fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Information Technology

-"'

Date: _ 10/18/)..0\0

Dr. Paul Ammann, Dissertation Director

Dr. Jeff Offutt, Committee Member

Dr. Alexander Brodsky, Committee Member

Dr. Stephen Nash, Committee Member

Dr. Daniel Menasce, Senior Associate Dean

Dr. Lloyd J. Griffiths, Dean, The Volgenau
School of Information Technology and
Engineering

Fall Semester 2010
George Mason University
Fairfax, VA

Applications of Logic Coverage Criteria and Logic Mutation to Software Testing

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

By

Garrett K. Kaminski

Master of Science

George Mason University, 1998

Director: Dr. Paul Ammann, Associate Professor

The Volgenau School of Information Technology and Engineering

Fall Semester 2010

George Mason University

Fairfax, VA

ii

Copyright: 2010 Garrett K. Kaminski

All Rights Reserved

iii

DEDICATION

This is dedicated to all of the people who have supported both my work and my life over

the several years it took me to complete this dissertation. Most especially this includes

my wife April who has been a constant source of encouragement, assistance and

guidance. This research would not have been completed without her.

iv

ACKNOWLEDGEMENTS

I would like to thank the many people who have supported and motivated my research.

Foremost on this list is Dr. Paul Ammann who encouraged me to complete and submit for

publication the foundational ideas that led to the majority of this work. I would also like

to acknowledge the contributions of the other members of my dissertation committee

including Dr. Alexander Brodsky, Dr. Stephen Nash and Dr. Jeff Offutt who have all

contributed their knowledge, ideas and encouragement. In addition to my committee, I

have also had the privilege of collaborating with other faculty members, fellow students

and university researchers. Much of the technical motivation for my research comes from

my corporate work at CACI. For this I must thank Jon Jarvis, who has been my technical

lead for several years.

v

TABLE OF CONTENTS

 Page

List of Tables .. vii

List of Figures .. ix

List of Acronyms .. x

List of Theorems ... xii

ABSTRACT... xiii

1 Introduction.. 1

1.1 Logic Coverage Criteria Introduction .. 1

1.2 Mutation Testing Introduction.. 2

1.3 Motivation .. 3

1.4 Problem Statement ... 5

1.5 Publications .. 7

2 Related Work and Background Material ... 9

2.1 Logic Coverage Criteria Related Work.. 9

2.2 Logic Coverage Criteria Background Material .. 14

2.3 Mutation Testing Related Work ... 30

2.4 Mutation Testing Background Material ... 35

3 Thesis Contributions .. 36

3.1 Contributions Comparing Minimal-MUMCUT with MUMCUT.................... 41

3.2 Contributions Comparing Minimal-MUMCUT with RACC and RICC.......... 44

3.3 Contributions Comparing TRF-TIF Logic Mutation with Typical Logic

Mutation ... 45

3.4 Contributions Comparing TRF-TIF Logic Mutation with muJava... 48

3.5 Contributions Comparing TRF-TIF Logic Mutation with SQLMutation 51

3.6 General Threats to Validity .. 53

4 The Minimal-MUMCUT Criterion.. 55

4.1 Overview of the Minimal-MUMCUT Criterion. ... 56

4.2 Test Set Size. .. 59

4.3 Single Minimal DNF Fault Detection. ... 62

4.4 Double Minimal DNF Fault Detection... 67

4.5 General Logic Fault Detection. .. 80

5 Comparison of Minimal-MUMCUT with MUMCUT .. 94

5.1 Test Set Size (Contribution 1a Parts I and II) .. 94

5.2 Single Minimal DNF Fault Detection (Contribution 1c). 104

5.3 Double Minimal DNF Fault Detection (Contribution 1d Parts I and II)........ 105

5.4 General Logic Fault Detection (Contribution 1e Parts I and II)..................... 107

vi

6 Comparison of Minimal-MUMCUT with RACC and RICC 109

6.1 Test Set Size (Contribution 2a) .. 109

6.2 Single Minimal DNF Fault Detection (Contribution 2c Parts I and II).......... 116

6.3 Double Minimal DNF Fault Detection (Contribution 2d).............................. 120

7 TRF-TIF Logic Mutation... 122

7.1 Overview of TRF-TIF Logic Mutation. ... 122

7.2 Mutant Set Size. ... 138

7.3 Equivalent Mutant Set Size. ... 139

7.4 Single Minimal DNF Fault Detection. ... 142

7.5 Double Minimal DNF Fault Detection... 142

7.6 General Fault Detection.. 142

8 Comparison of TRF-TIF Logic Mutation with Typical Logic Mutation............... 144

8.1 Mutant Set Size (Contribution 3a).. 145

8.2 Equivalent Mutant Set Size (Contribution 3b) ... 147

8.3 Single Minimal DNF Fault Detection (Contribution 3c Parts I and II).......... 148

8.4 Double Minimal DNF Fault Detection (Contribution 3d Parts I and II)........ 153

9 Comparison of TRF-TIF Logic Mutation with muJava... 155

9.1 Mutant Set Size (Contribution 4a Parts I and II).. 158

9.2 Equivalent Mutant Set Size (Contribution 4b) ... 162

9.3 Single Minimal DNF Fault Detection (Contribution 4c) 164

9.4 Double Minimal DNF Fault Detection (Contribution 4d).............................. 167

9.5 General Fault Detection (Contribution 4f) ... 169

10 Comparison of TRF-TIF Logic Mutation with SQLMutation............................... 175

10.1 Mutant Set Size (Contribution 5a).. 178

10.2 Equivalent Mutant Set Size (Contribution 5b) ... 179

10.3 Single Minimal DNF Fault Detection (Contribution 5c) 180

10.4 Double Minimal DNF Fault Detection (Contribution 5d).............................. 181

10.5 General Fault Detection (Contribution 5f Parts I and II). 182

11 Conclusion ... 189

Appendix A Optimization Model for Selecting NFPs.. 193

Appendix B Minimal DNF TCAS Predicates... 194

Appendix C General Form TCAS Predicates and Fault Examples 196

Appendix D Minimal DNF, Minimal CNF and MUMCUT Extension Test Sets 197

Appendix E RACC Test Set Size Analysis... 206

Appendix F RACC and RICC Single Minimal DNF Fault Detection Proof.................. 211

Appendix G RACC Single Minimal DNF Fault Detection Analysis 222

Appendix H RACC Tests and RACC Fault Detection ... 227

Appendix I TRF-TIF Logic Mutations ... 237

Appendix J Java Programs and TRF-TIF Mutations .. 240

Appendix K Compiere Queries... 250

References... 280

vii

LIST OF TABLES

Table Page

Table 1. Basic Definitions .. 14

Table 2. Minimal DNF Faults .. 24

Table 3. Relation Between Faults and Criteria... 25

Table 4. Logic Coverage Criteria Summary... 29

Table 5. Contribution Summary ... 38

Table 6. Terms for Reduction in Test Set Size or Mutant Set Size................................ 39

Table 7. Terms for Reduction in Fault Detection Capability ... 40

Table 8. Minimal-MUMCUT Logic Criterion Summary... 59

Table 9. Criterion Feasibility and LRF Detection .. 61

Table 10. Minimal-MUMCUT Test Set Size ... 62

Table 11. Criterion Feasibility Combinations .. 70

Table 12. Double Fault Detection of Minimal-MUMCUT Tests Based on Criterion

Feasibility ... 71

Table 13. LIF-LIFs Undetected by Minimal-MUMCUT Tests 74

Table 14. Equivalency Relationships Between Faulty and Non-Faulty Predicates 76

Table 15. Equivalent LIF-LIFs as a Percentage of Equivalent LIF Pairings 77

Table 16. Minimal-MUMCUT vs. Minimal-MUMCUT + LIF-LIF Test Set Size.......... 79

Table 17. Minimal CNF Logic Criteria Summary ... 84

Table 18. Minimal DNF Fault Detection ... 86

Table 19. Minimal CNF Fault Detection.. 87

Table 20. Fault Detection in General Form Boolean Predicates by a Minimal-

MUMCUT Test Set based on Minimal DNF, Minimal CNF, or Union 92

Table 21. Minimal-MUMCUT vs. MUMCUT Test Set Size .. 96

Table 22. Minimal-MUMCUT, MUMCUT and MUMCUT Extension Test Set Sizes. 103

Table 23. Minimal-MUMCUT + LIF-LIF Test Set Size vs. MUMCUT Test Set Size . 106

Table 24. Lowest Bound Maximum RACC Test Set Size Algorithm Results............... 111

Table 25. RACC and Minimal-MUMCUT Test Set Size .. 114

Table 26. Average Test Set Size for RACC and Minimal-MUMCUT Grouped by

Number of Unique Literals... 116

Table 27. RACC Fault Detection ... 118

Table 28. RACC Fault Detection Grouped by Number of Unique Literals 119

Table 29. TRF-TIF Faults... 130

Table 30. Faults for ab + b~c + ~bc ... 137

Table 31. Number of TRF-TIF Logic Mutants Generated ... 139

viii

Table 32. Number of Typical Logic Mutants Generated ... 145

Table 33. Faults Produced by Typical Mutation Operators that are not in Lau and Yu’s

Fault Hierarchy... 150

Table 34. Number of Faults Detected by Typical Mutation... 151

Table 35. MED and MER... 152

Table 36. TRF-TIF MED and MER... 152

Table 37. Arrays and Collections Programs... 157

Table 38. Number of Software Mutants ... 158

Table 39. TRF-TIF Mutant Set Size vs. muJava Logic Mutant Set Size........................ 161

Table 40. Number and Percentage of Strongly Equivalent Software Mutants............... 162

Table 41. muJava Mutants for Predicate ab + cd ... 166

Table 42. LIF, LRF and TOF for Predicate ab + cd ... 166

Table 43. Number of Strongly Non-Equivalent muJava Mutants Strongly Killed by a

Test Set that Weakly Kills all TRF-TIF Logic Mutants .. 169

Table 44. Number of Query Mutants ... 178

Table 45. Percentage of Non-equivalent SQLMutation Mutants Killed by a Test Set

Killing all TRF-TIF Logic Mutants.. 183

Table 46. Mutation Scores for TRF-TIF Logic Mutation versus a Random Approach . 184

Table 47. Mutation Scores and Number of Database Rows for a SQLFpc Test Set...... 186

Table 48. Mutation Scores and Number of Database Rows for a TRF-TIF Logic

Mutation Test Set ... 186

Table 49. Values of a, b and c in NFPs .. 207

Table 50. RICC Tests (TOF) .. 217

Table 51. RICC Tests (LOF) .. 219

Table 52. RICC Tests (LIF).. 220

Table 53. RICC Tests (LRF) .. 221

ix

LIST OF FIGURES

Figure Page

Figure 1. Logic Coverage Criteria, Logic Mutation and Fault Detection 6

Figure 2. Lau and Yu’s Fault Hierarchy ... 27

Figure 3. Subsumption Hierarchy... 28

Figure 4. Minimal-MUMCUT Test Set Construction .. 56

Figure 5. Updated Subsumption Hierarchy with Minimal-MUMCUT 58

Figure 6. Fault Hierarchy based on Infeasibility .. 67

Figure 7. Updated Subsumption Hierarchy with Minimal CNF Logic Criteria 84

Figure 8. Minimal CNF Fault Hierarchy .. 86

Figure 9. Extended Fault Hierarchy.. 133

x

LIST OF ACRONYMS

Acronym Full Spelling Page Reference

ACC Active Clause Coverage 18

ASF Associative Shift Fault 91

CACC Correlated Active Clause Coverage 19

CNF Conjunctive Normal Form 15

COR Conditional Operator Replacement 146

CUFPNTP Corresponding Unique False Point Near True Point 82

CUTPNFP Corresponding Unique True Point Near False Point 22

DNF Disjunctive Normal Form 15

ENF Expression Negation Fault 24

ESTF Expression Stuck at Fault 144

ESTF0 Expression Stuck at Fault 0 150

ESTF1 Expression Stuck at Fault 1 150

GACC General Active Clause Coverage 19

GICC General Inactive Clause Coverage 21

ICC Inactive Clause Coverage 20

LIF Literal Insertion Fault 25

LNF Literal Negation Fault 25

LOF Literal Omission Fault 25

LRF Literal Reference Fault 25

LSTF Literal Stuck at Fault 144

LSTF0 Literal Stuck at Fault 0 150

LSTF1 Literal Stuck at Fault 1 150

MCDC Modified Condition Decision Coverage 9

MED Mutation Efficiency Difference 136

MER Mutation Efficiency Ratio 136

MNFP Multiple Near False Point 22

MNTP Multiple Near True Point 82

MUFP Multiple Unique False Point 82

MUMCUT MUtp-Mnfp-CUTpnfp 23

MUTP Multiple Unique True Point 21

MUTP/NFP Multiple Unique True Point / Near False Point 23

NFP Near False Point 15

NTP Near True Point 15

ORF. Operator Reference Fault. 25

ORF.0 Operator Reference Fault.0 150

ORF.1 Operator Reference Fault.1 150

ORF+ Operator Reference Fault+ 25

ORF+0 Operator Reference Fault+0 150

ORF+1 Operator Reference Fault+1 150

OTP Overlapping True Point 16

xi

PCUFPNTP Partial Corresponding Unique False Point Near True Point 83

PCUTPNFP Partial Corresponding Unique True Point Near False Point 22

PIF Parentheses Insertion Fault 91

POF Parentheses Omission Fault 91

RACC Restricted Active Clause Coverage 18

RFP Remaining False Point 16

RICC Restricted Inactive Clause Coverage 20

SAF Stuck At Fault 91

SMOTP Supplementary Multiple Overlapping True Point 73

SQLFpc SQL Full predicate coverage 175

SVR Scalar Variable Replacement 146

SVRLOF Scalar Variable Replacement Literal Omission Fault 150

SVRTOF Scalar Variable Replacement Term Omission Fault 150

TCAS Traffic Collision Avoidance System 60

TOF Term Omission Fault 25

TIF Term Insertion Fault 3

TIF/LOF Term Insertion Fault / Literal Omission Fault 122

TIF/LRF Term Insertion Fault / Literal Reference Fault 122

TNF Term Negation Fault 25

TOF Term Omission Fault 25

TRF Term Reference Fault 3

TRF/LIF Term Reference Fault / Literal Insertion Fault 122

TRF-TIF Term Reference Fault – Term Insertion Fault 3

UFP Unique False Point 15

UOD Unary Operator Deletion 149

UOI Unary Operator Insertion 149

UTP Unique True Point 15

UTPC Unique True Point Coverage 21

XOR Exclusive OR 15

xii

LIST OF THEOREMS

Theorem Page

Theorem 1. Minimal-MUMCUT vs. MUMCUT Single Minimal DNF Fault Detection

... 104

Theorem 2. Minimal-MUMCUT vs. MUMCUT Double Minimal DNF Fault

Detection.. ... 105

Theorem 3. Minimal-MUMCUT vs. RACC/RICC Single Minimal DNF Fault

Detection ... 116

Theorem 4. Minimal-MUMCUT vs. RACC/RICC Double Minimal DNF Fault

Detection ... 120

Theorem 5. TRF-TIF vs. Typical Logic Mutation Equivalent Mutant Set Size............. 147

Theorem 6. TRF-TIF vs. Typical Logic Mutation Single Minimal DNF Fault

Detection ... 148

Theorem 7. TRF-TIF vs. Typical Logic Mutation Double Minimal DNF Fault

Detection ... 153

Theorem 8. TRF-TIF vs. muJava Single Minimal DNF Fault Detection....................... 164

Theorem 9. TRF-TIF vs. muJava Double Minimal DNF Fault Detection 167

Theorem 10. TRF-TIF vs. SQLMutation Single Minimal DNF Fault Detection........... 180

Theorem 11. TRF-TIF vs. SQLMutation Double Minimal DNF Fault Detection 181

ABSTRACT

APPLICATIONS OF LOGIC COVERAGE CRITERIA AND LOGIC MUTATION TO

SOFTWARE TESTING

Garrett K. Kaminski

George Mason University, 2010

Dissertation Director: Dr. Paul Ammann

Logic is an important component of software. Thus, software logic testing has enjoyed

significant research over a period of decades, with renewed interest in the last several

years. One approach to detecting logic faults is to create and execute tests that satisfy

logic coverage criteria. Another approach to detecting faults is to perform mutation

analysis and then find tests that distinguish the original program from each mutant. The

fundamental contribution of this dissertation is the development of a new logic coverage

criterion and a new logic mutation approach to improve testing in the context of logic

expressions in normal form, logic expressions in general form and entire programs. In

particular, testing approaches based on current logic coverage criteria and current

mutation approaches share the same drawback of not guaranteeing detection of certain

logic faults (even when all non-equivalent mutants are killed) and/or are costly in terms

of the number of tests required. This dissertation further develops the body of knowledge

in logic coverage criteria and logic mutation testing to address these problems. I show

that a new logic coverage criterion can guarantee detecting the same logic faults as

current criteria with fewer test cases. I also show that a new logic mutation approach can

decrease the number of logic mutants generated while increasing logic fault detection

capability. By doing so, a strong theoretical and empirical duality is established between

the new logic coverage criterion and the new logic mutation approach.

1

1 Introduction

1.1 Logic Coverage Criteria Introduction

A common way to test software is to execute tests that satisfy a coverage criterion. A

coverage criterion imposes requirements on the tests. For example, one coverage criterion

is statement coverage, which demands that every statement in the software be executed

by the test set. A logic coverage criterion imposes requirements on tests related to logic

expressions (predicates) in source code or other artifacts. For example, one logic

coverage criterion is predicate coverage, which requires that each logic expression

evaluate to TRUE in at least one test and FALSE in at least one test. Logic coverage

criteria differ in fault detection capability and test set size. Many logic coverage criteria

exist, but they can be broadly classified into two categories: semantic and syntactic.

Semantic criteria make no assumption as to predicate format, whereas syntactic criteria

do, with the most common format being minimal Disjunctive Normal Form (DNF).

A common method for evaluating logic coverage criteria is to assess detection of

faults in the minimal DNF fault hierarchy of Lau and Yu [30]. Kaminski and Ammann

[22] established a complementary minimal Conjunctive Normal Form (CNF) fault

hierarchy. In the minimal DNF/CNF context, theoretical analysis can prove that certain

faults are guaranteed to be detected. When a predicate is not in minimal CNF or minimal

DNF, it can be converted to either normal form and then a syntactic logic coverage

2

criterion can be applied. However, detection of certain faults in the original predicate is

no longer guaranteed by tests that satisfy the syntactic logic coverage criterion. Analysis

of fault detection when a predicate is not in minimal CNF or minimal DNF needs to be

both theoretical and empirical since some faults are guaranteed to be detected while

others are not. Logic coverage criteria can be used to develop tests to detect non-logic

faults and in this case the analysis moves completely into the empirical domain. This

research introduces a new logic coverage criterion (Minimal-MUMCUT) and evaluates it

with respect to test set size and fault detection capability against other logic coverage

criteria. The contexts are minimal DNF/CNF logic fault detection, general logic fault

detection and general fault detection.

1.2 Mutation Testing Introduction

Mutation testing was originally proposed by DeMillo et al. [11] and Hamlet [14]

requires testers to create tests to detect a specified set of faults. Mutant programs that

vary from the original program by a single syntactic change are generated. If possible,

testers find inputs to distinguish the mutants from the original program to achieve a high

mutation score. For a mutant to be distinguished (killed), the statement with the mutation

must be reached (reachability), the program state for the mutant must differ from the

program state of the original program after the mutated statement is executed (infection)

and the difference in program state must propagate to the output (propagation). Mutation

score is defined as the number of mutants distinguished (killed) divided by the number of

non-equivalent mutants generated. Some mutants are equivalent to the original program

in that no input can kill them. The key to mutation testing is the mutation operators used

3

to make syntactic changes to the source code. In logic mutation, logic mutation operators

are used to make syntactic changes to predicates in source code. Mutation testing can also

be applied to other artifacts besides source code, but this is outside the scope of this

dissertation. For this dissertation, the source code under test is assumed to be

deterministic.

 Tests created to kill all non-equivalent mutants can be examined theoretically in

terms of minimal DNF/CNF logic fault detection, theoretically and empirically in terms

of general logic fault detection and empirically in terms of general fault detection.

Kaminski and Ammann [18] introduced a new logic mutation approach known as TRF-

TIF (Term Replacement Fault – Term Insertion Fault) mutation to produce solely

selective logic mutants. In order to kill the mutants generated by this tool it is necessary

(but not sufficient) to satisfy the Minimal-MUMCUT logic coverage criterion. Thus,

TRF-TIF logic mutation subsumes the Minimal-MUMCUT logic coverage criterion. The

TRF-TIF tool uses novel mutation operators whose corresponding fault types sit atop an

extended minimal DNF logic fault hierarchy. This research evaluates mutant set size,

equivalent mutant set size and fault detection capability for the TRF-TIF logic mutation

approach in comparison to other mutation approaches. This research also examines the

degree to which killing all TRF-TIF logic mutants kills general mutants.

1.3 Motivation

The motivation for this research has two parts, one based on logic coverage criteria

and the other based on logic mutation. In summary, testing approaches based on current

4

logic coverage criteria or current mutation approaches share the drawback of not

guaranteeing detection of certain logic faults (even when all mutants are killed) and/or

are costly in terms of the number of tests required.

Logic coverage criteria exist that require small test set size, but they do not

guarantee detecting common logic faults. Conversely, logic coverage criteria exist that

guarantee detecting common logic faults, but these criteria require a large test set size.

Part of the reason for this is that current logic coverage criteria do not handle infeasibility

efficiently, which in turn results in unnecessary tests in that all faults in Lau and Yu’s

fault hierarchy can still be detected even when one or more tests are removed.

Current logic mutation approaches have several problems. One, mutants that are

syntactically different from each other yet semantically the same can be generated. Two,

mutants are generated that are guaranteed to be killed by a test that kills some other

generated mutant. While Offutt, Rothermel and Zapf [37] showed that mutation testing

can use selective logic mutation operators to offset this cost, selective logic mutation

operators in current mutation tools are used inefficiently. Three, current mutation tools

lack logic mutation operators that generate mutants that, when killed, guarantee killing

the most number of other mutants. These inefficiencies cause excess mutants to be

generated and reduce fault detection capability.

These drawbacks call for new logic coverage criteria and new logic mutation

approaches and this research addresses exactly these drawbacks.

5

1.4 Problem Statement

The main logic coverage criterion problem that is addressed is how to best achieve a

balance of reducing the number of tests needed to detect logic faults while at the same

time increasing the number of logic faults detected, regardless of predicate format. The

main logic mutation problem that is addressed is how to reduce the number of logic

mutants generated while increasing fault detection (assuming all non-equivalent mutants

are killed). A secondary mutation problem that is addressed is how to reduce the number

of equivalent mutants. The above problems are addressed by extending a current logic

fault hierarchy, inventing new logic mutation operators that sit atop the extended logic

fault hierarchy, providing partial solutions to the equivalent mutant problem and

analyzing logic coverage criterion feasibility at a low level of detail. Figure 1 displays the

problems this research addresses at a high level.

Logic Criteria

Test Criteria Mutation Testing

Logic Mutation

DNF/CNF Logic Faults

General Logic Faults

General Faults

Subsumes

Figure 1 Logic Coverage Criteria, Logic Mutation and Fault Detection

6

The two thin solid arrows in Figure 1 represent the problem of increasing the number

of minimal DNF/CNF logic faults guaranteed to be detected while decreasing test set or

mutant set size. These arrows point to logic faults for predicates in minimal DNF/CNF.

The fact that the arrows are solid indicates that guaranteed fault detection can be proven.

In other words, theoretical analysis is applied.

The two thin dashed arrows in Figure 1 represent the problem of increasing the

number of general logic faults detected while decreasing test set or mutant set size, but

without a guarantee of detection. These arrows point to logic faults for predicates

regardless of format. The fact that the arrows are dashed indicates that some types of

faults can be guaranteed to be detected theoretically but that others cannot and thus

require empirical study.

The thin dotted arrows in Figure 1 represent the problem of increasing the number of

faults (logic and non-logic) detected while decreasing test set or mutant set size, but

without a guarantee of detection. These arrows point to faults in general. The fact that

these arrows are dotted indicates that non-logic fault detection relations cannot be

guaranteed theoretically but rather require empirical study.

The thick arrow between mutation testing and test criteria represents that a

subsumption relationship can exist. That is, depending on the mutation operators used,

mutants can be generated such that a test set that kills all non-equivalent mutants is

guaranteed to satisfy a specific criterion. TRF-TIF logic mutation subsumes the Minimal-

MUMCUT logic coverage criterion because in order to kill all TRF-TIF logic mutants,

Minimal-MUMCUT must be satisfied.

7

This dissertation is organized as follows. Chapter 2 describes related work and

background material. Chapter 3 summarizes the thesis contributions. Chapter 4 provides

an overview of the Minimal-MUMCUT criterion and Chapter 7 provides an overview of

TRF-TIF logic mutation. Chapters 5, 6 and 8-10 discuss theoretical and empirical results.

Chapter 11 draws conclusions.

1.5 Publications

Material in this dissertation is used with permission and has been published in the

following:

Refereed Journals

[22] G. Kaminski and P. Ammann. Reducing Logic Test Set Size While Preserving Fault

 Detection. To appear in Software Testing, Verification, and Reliability. Wiley.

[23] G. Kaminski, U. Praphamontripong, P. Ammann and J. Offutt. A Logic Mutation

 Approach to Selective Mutation Using Programs and Queries. Accepted with minor

 revisions by Information and Software Technology, Special Issue on Mutation

 Testing.

[24] G. Kaminski, G. Williams and P. Ammann. Reconciling Perspectives of Logic

Testing for Software. Software Testing, Verification and Reliability, 18(3):149-188,

September 2008. Wiley.

Refereed Conferences and Workshops

[18] G. Kaminski and P. Ammann. Using a Fault Hierarchy to Improve the Efficiency of

DNF Logic Mutation Testing. Proceedings of the 2
nd

 IEEE International Conference

on Software Testing, Verification and Validation. Pages 386-395. Denver, CO. April,

2009.

[19] G. Kaminski and P. Ammann. Using Logic Criterion Feasibility to Reduce Test Set

Size While Guaranteeing Fault Detection. Proceedings of the 2
nd

 IEEE International

Conference on Software Testing, Verification and Validation. Pages 167-176. Denver,

CO. April, 2009.

8

[20] G. Kaminski and P. Ammann. Using Logic Criterion Feasibility to Reduce Test Set

Size While Guaranteeing Double Fault Detection. Proceedings of the Mutation

Workshop at the 2
nd

 International Conference on Software Testing, Verification and

Validation. Denver, CO. April, 2009.

Other

[21] G. Kaminski and P. Ammann. Applying MCDC to Large DNF Expressions.

 Proceedings of the 9
th

 International Conference on Software Engineering Research

 and Practice. Las Vegas, NV. July, 2010.

 Additional publications by the author that are related to the dissertation, but are

not formally included because they are outside the scope of comparing logic coverage

criteria and logic mutation approaches:

Refereed Conferences and Workshops

G. Kaminski and P Ammann. Applications of Optimization to Logic Testing.

Proceedings of the Constraints in Software Testing, Verification and Analysis Workshop

at the 3
rd

 International Conference on Software Testing, Verification and Validation.

Paris, France. April, 2010.

Other

G. Kaminski, U. Praphamontripong, P. Ammann and A.J. Offutt. An Evaluation of the

Minimal-MUMCUT Logic Criterion and Prime Path Coverage. Proceedings of the 9
th

International Conference on Software Engineering Research and Practice. Las Vegas,

NV. July, 2010.

9

2 Related Work and Background Material

 In this chapter, related work and background is discussed. Section 2.1 summarizes

logic coverage criteria related work. Section 2.2 focuses on logic coverage criteria

background material. Section 2.3 summarizes mutation testing related work. Section 2.4

focuses on mutation testing background material.

2.1 Logic Coverage Criteria Related Work

A logic coverage criterion imposes requirements on tests related to logic expressions

in source code or other artifacts. Logic coverage criteria differ in fault detection

capability and test set size. Many such criteria exist, but they can be broadly classified

into two categories: semantic and syntactic. Semantic criteria make no assumption as to

predicate format, whereas syntactic criteria do, with the most common format being

minimal DNF. Details of various logic coverage criteria are presented next, starting with

semantic criteria followed by syntactic criteria. This section concludes with an overview

of logic fault detection.

Semantic Logic Coverage Criteria

Chilenski and Miller [10] discuss the modified condition decision coverage (MCDC)

criterion, which is the best known semantic logic coverage criterion. Chilenski and Miller

[10] differentiate between Weak and Strong MCDC. Weak MCDC treats multiple

occurrences of the same literal (condition) as one occurrence. Strong MCDC treats

10

multiple occurrences of the same literal (condition) as different occurrences. That is, in

Weak MCDC tests are formed on the basis of each unique literal whereas in Strong

MCDC tests are formed on the basis of each literal. Chilenski [9] further differentiates

MCDC into Unique-Cause MCDC, Unique-Cause + Masking MCDC and Masking

MCDC. Unique-Cause MCDC requires all other conditions to be fixed when varying the

condition of interest from TRUE to FALSE. Masking MCDC allows other conditions to

vary when varying the condition of interest from TRUE to FALSE. Unique-Cause +

Masking MCDC requires all other conditions to be fixed when varying the condition of

interest from TRUE to FALSE, unless an infeasibility arises, in which case other

conditions can vary so as to remove the infeasibility. Thus, six flavors of MCDC exist:

Strong Unique-Cause MCDC, Strong Unique-Cause + Masking MCDC, Strong Masking

MCDC, Weak Unique-Cause MCDC, Weak Unique-Cause + Masking MCDC and Weak

Masking MCDC. When referring to MCDC, any of the three versions of weak MCDC is

implied unless otherwise stated. Ammann and Offutt [2] discuss five related semantic

criteria: General Active Clause Coverage (GACC), Correlated Active Clause Coverage

(CACC), Restricted Active Clause Coverage (RACC), General Inactive Clause Coverage

(GICC) and Restricted Inactive Clause Coverage (RICC). RACC corresponds to Weak

Unique-Cause MCDC and CACC corresponds to Weak Masking MCDC. Like MCDC

tests, ACC and ICC tests can fail to detect most faults in Lau and Yu’s fault hierarchy

[24]. This dissertation establishes this fact in section 6.2.

11

Syntactic Logic Coverage Criteria

Weyuker, Goradia and Singh [46] proposed the MAX-A and MAX-B syntactic

criteria, whose tests guarantee detecting all faults in the hierarchy. Chen, Lau and Yu [8]

developed the MUTP (Multiple Unique True Point), MNFP (Multiple Near False Point)

and CUTPNFP (Corresponding Unique True Point Near False Point) criteria and

integrated them into the MUMCUT (MUTP-MNFP-CUTPNFP) criterion, whose tests are

guaranteed to detect all faults in the hierarchy with a smaller test set size. Assuming

minimal DNF, the CUTPNFP criterion and Strong Unique-Cause MCDC are identical as

are the UTPNFP criterion and Strong Masking MCDC [24]. Chen and Lau [6]

implemented the MUTP Greedy algorithm to satisfy the MUTP criterion as a constituent

of the MUMCUT criterion. Yu and Lau [50] showed how MUMCUT test set size can

vary depending on which heuristic is used to generate the test set. Kaminski, Williams

and Ammann [24] proposed the MUTP/NFP criterion, whose tests are guaranteed to

detect all faults in the hierarchy while further reducing test set size, but only if the

criterion is feasible. Sun et al. [41] analyzed how the MUMCUT criterion can be

extended to apply to predicates in any format. Kaminski and Ammann [19] proposed the

Minimal-MUMCUT criterion, which reduces MUMCUT test set size without sacrificing

fault detection regardless of feasibility. This dissertation develops Minimal-MUMCUT in

chapter 4 and evaluates its fault detection capability and test set size with respect to

MUMCUT in chapter 5.

12

Logic Fault Detection

The seminal work in composing a logic fault hierarchy was performed by Kuhn [26].

Okun, Black and Yesha [38] showed how Kuhn’s logic fault hierarchy can apply to

predicates in any format. Lau and Yu [30] refined Kuhn’s work by introducing new faults

and detection relationships assuming minimal DNF. Kaminski and Ammann [18]

extended Lau and Yu’s fault hierarchy to include new fault types that correspond to

mutation operators in typical logic mutation approaches and new highly selective logic

mutation operators not in typical logic mutation approaches. (Typical logic mutation

refers to a hypothetical tool including a common set of mutation operators.)

Fault detection guarantees by syntactic tests that hold for minimal DNF predicates do

not hold for non-minimal DNF predicates. This raises three issues that prior researchers

have investigated. One, how well do tests based on minimal DNF detect faults in non-

minimal DNF predicates? Two, what types of software have a high percentage of their

predicates in minimal DNF? Three, what extensions are necessary to expand fault

detection when the minimal DNF assumption fails to hold? For the first issue, Yu and

Lau [48] found that of a sample of 20 non-minimal DNF predicates, over 99% of seeded

faults were detected by MUMCUT tests formed from the minimal DNF version of the

predicates. This dissertation shows in section 5.4 that over 98% of seeded faults in non-

minimal DNF predicates were detected by Minimal-MUMCUT tests formed from the

minimal DNF versions of the predicates. For the second issue, Chilenski [9] found that

95% of 20,256 predicates in avionics software were in minimal DNF. This dissertation

reports results in section 5.4 showing that 85% of predicates in this sample that contained

13

at least 3 unique literals were in either minimal DNF or minimal CNF. For the third issue,

Sun et al. [41] analyzed what patterns of faults the MUMCUT criterion can miss for

general form predicates and how the MUMCUT criterion can be extended (MUMCUT

extensions) to guarantee detection of these faults. In this dissertation a comparison of

Minimal-MUMCUT vs. MUMCUT extension test set size is given in section 5.1.

Double Logic Fault Detection

A double logic fault occurs when two faults are introduced into a predicate. Two

faults can be coupled together such that inputs detecting each in isolation cannot detect

the corresponding double fault. Fault coupling rarely occurs [16, 31] as inputs that detect

each fault usually detect the double fault. However, double faults are more likely to occur

than higher order faults based on the competent programmer hypothesis [11] (which

states that competent programmers write programs that differ from a correct version by

relatively few simple faults). Offutt [32] investigated fault coupling using an empirical

approach. He found that tests that detected all single faults seeded into a program

detected 99.9% of double faults. Thus, he concluded fault coupling rarely occurs. How

Tai Wah [16] examined fault coupling from a theoretical perspective. He analyzed the

ratio of the number of tests that detect single faults but not the corresponding double

faults to the number of tests that detect single faults. He showed that the ratio is small and

concluded fault coupling rarely occurs. Lau et al. [27, 28, 29] studied logic fault

coupling. They showed that MUMCUT tests, which detect all single faults in the

hierarchy, guarantee detection of all but 8 of 92 double fault types. They proposed

additional criteria to guarantee double fault detection and list conditions necessary to

14

detect each double fault. However, these conditions are not specified in terms of the

criterion feasibility of the MUTP, CUTPNFP, and MNFP criteria which compose

MUMCUT. This dissertation compares Minimal-MUMCUT and MUMCUT double fault

detection in section 5.3.

2.2 Logic Coverage Criteria Background Material

In this dissertation, Minimal-MUMCUT is compared with other logic criteria. In this

section, background material is presented for these other logic criteria. First, some basic

definitions are presented. Next, several semantic logic coverage criteria are described,

followed by a description of several syntactic logic coverage criteria. Several Minimal

DNF logic faults are then examined, followed by background material on subsumption.

The section ends with a summary containing a table that summarizes each of the logic

criteria presented in this section. Table 1 lists the definitions for various logic terms and

symbols used throughout this section and the rest of this dissertation.

Table 1 Basic Definitions

Term or Symbol Definition

1 The Boolean value TRUE.

0 The Boolean value FALSE.

Literals Variables representing clauses in a predicate.

+ OR operator.

Adjacency

between literals

or parentheses

AND operator.

XOR Exclusive OR operator.

~, ! Negation (also indicated by a – above a literal or term).

Term A set of literals.

15

Term or Symbol Definition

Disjunctive

Normal Form

(DNF)

Predicate syntax where terms are separated by OR and literals are

separated by AND. For example, ab + cd.

Conjunctive

Normal Form

(CNF)

Predicate syntax where terms are separated by AND and literals are

separated by OR. For example, (a + b)(c + d).

DNF implicant
A term that when TRUE, means the predicate is TRUE. For

example, ab is a DNF implicant in ab + cd.

CNF implicant
A term that when FALSE, means the predicate is FALSE. For

example, (a + b) is a CNF implicant in (a + b)(c + d).

DNF prime

implicant

DNF implicant where removing a literal could potentially change

the predicate value. For example, ab is a DNF prime implicant in

ab + cd but ab!c is not a DNF prime implicant in ab!c + abc.

CNF prime

implicant

CNF implicant where removing a literal could potentially change

the predicate value. For example, (a + b) is a prime CNF implicant

in (a + b)(c + d) but (a + b + !c) is not a CNF prime implicant in (a

+ b + !c)(a + b + c).

Irredundant DNF
Predicate syntax where it is possible to make each term TRUE in

turn while all other terms are FALSE.

Irredundant CNF
Predicate syntax where it is possible to make each term FALSE in

turn while all other terms are TRUE.

Minimal DNF Predicate syntax in irredundant DNF where all implicants are DNF

prime implicants.

Minimal CNF Predicate syntax in irredundant CNF where all implicants are CNF

prime implicants.

Unique True

Point (UTP)

An assignment of values to literals in a minimal DNF predicate

such that only a single term is TRUE. In ab + cd, UTPs for ab are

1100, 1101, 1110.

Unique False

Point (UFP)

An assignment of values to literals in a minimal CNF predicate

such that only a single term is FALSE. In (a + b)(c + d), UFPs for

(a + b) are 0001, 0010, 0011.

Near False Point

(NFP)

An assignment of values to literals in a minimal DNF predicate

such that the predicate is FALSE but negating a single literal

makes the predicate TRUE. In ab + cd, NFPs for a are 0100, 0101,

0110.

Near True Point

(NTP)

An assignment of values to literals in a minimal CNF predicate

such that the predicate is TRUE but negating a single literal makes

the predicate FALSE. In (a + b)(c + d), NTPs for a are

1001,1010,1011.

16

Term or Symbol Definition

Corresponding

NFP

In a minimal DNF predicate, an NFP that differs from a UTP for

the literal’s term only in the value of that literal. In ab + cd, 0100 is

a corresponding NFP for literal a as it differs from the UTP 1100

for term ab only in the value of literal a.

Corresponding

NTP

In a minimal CNF predicate, an NTP that differs from a UFP for

the literal’s term only in the value of that literal. In (a + b)(c + d),

1011 is a corresponding NTP for literal a as it differs from the UFP

0011 for term (a + b) only in the value of literal a.

Overlapping

True Point (OTP)

In a minimal DNF predicate, an OTP is an assignment of values to

literals such that at least two of the terms are TRUE. In ab + cd,

1111 is an OTP.

Remaining False

Point (RFP)

In a minimal DNF predicate, a RFP is an assignment of values to

literals such that the predicate evaluates to FALSE but the

assignment does not represent an NFP. In ab + cd, 0000 is a RFP.

Feasible A logic coverage criterion is feasible if and only if it is possible to

construct all required tests.

Combinatorial

Coverage

Demands for an exhaustive test set. In other words, the test set

must include all possible combinations of the values of literals in a

given predicate.

Exhaustive logic test size grows exponentially, requiring tests of O(2
n
), where n is

the number of unique literals in the predicate. Thus, testers have invented less expensive

criteria. Several criteria are described next, starting with semantic flavors and then onto

syntactic flavors. For all of these criteria, if an infeasibility occurs the tests chosen should

satisfy the requirements as fully as possible.

Semantic Logic Coverage Criteria

The general idea behind the ACC tests is to evaluate under what conditions each

unique literal determines the outcome of the predicate. In other words, each variable will

become the final decision for whether the predicate will be TRUE or FALSE. A key

17

feature of the semantic domain is that the criteria are independent of predicate form.

Also, each literal is not necessarily unique as literals repeated in different terms are not

treated as unique. Definitions of several semantic criteria are given below. In these

definitions, a test pair represents two distinct test points, each with its own specific

assignment of Boolean values to all the literals in a given predicate. Two distinct test

points are paired because ACC requires pairs of points for literals. To understand the

definitions, it is first necessary to understand how a literal determines a Boolean function.

Literal Determination of a Boolean Function

An important concept is the idea of a literal determining the value of a Boolean

function. The Boolean derivative [24] can be used for this reason and is defined

as f f fx x x= ⊕= =1 0 , where f x=1 is the value of f when literal x = 1 and f x=0 is the value of f

when literal x = 0. If the Boolean function is written in terms of literal x, then

f a x b x ci i
i

m

i

n

i
i

k

= + +
== =11 1

∪∪ ∪ and the Boolean derivative is:

f f fx x x= ⊕= =1 0

f a b c a b cx i i
i

m

i

n

i
i

k

i i
i

m

i

n

i
i

k

= + + ⊕ + +
== = == =

[] []1 0 0 1
11 1 11 1

∪∪ ∪ ∪∪ ∪ f a b a cx i i
i

m

i

n

i
i

n

i
i

k

= + ⊕ +
== = =

[] []
11 1 1

∪∪ ∪ ∪

f a b cx i i
i

m

i

n

i
i

k

= ⊕∏
== =

[]
11 1

∪ ∪

Likewise, one can evaluate when the literal x does not determine the outcome of

Boolean function f. To compute this case, negate the Boolean Derivative to obtain:

18

Active Clause Coverage (ACC) [2]: Given a Boolean function, f, composed of literals

cj, there is a test pair for each cj such that cj determines the Boolean value of f and cj is 0

and 1. There are three distinct flavors of ACC as described below.

Restricted Active Clause Coverage (RACC) [2]: Given a Boolean function, f,

composed of literals cj, there is a test pair for each cj such that cj determines the Boolean

value of f, cj is 0 and 1 and all other literals ci remain constant. By definition, f will be 0

in one test and 1 in the other test, so predicate coverage is satisfied. RACC selects a

corresponding UTP-NFP pair for each unique literal (as opposed to each literal) when the

predicate is in minimal DNF. Thus, if a literal repeats the repeating instances do not

require a corresponding UTP-NFP pair. Consider f = ab + cd. Literal a determines f

when b=1, c=1, d=0 or when b=1, c=0, d=1, or when b=1, c=0, d=0. Thus, RACC tests

for a could be 1110 and 0110 since the values of b, c and d need to remain constant.

Likewise, RACC tests for b could be 1110 and 1010. Literal c determines f when a=0,

b=1, d=1 or when a=1, b=0, d=1, or when a=0, b=0, d=1. Thus, RACC tests for c could

be 0111 and 0101 since the values of a, b and d need to remain constant. Likewise,

RACC tests for d could be 0111 and 0110. A test set is {1110, 0110, 1010, 0111, 0101}.

Now consider f = ab + ac and note that literal a repeats. Literal a determines f as long as

b and c are not both 0. Thus, for literal a RACC tests could be 110 and 010. Neither of

the points is an NFP for literal a in term ac. RACC is identical to Weak Unique-Cause

19

MCDC, which is a standard of the United States Federal Aviation Administration for

safety critical software in commercial aircraft.

Correlated Active Clause Coverage (CACC) [2]: Given a Boolean function, f,

composed of literals cj, there is a test pair for each cj such that cj determines the Boolean

value of f, cj is 0 and 1 and f is 0 and 1, respectively (so predicate coverage is satisfied).

CACC selects a UTP and NFP for each unique literal (as opposed to each literal) when

the predicate is in minimal DNF. Thus, if a literal repeats the repeating instances are

ignored. The UTP and NFP chosen do not need to be a corresponding pair as in RACC.

In other words the UTP and NFP chosen do not have to differ only in the value of the

literal of interest. That is, other literals in the predicate may flip values between the UTP

and NFP. Consider f = ab + cd. CACC tests for a could be 1110 and 0100 since the value

of c does not need to remain constant. Likewise, CACC tests for b could be 1110 and

1000. CACC tests for c could be 0111 and 0001 since the value of b does not need to

remain constant. Likewise, CACC tests for d could be 0111 and 0010. A test set is {1110,

0100, 1000, 0111, 0001, 0010} although the RACC test set above would also suffice as

any RACC test set satisfies CACC. CACC is identical to Weak Masking MCDC.

General Active Clause Coverage (GACC) [2]: Given a Boolean function, f, composed

of literals cj, there is a test pair for each cj such that cj determines the Boolean value of f

and cj is 0 and 1. Note that it is not explicitly required that f evaluates to 0 in one test and

1 in the test, so predicate coverage is not necessarily satisfied. Although predicate

coverage will usually be satisfied, it is possible to satisfy GACC when f evaluates to only

20

0 or 1. The requirements for GACC and ACC are the same. Any RACC or CACC test set

is a GACC test set.

Inactive Clause Coverage (ICC) [2]: Given a Boolean function, f, composed of literals

cj, there is a test pair for each cj such that cj does not determine the Boolean value of f, cj

is 0 and 1 and f is 0 for both elements of the test pair. There is also a test pair for each cj

such that cj does not determine the Boolean value of f, cj is 0 and 1 and f is 1 for both

elements of the test pair. There are two distinct flavors of ICC as described below, each

of which corresponds to a flavor of Reinforced Condition Decision Coverage (RCDC) as

described by Vilkomir and Bowen [45].

Restricted Inactive Clause Coverage (RICC) [2]: Given a Boolean function, f,

composed of literals cj, there is a test pair for each cj such that cj does not determine the

Boolean value of f, cj is 0 and 1, all other literals ci remain constant and f is 0 for both

elements of the test pair. There is also a test pair for each cj such that cj does not

determine the Boolean value of f, cj is 0 and 1, all other literals ci remain constant and f is

1 for both elements of the test pair. Consider f = ab + cd. Literal a does not determine f

when b=0 or when c=1 and d=1. Thus, RICC tests for a could be 1000 and 0000 since the

values of b, c and d need to remain constant. Likewise, RICC tests for b could be 0100

and 0000. Literal c does not determine f when d=0 or when a=1 and b=1. Thus, RICC

tests for c could be 0010 and 0000 since the values of a, b and d need to remain constant.

Likewise, RICC tests for d could be 0001 and 0000. A test set is {1000, 0100, 0001,

0001, 0000}.

21

General Inactive Clause Coverage (GICC) [2]: Given a Boolean function, f, composed

of literals cj, there is a test pair for each cj such that cj does not determine the Boolean

value of f, cj is 0 and 1 and f is 0 for both elements of the test pair. There is also a test pair

for each cj such that cj does not determine the Boolean value of f, cj is 0 and 1 and f is 1

for both elements of the test pair. The requirements for GICC and ICC are the same.

Every RICC test set is a GICC test set.

Syntactic Logic Coverage Criteria

Syntactic criteria require a predicate to be in a particular format. For all of the

syntactic criteria below, the format is assumed to be minimal DNF. Also, syntactic

criteria treat literals that repeat in different terms as distinct.

Unique True Point Coverage (UTPC) [2]: Given minimal DNF Boolean functions, f

and f , terms pi in f and terms pk in f , there is a test for a UTP for each pi in f and pk in f .

Consider f = ab + cd. 1100 is a UTP for term ab and 0011 is a UTP for term cd. f =

~a~c + ~a~d + ~b~c + ~b~d. 0101 is a UTP for term ~a~c, 0110 is a UTP for term

~a~d, 1001 is a UTP for term ~b~c and 1010 is a UTP for term ~b~d.

Multiple Unique True Point (MUTP) [8]: Given a minimal DNF predicate, form tests

for a UTP for each term such that all literals not in the term attain values 1 and 0.

Consider f = ab + cd. A UTP for the first term must have a=1, b=1. Tests for c and d to

each equal 0 and 1 are 1101 and 1110. A UTP for the second term must have c=1 and

d=1. Tests for a and b to each equal 0 and 1 are 0111 and 1011. A test set is {1101, 1110,

0111, 1011}.

22

Multiple Near False Point (MNFP) [8]: Given a minimal DNF predicate, form tests for

an NFP of each literal such that all literals not in the literal’s term attain values 1 and 0.

Consider f = ab + cd. NFPs for a and b so that c and d each equal 0 and 1 are 0101, 0110,

1001, and 1010. NFPs for c and d so that a and b each equal 0 and 1 are 0101, 1001,

0110, and 1010. A test set is {0101, 0110, 1001, 1010}.

Corresponding Unique True Point Near False Point (CUTPNFP) [8]: Given a

minimal DNF predicate, for each literal find a UTP and NFP such that only the literal

changes value (all other literals must be fixed). Consider f = ab + cd. A UTP for the first

term must have a=1, b=1. If c=0 and d=1, tests for the literals in ab are 1101, 0101, and

1001. A UTP for the second term must have c=1, d = 1. If a=1 and b = 0, tests for the

literals in cd are 1011, 1001, and 1010. A test set is {1101, 0101, 1001, 1011, 1010}.

When a predicate is in minimal DNF, CUTPNFP is equivalent to Strong Unique-Cause

MCDC. When a minimal DNF predicate is a Singular Boolean Expression (meaning each

literal occurs only once), CUTPNFP is equivalent to RACC (and hence Weak Unique-

Cause MCDC).

Partial-Corresponding Unique True Point Near False Point (PCUTPNFP) [22]:

Given a minimal DNF predicate, for each literal find a UTP and NFP such that the literal

changes value and the only literals that must be fixed are literals that must be fixed in a

UTP for the term of interest. This criterion is more flexible than CUTPNFP and is

subsumed by it (any CUTPNFP test set is a PCUTPNFP test set). Consider f = ab + cd.

For term ab, a MUTP test set is {1101, 1110}. To satisfy CUTPNFP for literal a in term

ab, a corresponding NFP of 0101 or 0110 must be chosen. However, PCUTPNFP permits

23

0100 to be chosen as the NFP. 0100 differs from each UTP in either a and c or a and d.

Thus, 0100 is not a corresponding NFP but it can still be chosen to satisfy PCUTPNFP

because literals c and d can be 0 or 1 in a UTP for term ab. While PCUTPNFP does not

offer test set size savings over CUTPNFP for the example of ab + cd, it can for other

examples because it allows greater flexibility in choosing NFPs so that they can overlap

for literals in different terms.

MUTP/MNFP/CUTPNFP (MUMCUT) [8]: Given a minimal DNF predicate, satisfy

the MUTP, MNFP and CUTPNFP criteria. Consider f = ab + cd. 1101 and 1110 are

UTPs for ab. 0101 and 0110 are NFPs for a that differ from a UTP for ab only in the

value a. 1001 and 1010 are NFPs for b that differ from a UTP for ab only in the value of

b. 0111 and 1011 are UTPs for cd. 0101 and 1001 are NFPs for c that differ from a UTP

of cd only in the value of c. 0110 and 1010 are NFPs for d that differ from a UTP for cd

only in the value of d. In the NFPs above each literal not in the term of interest attains 1

and 0 so the MNFP criterion is satisfied. A test set is {1101, 1110, 0101, 0110, 1001,

1010, 0111, 1011}.

Multiple Unique True Point / Near False Point (MUTP/NFP) [24]: Given a minimal

DNF predicate, satisfy the MUTP criterion for each term and select an NFP for each

literal. The NFP chosen for a given literal does not need to differ from a selected UTP

only in the value of the given literal. When the MUTP criterion is feasible or when the

predicate is a singular Boolean expression, MUTP/NFP tests guarantee the detection of

all faults in Lau and Yu’s fault hierarchy and do so with a potentially smaller test set size

than required by the MUMCUT criterion. In such a case, the CUTPNFP criterion will

24

also be feasible so the NFPs chosen could be chosen to satisfy the CUTPNFP criterion,

but this is not necessary. The test size savings also come from not having to generate

MNFP tests. Consider f = ab + cd. 1101 and 1110 are MUTP tests for term ab. 0111 and

1011 are MUTP tests for term cd. AN NFP of 0101 (for a and c) and an NFP of 1010 (for

b and d) completes a MUTP/NFP test set.

MAX-A [46]: Every point from the set of UTPs (for each term) is selected and every

point from each set of NFPs (for each literal) is selected.

MAX-B [46]: Every point from the set of UTPs (for each term) is selected and every

point from each set of NFPs (for each literal) is selected. In addition, log (| ()|)2 OTP S (the

size of the set of OTPs) and log (| ()|)2 RFP S (the size of the set of RFPs) are also selected.

MAX-A and MAX-B will only be considered briefly during the comparison of

subsumption of tests since they are an excessive extension of the other minimal DNF

logic coverage criteria created by Chen and Lau [7].

Minimal DNF Logic Faults

One method for evaluating tests is to determine which faults in Table 2 a test set

is guaranteed to detect. These faults are important because based on the competent

programmer hypothesis [11] (which states that competent programmers write programs

that differ from a correct version by a few simple faults), these faults are likely to occur.

Table 2 Minimal DNF Faults [30]

Fault Description

Expression Negation

Fault (ENF)

Predicate implemented as its negation: ab + c implemented

as ~(ab + c).

25

Fault Description

Term Negation Fault

(TNF)

A term is negated: ab + c implemented as ~(ab) + c.

Operator Reference Fault

+ (ORF+)

Replacing OR with AND: a + b implemented as ab.

Operator Reference Fault

. (ORF.)

Replacing AND with OR: ab implemented as a + b.

Literal Negation Fault

(LNF)

A literal is negated: ab implemented as a~b.

Literal Reference Fault

(LRF)

A literal is replaced by a literal or the negation of a literal

not in the term: ab + cd implemented as cb + cd or as ~cb

+ cd.

Term Omission Fault

(TOF)

A term is omitted: ab + cd implemented as ab.

Literal Omission Fault

(LOF)

A literal is omitted: ab implemented as a.

Literal Insertion Fault

(LIF)

A literal not in a term is inserted as itself or as its negation:

ab + cd implemented as abc + cd or as ab~c + cd.

Chen, Lau and Yu [8] established circumstances under which each fault type will

be detected. These conditions are highlighted in Table 3. In this table, the TNF was added

as a new fault type and MUTP/NFP was added as a new logic coverage criterion by

Kaminski, Williams and Ammann [24].

Table 3 Relation Between Faults and Criteria [8, 24]

Fault Test Needed to Catch Fault
Criteria guaranteed to detect fault if

satisfied

Expression

Negation

Fault

(ENF)

Any point in will detect this fault. Any criterion discussed herein.

Term

Negation

Fault

If a term pi in S is implemented as its

negation, then any UTP Si () or any false point
Any criterion discussed herein.

26

Fault Test Needed to Catch Fault
Criteria guaranteed to detect fault if

satisfied

(TNF) (and thus any NFP S
i j,

()) will detect the fault.

Literal

Negation

Fault

(LNF)

If the literal x i
j in pi in S is implemented as

its negation, then any UTP Si () or

NFP S
i j,

() will reveal the fault.

UTPC, MUTP, MNFP, CUTPNFP,

PCUTPNFP, MUMCUT, MUTP/NFP,

MAX-A, MAX-B

Term

Omission

Fault

(TOF)

If the term pi in S is omitted, any

UTP Si () will detect the fault.

UTPC, MUTP, CUTPNFP, PCUTPNFP

MUMCUT, MUTP/NFP, MAX-A,

MAX-B

Operator

Reference

Fault

(ORF)

If OR is replaced by AND (ORF+) between

terms pi and pi+1 in S, UTP Si () or

UTP Si+1() will detect the fault. If AND is

replaced by OR (ORF.) between literals

x i
j and x i

j+1 in S, any NFP Si () will detect

the fault. Also any false point such that either

of the two newly created terms evaluates to

true will detect the fault.

For OR replaced by AND: UTPC,

MUTP, CUTPNFP, PCUTPNFP,

MUMCUT, MUTP/NFP, MAX-A,

MAX-B

For AND replaced by OR: MNFP,

CUTPNFP, PCUTPNFP, MUMCUT,

MUTP/NFP, MAX-A, MAX-B

Literal

Omission

Fault

(LOF)

If the literal x i
j in pi in S is omitted from the

term, any NFP S
i j,

() will detect the fault.

MNFP, CUTPNFP, PCUTPNFP,

MUMCUT, MUTP/NFP, MAX-A,

MAX-B

Literal

Insertion

Fault

(LIF)

If some literal in S that is not in pi is

implemented in pi or is implemented as its

negation in pi , then any set of

UTP Si () where all other literals not in

pi attain the values 0 and 1 will detect the

fault. If such a set is infeasible, the LIF results

in an equivalent fault.

MUTP, MUMCUT, MUTP/NFP, MAX-

A, MAX-B

Literal

Reference

Fault

(LRF)

If the literal x i
j in pi in S is implemented as

some other literal not in pi or the negation of

some other literal not in pi , then any of the

following will detect the fault: any set of

UTP Si () where all other literals not in

pi attain the values 0 and 1; any set of

NFP S
i j,

() where all other literals not in

pi attain the values 0 and 1; a pairing of

UTP Si () and NFP S
i j,

() that differs only in

the value of literal x i
j . If a pairing of

UTP Si () and NFP S
i j,

() that differs only in

the value of literal x i
j is infeasible, the LRF

results in an equivalent fault.

MUTP (when feasible), MNFP (when

feasible), CUTPNFP (when feasible),

MUMCUT, MUTP/NFP (when feasible

or when f is a singular Boolean

expression when expressed in minimal

DNF), MAX-A, MAX-B

27

The fault hierarchy introduced by Lau and Yu [30] includes the faults in Table 3

and is shown in Figure 2. In this hierarchy, an arrow from a source fault to a destination

fault indicates that if a test detects a fault belonging to the source fault class, it will also

detect a corresponding fault that belongs to the destination fault class. More specifically,

if a test set that satisfies criterion X is guaranteed to detect fault A, where fault A points

to fault B, then any test set that satisfies criterion X is guaranteed to detect fault B. The

three fault types in the left column in the figure can only be detected by UTPs, the three

fault types in the right column in the figure can only be detected by NFPs, and the four

fault types in the middle column can all be detected either by UTPs or NFPs. This agrees

with the “Test Needed to Catch Fault” column in Table 3. This dissertation extends the

fault hierarchy to account for feasibility in Figure 6 in section 4.3 and further extends the

fault hierarchy to include faults from several mutation operators in Figure 9 in section

7.1.

Figure 2 Lau and Yu’s Fault Hierarchy [30]

 LOF

ORF.

 LRF

 LNF

 TNF

 ENF

 LIF

TOF

ORF+

28

Subsumption

Subsumption is one method for comparing coverage criteria. If any test set that

satisfies criterion X also satisfies criterion Y, then X subsumes Y. Although a test set that

satisfies criterion X will satisfy criterion Y, a test set that satisfies criterion Y may have

tests that are not in a test set that satisfies criterion X. Consequently, tests that satisfy

criterion Y may catch faults that tests that satisfy criterion X miss. Figure 3 summarizes

the subsumption relations among criteria. An arrow indicates that the source criterion

subsumes the destination criterion. RICC and GICC are in their own hierarchy because

the subsumption relations between them and the other criteria are not known.

Figure 3 Subsumption Hierarchy [24]

MAX-B

MAX-A

MUMCUT

RICC

GICC MNFP

CUTPNFP

RACC

CACC

GACC

MUTP

PCUTPNFP

UTPC

MUTP/NFP

29

Summary

Table 4 gives a summary of test type, fault detection, subsumption relation and test

set size for each of the criteria presented.

Table 4 Logic Coverage Criteria Summary [24]

Test Name
Test

Type

Guaranteed

Faults

Detected

Subsumes Subsumed by Minimum Test Size
Maximum Test

Size

Restricted

Active Clause

Coverage

(RACC)

Semantic ENF, TNF
CACC,

GACC

CUTPNFP,

MUMCUT,

MAX-A, MAX-

B

n+1, where n is the

number of unique

literals in function f.

2n, where n is the

number of unique

literals in function

f.

Correlated

Active Clause

Coverage

(CACC)

Semantic ENF, TNF GACC

RACC,

MUTP/NFP,

PCUTPNFP,

CUTPNFP,

MUMCUT,

MAX-A, MAX-

B

RUTW(2*Sqrt(n)),

where RUTW =

“Round up to the

nearest whole

number” and n is the

number of unique

literals

2n, where n is the

number of unique

literals in function

f.

General Active

Clause

Coverage

(GACC)

Semantic ENF, TNF -

CACC, RACC,

MUTP/NFP,

CUTPNFP,

MUMCUT,

MAX-A, MAX-

B

2, if Boolean

Derivative evaluates

to 1 for all literals,

up to

RUTW(2*Sqrt(n)),

since

CACC=GACC for

many Boolean

functions, where n is

the number of

unique literals in

function f.

2n, where n is the

number of unique

literals in function

f.

Restricted

Inactive Clause

Coverage

(RICC)

Semantic ENF, TNF GICC -

2n, where n is the

number of unique

literals in function f.

(true when all RICC

tests are feasible)

4n, where n is the

number of unique

literals in function

f.

General

Inactive Clause

Coverage

(GICC)

Semantic ENF, TNF - RICC

2n, where n is the

number of unique

literals in function f.

(true when all GICC

tests are feasible)

4n, where n is the

number of unique

literals in function

f.

Unique True

Point Coverage

(UTPC)

Syntactic

ENF, TNF,

LNF, TOF,

ORF (when

OR is replaced

with AND)

-

MUMCUT,

MAX-A, MAX-

B

n+1 where n is the

number of literals in

Boolean function f.

m + ni
i

k

=
∏

1

,

where m is the

number of terms

in Boolean

function f and ni

is the number of

literals in term i.

Multiple

Unique True

Point (MUTP)*

Syntactic

ENF, TNF,

LNF, TOF,

ORF (when

OR is replaced

-

MUTP/NFP,

MUMCUT,

MAX-A, MAX-

B

m to 2m , where m is

the number of terms

in Boolean function

f.

2m(n-1), where m

is the number of

terms in function f

and n is the

30

Test Name
Test

Type

Guaranteed

Faults

Detected

Subsumes Subsumed by Minimum Test Size
Maximum Test

Size

with AND),

LIF

number of literals

in function f.

Multiple Near

False Point

(MNFP)*

Syntactic

ENF, TNF,

LNF, ORF

(when AND is

replaced with

OR), LOF

-

MUMCUT,

MAX-A, MAX-

B

1 (when

infeasibilities arise);

Uncertain otherwise.

mn
2

2
, where m

is the number of

terms in function f

and n is the

number of literals

in function f.

Corresponding

Unique True

Point Next

False Point

(CUTPNFP)*

Syntactic

ENF, TNF,

LNF, TOF,

ORF, LOF

RACC,

CACC,

GACC,

PCUTPNFP

MUMCUT,

MAX-A, MAX-

B

ni
i

m

+

=
∑ 1

1

, where ni

is the number of

literals in term i and

m the number of

terms in f.

2mn, where m is

the number of

terms in function f

and n is the

number of literals

in function f.

Partial

Corresponding

Unique True

Point Near

False Point

(PCUTPNFP)**

Syntactic

ENF, TNF,

LNF, TOF,

ORF., ORF+,

LOF

CACC,

GACC

CUTPNFP,

MUMCUT,

MAX-A, MAX-

B

ni
i

m

+

=
∑ 1

1

 where ni is

number of literals in

term i and m is

number of terms

Uncertain, but

less than 2mn

where m is the

number of terms

and n is the

number of literals

MUTP / MNFP

/ CUTPNFP

Strategy

(MUMCUT)

Syntactic

ENF, TNF,

LNF, TOF,

ORF, LOF,

LIF, LRF

RACC,

CACC,

GACC,

MUTP,

MUTP/NFP,

MNFP,

UTPC,

CUTPNFP,

PCUTPNFP

MAX-A, MAX-

B

When infeasibilities

arise – m to 2m + 1

(where m is the

number of terms in

Boolean function f).

Uncertain otherwise.

2m(n-1) +
mn

2

2

, where m is the

number of terms

in function f and n

is the number of

literals in function

f.

Multiple

Unique True

Point / Near

False Pont

(MUTP / NFP)

Syntactic

ENF, TNF,

LNF, TOF,

ORF, LOF,

LIF

CACC,

GACC,

MUTP

MUMCUT,

MAX-A, MAX-

B

m + 1 to 2m + 1

(where m is the

number of terms in

Boolean function f).

2m(n-1) + n,

where m is the

number of terms

in function f and n

is the number of

literals in function

f.

* The MUTP, MNFP and CUTPNFP criterion are each guaranteed to detect the LRF when feasible.

** The PCUTPNFP criterion, when feasible, is guaranteed to detect any LRF that the MUTP criterion does

not detect.

*** The MUTP/ NFP criterion is guaranteed to detect the LRF when feasible or when f is a singular

Boolean expression when expressed in minimal DNF.

2.3 Mutation Testing Related Work

This section describes related work in mutation testing. First, a discussion of strong

vs. weak mutation is presented. Next, related work on semantic vs. syntactic fault size is

discussed. This is followed by a summary of related work on detecting equivalent

31

mutants. Next, the internal variable problem is introduced and prior research on higher

order mutants is presented. The section concludes with an examination of related work on

mutation testing for databases and queries.

Mutation testing exists in two forms: weak and strong. In strong mutation testing, a

mutant is considered killed if and only if the output of the mutant and original program

differ. In weak mutation testing, this is relaxed so that a mutant is considered killed if and

only if the program state of the mutant and original program differ after execution of the

mutated statement. This research focuses on weak mutation testing. For a logic mutant to

be weakly killed, the mutated predicate must be reached and evaluate to a different truth

value in the mutant than in the original program. If a mutant is weakly killed, the mutant

and original program can have identical outputs. In practice, Offutt and Lee [35] found

that weak mutation testing is almost as effective as strong mutation testing, with major

computational savings. Thus, most mutants that are weakly killed are strongly killed.

For this research, classifying a logic mutant as not equivalent means it is not

equivalent based on weak mutation testing, which almost always means it is not

equivalent based on strong mutation testing. When referring to killing logic mutants, the

author implies weakly killing the mutants. This is because logic coverage criteria are

based on weakly killing mutants in that these criteria examine a particular predicate in

isolation. When referring to killing mutants in general, the author implies strongly killing

mutants. Thus, classifying a logic mutant as equivalent means that it is equivalent based

on weak mutation testing, which means that it will always be equivalent based on strong

mutation testing. However, classifying a general mutant as equivalent means it is

32

equivalent based on strong mutation testing, which almost always means it is equivalent

based on weak mutation testing.

Offutt and Hayes [34] introduced the concepts of semantic and syntactic fault

models. A syntactic characterization involves the actual code changes that differentiate a

faulty and correct program. A semantic characterization views a faulty program as

producing incorrect output for one or more inputs. Syntactic fault size is defined as the

fewest number of tokens that need to change to produce a correct program. Semantic

fault size is defined as the relative size of the input domain for which the output is

incorrect. Offutt and Hayes argue that mutants with semantically small faults are

desirable because testers must select one of the few inputs that kill them. They also argue

that mutants with syntactically small but semantically large faults add little value because

most inputs kill them. Offutt, Rothermel and Zapf [37] examined using selective mutation

operators to reduce mutant set size. Selective mutation uses operators that produce fewer

mutants by experimentally selecting operators that overlap with others. They found that

selective mutation provided almost the same coverage as non-selective mutation with

much fewer mutants.

Prior methods for automatically detecting equivalent mutants include compiler

optimization techniques introduced by Offutt and Craft [33] and constraint-based

techniques introduced by Offutt and Pan [36]. Offutt and Pan [36] showed that using

constraints was superior to compiler optimization. The best technique for detecting

equivalent mutants is program slicing as introduced by Hierons, Harman and Danicic

[15]. Program slicing uses decomposition to extract from program statements information

33

relevant to a particular computation. A slice helps determine what program statements

affect the computation of a variable, which can be used to automatically detect some

equivalent mutants. Detecting equivalent mutants is formally undecidable, but exclusive-

OR algorithms can detect all equivalent logic mutants (assuming reachability,

propagation and a complete Boolean space). (Complete Boolean space means that it is

possible to assign any combination of values to the literals in a predicate. In other words,

all points are feasible.) Kaminski et al. [23] developed a technique to detect equivalent

logic mutants when a complete Boolean space does not exist.

Finding inputs to kill non-equivalent mutants is formally undecidable and is beyond

the scope of this research. However, this problem does become more complex for

selective logic mutation because it may not be possible to find an input to kill a mutant

that if it could be killed, would guarantee killing other mutants. To address this

complexity, Kaminski et al. [23] developed a mutation tool that can aid the tester in

finding inputs to kill logic mutants by informing the tester what the values of the

variables in the mutated predicate need to be in order to weakly kill the mutant.

Polo, Piattini and Garcia-Rodriguez [39] examined decreasing the cost of mutation

testing with second-order mutants. They proposed that the number of mutants can be

reduced by half by means of combining the original set of mutants to obtain a new set of

mutants, each one with two faults. Jia and Harman [17] show that certain higher order

mutants are subsuming in that any test input that kills a subsuming higher order mutant

guarantees killing each single order mutant that the higher order mutant is composed of.

They describe search based algorithms to identify subsuming higher order mutants and

34

eliminate non-subsuming higher order mutants, which reduces the number of mutants

generated. However, neither Polo et al. nor Jia and Harman focus on logic mutants.

Many researchers have used constraint solvers to populate a test database for the

purpose of testing SQL database queries. The most relevant research using constraint

solvers is based on work by Emmi et al. [12] and Willmor and Embury [47]. However,

these approaches do not focus on an explicit adequacy criterion or fault hierarchy like the

TRF-TIF approach. Thus, these approaches do not guarantee detection of a specified set

of faults. Kapfhammer and Soffa [25] apply data-flow criteria but at a higher level than

that for individual clauses in a query. Chays et al. [4, 5] proposed the AGENDA tool,

which focuses on testing at the transaction level, but this is at a higher level than that for

individual clauses in a query and individual records in a test database. Suarez-Cabal and

Tuya [40] examined multiple condition coverage (MCC) for SELECTS and JOINS in

queries by creating a set of coverage trees. Their research focused on the level of

individual records. However, the limitation is that the coverage trees grow exponentially.

Chan and Cheung [3] transformed a SQL query into a procedural language to which

various criteria can be applied. However, this approach shares some of the same

drawbacks mentioned above as well as problems dealing with preserving query semantics

during translation. To overcome these limitations, Tuya et al. [42] developed an approach

called Full Predicate Coverage (SQLFpc), which is based on Masking MCDC or CACC.

Their approach avoids the problem of exponential growth.

Halfond and Orso [13] presented an approach known as “command form coverage”,

which focuses on how the String object containing the actual SQL query in a program is

35

constructed. In other words, they examine how different variations of a query can be

formed dynamically at a single point in the source code. Coverage is measured as the

ratio of different queries actually formed by the inputs to the program to the total number

of different queries that are possible. This approach is complementary to Tuya’s approach

(and the TRF-TIF approach) because the “command form coverage” approach does not

consider logic coverage of the queries themselves.

2.4 Mutation Testing Background Material

In this dissertation, TRF-TIF logic mutation is compared with three other mutation

tools. These are typical logic mutation, muJava and SQLMutation. Typical logic mutation

refers to a hypothetical tool including a common set of mutation operators, most of which

are described by Ammann and Offutt [2]. A subset of these mutation operators are in a

mutation testing tool called muJava developed by Ma et al. [31]. muJava generates both

logic and non-logic mutants. It is used as a mutation tool for software and also as a fault

seeder to introduce faults into software. Tuya et al. [44] have built a query mutation tool

known as the SQLMutation tool. It allows mutants to be generated interactively from a

Web browser. The mutation operators in this tool cover a wide range of SQL syntax and

semantics as described by Tuya et al. [42]. SQLFpc is based on masking MCDC

(CACC). It can be used to seed faults into queries.

36

3 Thesis Contributions

 This research evaluates a new syntactic logic coverage criterion called Minimal-

MUMCUT and a new logic mutation approach called TRF-TIF logic mutation. The high

level hypothesis that is evaluated has two parts.

HIGH LEVEL HYPOTHESIS PART I:

The Minimal-MUMCUT logic coverage criterion provides a way to reduce test set size

and/or improve logic fault detection when compared to current logic coverage criteria.

HIGH LEVEL HYPOTHESIS PART II:

The TRF-TIF logic mutation approach provides a way to reduce mutant set size (and

equivalent mutant set size) and/or improve logic fault detection when compared to

current mutation approaches.

The evaluation of the high level hypothesis leads to several contributions that relate

to Figure 1 in section 1.4. Each contribution is labeled with a number and a letter. The

number indicates which logic coverage criterion Minimal-MUMCUT is being compared

with or which mutation approach TRF-TIF logic mutation is being compared with. The

letter indicates the feature that is being compared.

37

The numbering is as follows:

1 – Comparison of Minimal-MUMCUT [22] with MUMCUT [50]

2 – Comparison of Minimal-MUMCUT with ACC/ICC [2]

3 - Comparison of TRF-TIF logic mutation [18] with Typical logic mutation [2]

4 - Comparison of TRF-TIF logic mutation with muJava [31]

5 - Comparison of TRF-TIF logic mutation with SQLMutation [44]

The lettering is as follows:

a – Test set size or mutant set size

b – Equivalent mutant set size

c – Single Minimal DNF logic fault detection (innermost fault oval in Figure 1)

d – Double Minimal DNF logic fault detection (innermost fault oval in Figure 1)

e – Single logic fault detection regardless of format (center fault oval in Figure 1)

f – General fault detection (outermost fault oval in Figure 1)

Letter “f” is a special case in that no comparison between criteria or mutation

approaches above is made. Instead letter “f” indicates how well tests that weakly kill all

TRF-TIF mutants (and hence satisfy the Minimal-MUMCUT criterion) detect faults in

general (both non-logic faults and logic faults without regards to predicate format). Since

muJava is used to seed the general software faults, letter “f” is paired with number 4.

Since SQLMutation is used to seed the general query faults, letter “f” is also paired with

number 5.

38

Some pairings between number and letter are not applicable. MUMCUT and

ACC/ICC are criteria for which equivalent mutant set size does not apply and thus there

is no contribution 1b or 2b. Of MUMCUT, ACC/ICC, typical logic mutation, muJava and

SQLMutation, only MUMCUT behaves differently depending on predicate format so

there is no contribution 2e, 3e, 4e, or 5e. Table 5 displays a summary of the contributions.

Table 5 Contribution Summary

 Test /

Mutant

Set Size

Equiv

Mutant

Set Size

Single

DNF

Fault

Detection

Double

DNF Fault

Detection

General

Logic

Fault

Detection

General

Fault

Detection

MUMCUT

(Chapter 5)
1a [22] N/A 1c [19] 1d [20] 1e [22] N/A

ACC/ICC

(Chapter 6)
2a [21] N/A 2c [24] 2d [21] N/A N/A

Typical logic

mutation

(Chapter 8)

3a [18] 3b [18] 3c [18] 3d [18] N/A N/A

muJava

(Chapter 9)
4a [23] 4b [23] 4c [23] 4d [23] N/A 4f [23]

SQLMutation

(Chapter 10)
5a [23] 5b [23] 5c [23] 5d [23] N/A 5f [23]

The following subsections describe the contributions listed in Table 5 beginning with

the top row and working downwards. That is, section 3.1 corresponds to the first row in

Table 5, section 3.2 corresponds to the second row in Table 5 and so on. Each subsection

gives the results of the contribution and how the contribution was obtained (the

theoretical or empirical method used). In the case of empirical contributions, the results

are given for the particular empirical subjects chosen. A general discussion of threats to

validity appears at the end of this chapter. More detailed discussions on the empirical

39

studies, including more specific threats to validity where appropriate, appear in chapters

5, 6 and 8-10.

The contributions focus on reducing test set and mutant set size as well as increasing

fault detection. In applications where testing is extremely expensive, reducing test set size

or mutant set size by one can be valuable. In applications where testing is inexpensive, a

large reduction in test set size or mutant set size may make little difference. In safety-

critical applications, missing detection of even a single fault can have drastic

consequences. Conversely, in other types of applications, missing detection of many

faults may have little impact on the user. To provide a uniform basis of evaluation, four

levels of reduction in test/mutant set size (Table 6) and four levels of reduction in fault

detection capability (Table 7) are used. The results are evaluated in the context of these

levels. The goal is to decrease test set size or mutant set size and to increase fault

detection capability.

Table 6 Terms for Reduction in Test Set Size or Mutant Set Size

Term Ratio of Test Set Size or Mutant Set Size to Size of Interest

Unsubstantial (75%, 100%)

Substantial (50%, 75%]

Significant (10%, 50%]

Very Significant (0%, 10%]

The term unsubstantial will be used when test set size or mutant set size is reduced

to between 75% (exclusive) and 100% (exclusive) of the size of interest, the term

substantial will be used when test set size or mutant set size is reduced to between 50%

40

(exclusive) and 75% (inclusive) of the size of interest, the term significant will be used

when test set size or mutant set size is reduced to between 10% (exclusive) and 50%

(inclusive) of the size of interest and the term very significant will be used when test set

size or mutant set size is reduced to between 0% (exclusive) and 10% (inclusive) of the

size of interest.

Table 7 Terms for Reduction in Fault Detection Capability

Term Ratio of Number of Faults Detected to Number of Faults of Interest

Small Minority [0%, 25%)

Minority [25%, 50%)

Majority [50%, 90%)

Vast Majority [90%, 100%)

The term small minority will be used when fault detection capability is between 0%

(inclusive) and 25% (exclusive) of all faults of interest. The term minority will be used

when fault detection capability is between 25% (inclusive) and 50% (exclusive) of all

faults of interest, the term majority will be used when fault detection capability is

between 50% (inclusive) and 90% (exclusive) of all faults of interest and the term vast

majority will be used when fault detection capability is between 90% (inclusive) and

100% (exclusive) of all faults of interest.

41

3.1 Contributions Comparing Minimal-MUMCUT with MUMCUT

Contribution 1a Part I:

For a sample of minimal DNF predicates with 5 or more unique literals, Minimal-

MUMCUT test set size is substantially less than MUMCUT test set size.

Empirical result: Minimal-MUMCUT test set size was 64% of MUMCUT test set size.

Contribution 1a Part II:

For a sample of minimal DNF predicates with 5 or more unique literals, Union Minimal-

MUMCUT test set size is very significantly less than MUMCUT extension test set size.

Empirical result: Union Minimal-MUMCUT test set size was 3% of MUMCUT

extension test set size.

Contribution 1c:

For minimal DNF predicates, Minimal-MUMCUT tests and MUMCUT tests have the

same guaranteed single logic fault detection (9 of 9 fault types in Lau and Yu’s fault

hierarchy).

Contribution 1d Part I:

For minimal DNF predicates, Minimal-MUMCUT and MUMCUT tests have the same

guaranteed double logic fault detection (84 of 92 double fault types in Lau and Yu’s fault

hierarchy).

42

Contribution 1d Part II:

For a sample of minimal DNF predicates with 5 or more unique literals, Minimal-

MUMCUT tests and MUMCUT tests actually detect the vast majority of the double logic

faults that are not guaranteed to be detected.

Empirical result: Minimal-MUMCUT tests and MUMCUT tests detected 99% of the

double logic faults that are not guaranteed to be detected.

Contribution 1e Part I:

For the majority of predicates with at least 3 unique literals in a sample from avionics

software, fault detection provided by Union Minimal-MUMCUT tests and MUMCUT

tests is not compromised due to predicate format because the predicates are in minimal

DNF, minimal CNF, or both.

Empirical result: For 85% of the predicates, fault detection was not compromised for

either Union Minimal-MUMCUT tests or MUMCUT tests.

Contribution 1e Part II:

Union Minimal-MUMCUT tests and MUMCUT tests detect the vast majority of logic

faults for a sample of predicates with 5 or more unique literals when the minimal

DNF/CNF assumption does not hold.

Empirical result: Union Minimal-MUMCUT tests and MUMCUT tests detected 98% of

the logic faults.

43

These contributions establish that the Minimal-MUMCUT criterion is more

efficient than the MUMCUT criterion in that it reduces MUMCUT test set size while

preserving MUMCUT logic fault detection for minimal DNF/CNF predicates. Similarly,

these contributions establish that the Union Minimal-MUMCUT criterion is more

efficient than the MUMCUT extension criterion in that it reduces MUMCUT extension

test set size with minimal impact on logic fault detection for general form predicates.

For contribution 1a Part I, Minimal-MUMCUT and MUMCUT test set size are

compared for 19 predicates in avionics software. For contribution 1a Part II, Union

Minimal-MUMCUT and MUMCUT extension test set size are compared for 10 general

form predicates in avionics software. For contributions 1c and 1d Part I, proofs are given

that Minimal-MUMCUT tests detect the same single and double fault types in Lau and

Yu’s fault hierarchy as MUMCUT tests. For contribution 1d Part II, a proof is given

relating criterion feasibility to the conditions under which double fault types can go

undetected. For any double fault type that is not guaranteed to be detected, an empirical

study is conducted in which all possible double faults that correspond to the double fault

type are seeded into 19 predicates. It is then determined what percentage of these faults

go undetected by Minimal-MUMCUT tests. For contribution 1e Part I, 20,256 predicates

in avionics software are examined to determine the percentage in minimal CNF, minimal

DNF, neither, or both. For contribution 1e Part II, 3570 non-equivalent faults are seeded

into 10 general form predicates and for each fault, it is determined if a Union Minimal-

MUMCUT test set detects it.

44

3.2 Contributions Comparing Minimal-MUMCUT with RACC and RICC

Contribution 2a:

For a sample of minimal DNF predicates with 5 or more unique literals, RACC test set

size is significantly smaller than Minimal-MUMCUT test set size.

Empirical result: RACC test set size was 25% of Minimal-MUMCUT test set size.

Contribution 2c Part I:

For minimal DNF predicates, a test set that satisfies either RACC or RICC guarantees

detection of 2 of the 9 single fault types in Lau and Yu’s fault hierarchy (ENF and TNF).

Contribution 2c Part II:

For a sample of minimal DNF predicates with 5 or more unique literals, RACC tests

detect a minority of the minimal DNF single faults they are not guaranteed to detect.

Empirical result: RACC tests detected 34% of all minimal DNF single faults they are not

guaranteed to detect.

Contribution 2d:

For minimal DNF predicates, a test set that satisfies either RACC or RICC guarantees

detecting 22 of the 92 double fault types in Lau and Yu’s fault hierarchy.

45

These contributions establish that although RACC/RICC test set size is less than

Minimal-MUMCUT test set size, Minimal-MUMCUT tests detect more minimal DNF

logic faults than RACC/RICC tests.

For contribution 2a, RACC test set size and Minimal-MUMCUT test set size are

compared for 19 predicates in avionics software. For contribution 2c Part I, RACC and

RICC tests are created for some small predicates. Then faults are introduced into the

predicates corresponding to the fault types in Lau and Yu’s fault hierarchy and it is

determined which faults are detected by the tests. For contribution 2c Part II, a RACC

test set is created for each of the 19 predicates mentioned above and all of the faults in

Lau and Yu’s fault hierarchy are generated. Then, for each predicate, it is determined

whether or not the tests detect each fault. For contribution 2d, the detection conditions for

all double fault types in Lau and Yu’s fault hierarchy are analyzed in terms of which are

guaranteed to be satisfied by a RACC test set and which are guaranteed to be satisfied by

a RICC test set.

3.3 Contributions Comparing TRF-TIF Logic Mutation with Typical Logic

Mutation

Contribution 3a:

For software containing a sample of minimal DNF predicates with 5 or more unique

literals, TRF-TIF mutant set size is very significantly smaller than typical logic mutant set

size (where typical refers to a set of mutants that would be produced by a set of common

mutation operators, most of which are specified by Ammann and Offutt [2]).

46

Empirical result: 6%.

Contribution 3b:

For software with minimal DNF predicates, a TRF-TIF mutant set contains the same

number as or fewer weakly equivalent mutants than a typical logic mutant set (assuming

any infeasible combinations of values of unique literals are specified).

Contribution 3c Part I:

For software containing minimal DNF predicates, tests weakly killing all TRF-TIF

mutants are guaranteed to detect all 9 single fault types in Lau and Yu’s fault hierarchy

while tests weakly killing all typical logic mutants are guaranteed to detect 7 of the 9

single fault types in Lau and Yu’s fault hierarchy.

Contribution 3c Part II:

For software containing a sample of minimal DNF predicates with 5 or more unique

literals, tests weakly killing all typical logic mutants detect the majority of the single

faults in Kaminski and Ammann’s [18] extension to Lau and Yu’s fault hierarchy (as

opposed to the 100% detection percentage by tests weakly killing all TRF-TIF mutants).

Empirical result: Tests weakly killing all typical logic mutants detected 75% of the single

faults.

47

Contribution 3d Part I:

For software containing minimal DNF predicates, tests that weakly kill all TRF-TIF

mutants and tests that weakly kill all typical logic mutants both are guaranteed to detect

84 of the 92 double fault types in Lau and Yu’s fault hierarchy.

Contribution 3d Part II:

For the vast majority of minimal DNF predicates in software containing a sample of

minimal DNF predicates with 5 or more unique literals, tests that weakly kill all TRF-TIF

mutants will guarantee detection of 91 of the 92 double fault types in Lau and Yu’s fault

hierarchy but tests that weakly kill all typical logic mutants will actually detect only 84 of

the 92 double fault types.

Empirical result: For 100% of the predicates, this was the case.

These contributions establish that using TRF-TIF logic mutation instead of typical

logic mutation reduces mutant set size and equivalent mutant set size while at the same

time guaranteeing more minimal DNF/CNF logic faults are detected. Typical logic

mutation refers to a mutation approach that includes a common set of logic mutation

operators, most of which are specified by Ammann and Offutt [2].

For contribution 3a, TRF-TIF mutant set size and typical logic mutant set size for a

program containing 19 minimal DNF predicates is compared. For contribution 3b, the

mutation operators in TRF-TIF logic mutation and typical logic mutation are analyzed in

terms of producing equivalent faults. It is shown that TRF-TIF logic mutation can

48

automatically detect weakly equivalent logic mutants. For contribution 3c Part I, tests that

kill all typical logic mutants are theoretically analyzed in terms of which fault types they

guarantee detecting in Lau and Yu’s fault hierarchy. For contribution 3c Part II, all faults

in Kaminski and Ammann’s [18] expanded fault hierarchy are seeded into 19 predicates.

It is shown how many faults are detected by a test that weakly kills all TRF-TIF mutants

and by a test that weakly kills all typical logic mutants. For contribution 3d Part I, tests

killing all typical logic mutants are theoretically analyzed in terms of which double fault

types they guarantee detecting in Lau and Yu’s fault hierarchy. For contribution 3d Part

II, it is determined which double faults will be detected by tests weakly killing all TRF-

TIF mutants for a program with 19 predicates. For the same program, it is shown which

double faults are actually detected by tests weakly killing all typical logic mutants.

3.4 Contributions comparing TRF-TIF Logic Mutation with muJava

Contribution 4a Part I:

For a sample of Java programs having a Unique Literals Ratio greater than 0.10, TRF-

TIF mutant set size is significantly less than muJava general mutant set size (the mutant

set size of all muJava mutants).

Empirical result: TRF-TIF mutant set size was 14% of muJava general mutant set size.

49

Contribution 4a Part II:

For a sample of minimal DNF predicates with 5 or more unique literals, TRF-TIF mutant

set size is significantly less than muJava logic mutant set size (the mutant set size of all

muJava logic mutants).

Empirical result: TRF-TIF mutant set size was 25% of muJava logic mutant set size.

Contribution 4b:

For a sample of Java programs having a Unique Literals Ratio greater than 0.10, strongly

equivalent TRF-TIF mutant set size is significantly less than strongly equivalent muJava

mutant set size.

Empirical result: Strongly equivalent TRF-TIF mutant set size was 13% of strongly

equivalent muJava mutant set size.

Contribution 4c:

For software containing minimal DNF predicates, tests weakly killing all muJava mutants

are guaranteed to detect 5 of the 9 single fault types in Lau and Yu’s fault hierarchy.

Contribution 4d:

For software with minimal DNF predicates, tests weakly killing all muJava mutants are

guaranteed to detect fewer double fault types in Lau and Yu’s fault hierarchy than

Minimal-MUMCUT tests.

50

Contribution 4f:

For a sample of Java programs having a Unique Literals Ratio greater than 0.10, tests

weakly killing all TRF-TIF mutants strongly kill the vast majority of strongly non-

equivalent muJava mutants.

Empirical result: Tests weakly killing all TRF-TIF mutants strongly killed 90% of

strongly non-equivalent muJava mutants.

These contributions establish that using TRF-TIF logic mutation instead of muJava

reduces mutant set size and equivalent mutant set size while at the same time

guaranteeing more minimal DNF/CNF logic faults are detected. Also, they establish that

tests that weakly kill all TRF-TIF mutants detect a high percentage of non-logic software

faults.

For contribution 4a Part I, TRF-TIF mutant set size and muJava general mutant set

size are evaluated for 30 small Java programs and 1 larger Open Source Software Java

program. MuJava general mutant set size is the number of all muJava mutants (both logic

and non-logic). For contribution 4a Part II, TRF-TIF mutant set size and muJava logic

mutant set size for 19 minimal DNF predicates are compared. For contribution 4b, the

number of strongly equivalent mutants in the TRF-TIF mutant set and muJava mutant set

are determined manually for each of the small programs. For contributions 4c and 4d,

proofs are given showing what single and double fault types in Lau and Yu’s hierarchy

such a muJava test set is guaranteed to detect. For contribution 4f, tests that weakly kill

all TRF-TIF mutants are created for each program used in contribution 4a Part I. For each

51

small program, it is determined what percentage of the strongly non-equivalent muJava

mutants are strongly killed by the tests. For the larger program, it is determined what

percentage of the muJava mutants are weakly killed by the tests, assuming 10% of the

muJava mutants are weakly equivalent [23].

3.5 Contributions comparing TRF-TIF Logic Mutation with SQLMutation

Contribution 5a:

For a sample of queries having minimal DNF WHERE clauses with 3 or more unique

literals, TRF-TIF mutant set size is very significantly less than SQLMutation mutant set

size.

Empirical result: TRF-TIF mutant set size was 2% of SQLMutation mutant set size.

Contribution 5b:

For queries having minimal DNF WHERE clauses with 3 or more unique literals,

equivalent TRF-TIF mutant set size is very significantly smaller than SQLMutation

mutant set size assuming a complete Boolean space.

Empirical result: TRF-TIF mutant set size was 0% of SQLMutation mutant set size.

Contribution 5c:

For queries having minimal DNF WHERE clauses, tests weakly killing all SQLMutation

mutants are guaranteed to detect 2 of the 9 single fault types in Lau and Yu’s fault

hierarchy.

52

Contribution 5d:

For queries having minimal DNF WHERE clauses, tests weakly killing all SQLMutation

mutants are guaranteed to detect 22 of the 92 double fault types in Lau and Yu’s fault

hierarchy.

Contribution 5f Part I:

For a sample of queries having minimal DNF WHERE clauses with 3 or more unique

literals, tests killing all TRF-TIF mutants kill the vast majority of non-equivalent

SQLMutation mutants.

Empirical result: Tests killing all TRF-TIF mutants killed 90% of non-equivalent

SQLMutation mutants.

Contribution 5f Part II:

For a sample of queries having minimal DNF WHERE clauses with 3 or more unique

literals, tests killing all TRF-TIF mutants kill 10 times as many SQLMutation mutants as

a randomly generated test set of the same size.

Empirical result: Tests killing all TRF-TIF mutants killed 20 times as many

SQLMutation mutants as a test set generated randomly of the same size.

These contributions establish that using TRF-TIF logic mutation instead of

SQLMutation reduces mutant set size and equivalent mutant set size while at the same

time guaranteeing more minimal DNF/CNF logic faults are detected. Also, they establish

53

that tests that weakly kill all TRF-TIF mutants detect a high percentage of non-logic

query faults.

For contribution 5a, TRF-TIF mutant set size and SQLMutation mutant set size are

evaluated for 10 queries from an open source project. Each query has at least 4 unique

literals in its minimal DNF WHERE clause. For contribution 5b, the number of

equivalent mutants in the TRF-TIF mutant set is determined manually and the number of

equivalent mutants in the SQLMutation mutant is estimated (as given by the

SQLMutation tool author). Results of contributions 2c Part I and 2d are used to confirm

contributions 5c and 5d respectively, as SQLMutation is based on CACC. For

contribution 5f Part I, tests that weakly kill all TRF-TIF mutants are created for each

query used in Contribution 5a. For each query, it is determined what percentage of the

non-equivalent SQLMutation mutants are killed by the tests, assuming that 6% to 8% of

the SQLMutation mutants are equivalent [23]. For contribution 5f Part II, a random test

set generated by Tuya et al. [42] is selected for 6 of the 10 queries [42]. For each query, it

is determined what percentage of the SQLMutation mutants are killed by the random test

sets.

3.6 General Threats to Validity

A general threat to validity for all of the empirical studies is that it cannot be

claimed that the predicates, software and queries selected are representative samples from

a population. Also, sample size was fairly small. Thus, formal claims of significance

cannot be made. For example, much of the empirical research regarding the logic

54

coverage criteria comparisons was performed on a sample of 19 predicates extracted from

avionics traffic collision avoidance software. For software mutation testing, empirical

results were based primarily on a sample of utility methods extracted from the Java API.

For query mutation testing, empirical results were based on a sample of 10 queries

extracted from an Open Source project. A positive aspect is that if future research

performed by others using different predicates, software and queries obtains similar

results, the conclusions are strengthened.

The rest of the dissertation is organized as follows. Chapter 4 provides an overview

of the Minimal-MUMCUT criterion. Chapter 5 presents results comparing the Minimal-

MUMCUT criterion with the MUMCUT criterion. Chapter 5 corresponds to row 1 in

Table 5 and each section in Chapter 5 corresponds to a column in Table 5. Chapter 6

presents results comparing the Minimal-MUMCUT criterion with the RACC and RICC

criteria. Chapter 6 corresponds to row 2 in Table 5 and each section in Chapter 6

corresponds to a column in Table 5. Chapter 7 provides an overview of TRF-TIF logic

mutation. Chapter 8 presents results comparing TRF-TIF logic mutation with typical

logic mutation. Chapter 8 corresponds to row 3 in Table 5 and each section in Chapter 8

corresponds to a column in Table 5. Chapter 9 presents results comparing TRF-TIF logic

mutation with muJava. Chapter 9 corresponds to row 4 in Table 5 and each section in

Chapter 9 corresponds to a column in Table 5. Chapter 10 presents results comparing

TRF-TIF logic mutation with SQLMutation. Chapter 10 corresponds to row 5 in Table 5

and each section in Chapter 10 corresponds to a column in Table 5. Chapter 11 discusses

conclusions.

55

4 The Minimal-MUMCUT Criterion

Logic coverage criteria exist that require small test set size, but they do not guarantee

detection of common logic faults. Conversely, logic coverage criteria exist that guarantee

detection of common logic faults, but these criteria require a large test set size. Part of the

reason for this is that current logic coverage criteria (such as the MUMCUT criterion) do

not handle infeasibility efficiently, which in turn results in unnecessary tests in that all

faults in Lau and Yu’s fault hierarchy can still be detected even when one or more tests

are removed. The Minimal-MUMCUT criterion improves on the MUMCUT criterion by

using feasibility analysis to remove tests yet still guarantee fault detection.

The term Minimal in Minimal-MUMCUT is used to refer to the fact that if any test

in a Minimal-MUMCUT test set is removed, fault detection is sacrificed for the fault

types in Lau and Yu’s fault hierarchy. This is different than the term minimized which

implies that the test set size is as small as possible. Thus, for the Minimal-MUMCUT test

sets created, it may be possible to construct a smaller test set that satisfies Minimal-

MUMCUT. However, it is guaranteed that if even a single test is removed from a

Minimal-MUMCUT test set, fault detection will be sacrificed for the fault types in Lau

and Yu’s fault hierarchy.

The rest of this chapter is organized as follows. The remainder of section 4.1

describes the algorithm used to generate a Minimal-MUMCUT test set given a minimal

56

DNF predicate and then updates the subsumption hierarchy in Figure 3 in section 2.2 and

the logic coverage criteria summary in Table 4 in section 2.2 to include the Minimal-

MUMCUT criterion. Section 4.2 discusses Minimal-MUMCUT test set size and the close

relation between test set size, feasibility and LRF detection. Sections 4.3 and 4.4 describe

single and double minimal DNF fault detection of the Minimal-MUMCUT criterion,

respectively. Section 4.5 describes general logic fault detection of the Minimal-

MUMCUT criterion when the minimal DNF assumption fails to hold.

4.1 Overview of the Minimal-MUMCUT Criterion

Figure 4 below gives a visual description of the algorithm used to build a Minimal-

MUMCUT test set for minimal DNF predicates. The dashed arrows mean “Yes” and the

dotted arrows mean “No”.

Figure 4 Minimal-MUMCUT Test Set Construction [19]

For

Each

Term

For

Each

Literal

In

Term

Test Set =

MUTP +

PCUTPNFP

PCUTPNFP

feasible?

Test Set =

MUTP

+

PCUTPNFP

+

MNFP

Test Set =

MUTP +

NFP

MUTP

feasible?

57

The algorithm below defines the Minimal-MUMCUT criterion for minimal DNF

predicates as specified by Kaminski and Ammann [19]:

Minimal-MUMCUT Test Generation Algorithm
for each term X

 generate MUTP tests for X

 if the MUTP criterion is infeasible* for X

 for each literal x in X

 generate PCUTPNFP tests for x

 if the PCUTPNFP** criterion is infeasible for x, generate MNFP tests for x

 end for

 else generate an NFP for each literal x in X to overlap NFPs***

end for

* The MUTP criterion is infeasible for a term X if and only if an equivalent LIF exists by

inserting some literal y into term X. Thus, to determine MUTP criterion feasibility, an

exclusive-OR algorithm is used to evaluate all possible LIFs for equivalency. If the result

of the exclusive-OR between the original predicate and the predicate with the LIF is

FALSE, then the LIF is equivalent and the MUTP criterion is infeasible. However, for

the algorithm above, the MUTP criterion is considered to be feasible for term X even

when an equivalent LIF occurs by inserting literal y into term X as long as term X is a

single-literal term or literal y occurs in a single-literal term. For example, in ab + c, the

MUTP criterion is infeasible for term ab as literal c must be FALSE in a UTP for term

ab. Thus, ab~c + c represents an equivalent LIF. However, the MUTP criterion is still

considered feasible for term ab for the algorithm since literal c is in a single-literal term.

** The PCUTPNFP criterion is infeasible for literal x if and only if an equivalent LRF

results by replacing x in term X with some literal y. Thus, to determine PCUTPNFP

feasibility an exclusive-OR algorithm is used to evaluate all LRFs for equivalency. If the

result of the exclusive-OR between the original predicate and the predicate with the LRF

is FALSE, then the LRF is equivalent and the PCUTPNFP criterion is infeasible.

*** Overlapping NFPs is a set covering combinatorial optimization problem known to be

NP-complete. An heuristic is used in the algorithm above to approximate minimizing the

number of NFPs generated. An example of an optimization model is in Appendix A.

As an example of satisfying the Minimal-MUMCUT criterion, consider the predicate

ab + cd. 1101 and 1110 are UTPs for ab and the MUTP criterion is feasible for ab. 0101

and 1010 are NFPs for a and b, respectively. 0111 and 1011 are UTPs for cd and the

58

MUTP criterion is feasible for cd. 0101 and 1010 are NFPs for c and d, respectively. A

test set is {1101, 1110, 0101, 1010, 0111, 1011}. The Minimal-MUMCUT criterion

reduces test set size by overlapping NFPs when possible and only producing PCUTPNFP

and MNFP tests when necessary on a literal-by-literal basis. Figure 5 updates the

subsumption hierarchy shown in Figure 3 in section 2.2 to include the Minimal-

MUMCUT criterion and Table 8 summarizes key aspects of the Minimal-MUMCUT

criterion.

Figure 5 Updated Subsumption Hierarchy with Minimal-MUMCUT [19]

MAX-B

MAX-A

MUMCUT

RICC

GICC MNFP

CUTPNFP Minimal-

MUMCUT

RACC

CACC

GACC

MUTP

PCUTPNFP

UTPC

MUTP/NFP

59

Table 8 Minimal-MUMCUT Logic Coverage Criterion Summary [19]

Test

Name

Test

Type

Guaranteed

Faults

Detected

Subsumes Subsumed by Minimum Test Size
Maximum Test

Size

Minimal-

MUMCUT
Syntactic

ENF, TNF,

LNF, TOF,

ORF., ORF+,

LOF, LIF, LRF

MUTP/NFP,

MUTP,

CACC,

GACC

MUMCUT,

MAX-A, MAX-B

m + 1 to 2m + 1

where m is the

number of terms

Uncertain, but less

than

2m(n-1) +
mn

2

2

where m is the

number of terms and

n is the number of

literals

4.2 Test Set Size

This section describes minimum and maximum Minimal-MUMCUT test set size

in theory and in practice. It is also shown in this section how test set size is related to

criterion feasibility and LRF detection.

The Minimal-MUMCUT criterion always requires selecting test cases to satisfy

the MUTP criterion. Minimal-MUMCUT also requires tests to satisfy either single NFP

coverage for any given literal (least expensive), PCUTPNFP for any given literal, or

MNFP for any given literal (most expensive), depending on criterion feasibility. The tests

for MUTP and the tests involving an NFP will have no tests that overlap since for MUTP,

all tests evaluate to TRUE and for any test involving an NFP, the test evaluates to

FALSE. This allowed test set size for Minimal-MUMCUT to be established [24] as

described next.

The maximum number of tests for Minimal-MUMCUT is simply the maximum

number of tests for MUTP + the maximum number of test cases for MNFP. The

maximum number of tests for MUTP is 2m(n-1) and the maximum number of tests for

60

MNFP is ½ 2
mn , where m is the number of terms and n is the total number of literals

(not the number of unique literals) [24]. Thus, maximum test set size of Minimal-

MUMCUT is 2m(n-1)+ ½ 2
mn .

The minimum number of tests for Minimal-MUMCUT is simply the minimum

number of tests for MUTP + the minimum number of tests for NFP coverage, or m + 1.

The minimum test size of m + 1 will arise when the predicate has one literal for each

term, such as a + b + c. In this case, there are three terms so the minimum number of

tests is four. Three of these tests come from MUTP: (100, 010, 001) and one comes from

a single NFP: 000.

Chen, Lau and Yu [8] evaluated MUMCUT test set size (using the greedy MUTP

algorithm developed by Chen and Lau [6]) for 19 minimal DNF predicates from an air

traffic collision avoidance system (TCAS). There were originally 20 predicates but

number 12 was excluded due to a missing a right parenthesis detected by Weyuker et al.

[46]. The predicates have from 5 to 13 unique literals (see Appendix B). Kaminski and

Ammann [19] created Minimal-MUMCUT tests for each predicate and assessed MUTP

feasibility for each term and PCUTPNFP feasibility for each literal. The Minimal-

MUMCUT algorithm presented earlier was implemented in Java to obtain the results.

The results showed that the PCUTPNFP criterion was feasible for every literal (853

of them), so the expensive MNFP tests were not needed for any literal. For 204 literals

(23.92%), the MUTP criterion was feasible for the literal’s term and thus MUTP tests

detect an LRF, meaning the less expensive approach of requiring NFP tests instead of

PCUTPNFP tests is used. For the other 649 literals (76.08%), PCUTPNFP tests were

61

needed to detect an LRF. For four predicates, the MUTP criterion was feasible for every

term, so PCUTPNFP tests were not needed for any literal for these four predicates. For

16 predicates, the MUTP criterion was feasible for at least one term. Thus, PCUTPNFP

tests were not needed for literals in at least one term in most predicates. On average,

Minimal-MUMCUT test set size was 2.40% of exhaustive test set size. Table 9 displays

feasibility and LRF detection results and Table 10 displays test set size results.

Table 9 Criterion Feasibility and LRF detection [19]

Predicate

Number of

terms that

are MUTP

feasible

Number of

terms that

are MUTP

infeasible

Number of

literals for

which MUTP

detects LRF

Number of literals

needing

PCUTPNFP to

detect LRF

1 1 4 5 24

2 4 9 33 72

3 2 23 10 136

4 1 2 1 6

5 1 8 1 27

6 2 4 22 36

7 4 4 28 32

8 4 0 32 0

9 2 0 14 0

10 0 6 0 60

11 1 8 6 57

*12 N/A N/A N/A N/A

13 0 6 0 14

14 0 6 0 16

15 1 10 2 30

16 1 22 2 85

17 2 4 8 24

18 2 6 8 30

19 4 0 20 0

20 2 0 12 0

Sum 34 122 204 649

* number 12 excluded due to a missing a right parenthesis

62

Table 10 Minimal-MUMCUT Test Set Size [19]

Predicate

Minimal-

MUMCUT

[19]

2
n

Percentage

1 27 128 21.09%

2 81 512 15.82%

3 148 4096 3.61%

4 9 32 28.13%

5 34 512 6.64%

6 62 2048 3.03%

7 62 1024 6.05%

8 36 256 14.06%

9 16 128 12.50%

10 62 8192 0.76%

11 61 8192 0.74%

12 N/A N/A N/A

13 17 4096 0.42%

14 22 128 17.19%

15 39 512 7.62%

16 104 4096 2.54%

17 39 2048 1.90%

18 48 1024 4.69%

19 16 256 6.25%

20 14 128 10.94%

Sum 897 37,408

Avg 47.21 1968.84 2.40%

4.3 Single Minimal DNF Fault Detection

 This section focuses on the single minimal DNF fault detection capability of the

Minimal-MUMCUT criterion. It highlights how criterion feasibility is linked to

equivalent faults and fault detection, with a special focus on the LIF and the LRF.

Any logic coverage criterion that includes at least one UTP for each term and one

NFP for each literal is guaranteed to detect all fault types in Lau and Yu’s fault hierarchy

63

except for the LIF and the LRF [30]. The Minimal-MUMCUT criterion meets this

requirement. To understand why a test set that satisfies the Minimal-MUMCUT criterion

also guarantees LIF and LRF detection for a minimal DNF predicate, it is important to

first understand criterion feasibility and equivalent faults.

The LIF can result in an equivalent fault in that no input can distinguish the

original predicate from the faulty version. For example, consider ab + bc and the LIF

where ~c is inserted into the first term to yield ab~c + bc. This is an equivalent LIF

because the original predicate and faulty predicate evaluate to the same value for all

inputs. To make term ab true and term ab~c false, the point 111 can be used, but doing so

makes term bc true in each predicate. AN LIF will be equivalent if and only if the MUTP

criterion is infeasible. The MUTP criterion is infeasible for term ab as literal c must be 0

in a UTP for term ab. The LRF can also result in an equivalent fault. For example,

consider ab + b~c + ~bc and the LRF where literal c replaces literal b in the first term to

yield ac + b~c + ~bc. To make term ab true and term ac false, the point 110 can be used,

but doing so makes term b~c true in each predicate. To make term ab false and term ac

true, the point 101 can be used, but doing so makes term ~bc true in each predicate. AN

LRF will be equivalent if and only if the PCUTPNFP criterion is infeasible (which also

means that the CUTPNFP criterion is infeasible). The PCUTPNFP criterion is infeasible

for literal b in term ab as the only UTP for term ab is 111 and the only NFP for literal b

in term ab is 100 which differs from the UTP of 111 in both the value of b and c (c must

be 1 in a UTP for term ab).

64

The condition for detecting an LIF is as follows as specified by Lau and Yu [30].

If some literal not intended to be in term X is inserted into X as itself or as its negation,

then a set of UTPs for X, where all literals not in X attain the values 0 and 1, detects the

fault. MUTP tests are guaranteed to detect an LIF. However, when the MUTP criterion is

infeasible, an LRF exists that MUTP tests may not detect. Consider ab + ac + bc and an

LIF producing ab~c + ac + bc. The MUTP criterion is infeasible for ab as the only UTP

for ab is 110. Therefore, MUTP tests do not detect the corresponding LRFs: ~cb + ac +

bc and a~c + ac + bc.

MUTP tests are guaranteed to detect an LRF for a literal if the MUTP criterion is

feasible for that literal’s term. In this case, it is only necessary to satisfy the MUTP

criterion and the NFP criterion (an NFP for each literal in the term) to guarantee detecting

all fault types in Lau and Yu’s fault hierarchy for that term [24]. Thus, neither the

PCUTPNFP nor the MNFP criterion is needed for literals in a MUTP feasible term to

detect LRFs for literals in that term. The NFP for a literal in a MUTP feasible term can

overlap with NFPs for other literals in other terms since any NFP for a literal detects an

LOF for that literal. If a term is MUTP infeasible but all literals in the predicate external

to that term that cannot be 0 or 1 in a UTP for the term exist in single-literal terms, LRF

detection is still guaranteed by MUTP tests. The reason is that an LRF involving

replacing a literal with a literal (or its negation) that exists in a single-literal term results

in a TOF, LOF, or a TRUE predicate. Since a UTP guarantees detection of a TOF and an

NFP guarantees detecting an LOF or a fault where the predicate is stuck at 1, MUTP tests

supplemented with NFPs guarantee LRF detection. For example, in a + b, replacing a

65

with b results in a TOF for a and replacing a with ~b makes the predicate TRUE. In ab +

c, replacing a with c results in a TOF for ab and replacing a with ~c results in an LOF for

a.

The condition for detecting an LRF is as follows as specified by Lau and Yu [30]

and Kaminski and Ammann [22]. If literal x in X is wrongly implemented as some other

literal or the negation of some other literal not in X, then any of the following detects the

fault: a set of UTPs for X where all literals not in X attain the values 0 and 1; a set of

NFPs for x where all literals not in X attain the values 0 and 1; a UTP-NFP pair where the

points differ only in the value of x and possibly in the values of all literals that can be 0 or

1 in a UTP for term X. The PCUTPNFP criterion is designed to produce tests that detect

an LRF but fails to do so when it is infeasible. However, when the PCUTPNFP criterion

is infeasible, MNFP tests can be added to guarantee LRF detection. Thus, only when both

the MUTP criterion is infeasible and the PCUTPNFP criterion is infeasible are MNFP

tests needed to guarantee LRF detection. Consider abc + abd + ~b~d + ~de. The

PCUTPNFP criterion is infeasible for b in abc. The only UTP for abc is 11100 so the

only way to try to satisfy the PCUTPNFP is to satisfy the CUTPNFP criterion. A

corresponding NFP of 10100 is not possible for b in abc because this is a TRUE point.

Now consider the LRF a~ec + abd + ~b~d + ~de. Since the PCUTPNFP criterion is

infeasible for b in abc, this LRF goes undetected by PCUTPNFP tests. A single NFP for

b in abc is not guaranteed to detect the LRF either. The point 10111 is an NFP for b in

abc, but this point fails to detect the LRF. The MNFP criterion requires that the NFP

10110 be chosen for b in abc, detecting the LRF.

66

Figure 6 displays Lau and Yu’s Fault Hierarchy modified based on how criterion

feasibility affects fault detection as indicated by Kaminski and Ammann [19]. A solid

arrow from a source fault to a destination fault indicates that if a test detects a source

fault, it also detects a corresponding destination fault. When the MUTP criterion is

infeasible, a test set detecting all LIFs is not guaranteed to detect all LRFs. Thus the solid

arrow between the LIF and LRF in Lau and Yu’s hierarchy is changed to a dashed arrow.

In Lau and Yu’s hierarchy no arrow exists between the LRF and LOF. A dashed arrow is

added to represent that when guaranteeing detection of all LIFs does not guarantee

detection of all LRFs (due to MUTP infeasibility), adding tests to detect the undetected

LRFs will detect all corresponding LOFs (unless the PCUTPNFP criterion is infeasible).

The reason is that when the MUTP criterion is infeasible but the PCUTPNFP criterion is

feasible, a UTP will not detect an LRF but a corresponding NFP will. Since the Minimal-

MUMCUT criterion always requires MUTP tests, the LIF is guaranteed to be detected.

Since the Minimal-MUMCUT requires (1) PCUTPNFP tests when the MUTP criterion is

infeasible and the PCUTPNFP criterion is feasible and (2) MNFP tests when the

PCUTPNFP criterion is infeasible, LRF detection is guaranteed.

67

Figure 6 Fault Hierarchy Based on Infeasibility [19]

4.4 Double Minimal DNF Fault Detection

A double minimal DNF fault occurs in a predicate when two faults represented in

the fault types in Figure 6 are introduced. This section focuses on the double minimal

DNF fault detection capability of the Minimal-MUMCUT criterion. It highlights how

criterion feasibility is linked to double fault detection, with a special focus on a double

fault involving two LIFs.

Any two single faults in Lau and Yu’s hierarchy can be combined to form a double

fault. Lau, Liu and Yu [27, 28, 29] show that 92 double fault types exist when

considering order and the different semantic versions that can occur. The reason why 92

double fault types exist (as opposed to 81) is that different semantic versions occur

depending on whether or not both faults occur in the same or different terms. However,

order only causes a semantic difference in double fault types for eight cases. This is

because some ordered double fault types are equivalent to each other. Some examples are

given next.

 LOF

ORF.

 LRF

 LNF

 TNF

 ENF

 LIF

TOF

ORF+

68

Consider the expression ab + cd + ef and the LNF where literal a is negated and

the TNF where the second term is negated. Whether or not the LNF or TNF occurs first

does not matter as both result in ~ab + ~(cd) + ef. Now consider the LIF where literal e is

inserted into term ab and the TNF where the first term is negated. If the LIF occurs first,

the result is ~(abe) + cd + ef. If the TNF occurs first, the result is ~(ab)e + cd + ef, which

is semantically different. Furthermore, certain double fault types result in different

versions depending on whether the faults occur in the same or different terms. For

example, a double fault where two LRFs occur in the same term can be considered

different than a double fault where two LRFs occur in different terms.

The result is that there are 92 double fault types when considering order and

versions, 82 double fault types when considering versions but not ordering, 53 double

fault types when considering order but not versions and 45 double fault types when

considering neither order nor versions [27, 28, 29]. In addition to negating the entire

predicate, Lau et al. [27, 28, 29] consider the ENF to include negating the disjunction of

two or more terms (meaning changing ab + cd + ef to ab + ~(cd + ef)). This definition

prevents the ENF-ENF double fault from resulting in a faulty predicate that is equivalent

semantically to the original predicate.

Lau et al. [27, 28, 29] state that BASIC tests (selecting a UTP for each term and an

NFP for each literal) detect all but 8 of the 92 types when considering order and versions

and all but 6 of the 45 types when considering neither order nor versions. The Minimal-

MUMCUT criterion subsumes the BASIC criterion, but it does not subsume the

additional criteria proposed by Lau et al. [27, 28, 29] needed to guarantee detection of all

69

double fault types. Below are the eight double fault types that Minimal-MUMCUT tests

are not guaranteed to detect as specified by Kaminski and Ammann [20].

1. TOF-LRF:

Intended: ~a~b + ab + cd + ~c~d

Actual: ab + ad + ~c~d

2. ORF.-LRF where faults occur in different terms:

Intended: ~a~b + ab + cd + ~c~d

Actual: ~a~b + abcd + a~d

3. LOF-LRF where faults occur in same term:

Intended: abc + abd

Actual: dc + abd

4. LIF-LIF where faults occur in different terms:

Intended: ab + bc

Actual: ab~c + bc~a

5a. LIF-LRF where faults occur in different terms:

Intended: abc + cde

Actual: abcd + cbe

5b. LIF-LRF where faults occur in same term:

Intended: abc + cde

Actual: abde + cde

6a. LRF-LRF where faults occur in different terms:

Intended: abcd + abef

Actual: ebcd + acef

6b. LRF-LRF where faults occur in same term:

Intended: abcd + abef

Actual: efcd + abef

Kaminski and Ammann [20] prove that if the MUTP criterion is feasible for a

term, Minimal-MUMCUT tests guarantee detecting all double faults involving that term

or literals in that term. This proof was done by taking the conditions needed for double

70

fault detection as specified by Lau et al. [27, 28, 29], translating them in terms of

criterion feasibility and then showing that if the MUTP criterion is feasible, the eight

fault types mentioned above can all be detected by a MUTP test set.

Kaminski and Ammann [20] also prove that if the MUTP criterion is infeasible

for a term, but the CUTPNFP criterion is feasible for a literal in the term (and hence the

PCUTPNFP criterion is also feasible), Minimal-MUMCUT tests guarantee detection of

all double faults for the literal and term, except the LIF-LIF. This proof was done by

observing that when the MUTP criterion is infeasible for a term, the Minimal-MUMCUT

criterion subsumes the PCUTPNFP criterion for each literal in that term. The proof

establishes that that when the PCUTPNFP criterion is feasible, PCUTPNFP tests detect

the eight double fault types mentioned above except the LIF-LIF.

Kaminski and Ammann [20] also prove that if the PCUTPNFP criterion is

infeasible for a literal, Minimal-MUMCUT tests guarantee detecting all but eight double

fault types. This proof is accomplished by first proving valid and invalid feasibility

combinations amongst the MUTP, PCUTPNFP and MNFP criteria. These combinations

are displayed in Table 11.

Table 11 Criterion Feasibility Combinations [20]

Row
MUTP

feasible

PCUTPNFP

feasible

MNFP

feasible
Valid

1 No No No Yes

2 No No Yes No

3 No Yes No Yes

4 No Yes Yes No

5 Yes No No No

6 Yes No Yes No

71

Row
MUTP

feasible

PCUTPNFP

feasible

MNFP

feasible
Valid

7 Yes Yes No Yes

8 Yes Yes Yes Yes

From Table 11, when the PCUTPNFP criterion is infeasible for a literal, the

MUTP criterion is infeasible for that literal’s term, so MUTP tests do not guarantee

detecting any of the eight double fault types BASIC tests do not guarantee detecting.

Also from Table 11, when the PCUTPNFP criterion is infeasible for a literal, the MNFP

criterion is infeasible for that literal, so MNFP tests do not guarantee detecting any of the

eight double fault types BASIC tests do not guarantee detecting. So if the PCUTPNFP

criterion is infeasible, the eight double fault types that BASIC tests do not guarantee

detecting are not guaranteed to be detected by Minimal-MUMCUT tests. Table 12

summarizes these results.

Table 12 Double Fault Detection of Minimal-MUMCUT Tests Based on Criterion

Feasibility [20]

Row
MUTP

feasible

PCUTPNFP

feasible

MNFP

feasible

Double Fault

Types Missed

1 No No No 8

2 No No Yes N/A

3 No Yes No 1

4 No Yes Yes N/A

5 Yes No No N/A

6 Yes No Yes N/A

7 Yes Yes No 0

8 Yes Yes Yes 0

72

Table 12 indicates that for a Minimal-MUMCUT test set:

1) If the MUTP criterion is feasible for a term, all double faults involving the term or its

literals are detected.

2) If the MUTP criterion is infeasible for a term, but the PCUTPNFP criterion is feasible

for a literal in that term, all but one double fault type (the LIF–LIF) involving that literal

or that literal’s term is detected.

3) If the PCUTPNFP criterion is infeasible for a literal, all but eight double fault types

involving that literal or that literal’s term are detected.

The above results indicate that the LIF-LIF is the most common double fault to be

undetected by the Minimal-MUMCUT criterion because it will go undetected whenever

the MUTP criterion is infeasible. To evaluate how often Minimal-MUMCUT tests are

likely to miss detecting the eight double fault types in practice, an empirical evaluation

was performed using the same sample of 19 predicates described in chapter 4 as well as

an additional sample of 275 minimal DNF predicates (each containing at least 5 unique

literals) in avionics software. Although the MUTP criterion was not feasible for every

term in these predicates, the PCUTPNFP criterion was feasible for every literal in every

predicate (for both the 19 original predicates and for the additional 275 predicates). Thus,

Minimal-MUMCUT tests detected all double fault types except the LIF-LIF for all of

these predicates. For the additional 275 predicates, the MUTP criterion was feasible for

98% of them, meaning that Minimal-MUMCUT tests guaranteed detecting all double

fault types for 98% of the 275 predicates.

73

Lau et al. [27, 28, 29] developed the Supplementary Multiple Overlapping True

Point (SMOTP) criterion to detect the LIF-LIF. This criterion requires that for each pair

of terms, a set of OTPs be included such that all literals not in either term are assigned the

values 0 and 1. However, the LIF-LIF can only go undetected by Minimal-MUMCUT

tests when both terms involved in the double fault are MUTP infeasible. Thus, the

SMOTP criterion only needs to be included for a subset of the possible pairs of terms in

the predicate. So incorporating one additional criterion into the Minimal-MUMCUT

criterion guarantees detecting all double faults in the predicates examined and this

criterion is not needed for all pairs of terms. Lau et al. [27, 28, 29] developed five other

criteria that guarantee complete double fault detection, but satisfying these criteria is

expensive and none were necessary for double fault detection in the predicates examined.

Kaminski and Ammann [20] showed how the Minimal-MUMCUT criterion can be

modified to include the SMOTP criterion as follows:

Minimal-MUMCUT and SMOTP Test Generation Algorithm

 for each term X

 generate MUTP tests for X

 if the MUTP criterion is infeasible for X

 for each MUTP infeasible term Y

 generate SMOTP tests for X and Y

 end for

 for each literal x in X

 generate PCUTPNFP tests for x

 if the PCUTPNFP criterion is infeasible for x, generate MNFP tests for x

 end for

 else generate an NFP for each literal x in X to overlap NFPs

end for

On average, 6.79 non-equivalent LIF-LIFs per predicate went undetected by

Minimal-MUMCUT tests amongst the 19 predicates in the study. For four predicates (8,

74

9, 19, 20) the MUTP criterion was feasible for every term so Minimal-MUMCUT tests

detected all double faults. For 16 predicates, the MUTP criterion was feasible for at least

one term so Minimal-MUMCUT tests detected all double faults in at least one term (and

its literals) in these predicates. For two predicates (7 and 17), every pairing of two

equivalent LIFs resulted in an equivalent LIF-LIF. Thus, Minimal-MUMCUT tests

detected all non-equivalent double faults for these predicates.

An example of an LIF-LIF that Minimal-MUMCUT tests did not detect is

mutating a~bd + a~cd + e to a~bdc + a~cdb + e. Detection requires one additional test

beyond what the Minimal-MUMCUT criterion requires. 10010 makes the first two terms

in the original predicate TRUE and the first two terms in the faulty predicate FALSE.

Table 13 shows the number of undetected LIF-LIFs (and thus the maximum number of

extra tests needed to guarantee detection), as well as the percentage undetected. 99.91%

of LIF-LIFs were detected so few additional tests are needed to detect all non-equivalent

LIF-LIFs.

Table 13 LIF-LIFs Undetected by Minimal-MUMCUT Tests [20]

Predicate
Number of

undetected LIF-LIFs

Total Number

LIF-LIFs

Percentage

undetected

1 2 66 3.03%

2 3 276 1.09%

3 34 42,278 0.08%

4 1 120 0.83%

5 10 5,565 0.18%

6 2 120 1.67%

7 0 780 0.00%

8 0 0 N/A

9 0 0 N/A

75

Predicate
Number of

undetected LIF-LIFs

Total Number

LIF-LIFs

Percentage

undetected

10 6 630 0.95%

11 3 5,778 0.05%

12 N/A N/A N/A

13 4 6,670 0.06%

14 5 1,326 0.38%

15 17 8,911 0.19%

16 38 71,253 0.05%

17 0 2,278 0.00%

18 4 3,486 0.11%

19 0 276 0.00%

20 0 6 0.00%

Sum 129 149,819

Average 6.79 7,885.21 0.09%

The number of LIFs for a predicate with m terms, n unique literals and in literals in

term i is L = 2
1

()
m

i

i

n n
=

−∑ (multiplication by 2 since each unique literal in the predicate

that is not in the term of interest may be inserted as itself or as its negation). The number

of possible LIF-LIFs is 2L . However, this number is smaller in Table 13 because the order

of each LIF in an LIF-LIF is irrelevant and a single LIF paired with itself defaults to a

single LIF. Thus, in Table 13 the total number of LIF-LIFs is L * (L-1) / 2.

When two LIFs combine to form an LIF-LIF, four combinations exist for the

equivalency relationship between the faulty and non-faulty predicates as Table 14 shows.

76

Table 14 Equivalency Relationships Between Faulty and Non-Faulty Predicates [20]

LIF 1 LIF 2 LIF-LIF

Not equivalent Not equivalent Not equivalent

Not equivalent Equivalent Not equivalent

Equivalent Not Equivalent Not equivalent

Equivalent Equivalent Undetermined

MUTP tests are guaranteed to detect an LIF. If the MUTP criterion is feasible for

either term in the LIF-LIF, the LIF-LIF is detected by MUTP tests [20]. In the first three

rows of Table 14, the first or second LIF is not equivalent, so the MUTP criterion is

feasible for at least one term. Thus, MUTP tests also detect the LIF-LIF, meaning the

LIF-LIF is non-equivalent. To show how two equivalent LIFs form a non-equivalent LIF-

LIF, consider a~bd + a~cd. Inserting c into a~bd results in an equivalent LIF, as does

inserting b into a~cd. Combining the equivalent LIFs results in a non-equivalent LIF-

LIF: a~bdc + a~cdb (detected by 1001 – the original evaluates to TRUE but the faulty

version evaluates to FALSE). To show how two equivalent LIFs form an equivalent LIF-

LIF, consider a~bd + a~cd + e. Inserting ~e into a~bd results in an equivalent LIF, as

does inserting ~e into a~cd. The equivalent LIF-LIF is a~bd~e + a~cd~e + e.

Table 14 shows an LIF-LIF can only be equivalent when each LIF is equivalent.

However, when each LIF is equivalent, an LIF-LIF can also be non-equivalent. When the

MUTP criterion is feasible for either term where an LIF occurs, Minimal-MUMCUT

tests will detect an LIF-LIF [20]. However, when the MUTP criterion is infeasible for

both terms in an LIF-LIF (meaning each LIF is equivalent), a non-equivalent LIF-LIF

will go undetected by Minimal-MUMCUT tests [20]. So if most LIF-LIFs formed from

77

two equivalent LIFs are equivalent, there will be few non-equivalent LIF-LIFs that a

Minimal-MUMCUT test fails to detect (fault coupling will be rare). On the other hand, if

most such LIF-LIFs are non-equivalent, there will be more non-equivalent LIF-LIFs that

a Minimal-MUMCUT test fails to detect (fault coupling will be common). Table 15

shows the percentage of LIF-LIFs that were equivalent based on combining two

equivalent LIFs. In Table 15 the column “Number of equivalent LIF-LIFs” refers to the

number of equivalent double faults where each of the single faults is an equivalent LIF.

The column “Number of equivalent LIF – equivalent LIF pairs” refers to the number of

double faults where each of the single faults is an equivalent LIF.

Table 15 Equivalent LIF-LIFs as a Percentage of Equivalent LIF Pairings [20]

Predicate

Number of

equivalent

LIF-LIFs

Number of

equivalent LIF-

equivalent LIF

pairs

Percentage

equivalent

LIF-LIFs

1 4 6 66.67%

2 78 81 96.30%

3 2177 2211 98.24%

4 5 6 83.33%

5 518 528 98.11%

6 4 6 66.67%

7 28 28 100.00%

8 0 0 N/A

9 0 0 N/A

10 60 66 90.91%

11 63 66 95.45%

12 N/A N/A N/A

13 132 136 97.06%

14 61 66 92.42%

15 803 820 97.93%

16 4427 4465 99.15%

17 12 12 100.00%

78

Predicate

Number of

equivalent

LIF-LIFs

Number of

equivalent LIF-

equivalent LIF

pairs

Percentage

equivalent

LIF-LIFs

18 87 91 95.60%

19 0 0 N/A

20 0 0 N/A

Sum 8459 8588

Average 445.21 452.00 98.50%

In Table 15, the number of equivalent LIF – equivalent LIF pairs is L * (L-1) / 2

given L equivalent LIFs as order and pairing an equivalent LIF with itself are not

considered. The results show a large percentage of LIF-LIFs formed from two equivalent

LIFs were equivalent. Thus, few non-equivalent LIF-LIFs go undetected by Minimal-

MUMCUT tests and fault coupling is rare. Polo, Piattini and Garcia-Rodriguez [39] state

that two equivalent single faults always result in an equivalent double fault. This is

incorrect for LIFs. However, Table 15 shows that it is likely that two equivalent LIFs

form an equivalent LIF-LIF.

Table 16 compares test set size (based on the 19 original predicates) for the

Minimal-MUMCUT criterion with a test set supplemented with tests needed to detect

LIF-LIFs. The number of tests needed to detect LIF-LIFs is less than the number of

undetected LIF-LIFs because multiple undetected LIF-LIFs can sometimes be detected

by the same test. 129 LIF-LIFs went undetected (an average of 6.79 per predicate) but

108 additional tests can be used to detect them (an average of 5.68 tests per predicate).

On average, Minimal-MUMCUT test set size is 89.25% of the test set size formed by

79

combining Minimal-MUMCUT tests and tests to detect all LIF-LIFs. By adding on

average an additional 5.68 tests to a Minimal-MUMCUT test set, all LIF-LIFs can be

detected in these predicates.

Table 16 Minimal-MUMCUT vs. Minimal-MUMCUT + LIF-LIF Test Set Size [20]

Predicate

Minimal –

MUMCUT

[19]

Minimal –

MUMCUT

+ LIF-LIF

Tests [20]

Percentage 2
n

1 27 29 93.10% 128

2 81 84 96.43% 512

3 148 173 85.55% 4096

4 9 10 90.00% 32

5 34 41 82.93% 512

6 62 64 96.88% 2048

7 62 62 100.00% 1024

8 36 36 100.00% 256

9 16 16 100.00% 128

10 62 68 91.18% 8192

11 61 64 95.31% 8192

12 N/A N/A N/A N/A

13 17 21 80.95% 4096

14 22 27 81.48% 128

15 39 56 69.64% 512

16 104 133 78.20% 4096

17 39 39 100.00% 2048

18 48 52 92.31% 1024

19 16 16 100.00% 256

20 14 14 100.00% 128

Sum 897 1005 37,408

Avg 47.21 52.89 89.25% 1968.84

80

4.5 General Logic Fault Detection

This section begins with an examination of the frequency of minimal DNF predicates

in software. This is important because for syntactic criteria, fault detection that holds for

minimal DNF predicates does not in general hold for non-minimal DNF predicates. Next

this section explores changes to the Minimal-MUMCUT criterion to address minimal

CNF. The section concludes with a discussion of changes to the Minimal-MUMCUT

criterion to handle the case when neither minimal DNF nor minimal CNF holds.

For syntactic criteria assuming minimal DNF, it is important to know what types of

software have predominantly minimal DNF predicates. Chilenski [9] found that 95% of

20,256 predicates in avionics software were in minimal DNF. However, when a predicate

contains less than three unique literals the author conjectures that exhaustive testing is

best because it is only at three unique literals that the Minimal-MUMCUT criterion

begins to potentially offer a 50% test set size savings over exhaustive coverage. This

raises the questions of what types of software generally have predicates with at least three

unique literals and what proportion of such predicates are in minimal DNF. Chilenski and

Miller [10] report that avionics software often has predicates with many unique literals

and Chilenski [9] extracted a predicate with 77 unique literals. Thus, the Minimal-

MUMCUT criterion should be useful for testing avionics software. In terms of predicate

format for large predicates, Kaminski and Ammann [22] report that 3% of the 20,256

predicates Chilenski examined contain five or more unique literals, but 80% of these

predicates are in minimal DNF. Thus, fault detection is guaranteed for the majority of

81

these predicates by Minimal-MUMCUT tests for single and double faults in Lau and

Yu’s fault hierarchy.

Minimal CNF

Kaminski and Ammann [22] report that of the 3% of the 20,256 predicates Chilenski

examined that contain five or more unique literals, 85% were either in minimal DNF or

minimal CNF (or both). Thus, modifying the Minimal-MUMCUT criterion to incorporate

predicates in minimal CNF (an approach known as Union Minimal-MUMCUT) can

guarantee fault detection of all single and 84 of 92 double faults in Lau and Yu’s fault

hierarchy for 85% of these predicates. An initial exploratory study by students in a

graduate class at George Mason University of open source software found that of 43

predicates that contained three or more unique literals the following held:

14 were in minimal CNF but not minimal DNF

 1 was in minimal DNF but non minimal CNF

40 were in minimal CNF

27 were in minimal DNF

41 were in either minimal CNF or minimal DNF

 2 were in neither minimal CNF nor minimal DNF

These results show that 63% of the predicates were in minimal DNF and 95% of the

predicates were in minimal DNF or minimal CNF (or both). Thus, modifying Minimal-

MUMCUT to guarantee fault detection for minimal CNF predicates increases the

82

percentage of predicates for which fault detection is guaranteed from 63% to 95% for the

single and double fault types in Lau and Yu’s fault hierarchy.

Due to the dual nature of minimal CNF and minimal DNF, it is possible to modify

the Minimal-MUMCUT criterion to also guarantee fault detection when a predicate is in

minimal CNF but not minimal DNF. Furthermore, it is possible to modify the Minimal-

MUMCUT criterion to improve its fault detection when a predicate is in neither minimal

CNF nor minimal DNF as explained next. The next paragraphs introduce a new set of

logic coverage criteria and a new fault hierarchy based on minimal CNF. The following

new criteria assume a predicate is in minimal CNF. An example of (a + b)(c + d) is used

in each.

Multiple Unique False Point (MUFP) [22]: Given a minimal CNF predicate, form tests

for a UFP for each term such that all literals not in the term attain values 1 and 0. A UFP

for the first term must have a=0, b=0. Needed tests for c and d to each = 0 and 1 are 0001

and 0010. A UFP for the second term must have c=0 and d=0. Needed tests for a and b to

each = 0 and 1 are 0100 and 1000. A test set is {0001, 0010, 0100, 1000}.

Multiple Near True Point [22]: Given a minimal CNF predicate, form tests for an NTP

of each literal such that all literals not in the literal’s term attain values 1 and 0. NTPs for

a and b so that c and d each equal 0 and 1 are 1001, 1010, 0101, and 0110. Needed NTPs

for c and d so that a and b each equal 0 and 1 are 0110, 1010, 0101, and 1001. A test set

is {1001, 1010, 0101, 0110}.

Corresponding Unique False Point Near True Point (CUFPNTP) [22]: Given a

minimal CNF predicate, for each literal in each term find a UFP and NTP such that only

83

the literal changes value (all other literals must be fixed). A UFP for the first term must

have a=0, b=0. If c=0 and d=1, tests for literals in ab are 0001, 1001, and 0101. A UFP

for the second term must have c=0, d = 0. If a=1 and b = 0, tests for literals in cd are

1000, 1010, and 1001. A test set is {0001, 1001, 0101, 1000, 1010}.

Partial-Corresponding Unique False Point Near True Point (PCUFPNTP) [22]:

Given a minimal CNF predicate, for each literal in each term find a UFP and NTP such

that the literal changes value and the only literals that must be fixed are literals that must

be fixed in a UFP for the term of interest. This criterion is more flexible than CUFPNTP

and is subsumed by it (any CUFPNTP test set is also a PCUFPNTP test set). For term (a

+ b) a MUFP test set is {0001, 0010}. To satisfy CUFPNTP for literal a, a corresponding

NTP of 1001 or 1010 must be chosen. However, PCUFPNTP permits 1011 to be chosen

as the NTP. 1011 differs from each UFP in either a and c or a and d. Thus, 1011 is not a

corresponding NTP but it can still be chosen to satisfy PCUFPNTP because literals c and

d can be 0 or 1 in a UFP for term ab. While PCUFPNTP does not offer any test set size

savings over CUFPNTP for the example of (a + b)(c + d), it can for other predicates

because it allows greater flexibility in choosing NTPs so that they can overlap.

 Figure 7 places the minimal CNF logic coverage criteria in an updated

subsumption hierarchy and Table 17 gives a summary of the minimal CNF logic

coverage criteria.

84

Figure 7 Updated Subsumption Hierarchy with Minimal CNF Logic Criteria [22]

Table 17 Minimal CNF Logic Criteria Summary [22]

Test Name
Test

Type

Guaranteed

Faults

Detected

Subsumes Subsumed by
Minimum Test

Size

Maximum Test

Size

Multiple

Unique False

Point (MUFP)*

Syntactic

ENF, TNF,

LNF, TOF,

ORF., LIF

-

Minimal-

MUMCUT,

MUMCUT,

MUFP/NTP,

MAX-A,

MAX-B

m to 2m where m

is the number of

terms

2m(n-1) where

m is the number

of terms and n is

the number of

literals

Corresponding

Unique False

Point Near True

Point

(CUFPNTP)*

Syntactic

ENF, TNF,

LNF, TOF,

ORF., ORF+,

LOF

PCUFPNTP,

RACC, CACC,

GACC

MUMCUT,

MAX-A,

MAX-B

ni
i

m

+

=
∑ 1

1

 where

ni is the number

of literals in term

i and m is the

number of terms

2mn where m is

the number of

terms and n is

the number of

literals

MAX-B

MAX-A

MUMCUT

RICC

GICC

MNFP

UTPC

CUTPNFP
MUTP/NFP

RACC

CACC

GACC

MUTP

Minimal-

MUMCUT

MNTP

PCUTPNFP

CUFPNTP
MUFP/NTP

MUFP

PCUFPNTP

85

Test Name
Test

Type

Guaranteed

Faults

Detected

Subsumes Subsumed by
Minimum Test

Size

Maximum Test

Size

Partial

Corresponding

Unique False

Point Near True

Point

(PCUFPNTP)**

Syntactic

ENF, TNF,

LNF, TOF,

ORF., ORF+,

LOF

CACC, GACC

CUFPNTP,

MUMCUT,

MAX-A,

MAX-B

ni
i

m

+

=
∑ 1

1

 where

ni is the number

of literals in term

i and m is the

number of terms

2mn where m is

the number of

terms and n is

the number of

literals

Multiple Near

True Point

(MNTP)*

Syntactic
ENF, TNF,

LNF, ORF+,

LOF

-

MUMCUT,

MAX-A,

MAX-B

When

infeasibilities

arise: 1.

Uncertain

otherwise.

mn
2

2
 where m

is the number of

terms and n is

the number of

literals

Multiple

Unique False

Point / Near

True Pont

(MUFP / NTP)

*

Syntactic

ENF, TNF,

LNF, TOF,

ORF, LOF,

LIF

CACC, GACC,

MUFP

MUMCUT,

MAX-A,

MAX-B

m + 1 to 2m + 1

(where m is the

number of terms

in Boolean

function f).

2m(n-1) + n,

where m is the

number of terms

in function f and

n is the number

of literals in

function f.

Minimal-

MUMCUT
Syntactic

ENF, TNF,

LNF, TOF,

ORF., ORF+,

LOF, LIF,

LRF

CACC, GACC,

MUTP,

MUTP/NFP,

MUFP,

MUFP/NTP

MUMCUT,

MAX-A,

MAX-B

m + 1 to 2m + 1

where m is the

number of terms

Uncertain, but

less than

2m(n-1)

+
mn

2

2
 where

m is the number

of terms and n is

the number of

literals

MUTP / MNFP

/ CUTPNFP

Strategy

(MUMCUT)

Syntactic

ENF, TNF,

LNF, TOF,

ORF, LOF,

LIF, LRF

RACC, CACC,

GACC, MUTP,

MUFP, UTPC,

CUTPNFP,

PCUTPNFP,

MUTP/NFP,

MNFP,

MNTP,CUFPNTP,

PCUFPNTP,

MUFP/NTP,

Minimal-

MUMCUT

MAX-A,

MAX-B

When

infeasibilities

arise – m to 2m +

1 (where m is the

number of terms

in Boolean

function f).

Uncertain

otherwise.

2m(n-1)

+
mn

2

2
 , where

m is the number

of terms in

function f and n

is the number of

literals in

function f.

* When feasible, detects the LRF

** When feasible, detects any LRF that the MUFP criterion will not detect

The complementary relationship between minimal CNF and minimal DNF exists

throughout the nine single fault types in Lau and Yu’s fault hierarchy and thus a new

minimal CNF Fault Hierarchy is presented in Figure 8.

86

Figure 8 Minimal CNF Fault Hierarchy [22]

The minimal CNF fault hierarchy is identical to the minimal DNF fault hierarchy

except that the ORF. and ORF+ have switched. This is because in minimal DNF, the OR

operator separates terms and the AND operator separates literals, while in minimal CNF,

the AND operator separates terms and the OR operator separates literals. The minimal

DNF and minimal CNF fault hierarchies are each composed of three columns. Table 18

shows how the faults in each column of Lau and Yu’s fault hierarchy (minimal DNF fault

hierarchy) are related to UTPs and NFPs. Table 19 shows how the faults in each column

of Figure 8 (minimal CNF fault hierarchy) are related to UFPs and NTPs. In these tables,

an “X” means that the faults in the column header can be detected by the type of point in

the row header.

Table 18 Minimal DNF Fault Detection

 LIF,TOF,ORF+ LRF,LNF, TNF, ENF LOF, ORF.

UTP X

UTP or NFP X

NFP X

 LOF

ORF+

 LRF

 LNF

 TNF

 ENF

 LIF

TOF

ORF.

87

Table 19 Minimal CNF Fault Detection

 LIF, TOF, ORF. LRF,LNF, TNF, ENF LOF, ORF+

UFP X

UFP or NTP X

NTP X

For a minimal DNF predicate, a fault in the first column can be detected only by a

UTP. For a minimal CNF predicate, a fault in the first column can be detected only by a

UFP. For a minimal DNF predicate, a fault in the second column can be detected by a

UTP or an NFP. For a minimal CNF predicate, a fault in the second column can be

detected by a UFP or an NTP. For a minimal DNF predicate, a fault in the third column

can be detected only by an NFP. For a minimal CNF predicate, a fault in the third column

can be detected only by an NTP. There is a complementary relationship between minimal

DNF and CNF in terms of their logic coverage criteria. MUTP complements MUFP,

PCUTPNFP complements PCUFPNTP and MNFP complements MNTP. The Minimal-

MUMCUT algorithm can be modified so that it can accept either a minimal CNF or

minimal DNF expression without sacrificing fault detection. This is best seen with an

example.

Consider ab + cd, which is in minimal DNF. The MUTP criterion is feasible for

each term, so only a single NFP is needed for each literal and NFPs can be chosen to

overlap to reduce test set size. The Minimal-MUMCUT algorithm will generate six tests:

1101 – UTP for ab

1110 – UTP for ab

88

0111 – UTP for cd

1011 – UTP for cd

0101 – NFP for a and c

1010 – NFP for b and d

Consider (a + c)(b + d)(a + d)(b + c), which is in minimal CNF. With the

Minimal-MUMCUT algorithm described so far, this expression would need to first be

transformed to minimal DNF before tests are created. Transforming to minimal DNF

yields ab + cd, for which Minimal-MUMCUT requires the six tests described above.

Now consider a TOF in (a + c)(b + d)(a + d)(b + c) where term (a + d) is

omitted to yield (a + c)(b + d)(b + c). This fault can only be detected by 0110 as this

point causes the original expression to be FALSE and the faulty expression to be TRUE

since 0110 is the lone UFP for term (a + d). Also, consider a TOF in (a + c)(b + d)(a +

d)(b + c) where term (b + c) is omitted to yield (a + c)(b + d)(a + d). This fault can only

be detected by 1001 as this point causes the original expression to be FALSE and the

faulty expression to be TRUE since 1001 is the lone UFP for term (b + c).

Neither 0110 nor 1001 is in the Minimal-MUMCUT test set for ab + cd.

Although these points could have been chosen for a Minimal-MUMCUT test set they

were not because NFPs were chosen to overlap to reduce test set size. While this does not

cause any decrease in fault detection if the predicate is in minimal DNF, it does if the

predicate is in minimal CNF and then is converted to minimal DNF.

89

General Form Boolean Expressions

Based on the complementary relationship of minimal DNF and minimal CNF, the

Minimal-MUMCUT algorithm can be modified to handle minimal CNF and minimal

DNF predicates and still guarantee fault detection. Even better, the algorithm can be

modified to handle predicates that are not in minimal CNF or minimal DNF and still have

excellent (but not guaranteed) logic fault detection. The modified Minimal-MUMCUT

algorithm for general form Boolean expressions is given below and results in a new

criterion called Union Minimal-MUMCUT.

Union Minimal-MUMCUT Test Generation Algorithm for General Form

Expressions [22]

if the expression is in Minimal DNF

 for each term X

 generate MUTP tests for X

 if the MUTP criterion is infeasible for X

 for each literal x in X

 generate PCUTPNFP tests for x

 if the PCUTPNFP criterion is infeasible for x, generate MNFP tests for x

 end for

 else generate an NFP for each literal x in X to overlap NFPs

 end for

else if the expression is in Minimal CNF

 for each term X

 generate MUFP tests for X

 if the MUFP criterion is infeasible for X

 for each literal x in X

 generate PCUFPNTP tests for x

 if the PCUFPNTP criterion is infeasible for x, generate MNTP tests for x

 end for

 else generate an NTP for each literal x in X to overlap NTPs

 end for

else

 convert the expression to Minimal DNF and form tests

 convert the expression to Minimal CNF and form tests

 generate the union of the two test sets known as a Union Minimal-MUMCUT test set

90

The new algorithm for (a + c)(b + d)(a + d)(b + c) would generate tests as follows.

0101 – UFP for (a + c)

1010 – UFP for (b + d)

0110 – UFP for (a + d)

1001 – UFP for (b + c)

The MUFP criterion is infeasible for each term, so tests needed to satisfy PCUFPNTP are

1101 – corresponding NTP for a in (a + c) and b in (b + c)

0111 – corresponding NTP for c in (a + c) and d in (a + d)

1110 – corresponding NTP for b in (b + d) and a in (a + d)

1011 – corresponding NTP for d in (b + d) and c in (b + c)

Note now that 0101 and 1010 are (and must be) included, which guarantees fault

detection of the TOFs in (a + c)(b + d)(a + d)(b + c) examined previously. The modified

Minimal-MUMCUT algorithm now guarantees fault detection for the single faults in Lau

and Yu’s fault hierarchy if the expression under test is in minimal DNF or minimal CNF.

This leaves the case where the predicate is neither in minimal DNF nor minimal

CNF. In this case, the expression is converted to each format, tests are generated based on

each format and then the union of the two test sets is produced. The union of the two test

sets is called a Union Minimal-MUMCUT test set. While such a test set does not

guarantee fault detection, it can detect faults that neither the minimal DNF nor minimal

CNF test set can with little increase in test set size [22].

 A study using 10 predicates from safety critical software was performed to see if

Minimal-MUMCUT tests detect a high percentage of faults in predicates that are neither

in minimal DNF nor minimal CNF. For each predicate, each possible fault amongst the

fault types in Lau and Yu’s fault hierarchy was generated. In addition, the following fault

91

types were generated: Stuck-At Fault (SAF – setting a literal to TRUE or FALSE),

Parentheses Omission Fault (POF – omitting a set of parentheses), Parentheses Insertion

Fault (PIF – inserting a set of parentheses), Associative Shift Fault (ASF – changing term

associativity by moving a set of parentheses). A determination of equivalency for each

seeded fault was made by determining if a test set satisfying combinatorial coverage

could detect the fault. Any fault for which a combinatorial test set could not detect the

fault was determined to be equivalent. A total of 3974 faults were seeded, but 404 (10%)

were equivalent, leaving 3570 non-equivalent seeded faults. The predicates in general

form are in Appendix C along with examples of the SAF, POF, PIF and ASF.

When a predicate is not in minimal DNF or minimal CNF, the concept of a term does

not apply, which affects how a TNF, TOF and LIF are conceptualized. For this study, a

term for a predicate neither in minimal DNF nor minimal CNF is either a quantity

contained in parentheses or an operand of an OR operator. For example, a(~b + ~c)d + e

has five terms: ~b, ~c, (~b + ~c), e and a(~b + ~c)d.

Table 20 displays the results of the study showing fault detection for three different

Minimal-MUMCUT test sets:

1) a test set based only on the minimal DNF form of the predicate

2) a test set based only on the minimal CNF form of the predicate

3) a Union Minimal-MUMCUT test set

92

Table 20 Fault Detection in General Form Boolean Predicates by a Minimal-

MUMCUT Test Set based on Minimal DNF, Minimal CNF, or Union [22]

No.
Number

of Faults

Number

of Faults

Detected

by DNF

tests

Percent

Detected

by DNF

tests

Number

of Faults

Detected

by CNF

tests

Percent

Detected

by CNF

tests

Number

of Faults

Detected

by

Union

tests

Percent

Detected

by Union

tests

1 496 496 100% 374 75% 496 100%

4 103 103 100% 102 99% 103 100%

6 859 816 95% 807 94% 816 95%

8 446 437 98% 427 96% 437 98%

9 199 199 100% 183 92% 199 100%

10 367 361 98% 297 81% 365 99%

13 419 381 91% 419 100% 419 100%

14 283 280 99% 237 84% 280 99%

19 237 237 100% 104 44% 237 100%

20 161 161 100% 91 57% 161 100%

Sum 3570 3471 97% 3041 85% 3513 98%

The results show that a Union Minimal-MUMCUT test set detected over 98% of

the faults. One interesting finding is that the difference in fault detection for a Union

Minimal-MUMCUT test set versus a minimal DNF Minimal-MUMCUT test set was very

small (98% versus 97%) whereas the difference in fault detection for a Union Minimal-

MUMCUT test set versus a minimal CNF Minimal-MUMCUT test set was larger (98%

versus 85%). This occurred even though the difference in test set size of the minimal

CNF Minimal-MUMCUT test set and the minimal DNF Minimal-MUMCUT test set was

less than 1 test on average. Also, the variability in fault detection was larger for a

minimal CNF Minimal-MUMCUT test set than for a minimal DNF Minimal-MUMCUT

test set. With different predicates however, this finding could be reversed – meaning that

93

fault detection based on a minimal DNF Minimal-MUMCUT test set could be lower than

the fault detection based on a minimal CNF Minimal-MUMCUT test set. This shows the

importance of constructing a Union Minimal-MUMCUT test set to increase fault

detection because such a test set will always detect at least as many faults as a Minimal-

MUMCUT test set based only on minimal DNF or minimal CNF.

94

5 Comparison of Minimal-MUMCUT with MUMCUT

 This chapter is the first of two chapters comparing the Minimal-MUMCUT

criterion with another logic coverage criterion. The focus of this chapter is comparing the

Minimal-MUMCUT criterion with the MUMCUT criterion, which corresponds to the

first row in Table 5. Each section in this chapter corresponds to a cell in Table 5. Section

5.1 corresponds to cell 1a (test set size comparison), section 5.2 corresponds to cell 1c

(single minimal DNF fault detection comparison), section 5.3 corresponds to cell 1d

(double minimal DNF fault detection comparison), and section 5.4 corresponds to cell 1e

(general logic fault detection comparison). The overriding theme of this chapter is that

single and double fault detection of the Minimal-MUMCUT and MUMCUT criteria are

identical for minimal DNF/CNF predicates (and very similar for predicates that are

neither in minimal DNF nor minimal CNF) yet Minimal-MUMCUT test set size is

smaller.

5.1 Test Set Size (Contribution 1a Parts I and II)

Test Set Size in the Minimal DNF Domain

With respect to Lau and Yu’s fault hierarchy, a MUMCUT test set may not be

minimal because it is possible that tests can be removed from the test set without

sacrificing fault detection. From Figure 4 and the Minimal-MUMCUT Test Generation

Algorithm in section 4.1, it should be clear that Minimal-MUMCUT test set size will

95

always be less than or equal to MUMCUT test set size. While MUMCUT always satisfies

MUTP, CUPTNFP and MNFP, Minimal-MUMCUT is only required to satisfy MUTP of

these three because it takes advantage of feasibility. Consider the predicate ab + cd. 1101

and 1110 are UTPs for ab and the MUTP criterion is feasible for ab. 0101 and 1010 are

NFPs for a and b, respectively. 0111 and 1011 are UTPs for cd and the MUTP criterion is

feasible for cd. 0101 and 1010 are NFPs for c and d, respectively. A Minimal-MUMCUT

test set can thus be achieved by satisfying MUTP/NFP such as {1101, 1110, 0101, 1010,

0111, 1011}. This test set has two fewer tests than the smallest test set that can be used to

satisfy MUMCUT. Additional tests of 0110 and 1001 would be needed to satisfy MNFP

and hence MUMCUT.

Chen, Lau and Yu [8] evaluated MUMCUT test set size (using the greedy MUTP

algorithm developed by Chen and Lau [6]) for 19 minimal DNF predicates from an air

traffic collision avoidance system (TCAS). There were actually 20 predicates but number

12 was excluded due to a missing a right parenthesis detected by Weyuker et al. [46]. The

predicates have from 5 to 13 unique literals (see Appendix B). Kaminski and Ammann

[19] created Minimal-MUMCUT tests for each predicate and assessed MUTP feasibility

for each term and PCUTPNFP feasibility for each literal. The Minimal-MUMCUT

algorithm presented earlier was implemented in Java and used to obtain the results.

On average, Minimal-MUMCUT test set size was 63.72% of MUMCUT test set

size (Contribution 1a Part I). The greatest savings was for predicate 19, where

Minimal-MUMCUT test set size was 35.87% of MUMCUT test set size. Table 21

displays these results. Minimal-MUMCUT test set size is always less than MUMCUT

96

test set size, except when each literal is in each term, in which case test set size is the

same (see predicates 8 and 9 in Appendix B). In this case, each term has only one UTP,

each literal has only one NFP (which happens to be a corresponding NFP) and no LIFs or

LRFs exist.

Table 21 Minimal-MUMCUT vs. MUMCUT Test Set Size [19]

Predicate

Minimal-

MUMCUT

[19]

MUMCUT [50] Percentage 2
n

1 27 39.0 69.23% 128

2 81 116.00 69.83% 512

3 148 238.7 62.00% 4096

4 9 11.8 76.27% 32

5 34 43.0 79.07% 512

6 62 84.0 73.81% 2048

7 62 106.0 58.49% 1024

8 36 36.00 100.00% 256

9 16 16.00 100.00% 128

10 62 86.0 72.09% 8192

11 61 124.0 49.19% 8192

12 N/A N/A N/A N/A

13 17 36.1 47.09% 4096

14 22 34.0 64.71% 128

15 39 60.7 64.25% 512

16 104 153.1 67.93% 4096

17 39 76.3 51.11% 2048

18 48 78.4 61.22% 1024

19 16 44.6 35.87% 256

20 14 24.0 58.33% 128

Sum 897 1407.7 37,408

Avg 47.21 74.09 63.72% 1968.84

97

Test Set Size in the General Form Domain

Yu and Lau [48] found that of a sample of 20 non-minimal DNF predicates, 99%

of seeded faults were detected by MUMCUT tests based on the corresponding minimal

DNF predicates. Sun et al. [41] extended MUMCUT in order to guarantee detecting the

1% of faults that went undetected in these general form predicates. They identified five

patterns of faults that MUMCUT tests are not guaranteed to detect when such faults are

translated into faults in a minimal DNF predicate. These fault types do not exist in Lau

and Yu’s fault hierarchy. For two of the five patterns (patterns 3 and 4), Sun et al. state

that they could not determine a MUMCUT extension to guarantee fault detection. The

author confirmed with Sun et al. that errors in their descriptions of patterns 3 and 4 led to

their inability to determine MUMCUT extensions. These errors are described and

corrected below. Each of the five patterns is described below. Sun et al. do not provide

test set size metrics for the extensions, but Kaminski and Ammann [22] did. These

metrics are also presented below.

PATTERN 1

For pattern 1, the example given by Sun et al. is mutating abc to abc + ~a~b. Note that

001 detects this fault. However, this fault is not included in a MUMCUT test set. To

include such a point, an extension known as n-MNFP for n > 1 is needed. n-MNFP

means to extend MNFP by applying it to all combinations of literals in a term. Whereas

1-NFP (which is the same as NFP) means that only a single literal in a term needs to be

negated for the predicate to change from FALSE to TRUE, n-NFP means that n literals in

a term need to be negated for the predicate to change from FALSE to TRUE. Note that 2-

98

NFP for literals a and b in term abc means that term abc evaluates to FALSE but if literal

a and literal b are negated, the term abc evaluates to TRUE. Thus, 001 satisfies 2-NFP

for literals a and b in term abc. Other 2-NFP points include 010 for literals a and c in

term abc and 100 for literals b and c in term abc. Similarly, 3-NFP is satisfied by the

point 000 since all 3 literals need to be negated in term abc to change the predicate value

from FALSE to TRUE for this point. n-MNFP test set size is based on combinations. In a

minimal DNF predicate, either each term contains all unique literals or each term does

not. For example, in ab + bc neither term contains all unique literals, but in ab + ~a~b

each term contains all unique literals. Based on these observations, n-MNFP size for n >

1 is as follows. Let m be the number of terms and let
i

n be the number of literals in term i.

If each term contains all unique literals then n-MNFP size for n > 1 will consist of all

FALSE points except for 1-NFPs. If each term does not contain all unique literals,

maximum n-MNFP test set size can be at least 2
1 2

!/ !()!
inm

i i

i r

n r n r
= =

−∑∑ . That is, for each

term, all combinations of “ in choose r” for r > 1. The multiplication by two occurs

because it takes at least two tests for each n-NFP to satisfy n-MNFP as each literal not in

the term of interest must attain values 1 and 0. However, n-MNFP test set size in practice

will often be less because some of the combinations of values that make one term FALSE

will either (1) represent a TRUE point for another term, (2) represent a 1-NFP for a literal

in another term, or (3) represent another n-NFP for a literal in another term. For example,

consider ab + ~a~b. While 00 is a FALSE point for term ab, it is not a 2-NFP for either

literal a or literal b in term ab because this point makes term ~a~b TRUE. As another

99

example, consider abc + ~a~b~c. While 001 is a FALSE point for term abc it is not

counted as a 2-NFP for either literal a or literal b in term abc because it is a 1-NFP for

literal c in term ~a~b~c.

PATTERN 2

For pattern 2, the example from Sun et al. is mutating ab + c to ab + bc + ac. To detect

this fault, 001 must be included. While this is a UTP for term c, it does not have to be

included in a MUMCUT test suite because 101 and 011 satisfy MUTP for term c. Thus,

the extension for this pattern is to include all UTPs. Let m be the number of terms and n

be the number of unique literals and in be the number of literals in term i. Maximum test

set size to include all UTPs is
1

2 i

m
n n

i

−

=

∑ . That is, every possible combination of literals not

in the term must be included for each UTP for each term. When the MUTP criterion is

infeasible or when OTPs exist, test set size will be less.

PATTERN 3

For pattern 3, Sun et al. give the example of mutating acde + bc to acde + bc + ab~d.

They also state that 11001 is not an NFP for any literal in acde + bc. However, 11001 is

an NFP for literal c in term bc. Sun et al. state that the fault where ab~d is inserted into

acde + bc is guaranteed not to be detected by a MUMCUT test suite. However, 11001

can detect the fault as acde + bc evaluates to FALSE but acde + bc + ab~d evaluates to

TRUE for this point. 11000 is also an NFP for literal c in term bc but this point does not

detect the fault. Due to MUMCUT’s non-deterministic nature, either 11001 or 11000

could be selected as the NFP for literal c in term bc. Thus, MUMCUT may or may not

100

detect this fault. Thus, the extension to MUMCUT needed for pattern 3 is to include all

NFPs. Let m be the number of terms and in be the number of literals in term i. Maximum

test set size to include all NFPs is
1

2 i

m
n n

i

i

n
−

=

∑ . That is, for each literal in each term, all

possible combinations of all literals not in the term must be achieved. When

infeasibilities arise or when certain combination of literals not in the term make some

other term evaluate to TRUE, test set size will be less.

PATTERN 4

For pattern 4, Sun et al. give the example of mutating ab + ac to ab~c + a~bc + ~abc.

011 can detect this fault as ab + ac evaluates to FALSE but ab~c + a~bc + ~abc

evaluates to TRUE. 011 must be chosen in a MUMCUT test suite because this point is

needed to satisfy MNFP for literal a in term ab and to satisfy MNFP for literal a in term

ac. Sun et al. incorrectly claim that only the point 111 can detect the fault and since this

point is for certain not chosen in a MUMCUT test suite, they also incorrectly claim that

MUMCUT is guaranteed to miss detecting this fault. Upon discussion with Sun et al., the

example should have been mutating ab + ac + bc to ab~c + a~bc + ~abc. Using this

example, their analysis is correct in that only 111 can detect the fault. 111 is an OTP as it

makes terms ab, ac and bc all TRUE. The extension to MUMCUT then is to include an

OTP for every combination of two terms. (In the example above, the OTP for terms ab

and ac also happens to be an OTP for terms ab and bc and for terms ac and bc, but this

overlap does not necessarily happen.) Let m be the number of terms. Maximum test set

size to include an OTP for each combination of two terms is m! / 2!(m-2)! That is, all

101

combinations of “m choose 2”. When infeasibilities arise or overlap can occur amongst

OTPs, test set size will be less.

PATTERN 5

For pattern 5, Sun et al. give the example of mutating ab to ab + bc. No test in a

MUMCUT test set will detect this fault because a new literal c is introduced. Consider

the general form Boolean expression (a + b)(c + b) + bd and the mutation where the

second occurrence of literal b is replaced by literal d to yield (a + b)(c + d) + bd.

Transforming the original predicate to minimal DNF yields ac + b so the fault goes

undetected as variable d no longer appears. The extension Sun et al. give is to include all

combinations of missing variables when creating mutants results in the number of unique

literals changing between the original predicate and the mutant. Thus, the extension will

increase MUMCUT size by a factor of 2x where x is the number of missing variables.

To summarize, the following extensions to MUMCUT are proposed for general

form predicates.

1. Include n-MNFP for n > 1

2. Include all UTPs

3. Include all NFPs

4. Include an OTP for each two term combination

5. Include all combinations of missing variables

While this approach increases fault detection in general form predicates, it

increases test set size. Test set sizes given previously for each of the five patterns grow

very large as the number of literals, number of unique literals and number of terms

102

grows. Furthermore, none of the points needed for any pattern overlap with any of the

points needed for any other pattern. For example, a UTP does not overlap with any n-

NFP or any OTP. Including all of these tests can approach or even demand exhaustive

coverage as demonstrated by Kaminski and Ammann [22].

An empirical study was conducted by Kaminski and Ammann [22] using 10 of the

predicates in Appendix B. Each predicate is converted to minimal DNF and minimal

CNF. A minimal DNF and a minimal CNF test set are constructed using the Minimal-

MUMCUT algorithm. A MUMCUT extension test set is also constructed. The relative

test set sizes of the minimal DNF test set, the minimal CNF test set, the union test set, the

MUMCUT test set and the MUMCUT extension test set are then compared. When

considering MUMCUT extensions the missing variable case for pattern 5 is not included

so as to restrict attention to faults where the same number of unique literals occurs in the

original and faulty predicate. Obviously, including tests for all x missing unique literals

will add an additional 2
x
 tests to the MUMCUT extension test set and not including any

of these tests in a Minimal-MUMCUT test set will mean that any fault involving the

missing unique variable may be missed. Since these are known results, only patterns 1

through 4 are considered. The results are displayed in Table 22.

103

Table 22 Minimal-MUMCUT, MUMCUT and MUMCUT Extension Test Set Sizes

[22]

No.

Minimal-

MUMCUT

DNF [22]

Minimal-

MUMCUT

CNF [22]

Union

Minimal-

MUMCUT

[22]

MUMCUT

[50]

MUMCUT

Extension

1 27 20 30 39.0 128

4 9 10 12 11.8 29

6 62 37 65 84.0 2046

8 36 26 36 36.00 256

9 16 14 16 16.00 128

10 62 22 80 86.0 8186

13 17 88 88 36.1 1874

14 22 22 39 34.0 127

19 16 22 30 44.6 256

20 14 14 18 24.0 128

Sum 281 275 414 411.5 13158

The results show that when the predicates are in neither minimal DNF nor

minimal CNF, Union Minimal-MUMCUT test set size is 3.15% of MUMCUT extension

test set size (Contribution 1a Part II). When a predicate is in neither minimal CNF nor

minimal DNF the Minimal-MUMCUT algorithm will convert the predicate to each

format and then union the two test sets. The results also show that the MUMCUT

extension approach requires on average 85% of the tests needed for exhaustive coverage

and for 5 of the 10 predicates exhaustive coverage was actually required. If none of the

10 predicates are in minimal DNF or minimal CNF, test set size is still just 3% of

exhaustive size using the Minimal-MUMCUT approach to form a union test set. The

actual Minimal-MUMCUT and MUMCUT Extension test sets for four of the predicates

in the study are given in Appendix D.

104

5.2 Single Minimal DNF Fault Detection (Contribution 1c)

This section presents a theoretical contribution by proving the single Minimal DNF

fault detection capability of a Minimal-MUMCUT test set and a MUMCUT test set.

Theorem 1 (Contribution 1c): Minimal-MUMCUT vs. MUMCUT Single Minimal

DNF Fault Detection

 For minimal DNF predicates, Minimal-MUMCUT tests and MUMCUT tests have the

same guaranteed single logic fault detection (9 of 9 fault types in Lau and Yu’s fault

hierarchy).

Proof:

Chen, Lau and Yu [8] show that MUMCUT tests are guaranteed to detect all single faults

in Lay and Yu’s fault hierarchy. MUTP is guaranteed to detect the LIF and hence the

TOF, ORF+, LNF, TNF and ENF [8] and Minimal-MUMCUT always incorporates

MUTP. A single NFP is guaranteed to detect the LOF and ORF+ [8] and Minimal-

MUMCUT always incorporates at least a single NFP for each unique literal. When

feasible, MUTP detects the LRF [8]. When feasible, PCUTPNFP detects the LRF [22].

When feasible, MNFP detects the LRF [8]. Minimal-MUMCUT always incorporates

MUTP and will incorporate PCUTPNFP when MUTP is infeasible, unless PCUTPNFP is

also infeasible in which case Minimal-MUMCUT will incorporate MNFP. Thus, the LRF

is detected, meaning all single fault types are detected by Minimal-MUMCUT tests.

End Proof

105

5.3 Double Minimal DNF Fault Detection (Contribution 1d Parts I and II)

This section presents a theoretical contribution by proving the double Minimal

DNF fault detection capability of a Minimal-MUMCUT test set and a MUMCUT test set.

Theorem 2 (Contribution 1d Part I): Minimal-MUMCUT vs. MUMCUT Double

Minimal DNF Fault Detection

For minimal DNF predicates, Minimal-MUMCUT and MUMCUT tests have the same

guaranteed double logic fault detection (84 of 92 double fault types in Lau and Yu’s fault

hierarchy).

Proof:

The Minimal-MUMCUT and MUMCUT criteria subsume the BASIC criterion,

which Lau et al. [27, 28, 29] prove detects 84 of 92 double fault types in Lau and Yu’s

fault hierarchy. However, neither subsumes the additional criteria proposed by Lau et al.

needed to guarantee detection of all double fault types. Thus, Minimal-MUMCUT and

MUMCUT test sets guarantee the same double fault detection.

End Proof

 Both Minimal-MUMCUT and MUMCUT test sets can fail to detect eight double

fault types [20]. As was described in section 4.4, the only one of these eight double fault

types that went undetected by Minimal-MUMCUT tests in 19 examined predicates is the

LIF-LIF as the other seven double fault types were guaranteed to be detected. This same

double fault goes undetected by MUMCUT tests because MUMCUT does not require

OTPs, which are necessary to detect the LIF-LIF when both terms involved in the double

fault are MUTP infeasible [20]. Table 13 showed that over 99% of the LIF-LIFs were

106

actually detected by Minimal-MUMCUT tests. As an additional component of this

empirical study, MUMCUT tests were generated and these tests detected the exact same

percentage of the LIF-LIFs as the Minimal-MUMCUT tests did (Contribution 1d Part

II).

Table 23 compares test set size for the Minimal-MUMCUT criterion

supplemented with tests needed to detect LIF-LIFs with mean MUMCUT test set size.

The number of tests needed to detect LIF-LIFs is less than the number of undetected LIF-

LIFs because multiple undetected LIF-LIFs can be detected by the same test. 129 LIF-

LIFs (out of 149,819) went undetected (an average of 6.79 per predicate) but 108

additional tests can be used to detect them (an average of 5.68 tests per predicate). On

average, the test set size formed by combining Minimal-MUMCUT tests and tests to

detect all LIF-LIFs is 71.39% of MUMCUT test set size (and 2.60% of exhaustive test set

size), yet the former detected all faults the MUMCUT tests did plus the LIF-LIF that the

MUMCUT tests did not.

Table 23 Minimal-MUMCUT + LIF-LIF Test Set Size vs. MUMCUT Test Set Size

[20]

Predicate

Minimal –

MUMCUT

+ LIF-LIF

Tests [20]

MUMCUT

[50]
Percentage 2

n

1 29 39.0 74.36% 128

2 84 116.00 72.41% 512

3 173 238.7 72.48% 4096

4 10 11.8 84.75% 32

5 41 43.0 95.35% 512

6 64 84.0 76.19% 2048

107

Predicate

Minimal –

MUMCUT

+ LIF-LIF

Tests [20]

MUMCUT

[50]
Percentage 2

n

7 62 106.0 58.49% 1024

8 36 36.00 100.00% 256

9 16 16.00 100.00% 128

10 68 86.0 79.07% 8192

11 64 124.0 51.61% 8192

12 N/A N/A N/A N/A

13 21 36.1 58.17% 4096

14 27 34.0 79.41% 128

15 56 60.7 92.26% 512

16 133 153.1 86.87% 4096

17 39 76.3 51.11% 2048

18 52 78.4 66.33% 1024

19 16 44.6 35.87% 256

20 14 24.0 58.33% 128

Sum 1005 1407.7 37,408

Avg 52.89 74.09 71.39% 1968.84

5.4 General Logic Fault Detection (Contribution 1e Parts I and II)

In section 4.5 it was reported that of 3% of 20,256 predicates Chilenski extracted

from avionics software contained five or more unique literals, and that 85% of these

predicates were either in minimal DNF or minimal CNF (or both). Section 4.5 also

showed that the Union Minimal-MUMCUT approach guarantees fault detection of all

single and 84 of 92 double faults in Lau and Yu’s fault hierarchy for predicates in either

minimal DNF or minimal CNF.

If a minimal CNF predicate is converted to minimal DNF, and a MUMCUT test

set is formed, that test set will satisfy MUTP, CUTPNFP, and MNFP for the minimal

108

DNF predicate, but it will also satisfy MUFP, CUFPNTP, and MNTP for the original

minimal CNF predicate. This is due to the dual nature of minimal CNF and minimal DNF

and the correspondence between MUTP and MUFP, CUTPNFP and CUFPNTP, and

MNFP and MNTP. Thus, for 85% of the predicates in the study, fault detection was not

compromised for either MUMCUT tests or Union Minimal-MUMCUT tests

(Contribution 1e Part I).

Although MUMCUT fault detection has been shown to be very good for general

from predicates, the question remains as to how well Minimal-MUMCUT tests do at fault

detection for general form predicates. Yu and Lau [48] found that of a sample of 20

predicates that are neither in minimal DNF nor minimal CNF, 99% of seeded faults were

detected by MUMCUT tests formed from the minimal DNF version of the predicates. 10

of these 20 predicates were the exact same predicates used in the empirical study

described in section 4.5 that showed that Union Minimal-MUMCUT tests detected over

98% of seeded faults. Also, the fault types matched between the two studies. Thus, a

direct comparison for these 10 predicates can be done. The MUMCUT tests generated by

Yu and Lau for these 10 predicates also detected over 98% of the faults (Contribution 1e

Part II). Thus, the results indicate that the ability of a Union Minimal-MUMCUT test set

to detect faults in general form expressions is comparable to the ability of a MUMCUT

test set despite the smaller Union Minimal-MUMCUT test set size.

109

6 Comparison of Minimal-MUMCUT with RACC and RICC

This chapter is the second of two comparing the Minimal-MUMCUT criterion with

another logic coverage criterion. The focus of this chapter is comparing the Minimal-

MUMCUT criterion with RACC and RICC, which corresponds to the second row in

Table 5. Each section in this chapter corresponds to a cell in Table 5. Section 6.1

corresponds to cell 2a (test set size comparison), section 6.2 corresponds to cell 2c (single

minimal DNF fault detection comparison), and section 6.3 corresponds to cell 2d (double

minimal DNF fault detection comparison). The overriding theme of this chapter is that

while the Minimal-MUMCUT criterion has a larger test set size, this is offset by the fact

that fault detection for RACC and RICC is worse.

6.1 Test Set Size (Contribution 2a)

Chilenski and Miller [10] state that minimum test set size for both Weak and Strong

MCDC is n + 1, where n is the number of unique literals for Weak MCDC and the

number of literals for Strong MCDC. Chilenski and Miller [10] also state that for both

Weak and Strong MCDC, test set size can exceed n+1 where n is the number of unique

literals for Weak MCDC and the number of literals for Strong MCDC. Finally, Chilenski

and Miller [10] also state that a test set size of 2n will always suffice for both Weak and

Strong MCDC, again where n is the number of unique literals for Weak MCDC and the

number of literals for Strong MCDC. However, Chilenski and Miller [10] do not state

110

that 2n tests will actually ever be required (except for n = 1) so all that can be concluded

from their research is that maximum MCDC test set size is between n + 2 and 2n,

inclusive. Ammann and Offutt [2] indicate that RACC and CACC test set size is always

n+1 where n is the number of unique literals. This conflicts with the claim of Chilenski

and Miller [10] since RACC and CACC are versions of weak MCDC. To resolve this

discrepancy and to better quantify the range of maximum MCDC test set size, the author

analyzed RACC test set size for a large set of predicates.

There exist 22
n

 possible Boolean predicates in n unique literals. The author

examined RACC test set size for all such predicates for n=1, n=2 and n=3 and found that

a RACC test set can always be formed by n + 1 tests. Thus, maximum RACC test set size

for predicates with 1, 2, or 3 unique literals is n + 1. For predicates with 4 unique literals,

65,536 predicates are possible so the author did not examine each of these. However, the

author conjectures that when n=4, maximum test set size remains n+1. When n >= 5, the

situation changes as demonstrated by Kaminski and Ammann [21]. Kaminski and

Ammann developed the following algorithm for determining the lowest bound on

maximum test set size for RACC. This same algorithm applies to CACC.

Lowest Bound Maximum RACC Test Set Size Algorithm [21]

if n=1 or n=2 or n=3 or n=4*

 maximum RACC test set size is n+1

else if n=5

 maximum RACC test set size is at least n + 2

else if an integer y exists such that n – (y + 2
y
) = 1

 maximum RACC test set size is at least 2(n-x) – 1 where x is the greatest integer such

 that x + 2
x
 <= n

else

 maximum RACC test set size is at least 2(n-x) where x is the smallest integer such that

 x + 2
x
 >= n

111

*For n=4, this is a conjecture by the author

As an example, consider n=7. An integer y=2 exists such that n – (y + 2
y
) = 1.

The greatest integer x such that x + 2
x
 <= n holds is x=2. Thus, maximum RACC test set

size is at least 2(n-x) – 1= 2(7-2) – 1 = 9. As another example, consider n=11. No integer

y exists such that n – (y + 2
y
) = 1. The smallest integer x such that x + 2

x
 >= n holds is

x=3. Thus, maximum RACC test set size is at least 2(n-x) = 2(11-3) = 16.

Table 24 displays the results of the maximum RACC test set size for n=1 to

n=37. Note that after n=37 the pattern repeats because 5 + 2
5
 = 37.

Table 24 Lowest Bound Maximum RACC Test Set Size Algorithm Results [21]

Number of

Unique

Literals (n)

Formula Size Raw Size

1 n+1 n+1 2

2 n+1 n+1 3

3 n+1 n+1 4

4 n+1 n+1 5

5 n+2 n+2 7

6 2(n-2) n+2 8

7 2(n-2) - 1 n+2 9

8 2(n-3) n+2 10

9 2(n-3) n+3 12

10 2(n-3) n+4 14

11 2(n-3) n+5 16

12 2(n-3) - 1 n+5 17

13 2(n-4) n+5 18

14 2(n-4) n+6 20

15 2(n-4) n+7 22

16 2(n-4) n+8 24

17 2(n-4) n+9 26

18 2(n-4) n+10 28

19 2(n-4) n+11 30

20 2(n-4) n+12 32

112

Number of

Unique

Literals (n)

Formula Size Raw Size

21 2(n-4) - 1 n+12 33

22 2(n-5) n+12 34

23 2(n-5) n+13 36

24 2(n-5) n+14 38

25 2(n-5) n+15 40

26 2(n-5) n+16 42

27 2(n-5) n+17 44

28 2(n-5) n+18 46

29 2(n-5) n+19 48

30 2(n-5) n+20 50

31 2(n-5) n+21 52

32 2(n-5) n+22 54

33 2(n-5) n+23 56

34 2(n-5) n+24 58

35 2(n-5) n+25 60

36 2(n-5) n+26 62

37 2(n-5) n+27 64

Note from Table 24 that for n=37, RACC test set size can be at least 64, which is

1.73n. For n=1034, RACC test set size can be at least 2048 or 1.98n according to the

algorithm. While it is doubtful that any predicate in practice contains 1034 unique

literals, from a theoretical perspective as n approaches infinity maximum RACC test set

size approaches 2n.

For an example of RACC test set size of n+5 = 2(n-3) = 16 for n=11 consider

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci + a!b!cj + !ab!ck

RACC selects a corresponding UTP-NFP pair for each unique literal (as opposed to each

literal) when the predicate is transformed into minimal DNF as UTPs and NFPs translate

to the conditions under which each literal determines a predicate. Since literals d, e, f, g,

113

h, i, j and k each appear in a different term, 8 UTPs are needed for RACC. Note also that

the NFPs amongst literals d, e, f, g, h, i, j and k cannot overlap with each other because:

the NFP for literal d requires a=1,b=1,c=1

the NFP for literal e requires a=0,b=1,c=1

the NFP for literal f requires a=1,b=0,c=1

the NFP for literal g requires a=1,b=1,c=0

the NFP for literal h requires a=0,b=0,c=1

the NFP for literal i requires a=0,b=0,c=0

the NFP for literal j requires a=1,b=0,c=0

the NFP for literal k requires a=0,b=1,c=0

Thus, at this point 16 tests are needed (8 UTPs and 8 NFPs) to satisfy RACC. No

additional tests are needed because the NFPs for literals a, b and c can overlap with NFPs

for literals d, e, f, g, i, j and k. Note that for n=11, n+5 = 2(n-3). Intuitively, 2(n-3) tests

are needed because all but 3 literals (a, b and c) require 2 tests (a UTP and an NFP) that

cannot overlap with each other. (The tests for literals a, b and c can overlap with other

tests.) RACC test set size analysis for actual predicates with other values of n is given in

Appendix E.

To compare RACC and Minimal-MUMCUT test set size in practice, an empirical

study was undertaken using the predicates listed in Appendix B. For each predicate, a

114

RACC test set was constructed manually and a Minimal-MUMCUT test set was

generated automatically using the Minimal-MUMCUT algorithm.

Table 25 lists RACC test set size and Minimal-MUMCUT test set size for each

predicate. The column labeled 2
n

refers to the total number of possible tests where n is the

number of unique literals in the predicate. While the author does not guarantee that the

RACC test set constructed for each predicate is the smallest possible, the author does

guarantee two things. One, the RACC test set for each predicate is minimal in that if any

test in the test set is removed, the test set will no longer satisfy RACC. Two, the RACC

test set for each predicate is no larger than the lowest bound maximum RACC test set

size according to the algorithm presented earlier. Also, a test set size of n+1 was the most

common test set size amongst the 19 predicates and in no case was a test set size greater

than n+4 chosen.

Table 25 shows that RACC test set size and Minimal-MUMCUT test set size are

both much smaller than combinatorial test set size. RACC test set size is on average just

0.6% of combinatorial test set size and Minimal-MUMCUT test set size is on average

just 2.4% of combinatorial test set size. Table 25 also shows that on average RACC test

set size is about 25% of Minimal-MUMCUT test set size (Contribution 2a).

Table 25 RACC and Minimal-MUMCUT Test Set Size [21]

Predicate

RACC

size

[21]

Minimal-

MUMCUT

size [19]

Percentage 2
n

1 9 27 33% 128

2 10 81 12% 512

3 16 148 11% 4096

115

Predicate

RACC

size

[21]

Minimal-

MUMCUT

size [19]

Percentage 2
n

4 6 9 67% 32

5 12 34 35% 512

6 12 62 19% 2048

7 12 62 19% 1024

8 9 36 25% 256

9 8 16 50% 128

10 15 62 24% 8192

11 16 61 26% 8192

12 N/A N/A N/A N/A

13 16 17 94% 4096

14 9 22 41% 128

15 12 39 31% 512

16 16 104 15% 4096

17 14 39 36% 2048

18 14 48 29% 1024

19 10 16 63% 256

20 8 14 57% 128

Average 11.79 47.21 1968.84

Total 224 897 24.97% 37,408

Table 26 displays the average test set size for RACC and Minimal-MUMCUT

grouped by the number of unique literals. The table shows that as the number of unique

literals increases the trend is that RACC test set size is a smaller percentage of Minimal-

MUMCUT test set size. Intuitively, as the number of unique literals increases, there are

more opportunities for literals to repeat in different terms in a minimal DNF predicate. As

more and more literals repeat in different terms, Minimal-MUMCUT test set size will

increase but RACC test set size will not.

116

Table 26 Average Test Set Size for RACC and Minimal-MUMCUT Grouped by

Number of Unique Literals [21]

Number

of

unique

literals

RACC

size

Minimal-

MUMCUT size
Percentage 2

n

5 6.00 9.00 67% 32

*6 N/A N/A N/A 64

7 8.50 19.75 43% 128

8 9.50 26.00 37% 256

9 11.33 52.00 22% 512

10 13.00 57.00 23% 1024

11 13.00 53.00 25% 2048

12 16.00 95.33 17% 4096

13 15.50 67.00 23% 8192

* no predicates examined had 6 unique literals

6.2 Single Minimal DNF Fault Detection (Contribution 2c Parts I and II)

This section presents a theoretical contribution by proving the single Minimal DNF

fault detection capability of a RACC test set and a RICC test set.

Theorem 3 (Contribution 2c Part I): Minimal-MUMCUT vs. RACC/RICC Single

Minimal DNF Fault Detection

For minimal DNF predicates, a test set that satisfies either RACC or RICC guarantees

detecting 2 of the 9 single fault types in Lau and Yu’s fault hierarchy (the ENF and TNF).

Proof:

The ENF can be detected by any test [30] and the TNF can be detected by any test for

which the predicate evaluates to FALSE [30] and since RACC and RICC are guaranteed

to include such tests, these faults are guaranteed to be detected. Examples are shown in

117

Appendix F of seeding each of the 7 faults into an actual predicate and showing that each

test in a RACC test set and each test in a RICC test fails to detect each fault.

End Proof

A natural extension of the work of Chen and Lau [7] is to establish the conditions

where the ACC and ICC test series fail to detect the faults in Lau and Yu’s fault

hierarchy. MCDC (ACC) is widely accepted as the criterion of choice for many software

critical applications. However, with respect to the hierarchy in Lau and Yu’s fault

hierarchy, Kaminski, Williams and Ammann [24] found that tests satisfying a common

version of MCDC (RACC) would not detect 7 of the faults under specific circumstances.

If the predicate is a singular Boolean expression in minimal DNF, then RACC tests are

guaranteed to detect all faults in Lau and Yu’s fault hierarchy but the LIF and CACC

tests are guaranteed to detect all faults in Lau and Yu’s fault hierarchy but the LIF and

the LRF [24]. RACC and CACC tests can miss detection of 7 of the 9 faults when literals

repeat in terms as shown in Appendix F.

To determine how often RACC (and hence CACC and GACC) tests actually do

miss detecting the 7 fault types they are not guaranteed to detect, an empirical study was

undertaken using the predicates listed in Appendix B. For each predicate, a RACC test set

was constructed manually. Every type of fault was examined manually to determine if the

RACC test set could detect it. An example is given in Appendix G.

Table 27 specifies the fault detection capability of the RACC test sets for each

predicate. Appendix H specifies the actual RACC tests used for each predicate and the

percentage of faults of each fault type that are detected. The results in Table 27 show that,

118

on average, RACC tests actually detected 35% of the faults Minimal-MUMCUT

guarantees detecting. Thus, although RACC test set size is 25% of Minimal-MUMCUT

test set size on average, this is offset by the fact that the majority of faults go undetected.

Table 27 RACC Fault Detection [21]

Predicate

Faults

RACC

detects

Total

Faults
Percentage 2

n

1 79 173 46% 128

2 108 548 20% 512

3 583 2493 23% 4096

4 61 71 86% 32

5 267 483 55% 512

6 72 342 21% 2048

7 158 524 30% 1024

8 44 104 42% 256

9 31 46 67% 128

10 268 576 47% 8192

11 267 1047 26% 8192

12 N/A N/A N/A N/A

13 336 397 85% 4096

14 162 236 69% 128

15 275 605 45% 512

16 502 1980 25% 4096

17 240 524 46% 2048

18 274 596 46% 1024

19 108 212 51% 256

20 56 68 82% 128

Average 204.79 580.26

Sum 3891 11025 35.29%

119

Table 28 displays the average fault detection for RACC tests grouped by the

number of unique literals. The table shows that as the number of unique literals increases

the trend is that RACC tests detect a smaller percentage of faults. Intuitively, as the

number of unique literals increases, there are more opportunities for literals to repeat in

different terms in the minimal DNF predicate. As more and more literals repeat in

different terms RACC test set size will not increase so the additional faults caused by

repeated literals have an increased chance of being undetected.

Table 28 RACC Fault Detection Grouped by Number of Unique Literals [21]

Number

of unique

literals

Faults

RACC

detects

Total

Faults
Percentage 2

n

5 61 71 86% 32

*6 N/A N/A N/A 64

7 328 523 63% 128

8 152 316 48% 256

9 650 1636 40% 512

10 432 1120 39% 1024

11 312 956 33% 2048

12 1421 4870 29% 4096

13 535 1623 33% 8192

* no predicates examined had 6 unique literals

RACC tests are guaranteed to detect only the ENF and TNF. Thus, another question

is what percentage of the faults that RACC tests may or may not detect do they actually

detect? The answer is 34% for the predicates in this study. This is very close to the 35%

given in Table 27 because the number of ENFs and TNFs (which RACC tests do

guarantee detecting) is a very small percentage of the total number of minimal DNF

120

faults that can occur in a predicate. That is, only one ENF is possible and the number of

TNFs is equal to the number of terms. The other fault types are much more prevalent.

Thus, RACC tests missed detecting 66% of the faults that they are not guaranteed to

detect (Contribution 2c Part II).

The implication of these results is that the extra cost associated with the Minimal-

MUMCUT syntactic criterion is justified for safety-critical software since semantic

RACC tests missed detecting the majority of faults. For other types of software with large

predicates, testers will need to make an informed decision as to which is more important,

test set size or fault detection. With RACC, testers can expect to miss 2/3 of the faults in

Lau and Yu’s fault hierarchy for large predicates with literals that repeat in different

terms. With Minimal-MUMCUT, fault detection is guaranteed, but at the cost of a test set

size that is likely to be four times as large.

6.3 Double Minimal DNF Fault Detection (Contribution 2d)

This section presents a theoretical contribution by proving the double Minimal

DNF fault detection capability of a RACC test set and a RICC test set.

Theorem 4 (Contribution 2d): Minimal-MUMCUT vs. RACC/RICC Double

Minimal DNF Fault Detection

For minimal DNF predicates, a test set that satisfies either RACC or RICC guarantees

detecting 22 of the 92 double fault types in Lau and Yu’s fault hierarchy.

Proof:

RACC and RICC tests require neither a UTP for each term nor an NFP for each literal

when a predicate is in minimal DNF (RACC requires a UTP and corresponding NFP for

121

each unique literal). Lau, Liu and Yu [27, 28, 29] document the detection conditions

needed for each of the 92 ordered, versioned double fault types. Most of the 92 types

require either a UTP or NFP to be detected. Others require TRUE points for detection

that although not being UTPs, must satisfy certain conditions such as various literals

being TRUE of FALSE. Still other double fault types require FALSE points for detection

that although not being NFPs, must also satisfy certain conditions such as various literals

being TRUE of FALSE. RACC and RICC do not require these conditions to hold. Of the

detection conditions specified, the only kind that RACC and RICC require is that at least

one FALSE point be in the test set. 22 of the 92 ordered, versioned double fault types can

be detected by an FALSE point. This translates to 4 of the 45 unordered, non-versioned

double fault types. Thus RACC and RICC tests guarantee detecting 22 of 92 (24%) of the

ordered, versioned double fault types and 4 of the 45 (9%) of the unordered, non-

versioned double fault types (ENF-TOF, TNF-TNF, TNF-TOF and TNF-LIF).

End Proof

122

7 TRF-TIF Logic Mutation

7.1 Overview of TRF-TIF Logic Mutation

Software logic mutation testing can be inefficient for at least three reasons. One,

the same logic mutant can be generated multiple times. Two, logic mutants are generated

that are guaranteed to be killed by a test that kills some other generated logic mutant.

Three, mutation tools lack logic mutation operators that generate mutants which, when

killed, guarantee killing the most number of other potential logic mutants. These

inefficiencies cause excess mutants to be generated and reduce fault detection capability.

Three new mutation operators are introduced by Kaminski and Ammann [18] to

resolve these problems, assuming minimal DNF. These operators are based on three new

faults, the Term Reference Fault / Literal Insertion Fault (TRF/LIF), Term Insertion Fault

/ Literal Reference Fault (TIF/LRF) and Term Insertion Fault / Literal Omission Fault

(TIF/LOF). Using these new mutation operators, a smaller mutant test set can be

generated yet still detect all LIFs, LRFs and LOFs assuming tests are found to kill the

mutants. These new fault types do not exist in Lau and Yu’s fault hierarchy and have no

corresponding mutation operators in current tools. A TRF/LIF involves replacing a term

with one or more terms to guarantee LIF detection. A TIF/LRF involves inserting a single

term containing all literals to guarantee LRF detection. A TIF/LOF involves inserting a

123

single term containing all literals to guarantee LOF detection. The mutation testing

approach based on these faults is called TRF-TIF logic mutation.

The rest of this chapter is organized as follows. The remainder of section 7.1

describes the algorithm used to generate TRF-TIF logic mutants. Section 7.1 also

introduces an extended fault hierarchy as well as new measures of mutation efficiency.

Section 7.2 discusses TRF-TIF logic mutant set size and section 7.3 discusses TRF-TIF

equivalent logic mutant set size. Single and double minimal DNF fault detection of a test

set weakly killing all TRF-TIF logic mutants is discussed in sections 7.4 and 7.5,

respectively. Section 7.6 briefly mentions how the ability of a test set that weakly kills all

TRF-TIF logic mutants to kill general mutants is evaluated.

Algorithms are presented below to describe how TRF-TIF logic mutants are

generated, starting with TRF/LIF mutations, then proceeding with TIF/LRF mutations,

and concluding with TIF/LOF mutations.

TRF/LIF Mutation Algorithm [23]

for each term X in the Minimal DNF predicate

 for each non-equivalent LIF that can occur for term X

 create a set of tests that can detect the LIF and mark this test set as unused;

 end for

 while at least one unused LIF test set exists

 if an unused test set contains only one test

 select that test (ties broke arbitrarily);

 else

 select the test that appears in the most unused sets of LIF tests (ties broken

 arbitrarily);

 create a TRF/LIF mutant by replacing term X with a sequence of terms separated by

 OR such that the sequence contains all LIFs that can be detected by the selected test;

 mark any LIF test sets containing the selected test as used;

 end while

end for

124

As an example, consider ab + cd. Four non-equivalent LIFs exist for term ab:

Inserting c into ab – detected by any test in test set 1: {1100, 1101}

Inserting ~c into ab – detected by the lone test in test set 2: {1110}

Inserting d into ab – detected by any test in test set 3: {1100, 1110}

Inserting ~d into ab – detected by the lone test in test set 4: {1101}

Note that test set 2 contains a single test so this test (1110) is selected. 1110 can

detect the LIF where ~c is inserted into ab and the LIF where d is inserted into ab. Thus,

the TRF/LIF mutant replaces ab with ab~c + abd to yield ab~c + abd + cd. Now test sets

2 and 3 are marked as used. Of the remaining unused test sets, test set 4 contains a single

test so this test (1101) is selected. 1101 can detect the LIF where c is inserted into ab and

the LIF where ~d is inserted into ab. Thus, the TRF/LIF mutant replaces ab with abc +

ab~d to yield abc + ab~d + cd. Now test sets 1 and 4 are marked as used and the

algorithm is repeated for term cb.

The number of TRF/LIFs for a term is the number of UTPs needed to make as

many external literals (literals not in that term) 0 and 1 as possible. The number of LIFs

for a term is twice the number of external literals. Consider ab + ~acdefgh. TRF/LIFs

are: f’ = ab~c + ab~d + ab~e + ab~f + ab~g + ab~h + ~acdefgh (whose mutant can only

be killed by 11111111) and f’’ = abc + abd + abe + abf + abg + abh + ~acdefgh (whose

mutant can only be killed by 11000000). The f’ TRF/LIF has a corresponding LIF of

ab~c + ~acdefgh, whose mutant can be killed by any of 32 inputs: 111XXXXX, where

XXXXX is any combination of values for defgh. Killing the f’ and f’’ mutants guarantees

killing all 12 LIF mutants for ab. A TRF/LIF has a large syntactic but small semantic

125

fault size as compared to an LIF. A TRF/LIF involves more syntactic changes than an

LIF, yet only one input kills a TRF/LIF mutant whereas several inputs might kill a

corresponding LIF mutant. The one input killing a TRF/LIF mutant is the intersection of

the input sets that kill each corresponding LIF mutant. The algorithm presented next

performs TIF/LRF mutations.

TIF/LRF Mutation Algorithm [23]

for each term X in the Minimal DNF predicate

 if an equivalent LIF exists* by inserting some literal y (or its negation) into term X

 for each literal z in term X

 for each non-equivalent LRF where literal z is replaced with y (or its negation)

 create a set of tests that can detect the LRF and mark this test set as unused;

 end for

 end for

 end if

end for

while at least one unused LRF test set exists

 if an unused test set contains only one test

 select that test (ties broke arbitrarily);

 else

 select test that appears in the most unused sets of LRF tests (ties broke arbitrarily);

 create a TIF/LRF mutant by inserting a term containing all literals that evaluates to

 TRUE for the selected test;

 mark any LRF tests containing that test as used;

end while

* There is an exception for a certain special type of equivalent LIF, described below

As an example, consider ab + ac + ad. Equivalent LIF mutants exist when

inserting ~c or ~d into ab, when inserting ~b or ~d into ac and when inserting ~b or ~c

into ad. This results in the following non-equivalent LRFs to consider:

Replacing a with ~c in ab – detected by any test in test set 1: {0100, 0101}

Replacing a with ~d in ab – detected by any test in test set 2: {0100, 0110}

Replacing b with ~c in ab – detected by the lone test in test set 3: {1000}

126

Replacing b with ~d in ab – detected by the lone test in test set 4: {1000}

Replacing a with ~b in ac – detected by any test in test set 5: {0010, 0011}

Replacing a with ~d in ac – detected by any test in test set 6: {0010, 0110}

Replacing c with ~b in ac – detected by the lone test in test set 7: {1000}

Replacing c with ~d in ac – detected by the lone test in test set 8: {1000}

Replacing a with ~b in ad – detected by any test in test set 9: {0001, 0011}

Replacing a with ~c in ad – detected by any test in test set 10: {0001, 0101}

Replacing d with ~b in ad – detected by the lone test in test set 11: {1000}

Replacing d with ~c in ad – detected by the lone test in test set 12: {1000}

 Test sets 3, 4, 7, 8, 11 and 12 each contain one test so this test (1000) is selected.

These test sets are marked as used and the corresponding TIF/LRF is created where

a~b~c~d is inserted as a new term to yield ab + ac + ad + a~b~c~d. Of the remaining

tests in the unused test sets, each test occurs twice (for example, 0100 occurs in test set 1

and test set 2). So 0100 is arbitrarily chosen and test sets 1 and 2 are marked as used. The

corresponding TIF/LRF is created where ~ab~c~d is inserted as a new term to yield ab +

ac + ad + ~ab~c~d. Of the remaining tests in the unused test sets, each test occurs twice

(for example, 0010 occurs in test set 5 and test set 6). So 0010 is arbitrarily chosen and

test sets 5 and 6 are marked as used. The corresponding TIF/LRF is created where

~a~bc~d is inserted as a new term to yield ab + ac + ad + ~a~bc~d. Of the remaining

tests in the unused test sets, 0001 occurs the most times (once in test set 9 and once in test

set 10). So 0001 is chosen and test sets 9 and 10 are marked as used. The corresponding

127

TIF/LRF is created where ~a~b~cd is inserted as a new term to yield ab + ac + ad +

~a~b~cd.

As another example consider f = ab + ac + ad +ae + fg. One TIF/LRF will be f’

= ab + ac + ad +ae + fg + ~ab~c~d~e~f~g. Another TIF/LRF will be f’’ = ab + ac +

ad + ae + fg + a~b~c~d~e~f~g. The f’ mutant can only be killed by 0100000 and the f’’

mutant can only be killed by 1000000. The f’ TIF/LRF has a corresponding LRF of ~cb

+ ac + ad + ae + fg, whose mutant can be killed by any of 12 inputs: 010XXXX, where

XXXX is any combination of values for defg such that term fg is FALSE. The f’’

TIF/LRF has a corresponding LRF of a~c + ac + ad + ae + fg, whose mutant can be

killed by any of 12 inputs: 100XXXX, where XXXX is any combination of values for

defg such that term fg is FALSE. Killing the f’ and f’’ mutants guarantees killing all six

LRF mutants where a or b in ab is replaced with ~c, ~d, or ~e. A TIF/LRF has a large

syntactic but small semantic fault size as compared to an LRF. A TIF/LRF involves more

syntactic changes than an LRF, yet only one input kills a TIF/LRF mutant whereas

several inputs may kill a corresponding LRF mutant. The one input killing a TIF/LRF

mutant is the intersection of the input sets that kill each corresponding LRF mutant.

The one exception mentioned in the algorithm is when in each equivalent LIF, the

literal being inserted is from a single-literal term. Consider ab + cd + e and note ab~e +

cd + e is equivalent. However, an LRF where ~e replaces a results in an LOF for a and is

treated as such. When an LRF is equivalent, the corresponding TIF/LRF will not be.

Consider ab + b~c + ~bc. The LRF ac + b~c + ~bc is equivalent. The TIF/LRF ab + b~c

+ ~bc + a~bc is not produced as it is impossible to make all terms in the original

128

predicate FALSE when term a~bc is TRUE. The algorithm presented next performs

TIF/LOF mutations.

TIF/LOF Mutation Algorithm [23]

 for each term X in the Minimal DNF predicate

 if an equivalent LIF does not exist* when inserting literal y (or its negation) into X

 for each literal z in term X

 for each LOF that occurs by omitting literal z in term X

 create a set of tests that can detect the LOF and mark this test set as unused;

 end for

 end for

 end if

end for

for each LOF test set

 if the LOF test contains a test in any of the tests needed to kill previously generated

 TIF/LRF mutants

 mark the LOF test set as used;

end for

while at least one unused LOF test set exists

 if an unused test set contains only one test

 select that test (ties broken arbitrarily);

 else

 select test that appears in the most unused sets of LOF tests (ties broken arbitrarily);

 create a TIF/LOF mutant by inserting a term containing all literals that evaluates to

 TRUE for the selected test;

end while

* There is an exception for a certain special type of equivalent LIF, described below

As an example, consider ab + cd. No equivalent LIFs exist for this predicate so

there are 4 LOFs to consider:

Omitting literal a – detected by any test in test set 1: {0100, 0101, 0110}

Omitting literal b – detected by any test in test set 2: {1000, 1001, 1010}

Omitting literal c – detected by any test in test set 3: {0001, 0101, 1001}

Omitting literal d – detected by any test in test set 4: {0010, 0110, 1010}

129

No TIF/LRF mutants will be generated since no equivalent LIF mutants exist.

Thus the algorithm proceeds to the while loop. Tests 1010, 0101, 0110 and 1001 each

occur twice amongst the test sets while tests 0100, 1000, 0001 and 0010 each occur once.

So any of 1010, 0101, 0110, or 1001 can be chosen and arbitrarily 1010 is chosen and test

sets 2 and 4 are marked as used. The corresponding TIF/LOF mutant inserts a~bc~d as a

new term to yield f’ = ab + cd + a~bc~d. Of the remaining unused test sets, 0101 is the

only test that occurs twice (the other tests in the unused test sets occur only once) so 0101

is selected and test sets 1 and 3 are marked as used. The corresponding TIF/LOF mutant

inserts ~ab~cd as a new term to yield f’’ = ab + cd + ~ab~cd. This algorithm forces the

tester to kill the f’ mutant with an input (1010) that detects LOFs for b and d and forces

the tester to kill the f’’ mutant with an input (0101) that detects LOFs for a and c. The f’

TIF/LOF has a corresponding LOF (for b) of a + cd, whose mutant can be killed by any

of 3 inputs: 1000, 1001, 1010. The TIF/LOF mutants can only be killed by NFPs that

overlap with other NFPs, increasing the number of corresponding LOF mutants killed by

the lone input killing the TIF/LOF mutant. A TIF/LOF has a large syntactic but small

semantic fault size as compared to an LOF. A TIF/LOF involves more syntactic changes

than an LOF, yet only one input kills a TIF/LOF mutant whereas several inputs may kill a

corresponding LOF mutant. The one input killing a TIF/LOF mutant is the intersection of

the input sets that kill each corresponding LOF mutant.

The TIF/LOF mutation operator can produce (n-1) * 2
n-1

fewer mutants than the

LOF mutation operator, where n is the number of unique literals. Consider ~a~b~c +

130

ab~c + ~abc + a~bc. There are n * 2
n-1

 = 12 LOFs (one per literal) and 2
n-1

 = 4

TIF/LOFs as only 2
n-1

 FALSE points exist.

The TIF/LOF algorithm is generally restricted to terms with no equivalent LIFs

since when an equivalent LIF mutant exists, a corresponding NFP is needed to kill a

corresponding LRF mutant. Since any NFP for an omitted literal kills an LOF mutant,

generating both a TIF/LOF and TIF/LRF mutant is excessive as the input killing the

TIF/LRF mutant kills the TIF/LOF mutant. The exception is that a term with equivalent

LIFs is processed if and only if for each equivalent LIF, the literal being inserted is from

a single-literal term. Consider ab + cd + e and note ab~e + cd + e is equivalent.

However, an LRF where ~e replaces a is an LOF for a and is treated as such.

 Table 29 shows in tabular format an example of a TRF/LIF, TIF/LRF, and

TIF/LOF being seeded into a minimal DNF predicate for the purpose of detecting other

faults.

Table 29 TRF-TIF Faults [18]

Fault Description

Term Reference Fault /

Literal Insertion Fault

(TRF/LIF)

Replacing a term with one or more terms to guarantee

detecting LIFs: ab + cd implemented as abc+ ab~d+ cd

to detect the LIFs abc + cd and ab~d + cd.

Term Insertion Fault /

Literal Reference Fault

(TIF/LRF)

Inserting a term containing all literals to guarantee

detecting LRFs: ab + ac + ad implemented as ab + ac +

ad + a~b~c~d to detect the LRFs a~c + ac + ad, a~d +

ac + ad, ab + a~b + ad, ab + a~d + ad, ab + ac + a~b,

ab + ac + a~c.

Term Insertion Fault /

Literal Omission Fault

(TIF/LOF)

Inserting a term containing all literals to guarantee

detecting LOFs: ab + cd implemented as ab + cd +

~ab~cd to detect the LOFs b + cd and ab +d.

131

For any given literal in a minimal DNF predicate, it is never necessary to generate

both a TIF/LRF mutant or a TIF/LOF mutant to guarantee detection of all faults in Lau

and Yu’s fault hierarchy (assuming all non-equivalent mutants are killed) [18]. This

further reduces the number of mutants that need to be generated.

When no equivalent LIFs exist for a term, any test detecting an LIF where literal y

is inserted into a term X will also detect an LRF where literal y replaces any literal x in

term X. The reason is that when no equivalent LIFs exist for term X, every LRF in term

X can be detected by a UTP that is needed to detect an LIF in term X. Thus, TIF/LRF

mutants are not needed for any literals in term X because any test set that kills all

TRF/LIF mutants for term X is guaranteed to kill all LRFs for literals in term X [18].

When an equivalent LIF does exist by inserting a literal y into term X, any test

detecting an LRF where literal y replaces a literal x in term X also detects an LOF for

literal x. The reason why is that when an equivalent LIF exists for term X, there is an

LRF for each literal x in term X that can only be detected by a specific NFP for literal x

and any NFP for literal x is guaranteed to detect an LOF for literal x [18]. Thus, TIF/LOF

mutants are not needed for any literals in term X because any test set that kills all

TIF/LRF mutants for literals in term X is guaranteed to kill all LOFs for literals in term

X.

The algorithm used to produce TRF-TIF logic mutations is given next.

132

TRF-TIF Logic Mutation Algorithm [18]

Input is a minimal DNF predicate; Output is a mutant set M

if predicate is a single term

 add TIF/LOF mutants and one FALSE mutant to M;

else if every term is a single literal

 add TRF/LIF mutants and one TRUE mutant to M;

else

 for each term

 if the term contains all literals

 add a TOF mutant to M;

 else

 add TRF/LIF mutants to M;

 end for

 if (Number of TIF/LOF mutants + Number of TIF/LRF mutants < Number of false

 points)

 for each literal in a term with no equivalent LIF mutants or in a term where all

 equivalent LIF mutants involve inserting literals from single-literal terms

 if the TIF/LOF mutant is not killed by a test killing a mutant in M

 add it to M;

 end for

 for each literal in each term with an equivalent LIF mutant not formed by inserting a

 literal from a single literal-term

 if the corresponding LRF mutant is not equivalent

 if the corresponding TIF/LRF mutant is not killed by a test killing a mutant in

 M

 add it to M;

 else if the corresponding TIF/LOF mutant is not killed by a test killing a mutant in

 M

 add it to M;

 end for

 else

 add all TIF mutants to M;

Extended Fault Hierarchy

Figure 9 supplements Lau and Yu’s fault hierarchy with the faults in Table 29 and

faults produced by typical logic mutation operators. Fault detection relationships for the

133

faults in Lau and Yu’s hierarchy are proved by Lau and Yu [30]. Kaminski and Ammann

[18] give proofs of the fault detection relationships for the other faults in Figure 9.

Legend for Figure 9

Solid-lined boxes exist in Lau and Yu’s fault hierarchy.

Dashed-lined boxes do not exist in Lau and Yu’s fault hierarchy.

Thin-lined boxes represent faults that have corresponding mutation operators in a typical

logic mutation approach.

Thick-lined boxes represent faults that do not have corresponding mutation operators in a

typical logic mutation approach.

Solid arrows represent guaranteed fault detection.

Dashed arrows represent fault detection that holds if and only if the source fault does

NOT result in an equivalent mutant and (if the source fault itself is a destination fault in a

dashed arrow connection) the source’s source fault DOES result in an equivalent mutant.

Figure 9 Extended Fault Hierarchy [18]

 LOF

 ORF.

 LRF

 LNF

 TNF

 LIF

 TOF

 LSTF0

 ORF.0

 ESTF0

 ORF+

 ORF+0

 ENF

 LSTF1

 ORF.1

 ORF+1

 ESTF1

 SVRTOF

 SVRLOF

 TRF/LIF TIF/LOF TIF/LRF

134

Figure 9 indicates that (1) generating an LRF mutant is unnecessary if the

corresponding LIF mutant is non-equivalent and (2) generating an LOF mutant is

unnecessary if the corresponding LIF mutant is equivalent but the corresponding LRF

mutant is not. When a non-equivalent LIF mutant exists, an input killing it will kill a

corresponding LRF mutant. However, if an equivalent LIF mutant exists, killing all non-

equivalent LIF mutants does not guarantee killing all LRF mutants. In the absence of an

equivalent LIF mutant, only TRF/LIF and TIF/LOF mutants are needed. When an

equivalent LIF mutant occurs, it is only necessary to produce TIF/LRF mutants for the

corresponding LRFs.

If an equivalent LIF mutant occurs, an input killing a corresponding LRF mutant

will kill a corresponding LOF mutant. The proof is as follows. First it must be established

that if an equivalent LIF occurs for term X, it is infeasible to let some literal y in some

term Y (but not in X) obtain both 0 and 1 in a UTP for X. Inserting a literal into a term

can make a TRUE term FALSE but cannot make a FALSE term TRUE. Thus, when an

LIF mutant is equivalent, there is no UTP for X that makes Xy FALSE in the faulty

predicate because making Xy FALSE in the faulty predicate makes term Y TRUE. Thus,

y cannot be assigned both truth values in a UTP for X as Y would be TRUE for one of the

truth value assignments to y, establishing the infeasibility. If it is infeasible to let an

external literal obtain both 0 and 1 in a UTP for a term, an LRF mutant exists that can

only be killed by a corresponding NFP. Since an LOF mutant can be killed by any NFP

for the omitted literal, the corresponding NFP killing an LRF mutant kills a

corresponding LOF mutant. It has been shown that (1) when an equivalent LIF mutant

135

occurs, the infeasibility condition holds and (2) when this condition holds, a test killing

an LRF mutant kills a corresponding LOF mutant. This completes the proof.

It has been established that (1) when no equivalent LIF mutants occur, no

TIF/LRF mutants are needed and (2) when an equivalent LIF mutant occurs and no

equivalent corresponding LRF mutants occur, a corresponding LOF mutant is not needed.

Thus, for any literal it is never necessary to generate both TIF/LRF and TIF/LOF

mutants.

 The extended fault hierarchy implies that if no LIFs or LRFs exist (each literal is

in each term) an LOF covers the faults under an LRF but the TOF is needed to cover the

faults under an LIF. The TRF-TIF approach generates TOF mutants only in this case. A

TOF mutant for a particular term is guaranteed to be killed when a non-equivalent LIF

mutant for that term is killed as there is a many-to-one relationship between an LIF and

TOF. Many LIFs correspond to one TOF such that if an equivalent LIF corresponding to

a TOF occurs, there is also a corresponding non-equivalent LIF. Consider ab + b~c +

~bc and the predicates abc + b~c + ~bc and ab~c + b~c + ~bc. The first fault is

equivalent, but the second is not. Both LIFs correspond to the same TOF for ab. The

relationship between an LIF and LRF is a one-to-many relationship. The equivalent LIF

yielding abc + b~c + ~bc corresponds to two different LRFs: cb + b~c + ~bc and ac +

b~c + ~bc. No non-equivalent LIF exists corresponding to either LRF. The one-to-many

relation between the LIF and LRF is the reason for the dashed arrow between the LIF and

LRF in Figure 9.

136

Mutation Efficiency

Two measurements of mutation efficiency are introduced by Kaminski and

Ammann [18] to compare mutation approaches: Mutation Efficiency Difference (MED)

and Mutation Efficiency Ratio (MER). The terms “a mutant detects a fault” and “faults

detected” are used to mean that either (1) a non-equivalent mutant forces the generation

of data that detects the fault or (2) an equivalent mutant is detected. MED and MER are

defined as follows:

MED = Faults Detected - Mutants Generated

MER = Faults Detected / Mutants Generated

The faults below the TRF/LIF, TIF/LRF and TIF/LOF in the extended fault

hierarchy are listed in Table 30 for ab + b~c + ~bc. A typical logic mutation approach

produce 61 mutants and detects 60 faults so MED = -1 and MER = 0.98. The reason why

60 faults are detected is that a typical logic mutation approach will produce one

equivalent mutant, namely an LRF where literal c replaces literal b in term ab to yield ac

+ b~c + ~bc. A typical logic mutation approach produces the same fault multiple times,

but each fault is considered different to establish a baseline of MED = 0 and MER = 1

(when no equivalent mutants are produced), which simplifies the analysis without bias.

The TRF-TIF approach detects 73 faults (the original 61 plus six LIFs and six

LRFs where a literal is replaced by the negation of another literal). The TRF-TIF

approach produces seven mutants so MED = 73 – 7 = 66 and MER = 73 / 7 = 10.43.

TRF/LIFs are ab~c + b~c + ~bc, ab + b~ca + ~bc, ab + b~c + ~bca and ab + b~c +

~bc~a. Note that abc + b~c + ~bc and ab + b~c~a + ~bc are equivalent to ab + b~c +

137

~bc and are not produced. The TRF-TIF algorithm has an optimization to create all TIF

mutants (inserting a term not in the predicate) if the number of FALSE points are less

than or equal to the number of TIF/LRF and TIF/LOF mutants that would otherwise be

generated. For this example, the sum of TIF/LRF and TIF/LOF mutants is six, but only

three FALSE points exist. These points (000, 100, 011) result in the insertion of three

terms individually (~a~b~c, a~b~c, ~abc) to form three TIF mutants. Only eight inputs

exist for the predicate, so the TRF-TIF approach yields little savings compared to

exhaustive testing. The TRF-TIF approach guarantees the number of mutants never

exceeds 2
n
 where n is the number of unique literals. The number of UTPs (and hence the

number of TRF/LIF mutants) is always less than or equal to the number of TRUE points

and the number of NFPs (and hence the number of TIF/LRF and TIF/LOF mutants) is

always less than or equal to the number of FALSE points.

Table 30 Faults for ab + b~c + ~bc

Fault Example Total

LRF ac + b~c + ~bc 12

LIF abc + b~c + ~bc 6

LOF b + b~c + ~bc 6

LSTF0 0b + b~c + ~bc 6

LSTF1 1b + b~c + ~bc 6

LNF ~ab + b~c + ~bc 6

TOF* b~c + ~bc 4

SVRTOF ab + c~c + ~bc 4

ORF. a + b + b~c + ~bc 3

ORF.0 0 + b~c + ~bc 3

ORF.1 1 + b~c + ~bc 3

TNF ~(ab) + b~c + ~bc 3

SVRLOF bb + b~c + ~bc 2

ORF+ abb~c + ~bc 2

138

Fault Example Total

ORF+0 0 + ~bc 2

ORF+1 1 + ~bc 2

ESTF0 0 1

ESTF1 1 1

ENF ~(ab + b~c + ~bc) 1

* 4 TOFs exist even though only 3 terms exist because a typical logic mutation approach

performs a TOF for term b~c twice since term b~c has an OR operator on each side of it

7.2 Mutant Set Size

An empirical study was undertaken by Kaminski and Ammann [18] to evaluate

TRF-TIF mutant set size for a program containing the 19 predicates in Appendix B. The

TRF-TIF tool generates mutants and the necessary assignments to literals in the

predicates. The predicates had from 5 to 13 unique literals and were converted manually

to minimal DNF. Predicate number 12 is excluded because it was missing a right

parenthesis detected by Weyuker et al. [46]. For each predicate, mutant set size for TRF-

TIF logic mutation was determined. An example of TRF-TIF logic mutations for one of

the predicates in the study is given in Appendix I. Table 31 below shows the results. Note

that the data in Table 31 is the same as that in Table 10. The reason for this is to weakly

kill all TRF-TIF logic mutants, it is necessary (but no sufficient) to satisfy the Minimal-

MUMCUT criterion. That is, each Minimal-MUMCUT test requirement maps to a TRF-

TIF logic mutant.

139

Table 31 Number of TRF-TIF Logic Mutants Generated [18]

Predicate TRF-TIF 2
n
 Percentage

1 27 128 21.09%

2 81 512 15.82%

3 148 4096 3.61%

4 9 32 28.13%

5 34 512 6.64%

6 62 2048 3.03%

7 62 1024 6.05%

8 36 256 14.06%

9 16 128 12.50%

10 62 8192 0.76%

11 61 8192 0.74%

12 N/A N/A N/A

13 17 4096 0.42%

14 22 128 17.19%

15 39 512 7.62%

16 104 4096 2.54%

17 39 2048 1.90%

18 48 1024 4.69%

19 16 256 6.25%

20 14 128 10.94%

Sum 897 37408

Average 47.21 1968.84 2.40%

7.3 Equivalent Mutant Set Size

Equivalent mutants are a problem because no test input can kill them. In order to

strongly kill a mutant, the mutated statement must be reached (reachability), the program

state of the mutant must differ from that of the original program after execution of the

mutated statement (infection) and the difference in program state must propagate to the

output (propagation) [2]. A mutant is weakly equivalent if infection can never occur

whereas a mutant is strongly equivalent if propagation can never occur. Thus, all weakly

140

equivalent mutants are strongly equivalent, but not all strongly equivalent mutants are

weakly equivalent as it is possible that infection occurs but not propagation.

When a test set does not strongly kill a mutant, the tester does not know if more

tests should be added to strongly kill it (if it is not strongly equivalent) or if the tester

should discard the mutant (if it is strongly equivalent). The TRF-TIF logic mutation tool

will never generate a weakly equivalent logic mutant when the Boolean space is complete

(assuming reachability holds). Thus, the mutation score (percentage of mutants strongly

killed) will be a more accurate measure of the quality of the test data because the score

will not be affected by the presence of weakly equivalent mutants.

When the Boolean space is incomplete (some of the points are infeasible), weakly

equivalent logic mutants can be generated by the TRF-TIF mutation tool, even when

reachability holds. To address this problem, the tool permits users to mark predicates in

the source code where infeasibilities arise for combinations of literal values. For example,

consider a predicate that determines if the length of any side of a triangle is greater than

or equal to the sum of the lengths of the other two sides. Let s1 be one side, s2 be a

second side and s3 be a third side. Let literal x be s1 >= s2 + s3, literal y be s2 >= s1 + s3

and literal z be s3 >= s1 + s2. The predicate is thus x OR y OR z. Only one of x, y or z

can be TRUE. Thus infeasibilities arise and the complete Boolean space is not

achievable. When using the TRF-TIF tool the tester can specify the infeasible

combinations in a comment in the source code prior to the actual predicate. This prevents

weakly equivalent logic mutants from being generated (assuming reachability).

141

When the TRF-TIF tool is informed that certain points in the Boolean space are

infeasible, the tool will replace any weakly equivalent mutant that would otherwise be

generated with a weakly non-equivalent mutant (assuming reachability) so as to still

guarantee fault detection of all faults in Lau and Yu’s fault hierarchy. For example,

consider predicate ab + cd. TRF/LIF mutations for term ab include p’ = abc + ab~d + cd

and p’’ = ab~c + abd + cd. These mutants are weakly non-equivalent (assuming

reachability). However if it is infeasible for literals a, b and c to all be TRUE, then the p’’

mutant is weakly equivalent because the only point that can kill the p’’ mutant is 1110. If

the infeasible combination is specified in the source code, the TRF-TIF tool will

recognize that such a mutant is weakly non-equivalent.

When the TRF-TIF tool automatically detects a weakly equivalent mutant due to

an infeasibility in the Boolean space, the mutant cannot be simply discarded. In the

example above, discarding the p’’ mutant causes the LIF where literal d is inserted into

term ab to be missed. The reason is that the p’’ mutant (if killed) guarantees detecting

both the LIF where literal ~c is inserted into term ab and the LIF where literal d is

inserted into term ab. If literals a, b and c cannot be all TRUE, the LIF where literal ~c is

inserted into term ab is weakly equivalent but the LIF where literal d is inserted into term

ab is not. Thus, the TRF-TIF tool will change the p’’ mutant to be p’’ = abc + abd + cd.

This mutant has the dual property of being both weakly non-equivalent (assuming

reachability) and guaranteeing detection of the LIF where literal d is inserted into term ab

(assuming it is killed).

142

7.4 Single Minimal DNF Fault Detection

 For software containing minimal DNF predicates, tests that weakly kill all TRF-

TIF mutants are guaranteed to detect all 9 single fault types in Lau and Yu’s fault

hierarchy. This is because to kill the mutants produced by the TRF-TIF algorithm it is

necessary to satisfy the Minimal-MUMCUT criterion. This fault detection can also be

proven by the fault detection relations between the TRF/LIF and the LIF, the TIF/LRF

and the LRF and the TIF/LOF and the LOF. The reason is that detecting the LIF, LRF

and LOF guarantees detection of all the other faults in the hierarchy.

7.5 Double Minimal DNF Fault Detection

 For software containing minimal DNF predicates, tests that weakly kill all TRF-

TIF mutants are guaranteed to detect 84 of the 92 double fault types in Lau and Yu’s fault

hierarchy. Again, this is because to kill the mutants produced by the TRF-TIF algorithm

it is necessary to satisfy the Minimal-MUMCUT criterion. This fault detection can also

be proven by the fault detection relations between the TRF/LIF and the LIF and the

TIF/LOF and the LOF. The reason is that an LIF can only be detected by a UTP and an

LOF can only be detected by an NFP, and any test set that includes a UTP for each term

and an NFP for each literal guarantees detection of 84 of the 92 double fault types in Lau

and Yu’s fault hierarchy.

7.6 General Fault Detection

The ability of a test set that weakly kills all TRF-TIF logic mutants to strongly kill

general mutants (both logic and non-logic mutants) is evaluated in an empirical study

described in sections 9.5 and 10.5. Discussion of this study is delayed until these sections

143

since muJava (discussed in Chapter 9) and SQLMutation (discussed in Chapter 10) were

used to seed general faults.

144

8 Comparison of TRF-TIF Logic Mutation with Typical
Logic Mutation

This chapter is the first of three comparing the TRF-TIF logic mutation approach

with other mutation tools/approaches. The focus of this chapter is comparing the TRF-

TIF logic mutation approach with a typical logic mutation approach, which corresponds

to the third row in Table 5. A typical logic mutation approach uses all mutation operators

in the text by Ammann and Offutt [2] that can be applied to a minimal DNF predicate

containing at least two literals. These mutation operators include the Scalar Variable

Replacement (SVR) operator, the Unary Operator Insertion (UOI) operator, the Unary

Operator Deletion (UOD) operator, and the Conditional Operator Replacement (COR)

operator [2]. In addition, the Expression Stuck at Fault (ESTF) and Literal Stuck at Fault

(LSTF) operators are included when referring to typical logic mutation, as these are also

common logic mutation operators. Each section in this chapter corresponds to a cell in

Table 5. Section 8.1 corresponds to cell 3a (mutant set size comparison), section 8.2

corresponds to cell 3b (equivalent mutant set size comparison), section 8.3 corresponds to

cell 3c (single minimal DNF fault detection comparison), and section 8.4 corresponds to

cell 3d (double minimal DNF fault detection comparison). The overriding theme of this

chapter is that TRF-TIF logic mutation provides both better minimal DNF fault detection

and reduced mutant set size when compared to a typical logic mutation approach.

145

8.1 Mutant Set Size (Contribution 3a)

An empirical study was undertaken by Kaminski and Ammann [18] to compare

TRF-TIF logic mutation with typical logic mutation. This study used the same program

and predicates described in section 7.2. For each predicate, the mutant set size for TRF-

TIF logic mutation and typical logic mutation was determined. The study found that

TRF-TIF mutant set size was about 6% of the logic mutant set size generated by a typical

logic mutation approach (Contribution 3a). Table 32 shows the results.

Table 32 Number of Typical Logic Mutants Generated [18]

Predicate TRF-TIF Typical Percentage 2
n

1 27 409 6.60% 128

2 81 1694 4.78% 512

3 148 3297 4.49% 4096

4 9 84 10.71% 32

5 34 454 7.49% 512

6 62 1048 5.92% 2048

7 62 1026 6.04% 1024

8 36 482 7.47% 256

9 16 196 8.16% 128

10 62 1204 5.15% 8192

11 61 1267 4.81% 8192

12 N/A N/A N/A N/A

13 17 268 6.34% 4096

14 22 228 9.65% 128

15 39 521 7.49% 512

16 104 1674 6.21% 4096

17 39 580 6.72% 2048

18 48 652 7.36% 1024

19 16 302 5.30% 256

20 14 171 8.19% 128

Sum 897 15557

Average 47.21 818.79 5.77%

146

These results can be explained by a number of factors. One factor is that typical

logic mutation does not take advantage of Lau and Yu’s fault hierarchy. In other words,

typical logic mutation generates mutants that correspond to faults low in the hierarchy.

These mutants are guaranteed to be killed by tests that kill other generated mutants that

correspond to faults higher in the hierarchy. Thus excess mutants are generated.

Another factor is that typical logic mutation can generate the same semantic logic

mutant multiple times. As an example of the same semantic logic mutant being generated

multiple times can be seen by considering the typical Scalar Variable Replacement (SVR)

mutation operator. This operator replaces each variable reference with every other

variable reference of the same type. The SVR mutation operator produces an LOF or a

TOF when replacing a literal with another literal in the term. In a~b~c~d + e, replacing a

with b, c, or d results in a TOF for a~b~c~d. In abcd + e, replacing a with b, c, or d

results in an LOF for a. So one problem with the SVR mutation operator is that it

produces the same TOF and LOF mutants multiple times. The Conditional Operator

Replacement (COR) mutation operator can also produce the same mutant twice as one

mutation it generates is to replace each occurrence of “operand AND operand” with each

operand. In abc + d the AND between a and b yields f’ = ac + d and f’’ = bc + d. The

AND between b and c yields f’’’ = ab + d and f’’’’ = ac + d. f’ and f’’’’ are identical. For

a term with n literals (for n > 2), the COR mutation operator produces n – 2 identical

LOF mutants as each literal except the first and last is processed twice. Duplicate

processing also occurs for terms, resulting in m – 2 identical TOF mutants for a predicate

with m terms (for m > 2).

147

A third factor that increases typical logic mutant set size is the number of

equivalent mutants typical logic mutation generates, discussed next.

8.2 Equivalent Mutant Set Size (Contribution 3b)

This section presents a theoretical contribution by proving that a TRF-TIF mutant set

contains the same or fewer weakly equivalent than a typical logic mutants set.

Theorem 5 (Contribution 3b): TRF-TIF vs. Typical Logic Mutation Equivalent

Mutant Set Size

For software with minimal DNF predicates, a TRF-TIF mutant set contains the same

number as or fewer weakly equivalent mutants than a typical logic mutant set (assuming

any infeasible combinations of values of unique literals are specified).

Proof:

If reachability cannot be achieved for a given mutant, then it will be equivalent no matter

if it is a TRF-TIF mutant or a typical logic mutant. If a mutant is reachable, the TRF-TIF

mutation approach guarantees it will not be weakly equivalent (assuming any infeasible

combinations of values of unique literals are specified) because TRF-TIF mutation uses

an exclusive-OR algorithm to automatically detect equivalent mutants. Thus, if a tool that

produces typical logic mutants can produce at least one weakly equivalent mutant, then it

is established that a TRF-TIF mutant set contains the same number as or fewer weakly

equivalent mutants than a typical logic mutant set (assuming any infeasible combinations

of values of unique literals are specified). The SVR typical logic mutation operator can

produce an equivalent mutant as follows. Consider the predicate ab + b!c + !bc. This

148

operator will mutate this predicate to ac + b!c + !bc by replacing literal b in term ab with

literal c. The original predicate and the mutated predicate are semantically equivalent.

End Proof

8.3 Single Minimal DNF Fault Detection (Contribution 3c Parts I and II)

This section presents a theoretical contribution by proving the single Minimal DNF

fault detection capability of a typical logic mutation test set.

Theorem 6 (Contribution 3c Part I): TRF-TIF vs. Typical Logic Mutation Single

Minimal DNF Fault Detection

For software containing minimal DNF predicates, tests that weakly kill all typical logic

mutants are guaranteed to detect 7 of the 9 single fault types in Lau and Yu’s fault

hierarchy (all but the LRF and the LIF).

Proof:

Typical logic mutation does not include mutation operators that cover the LRF and LIF

[18]. Thus, tests that weakly kill all typical logic mutants are not guaranteed to detect the

LRF and the LIF. However, the COR typical logic mutation operator produces TOFs and

LOFs. A test set detecting TOFs and LOFs will detect all faults in the fault hierarchy

except for LIFs and LRFs so 7 of the 9 single fault types are guaranteed to be detected.

End Proof

An LRF is partially covered by the Scalar Variable Replacement (SVR) mutation

operator which replaces each variable reference by every other variable reference of the

same type. For example, in ab + cd, the SVR mutation operator replaces literal a with

literal c, but it would not replace literal a with literal ~c. Typical logic mutation does

149

include mutations that correspond to a TOF (which can only be detected by a UTP) and

an LOF (which can only be detected by an NFP) [18].

The Conditional Operator Replacement (COR) typical mutation operator replaces

each occurrence of “operand AND operand” with each operand. For example, in abc + d

the AND between a and b yields f’ = ac + d and f’’ = bc + d. The COR mutation

operator covers the ENF, ORF+, ORF., LOF and TOF. The COR mutation operator

produces additional ORFs not in Lau and Yu’s fault hierarchy by replacing the OR and

AND operators with 0 and 1. These are also known as Stuck at Faults because terms or

literals are stuck at 0 or 1.

Other typical logic mutation operators are the Unary Operator Insertion (UOI)

operator and Unary Operation Deletion (UOD) operator (which insert and delete

negations, respectively). These operators covers the ENF, TNF and LNF [18]. The Literal

Constant Replacement mutation operator produces Literal Stuck at Faults, replacing each

literal with 0 and 1 (LSTF0 and LSTF1). To achieve predicate coverage a mutation

operator is commonly used to produce Stuck at Faults for the entire predicate. The

corresponding faults for these operators are in Table 33.

All faults in Table 33 are covered by faults in Lau and Yu’s fault hierarchy in that

a test set that detects all of the faults in Lau and Yu’s fault hierarchy will also detect all

faults in Table 33. The reason is as follows. The LSTF0 and ORF.0 are equivalent to a

TOF and LSTF1 is equivalent to an LOF. ORF.1 is equivalent to performing two LOFs

and ORF+0 is equivalent to performing two TOFs. Since any test that detects an LOF for

a literal detects a double LOF involving that literal, any test that detects an LOF also

150

detects a corresponding ORF.1. Since any test that detects a TOF for a term detects a

double TOF involving that term, any test that detects a TOF also detects a corresponding

ORF+0. ORF+1 is equivalent to ESTF1, any FALSE point detects ESTF1 and any TRUE

point detects ESTF0. The point is that the mutants produced by all of the typical logic

mutation operators are not necessary if mutants are generated that when weakly killed,

guarantee TOF and LOF detection. Figure 9 shows that tests that weakly kill all TRF-TIF

mutants will also weakly kill all TOF and LOF mutants.

Table 33 Faults Produced by Typical Mutation Operators that are not in Lau and

Yu’s Fault Hierarchy [18]

Fault Description

Expression Stuck at Fault 0 (ESTF0)
Predicate implemented as 0: a + b

implemented as 0.

Expression Stuck at Fault 1 (ESTF1)
Predicate implemented as 1: a + b

implemented as 1.

Literal Stuck at Fault 0 (LSTF0)
Literal implemented as 0: ab + c

implemented as a0 + c.

Literal Stuck at Fault 1 (LSTF1)
Literal implemented as 1: ab + c

implemented as a1 + c.

Operator Reference Fault +0 (ORF+0)
Replacing OR with 0: a + b + c implemented

as 0 + c (generated by COR operator).

Operator Reference Fault +1 (ORF+1)
Replacing OR with 1: a + b + c implemented

as 1 + c (generated by COR operator).

Operator Reference Fault .0 (ORF.0)
Replacing AND with 0: abc + d implemented

as 0c + d (generated by COR operator).

Operator Reference Fault .1 (ORF.1)
Replacing AND with 1: abc + d implemented

as 1c + d (generated by COR operator).

Scalar Variable Replacement TOF

Replacing a literal with another literal in the

term such that a TOF occurs: a~b

implemented as b~b.

Scalar Variable Replacement LOF

Replacing a literal with another literal in the

term such that an LOF occurs: ab

implemented as aa.

151

In the empirical study described in section 8.1, fault detection was compared in all

predicates for all the faults below the TRF/LIF, TIF/LRF and TIF/LOF in the extended

fault hierarchy. It was found that tests that weakly kill all typical logic mutants

guaranteed detection of about 76% of the single logic faults (as opposed to 100% for tests

that weakly kill all TRF-TIF mutants) (Contribution 3c Part II). Table 34 shows the

results.

Table 34 Number of Faults Detected by Typical Mutation [18]

Predicate Typical TRF-TIF Percentage 2
n

1 409 455 89.89% 128

2 1694 1814 93.38% 512

3 3297 4487 73.48% 4096

4 84 116 72.41% 32

5 454 714 63.59% 512

6 1048 1136 92.25% 2048

7 1026 1214 84.51% 1024

8 482 482 100.00% 256

9 196 196 100.00% 128

10 1204 1420 84.79% 8192

11 1267 1747 72.52% 8192

12 N/A N/A N/A N/A

13 268 506 52.96% 4096

14 228 348 65.52% 128

15 521 849 61.37% 512

16 1674 2747 60.94% 4096

17 580 824 70.39% 2048

18 652 934 69.81% 1024

19 302 386 78.24% 256

20 171 187 91.44% 128

Sum 15557 20562

Average 818.79 1082.21 75.66%

152

Table 35 shows the overall MED and MER. On average, the TRF-TIF logic

mutation approach detected 1,035 more faults than mutants generated. The ratio of faults

detected to mutants generated was nearly 23 times higher for the TRF-TIF logic mutation

approach than for a typical logic mutation approach.

Table 35 MED and MER [18]

Table 36 displays TRF-TIF MED and MER results by predicate. Note from this

table that the number of unique literals had a large impact on MED (the MED increased

as the number of unique literals increased) but minimal impact on MER

Table 36 TRF-TIF MED and MER [18]

Predicate MED MER 2
n

1 428 16.85 128

2 1733 22.40 512

3 4339 30.32 4096

4 107 12.89 32

5 680 21.00 512

6 1074 18.32 2048

7 1152 19.58 1024

8 446 13.39 256

9 180 12.25 128

10 1358 22.90 8192

11 1686 28.64 8192

12 N/A N/A N/A

 Typical TRF-TIF

 MED 0 1035

 MER 1 22.92

153

Predicate MED MER 2
n

13 488 29.76 4096

14 326 15.82 128

15 810 21.77 512

16 2643 26.41 4096

17 785 21.13 2048

18 886 19.46 1024

19 370 24.13 256

20 173 13.36 128

Sum 19665

Average 1035 22.92

8.4 Double Minimal DNF Fault Detection (Contribution 3d Parts I and II)

This section presents a theoretical contribution by proving the double Minimal DNF

fault detection capability of a typical logic mutation test set.

Theorem 7 (Contribution 3d Part I): TRF-TIF vs. Typical Logic Mutation Double

Minimal DNF Fault Detection

For software containing minimal DNF predicates, tests that weakly kill all typical logic

mutants are guaranteed to detect 84 of the 92 double fault types in Lau and Yu’s fault

hierarchy.

Proof:

In order to kill the mutants produced by the COR typical mutation operator, it is

necessary to have a UTP for each term and an NFP for each literal because the COR

typical mutation operator produces TOFs and LOFs [18]. Lau et al. [27, 28, 29] show that

154

any strategy that includes at least one UTP for each term and one NFP for each literal is

guaranteed to detect 84 of the 92 double fault types in Lau and Yu’s fault hierarchy.

End Proof

In the empirical study described in section 8.1, double fault detection was

compared. Since the PCUTPNFP criterion is feasible for all predicates in the study and

since TRF-TIF logic mutation subsumes the Minimal-MUMCUT criterion, for these

predicates tests weakly killing all TRF-TIF mutants guaranteed detection of 91 of the 92

double fault types in Lau and Yu’s fault hierarchy. However, for these predicates tests

that weakly kill all typical logic mutants still detected just 84 of the 92 double fault types

as a test set weakly killing all typical logic mutants missed detecting faults corresponding

to the 8 double fault types not guaranteed to be detected (Contribution 3d Part II).

155

9 Comparison of TRF-TIF Logic Mutation with muJava

This chapter is the second of three comparing the TRF-TIF logic mutation

approach with other mutation tools/approaches. The focus of this chapter is comparing

the TRF-TIF logic mutation approach with muJava, which corresponds to the fourth row

in Table 5. muJava is a tool for mutating Java programs. When referring to muJava

mutants for comparison of fault detection and mutant set size, the author refers to all of

the mutants generated by muJava and not solely the logic mutants. Each section in this

chapter corresponds to a cell in Table 5. Section 9.1 corresponds to cell 4a (mutant set

size comparison), section 9.2 corresponds to cell 4b (equivalent mutant set size

comparison), section 9.3 corresponds to cell 4c (single minimal DNF fault detection

comparison), and section 9.4 corresponds to cell 4d (double minimal DNF fault detection

comparison), and section 9.5 corresponds to cell 4e (general fault detection). The

overriding theme of this chapter is that TRF-TIF logic mutation provides better minimal

DNF fault detection and reduced mutant set size when compared to muJava, and that

TRF-TIF logic mutation is effective at producing mutants that when killed, also kill a

high percentage of non-logic mutants. The rest of this section describes an empirical

study from which contributions in subsequent sections are derived.

156

An empirical evaluation [23] was conducted to ascertain if logic mutation testing

can be used to reduce the costs of general mutation testing while maintaining most of its

benefits. Specifically, the study was performed to answer these questions:

1) Does TRF-TIF logic mutation produce fewer mutants than muJava with minimal

impact on general fault detection?

2) Does TRF-TIF logic mutation produce fewer mutants than muJava while improving

logic fault detection?

3) Does TRF-TIF logic mutation produce fewer equivalent mutants than muJava?

4) Can a metric be established concerning a property of the source code under test that

will predict when killing all TRF-TIF mutants is likely to kill general mutants?

Thirty small Java programs (average of 15 LOC per program) were selected for

the study. Four of the programs appear in a textbook on software testing by Ammann and

Offutt [2]. The code for these programs is in Appendix J. The author supplemented these

programs with 26 additional programs, each of which corresponds to a static utility

method in the Arrays or Collections Java classes (J2SE 1.7). These programs are

necessarily small as this makes it feasible to manually determine the equivalent mutants

generated by muJava. The code for the Collections and Arrays classes is accessible at:

http://www.docjar.com/html/api/java/util/Collections.java.html

and

http://www.docjar.com/html/api/java/util/Arrays.java.html

For the Collections class, a sample of deterministic static utility methods that

contained at least one “if” statement were included in the study. Most of these methods

157

focused on sorting and searching. For the Arrays class, a similar set of static utility

methods was selected except that sorting and searching methods were excluded to avoid

redundancy since such methods were similar to the Collections methods. Also, if multiple

methods in the Arrays class existed that differed only in the type of primitive array(s)

taken as argument(s), only one such method was selected. For example, the Arrays class

has a different equals static utility method for each of the following array types: long[],

int[], char[], short[], byte[], boolean[], double[], float[] and Object[]. In this case the

method that uses Object[] was chosen as well as the method using long[]. Table 37 gives

the class name and method name for each of the 26 Collections and Arrays programs.

Table 37 Arrays and Collections Programs [23]

Class Method Name

Arrays rangeCheck(int arrayLen, int fromIndex, int toIndex)

Arrays equals(long[] a, long[] a2)

Arrays equals(Object[] a, Object[] a2)

Arrays deepEquals(Object[] a1, Object[] a2)

Arrays toString(long[] a)

Arrays toString(Object[] a)

Arrays deepToString(Object[] a)

Arrays deepToString(Object[] a, StringBuilder buf, Set<Object[]> dejaVu)

Collections binarySearch(List<? extends Comparable<? super T>> list, T key)

Collections indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)

Collections iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)

Collections get(ListIterator<? extends T> i, int index)

Collections binarySearch(List<? extends T> list, T key, Comparator<? super T> c)

Collections indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c)

Collections iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c)

Collections reverse(List<?> list)

Collections fill(List<? super T> list, T obj)

Collections copy(List<? super T> dest, List<? extends T> src)

Collections min(Collection<? extends T> coll)

Collections min(Collection<? extends T> coll, Comparator<? super T> comp)

158

Class Method Name

Collections max(Collection<? extends T> coll)

Collections max(Collection<? extends T> coll, Comparator<? super T> comp)

Collections rotate(List<?> list, int distance)

Collections rotate1(List<T> list, int distance)

Collections rotate2(List<?> list, int distance)

Collections replaceAll(List<T> list, T oldVal, T newVal)

9.1 Mutant Set Size (Contribution 4a Parts I and II)

The study used the TRF-TIF tool to generate logic mutants and muJava to

generate general mutants. To reduce bias, the test data to weakly kill all TRF-TIF mutants

was generated prior to the generation of muJava mutants. The number of mutants

generated by each tool was determined and the results are displayed in Table 36. In this

table, the names of Arrays and Collections programs in Table 37 are referred to by the

letter A if the program is an Arrays method and by the letter C if the program is a

Collections method. The number after the letter corresponds to the order the method

appears in Table 37. So for example, A1 refers to the Arrays rangeCheck method and C1

refers to the Collections binarySearch method that takes two arguments.

Table 38 Number of Software Mutants [23]

Program
Number of TRF-TIF

Logic Mutants

Number of muJava

Mutants
Percentage

 Cal 6 136 4%

Prime 4 72 6%

TestPat 8 95 8%

TriType 22 200 11%

A1 6 38 16%

A2 9 50 18%

A3 9 46 20%

159

Program
Number of TRF-TIF

Logic Mutants

Number of muJava

Mutants
Percentage

A4 40 93 43%

A5 6 40 15%

A6 6 40 15%

A7 5 35 14%

A8 28 60 47%

C1 3 10 30%

C2 6 82 7%

C3 6 82 7%

C4 2 40 5%

C5 5 8 63%

C6 4 82 5%

C7 4 82 5%

C8 3 46 7%

C9 3 37 8%

C10 7 56 13%

C11 2 1 200%

C12 4 3 133%

C13 2 6 33%

C14 4 8 50%

C15 3 14 21%

C16 8 135 6%

C17 6 61 10%

C18 15 82 18%

Sum 236 1740 14%

The key result is that the number of TRF-TIF mutants was 14% of the muJava

mutants (Contribution 4a Part I). However, recall that this comparison is between the

number of TRF-TIF mutants (which are solely logic mutants) and the total number of

muJava mutants (which are both logic and non-logic mutants). This is still an

interesting comparison because if tests that weakly kill all TRF-TIF mutants kill a vast

majority of muJava mutants, the comparison shows that mutant set size can be

significantly reduced with little impact on mutation score by solely generating TRF-TIF

160

mutants. A total of 236 TRF-TIF logic mutants were generated for the 30 programs

(with a low of 2, a high of 40 and an average of 7.87). A minimal test set of 143 tests

was used to weakly kill these mutants (with a low of 1, a high of 34 and an average of

4.77). muJava generated 1740 mutants for the 30 programs (with a low of 1, a high of

200 and an average of 58).

The results in Table 38 can be explained by a number of factors, related to the fact

that the mutation operators in TRF-TIF logic mutation and muJava are different. For

the TRF-TIF tool, the logic portion of a Java program is restricted to predicates in

“for”, “while”, “if” or “else if” statements. muJava differs in that it possesses non-logic

mutation operators and the logic mutation operators it does possess are different than

those in TRF-TIF mutation. muJava applies its logic mutation operators to any logic

expression in a program and these logic mutation operators do not take advantage of the

fault hierarchy. In other words, logic mutants are produced by muJava that are

guaranteed to be killed by tests killing other logic mutants.

To compare mutant set size between TRF-TIF mutation and muJava based solely

on the number of logic mutants that muJava generates, a side empirical study was

conducted. In this study the 19 TCAS Boolean predicates in Appendix B were used as the

source under test. TRF-TIF mutants and muJava logic mutants were generated for each

predicate and mutant set size was compared. When considering individual minimal DNF

predicates, the logic mutation operators in muJava will replace each AND with both XOR

and OR and each OR with both AND and XOR. Furthermore, the logic mutation

operators in muJava will both insert and delete a negation operator at every possible

161

location. As an example, consider the predicate a + b + c. muJava will generate these

mutations: ab + c, a XOR b + c, a + bc, a + b XOR c, !a + b + c, a + !b + c, a + b + !c,

!(a + b) + c, a + !(b + c) and !(a + b + c). Table 39 shows the results. The key result is

that the number of TRF-TIF mutants was 25% of the number of muJava logic mutants

(Contribution 4a Part II).

Table 39 TRF-TIF Mutant Set Size vs. muJava Logic Mutant Set Size

Predicate
TRF-TIF

[19]

muJava

Logic
Percentage 2

n

1 27 102 26.47% 128

2 81 404 20.05% 512

3 148 761 19.45% 4096

4 9 24 37.50% 32

5 34 126 26.98% 512

6 62 193 96.88% 2048

7 62 214 32.12% 1024

8 36 104 34.62% 256

9 16 43 37.21% 128

10 62 199 31.16% 8192

11 61 232 26.29% 8192

12 N/A N/A N/A N/A

13 17 58 29.31% 4096

14 22 67 32.84% 128

15 39 160 24.38% 512

16 104 535 19.44% 4096

17 39 115 33.91% 2048

18 48 148 32.43% 1024

19 16 68 23.54% 256

20 14 37 37.84% 128

Sum 897 3590 24.99% 37,408

Avg 47.21 188.94 24.99% 1968.84

162

9.2 Equivalent Mutant Set Size (Contribution 4b)

The TRF-TIF approach prevents equivalent mutants from being created assuming

reachability, propagation and a complete Boolean space. The muJava tool can generate

equivalent mutants even if these assumptions hold. In the empirical study, the number of

strongly equivalent mutants generated by each tool was determined manually for each of

the 30 programs. Results are displayed in Table 40.

Table 40 Number and Percentage of Strongly Equivalent Software Mutants [23]

Program

Number of

Strongly

Equivalent

TRF-TIF

Mutants

Percent of TRF-

TIF Mutants that

are Strongly

Equivalent

Number of

Strongly

Equivalent

muJava Mutants

Percent of

muJava

Mutants that

are Strongly

Equivalent

 Cal 1 17% 25 18%

Prime 0 0% 5 7%

TestPat 0 0% 6 6%

TriType 0 0% 44 22%

A1 0 0% 6 16%

A2 0 0% 0 0%

A3 0 0% 0 0%

A4 0 0% 0 0%

A5 0 0% 2 5%

A6 0 0% 2 5%

A7 0 0% 10 29%

A8 0 0% 2 3%

C1 3 100% 8 80%

C2 0 0% 8 10%

C3 0 0% 8 10%

C4 0 0% 0 0%

C5 3 60% 6 75%

C6 0 0% 8 10%

C7 0 0% 8 10%

C8 3 100% 9 20%

C9 3 100% 7 19%

C10 6 86% 12 21%

163

Program

Number of

Strongly

Equivalent

TRF-TIF

Mutants

Percent of TRF-

TIF Mutants that

are Strongly

Equivalent

Number of

Strongly

Equivalent

muJava Mutants

Percent of

muJava

Mutants that

are Strongly

Equivalent

C11 0 0% 0 0%

C12 0 0% 0 0%

C13 0 0% 1 17%

C14 0 0% 1 13%

C15 3 100% 10 71%

C16 1 13% 3 2%

C17 1 17% 7 11%

C18 3 20% 7 9%

Sum 27 11% 205 12%

The key result is that the number of strongly equivalent TRF-TIF mutants was

13% of the number of strongly equivalent muJava mutants (27 vs. 205) (Contribution

4b). However, recall that this comparison is between the number of strongly equivalent

TRF-TIF mutants (which are solely logic mutants) and the total number of strongly

equivalent muJava mutants (which are both logic and non-logic mutants). The TRF-TIF

tool generated one weakly equivalent mutant, as infection was feasible for all but one

predicate. For that predicate, the combination of literal values needed to cause infection

was infeasible. (If a tester specifies the infeasible combinations of values for the literals

in this predicate, then the TRF-TIF tool generates no weakly equivalent mutants. See

Appendix J for how these infeasible combinations are specified in the code.) However,

26 of the TRF-TIF logic mutants were strongly equivalent, although not weakly

equivalent. For these mutants, infection was achieved but not propagation. This was due

to sorting and searching methods in the Collections class that used predicates solely for

164

improving efficiency. In other words, whether these predicates evaluated to TRUE or

FALSE did not impact the output itself, but rather how quickly the output was returned.

The author examined the muJava mutants manually and determined that 205 of them

were equivalent based on strong mutation.

9.3 Single Minimal DNF Fault Detection (Contribution 4c)

This section presents a theoretical contribution by proving that tests that weakly

kill all muJava mutants are guaranteed to detect 5 of the 9 single fault types in Lau and

Yu’s fault hierarchy.

Theorem 8 (Contribution 4c): TRF-TIF vs. muJava Single Minimal DNF Fault

Detection

For software containing minimal DNF predicates, tests that weakly kill all muJava

mutants are guaranteed to detect 5 of the 9 single fault types in Lau and Yu’s fault

hierarchy.

Proof:

When considering individual minimal DNF predicates, the logic mutation

operators in muJava will replace each AND with both XOR and OR and each OR with

both AND and XOR. Furthermore, the logic mutation operators in muJava will both

insert and delete a negation operator at every possible location. As an example, consider

the predicate a + b + c. muJava will generate these mutations: ab + c, a XOR b + c, a +

bc, a + b XOR c, !a + b + c, a + !b + c, a + b + !c, !(a + b) + c, a + !(b + c) and !(a + b

+ c).

165

A test set that kills all muJava mutants is guaranteed to detect the ORF+, LNF,

ORF., TNF and ENF. To prove this, it is sufficient to prove that the ORF+, LNF and

ORF. are detected because the TNF and ENF follow based on the fault hierarchy. A test

set that kills all muJava mutants is guaranteed to kill an ORF+ because one of the

mutation operators is to replace OR with AND. Likewise, a test set that kills all muJava

mutants is guaranteed to kill an ORF. because one of the mutation operators is to replace

AND with OR. Finally, a test set that kills all muJava mutants is guaranteed to kill an

LNF because one of the mutation operators is to insert a negation before each literal and

another mutation operator deletes a negation before each literal.

 A test set that kills all muJava mutants is not guaranteed to detect an LIF, TOF,

LRF, or LOF. To prove this, it is sufficient to find a predicate, create muJava mutations

for the predicate and show how each fault can go undetected by a test set killing the

muJava mutants. First, consider the LOF. AN LOF for literal b in the predicate ab would

result in a faulty predicate of a. The only test that detects this fault is 10, which causes

predicate ab to evaluate to FALSE and predicate a to evaluate to TRUE. Note that 10 is

the only NFP for literal b in predicate ab. muJava will generate the following mutations

for predicate ab: a + b, a XOR b, !ab, a!b and !(ab). A test set of {01, 11} kills these four

mutants but does not include the test 01 and thus does not include an NFP for literal b.

When a test set does not include an NFP for a literal, an LOF for that literal is guaranteed

not to be detected [30]. Next, consider the LIF, LRF and TOF with an example predicate

of ab + cd. Table 41 describes the muJava mutants and a test that kills each mutant.

166

Table 42 describes an LIF, LRF and TOF that can go undetected by a test set that that

kills all the muJava mutants.

Table 41 muJava Mutants for Predicate ab + cd

Mutant
A Test That Kills

the Mutant

Value of Original

Predicate

Value of Mutated

Predicate

a + b + cd 1000 FALSE TRUE

a XOR b + cd 1000 FALSE TRUE

abcd 0011 TRUE FALSE

ab XOR cd 1111 TRUE FALSE

ab + c + d 0001 FALSE TRUE

ab + c XOR d 0001 FALSE TRUE

!ab + cd 0100 FALSE TRUE

a!b + cd 1000 FALSE TRUE

ab + !cd 0001 FALSE TRUE

ab + c!d 0010 FALSE TRUE

!(ab) + cd 0000 FALSE TRUE

ab + !(cd) 0000 FALSE TRUE

!(ab + cd) 0000 FALSE TRUE

Table 42 LIF, LRF and TOF for Predicate ab + cd

Fault
All Tests Detecting

the Fault

Value of Original

Predicate

Value of Mutated

Predicate

abc + cd (LIF) 1101, 1100 TRUE FALSE

ac + cd (LRF) 1101, 1100, 1010
TRUE for 1101, 1100

FALSE for 1010

FALSE for 1101, 1100

TRUE for 1010

cd (TOF) 1100, 1101, 1110 TRUE FALSE

The test set formed by the union of all the tests in the second column in Table 41

does not include any of the tests in the second column of Table 42. Thus, the LIF, LRF

and TOF go undetected. Note that the test set formed by the union of all the tests in the

167

second column in Table 41 does not include a UTP for term ab. The only UTPs for term

ab are 1100, 1101 and 1110. When a test set does not include a UTP for a term, both a

TOF for that term and an LIF in that term are guaranteed not to be detected [30]. It is

usually possible to detect an LRF for a literal in a term without including a UTP for that

term [30] and in this case the NFP 1010 detects the LRF in Table 42, but this point does

not need to be included in a test set killing all muJava mutants.

End Proof

9.4 Double Minimal DNF Fault Detection (Contribution 4d)

This section presents a theoretical contribution by proving that tests that weakly

kill all muJava mutants are guaranteed to detect less double fault types in Lau and Yu’s

fault hierarchy than Minimal-MUMCUT tests.

Theorem 9 (Contribution 4d): TRF-TIF vs. muJava Double Minimal DNF Fault

Detection

For software with minimal DNF predicates, tests that weakly kill all muJava mutants are

guaranteed to detect fewer double fault types in Lau and Yu’s fault hierarchy than

Minimal-MUMCUT tests.

Proof:

Kaminski and Ammann [20] show that tests satisfying the Minimal-MUMCUT criterion

(and hence killing all TRF-TIF logic mutants) guarantee detecting 84 of the 92 double

fault types. Any test set that includes a UTP for each term and an NFP for each literal is

guaranteed this double fault detection [27, 28, 29]. A test set that kills all muJava mutants

168

guarantees detection of fewer double faults because it is not guaranteed to include a UTP

for each term and an NFP for each literal as described in section 9.3.

End Proof

The exact number of double faults guaranteed to be detected by a test set that kills

all muJava mutants is not known. What makes the analysis complex is that a test set that

kills all muJava mutants does make some guarantees regarding UTPs and NFPs. Such a

test set is guaranteed to contain a UTP for at least one of every two adjacent terms as this

is required to detect the ORF+ [30]. Such a test is also guaranteed to contain either a UTP

for a term or an NFP for every literal in a term as this is required to detect the LNF [30].

For an example, the TOF-TOF double fault is guaranteed to be detected by a

Minimal-MUMCUT test set [30]. Examining Table 41 shows that a test set that kills all

muJava mutants includes only one test that makes term ab TRUE, namely 1111, which

also makes term cd TRUE. Extending this further, consider predicate ab + cd + ef + gh.

The only muJava mutant that requires term ab to be TRUE is changing the first OR to

XOR (ab XOR cd + ef + gh). To kill the corresponding mutant, a test must make both ab

and cd TRUE while making both ef and gh FALSE. 11110000 is such a test. The only

muJava mutant that requires term gh to be TRUE is changing the last OR to XOR (ab +

cd + ef XOR gh). To kill the corresponding mutant, a test must make both ef and gh

TRUE while making both ab and cd FALSE. 00001111 is such a point. Lau, Liu and Yu

[27, 28, 29] state that to detect the TOF-TOF, any point that makes either (or both) terms

being omitted TRUE while making all other terms FALSE will detect the fault. Consider

the TOF-TOF where both terms ab and gh are omitted to yield cd + ef. Neither 11110000

169

nor 00001111 detect this fault because both points make some other term besides ab or

gh TRUE.

9.5 General Fault Detection (Contribution 4f)

Using muJava as the fault seeding tool, the study described at the beginning of

this chapter examined general fault detection of a test set that weakly kills all TRF-TIF

logic mutants. Specifically, the author captured the percentage of strongly non-equivalent

muJava mutants that were strongly killed by a test set that weakly kills all TRF-TIF logic

mutants. Results are shown in Table 43.

Table 43 Number of Strongly non-Equivalent muJava Mutants Strongly Killed by a

Test Set that Weakly Kills All TRF-TIF Logic Mutants [23]

Program

Number of

TRF-TIF

Logic Mutants

Number of

Strongly Killed

muJava Mutants

Number of Strongly

Non-Equivalent

muJava Mutants

Percentage

 Cal 6 106 111 96%

Prime 4 66 67 99%

TestPat 8 78 89 88%

TriType 22 153 156 99%

A1 6 31 32 97%

A2 9 45 50 90%

A3 9 40 46 87%

A4 40 87 93 94%

A5 6 38 38 100%

A6 6 38 38 100%

A7 5 25 25 100%

A8 28 58 58 100%

C1 3 2 2 100%

C2 6 68 74 92%

C3 6 68 74 92%

C4 2 34 40 85%

C5 5 2 2 100%

C6 4 68 74 92%

C7 4 68 74 92%

170

Program

Number of

TRF-TIF

Logic Mutants

Number of

Strongly Killed

muJava Mutants

Number of Strongly

Non-Equivalent

muJava Mutants

Percentage

C8 3 37 37 100%

C9 3 30 30 100%

C10 7 37 44 84%

C11 2 1 1 100%

C12 4 3 3 100%

C13 2 5 5 100%

C14 4 7 7 100%

C15 3 4 4 100%

C16 8 126 132 95%

C17 6 51 54 94%

C18 15 61 75 81%

Sum 236 1437 1535 94%

The TRF-TIF test set of 143 tests strongly killed 94% (1437 / 1535) of the

strongly non-equivalent muJava mutants (Contribution 4f), with a low of 81%, a high of

100% and a standard deviation of 6%.

The 30 programs selected for the initial empirical study were small. To see how

the findings scale to larger program, a calculator Open Source Software Java program

was selected for a second empirical study. The calculator program had 351 statements, 51

logic statements and 62 unique literals. The calculator program outputs to a console the

values of its variables after a user pressed a button on the calculator user interface. This

allowed weak mutation testing to be applied since the program state could be known after

executing a test.

A total of 95 TRF-TIF logic mutants were generated for the calculator program,

none of which were weakly equivalent. A minimal test set of 39 tests was used to weakly

171

kill these mutants. This test set is minimal in the sense that if even one of the 39 tests is

removed from the test set, at least one non-equivalent mutant cannot be weakly killed.

The muJava tool generated 767 mutants for the calculator program. The number of

strongly equivalent muJava mutants was not determined due to the large number of

muJava mutants generated. However, Offutt [32] reports that in programs he examined,

10% of the mutants were strongly equivalent. Also, 12% of the muJava mutants were

strongly equivalent for the 30 small programs in the initial study. A 10% estimate means

that there are 690 strongly non-equivalent muJava mutants. The 39 tests weakly killed

642 muJava mutants (93%), indicating that results scaled to a larger program.

Threats to Validity and Sources of Bias

The percentage of muJava mutants strongly killed by a test set that weakly kills

all TRF-TIF mutants will depend on how “predicate heavy” the program under test is.

This is a threat to external validity because it limits the generalizability of the results to

programs that are as “predicate heavy” as the programs in the empirical study. To

formalize this, two new terms are introduced, the Logic Statement Ratio and the Unique

Literals Ratio.

Logic Statement Ratio is defined as the ratio of the number of logic statements to

the total number of statements. A logic statement is considered to be an “if” or “else if”

predicate and the number of statements is counted as the number of statements ending in

a semicolon (excluding package and import statements). For the “if” and “else if”

predicates as a whole for all 30 programs, the average Logic Statement Ratio was 0.22

with a low of 0.07, a high of 0.53 and a standard deviation of 0.13. The Logic Statement

172

Ratio does not take into account the number of unique literals in a predicate. Thus, the

Unique Literals Ratio is defined as the ratio of the total number of unique literals in all

logic statements to the total number of statements. For the “if” and “else if” predicates as

a whole for all 30 programs, the average Unique Literals Ratio was 0.28 with a low of

0.11, a high of 0.93 and a standard deviation of 0.16. Based on this data, the author

suggests that (assuming unique literals are spread evenly throughout the source code) a

conservative estimate is that a test set that weakly kills all TRF-TIF mutants will strongly

kill at least 80% of strongly non-equivalent muJava mutants when the Unique Literals

Ratio is greater than 0.10.

 The studies undertaken are subject to at three sources of bias. The authors

considered a logic statement to be an “if” or “else if” predicate. Predicates in “while” and

“for loops” were not considered as logic statements (although the TRF-TIF tool has an

option to generate mutants based on loop predicates). In general, omitting loop predicates

creates an experimental bias against the ability of a test set that weakly kills all TRF-TIF

logic mutants to kill non-logic mutants. However, for all but one of the programs studied,

tests used to weakly kill all TRF-TIF logic mutants based on “if” and “else if” predicates

were found to weakly kill all TRF-TIF logic mutants based on mutations to “while” and

“for loop” predicates. Thus, additional tests cases would be needed for only one program

to weakly kill all TRF-TIF logic mutants had loop predicates been included. Hence, the

ability of a TRF-TIF test set to kill non-logic mutants for 29 of the programs would not

have changed, meaning the bias created by using only “if” and “else if” predicates in

TRF-TIF logic mutations is minimal.

173

 Another source of bias is that the way the authors classified a mutant as

equivalent. Recall that classifying a TRF-TIF logic mutant as equivalent means that it is

equivalent based on weak mutation testing, which means that it will always be equivalent

based on strong mutation testing. However, classifying a muJava mutant as equivalent

means it is equivalent under strong mutation testing, although it might not be equivalent

under weak mutation testing. In general, this will create an experimental bias against

TRF-TIF logic mutation because it requires that tests that weakly kill TRF-TIF logic

mutants strongly kill non-logic muJava mutants. However, usually test that weakly kill

mutants also strongly kill mutants, so this source of bias is likely to have little impact.

A third of source of bias is that muJava is itself a selective mutation tool in that it

uses a subset of common mutation operators that have been shown to be highly effective

[2]. Thus, the comparison in this study is between TRF-TIF logic mutation operators with

a selective mutation operator set. Thus, the mutation score of 94% is likely to be smaller

when replacing the selective mutation operators of muJava with a full set.

One interesting finding of the study was the variance seen in the results. While for

the software empirical evaluation, an average of 94% of strongly non-equivalent muJava

mutants were killed by a test that weakly killed all weakly non-equivalent TRF-TIF

mutants, this percentage was as low as 81% for one of the programs. What is interesting

is that the software program for which TRF-TIF logic mutation scored the lowest (81%

for the Collections replaceAll method), had a slightly above average Unique Literals

Ratio (0.29 compared to an average of 0.28). In fact, the correlation between the Unique

Literals Ratio and the percentage of strongly non-equivalent muJava mutants killed by a

174

test that weakly killed all weakly non-equivalent TRF-TIF logic mutants was very weak

(r = 0.03). Future research is planned to investigate why the percentages of general

mutants killed by tests weakly killing all weakly non-equivalent TRF-TIF logic mutants

were lower for some programs than others. Based on our data, a Unique Literals Ratio of

at least 0.10 is a reliable indicator for achieving at least an 80% mutation score, but other

factors influence whether the mutation score goes higher.

175

10 Comparison of TRF-TIF Logic Mutation with
SQLMutation

This chapter is the last of three comparing the TRF-TIF logic mutation approach

with other mutation tools/approaches. The focus of this chapter is comparing the TRF-

TIF logic mutation approach with SQLMutation, which corresponds to the fifth row in

Table 5. SQLMutation is an online query mutation tool based on CACC. To kill all

SQLMutation mutants, a criterion known as SQLFpc (SQL Full predicate coverage) must

be satisfied, which itself requires that CACC be satisfied. Each section in this chapter

corresponds to a cell in Table 5. Section 10.1 corresponds to cell 5a (mutant set size

comparison), section 10.2 corresponds to cell 5b (equivalent mutant set size comparison),

section 10.3 corresponds to cell 5c (single minimal DNF fault detection comparison),

section 10.4 corresponds to cell 5d (double minimal DNF fault detection comparison),

and section 10.5 corresponds to cell 5e (general fault detection). The overriding theme of

this chapter is that TRF-TIF logic mutation provides better minimal DNF fault detection

and reduced mutant set size when compared to SQLMutation, and that TRF-TIF logic

mutation is effective at producing mutants that when killed, also kill a high percentage of

non-logic mutants. The rest of this section describes an empirical study from which

contributions in subsequent sections are derived.

176

A database empirical evaluation [23] was conducted to ascertain if logic mutation

testing can be used to reduce the costs of general mutation testing while maintaining most

of its benefits. Specifically, the study was performed to answer these questions:

1) Does TRF-TIF logic mutation produce fewer mutants than the SQLMutation approach

with minimal impact on general fault detection?

2) Does TRF-TIF logic mutation produce fewer mutants than the SQLMutation approach

while improving logic fault detection?

3) Does TRF-TIF logic mutation produce fewer equivalent mutants than the

SQLMutation approach?

4) Can TRF-TIF logic mutation reduce test set size (the number of rows needed in the

tables of a database to kill all mutants) as compared to the SQLFpc approach while still

maintaining a high mutation score?

5) How do the mutation scores for TRF-TIF logic mutation compare with an approach

where a test set is created randomly?

 Ten queries from an open source project called Compiere were used. These

queries were selected because Tuya et al. [42] used views from the Compiere project to

compare mutation scores for the SQLFpc approach with an approach using a database

populated randomly.

Kaminski et al. [23] examined all the views in the Compiere project and extracted

from them any query or sub query that contained a predicate (meaning a condition in a

JOIN or a clause in a CASE, WHERE or HAVING statement) that had at least three

unique literals. There were ten such queries. The rationale is that an approach based on

177

logic mutation is going to require predicates with at least three unique literals to be

beneficial. For six of the ten queries, the query constitutes the entire view. For the other

four queries, the query consisted of a sub query in the view. The study used the TRF-TIF

tool to generate logic mutants and version 1.2.59 of the SQLMutation tool to generate

general mutants. In some cases the queries were modified so as to eliminate internal

PL/SQL functions or to get them to run successfully through the SQLMutation tool but in

no cases were any join conditions changed and in no cases were the number of unique

literals in a predicate changed.

All predicates were already in minimal DNF for 8 of the 10 queries. For query 4,

the WHERE clause predicate was in minimal CNF. For query 1, the WHERE clause

predicate was neither in minimal DNF nor minimal CNF. For these two queries, the

WHERE clause predicate was converted to minimal DNF before generating the TRF-TIF

mutants. When a query had multiple predicates (for example, a WHERE clause and a

JOIN condition), the TRF-TIF approach was applied if the predicate had at least three

unique literals whereas a combinatorial approach was applied if the predicate had less

than three unique literals. When creating test data to kill all TRF-TIF mutants, the author

had not seen the SQLMutation mutants to eliminate bias. Appendix K lists the following

for each query:

1) The schema used for the purpose of running the SQLMutation tool

2) The actual SQL for the query

3) The main WHERE clause predicate in minimal DNF

4) The mutants created by the TRF-TIF tool for the main WHERE clause predicate

178

5) The test points needed to kill each mutant in terms of literal values

6) The test points needed to kill all the TRF-TIF mutants in terms of the rows needed in a

test database

10.1 Mutant Set Size (Contribution 5a)

The number of mutants generated by each tool was determined and the results are in

Table 44. The key finding is that TRF-TIF mutant set size is 2% of SQLMutation mutant

set size (Contribution 5a).

Table 44 Number of Query Mutants [23]

Query
TRF-TIF

Logic Mutants

SQLMutation

Mutants*
Percentage

1 71 1406 5.05%

2 5 1007 0.50%

3 5 1005 0.50%

4 20 1025 1.95%

5 4 49 8.16%

6 4 252 1.59%

7 4 497 0.80%

8 5 401 1.25%

9 5 610 0.82%

10 4 166 2.41%

Sum 127 6418 1.98%

*The SQLMutation tool can automatically identify a few equivalent mutants. (9 of the

6427 total mutants generated for the 10 queries were identified as equivalent). The data in

Table 44 reflects only the mutants generated by the SQLMutation tool that the

SQLMutation tool does not mark as equivalent.

179

These results can be explained by the fact that the TRF-TIF tool produces

different logic mutants than the logic mutants produced by SQLMutation as the logic

mutation operators in the TRF-TIF tool are different than the logic mutation operators in

SQLMutation. For the TRF-TIF tool, the logic portion of a query is considered to be a

WHERE, HAVING or CASE clause or a JOIN condition. The TRF-TIF approach limits

itself to these conditions and clauses because these are the places where a predicate is

explicitly specified. The SQLFpc approach is more comprehensive. Thus, less data in a

test database is needed for the TRF-TIF approach than for the SQLFpc approach as fewer

mutants are generated. Another explanation is that the TRF-TIF approach avoids

generating unnecessary mutants low in the fault hierarchy. SQLMutation does not take

advantage of the fault detection relations in the fault hierarchy. A final explanation is that

SQLMutation generates more equivalent mutants, which is described next.

10.2 Equivalent Mutant Set Size (Contribution 5b)

The SQLMutation tool automatically detects some equivalent mutants. However,

it also produces equivalent mutants that are not detected. The author of the SQLMutation

tool was asked for an estimate as to what percentage of the mutants generated by the

SQLMutation tool are equivalent, yet are not detected as such. At the time of the

correspondence, the current version of the SQLMutation tool was version 1.2.59. The

author of the SQLMutation tool indicated that while the percentage varies depending on

the complexity of the query, a conservative estimate is 6%. This was based on an NIST

study using simple queries. More complex queries are likely to have a higher percentage

of equivalent mutants generated by the SQLMutation tool. Thus, a TRF-TIF mutant set

180

contains fewer equivalent mutants than a SQLMutation mutant set (Contribution 5b)

since a TRF-TIF mutant set is guaranteed to not have any equivalent query mutants

(assuming a complete Boolean space) and the 6% estimate for SQLMutation is based on

a complete Boolean space.

10.3 Single Minimal DNF Fault Detection (Contribution 5c)

This section presents a theoretical contribution by proving that tests that weakly

kill all SQLMutation mutants are guaranteed to detect 2 of the 9 single fault types in Lau

and Yu’s fault hierarchy (the TNF and ENF).

Theorem 10 (Contribution 5c): TRF-TIF vs. SQL Mutation Single Minimal DNF

Fault Detection

For queries having minimal DNF WHERE clauses, tests that weakly kill all

SQLMutation mutants are guaranteed to detect 2 of the 9 single fault types in Lau and

Yu’s fault hierarchy.

Proof:

SQLFpc is based on masking MCDC (CACC) which is known to guarantee detection of

only 2 of the 9 faults in Lau and Yu’s fault hierarchy [24]. (CACC requires a UTP and

NFP for each unique literal but not each literal). This was also proven in section 6.2 by

showing how RACC tests guarantee detecting only 2 of the faults because a CACC test is

a RACC test set.

End Proof

181

10.4 Double Minimal DNF Fault Detection (Contribution 5d)

This section presents a theoretical contribution by proving that tests that weakly kill all

SQLMutation mutants are guaranteed to detect 22 of the 92 double fault types in Lau and

Yu’s fault hierarchy.

Theorem 11 (Contribution 5d): TRF-TIF vs. SQL Mutation Double Minimal DNF

Fault Detection

For queries having minimal DNF WHERE clauses, tests that weakly kill all

SQLMutation mutants are guaranteed to detect 22 of the 92 double fault types in Lau and

Yu’s fault hierarchy.

Proof:

SQLFpc is based on masking MCDC (CACC) which is known to guarantee detection of

only 22 of the 92 double fault types in the hierarchy [23]. (CACC requires a UTP and

NFP for each unique literal but not each literal). This was also proven in section 6.3 by

showing how RACC tests guarantee detecting only 22 of the faults because a CACC test

is a RACC test set. The 22 double fault types correspond only to 4 of the 45 unordered,

non-versioned double fault types. The only double fault types that MCDC is guaranteed

to detect (ENF-TOF, TNF-TNF, TNF-TOF and TNF-LIF) are those that can be detected

by any FALSE point [23].

End Proof

182

10.5 General Fault Detection (Contribution 5f Parts I and II)

Using SQLMutation as the fault seeding tool, the study described at the beginning

of this chapter examined general fault detection of a test set that weakly kills all TRF-TIF

logic mutants. The data collected included:

1) percentage of non-equivalent* SQLMutation tool mutants killed by a test set killing all

TRF-TIF logic mutants

2) a comparison of TRF-TIF logic mutation score with mutation score based on

populating a test database randomly

*The percentage of equivalent mutants is assumed to be 8% for two of the queries and

6% for all other queries based on data provided by the author of the SQLMutation tool. 8

of the 10 queries had 5 or less unique literals in their WHERE clause. The two remaining

queries had 10 and 18 unique literals in their WHERE clauses so the percentage of

equivalent mutants for these queries is assumed to be 8%.

Table 45 displays the percentage of non-equivalent SQLMutation mutants weakly

killed by a test set that kills all TRF-TIF logic mutants. The data in Table 45 reflects

assumptions as to the proportion of equivalent mutants. Based on Table 45, a

conservative estimate is that a test set that kills all TRF-TIF mutants will kill at least 80%

of non-equivalent SQLMutation mutants when the WHERE clause has at least 3 unique

literals

183

Table 45 Percentage of Non-Equivalent SQLMutation Mutants Killed by a Test Set

Killing all TRF-TIF Logic Mutants [23]

Query

Killed Non-

Equivalent

SQLMutation

Mutants

Non-

Equivalent

SQLMutation

Mutants

Percentage

1 1066 1295 82%

2 864 947 91%

3 998 *1005 99%

4 828 967 86%

5 42 46 91%

6 221 237 93%

7 445 468 95%

8 352 379 93%

9 477 573 83%

10 144 156 92%

Sum 5437 6053 90%

* 1005 mutants were generated by the SQLMutation tool for query number 3. Since 998

of these mutants were killed at most 7 of them are equivalent. Thus, for this query, the

6% estimate of equivalent mutants is too high. Thus, it is assumed all 1005 mutants are

not equivalent. This assumption biases the results against the TRF-TIF logic mutation

tool as some of these 1005 mutants may be equivalent.

Table 46 compares mutation scores for the TRF-TIF approach versus an approach

based on populating a test database randomly with four rows of data per table as

described by Tuya et al. [42]. Table 46 shows data for queries 1-5 and 9. These queries

are targeted because Tuya’s research focused on testing entire views and queries 1-5 and

9 represent the entire view (whereas queries 6, 7, 8 and 10 represent a subquery within

the view). Thus, a direct comparison between the TRF-TIF results and random results are

only possible for queries 1-5 and 9. On average, a test set that kills all TRF-TIF logic

mutants required 3.54 rows of data per table, so this biases the comparison against the

184

TRF-TIF approach. The mutation score for the TRF-TIF approach in Table 46 is lower

for each query than that listed in Table 45. This is because the random mutation scores

are based on the set of mutants without accounting for an estimate of non-equivalent

mutants. That is, the mutation scores for the random approach assumed an equivalent

mutant percentage of 0%. Thus, the actual mutation scores for the TRF-TIF approach and

the random approach are higher than what is presented in Table 46. However, not taking

into account the assumption of equivalent mutant frequency allows an unbiased

comparison between the TRF-TIF approach and the random approach.

Table 46 Mutation Scores for TRF-TIF Logic Mutation versus a Random Approach

[23]

Query
TRF-TIF Logic

Mutation Score

Random

Mutation Score

1 75.82% 1.6%

2 85.80% 0.2%

3 99.30% 0.2%

4 80.78% 0.1%

5 85.71% 18.7%

9 78.20% 0.0%

Average 84.27% 3.47%

Key results include:

1) A test set that killed all TRF-TIF mutants killed 90% of all non-equivalent

SQLMutation mutants (Contribution 5f Part I) with a standard deviation of 5%

185

2) Mutation score for the TRF-TIF approach is more than 20 times higher than that

of a random approach, even when the random approach uses more test data

(Contribution 5f Part II). (Even when a random approach populates 1000 rows

per table, the mutation score is still higher for the TRF-TIF approach based on

3.54 rows per table.)

 Tuya et al. [42] give detailed results for the SQLFpc approach only for query 1.

For this query, they state that 87.30% of SQLMutation mutants are killed by a test set

satisfying SQLFpc. They also specify that 126 rows are needed to satisfy SQLFpc

coverage. The author contacted Tuya to get similar data for queries 2, 3, 4, 5 and 9. These

queries are targeted because Tuya’s research focused on testing entire views and queries

1-5 and 9 represent the entire view (whereas queries 6, 7, 8 and 10 represent a subquery

within the view). Thus, a direct comparison between the TRF-TIF results and Tuya’s

results is only possible for queries 1-5 and 9.

 Table 47 gives Tuya’s data for a test set satisfying SQLFpc for queries 1-5 and 9.

The mutation score represents no assumption as to the number of equivalent mutants

(only mutants identified as equivalent by the SQLMutation tool are accounted for). Note

that the mutation score for query 1 in Table 47 is different than what is mentioned above

because Tuya updated his tool to eliminate randomness so as to make results repeatable

(meaning the mutant set is always the same for a given query that is run through the

SQLMutation tool). Note also that number of rows needed for query 1 in Table 47 is

different than what is mentioned above since Tuya indicated that the 126 rows was an

186

error and it should have been reported as 136. Table 48 gives data for a test set based on

TRF-TIF logic mutation for queries 1-5 and 9.

Table 47 Mutation Scores and Number of Database Rows for a SQLFpc Test Set

[42]

Query Mutation Score Rows

1 86.15% 136

2 89.15% 35

3 91.70% 42

4 90.30% 44

5 94.67% 5

9 55.42% 25

Average 84.57% 47.83

Table 48 Mutation Scores and Number of Database Rows for a TRF-TIF Logic

Mutation Test Set [23]

Query Mutation Score Rows

1 75.82% 46

2 85.80% 13

3 99.30% 17

4 80.78% 22

5 85.71% 4

9 78.20% 9

Average 84.27% 18.5

 The average mutation scores for the SQLFpc approach and the TRF-TIF approach

are almost the same. However, the SQLFpc approach requires more than 2.5 times as

number of rows in the database. Thus, test set size for the TRF-TIF approach is about

187

38% of the test set size for the SQLFpc approach. Also, the TRF-TIF approach

guarantees detecting faults in Lau and Yu’s fault hierarchy that the SQLFpc approach

does not. The SQLMutation tool does not generate mutants that correspond to some of

the faults in the hierarchy. For example, there are no mutants generated by the

SQLMutation tool that correspond to the LIF. If the SQLMutation tool did generate such

mutants, the mutation score for the SQLFpc approach would decrease and the mutation

score for the TRF-TIF approach would increase as tests that weakly kill all TRF-TIF

mutants guarantee detecting the LIF. Since SQLFpc is based on MCDC and MCDC does

not guarantee detecting 7 of the 9 faults in Lau and Yu’s fault hierarchy, a test set that

kills all TRF-TIF mutants is guaranteed to detect 7 fault types that a SQLFpc test does

not.

Threats to Validity and Sources of Bias

The percentage of SQLMutation mutants killed by a test set that kills all TRF-TIF

query mutants will depend on how “predicate heavy” the query under test is. This is a

threat to external validity because it limits the generalizability of the results to queries

that are as “predicate heavy” as the programs in the empirical study.

The study undertaken has a bias since SQLMutation is itself a selective mutation

tool because it uses a subset of query mutation operators. Thus, the comparison in this

study is between TRF-TIF mutation operators with a selective mutation operator set.

Thus, the mutation score of 90% is likely to be smaller when replacing the selective

mutation operators of SQLMutation with a full set.

188

One interesting finding was the variance seen in the results. For the database

empirical evaluation, 90% of non-equivalent SQLMutation mutants were killed by a test

set that killed all TRF-TIF logic mutants, but this percentage was as low as 82% for one

of the queries. What is interesting is that the query for which TRF-TIF logic mutation

scored the lowest (82% for query 1) had more unique literals in its where clause than any

other query under test. Also, the query for which TRF-TIF logic mutation scored the

second lowest (83% for query 9) had the second most unique literals in its where clause.

A negative correlation coefficient of r = -0.67 was found between the number of unique

literals in the where clause of a query and the number of non-equivalent SQLMutation

mutants killed by a test set killing all TRF-TIF logic mutants. Future research is planned

to investigate why the percentages of general mutants killed by tests weakly killing all

weakly non-equivalent TRF-TIF logic mutants were lower for some queries than others.

Based on our data, a query having at least 3 unique literals is a reliable indicator for

achieving at least an 80% mutation score, but other factors influence whether the

mutation score goes higher.

189

11 Conclusion

 In conclusion, the Minimal-MUMCUT logic coverage criterion and TRF-TIF

logic mutation advance the state of software and query testing by providing efficient

solutions to the problem of increasing fault detection while decreasing mutant and test set

size.

The Minimal-MUMCUT criterion has been shown to both reduce test set size and

increase fault detection when compared to other logic coverage criteria, both in theory

and in practice. Based on criterion feasibility of individual terms and literals in a minimal

DNF or minimal CNF predicate, Minimal-MUMCUT tests can reduce MUMCUT test set

size while at the same time detecting more faults than semantic ACC and ICC tests. An

evaluation of safety-critical software, open source software and open source queries

showed that the majority of predicates are in either minimal CNF or minimal DNF (or

both). However, when a predicate is not in minimal CNF or minimal DNF, the Minimal-

MUMCUT criterion still provides excellent fault detection. The benefits of single fault

detection extend to double fault detection for the Minimal-MUMCUT criterion and in

practice, Minimal-MUMCUT test sets were found to detect all but one double fault type.

Also, the Minimal-MUMCUT criterion can be extended with just a few tests to guarantee

detecting this double fault type.

 By using an extended fault hierarchy and the concepts of semantic and syntactic

fault size, TRF-TIF logic mutation was shown to have some distinct advantages over

190

current software mutation and query mutation approaches. Reducing logic mutant set

size, reducing database test set size needed to kill mutants, reducing (or eliminating)

equivalent mutants, generating more highly selective mutants and helping the tester

create test data to kill mutants are all advantages of the TRF-TIF logic mutation

approach. It was also shown that a test set that kills all TRF-TIF logic mutants kills a high

percentage of mutants in general, both for software and queries. These benefits are the

result of using new highly selective logic mutation operators that change the way

researchers should view logic mutation testing.

My main logic coverage criterion recommendation is that the Federal Aviation

Administration require the Minimal-MUMCUT criterion instead of MCDC for any

predicates in minimal DNF or minimal CNF (which comprise the majority of predicates

in safety-critical avionics software). The Minimal-MUMCUT criterion provides better

logic fault detection for such predicates. Furthermore, it is my recommendation that

testers currently using the MUMCUT criterion switch to using the Minimal-MUMCUT

criterion. The Minimal-MUMCUT criterion offers the same fault detection as the

MUMCUT criterion for an important class of logic faults, and has been shown to detect

over 98% of faults in predicates of any syntactic format, as well as an average of 95% of

general faults (logic and non-logic faults). Thus, the extra tests required by the

MUMCUT criterion are of little, if any, value based on the theoretical and empirical

studies conducted in this research.

My main logic mutation recommendation is that mutation tools should undergo a

fundamental redesign in terms of the logic mutation operators used. These tools should

191

apply TRF-TIF mutation operators to minimal DNF predicates instead of the currently

used logic mutation operators. Ideally, such tools would also convert non-minimal DNF

predicates into minimal-DNF predicates and apply TRF-TIF mutation operators on the

converted predicates. Furthermore, in cases where (1) the software under test has a high

degree fault tolerance (such as non-safety-critical software) and (2) testing resources are

limited, testers should consider using the TRF-TIF mutation tool instead of a tool that

generates both logic and non-logic mutants. The reason is that generating only TRF-TIF

logic mutants has been shown to significantly reduce mutant set size while maintaining

high mutation scores.

Several possibilities exist in terms of future work. One is to repeat the same

experiments conducted herein with larger samples of different software programs and

queries. Increasing both sample size and diversifying the types of programs and queries

under test will strengthen the generalizability of the findings. A second idea for future

work is to implement TRF-TIF mutation in current mutation tools such muJava and

SQLMutation. A third idea is to examine what other mutation operators besides TRF-TIF

mutation operators are needed to bring all the mutation scores of the test sets described in

Table 43 and Table 45 to over 95%. That is, it would be interesting to determine what

types of general mutants are not killed by a test set that weakly kills all TRF-TIF mutants.

In other words, the goal would be to determine empirically what general fault types tend

to go undetected by tests that weakly kill all TRF-TIF mutants and then to determine

which mutation operators seeded those faults. Supplementing TRF-TIF mutation

operators with these additional mutation operators could prove to be a way to add only a

192

small set of mutation operators to the TRF-TIF mutation operator set while achieving

higher mutation scores across the board.

193

Appendix A Optimization Model for Selecting NFPs

(From section 4.1)

This appendix shows how overlapping NFPs can be modeled as an optimization problem

as part of the Minimal-MUMCUT test generation algorithm.

Given a minimal DNF predicate of ab + cd the following NFPs exist:

NFPs for a: 0100, 0101, 0110 NFPs for b: 1000, 1001, 1010

NFPs for c: 0001, 0101, 1001 NFPs for d: 0010, 0110, 1010

The optimization model is

Minimize x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 subject to

x1 + x2 + x3 >= 1

x3 + x4 + x6 >= 1

x7 + x2 + x5 >= 1

x8 + x3 + x6 >= 1

where

x1 is 1 if 0100 is selected and 0 if it is not selected

x2 is 1 if 0101 is selected and 0 if it is not selected

x3 is 1 if 0110 is selected and 0 if it is not selected

x4 is 1 if 1000 is selected and 0 if it is not selected

x5 is 1 if 1001 is selected and 0 if it is not selected

x6 is 1 if 1010 is selected and 0 if it is not selected

x7 is 1 if 0001 is selected and 0 if it is not selected

x8 is 1 if 0010 is selected and 0 if it is not selected

There are two optimal solutions:

x2=1,x6=1 (all others = 0)

x3=1,x5=1 (all others = 0)

194

Appendix B Minimal DNF TCAS Predicates

Reprinted [46]

1. a~bd~e~h~f + a~b~de~h~f + a~bcd~e~f + a~bc~de~f + ~ab~de~f

2. a~bc~d~e~gh~i~f + a~b~d~e~g~h~if + a~b~c~e~g~h~if + a~b~c~d~g~h~if +

 a~bc~d~eg~h~f + a~bc~d~e~hi~f + a~b~cd~eg~h~f + a~b~cd~e~hi~f + a~b~c~deg~h~f

 + a~b~c~de~hi~f + ~abc~d~e~hi~f + ~ab~cd~e~hi~f + ~ab~c~de~hi~f

3. ~a~bc~g~i~k~m + ~a~bcg~h~l~m + ~a~bc~g~hi~m + ~a~bcgi~l~m + ~a~bcgi~k~m +

 ~a~bc~h~k~m + ~ab~c~g~i~k + a~b~c~g~i~k + ~a~bc~i~kf + ~ab~c~g~hi +

 ~ab~cg~h~l + a~b~c~g~hi + a~b~cg~h~l + ~a~bc~hif + ~ab~cgi~k + ~ab~cgi~l +

 a~b~cgi~k + a~b~cgi~l + a~b~c~h~k + ~ab~c~h~k + a~b~cgf + ~ab~cgf + ~a~bcgf +

 a~b~c~d + a~b~c~e

4. a~bd + a~cd + e

5. a~g~i~k + ag~h~l + a~g~hi + agi~l + agi~k + a~h~k + a~c + a~b + f

6. ~ab~cdeg~hij~k~f + a~bc~deg~hij~k~f + ~ab~cde~g~h~jf + ~ab~cde~g~h~kf +

 a~bc~de~g~h~jf + a~bc~de~g~h~kf

7. ~ab~cde~g~i~j + ~ab~cde~h~i~k + a~bc~de~g~i~j + a~bc~de~h~i~k + a~bc~de~g~k +

 a~bc~de~h~j + ~ab~cde~g~k + ~ab~cde~h~j

8. ~ab~cde~gh~f + a~bc~de~gh~f + ~ab~cdeg~hf + a~bc~deg~hf

9. ~a~b~cd~e~gf + ~abc~d~e~gf

10. a~b~cd~eg~j~l~mf + a~b~cd~eh~j~l~mf + a~b~cd~ei~j~l~mf + a~b~cd~egj~k~mf +

 a~b~cd~ehj~k~mf + a~b~cd~eij~k~mf

11. a~b~c~g~h~i~j~l + a~b~c~g~h~ij~k + a~b~c~g~h~i~jm + a~b~c~d~e~j~l +

 a~b~c~d~e~jm + a~b~c~d~ej~k + a~b~c~j~l~f + a~b~cj~k~f + a~b~c~jm~f

12. Not included due to a missing right parenthesis

13. a + b + c + ~def~g~h + ij~l + ik~l

14. ae~h + ad~h + ace + acd + be + bf

15. bei + bdi + bci + aei + aeg + adi + adg + aci + ach + acg + af

16. c~g~i~k~m + cg~h~l~m + c~g~hi~m + cgi~l~m + cgi~k~m + c~h~k~m + b~g~i~k +

 a~g~i~k + b~g~hi + bg~h~l + a~g~hi + ag~h~l + bgi~k + bgi~l + agi~k + agi~l +

 a~h~k + b~h~k + ~i~kf + ~hif + gf + a~e + a~d

17. acegij + acehik + bdegij + bdehik + acef + bdef

195

18. ace~j~k + ace~h~j + ace~g~k + bde~j~k + bde~h~j + bde~g~k + bde~i + ace~i

19. aceh~f + bdeh~f + acegf + bdegf

20. ~a~bd~e~gf + ~abc~e~gf

196

Appendix C General Form TCAS Predicates and Fault
Examples

Reprinted [46]

Predicate 1: ~(ab)(d~e~f + ~de~f + ~d~e~f)(ac(d + e)h + a(d + e)~h + b(e + f))

Predicate 4: a(~b + ~c)d + e

Predicate 6: (~ab + a~b)~(cd)(f~g~h + ~fg~h + ~f~g~h)~(jk)((ac + bd)e(f + (i(gj + hk))))

Predicate 8: (~ab + a~b)~(cd)~(gh)((ac + bd)e(fg + ~fh))

Predicate 9: ~(cd)(~ef~g~a(bc + ~bd))

Predicate 10: a~b~cd~ef(g + ~g(h + i))~(jk + ~jl + m)

Predicate 13: a + b + c + ~c~def~g~h + i(j + k)~l

Predicate 14: ac(d + e)h + a(d + e)~h + b(e + f)

Predicate 19: (ac + bd)e(fg + ~fh)

Predicate 20: ~ef~g~a(bc + ~bd)

197

Appendix D Minimal DNF, Minimal CNF and MUMCUT
Extension Test Sets

(From section 5.1)

This appendix gives details on minimal DNF, minimal CNF, and MUMCUT extension

test sets for four TCAS predicates.

PREDICATE 4

Minimal DNF: a~bd + a~cd + e

MUTP test set (4 tests):

10110 term a~bd

11010 term a~cd

00001 term e

11111 term e

The MUTP criterion is infeasible for terms a~bd and a~cd, so PCUTPNFP tests are needed for the literals

in these terms. Since term e is a single-literal term, any NFP for any other literal will also be an NFP for

literal e.

Additional tests needed for a PCUTPNFP test set (5 tests):

00110 term a~bd, literal a

11110 term a~bd, literal b and term a~cd, literal c

10100 term a~bd, literal d

01010 term a~cd, literal a

11000 term a~cd, literal d

Since the PCUTPNFP criterion is feasible for every literal, MNFP tests are not required.

Minimal CNF: (a + e)(~b + ~c + e)(d + e)

MUFP test set (5 tests):

00110 term a + e

01010 term a + e

11110 term ~b + ~c + e

10100 term d + e

11000 term d + e

Since the MUFP criterion is infeasible for each term and no term consists of a single literal, PCUFPNTP

tests are needed for each literal.

Additional tests needed for a PCUFPNTP test set (5 tests):

198

10110 term a + e, literal a and term ~b + ~c + e, literal b and term d + e, literal d

00111 term a + e, literal e

11010 term ~b + ~c + e, literal c

11111 term ~b + ~c + e, literal e

10101 term d + e, literal e

Since PCUFPNTP is feasible for every literal, MNTP tests are not required.

MUMCUT extension: a~bd + a~cd + e

1. All UTP test set (15 tests):

10110 term a~bd

11010 term a~cd

XXXX1 term e

where XXXX is any combination of values except 1001, 1011, or 1101

2. OTP test set (1 test):

10011 terms a~bd and a~cd, terms a~bd and e, terms a~cd and e

3. All NFP test set (13 tests):

XXXX0 all literals

where XXXX is any combination of values except 1001, 1011, or 1101

Any point where e is FALSE and terms a~bd and terms a~cd are both FALSE is an NFP for literal e. The

NFPs for the other literals are subsets of the set of all NFPs for literal e.

4. n-MNFP test set

For n > 1, no n-NFPs exist as every FALSE point is a 1-NFP for literal e since literal e is in a single-literal

term.

199

PREDICATE 9

Minimal DNF: ~a~b~cd~ef~g + ~abc~d~ef~g

MUTP test set (2 tests):

0001010 term ~a~b~cd~ef~g

0110010 term ~abc~d~ef~g

The MUTP criterion is feasible for both terms (as each term contains all unique literals there are no

external literals to vary). Thus, only a single NFP is needed for each literal as follows:

NFP test set (14 tests):

1001010 term ~a~b~cd~ef~g, literal a

0101010 term ~a~b~cd~ef~g, literal b

0011010 term ~a~b~cd~ef~g, literal c

0000010 term ~a~b~cd~ef~g, literal d

0001110 term ~a~b~cd~ef~g, literal e

0001000 term ~a~b~cd~ef~g, literal f

0001011 term ~a~b~cd~ef~g, literal g

1110010 term ~abc~d~ef~g, literal a

0010010 term ~abc~d~ef~g, literal b

0100010 term ~abc~d~ef~g, literal c

0111010 term ~abc~d~ef~g, literal d

0110110 term ~abc~d~ef~g, literal e

0110000 term ~abc~d~ef~g, literal f

0110011 term ~abc~d~ef~g, literal g

Minimal CNF: ~a(~b + c)(~b + ~d)(b + ~c)(b + d)~ef~g

MUFP test set (12 tests):

1001010 term ~a

1110010 term ~a

0100010 term ~b + c

0111010 term ~b + ~d

0011010 term b + ~c

0000010 term b + d

0001110 term ~e

0110110 term ~e

0001000 term f

0110000 term f

0001011 term g

0110011 term g

Since terms ~a, ~e, f and ~g are single-literal terms, any NTP for any other literal will also be an NTP for

these four literals. Since MUFP is infeasible for terms (~b + c) and (~b + ~d) and (b + ~c) and (b + d),

Partial-CUFPNTP tests are needed for each literal in these terms.

Additional tests needed for a Partial-CUFPNTP test set (2 tests):

No test term ~b + c, literal b because in an NTP for literal b in term ~b + c, literal d must be 1

200

0110010 term ~b + c, literal c and term ~b + ~d, literal d

No test term ~b + ~d, literal b because in an NTP for literal b in term ~b + ~d, literal c must be 0

No test term b + ~c, literal b because in an NTP for literal b in term b + ~c, literal d must be 0

0001010 term b + ~c, literal c and term b + d, literal d

No test term b + d, literal b because in an NTP for literal b in term ~b + d, literal c must be 1

Since Partial-CUFPNTP is not feasible for all literals, MNTP tests are required as specified below.

However, each of these tests overlaps with the two tests to satisfy Partial-CUFPNTP given above, so no

additional tests are required.

0001010 term ~b + c, literal b

0001010 term ~b + ~d, literal b

0110010 term b + ~c, literal b

0110010 term b + d, literal b

MUMCUT extension: ~a~b~cd~ef~g + ~abc~d~ef~g

1. All UTP test set (2 tests):

0001010 term ~a~b~cd~ef~g

0110010 term ~abc~d~ef~g

2. OTP test set (0 tests):

Since each term contains all unique literals, no OTPs exist.

3. All NFP test set (14 tests):

1001010 term ~a~b~cd~ef~g, literal a

0101010 term ~a~b~cd~ef~g, literal b

0011010 term ~a~b~cd~ef~g, literal c

0000010 term ~a~b~cd~ef~g, literal d

0001110 term ~a~b~cd~ef~g, literal e

0001000 term ~a~b~cd~ef~g, literal f

0001011 term ~a~b~cd~ef~g, literal g

1110010 term ~abc~d~ef~g, literal a

0010010 term ~abc~d~ef~g, literal b

0100010 term ~abc~d~ef~g, literal c

0111010 term ~abc~d~ef~g, literal d

0110110 term ~abc~d~ef~g, literal e

0110000 term ~abc~d~ef~g, literal f

0110011 term ~abc~d~ef~g, literal g

4. n-MNFP test set (112 tests)

Since every unique literal occurs in each term, test set size consists of all FALSE points except for 1-NFPs.

128 possible tests exist with 2 TRUE points and 14 1-NFPs, leaving 112 n-NFPs for n > 1.

201

PREDICATE 13

Minimal DNF: a + b + c + ~def~g~h + ij~l + ik~l

MUTP test set (12 tests):

100000000000 term a

100111111111 term a

010000000000 term b

010111111111 term b

001000000000 term c

001111111111 term c

000011000000 term ~def~g~h

000011001111 term ~def~g~h

000000001100 term ij~l

000111111100 term ij~l

000000001010 term ik~l

000111111010 term ik~l

Since terms a, b and c are single-literal terms, any NFP for any other literal will also be an NFP for these

three literals. No PCUTPNFP tests are needed for term ~def~g~h as the MUTP criterion is feasible for this

term. Thus, NFPs for literals in these terms can be chosen to overlap with other NFPs. PCUTPNFP tests are

needed for literals in terms ik~l and ij~l. Literal j is the only literal in a multi-literal term that must be fixed

(to FALSE) in a UTP for term ik~l. Literal k is the only literal in a multi-literal term that must be fixed (to

FALSE) in a UTP for term ij~l. Thus, values for literals d, e, f, g and h do not need to be the same in the

UTP – NFP pair chosen to satisfy the PCUTPNFP criterion for the literals in terms ij~l and ik~l. This

allows the NFPs chosen for literals d, e, f, g and h to overlap with the NFPs chosen for literals i, j, k and l to

satisfy the PCUTPNFP criterion.

Additional tests needed for a PCUTPNFP test set (5 tests):

000111000100 term ij~l, literal i (and an NFP for literal d)

000001001000 term ij~l, literal j and term ik~l, literal k (and an NFP for literal e)

000010001101 term ij~l, literal l (and an NFP for literal f)

000011100010 term ik~l, literal i (and an NFP for literal g)

000011011011 term ik~l, literal l (and an NFP for literal h)

Since the PCUTPNFP criterion is feasible, MNFP tests are not required.

Minimal CNF:

(a + b + c + ~d + i)(a + b + c + e + i)(a + b + c + f + i)

(a + b + c + ~g + i)(a + b + c + ~h + i)(a + b + c + ~d + ~l)

(a + b + c + e + ~l (a + b + c + f + ~l) (a + b + c + ~g + ~l)

(a + b + c + ~h + ~l)(a + b + c + ~d + j + k)

(a + b + c + e + j + k) (a + b + c + f + j + k)

(a + b + c + ~g + j + k)(a + b + c + ~h + j + k)

MUFP test set (25 tests):

Rather than enumerate all 25 tests, it is noted that each of the first 10 terms contributes 2 UFPs to a MUFP

test set as literals j and k can each attain the values 0 and 1 in UFPs for each of these 10 terms. However,

the MUFP criterion is still infeasible for each of these terms as there exist other external literals for each

202

term besides literals j and k which cannot vary in a UFP. The last five terms each have only a single UFP

(the value of each external literal cannot vary).

Since the MUFP criterion is infeasible for each term and no term consists of a single literal, PCUFPNTP

tests are needed for each literal.

Additional tests needed for a PCUFPNTP test set (63 tests):

Rather than enumerate all 63 tests a counting argument is given. 80 literals appear in the minimal CNF

expression and each requires a single NTP that corresponds to one of the UFPs chosen in the MUFP test

set. Thus, 80 corresponding NTPs need to be added not accounting for overlapping. However, the

following corresponding NTPs overlap:

000011000010 – literals d, e, f, g, h in terms 1-5

000011001011 – literals d, e, f, g, h in terms 6-10

000011001000 – literals d, e, f, g, h in terms 11-15

This reduces the size by 15 – 3 = 12. Furthermore, the corresponding NTP for literal i overlaps with the

corresponding NTP for literal l in terms 1 and 6, terms 2 and 7, terms 3 and 8, terms 4 and 9 and terms 5

and 10. This reduces test set size by another 5 test cases. Thus, test set size is 63.

Since the PCUFPNTP criterion is feasible for every literal, MNTP tests are not required.

MUMCUT extension: a + b + c + ~def~g~h + ij~l + ik~l

1. All UTP test set (1377 tests):

Terms a, b and c each have 434 UTPs as follows. A UTP for term a must start with 100, a UTP for term b

must start with 010 and a UTP for term c must start with 001. The remaining 9 literals can vary in value for

a total of 512 points. However, for 16 of these points, term ~def~g~h will be TRUE as 5 of the 9 literals

have fixed values to make term ~def~g~h, leaving the other 4 literals to vary in value. For some of these 16

points terms ij~l and/or ik~l will also be TRUE. Of the 9 original remaining literals, 3 must be fixed to

make term ij~l TRUE and the other 6 can vary in value, leaving 64 points. However, for one half of these

points literal k will be TRUE so term ik~l will be TRUE to reduce the size to 32 points. For one of the

remaining 32 points, term ~def~g~h will be TRUE, leaving a total of 31 points. A similar analysis holds for

term ik~l, reducing the original 512 points by an additional 31 points. Thus, test set size for all UTPs for

term a is 512 – 16 – 31 – 31 = 434. The same size occurs for terms b and c.

Term ~def~g~h has 13 UTPs. The values of literals a, b and c must all be fixed at 0 in a UTP for term

~def~g~h. Thus, only the values of literals i, j, k and l can vary for a total of 16 points. However, 3 of these

16 points make either term ij~l or ik~l TRUE (or make both TRUE), leaving 13 UTPs.

Term ij~l has 31 UTPs. The values of literals a, b, c and k must all be fixed at 0 in a UTP for term ij~l.

Thus, only the values of literals d, e, f, g and h can vary for a total of 32 points. However, 1 of these 32

points makes term ~def~g~h TRUE, leaving 31 UTPs.

203

The ik~l has 31 UTPs. The values of literals a, b, c and j must all be fixed at 0 in a UTP for term ik~l. Thus,

only the values of literals d, e, f, g and h can vary for a total of 32 points. However, 1 of these 32 points

makes term ~def~g~h TRUE, leaving 31 UTPs.

2. OTP test set (1 test):

111011001110 makes every term TRUE so it makes every combination of two individual terms TRUE.

3. All NFP test set (434 tests):

AN NFP for literal a must start with 000 and make every other term FALSE. Thus, test set size is the same

as the number of UTPs for term a (434). This is because both a UTP for term a and an NFP for literal a

must make every other term FALSE. The all NFP test set for every other literal in the predicate is a subset

of the all NFP test set for literal a.

4. n-MNFP test set (62 tests)

Since terms a, b and c each contain a single literal, n-MNFP does not apply to literals a, b, or c for n > 1. A

combinatorial argument is made to derive test set size for the other literals. Test set size cannot exceed:

2

1 2

! / !()!
mnm

m m

r

n r n r
=

−∑∑

which results in a test set size of 68. Term ~def~g~h has an n-MNFP test set size of 52 as mn = 5. Terms

ij~l and ik~l each have an n-MNFP test set size of 8 as mn = 3. However, there is overlap amongst the n-

MNFP points for terms ij~l and ik~l such that of the combined 16 points, only 10 are distinct. Thus, test set

size is 52 + 10 = 62.

204

PREDICATE 20

Minimal DNF: ~a~bd~ef~g + ~abc~ef~g

MUTP test set (4 tests):

0001010 term ~a~bd~ef~g

0011010 term ~a~bd~ef~g

0110010 term ~abc~ef~g

0111010 term ~abc~ef~g

The MUTP criterion is feasible for both terms. Thus, only a single NFP is needed for each literal as

follows:

NFP test set (10 tests):

1001010 term ~a~bd~ef~g, literal a

0101010 term ~a~bd~ef~g, literal b and term ~abc~efg, literal c

0010010 term ~a~bd~ef~g, literal d and term ~abc~efg, literal b

0001110 term ~a~bd~ef~g, literal e

0001000 term ~a~bd~ef~g, literal f

0001011 term ~a~bd~ef~g, literal g

1110010 term ~abc~ef~g, literal a

0110110 term ~abc~ef~g, literal e

0110000 term ~abc~ef~g, literal f

0110011 term ~abc~ef~g, literal g

Minimal CNF: ~a(~b + c)(b + d)~ef~g

MUFP test set (12 tests):

1001010 term ~a

1110010 term ~a

1100010 term ~b + c

1101010 term ~b + c

1000010 term b + d

1010010 term b + d

0001110 term ~e

0110110 term ~e

0001000 term f

0110000 term f

0001011 term ~g

0110011 term ~g

Since terms ~a, ~e, f and ~g are single-literal terms, any NTP for any other literal will also be an NTP for

these four literals. The MUFP criterion is infeasible for (~b + c) and (b + d). However, the external literals

that cannot vary in value for either of these terms are all in single-literal terms. Thus, any NTP will suffice

for these four literals.

NTP test set (2 tests):

0001010 term ~b + c, literal b and term b + d, literal d

0110010 term ~b + c, literal c and term b + d literal b

205

MUMCUT extension: ~a~bd~ef~g + ~abc~ef~g

1. All UTP test set (4 tests):

0001010 term ~a~bd~ef~g

0011010 term ~a~bd~ef~g

0110010 term ~abc~ef~g

0111010 term ~abc~ef~g

2. OTP test set (0 tests):

Since one term contains b and the other contains ~b, no OTPs exist.

3. All NFP test set (20 tests):

1001010 term ~a~bd~ef~g, literal a

1011010 term ~a~bd~ef~g, literal a

0101010 term ~a~bd~ef~g, literal b and term ~abc~ef~g, literal c

0010010 term ~a~bd~ef~g, literal d and term ~abc~ef~g, literal b

0000010 term ~a~bd~ef~g, literal d

0001110 term ~a~bd~ef~g, literal e

0011110 term ~a~bd~ef~g, literal e

0001000 term ~a~bd~ef~g, literal f

0011000 term ~a~bd~ef~g, literal f

0001011 term ~a~bd~ef~g, literal g

0011011 term ~a~bd~ef~g, literal g

1110010 term ~abc~ef~g, literal a

1111010 term ~abc~ef~g, literal a

0100010 term ~abc~ef~g, literal c

0110110 term ~abc~ef~g, literal e

0111110 term ~abc~ef~g, literal e

0110000 term ~abc~ef~g, literal f

0111000 term ~abc~ef~g, literal f

0110011 term ~abc~ef~g, literal g

0111011 term ~abc~ef~g, literal g

4. n-MNFP test set (104 tests)

A combinatorial argument is made to derive test set size. Test set size cannot exceed:

2

1 2

! / !()!
mnm

m m

r

n r n r
=

−∑∑

which results in a test set size of 228 as m = 2 and mn = 6 for each term. However, after removing TRUE

points and NFPs and accounting for overlap amongst n-MNFP points, the test set size is 104. Note that 104

accounts for all FALSE points except for the 1-NFPs.

206

 Appendix E RACC Test Set Size Analysis

(From section 6.1)

This section gives a detailed analysis of RACC test set size.

For 5 unique literals, it is shown below that RACC test set size can be n + 2 tests.

RACC test set size of n+2 for n=5

abcd + !a!b!ce

A RACC test set for literal d must include 1111X and 1110X where X is either 0 or 1 (but X must be the

same in each point). A RACC test set for literal e must include 000X1 and 000X0 where X is either 0 or 1

(but X must be the same in each point). There are two possible RACC tests for literal a as literal a appears

in two different terms:

Term 1 - 1111X (UTP) and 0111X (NFP)

Term 2 - 000X1 (UTP) and 100X1 (NFP)

There are two possible RACC tests for literal b as literal b appears in two different terms:

Term 1 - 1111X (UTP) and 1011X (NFP)

Term 2 - 000X1 (UTP) and 010X1 (NFP)

There are two possible RACC tests for literal c as literal c appears in two different terms:

Term 1 - 1111X (UTP) and 1101X (NFP)

Term 2 - 000X1 (UTP) and 001X1 (NFP)

Note that no overlap exists amongst any of the NFPs for any of the literals. This is also shown in Table 49.

Note from Table 46 that the values of a, b, c prevent any overlap amongst NFPs for any of the unique

literals. Thus five NFPs are required (one for each unique literal) and two UTPs are required (one for each

term as literal d and literal e appear in different terms). Thus, a total of seven tests are required for RACC

which is n + 2.

207

Table 49 Values of a, b and c in NFPs

Literal Values of a, b, c in NFP

a in term 1 011

a in term 2 100

b in term 1 101

b in term 2 010

c in term 1 110

c in term 2 001

d in term 1 111

e in term 2 000

The constraint that prevents any overlap amongst NFPs is that for each term in the predicate at least three

of its literals are negated in every other term. This constraint that prevents NFP overlapping is called the

triple negation constraint. For the predicate above, note that term 1 contains three literals (a, b, c) that are

all negated in term 2. If just two literals had this relationship then NFP overlap would be possible. For

example, consider abc + !a!bd. Note that an NFP for literal a in term 1 is 011X and that an NFP for literal b

in term 2 is 01X1 such that 0111 is an overlapping NFP. This is why the author conjectures that maximum

RACC test set size for 4 unique literals is n + 1. Not until 5 unique literals exist can one term have 3

literals, a second term have each of the 3 literals negated and each term have one literal the other does not.

For 6 unique literals, it is shown below that RACC test set size can be n + 2 tests.

RACC test set size of n+2 = 2(n-2) for n=6

abc + !a!bd + a!be + !abf

Since literals c, d, e and f each appear in a different term, 4 UTPs are needed for RACC. Note also that the

NFPs amongst literals c, d, e and f cannot overlap with each other because the NFP for literal c requires

a=1,b=1 and the NFP for literal d requires a=0,b=0 and the NFP for literal e requires a=1,b=0 and the NFP

for literal f requires a=0,b=1. Thus, at this point 8 tests are needed (4 UTPs and 4 NFPs) to satisfy RACC.

No additional tests are needed though because the NFPs for literals a and b can overlap with NFPs for

literals c, d, e and f (the triple negation constraint is not satisfied). For example, 011XX0 is an NFP for

literal a in term 1 and literal f in term 4 and 101X0X is an NFP for literal b in term 1 and literal e in term 3.

Therefore, n+2=8 tests are needed for RACC.

Note that for n=6, n+2 = 2(n-2). Intuitively, 2(n-2) tests are needed because all but 2 literals (a and b)

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a and b can

overlap with other tests.)

For 7 unique literals, it is shown below that RACC test set size can be n + 2 tests.

RACC test set size of n+2 = 2(n-2) -1for n=7

abc + !a!bd + a!be + !abf + g

The only difference between this example and the one above is the addition of term 5 which has a single

literal g. Thus, each of the 8 UTPs and NFPs chosen for RACC from the prior example can simply be

augmented by letting g=0 in each of them. Then only one additional test is needed to satisfy RACC, namely

a UTP for term 5 which is of the form XXXXXX1 such that the values of X make none of the first 4 terms

208

true. AN NFP for literal g can overlap with an NFP for another literal. For example, 0111100 is an NFP for

literal a in term 1, literal f in term 4 and literal g in term 5. Thus, 9 tests are needed.

Note that for n=7, n+2 = 2(n-2) - 1. Note also that 2(n-2) – 1 = 2(n-3) + 1. Intuitively, 2(n-3) + 1 tests are

needed because all but 3 literals (a, b and g) require 2 tests (a UTP and an NFP) that cannot overlap with

each other and one literal (literal g) requires a UTP that cannot overlap with any other test. (The tests for

literals a and b as well as the NFP test for literal g can overlap with other tests).

Before leaving the examination of maximum RACC test set size for 7 unique literals, note that the

following predicate has a RACC test set size of n+1=8.

abcd + !a!b!ce + a!bcf + a!b!cg

This is because of the following two reasons:

1) RACC tests for literals d, e, f and g require 2 tests (a UTP and an NFP) that cannot overlap with each

other.

2) NFPs for literals a, b and c can overlap with NFPs for literals d, e, f and g since the triple negation

constraint does not hold.

The above example will be called upon later because it is important in generating a general formula for

maximum RACC test set size. The important thing to note is that the predicate in the example above

repeats the literals a, b and c or their negations in each term. This example is referred to as the step

example later since the number of literals that repeat in each term steps up by 1.

 For 8 unique literals, it is shown below that RACC test set size can be n + 2 tests.

RACC test set size of n+2 = 2(n-3) for n=8

abcd + !abce + a!bcf + ab!cg + !a!bch

Since literals d, e, f, g and h each appear in a different term, 5 UTPs are needed for RACC. Note also that

the NFPs amongst literals d, e, f, g and h cannot overlap with each other because the NFP for literal d

requires a=1,b=1,c=1 and the NFP for literal e requires a=0,b=1,c=1 and the NFP for literal f requires

a=1,b=0,c=1 and the NFP for literal g requires a=1,b=1,c=0 and the NFP for literal h requires a=0,b=0,c=1.

Thus, at this point 10 tests are needed (5 UTPs and 5 NFPs) to satisfy RACC. No additional tests are

needed because the NFPs for literals a, b and c can overlap with NFPs for literals d, e, f and g (the triple

negation constraint is not satisfied). For example, 01110XXX is an NFP for literal a in term 1 and literal e

in term 2, 1011X0XX is an NFP for literal b in term 1 and literal f in term 3 and 1101XX0X is an NFP for

literal c in term 1 and literal g in term 4.. Therefore, n+2=10 tests are needed for RACC.

Note that for n=6, n+2 = 2(n-3). Intuitively, 2(n-3) tests are needed because all but 3 literals (a, b and c)

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a, b and c can

overlap with other tests.)

RACC test set size of n+3 = 2(n-3) for n=9

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci

Since literals d, e, f, g, h and i each appear in a different term, 6 UTPs are needed for RACC. Note also that

the NFPs amongst literals d, e, f, g, h and i cannot overlap with each other because the NFP for literal d

requires a=1,b=1,c=1 and the NFP for literal e requires a=0,b=1,c=1 and the NFP for literal f requires

209

a=1,b=0,c=1 and the NFP for literal g requires a=1,b=1,c=0 and the NFP for literal h requires a=0,b=0,c=1

and the NFP for literal i requires a=0,b=0,c=0. Thus, at this point 12 tests are needed (6 UTPs and 6 NFPs)

to satisfy RACC. No additional tests are needed though because the NFPs for literals a, b and c can overlap

with NFPs for literals d, e, f, g and i (the triple negation constraint is not satisfied).

Note that for n=9, n+3 = 2(n-3). Intuitively, 2(n-3) tests are needed because all but 3 literals (a, b and c)

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a, b and c can

overlap with other tests.)

RACC test set size of n+4 = 2(n-3) for n=10

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci + a!b!cj

Since literals d, e, f, g, h, i and j each appear in a different term, 7 UTPs are needed for RACC. Note also

that the NFPs amongst literals d, e, f, g, h, i and j cannot overlap with each other because the NFP for literal

d requires a=1,b=1,c=1 and the NFP for literal e requires a=0,b=1,c=1 and the NFP for literal f requires

a=1,b=0,c=1 and the NFP for literal g requires a=1,b=1,c=0 and the NFP for literal h requires a=0,b=0,c=1

and the NFP for literal i requires a=0,b=0,c=0 and the NFP for literal j requires a=1,b=0,c=0. Thus, at this

point 14 tests are needed (7 UTPs and 7 NFPs) to satisfy RACC. No additional tests are needed though

because the NFPs for literals a, b and c can overlap with NFPs for literals d, e, f, g, i and j (the triple

negation constraint is not satisfied).

Note that for n=10, n+3 = 2(n-3). Intuitively, 2(n-3) tests are needed because all but 3 literals (a, b and c)

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a, b and c can

overlap with other tests.)

RACC test set size of n+5 = 2(n-3) for n=11

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci + a!b!cj + !ab!ck

Since literals d, e, f, g, h, i, j and k each appear in a different term, 8 UTPs are needed for RACC. Note also

that the NFPs amongst literals d, e, f, g, h, i, j and k cannot overlap with each other because the NFP for

literal d requires a=1,b=1,c=1 and the NFP for literal e requires a=0,b=1,c=1 and the NFP for literal f

requires a=1,b=0,c=1 and the NFP for literal g requires a=1,b=1,c=0 and the NFP for literal h requires

a=0,b=0,c=1 and the NFP for literal i requires a=0,b=0,c=0 and the NFP for literal j requires a=1,b=0,c=0

and the NFP for literal k requires a=0,b=1,c=0. Thus, at this point 16 tests are needed (8 UTPs and 8 NFPs)

to satisfy RACC. No additional tests are needed though because the NFPs for literals a, b and c can overlap

with NFPs for literals d, e, f, g, i, j and k (the triple negation constraint is not satisfied).

Note that for n=11, n+3 = 2(n-3). Intuitively, 2(n-3) tests are needed because all but 3 literals (a, b and c)

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a, b and c can

overlap with other tests.)

The pattern described previously from n=7 to n=11 repeats starting with n=12. That is for n=12, a single

term (containing a new unique literal) can be added to the example for n=11 and RACC test set size will be

2(n-3) – 1 just as it was 2(n-2) – 1 for n=7. Then for n=13 to n=20, instead of each term containing literals

a, b and c (or their negations) plus one additional literal, each term will begin with the literals a, b, c and d

(or their negations) plus one additional literal. Thus, for n=13 to n=20 RACC test set size will be 2(n-4)

just like it was 2(n-3) for n=8 to n=11.

The reason this pattern repeats is that for n literals there are 2
n
 possible combinations of how the literals can

be combined in terms of being negated or not negated. For example, for n=3, there are 8 possible

combinations:

210

abc, ab!c, a!bc, !abc, a!b!c, !ab!c, !a!bc, !a!b!c

 Each of these 8 possible combinations can be a term in the predicate and then a unique literal can be added

to each term to bring the total number of literals to 3 + 8 = 11. Note that for n=3, 3 + 8 = 11 is the same as

n + 2
n
 = 11. Thus, at n=12 it is not possible to add another term containing a new 12

th
 unique literal that

also contains some combination of literals a, b and c (or their negations) without repeating a prior

combination. Repeating a prior combination means that the NFP for the 12
th

 unique literal can overlap with

an NFP for some other unique literal. For example, if term abcl was added to the example given for n=11,

the NFP for literal l and the NFP for literal d could overlap as each term contains the same combination of

literals a, b and c. So once n=12 occurs, the step example for n=7 becomes relevant. That is, adding a

single term containing a single literal l to the predicate in the example given for n=11 will result in a

RACC test set size that is 1 greater than stepping up the number of literals that repeat in each term from 3

to 4. To make this more concrete, compare:

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci + a!b!cj + !ab!ck + l

to

abcde + abc!df + ab!cdg + a!bcdh + !abcdi + ab!c!dj + a!bc!dk + a!b!cdl

RACC test set size for the first predicate is 2(n-3) – 1 = 2(n-4) + 1 because all but 4 literals require 2 tests

(a UTP and NFP) that do not overlap with each other and literal l requires a UTP that does not overlap with

any other test.

RACC test set size for the second predicate is 2(n-4) because all but 4 literals require 2 tests (a UTP and

NFP) that do not overlap with each other.

Note the similarity between these two predicates and the two predicates examined for n=7. This shows how

the pattern repeats.

For n=13 to n=20, the pattern is similar to n=8 to n=11 except that the number of literals that repeats in

each term changes from 3 (a, b and c) to 4 (a, b, c and d). The pattern stops at n=20 because there are 16

possible combinations of a, b, c and d in terms of the literals being negated or not negated. Thus, there can

be 16 such terms each of which contains some combination of a, b, c and d or their negations plus an

additional unique literal to bring the total number of literals to 4 + 16 = 20. Note that for n=4, 4 + 16 = 20

is the same as n + 2
n
 = 20. Thus, when n=21 the pattern continues as it did when n=7 and when n=12.

Finally, note that n=7, n=12 and n=21 all have something in common. There exists an integer y such that n

– (y + 2
y
) = 1. For n=7, y=2 and for n=12, y=3 and for n=21, y=4.

211

Appendix F RACC and RICC Single Minimal DNF Fault
Detection Proof

(From section 6.2)

This appendix shows examples of how RACC and RICC miss detecting various minimal

DNF faults as part of theorem 3.

The Literal Negation Fault (LNF)

Consider the following specification, f xa xb ab= + + and the corresponding implementation

fault, f xa xb ab' = + + . If f x represents the conditions under which literal x determines the outcome of f,

then f ba bax = + , f bx bxa = + and f ax axb = + . Constructing a test set for each of the literals

yields f x = { , }010 011 , fa = { , }010 110 and fb = { , }011 001 . In each case, obviously RACC will return the

expected outputs 0 and 1 since f i defines the conditions under which literal i determines f. However, if the

tests for f ' are run, the outputs again are 0 and 1. More specifically, where a triple represents the Boolean

value of (abx):

• (010, 011) for f ' yields expected outputs 0 and 1.

• (010, 110) for f ' yields expected outputs 0 and 1.

• (001, 011) for f ' yields expected outputs 0 and 1.

In general, the way to miss the fault is to step around the term containing the LNF. In other words, the LNF

can be missed when each literal in the term containing the LNF is found in at least one other term in f. Note

that this does not include literal negations. In this example, note that literal b is true for the RACC tests for

literal a and for the RACC tests for literal x. This means that the literal x in xb and the literal a in ab each

determine the value of f for their respective test cases, stepping around the xa term which contains the

literal negation.

212

The Term Omission Fault (TOF)

Consider the same specification used to demonstrate the LNF: namely, f xa xb ab= + + . An

implementation fault in this case could be f xa xb'= + . Then, a valid RACC test could

be: f x = { , }100 101 , fa = { , }001101 and fb = { , }011 001 , or more simply, (100, 101, 001, 011). Then:

• (100, 101) for f 'yields expected outputs 0 and 1.

• (001, 101) for f 'yields expected outputs 0 and 1.

• (001, 011) for f 'yields expected outputs 0 and 1.

The expected outputs of f and f ' are the same and the TOF remains undetected. Another example where

RACC could miss the TOF would be f xa xa= + . Clearly, literal x and a always determine f and hence

any test for each literal would do, as long as the literal of interest changes from 1 to 0. Hence, if f xa' = ,

then tests (11, 10) for literal x would yield the results 1 and 0, whereas the tests (11, 01) for literal a would

yield 1 and 0. Again, the expected outputs of f and f ' are the same and the TOF remains undetected.

In general, RACC could miss the TOF if and only if all literals in the omitted term pi also appear

elsewhere in the function (possibly also including literal negations). Consider the following formal

argument:

Let f be represented in terms of literal x, or f a x b x ci i
i

m

i

n

i
i

k

= + +
== =11 1

∪∪ ∪ . In order to determine under

what conditions the literal x determines f, simply find the Boolean Derivative, or f a b cx i i
i

m

i

n

i
i

k

= ⊕∏
== =

[]
11 1

∪ ∪ .

Suppose now that term b1 was omitted during implementation.

Then f a x b x ci i
i

m

i

n

i
i

k

' = + +
== =21 1

∪∪ ∪ and f a b cx i i
i

m

i

n

i
i

k

' []= ⊕∏
== =21 1

∪ ∪ . Hence, as long as the b1 term is not used during

RACC testing for literal x (which means that some other term also contains x or its negation), the TOF

would remain undetected. The preceding logic holds for all literals in the b1 term and likewise for a TOF in

any bi or cj term.

213

The Operator Reference Fault (ORF)

First, consider the case where an OR is incorrectly replaced with an AND. Consequently, let the

specification be f ab cd abcd= + + and an incorrect implementation be 'f abcd abcd= + . Also,

()()a
f c d b bcd= + ⊕ , ()()b

f c d a acd= + ⊕ , ()()c
f a b d abd= + ⊕ and ()()d

f a b c abc= + ⊕ . Then,

test sets for f could be:

• (1000, 0000) for f’ yields expected outputs 0 and 1.

• (0100, 0000) for f’ yields expected outputs 0 and 1.

• (0010, 0000) for f’ yields expected outputs 0 and 1.

• (0001, 0000) for f’ yields expected outputs 0 and 1.

The tests give the same outputs for f and f’ and hence RACC misses the ORF here. Consider the formal

argument below of how the fault remains undetected. Again, let f a x b x ci i
i

m

i

n

i
i

k

= + +
== =11 1

∪∪ ∪ and a faulty

implementation be
1 1

2 2 1

'
n m k

i i i
i i i

f a x a b b x c
= = =

 
= + + + 

 
∪ ∪ ∪ . Thus, the Boolean Derivatives

are f a b cx i i
i

m

i

n

i
i

k

= ⊕∏
== =

[]
11 1

∪ ∪ and
1 1

2 2 1

' []
m kn

x i i i
i i i

f a a b b c
= = =

 
= + ⊕ 

 
∏ ∪ ∪ , respectively. Therefore, if the tester is able

to keep the ai values false, the bi values false and the ci values true (cj values false and the bi values true

when the ORF occurs with a ci term), then the variable of interest will determine f and f’. In other words, if

the tester can uphold that rule for all literals that are combined during the replacement of the OR operator,

the ORF will remain undetected.

Now consider the case where an AND is incorrectly replaced with an OR. Consequently, let the

specification be f = abcd + ~a~b~c~d and an incorrect implementation be f’ = ab + cd + ~a~b~c~d. Then

a determines the value of f when bcd ⊕ ~b~c~d is true, b determines the value of f when acd ⊕ ~a~c~d

is true, c determines the value of f when abd ⊕ ~a~b~d is true and d determines the value of f when abc

⊕ ~a~b~c is true. Using the same test sets as above for the ORF when OR was replaced by AND will

yield identical outputs for f and f ' and hence RACC misses the ORF.

214

The Literal Omission Fault (LOF)

This fault is extremely easy for RACC to miss; consider f xa xb= + and a corresponding LOF

where f a xb' = + . Then, f bxa = , f axb = and f a bx = + . Thus, potential test sets for RACC include:

• (010), (011), where f’ yields the expected outputs 0 and 1.

• (001), (101), where f’ yields the expected outputs 0 and 1.

• (001), (011), where f’ yields the expected outputs 0 and 1.

The expected outputs of f and f ' are the same and the LOF remains undetected. If the LOF is generated

on a literal that also appears in another term outside of the one containing the LOF, then generating a test

for that literal where the term containing the LOF is 0 will miss the fault. Note that in this example, the

term containing the LOF (xa) is 0 for both RACC test points for the literal that is omitted (x). In no

circumstance will a RACC test on any other literal catch the LOF either. Hence, the possibility of missing

the LOF is exceedingly likely. Again, consider a formal argument. From before, if

f a x b x ci i
i

m

i

n

i
i

k

= + +
== =11 1

∪∪ ∪ , then the Boolean Derivative for x is f a b cx i i
i

m

i

n

i
i

k

= ⊕∏
== =

[]
11 1

∪ ∪ . If literal x omitted

during implementation, then f b a x b x ci i
i

m

i

n

i
i

k

' ()= + + +
== =

1
21 1

∪∪ ∪ and the Boolean derivative

becomes f b a b cx i i
i

m

i

n

i
i

k

' () []= ⊕∏
== =

1
21 1

∪ ∪ . As seen, if you have the term containing the LOF (b1 here) remain

false when constructing RACC tests for literal x, then the Boolean Derivative for f’ remains unaffected, as

does the result for f’. Considering another literal inside the b1 term, the only way it could reveal the LOF is

if the term being omitted from f to f’ is the only literal that is holding b1 0 initially. However, this statement

is impossible because then the missing literal also determines f, which is a contradiction that another literal

in b1 determines f.

The Literal Insertion Fault (LIF)

For an example of where RACC misses the LIF, consider f a xb= + and f xa xb'= + . Then, f abx = ,

f x ba = + and f axb = . Consequently, test sets for RACC include:

215

• (011), (010), where f’ yields the expected outputs 1 and 0.

• (101), (001), where f’ yields the expected outputs 1 and 0.

• (011), (001), where f’ yields the expected outputs 1 and 0.

The expected outputs of f and f ' are the same and the LIF remains undetected. The formal argument

proceeds as follows. Again, let f a x b x ci i
i

m

i

n

i
i

k

= + +
== =11 1

∪∪ ∪ , the Boolean Derivative for x

be f a b cx i i
i

m

i

n

i
i

k

= ⊕∏
== =

[]
11 1

∪ ∪ , the implementation be f a x a b x ci i
i

m

i

n

i
i

k

' ()= + + +
== =

1
12 1

∪∪ ∪ and the Boolean

Derivative for the implementation be f a a b cx i i
i

m

i

n

i
i

k

' [()]= + ⊕∏
== =

1
12 1

∪ ∪ . Then, the RACC tests for literal x will

also work for f’, since setting a1 = 0 does not affect the outcome for f’x. Likewise, inserting the literal will

have no bearing on the outcome from f to f’.

The Literal Reference Fault (LRF)

Consider the following specification of f ab cd ad bc= + + + and the implementation fault

of f ac cd ad bc' = + + + . Then, f cb dca = + , f ad cdb = + , f ab dac = + and f bc abd = + . Potential

RACC tests for each literal and outputs for f’ include:

• (0101), (1101), where f’ yields the expected outputs of 0 and 1.

• (0010), (0110), where f’ yields the expected outputs of 0 and 1.

• (0100), (0110), where f’ yields the expected outputs of 0 and 1.

• (0010), (0011), where f’ yields the expected outputs of 0 and 1.

The expected outputs of f and f ' are the same and the LRF remains undetected. The first criterion

for missing the fault is similar to the LOF; the replaced literal in the term containing the LRF must appear

in another term in the Boolean Function. In addition, both the literal replacing the original literal and all

other literals originally in the term containing the LRF must be in at least one other term in the function.

More specifically, in this example a, b and c must appear in at least one other term of the function in order

to step around testing the term containing the LRF.

216

The RICC criterion was established in order to determine under what conditions a literal does not

determine the outcome of a Boolean function f and then flip that literal from 1 to 0. The logic is repeated

both when f = 1 and f = 0, if feasible. RICC tests also can fail to detect 7 of the 9 faults in Lau and Yu’s

fault hierarchy as shown below.

The Literal Negation Fault (LNF)

Consider the following specification f = a+b+c and an incorrect implementation of f a b c'= + + .

Then, a does not determine the value of f when b + c is true, b does not determine the value of f when a + c

is true and c does not determine the value of f when a + b is true.

Consequently, potential RICC tests are:

• (011, 111), yielding 1 for f and f’.

• (001, 011), yielding 1 for f and f’.

• (010, 011), yielding 1 for f and f’.

It is infeasible to fulfill RICC tests and have f evaluate to 0 and therefore, only one pair of test cases is

generated for each literal of interest. The results are the same for f and f’; therefore, RICC does not catch

the fault in this case.

The Term Omission Fault (TOF)

Consider the following specification f x ab bc= + + and an incorrect implementation of

f ab bc'= + . Then, a does not determine the value of f when x + ~b is true, b does not determine the value

of f when x + ac + ~a~c is true, c does not determine the value of f when x + b is true and x does not

determine the value of f when ab + ~bc is true. Corresponding RICC tests for each literal and the values for

f and f’ are listed in Table 50 below, where an “x” indicates the value may be 0 or 1 as long as it is the same

value when the literal of interest is both 0 and 1.

217

Table 50 RICC Tests (TOF)

Literal

tested
x a b c f f’

a 0 0 0 0 0 0

a 0 1 0 0 0 0

a x 0 0 1 1 1

a x 1 0 1 1 1

x 1 1 1 x 1 1

x 0 1 1 x 1 1

b x 1 0 1 1 1

b x 1 1 1 1 1

b 0 0 1 0 0 0

b 0 0 0 0 0 0

c 0 0 1 0 0 0

c 0 0 1 1 0 0

c x 1 1 0 1 1

c x 1 1 1 1 1

It is infeasible to fulfill RICC tests and have f evaluate to 0 when x is the literal of interest and

hence, there are only two rows for literal x. The results are the same for f and f’; therefore, RICC does not

catch the fault in this case.

The Operator Reference Fault (ORF)

First, consider the case where an OR is incorrectly replaced with an AND. Consequently, let the

specification be f ab c d= + + and an incorrect implementation be f ab cd'= + . Then, a does not determine

the value of f when c + d + ~b is true, b does not determine the value of f when c + d + ~a is true, c does

not determine the value of f when ab + d is true and d does not determine the value of f when ab + c is true.

RICC tests for each of the variables follow, along with the expected outputs for f’.

• (0000, 1000), (0011, 1011), which yields expected outputs of 0 and 1 for f’.

• (0000, 0100), (0011, 0111), which yields expected outputs of 0 and 1 for f’.

• (1110, 1100), which yields expected outputs of 1 for f’.

• (1100, 1101), which yields expected outputs of 1 for f’.

218

It is infeasible to fulfill RICC tests and have f evaluate to 0 when either c or d is the literal of interest

and hence, there is only one pair of tests for literal c and literal d. Since f and f’ give the same outputs for

the tests, the ORF (where OR is changed to AND) is missed in this case. Note that if the test case pair

(0011, 0001) was chosen for literal c above instead of (1110, 1100) or if the test case pair (0011, 0010) was

chosen for literal d above instead of (1100, 1101) then the ORF would have been detected. However, these

test pairs are not required by RICC, so RICC does not guarantee the detection of the ORF.

Now consider the case when an AND is incorrectly replaced with an OR. Consequently, let the

specification be f = abcd and an incorrect implementation be f’ = ab + cd. Then a does not determine the

value of f when ~b + ~c + ~d is true and b does not determine the value of f when ~a + ~c + ~d is true and

c does not determine the value of f when ~a + ~b + ~d is true and d does not determine the value of f when

~a + ~b + ~c is true. RICC tests for each of the variables follow, along with the expected outputs for f’.

• (0000, 1000), which yields expected outputs of 0 for f’.

• (0000, 0100), which yields expected outputs of 0 for f’.

• (0000, 0010), which yields expected outputs of 0 for f’.

• (0000, 00001), which yields expected outputs of 0 for f’.

It is infeasible for f to evaluate to 1 for any literal of interest and therefore, only one test pair is given

for each literal. Since f and f’ give the same outputs for the tests, the ORF (where AND is changed to OR)

is missed in this case. Note that if instead of the above test cases, the test cases (0011, 1011) and (0011,

0111) and (1100, 1110) and (1100, 1101) were chosen to satisfy RICC, then the ORF would have been

detected. However, since these test cases are not required by RICC, RICC does not guarantee the detection

of the ORF.

The Literal Omission Fault (LOF)

Consider the following specification f abc de= + and an incorrect implementation

of f ab de' = + . Then, a does not determine the value of f when de + ~b + ~c is true, b does not determine

the value of f when de + ~a + ~c is true, c does not determine the value of f when de + ~a + ~b is true, d

does not determine the value of f when abc + ~e is true and e does not determine the value of f when abc +

219

~d is true. Corresponding RICC tests for each literal and the values for f and f’ are listed in Table 51 below,

where an “x” indicates the value may be 0 or 1 as long as it is the same value when the literal of interest is

both 0 and 1.

Table 51 RICC Tests (LOF)

Literal

tested
a b c d e f f’

a 1 0 x 0 x 0 0

a 0 0 x 0 x 0 0

a 1 x x 1 1 1 1

a 0 x x 1 1 1 1

b 0 1 x 0 x 0 0

b 0 0 x 0 x 0 0

b x 1 x 1 1 1 1

b x 0 x 1 1 1 1

c 0 x 1 0 x 0 0

c 0 x 0 0 x 0 0

c x x 1 1 1 1 1

c x x 0 1 1 1 1

d 1 1 1 1 x 1 1

d 1 1 1 0 x 1 1

d 0 x x 1 0 0 0

d 0 x x 0 0 0 0

e 1 1 1 x 1 1 1

e 1 1 1 x 0 1 1

e 0 x x 0 1 0 0

e 0 x x 0 0 0 0

The results are the same for f and f’; therefore, RICC does not catch the fault in this case.

The Literal Insertion Fault (LIF)

Consider the following specification f ab cd e= + + and an incorrect implementation

of f ab cd ae'= + + . Then, a does not determine the value of f when cd + e + ~b is true, b does not

determine the value of f when cd + e + ~a is true, c does not determine the value of f when ab + e + ~d is

true, d does not determine the value of f when ab + e + ~c is true and e does not determine the value of f

when ab + cd is true. Corresponding RICC tests for each literal and the values for f and f’ are listed in

220

Table 52 below, where an “x” indicates the value may be 0 or 1 as long as it is the same value when the

literal of interest is both 0 and 1.

Table 52 RICC Tests (LIF)

Literal

tested
a b c d e f f’

a 0 x 1 1 x 1 1

a 1 x 1 1 x 1 1

a 0 0 0 x 0 0 0

a 1 0 0 x 0 0 0

b x 0 1 1 x 1 1

b x 1 1 1 x 1 1

b 0 0 0 x 0 0 0

b 0 1 0 x 0 0 0

c 1 1 0 x x 1 1

c 1 1 1 x x 1 1

c 0 x 0 0 0 0 0

c 0 x 1 0 0 0 0

d 1 1 x 0 x 1 1

d 1 1 x 1 x 1 1

d 0 x 0 0 0 0 0

d 0 x 0 1 0 0 0

e 1 1 x x 0 1 1

e 1 1 x x 1 1 1

It is infeasible to fulfill RICC tests and have f evaluate to 0 when e is the literal of interest and

hence, there are only two rows for literal e. As seen, the results are the same for f and f’; therefore, RICC

does not catch the fault in this case.

The Literal Reference Fault (LRF)

Consider the following specification f = ab + cd + ad + bc and an incorrect implementation of f’

= ac + cd + ad +bc. Then a does not determine the value of f when c + ~b~d is true and b does not

determine the value of f when d + ~a~c is true and c does not determine the value of f when a + ~b~d is

true and d does not determine the value of f when b + ~a~c is true. Corresponding RICC tests for each

literal and the values of f and f’ are listed in Table 53 below. Note that the tests where all literals are 0 and

221

all literals are 1 are repeated in the table for clarity, but that it would only be necessary to actually use one

of each.

Table 53 RICC Tests (LRF)

Literal

tested
a b c d f f’

a 0 0 0 0 0 0

a 1 0 0 0 0 0

a 0 1 1 x 1 1

a 1 1 1 x 1 1

b 0 0 0 x 0 0

b 0 1 0 x 0 0

b 1 0 x 1 1 1

b 1 1 x 1 1 1

c 0 0 0 0 0 0

c 0 0 1 0 0 0

c 1 x 0 1 1 1

c 1 x 1 1 1 1

d 0 x 0 0 0 0

d 0 x 0 1 0 0

d 1 1 1 0 1 1

d 1 1 1 1 1 1

The results are the same for f and f’; therefore, RICC test do not catch the fault in this case.

222

Appendix G RACC Single Minimal DNF Fault Detection
Analysis

(From section 6.2)

This appendix gives details as to how RACC tests miss detecting minimal DNF faults

using a single predicate as an example.

Consider the following predicate used in the study: aceh~f + bdeh~f + acegf + bdegf. A RACC test

set for this predicate can be formed from n+2=10 tests (described later) whereas a Minimal-MUMCUT test

set consists of 16 tests as found by Kaminski and Ammann [19]. For this predicate there are 212 potential

faults:

1 ENF

4 TNFs (4 terms exist)

4 TOFs (4 terms exist)

3 ORF+s (3 OR operators exist)

20 LOFs (20 literals exist)

20 LNFs (20 literals exist)

16 ORF.s (16 AND operators exist)

120 LRFs (because each term has 5 of the 8 literals)*

24 LIFs (because each term has 5 of the 8 literals)**

*For each of the 4 terms, each of the 5 literals in the term can be replaced by each of the 3 missing literals

or the negation of each of the 3 missing literals. Thus, the total number of LRFs is 4 x 5 x 3 x 2 = 120.

**For each of the 4 terms, each of the 3 missing literals or the negation of each of the 3 missing literals can

be inserted. Thus, the total number of LIFs is 4 x 3 x 2 = 24.

Of the 212 faults, RACC tests are guaranteed to detect only 5 of them, namely the 1 ENF and the

4 TNFs. This leaves 207 faults which may or may not be detected. However, of these 207 faults, the RACC

223

test set chosen below only detects 103 of them. Thus, RACC tests fail to detect 104 of these 207 faults and

104 of the 212 total faults.

There are 8 unique literals (a-h) in the predicate. Literals a, c, e, f and h appear in term 1 and

literals b, d and g (amongst others) appear in term 4. Thus, a RACC test can be composed by just

considering literals a, c, e, f and h in term 1 and literals b, d and g in term 4. A UTP for term 1 is 10101001

and a UTP for term 4 is 01011110. Thus, these two points satisfy RACC for the case where the predicate

evaluates to true. The following are corresponding NFPs for each literal in term 1:

a - 00101001

c - 10001001

e - 10100001

f - 10101101

h - 10101000

The following are corresponding NFPs for b, d and g in term 4:

b - 00011110

d - 01001110

g – 01011100

These NFPs satisfy RACC for the case where the predicate evaluates to false. Thus, the 10 test points

together satisfy RACC. This RACC test set will detect the following 108 faults:

1 ENF

An ENF is detected by any test point in the test set.

4 TNFs

Each TNF is detected by any NFP in the test set and the TNF for term 1 is also detected by the UTP for

term 1 and the TNF for term 4 is also detected by the UTP for term 4.

224

2 TOFs

The TOF for term 1 is detected by the UTP for term 1 and the TOF for term 4 is detected by the UTP for

term 4.

2 ORF+s

Replacing OR with AND between terms 1 and 2 is detected by the UTP for term 1 and replacing OR with

AND between terms 3 and 4 is detected by the UTP for term 4.

11 LNFs

Each LNF in term 1 is detected by the corresponding NFP for each literal in term 1 and is also detected by

the UTP for term 1. Each LNF in term 4 is detected by the UTP for term 4 and the LNFs for b, d and g in

term 4 are also detected by the corresponding NFPs for b, d and g. The LNF for g in term 3 is also detected

because the corresponding NFP for f in term 1 in the test set also happens to be an NFP for g in term 3.

9 LOFs

Each LOF in term 1 is detected by the corresponding NFP for each literal in term 1. The LOFs for b, d and

g in term 4 are also detected by the corresponding NFPs for b, d and g respectively. The LOF for g in term

3 is also detected because the corresponding NFP for f in term 1 in the test set also happens to be an NFP

for g in term 3.

16 ORF.s

Each occurrence of an AND replaced by OR in terms 1 and 4 is detected by both the corresponding NFP

for the literal on the left of the AND and the corresponding NFP for the literal on the right of the AND.

Since each AND in terms 1 and 4 has at least one operand with a corresponding NFP in the test set, all the

ORF.s in terms 1 and 4 are detected. All the ORF.s in terms 2 and 3 also happen to be detected. When an

ORF. occurs, a single term is split into two terms. Let us call the two terms X and Y. An ORF. can thus be

detected by any false point that makes either term X or term Y true. It just so happens that the

225

corresponding NFPs chosen in the test set make either term X or term Y true for each possible ORF. in

terms 2 and 3. For example, consider term 2 (bdeh~f) and the ORF. that splits the term into bd + eh~f. The

corresponding NFP for literal g in term 4 (01011100) is such that b=1 and d=1. Thus, this point can detect

this particular ORF. because for this point term bd evaluates to true.

57 LRFs

Every LRF involving replacing a literal in term 1 with some literal or the negation of some literal is

detected because each literal in term 1 has a corresponding UTP-NFP pair in the test set. Thus, all 5 x 3 x 2

= 30 LRFs involving a literal in term 1 are detected. (Each of the 5 literals in term 1can be replaced by each

of the 3 external literals or their negations.) Every LRF involving replacing literal b, d, or g in term 4 is

detected by the RACC test set because each of these literals in term 4 has a corresponding UTP-NFP pair in

the test set. Thus, all 3 x 3 x 2 = 18 LRFs involving literals b, d and g in term 4 are detected. Term 4 also

contains literals e and f and although the test set does not include a corresponding NFP for either of these

literals in term 4, it does include a UTP for term 4. Thus, 1/2 of the LRFs involving literals e and f in term 4

are detected, meaning an additional 1/2 x 2 x 3 x 2 = 6 LRFs involving literals e and f in term 4 are

detected. To see why consider the UTP for term 4: 01011110. Note that literals e and g are both true in the

UTP. Note also that literals a, c and h are all false in the UTP. Thus, replacing literal e or g in term 4 with

literal a, c, or h will result in term 4 (and thus the predicate) changing from true to false. Therefore, the test

set detects these 6 LRFs. However, the test set does not detect any of the 6 LRFs where ~a or ~c or ~h

replaces literal e or g in term 4 because ~a, ~c and ~h are all true in the UTP for term 4 in the test set. Thus,

replacing literal e or g in term 4 with either ~a, ~c, or ~h will not change the value of term 4 or the

predicate. In regards to term 3, there is no UTP for term 3 and no corresponding NFP for any literal in term

3 in the test set. Thus, 5 x 3 x 2 = 30 LRFs go undetected at first glance. However, literal g in term 3 does

have an NFP in the test set as the corresponding NFP for literal f in term 1 (10101101) is also an NFP for

literal g in term 3. Thus, for literals a, c, e and f in term 3 all the LRFs go undetected (4 x 3 x 2 = 24 LRFs).

However, for literal g in term 3, ½ x 1 x 3 x 2 = 3 LRFs are detected by the NFP above. Note that in the

NFP above, literal g is false but that all other literals in term 3 are true. Thus, if literal g in term 3 is

226

replaced by a literal (or the negation of a literal) that evaluates to true, then term 3 will change from false to

true for the NFP. Since b and d are false in this NFP and h is true, this means that replacing literal g in term

3 with either ~b or ~d or h will be detected.

6 LIFs

AN LIF can only be detected by a UTP. No UTP exists for terms 2 or 3 in the test set, so the only LIFs that

can be detected are LIFs involving terms 1 and 4. For terms 1 and 4, 1/2 of the LIFs are detected. This is

because to detect all LIFs (assuming no equivalent LIFs exist), at least 2 UTPs are needed. Inserting a

literal into a term can make a true term false but cannot make a false term true. Thus, the only way to detect

the LIF is to select a UTP where the inserted literal (or the inserted negated literal) is false. Consider the

UTP for term 1 in the test set: 10101001. Note that literals b, d and g are all false. Thus, inserting literal b,

d, or g into term 1 will be detected as term 1 will change from true to false for the UTP given above.

However, inserting ~b, ~d, or ~g into term 1 will not be detected because ~b, ~d and ~g are each true for

the UTP given above. Thus, inserting any of these into term 1 will cause term 1 to still be true for the UTP

given above. Since term 1 can have 6 LIFs and term 4 can have 6 LIFs and since 1/2 the LIFs are detected,

a total of 6 LIFs are detected.

RACC fails to detect 104 faults because these faults require additional UTPs or NFPs detect.

Varying the RACC test set to focus on other literals and terms would have no impact on the number of

faults detected. The actual faults detected would change, but not the number of them.

227

Appendix H RACC Tests and RACC Fault Detection

(From section 6.2)

For each predicate, this appendix lists the predicate in Minimal DNF, the RACC tests selected for

the predicate and the percentage of faults detected by the RACC tests.

1.

a~bd~e~h~f + a~b~de~h~f + a~bcd~e~f + a~bc~de~f + ~ab~de~f

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

1001000 UTP for term 1 (covers a, b, d, e, f, h)

1011001 UTP for term 3 (covers c)

0001000 Corresponding NFP for a in term 1

1101000 Corresponding NFP for b in term 1

1001001 Corresponding NFP for c in term 3

1000000 Corresponding NFP for d in term 1 NFP for e in term 2

1001100 Corresponding NFP for e in term 1 NFP for d in term 2

1001010 Corresponding NFP for f in term 1

1001001 Corresponding NFP for h in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 5/5 2/5 3/4 22/24 14/29 9/29 21/68 2/8 79/173 46%

2.

a~bc~d~e~gh~i~f + a~b~d~e~g~h~if + a~b~c~e~g~h~if + a~b~c~d~g~h~if +

a~bc~d~eg~h~f + a~bc~d~e~hi~f + a~b~cd~eg~h~f + a~b~cd~e~hi~f + a~b~c~deg~h~f +

a~b~c~de~hi~f + ~abc~d~e~hi~f + ~ab~cd~e~hi~f + ~ab~c~de~hi~f

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

101000010 UTP for term 1 (covers all literals)

001000010 Corresponding NFP for a in term 1

111000010 Corresponding NFP for b in term 1

100000010 Corresponding NFP for c in term 1

101100010 Corresponding NFP for d in term 1

101010010 Corresponding NFP for e in term 1

101001010 Corresponding NFP for f in term 1

101000110 Corresponding NFP for g in term 1

101000000 Corresponding NFP for h in term 1

101000011 Corresponding NFP for i in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 13/13 1/13 1/12 74/92 9/105 9/105 0/192 0/15 108/548 20%

228

3.

~a~bc~g~i~k~m + ~a~bcg~h~l~m + ~a~bc~g~hi~m + ~a~bcgi~l~m + ~a~bcgi~k~m +

~a~bc~h~k~m + ~ab~c~g~i~k + a~b~c~g~i~k + ~a~bc~i~kf + ~ab~c~g~hi + ~ab~cg~h~l

+ a~b~c~g~hi + a~b~cg~h~l + ~a~bc~hif + ~ab~cgi~k + ~ab~cgi~l + a~b~cgi~k +

a~b~cgi~l + a~b~c~h~k + ~ab~c~h~k + a~b~cgf + ~ab~cgf + ~a~bcgf + a~b~c~d +

a~b~c~e

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

001110010010 UTP for term 1 (covers a, b, c, g, i, k, m)

001110100100 UTP for term 2 (covers h, l)

001111010011 UTP for term 9 (covers f)

100010111111 UTP for term 24 (covers d)

100100111111 UTP for term 25 (covers e)

101110010010 Corresponding NFP for a in term 1 NFP for c in term 8

011110010010 Corresponding NFP for b in term 1 NFP for c in term 7

000110010010 Corresponding NFP for c in term 1 NFP for b in term 7 and a in term

8

100110111111 Corresponding NFP for d in term 24 and e in

term 25

NFP for k in term 17, f in term

21, l in term 18

001110010011 Corresponding NFP for f in term 9

001110110010 Corresponding NFP for g in term 1 NFP for i in term 5, h in term 6, f

in term 23

001110110100 Corresponding NFP for h in term 2 NFP for i in term 4, f in term 23

001110011010 Corresponding NFP for i in term 1 NFP for h in term 3, g in term 5, h

in term 6

001110010110 Corresponding NFP for k in term 1

001110100110 Corresponding NFP for l in term 2 NFP for k in term 6, f in term 23

001110010011 Corresponding NFP for m in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 25/25 5/25 6/24 111/121 42/146 26/146 335/1764 32/241 583/2493 23%

4.

a~bd + a~cd + e

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

10110 UTP for term 1 (covers a, bd)

11010 UTP for term 2 (covers c)

11111 UTP for term 3 (covers e)

00110 Corresponding NFP for a in term 1

11110 Corresponding NFP for b in term 1, c in term 2, e

in term 3

10100 Corresponding NFP for a in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 3/3 3/3 2/2 4/4 7/7 5/7 28/32 8/12 61/71 86%

229

5.

a~g~i~k + ag~h~l + a~g~hi + agi~l + agi~k + a~h~k + a~c + a~b + f

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

111001001 UTP for term 1 (covers a, g, i, k)

111010010 UTP for term 2 (covers h, l)

110011111 UTP for term 7 (covers c)

101011111 UTP for term 8 (covers b)

111111111 UTP for term 9 (covers f)

011001001 Corresponding NFP for a in term 1

111011111 Corresponding NFP for b in term 2, c in term 7, f

in term 9

NFP for l in term 4, k in term 5

111011001 Corresponding NFP for g in term 1 NFP for i in term 5, h in term 6

111011010 Corresponding NFP for h in term 2 NFP for i in term 4

111001101 Corresponding NFP for i in term 1 NFP for h in term 3, g in term 5, h

in term 6

111001011 Corresponding NFP for k in term 1

111010011 Corresponding NFP for l in term 2 NFP for k in term 6

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 9/9 5/9 5/8 19/19 21/28 17/28 158/308 32/73 267/483 55%

6.

~ab~cdeg~hij~k~f + a~bc~deg~hij~k~f + ~ab~cde~g~h~jf + ~ab~cde~g~h~kf +

a~bc~de~g~h~jf + a~bc~de~g~h~kf

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

01011010110 UTP for term 1 (covers all literals)

11011010110 Corresponding NFP for a in term 1

00011010110 Corresponding NFP for b in term 1

01111010110 Corresponding NFP for c in term 1

01001010110 Corresponding NFP for d in term 1

01010010110 Corresponding NFP for e in term 1

01011110110 Corresponding NFP for f in term 1

01011000110 Corresponding NFP for g in term 1

01011011110 Corresponding NFP for h in term 1

01011010010 Corresponding NFP for i in term 1

01011010100 Corresponding NFP for j in term 1

01011010111 Corresponding NFP for k in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 6/6 1/6 1/5 41/52 11/58 11/58 0/144 0/12 72/342 21%

230

7.

~ab~cde~g~i~j + ~ab~cde~h~i~k + a~bc~de~g~i~j + a~bc~de~h~i~k + a~bc~de~g~k +

a~bc~de~h~j + ~ab~cde~g~k + ~ab~cde~h~j
Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

0101101001 UTP for term 1 (covers a, b, c, d, e, g, i, j)

0101110010 UTP for term 2 (covers h, k)

1101101001 Corresponding NFP for a in term 1

0001101001 Corresponding NFP for b in term 1

0111101001 Corresponding NFP for c in term 1

0100101001 Corresponding NFP for d in term 1

0101001001 Corresponding NFP for e in term 1

0101111001 Corresponding NFP for g in term 1 NFP for h in term 8

0101111010 Corresponding NFP for h in term 2 NFP for g in term 7

0101101101 Corresponding NFP for i in term 1 NFP for k in term 7, h in term 8

0101101011 Corresponding NFP for j in term 1 NFP for k in term 7

0101110011 Corresponding NFP for k in term 2 NFP for j in term 8

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 8/8 2/8 2/7 39/52 20/60 14/60 68/296 4/32 158/524 30%

8.

~ab~cde~gh~f + a~bc~de~gh~f + ~ab~cdeg~hf + a~bc~deg~hf

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

01011001 UTP for term 1 (covers all literals)

11011001 Corresponding NFP for a in term 1

00011001 Corresponding NFP for b in term 1

01111001 Corresponding NFP for c in term 1

01001001 Corresponding NFP for d in term 1

01010001 Corresponding NFP for e in term 1

01011101 Corresponding NFP for f in term 1

01011011 Corresponding NFP for g in term 1

01011000 Corresponding NFP for h in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 4/4 1/4 1/3 21/28 8/32 8/32 N/A N/A 45/104 42%

9.

~a~b~cd~e~gf + ~abc~d~e~gf

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

0001010 UTP for term 1 (covers all literals)

1001010 Corresponding NFP for a in term 1

0101010 Corresponding NFP for b in term 1

0011010 Corresponding NFP for c in term 1

231

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

0000010 Corresponding NFP for d in term 1

0001110 Corresponding NFP for e in term 1

0001000 Corresponding NFP for f in term 1

0001011 Corresponding NFP for g in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 2/2 1/2 1/1 12/12 7/14 7/14 N/A N/A 31/46 67%

10.

a~b~cd~eg~j~l~mf + a~b~cd~eh~j~l~mf + a~b~cd~ei~j~l~mf + a~b~cd~egj~k~mf +

a~b~cd~ehj~k~mf + a~b~cd~eij~k~mf

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

1001011000100 UTP for term 1 (covers a, b, c, d, e, f, g, j, l, m)

1001010101010 UTP for term 5 (covers h, k)

1001010011010 UTP for term 6 (covers i)

0001011000100 Corresponding NFP for a in term 1

1101011000100 Corresponding NFP for b in term 1

1011011000100 Corresponding NFP for c in term 1

1000011000100 Corresponding NFP for d in term 1

1001111000100 Corresponding NFP for e in term 1

1001001000100 Corresponding NFP for f in term 1

1001010000100 Corresponding NFP for g in term 1 NFP for h in term 2, i in term 3

1001010001010 Corresponding NFP for h in term 5 and i in

term 6

NFP for g in term 4

1001011001100 Corresponding NFP for j in term 1 NFP for g in term 4

1001010101110 Corresponding NFP for k in term 5 NFP for k in term 4

1001011000110 Corresponding NFP for l in term 1

1001011000101 Corresponding NFP for m in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 6/6 3/6 3/5 54/54 34/60 17/60 141/360 9/24 268/576 47%

11.

a~b~c~g~h~i~j~l + a~b~c~g~h~ij~k + a~b~c~g~h~i~jm + a~b~c~d~e~j~l + a~b~c~d~e~jm

+ a~b~c~d~ej~k + a~b~c~j~l~f + a~b~cj~k~f + a~b~c~jm~f

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

1001110000100 UTP for term 1 (covers a, b, c, g, h, i, j, l)

1000011110111 UTP for term 5 (covers d, e, m)

1001101111010 UTP for term 8 (covers k, f)

0001110000100 Corresponding NFP for a in term 1

1101110000100 Corresponding NFP for b in term 1

1011110000100 Corresponding NFP for c in term 1

232

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

1001011110111 Corresponding NFP for d in term 5

1000111110111 Corresponding NFP for e in term 5

1001111111010 Corresponding NFP for f in term 8

1001111000100 Corresponding NFP for g in term 1 NFP for f in term 7

1001110100100 Corresponding NFP for h in term 1 NFP for f in term 7

1001110010100 Corresponding NFP for i in term 1 NFP for f in term 7

1001110001100 Corresponding NFP for j in term 5 NFP for k in term 2

1001101111110 Corresponding NFP for k in term 8

1001110000110 Corresponding NFP for l in term 1 NFP for m in term 3

1000011110110 Corresponding NFP for m in term 5 NFP for l in term 4

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 9/9 3/9 5/8 54/54 25/63 17/63 135/744 18/96 267/1047 26%

12. Not included due to a missing right parenthesis

13.

a + b + c + ~def~g~h + ij~l + ik~l

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

100000000000 UTP for term 1 (covers a)

010000000000 UTP for term 2 (covers b)

001000000000 UTP for term 3 (covers c)

000011000000 UTP for term 4 (covers d, e, f, g, h)

000000001100 UTP for term 5 (covers i, j, l)

000000001010 UTP for term 6 (covers k)

000000000000 Corresponding NFP for a, b, c in term 1

000111000000 Corresponding NFP for d in term 4

000001000000 Corresponding NFP for e in term 4

000010000000 Corresponding NFP for f in term 4

000011100000 Corresponding NFP for g in term 4

000011010000 Corresponding NFP for h in term 4

000011000100 Corresponding NFP for i in term 5

000011001001 Corresponding NFP for j in term 5

000011001000 Corresponding NFP for k in term 6

000011001101 Corresponding NFP for l in term 5

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 6/6 6/6 5/5 8/8 14/14 12/14 226/244 58/99 336/397 85%

233

14.

ae~h + ad~h + ace + acd + be + bf

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

1000110 UTP for term 1 (covers a, e, h)

1011001 UTP for term 4 (covers c, d)

1100010 UTP for term 6 (covers b, f)

0000110 Corresponding NFP for a in term 1 NFP for b in term 5

1000010 Corresponding NFP for b in term 6, e in term 1 NFP for d in term 2

1001001 Corresponding NFP for c in term 4 NFP for h in term 2

1010001 Corresponding NFP for d in term 4 NFP for e in term 3

1100000 Corresponding NFP for f in term 6 NFP for e in term 5, d in term 2

1000111 Corresponding NFP for h in term 1 NFP for c in term 3, b in term 5

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 6/6 3/6 4/5 10/10 14/16 13/16 98/136 13/40 162/236 69%

15.

bei + bdi + bci + aei + aeg + adi + adg + aci + ach + acg + af

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

010010001 UTP for term 1 (covers b, e, i)

100100100 UTP for term 7 (covers a, d, g)

101000010 UTP for term 9 (covers c, h)

100101000 UTP for term 11 (covers f)

000100100 Corresponding NFP for a in term 7

000010001 Corresponding NFP for b in term 1 NFP for a in term 4

100000010 Corresponding NFP for c in term 9

100000100 Corresponding NFP for d in term 7 NFP for e in term 5, c in term 10

010000001 Corresponding NFP for e in term 1 NFP for d in term 2, c in term 3

100100000 Corresponding NFP for f in term 11, g in term 7 NFP for i in term 6

101000000 Corresponding NFP for h in term 9 NFP i in term 8, g in term 10

010010000 Corresponding NFP for i in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 11/11 4/11 6/10 21/21 19/32 17/32 171/388 25/99 275/605 45%

16.

c~g~i~k~m + cg~h~l~m + c~g~hi~m + cgi~l~m + cgi~k~m + c~h~k~m + b~g~i~k +

a~g~i~k + b~g~hi + bg~h~l + a~g~hi + ag~h~l + bgi~k + bgi~l + agi~k + agi~l +

a~h~k + b~h~k + ~i~kf + ~hif + gf + a~e + a~d

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

001110010010 UTP for term 1 (covers c, g, i, k, m)

010110100101 UTP for term 10 (covers b, h, l)

000111110010 UTP for term 21 (covers f)

234

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

100100010110 UTP for term 22 (covers a, e)

100010010110 UTP for term 23 (covers d)

000100010010 Corresponding NFP for a in term 22 NFP for b in term 7, a in term 8, f

in term 19

000110100101 Corresponding NFP for b in term 10 NFP for a in term 12

000110010010 Corresponding NFP for c in term 1 NFP for b in term 7, a in term 8, f

in term 19

100110010110 Corresponding NFP for d in term 23 and e in

term 22

NFP for k in term 8

000110110010 Corresponding NFP for f in term 21 NFP for f in term 19

001110110010 Corresponding NFP for g in term 1 NFP for i in term 5, h in term 6, f

in term 19

010110110101 Corresponding NFP for h in term 10 NFP for i in term 13

001110011010 Corresponding NFP for i in term 1 NFP for h in term 3, g in term 5, h

in term 6

001110010110 Corresponding NFP for k in term 1

010110100111 Corresponding NFP for l in term 10

001110010011 Corresponding NFP for m in term 1 NFP b in term 7, a in term 8, f in

term 19

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 23/23 5/23 6/22 59/64 25/87 22/87 316/1390 45/283 502/1980 25%

17.

acegij + acehik + bdegij + bdehik + acef + bdef

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

10101010110 UTP for term 1 (covers a, c, e, g, i, j)

01011001101 UTP for term 4 (covers b, d, h, k)

10101100000 UTP for term 5 (covers f)

00101010110 Corresponding NFP for a in term 1

00011001101 Corresponding NFP for b in term 4

10001010110 Corresponding NFP for c in term 1

01001001101 Corresponding NFP for d in term 2

10100010110 Corresponding NFP for e in term 1

10101000000 Corresponding NFP for f in term 5

10101000110 Corresponding NFP for g in term 1

01011000101 Corresponding NFP for h in term 4 NFP for f in term 6

10101010010 Corresponding NFP for i in term 1

10101010100 Corresponding NFP for j in term 1

01011001100 Corresponding NFP for k in term 4 NFP for f in term 6

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 6/6 3/6 4/5 26/26 17/32 12/32 154/352 17/64 240/524 46%

235

18.

ace~j~k + ace~h~j + ace~g~k + bde~j~k + bde~h~j + bde~g~k + bde~i + ace~i

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

1010111100 UTP for term 1 (covers a, c, e, j, k)

1010110101 UTP for term 2 (covers h)

0101101110 UTP for term 6 (covers b, d, g)

0101111011 UTP for term 7 (covers i)

0010111100 Corresponding NFP for a in term 1

0001101110 Corresponding NFP for b in term 6

1000111100 Corresponding NFP for c in term 1

0100101110 Corresponding NFP for d in term 6

1010011100 Corresponding NFP for e in term 1

0101111110 Corresponding NFP for g in term 6 NFP for j in term 4

1010111101 Corresponding NFP for h in term 2 NFP for i in term 8

0101111111 Corresponding NFP for i in term 7

1010111110 Corresponding NFP for j in term 1 NFP for i in term 8

1010111101 Corresponding NFP for k in term 1 NFP for i in term 8

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 8/8 4/8 5/7 30/30 21/38 12/38 172/396 21/70 274/596 46%

19.

aceh~f + bdeh~f + acegf + bdegf

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

10101001 UTP for term 1 (covers a, c, e, f, h)

01011110 UTP for term 4 (covers b, d, g)

00101001 Corresponding NFP for a in term 1

00011110 Corresponding NFP for b in term 4

10001001 Corresponding NFP for c in term 1

01001110 Corresponding NFP for d in term 4

10100001 Corresponding NFP for e in term 1

10101101 Corresponding NFP for f in term 1 NFP for g in term 3

01011100 Corresponding NFP for g in term 1

10101000 Corresponding NFP for h in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 4/4 2/4 2/3 16/16 11/20 9/20 57/120 6/24 108/212 51%

236

20.

~a~bd~e~gf + ~abc~e~gf

Test Description and literal coverage NFPs for other literals that the

Corresponding NFP overlaps with

0001010 UTP for term 1 (covers a, b, d ,e, f, g)

0111010 UTP for term 4 (covers c)

1001010 Corresponding NFP for a in term 1

0101010 Corresponding NFP for b in term 1and c in term 2

0000010 Corresponding NFP for d in term 1

0001110 Corresponding NFP for e in term 1

0001000 Corresponding NFP for f in term 1

0001011 Corresponding NFP for g in term 1

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent

1/1 2/2 2/2 1/1 10/10 12/12 7/12 19/24 2/4 56/68 82%

237

Appendix I TRF-TIF Logic Mutations

(From section 7.2)

This Appendix gives the TRF-TIF logic mutations for one of the predicates examined.

This predicate has 12 unique literals so 4096 tests are possible. However, to satisfy

Minimal-MUMCUT only 17 tests are needed and there are also only 17 TRF-TIF logic

mutations. Killing the resulting 17 mutants guarantees killing 506 other mutants that thus

do not need to be generated. These other mutants correspond to mutants based on the

mutation operators in the extended fault hierarchy (Figure 9). In other words, detecting

the 17 TRF-TIFs guarantees detecting 506 other faults.

After each mutation, a point is given indicating the values the literals need to be assigned

to in order to detect the fault. Due to the large number of literals, 1 is used to represent

TRUE and 0 is used to represent FALSE. A description of the point is also given in

parentheses.

PREDICATE 13

Minimal DNF: a + b + c + ~def~g~h + ij~l + ik~l

TRF/LIF mutations are:

ab + ac + ad + ae + af + ag + ah + ai + aj + ak + al + b + c + ~def~g~h + ij~l + ik~l

100000000000 (UTP for term a)

ab + ac + a~d + a~e + a~f + a~g + a~h + a~i + a~j + a~k + a~l + b + c + ~def~g~h + ij~l + ik~l

100111111111 (UTP for term a)

a + ba + bc + bd + be + bf + bg + bh + bi + bj + bk + bl + c + ~def~g~h + ij~l + ik~l

010000000000 (UTP for term b)

a + ba + bc + b~d + b~e + b~f + b~g + b~h + b~i + b~j + b~k + b~l + c + ~def~g~h + ij~l + ik~l

010111111111 (UTP for term b)

a + b + ca + cb + cd + ce + cf + cg + ch + ci + cj + ck + cl + ~def~g~h + ij~l + ik~l

001000000000 (UTP for term c)

a + b + ca + cb + c~d + c~e + c~f + c~g + c~h + c~i + c~j + c~k + c~l + ~def~g~h + ij~l + ik~l

001111111111 (UTP for term c)

238

a + b + c + ~def~g~ha + ~def~g~hb + ~def~g~hc + ~def~g~hi + ~def~g~hj + ~def~g~hk + ~def~g~hl +

ij~l + ik~l

000011000000 (UTP for term ~def~g~h)

a + b + c + ~def~g~ha + ~def~g~hb + ~def~g~hc + ~def~g~h~i + ~def~g~h~j + ~def~g~h~k +

~def~g~h~l + ij~l + ik~l

000011001111 (UTP for term ~def~g~h)

a + b + c + ~def~g~h + ij~la + ij~lb + ij~lc + ij~ld + ij~le + ij~lf + ij~lg + ij~lh + ij~lk + ik~l

000000001100 (UTP for term ij~l)

a + b + c + ~def~g~h + ij~la + ij~lb + ij~lc + ij~l~d + ij~l~e + ij~l~f + ij~l~g + ij~l~h + ij~lk + ik~l

000111111100 (UTP for term ij~l)

a + b + c + ~def~g~h + ij~l + ik~la + ik~lb + ik~lc + ik~ld + ik~le + ik~lf + ik~lg + ik~lh + ik~lj

000000001010 (UTP for term ik~l)

a + b + c + ~def~g~h + ij~l + ik~la + ik~lb + ik~lc + ik~l~d + ik~l~e + ik~l~f + ik~l~g + ik~l~h + ik~lj

000111111010 (UTP for term ik~l)

No TIF/LRF mutations are needed for literals a, b, or c as no equivalent LIF mutants exist when inserting a

literal from a multi-literal term into term a, b, or c.

No TIF/LOF mutations are needed for literals a, b, or c since a TIF/LOF would result in a TOF, which is

detected by a TRF/LIF.

No TIF/LRF mutations are needed for literals in term ~def~g~h since 1) any LRF mutation where a literal

or the negation of a literal from term a, b, or c replaces a literal in term ~def~g~h results in a TOF or an

LOF and 2) no equivalent LIF mutants exist when inserting a literal from term ij~l or term ik~l into term

~def~g~h.

TIF/LOF mutations are needed for the literals in term ~def~g~h but these mutations can overlap with the

TIF/LRF mutations described below for literals in term ij~l and literals in term ij~l

No TIF/LRF mutations are needed for term ij~l or term ik~l involving a literal in any of the first four terms

since 1) any LRF mutation where a literal or the negation of a literal from term a, b, or c replaces a literal in

term ij~l or term ik~l results in a TOF or an LOF and 2) no equivalent LIF mutants exist when inserting a

literal from term ~def~g~h into term ij~l or term ik~l.

However, inserting literal ~k into term ij~l results in an equivalent LIF mutant and inserting literal ~j into

term ik~l results in an equivalent LIF mutant, so the following TIF/LRF mutations need to be generated:

a + b + c + ~def~g~h + ij~l + ik~l + ~ij~l~k~a~b~cdef~g~h

 (000111000100) - NFP literal d and for literal i in term ij~l for d

a + b + c + ~def~g~h + ij~l + ik~l + i~j~l~k~a~b~c~d~ef~g~h

239

(000001001000) - NFP for literal e and for literal j in term ij~l and for literal k in term ik~l

a + b + c + ~def~g~h + ij~l + ik~l + ijl~k~a~b~c~de~f~g~h

(000010001101) - NFP for literal f and for literal l in term ij~l

a + b + c + ~def~g~h + ij~l + ik~l + ~ik~l~j~a~b~c~defg~h

(00001110010) - this is an NFP for literal g and for literal i in term ik~l

a + b + c + ~def~g~h + ij~l + ik~l + ikl~j~a~b~c~def~gh

(000011011011) – this is an NFP for literal h and for literal l in term ik~l

240

Appendix J Java Programs and TRF-TIF Mutations

(From introduction to Chapter 9)

This appendix gives the source code and example TRF-TIF mutations for 4 java

programs used in a study comparing TRF-TIF mutation with muJava.

Cal.java

// Returns the number of days between two dates in the same year

// Preconditions: day1 and day2 are in same year

// 1 <= month1 <= month2 <= 12

// 1 <= day1, day2 <= 31

// range for year: 1 … 10000

1 public class Cal

2 {

3 public static void main(String[] args)

4 {

5 int month1 = Integer.parseInt(args[0]);

6 int day1 = Integer.parseInt(args[1]);

7 int month2 = Integer.parseInt(args[2]);

8 int day2 = Integer.parseInt(args[5]);

9 int year = Integer.parseInt(args[6]);

10 System.out.println(run(month1,day1,month2,day2,year));

11 }

12

13 private static int run(int month1, int day1, int month2, int day2, int year)

14 {

15 int numDays;

16

17 if ((month2 == month1)) numDays = day2 - day1;

18 else

19 {

20 int daysIn[] = {0,31,0,31,30,31,30,31,31,30,31,30,31};

21

22 int m4 = year % 4;

23 int m100 = year % 100;

24 int m400 = year % 400;

25

26 // startTag m100 == 0=F,m400 != 0=F;m4 != 0=T,m100 == 0=T

27 if ((m4 != 0) || (m100 == 0) && (m400 != 0)) daysIn[2] = 28;

28

29 else daysIn[2] = 29;

30

31 numDays = day2 + daysIn[month1] - day1;

32

33 for (int i = month1 + 1; (i <= month2-1); i++)

241

34 {

35 numDays = daysIn[i] + numDays;

36 }

37 }

38

39 return numDays;

40 }

41 }

Tests

Test
Test Values

(Program Input)

1 1, 1, 12, 1, 4

2 1, 1, 12, 1, 100

3 1, 1, 12, 1, 400

4 1, 1, 12, 1, 1

5 1, 1, 1, 2, 1

TRF-TIF Mutations

Code

Line
Original Predicate Mutated Predicate

Mutant

Type

Tests

that kill

mutant

17 month2 == month1 TRUE 1,2,3,4

17 month2 == month1 FALSE 5

27 m4 != 0 || m100 == 0 && m400 != 0
m4 != 0 && m100 == 0 || m4

!= 0 && !(m400 != 0)

|| m100 == 0 && m400 != 0

TRF-

LIF 4

27 m4 != 0 || m100 == 0 && m400 != 0
m4 != 0 || m100 == 0 &&

m400 != 0 && m4 != 0

TRF-

LIF
2

27 m4 != 0 || m100 == 0 && m400 != 0
m4 != 0 || m100 == 0 &&

m400 != 0 || !(m4 != 0) &&

!(m100 == 0) && m400 != 0

TIF-

LOF 1

27 m4 != 0 || m100 == 0 && m400 != 0
m4 != 0 || m100 == 0 &&

m400 != 0 || !(m4 != 0) &&

m100 == 0 && !(m400 != 0)

TIF-

LOF 3

242

Prime.java

// Returns the first X prime numbers where X is the input to the program

1 public class Prime

2 {

3 public static void main(String[] args)

4 {

5 run(Integer.parseInt(args[0]));

6 }

7

8 private static void run(int input)

9 {

10 int curPrime;

11 int numPrimes;

12 boolean isPrime;

13 int[] primes = new int[100];

14

15 primes[0] = 2;

16 numPrimes = 1;

17 curPrime = 2;

18

19 while ((numPrimes < input))

20 {

21 curPrime++;

22 isPrime = true;

23

24 for (int i=0; (i <= numPrimes-1); i++)

25 {

26 if ((curPrime % primes[i] == 0))

27 {

28 isPrime = false;

29 break;

30 }

31 }

32 if ((isPrime))

33 {

34 primes[numPrimes] = curPrime;

35 numPrimes++;

36 }

37 }

38

39 for (int i=0; (i <= numPrimes-1); i++)

41 {

42 System.out.println("Prime: " + primes[i]);

43 }

44 }

45 }

243

Tests

Test
Test Value

(Program Input)

1 4

TRF-TIF Mutations

Code

Line
Original Predicate Mutated Predicate

Tests that

kill mutant

26 curPrime % primes[i] == 0 TRUE 1

26 curPrime % primes[i] == 0 FALSE 1

32 isPrime TRUE 1

32 isPrime FALSE 1

244

TestPat.java

// Tests for whether one string contains another string

1 public class TestPat

2 {

3 public static void main(String[] argv)

4 {

5 run(argv);

6 }

7

8 private static void run(String[] argv)

9 {

10 final int MAX = 100;

11 char subject[] = new char[MAX];

12 char pattern[] = new char[MAX];

13

14 if ((argv.length != 2))

15 {

16 System.out.println("java TestPat String-Subject String-Pattern");

17 return;

18 }

19 subject = argv[0].toCharArray();

20 pattern = argv[1].toCharArray();

21 TestPat testPat = new TestPat();

22 int n=0;

23

24 if (((n = testPat.pat(subject,pattern)) == -1))

25 {

26 System.out.println("Pattern string is not a substring of the subject string");

27 }

28 else

29 {

30 System.out.println("Pattern string begins at the character " + n);

31 }

32 }

33

34 public int pat(char[] subject, char[] pattern)

35 {

36 final int NOTFOUND = -1;

37 int iSub = 0, rtnIndex = NOTFOUND;

38 boolean isPat = false;

39 int subjectLen = subject.length;

40 int patternLen = pattern.length;

41

42 while ((isPat == false) && (iSub + patternLen - 1 < subjectLen))

43 {

44 if ((subject[iSub] == pattern[0]))

45 {

46 rtnIndex = iSub;

47 isPat = true;

48

245

49 for (int iPat = 1; (iPat < patternLen); iPat++)

50 {

51 if ((subject[iSub + iPat] != pattern[iPat]))

52 {

53 rtnIndex = NOTFOUND;

54 isPat = false;

55 break;

56 }

57 }

58 }

59 iSub++;

60 }

61 return rtnIndex;

62 }

63 }

Tests

Test
Test Values

(Program Input)

1 “a”

2 “abc”, “bc”

3 “abc”, “bd”

TRF-TIF Mutations

Code

Line
Original Predicate Mutated Predicate

Tests that

kill mutant

14 argv.length != 2 TRUE 2,3

14 argv.length != 2 FALSE 1

24 n = testPat.pat(subject,pattern) == -1 TRUE 2

24 n = testPat.pat(subject,pattern) == -1 FALSE 3

44 subject[iSub] == pattern[0] TRUE 2,3

44 subject[iSub] == pattern[0] FALSE 2,3

51 subject[iSub + iPat] != pattern[iPat] TRUE 2

51 subject[iSub + iPat] != pattern[iPat] FALSE 3

246

TriType.java

// Determines if a triangle is equilateral, isosceles, scalene, or invalid

1 public class TriType

2 {

3 public static void main (String[] args)

4 {

5

System.out.println(run(Double.parseDouble(args[0]),Double.parseDouble(args[1]),Double.parseDouble(ar

gs[2])));

6 }

7

8 private static int run(double Side1, double Side2, double Side3)

9 {

10 int triOut;

11

12 if ((Side1 <= 0) || (Side2 <= 0) || (Side3 <= 0))

13 {

14 triOut = 4;

15

16 return triOut;

17 }

18

19 triOut = 0;

20

21 if ((Side1 == Side2))

22 {

23 triOut = triOut + 1;

24 }

25 if ((Side1 == Side3))

26 {

27 triOut = triOut + 2;

28 }

29 if ((Side2 == Side3))

30 {

31 triOut = triOut + 3;

32 }

33 if ((triOut == 0))

34 {

35 // startTag Side1+Side2 <= Side3=T,Side2+Side3 <= Side1=T;Side1+Side2 <=

Side3=T,Side1+Side3 <=

36 // Side2=T;Side2+Side3 <= Side1=T,Side1+Side3 <= Side2=T

37

38 if ((Side1+Side2 <= Side3) || (Side2+Side3 <= Side1) || (Side1+Side3 <= Side2))

39 {

40 triOut = 4;

41 }

42 else

43 {

44 triOut = 1;

45 }

247

46

47 return triOut;

48 }

49

50 if ((triOut > 3))

51 {

52 triOut = 3;

53 }

54 // startTag Side1+Side2 <= Side3=T,Side2+Side3 <= Side1=T;Side1+Side2 <=

Side3=T,Side1+Side3 <=

55 // Side2=T;Side2+Side3 <= Side1=T,Side1+Side3 <= Side2=T

56

57 else if ((Side1+Side2 <= Side3) || (Side2+Side3 <= Side1) || (Side1+Side3 <= Side2))

58 {

59 triOut = 4;

60 }

61 else

62 {

63 triOut = 2;

64 }

65

66 return triOut;

67 }

68 }

Tests

Test
Test Values

(Program Input)

1 0, 1, 1

2 1, 0, 1

3 1, 1, 0

4 1, 1, 1

5 1, 2, 1

6 1, 1, 2

7 1, 2, 3

8 3, 1, 2

9 1, 3, 2

10 3, 4, 5

11 2, 2, 1

TRF-TIF Mutations

Code

Line
Original Predicate Mutated Predicate

Mutant

Type

Tests

that kill

mutant

12
(Side1 <= 0) || (Side2

<= 0) || (Side3 <= 0)

(Side1 <= 0) && (Side2 <= 0) || (Side1

<= 0) && (Side3 <= 0) || (Side2 <= 0) ||

(Side3 <= 0)

TRF-LIF 1

248

Code

Line
Original Predicate Mutated Predicate

Mutant

Type

Tests

that kill

mutant

12
(Side1 <= 0) || (Side2

<= 0) || (Side3 <= 0)

(Side1 <= 0) || (Side2 <= 0) && (Side1

<= 0) || (Side2 <= 0) && (Side3 <= 0) ||

(Side3 <= 0)

TRF-LIF 2

12
(Side1 <= 0) || (Side2

<= 0) || (Side3 <= 0)

(Side1 <= 0) || (Side2 <= 0) || (Side3 <= 0)

&& (Side1 <= 0) || (Side3 <= 0) &&

(Side2 <= 0)

TRF-LIF 3

12
(Side1 <= 0) || (Side2

<= 0) || (Side3 <= 0)

(Side1 <= 0) || (Side2 <= 0) || (Side3 <= 0)

|| !(Side1 <= 0) && !(Side2 <= 0) &&

!(Side3 <= 0)

TIF-LOF 4-12

21 Side1 == Side2 TRUE 5,7-11

21 Side1 == Side2 FALSE 4,6

25 Side1 == Side3 TRUE 6-11

25 Side1 == Side3 FALSE 4,5

29 Side2 == Side3 TRUE 5-10

29 Side2 == Side3 FALSE 4,11

33 triOut == 0 TRUE 4,5,6,11

33 triOut == 0 FALSE 7-10

38

(Side1+Side2 <=

Side3) || (Side2+Side3

<= Side1) ||

(Side1+Side3 <=

Side2)

(Side1+Side2 <= Side3)

&&(Side2+Side3 <= Side1) ||

(Side1+Side2 <= Side3) &&

(Side1+Side3 <= Side2) || (Side2+Side3

<= Side1) || (Side1+Side3 <= Side2)

TRF-LIF 7

38

(Side1+Side2 <=

Side3) || (Side2+Side3

<= Side1) ||

(Side1+Side3 <=

Side2)

(Side1+Side2 <= Side3) || (Side2+Side3

<= Side1) && (Side1+Side2 <= Side3) ||

(Side2+Side3 <= Side1) &&

(Side1+Side3 <= Side2) || (Side1+Side3

<= Side2)

TRF-LIF 8

38

(Side1+Side2 <=

Side3) || (Side2+Side3

<= Side1) ||

(Side1+Side3 <=

Side2)

(Side1+Side2 <= Side3) || (Side2+Side3

<= Side1) || (Side1+Side3 <= Side2) &&

(Side1+Side2 <= Side3) || (Side1+Side3

<= Side2) && (Side2+Side3 <= Side1)

TRF-LIF 9

38

(Side1+Side2 <=

Side3) || (Side2+Side3

<= Side1) ||

(Side1+Side3 <=

Side2)

(Side1+Side2 <= Side3) || (Side2+Side3

<= Side1) || (Side1+Side3 <= Side2) ||

!(Side1+Side2 <= Side3) &&

!(Side2+Side3 <= Side1) &&

!(Side1+Side3 <= Side2)

TIF-LOF 10

50 triOut > 3 TRUE 5,6,11

50 triOut > 3 FALSE 4

57

(Side1+Side2 <=

Side3) || (Side2+Side3

<= Side1) ||

(Side1+Side3 <=

Side2)

(Side1+Side2 <= Side3)

&&(Side2+Side3 <= Side1) ||

(Side1+Side2 <= Side3) &&

(Side1+Side3 <= Side2) || (Side2+Side3

<= Side1) || (Side1+Side3 <= Side2)

TRF-LIF 6

57

(Side1+Side2 <=

Side3) || (Side2+Side3

<= Side1) ||

(Side1+Side3 <=

Side2)

(Side1+Side2 <= Side3) || (Side2+Side3

<= Side1) && (Side1+Side2 <= Side3) ||

(Side2+Side3 <= Side1) &&
(Side1+Side3 <= Side2) || (Side1+Side3

<= Side2)

TRF-LIF 11

249

Code

Line
Original Predicate Mutated Predicate

Mutant

Type

Tests

that kill

mutant

57

(Side1+Side2 <=

Side3) || (Side2+Side3

<= Side1) ||

(Side1+Side3 <=

Side2)

(Side1+Side2 <= Side3) || (Side2+Side3

<= Side1) || (Side1+Side3 <= Side2) &&

(Side1+Side2 <= Side3) || (Side1+Side3

<= Side2) && (Side2+Side3 <= Side1)

TRF-LIF 5

57

(Side1+Side2 <=

Side3) || (Side2+Side3

<= Side1) ||

(Side1+Side3 <=

Side2)

(Side1+Side2 <= Side3) || (Side2+Side3

<= Side1) || (Side1+Side3 <= Side2) ||

!(Side1+Side2 <= Side3) &&

!(Side2+Side3 <= Side1) &&

!(Side1+Side3 <= Side2)

TIF-LOF 4

250

Appendix K Compiere Queries

(From introduction to chapter 10)

This appendix gives details of the Compiere Queries used to compare TRF-TIF mutation

with SQLMutation.

Query 1

View the query appears in: C_Invoice_Candidate_v

Schema:

<schema>

 <table name="C_Order">

 <column name="AD_Client_ID" type="number"/>

 <column name="AD_Org_ID" type="number"/>

 <column name="C_BPartner_ID" type="number"/>

 <column name="C_Order_ID" type="number"/>

 <column name="DocumentNo" type="number"/>

 <column name="DateOrdered" type="date"/>

 <column name="C_DocType_ID" type="number"/>

 <column name="DocStatus" type="varchar"/>

 <column name="InvoiceRule" type="char"/>

 </table>

 <table name="C_OrderLine">

 <column name="QtyOrdered" type="number"/>

 <column name="QtyInvoiced" type="number"/>

 <column name="PriceActual" type="number"/>

 <column name="C_Order_ID" type="number"/>

 <column name="QtyDelivered" type="number"/>

 </table>

 <table name="C_BPartner">

 <column name="C_BPartner_ID" type="number"/>

 <column name="C_InvoiceSchedule_ID" type="number"/>

 </table>

 <table name="C_InvoiceSchedule">

 <column name="C_InvoiceSchedule_ID" type="number"/>

 <column name="InvoiceFrequency" type="char"/>

 <column name="InvoiceDayCutoff" type="number"/>

 <column name="InvoiceDay" type="number"/>

 </table>

 <table name="C_DocType">

 <column name="C_DocType_ID" type="number"/>

 <column name="DocBaseType" type="varchar"/>

 <column name="DocSubTypeSO" type="varchar"/>

 </table>

</schema>

251

SQL:

SELECT o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID, o.C_Order_ID, o.DocumentNo,

o.DateOrdered, o.C_DocType_ID,

SUM((l.QtyOrdered-l.QtyInvoiced)*l.PriceActual) AS TotalLines FROM C_Order o INNER JOIN

C_OrderLine l ON o.C_Order_ID=l.C_Order_ID) INNER JOIN C_BPartner bp ON

(o.C_BPartner_ID=bp.C_BPartner_ID) LEFT OUTER JOIN C_InvoiceSchedule si ON

(bp.C_InvoiceSchedule_ID=si.C_InvoiceSchedule_ID) WHERE o.DocStatus IN ('CO','CL','IP') AND

o.C_DocType_ID IN (SELECT C_DocType_ID FROM C_DocType WHERE DocBaseType='SOO' AND

DocSubTypeSO NOT IN ('ON','OB','WR')) AND l.QtyOrdered <> l.QtyInvoiced AND

(o.InvoiceRule='I' OR o.InvoiceRule='O' OR (o.InvoiceRule='D' AND l.QtyInvoiced<>l.QtyDelivered) OR

(o.InvoiceRule='S' AND bp.C_InvoiceSchedule_ID IS NULL) OR (o.InvoiceRule='S' AND

bp.C_InvoiceSchedule_ID IS NOT NULL AND ((si.InvoiceFrequency IS NULL OR

si.InvoiceFrequency='D') OR si.InvoiceFrequency='W') OR (si.InvoiceFrequency='T' AND

((o.DateOrdered <= sysdate+si.InvoiceDayCutoff-1 AND sysdate >= o.DateOrdered+si.InvoiceDay-1) OR

(o.DateOrdered <= sysdate+si.InvoiceDayCutoff+14 AND sysdate >= o.DateOrdered+si.InvoiceDay+14)))

OR (si.InvoiceFrequency='M' AND o.DateOrdered <= sysdate+si.InvoiceDayCutoff-1 AND sysdate >=

o.DateOrdered+si.InvoiceDay-1)))) GROUP BY o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID,

o.C_Order_ID, o.DocumentNo, o.DateOrdered, o.C_DocType_ID

WHERE clause as a Minimal DNF Predicate:

Letting

a=o.DocStatus IN ('CO','CL','IP')

b=o.C_DocType_ID IN (SELECT C_DocType_ID FROM C_DocType WHERE DocBaseType='SOO'

AND DocSubTypeSO NOT IN ('ON','OB','WR'))

c=l.QtyOrdered <> l.QtyInvoiced

d=o.InvoiceRule='I'

e=o.InvoiceRule='O'

f=o.InvoiceRule='D'

g=l.QtyInvoiced<>l.QtyDelivered

h=o.InvoiceRule='S'

i=bp.C_InvoiceSchedule_ID IS NOT NULL

j=si.InvoiceFrequency IS NULL

k=si.InvoiceFrequency='D'

l=si.InvoiceFrequency='W'

m=si.InvoiceFrequency='T'

n=o.DateOrdered <= sysdate+si.InvoiceDayCutoff-1

o=sysdate >= o.DateOrdered+si.InvoiceDay-1

p=o.DateOrdered <= sysdate+si.InvoiceDayCutoff+14

q=sysdate >= o.DateOrdered+si.InvoiceDay+14

r=si.InvoiceFrequency='M'

the WHERE clause predicate can be expressed as

abc(d + e + fg + hi + h!i(j + k + l + mno + mpq + rno))

However the following combinations of literal values are infeasible where a comma separates literals and a

semicolon separates combinations and TRUE is represented by 1 and FALSE is represented by 0:

d=1,e=1;d=1,f=1;d=1,h=1;e=1,f=1;e=1,h=1;f=1,h=1;j=1,k=1;j=1,l=1;j=1,m=1;j=1,r=1;k=1,l=1;k=1,m=1;k

=1,r=1;l=1,m=1;l=1,r=1;m=1,r=1;i=1,j=0;i=1,k=1;i=1,l=1;i=1,m=1;i=1,n=1;i=1,o=1;i=1,p=1;i=1,q=1;i=1,r

=1;o=0,q=1;n=1,p=0

252

Based on these infeasibilities the literals can be reassigned as follows (notice that si.InvoiceFrequency IS

NULL no longer appears in the predicate because it is redundant due to the infeasibilities)

a=o.DocStatus IN ('CO','CL','IP')

b=o.C_DocType_ID IN (SELECT C_DocType_ID FROM C_DocType WHERE DocBaseType='SOO'

AND DocSubTypeSO NOT IN ('ON','OB','WR'))

c=l.QtyOrdered <> l.QtyInvoiced

d=o.InvoiceRule='I'

e=o.InvoiceRule='O'

f=o.InvoiceRule='D'

g=l.QtyInvoiced<>l.QtyDelivered

h=o.InvoiceRule='S'

i=bp.C_InvoiceSchedule_ID IS NOT NULL

j=si.InvoiceFrequency='D'

k=si.InvoiceFrequency='W'

l=si.InvoiceFrequency='T'

m=o.DateOrdered <= sysdate+si.InvoiceDayCutoff-1

n=sysdate >= o.DateOrdered+si.InvoiceDay-1

o=o.DateOrdered <= sysdate+si.InvoiceDayCutoff+14

p=sysdate >= o.DateOrdered+si.InvoiceDay+14

q=si.InvoiceFrequency='M'

Thus the new infeasible combinations are:

d=1,e=1;d=1,f=1;d=1,h=1;e=1,f=1;e=1,h=1;f=1,h=1;j=1,k=1;j=1,l=1;j=1,q=1;k=1,l=1;k=1,q=1;l=1,q=1;i=

1,j=1;i=1,k=1;i=1,l=1;i=1,m=1;i=1,n=1;i=1,o=1;i=1,p=1;i=1,q=1;n=0,p=1;m=1,o=0

The WHERE clause predicate in minimal DNF is:

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn

Mutants generated by the TRF-TIF tool:

27 TRF/LIF mutants are generated as follows:

abcd!e!f!hg + abcd!e!f!hi + abcd!e!f!h!j + abcd!e!f!hk + abcd!e!f!hl + abcd!e!f!h!m + abcd!e!f!h!n +

abcd!e!f!h!o + abcd!e!f!h!p + abcd!e!f!hq + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop

+ abchqmn

abcd!e!f!h!g + abcd!e!f!hi + abcd!e!f!hj + abcd!e!f!hk + abcd!e!f!hl + abcd!e!f!h!m + abcd!e!f!h!n +

abcd!e!f!h!o + abcd!e!f!h!p + abcd!e!f!h!q + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop

+ abchqmn

abcd!e!f!h!g + abcd!e!f!hi + abcd!e!f!hj + abcd!e!f!hk + abcd!e!f!h!l + abcd!e!f!h!m + abcd!e!f!h!n +
abcd!e!f!h!o + abcd!e!f!h!p + abcd!e!f!hq + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop

+ abchqmn

abcd!e!f!h!g + abcd!e!f!hi + abcd!e!f!hj + abcd!e!f!h!k + abcd!e!f!hl + abcd!e!f!h!m + abcd!e!f!h!n +

abcd!e!f!h!o + abcd!e!f!h!p + abcd!e!f!hq + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop

+ abchqmn

253

abcd!e!f!h!g + abcd!e!f!h!i + abcd!e!f!hj + abcd!e!f!hk + abcd!e!f!hl + abcd!e!f!hm + abcd!e!f!hn +

abcd!e!f!ho + abcd!e!f!hp + abcd!e!f!hq + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop +

abchqmn

abcd + abce!d!f!hg + abce!d!f!hi + abce!d!f!h!j + abce!d!f!hk + abce!d!f!hl + abce!d!f!h!m +

abce!d!f!h!n + abce!d!f!h!o + abce!d!f!h!p + abce!d!f!hq + abcfg + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce!d!f!h!g + abce!d!f!hi + abce!d!f!hj + abce!d!f!hk + abce!d!f!hl + abce!d!f!h!m +

abce!d!f!h!n + abce!d!f!h!o + abce!d!f!h!p + abce!d!f!h!q + abcfg + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce!d!f!h!g + abce!d!f!hi + abce!d!f!hj + abce!d!f!hk + abce!d!f!h!l + abce!d!f!h!m +

abce!d!f!h!n + abce!d!f!h!o + abce!d!f!h!p + abce!d!f!hq + abcfg + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce!d!f!h!g + abce!d!f!hi + abce!d!f!hj + abce!d!f!h!k + abce!d!f!hl + abce!d!f!h!m +

abce!d!f!h!n + abce!d!f!h!o + abce!d!f!h!p + abce!d!f!hq + abcfg + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce!d!f!h!g + abce!d!f!h!i + abce!d!f!hj + abce!d!f!hk + abce!d!f!hl + abce!d!f!hm +

abce!d!f!hn + abce!d!f!ho + abce!d!f!hp + abce!d!f!hq + abcfg + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce + abcfg!d!e!hi + abcfg!d!e!hj + abcfg!d!e!hk + abcfg!d!e!h!l + abcfg!d!e!h!m +

abcfg!d!e!h!n + abcfg!d!e!h!o + abcfg!d!e!h!p + abcfg!d!e!hq + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce + abcfg!d!e!hi + abcfg!d!e!hj + abcfg!d!e!h!k + abcfg!d!e!hl + abcfg!d!e!h!m +

abcfg!d!e!h!n + abcfg!d!e!h!o + abcfg!d!e!h!p + abcfg!d!e!hq + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce + abcfg!d!e!h!i + abcfg!d!e!hj + abcfg!d!e!hk + abcfg!d!e!hl + abcfg!d!e!hm +

abcfg!d!e!hn + abcfg!d!e!ho + abcfg!d!e!hp + abcfg!d!e!hq + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce + abcfg!d!e!hi + abcfg!d!e!hj + abcfg!d!e!hk + abcfg!d!e!hl + abcfg!d!e!h!m +

abcfg!d!e!h!n + abcfg!d!e!h!o + abcfg!d!e!h!p + abcfg!d!e!h!q + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce + abcfg!d!e!hi + abcfg!d!e!h!j + abcfg!d!e!hk + abcfg!d!e!hl + abcfg!d!e!h!m +

abcfg!d!e!h!n + abcfg!d!e!h!o + abcfg!d!e!h!p + abcfg!d!e!hq + abchi + abchj + abchk + abchlmn +

abchlop + abchqmn

abcd + abce + abcfg + abchi!d!e!f!j!k!l!m!n!o!p!qg + abchj + abchk + abchlmn + abchlop + abchqmn

abcd + abce + abcfg + abchi!d!e!f!j!k!l!m!n!o!p!q!g + abchj + abchk + abchlmn + abchlop + abchqmn

abcd + abce + abcfg + abchi + abchj!d!e!f!k!l!q!i!g + abchj!d!e!f!k!l!q!i!m + abchj!d!e!f!k!l!q!i!n +

abchj!d!e!f!k!l!q!i!o + abchj!d!e!f!k!l!q!i!p + abchk + abchlmn + abchlop + abchqmn

abcd + abce + abcfg + abchi + abchj!d!e!f!k!l!q!ig + abchj!d!e!f!k!l!q!im + abchj!d!e!f!k!l!q!in +

abchj!d!e!f!k!l!q!io + abchj!d!e!f!k!l!q!ip + abchk + abchlmn + abchlop + abchqmn

254

abcd + abce + abcfg + abchi + abchj + abchk!d!e!f!j!l!q!i!g + abchk!d!e!f!j!l!q!i!m +

abchk!d!e!f!j!l!q!i!n + abchk!d!e!f!j!l!q!i!o + abchk!d!e!f!j!l!q!i!p + abchlmn + abchlop + abchqmn

abcd + abce + abcfg + abchi + abchj + abchk!d!e!f!j!l!q!ig + abchk!d!e!f!j!l!q!im + abchk!d!e!f!j!l!q!in

+ abchk!d!e!f!j!l!q!io + abchk!d!e!f!j!l!q!ip + abchlmn + abchlop + abchqmn

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn!d!e!f!j!k!q!io!pg + abchlop + abchqmn

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn!d!e!f!j!k!q!io!p!g + abchlop + abchqmn

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop!d!e!f!j!k!q!in!mg + abchqmn

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop!d!e!f!j!k!q!in!m!g + abchqmn

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn!d!e!f!j!k!l!io!g +

abchqmn!d!e!f!j!k!l!io!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn!d!e!f!j!k!l!iog +

abchqmn!d!e!f!j!k!l!iop

44 TIF/LRF mutants are generated as follows:

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

!a!e!f!hbcd!g!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

a!b!e!f!hcd!g!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

ab!c!e!f!hd!g!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abc!d!e!f!h!g!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

!a!d!f!hbce!g!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

a!b!d!f!hce!g!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

ab!c!d!f!he!g!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

!a!d!e!hbcfg!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

a!b!d!e!hcfg!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

ab!c!d!e!hfg!i!j!k!l!m!n!o!p!q

255

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abc!f!d!e!hg!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abcf!g!d!e!h!i!j!k!l!m!n!o!p!q

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

!a!d!e!f!j!k!l!m!n!o!p!qbchi!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

a!b!d!e!f!j!k!l!m!n!o!p!qchi!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

ab!c!d!e!f!j!k!l!m!n!o!p!qhi!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abc!h!d!e!f!j!k!l!m!n!o!p!qi!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abch!i!d!e!f!j!k!l!m!n!o!p!q!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

!a!d!e!f!i!k!l!qbchj!g!m!n!o!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

a!b!d!e!f!i!k!l!qchj!g!m!n!o!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

ab!c!d!e!f!i!k!l!qhj!g!m!n!o!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abc!h!d!e!f!i!k!l!qj!g!m!n!o!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

!a!d!e!f!i!j!l!qbchk!g!m!n!o!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

a!b!d!e!f!i!j!l!qchk!g!m!n!o!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

ab!c!d!e!f!i!j!l!qhk!g!m!n!o!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abc!h!d!e!f!i!j!l!qk!g!m!n!o!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

!a!d!e!f!i!j!ko!p!qbchlmn!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

a!b!d!e!f!i!j!ko!p!qchlmn!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

ab!c!d!e!f!i!j!ko!p!qhlmn!g

256

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abc!h!d!e!f!i!j!ko!p!qlmn!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abch!l!d!e!f!i!j!ko!p!qmn!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abchl!m!d!e!f!i!j!ko!p!qn!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abchlm!n!d!e!f!i!j!ko!p!q!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

!a!d!e!f!i!j!k!mn!qbchlop!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

a!b!d!e!f!i!j!k!mn!qchlop!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

ab!c!d!e!f!i!j!k!mn!qhlop!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abc!h!d!e!f!i!j!k!mn!qlop!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abch!l!d!e!f!i!j!k!mn!qop!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abchl!o!d!e!f!i!j!k!mn!qp!g

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

!a!d!e!f!i!j!k!lobchqmn!g!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

a!b!d!e!f!i!j!k!lochqmn!g!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

ab!c!d!e!f!i!j!k!lohqmn!g!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abc!h!d!e!f!i!j!k!loqmn!g!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abchq!m!d!e!f!i!j!k!lon!g!p

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn +

abchqm!n!d!e!f!i!j!k!lo!g!p

Test points needed to kill mutants in terms of literal values:
11110000010011110 detects a TRF-LIF: original true and mutant false

11110010000011111 detects a TRF-LIF: original true and mutant false

11110010000111110 detects a TRF-LIF: original true and mutant false

257

11110010001011110 detects a TRF-LIF: original true and mutant false

11110010100000000 detects a TRF-LIF: original true and mutant false

11101000010011110 detects a TRF-LIF: original true and mutant false

11101010000011111 detects a TRF-LIF: original true and mutant false

11101010000111110 detects a TRF-LIF: original true and mutant false

11101010001011110 detects a TRF-LIF: original true and mutant false

11101010100000000 detects a TRF-LIF: original true and mutant false

11100110000111110 detects a TRF-LIF: original true and mutant false

11100110001011110 detects a TRF-LIF: original true and mutant false

11100110100000000 detects a TRF-LIF: original true and mutant false

11100110000011111 detects a TRF-LIF: original true and mutant false

11100110010011110 detects a TRF-LIF: original true and mutant false

11100001100000000 detects a TRF-LIF: original true and mutant false

11100011100000000 detects a TRF-LIF: original true and mutant false

11100011010011110 detects a TRF-LIF: original true and mutant false

11100001010000000 detects a TRF-LIF: original true and mutant false

11100011001011110 detects a TRF-LIF: original true and mutant false

11100001001000000 detects a TRF-LIF: original true and mutant false

11100001000111100 detects a TRF-LIF: original true and mutant false

11100011000111100 detects a TRF-LIF: original true and mutant false

11100001000101110 detects a TRF-LIF: original true and mutant false

11100011000101110 detects a TRF-LIF: original true and mutant false

11100011000011111 detects a TRF-LIF: original true and mutant false

11100001000011101 detects a TRF-LIF: original true and mutant false

01110000000000000 detects a TIF-LRF: original false and mutant true

10110000000000000 detects a TIF-LRF: original false and mutant true

11010000000000000 detects a TIF-LRF: original false and mutant true

11100000000000000 detects a TIF-LRF: original false and mutant true

01101000000000000 detects a TIF-LRF: original false and mutant true

10101000000000000 detects a TIF-LRF: original false and mutant true

11001000000000000 detects a TIF-LRF: original false and mutant true

01100110000000000 detects a TIF-LRF: original false and mutant true

10100110000000000 detects a TIF-LRF: original false and mutant true

11000110000000000 detects a TIF-LRF: original false and mutant true

11100010000000000 detects a TIF-LRF: original false and mutant true

11100100000000000 detects a TIF-LRF: original false and mutant true

01100001100000000 detects a TIF-LRF: original false and mutant true

10100001100000000 detects a TIF-LRF: original false and mutant true

11000001100000000 detects a TIF-LRF: original false and mutant true

11100000100000000 detects a TIF-LRF: original false and mutant true

11100001000000000 detects a TIF-LRF: original false and mutant true

01100001010000000 detects a TIF-LRF: original false and mutant true

10100001010000000 detects a TIF-LRF: original false and mutant true

11000001010000000 detects a TIF-LRF: original false and mutant true

11100000010000000 detects a TIF-LRF: original false and mutant true

01100001001000000 detects a TIF-LRF: original false and mutant true

10100001001000000 detects a TIF-LRF: original false and mutant true

11000001001000000 detects a TIF-LRF: original false and mutant true

11100000001000000 detects a TIF-LRF: original false and mutant true

01100001000111100 detects a TIF-LRF: original false and mutant true

10100001000111100 detects a TIF-LRF: original false and mutant true

11000001000111100 detects a TIF-LRF: original false and mutant true

11100000000111100 detects a TIF-LRF: original false and mutant true

258

11100001000011100 detects a TIF-LRF: original false and mutant true

11100001000101100 detects a TIF-LRF: original false and mutant true

11100001000110100 detects a TIF-LRF: original false and mutant true

01100001000101110 detects a TIF-LRF: original false and mutant true

10100001000101110 detects a TIF-LRF: original false and mutant true

11000001000101110 detects a TIF-LRF: original false and mutant true

11100000000101110 detects a TIF-LRF: original false and mutant true

11100001000001110 detects a TIF-LRF: original false and mutant true

11100001000101010 detects a TIF-LRF: original false and mutant true

01100001000011101 detects a TIF-LRF: original false and mutant true

10100001000011101 detects a TIF-LRF: original false and mutant true

11000001000011101 detects a TIF-LRF: original false and mutant true

11100000000011101 detects a TIF-LRF: original false and mutant true

11100001000001101 detects a TIF-LRF: original false and mutant true

11100001000010101 detects a TIF-LRF: original false and mutant true

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO C_Order VALUES (1,2,3,4,5,SYSDATE-365,6,'CO','I')

INSERT INTO C_Order VALUES (14,15,3,4,16,SYSDATE+365,6,'CL','I')

INSERT INTO C_Order VALUES (24,25,3,4,26,SYSDATE-366,6,'IP','O')

INSERT INTO C_Order VALUES (27,28,3,4,29,SYSDATE+366,6,'CO',O')

INSERT INTO C_Order VALUES (30,31,3,4,32,SYSDATE-367,6,'CO','D')

INSERT INTO C_Order VALUES (37,38,3,4,39,SYSDATE+367,6,'CO','D')

INSERT INTO C_Order VALUES (40,41,3,4,42,SYSDATE+368,6,'CO','S')

INSERT INTO C_Order VALUES (43,44,3,4,45,SYSDATE-368,6,'CO','S')

INSERT INTO C_Order VALUES (49,50,3,4,51,SYSDATE+369,6,'CC','I')

INSERT INTO C_Order VALUES (55,56,3,4,57,SYSDATE+370,54,'CO','I')

INSERT INTO C_Order VALUES (61,62,3,4,63,SYSDATE+371,6,'CO','B')

INSERT INTO C_Order VALUES (64,65,3,4,66,SYSDATE+372,6,DD','O')

INSERT INTO C_Order VALUES (68,69,3,4,70,SYSDATE+373,6,'CO','O')

INSERT INTO C_Order VALUES (71,72,3,4,73,SYSDATE+374,6,'EE','D')

INSERT INTO C_Order VALUES (75,76,3,4,77,SYSDATE+375,74,'CO','D')

INSERT INTO C_Order VALUES (82,83,3,4,85,SYSDATE+376,6,'FF','S')

INSERT INTO C_Order VALUES (87,88,3,4,89,SYSDATE+377,86,'CO','S')

INSERT INTO C_Order VALUES (90,91,3,4,92,SYSDATE-369,6,'GG','S')

INSERT INTO C_Order VALUES (94,95,3,4,96,SYSDATE-370,94,'CO','S')

INSERT INTO C_Order VALUES (97,98,3,4,99,SYSDATE-371,6,'CO','C')

INSERT INTO C_OrderLine VALUES (7,8,9,10,4,8)

INSERT INTO C_OrderLine VALUES (17,18,19,20,4,21)

INSERT INTO C_OrderLine VALUES (58,58,59,60,4,58)

INSERT INTO C_OrderLine VALUES (78,78,79,80,4,81)

INSERT INTO C_BPartner VALUES (3,11)

INSERT INTO C_BPartner VALUES (3,NULL)

INSERT INTO C_InvoiceSchedule VALUES (11,'D',12,13)

INSERT INTO C_InvoiceSchedule VALUES (11,'M',22,23)

INSERT INTO C_InvoiceSchedule VALUES (11,'T',33,34)

INSERT INTO C_InvoiceSchedule VALUES (11,'W',35,36)

INSERT INTO C_InvoiceSchedule VALUES (11,'T',46,355)

INSERT INTO C_InvoiceSchedule VALUES (11,'T',-373,47)

INSERT INTO C_InvoiceSchedule VALUES (11,'M',48,356)

INSERT INTO C_InvoiceSchedule VALUES (11,'A',52,53)

INSERT INTO C_InvoiceSchedule VALUES (11,'E',93,360)

INSERT INTO C_InvoiceSchedule VALUES (11,'T',-371,362)

259

INSERT INTO C_InvoiceSchedule VALUES (11,'T',98,500)

INSERT INTO C_InvoiceSchedule VALUES (11,'F',-374,100)

INSERT INTO C_InvoiceSchedule VALUES (11,'T',-500,101)

INSERT INTO C_InvoiceSchedule VALUES (11,'M',102,358)

INSERT INTO C_InvoiceSchedule VALUES (11,'M',-375,361)

INSERT INTO C_InvoiceSchedule VALUES (11,'M',104,502)

INSERT INTO C_DocType VALUES ('SOO','AA')

INSERT INTO C_DocType VALUES ('SOO','ON')

INSERT INTO C_DocType VALUES ('XXX','BB')

INSERT INTO C_DocType VALUES ('xxx','OB')

260

Query 2

View the query appears in: C_RfQResponseLine_v

Schema:

<schema>

 <table name="C_RfQResponseLineQty">

 <column name="C_RfQResponseLineQty_ID" type="number"/>

 <column name="C_RfQLineQty_ID" type="number"/>

 <column name="Price" type="number"/>

 <column name="Discount" type="number"/>

 <column name="C_RfQResponseLine_ID" type="number"/>

 <column name="IsActive" type="char"/>

 </table>

 <table name="C_RfQLineQty">

 <column name="C_UOM_ID" type="number"/>

 <column name="BenchmarkPrice" type="number"/>

 <column name="Qty" type="number"/>

 <column name="C_RfQLineQty_ID" type="number"/>

 <column name="IsActive" type="char"/>

 </table>

 <table name="C_UOM">

 <column name="UOMSymbol" type="varchar"/>

 <column name="C_UOM_ID" type="number"/>

 </table>

 <table name="C_RfQResponseLine">

 <column name="C_RfQResponse_ID" type="number"/>

 <column name="C_RfQResponseLine_ID" type="number"/>

 <column name="C_RfQLine_ID" type="number"/>

 <column name="AD_Client_ID" type="number"/>

 <column name="AD_Org_ID" type="number"/>

 <column name="IsActive" type="char"/>

 <column name="Created" type="date"/>

 <column name="CreatedBy" type="varchar"/>

 <column name="Updated" type="date"/>

 <column name="UpdatedBy" type="varchar"/>

 </table>

 <table name="C_RfQLine">

 <column name="Line" type="number"/>

 <column name="M_AttributeSetInstance_ID" type="number"/>

 <column name="Description" type="varchar"/>

 <column name="Help" type="varchar"/>

 <column name="DateWorkStart" type="date"/>

 <column name="DeliveryDays" type="number"/>

 <column name="C_RfQLine_ID" type="number"/>

 <column name="M_Product_ID" type="number"/>

 <column name="IsActive" type="char"/>

 </table>

 <table name="M_Product">

 <column name="Name" type="varchar"/>

 <column name="DocumentNote" type="varchar"/>

 <column name="UPC" type="number"/>

 <column name="SKU" type="number"/>

261

 <column name="Value" type="number"/>

 <column name="M_Product_ID" type="number"/>

 </table>

</schema>

SQL:

SELECT rrl.C_RfQResponse_ID, rrl.C_RfQResponseLine_ID, rrl.C_RfQLine_ID,

rq.C_RfQResponseLineQty_ID, rq.C_RfQLineQty_ID, rrl.AD_Client_ID, rrl.AD_Org_ID, rrl.IsActive,

rrl.Created, rrl.CreatedBy, rrl.Updated, rrl.UpdatedBy,

'en_US' AS AD_Language, rl.Line, rl.M_Product_ID, rl.M_AttributeSetInstance_ID, COALESCE

(p.Name || rl.M_AttributeSetInstance_ID, rl.Description) AS Name, CASE WHEN p.Name IS NOT NULL

THEN rl.Description END AS Description, p.DocumentNote, p.UPC, p.SKU, p.Value AS ProductValue,

rl.Help, rl.DateWorkStart, rl.DeliveryDays, q.C_UOM_ID, uom.UOMSymbol, q.BenchmarkPrice,

q.Qty, rq.Price, rq.Discount FROM C_RfQResponseLineQty rq

INNER JOIN C_RfQLineQty q ON (rq.C_RfQLineQty_ID=q.C_RfQLineQty_ID) INNER JOIN C_UOM

uom ON (q.C_UOM_ID=uom.C_UOM_ID) INNER JOIN C_RfQResponseLine rrl ON

q.C_RfQResponseLine_ID = rrl.C_RfQResponseLine_ID) INNER JOIN C_RfQLine rl ON

(rrl.C_RfQLine_ID=rl.C_RfQLine_ID) LEFT OUTER JOIN M_Product p ON

(rl.M_Product_ID=p.M_Product_ID) WHERE rq.IsActive='Y' AND q.IsActive='Y' AND rrl.IsActive='Y'

AND rl.IsActive='Y'

WHERE clause as a Minimal DNF Predicate:

Letting a=rq.IsActive='Y', b=q.IsActive='Y', c=rrl.IsActive='Y', d=rl.IsActive='Y' he WHERE clause

predicate in minimal DNF is abcd

Mutants generated by the TRF-TIF tool:
1 FALSE mutant is generated as follows: false

4 LOF mutants are generated as follows: bcd, acd, abd, abc

Test points needed to kill mutants in terms of literal values:

1111 detects a FALSE mutant: original true and mutant false

0111 detects an LOF: original false and mutant true

1011 detects an LOF: original false and mutant true

1101 detects an LOF: original false and mutant true

1110 detects an LOF: original false and mutant true

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO C_RfQResponseLineQty VALUES (6,1,7,8,3,'Y')

INSERT INTO C_RfQResponseLineQty VALUES (9,1,10,11,3,'O')

INSERT INTO C_RfQLineQty VALUES (2,12,13,1,'Y')

INSERT INTO C_RfQLineQty VALUES (2,14,15,1,'P')

INSERT INTO C_UOM VALUES ('A',2)

INSERT INTO C_RfQResponseLine VALUES (16,3,4,17,18,'Y',SYSDATE+1,'B',SYSDATE+2,'C')

INSERT INTO C_RfQResponseLine VALUES (19,3,4,20,21,'N',SYSDATE+3,'D',SYSDATE+4,'E')

INSERT INTO C_RfQResponseLine VALUES (42,43,44,45,46,'T',SYSDATE+7,'U',SYSDATE+8,'V')

INSERT INTO C_RfQLine VALUES (22,23,'F','G',SYSDATE+5,24,4,5,'Y')

INSERT INTO C_RfQLine VALUES (26,27,'H','I',SYSDATE+6,25,4,5,'Q')

INSERT INTO M_Product VALUES ('J','K',30,31,32,5)

INSERT INTO M_Product VALUES ('L','M',33,34,35,5)

INSERT INTO M_Product VALUES ('W','X',47,48,49,50)

262

Query 3

View the query appears in: C_RfQResponseLine_vt

Schema:

<schema>

 <table name="C_RfQResponseLineQty">

 <column name="C_RfQResponseLineQty_ID" type="number"/>

 <column name="C_RfQLineQty_ID" type="number"/>

 <column name="Price" type="number"/>

 <column name="Discount" type="number"/>

 <column name="C_RfQResponseLine_ID" type="number"/>

 <column name="IsActive" type="char"/>

 </table>

 <table name="C_RfQLineQty">

 <column name="C_UOM_ID" type="number"/>

 <column name="BenchmarkPrice" type="number"/>

 <column name="Qty" type="number"/>

 <column name="C_RfQLineQty_ID" type="number"/>

 <column name="IsActive" type="char"/>

 </table>

 <table name="C_UOM">

 <column name="UOMSymbol" type="varchar"/>

 <column name="C_UOM_ID" type="number"/>

 </table>

 <table name="C_RfQResponseLine">

 <column name="C_RfQResponse_ID" type="number"/>

 <column name="C_RfQResponseLine_ID" type="number"/>

 <column name="C_RfQLine_ID" type="number"/>

 <column name="AD_Client_ID" type="number"/>

 <column name="AD_Org_ID" type="number"/>

 <column name="IsActive" type="char"/>

 <column name="Created" type="date"/>

 <column name="CreatedBy" type="varchar"/>

 <column name="Updated" type="date"/>

 <column name="UpdatedBy" type="varchar"/>

 </table>

 <table name="C_RfQLine">

 <column name="Line" type="number"/>

 <column name="M_Produce_ID" type="number"/>

 <column name="M_AttributeSetInstance_ID" type="number"/>

 <column name="Description" type="varchar"/>

 <column name="Help" type="varchar"/>

 <column name="DateWorkStart" type="date"/>

 <column name="DeliveryDays" type="number"/>

 <column name="C_RfQLine_ID" type="number"/>

 <column name="M_Product_ID" type="number"/>

 <column name="IsActive" type="char"/>

 </table>

 <table name="M_Product">

 <column name="Name" type="varchar"/>

 <column name="DocumentNote" type="varchar"/>

 <column name="UPC" type="number"/>

263

 <column name="SKU" type="number"/>

 <column name="Value" type="number"/>

 <column name="M_Product_ID" type="number"/>

 </table>

 <table name="AD_Language">

 <column name="AD_Language" type="varchar"/>

 <column name="IsSystemLanguage" type="char"/>

 </table>

</schema>

SQL:

SELECT rrl.C_RfQResponse_ID, rrl.C_RfQResponseLine_ID, rrl.C_RfQLine_ID,

rq.C_RfQResponseLineQty_ID, rq.C_RfQLineQty_ID, rrl.AD_Client_ID, rrl.AD_Org_ID, rrl.IsActive,

rrl.Created, rrl.CreatedBy, rrl.Updated, rrl.UpdatedBy,

l.AD_Language, rl.Line, rl.M_Product_ID, rl.M_AttributeSetInstance_ID,

COALESCE(p.Name||rl.M_AttributeSetInstance_ID, rl.Description) AS Name, CASE WHEN p.Name IS

NOT NULL THEN rl.Description END AS Description, p.DocumentNote, p.UPC, p.SKU, p.Value AS

ProductValue, rl.Help, rl.DateWorkStart, rl.DeliveryDays, q.C_UOM_ID, uom.UOMSymbol, q.Qty,

rq.Price, rq.Discount FROM C_RfQResponseLineQty rq INNER JOIN C_RfQLineQty q ON

(rq.C_RfQLineQty_ID = q.C_RfQLineQty_ID) INNER JOIN C_UOM uom ON

(q.C_UOM_ID=uom.C_UOM_ID) INNER JOIN C_RfQResponseLine rrl ON

(rq.C_RfQResponseLine_ID=rrl.C_RfQResponseLine_ID) INNER JOIN C_RfQLine rl ON

rrl.C_RfQLine_ID = rl.C_RfQLine_ID) LEFT OUTER JOIN M_Product p ON

(rl.M_Product_ID=p.M_Product_ID) INNER JOIN AD_Language l ON (l.IsSystemLanguage='Y')

WHERE rq.IsActive='Y' AND q.IsActive='Y' AND rrl.IsActive='Y' AND rl.IsActive='Y'

WHERE clause as a Minimal DNF Predicate:

Letting a=rq.IsActive='Y', b=q.IsActive='Y', c=rrl.IsActive='Y', d=rl.IsActive='Y' the WHERE clause

predicate in minimal DNF is abcd

Mutants generated by the TRF-TIF tool:

1 FALSE mutant is generated as follows: false

4 LOF mutants are generated as follows: bcd, acd, abd, abc

Test points needed to kill mutants in terms of literal values:

1111 detects a FALSE mutant: original true and mutant false

0111 detects an LOF: original false and mutant true

1011 detects an LOF: original false and mutant true

1101 detects an LOF: original false and mutant true

1110 detects an LOF: original false and mutant true

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO C_RfQResponseLineQty VALUES (6,1,7,8,3,'Y')

INSERT INTO C_RfQResponseLineQty VALUES (9,1,10,11,3,'N')

INSERT INTO C_RfQLineQty VALUES (2,12,13,1,'Y')

INSERT INTO C_RfQLineQty VALUES (2,14,15,1,'N')

INSERT INTO C_RfQLineQty VALUES (37,38,39,40,'R')

INSERT INTO C_UOM VALUES ('A',2)

INSERT INTO C_UOM VALUES ('S',41)

INSERT INTO C_RfQResponseLine VALUES (16,3,4,17,18,'Y',SYSDATE+1,'B',SYSDATE+2,'C')

INSERT INTO C_RfQResponseLine VALUES (19,3,4,20,21,'N',SYSDATE+3,'D',SYSDATE+4,'E')

INSERT INTO C_RfQResponseLine VALUES (42,43,44,45,46,'T',SYSDATE+7,'U',SYSDATE+8,'V')

INSERT INTO C_RfQLine VALUES (22,25,23,'F','G',SYSDATE+5,24,4,5,'Y')

264

INSERT INTO C_RfQLine VALUES (26,29,27,'H','I',SYSDATE+6,28,4,5,'N')

INSERT INTO M_Product VALUES ('J','K',30,31,32,5)

INSERT INTO M_Product VALUES ('L','M',33,34,35,5)

INSERT INTO M_Product VALUES ('W','X',47,48,49,50)

INSERT INTO AD_Language VALUES ('O','Y')

INSERT INTO AD_Language VALUES ('O','Z')

265

Query 4

View the query appears in: M_InOut_Candidate_v

Schema:

<schema>

 <table name="C_Order">

 <column name="AD_Client_ID" type="number"/>

 <column name="AD_Org_ID" type="number"/>

 <column name="C_BPartner_ID" type="number"/>

 <column name="C_Order_ID" type="number"/>

 <column name="DocumentNo" type="number"/>

 <column name="DateOrdered" type="date"/>

 <column name="C_DocType_ID" type="number"/>

 <column name="POReference" type="varchar"/>

 <column name="Description" type="varchar"/>

 <column name="SalesRep_ID" type="number"/>

 <column name="DocStatus" type="varchar"/>

 <column name="isDelivered" type="char"/>

 <column name="DeliveryRule" type="char"/>

 <column name="IsDropShip" type="char"/>

 </table>

 <table name="C_OrderLine">

 <column name="M_Warehouse_ID" type="number"/>

 <column name="QtyOrdered" type="number"/>

 <column name="QtyDelivered" type="number"/>

 <column name="PriceActual" type="number"/>

 <column name="C_Order_ID" type="number"/>

 <column name="M_Product_ID" type="number"/>

 <column name="C_Charge_ID" type="number"/>

 <column name="C_OrderLine_ID" type="number"/>

 </table>

 <table name="M_Product">

 <column name="M_Product_ID" type="number"/>

 <column name="IsExcludeAutoDelivery" type="char"/>

 </table>

 <table name="M_InOutLine">

 <column name="M_InOut_ID" type="number"/>

 <column name="C_OrderLine_ID" type="number"/>

 </table>

 <table name="M_InOut">

 <column name="M_InOut_ID" type="number"/>

 <column name="DocStatus" type="varchar"/>

 </table>

 <table name="C_DocType">

 <column name="C_DocType_ID" type="number"/>

 <column name="DocBaseType" type="varchar"/>

 <column name="DocSubTypeSO" type="varchar"/>

 </table>

</schema>

SQL:

266

SELECT o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID, o.C_Order_ID, o.DocumentNo,

o.DateOrdered, o.C_DocType_ID,

o.POReference, o.Description, o.SalesRep_ID, l.M_Warehouse_ID, SUM((l.QtyOrdered-

l.QtyDelivered)*l.PriceActual) AS

TotalLines FROM C_Order o INNER JOIN C_OrderLine l ON (o.C_Order_ID=l.C_Order_ID) WHERE

(o.DocStatus = 'CO' AND o.IsDelivered='N') AND o.C_DocType_ID IN (SELECT C_DocType_ID

FROM C_DocType WHERE DocBaseType = 'SOO' AND DocSubTypeSO NOT IN ('ON','OB','WR'))

AND o.DeliveryRule<>'M' AND (l.M_Product_ID IS NULL OR EXISTS (SELECT * FROM M_Product

p WHERE l.M_Product_ID=p.M_Product_ID AND p.IsExcludeAutoDelivery='N')) AND l.QtyOrdered <>

l.QtyDelivered AND o.IsDropShip='N' AND (l.M_Product_ID IS NOT NULL OR l.C_Charge_ID IS NOT

NULL) AND NOT EXISTS (SELECT * FROM M_InOutLine iol INNER JOIN M_InOut io ON

(iol.M_InOut_ID=io.M_InOut_ID) WHERE iol.C_OrderLine_ID=l.C_OrderLine_ID AND io.DocStatus

IN ('IP','WC'))

GROUP BY o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID, o.C_Order_ID, o.DocumentNo,

o.DateOrdered, o.C_DocType_ID, o.POReference, o.Description, o.SalesRep_ID, l.M_Warehouse_ID

WHERE clause as a Minimal DNF Predicate:

Letting

a=o.DocStatus = 'CO'

b=o.IsDelivered='N'

c=o.C_DocType_ID IN (SELECT C_DocType_ID FROM C_DocType

 WHERE DocBaseType='SOO' AND DocSubTypeSO NOT IN ('ON','OB','WR'))

d=o.DeliveryRule<>'M'

e=l.M_Product_ID IS NULL

j=EXISTS (SELECT * FROM M_Product p WHERE l.M_Product_ID=p.M_Product_ID AND

p.IsExcludeAutoDelivery='N'))

f=l.QtyOrdered <> l.QtyDelivered

g=o.IsDropShip='N'

h=l.C_Charge_ID IS NOT NULL

i=NOT EXISTS (SELECT * FROM M_InOutLine iol

 INNER JOIN M_InOut io ON (iol.M_InOut_ID=io.M_InOut_ID)

 WHERE iol.C_OrderLine_ID=l.C_OrderLine_ID AND io.DocStatus IN ('IP','WC'))

The WHERE clause predicate can be expressed as abcd(e + j)fg(!e + h)i

However e=1,j=1 is an infeasible combination of literal values and thus the WHERE clause predicate in

minimal DNF is

abcdefghi + abcdjfgi

Mutants generated by the TRF-TIF tool:

 3 TRF/LIF mutants are generated as follows:

abcdefghij + abcdjfgi

abcdefghi + abcdjfgi!e!h

abcdefghi + abcdjfgi!eh

17 TIF/LRF mutants are generated as follows:

abcdefghi + abcdjfgi + !a!jbcdefghi

abcdefghi + abcdjfgi + a!b!jcdefghi

abcdefghi + abcdjfgi + ab!c!jdefghi

abcdefghi + abcdjfgi + abc!d!jefghi

267

abcdefghi + abcdjfgi + abcd!e!jfghi

abcdefghi + abcdjfgi + abcde!f!jghi

abcdefghi + abcdjfgi + abcdef!g!jhi

abcdefghi + abcdjfgi + abcdefg!h!ji

abcdefghi + abcdjfgi + abcdefgh!i!j

abcdefghi + abcdjfgi + !a!ebcdjfgi!h

abcdefghi + abcdjfgi + a!b!ecdjfgi!h

abcdefghi + abcdjfgi + ab!c!edjfgi!h

abcdefghi + abcdjfgi + abc!d!ejfgi!h

abcdefghi + abcdjfgi + abcd!j!efgi!h

abcdefghi + abcdjfgi + abcdj!f!egi!h

abcdefghi + abcdjfgi + abcdjf!g!ei!h

abcdefghi + abcdjfgi + abcdjfg!i!e!h

Test points needed to kill mutants in terms of literal values:
1111111110 detects a TRF-LIF: original true and mutant false

1111011111 detects a TRF-LIF: original true and mutant false

1111011011 detects a TRF-LIF: original true and mutant false

0111111110 detects a TIF-LRF: original false and mutant true

1011111110 detects a TIF-LRF: original false and mutant true

1101111110 detects a TIF-LRF: original false and mutant true

1110111110 detects a TIF-LRF: original false and mutant true

1111011110 detects a TIF-LRF: original false and mutant true

1111101110 detects a TIF-LRF: original false and mutant true

1111110110 detects a TIF-LRF: original false and mutant true

1111111010 detects a TIF-LRF: original false and mutant true

1111111100 detects a TIF-LRF: original false and mutant true

0111011011 detects a TIF-LRF: original false and mutant true

1011011011 detects a TIF-LRF: original false and mutant true

1101011011 detects a TIF-LRF: original false and mutant true

1110011011 detects a TIF-LRF: original false and mutant true

1111011010 detects a TIF-LRF: original false and mutant true

1111001011 detects a TIF-LRF: original false and mutant true

1111010011 detects a TIF-LRF: original false and mutant true

1111011001 detects a TIF-LRF: original false and mutant true

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO C_Order VALUES (1,2,3,4,5,SYSDATE+1,6,'AA','BB',7,'CO','N','A','N')

INSERT INTO C_Order VALUES (30,31,32,4,33,SYSDATE+2,6,'GG','HH',34,'II','N','D','N')

INSERT INTO C_Order VALUES (35,36,37,4,38,SYSDATE+3,6,'JJ','KK',39,'CO','E','F','N')

INSERT INTO C_Order VALUES (41,42,43,4,44,SYSDATE+4,40,'LL','KK',45,'CO','N','G','N')

INSERT INTO C_Order VALUES (46,47,48,4,49,SYSDATE+5,6,'NN','OO',50,'CO','N','M','N')

INSERT INTO C_Order VALUES (55,56,57,4,58,SYSDATE+6,6,'PP','QQ',59,'CO','N','I','H')

INSERT INTO C_OrderLine VALUES (8,9,10,11,4,NULL,12,13)

INSERT INTO C_OrderLine VALUES (16,17,18,19,4,15,20,13)

INSERT INTO C_OrderLine VALUES (21,22,23,24,4,NULL,25,NULL)

INSERT INTO C_OrderLine VALUES (26,27,28,29,4,15,NULL,13)

INSERT INTO C_OrderLine VALUES (52,51,51,53,4,NULL,54,13)

INSERT INTO C_OrderLine VALUES (61,60,60,62,4,15,NULL,13)

INSERT INTO C_OrderLine VALUES (63,64,65,66,4,NULL,NULL,13)

INSERT INTO M_Product VALUES (15,'N') // should only be in DB for mutants 2-3, 13-16, 18-20 (when

j must = 1)

INSERT INTO M_Product VALUES (15,'C')

268

INSERT INTO M_InOutLine VALUES (14,13)

INSERT INTO M_InOut VALUES (14,'IP') // should only be in DB for mutants 12, 20 (when i must =0)

INSERT INTO M_InOut VALUES (14,'EE')

INSERT INTO C_DocType VALUES (6,'SOO','CC')

INSERT INTO C_DocType VALUES (6,'SOO','ON')

INSERT INTO C_DocType VALUES (6,'XXX','DD')

INSERT INTO C_DocType VALUES (6,'XXX','OB')

269

Query 5

View query appears in: R_Request_v

Schema:

<schema>

 <table name="R_Request">

 <column name="IsActive" type="char"/>

 <column name="Processed" type="char"/>

 <column name="DateNextAction" type="date"/>

 </table>

</schema>

SQL:

SELECT * FROM R_Request WHERE IsActive='Y' AND Processed='N' AND sysdate > DateNextAction

WHERE clause as a Minimal DNF Predicate:

Letting a=IsActive='Y', b=Processed='N', c=sysdate > DateNextAction the WHERE clause predicate in

minimal DNF is abc

Mutants generated by the TRF-TIF tool:
1 FALSE mutant is generated as follows: false

3 LOF mutants are generated as follows: bc, ac, ab

Test points needed to kill mutants in terms of literal values:

111 detects a FALSE mutant: original true and mutant false

011 detects an LOF: original false and mutant true

101 detects an LOF: original false and mutant true

110 detects an LOF: original false and mutant true

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO R_Request VALUES ('Y','N',SYSDATE-1)

INSERT INTO R_Request VALUES ('A','N',SYSDATE-2)

INSERT INTO R_Request VALUES ('Y','B',SYSDATE-3)

INSERT INTO R_Request VALUES ('Y','N',SYSDATE+1)

270

Query 6

View query appears in: RV_BPartnerOpen

Schema:

<schema>

 <table name="C_Payment_v">

 <column name="AD_Client_ID" type="number"/>

 <column name="AD_Org_ID" type="number"/>

 <column name="IsActive" type="char"/>

 <column name="Created" type="date"/>

 <column name="CreatedBy" type="varchar"/>

 <column name="Updated" type="date"/>

 <column name="UpdatedBy" type="varchar"/>

 <column name="C_BPartner_ID" type="number"/>

 <column name="C_Currency_ID" type="number"/>

 <column name="PayAmt" type="number"/>

 <column name="MultiplierAP" type="number"/>

 <column name="C_Payment_ID" type="number"/>

 <column name="C_InvoicePaySchedule_ID" type="number"/>

 <column name="DateTrx" type="date"/>

 <column name="IsAllocated" type="char"/>

 <column name="DocStatus" type="varchar" />

 </table>

</schema>

SQL:

SELECT p.AD_Client_ID, p.AD_Org_ID, p.IsActive, p.Created, p.CreatedBy, p.Updated, p.UpdatedBy,

p.C_BPartner_ID, p.C_Currency_ID, p.PayAmt*MultiplierAP*-1 AS Amt,

p.C_Payment_ID*p.MultiplierAP*-1 AS OpenAmt, p.DateTrx AS DateDoc, null FROM C_Payment_v p,

WHERE p.IsAllocated='N' AND p.C_BPartner_ID IS NOT NULL AND p.DocStatus IN ('CO','CL')

WHERE clause as a Minimal DNF Predicate:

Letting a=p.IsAllocated='N', b=p.C_BPartner_ID IS NOT NULL, c=p.DocStatus IN ('CO','CL') the

WHERE clause predicate in minimal DNF is abc

Mutants generated by the TRF-TIF tool:

1 FALSE mutant is generated as follows: false

3 LOF mutants are generated as follows: bc, ac, ab

Test points needed to kill mutants in terms of literal values:

111 detects a FALSE mutant: original true and mutant false

011 detects an LOF: original false and mutant true

101 detects an LOF: original false and mutant true

110 detects an LOF: original false and mutant true

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO C_Payment_v VALUES

(1,2,'A',SYSDATE+1,"B",SYSDATE+2,"C",3,4,5,6,7,8,SYSDATE+3,'N',"CO")

INSERT INTO C_Payment_v VALUES

(9,10,'D',SYSDATE+4,"E",SYSDATE+5,"F",11,12,13,14,15,16,SYSDATE+6,'G',"CL")

INSERT INTO C_Payment_v VALUES

(17,18,'H',SYSDATE+7,"I",SYSDATE+8,"J",null19,20,21,22,23,SYSDATE+9,'N',"CO")

271

INSERT INTO C_Payment_v VALUES

(24,25,'K',SYSDATE+10,"L",SYSDATE+11,"M",26,27,28,29,30,31,SYSDATE+12,'N',"AA")

272

Query 7

View query appears in: RV_OpenItem

Schema:

<schema>

 <table name="RV_C_Invoice">

 <column name="AD_Client_ID" type="number"/>

 <column name="AD_Org_ID" type="number"/>

 <column name="C_BPartner_ID" type="number"/>

 <column name="C_Order_ID" type="number"/>

 <column name="DocumentNo" type="number"/>

 <column name="DateInvoiced" type="date"/>

 <column name="C_Invoice_ID" type="number"/>

 <column name="DocStatus" type="varchar"/>

 <column name="IsSOTrx" type="char"/>

 <column name="isPaid" type="char"/>

 <column name="IsPayScheduleValid" type="char"/>

 <column name="GrandTotal" type="number"/>

 <column name="C_Currency_ID" type="number"/>

 <column name="C_ConversionType_ID" type="number"/>

 <column name="C_PaymentTerm_ID" type="number"/>

 </table>

 <table name="C_PaymentTerm">

 <column name="C_PaymentTerm_ID" type="number"/>

 <column name="NetDays" type="number"/>

 <column name="DiscountDays" type="number"/>

 <column name="Discount" type="number"/>

 </table>

</schema>

SQL:

SELECT i.AD_Org_ID, i.AD_Client_ID, i.DocumentNo, i.C_Invoice_ID, i.C_Order_ID,

i.C_BPartner_ID, i.IsSOTrx, i.DateInvoiced, p.NetDays, i.C_PaymentTerm_ID, i.DateInvoiced,

i.DateInvoiced + p.DiscountDays AS DiscountDate,

ROUND(i.GrandTotal*p.Discount/100,2) AS DiscountAmt, i.GrandTotal, i.C_Currency_ID,

i.C_ConversionType_ID,

i.C_PaymentTerm_ID, i.IsPayScheduleValid, null AS C_InvoicePaySchedule_ID FROM RV_C_Invoice I

INNER JOIN C_PaymentTerm p ON (i.C_PaymentTerm_ID=p.C_PaymentTerm_ID) WHERE

i.C_Invoice_ID <> 0 AND i.IsPayScheduleValid<>'Y' AND i.DocStatus<>'DR'

WHERE clause as a Minimal DNF Predicate:

Letting a=i.C_Invoice_ID <> 0, b=i.IsPayScheduleValid<>'Y', c=i.DocStatus<>'DR' the WHERE clause

predicate in minimal DNF is abc

Mutants generated by the TRF-TIF tool:

1 FALSE mutant is generated as follows: false

3 LOF mutants are generated as follows: bc, ac, ab

Test points needed to kill mutants in terms of literal values:
111 detects a FALSE mutant: original true and mutant false

011 detects an LOF: original false and mutant true

101 detects an LOF: original false and mutant true

110 detects an LOF: original false and mutant true

273

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO RV_C_Invoice VALUES (1,2,3,4,5,SYSDATE+1,6,"A",'B','C','D',7,8,9,10)

INSERT INTO RV_C_Invoice VALUES (11,12,13,14,15,SYSDATE+2,0,"E",'F','G','H',16,17,18,10)

INSERT INTO RV_C_Invoice VALUES (20,21,22,23,24,SYSDATE+3,6,"I",'J','K','Y',25,26,27,10)

INSERT INTO RV_C_Invoice VALUES (29,30,31,32,33,SYSDATE+4,6,"DR",'L','M','N',34,35,36,10)

INSERT INTO C_PaymentTerm VALUES (10,39,40,41)

274

Query 8

View query appears in: RV_OpenItem

Schema:

<schema>

 <table name="RV_C_Invoice">

 <column name="AD_Client_ID" type="number"/>

 <column name="AD_Org_ID" type="number"/>

 <column name="C_BPartner_ID" type="number"/>

 <column name="C_Order_ID" type="number"/>

 <column name="DocumentNo" type="number"/>

 <column name="DateInvoiced" type="date"/>

 <column name="C_Invoice_ID" type="number"/>

 <column name="DocStatus" type="varchar"/>

 <column name="IsSOTrx" type="char"/>

 <column name="isPaid" type="char"/>

 <column name="IsPayScheduleValid" type="char"/>

 <column name="GrandTotal" type="number"/>

 <column name="C_Currency_ID" type="number"/>

 <column name="C_ConversionType_ID" type="number"/>

 <column name="C_PaymentTerm_ID" type="number"/>

 </table>

 <table name="C_InvoicePaySchedule">

 <column name="C_Invoice_ID" type="number"/>

 <column name="C_InvoicePaySchedule_ID" type="number"/>

 <column name="DueDate" type="date"/>

 <column name="DiscountDate" type="date"/>

 <column name="DiscountAmt" type="number"/>

 <column name="DueAmt" type="number"/>

 <column name="isValid" type="char" />

 </table>

</schema>

SQL:

SELECT i.AD_Org_ID, i.AD_Client_ID, i.DocumentNo, i.C_Invoice_ID, i.C_Order_ID,

i.C_BPartner_ID, i.IsSOTrx, i.DateInvoiced, ips.DueDate, ips.DiscountDate, ips.DiscountAmt,

ips.DueAmt AS GrandTotal, i.C_Currency_ID, i.C_ConversionType_ID, i.C_PaymentTerm_ID,

i.IsPayScheduleValid, ips.C_InvoicePaySchedule_ID FROM RV_C_Invoice i

INNER JOIN C_InvoicePaySchedule ips ON (i.C_Invoice_ID=ips.C_Invoice_ID) WHERE

ips.C_InvoicePaySchedule_ID <> 0

AND i.IsPayScheduleValid='Y' AND i.DocStatus<>'DR' AND ips.IsValid='Y'

WHERE clause as a Minimal DNF Predicate:

Letting a=ips.C_InvoicePaySchedule_ID <> 0, b=i.IsPayScheduleValid='Y', c=i.DocStatus<>'DR',

d=ips.isValid='Y' the WHERE clause predicate in minimal DNF is abcd

Mutants generated by the TRF-TIF tool:

1 FALSE mutant is generated as follows: false

4 LOF mutants are generated as follows: bcd, acd, abd, abc

Test points needed to kill mutants in terms of literal values:

1111 detects a FALSE mutant: original true and mutant false

275

0111 detects an LOF: original false and mutant true

1011 detects an LOF: original false and mutant true

1101 detects an LOF: original false and mutant true

1110 detects an LOF: original false and mutant true

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO RV_C_Invoice VALUES (1,2,3,4,5,SYSDATE+1,6,'A','B','C','Y',7,8,9,10)

INSERT INTO RV_C_Invoice VALUES (11,12,13,14,15,SYSDATE+2,6,'D','E','F','X',16,17,18,19)

INSERT INTO RV_C_Invoice VALUES (20,21,22,23,24,SYSDATE+3,6,'DR','H','I','Y',25,26,27,28)

INSERT INTO C_InvoicePaySchedule VALUES (6,38,SYSDATE+5,SYSDATE+6,39,40,'Y')

INSERT INTO C_InvoicePaySchedule VALUES (6,41,SYSDATE+7,SYSDATE+8,42,43,'Z')

INSERT INTO C_InvoicePaySchedule VALUES (6,0,SYSDATE+9,SYSDATE+10,44,45,'Y')

276

Query 9

View the query appears in: RV_WarehousePrice

Schema:

<schema>

 <table name="M_Product">

 <column name="M_Product_ID" type="number"/>

 <column name="C_UOM_ID" type="number"/>

 <column name="M_AttributeSet_ID" type="number"/>

 <column name="AD_Client_ID" type="number"/>

 <column name="IsSummary" type="char"/>

 <column name="IsActive" type="char"/>

 <column name="Discontinued" type="char"/>

 <column name="Value" type="varchar"/>

 <column name="Name" type="varchar"/>

 <column name="UPC" type="number"/>

 <column name="SKU" type="number"/>

 </table>

 <table name="M_ProductPrice">

 <column name="M_Product_ID" type="number"/>

 <column name="IsActive" type="char"/>

 <column name="Created" type="date"/>

 <column name="CreatedBy" type="varchar"/>

 <column name="Updated" type="date"/>

 <column name="UpdatedBy" type="varchar"/>

 <column name="M_PriceList_Version_ID" type="number"/>

 </table>

 <table name="C_UOM">

 <column name="C_UOM_ID" type="number"/>

 <column name="UOMSymbol" type="varchar"/>

 </table>

 <table name="M_AttributeSet">

 <column name="M_AttributeSet_ID" type="number"/>

 <column name="IsInstanceAttribute" type="char"/>

 </table>

 <table name="M_Warehouse">

 <column name="AD_Client_ID" type="number"/>

 <column name="AD_Org_ID" type="number"/>

 <column name="M_Warehouse_ID" type="number"/>

 <column name="Name" type="varchar"/>

 <column name="IsActive" type="char"/>

 </table>

</schema>

SQL:

SELECT w.AD_Client_ID, w.AD_Org_ID, CASE WHEN p.Discontinued='N' THEN 'Y' ELSE 'N' END

AS IsActive,

pr.Created, pr.CreatedBy, pr.Updated, pr.UpdatedBy, p.M_Product_ID, pr.M_PriceList_Version_ID,

w.M_Warehouse_ID, p.Value, p.Name, p.UPC, p.SKU, uom.C_UOM_ID, uom.UOMSymbol,

p.M_Product_ID, pr.M_PriceList_Version_ID, w.M_Warehouse_ID, w.Name AS WarehouseName,

COALESCE (pa.IsInstanceAttribute, 'N') AS IsInstanceAttribute

277

FROM M_Product p INNER JOIN M_ProductPrice pr ON (p.M_Product_ID=pr.M_Product_ID) INNER

JOIN C_UOM uom ON (p.C_UOM_ID=uom.C_UOM_ID) LEFT OUTER JOIN M_AttributeSet pa ON

(p.M_AttributeSet_ID = pa.M_AttributeSet_ID) INNER JOIN M_Warehouse w ON

(p.AD_Client_ID=w.AD_Client_ID) WHERE p.IsSummary='N' AND p.IsActive='Y' AND pr.IsActive='Y'

AND w.IsActive='Y'

WHERE clause as a Minimal DNF Predicate:

Letting a=p.IsSummary='N', b=p.IsActive='Y', c=pr.IsActive='Y', d=w.IsActive='Y' the WHERE clause

predicate in minimal DNF is abcd

Mutants generated by the TRF-TIF tool:

1 FALSE mutant is generated as follows: false

4 LOF mutants are generated as follows: bcd, acd, abd, abc

Test points needed to kill mutants in terms of literal values:
1111 detects a FALSE mutant: original true and mutant false

0111 detects an LOF: original false and mutant true

1011 detects an LOF: original false and mutant true

1101 detects an LOF: original false and mutant true

1110 detects an LOF: original false and mutant true

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO M_Product VALUES (1,2,3,4,'N','Y','A',"AA","BB",5,6)

INSERT INTO M_Product VALUES (1,2,3,4,'C','Y','D',"CC","DD",7,8)

INSERT INTO M_Product VALUES (1,2,3,4,'N','E','F',"EE","FF",9,10)

INSERT INTO M_ProductPrice VALUES (1,'Y',SYSDATE+1,"",SYSDATE+2,"GG",11)

INSERT INTO M_ProductPrice VALUES (1,'G',SYSDATE+3,"H",SYSDATE+4,"I",12)

INSERT INTO C_UOM VALUES (2,"J")

INSERT INTO M_AttributeSet VALUES (3,'K')

INSERT INTO M_Warehouse VALUES (4,13,14,"HH",'Y')

INSERT INTO M_Warehouse VALUES (4,15,16,"II",'L')

278

Query 10

View the query appears in: C_Invoice_LineTax_vt

Schema:

<schema>

 <table name="C_InvoiceLine">

 <column name="AD_ORG_ID" type="number"/>

 <column name="C_Invoice_ID" type="number"/>

 <column name="C_InvoiceLine_ID" type="number"/>

 <column name="AD_Client_ID" type="number"/>

 <column name="IsActive" type="char" />

 <column name="Created" type="date"/>

 <column name="CreatedBy" type="varchar"/>

 <column name="Updated" type="date"/>

 <column name="UpdatedBy" type="varchar"/>

 <column name="C_UOM_ID" type="number" />

 <column name="Line" type="number" />

 <column name="Description" type="varchar" />

 </table>

 <table name="AD_Language">

 <column name="AD_Language" type="char"/>

 <column name="IsBaseLanguage" type="char"/>

 <column name="IsSystemLanguage" type="char"/>

 </table>

</schema>

SQL:

SELECT il.AD_Client_ID, il.AD_Org_ID, il.IsActive, il.Created, il.CreatedBy, il.Updated, il.UpdatedBy,

l.AD_Language, il.C_Invoice_ID, il.C_InvoiceLine_ID, null, null, null, null, il.Line, null, null, null,

il.Description, null, null, null, null, null, null,

null, null, null, null, null, null, null, null, null, null, null, null, null, null FROM C_InvoiceLine il,

AD_Language l WHERE il.C_UOM_ID IS NULL AND l.IsBaseLanguage='N' AND

l.IsSystemLanguage='Y'

WHERE clause as a Minimal DNF Predicate:

Letting a=il.C_UOM_ID IS NULL, b=l.IsBaseLanguage='N', c=l.IsSystemLanguage='Y' the WHERE

clause predicate in minimal DNF is abc

Mutants generated by the TRF-TIF tool:

1 FALSE mutant is generated as follows: false

3 LOF mutants are generated as follows: bc, ac, ab

Test points needed to kill mutants in terms of literal values:

111 detects a FALSE mutant: original true and mutant false

011 detects an LOF: original false and mutant true

101 detects an LOF: original false and mutant true

110 detects an LOF: original false and mutant true

Test points needed to kill mutants in terms of rows added to a test database:

INSERT INTO C_InvoiceLine VALUES

(1,2,3,4,'A',SYSDATE+1,"AA",SYSDATE+2,"BB",NULL,10,"EE")

INSERT INTO C_InvoiceLine VALUES (5,6,7,8,'B',SYSDATE+3,"CC",SYSDATE+4,"DD",9,11,"FF")

279

INSERT INTO AD_Language VALUES ('A','N','Y')

INSERT INTO AD_Language VALUES ('B','C','Y')

INSERT INTO AD_Language VALUES ('D','N','E')

280

References

281

References

[1] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton and F. G. Saywood. “Mutation

Analysis,” Technical Report GIT-ICS-79/08, School of Information and Computer

Science, Georgia Institute of Technology. September 1979.

[2] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University

Press. 2008, ISBN 0-52188-038-1.

[3] M. Chan and S. Cheung. Testing Database Applications with SQL Semantics.

Proceedings of the 2
nd

 International Symposium on Cooperative Database Systems

for Advanced Applications. Pages 363-374. Wollongong, Australia, March 1999,

Springer-Verlag.

[4] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, E. J. Weyuker. A Framework for

Testing Database Applications. Proceedings of the 2000 ACM SIGSOFT

International Symposium on Software Testing and Analysis. Pages 147-157. Portland,

OR. August 2000.

[5] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, E. J. Weyuker. An AGENDA

for Testing Relational Database Applications. Software Testing, Verification and

Reliability, 14(1):17-44, March 2004. Wiley.

[6] T. Y. Chen and M. F. Lau. An Empirical Study on the Effectiveness of the Greedy

MUTP Criterion. Proceedings of the 1998 International Conference on Software

Engineering: Education and Practice. Pages 338 – 344. Dunedin, New Zealand.

January, 1998.

[7] T. Y. Chen and M. F. Lau. Test Case Selection Strategies Based on Predicates.

Software Testing, Verification and Reliability, 11(1):165-180, November 2001.

Wiley.

[8] T. Y. Chen, M. F. Lau and Y. T. Yu. MUMCUT: A Fault-Based Strategy for Testing

Predicates. Proceedings of the 6
th

 Asia Pacific Software Engineering Conference.

Pages 606-613. Takamatsu, Japan. December, 1999.

282

[9] J. J. Chilenski. An Investigation of Three Forms of the Modified Condition Decision

Coverage (MCDC) Criterion. Final Technical Report, DOT/FAA/AR-01/18, April

2001.

[10] J. J. Chilenski and S. P. Miller. Applicability of Modified condition/decision

coverage to Software Testing. IEE/BCS Software Engineering Journal, 9(5): 193-200,

September 1994.

[11] R. A. DeMillo, R.J. Lipton, F.G. Sayward. Hints on Test Data Selection: Help for

 the Practicing Programmer. IEEE Computer, 11(4):34-41. April, 1978.

[12] M. Emmi, R. Majumdar, K. Sen. Dynamic Test Input Generation of Database

 Applications. Proceedings of the 2007 ACM International Symposium on Software

Testing and Analysis. Pages 151-162. London, United Kingdom. July, 2007.

[13] W. G. J. Halfond and A. Orso. A Command-Form Coverage for Testing Database

Applications. Proceedings of the 21
st
 IEEE/ACM International Conference on

Automated Software Engineering. Pages 69-80. Tokyo, Japan. September, 2006.

[14] R. G. Hamlet. Testing Programs with the Aid of a Compiler. IEEE Transactions on

Software Engineering, 8(4):371-379, July 1982.

[15] Rob Hierons, Mark Harman, and Sebastian Danicic. Using Program Slicing to Assist

in the Detection of Equivalent Mutants. Software Testing, Verification and

Reliability, 9(4): 233-262, December 1999. Wiley.

[16] K. S. How Tai Wah. A Theoretical Study of Fault Coupling. Software Testing,

Verification and Reliability, 10(1):3-45, October, 2000. Wiley.

[17] Y. Jia and M. Harman. Constructing Subtle Faults Using Higher Order Mutation

Testing. Proceedings of the 8
th

 IEEE International Working Conference on Source

Code Analysis and Manipulation. Pages 249-258. Beijing, China. September, 2008.

[18] G. Kaminski and P. Ammann. Using a Fault Hierarchy to Improve the Efficiency of

DNF Logic Mutation Testing. Proceedings of the 2
nd

 IEEE International Conference

on Software Testing, Verification and Validation. Pages 386-395. Denver, CO. April,

2009.

[19] G. Kaminski and P. Ammann. Using Logic Criterion Feasibility to Reduce Test Set

Size While Guaranteeing Fault Detection. Proceedings of the 2
nd

 IEEE International

Conference on Software Testing, Verification and Validation. Pages 167-176. Denver,

CO. April, 2009.

283

[20] G. Kaminski and P. Ammann. Using Logic Criterion Feasibility to Reduce Test Set

Size While Guaranteeing Double Fault Detection. Proceedings of the Mutation

Workshop at the 2
nd

 IEEE International Conference on Software Testing, Verification

and Validation. Denver, CO. April, 2009.

[21] G. Kaminski and P. Ammann. Applying MCDC to Large DNF Expressions.

 Proceedings of the 9
th

 International Conference on Software Engineering Research

 and Practice. Las Vegas, NV. July, 2010.

[22] G. Kaminski and P. Ammann. Reducing Logic Test Set Size While Preserving Fault

 Detection. To appear in Software Testing, Verification, and Reliability. Wiley.

[23] G. Kaminski, U. Praphamontripong, P. Ammann and J. Offutt. A Logic Mutation

 Approach to Selective Mutation Using Programs and Queries. Accepted with minor

 revisions by Information and Software Technology, Special Issue on Mutation

 Testing.

[24] G. Kaminski, G. Williams and P. Ammann. Reconciling Perspectives of Logic

Testing for Software. Software Testing, Verification and Reliability, 18(3):149-188,

September 2008. Wiley.

[25] G. M. Kapfhammer and M. L. Soffa. A Family of Test Adequacy Criteria for

Database-Driven Applications. Proceedings of the 9
th

 European Software

Engineering Conference. Pages 98-107. Helsinki, Finland. September, 2003.

[26] D. Richard Kuhn. Fault Classes and Error Detection Capability of Predicate Based

Testing. ACM Transactions on Software Engineering and Methodology, 8(4): 411-

424, October 1999.

[27] M. F. Lau, Y. Liu and Y. T. Yu. On the Detection Conditions of Double Faults

Related to Terms in Boolean Expressions. Proceedings of the 30
th

 Annual

International Computer Software and Applications Conference. Pages 403-410.

Chicago, IL. September, 2006.

[28] M. F. Lau, Y. Liu and Y. T. Yu. On the Detection Conditions of Double Faults

Related to Literals in Boolean Expressions. Proceedings of the 12
th

 International

Conference on Reliable Software Technologies. Pages 55-68. Geneva, Switzerland.

June, 2007.

[29] M. F. Lau, Y. Liu and Y. T. Yu. Detecting Double Faults on Term and Literal in

Boolean Expressions. Proceedings of the 7
th

 Annual International Conference on

Quality Software. Pages 117-126. Portland, OR. October, 2007.

284

[30] M. F. Lau and Y. T. Yu. An Extended Fault Class Hierarchy for Predicate-Based

Testing. ACM Transactions on Software Engineering and Methodology, 14(3): 247-

276, July 2005.

[31] Yu-Seung Ma, Jeff Offutt and Yong-Rae Kwon. MuJava : An Automated Class

Mutation System. Software Testing, Verification and Reliability, 15(2):97-133, June

2005. Wiley.

[32] Jeff Offutt. Investigations of the Software Testing Coupling Effect. ACM

Transactions of Software Engineering and Methodology, 1(1):3-18, January 1992.

[33] J. Offutt and W. M. Craft. Using Compiler Optimization Techniques to Detect

Equivalent Mutants. Software Testing, Verification and Reliability, 4(3):131-154,

September 1994. Wiley.

[34] J. Offutt and J. H. Hayes. A Semantic Model of Program Faults. International

Symposium on Software Testing and Analysis. Pages 195-200. San Diego, CA.

January 1996.

[35] Jeff Offutt and Stephen Lee. An Empirical Evaluation of Weak Mutation. IEEE

Transactions on Software Engineering, 20(5):337-334, May 1994.

[36] Jeff Offutt and Jie Pan. Automatically Detecting Equivalent Mutants and Infeasible

Paths. Software Testing, Verification and Reliability, 7(3):165-192, September 1997.

Wiley.

[37] Jeff. Offutt, Gregg Rothermel and Christian Zapf. An Experimental Evaluation of

Selective logic mutation. Proceedings of the 15
th

 International Conference on

Software Engineering. Pages 100-107, Baltimore, Maryland, May 1993.

[38] V. Okun, P. Black and Y. Yesha. Comparison of Fault Classes in Specification-

Based Testing. Information & Software Technology, 46(8): 525-533, June 2004.

[39] M. Polo, M. Piattini, I. Garcia-Rodriguez. Decreasing the Cost of Mutation Testing

with Second-order Mutants. Software Testing, Verification and Reliability, 19(2):

111-131, June 2009. Wiley.

[40] M. J. Suarez-Cabal and J. Tuya. Using an SQL Coverage Measurement for Testing

Database Applications. Proceedings of the 12
th

 ACM SIGSOFT Symposium on the

Foundations of Software Engineering. Pages 253-262. Newport Beach, CA.

November, 2004.

285

[41] Chang-ai Sun, Yunwei Dong, R. Lai, K. Y. Sim and T. Y. Chen. Analyzing and

Extending MUMCUT for Fault-based Testing of General Boolean Expressions.

Proceedings of the 6
th

 IEEE International Conference on Computer Information

Technology. Pages 184-189. Seoul, Korea. September, 2006.

[42] J. Tuya, M .J. Suarez-Cabal, C. de la Riva. Full Predicate Coverage for Testing SQL

Database Queries. Accepted for publication in Software Testing, Verification and

Reliability. Wiley. Published online: Jan 15 2010, DOI: 10.1002/stvr.424.

[43] J. Tuya, M. J. Suarez-Cabal, C. de la Riva. Mutating Database Queries. Information

and Software Technology, 49(4): 398-417, 2007.

[44] J. Tuya, M. J. Suarez-Cabal, C. de la Riva. SQLMutation: a Tool to Generate

Mutants of SQL Database Queries. Proceedings of the 2
nd

 Workshop on Mutation

Analysis. Raleigh, NC. November, 2006.

[45] S. A. Vilkomir and J. P. Bowen. Reinforced Condition / Decision Coverage

(RC/DC): A new criterion for software testing. Proceedings of the 2
nd

 International

Conference of Z and B Users. Pages 295-313. Grenoble, France. January, 2002.

[46] E. Weyuker, T. Goradia and A. Singh. Automatically Generating Test Data from a

Predicate. IEEE Transactions on Software Engineering, 20(5): 353-363, May 1994.

[47] D. Willmor and S. M. Embury. An Intensional Approach to the Specification of Test

Cases for Database Applications. Proceedings of the 28
th

 ACM International

Conference on Software Engineering. Pages 102-111. Shanghai, China. May, 2006.

[48] Y. T Yu and M. F. Lau. Comparing Several Coverage Criteria for Detecting Faults

in Predicates. Proceedings of the 4
th

 International Conference on Quality Software.

Pages 14-21. Braunschweig, Germany. September, 2004.

[49] Y. T Yu, M. F. Lau and T. Y. Chen. Using the Incremental Approach to Generate

Test Sets: A Case Study. Proceedings of the 3
rd

 International Conference on Quality

Software. Pages 263-270. Dallas, TX. November, 2003.

[50] Y. T Yu, M. F. Lau and T. Y. Chen. Automatic generation of test cases from

Boolean specifications using the MUMCUT strategy. Journal of Systems and

Software, 79(6): 820-840, June 2006.

286

CURRICULUM VITAE

Garrett K. Kaminski earned his B.A. in Psychology from the University of Virginia in

1993 and his M.S. in Information Systems from George Mason University in 1998. He

has been employed as a software engineer in industry since 1997.

