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ABSTRACT 

APPLICATIONS OF LOGIC COVERAGE CRITERIA AND LOGIC MUTATION TO 

SOFTWARE TESTING 

Garrett K. Kaminski 

George Mason University, 2010 

Dissertation Director: Dr. Paul Ammann 

 

Logic is an important component of software. Thus, software logic testing has enjoyed 

significant research over a period of decades, with renewed interest in the last several 

years. One approach to detecting logic faults is to create and execute tests that satisfy 

logic coverage criteria. Another approach to detecting faults is to perform mutation 

analysis and then find tests that distinguish the original program from each mutant. The 

fundamental contribution of this dissertation is the development of a new logic coverage 

criterion and a new logic mutation approach to improve testing in the context of logic 

expressions in normal form, logic expressions in general form and entire programs. In 

particular, testing approaches based on current logic coverage criteria and current 

mutation approaches share the same drawback of not guaranteeing detection of certain 

logic faults (even when all non-equivalent mutants are killed) and/or are costly in terms 

of the number of tests required. This dissertation further develops the body of knowledge 



 

 

in logic coverage criteria and logic mutation testing to address these problems. I show 

that a new logic coverage criterion can guarantee detecting the same logic faults as 

current criteria with fewer test cases. I also show that a new logic mutation approach can 

decrease the number of logic mutants generated while increasing logic fault detection 

capability. By doing so, a strong theoretical and empirical duality is established between 

the new logic coverage criterion and the new logic mutation approach. 
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1 Introduction 

1.1 Logic Coverage Criteria Introduction 

A common way to test software is to execute tests that satisfy a coverage criterion. A 

coverage criterion imposes requirements on the tests. For example, one coverage criterion 

is statement coverage, which demands that every statement in the software be executed 

by the test set. A logic coverage criterion imposes requirements on tests related to logic 

expressions (predicates) in source code or other artifacts. For example, one logic 

coverage criterion is predicate coverage, which requires that each logic expression 

evaluate to TRUE in at least one test and FALSE in at least one test. Logic coverage 

criteria differ in fault detection capability and test set size. Many logic coverage criteria 

exist, but they can be broadly classified into two categories: semantic and syntactic. 

Semantic criteria make no assumption as to predicate format, whereas syntactic criteria 

do, with the most common format being minimal Disjunctive Normal Form (DNF).  

A common method for evaluating logic coverage criteria is to assess detection of 

faults in the minimal DNF fault hierarchy of Lau and Yu [30]. Kaminski and Ammann 

[22] established a complementary minimal Conjunctive Normal Form (CNF) fault 

hierarchy. In the minimal DNF/CNF context, theoretical analysis can prove that certain 

faults are guaranteed to be detected. When a predicate is not in minimal CNF or minimal 

DNF, it can be converted to either normal form and then a syntactic logic coverage 
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criterion can be applied. However, detection of certain faults in the original predicate is 

no longer guaranteed by tests that satisfy the syntactic logic coverage criterion. Analysis 

of fault detection when a predicate is not in minimal CNF or minimal DNF needs to be 

both theoretical and empirical since some faults are guaranteed to be detected while 

others are not. Logic coverage criteria can be used to develop tests to detect non-logic 

faults and in this case the analysis moves completely into the empirical domain. This 

research introduces a new logic coverage criterion (Minimal-MUMCUT) and evaluates it 

with respect to test set size and fault detection capability against other logic coverage 

criteria. The contexts are minimal DNF/CNF logic fault detection, general logic fault 

detection and general fault detection. 

1.2 Mutation Testing Introduction 

Mutation testing was originally proposed by DeMillo et al. [11] and Hamlet [14] 

requires testers to create tests to detect a specified set of faults. Mutant programs that 

vary from the original program by a single syntactic change are generated. If possible, 

testers find inputs to distinguish the mutants from the original program to achieve a high 

mutation score. For a mutant to be distinguished (killed), the statement with the mutation 

must be reached (reachability), the program state for the mutant must differ from the 

program state of the original program after the mutated statement is executed (infection) 

and the difference in program state must propagate to the output (propagation). Mutation 

score is defined as the number of mutants distinguished (killed) divided by the number of 

non-equivalent mutants generated. Some mutants are equivalent to the original program 

in that no input can kill them. The key to mutation testing is the mutation operators used 
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to make syntactic changes to the source code. In logic mutation, logic mutation operators 

are used to make syntactic changes to predicates in source code. Mutation testing can also 

be applied to other artifacts besides source code, but this is outside the scope of this 

dissertation. For this dissertation, the source code under test is assumed to be 

deterministic.  

  Tests created to kill all non-equivalent mutants can be examined theoretically in 

terms of minimal DNF/CNF logic fault detection, theoretically and empirically in terms 

of general logic fault detection and empirically in terms of general fault detection. 

Kaminski and Ammann [18] introduced a new logic mutation approach known as TRF-

TIF (Term Replacement Fault – Term Insertion Fault) mutation to produce solely 

selective logic mutants. In order to kill the mutants generated by this tool it is necessary 

(but not sufficient) to satisfy the Minimal-MUMCUT logic coverage criterion. Thus, 

TRF-TIF logic mutation subsumes the Minimal-MUMCUT logic coverage criterion. The 

TRF-TIF tool uses novel mutation operators whose corresponding fault types sit atop an 

extended minimal DNF logic fault hierarchy. This research evaluates mutant set size, 

equivalent mutant set size and fault detection capability for the TRF-TIF logic mutation 

approach in comparison to other mutation approaches. This research also examines the 

degree to which killing all TRF-TIF logic mutants kills general mutants. 

1.3 Motivation 

 

The motivation for this research has two parts, one based on logic coverage criteria 

and the other based on logic mutation. In summary, testing approaches based on current 
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logic coverage criteria or current mutation approaches share the drawback of not 

guaranteeing detection of certain logic faults (even when all mutants are killed) and/or 

are costly in terms of the number of tests required.  

Logic coverage criteria exist that require small test set size, but they do not 

guarantee detecting common logic faults. Conversely, logic coverage criteria exist that 

guarantee detecting common logic faults, but these criteria require a large test set size. 

Part of the reason for this is that current logic coverage criteria do not handle infeasibility 

efficiently, which in turn results in unnecessary tests in that all faults in Lau and Yu’s 

fault hierarchy can still be detected even when one or more tests are removed.  

Current logic mutation approaches have several problems. One, mutants that are 

syntactically different from each other yet semantically the same can be generated. Two, 

mutants are generated that are guaranteed to be killed by a test that kills some other 

generated mutant. While Offutt, Rothermel and Zapf [37] showed that mutation testing 

can use selective logic mutation operators to offset this cost, selective logic mutation 

operators in current mutation tools are used inefficiently. Three, current mutation tools 

lack logic mutation operators that generate mutants that, when killed, guarantee killing 

the most number of other mutants. These inefficiencies cause excess mutants to be 

generated and reduce fault detection capability.  

These drawbacks call for new logic coverage criteria and new logic mutation 

approaches and this research addresses exactly these drawbacks. 
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1.4 Problem Statement 

The main logic coverage criterion problem that is addressed is how to best achieve a 

balance of reducing the number of tests needed to detect logic faults while at the same 

time increasing the number of logic faults detected, regardless of predicate format. The 

main logic mutation problem that is addressed is how to reduce the number of logic 

mutants generated while increasing fault detection (assuming all non-equivalent mutants 

are killed). A secondary mutation problem that is addressed is how to reduce the number 

of equivalent mutants. The above problems are addressed by extending a current logic 

fault hierarchy, inventing new logic mutation operators that sit atop the extended logic 

fault hierarchy, providing partial solutions to the equivalent mutant problem and 

analyzing logic coverage criterion feasibility at a low level of detail. Figure 1 displays the 

problems this research addresses at a high level. 

Logic Criteria

Test Criteria Mutation Testing

Logic Mutation

DNF/CNF Logic Faults

General Logic Faults

General Faults

Subsumes

 

Figure 1 Logic Coverage Criteria, Logic Mutation and Fault Detection 
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The two thin solid arrows in Figure 1 represent the problem of increasing the number 

of minimal DNF/CNF logic faults guaranteed to be detected while decreasing test set or 

mutant set size. These arrows point to logic faults for predicates in minimal DNF/CNF. 

The fact that the arrows are solid indicates that guaranteed fault detection can be proven. 

In other words, theoretical analysis is applied.  

The two thin dashed arrows in Figure 1 represent the problem of increasing the 

number of general logic faults detected while decreasing test set or mutant set size, but 

without a guarantee of detection. These arrows point to logic faults for predicates 

regardless of format. The fact that the arrows are dashed indicates that some types of 

faults can be guaranteed to be detected theoretically but that others cannot and thus 

require empirical study.  

The thin dotted arrows in Figure 1 represent the problem of increasing the number of 

faults (logic and non-logic) detected while decreasing test set or mutant set size, but 

without a guarantee of detection. These arrows point to faults in general. The fact that 

these arrows are dotted indicates that non-logic fault detection relations cannot be 

guaranteed theoretically but rather require empirical study.  

The thick arrow between mutation testing and test criteria represents that a 

subsumption relationship can exist. That is, depending on  the mutation operators used, 

mutants can be generated such that a test set that kills all non-equivalent mutants is 

guaranteed to satisfy a specific criterion. TRF-TIF logic mutation subsumes the Minimal-

MUMCUT logic coverage criterion because in order to kill all TRF-TIF logic mutants, 

Minimal-MUMCUT must be satisfied. 
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This dissertation is organized as follows. Chapter 2 describes related work and 

background material. Chapter 3 summarizes the thesis contributions. Chapter 4 provides 

an overview of the Minimal-MUMCUT criterion and Chapter 7 provides an overview of 

TRF-TIF logic mutation. Chapters 5, 6 and 8-10 discuss theoretical and empirical results. 

Chapter 11 draws conclusions. 

1.5  Publications 

Material in this dissertation is used with permission and has been published in the 

following: 

 

Refereed Journals 

 

[22] G. Kaminski and P. Ammann. Reducing Logic Test Set Size While Preserving Fault     

        Detection. To appear in Software Testing, Verification, and Reliability. Wiley. 

 

[23] G. Kaminski, U. Praphamontripong, P. Ammann and J. Offutt. A Logic Mutation    

       Approach to Selective Mutation Using Programs and Queries. Accepted with minor  

       revisions by Information and Software Technology, Special Issue on Mutation  

       Testing. 

 

[24] G. Kaminski, G. Williams and P. Ammann. Reconciling Perspectives of Logic 

Testing for Software. Software Testing, Verification and Reliability, 18(3):149-188, 

September 2008. Wiley. 

 

Refereed Conferences and Workshops 

 

[18] G. Kaminski and P. Ammann. Using a Fault Hierarchy to Improve the Efficiency of 

DNF Logic Mutation Testing. Proceedings of the 2
nd

 IEEE International Conference 

on Software Testing, Verification and Validation. Pages 386-395. Denver, CO. April, 

2009.  

 

[19] G. Kaminski and P. Ammann. Using Logic Criterion Feasibility to Reduce Test Set 

Size While Guaranteeing Fault Detection. Proceedings of the 2
nd

 IEEE International 

Conference on Software Testing, Verification and Validation. Pages 167-176. Denver, 

CO. April, 2009.  
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[20] G. Kaminski and P. Ammann. Using Logic Criterion Feasibility to Reduce Test Set 

Size While Guaranteeing Double Fault Detection. Proceedings of the Mutation 

Workshop at the 2
nd

 International Conference on Software Testing, Verification and 

Validation. Denver, CO. April, 2009. 

 

Other 

 

[21] G. Kaminski and P. Ammann. Applying MCDC to Large DNF Expressions.  

       Proceedings of the 9
th

 International Conference on Software Engineering Research   

       and Practice. Las Vegas, NV. July, 2010. 

 

 Additional publications by the author that are related to the dissertation, but are 

not formally included because they are outside the scope of comparing logic coverage 

criteria and logic mutation approaches: 

 

Refereed Conferences and Workshops 

 

G. Kaminski and P Ammann.  Applications of Optimization to Logic Testing. 

Proceedings of the Constraints in Software Testing, Verification and Analysis Workshop 

at the 3
rd

 International Conference on Software Testing, Verification and Validation.  

Paris, France.  April, 2010. 

 

Other 

 

G. Kaminski, U. Praphamontripong, P. Ammann and A.J. Offutt.  An Evaluation of the 

Minimal-MUMCUT Logic Criterion and Prime Path Coverage.  Proceedings of the 9
th

 

International Conference on Software Engineering Research and Practice.  Las Vegas, 

NV.  July, 2010. 
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2 Related Work and Background Material 

  

 In this chapter, related work and background is discussed. Section 2.1 summarizes 

logic coverage criteria related work. Section 2.2 focuses on logic coverage criteria 

background material. Section 2.3 summarizes mutation testing related work. Section 2.4 

focuses on mutation testing background material. 

2.1 Logic Coverage Criteria Related Work 

A logic coverage criterion imposes requirements on tests related to logic expressions 

in source code or other artifacts. Logic coverage criteria differ in fault detection 

capability and test set size. Many such criteria exist, but they can be broadly classified 

into two categories: semantic and syntactic. Semantic criteria make no assumption as to 

predicate format, whereas syntactic criteria do, with the most common format being 

minimal DNF. Details of various logic coverage criteria are presented next, starting with 

semantic criteria followed by syntactic criteria. This section concludes with an overview 

of logic fault detection.  

Semantic Logic Coverage Criteria 

Chilenski and Miller [10] discuss the modified condition decision coverage (MCDC) 

criterion, which is the best known semantic logic coverage criterion. Chilenski and Miller 

[10] differentiate between Weak and Strong MCDC. Weak MCDC treats multiple 

occurrences of the same literal (condition) as one occurrence. Strong MCDC treats 
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multiple occurrences of the same literal (condition) as different occurrences. That is, in 

Weak MCDC tests are formed on the basis of each unique literal whereas in Strong 

MCDC tests are formed on the basis of each literal. Chilenski [9] further differentiates 

MCDC into Unique-Cause MCDC, Unique-Cause + Masking MCDC and Masking 

MCDC. Unique-Cause MCDC requires all other conditions to be fixed when varying the 

condition of interest from TRUE to FALSE. Masking MCDC allows other conditions to 

vary when varying the condition of interest from TRUE to FALSE. Unique-Cause + 

Masking MCDC requires all other conditions to be fixed when varying the condition of 

interest from TRUE to FALSE, unless an infeasibility arises, in which case other 

conditions can vary so as to remove the infeasibility. Thus, six flavors of MCDC exist: 

Strong Unique-Cause MCDC, Strong Unique-Cause + Masking MCDC, Strong Masking 

MCDC, Weak Unique-Cause MCDC, Weak Unique-Cause + Masking MCDC and Weak 

Masking MCDC. When referring to MCDC, any of the three versions of weak MCDC is 

implied unless otherwise stated. Ammann and Offutt [2] discuss five related semantic 

criteria: General Active Clause Coverage (GACC), Correlated Active Clause Coverage 

(CACC), Restricted Active Clause Coverage (RACC), General Inactive Clause Coverage 

(GICC) and Restricted Inactive Clause Coverage (RICC). RACC corresponds to Weak 

Unique-Cause MCDC and CACC corresponds to Weak Masking MCDC. Like MCDC 

tests, ACC and ICC tests can fail to detect most faults in Lau and Yu’s fault hierarchy 

[24]. This dissertation establishes this fact in section 6.2. 
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Syntactic Logic Coverage Criteria 

Weyuker, Goradia and Singh [46] proposed the MAX-A and MAX-B syntactic 

criteria, whose tests guarantee detecting all faults in the hierarchy. Chen, Lau and Yu [8] 

developed the MUTP (Multiple Unique True Point), MNFP (Multiple Near False Point) 

and CUTPNFP (Corresponding Unique True Point Near False Point) criteria and 

integrated them into the MUMCUT (MUTP-MNFP-CUTPNFP) criterion, whose tests are 

guaranteed to detect all faults in the hierarchy with a smaller test set size. Assuming 

minimal DNF, the CUTPNFP criterion and Strong Unique-Cause MCDC are identical as 

are the UTPNFP criterion and Strong Masking MCDC [24]. Chen and Lau [6] 

implemented the MUTP Greedy algorithm to satisfy the MUTP criterion as a constituent 

of the MUMCUT criterion. Yu and Lau [50] showed how MUMCUT test set size can 

vary depending on which heuristic is used to generate the test set. Kaminski, Williams 

and Ammann [24] proposed the MUTP/NFP criterion, whose tests are guaranteed to 

detect all faults in the hierarchy while further reducing test set size, but only if the 

criterion is feasible. Sun et al. [41] analyzed how the MUMCUT criterion can be 

extended to apply to predicates in any format. Kaminski and Ammann [19] proposed the 

Minimal-MUMCUT criterion, which reduces MUMCUT test set size without sacrificing 

fault detection regardless of feasibility. This dissertation develops Minimal-MUMCUT in 

chapter 4 and evaluates its fault detection capability and test set size with respect to 

MUMCUT in chapter 5. 
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Logic Fault Detection 

The seminal work in composing a logic fault hierarchy was performed by Kuhn [26]. 

Okun, Black and Yesha [38] showed how Kuhn’s logic fault hierarchy can apply to 

predicates in any format. Lau and Yu [30] refined Kuhn’s work by introducing new faults 

and detection relationships assuming minimal DNF. Kaminski and Ammann [18] 

extended Lau and Yu’s fault hierarchy to include new fault types that correspond to 

mutation operators in typical logic mutation approaches and new highly selective logic 

mutation operators not in typical logic mutation approaches. (Typical logic mutation 

refers to a hypothetical tool including a common set of mutation operators.)  

Fault detection guarantees by syntactic tests that hold for minimal DNF predicates do 

not hold for non-minimal DNF predicates. This raises three issues that prior researchers 

have investigated. One, how well do tests based on minimal DNF detect faults in non-

minimal DNF predicates?  Two, what types of software have a high percentage of their 

predicates in minimal DNF?  Three, what extensions are necessary to expand fault 

detection when the minimal DNF assumption fails to hold? For the first issue, Yu and 

Lau [48] found that of a sample of 20 non-minimal DNF predicates, over 99% of seeded 

faults were detected by MUMCUT tests formed from the minimal DNF version of the 

predicates. This dissertation shows in section 5.4 that over 98% of seeded faults in non-

minimal DNF predicates were detected by Minimal-MUMCUT tests formed from the 

minimal DNF versions of the predicates. For the second issue, Chilenski [9] found that 

95% of 20,256 predicates in avionics software were in minimal DNF. This dissertation 

reports results in section 5.4 showing that 85% of predicates in this sample that contained 
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at least 3 unique literals were in either minimal DNF or minimal CNF. For the third issue, 

Sun et al. [41] analyzed what patterns of faults the MUMCUT criterion can miss for 

general form predicates and how the MUMCUT criterion can be extended (MUMCUT 

extensions) to guarantee detection of these faults. In this dissertation a comparison of 

Minimal-MUMCUT vs. MUMCUT extension test set size is given in section 5.1. 

Double Logic Fault Detection 

A double logic fault occurs when two faults are introduced into a predicate. Two 

faults can be coupled together such that inputs detecting each in isolation cannot detect 

the corresponding double fault. Fault coupling rarely occurs [16, 31] as inputs that detect 

each fault usually detect the double fault. However, double faults are more likely to occur 

than higher order faults based on the competent programmer hypothesis [11] (which 

states that competent programmers write programs that differ from a correct version by 

relatively few simple faults). Offutt [32] investigated fault coupling using an empirical 

approach. He found that tests that detected all single faults seeded into a program 

detected 99.9% of double faults. Thus, he concluded fault coupling rarely occurs. How 

Tai Wah [16] examined fault coupling from a theoretical perspective. He analyzed the 

ratio of the number of tests that detect single faults but not the corresponding double 

faults to the number of tests that detect single faults. He showed that the ratio is small and 

concluded fault coupling rarely occurs. Lau et al. [27, 28, 29] studied logic fault 

coupling. They showed that MUMCUT tests, which detect all single faults in the 

hierarchy, guarantee detection of all but 8 of 92 double fault types. They proposed 

additional criteria to guarantee double fault detection and list conditions necessary to 
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detect each double fault. However, these conditions are not specified in terms of the 

criterion feasibility of the MUTP, CUTPNFP, and MNFP criteria which compose 

MUMCUT. This dissertation compares Minimal-MUMCUT and MUMCUT double fault 

detection in section 5.3. 

2.2   Logic Coverage Criteria Background Material 

In this dissertation, Minimal-MUMCUT is compared with other logic criteria. In this 

section, background material is presented for these other logic criteria. First, some basic 

definitions are presented. Next, several semantic logic coverage criteria are described, 

followed by a description of several syntactic logic coverage criteria. Several Minimal 

DNF logic faults are then examined, followed by background material on subsumption. 

The section ends with a summary containing a table that summarizes each of the logic 

criteria presented in this section. Table 1 lists the definitions for various logic terms and 

symbols used throughout this section and the rest of this dissertation. 

 

 

 

Table 1 Basic Definitions 

 

Term or Symbol Definition 

1 The Boolean value TRUE. 

0 The Boolean value FALSE. 

Literals Variables representing clauses in a predicate. 

+ OR operator. 

Adjacency 

between literals 

or parentheses 

AND operator. 

XOR Exclusive OR operator. 

~, ! Negation (also indicated by a – above a literal or term). 

Term A set of literals. 
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Term or Symbol Definition 

Disjunctive 

Normal Form 

(DNF) 

Predicate syntax where terms are separated by OR and literals are 

separated by AND. For example, ab + cd. 

Conjunctive 

Normal Form 

(CNF) 

Predicate syntax where terms are separated by AND and literals are 

separated by OR. For example, (a + b)(c + d). 

DNF implicant 
A term that when TRUE, means the predicate is TRUE. For 

example, ab is a DNF implicant in ab + cd. 

CNF implicant 
A term that when FALSE, means the predicate is FALSE. For 

example, (a + b) is a CNF implicant in (a + b)(c + d). 

DNF prime 

implicant 

DNF implicant where removing a literal could potentially change 

the predicate value. For example, ab is a DNF prime implicant in 

ab + cd but ab!c is not a DNF prime implicant in ab!c + abc. 

CNF prime 

implicant 

CNF implicant where removing a literal could potentially change 

the predicate value. For example, (a + b) is a prime CNF implicant 

in (a + b)(c + d) but (a + b + !c) is not a CNF prime implicant in (a 

+ b + !c)(a + b + c). 

Irredundant DNF 
Predicate syntax where it is possible to make each term TRUE in 

turn while all other terms are FALSE. 

Irredundant CNF 
Predicate syntax where it is possible to make each term FALSE in 

turn while all other terms are TRUE. 

Minimal DNF Predicate syntax in irredundant DNF where all implicants are DNF 

prime implicants. 

Minimal CNF Predicate syntax in irredundant CNF where all implicants are CNF 

prime implicants. 

Unique True 

Point (UTP) 

An assignment of values to literals in a minimal DNF predicate 

such that only a single term is TRUE. In ab + cd, UTPs for ab are 

1100, 1101, 1110. 

Unique False 

Point (UFP) 

An assignment of values to literals in a minimal CNF predicate 

such that only a single term is FALSE. In (a + b)(c + d), UFPs for 

(a + b) are 0001, 0010, 0011. 

Near False Point 

(NFP) 

An assignment of values to literals in a minimal DNF predicate 

such that the predicate is FALSE but negating a single literal 

makes the predicate TRUE. In ab + cd, NFPs for a are 0100, 0101, 

0110. 

Near True Point 

(NTP) 

An assignment of values to literals in a minimal CNF predicate 

such that the predicate is TRUE but negating a single literal makes 

the predicate FALSE. In (a + b)(c + d), NTPs for a are 

1001,1010,1011. 
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Term or Symbol Definition 

Corresponding 

NFP 

In a minimal DNF predicate, an NFP that differs from a UTP for 

the literal’s term only in the value of that literal. In ab + cd, 0100 is 

a corresponding NFP for literal a as it differs from the UTP 1100 

for term ab only in the value of literal a.  

Corresponding 

NTP 

In a minimal CNF predicate, an NTP that differs from a UFP for 

the literal’s term only in the value of that literal. In (a + b)(c + d), 

1011 is a corresponding NTP for literal a as it differs from the UFP 

0011 for term (a + b) only in the value of literal a.  

Overlapping 

True Point (OTP) 

In a minimal DNF predicate, an OTP is an assignment of values to 

literals such that at least two of the terms are TRUE. In ab + cd, 

1111 is an OTP. 

Remaining False 

Point (RFP) 

In a minimal DNF predicate, a RFP is an assignment of values to 

literals such that the predicate evaluates to FALSE but the 

assignment does not represent an NFP. In ab + cd, 0000 is a RFP. 

Feasible A logic coverage criterion is feasible if and only if it is possible to 

construct all required tests. 

Combinatorial 

Coverage 

Demands for an exhaustive test set.  In other words, the test set 

must include all possible combinations of the values of literals in a 

given predicate. 

 

 

Exhaustive logic test size grows exponentially, requiring tests of O(2
n
), where n is 

the number of unique literals in the predicate. Thus, testers have invented less expensive 

criteria. Several criteria are described next, starting with semantic flavors and then onto 

syntactic flavors. For all of these criteria, if an infeasibility occurs the tests chosen should 

satisfy the requirements as fully as possible. 

Semantic Logic Coverage Criteria 

The general idea behind the ACC tests is to evaluate under what conditions each 

unique literal determines the outcome of the predicate. In other words, each variable will 

become the final decision for whether the predicate will be TRUE or FALSE. A key 
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feature of the semantic domain is that the criteria are independent of predicate form. 

Also, each literal is not necessarily unique as literals repeated in different terms are not 

treated as unique. Definitions of several semantic criteria are given below. In these 

definitions, a test pair represents two distinct test points, each with its own specific 

assignment of Boolean values to all the literals in a given predicate. Two distinct test 

points are paired because ACC requires pairs of points for literals. To understand the 

definitions, it is first necessary to understand how a literal determines a Boolean function. 

Literal Determination of a Boolean Function  

An important concept is the idea of a literal determining the value of a Boolean 

function. The Boolean derivative [24] can be used for this reason and is defined 

as f f fx x x= ⊕= =1 0 , where f x=1 is the value of f when literal x = 1 and f x=0 is the value of f 

when literal x = 0. If the Boolean function is written in terms of literal x, then 

f a x b x ci i
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Likewise, one can evaluate when the literal x does not determine the outcome of 

Boolean function f. To compute this case, negate the Boolean Derivative to obtain: 
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Active Clause Coverage (ACC) [2]: Given a Boolean function, f, composed of literals 

cj, there is a test pair for each cj such that cj determines the Boolean value of f and cj is 0 

and 1. There are three distinct flavors of ACC as described below. 

Restricted Active Clause Coverage (RACC) [2]: Given a Boolean function, f, 

composed of literals cj, there is a test pair for each cj such that cj determines the Boolean 

value of f, cj is 0 and 1 and all other literals ci remain constant. By definition, f will be 0 

in one test and 1 in the other test, so predicate coverage is satisfied. RACC selects a 

corresponding UTP-NFP pair for each unique literal (as opposed to each literal) when the 

predicate is in minimal DNF. Thus, if a literal repeats the repeating instances do not 

require a corresponding UTP-NFP pair. Consider f = ab + cd. Literal a determines f 

when b=1, c=1, d=0 or when b=1, c=0, d=1, or when b=1, c=0, d=0. Thus, RACC tests 

for a could be 1110 and 0110 since the values of b, c and d need to remain constant. 

Likewise, RACC tests for b could be 1110 and 1010. Literal c determines f when a=0, 

b=1, d=1 or when a=1, b=0, d=1, or when a=0, b=0, d=1. Thus, RACC tests for c could 

be 0111 and 0101 since the values of a, b and d need to remain constant. Likewise, 

RACC tests for d could be 0111 and 0110. A test set is {1110, 0110, 1010, 0111, 0101}. 

Now consider f = ab + ac and note that literal a repeats. Literal a determines f as long as 

b and c are not both 0. Thus, for literal a RACC tests could be 110 and 010. Neither of 

the points is an NFP for literal a in term ac. RACC is identical to Weak Unique-Cause 
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MCDC, which is a standard of the United States Federal Aviation Administration for 

safety critical software in commercial aircraft. 

Correlated Active Clause Coverage (CACC) [2]: Given a Boolean function, f, 

composed of literals cj, there is a test pair for each cj such that cj determines the Boolean 

value of f, cj is 0 and 1 and f is 0 and 1, respectively (so predicate coverage is satisfied). 

CACC selects a UTP and NFP for each unique literal (as opposed to each literal) when 

the predicate is in minimal DNF. Thus, if a literal repeats the repeating instances are 

ignored. The UTP and NFP chosen do not need to be a corresponding pair as in RACC. 

In other words the UTP and NFP chosen do not have to differ only in the value of the 

literal of interest. That is, other literals in the predicate may flip values between the UTP 

and NFP. Consider f = ab + cd. CACC tests for a could be 1110 and 0100 since the value 

of c does not need to remain constant. Likewise, CACC tests for b could be 1110 and 

1000. CACC tests for c could be 0111 and 0001 since the value of b does not need to 

remain constant. Likewise, CACC tests for d could be 0111 and 0010. A test set is {1110, 

0100, 1000, 0111, 0001, 0010} although the RACC test set above would also suffice as 

any RACC test set satisfies CACC. CACC is identical to Weak Masking MCDC. 

General Active Clause Coverage (GACC) [2]: Given a Boolean function, f, composed 

of literals cj, there is a test pair for each cj such that cj determines the Boolean value of f 

and cj is 0 and 1. Note that it is not explicitly required that f evaluates to 0 in one test and 

1 in the test, so predicate coverage is not necessarily satisfied. Although predicate 

coverage will usually be satisfied, it is possible to satisfy GACC when f evaluates to only 
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0 or 1. The requirements for GACC and ACC are the same. Any RACC or CACC test set 

is a GACC test set. 

Inactive Clause Coverage (ICC) [2]: Given a Boolean function, f, composed of literals 

cj, there is a test pair for each cj such that cj does not determine the Boolean value of f, cj 

is 0 and 1 and f is 0 for both elements of the test pair. There is also a test pair for each cj 

such that cj does not determine the Boolean value of f, cj is 0 and 1 and f is 1 for both 

elements of the test pair. There are two distinct flavors of ICC as described below, each 

of which corresponds to a flavor of Reinforced Condition Decision Coverage (RCDC) as 

described by Vilkomir and Bowen [45]. 

Restricted Inactive Clause Coverage (RICC) [2]: Given a Boolean function, f, 

composed of literals cj, there is a test pair for each cj such that cj does not determine the 

Boolean value of f, cj is 0 and 1, all other literals ci remain constant and f is 0 for both 

elements of the test pair. There is also a test pair for each cj such that cj does not 

determine the Boolean value of f, cj is 0 and 1, all other literals ci remain constant and f is 

1 for both elements of the test pair. Consider f = ab + cd. Literal a does not determine f 

when b=0 or when c=1 and d=1. Thus, RICC tests for a could be 1000 and 0000 since the 

values of b, c and d need to remain constant. Likewise, RICC tests for b could be 0100 

and 0000. Literal c does not determine f when d=0 or when a=1 and b=1. Thus, RICC 

tests for c could be 0010 and 0000 since the values of a, b and d need to remain constant. 

Likewise, RICC tests for d could be 0001 and 0000. A test set is {1000, 0100, 0001, 

0001, 0000}. 
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General Inactive Clause Coverage (GICC) [2]: Given a Boolean function, f, composed 

of literals cj, there is a test pair for each cj such that cj does not determine the Boolean 

value of f, cj is 0 and 1 and f is 0 for both elements of the test pair. There is also a test pair 

for each cj such that cj does not determine the Boolean value of f, cj is 0 and 1 and f is 1 

for both elements of the test pair. The requirements for GICC and ICC are the same. 

Every RICC test set is a GICC test set. 

Syntactic Logic Coverage Criteria 

Syntactic criteria require a predicate to be in a particular format. For all of the 

syntactic criteria below, the format is assumed to be minimal DNF. Also, syntactic 

criteria treat literals that repeat in different terms as distinct. 

Unique True Point Coverage (UTPC) [2]: Given minimal DNF Boolean functions, f 

and f , terms pi in f and terms pk in f , there is a test for a UTP for each pi in f and pk in f . 

Consider f = ab + cd. 1100 is a UTP for term ab and 0011 is a UTP for term cd. f = 

~a~c + ~a~d + ~b~c + ~b~d. 0101 is a UTP for term ~a~c, 0110 is a UTP for term 

~a~d, 1001 is a UTP for term ~b~c and 1010 is a UTP for term ~b~d. 

Multiple Unique True Point (MUTP) [8]: Given a minimal DNF predicate, form tests 

for a UTP for each term such that all literals not in the term attain values 1 and 0. 

Consider f = ab + cd. A UTP for the first term must have a=1, b=1. Tests for c and d to 

each equal 0 and 1 are 1101 and 1110. A UTP for the second term must have c=1 and 

d=1. Tests for a and b to each equal 0 and 1 are 0111 and 1011. A test set is {1101, 1110, 

0111, 1011}.  
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Multiple Near False Point (MNFP) [8]: Given a minimal DNF predicate, form tests for 

an NFP of each literal such that all literals not in the literal’s term attain values 1 and 0. 

Consider f = ab + cd. NFPs for a and b so that c and d each equal 0 and 1 are 0101, 0110, 

1001, and 1010. NFPs for c and d so that a and b each equal 0 and 1 are 0101, 1001, 

0110, and 1010. A test set is {0101, 0110, 1001, 1010}. 

Corresponding Unique True Point Near False Point (CUTPNFP) [8]: Given a 

minimal DNF predicate, for each literal find a UTP and NFP such that only the literal 

changes value (all other literals must be fixed). Consider f = ab + cd. A UTP for the first 

term must have a=1, b=1. If c=0 and d=1, tests for the literals in ab are 1101, 0101, and 

1001. A UTP for the second term must have c=1, d = 1. If a=1 and b = 0, tests for the 

literals in cd are 1011, 1001, and 1010. A test set is {1101, 0101, 1001, 1011, 1010}. 

When a predicate is in minimal DNF, CUTPNFP is equivalent to Strong Unique-Cause 

MCDC. When a minimal DNF predicate is a Singular Boolean Expression (meaning each 

literal occurs only once), CUTPNFP is equivalent to RACC (and hence Weak Unique-

Cause MCDC).  

Partial-Corresponding Unique True Point Near False Point (PCUTPNFP) [22]: 

Given a minimal DNF predicate, for each literal find a UTP and NFP such that the literal 

changes value and the only literals that must be fixed are literals that must be fixed in a 

UTP for the term of interest. This criterion is more flexible than CUTPNFP and is 

subsumed by it (any CUTPNFP test set is a PCUTPNFP test set). Consider f = ab + cd. 

For term ab, a MUTP test set is {1101, 1110}. To satisfy CUTPNFP for literal a in term 

ab, a corresponding NFP of 0101 or 0110 must be chosen. However, PCUTPNFP permits 
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0100 to be chosen as the NFP. 0100 differs from each UTP in either a and c or a and d. 

Thus, 0100 is not a corresponding NFP but it can still be chosen to satisfy PCUTPNFP 

because literals c and d can be 0 or 1 in a UTP for term ab. While PCUTPNFP does not 

offer test set size savings over CUTPNFP for the example of ab + cd, it can for other 

examples because it allows greater flexibility in choosing NFPs so that they can overlap 

for literals in different terms. 

MUTP/MNFP/CUTPNFP (MUMCUT) [8]:  Given a minimal DNF predicate, satisfy 

the MUTP, MNFP and CUTPNFP criteria. Consider f = ab + cd. 1101 and 1110 are 

UTPs for ab. 0101 and 0110 are NFPs for a that differ from a UTP for ab only in the 

value a. 1001 and 1010 are NFPs for b that differ from a UTP for ab only in the value of 

b. 0111 and 1011 are UTPs for cd. 0101 and 1001 are NFPs for c that differ from a UTP 

of cd only in the value of c. 0110 and 1010 are NFPs for d that differ from a UTP for cd 

only in the value of d. In the NFPs above each literal not in the term of interest attains 1 

and 0 so the MNFP criterion is satisfied. A test set is {1101, 1110, 0101, 0110, 1001, 

1010, 0111, 1011}. 

Multiple Unique True Point / Near False Point (MUTP/NFP) [24]: Given a minimal 

DNF predicate, satisfy the MUTP criterion for each term and select an NFP for each 

literal. The NFP chosen for a given literal does not need to differ from a selected UTP 

only in the value of the given literal. When the MUTP criterion is feasible or when the 

predicate is a singular Boolean expression, MUTP/NFP tests guarantee the detection of 

all faults in Lau and Yu’s fault hierarchy and do so with a potentially smaller test set size 

than required by the MUMCUT criterion. In such a case, the CUTPNFP criterion will 
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also be feasible so the NFPs chosen could be chosen to satisfy the CUTPNFP criterion, 

but this is not necessary. The test size savings also come from not having to generate 

MNFP tests. Consider f = ab + cd. 1101 and 1110 are MUTP tests for term ab. 0111 and 

1011 are MUTP tests for term cd. AN NFP of 0101 (for a and c) and an NFP of 1010 (for 

b and d) completes a MUTP/NFP test set.  

MAX-A [46]:  Every point from the set of UTPs (for each term) is selected and every 

point from each set of NFPs (for each literal) is selected. 

MAX-B [46]: Every point from the set of UTPs (for each term) is selected and every 

point from each set of NFPs (for each literal) is selected. In addition, log (| ( )|)2 OTP S (the 

size of the set of OTPs) and log (| ( )|)2 RFP S (the size of the set of RFPs) are also selected. 

MAX-A and MAX-B will only be considered briefly during the comparison of 

subsumption of tests since they are an excessive extension of the other minimal DNF 

logic coverage criteria created by Chen and Lau [7].  

Minimal DNF Logic Faults 

One method for evaluating tests is to determine which faults in Table 2 a test set 

is guaranteed to detect. These faults are important because based on the competent 

programmer hypothesis [11] (which states that competent programmers write programs 

that differ from a correct version by a few simple faults), these faults are likely to occur.  

 

 

Table 2 Minimal DNF Faults [30] 

 

Fault Description 

Expression Negation 

Fault (ENF) 

Predicate implemented as its negation: ab + c implemented 

as ~(ab + c).  
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Fault Description 

Term Negation Fault 

(TNF) 

A term is negated: ab + c  implemented as ~(ab) + c. 

Operator Reference Fault 

+ (ORF+) 

Replacing OR with AND: a + b  implemented as ab. 

Operator Reference Fault 

. (ORF.) 

Replacing AND with OR: ab  implemented as a + b. 

Literal Negation Fault 

(LNF) 

A literal is negated: ab  implemented as a~b. 

Literal Reference Fault 

(LRF) 

A literal is replaced by a literal or the negation of a literal 

not in the term: ab + cd implemented as cb + cd or as ~cb 

+ cd. 

Term Omission Fault 

(TOF) 

A term is omitted: ab + cd implemented as ab. 

Literal Omission Fault 

(LOF) 

A literal is omitted: ab  implemented as a. 

Literal Insertion Fault 

(LIF) 

A literal not in a term is inserted as itself or as its negation: 

ab + cd implemented as abc + cd or as ab~c + cd. 

 

 

Chen, Lau and Yu [8] established circumstances under which each fault type will 

be detected. These conditions are highlighted in Table 3. In this table, the TNF was added 

as a new fault type and MUTP/NFP was added as a new logic coverage criterion by 

Kaminski, Williams and Ammann [24].  

 

Table 3 Relation Between Faults and Criteria [8, 24]  
 

Fault Test Needed to Catch Fault 
Criteria guaranteed to detect fault if 

satisfied 

Expression 

Negation 

Fault 

(ENF) 

Any point in will detect this fault. Any criterion discussed herein. 

Term 

Negation 

Fault 

If a term pi in S is implemented as its 

negation, then any UTP Si ( ) or any false point 
Any criterion discussed herein. 
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Fault Test Needed to Catch Fault 
Criteria guaranteed to detect fault if 

satisfied 

(TNF) (and thus any NFP S
i j,

( ) ) will detect the fault. 

Literal 

Negation 

Fault 

(LNF) 

If the literal x i
j  in pi in S is implemented as 

its negation, then any UTP Si ( ) or 

NFP S
i j,

( ) will reveal the fault. 

UTPC, MUTP, MNFP, CUTPNFP, 

PCUTPNFP, MUMCUT, MUTP/NFP, 

MAX-A, MAX-B 

Term 

Omission 

Fault 

(TOF) 

If the term pi in S is omitted, any 

UTP Si ( ) will detect the fault. 

UTPC, MUTP, CUTPNFP, PCUTPNFP 

MUMCUT, MUTP/NFP, MAX-A, 

MAX-B 

Operator 

Reference 

Fault 

(ORF) 

If OR is replaced by AND (ORF+) between 

terms pi and pi+1  in S, UTP Si ( ) or 

UTP Si+1( ) will detect the fault. If AND is 

replaced by OR (ORF.) between literals 

x i
j and x i

j+1  in S, any NFP Si ( ) will detect 

the fault. Also any false point such that either 

of the two newly created terms evaluates to 

true will detect the fault. 

For OR replaced by AND:  UTPC, 

MUTP, CUTPNFP, PCUTPNFP, 

MUMCUT, MUTP/NFP, MAX-A, 

MAX-B 

 

For AND replaced by OR: MNFP, 

CUTPNFP, PCUTPNFP, MUMCUT, 

MUTP/NFP, MAX-A, MAX-B 

Literal 

Omission 

Fault 

(LOF) 

If the literal x i
j  in pi in S is omitted from the 

term, any NFP S
i j,

( ) will detect the fault. 

MNFP, CUTPNFP, PCUTPNFP, 

MUMCUT, MUTP/NFP, MAX-A, 

MAX-B 

Literal 

Insertion 

Fault 

(LIF) 

If some literal in S that is not in pi  is 

implemented in pi  or is implemented as its 

negation in pi , then any  set of  

UTP Si ( ) where all other literals not in 

pi attain the values 0 and 1 will detect the 

fault. If such a set is infeasible, the LIF results 

in an equivalent fault.  

MUTP, MUMCUT, MUTP/NFP, MAX-

A, MAX-B 

Literal 

Reference 

Fault 

(LRF) 

If the literal x i
j  in pi in S is implemented as 

some other literal not in pi or  the negation of  

some other literal not in pi , then any of the 

following will detect the fault: any  set of 

UTP Si ( ) where all other literals not in 

pi attain the values 0 and 1;  any set of 

NFP S
i j,

( )  where all other literals not in 

pi attain the values 0 and 1; a pairing of 

UTP Si ( ) and NFP S
i j,

( ) that differs only in 

the value of literal x i
j . If a pairing of 

UTP Si ( ) and NFP S
i j,

( ) that differs only in 

the value of literal x i
j is infeasible, the LRF 

results in an equivalent fault. 

MUTP (when feasible), MNFP (when 

feasible), CUTPNFP (when feasible), 

MUMCUT, MUTP/NFP (when feasible 

or when f is a singular Boolean 

expression when expressed in minimal 

DNF), MAX-A, MAX-B 
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The fault hierarchy introduced by Lau and Yu [30] includes the faults in Table 3 

and is shown in Figure 2. In this hierarchy, an arrow from a source fault to a destination 

fault indicates that if a test detects a fault belonging to the source fault class, it will also 

detect a corresponding fault that belongs to the destination fault class. More specifically, 

if a test set that satisfies criterion X is guaranteed to detect fault A, where fault A points 

to fault B, then any test set that satisfies criterion X is guaranteed to detect fault B. The 

three fault types in the left column in the figure can only be detected by UTPs, the three 

fault types in the right column in the figure can only be detected by NFPs, and the four 

fault types in the middle column can all be detected either by UTPs or NFPs. This agrees 

with the “Test Needed to Catch Fault” column in Table 3. This dissertation extends the 

fault hierarchy to account for feasibility in Figure 6 in section 4.3 and further extends the 

fault hierarchy to include faults from several mutation operators in Figure 9 in section 

7.1. 

 

 

Figure 2 Lau and Yu’s Fault Hierarchy [30] 

 LOF 

ORF. 

 LRF 

 LNF 

 TNF 

 ENF 

 LIF 

TOF 

ORF+ 
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Subsumption 

Subsumption is one method for comparing coverage criteria. If any test set that 

satisfies criterion X also satisfies criterion Y, then X subsumes Y. Although a test set that 

satisfies criterion X will satisfy criterion Y, a test set that satisfies criterion Y may have 

tests that are not in a test set that satisfies criterion X. Consequently, tests that satisfy 

criterion Y may catch faults that tests that satisfy criterion X miss. Figure 3 summarizes 

the subsumption relations among criteria. An arrow indicates that the source criterion 

subsumes the destination criterion. RICC and GICC are in their own hierarchy because 

the subsumption relations between them and the other criteria are not known.  

 

 

 

Figure 3 Subsumption Hierarchy [24] 

MAX-B 

MAX-A 

MUMCUT 

RICC 

GICC MNFP 

CUTPNFP 
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CACC 

GACC 

MUTP 

PCUTPNFP 

UTPC 

MUTP/NFP 
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Summary 

Table 4 gives a summary of test type, fault detection, subsumption relation and test 

set size for each of the criteria presented. 

 

Table 4 Logic Coverage Criteria Summary [24] 

 

Test Name 
Test 

Type 

Guaranteed 

Faults 

Detected 

Subsumes Subsumed by Minimum Test Size 
Maximum Test 

Size 

Restricted 

Active Clause 

Coverage 

(RACC) 

Semantic ENF, TNF 
CACC, 

GACC 

CUTPNFP, 

MUMCUT, 

MAX-A, MAX-

B 

n+1, where n is the 

number of unique 

literals in function f. 

2n, where n is the 

number of unique 

literals in function 

f. 

Correlated 

Active Clause 

Coverage 

(CACC) 

Semantic ENF, TNF GACC 

RACC, 

MUTP/NFP, 

PCUTPNFP, 

CUTPNFP, 

MUMCUT, 

MAX-A, MAX-

B 

RUTW(2*Sqrt(n)), 

where RUTW = 

“Round up to the 

nearest whole 

number” and n is the 

number of unique 

literals 

2n, where n is the 

number of unique 

literals in function 

f. 

General Active 

Clause 

Coverage 

(GACC) 

Semantic ENF, TNF  - 

CACC, RACC, 

MUTP/NFP, 

CUTPNFP, 

MUMCUT, 

MAX-A, MAX-

B 

2, if Boolean 

Derivative evaluates 

to 1 for all literals, 

up to 

RUTW(2*Sqrt(n)), 

since 

CACC=GACC for 

many Boolean 

functions, where n is 

the number of 

unique literals in 

function f. 

2n, where n is the 

number of unique 

literals in function 

f. 

Restricted 

Inactive Clause 

Coverage 

(RICC) 

Semantic ENF, TNF GICC - 

2n, where n is the 

number of unique 

literals in function f. 

(true when all RICC 

tests are feasible) 

4n, where n is the 

number of unique 

literals in function 

f. 

General 

Inactive Clause 

Coverage 

(GICC) 

Semantic ENF, TNF - RICC 

2n, where n is the 

number of unique 

literals in function f. 

(true when all GICC 

tests are feasible) 

4n, where n is the 

number of unique 

literals in function 

f. 

Unique True 

Point Coverage 

(UTPC) 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF (when 

OR is replaced 

with AND) 

- 

MUMCUT, 

MAX-A, MAX-

B 

n+1 where n  is the 

number of literals in 

Boolean function f. 

m + ni
i

k

=
∏

1

, 

where m is the 

number of terms 

in Boolean 

function f and ni 

is the number of 

literals in term i. 

Multiple 

Unique True 

Point (MUTP)* 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF (when 

OR is replaced 

- 

MUTP/NFP, 

MUMCUT, 

MAX-A, MAX-

B 

m to 2m , where m is 

the number of terms 

in Boolean function 

f. 

2m(n-1), where m 

is the number of 

terms in function f 

and n is the 
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Test Name 
Test 

Type 

Guaranteed 

Faults 

Detected 

Subsumes Subsumed by Minimum Test Size 
Maximum Test 

Size 

with AND), 

LIF 

number of literals 

in function f. 

Multiple Near 

False Point 

(MNFP)* 

Syntactic 

ENF, TNF, 

LNF, ORF 

(when AND is 

replaced with 

OR), LOF 

- 

MUMCUT, 

MAX-A, MAX-

B 

1 (when 

infeasibilities arise); 

Uncertain otherwise. 

mn
2

2
, where m 

is the number of 

terms in function f 

and n is the 

number of literals 

in function f. 

Corresponding 

Unique True 

Point Next 

False Point 

(CUTPNFP)* 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF, LOF 

RACC, 

CACC, 

GACC, 

PCUTPNFP 

MUMCUT, 

MAX-A, MAX-

B 

ni
i

m

+

=
∑ 1

1

, where ni 

is the number of 

literals in term i and 

m the number of 

terms in f. 

2mn, where m is 

the number of 

terms in function f 

and n is the 

number of literals 

in function f. 

Partial 

Corresponding 

Unique True 

Point Near 

False Point 

(PCUTPNFP)** 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF., ORF+, 

LOF  

CACC, 

GACC 

CUTPNFP, 

MUMCUT, 

MAX-A, MAX-

B 

ni
i

m

+

=
∑ 1

1

 where ni is 

number of literals in 

term i and m is 

number of terms  

Uncertain, but 

less than 2mn 

where m is the 

number of terms 

and n is the 

number of literals  

MUTP / MNFP 

/ CUTPNFP 

Strategy 

(MUMCUT) 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF, LOF, 

LIF, LRF 

RACC, 

CACC, 

GACC, 

MUTP,  

MUTP/NFP, 

MNFP, 

UTPC, 

CUTPNFP, 

PCUTPNFP 

MAX-A, MAX-

B 

When infeasibilities 

arise – m to 2m + 1 

(where m is the 

number of terms in 

Boolean function f). 

Uncertain otherwise. 

2m(n-1) +
mn

2

2
 

, where m is the 

number of terms 

in function f and n 

is the number of 

literals in function 

f. 

Multiple 

Unique True 

Point / Near 

False Pont 

(MUTP / NFP) 

*** 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF, LOF, 

LIF 

CACC, 

GACC, 

MUTP 

MUMCUT, 

MAX-A, MAX-

B 

m + 1  to 2m + 1 

(where m is the 

number of terms in 

Boolean function f).  

2m(n-1) + n, 

where m is the 

number of terms 

in function f and n 

is the number of 

literals in function 

f. 

* The MUTP, MNFP and CUTPNFP criterion are each guaranteed to detect the LRF when feasible. 

** The PCUTPNFP criterion, when feasible, is guaranteed to detect any LRF that the MUTP criterion does 

not detect. 

*** The MUTP/ NFP criterion is guaranteed to detect the LRF when feasible or when f is a singular 

Boolean expression when expressed in minimal DNF. 

2.3 Mutation Testing Related Work  

This section describes related work in mutation testing. First, a discussion of strong 

vs. weak mutation is presented. Next, related work on semantic vs. syntactic fault size is 

discussed. This is followed by a summary of related work on detecting equivalent 
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mutants. Next, the internal variable problem is introduced and prior research on higher 

order mutants is presented. The section concludes with an examination of related work on 

mutation testing for databases and queries. 

Mutation testing exists in two forms: weak and strong. In strong mutation testing, a 

mutant is considered killed if and only if the output of the mutant and original program 

differ. In weak mutation testing, this is relaxed so that a mutant is considered killed if and 

only if the program state of the mutant and original program differ after execution of the 

mutated statement. This research focuses on weak mutation testing. For a logic mutant to 

be weakly killed, the mutated predicate must be reached and evaluate to a different truth 

value in the mutant than in the original program. If a mutant is weakly killed, the mutant 

and original program can have identical outputs. In practice, Offutt and Lee [35] found 

that weak mutation testing is almost as effective as strong mutation testing, with major 

computational savings. Thus, most mutants that are weakly killed are strongly killed.  

For this research, classifying a logic mutant as not equivalent means it is not 

equivalent based on weak mutation testing, which almost always means it is not 

equivalent based on strong mutation testing. When referring to killing logic mutants, the 

author implies weakly killing the mutants. This is because logic coverage criteria are 

based on weakly killing mutants in that these criteria examine a particular predicate in 

isolation. When referring to killing mutants in general, the author implies strongly killing 

mutants. Thus, classifying a logic mutant as equivalent means that it is equivalent based 

on weak mutation testing, which means that it will always be equivalent based on strong 

mutation testing. However, classifying a general mutant as equivalent means it is 
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equivalent based on strong mutation testing, which almost always means it is equivalent 

based on weak mutation testing.  

Offutt and Hayes [34] introduced the concepts of semantic and syntactic fault 

models. A syntactic characterization involves the actual code changes that differentiate a 

faulty and correct program. A semantic characterization views a faulty program as 

producing incorrect output for one or more inputs. Syntactic fault size is defined as the 

fewest number of tokens that need to change to produce a correct program. Semantic 

fault size is defined as the relative size of the input domain for which the output is 

incorrect. Offutt and Hayes argue that mutants with semantically small faults are 

desirable because testers must select one of the few inputs that kill them. They also argue 

that mutants with syntactically small but semantically large faults add little value because 

most inputs kill them. Offutt, Rothermel and Zapf [37] examined using selective mutation 

operators to reduce mutant set size. Selective mutation uses operators that produce fewer 

mutants by experimentally selecting operators that overlap with others. They found that 

selective mutation provided almost the same coverage as non-selective mutation with 

much fewer mutants. 

Prior methods for automatically detecting equivalent mutants include compiler 

optimization techniques introduced by Offutt and Craft [33] and constraint-based 

techniques introduced by Offutt and Pan [36]. Offutt and Pan [36] showed that using 

constraints was superior to compiler optimization. The best technique for detecting 

equivalent mutants is program slicing as introduced by Hierons, Harman and Danicic 

[15]. Program slicing uses decomposition to extract from program statements information 
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relevant to a particular computation. A slice helps determine what program statements 

affect the computation of a variable, which can be used to automatically detect some 

equivalent mutants. Detecting equivalent mutants is formally undecidable, but exclusive-

OR algorithms can detect all equivalent logic mutants (assuming reachability, 

propagation and a complete Boolean space). (Complete Boolean space means that it is 

possible to assign any combination of values to the literals in a predicate. In other words, 

all points are feasible.) Kaminski et al. [23] developed a technique to detect equivalent 

logic mutants when a complete Boolean space does not exist.  

Finding inputs to kill non-equivalent mutants is formally undecidable and is beyond 

the scope of this research. However, this problem does become more complex for 

selective logic mutation because it may not be possible to find an input to kill a mutant 

that if it could be killed, would guarantee killing other mutants. To address this 

complexity, Kaminski et al. [23] developed a mutation tool that can aid the tester in 

finding inputs to kill logic mutants by informing the tester what the values of the 

variables in the mutated predicate need to be in order to weakly kill the mutant.  

Polo, Piattini and Garcia-Rodriguez [39] examined decreasing the cost of mutation 

testing with second-order mutants. They proposed that the number of mutants can be 

reduced by half by means of combining the original set of mutants to obtain a new set of 

mutants, each one with two faults. Jia and Harman [17] show that certain higher order 

mutants are subsuming in that any test input that kills a subsuming higher order mutant 

guarantees killing each single order mutant that the higher order mutant is composed of. 

They describe search based algorithms to identify subsuming higher order mutants and 
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eliminate non-subsuming higher order mutants, which reduces the number of mutants 

generated. However, neither Polo et al. nor Jia and Harman focus on logic mutants. 

Many researchers have used constraint solvers to populate a test database for the 

purpose of testing SQL database queries. The most relevant research using constraint 

solvers is based on work by Emmi et al. [12] and Willmor and Embury [47]. However, 

these approaches do not focus on an explicit adequacy criterion or fault hierarchy like the 

TRF-TIF approach.  Thus, these approaches do not guarantee detection of a specified set 

of faults. Kapfhammer and Soffa [25] apply data-flow criteria but at a higher level than 

that for individual clauses in a query. Chays et al. [4, 5] proposed the AGENDA tool, 

which focuses on testing at the transaction level, but this is at a higher level than that for 

individual clauses in a query and individual records in a test database. Suarez-Cabal and 

Tuya [40] examined multiple condition coverage (MCC) for SELECTS and JOINS in 

queries by creating a set of coverage trees. Their research focused on the level of 

individual records. However, the limitation is that the coverage trees grow exponentially. 

Chan and Cheung [3] transformed a SQL query into a procedural language to which 

various criteria can be applied. However, this approach shares some of the same 

drawbacks mentioned above as well as problems dealing with preserving query semantics 

during translation. To overcome these limitations, Tuya et al. [42] developed an approach 

called Full Predicate Coverage (SQLFpc), which is based on Masking MCDC or CACC. 

Their approach avoids the problem of exponential growth.  

Halfond and Orso [13] presented an approach known as “command form coverage”, 

which focuses on how the String object containing the actual SQL query in a program is 
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constructed. In other words, they examine how different variations of a query can be 

formed dynamically at a single point in the source code. Coverage is measured as the 

ratio of different queries actually formed by the inputs to the program to the total number 

of different queries that are possible. This approach is complementary to Tuya’s approach 

(and the TRF-TIF approach) because the “command form coverage” approach does not 

consider logic coverage of the queries themselves. 

2.4  Mutation Testing Background Material 

In this dissertation, TRF-TIF logic mutation is compared with three other mutation 

tools. These are typical logic mutation, muJava and SQLMutation. Typical logic mutation 

refers to a hypothetical tool including a common set of mutation operators, most of which 

are described by Ammann and Offutt [2]. A subset of these mutation operators are in a 

mutation testing tool called muJava developed by Ma et al. [31]. muJava generates both 

logic and non-logic mutants. It is used as a mutation tool for software and also as a fault 

seeder to introduce faults into software. Tuya et al. [44] have built a query mutation tool 

known as the SQLMutation tool. It allows mutants to be generated interactively from a 

Web browser. The mutation operators in this tool cover a wide range of SQL syntax and 

semantics as described by Tuya et al. [42]. SQLFpc is based on masking MCDC 

(CACC). It can be used to seed faults into queries. 
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3 Thesis Contributions 
 

 This research evaluates a new syntactic logic coverage criterion called Minimal-

MUMCUT and a new logic mutation approach called TRF-TIF logic mutation. The high 

level hypothesis that is evaluated has two parts.  

 

HIGH LEVEL HYPOTHESIS PART I:  

The Minimal-MUMCUT logic coverage criterion provides a way to reduce test set size 

and/or improve logic fault detection when compared to current logic coverage criteria.  

 

HIGH LEVEL HYPOTHESIS PART II:   

The TRF-TIF logic mutation approach provides a way to reduce mutant set size (and 

equivalent mutant set size) and/or improve logic fault detection when compared to 

current mutation approaches.  

 

The evaluation of the high level hypothesis leads to several contributions that relate 

to Figure 1 in section 1.4. Each contribution is labeled with a number and a letter. The 

number indicates which logic coverage criterion Minimal-MUMCUT is being compared 

with or which mutation approach TRF-TIF logic mutation is being compared with. The 

letter indicates the feature that is being compared.  
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The numbering is as follows: 

1 – Comparison of Minimal-MUMCUT [22] with MUMCUT [50] 

2 – Comparison of Minimal-MUMCUT with ACC/ICC [2] 

3 - Comparison of TRF-TIF logic mutation [18] with Typical logic mutation [2] 

4 - Comparison of TRF-TIF logic mutation with muJava [31] 

5 - Comparison of TRF-TIF logic mutation with SQLMutation [44] 

 

The lettering is as follows: 

a – Test set size or mutant set size  

b – Equivalent mutant set size  

c – Single Minimal DNF logic fault detection (innermost fault oval in Figure 1) 

d – Double Minimal DNF logic fault detection (innermost fault oval in Figure 1) 

e – Single logic fault detection regardless of format (center fault oval in Figure 1)  

f – General fault detection (outermost fault oval in Figure 1) 

 

Letter “f” is a special case in that no comparison between criteria or mutation 

approaches above is made. Instead letter “f” indicates how well tests that weakly kill all 

TRF-TIF mutants (and hence satisfy the Minimal-MUMCUT criterion) detect faults in 

general (both non-logic faults and logic faults without regards to predicate format). Since 

muJava is used to seed the general software faults, letter “f” is paired with number 4. 

Since SQLMutation is used to seed the general query faults, letter “f” is also paired with 

number 5.  
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Some pairings between number and letter are not applicable. MUMCUT and 

ACC/ICC are criteria for which equivalent mutant set size does not apply and thus there 

is no contribution 1b or 2b. Of MUMCUT, ACC/ICC, typical logic mutation, muJava and 

SQLMutation, only MUMCUT behaves differently depending on predicate format so 

there is no contribution 2e, 3e, 4e, or 5e. Table 5 displays a summary of the contributions. 

 

Table 5 Contribution Summary 

 Test / 

Mutant 

Set Size 

Equiv 

Mutant 

Set Size 

Single 

DNF 

Fault 

Detection 

Double 

DNF Fault 

Detection 

General 

Logic 

Fault 

Detection 

General 

Fault 

Detection 

MUMCUT 

(Chapter 5) 
1a [22] N/A 1c [19] 1d [20] 1e [22] N/A 

ACC/ICC 

(Chapter 6) 
2a [21] N/A 2c [24] 2d [21] N/A N/A 

Typical logic 

mutation 

(Chapter 8) 

3a [18] 3b [18] 3c [18] 3d [18] N/A N/A 

muJava 

(Chapter 9) 
4a [23] 4b [23] 4c [23] 4d [23] N/A 4f [23] 

SQLMutation 

(Chapter 10) 
5a [23] 5b [23] 5c [23] 5d [23] N/A 5f [23] 

 

The following subsections describe the contributions listed in Table 5 beginning with 

the top row and working downwards. That is, section 3.1 corresponds to the first row in 

Table 5, section 3.2 corresponds to the second row in Table 5 and so on. Each subsection 

gives the results of the contribution and how the contribution was obtained (the 

theoretical or empirical method used). In the case of empirical contributions, the results 

are given for the particular empirical subjects chosen. A general discussion of threats to 

validity appears at the end of this chapter. More detailed discussions on the empirical 
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studies, including more specific threats to validity where appropriate, appear in chapters 

5, 6 and 8-10. 

The contributions focus on reducing test set and mutant set size as well as increasing 

fault detection. In applications where testing is extremely expensive, reducing test set size 

or mutant set size by one can be valuable. In applications where testing is inexpensive, a 

large reduction in test set size or mutant set size may make little difference. In safety-

critical applications, missing detection of even a single fault can have drastic 

consequences. Conversely, in other types of applications, missing detection of many 

faults may have little impact on the user. To provide a uniform basis of evaluation, four 

levels of reduction in test/mutant set size (Table 6) and four levels of reduction in fault 

detection capability (Table 7) are used. The results are evaluated in the context of these 

levels. The goal is to decrease test set size or mutant set size and to increase fault 

detection capability.  

 

Table 6 Terms for Reduction in Test Set Size or Mutant Set Size  

Term Ratio of Test Set Size or Mutant Set Size to Size of Interest 

Unsubstantial (75%, 100%) 

Substantial (50%, 75%] 

Significant (10%, 50%] 

Very Significant (0%, 10%] 

 

The term unsubstantial will be used when test set size or mutant set size is reduced 

to between 75% (exclusive) and 100% (exclusive) of the size of interest, the term 

substantial will be used when test set size or mutant set size is reduced to between 50% 
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(exclusive) and 75% (inclusive) of the size of interest, the term significant will be used 

when test set size or mutant set size is reduced to between 10% (exclusive) and 50% 

(inclusive) of the size of interest and the term very significant will be used when test set 

size or mutant set size is reduced to between 0% (exclusive) and 10% (inclusive) of the 

size of interest.  

 

Table 7 Terms for Reduction in Fault Detection Capability 

Term Ratio of Number of Faults Detected to Number of Faults of Interest 

Small Minority [0%, 25%) 

Minority [25%, 50%) 

Majority [50%, 90%) 

Vast Majority [90%, 100%) 

 

 

The term small minority will be used when fault detection capability is between 0% 

(inclusive) and 25% (exclusive) of all faults of interest. The term minority will be used 

when fault detection capability is between 25% (inclusive) and 50% (exclusive) of all 

faults of interest, the term majority will be used when fault detection capability is 

between 50% (inclusive) and 90% (exclusive) of all faults of interest and the term vast 

majority will be used when fault detection capability is between 90% (inclusive) and 

100% (exclusive) of all faults of interest.  
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3.1 Contributions Comparing Minimal-MUMCUT with MUMCUT 

Contribution 1a Part I: 

For a sample of minimal DNF predicates with 5 or more unique literals, Minimal-

MUMCUT test set size is substantially less than MUMCUT test set size. 

Empirical result: Minimal-MUMCUT test set size was 64% of MUMCUT test set size. 

 

Contribution 1a Part II: 

For a sample of minimal DNF predicates with 5 or more unique literals, Union Minimal-

MUMCUT test set size is very significantly less than MUMCUT extension test set size. 

Empirical result: Union Minimal-MUMCUT test set size was 3% of MUMCUT 

extension test set size. 

 

Contribution 1c: 

For minimal DNF predicates, Minimal-MUMCUT tests and MUMCUT tests have the 

same guaranteed single logic fault detection (9 of 9 fault types in Lau and Yu’s fault 

hierarchy). 

 

Contribution 1d Part I: 

For minimal DNF predicates, Minimal-MUMCUT and MUMCUT tests have the same 

guaranteed double logic fault detection (84 of 92 double fault types in Lau and Yu’s fault 

hierarchy). 
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Contribution 1d Part II: 

For a sample of minimal DNF predicates with 5 or more unique literals, Minimal-

MUMCUT tests and MUMCUT tests actually detect the vast majority of the double logic 

faults that are not guaranteed to be detected. 

Empirical result: Minimal-MUMCUT tests and MUMCUT tests detected 99% of the 

double logic faults that are not guaranteed to be detected. 

 

Contribution 1e Part I: 

For the majority of predicates with at least 3 unique literals in a sample from avionics 

software, fault detection provided by Union Minimal-MUMCUT tests and MUMCUT 

tests is not compromised due to predicate format because the predicates are in minimal 

DNF, minimal CNF, or both. 

Empirical result: For 85% of the predicates, fault detection was not compromised for 

either Union Minimal-MUMCUT tests or MUMCUT tests. 

 

Contribution 1e Part II: 

Union Minimal-MUMCUT tests and MUMCUT tests detect the vast majority of logic 

faults for a sample of predicates with 5 or more unique literals when the minimal 

DNF/CNF assumption does not hold. 

Empirical result: Union Minimal-MUMCUT tests and MUMCUT tests detected 98% of 

the logic faults. 
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These contributions establish that the Minimal-MUMCUT criterion is more 

efficient than the MUMCUT criterion in that it reduces MUMCUT test set size while 

preserving MUMCUT logic fault detection for minimal DNF/CNF predicates. Similarly, 

these contributions establish that the Union Minimal-MUMCUT criterion is more 

efficient than the MUMCUT extension criterion in that it reduces MUMCUT extension 

test set size with minimal impact on logic fault detection for general form predicates.  

For contribution 1a Part I, Minimal-MUMCUT and MUMCUT test set size are 

compared for 19 predicates in avionics software. For contribution 1a Part II, Union 

Minimal-MUMCUT and MUMCUT extension test set size are compared for 10 general 

form predicates in avionics software. For contributions 1c and 1d Part I, proofs are given 

that Minimal-MUMCUT tests detect the same single and double fault types in Lau and 

Yu’s fault hierarchy as MUMCUT tests. For contribution 1d Part II, a proof is given 

relating criterion feasibility to the conditions under which double fault types can go 

undetected. For any double fault type that is not guaranteed to be detected, an empirical 

study is conducted in which all possible double faults that correspond to the double fault 

type are seeded into 19 predicates. It is then determined what percentage of these faults 

go undetected by Minimal-MUMCUT tests. For contribution 1e Part I, 20,256 predicates 

in avionics software are examined to determine the percentage in minimal CNF, minimal 

DNF, neither, or both. For contribution 1e Part II, 3570 non-equivalent faults are seeded 

into 10 general form predicates and for each fault, it is determined if a Union Minimal-

MUMCUT test set detects it. 
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3.2 Contributions Comparing Minimal-MUMCUT with RACC and RICC 

Contribution 2a: 

For a sample of minimal DNF predicates with 5 or more unique literals, RACC test set 

size is significantly smaller than Minimal-MUMCUT test set size. 

Empirical result: RACC test set size was 25% of Minimal-MUMCUT test set size. 

 

Contribution 2c Part I: 

For minimal DNF predicates, a test set that satisfies either RACC or RICC guarantees 

detection of 2 of the 9 single fault types in Lau and Yu’s fault hierarchy (ENF and TNF). 

 

Contribution 2c Part II: 

For a sample of minimal DNF predicates with 5 or more unique literals, RACC tests 

detect a minority of the minimal DNF single faults they are not guaranteed to detect. 

Empirical result: RACC tests detected 34% of all minimal DNF single faults they are not 

guaranteed to detect. 

 

Contribution 2d: 

For minimal DNF predicates, a test set that satisfies either RACC or RICC guarantees 

detecting 22 of the 92 double fault types in Lau and Yu’s fault hierarchy. 
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These contributions establish that although RACC/RICC test set size is less than 

Minimal-MUMCUT test set size, Minimal-MUMCUT tests detect more minimal DNF 

logic faults than RACC/RICC tests.  

For contribution 2a, RACC test set size and Minimal-MUMCUT test set size are 

compared for 19 predicates in avionics software. For contribution 2c Part I, RACC and 

RICC tests are created for some small predicates. Then faults are introduced into the 

predicates corresponding to the fault types in Lau and Yu’s fault hierarchy and it is 

determined which faults are detected by the tests. For contribution 2c Part II, a RACC 

test set is created for each of the 19 predicates mentioned above and all of the faults in 

Lau and Yu’s fault hierarchy are generated. Then, for each predicate, it is determined 

whether or not the tests detect each fault. For contribution 2d, the detection conditions for 

all double fault types in Lau and Yu’s fault hierarchy are analyzed in terms of which are 

guaranteed to be satisfied by a RACC test set and which are guaranteed to be satisfied by 

a RICC test set. 

3.3 Contributions Comparing TRF-TIF Logic Mutation with Typical Logic 

Mutation 

Contribution 3a: 

For software containing a sample of minimal DNF predicates with 5 or more unique 

literals, TRF-TIF mutant set size is very significantly smaller than typical logic mutant set 

size (where typical refers to a set of mutants that would be produced by a set of common 

mutation operators, most of which are specified by Ammann and Offutt [2]). 
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Empirical result: 6%. 

 

Contribution 3b: 

For software with minimal DNF predicates, a TRF-TIF mutant set contains the same 

number as or fewer weakly equivalent mutants than a typical logic mutant set (assuming 

any infeasible combinations of values of unique literals are specified). 

 

Contribution 3c Part I: 

For software containing minimal DNF predicates, tests weakly killing all TRF-TIF 

mutants are guaranteed to detect all 9 single fault types in Lau and Yu’s fault hierarchy 

while tests weakly killing all typical logic mutants are guaranteed to detect 7 of the 9 

single fault types in Lau and Yu’s fault hierarchy.  

 

Contribution 3c Part II: 

For software containing a sample of minimal DNF predicates with 5 or more unique 

literals, tests weakly killing all typical logic mutants detect the majority of the single 

faults in Kaminski and Ammann’s [18] extension to Lau and Yu’s fault hierarchy (as 

opposed to the 100% detection percentage by tests weakly killing all TRF-TIF mutants). 

Empirical result: Tests weakly killing all typical logic mutants detected 75% of the single 

faults. 
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Contribution 3d Part I: 

For software containing minimal DNF predicates, tests that weakly kill all TRF-TIF 

mutants and tests that weakly kill all typical logic mutants both are guaranteed to detect 

84 of the 92 double fault types in Lau and Yu’s fault hierarchy. 

 

Contribution 3d Part II: 

For the vast majority of minimal DNF predicates in software containing a sample of 

minimal DNF predicates with 5 or more unique literals, tests that weakly kill all TRF-TIF 

mutants will guarantee detection of 91 of the 92 double fault types in Lau and Yu’s fault 

hierarchy but tests that weakly kill all typical logic mutants will actually detect only 84 of 

the 92 double fault types. 

Empirical result: For 100% of the predicates, this was the case. 

  

These contributions establish that using TRF-TIF logic mutation instead of typical 

logic mutation reduces mutant set size and equivalent mutant set size while at the same 

time guaranteeing more minimal DNF/CNF logic faults are detected. Typical logic 

mutation refers to a mutation approach that includes a common set of logic mutation 

operators, most of which are specified by Ammann and Offutt [2].  

For contribution 3a, TRF-TIF mutant set size and typical logic mutant set size for a 

program containing 19 minimal DNF predicates is compared. For contribution 3b, the 

mutation operators in TRF-TIF logic mutation and typical logic mutation are analyzed in 

terms of producing equivalent faults. It is shown that TRF-TIF logic mutation can 
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automatically detect weakly equivalent logic mutants. For contribution 3c Part I, tests that 

kill all typical logic mutants are theoretically analyzed in terms of which fault types they 

guarantee detecting in Lau and Yu’s fault hierarchy. For contribution 3c Part II, all faults 

in Kaminski and Ammann’s [18] expanded fault hierarchy are seeded into 19 predicates. 

It is shown how many faults are detected by a test that weakly kills all TRF-TIF mutants 

and by a test that weakly kills all typical logic mutants. For contribution 3d Part I, tests 

killing all typical logic mutants are theoretically analyzed in terms of which double fault 

types they guarantee detecting in Lau and Yu’s fault hierarchy. For contribution 3d Part 

II, it is determined which double faults will be detected by tests weakly killing all TRF-

TIF mutants for a program with 19 predicates. For the same program, it is shown which 

double faults are actually detected by tests weakly killing all typical logic mutants.  

3.4 Contributions comparing TRF-TIF Logic Mutation with muJava 

Contribution 4a Part I: 

For a sample of Java programs having a Unique Literals Ratio greater than 0.10, TRF-

TIF mutant set size is significantly less than muJava general mutant set size (the mutant 

set size of all muJava mutants). 

Empirical result: TRF-TIF mutant set size was 14% of muJava general mutant set size. 
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Contribution 4a Part II: 

For a sample of minimal DNF predicates with 5 or more unique literals, TRF-TIF mutant 

set size is significantly less than muJava logic mutant set size (the mutant set size of all 

muJava logic mutants). 

Empirical result: TRF-TIF mutant set size was 25% of muJava logic mutant set size. 

 

Contribution 4b: 

For a sample of Java programs having a Unique Literals Ratio greater than 0.10, strongly 

equivalent TRF-TIF mutant set size is significantly less than strongly equivalent muJava 

mutant set size. 

Empirical result: Strongly equivalent TRF-TIF mutant set size was 13% of strongly 

equivalent muJava mutant set size. 

 

Contribution 4c: 

For software containing minimal DNF predicates, tests weakly killing all muJava mutants 

are guaranteed to detect 5 of the 9 single fault types in Lau and Yu’s fault hierarchy. 

 

Contribution 4d: 

For software with minimal DNF predicates, tests weakly killing all muJava mutants are 

guaranteed to detect fewer double fault types in Lau and Yu’s fault hierarchy than 

Minimal-MUMCUT tests. 
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Contribution 4f: 

For a sample of Java programs having a Unique Literals Ratio greater than 0.10, tests 

weakly killing all TRF-TIF mutants strongly kill the vast majority of strongly non-

equivalent muJava mutants. 

Empirical result: Tests weakly killing all TRF-TIF mutants strongly killed 90% of 

strongly non-equivalent muJava mutants. 

 

These contributions establish that using TRF-TIF logic mutation instead of muJava 

reduces mutant set size and equivalent mutant set size while at the same time 

guaranteeing more minimal DNF/CNF logic faults are detected. Also, they establish that 

tests that weakly kill all TRF-TIF mutants detect a high percentage of non-logic software 

faults.  

For contribution 4a Part I, TRF-TIF mutant set size and muJava general mutant set 

size are evaluated for 30 small Java programs and 1 larger Open Source Software Java 

program. MuJava general mutant set size is the number of all muJava mutants (both logic 

and non-logic). For contribution 4a Part II, TRF-TIF mutant set size and muJava logic 

mutant set size for 19 minimal DNF predicates are compared. For contribution 4b, the 

number of strongly equivalent mutants in the TRF-TIF mutant set and muJava mutant set 

are determined manually for each of the small programs. For contributions 4c and 4d, 

proofs are given showing what single and double fault types in Lau and Yu’s hierarchy 

such a muJava test set is guaranteed to detect. For contribution 4f, tests that weakly kill 

all TRF-TIF mutants are created for each program used in contribution 4a Part I. For each 
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small program, it is determined what percentage of the strongly non-equivalent muJava 

mutants are strongly killed by the tests. For the larger program, it is determined what 

percentage of the muJava mutants are weakly killed by the tests, assuming 10% of the 

muJava mutants are weakly equivalent [23].  

3.5 Contributions comparing TRF-TIF Logic Mutation with SQLMutation 

Contribution 5a: 

For a sample of queries having minimal DNF WHERE clauses with 3 or more unique 

literals, TRF-TIF mutant set size is very significantly less than SQLMutation mutant set 

size. 

Empirical result: TRF-TIF mutant set size was 2% of SQLMutation mutant set size. 

 

Contribution 5b: 

For queries having minimal DNF WHERE clauses with 3 or more unique literals, 

equivalent TRF-TIF mutant set size is very significantly smaller than SQLMutation 

mutant set size assuming a complete Boolean space. 

Empirical result: TRF-TIF mutant set size was 0% of SQLMutation mutant set size. 

 

Contribution 5c: 

For queries having minimal DNF WHERE clauses, tests weakly killing all SQLMutation 

mutants are guaranteed to detect 2 of the 9 single fault types in Lau and Yu’s fault 

hierarchy. 
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Contribution 5d: 

For queries having minimal DNF WHERE clauses, tests weakly killing all SQLMutation 

mutants are guaranteed to detect 22 of the 92 double fault types in Lau and Yu’s fault 

hierarchy. 

 

Contribution 5f Part I: 

For a sample of queries having minimal DNF WHERE clauses with 3 or more unique 

literals, tests killing all TRF-TIF mutants kill the vast majority of non-equivalent 

SQLMutation mutants. 

Empirical result: Tests killing all TRF-TIF mutants killed 90% of non-equivalent 

SQLMutation mutants. 

Contribution 5f Part II: 

For a sample of queries having minimal DNF WHERE clauses with 3 or more unique 

literals, tests killing all TRF-TIF mutants kill 10 times as many SQLMutation mutants as 

a randomly generated test set of the same size. 

Empirical result: Tests killing all TRF-TIF mutants killed 20 times as many 

SQLMutation mutants as a test set generated randomly of the same size. 

 

These contributions establish that using TRF-TIF logic mutation instead of 

SQLMutation reduces mutant set size and equivalent mutant set size while at the same 

time guaranteeing more minimal DNF/CNF logic faults are detected. Also, they establish 
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that tests that weakly kill all TRF-TIF mutants detect a high percentage of non-logic 

query faults.  

For contribution 5a, TRF-TIF mutant set size and SQLMutation mutant set size are 

evaluated for 10 queries from an open source project. Each query has at least 4 unique 

literals in its minimal DNF WHERE clause. For contribution 5b, the number of 

equivalent mutants in the TRF-TIF mutant set is determined manually and the number of 

equivalent mutants in the SQLMutation mutant is estimated (as given by the 

SQLMutation tool author). Results of contributions 2c Part I and 2d are used to confirm 

contributions 5c and 5d respectively, as SQLMutation is based on CACC. For 

contribution 5f Part I, tests that weakly kill all TRF-TIF mutants are created for each 

query used in Contribution 5a. For each query, it is determined what percentage of the 

non-equivalent SQLMutation mutants are killed by the tests, assuming that 6% to 8% of 

the SQLMutation mutants are equivalent [23]. For contribution 5f Part II, a random test 

set generated by Tuya et al. [42] is selected for 6 of the 10 queries [42]. For each query, it 

is determined what percentage of the SQLMutation mutants are killed by the random test 

sets.  

3.6 General Threats to Validity 

A general threat to validity for all of the empirical studies is that it cannot be 

claimed that the predicates, software and queries selected are representative samples from 

a population. Also, sample size was fairly small. Thus, formal claims of significance 

cannot be made. For example, much of the empirical research regarding the logic 
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coverage criteria comparisons was performed on a sample of 19 predicates extracted from 

avionics traffic collision avoidance software. For software mutation testing, empirical 

results were based primarily on a sample of utility methods extracted from the Java API. 

For query mutation testing, empirical results were based on a sample of 10 queries 

extracted from an Open Source project. A positive aspect is that if future research 

performed by others using different predicates, software and queries obtains similar 

results, the conclusions are strengthened.  

The rest of the dissertation is organized as follows. Chapter 4 provides an overview 

of the Minimal-MUMCUT criterion. Chapter 5 presents results comparing the Minimal-

MUMCUT criterion with the MUMCUT criterion. Chapter 5 corresponds to row 1 in 

Table 5 and each section in Chapter 5 corresponds to a column in Table 5. Chapter 6 

presents results comparing the Minimal-MUMCUT criterion with the RACC and RICC 

criteria. Chapter 6 corresponds to row 2 in Table 5 and each section in Chapter 6 

corresponds to a column in Table 5. Chapter 7 provides an overview of TRF-TIF logic 

mutation. Chapter 8 presents results comparing TRF-TIF logic mutation with typical 

logic mutation. Chapter 8 corresponds to row 3 in Table 5 and each section in Chapter 8 

corresponds to a column in Table 5. Chapter 9 presents results comparing TRF-TIF logic 

mutation with muJava. Chapter 9 corresponds to row 4 in Table 5 and each section in 

Chapter 9 corresponds to a column in Table 5. Chapter 10 presents results comparing 

TRF-TIF logic mutation with SQLMutation. Chapter 10 corresponds to row 5 in Table 5 

and each section in Chapter 10 corresponds to a column in Table 5. Chapter 11 discusses 

conclusions. 
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4 The Minimal-MUMCUT Criterion  
 

 

Logic coverage criteria exist that require small test set size, but they do not guarantee 

detection of common logic faults. Conversely, logic coverage criteria exist that guarantee 

detection of common logic faults, but these criteria require a large test set size. Part of the 

reason for this is that current logic coverage criteria (such as the MUMCUT criterion) do 

not handle infeasibility efficiently, which in turn results in unnecessary tests in that all 

faults in Lau and Yu’s fault hierarchy can still be detected even when one or more tests 

are removed. The Minimal-MUMCUT criterion improves on the MUMCUT criterion by 

using feasibility analysis to remove tests yet still guarantee fault detection.  

The term Minimal in Minimal-MUMCUT is used to refer to the fact that if any test 

in a Minimal-MUMCUT test set is removed, fault detection is sacrificed for the fault 

types in Lau and Yu’s fault hierarchy. This is different than the term minimized which 

implies that the test set size is as small as possible. Thus, for the Minimal-MUMCUT test 

sets created, it may be possible to construct a smaller test set that satisfies Minimal-

MUMCUT. However, it is guaranteed that if even a single test is removed from a 

Minimal-MUMCUT test set, fault detection will be sacrificed for the fault types in Lau 

and Yu’s fault hierarchy. 

The rest of this chapter is organized as follows. The remainder of section 4.1 

describes the algorithm used to generate a Minimal-MUMCUT test set given a minimal 
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DNF predicate and then updates the subsumption hierarchy in Figure 3 in section 2.2 and 

the logic coverage criteria summary in Table 4 in section 2.2 to include the Minimal-

MUMCUT criterion. Section 4.2 discusses Minimal-MUMCUT test set size and the close 

relation between test set size, feasibility and LRF detection. Sections 4.3 and 4.4 describe 

single and double minimal DNF fault detection of the Minimal-MUMCUT criterion, 

respectively. Section 4.5 describes general logic fault detection of the Minimal-

MUMCUT criterion when the minimal DNF assumption fails to hold. 

4.1 Overview of the Minimal-MUMCUT Criterion 

Figure 4 below gives a visual description of the algorithm used to build a Minimal-

MUMCUT test set for minimal DNF predicates.  The dashed arrows mean “Yes” and the 

dotted arrows mean “No”. 

 

 

Figure 4 Minimal-MUMCUT Test Set Construction [19] 
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The algorithm below defines the Minimal-MUMCUT criterion for minimal DNF 

predicates as specified by Kaminski and Ammann [19]: 

Minimal-MUMCUT Test Generation Algorithm 
for each term X 

    generate MUTP tests for X 

    if the MUTP criterion is infeasible* for X 

       for each literal x in X          

          generate PCUTPNFP tests for x  

          if the PCUTPNFP** criterion is infeasible for x, generate MNFP tests for x  

       end for 

    else generate an NFP for each literal x in X to overlap NFPs*** 

end for 

 

* The MUTP criterion is infeasible for a term X if and only if an equivalent LIF exists by 

inserting some literal y into term X. Thus, to determine MUTP criterion feasibility, an 

exclusive-OR algorithm is used to evaluate all possible LIFs for equivalency. If the result 

of the exclusive-OR between the original predicate and the predicate with the LIF is 

FALSE, then the LIF is equivalent and the MUTP criterion is infeasible. However, for 

the algorithm above, the MUTP criterion is considered to be feasible for term X even 

when an equivalent LIF occurs by inserting literal y into term X as long as term X is a 

single-literal term or literal y occurs in a single-literal term. For example, in ab + c, the 

MUTP criterion is infeasible for term ab as literal c must be FALSE in a UTP for term 

ab. Thus, ab~c + c represents an equivalent LIF. However, the MUTP criterion is still 

considered feasible for term ab for the algorithm since literal c is in a single-literal term.  

 

** The PCUTPNFP criterion is infeasible for literal x if and only if an equivalent LRF 

results by replacing x in term X with some literal y. Thus, to determine PCUTPNFP 

feasibility an exclusive-OR algorithm is used to evaluate all LRFs for equivalency. If the 

result of the exclusive-OR between the original predicate and the predicate with the LRF 

is FALSE, then the LRF is equivalent and the PCUTPNFP criterion is infeasible.  

 

*** Overlapping NFPs is a set covering combinatorial optimization problem known to be 

NP-complete. An heuristic is used in the algorithm above to approximate minimizing the 

number of NFPs generated. An example of an optimization model is in Appendix A. 

   

As an example of satisfying the Minimal-MUMCUT criterion, consider the predicate 

ab + cd. 1101 and 1110 are UTPs for ab and the MUTP criterion is feasible for ab. 0101 

and 1010 are NFPs for a and b, respectively. 0111 and 1011 are UTPs for cd and the 
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MUTP criterion is feasible for cd. 0101 and 1010 are NFPs for c and d, respectively. A 

test set is {1101, 1110, 0101, 1010, 0111, 1011}. The Minimal-MUMCUT criterion 

reduces test set size by overlapping NFPs when possible and only producing PCUTPNFP 

and MNFP tests when necessary on a literal-by-literal basis. Figure 5 updates the 

subsumption hierarchy shown in Figure 3 in section 2.2 to include the Minimal-

MUMCUT criterion and Table 8 summarizes key aspects of the Minimal-MUMCUT 

criterion. 

 

 

Figure 5 Updated Subsumption Hierarchy with Minimal-MUMCUT [19] 

 

MAX-B 

MAX-A 

MUMCUT 

RICC 

GICC MNFP 

CUTPNFP Minimal-

MUMCUT 

RACC 

CACC 

GACC 

MUTP 

PCUTPNFP 

UTPC 

MUTP/NFP 



 

59 

Table 8 Minimal-MUMCUT Logic Coverage Criterion Summary [19] 

 

Test 

Name 

Test 

Type 

Guaranteed 

Faults 

Detected 

Subsumes Subsumed by Minimum Test Size 
Maximum Test 

Size 

Minimal-

MUMCUT  
Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF., ORF+, 

LOF, LIF, LRF 

MUTP/NFP, 

MUTP, 

CACC, 

GACC 

MUMCUT, 

MAX-A, MAX-B 

m + 1 to 2m + 1 

where m is the 

number of terms  

Uncertain, but less 

than  

2m(n-1) +
mn

2

2
  

where m is the 

number of terms and 

n is the number of 

literals  

 

 

4.2 Test Set Size 

This section describes minimum and maximum Minimal-MUMCUT test set size 

in theory and in practice. It is also shown in this section how test set size is related to 

criterion feasibility and LRF detection.  

The Minimal-MUMCUT criterion always requires selecting test cases to satisfy 

the MUTP criterion. Minimal-MUMCUT also requires tests to satisfy either single NFP 

coverage for any given literal (least expensive), PCUTPNFP for any given literal, or 

MNFP for any given literal (most expensive), depending on criterion feasibility. The tests 

for MUTP and the tests involving an NFP will have no tests that overlap since for MUTP, 

all tests evaluate to TRUE and for any test involving an NFP, the test evaluates to 

FALSE. This allowed test set size for Minimal-MUMCUT to be established [24] as 

described next. 

The maximum number of tests for Minimal-MUMCUT is simply the maximum 

number of tests for MUTP + the maximum number of test cases for MNFP. The 

maximum number of tests for MUTP is 2m(n-1) and the maximum number of tests for 
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MNFP is  ½ 2
mn , where m is the number of terms and n is the total number of literals 

(not the number of unique literals) [24]. Thus, maximum test set size of Minimal-

MUMCUT is 2m(n-1)+ ½ 2
mn . 

The minimum number of tests for Minimal-MUMCUT is simply the minimum 

number of tests for MUTP + the minimum number of tests for NFP coverage, or m + 1. 

The minimum test size of m + 1 will arise when the predicate has one literal for each 

term, such as a + b + c. In this case, there are three terms so the minimum number of 

tests is four. Three of these tests come from MUTP: (100, 010, 001) and one comes from 

a single NFP: 000.  

Chen, Lau and Yu [8] evaluated MUMCUT test set size (using the greedy MUTP 

algorithm developed by Chen and Lau [6]) for 19 minimal DNF predicates from an air 

traffic collision avoidance system (TCAS). There were originally 20 predicates but 

number 12 was excluded due to a missing a right parenthesis detected by Weyuker et al. 

[46]. The predicates have from 5 to 13 unique literals (see Appendix B). Kaminski and 

Ammann [19] created Minimal-MUMCUT tests for each predicate and assessed MUTP 

feasibility for each term and PCUTPNFP feasibility for each literal. The Minimal-

MUMCUT algorithm presented earlier was implemented in Java to obtain the results. 

The results showed that the PCUTPNFP criterion was feasible for every literal (853 

of them), so the expensive MNFP tests were not needed for any literal. For 204 literals 

(23.92%), the MUTP criterion was feasible for the literal’s term and thus MUTP tests 

detect an LRF, meaning the less expensive approach of requiring NFP tests instead of 

PCUTPNFP tests is used. For the other 649 literals (76.08%), PCUTPNFP tests were 
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needed to detect an LRF. For four predicates, the MUTP criterion was feasible for every 

term, so PCUTPNFP tests were not needed for any literal for these four predicates. For 

16 predicates, the MUTP criterion was feasible for at least one term. Thus, PCUTPNFP 

tests were not needed for literals in at least one term in most predicates. On average, 

Minimal-MUMCUT test set size was 2.40% of exhaustive test set size. Table 9 displays 

feasibility and LRF detection results and Table 10 displays test set size results.  

 

 

Table 9 Criterion Feasibility and LRF detection [19] 

 

Predicate 

Number of 

terms that 

are MUTP 

feasible 

Number of 

terms that 

are MUTP 

infeasible 

Number of 

literals for 

which MUTP 

detects LRF 

Number of literals 

needing 

PCUTPNFP to 

detect LRF 

1 1 4 5 24 

2 4 9 33 72 

3 2 23 10 136 

4 1 2 1 6 

5 1 8 1 27 

6 2 4 22 36 

7 4 4 28 32 

8 4 0 32 0 

9 2 0 14 0 

10 0 6 0 60 

11 1 8 6 57 

*12 N/A N/A N/A N/A 

13 0 6 0 14 

14 0 6 0 16 

15 1 10 2 30 

16 1 22 2 85 

17 2 4 8 24 

18 2 6 8 30 

19 4 0 20 0 

20 2 0 12 0 

     

Sum 34 122 204 649 

* number 12 excluded due to a missing a right parenthesis 
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Table 10 Minimal-MUMCUT Test Set Size [19] 

 

Predicate 

Minimal-

MUMCUT 

[19] 

2
n
 

Percentage 

1 27 128 21.09% 

2 81 512 15.82% 

3 148 4096 3.61% 

4 9 32 28.13% 

5 34 512 6.64% 

6 62 2048 3.03% 

7 62 1024 6.05% 

8 36 256 14.06% 

9 16 128 12.50% 

10 62 8192 0.76% 

11 61 8192 0.74% 

12 N/A N/A N/A 

13 17 4096 0.42% 

14 22 128 17.19% 

15 39 512 7.62% 

16 104 4096 2.54% 

17 39 2048 1.90% 

18 48 1024 4.69% 

19 16 256 6.25% 

20 14 128 10.94% 

    

Sum 897 37,408  

    

Avg 47.21 1968.84 2.40% 

 

4.3 Single Minimal DNF Fault Detection 

 This section focuses on the single minimal DNF fault detection capability of the 

Minimal-MUMCUT criterion. It highlights how criterion feasibility is linked to 

equivalent faults and fault detection, with a special focus on the LIF and the LRF.  

Any logic coverage criterion that includes at least one UTP for each term and one 

NFP for each literal is guaranteed to detect all fault types in Lau and Yu’s fault hierarchy 
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except for the LIF and the LRF [30]. The Minimal-MUMCUT criterion meets this 

requirement. To understand why a test set that satisfies the Minimal-MUMCUT criterion 

also guarantees LIF and LRF detection for a minimal DNF predicate, it is important to 

first understand criterion feasibility and equivalent faults. 

The LIF can result in an equivalent fault in that no input can distinguish the 

original predicate from the faulty version. For example, consider ab + bc and the LIF 

where ~c is inserted into the first term to yield ab~c + bc. This is an equivalent LIF 

because the original predicate and faulty predicate evaluate to the same value for all 

inputs. To make term ab true and term ab~c false, the point 111 can be used, but doing so 

makes term bc true in each predicate. AN LIF will be equivalent if and only if the MUTP 

criterion is infeasible. The MUTP criterion is infeasible for term ab as literal c must be 0 

in a UTP for term ab. The LRF can also result in an equivalent fault. For example, 

consider ab + b~c + ~bc and the LRF where literal c replaces literal b in the first term to 

yield ac + b~c + ~bc. To make term ab true and term ac false, the point 110 can be used, 

but doing so makes term b~c true in each predicate. To make term ab false and term ac 

true, the point 101 can be used, but doing so makes term ~bc true in each predicate. AN 

LRF will be equivalent if and only if the PCUTPNFP criterion is infeasible (which also 

means that the CUTPNFP criterion is infeasible). The PCUTPNFP criterion is infeasible 

for literal b in term ab as the only UTP for term ab is 111 and the only NFP for literal b 

in term ab is 100 which differs from the UTP of 111 in both the value of b and c (c must 

be 1 in a UTP for term ab). 



 

64 

The condition for detecting an LIF is as follows as specified by Lau and Yu [30]. 

If some literal not intended to be in term X is inserted into X as itself or as its negation, 

then a set of UTPs for X, where all literals not in X attain the values 0 and 1, detects the 

fault. MUTP tests are guaranteed to detect an LIF. However, when the MUTP criterion is 

infeasible, an LRF exists that MUTP tests may not detect. Consider ab + ac + bc and an 

LIF producing ab~c + ac + bc. The MUTP criterion is infeasible for ab as the only UTP 

for ab is 110. Therefore, MUTP tests do not detect the corresponding LRFs: ~cb + ac + 

bc and a~c + ac + bc.  

MUTP tests are guaranteed to detect an LRF for a literal if the MUTP criterion is 

feasible for that literal’s term. In this case, it is only necessary to satisfy the MUTP 

criterion and the NFP criterion (an NFP for each literal in the term) to guarantee detecting 

all fault types in Lau and Yu’s fault hierarchy for that term [24]. Thus, neither the 

PCUTPNFP nor the MNFP criterion is needed for literals in a MUTP feasible term to 

detect LRFs for literals in that term. The NFP for a literal in a MUTP feasible term can 

overlap with NFPs for other literals in other terms since any NFP for a literal detects an 

LOF for that literal. If a term is MUTP infeasible but all literals in the predicate external 

to that term that cannot be 0 or 1 in a UTP for the term exist in single-literal terms, LRF 

detection is still guaranteed by MUTP tests. The reason is that an LRF involving 

replacing a literal with a literal (or its negation) that exists in a single-literal term results 

in a TOF, LOF, or a TRUE predicate. Since a UTP guarantees detection of a TOF and an 

NFP guarantees detecting an LOF or a fault where the predicate is stuck at 1, MUTP tests 

supplemented with NFPs guarantee LRF detection. For example, in a + b, replacing a 
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with b results in a TOF for a and replacing a with ~b makes the predicate TRUE. In ab + 

c, replacing a with c results in a TOF for ab and replacing a with ~c results in an LOF for 

a. 

The condition for detecting an LRF is as follows as specified by Lau and Yu [30] 

and Kaminski and Ammann [22]. If literal x in X is wrongly implemented as some other 

literal or the negation of some other literal not in X, then any of the following detects the 

fault: a set of UTPs for X where all literals not in X attain the values 0 and 1; a set of 

NFPs for x where all literals not in X attain the values 0 and 1; a UTP-NFP pair where the 

points differ only in the value of x and possibly in the values of all literals that can be 0 or 

1 in a UTP for term X. The PCUTPNFP criterion is designed to produce tests that detect 

an LRF but fails to do so when it is infeasible. However, when the PCUTPNFP criterion 

is infeasible, MNFP tests can be added to guarantee LRF detection. Thus, only when both 

the MUTP criterion is infeasible and the PCUTPNFP criterion is infeasible are MNFP 

tests needed to guarantee LRF detection. Consider abc + abd + ~b~d + ~de. The 

PCUTPNFP criterion is infeasible for b in abc. The only UTP for abc is 11100 so the 

only way to try to satisfy the PCUTPNFP is to satisfy the CUTPNFP criterion. A 

corresponding NFP of 10100 is not possible for b in abc because this is a TRUE point. 

Now consider the LRF a~ec + abd + ~b~d + ~de. Since the PCUTPNFP criterion is 

infeasible for b in abc, this LRF goes undetected by PCUTPNFP tests. A single NFP for 

b in abc is not guaranteed to detect the LRF either. The point 10111 is an NFP for b in 

abc, but this point fails to detect the LRF. The MNFP criterion requires that the NFP 

10110 be chosen for b in abc, detecting the LRF.  
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Figure 6 displays Lau and Yu’s Fault Hierarchy modified based on how criterion 

feasibility affects fault detection as indicated by Kaminski and Ammann [19]. A solid 

arrow from a source fault to a destination fault indicates that if a test detects a source 

fault, it also detects a corresponding destination fault. When the MUTP criterion is 

infeasible, a test set detecting all LIFs is not guaranteed to detect all LRFs. Thus the solid 

arrow between the LIF and LRF in Lau and Yu’s hierarchy is changed to a dashed arrow. 

In Lau and Yu’s hierarchy no arrow exists between the LRF and LOF. A dashed arrow is 

added to represent that when guaranteeing detection of all LIFs does not guarantee 

detection of all LRFs (due to MUTP infeasibility), adding tests to detect the undetected 

LRFs will detect all corresponding LOFs (unless the PCUTPNFP criterion is infeasible). 

The reason is that when the MUTP criterion is infeasible but the PCUTPNFP criterion is 

feasible, a UTP will not detect an LRF but a corresponding NFP will. Since the Minimal-

MUMCUT criterion always requires MUTP tests, the LIF is guaranteed to be detected. 

Since the Minimal-MUMCUT requires (1) PCUTPNFP tests when the MUTP criterion is 

infeasible and the PCUTPNFP criterion is feasible and (2) MNFP tests when the 

PCUTPNFP criterion is infeasible, LRF detection is guaranteed. 
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Figure 6 Fault Hierarchy Based on Infeasibility [19] 

 

4.4 Double Minimal DNF Fault Detection  

A double minimal DNF fault occurs in a predicate when two faults represented in 

the fault types in Figure 6 are introduced. This section focuses on the double minimal 

DNF fault detection capability of the Minimal-MUMCUT criterion. It highlights how 

criterion feasibility is linked to double fault detection, with a special focus on a double 

fault involving two LIFs.  

Any two single faults in Lau and Yu’s hierarchy can be combined to form a double 

fault. Lau, Liu and Yu [27, 28, 29] show that 92 double fault types exist when 

considering order and the different semantic versions that can occur. The reason why 92 

double fault types exist (as opposed to 81) is that different semantic versions occur 

depending on whether or not both faults occur in the same or different terms. However, 

order only causes a semantic difference in double fault types for eight cases. This is 

because some ordered double fault types are equivalent to each other. Some examples are 

given next. 

 LOF 

ORF. 

 LRF 

 LNF 

 TNF 

 ENF 

 LIF 

TOF 

ORF+ 
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Consider the expression ab + cd + ef and the LNF where literal a is negated and 

the TNF where the second term is negated. Whether or not the LNF or TNF occurs first 

does not matter as both result in ~ab + ~(cd) + ef. Now consider the LIF where literal e is 

inserted into term ab and the TNF where the first term is negated. If the LIF occurs first, 

the result is ~(abe) + cd + ef. If the TNF occurs first, the result is ~(ab)e + cd + ef, which 

is semantically different. Furthermore, certain double fault types result in different 

versions depending on whether the faults occur in the same or different terms. For 

example, a double fault where two LRFs occur in the same term can be considered 

different than a double fault where two LRFs occur in different terms.  

The result is that there are 92 double fault types when considering order and 

versions, 82 double fault types when considering versions but not ordering, 53 double 

fault types when considering order but not versions and 45 double fault types when 

considering neither order nor versions [27, 28, 29]. In addition to negating the entire 

predicate, Lau et al. [27, 28, 29] consider the ENF to include negating the disjunction of 

two or more terms (meaning changing ab + cd + ef to ab + ~(cd + ef)). This definition 

prevents the ENF-ENF double fault from resulting in a faulty predicate that is equivalent 

semantically to the original predicate.  

Lau et al. [27, 28, 29] state that BASIC tests (selecting a UTP for each term and an 

NFP for each literal) detect all but 8 of the 92 types when considering order and versions 

and all but 6 of the 45 types when considering neither order nor versions. The Minimal-

MUMCUT criterion subsumes the BASIC criterion, but it does not subsume the 

additional criteria proposed by Lau et al. [27, 28, 29] needed to guarantee detection of all 
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double fault types. Below are the eight double fault types that Minimal-MUMCUT tests 

are not guaranteed to detect as specified by Kaminski and Ammann [20].  

 

1. TOF-LRF: 

Intended: ~a~b + ab + cd + ~c~d  

Actual:     ab + ad + ~c~d  

 

2. ORF.-LRF where faults occur in different terms: 

Intended: ~a~b + ab + cd  + ~c~d  

Actual:     ~a~b + abcd + a~d  

 

3. LOF-LRF where faults occur in same term: 

Intended: abc + abd  

Actual:     dc + abd  

 

4. LIF-LIF where faults occur in different terms: 

Intended: ab + bc 

Actual:     ab~c + bc~a  

 

5a. LIF-LRF where faults occur in different terms: 

Intended: abc   + cde 

Actual:     abcd + cbe 

 

5b. LIF-LRF where faults occur in same term: 

Intended: abc + cde 

Actual:     abde + cde 

 

6a. LRF-LRF where faults occur in different terms: 

Intended: abcd + abef 

Actual:     ebcd + acef  

 

6b. LRF-LRF where faults occur in same term: 

Intended: abcd + abef 

Actual:     efcd + abef   

 

Kaminski and Ammann [20] prove that if the MUTP criterion is feasible for a 

term, Minimal-MUMCUT tests guarantee detecting all double faults involving that term 

or literals in that term. This proof was done by taking the conditions needed for double 
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fault detection as specified by Lau et al. [27, 28, 29], translating them in terms of 

criterion feasibility and then showing that if the MUTP criterion is feasible, the eight 

fault types mentioned above can all be detected by a MUTP test set.  

Kaminski and Ammann [20] also prove that if the MUTP criterion is infeasible 

for a term, but the CUTPNFP criterion is feasible for a literal in the term (and hence the 

PCUTPNFP criterion is also feasible), Minimal-MUMCUT tests guarantee detection of 

all double faults for the literal and term, except the LIF-LIF. This proof was done by 

observing that when the MUTP criterion is infeasible for a term, the Minimal-MUMCUT 

criterion subsumes the PCUTPNFP criterion for each literal in that term. The proof 

establishes that that when the PCUTPNFP criterion is feasible, PCUTPNFP tests detect 

the eight double fault types mentioned above except the LIF-LIF.  

Kaminski and Ammann [20] also prove that if the PCUTPNFP criterion is 

infeasible for a literal, Minimal-MUMCUT tests guarantee detecting all but eight double 

fault types. This proof is accomplished by first proving valid and invalid feasibility 

combinations amongst the MUTP, PCUTPNFP and MNFP criteria. These combinations 

are displayed in Table 11. 

 

 

Table 11 Criterion Feasibility Combinations [20] 

 

Row 
MUTP 

feasible 

PCUTPNFP 

feasible 

MNFP 

feasible 
Valid 

1 No No No Yes 

2 No No Yes No 

3 No Yes No Yes 

4 No Yes Yes No 

5 Yes No No No 

6 Yes No Yes No 
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Row 
MUTP 

feasible 

PCUTPNFP 

feasible 

MNFP 

feasible 
Valid 

7 Yes Yes No Yes 

8 Yes Yes Yes Yes 

 

 

From Table 11, when the PCUTPNFP criterion is infeasible for a literal, the 

MUTP criterion is infeasible for that literal’s term, so MUTP tests do not guarantee 

detecting any of the eight double fault types BASIC tests do not guarantee detecting. 

Also from Table 11, when the PCUTPNFP criterion is infeasible for a literal, the MNFP 

criterion is infeasible for that literal, so MNFP tests do not guarantee detecting any of the 

eight double fault types BASIC tests do not guarantee detecting. So if the PCUTPNFP 

criterion is infeasible, the eight double fault types that BASIC tests do not guarantee 

detecting are not guaranteed to be detected by Minimal-MUMCUT tests. Table 12 

summarizes these results. 

 

 

Table 12 Double Fault Detection of Minimal-MUMCUT Tests Based on Criterion 

Feasibility [20] 
 

Row 
MUTP 

feasible 

PCUTPNFP 

feasible 

MNFP 

feasible 

Double Fault 

Types Missed 

1 No No No 8 

2 No No Yes N/A 

3 No Yes No 1 

4 No Yes Yes N/A 

5 Yes No No N/A 

6 Yes No Yes N/A 

7 Yes Yes No 0 

8 Yes Yes Yes 0 
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Table 12 indicates that for a Minimal-MUMCUT test set:  

1) If the MUTP criterion is feasible for a term, all double faults involving the term or its 

literals are detected.  

2) If the MUTP criterion is infeasible for a term, but the PCUTPNFP criterion is feasible 

for a literal in that term, all but one double fault type (the LIF–LIF) involving that literal 

or that literal’s term is detected. 

3) If the PCUTPNFP criterion is infeasible for a literal, all but eight double fault types 

involving that literal or that literal’s term are detected.  

The above results indicate that the LIF-LIF is the most common double fault to be 

undetected by the Minimal-MUMCUT criterion because it will go undetected whenever 

the MUTP criterion is infeasible. To evaluate how often Minimal-MUMCUT tests are 

likely to miss detecting the eight double fault types in practice, an empirical evaluation 

was performed using the same sample of 19 predicates described in chapter 4 as well as 

an additional sample of 275 minimal DNF predicates (each containing at least 5 unique 

literals) in avionics software. Although the MUTP criterion was not feasible for every 

term in these predicates, the PCUTPNFP criterion was feasible for every literal in every 

predicate (for both the 19 original predicates and for the additional 275 predicates). Thus, 

Minimal-MUMCUT tests detected all double fault types except the LIF-LIF for all of 

these predicates. For the additional 275 predicates, the MUTP criterion was feasible for 

98% of them, meaning that Minimal-MUMCUT tests guaranteed detecting all double 

fault types for 98% of the 275 predicates.   



 

73 

Lau et al. [27, 28, 29] developed the Supplementary Multiple Overlapping True 

Point (SMOTP) criterion to detect the LIF-LIF. This criterion requires that for each pair 

of terms, a set of OTPs be included such that all literals not in either term are assigned the 

values 0 and 1. However, the LIF-LIF can only go undetected by Minimal-MUMCUT 

tests when both terms involved in the double fault are MUTP infeasible. Thus, the 

SMOTP criterion only needs to be included for a subset of the possible pairs of terms in 

the predicate. So incorporating one additional criterion into the Minimal-MUMCUT 

criterion guarantees detecting all double faults in the predicates examined and this 

criterion is not needed for all pairs of terms. Lau et al. [27, 28, 29] developed five other 

criteria that guarantee complete double fault detection, but satisfying these criteria is 

expensive and none were necessary for double fault detection in the predicates examined. 

Kaminski and Ammann [20] showed how the Minimal-MUMCUT criterion can be 

modified to include the SMOTP criterion as follows: 

Minimal-MUMCUT and SMOTP Test Generation Algorithm 

 for each term X 

    generate MUTP tests for X 

    if the MUTP criterion is infeasible for X 

       for each MUTP infeasible term Y  

          generate SMOTP tests for X and Y 

       end for 

       for each literal x in X          

          generate PCUTPNFP tests for x 

          if the PCUTPNFP criterion is infeasible for x, generate MNFP tests for x  

       end for 

   else generate an NFP for each literal x in X to overlap NFPs 

end for 

 

On average, 6.79 non-equivalent LIF-LIFs per predicate went undetected by 

Minimal-MUMCUT tests amongst the 19 predicates in the study. For four predicates (8, 
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9, 19, 20) the MUTP criterion was feasible for every term so Minimal-MUMCUT tests 

detected all double faults. For 16 predicates, the MUTP criterion was feasible for at least 

one term so Minimal-MUMCUT tests detected all double faults in at least one term (and 

its literals) in these predicates. For two predicates (7 and 17), every pairing of two 

equivalent LIFs resulted in an equivalent LIF-LIF. Thus, Minimal-MUMCUT tests 

detected all non-equivalent double faults for these predicates.  

An example of an LIF-LIF that Minimal-MUMCUT tests did not detect is 

mutating a~bd + a~cd + e to a~bdc + a~cdb + e. Detection requires one additional test 

beyond what the Minimal-MUMCUT criterion requires. 10010 makes the first two terms 

in the original predicate TRUE and the first two terms in the faulty predicate FALSE. 

Table 13 shows the number of undetected LIF-LIFs (and thus the maximum number of 

extra tests needed to guarantee detection), as well as the percentage undetected. 99.91% 

of LIF-LIFs were detected so few additional tests are needed to detect all non-equivalent 

LIF-LIFs. 

 

 

Table 13 LIF-LIFs Undetected by Minimal-MUMCUT Tests [20] 

 

Predicate 
Number of 

undetected LIF-LIFs 

Total Number 

LIF-LIFs 

Percentage 

undetected 

1 2 66 3.03% 

2 3 276 1.09% 

3 34 42,278 0.08% 

4 1 120 0.83% 

5 10 5,565 0.18% 

6 2 120 1.67% 

7 0 780 0.00% 

8 0 0 N/A 

9 0 0 N/A 
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Predicate 
Number of 

undetected LIF-LIFs 

Total Number 

LIF-LIFs 

Percentage 

undetected 

10 6 630 0.95% 

11 3 5,778 0.05% 

12 N/A N/A N/A 

13 4 6,670 0.06% 

14 5 1,326 0.38% 

15 17 8,911 0.19% 

16 38 71,253 0.05% 

17 0 2,278 0.00% 

18 4 3,486 0.11% 

19 0 276 0.00% 

20 0 6 0.00% 

    

Sum 129 149,819  

    

Average 6.79 7,885.21 0.09% 

 

 

The number of LIFs for a predicate with m terms, n unique literals and in literals in 

term i is L = 2
1

( )
m

i

i

n n
=

−∑  (multiplication by 2 since each unique literal in the predicate 

that is not in the term of interest may be inserted as itself or as its negation). The number 

of possible LIF-LIFs is 2L . However, this number is smaller in Table 13 because the order 

of each LIF in an LIF-LIF is irrelevant and a single LIF paired with itself defaults to a 

single LIF. Thus, in Table 13 the total number of LIF-LIFs is L * (L-1) / 2.  

When two LIFs combine to form an LIF-LIF, four combinations exist for the 

equivalency relationship between the faulty and non-faulty predicates as Table 14 shows.  
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Table 14 Equivalency Relationships Between Faulty and Non-Faulty Predicates [20] 

 

LIF 1 LIF 2 LIF-LIF 

Not equivalent Not equivalent Not equivalent 

Not equivalent Equivalent Not equivalent 

Equivalent Not Equivalent Not equivalent 

Equivalent  Equivalent Undetermined 

 

 

MUTP tests are guaranteed to detect an LIF. If the MUTP criterion is feasible for 

either term in the LIF-LIF, the LIF-LIF is detected by MUTP tests [20]. In the first three 

rows of Table 14, the first or second LIF is not equivalent, so the MUTP criterion is 

feasible for at least one term. Thus, MUTP tests also detect the LIF-LIF, meaning the 

LIF-LIF is non-equivalent. To show how two equivalent LIFs form a non-equivalent LIF-

LIF, consider a~bd + a~cd. Inserting c into a~bd results in an equivalent LIF, as does 

inserting b into a~cd. Combining the equivalent LIFs results in a non-equivalent LIF-

LIF: a~bdc + a~cdb (detected by 1001 – the original evaluates to TRUE but the faulty 

version evaluates to FALSE). To show how two equivalent LIFs form an equivalent LIF-

LIF, consider a~bd + a~cd + e. Inserting ~e into a~bd results in an equivalent LIF, as 

does inserting ~e into a~cd. The equivalent LIF-LIF is a~bd~e + a~cd~e + e. 

Table 14 shows an LIF-LIF can only be equivalent when each LIF is equivalent. 

However, when each LIF is equivalent, an LIF-LIF can also be non-equivalent. When the 

MUTP criterion is feasible for either term where an LIF occurs, Minimal-MUMCUT 

tests will detect an LIF-LIF [20]. However, when the MUTP criterion is infeasible for 

both terms in an LIF-LIF (meaning each LIF is equivalent), a non-equivalent LIF-LIF 

will go undetected by Minimal-MUMCUT tests [20]. So if most LIF-LIFs formed from 
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two equivalent LIFs are equivalent, there will be few non-equivalent LIF-LIFs that a 

Minimal-MUMCUT test fails to detect (fault coupling will be rare). On the other hand, if 

most such LIF-LIFs are non-equivalent, there will be more non-equivalent LIF-LIFs that 

a Minimal-MUMCUT test fails to detect (fault coupling will be common). Table 15 

shows the percentage of LIF-LIFs that were equivalent based on combining two 

equivalent LIFs. In Table 15 the column “Number of equivalent LIF-LIFs” refers to the 

number of equivalent double faults where each of the single faults is an equivalent LIF. 

The column “Number of equivalent LIF – equivalent LIF pairs” refers to the number of 

double faults where each of the single faults is an equivalent LIF. 

 

 

Table 15 Equivalent LIF-LIFs as a Percentage of Equivalent LIF Pairings [20] 

 

Predicate 

Number of 

equivalent 

LIF-LIFs 

Number of 

equivalent LIF-

equivalent LIF 

pairs 

Percentage 

equivalent 

LIF-LIFs 

1 4 6 66.67% 

2 78 81 96.30% 

3 2177 2211 98.24% 

4 5 6 83.33% 

5 518 528 98.11% 

6 4 6 66.67% 

7 28 28 100.00% 

8 0 0 N/A 

9 0 0 N/A 

10 60 66 90.91% 

11 63 66 95.45% 

12 N/A N/A N/A 

13 132 136 97.06% 

14 61 66 92.42% 

15 803 820 97.93% 

16 4427 4465 99.15% 

17 12 12 100.00% 
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Predicate 

Number of 

equivalent 

LIF-LIFs 

Number of 

equivalent LIF-

equivalent LIF 

pairs 

Percentage 

equivalent 

LIF-LIFs 

18 87 91 95.60% 

19 0 0 N/A 

20 0 0 N/A 

    

Sum 8459 8588  

    

Average 445.21 452.00 98.50% 

 

 

In Table 15, the number of equivalent LIF – equivalent LIF pairs is L * (L-1) / 2 

given L equivalent LIFs as order and pairing an equivalent LIF with itself are not 

considered. The results show a large percentage of LIF-LIFs formed from two equivalent 

LIFs were equivalent. Thus, few non-equivalent LIF-LIFs go undetected by Minimal-

MUMCUT tests and fault coupling is rare. Polo, Piattini and Garcia-Rodriguez [39] state 

that two equivalent single faults always result in an equivalent double fault. This is 

incorrect for LIFs. However, Table 15 shows that it is likely that two equivalent LIFs 

form an equivalent LIF-LIF.  

Table 16 compares test set size (based on the 19 original predicates) for the 

Minimal-MUMCUT criterion with a test set supplemented with tests needed to detect 

LIF-LIFs. The number of tests needed to detect LIF-LIFs is less than the number of 

undetected LIF-LIFs because multiple undetected LIF-LIFs can sometimes be detected 

by the same test. 129 LIF-LIFs went undetected (an average of 6.79 per predicate) but 

108 additional tests can be used to detect them (an average of 5.68 tests per predicate). 

On average, Minimal-MUMCUT test set size is 89.25% of the test set size formed by 
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combining Minimal-MUMCUT tests and tests to detect all LIF-LIFs. By adding on 

average an additional 5.68 tests to a Minimal-MUMCUT test set, all LIF-LIFs can be 

detected in these predicates. 

 

 

 

Table 16 Minimal-MUMCUT vs. Minimal-MUMCUT + LIF-LIF Test Set Size [20] 

 

Predicate 

Minimal – 

MUMCUT 

[19] 

Minimal – 

MUMCUT 

+ LIF-LIF 

Tests [20] 

Percentage 2
n
 

1 27 29 93.10% 128 

2 81 84 96.43% 512 

3 148 173 85.55% 4096 

4 9 10 90.00% 32 

5 34 41 82.93% 512 

6 62 64 96.88% 2048 

7 62 62 100.00% 1024 

8 36 36 100.00% 256 

9 16 16 100.00% 128 

10 62 68 91.18% 8192 

11 61 64 95.31% 8192 

12 N/A N/A N/A N/A 

13 17 21 80.95% 4096 

14 22 27 81.48% 128 

15 39 56 69.64% 512 

16 104 133 78.20% 4096 

17 39 39 100.00% 2048 

18 48 52 92.31% 1024 

19 16 16 100.00% 256 

20 14 14 100.00% 128 

     

Sum 897 1005  37,408 

     

Avg 47.21 52.89 89.25% 1968.84 

 



 

80 

4.5 General Logic Fault Detection  

This section begins with an examination of the frequency of minimal DNF predicates 

in software. This is important because for syntactic criteria, fault detection that holds for 

minimal DNF predicates does not in general hold for non-minimal DNF predicates. Next 

this section explores changes to the Minimal-MUMCUT criterion to address minimal 

CNF. The section concludes with a discussion of changes to the Minimal-MUMCUT 

criterion to handle the case when neither minimal DNF nor minimal CNF holds. 

For syntactic criteria assuming minimal DNF, it is important to know what types of 

software have predominantly minimal DNF predicates. Chilenski [9] found that 95% of 

20,256 predicates in avionics software were in minimal DNF. However, when a predicate 

contains less than three unique literals the author conjectures that exhaustive testing is 

best because it is only at three unique literals that the Minimal-MUMCUT criterion 

begins to potentially offer a 50% test set size savings over exhaustive coverage. This 

raises the questions of what types of software generally have predicates with at least three 

unique literals and what proportion of such predicates are in minimal DNF. Chilenski and 

Miller [10] report that avionics software often has predicates with many unique literals 

and Chilenski [9] extracted a predicate with 77 unique literals. Thus, the Minimal-

MUMCUT criterion should be useful for testing avionics software. In terms of predicate 

format for large predicates, Kaminski and Ammann [22] report that 3% of the 20,256 

predicates Chilenski examined contain five or more unique literals, but 80% of these 

predicates are in minimal DNF. Thus, fault detection is guaranteed for the majority of 
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these predicates by Minimal-MUMCUT tests for single and double faults in Lau and 

Yu’s fault hierarchy. 

Minimal CNF 

Kaminski and Ammann [22] report that of the 3% of the 20,256 predicates Chilenski 

examined that contain five or more unique literals, 85% were either in minimal DNF or 

minimal CNF (or both). Thus, modifying the Minimal-MUMCUT criterion to incorporate 

predicates in minimal CNF (an approach known as Union Minimal-MUMCUT) can 

guarantee fault detection of all single and 84 of 92 double faults in Lau and Yu’s fault 

hierarchy for 85% of these predicates. An initial exploratory study by students in a 

graduate class at George Mason University of open source software found that of 43 

predicates that contained three or more unique literals the following held: 

14 were in minimal CNF but not minimal DNF 

  1 was in minimal DNF but non minimal CNF 

40 were in minimal CNF 

27 were in minimal DNF 

41 were in either minimal CNF or minimal DNF 

 2 were in neither minimal CNF nor minimal DNF 

 

These results show that 63% of the predicates were in minimal DNF and 95% of the 

predicates were in minimal DNF or minimal CNF (or both). Thus, modifying Minimal-

MUMCUT to guarantee fault detection for minimal CNF predicates increases the 
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percentage of predicates for which fault detection is guaranteed from 63% to 95% for the 

single and double fault types in Lau and Yu’s fault hierarchy.  

Due to the dual nature of minimal CNF and minimal DNF, it is possible to modify 

the Minimal-MUMCUT criterion to also guarantee fault detection when a predicate is in 

minimal CNF but not minimal DNF. Furthermore, it is possible to modify the Minimal-

MUMCUT criterion to improve its fault detection when a predicate is in neither minimal 

CNF nor minimal DNF as explained next. The next paragraphs introduce a new set of 

logic coverage criteria and a new fault hierarchy based on minimal CNF. The following 

new criteria assume a predicate is in minimal CNF. An example of (a + b)(c + d) is used 

in each.  

Multiple Unique False Point (MUFP) [22]: Given a minimal CNF predicate, form tests 

for a UFP for each term such that all literals not in the term attain values 1 and 0. A UFP 

for the first term must have a=0, b=0. Needed tests for c and d to each = 0 and 1 are 0001 

and 0010. A UFP for the second term must have c=0 and d=0. Needed tests for a and b to 

each = 0 and 1 are 0100 and 1000. A test set is {0001, 0010, 0100, 1000}.  

Multiple Near True Point [22]: Given a minimal CNF predicate, form tests for an NTP 

of each literal such that all literals not in the literal’s term attain values 1 and 0. NTPs for 

a and b so that c and d each equal 0 and 1 are 1001, 1010, 0101, and 0110. Needed NTPs 

for c and d so that a and b each equal 0 and 1 are 0110, 1010, 0101, and 1001. A test set 

is {1001, 1010, 0101, 0110}. 

Corresponding Unique False Point Near True Point (CUFPNTP) [22]: Given a 

minimal CNF predicate, for each literal in each term find a UFP and NTP such that only 
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the literal changes value (all other literals must be fixed). A UFP for the first term must 

have a=0, b=0. If c=0 and d=1, tests for literals in ab are 0001, 1001, and 0101. A UFP 

for the second term must have c=0, d = 0. If a=1 and b = 0, tests for literals in cd are 

1000, 1010, and 1001. A test set is {0001, 1001, 0101, 1000, 1010}. 

Partial-Corresponding Unique False Point Near True Point (PCUFPNTP) [22]: 

Given a minimal CNF predicate, for each literal in each term find a UFP and NTP such 

that the literal changes value and the only literals that must be fixed are literals that must 

be fixed in a UFP for the term of interest. This criterion is more flexible than CUFPNTP 

and is subsumed by it (any CUFPNTP test set is also a PCUFPNTP test set). For term (a 

+ b) a MUFP test set is {0001, 0010}. To satisfy CUFPNTP for literal a, a corresponding 

NTP of 1001 or 1010 must be chosen. However, PCUFPNTP permits 1011 to be chosen 

as the NTP. 1011 differs from each UFP in either a and c or a and d. Thus, 1011 is not a 

corresponding NTP but it can still be chosen to satisfy PCUFPNTP because literals c and 

d can be 0 or 1 in a UFP for term ab. While PCUFPNTP does not offer any test set size 

savings over CUFPNTP for the example of (a + b)(c + d), it can for other predicates 

because it allows greater flexibility in choosing NTPs so that they can overlap. 

 Figure 7 places the minimal CNF logic coverage criteria in an updated 

subsumption hierarchy and Table 17 gives a summary of the minimal CNF logic 

coverage criteria. 
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Figure 7 Updated Subsumption Hierarchy with Minimal CNF Logic Criteria [22] 

 

 

 

Table 17 Minimal CNF Logic Criteria Summary [22] 

 

Test Name 
Test 

Type 

Guaranteed 

Faults 

Detected 

Subsumes Subsumed by 
Minimum Test 

Size 

Maximum Test 

Size 

Multiple 

Unique False 

Point (MUFP)* 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF., LIF 

- 

Minimal-

MUMCUT, 

MUMCUT, 

MUFP/NTP, 

MAX-A, 

MAX-B 

m to 2m  where m 

is the number of 

terms  

2m(n-1) where 

m is the number 

of terms and n is 

the number of 

literals  

Corresponding 

Unique False 

Point Near True 

Point 

(CUFPNTP)* 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF., ORF+, 

LOF  

PCUFPNTP, 

RACC, CACC, 

GACC 

MUMCUT, 

MAX-A, 

MAX-B 

ni
i

m

+

=
∑ 1

1

 where 

ni is the number 

of literals in term 

i and m is the 

number of terms  

2mn where m is 

the number of 

terms and n is 

the number of 

literals  

MAX-B 

MAX-A 

MUMCUT 

RICC 

GICC 

MNFP 

UTPC 

CUTPNFP 
MUTP/NFP 

RACC 

CACC 

GACC 

MUTP 

Minimal-

MUMCUT 

MNTP 

PCUTPNFP 

CUFPNTP 
MUFP/NTP 

MUFP 

PCUFPNTP 
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Test Name 
Test 

Type 

Guaranteed 

Faults 

Detected 

Subsumes Subsumed by 
Minimum Test 

Size 

Maximum Test 

Size 

Partial 

Corresponding 

Unique False 

Point Near True 

Point 

(PCUFPNTP)** 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF., ORF+, 

LOF  

CACC, GACC 

CUFPNTP, 

MUMCUT, 

MAX-A, 

MAX-B 

ni
i

m

+

=
∑ 1

1

 where 

ni is the number 

of literals in term 

i and m is the 

number of terms  

2mn where m is 

the number of 

terms and n is 

the number of 

literals  

Multiple Near 

True Point 

(MNTP)* 

Syntactic 
ENF, TNF, 

LNF, ORF+, 

LOF 

- 

MUMCUT, 

MAX-A, 

MAX-B 

When 

infeasibilities 

arise: 1. 

Uncertain 

otherwise. 

mn
2

2
 where m 

is the number of 

terms and n is 

the number of 

literals  

Multiple 

Unique False 

Point / Near 

True Pont 

(MUFP / NTP) 

* 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF, LOF, 

LIF 

CACC, GACC, 

MUFP 

MUMCUT, 

MAX-A, 

MAX-B 

m + 1  to 2m + 1 

(where m is the 

number of terms 

in Boolean 

function f).  

2m(n-1) + n, 

where m is the 

number of terms 

in function f and 

n is the number 

of literals in 

function f. 

Minimal-

MUMCUT 
Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF., ORF+, 

LOF, LIF, 

LRF 

CACC, GACC, 

MUTP, 

MUTP/NFP, 

MUFP, 

MUFP/NTP 

MUMCUT, 

MAX-A, 

MAX-B 

m + 1 to 2m + 1 

where m is the 

number of terms  

Uncertain, but 

less than  

2m(n-1) 

+
mn

2

2
  where 

m is the number 

of terms and n is 

the number of 

literals  

 

MUTP / MNFP 

/ CUTPNFP 

Strategy 

(MUMCUT) 

Syntactic 

ENF, TNF, 

LNF, TOF, 

ORF, LOF, 

LIF, LRF 

RACC, CACC, 

GACC, MUTP, 

MUFP, UTPC, 

CUTPNFP, 

PCUTPNFP, 

MUTP/NFP, 

MNFP, 

MNTP,CUFPNTP, 

PCUFPNTP, 

MUFP/NTP, 

Minimal-

MUMCUT 

MAX-A, 

MAX-B 

When 

infeasibilities 

arise – m to 2m + 

1 (where m is the 

number of terms 

in Boolean 

function f). 

Uncertain 

otherwise. 

2m(n-1) 

+
mn

2

2
 , where 

m is the number 

of terms in 

function f and n 

is the number of 

literals in 

function f. 

 
*     When feasible, detects the LRF 

**   When feasible, detects any LRF that the MUFP criterion will not detect  

 

 

The complementary relationship between minimal CNF and minimal DNF exists 

throughout the nine single fault types in Lau and Yu’s fault hierarchy and thus a new 

minimal CNF Fault Hierarchy is presented in Figure 8. 
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Figure 8 Minimal CNF Fault Hierarchy [22] 

 

The minimal CNF fault hierarchy is identical to the minimal DNF fault hierarchy 

except that the ORF. and ORF+ have switched. This is because in minimal DNF, the OR 

operator separates terms and the AND operator separates literals, while in minimal CNF, 

the AND operator separates terms and the OR operator separates literals. The minimal 

DNF and minimal CNF fault hierarchies are each composed of three columns. Table 18 

shows how the faults in each column of Lau and Yu’s fault hierarchy (minimal DNF fault 

hierarchy) are related to UTPs and NFPs. Table 19 shows how the faults in each column 

of Figure 8 (minimal CNF fault hierarchy) are related to UFPs and NTPs. In these tables, 

an “X” means that the faults in the column header can be detected by the type of point in 

the row header.  

 

Table 18 Minimal DNF Fault Detection 

 

 LIF,TOF,ORF+ LRF,LNF, TNF, ENF LOF, ORF. 

UTP X   

UTP or NFP  X  

NFP   X 

 LOF 

ORF+ 

 LRF 

 LNF 

 TNF 

 ENF 

 LIF 

TOF 

ORF. 
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Table 19 Minimal CNF Fault Detection 

 

 LIF, TOF, ORF. LRF,LNF, TNF, ENF LOF, ORF+ 

UFP X   

UFP or NTP  X  

NTP   X 

 

 

For a minimal DNF predicate, a fault in the first column can be detected only by a 

UTP. For a minimal CNF predicate, a fault in the first column can be detected only by a 

UFP. For a minimal DNF predicate, a fault in the second column can be detected by a 

UTP or an NFP. For a minimal CNF predicate, a fault in the second column can be 

detected by a UFP or an NTP. For a minimal DNF predicate, a fault in the third column 

can be detected only by an NFP. For a minimal CNF predicate, a fault in the third column 

can be detected only by an NTP. There is a complementary relationship between minimal 

DNF and CNF in terms of their logic coverage criteria. MUTP complements MUFP, 

PCUTPNFP complements PCUFPNTP and MNFP complements MNTP. The Minimal-

MUMCUT algorithm can be modified so that it can accept either a minimal CNF or 

minimal DNF expression without sacrificing fault detection. This is best seen with an 

example.  

Consider ab + cd, which is in minimal DNF. The MUTP criterion is feasible for 

each term, so only a single NFP is needed for each literal and NFPs can be chosen to 

overlap to reduce test set size. The Minimal-MUMCUT algorithm will generate six tests: 

1101 – UTP for ab 

1110 – UTP for ab 
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0111 – UTP for cd 

1011 – UTP for cd 

0101 – NFP for a and c 

1010 – NFP for b and d 

Consider (a + c)(b + d)(a + d)(b + c), which is in minimal CNF. With the 

Minimal-MUMCUT algorithm described so far, this expression would need to first be 

transformed to minimal DNF before tests are created. Transforming to minimal DNF 

yields ab + cd, for which Minimal-MUMCUT requires the six tests described above. 

Now consider a TOF in (a + c)(b + d)(a + d)(b + c) where term (a + d) is 

omitted to yield (a + c)(b + d)(b + c). This fault can only be detected by 0110 as this 

point causes the original expression to be FALSE and the faulty expression to be TRUE 

since 0110 is the lone UFP for term (a + d). Also, consider a TOF in (a + c)(b + d)(a + 

d)(b + c) where term (b + c) is omitted to yield (a + c)(b + d)(a + d). This fault can only 

be detected by 1001 as this point causes the original expression to be FALSE and the 

faulty expression to be TRUE since 1001 is the lone UFP for term (b + c). 

Neither 0110 nor 1001 is in the Minimal-MUMCUT test set for ab + cd. 

Although these points could have been chosen for a Minimal-MUMCUT test set they 

were not because NFPs were chosen to overlap to reduce test set size. While this does not 

cause any decrease in fault detection if the predicate is in minimal DNF, it does if the 

predicate is in minimal CNF and then is converted to minimal DNF.  
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General Form Boolean Expressions 

Based on the complementary relationship of minimal DNF and minimal CNF, the 

Minimal-MUMCUT algorithm can be modified to handle minimal CNF and minimal 

DNF predicates and still guarantee fault detection. Even better, the algorithm can be 

modified to handle predicates that are not in minimal CNF or minimal DNF and still have 

excellent (but not guaranteed) logic fault detection. The modified Minimal-MUMCUT 

algorithm for general form Boolean expressions is given below and results in a new 

criterion called Union Minimal-MUMCUT. 

 

Union Minimal-MUMCUT Test Generation Algorithm for General Form 

Expressions [22] 

 

if the expression is in Minimal DNF 

   for each term X 

      generate MUTP tests for X 

      if the MUTP criterion is infeasible for X 

         for each literal x in X    

            generate PCUTPNFP tests for x     

            if the PCUTPNFP criterion is infeasible for x, generate MNFP tests for x  

         end for 

      else generate an NFP for each literal x in X to overlap NFPs 

   end for 

else if the expression is in Minimal CNF 

   for each term X 

      generate MUFP tests for X 

      if the MUFP criterion is infeasible for X 

         for each literal x in X        

            generate PCUFPNTP tests for x   

            if the PCUFPNTP criterion is infeasible for x, generate MNTP tests for x  

         end for 

      else generate an NTP for each literal x in X to overlap NTPs 

   end for 

else 

   convert the expression to Minimal DNF and form tests 

   convert the expression to Minimal CNF and form tests 

   generate the union of the two test sets known as a Union Minimal-MUMCUT test set 
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The new algorithm for (a + c)(b + d)(a + d)(b + c) would generate tests as follows. 

0101 – UFP for (a + c) 

1010 – UFP for (b + d) 

0110 – UFP for (a + d) 

1001 – UFP for (b + c) 

 

The MUFP criterion is infeasible for each term, so tests needed to satisfy PCUFPNTP are 

1101 – corresponding NTP for a in (a + c) and b in (b + c) 

0111 – corresponding NTP for c in (a + c) and d in (a + d) 

1110 – corresponding NTP for b in (b + d) and a in (a + d) 

1011 – corresponding NTP for d in (b + d) and c in (b + c) 

 

Note now that 0101 and 1010 are (and must be) included, which guarantees fault 

detection of the TOFs in (a + c)(b + d)(a + d)(b + c) examined previously. The modified 

Minimal-MUMCUT algorithm now guarantees fault detection for the single faults in Lau 

and Yu’s fault hierarchy if the expression under test is in minimal DNF or minimal CNF.  

This leaves the case where the predicate is neither in minimal DNF nor minimal 

CNF. In this case, the expression is converted to each format, tests are generated based on 

each format and then the union of the two test sets is produced. The union of the two test 

sets is called a Union Minimal-MUMCUT test set. While such a test set does not 

guarantee fault detection, it can detect faults that neither the minimal DNF nor minimal 

CNF test set can with little increase in test set size [22]. 

 A study using 10 predicates from safety critical software was performed to see if 

Minimal-MUMCUT tests detect a high percentage of faults in predicates that are neither 

in minimal DNF nor minimal CNF. For each predicate, each possible fault amongst the 

fault types in Lau and Yu’s fault hierarchy was generated. In addition, the following fault 
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types were generated: Stuck-At Fault (SAF – setting a literal to TRUE or FALSE), 

Parentheses Omission Fault (POF – omitting a set of parentheses), Parentheses Insertion 

Fault (PIF – inserting a set of parentheses), Associative Shift Fault (ASF – changing term 

associativity by moving a set of parentheses). A determination of equivalency for each 

seeded fault was made by determining if a test set satisfying combinatorial coverage 

could detect the fault. Any fault for which a combinatorial test set could not detect the 

fault was determined to be equivalent. A total of 3974 faults were seeded, but 404 (10%) 

were equivalent, leaving 3570 non-equivalent seeded faults. The predicates in general 

form are in Appendix C along with examples of the SAF, POF, PIF and ASF. 

When a predicate is not in minimal DNF or minimal CNF, the concept of a term does 

not apply, which affects how a TNF, TOF and LIF are conceptualized. For this study, a 

term for a predicate neither in minimal DNF nor minimal CNF is either a quantity 

contained in parentheses or an operand of an OR operator. For example, a(~b + ~c)d + e 

has five terms: ~b, ~c, (~b + ~c), e and a(~b + ~c)d.  

Table 20 displays the results of the study showing fault detection for three different 

Minimal-MUMCUT test sets: 

1) a test set based only on the minimal DNF form of the predicate 

2) a test set based only on the minimal CNF form of the predicate 

3) a Union Minimal-MUMCUT test set  
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Table 20 Fault Detection in General Form Boolean Predicates by a Minimal-

MUMCUT Test Set based on Minimal DNF, Minimal CNF, or Union [22] 

 

No. 
Number 

of Faults 

Number 

of Faults 

Detected 

by  DNF 

tests 

Percent 

Detected 

by DNF 

tests 

Number 

of Faults 

Detected 

by  CNF 

tests 

Percent 

Detected 

by CNF 

tests 

Number 

of Faults 

Detected 

by  

Union 

tests 

Percent 

Detected 

by Union 

tests 

1 496 496 100% 374 75% 496 100% 

4 103 103 100% 102 99% 103 100% 

6 859 816 95% 807 94% 816 95% 

8 446 437 98% 427 96% 437 98% 

9 199 199 100% 183 92% 199 100% 

10 367 361 98% 297 81% 365 99% 

13 419 381 91% 419 100% 419 100% 

14 283 280 99% 237 84% 280 99% 

19 237 237 100% 104 44% 237 100% 

20 161 161 100% 91 57% 161 100% 

        

Sum 3570 3471 97% 3041 85% 3513 98% 

 

 

The results show that a Union Minimal-MUMCUT test set detected over 98% of 

the faults. One interesting finding is that the difference in fault detection for a Union 

Minimal-MUMCUT test set versus a minimal DNF Minimal-MUMCUT test set was very 

small (98% versus 97%) whereas the difference in fault detection for a Union Minimal-

MUMCUT test set versus a minimal CNF Minimal-MUMCUT test set was larger (98% 

versus 85%). This occurred even though the difference in test set size of the minimal 

CNF Minimal-MUMCUT test set and the minimal DNF Minimal-MUMCUT test set was 

less than 1 test on average. Also, the variability in fault detection was larger for a 

minimal CNF Minimal-MUMCUT test set than for a minimal DNF Minimal-MUMCUT 

test set. With different predicates however, this finding could be reversed – meaning that 
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fault detection based on a minimal DNF Minimal-MUMCUT test set could be lower than 

the fault detection based on a minimal CNF Minimal-MUMCUT test set. This shows the 

importance of constructing a Union Minimal-MUMCUT test set to increase fault 

detection because such a test set will always detect at least as many faults as a Minimal-

MUMCUT test set based only on minimal DNF or minimal CNF.  
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5 Comparison of Minimal-MUMCUT with MUMCUT  
 

 

 

 This chapter is the first of two chapters comparing the Minimal-MUMCUT 

criterion with another logic coverage criterion. The focus of this chapter is comparing the 

Minimal-MUMCUT criterion with the MUMCUT criterion, which corresponds to the 

first row in Table 5. Each section in this chapter corresponds to a cell in Table 5. Section 

5.1 corresponds to cell 1a (test set size comparison), section 5.2 corresponds to cell 1c 

(single minimal DNF fault detection comparison), section 5.3 corresponds to cell 1d 

(double minimal DNF fault detection comparison), and section 5.4 corresponds to cell 1e 

(general logic fault detection comparison). The overriding theme of this chapter is that 

single and double fault detection of the Minimal-MUMCUT and MUMCUT criteria are 

identical for minimal DNF/CNF predicates (and very similar for predicates that are 

neither in minimal DNF nor minimal CNF) yet Minimal-MUMCUT test set size is 

smaller.  

5.1 Test Set Size (Contribution 1a Parts I and II) 

Test Set Size in the Minimal DNF Domain 

With respect to Lau and Yu’s fault hierarchy, a MUMCUT test set may not be 

minimal because it is possible that tests can be removed from the test set without 

sacrificing fault detection. From Figure 4 and the Minimal-MUMCUT Test Generation 

Algorithm in section 4.1, it should be clear that Minimal-MUMCUT test set size will 
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always be less than or equal to MUMCUT test set size. While MUMCUT always satisfies 

MUTP, CUPTNFP and MNFP, Minimal-MUMCUT is only required to satisfy MUTP of 

these three because it takes advantage of feasibility. Consider the predicate ab + cd. 1101 

and 1110 are UTPs for ab and the MUTP criterion is feasible for ab. 0101 and 1010 are 

NFPs for a and b, respectively. 0111 and 1011 are UTPs for cd and the MUTP criterion is 

feasible for cd. 0101 and 1010 are NFPs for c and d, respectively. A Minimal-MUMCUT 

test set can thus be achieved by satisfying MUTP/NFP such as {1101, 1110, 0101, 1010, 

0111, 1011}. This test set has two fewer tests than the smallest test set that can be used to 

satisfy MUMCUT. Additional tests of 0110 and 1001 would be needed to satisfy MNFP 

and hence MUMCUT.  

Chen, Lau and Yu [8] evaluated MUMCUT test set size (using the greedy MUTP 

algorithm developed by Chen and Lau [6]) for 19 minimal DNF predicates from an air 

traffic collision avoidance system (TCAS). There were actually 20 predicates but number 

12 was excluded due to a missing a right parenthesis detected by Weyuker et al. [46]. The 

predicates have from 5 to 13 unique literals (see Appendix B). Kaminski and Ammann 

[19] created Minimal-MUMCUT tests for each predicate and assessed MUTP feasibility 

for each term and PCUTPNFP feasibility for each literal. The Minimal-MUMCUT 

algorithm presented earlier was implemented in Java and used to obtain the results. 

On average, Minimal-MUMCUT test set size was 63.72% of MUMCUT test set 

size (Contribution 1a Part I). The greatest savings was for predicate 19, where 

Minimal-MUMCUT test set size was 35.87% of MUMCUT test set size. Table 21 

displays these results. Minimal-MUMCUT test set size is always less than MUMCUT 
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test set size, except when each literal is in each term, in which case test set size is the 

same (see predicates 8 and 9 in Appendix B). In this case, each term has only one UTP, 

each literal has only one NFP (which happens to be a corresponding NFP) and no LIFs or 

LRFs exist. 

 

 

Table 21 Minimal-MUMCUT vs. MUMCUT Test Set Size [19] 

 

Predicate 

Minimal-

MUMCUT 

[19] 

MUMCUT [50] Percentage 2
n
 

1 27 39.0 69.23% 128 

2 81 116.00 69.83% 512 

3 148 238.7 62.00% 4096 

4 9 11.8 76.27% 32 

5 34 43.0 79.07% 512 

6 62 84.0 73.81% 2048 

7 62 106.0 58.49% 1024 

8 36 36.00 100.00% 256 

9 16 16.00 100.00% 128 

10 62 86.0 72.09% 8192 

11 61 124.0 49.19% 8192 

12 N/A N/A N/A N/A 

13 17 36.1 47.09% 4096 

14 22 34.0 64.71% 128 

15 39 60.7 64.25% 512 

16 104 153.1 67.93% 4096 

17 39 76.3 51.11% 2048 

18 48 78.4 61.22% 1024 

19 16 44.6 35.87% 256 

20 14 24.0 58.33% 128 

     

Sum 897 1407.7  37,408 

     

Avg 47.21 74.09 63.72% 1968.84 
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Test Set Size in the General Form Domain 

Yu and Lau [48] found that of a sample of 20 non-minimal DNF predicates, 99% 

of seeded faults were detected by MUMCUT tests based on the corresponding minimal 

DNF predicates. Sun et al. [41] extended MUMCUT in order to guarantee detecting the 

1% of faults that went undetected in these general form predicates. They identified five 

patterns of faults that MUMCUT tests are not guaranteed to detect when such faults are 

translated into faults in a minimal DNF predicate. These fault types do not exist in Lau 

and Yu’s fault hierarchy. For two of the five patterns (patterns 3 and 4), Sun et al. state 

that they could not determine a MUMCUT extension to guarantee fault detection. The 

author confirmed with Sun et al. that errors in their descriptions of patterns 3 and 4 led to 

their inability to determine MUMCUT extensions. These errors are described and 

corrected below. Each of the five patterns is described below. Sun et al. do not provide 

test set size metrics for the extensions, but Kaminski and Ammann [22] did. These 

metrics are also presented below.  

PATTERN 1 

For pattern 1, the example given by Sun et al. is mutating abc to abc + ~a~b. Note that 

001 detects this fault. However, this fault is not included in a MUMCUT test set. To 

include such a point, an extension known as n-MNFP for n > 1 is needed. n-MNFP 

means to extend MNFP by applying it to all combinations of literals in a term. Whereas 

1-NFP (which is the same as NFP) means that only a single literal in a term needs to be 

negated for the predicate to change from FALSE to TRUE, n-NFP means that n literals in 

a term need to be negated for the predicate to change from FALSE to TRUE. Note that 2-
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NFP for literals a and b in term abc means that term abc evaluates to FALSE but if literal 

a and literal b are negated, the term abc evaluates to TRUE. Thus, 001 satisfies 2-NFP 

for literals a and b in term abc. Other 2-NFP points include 010 for literals a and c in 

term abc and 100 for literals b and c in term abc. Similarly, 3-NFP is satisfied by the 

point 000 since all 3 literals need to be negated in term abc to change the predicate value 

from FALSE to TRUE for this point. n-MNFP test set size is based on combinations. In a 

minimal DNF predicate, either each term contains all unique literals or each term does 

not. For example, in ab + bc neither term contains all unique literals, but in ab + ~a~b 

each term contains all unique literals. Based on these observations, n-MNFP size for n > 

1 is as follows. Let m be the number of terms and let 
i

n be the number of literals in term i. 

If each term contains all unique literals then n-MNFP size for n > 1 will consist of all 

FALSE points except for 1-NFPs. If each term does not contain all unique literals, 

maximum n-MNFP test set size can be at least 2
1 2

!/ !( )!
inm

i i

i r

n r n r
= =

−∑∑ . That is, for each 

term, all combinations of “ in choose r” for r > 1. The multiplication by two occurs 

because it takes at least two tests for each n-NFP to satisfy n-MNFP as each literal not in 

the term of interest must attain values 1 and 0. However, n-MNFP test set size in practice 

will often be less because some of the combinations of values that make one term FALSE 

will either (1) represent a TRUE point for another term, (2) represent a 1-NFP for a literal 

in another term, or (3) represent another n-NFP for a literal in another term. For example, 

consider ab + ~a~b. While 00 is a FALSE point for term ab, it is not a 2-NFP for either 

literal a or literal b in term ab because this point makes term ~a~b TRUE. As another 
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example, consider abc + ~a~b~c. While 001 is a FALSE point for term abc it is not 

counted as a 2-NFP for either literal a or literal b in term abc because it is a 1-NFP for 

literal c in term ~a~b~c. 

PATTERN 2 

For pattern 2, the example from Sun et al. is mutating ab + c to ab + bc + ac. To detect 

this fault, 001 must be included. While this is a UTP for term c, it does not have to be 

included in a MUMCUT test suite because 101 and 011 satisfy MUTP for term c. Thus, 

the extension for this pattern is to include all UTPs. Let m be the number of terms and n 

be the number of unique literals and in be the number of literals in term i. Maximum test 

set size to include all UTPs is
1

2 i

m
n n

i

−

=

∑ . That is, every possible combination of literals not 

in the term must be included for each UTP for each term. When the MUTP criterion is 

infeasible or when OTPs exist, test set size will be less. 

PATTERN 3 

For pattern 3, Sun et al. give the example of mutating acde + bc to acde + bc + ab~d. 

They also state that 11001 is not an NFP for any literal in acde + bc. However, 11001 is 

an NFP for literal c in term bc. Sun et al. state that the fault where ab~d is inserted into 

acde + bc is guaranteed not to be detected by a MUMCUT test suite. However, 11001 

can detect the fault as acde + bc evaluates to FALSE but acde + bc + ab~d evaluates to 

TRUE for this point. 11000 is also an NFP for literal c in term bc but this point does not 

detect the fault. Due to MUMCUT’s non-deterministic nature, either 11001 or 11000 

could be selected as the NFP for literal c in term bc. Thus, MUMCUT may or may not 
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detect this fault. Thus, the extension to MUMCUT needed for pattern 3 is to include all 

NFPs. Let m be the number of terms and in be the number of literals in term i. Maximum 

test set size to include all NFPs is
1

2 i

m
n n

i

i

n
−

=

∑ . That is, for each literal in each term, all 

possible combinations of all literals not in the term must be achieved. When 

infeasibilities arise or when certain combination of literals not in the term make some 

other term evaluate to TRUE, test set size will be less. 

PATTERN 4 

For pattern 4, Sun et al. give the example of mutating ab + ac to ab~c + a~bc + ~abc. 

011 can detect this fault as ab + ac evaluates to FALSE but ab~c + a~bc + ~abc 

evaluates to TRUE. 011 must be chosen in a MUMCUT test suite because this point is 

needed to satisfy MNFP for literal a in term ab and to satisfy MNFP for literal a in term 

ac. Sun et al. incorrectly claim that only the point 111 can detect the fault and since this 

point is for certain not chosen in a MUMCUT test suite, they also incorrectly claim that 

MUMCUT is guaranteed to miss detecting this fault. Upon discussion with Sun et al., the 

example should have been mutating ab + ac + bc to ab~c + a~bc + ~abc. Using this 

example, their analysis is correct in that only 111 can detect the fault. 111 is an OTP as it 

makes terms ab, ac and bc all TRUE. The extension to MUMCUT then is to include an 

OTP for every combination of two terms. (In the example above, the OTP for terms ab 

and ac also happens to be an OTP for terms ab and bc and for terms ac and bc, but this 

overlap does not necessarily happen.)  Let m be the number of terms. Maximum test set 

size to include an OTP for each combination of two terms is m! / 2!(m-2)! That is, all 
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combinations of “m choose 2”. When infeasibilities arise or overlap can occur amongst 

OTPs, test set size will be less. 

PATTERN 5 

For pattern 5, Sun et al. give the example of mutating ab to ab + bc. No test in a 

MUMCUT test set will detect this fault because a new literal c is introduced. Consider 

the general form Boolean expression (a + b)(c + b) + bd and the mutation where the 

second occurrence of literal b is replaced by literal d to yield (a + b)(c + d) + bd. 

Transforming the original predicate to minimal DNF yields ac + b so the fault goes 

undetected as variable d no longer appears. The extension Sun et al. give is to include all 

combinations of missing variables when creating mutants results in the number of unique 

literals changing between the original predicate and the mutant. Thus, the extension will 

increase MUMCUT size by a factor of 2x where x is the number of missing variables.  

To summarize, the following extensions to MUMCUT are proposed for general 

form predicates.  

1. Include n-MNFP for n > 1 

2. Include all UTPs 

3. Include all NFPs 

4. Include an OTP for each two term combination 

5. Include all combinations of missing variables 

While this approach increases fault detection in general form predicates, it 

increases test set size. Test set sizes given previously for each of the five patterns grow 

very large as the number of literals, number of unique literals and number of terms 
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grows. Furthermore, none of the points needed for any pattern overlap with any of the 

points needed for any other pattern. For example, a UTP does not overlap with any n-

NFP or any OTP. Including all of these tests can approach or even demand exhaustive 

coverage as demonstrated by Kaminski and Ammann [22].  

An empirical study was conducted by Kaminski and Ammann [22] using 10 of the 

predicates in Appendix B. Each predicate is converted to minimal DNF and minimal 

CNF. A minimal DNF and a minimal CNF test set are constructed using the Minimal-

MUMCUT algorithm. A MUMCUT extension test set is also constructed. The relative 

test set sizes of the minimal DNF test set, the minimal CNF test set, the union test set, the 

MUMCUT test set and the MUMCUT extension test set are then compared. When 

considering MUMCUT extensions the missing variable case for pattern 5 is not included 

so as to restrict attention to faults where the same number of unique literals occurs in the 

original and faulty predicate. Obviously, including tests for all x missing unique literals 

will add an additional 2
x
 tests to the MUMCUT extension test set and not including any 

of these tests in a Minimal-MUMCUT test set will mean that any fault involving the 

missing unique variable may be missed. Since these are known results, only patterns 1 

through 4 are considered. The results are displayed in Table 22.  
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Table 22 Minimal-MUMCUT, MUMCUT and MUMCUT Extension Test Set Sizes 

[22] 

 

No. 

Minimal-

MUMCUT 

DNF [22] 

Minimal-

MUMCUT 

CNF [22] 

Union 

Minimal-

MUMCUT 

[22] 

MUMCUT 

[50] 

MUMCUT 

Extension 

1 27 20 30 39.0 128 

4 9 10 12 11.8 29 

6 62 37 65 84.0 2046 

8 36 26 36 36.00 256 

9 16 14 16 16.00 128 

10 62 22 80 86.0 8186 

13 17 88 88 36.1 1874 

14 22 22 39 34.0 127 

19 16 22 30 44.6 256 

20 14 14 18 24.0 128 

      

Sum 281 275 414 411.5 13158 

 

 

 

The results show that when the predicates are in neither minimal DNF nor 

minimal CNF, Union Minimal-MUMCUT test set size is 3.15% of MUMCUT extension 

test set size (Contribution 1a Part II). When a predicate is in neither minimal CNF nor 

minimal DNF the Minimal-MUMCUT algorithm will convert the predicate to each 

format and then union the two test sets. The results also show that the MUMCUT 

extension approach requires on average 85% of the tests needed for exhaustive coverage 

and for 5 of the 10 predicates exhaustive coverage was actually required. If none of the 

10 predicates are in minimal DNF or minimal CNF, test set size is still just 3% of 

exhaustive size using the Minimal-MUMCUT approach to form a union test set. The 

actual Minimal-MUMCUT and MUMCUT Extension test sets for four of the predicates 

in the study are given in Appendix D.  
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5.2 Single Minimal DNF Fault Detection (Contribution 1c) 

This section presents a theoretical contribution by proving the single Minimal DNF 

fault detection capability of a Minimal-MUMCUT test set and a MUMCUT test set. 

Theorem 1 (Contribution 1c): Minimal-MUMCUT vs. MUMCUT Single Minimal 

DNF Fault Detection 

 For minimal DNF predicates, Minimal-MUMCUT tests and MUMCUT tests have the 

same guaranteed single logic fault detection (9 of 9 fault types in Lau and Yu’s fault 

hierarchy). 

Proof: 

Chen, Lau and Yu [8] show that MUMCUT tests are guaranteed to detect all single faults 

in Lay and Yu’s fault hierarchy. MUTP is guaranteed to detect the LIF and hence the 

TOF, ORF+, LNF, TNF and ENF [8] and Minimal-MUMCUT always incorporates 

MUTP. A single NFP is guaranteed to detect the LOF and ORF+ [8] and Minimal-

MUMCUT always incorporates at least a single NFP for each unique literal. When 

feasible, MUTP detects the LRF [8]. When feasible, PCUTPNFP detects the LRF [22]. 

When feasible, MNFP detects the LRF [8]. Minimal-MUMCUT always incorporates 

MUTP and will incorporate PCUTPNFP when MUTP is infeasible, unless PCUTPNFP is 

also infeasible in which case Minimal-MUMCUT will incorporate MNFP. Thus, the LRF 

is detected, meaning all single fault types are detected by Minimal-MUMCUT tests. 

End Proof 
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5.3 Double Minimal DNF Fault Detection (Contribution 1d Parts I and II) 

This section presents a theoretical contribution by proving the double Minimal 

DNF fault detection capability of a Minimal-MUMCUT test set and a MUMCUT test set. 

Theorem 2 (Contribution 1d Part I): Minimal-MUMCUT vs. MUMCUT Double 

Minimal DNF Fault Detection 

For minimal DNF predicates, Minimal-MUMCUT and MUMCUT tests have the same 

guaranteed double logic fault detection (84 of 92 double fault types in Lau and Yu’s fault 

hierarchy). 

Proof: 

The Minimal-MUMCUT and MUMCUT criteria subsume the BASIC criterion, 

which Lau et al. [27, 28, 29] prove detects 84 of 92 double fault types in Lau and Yu’s 

fault hierarchy. However, neither subsumes the additional criteria proposed by Lau et al. 

needed to guarantee detection of all double fault types. Thus, Minimal-MUMCUT and 

MUMCUT test sets guarantee the same double fault detection. 

End Proof 

 Both Minimal-MUMCUT and MUMCUT test sets can fail to detect eight double 

fault types [20]. As was described in section 4.4, the only one of these eight double fault 

types that went undetected by Minimal-MUMCUT tests in 19 examined predicates is the 

LIF-LIF as the other seven double fault types were guaranteed to be detected. This same 

double fault goes undetected by MUMCUT tests because MUMCUT does not require 

OTPs, which are necessary to detect the LIF-LIF when both terms involved in the double 

fault are MUTP infeasible [20]. Table 13 showed that over 99% of the LIF-LIFs were 
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actually detected by Minimal-MUMCUT tests. As an additional component of this 

empirical study, MUMCUT tests were generated and these tests detected the exact same 

percentage of the LIF-LIFs as the Minimal-MUMCUT tests did (Contribution 1d Part 

II). 

Table 23 compares test set size for the Minimal-MUMCUT criterion 

supplemented with tests needed to detect LIF-LIFs with mean MUMCUT test set size. 

The number of tests needed to detect LIF-LIFs is less than the number of undetected LIF-

LIFs because multiple undetected LIF-LIFs can be detected by the same test. 129 LIF-

LIFs (out of 149,819) went undetected (an average of 6.79 per predicate) but 108 

additional tests can be used to detect them (an average of 5.68 tests per predicate). On 

average, the test set size formed by combining Minimal-MUMCUT tests and tests to 

detect all LIF-LIFs is 71.39% of MUMCUT test set size (and 2.60% of exhaustive test set 

size), yet the former detected all faults the MUMCUT tests did plus the LIF-LIF that the 

MUMCUT tests did not.  

 

 

Table 23 Minimal-MUMCUT + LIF-LIF Test Set Size vs. MUMCUT Test Set Size 

[20] 

 

Predicate 

Minimal – 

MUMCUT 

+ LIF-LIF 

Tests [20] 

MUMCUT 

[50] 
Percentage 2

n
 

1 29 39.0 74.36% 128 

2 84 116.00 72.41% 512 

3 173 238.7 72.48% 4096 

4 10 11.8 84.75% 32 

5 41 43.0 95.35% 512 

6 64 84.0 76.19% 2048 
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Predicate 

Minimal – 

MUMCUT 

+ LIF-LIF 

Tests [20] 

MUMCUT 

[50] 
Percentage 2

n
 

7 62 106.0 58.49% 1024 

8 36 36.00 100.00% 256 

9 16 16.00 100.00% 128 

10 68 86.0 79.07% 8192 

11 64 124.0 51.61% 8192 

12 N/A N/A N/A N/A 

13 21 36.1 58.17% 4096 

14 27 34.0 79.41% 128 

15 56 60.7 92.26% 512 

16 133 153.1 86.87% 4096 

17 39 76.3 51.11% 2048 

18 52 78.4 66.33% 1024 

19 16 44.6 35.87% 256 

20 14 24.0 58.33% 128 

     

Sum 1005 1407.7  37,408 

     

Avg 52.89 74.09 71.39% 1968.84 

  

5.4 General Logic Fault Detection (Contribution 1e Parts I and II) 

In section 4.5 it was reported that of 3% of 20,256 predicates Chilenski extracted 

from avionics software contained five or more unique literals, and that 85% of these 

predicates were either in minimal DNF or minimal CNF (or both). Section 4.5 also 

showed that the Union Minimal-MUMCUT approach guarantees fault detection of all 

single and 84 of 92 double faults in Lau and Yu’s fault hierarchy for predicates in either 

minimal DNF or minimal CNF.  

If a minimal CNF predicate is converted to minimal DNF, and a MUMCUT test 

set is formed, that test set will satisfy MUTP, CUTPNFP, and MNFP for the minimal 
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DNF predicate, but it will also satisfy MUFP, CUFPNTP, and MNTP for the original 

minimal CNF predicate. This is due to the dual nature of minimal CNF and minimal DNF 

and the correspondence between MUTP and MUFP, CUTPNFP and CUFPNTP, and 

MNFP and MNTP. Thus, for 85% of the predicates in the study, fault detection was not 

compromised for either MUMCUT tests or Union Minimal-MUMCUT tests 

(Contribution 1e Part I). 

Although MUMCUT fault detection has been shown to be very good for general 

from predicates, the question remains as to how well Minimal-MUMCUT tests do at fault 

detection for general form predicates. Yu and Lau [48] found that of a sample of 20 

predicates that are neither in minimal DNF nor minimal CNF, 99% of seeded faults were 

detected by MUMCUT tests formed from the minimal DNF version of the predicates. 10 

of these 20 predicates were the exact same predicates used in the empirical study 

described in section 4.5 that showed that Union Minimal-MUMCUT tests detected over 

98% of seeded faults. Also, the fault types matched between the two studies. Thus, a 

direct comparison for these 10 predicates can be done. The MUMCUT tests generated by 

Yu and Lau for these 10 predicates also detected over 98% of the faults (Contribution 1e 

Part II). Thus, the results indicate that the ability of a Union Minimal-MUMCUT test set 

to detect faults in general form expressions is comparable to the ability of a MUMCUT 

test set despite the smaller Union Minimal-MUMCUT test set size.  
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6 Comparison of Minimal-MUMCUT with RACC and RICC  
 

This chapter is the second of two comparing the Minimal-MUMCUT criterion with 

another logic coverage criterion. The focus of this chapter is comparing the Minimal-

MUMCUT criterion with RACC and RICC, which corresponds to the second row in 

Table 5. Each section in this chapter corresponds to a cell in Table 5. Section 6.1 

corresponds to cell 2a (test set size comparison), section 6.2 corresponds to cell 2c (single 

minimal DNF fault detection comparison), and section 6.3 corresponds to cell 2d (double 

minimal DNF fault detection comparison). The overriding theme of this chapter is that 

while the Minimal-MUMCUT criterion has a larger test set size, this is offset by the fact 

that fault detection for RACC and RICC is worse. 

6.1 Test Set Size (Contribution 2a) 

Chilenski and Miller [10] state that minimum test set size for both Weak and Strong 

MCDC is n + 1, where n is the number of unique literals for Weak MCDC and the 

number of literals for Strong MCDC. Chilenski and Miller [10] also state that for both 

Weak and Strong MCDC, test set size can exceed n+1 where n is the number of unique 

literals for Weak MCDC and the number of literals for Strong MCDC. Finally, Chilenski 

and Miller [10] also state that a test set size of 2n will always suffice for both Weak and 

Strong MCDC, again where n is the number of unique literals for Weak MCDC and the 

number of literals for Strong MCDC. However, Chilenski and Miller [10] do not state 
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that 2n tests will actually ever be required (except for n = 1) so all that can be concluded 

from their research is that maximum MCDC test set size is between n + 2 and 2n, 

inclusive. Ammann and Offutt [2] indicate that RACC and CACC test set size is always 

n+1 where n is the number of unique literals. This conflicts with the claim of Chilenski 

and Miller [10] since RACC and CACC are versions of weak MCDC. To resolve this 

discrepancy and to better quantify the range of maximum MCDC test set size, the author 

analyzed RACC test set size for a large set of predicates.  

There exist  22
n

 possible Boolean predicates in n unique literals. The author 

examined RACC test set size for all such predicates for n=1, n=2 and n=3 and found that 

a RACC test set can always be formed by n + 1 tests. Thus, maximum RACC test set size 

for predicates with 1, 2, or 3 unique literals is n + 1. For predicates with 4 unique literals, 

65,536 predicates are possible so the author did not examine each of these. However, the 

author conjectures that when n=4, maximum test set size remains n+1. When n >= 5, the 

situation changes as demonstrated by Kaminski and Ammann [21]. Kaminski and 

Ammann developed the following algorithm for determining the lowest bound on 

maximum test set size for RACC. This same algorithm applies to CACC. 

Lowest Bound Maximum RACC Test Set Size Algorithm [21] 

if n=1 or n=2 or n=3 or n=4* 

   maximum RACC test set size is n+1 

else if n=5 

   maximum RACC test set size is at least n + 2 

else if an integer y exists such that n – (y + 2
y
) = 1 

   maximum RACC test set size is at least 2(n-x) – 1 where x is the greatest integer such  

   that x + 2
x
 <= n 

else 

   maximum RACC test set size is at least 2(n-x) where x is the smallest integer such that  

   x + 2
x
 >= n 
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*For n=4, this is a conjecture by the author 

 

As an example, consider n=7. An integer y=2 exists such that n – (y + 2
y
) = 1. 

The greatest integer x such that x + 2
x
 <= n holds is x=2. Thus, maximum RACC test set 

size is at least 2(n-x) – 1= 2(7-2) – 1 = 9. As another example, consider n=11. No integer 

y exists such that n – (y + 2
y
) = 1. The smallest integer x such that x + 2

x
 >= n holds is 

x=3. Thus, maximum RACC test set size is at least 2(n-x) = 2(11-3) = 16. 

Table 24 displays the results of the maximum RACC test set size for n=1 to 

n=37. Note that after n=37 the pattern repeats because 5 + 2
5
 = 37. 

 

 

Table 24 Lowest Bound Maximum RACC Test Set Size Algorithm Results [21] 

 

Number of 

Unique 

Literals (n) 

Formula Size Raw Size 

1 n+1 n+1 2 

2 n+1 n+1 3 

3 n+1 n+1 4 

4 n+1 n+1 5 

5 n+2 n+2 7 

6 2(n-2) n+2 8 

7 2(n-2) - 1 n+2 9 

8 2(n-3) n+2 10 

9 2(n-3) n+3 12 

10 2(n-3) n+4 14 

11 2(n-3) n+5 16 

12 2(n-3) - 1 n+5 17 

13 2(n-4) n+5 18 

14 2(n-4) n+6 20 

15 2(n-4) n+7 22 

16 2(n-4) n+8 24 

17 2(n-4) n+9 26 

18 2(n-4) n+10 28 

19 2(n-4) n+11 30 

20 2(n-4) n+12 32 
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Number of 

Unique 

Literals (n) 

Formula Size Raw Size 

21 2(n-4) - 1 n+12 33 

22 2(n-5) n+12 34 

23 2(n-5) n+13 36 

24 2(n-5) n+14 38 

25 2(n-5) n+15 40 

26 2(n-5) n+16 42 

27 2(n-5) n+17 44 

28 2(n-5) n+18 46 

29 2(n-5) n+19 48 

30 2(n-5) n+20 50 

31 2(n-5) n+21 52 

32 2(n-5) n+22 54 

33 2(n-5) n+23 56 

34 2(n-5) n+24 58 

35 2(n-5) n+25 60 

36 2(n-5) n+26 62 

37 2(n-5) n+27 64 

 

 

Note from Table 24 that for n=37, RACC test set size can be at least 64, which is 

1.73n. For n=1034, RACC test set size can be at least 2048 or 1.98n according to the 

algorithm. While it is doubtful that any predicate in practice contains 1034 unique 

literals, from a theoretical perspective as n approaches infinity maximum RACC test set 

size approaches 2n.  

For an example of RACC test set size of n+5 = 2(n-3) = 16 for n=11 consider 

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci + a!b!cj + !ab!ck 

RACC selects a corresponding UTP-NFP pair for each unique literal (as opposed to each 

literal) when the predicate is transformed into minimal DNF as UTPs and NFPs translate 

to the conditions under which each literal determines a predicate. Since literals d, e, f, g, 
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h, i, j and k each appear in a different term, 8 UTPs are needed for RACC. Note also that 

the NFPs amongst literals d, e, f, g, h, i, j and k cannot overlap with each other because: 

 

the NFP for literal d requires a=1,b=1,c=1  

the NFP for literal e requires a=0,b=1,c=1  

the NFP for literal f requires a=1,b=0,c=1  

the NFP for literal g requires a=1,b=1,c=0  

the NFP for literal h requires a=0,b=0,c=1  

the NFP for literal i requires a=0,b=0,c=0  

the NFP for literal j requires a=1,b=0,c=0  

the NFP for literal k requires a=0,b=1,c=0  

 

Thus, at this point 16 tests are needed (8 UTPs and 8 NFPs) to satisfy RACC. No 

additional tests are needed because the NFPs for literals a, b and c can overlap with NFPs 

for literals d, e, f, g, i, j and k. Note that for n=11, n+5 = 2(n-3). Intuitively, 2(n-3) tests 

are needed because all but 3 literals (a, b and c) require 2 tests (a UTP and an NFP) that 

cannot overlap with each other. (The tests for literals a, b and c can overlap with other 

tests.)  RACC test set size analysis for actual predicates with other values of n is given in 

Appendix E. 

To compare RACC and Minimal-MUMCUT test set size in practice, an empirical 

study was undertaken using the predicates listed in Appendix B. For each predicate, a 



 

114 

RACC test set was constructed manually and a Minimal-MUMCUT test set was 

generated automatically using the Minimal-MUMCUT algorithm.  

Table 25 lists RACC test set size and Minimal-MUMCUT test set size for each 

predicate. The column labeled 2
n 

refers to the total number of possible tests where n is the 

number of unique literals in the predicate. While the author does not guarantee that the 

RACC test set constructed for each predicate is the smallest possible, the author does 

guarantee two things. One, the RACC test set for each predicate is minimal in that if any 

test in the test set is removed, the test set will no longer satisfy RACC. Two, the RACC 

test set for each predicate is no larger than the lowest bound maximum RACC test set 

size according to the algorithm presented earlier. Also, a test set size of n+1 was the most 

common test set size amongst the 19 predicates and in no case was a test set size greater 

than n+4 chosen.  

Table 25 shows that RACC test set size and Minimal-MUMCUT test set size are 

both much smaller than combinatorial test set size. RACC test set size is on average just 

0.6% of combinatorial test set size and Minimal-MUMCUT test set size is on average 

just 2.4% of combinatorial test set size. Table 25 also shows that on average RACC test 

set size is about 25% of Minimal-MUMCUT test set size (Contribution 2a).  

 

 

Table 25 RACC and Minimal-MUMCUT Test Set Size [21] 

 

Predicate 

RACC 

size 

[21] 

Minimal-

MUMCUT 

size [19] 

Percentage 2
n
 

1 9 27 33% 128 

2 10 81 12% 512 

3 16 148 11% 4096 
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Predicate 

RACC 

size 

[21] 

Minimal-

MUMCUT 

size [19] 

Percentage 2
n
 

4 6 9 67% 32 

5 12 34 35% 512 

6 12 62 19% 2048 

7 12 62 19% 1024 

8 9 36 25% 256 

9 8 16 50% 128 

10 15 62 24% 8192 

11 16 61 26% 8192 

12 N/A N/A N/A N/A 

13 16 17 94% 4096 

14 9 22 41% 128 

15 12 39 31% 512 

16 16 104 15% 4096 

17 14 39 36% 2048 

18 14 48 29% 1024 

19 10 16 63% 256 

20 8 14 57% 128 

     

Average 11.79 47.21  1968.84 

     

Total 224 897 24.97% 37,408 

 

 

Table 26 displays the average test set size for RACC and Minimal-MUMCUT 

grouped by the number of unique literals. The table shows that as the number of unique 

literals increases the trend is that RACC test set size is a smaller percentage of Minimal-

MUMCUT test set size. Intuitively, as the number of unique literals increases, there are 

more opportunities for literals to repeat in different terms in a minimal DNF predicate. As 

more and more literals repeat in different terms, Minimal-MUMCUT test set size will 

increase but RACC test set size will not. 
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Table 26 Average Test Set Size for RACC and Minimal-MUMCUT Grouped by 

Number of Unique Literals [21] 

 

Number 

of 

unique 

literals 

RACC 

size 

Minimal-

MUMCUT size 
Percentage 2

n
 

5 6.00 9.00 67% 32 

*6 N/A N/A N/A 64 

7 8.50 19.75 43% 128 

8 9.50 26.00 37% 256 

9 11.33 52.00 22% 512 

10 13.00 57.00 23% 1024 

11 13.00 53.00 25% 2048 

12 16.00 95.33 17% 4096 

13 15.50 67.00 23% 8192 

* no predicates examined had 6 unique literals 

 

6.2 Single Minimal DNF Fault Detection (Contribution 2c Parts I and II) 

This section presents a theoretical contribution by proving the single Minimal DNF 

fault detection capability of a RACC test set and a RICC test set. 

Theorem 3 (Contribution 2c Part I): Minimal-MUMCUT vs. RACC/RICC Single 

Minimal DNF Fault Detection 

For minimal DNF predicates, a test set that satisfies either RACC or RICC guarantees 

detecting 2 of the 9 single fault types in Lau and Yu’s fault hierarchy (the ENF and TNF). 

Proof: 

The ENF can be detected by any test [30] and the TNF can be detected by any test for 

which the predicate evaluates to FALSE [30] and since RACC and RICC are guaranteed 

to include such tests, these faults are guaranteed to be detected. Examples are shown in 
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Appendix F of seeding each of the 7 faults into an actual predicate and showing that each 

test in a RACC test set and each test in a RICC test fails to detect each fault. 

End Proof 

A natural extension of the work of Chen and Lau [7] is to establish the conditions 

where the ACC and ICC test series fail to detect the faults in Lau and Yu’s fault 

hierarchy. MCDC (ACC) is widely accepted as the criterion of choice for many software 

critical applications. However, with respect to the hierarchy in Lau and Yu’s fault 

hierarchy, Kaminski, Williams and Ammann [24] found that tests satisfying a common 

version of MCDC (RACC) would not detect 7 of the faults under specific circumstances. 

If the predicate is a singular Boolean expression in minimal DNF, then RACC tests are 

guaranteed to detect all faults in Lau and Yu’s fault hierarchy but the LIF and CACC 

tests are guaranteed to detect all faults in Lau and Yu’s fault hierarchy but the LIF and 

the LRF [24]. RACC and CACC tests can miss detection of 7 of the 9 faults when literals 

repeat in terms as shown in Appendix F. 

To determine how often RACC (and hence CACC and GACC) tests actually do 

miss detecting the 7 fault types they are not guaranteed to detect, an empirical study was 

undertaken using the predicates listed in Appendix B. For each predicate, a RACC test set 

was constructed manually. Every type of fault was examined manually to determine if the 

RACC test set could detect it. An example is given in Appendix G.  

Table 27 specifies the fault detection capability of the RACC test sets for each 

predicate. Appendix H specifies the actual RACC tests used for each predicate and the 

percentage of faults of each fault type that are detected. The results in Table 27 show that, 
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on average, RACC tests actually detected 35% of the faults Minimal-MUMCUT 

guarantees detecting. Thus, although RACC test set size is 25% of Minimal-MUMCUT 

test set size on average, this is offset by the fact that the majority of faults go undetected. 

 

 

Table 27 RACC Fault Detection [21] 

 

Predicate 

Faults 

RACC 

detects 

Total 

Faults 
Percentage 2

n
 

1 79 173 46% 128 

2 108 548 20% 512 

3 583 2493 23% 4096 

4 61 71 86% 32 

5 267 483 55% 512 

6 72 342 21% 2048 

7 158 524 30% 1024 

8 44 104 42% 256 

9 31 46 67% 128 

10 268 576 47% 8192 

11 267 1047 26% 8192 

12 N/A N/A N/A N/A 

13 336 397 85% 4096 

14 162 236 69% 128 

15 275 605 45% 512 

16 502 1980 25% 4096 

17 240 524 46% 2048 

18 274 596 46% 1024 

19 108 212 51% 256 

20 56 68 82% 128 

     

Average 204.79 580.26   

     

Sum 3891 11025 35.29%  
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Table 28 displays the average fault detection for RACC tests grouped by the 

number of unique literals. The table shows that as the number of unique literals increases 

the trend is that RACC tests detect a smaller percentage of faults. Intuitively, as the 

number of unique literals increases, there are more opportunities for literals to repeat in 

different terms in the minimal DNF predicate. As more and more literals repeat in 

different terms RACC test set size will not increase so the additional faults caused by 

repeated literals have an increased chance of being undetected. 

 

 

Table 28 RACC Fault Detection Grouped by Number of Unique Literals [21] 

 

Number 

of unique 

literals 

Faults 

RACC 

detects 

Total 

Faults 
Percentage 2

n
 

5 61 71 86% 32 

*6 N/A N/A N/A 64 

7 328 523 63% 128 

8 152 316 48% 256 

9 650 1636 40% 512 

10 432 1120 39% 1024 

11 312 956 33% 2048 

12 1421 4870 29% 4096 

13 535 1623 33% 8192 

* no predicates examined had 6 unique literals 

 

RACC tests are guaranteed to detect only the ENF and TNF. Thus, another question 

is what percentage of the faults that RACC tests may or may not detect do they actually 

detect?  The answer is 34% for the predicates in this study. This is very close to the 35% 

given in Table 27 because the number of ENFs and TNFs (which RACC tests do 

guarantee detecting) is a very small percentage of the total number of minimal DNF 
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faults that can occur in a predicate. That is, only one ENF is possible and the number of 

TNFs is equal to the number of terms. The other fault types are much more prevalent. 

Thus, RACC tests missed detecting 66% of the faults that they are not guaranteed to 

detect (Contribution 2c Part II).  

The implication of these results is that the extra cost associated with the Minimal-

MUMCUT syntactic criterion is justified for safety-critical software since semantic 

RACC tests missed detecting the majority of faults. For other types of software with large 

predicates, testers will need to make an informed decision as to which is more important, 

test set size or fault detection. With RACC, testers can expect to miss 2/3 of the faults in 

Lau and Yu’s fault hierarchy for large predicates with literals that repeat in different 

terms. With Minimal-MUMCUT, fault detection is guaranteed, but at the cost of a test set 

size that is likely to be four times as large. 

6.3 Double Minimal DNF Fault Detection (Contribution 2d) 

This section presents a theoretical contribution by proving the double Minimal 

DNF fault detection capability of a RACC test set and a RICC test set. 

Theorem 4 (Contribution 2d): Minimal-MUMCUT vs. RACC/RICC Double 

Minimal DNF Fault Detection 

For minimal DNF predicates, a test set that satisfies either RACC or RICC guarantees 

detecting 22 of the 92 double fault types in Lau and Yu’s fault hierarchy. 

Proof: 

RACC and RICC tests require neither a UTP for each term nor an NFP for each literal 

when a predicate is in minimal DNF (RACC requires a UTP and corresponding NFP for 
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each unique literal). Lau, Liu and Yu [27, 28, 29] document the detection conditions 

needed for each of the 92 ordered, versioned double fault types. Most of the 92 types 

require either a UTP or NFP to be detected. Others require TRUE points for detection 

that although not being UTPs, must satisfy certain conditions such as various literals 

being TRUE of FALSE. Still other double fault types require FALSE points for detection 

that although not being NFPs, must also satisfy certain conditions such as various literals 

being TRUE of FALSE. RACC and RICC do not require these conditions to hold. Of the 

detection conditions specified, the only kind that RACC and RICC require is that at least 

one FALSE point be in the test set. 22 of the 92 ordered, versioned double fault types can 

be detected by an FALSE point. This translates to 4 of the 45 unordered, non-versioned 

double fault types. Thus RACC and RICC tests guarantee detecting 22 of 92 (24%) of the 

ordered, versioned double fault types and 4 of the 45 (9%) of the unordered, non-

versioned double fault types (ENF-TOF, TNF-TNF, TNF-TOF and TNF-LIF). 

End Proof 
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7 TRF-TIF Logic Mutation  

 

7.1 Overview of TRF-TIF Logic Mutation  

Software logic mutation testing can be inefficient for at least three reasons. One, 

the same logic mutant can be generated multiple times. Two, logic mutants are generated 

that are guaranteed to be killed by a test that kills some other generated logic mutant. 

Three, mutation tools lack logic mutation operators that generate mutants which, when 

killed, guarantee killing the most number of other potential logic mutants. These 

inefficiencies cause excess mutants to be generated and reduce fault detection capability.  

Three new mutation operators are introduced by Kaminski and Ammann [18] to 

resolve these problems, assuming minimal DNF. These operators are based on three new 

faults, the Term Reference Fault / Literal Insertion Fault (TRF/LIF), Term Insertion Fault 

/ Literal Reference Fault (TIF/LRF) and Term Insertion Fault / Literal Omission Fault 

(TIF/LOF). Using these new mutation operators, a smaller mutant test set can be 

generated yet still detect all LIFs, LRFs and LOFs assuming tests are found to kill the 

mutants. These new fault types do not exist in Lau and Yu’s fault hierarchy and have no 

corresponding mutation operators in current tools. A TRF/LIF involves replacing a term 

with one or more terms to guarantee LIF detection. A TIF/LRF involves inserting a single 

term containing all literals to guarantee LRF detection. A TIF/LOF involves inserting a 
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single term containing all literals to guarantee LOF detection. The mutation testing 

approach based on these faults is called TRF-TIF logic mutation.  

The rest of this chapter is organized as follows. The remainder of section 7.1 

describes the algorithm used to generate TRF-TIF logic mutants. Section 7.1 also 

introduces an extended fault hierarchy as well as new measures of mutation efficiency. 

Section 7.2 discusses TRF-TIF logic mutant set size and section 7.3 discusses TRF-TIF 

equivalent logic mutant set size. Single and double minimal DNF fault detection of a test 

set weakly killing all TRF-TIF logic mutants is discussed in sections 7.4 and 7.5, 

respectively. Section 7.6 briefly mentions how the ability of a test set that weakly kills all 

TRF-TIF logic mutants to kill general mutants is evaluated.  

Algorithms are presented below to describe how TRF-TIF logic mutants are 

generated, starting with TRF/LIF mutations, then proceeding with TIF/LRF mutations, 

and concluding with TIF/LOF mutations.  

TRF/LIF Mutation Algorithm [23] 

for each term X in the Minimal DNF predicate    

   for each non-equivalent LIF that can occur for term X 

      create a set of tests that can detect the LIF and mark this test set as unused; 

   end for  

   while at least one unused LIF test set exists 

      if an unused test set contains only one test 

         select that test (ties broke arbitrarily); 

      else  

         select the test that appears in the most unused sets of LIF tests (ties broken  

         arbitrarily); 

      create a TRF/LIF mutant by replacing term X with a sequence of terms separated by  

      OR such that the sequence contains all LIFs that can be detected by the selected test; 

      mark any LIF test sets containing the selected test as used; 

   end while 

end for 
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As an example, consider ab + cd. Four non-equivalent LIFs exist for term ab: 

Inserting c into ab – detected by any test in test set 1: {1100, 1101} 

Inserting ~c into ab – detected by the lone test in test set 2: {1110} 

Inserting d into ab – detected by any test in test set 3: {1100, 1110} 

Inserting ~d into ab – detected by the lone test in test set 4: {1101} 

Note that test set 2 contains a single test so this test (1110) is selected. 1110 can 

detect the LIF where ~c is inserted into ab and the LIF where d is inserted into ab. Thus, 

the TRF/LIF mutant replaces ab with ab~c + abd to yield ab~c + abd + cd. Now test sets 

2 and 3 are marked as used. Of the remaining unused test sets, test set 4 contains a single 

test so this test (1101) is selected. 1101 can detect the LIF where c is inserted into ab and 

the LIF where ~d is inserted into ab. Thus, the TRF/LIF mutant replaces ab with abc + 

ab~d to yield abc + ab~d + cd. Now test sets 1 and 4 are marked as used and the 

algorithm is repeated for term cb. 

The number of TRF/LIFs for a term is the number of UTPs needed to make as 

many external literals (literals not in that term) 0 and 1 as possible. The number of LIFs 

for a term is twice the number of external literals. Consider ab + ~acdefgh. TRF/LIFs 

are: f’ = ab~c + ab~d + ab~e + ab~f + ab~g + ab~h + ~acdefgh (whose mutant can only 

be killed by 11111111) and f’’ = abc + abd + abe + abf + abg + abh + ~acdefgh (whose 

mutant can only be killed by 11000000). The f’ TRF/LIF has a corresponding LIF of 

ab~c + ~acdefgh, whose mutant can be killed by any of 32 inputs: 111XXXXX, where 

XXXXX is any combination of values for defgh. Killing the f’ and f’’ mutants guarantees 

killing all 12 LIF mutants for ab. A TRF/LIF has a large syntactic but small semantic 
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fault size as compared to an LIF. A TRF/LIF involves more syntactic changes than an 

LIF, yet only one input kills a TRF/LIF mutant whereas several inputs might kill a 

corresponding LIF mutant. The one input killing a TRF/LIF mutant is the intersection of 

the input sets that kill each corresponding LIF mutant. The algorithm presented next 

performs TIF/LRF mutations.  

TIF/LRF Mutation Algorithm [23] 

for each term X in the Minimal DNF predicate  

   if an equivalent LIF exists* by inserting some literal y (or its negation) into term X 

      for each literal z in term X 

          for each non-equivalent LRF where literal z is replaced with y (or its negation)  

              create a set of tests that can detect the LRF and mark this test set as unused;  

          end for 

      end for 

   end if 

end for 

while at least one unused LRF test set exists 

    if an unused test set contains only one test 

       select that test (ties broke arbitrarily); 

    else  

       select test that appears in the most unused sets of LRF tests (ties broke arbitrarily); 

    create a TIF/LRF mutant by inserting a term containing all literals that evaluates to  

    TRUE for the selected test; 

    mark any LRF tests containing that test as used; 

end while 

* There is an exception for a certain special type of equivalent LIF, described below 

 

As an example, consider ab + ac + ad. Equivalent LIF mutants exist when 

inserting ~c or ~d into ab, when inserting ~b or ~d into ac and when inserting ~b or ~c 

into ad. This results in the following non-equivalent LRFs to consider: 

Replacing a with ~c in ab – detected by any test in test set 1: {0100, 0101} 

Replacing a with ~d in ab – detected by any test in test set 2: {0100, 0110} 

Replacing b with ~c in ab – detected by the lone test in test set 3: {1000} 
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Replacing b with ~d in ab – detected by the lone test in test set 4: {1000} 

Replacing a with ~b in ac – detected by any test in test set 5: {0010, 0011} 

Replacing a with ~d in ac – detected by any test in test set 6: {0010, 0110} 

Replacing c with ~b in ac – detected by the lone test in test set 7: {1000} 

Replacing c with ~d in ac – detected by the lone test in test set 8: {1000} 

Replacing a with ~b in ad – detected by any test in test set 9: {0001, 0011} 

Replacing a with ~c in ad – detected by any test in test set 10: {0001, 0101} 

Replacing d with ~b in ad – detected by the lone test in test set 11: {1000} 

Replacing d with ~c in ad – detected by the lone test in test set 12: {1000} 

 Test sets 3, 4, 7, 8, 11 and 12 each contain one test so this test (1000) is selected. 

These test sets are marked as used and the corresponding TIF/LRF is created where 

a~b~c~d is inserted as a new term to yield ab + ac + ad + a~b~c~d. Of the remaining 

tests in the unused test sets, each test occurs twice (for example, 0100 occurs in test set 1 

and test set 2). So 0100 is arbitrarily chosen and test sets 1 and 2 are marked as used. The 

corresponding TIF/LRF is created where ~ab~c~d is inserted as a new term to yield ab + 

ac + ad + ~ab~c~d. Of the remaining tests in the unused test sets, each test occurs twice 

(for example, 0010 occurs in test set 5 and test set 6). So 0010 is arbitrarily chosen and 

test sets 5 and 6 are marked as used. The corresponding TIF/LRF is created where 

~a~bc~d is inserted as a new term to yield ab + ac + ad + ~a~bc~d. Of the remaining 

tests in the unused test sets, 0001 occurs the most times (once in test set 9 and once in test 

set 10). So 0001 is chosen and test sets 9 and 10 are marked as used. The corresponding 
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TIF/LRF is created where ~a~b~cd is inserted as a new term to yield ab + ac + ad + 

~a~b~cd. 

As another example consider f = ab + ac + ad +ae + fg. One TIF/LRF will be f’ 

= ab + ac + ad +ae + fg + ~ab~c~d~e~f~g. Another TIF/LRF will be f’’ = ab + ac + 

ad + ae + fg + a~b~c~d~e~f~g. The f’ mutant can only be killed by 0100000 and the f’’ 

mutant can only be killed by 1000000. The f’ TIF/LRF has a corresponding LRF of ~cb 

+ ac + ad + ae + fg, whose mutant can be killed by any of 12 inputs: 010XXXX, where 

XXXX is any combination of values for defg such that term fg is FALSE. The f’’ 

TIF/LRF has a corresponding LRF of a~c + ac + ad + ae + fg, whose mutant can be 

killed by any of 12 inputs: 100XXXX, where XXXX is any combination of values for 

defg such that term fg is FALSE. Killing the f’ and f’’ mutants guarantees killing all six 

LRF mutants where a or b in ab is replaced with ~c, ~d, or ~e. A TIF/LRF has a large 

syntactic but small semantic fault size as compared to an LRF. A TIF/LRF involves more 

syntactic changes than an LRF, yet only one input kills a TIF/LRF mutant whereas 

several inputs may kill a corresponding LRF mutant. The one input killing a TIF/LRF 

mutant is the intersection of the input sets that kill each corresponding LRF mutant.  

The one exception mentioned in the algorithm is when in each equivalent LIF, the 

literal being inserted is from a single-literal term. Consider ab + cd + e and note ab~e + 

cd + e is equivalent. However, an LRF where ~e replaces a results in an LOF for a and is 

treated as such. When an LRF is equivalent, the corresponding TIF/LRF will not be. 

Consider ab + b~c + ~bc. The LRF ac + b~c + ~bc is equivalent. The TIF/LRF ab + b~c 

+ ~bc + a~bc is not produced as it is impossible to make all terms in the original 
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predicate FALSE when term a~bc is TRUE. The algorithm presented next performs 

TIF/LOF mutations. 

TIF/LOF Mutation Algorithm [23] 

 for each term X in the Minimal DNF predicate  

   if an equivalent LIF does not exist* when inserting literal y (or its negation) into X 

      for each literal z in term X 

          for each LOF that occurs by omitting literal z in term X 

              create a set of tests that can detect the LOF and mark this test set as unused;  

          end for 

      end for 

   end if 

end for 

for each LOF test set 

   if the LOF test contains a test in any of the tests needed to kill previously generated  

   TIF/LRF mutants  

      mark the LOF test set as used; 

end for    

while at least one unused LOF test set exists 

    if an unused test set contains only one test 

       select that test (ties broken arbitrarily); 

   else  

       select test that appears in the most unused sets of LOF tests (ties broken arbitrarily); 

   create a TIF/LOF mutant by inserting a term containing all literals that evaluates to  

   TRUE for the selected test; 

end while 

* There is an exception for a certain special type of equivalent LIF, described below 

 

As an example, consider ab + cd. No equivalent LIFs exist for this predicate so 

there are 4 LOFs to consider: 

Omitting literal a – detected by any test in test set 1: {0100, 0101, 0110} 

Omitting literal b – detected by any test in test set 2: {1000, 1001, 1010} 

Omitting literal c – detected by any test in test set 3: {0001, 0101, 1001} 

Omitting literal d – detected by any test in test set 4: {0010, 0110, 1010} 
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No TIF/LRF mutants will be generated since no equivalent LIF mutants exist. 

Thus the algorithm proceeds to the while loop. Tests 1010, 0101, 0110 and 1001 each 

occur twice amongst the test sets while tests 0100, 1000, 0001 and 0010 each occur once. 

So any of 1010, 0101, 0110, or 1001 can be chosen and arbitrarily 1010 is chosen and test 

sets 2 and 4 are marked as used. The corresponding TIF/LOF mutant inserts a~bc~d as a 

new term to yield f’ = ab + cd + a~bc~d. Of the remaining unused test sets, 0101 is the 

only test that occurs twice (the other tests in the unused test sets occur only once) so 0101 

is selected and test sets 1 and 3 are marked as used. The corresponding TIF/LOF mutant 

inserts ~ab~cd as a new term to yield f’’ = ab + cd + ~ab~cd. This algorithm forces the 

tester to kill the f’ mutant with an input (1010) that detects LOFs for b and d and forces 

the tester to kill the f’’ mutant with an input (0101) that detects LOFs for a and c. The f’ 

TIF/LOF has a corresponding LOF (for b) of a + cd, whose mutant can be killed by any 

of 3 inputs: 1000, 1001, 1010. The TIF/LOF mutants can only be killed by NFPs that 

overlap with other NFPs, increasing the number of corresponding LOF mutants killed by 

the lone input killing the TIF/LOF mutant. A TIF/LOF has a large syntactic but small 

semantic fault size as compared to an LOF. A TIF/LOF involves more syntactic changes 

than an LOF, yet only one input kills a TIF/LOF mutant whereas several inputs may kill a 

corresponding LOF mutant. The one input killing a TIF/LOF mutant is the intersection of 

the input sets that kill each corresponding LOF mutant.  

The TIF/LOF mutation operator can produce (n-1) * 2
n-1 

fewer mutants than the 

LOF mutation operator, where n is the number of unique literals. Consider ~a~b~c + 
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ab~c + ~abc + a~bc. There are n * 2
n-1

 = 12 LOFs (one per literal) and 2
n-1

 = 4 

TIF/LOFs as only 2
n-1

 FALSE points exist.  

The TIF/LOF algorithm is generally restricted to terms with no equivalent LIFs 

since when an equivalent LIF mutant exists, a corresponding NFP is needed to kill a 

corresponding LRF mutant. Since any NFP for an omitted literal kills an LOF mutant, 

generating both a TIF/LOF and TIF/LRF mutant is excessive as the input killing the 

TIF/LRF mutant kills the TIF/LOF mutant. The exception is that a term with equivalent 

LIFs is processed if and only if for each equivalent LIF, the literal being inserted is from 

a single-literal term. Consider ab + cd + e and note ab~e + cd + e is equivalent. 

However, an LRF where ~e replaces a is an LOF for a and is treated as such.  

 Table 29 shows in tabular format an example of a TRF/LIF, TIF/LRF, and 

TIF/LOF being seeded into a minimal DNF predicate for the purpose of detecting other 

faults. 

 

 

Table 29 TRF-TIF Faults [18] 

 

Fault Description 

Term Reference Fault / 

Literal Insertion Fault 

(TRF/LIF) 

Replacing a term with one or more terms to guarantee 

detecting LIFs:  ab + cd implemented as abc+ ab~d+ cd 

to detect the LIFs abc + cd and ab~d + cd.  

Term Insertion Fault / 

Literal Reference Fault 

(TIF/LRF) 

Inserting a term containing all literals to guarantee 

detecting LRFs: ab + ac + ad implemented as ab + ac + 

ad + a~b~c~d to detect the LRFs a~c + ac + ad, a~d + 

ac + ad, ab + a~b + ad, ab + a~d + ad, ab + ac + a~b, 

ab + ac + a~c. 

Term Insertion Fault / 

Literal Omission Fault 

(TIF/LOF) 

Inserting a term containing all literals to guarantee 

detecting LOFs: ab + cd implemented as ab + cd + 

~ab~cd to detect the LOFs b + cd and ab +d. 
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For any given literal in a minimal DNF predicate, it is never necessary to generate 

both a TIF/LRF mutant or a TIF/LOF mutant to guarantee detection of all faults in Lau 

and Yu’s fault hierarchy (assuming all non-equivalent mutants are killed) [18]. This 

further reduces the number of mutants that need to be generated.  

When no equivalent LIFs exist for a term, any test detecting an LIF where literal y 

is inserted into a term X will also detect an LRF where literal y replaces any literal x in 

term X. The reason is that when no equivalent LIFs exist for term X, every LRF in term 

X can be detected by a UTP that is needed to detect an LIF in term X. Thus, TIF/LRF 

mutants are not needed for any literals in term X because any test set that kills all 

TRF/LIF mutants for term X is guaranteed to kill all LRFs for literals in term X [18].  

When an equivalent LIF does exist by inserting a literal y into term X, any test 

detecting an LRF where literal y replaces a literal x in term X also detects an LOF for 

literal x. The reason why is that when an equivalent LIF exists for term X, there is an 

LRF for each literal x in term X that can only be detected by a specific NFP for literal x 

and any NFP for literal x is guaranteed to detect an LOF for literal x [18]. Thus, TIF/LOF 

mutants are not needed for any literals in term X because any test set that kills all 

TIF/LRF mutants for literals in term X is guaranteed to kill all LOFs for literals in term 

X. 

The algorithm used to produce TRF-TIF logic mutations is given next.  
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TRF-TIF Logic Mutation Algorithm [18] 

Input is a minimal DNF predicate; Output is a mutant set M 

 

if predicate is a single term  

   add TIF/LOF mutants and one FALSE mutant to M; 

else if every term is a single literal  

   add TRF/LIF mutants and one TRUE mutant to M; 

else 

    for each term 

        if the term contains all literals  

           add a TOF mutant to M; 

        else  

           add TRF/LIF mutants to M; 

    end for 

    if (Number of TIF/LOF mutants + Number of TIF/LRF mutants < Number of false  

         points) 

        for each literal in a term with no equivalent LIF mutants or in a term where all  

        equivalent LIF mutants involve inserting literals from single-literal terms  

            if the TIF/LOF mutant is not killed by a test killing a mutant in M 

               add it to M; 

       end for 

       for each literal in each term with an equivalent LIF mutant not formed by inserting a  

       literal from a single literal-term 

           if the corresponding LRF mutant is not equivalent 

               if the corresponding TIF/LRF mutant is not killed by a test killing a mutant in  

               M 

                  add it to M;                 

           else if the corresponding TIF/LOF mutant is not killed by a test killing a mutant in 

           M 

              add it to M; 

       end for   

   else  

      add all TIF mutants to M; 

 

Extended Fault Hierarchy 

Figure 9 supplements Lau and Yu’s fault hierarchy with the faults in Table 29 and 

faults produced by typical logic mutation operators. Fault detection relationships for the 
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faults in Lau and Yu’s hierarchy are proved by Lau and Yu [30]. Kaminski and Ammann 

[18] give proofs of the fault detection relationships for the other faults in Figure 9.  

Legend for Figure 9 

Solid-lined boxes exist in Lau and Yu’s fault hierarchy. 

Dashed-lined boxes do not exist in Lau and Yu’s fault hierarchy. 

Thin-lined boxes represent faults that have corresponding mutation operators in a typical 

logic mutation approach. 

Thick-lined boxes represent faults that do not have corresponding mutation operators in a 

typical logic mutation approach. 

Solid arrows represent guaranteed fault detection. 

Dashed arrows represent fault detection that holds if and only if the source fault does 

NOT result in an equivalent mutant and (if the source fault itself is a destination fault in a 

dashed arrow connection) the source’s source fault DOES result in an equivalent mutant.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Extended Fault Hierarchy [18] 
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Figure 9 indicates that (1) generating an LRF mutant is unnecessary if the 

corresponding LIF mutant is non-equivalent and (2) generating an LOF mutant is 

unnecessary if the corresponding LIF mutant is equivalent but the corresponding LRF 

mutant is not. When a non-equivalent LIF mutant exists, an input killing it will kill a 

corresponding LRF mutant. However, if an equivalent LIF mutant exists, killing all non-

equivalent LIF mutants does not guarantee killing all LRF mutants. In the absence of an 

equivalent LIF mutant, only TRF/LIF and TIF/LOF mutants are needed. When an 

equivalent LIF mutant occurs, it is only necessary to produce TIF/LRF mutants for the 

corresponding LRFs.  

If an equivalent LIF mutant occurs, an input killing a corresponding LRF mutant 

will kill a corresponding LOF mutant. The proof is as follows. First it must be established 

that if an equivalent LIF occurs for term X, it is infeasible to let some literal y in some 

term Y (but not in X) obtain both 0 and 1 in a UTP for X. Inserting a literal into a term 

can make a TRUE term FALSE but cannot make a FALSE term TRUE. Thus, when an 

LIF mutant is equivalent, there is no UTP for X that makes Xy FALSE in the faulty 

predicate because making Xy FALSE in the faulty predicate makes term Y TRUE. Thus, 

y cannot be assigned both truth values in a UTP for X as Y would be TRUE for one of the 

truth value assignments to y, establishing the infeasibility. If it is infeasible to let an 

external literal obtain both 0 and 1 in a UTP for a term, an LRF mutant exists that can 

only be killed by a corresponding NFP. Since an LOF mutant can be killed by any NFP 

for the omitted literal, the corresponding NFP killing an LRF mutant kills a 

corresponding LOF mutant. It has been shown that (1) when an equivalent LIF mutant 
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occurs, the infeasibility condition holds and (2) when this condition holds, a test killing 

an LRF mutant kills a corresponding LOF mutant. This completes the proof.  

It has been established that (1) when no equivalent LIF mutants occur, no 

TIF/LRF mutants are needed and (2) when an equivalent LIF mutant occurs and no 

equivalent corresponding LRF mutants occur, a corresponding LOF mutant is not needed. 

Thus, for any literal it is never necessary to generate both TIF/LRF and TIF/LOF 

mutants. 

  The extended fault hierarchy implies that if no LIFs or LRFs exist (each literal is 

in each term) an LOF covers the faults under an LRF but the TOF is needed to cover the 

faults under an LIF. The TRF-TIF approach generates TOF mutants only in this case. A 

TOF mutant for a particular term is guaranteed to be killed when a non-equivalent LIF 

mutant for that term is killed as there is a many-to-one relationship between an LIF and 

TOF. Many LIFs correspond to one TOF such that if an equivalent LIF corresponding to 

a TOF occurs, there is also a corresponding non-equivalent LIF. Consider ab + b~c + 

~bc and the predicates abc + b~c + ~bc and ab~c + b~c + ~bc. The first fault is 

equivalent, but the second is not. Both LIFs correspond to the same TOF for ab. The 

relationship between an LIF and LRF is a one-to-many relationship. The equivalent LIF 

yielding abc + b~c + ~bc corresponds to two different LRFs: cb + b~c + ~bc and ac + 

b~c + ~bc. No non-equivalent LIF exists corresponding to either LRF. The one-to-many 

relation between the LIF and LRF is the reason for the dashed arrow between the LIF and 

LRF in Figure 9. 
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Mutation Efficiency 

Two measurements of mutation efficiency are introduced by Kaminski and 

Ammann [18] to compare mutation approaches: Mutation Efficiency Difference (MED) 

and Mutation Efficiency Ratio (MER). The terms “a mutant detects a fault” and “faults 

detected” are used to mean that either (1) a non-equivalent mutant forces the generation 

of data that detects the fault or (2) an equivalent mutant is detected. MED and MER are 

defined as follows: 

MED = Faults Detected - Mutants Generated 

MER = Faults Detected / Mutants Generated 

The faults below the TRF/LIF, TIF/LRF and TIF/LOF in the extended fault 

hierarchy are listed in Table 30 for ab + b~c + ~bc. A typical logic mutation approach 

produce 61 mutants and detects 60 faults so MED = -1 and MER = 0.98. The reason why 

60 faults are detected is that a typical logic mutation approach will produce one 

equivalent mutant, namely an LRF where literal c replaces literal b in term ab to yield ac 

+ b~c + ~bc. A typical logic mutation approach produces the same fault multiple times, 

but each fault is considered different to establish a baseline of MED = 0 and MER = 1 

(when no equivalent mutants are produced), which simplifies the analysis without bias.  

The TRF-TIF approach detects 73 faults (the original 61 plus six LIFs and six 

LRFs where a literal is replaced by the negation of another literal). The TRF-TIF 

approach produces seven mutants so MED = 73 – 7 = 66 and MER = 73 / 7 = 10.43. 

TRF/LIFs are ab~c + b~c + ~bc, ab + b~ca + ~bc, ab + b~c + ~bca and ab + b~c + 

~bc~a. Note that abc + b~c + ~bc and ab + b~c~a + ~bc are equivalent to ab + b~c + 
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~bc and are not produced. The TRF-TIF algorithm has an optimization to create all TIF 

mutants (inserting a term not in the predicate) if the number of FALSE points are less 

than or equal to the number of TIF/LRF and TIF/LOF mutants that would otherwise be 

generated. For this example, the sum of TIF/LRF and TIF/LOF mutants is six, but only 

three FALSE points exist. These points (000, 100, 011) result in the insertion of three 

terms individually (~a~b~c, a~b~c, ~abc) to form three TIF mutants. Only eight inputs 

exist for the predicate, so the TRF-TIF approach yields little savings compared to 

exhaustive testing. The TRF-TIF approach guarantees the number of mutants never 

exceeds 2
n
 where n is the number of unique literals. The number of UTPs (and hence the 

number of TRF/LIF mutants) is always less than or equal to the number of TRUE points 

and the number of NFPs (and hence the number of TIF/LRF and TIF/LOF mutants) is 

always less than or equal to the number of FALSE points.  

 

 

Table 30 Faults for ab + b~c + ~bc 

 

Fault Example Total 

LRF ac + b~c + ~bc 12 

LIF abc + b~c + ~bc 6 

LOF b + b~c + ~bc 6 

LSTF0 0b + b~c + ~bc 6 

LSTF1 1b + b~c + ~bc 6 

LNF ~ab + b~c + ~bc 6 

TOF* b~c + ~bc 4 

SVRTOF ab + c~c + ~bc 4 

ORF. a + b + b~c + ~bc  3 

ORF.0 0 + b~c + ~bc 3 

ORF.1 1 + b~c + ~bc 3 

TNF ~(ab) + b~c + ~bc 3 

SVRLOF bb + b~c + ~bc 2 

ORF+ abb~c + ~bc 2 
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Fault Example Total 

ORF+0 0 + ~bc 2 

ORF+1 1 + ~bc 2 

ESTF0 0 1 

ESTF1 1 1 

ENF ~(ab + b~c + ~bc) 1 
 

* 4 TOFs exist even though only 3 terms exist because a typical logic mutation approach 

performs a TOF for term b~c twice since term b~c has an OR operator on each side of it 

 

 

7.2  Mutant Set Size  

An empirical study was undertaken by Kaminski and Ammann [18] to evaluate 

TRF-TIF mutant set size for a program containing the 19 predicates in Appendix B. The 

TRF-TIF tool generates mutants and the necessary assignments to literals in the 

predicates. The predicates had from 5 to 13 unique literals and were converted manually 

to minimal DNF. Predicate number 12 is excluded because it was missing a right 

parenthesis detected by Weyuker et al. [46]. For each predicate, mutant set size for TRF-

TIF logic mutation was determined. An example of TRF-TIF logic mutations for one of 

the predicates in the study is given in Appendix I. Table 31 below shows the results. Note 

that the data in Table 31 is the same as that in Table 10. The reason for this is to weakly 

kill all TRF-TIF logic mutants, it is necessary (but no sufficient) to satisfy the Minimal-

MUMCUT criterion. That is, each Minimal-MUMCUT test requirement maps to a TRF-

TIF logic mutant. 
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Table 31 Number of TRF-TIF Logic Mutants Generated [18] 

 

Predicate TRF-TIF 2
n
 Percentage 

1 27 128 21.09% 

2 81 512 15.82% 

3 148 4096 3.61% 

4 9 32 28.13% 

5 34 512 6.64% 

6 62 2048 3.03% 

7 62 1024 6.05% 

8 36 256 14.06% 

9 16 128 12.50% 

10 62 8192 0.76% 

11 61 8192 0.74% 

12 N/A N/A N/A 

13 17 4096 0.42% 

14 22 128 17.19% 

15 39 512 7.62% 

16 104 4096 2.54% 

17 39 2048 1.90% 

18 48 1024 4.69% 

19 16 256 6.25% 

20 14 128 10.94% 

    

Sum 897 37408  

    

Average 47.21 1968.84 2.40% 

 

 

7.3  Equivalent Mutant Set Size  

Equivalent mutants are a problem because no test input can kill them. In order to 

strongly kill a mutant, the mutated statement must be reached (reachability), the program 

state of the mutant must differ from that of the original program after execution of the 

mutated statement (infection) and the difference in program state must propagate to the 

output (propagation) [2]. A mutant is weakly equivalent if infection can never occur 

whereas a mutant is strongly equivalent if propagation can never occur. Thus, all weakly 
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equivalent mutants are strongly equivalent, but not all strongly equivalent mutants are 

weakly equivalent as it is possible that infection occurs but not propagation.  

When a test set does not strongly kill a mutant, the tester does not know if more 

tests should be added to strongly kill it (if it is not strongly equivalent) or if the tester 

should discard the mutant (if it is strongly equivalent). The TRF-TIF logic mutation tool 

will never generate a weakly equivalent logic mutant when the Boolean space is complete 

(assuming reachability holds). Thus, the mutation score (percentage of mutants strongly 

killed) will be a more accurate measure of the quality of the test data because the score 

will not be affected by the presence of weakly equivalent mutants.  

When the Boolean space is incomplete (some of the points are infeasible), weakly 

equivalent logic mutants can be generated by the TRF-TIF mutation tool, even when 

reachability holds. To address this problem, the tool permits users to mark predicates in 

the source code where infeasibilities arise for combinations of literal values. For example, 

consider a predicate that determines if the length of any side of a triangle is greater than 

or equal to the sum of the lengths of the other two sides. Let s1 be one side, s2 be a 

second side and s3 be a third side. Let literal x be s1 >= s2 + s3, literal y be s2 >= s1 + s3 

and literal z be s3 >= s1 + s2. The predicate is thus x OR y OR z. Only one of x, y or z 

can be TRUE. Thus infeasibilities arise and the complete Boolean space is not 

achievable. When using the TRF-TIF tool the tester can specify the infeasible 

combinations in a comment in the source code prior to the actual predicate. This prevents 

weakly equivalent logic mutants from being generated (assuming reachability). 
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When the TRF-TIF tool is informed that certain points in the Boolean space are 

infeasible, the tool will replace any weakly equivalent mutant that would otherwise be 

generated with a weakly non-equivalent mutant (assuming reachability) so as to still 

guarantee fault detection of all faults in Lau and Yu’s fault hierarchy. For example, 

consider predicate ab + cd. TRF/LIF mutations for term ab include p’ = abc + ab~d + cd 

and p’’ = ab~c + abd + cd. These mutants are weakly non-equivalent (assuming 

reachability). However if it is infeasible for literals a, b and c to all be TRUE, then the p’’ 

mutant is weakly equivalent because the only point that can kill the p’’ mutant is 1110. If 

the infeasible combination is specified in the source code, the TRF-TIF tool will 

recognize that such a mutant is weakly non-equivalent.  

When the TRF-TIF tool automatically detects a weakly equivalent mutant due to 

an infeasibility in the Boolean space, the mutant cannot be simply discarded. In the 

example above, discarding the p’’ mutant causes the LIF where literal d is inserted into 

term ab to be missed. The reason is that the p’’ mutant (if killed) guarantees detecting 

both the LIF where literal ~c is inserted into term ab and the LIF where literal d is 

inserted into term ab. If literals a, b and c cannot be all TRUE, the LIF where literal ~c is 

inserted into term ab is weakly equivalent but the LIF where literal d is inserted into term 

ab is not. Thus, the TRF-TIF tool will change the p’’ mutant to be p’’ = abc + abd + cd. 

This mutant has the dual property of being both weakly non-equivalent (assuming 

reachability) and guaranteeing detection of the LIF where literal d is inserted into term ab 

(assuming it is killed). 

 



 

142 

7.4  Single Minimal DNF Fault Detection  

 For software containing minimal DNF predicates, tests that weakly kill all TRF-

TIF mutants are guaranteed to detect all 9 single fault types in Lau and Yu’s fault 

hierarchy. This is because to kill the mutants produced by the TRF-TIF algorithm it is 

necessary to satisfy the Minimal-MUMCUT criterion. This fault detection can also be 

proven by the fault detection relations between the TRF/LIF and the LIF, the TIF/LRF 

and the LRF and the TIF/LOF and the LOF. The reason is that detecting the LIF, LRF 

and LOF guarantees detection of all the other faults in the hierarchy. 

7.5  Double Minimal DNF Fault Detection  

 For software containing minimal DNF predicates, tests that weakly kill all TRF-

TIF mutants are guaranteed to detect 84 of the 92 double fault types in Lau and Yu’s fault 

hierarchy. Again, this is because to kill the mutants produced by the TRF-TIF algorithm 

it is necessary to satisfy the Minimal-MUMCUT criterion. This fault detection can also 

be proven by the fault detection relations between the TRF/LIF and the LIF and the 

TIF/LOF and the LOF. The reason is that an LIF can only be detected by a UTP and an 

LOF can only be detected by an NFP, and any test set that includes a UTP for each term 

and an NFP for each literal guarantees detection of 84 of the 92 double fault types in Lau 

and Yu’s fault hierarchy. 

7.6   General Fault Detection  

The ability of a test set that weakly kills all TRF-TIF logic mutants to strongly kill 

general mutants (both logic and non-logic mutants) is evaluated in an empirical study 

described in sections 9.5 and 10.5. Discussion of this study is delayed until these sections 
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since muJava (discussed in Chapter 9) and SQLMutation (discussed in Chapter 10) were 

used to seed general faults.  
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8 Comparison of TRF-TIF Logic Mutation with Typical 
Logic Mutation 

 

 

This chapter is the first of three comparing the TRF-TIF logic mutation approach 

with other mutation tools/approaches. The focus of this chapter is comparing the TRF-

TIF logic mutation approach with a typical logic mutation approach, which corresponds 

to the third row in Table 5. A typical logic mutation approach uses all mutation operators 

in the text by Ammann and Offutt [2] that can be applied to a minimal DNF predicate 

containing at least two literals. These mutation operators include the Scalar Variable 

Replacement (SVR) operator, the Unary Operator Insertion (UOI) operator, the Unary 

Operator Deletion (UOD) operator, and the Conditional Operator Replacement (COR) 

operator [2]. In addition, the Expression Stuck at Fault (ESTF) and Literal Stuck at Fault 

(LSTF) operators are included when referring to typical logic mutation, as these are also 

common logic mutation operators. Each section in this chapter corresponds to a cell in 

Table 5. Section 8.1 corresponds to cell 3a (mutant set size comparison), section 8.2 

corresponds to cell 3b (equivalent mutant set size comparison), section 8.3 corresponds to 

cell 3c (single minimal DNF fault detection comparison), and section 8.4 corresponds to 

cell 3d (double minimal DNF fault detection comparison). The overriding theme of this 

chapter is that TRF-TIF logic mutation provides both better minimal DNF fault detection 

and reduced mutant set size when compared to a typical logic mutation approach. 
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8.1 Mutant Set Size (Contribution 3a) 

An empirical study was undertaken by Kaminski and Ammann [18] to compare 

TRF-TIF logic mutation with typical logic mutation. This study used the same program 

and predicates described in section 7.2. For each predicate, the mutant set size for TRF-

TIF logic mutation and typical logic mutation was determined. The study found that 

TRF-TIF mutant set size was about 6% of the logic mutant set size generated by a typical 

logic mutation approach (Contribution 3a). Table 32 shows the results. 

 

Table 32 Number of Typical Logic Mutants Generated [18] 

 

Predicate TRF-TIF Typical Percentage 2
n
 

1 27 409 6.60% 128 

2 81 1694 4.78% 512 

3 148 3297 4.49% 4096 

4 9 84 10.71% 32 

5 34 454 7.49% 512 

6 62 1048 5.92% 2048 

7 62 1026 6.04% 1024 

8 36 482 7.47% 256 

9 16 196 8.16% 128 

10 62 1204 5.15% 8192 

11 61 1267 4.81% 8192 

12 N/A N/A N/A N/A 

13 17 268 6.34% 4096 

14 22 228 9.65% 128 

15 39 521 7.49% 512 

16 104 1674 6.21% 4096 

17 39 580 6.72% 2048 

18 48 652 7.36% 1024 

19 16 302 5.30% 256 

20 14 171 8.19% 128 

     

Sum 897 15557   

     

Average 47.21 818.79 5.77%  
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These results can be explained by a number of factors. One factor is that typical 

logic mutation does not take advantage of Lau and Yu’s fault hierarchy. In other words, 

typical logic mutation generates mutants that correspond to faults low in the hierarchy. 

These mutants are guaranteed to be killed by tests that kill other generated mutants that 

correspond to faults higher in the hierarchy. Thus excess mutants are generated.  

Another factor is that typical logic mutation can generate the same semantic logic 

mutant multiple times. As an example of the same semantic logic mutant being generated 

multiple times can be seen by considering the typical Scalar Variable Replacement (SVR) 

mutation operator. This operator replaces each variable reference with every other 

variable reference of the same type. The SVR mutation operator produces an LOF or a 

TOF when replacing a literal with another literal in the term. In a~b~c~d + e, replacing a 

with b, c, or d results in a TOF for a~b~c~d. In abcd + e, replacing a with b, c, or d 

results in an LOF for a. So one problem with the SVR mutation operator is that it 

produces the same TOF and LOF mutants multiple times. The Conditional Operator 

Replacement (COR) mutation operator can also produce the same mutant twice as one 

mutation it generates is to replace each occurrence of “operand AND operand” with each 

operand. In abc + d the AND between a and b yields f’ = ac + d and f’’ = bc + d. The 

AND between b and c yields f’’’ = ab + d and f’’’’ = ac + d. f’ and f’’’’ are identical. For 

a term with n literals (for n > 2), the COR mutation operator produces n – 2 identical 

LOF mutants as each literal except the first and last is processed twice. Duplicate 

processing also occurs for terms, resulting in m – 2 identical TOF mutants for a predicate 

with m terms (for m > 2).  
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A third factor that increases typical logic mutant set size is the number of 

equivalent mutants typical logic mutation generates, discussed next.  

8.2  Equivalent Mutant Set Size (Contribution 3b) 

This section presents a theoretical contribution by proving that a TRF-TIF mutant set 

contains the same or fewer weakly equivalent than a typical logic mutants set. 

Theorem 5 (Contribution 3b): TRF-TIF vs. Typical Logic Mutation Equivalent 

Mutant Set Size 

For software with minimal DNF predicates, a TRF-TIF mutant set contains the same 

number as or fewer weakly equivalent mutants than a typical logic mutant set (assuming 

any infeasible combinations of values of unique literals are specified). 

Proof: 

If reachability cannot be achieved for a given mutant, then it will be equivalent no matter 

if it is a TRF-TIF mutant or a typical logic mutant. If a mutant is reachable, the TRF-TIF 

mutation approach guarantees it will not be weakly equivalent (assuming any infeasible 

combinations of values of unique literals are specified) because TRF-TIF mutation uses 

an exclusive-OR algorithm to automatically detect equivalent mutants. Thus, if a tool that 

produces typical logic mutants can produce at least one weakly equivalent mutant, then it 

is established that  a TRF-TIF mutant set contains the same number as or fewer weakly 

equivalent mutants than a typical logic mutant set (assuming any infeasible combinations 

of values of unique literals are specified). The SVR typical logic mutation operator can 

produce an equivalent mutant as follows. Consider the predicate ab + b!c + !bc. This 
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operator will mutate this predicate to ac + b!c + !bc by replacing literal b in term ab with 

literal c. The original predicate and the mutated predicate are semantically equivalent. 

End Proof 

8.3 Single Minimal DNF Fault Detection (Contribution 3c Parts I and II) 

This section presents a theoretical contribution by proving the single Minimal DNF 

fault detection capability of a typical logic mutation test set. 

Theorem 6 (Contribution 3c Part I): TRF-TIF vs. Typical Logic Mutation Single 

Minimal DNF Fault Detection 

For software containing minimal DNF predicates, tests that weakly kill all typical logic 

mutants are guaranteed to detect 7 of the 9 single fault types in Lau and Yu’s fault 

hierarchy (all but the LRF and the LIF).  

Proof: 

Typical logic mutation does not include mutation operators that cover the LRF and LIF 

[18]. Thus, tests that weakly kill all typical logic mutants are not guaranteed to detect the 

LRF and the LIF. However, the COR typical logic mutation operator produces TOFs and 

LOFs. A test set detecting TOFs and LOFs will detect all faults in the fault hierarchy 

except for LIFs and LRFs so 7 of the 9 single fault types are guaranteed to be detected. 

End Proof 

An LRF is partially covered by the Scalar Variable Replacement (SVR) mutation 

operator which replaces each variable reference by every other variable reference of the 

same type. For example, in ab + cd, the SVR mutation operator replaces literal a with 

literal c, but it would not replace literal a with literal ~c. Typical logic mutation does 
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include mutations that correspond to a TOF (which can only be detected by a UTP) and 

an LOF (which can only be detected by an NFP) [18].  

The Conditional Operator Replacement (COR) typical mutation operator replaces 

each occurrence of “operand AND operand” with each operand. For example, in abc + d 

the AND between a and b yields f’ = ac + d and f’’ = bc + d. The COR mutation 

operator covers the ENF, ORF+, ORF., LOF and TOF. The COR mutation operator 

produces additional ORFs not in Lau and Yu’s fault hierarchy by replacing the OR and 

AND operators with 0 and 1. These are also known as Stuck at Faults because terms or 

literals are stuck at 0 or 1. 

Other typical logic mutation operators are the Unary Operator Insertion (UOI) 

operator and Unary Operation Deletion (UOD) operator (which insert and delete 

negations, respectively). These operators covers the ENF, TNF and LNF [18]. The Literal 

Constant Replacement mutation operator produces Literal Stuck at Faults, replacing each 

literal with 0 and 1 (LSTF0 and LSTF1). To achieve predicate coverage a mutation 

operator is commonly used to produce Stuck at Faults for the entire predicate. The 

corresponding faults for these operators are in Table 33.  

All faults in Table 33 are covered by faults in Lau and Yu’s fault hierarchy in that 

a test set that detects all of the faults in Lau and Yu’s fault hierarchy will also detect all 

faults in Table 33. The reason is as follows. The LSTF0 and ORF.0 are equivalent to a 

TOF and LSTF1 is equivalent to an LOF. ORF.1 is equivalent to performing two LOFs 

and ORF+0 is equivalent to performing two TOFs. Since any test that detects an LOF for 

a literal detects a double LOF involving that literal, any test that detects an LOF also 
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detects a corresponding ORF.1. Since any test that detects a TOF for a term detects a 

double TOF involving that term, any test that detects a TOF also detects a corresponding 

ORF+0. ORF+1 is equivalent to ESTF1, any FALSE point detects ESTF1 and any TRUE 

point detects ESTF0. The point is that the mutants produced by all of the typical logic 

mutation operators are not necessary if mutants are generated that when weakly killed, 

guarantee TOF and LOF detection. Figure 9 shows that tests that weakly kill all TRF-TIF 

mutants will also weakly kill all TOF and LOF mutants. 

 

 

Table 33 Faults Produced by Typical Mutation Operators that are not in Lau and 

Yu’s Fault Hierarchy [18] 
 

Fault Description 

Expression Stuck at Fault 0 (ESTF0) 
Predicate implemented as 0: a + b 

implemented as 0. 

Expression Stuck at Fault 1 (ESTF1) 
Predicate implemented as 1: a + b 

implemented as 1. 

Literal Stuck at Fault 0 (LSTF0) 
Literal implemented as 0: ab + c  

implemented as a0 + c. 

Literal Stuck at Fault 1 (LSTF1) 
Literal implemented as 1: ab + c  

implemented as a1 + c. 

Operator Reference Fault +0 (ORF+0) 
Replacing OR with 0: a + b + c implemented 

as 0 + c (generated by COR operator). 

Operator Reference Fault +1 (ORF+1) 
Replacing OR with 1: a + b + c implemented 

as 1 + c (generated by COR operator). 

Operator Reference Fault .0 (ORF.0) 
Replacing AND with 0: abc + d implemented 

as 0c + d (generated by COR operator). 

Operator Reference Fault .1 (ORF.1) 
Replacing AND with 1: abc + d implemented 

as 1c + d (generated by COR operator). 

Scalar Variable Replacement TOF 

Replacing a literal with another literal in the 

term such that a TOF occurs: a~b 

implemented as b~b.  

Scalar Variable Replacement LOF 

Replacing a literal with another literal in the 

term such that an LOF occurs: ab 

implemented as aa. 
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In the empirical study described in section 8.1, fault detection was compared in all 

predicates for all the faults below the TRF/LIF, TIF/LRF and TIF/LOF in the extended 

fault hierarchy. It was found that tests that weakly kill all typical logic mutants 

guaranteed detection of about 76% of the single logic faults (as opposed to 100% for tests 

that weakly kill all TRF-TIF mutants) (Contribution 3c Part II). Table 34 shows the 

results. 

 

 

Table 34 Number of Faults Detected by Typical Mutation [18] 

 

Predicate Typical TRF-TIF Percentage 2
n
 

1 409 455 89.89% 128 

2 1694 1814 93.38% 512 

3 3297 4487 73.48% 4096 

4 84 116 72.41% 32 

5 454 714 63.59% 512 

6 1048 1136 92.25% 2048 

7 1026 1214 84.51% 1024 

8 482 482 100.00% 256 

9 196 196 100.00% 128 

10 1204 1420 84.79% 8192 

11 1267 1747 72.52% 8192 

12 N/A N/A N/A N/A 

13 268 506 52.96% 4096 

14 228 348 65.52% 128 

15 521 849 61.37% 512 

16 1674 2747 60.94% 4096 

17 580 824 70.39% 2048 

18 652 934 69.81% 1024 

19 302 386 78.24% 256 

20 171 187 91.44% 128 

     

Sum 15557 20562   

     

Average 818.79 1082.21 75.66%  
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Table 35 shows the overall MED and MER. On average, the TRF-TIF logic 

mutation approach detected 1,035 more faults than mutants generated. The ratio of faults 

detected to mutants generated was nearly 23 times higher for the TRF-TIF logic mutation 

approach than for a typical logic mutation approach. 

 

 

Table 35 MED and MER [18] 

 
 

 

 

Table 36 displays TRF-TIF MED and MER results by predicate. Note from this 

table that the number of unique literals had a large impact on MED (the MED increased 

as the number of unique literals increased) but minimal impact on MER 

 

 

Table 36 TRF-TIF MED and MER [18] 

 

Predicate MED MER 2
n
 

1 428 16.85 128 

2 1733 22.40 512 

3 4339 30.32 4096 

4 107 12.89 32 

5 680 21.00 512 

6 1074 18.32 2048 

7 1152 19.58 1024 

8 446 13.39 256 

9 180 12.25 128 

10 1358 22.90 8192 

11 1686 28.64 8192 

12 N/A N/A N/A 

  Typical TRF-TIF 

 MED 0 1035 

 MER 1 22.92 
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Predicate MED MER 2
n
 

13 488 29.76 4096 

14 326 15.82 128 

15 810 21.77 512 

16 2643 26.41 4096 

17 785 21.13 2048 

18 886 19.46 1024 

19 370 24.13 256 

20 173 13.36 128 

    

Sum 19665   

    

Average 1035 22.92  

 

 

8.4 Double Minimal DNF Fault Detection (Contribution 3d Parts I and II) 

This section presents a theoretical contribution by proving the double Minimal DNF 

fault detection capability of a typical logic mutation test set. 

Theorem 7 (Contribution 3d Part I): TRF-TIF vs. Typical Logic Mutation Double 

Minimal DNF Fault Detection 

For software containing minimal DNF predicates, tests that weakly kill all typical logic 

mutants are guaranteed to detect 84 of the 92 double fault types in Lau and Yu’s fault 

hierarchy. 

Proof: 

In order to kill the mutants produced by the COR typical mutation operator, it is 

necessary to have a UTP for each term and an NFP for each literal because the COR 

typical mutation operator produces TOFs and LOFs [18]. Lau et al. [27, 28, 29] show that 
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any strategy that includes at least one UTP for each term and one NFP for each literal is 

guaranteed to detect 84 of the 92 double fault types in Lau and Yu’s fault hierarchy. 

End Proof 

In the empirical study described in section 8.1, double fault detection was 

compared. Since the PCUTPNFP criterion is feasible for all predicates in the study and 

since TRF-TIF logic mutation subsumes the Minimal-MUMCUT criterion, for these 

predicates tests weakly killing all TRF-TIF mutants guaranteed detection of 91 of the 92 

double fault types in Lau and Yu’s fault hierarchy. However, for these predicates tests 

that weakly kill all typical logic mutants still detected just 84 of the 92 double fault types 

as a test set weakly killing all typical logic mutants missed detecting faults corresponding 

to the 8 double fault types not guaranteed to be detected (Contribution 3d Part II).  
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9 Comparison of TRF-TIF Logic Mutation with muJava  

 

This chapter is the second of three comparing the TRF-TIF logic mutation 

approach with other mutation tools/approaches. The focus of this chapter is comparing 

the TRF-TIF logic mutation approach with muJava, which corresponds to the fourth row 

in Table 5. muJava is a tool for mutating Java programs. When referring to muJava 

mutants for comparison of fault detection and mutant set size, the author refers to all of 

the mutants generated by muJava and not solely the logic mutants. Each section in this 

chapter corresponds to a cell in Table 5. Section 9.1 corresponds to cell 4a (mutant set 

size comparison), section 9.2 corresponds to cell 4b (equivalent mutant set size 

comparison), section 9.3 corresponds to cell 4c (single minimal DNF fault detection 

comparison), and section 9.4 corresponds to cell 4d (double minimal DNF fault detection 

comparison), and section 9.5 corresponds to cell 4e (general fault detection). The 

overriding theme of this chapter is that TRF-TIF logic mutation provides better minimal 

DNF fault detection and reduced mutant set size when compared to muJava, and that 

TRF-TIF logic mutation is effective at producing mutants that when killed, also kill a 

high percentage of non-logic mutants. The rest of this section describes an empirical 

study from which contributions in subsequent sections are derived. 
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An empirical evaluation [23] was conducted to ascertain if logic mutation testing 

can be used to reduce the costs of general mutation testing while maintaining most of its 

benefits. Specifically, the study was performed to answer these questions: 

1) Does TRF-TIF logic mutation produce fewer mutants than muJava with minimal 

impact on general fault detection? 

2) Does TRF-TIF logic mutation produce fewer mutants than muJava while improving 

logic fault detection? 

3) Does TRF-TIF logic mutation produce fewer equivalent mutants than muJava? 

4) Can a metric be established concerning a property of the source code under test that 

will predict when killing all TRF-TIF mutants is likely to kill general mutants? 

Thirty small Java programs (average of 15 LOC per program) were selected for 

the study. Four of the programs appear in a textbook on software testing by Ammann and 

Offutt [2]. The code for these programs is in Appendix J. The author supplemented these 

programs with 26 additional programs, each of which corresponds to a static utility 

method in the Arrays or Collections Java classes (J2SE 1.7). These programs are 

necessarily small as this makes it feasible to manually determine the equivalent mutants 

generated by muJava. The code for the Collections and Arrays classes is accessible at: 

http://www.docjar.com/html/api/java/util/Collections.java.html 

and  

http://www.docjar.com/html/api/java/util/Arrays.java.html 

For the Collections class, a sample of deterministic static utility methods that 

contained at least one “if” statement were included in the study. Most of these methods 
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focused on sorting and searching. For the Arrays class, a similar set of static utility 

methods was selected except that sorting and searching methods were excluded to avoid 

redundancy since such methods were similar to the Collections methods. Also, if multiple 

methods in the Arrays class existed that differed only in the type of primitive array(s) 

taken as argument(s), only one such method was selected. For example, the Arrays class 

has a different equals static utility method for each of the following array types: long[], 

int[], char[], short[], byte[], boolean[], double[], float[] and Object[]. In this case the 

method that uses Object[] was chosen as well as the method using long[]. Table 37 gives 

the class name and method name for each of the 26 Collections and Arrays programs. 

 

 

Table 37 Arrays and Collections Programs [23] 

 

Class Method Name 

Arrays rangeCheck(int arrayLen, int fromIndex, int toIndex) 

Arrays equals(long[] a, long[] a2) 

Arrays equals(Object[] a, Object[] a2) 

Arrays deepEquals(Object[] a1, Object[] a2) 

Arrays toString(long[] a) 

Arrays toString(Object[] a) 

Arrays deepToString(Object[] a) 

Arrays deepToString(Object[] a, StringBuilder buf, Set<Object[]> dejaVu) 

Collections binarySearch(List<? extends Comparable<? super T>> list, T key) 

Collections indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) 

Collections iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key) 

Collections get(ListIterator<? extends T> i, int index) 

Collections binarySearch(List<? extends T> list, T key, Comparator<? super T> c) 

Collections indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) 

Collections iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) 

Collections reverse(List<?> list) 

Collections fill(List<? super T> list, T obj) 

Collections copy(List<? super T> dest, List<? extends T> src) 

Collections min(Collection<? extends T> coll) 

Collections min(Collection<? extends T> coll, Comparator<? super T> comp) 
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Class Method Name 

Collections max(Collection<? extends T> coll) 

Collections max(Collection<? extends T> coll, Comparator<? super T> comp) 

Collections rotate(List<?> list, int distance) 

Collections rotate1(List<T> list, int distance) 

Collections rotate2(List<?> list, int distance) 

Collections replaceAll(List<T> list, T oldVal, T newVal) 

 

 

9.1 Mutant Set Size (Contribution 4a Parts I and II) 

The study used the TRF-TIF tool to generate logic mutants and muJava to 

generate general mutants. To reduce bias, the test data to weakly kill all TRF-TIF mutants 

was generated prior to the generation of muJava mutants. The number of mutants 

generated by each tool was determined and the results are displayed in Table 36. In this 

table, the names of Arrays and Collections programs in Table 37 are referred to by the 

letter A if the program is an Arrays method and by the letter C if the program is a 

Collections method. The number after the letter corresponds to the order the method 

appears in Table 37. So for example, A1 refers to the Arrays rangeCheck method and C1 

refers to the Collections binarySearch method that takes two arguments. 

 

Table 38 Number of Software Mutants [23] 

 

Program 
Number of TRF-TIF 

Logic Mutants 

Number of muJava 

Mutants 
Percentage 

 Cal 6 136 4% 

Prime 4 72 6% 

TestPat 8 95 8% 

TriType 22 200 11% 

A1 6 38 16% 

A2 9 50 18% 

A3 9 46 20% 
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Program 
Number of TRF-TIF 

Logic Mutants 

Number of muJava 

Mutants 
Percentage 

A4 40 93 43% 

A5 6 40 15% 

A6 6 40 15% 

A7 5 35 14% 

A8 28 60 47% 

C1 3 10 30% 

C2 6 82 7% 

C3 6 82 7% 

C4 2 40 5% 

C5 5 8 63% 

C6 4 82 5% 

C7 4 82 5% 

C8 3 46 7% 

C9 3 37 8% 

C10 7 56 13% 

C11 2 1 200% 

C12 4 3 133% 

C13 2 6 33% 

C14 4 8 50% 

C15 3 14 21% 

C16 8 135 6% 

C17 6 61 10% 

C18 15 82 18% 

Sum 236 1740 14% 

 

 

The key result is that the number of TRF-TIF mutants was 14% of the muJava 

mutants (Contribution 4a Part I). However, recall that this comparison is between the 

number of TRF-TIF mutants (which are solely logic mutants) and the total number of 

muJava mutants (which are both logic and non-logic mutants). This is still an 

interesting comparison because if tests that weakly kill all TRF-TIF mutants kill a vast 

majority of muJava mutants, the comparison shows that mutant set size can be 

significantly reduced with little impact on mutation score by solely generating TRF-TIF 
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mutants. A total of 236 TRF-TIF logic mutants were generated for the 30 programs 

(with a low of 2, a high of 40 and an average of 7.87). A minimal test set of 143 tests 

was used to weakly kill these mutants (with a low of 1, a high of 34 and an average of 

4.77). muJava generated 1740 mutants for the 30 programs (with a low of 1, a high of 

200 and an average of 58).  

The results in Table 38 can be explained by a number of factors, related to the fact 

that the mutation operators in TRF-TIF logic mutation and muJava are different. For 

the TRF-TIF tool, the logic portion of a Java program is restricted to predicates in 

“for”, “while”, “if” or “else if” statements. muJava differs in that it possesses non-logic 

mutation operators and the logic mutation operators it does possess are different than 

those in TRF-TIF mutation. muJava applies its logic mutation operators to any logic 

expression in a program and these logic mutation operators do not take advantage of the 

fault hierarchy. In other words, logic mutants are produced by muJava that are 

guaranteed to be killed by tests killing other logic mutants. 

To compare mutant set size between TRF-TIF mutation and muJava based solely 

on the number of logic mutants that muJava generates, a side empirical study was 

conducted. In this study the 19 TCAS Boolean predicates in Appendix B were used as the 

source under test. TRF-TIF mutants and muJava logic mutants were generated for each 

predicate and mutant set size was compared. When considering individual minimal DNF 

predicates, the logic mutation operators in muJava will replace each AND with both XOR 

and OR and each OR with both AND and XOR. Furthermore, the logic mutation 

operators in muJava will both insert and delete a negation operator at every possible 
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location. As an example, consider the predicate a + b + c. muJava will generate these 

mutations: ab + c, a XOR b + c, a + bc, a + b XOR c, !a + b + c, a + !b + c, a + b + !c, 

!(a + b) + c, a + !(b + c) and !(a + b + c). Table 39 shows the results.  The key result is 

that the number of TRF-TIF mutants was 25% of the number of muJava logic mutants 

(Contribution 4a Part II). 

 

Table 39 TRF-TIF Mutant Set Size vs. muJava  Logic Mutant Set Size  

 

Predicate 
TRF-TIF 

[19] 

muJava 

Logic  
Percentage 2

n
 

1 27 102 26.47% 128 

2 81 404 20.05% 512 

3 148 761 19.45% 4096 

4 9 24 37.50% 32 

5 34 126 26.98% 512 

6 62 193 96.88% 2048 

7 62 214 32.12% 1024 

8 36 104 34.62% 256 

9 16 43 37.21% 128 

10 62 199 31.16% 8192 

11 61 232 26.29% 8192 

12 N/A N/A N/A N/A 

13 17 58 29.31% 4096 

14 22 67 32.84% 128 

15 39 160 24.38% 512 

16 104 535 19.44% 4096 

17 39 115 33.91% 2048 

18 48 148 32.43% 1024 

19 16 68 23.54% 256 

20 14 37 37.84% 128 

     

Sum 897 3590 24.99% 37,408 

     

Avg 47.21 188.94 24.99% 1968.84 
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9.2 Equivalent Mutant Set Size (Contribution 4b) 

The TRF-TIF approach prevents equivalent mutants from being created assuming 

reachability, propagation and a complete Boolean space. The muJava tool can generate 

equivalent mutants even if these assumptions hold. In the empirical study, the number of 

strongly equivalent mutants generated by each tool was determined manually for each of 

the 30 programs. Results are displayed in Table 40.  

 

 

Table 40 Number and Percentage of Strongly Equivalent Software Mutants [23] 

 

Program 

Number of 

Strongly 

Equivalent 

TRF-TIF 

Mutants 

Percent of TRF-

TIF Mutants that 

are Strongly 

Equivalent 

Number of 

Strongly 

Equivalent 

muJava Mutants 

Percent of 

muJava 

Mutants that 

are Strongly 

Equivalent 

 Cal 1 17% 25 18% 

Prime 0 0% 5 7% 

TestPat 0 0% 6 6% 

TriType 0 0% 44 22% 

A1 0 0% 6 16% 

A2 0 0% 0 0% 

A3 0 0% 0 0% 

A4 0 0% 0 0% 

A5 0 0% 2 5% 

A6 0 0% 2 5% 

A7 0 0% 10 29% 

A8 0 0% 2 3% 

C1 3  100% 8 80% 

C2 0 0% 8 10% 

C3 0 0% 8 10% 

C4 0 0% 0 0% 

C5 3 60% 6 75% 

C6 0 0% 8 10% 

C7 0 0% 8 10% 

C8 3 100% 9 20% 

C9 3    100% 7 19% 

C10 6 86% 12 21% 
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Program 

Number of 

Strongly 

Equivalent 

TRF-TIF 

Mutants 

Percent of TRF-

TIF Mutants that 

are Strongly 

Equivalent 

Number of 

Strongly 

Equivalent 

muJava Mutants 

Percent of 

muJava 

Mutants that 

are Strongly 

Equivalent 

C11 0 0% 0 0% 

C12 0 0% 0 0% 

C13 0 0% 1 17% 

C14 0 0% 1 13% 

C15 3  100% 10 71% 

C16 1 13% 3 2% 

C17 1 17% 7 11% 

C18 3 20% 7 9% 

Sum 27 11% 205 12% 

 

 

The key result is that the number of strongly equivalent TRF-TIF mutants was 

13% of the number of strongly equivalent muJava mutants (27 vs. 205) (Contribution 

4b). However, recall that this comparison is between the number of strongly equivalent 

TRF-TIF mutants (which are solely logic mutants) and the total number of strongly 

equivalent muJava mutants (which are both logic and non-logic mutants). The TRF-TIF 

tool generated one weakly equivalent mutant, as infection was feasible for all but one 

predicate. For that predicate, the combination of literal values needed to cause infection 

was infeasible. (If a tester specifies the infeasible combinations of values for the literals 

in this predicate, then the TRF-TIF tool generates no weakly equivalent mutants. See 

Appendix J for how these infeasible combinations are specified in the code.)  However, 

26 of the TRF-TIF logic mutants were strongly equivalent, although not weakly 

equivalent. For these mutants, infection was achieved but not propagation. This was due 

to sorting and searching methods in the Collections class that used predicates solely for 
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improving efficiency. In other words, whether these predicates evaluated to TRUE or 

FALSE did not impact the output itself, but rather how quickly the output was returned. 

The author examined the muJava mutants manually and determined that 205 of them 

were equivalent based on strong mutation.  

9.3 Single Minimal DNF Fault Detection (Contribution 4c) 

This section presents a theoretical contribution by proving that tests that weakly 

kill all muJava mutants are guaranteed to detect 5 of the 9 single fault types in Lau and 

Yu’s fault hierarchy. 

Theorem 8 (Contribution 4c): TRF-TIF vs. muJava Single Minimal DNF Fault 

Detection 

For software containing minimal DNF predicates, tests that weakly kill all muJava 

mutants are guaranteed to detect 5 of the 9 single fault types in Lau and Yu’s fault 

hierarchy. 

Proof: 

When considering individual minimal DNF predicates, the logic mutation 

operators in muJava will replace each AND with both XOR and OR and each OR with 

both AND and XOR. Furthermore, the logic mutation operators in muJava will both 

insert and delete a negation operator at every possible location. As an example, consider 

the predicate a + b + c. muJava will generate these mutations: ab + c, a XOR b + c, a + 

bc, a + b XOR c, !a + b + c, a + !b + c, a + b + !c, !(a + b) + c, a + !(b + c) and !(a + b 

+ c).  
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A test set that kills all muJava mutants is guaranteed to detect the ORF+, LNF, 

ORF., TNF and ENF. To prove this, it is sufficient to prove that the ORF+, LNF and 

ORF. are detected because the TNF and ENF follow based on the fault hierarchy. A test 

set that kills all muJava mutants is guaranteed to kill an ORF+ because one of the 

mutation operators is to replace OR with AND. Likewise, a test set that kills all muJava 

mutants is guaranteed to kill an ORF. because one of the mutation operators is to replace 

AND with OR. Finally, a test set that kills all muJava mutants is guaranteed to kill an 

LNF because one of the mutation operators is to insert a negation before each literal and 

another mutation operator deletes a negation before each literal. 

 A test set that kills all muJava mutants is not guaranteed to detect an LIF, TOF, 

LRF, or LOF. To prove this, it is sufficient to find a predicate, create muJava mutations 

for the predicate and show how each fault can go undetected by a test set killing the 

muJava mutants. First, consider the LOF. AN LOF for literal b in the predicate ab would 

result in a faulty predicate of a. The only test that detects this fault is 10, which causes 

predicate ab to evaluate to FALSE and predicate a to evaluate to TRUE. Note that 10 is 

the only NFP for literal b in predicate ab. muJava will generate the following mutations 

for predicate ab: a + b, a XOR b, !ab, a!b and !(ab). A test set of {01, 11} kills these four 

mutants but does not include the test 01 and thus does not include an NFP for literal b. 

When a test set does not include an NFP for a literal, an LOF for that literal is guaranteed 

not to be detected [30]. Next, consider the LIF, LRF and TOF with an example predicate 

of ab + cd. Table 41 describes the muJava mutants and a test that kills each mutant. 
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Table 42 describes an LIF, LRF and TOF that can go undetected by a test set that that 

kills all the muJava mutants. 

 

Table 41 muJava Mutants for Predicate ab + cd 

 

Mutant 
A Test That Kills 

the Mutant 

Value of Original 

Predicate 

Value of Mutated 

Predicate 

a + b + cd 1000 FALSE TRUE 

a XOR b + cd 1000 FALSE TRUE 

abcd 0011 TRUE FALSE 

ab XOR cd 1111 TRUE FALSE 

ab + c + d 0001 FALSE TRUE 

ab + c XOR d 0001 FALSE TRUE 

!ab + cd 0100 FALSE TRUE 

a!b + cd 1000 FALSE TRUE 

ab + !cd 0001 FALSE TRUE 

ab + c!d 0010 FALSE TRUE 

!(ab) + cd 0000 FALSE TRUE 

ab + !(cd) 0000 FALSE TRUE 

!(ab + cd) 0000 FALSE TRUE 

 

 

 

Table 42 LIF, LRF and TOF for Predicate ab + cd 

 

Fault 
All Tests Detecting 

the Fault 

Value of Original 

Predicate 

Value of Mutated 

Predicate 

abc + cd (LIF) 1101, 1100 TRUE FALSE 

ac + cd (LRF) 1101, 1100, 1010 
TRUE for 1101, 1100 

FALSE for 1010 

FALSE for 1101, 1100 

TRUE for 1010 

cd (TOF) 1100, 1101, 1110 TRUE FALSE 

 

 

The test set formed by the union of all the tests in the second column in Table 41 

does not include any of the tests in the second column of Table 42. Thus, the LIF, LRF 

and TOF go undetected. Note that the test set formed by the union of all the tests in the 



 

167 

second column in Table 41 does not include a UTP for term ab. The only UTPs for term 

ab are 1100, 1101 and 1110. When a test set does not include a UTP for a term, both a 

TOF for that term and an LIF in that term are guaranteed not to be detected [30]. It is 

usually possible to detect an LRF for a literal in a term without including a UTP for that 

term [30] and in this case the NFP 1010 detects the LRF in Table 42, but this point does 

not need to be included in a test set killing all muJava mutants. 

End Proof 

9.4 Double Minimal DNF Fault Detection (Contribution 4d) 

This section presents a theoretical contribution by proving that tests that weakly 

kill all muJava mutants are guaranteed to detect less double fault types in Lau and Yu’s 

fault hierarchy than Minimal-MUMCUT tests. 

Theorem 9 (Contribution 4d): TRF-TIF vs. muJava Double Minimal DNF Fault 

Detection  

For software with minimal DNF predicates, tests that weakly kill all muJava mutants are 

guaranteed to detect fewer double fault types in Lau and Yu’s fault hierarchy than 

Minimal-MUMCUT tests. 

Proof: 

Kaminski and Ammann [20] show that tests satisfying the Minimal-MUMCUT criterion 

(and hence killing all TRF-TIF logic mutants) guarantee detecting 84 of the 92 double 

fault types. Any test set that includes a UTP for each term and an NFP for each literal is 

guaranteed this double fault detection [27, 28, 29]. A test set that kills all muJava mutants 
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guarantees detection of fewer double faults because it is not guaranteed to include a UTP 

for each term and an NFP for each literal as described in section 9.3.  

End Proof 

The exact number of double faults guaranteed to be detected by a test set that kills 

all muJava mutants is not known. What makes the analysis complex is that a test set that 

kills all muJava mutants does make some guarantees regarding UTPs and NFPs. Such a 

test set is guaranteed to contain a UTP for at least one of every two adjacent terms as this 

is required to detect the ORF+ [30]. Such a test is also guaranteed to contain either a UTP 

for a term or an NFP for every literal in a term as this is required to detect the LNF [30].  

For an example, the TOF-TOF double fault is guaranteed to be detected by a 

Minimal-MUMCUT test set [30]. Examining Table 41 shows that a test set that kills all 

muJava mutants includes only one test that makes term ab TRUE, namely 1111, which 

also makes term cd TRUE. Extending this further, consider predicate ab + cd + ef + gh. 

The only muJava mutant that requires term ab to be TRUE is changing the first OR to 

XOR (ab XOR cd + ef + gh). To kill the corresponding mutant, a test must make both ab 

and cd TRUE while making both ef and gh FALSE. 11110000 is such a test. The only 

muJava mutant that requires term gh to be TRUE is changing the last OR to XOR (ab + 

cd + ef XOR gh). To kill the corresponding mutant, a test must make both ef and gh 

TRUE while making both ab and cd FALSE. 00001111 is such a point. Lau, Liu and Yu 

[27, 28, 29] state that to detect the TOF-TOF, any point that makes either (or both) terms 

being omitted TRUE while making all other terms FALSE will detect the fault. Consider 

the TOF-TOF where both terms ab and gh are omitted to yield cd + ef. Neither 11110000 
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nor 00001111 detect this fault because both points make some other term besides ab or 

gh TRUE. 

9.5 General Fault Detection (Contribution 4f) 

Using muJava as the fault seeding tool, the study described at the beginning of 

this chapter examined general fault detection of a test set that weakly kills all TRF-TIF 

logic mutants. Specifically, the author captured the percentage of strongly non-equivalent 

muJava mutants that were strongly killed by a test set that weakly kills all TRF-TIF logic 

mutants. Results are shown in Table 43.  

 
 

Table 43 Number of Strongly non-Equivalent muJava Mutants Strongly Killed by a 

Test Set that Weakly Kills All TRF-TIF Logic Mutants [23] 

 

Program 

Number of 

TRF-TIF 

Logic Mutants 

Number of 

Strongly Killed 

muJava Mutants 

Number of Strongly 

Non-Equivalent 

muJava Mutants 

Percentage 

 Cal 6 106 111 96% 

Prime 4 66 67 99% 

TestPat 8 78 89 88% 

TriType 22 153 156 99% 

A1 6 31 32 97% 

A2 9 45 50 90% 

A3 9 40 46 87% 

A4 40 87 93 94% 

A5 6 38 38 100% 

A6 6 38 38 100% 

A7 5 25 25 100% 

A8 28 58 58 100% 

C1 3 2 2 100% 

C2 6 68 74 92% 

C3 6 68 74 92% 

C4 2 34 40 85% 

C5 5 2 2 100% 

C6 4 68 74 92% 

C7 4 68 74 92% 
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Program 

Number of 

TRF-TIF 

Logic Mutants 

Number of 

Strongly Killed 

muJava Mutants 

Number of Strongly 

Non-Equivalent 

muJava Mutants 

Percentage 

C8 3 37 37 100% 

C9 3 30 30 100% 

C10 7 37 44 84% 

C11 2 1 1 100% 

C12 4 3 3 100% 

C13 2 5 5 100% 

C14 4 7 7 100% 

C15 3 4 4 100% 

C16 8 126 132 95% 

C17 6 51 54 94% 

C18 15 61 75 81% 

Sum 236 1437 1535 94% 

 

 

The TRF-TIF test set of 143 tests strongly killed 94% (1437 / 1535) of the 

strongly non-equivalent muJava mutants (Contribution 4f), with a low of 81%, a high of 

100% and a standard deviation of 6%.  

The 30 programs selected for the initial empirical study were small. To see how 

the findings scale to larger program, a calculator Open Source Software Java program 

was selected for a second empirical study. The calculator program had 351 statements, 51 

logic statements and 62 unique literals. The calculator program outputs to a console the 

values of its variables after a user pressed a button on the calculator user interface. This 

allowed weak mutation testing to be applied since the program state could be known after 

executing a test.  

A total of 95 TRF-TIF logic mutants were generated for the calculator program, 

none of which were weakly equivalent. A minimal test set of 39 tests was used to weakly 
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kill these mutants. This test set is minimal in the sense that if even one of the 39 tests is 

removed from the test set, at least one non-equivalent mutant cannot be weakly killed. 

The muJava tool generated 767 mutants for the calculator program. The number of 

strongly equivalent muJava mutants was not determined due to the large number of 

muJava mutants generated. However, Offutt [32] reports that in programs he examined, 

10% of the mutants were strongly equivalent. Also, 12% of the muJava mutants were 

strongly equivalent for the 30 small programs in the initial study. A 10% estimate means 

that there are 690 strongly non-equivalent muJava mutants. The 39 tests weakly killed 

642 muJava mutants (93%), indicating that results scaled to a larger program. 

Threats to Validity and Sources of Bias 

The percentage of muJava mutants strongly killed by a test set that weakly kills 

all TRF-TIF mutants will depend on how “predicate heavy” the program under test is. 

This is a threat to external validity because it limits the generalizability of the results to 

programs that are as “predicate heavy” as the programs in the empirical study. To 

formalize this, two new terms are introduced, the Logic Statement Ratio and the Unique 

Literals Ratio.  

Logic Statement Ratio is defined as the ratio of the number of logic statements to 

the total number of statements. A logic statement is considered to be an “if” or “else if” 

predicate and the number of statements is counted as the number of statements ending in 

a semicolon (excluding package and import statements). For the “if” and “else if” 

predicates as a whole for all 30 programs, the average Logic Statement Ratio was 0.22 

with a low of 0.07, a high of 0.53 and a standard deviation of 0.13. The Logic Statement 
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Ratio does not take into account the number of unique literals in a predicate. Thus, the 

Unique Literals Ratio is defined as the ratio of the total number of unique literals in all 

logic statements to the total number of statements. For the “if” and “else if” predicates as 

a whole for all 30 programs, the average Unique Literals Ratio was 0.28 with a low of 

0.11, a high of 0.93 and a standard deviation of 0.16. Based on this data, the author 

suggests that (assuming unique literals are spread evenly throughout the source code) a 

conservative estimate is that a test set that weakly kills all TRF-TIF mutants will strongly 

kill at least 80% of strongly non-equivalent muJava mutants when the Unique Literals 

Ratio is greater than 0.10.  

 The studies undertaken are subject to at three sources of bias. The authors 

considered a logic statement to be an “if” or “else if” predicate. Predicates in “while” and 

“for loops” were not considered as logic statements (although the TRF-TIF tool has an 

option to generate mutants based on loop predicates). In general, omitting loop predicates 

creates an experimental bias against the ability of a test set that weakly kills all TRF-TIF 

logic mutants to kill non-logic mutants. However, for all but one of the programs studied, 

tests used to weakly kill all TRF-TIF logic mutants based on “if” and “else if” predicates 

were found to weakly kill all TRF-TIF logic mutants based on mutations to “while” and 

“for loop” predicates. Thus, additional tests cases would be needed for only one program 

to weakly kill all TRF-TIF logic mutants had loop predicates been included. Hence, the 

ability of a TRF-TIF test set to kill non-logic mutants for 29 of the programs would not 

have changed, meaning the bias created by using only “if” and “else if” predicates in 

TRF-TIF logic mutations is minimal.  
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 Another source of bias is that the way the authors classified a mutant as 

equivalent. Recall that classifying a TRF-TIF logic mutant as equivalent means that it is 

equivalent based on weak mutation testing, which means that it will always be equivalent 

based on strong mutation testing. However, classifying a muJava mutant as equivalent 

means it is equivalent under strong mutation testing, although it might not be equivalent 

under weak mutation testing. In general, this will create an experimental bias against 

TRF-TIF logic mutation because it requires that tests that weakly kill TRF-TIF logic 

mutants strongly kill non-logic muJava mutants. However, usually test that weakly kill 

mutants also strongly kill mutants, so this source of bias is likely to have little impact. 

A third of source of bias is that muJava is itself a selective mutation tool in that it 

uses a subset of common mutation operators that have been shown to be highly effective 

[2]. Thus, the comparison in this study is between TRF-TIF logic mutation operators with 

a selective mutation operator set. Thus, the mutation score of 94% is likely to be smaller 

when replacing the selective mutation operators of muJava with a full set.  

One interesting finding of the study was the variance seen in the results. While for 

the software empirical evaluation, an average of 94% of strongly non-equivalent muJava 

mutants were killed by a test that weakly killed all weakly non-equivalent TRF-TIF 

mutants, this percentage was as low as 81% for one of the programs. What is interesting 

is that the software program for which TRF-TIF logic mutation scored the lowest (81% 

for the Collections replaceAll method), had a slightly above average Unique Literals 

Ratio (0.29 compared to an average of 0.28). In fact, the correlation between the Unique 

Literals Ratio and the percentage of strongly non-equivalent muJava mutants killed by a 
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test that weakly killed all weakly non-equivalent TRF-TIF logic mutants was very weak 

(r = 0.03). Future research is planned to investigate why the percentages of general 

mutants killed by tests weakly killing all weakly non-equivalent TRF-TIF logic mutants 

were lower for some programs than others. Based on our data, a Unique Literals Ratio of 

at least 0.10 is a reliable indicator for achieving at least an 80% mutation score, but other 

factors influence whether the mutation score goes higher.  
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10 Comparison of TRF-TIF Logic Mutation with 
SQLMutation  

 

This chapter is the last of three comparing the TRF-TIF logic mutation approach 

with other mutation tools/approaches. The focus of this chapter is comparing the TRF-

TIF logic mutation approach with SQLMutation, which corresponds to the fifth row in 

Table 5. SQLMutation is an online query mutation tool based on CACC. To kill all 

SQLMutation mutants, a criterion known as SQLFpc (SQL Full predicate coverage) must 

be satisfied, which itself requires that CACC be satisfied. Each section in this chapter 

corresponds to a cell in Table 5. Section 10.1 corresponds to cell 5a (mutant set size 

comparison), section 10.2 corresponds to cell 5b (equivalent mutant set size comparison), 

section 10.3 corresponds to cell 5c (single minimal DNF fault detection comparison), 

section 10.4 corresponds to cell 5d (double minimal DNF fault detection comparison), 

and section 10.5 corresponds to cell 5e (general fault detection). The overriding theme of 

this chapter is that TRF-TIF logic mutation provides better minimal DNF fault detection 

and reduced mutant set size when compared to SQLMutation, and that TRF-TIF logic 

mutation is effective at producing mutants that when killed, also kill a high percentage of 

non-logic mutants. The rest of this section describes an empirical study from which 

contributions in subsequent sections are derived. 
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A database empirical evaluation [23] was conducted to ascertain if logic mutation 

testing can be used to reduce the costs of general mutation testing while maintaining most 

of its benefits. Specifically, the study was performed to answer these questions: 

1) Does TRF-TIF logic mutation produce fewer mutants than the SQLMutation approach 

with minimal impact on general fault detection? 

2) Does TRF-TIF logic mutation produce fewer mutants than the SQLMutation approach 

while improving logic fault detection? 

3) Does TRF-TIF logic mutation produce fewer equivalent mutants than the 

SQLMutation approach? 

4) Can TRF-TIF logic mutation reduce test set size (the number of rows needed in the 

tables of a database to kill all mutants) as compared to the SQLFpc approach while still 

maintaining a high mutation score? 

5) How do the mutation scores for TRF-TIF logic mutation compare with an approach 

where a test set is created randomly? 

 Ten queries from an open source project called Compiere were used. These 

queries were selected because Tuya et al. [42] used views from the Compiere project to 

compare mutation scores for the SQLFpc approach with an approach using a database 

populated randomly.  

Kaminski et al. [23] examined all the views in the Compiere project and extracted 

from them any query or sub query that contained a predicate (meaning a condition in a 

JOIN or a clause in a CASE, WHERE or HAVING statement) that had at least three 

unique literals. There were ten such queries. The rationale is that an approach based on 
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logic mutation is going to require predicates with at least three unique literals to be 

beneficial. For six of the ten queries, the query constitutes the entire view. For the other 

four queries, the query consisted of a sub query in the view. The study used the TRF-TIF 

tool to generate logic mutants and version 1.2.59 of the SQLMutation tool to generate 

general mutants. In some cases the queries were modified so as to eliminate internal 

PL/SQL functions or to get them to run successfully through the SQLMutation tool but in 

no cases were any join conditions changed and in no cases were the number of unique 

literals in a predicate changed. 

All predicates were already in minimal DNF for 8 of the 10 queries. For query 4, 

the WHERE clause predicate was in minimal CNF. For query 1, the WHERE clause 

predicate was neither in minimal DNF nor minimal CNF. For these two queries, the 

WHERE clause predicate was converted to minimal DNF before generating the TRF-TIF 

mutants. When a query had multiple predicates (for example, a WHERE clause and a 

JOIN condition), the TRF-TIF approach was applied if the predicate had at least three 

unique literals whereas a combinatorial approach was applied if the predicate had less 

than three unique literals. When creating test data to kill all TRF-TIF mutants, the author 

had not seen the SQLMutation mutants to eliminate bias. Appendix K lists the following 

for each query: 

1) The schema used for the purpose of running the SQLMutation tool 

2) The actual SQL for the query  

3)  The main WHERE clause predicate in minimal DNF 

4) The mutants created by the TRF-TIF tool for the main WHERE clause predicate 
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5) The test points needed to kill each mutant in terms of literal values 

6) The test points needed to kill all the TRF-TIF mutants in terms of the rows needed in a 

test database 

10.1 Mutant Set Size (Contribution 5a) 

The number of mutants generated by each tool was determined and the results are in 

Table 44. The key finding is that TRF-TIF mutant set size is 2% of SQLMutation mutant 

set size (Contribution 5a). 

 

 

Table 44 Number of Query Mutants [23] 

 

Query 
TRF-TIF 

Logic Mutants 

SQLMutation 

Mutants* 
Percentage 

1 71 1406 5.05% 

2 5 1007 0.50% 

3 5 1005 0.50% 

4 20 1025 1.95% 

5 4 49 8.16% 

6 4 252 1.59% 

7 4 497 0.80% 

8 5 401 1.25% 

9 5 610 0.82% 

10 4 166 2.41% 

    

Sum 127 6418 1.98% 

 

*The SQLMutation tool can automatically identify a few equivalent mutants. (9 of the 

6427 total mutants generated for the 10 queries were identified as equivalent). The data in 

Table 44 reflects only the mutants generated by the SQLMutation tool that the 

SQLMutation tool does not mark as equivalent.  
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These results can be explained by the fact that the TRF-TIF tool produces 

different logic mutants than the logic mutants produced by SQLMutation as the logic 

mutation operators in the TRF-TIF tool are different than the logic mutation operators in 

SQLMutation. For the TRF-TIF tool, the logic portion of a query is considered to be a 

WHERE, HAVING or CASE clause or a JOIN condition. The TRF-TIF approach limits 

itself to these conditions and clauses because these are the places where a predicate is 

explicitly specified. The SQLFpc approach is more comprehensive. Thus, less data in a 

test database is needed for the TRF-TIF approach than for the SQLFpc approach as fewer 

mutants are generated. Another explanation is that the TRF-TIF approach avoids 

generating unnecessary mutants low in the fault hierarchy. SQLMutation does not take 

advantage of the fault detection relations in the fault hierarchy. A final explanation is that 

SQLMutation generates more equivalent mutants, which is described next. 

10.2 Equivalent Mutant Set Size (Contribution 5b) 

The SQLMutation tool automatically detects some equivalent mutants. However, 

it also produces equivalent mutants that are not detected. The author of the SQLMutation 

tool was asked for an estimate as to what percentage of the mutants generated by the 

SQLMutation tool are equivalent, yet are not detected as such. At the time of the 

correspondence, the current version of the SQLMutation tool was version 1.2.59. The 

author of the SQLMutation tool indicated that while the percentage varies depending on 

the complexity of the query, a conservative estimate is 6%. This was based on an NIST 

study using simple queries. More complex queries are likely to have a higher percentage 

of equivalent mutants generated by the SQLMutation tool. Thus, a TRF-TIF mutant set 
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contains fewer equivalent mutants than a SQLMutation mutant set (Contribution 5b) 

since a TRF-TIF mutant set is guaranteed to not have any equivalent query mutants 

(assuming a complete Boolean space) and the 6% estimate for SQLMutation is based on 

a complete Boolean space. 

10.3 Single Minimal DNF Fault Detection (Contribution 5c) 

This section presents a theoretical contribution by proving that tests that weakly 

kill all SQLMutation mutants are guaranteed to detect 2 of the 9 single fault types in Lau 

and Yu’s fault hierarchy (the TNF and ENF). 

Theorem 10 (Contribution 5c): TRF-TIF vs. SQL Mutation Single Minimal DNF 

Fault Detection  

For queries having minimal DNF WHERE clauses, tests that weakly kill all 

SQLMutation mutants are guaranteed to detect 2 of the 9 single fault types in Lau and 

Yu’s fault hierarchy. 

Proof: 

SQLFpc is based on masking MCDC (CACC) which is known to guarantee detection of 

only 2 of the 9 faults in Lau and Yu’s fault hierarchy [24]. (CACC requires a UTP and 

NFP for each unique literal but not each literal). This was also proven in section 6.2 by 

showing how RACC tests guarantee detecting only 2 of the faults because a CACC test is 

a RACC test set. 

End Proof 
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10.4 Double Minimal DNF Fault Detection (Contribution 5d) 

This section presents a theoretical contribution by proving that tests that weakly kill all 

SQLMutation mutants are guaranteed to detect 22 of the 92 double fault types in Lau and 

Yu’s fault hierarchy. 

Theorem 11 (Contribution 5d): TRF-TIF vs. SQL Mutation Double Minimal DNF 

Fault Detection  

For queries having minimal DNF WHERE clauses, tests that weakly kill all 

SQLMutation mutants are guaranteed to detect 22 of the 92 double fault types in Lau and 

Yu’s fault hierarchy. 

Proof: 

SQLFpc is based on masking MCDC (CACC) which is known to guarantee detection of 

only 22 of the 92 double fault types in the hierarchy [23]. (CACC requires a UTP and 

NFP for each unique literal but not each literal). This was also proven in section 6.3 by 

showing how RACC tests guarantee detecting only 22 of the faults because a CACC test 

is a RACC test set. The 22 double fault types correspond only to 4 of the 45 unordered, 

non-versioned double fault types. The only double fault types that MCDC is guaranteed 

to detect (ENF-TOF, TNF-TNF, TNF-TOF and TNF-LIF) are those that can be detected 

by any FALSE point [23]. 

End Proof 
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10.5 General Fault Detection (Contribution 5f Parts I and II) 

Using SQLMutation as the fault seeding tool, the study described at the beginning 

of this chapter examined general fault detection of a test set that weakly kills all TRF-TIF 

logic mutants. The data collected included: 

1) percentage of non-equivalent* SQLMutation tool mutants killed by a test set killing all 

TRF-TIF logic mutants 

2) a comparison of TRF-TIF logic mutation score with mutation score based on 

populating a test database randomly  

*The percentage of equivalent mutants is assumed to be 8% for two of the queries and 

6% for all other queries based on data provided by the author of the SQLMutation tool. 8 

of the 10 queries had 5 or less unique literals in their WHERE clause. The two remaining 

queries had 10 and 18 unique literals in their WHERE clauses so the percentage of 

equivalent mutants for these queries is assumed to be 8%.  

 

Table 45 displays the percentage of non-equivalent SQLMutation mutants weakly 

killed by a test set that kills all TRF-TIF logic mutants. The data in Table 45 reflects 

assumptions as to the proportion of equivalent mutants. Based on Table 45, a 

conservative estimate is that a test set that kills all TRF-TIF mutants will kill at least 80% 

of non-equivalent SQLMutation mutants when the WHERE clause has at least 3 unique 

literals 
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Table 45 Percentage of Non-Equivalent SQLMutation Mutants Killed by a Test Set 

Killing all TRF-TIF Logic Mutants [23] 

 

Query 

Killed Non-

Equivalent 

SQLMutation 

Mutants 

Non-

Equivalent 

SQLMutation 

Mutants 

Percentage 

1 1066 1295 82% 

2 864 947 91% 

3 998 *1005 99% 

4 828 967 86% 

5 42 46 91% 

6 221 237 93% 

7 445 468 95% 

8 352 379 93% 

9 477 573 83% 

10 144 156 92% 

    

Sum 5437 6053 90% 

 

* 1005 mutants were generated by the SQLMutation tool for query number 3. Since 998 

of these mutants were killed at most 7 of them are equivalent. Thus, for this query, the 

6% estimate of equivalent mutants is too high. Thus, it is assumed all 1005 mutants are 

not equivalent. This assumption biases the results against the TRF-TIF logic mutation 

tool as some of these 1005 mutants may be equivalent. 

 

 

 

Table 46 compares mutation scores for the TRF-TIF approach versus an approach 

based on populating a test database randomly with four rows of data per table as 

described by Tuya et al. [42]. Table 46 shows data for queries 1-5 and 9. These queries 

are targeted because Tuya’s research focused on testing entire views and queries 1-5 and 

9 represent the entire view (whereas queries 6, 7, 8 and 10 represent a subquery within 

the view). Thus, a direct comparison between the TRF-TIF results and random results are 

only possible for queries 1-5 and 9. On average, a test set that kills all TRF-TIF logic 

mutants required 3.54 rows of data per table, so this biases the comparison against the 
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TRF-TIF approach. The mutation score for the TRF-TIF approach in Table 46 is lower 

for each query than that listed in Table 45. This is because the random mutation scores 

are based on the set of mutants without accounting for an estimate of non-equivalent 

mutants. That is, the mutation scores for the random approach assumed an equivalent 

mutant percentage of 0%. Thus, the actual mutation scores for the TRF-TIF approach and 

the random approach are higher than what is presented in Table 46. However, not taking 

into account the assumption of equivalent mutant frequency allows an unbiased 

comparison between the TRF-TIF approach and the random approach. 

 

 

 

Table 46 Mutation Scores for TRF-TIF Logic Mutation versus a Random Approach 

[23] 

 

Query 
TRF-TIF Logic 

Mutation Score 

Random 

Mutation Score 

1 75.82% 1.6% 

2 85.80% 0.2% 

3 99.30% 0.2% 

4 80.78% 0.1% 

5 85.71% 18.7% 

9 78.20% 0.0% 

   

Average 84.27% 3.47% 

 

 

Key results include: 

1) A test set that killed all TRF-TIF mutants killed 90% of all non-equivalent 

SQLMutation mutants (Contribution 5f Part I) with a standard deviation of 5% 
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2) Mutation score for the TRF-TIF approach is more than 20 times higher than that 

of a random approach, even when the random approach uses more test data 

(Contribution 5f Part II). (Even when a random approach populates 1000 rows 

per table, the mutation score is still higher for the TRF-TIF approach based on 

3.54 rows per table.) 

 

 Tuya et al. [42] give detailed results for the SQLFpc approach only for query 1. 

For this query, they state that 87.30% of SQLMutation mutants are killed by a test set 

satisfying SQLFpc. They also specify that 126 rows are needed to satisfy SQLFpc 

coverage. The author contacted Tuya to get similar data for queries 2, 3, 4, 5 and 9. These 

queries are targeted because Tuya’s research focused on testing entire views and queries 

1-5 and 9 represent the entire view (whereas queries 6, 7, 8 and 10 represent a subquery 

within the view). Thus, a direct comparison between the TRF-TIF results and Tuya’s 

results is only possible for queries 1-5 and 9.  

 Table 47 gives Tuya’s data for a test set satisfying SQLFpc for queries 1-5 and 9. 

The mutation score represents no assumption as to the number of equivalent mutants 

(only mutants identified as equivalent by the SQLMutation tool are accounted for). Note 

that the mutation score for query 1 in Table 47 is different than what is mentioned above 

because Tuya updated his tool to eliminate randomness so as to make results repeatable 

(meaning the mutant set is always the same for a given query that is run through the 

SQLMutation tool). Note also that number of rows needed for query 1 in Table 47 is 

different than what is mentioned above since Tuya indicated that the 126 rows was an 
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error and it should have been reported as 136. Table 48 gives data for a test set based on 

TRF-TIF logic mutation for queries 1-5 and 9. 

 

 

Table 47 Mutation Scores and Number of Database Rows for a SQLFpc Test Set 

[42] 

 

Query Mutation Score Rows 

1 86.15% 136 

2 89.15% 35 

3 91.70% 42 

4 90.30% 44 

5 94.67% 5 

9 55.42% 25 

   

Average 84.57% 47.83 

 

 

Table 48 Mutation Scores and Number of Database Rows for a TRF-TIF Logic 

Mutation Test Set [23] 

 

Query Mutation Score Rows 

1 75.82% 46 

2 85.80% 13 

3 99.30% 17 

4 80.78% 22 

5 85.71% 4 

9 78.20% 9 

   

Average 84.27% 18.5 

 

  

 The average mutation scores for the SQLFpc approach and the TRF-TIF approach 

are almost the same. However, the SQLFpc approach requires more than 2.5 times as 

number of rows in the database. Thus, test set size for the TRF-TIF approach is about 
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38% of the test set size for the SQLFpc approach. Also, the TRF-TIF approach 

guarantees detecting faults in Lau and Yu’s fault hierarchy that the SQLFpc approach 

does not. The SQLMutation tool does not generate mutants that correspond to some of 

the faults in the hierarchy. For example, there are no mutants generated by the 

SQLMutation tool that correspond to the LIF. If the SQLMutation tool did generate such 

mutants, the mutation score for the SQLFpc approach would decrease and the mutation 

score for the TRF-TIF approach would increase as tests that weakly kill all TRF-TIF 

mutants guarantee detecting the LIF. Since SQLFpc is based on MCDC and MCDC does 

not guarantee detecting 7 of the 9 faults in Lau and Yu’s fault hierarchy, a test set that 

kills all TRF-TIF mutants is guaranteed to detect 7 fault types that a SQLFpc test does 

not. 

Threats to Validity and Sources of Bias 

The percentage of SQLMutation mutants killed by a test set that kills all TRF-TIF 

query mutants will depend on how “predicate heavy” the query under test is. This is a 

threat to external validity because it limits the generalizability of the results to queries 

that are as “predicate heavy” as the programs in the empirical study. 

The study undertaken has a bias since SQLMutation is itself a selective mutation 

tool because it uses a subset of query mutation operators. Thus, the comparison in this 

study is between TRF-TIF mutation operators with a selective mutation operator set. 

Thus, the mutation score of 90% is likely to be smaller when replacing the selective 

mutation operators of SQLMutation with a full set.  
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One interesting finding was the variance seen in the results. For the database 

empirical evaluation, 90% of non-equivalent SQLMutation mutants were killed by a test 

set that killed all TRF-TIF logic mutants, but this percentage was as low as 82% for one 

of the queries. What is interesting is that the query for which TRF-TIF logic mutation 

scored the lowest (82% for query 1) had more unique literals in its where clause than any 

other query under test. Also, the query for which TRF-TIF logic mutation scored the 

second lowest (83% for query 9) had the second most unique literals in its where clause. 

A negative correlation coefficient of r = -0.67 was found between the number of unique 

literals in the where clause of a query and the number of non-equivalent SQLMutation 

mutants killed by a test set killing all TRF-TIF logic mutants. Future research is planned 

to investigate why the percentages of general mutants killed by tests weakly killing all 

weakly non-equivalent TRF-TIF logic mutants were lower for some queries than others. 

Based on our data, a query having at least 3 unique literals is a reliable indicator for 

achieving at least an 80% mutation score, but other factors influence whether the 

mutation score goes higher.  
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11 Conclusion  
 

 In conclusion, the Minimal-MUMCUT logic coverage criterion and TRF-TIF 

logic mutation advance the state of software and query testing by providing efficient 

solutions to the problem of increasing fault detection while decreasing mutant and test set 

size.  

The Minimal-MUMCUT criterion has been shown to both reduce test set size and 

increase fault detection when compared to other logic coverage criteria, both in theory 

and in practice. Based on criterion feasibility of individual terms and literals in a minimal 

DNF or minimal CNF predicate, Minimal-MUMCUT tests can reduce MUMCUT test set 

size while at the same time detecting more faults than semantic ACC and ICC tests. An 

evaluation of safety-critical software, open source software and open source queries 

showed that the majority of predicates are in either minimal CNF or minimal DNF (or 

both). However, when a predicate is not in minimal CNF or minimal DNF, the Minimal-

MUMCUT criterion still provides excellent fault detection. The benefits of single fault 

detection extend to double fault detection for the Minimal-MUMCUT criterion and in 

practice, Minimal-MUMCUT test sets were found to detect all but one double fault type. 

Also, the Minimal-MUMCUT criterion can be extended with just a few tests to guarantee 

detecting this double fault type.  

 By using an extended fault hierarchy and the concepts of semantic and syntactic 

fault size, TRF-TIF logic mutation was shown to have some distinct advantages over 
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current software mutation and query mutation approaches. Reducing logic mutant set 

size, reducing database test set size needed to kill mutants, reducing (or eliminating) 

equivalent mutants, generating more highly selective mutants and helping the tester 

create test data to kill mutants are all advantages of the TRF-TIF logic mutation 

approach. It was also shown that a test set that kills all TRF-TIF logic mutants kills a high 

percentage of mutants in general, both for software and queries. These benefits are the 

result of using new highly selective logic mutation operators that change the way 

researchers should view logic mutation testing. 

My main logic coverage criterion recommendation is that the Federal Aviation 

Administration require the Minimal-MUMCUT criterion instead of MCDC for any 

predicates in minimal DNF or minimal CNF (which comprise the majority of predicates 

in safety-critical avionics software). The Minimal-MUMCUT criterion provides better 

logic fault detection for such predicates. Furthermore, it is my recommendation that 

testers currently using the MUMCUT criterion switch to using the Minimal-MUMCUT 

criterion. The Minimal-MUMCUT criterion offers the same fault detection as the 

MUMCUT criterion for an important class of logic faults, and has been shown to detect 

over 98% of faults in predicates of any syntactic format, as well as an average of 95% of 

general faults (logic and non-logic faults). Thus, the extra tests required by the 

MUMCUT criterion are of little, if any, value based on the theoretical and empirical 

studies conducted in this research. 

My main logic mutation recommendation is that mutation tools should undergo a 

fundamental redesign in terms of the logic mutation operators used. These tools should 
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apply TRF-TIF mutation operators to minimal DNF predicates instead of the currently 

used logic mutation operators. Ideally, such tools would also convert non-minimal DNF 

predicates into minimal-DNF predicates and apply TRF-TIF mutation operators on the 

converted predicates. Furthermore, in cases where (1) the software under test has a high 

degree fault tolerance (such as non-safety-critical software) and (2) testing resources are 

limited, testers should consider using the TRF-TIF mutation tool instead of a tool that 

generates both logic and non-logic mutants. The reason is that generating only TRF-TIF 

logic mutants has been shown to significantly reduce mutant set size while maintaining 

high mutation scores. 

Several possibilities exist in terms of future work. One is to repeat the same 

experiments conducted herein with larger samples of different software programs and 

queries. Increasing both sample size and diversifying the types of programs and queries 

under test will strengthen the generalizability of the findings. A second idea for future 

work is to implement TRF-TIF mutation in current mutation tools such muJava and 

SQLMutation. A third idea is to examine what other mutation operators besides TRF-TIF 

mutation operators are needed to bring all the mutation scores of the test sets described in 

Table 43 and Table 45 to over 95%. That is, it would be interesting to determine what 

types of general mutants are not killed by a test set that weakly kills all TRF-TIF mutants. 

In other words, the goal would be to determine empirically what general fault types tend 

to go undetected by tests that weakly kill all TRF-TIF mutants and then to determine 

which mutation operators seeded those faults. Supplementing TRF-TIF mutation 

operators with these additional mutation operators could prove to be a way to add only a 
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small set of mutation operators to the TRF-TIF mutation operator set while achieving 

higher mutation scores across the board.  
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Appendix A Optimization Model for Selecting NFPs 
 

 

 

(From section 4.1) 

 

This appendix shows how overlapping NFPs can be modeled as an optimization problem 

as part of the Minimal-MUMCUT test generation algorithm. 
 

 

Given a minimal DNF predicate of ab + cd the following NFPs exist: 

 

NFPs for a: 0100, 0101, 0110  NFPs for b: 1000, 1001, 1010 

 

NFPs for c: 0001, 0101, 1001  NFPs for d: 0010, 0110, 1010 

 

The optimization model is  

 

Minimize x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 subject to 

 

x1 + x2 + x3 >= 1 

 

x3 + x4 + x6 >= 1 

 

x7 + x2 + x5 >= 1 

 

x8 + x3 + x6 >= 1 

 

where  

 

x1 is 1 if 0100 is selected and 0 if it is not selected 

 

x2 is 1 if 0101 is selected and 0 if it is not selected 

 

x3 is 1 if 0110 is selected and 0 if it is not selected 

 

x4 is 1 if 1000 is selected and 0 if it is not selected 

 

x5 is 1 if 1001 is selected and 0 if it is not selected 

 

x6 is 1 if 1010 is selected and 0 if it is not selected 

 

x7 is 1 if 0001 is selected and 0 if it is not selected 

 

x8 is 1 if 0010 is selected and 0 if it is not selected 

 

There are two optimal solutions: 

 

x2=1,x6=1 (all others = 0) 

 

x3=1,x5=1 (all others = 0) 
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Appendix B Minimal DNF TCAS Predicates 
 

 

 

Reprinted [46] 
 
1. a~bd~e~h~f  +  a~b~de~h~f  +  a~bcd~e~f  +  a~bc~de~f  +  ~ab~de~f 

 

2. a~bc~d~e~gh~i~f  +  a~b~d~e~g~h~if  +  a~b~c~e~g~h~if  +  a~b~c~d~g~h~if  +     

    a~bc~d~eg~h~f  +  a~bc~d~e~hi~f  +  a~b~cd~eg~h~f  +  a~b~cd~e~hi~f  +  a~b~c~deg~h~f   

    +  a~b~c~de~hi~f  +  ~abc~d~e~hi~f  +  ~ab~cd~e~hi~f  +  ~ab~c~de~hi~f 

 

3. ~a~bc~g~i~k~m  +  ~a~bcg~h~l~m  +  ~a~bc~g~hi~m  +  ~a~bcgi~l~m  +  ~a~bcgi~k~m  +   

    ~a~bc~h~k~m  +  ~ab~c~g~i~k  +  a~b~c~g~i~k  +  ~a~bc~i~kf  +  ~ab~c~g~hi  +    

    ~ab~cg~h~l  +  a~b~c~g~hi  +  a~b~cg~h~l  +  ~a~bc~hif  +  ~ab~cgi~k  +  ~ab~cgi~l  +   

    a~b~cgi~k  +  a~b~cgi~l  +  a~b~c~h~k  +  ~ab~c~h~k  +  a~b~cgf  +  ~ab~cgf  +  ~a~bcgf  +   

    a~b~c~d  +  a~b~c~e 

 

4. a~bd  +  a~cd  +  e 

 

5. a~g~i~k  +  ag~h~l  +  a~g~hi  +  agi~l  +  agi~k  +  a~h~k  +  a~c  +  a~b  +  f 

 

6. ~ab~cdeg~hij~k~f  +  a~bc~deg~hij~k~f  +  ~ab~cde~g~h~jf  +  ~ab~cde~g~h~kf  +   

    a~bc~de~g~h~jf  +  a~bc~de~g~h~kf 

 

7. ~ab~cde~g~i~j  +  ~ab~cde~h~i~k  +  a~bc~de~g~i~j  +  a~bc~de~h~i~k  +  a~bc~de~g~k  +   

    a~bc~de~h~j  +  ~ab~cde~g~k  +  ~ab~cde~h~j 

 

8. ~ab~cde~gh~f  +  a~bc~de~gh~f  +  ~ab~cdeg~hf  +  a~bc~deg~hf 

 

9. ~a~b~cd~e~gf  +  ~abc~d~e~gf 

 

10. a~b~cd~eg~j~l~mf  +  a~b~cd~eh~j~l~mf  +  a~b~cd~ei~j~l~mf  +  a~b~cd~egj~k~mf  +   

      a~b~cd~ehj~k~mf  +  a~b~cd~eij~k~mf 

 

11. a~b~c~g~h~i~j~l  +  a~b~c~g~h~ij~k  +  a~b~c~g~h~i~jm  +  a~b~c~d~e~j~l  +   

      a~b~c~d~e~jm  +  a~b~c~d~ej~k  +  a~b~c~j~l~f  +  a~b~cj~k~f  +  a~b~c~jm~f 

 

12. Not included due to a missing right parenthesis 

 

13. a  +  b  +  c  +  ~def~g~h  +  ij~l  +  ik~l 

 

14. ae~h  +  ad~h  +  ace  +  acd  +  be  +  bf 

 

15. bei  +  bdi  +  bci  +  aei  +  aeg  +  adi  +  adg  +  aci  +  ach  +  acg  +  af 

 

16. c~g~i~k~m  +  cg~h~l~m  +  c~g~hi~m  +  cgi~l~m  +  cgi~k~m  +  c~h~k~m  +  b~g~i~k  +   

      a~g~i~k  + b~g~hi  +  bg~h~l  +  a~g~hi  +  ag~h~l  +  bgi~k  +  bgi~l  +  agi~k  +  agi~l  +   

      a~h~k  +  b~h~k  +  ~i~kf +  ~hif  +  gf  +  a~e  +  a~d 

 

17. acegij  +  acehik  +  bdegij  +  bdehik  +  acef  +  bdef 
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18. ace~j~k  +  ace~h~j  +  ace~g~k  +  bde~j~k  +  bde~h~j  +  bde~g~k  +  bde~i  +  ace~i 

 

19. aceh~f  +  bdeh~f  +  acegf  +  bdegf 

 

20. ~a~bd~e~gf   +   ~abc~e~gf  



 

196 

Appendix C General Form TCAS Predicates and Fault 
Examples 

 

 

 

Reprinted [46] 

Predicate 1:   ~(ab)(d~e~f + ~de~f + ~d~e~f)(ac(d + e)h + a(d + e)~h + b(e + f)) 

Predicate 4:   a(~b + ~c)d + e 

Predicate 6: (~ab + a~b)~(cd)(f~g~h + ~fg~h + ~f~g~h)~(jk)((ac + bd)e(f + (i(gj + hk)))) 

Predicate 8: (~ab + a~b)~(cd)~(gh)((ac + bd)e(fg + ~fh)) 

Predicate 9:   ~(cd)(~ef~g~a(bc + ~bd)) 

Predicate 10: a~b~cd~ef(g + ~g(h + i))~(jk + ~jl + m) 

Predicate 13: a + b + c + ~c~def~g~h + i(j + k)~l 

Predicate 14: ac(d + e)h + a(d + e)~h + b(e + f) 

Predicate 19: (ac + bd)e(fg + ~fh) 

Predicate 20: ~ef~g~a(bc + ~bd) 
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Appendix D Minimal DNF, Minimal CNF and MUMCUT 
Extension Test Sets 

 

 

 

(From section 5.1) 

 

This appendix gives details on minimal DNF, minimal CNF, and MUMCUT extension 

test sets for four TCAS predicates. 
 

PREDICATE 4 

 

Minimal DNF: a~bd + a~cd + e  

 

MUTP test set (4 tests): 

 

10110 term a~bd 

11010 term a~cd 

00001 term e 

11111 term e 

 

The MUTP criterion is infeasible for terms a~bd and a~cd, so PCUTPNFP tests are needed for the literals 

in these terms. Since term e is a single-literal term, any NFP for any other literal will also be an NFP for 

literal e. 

 

Additional tests needed for a PCUTPNFP test set (5 tests): 

 

00110 term a~bd, literal a 

11110 term a~bd, literal b and term a~cd, literal c 

10100 term a~bd, literal d 

01010 term a~cd, literal a 

11000 term a~cd, literal d 

 

Since the PCUTPNFP criterion is feasible for every literal, MNFP tests are not required. 

 

Minimal CNF: (a + e)(~b + ~c + e)(d + e) 

 

MUFP test set (5 tests): 

 

00110 term a + e 

01010 term a + e 

11110 term ~b + ~c + e 

10100 term d + e 

11000 term d + e 

 

Since the MUFP criterion is infeasible for each term and no term consists of a single literal, PCUFPNTP 

tests are needed for each literal. 

 

Additional tests needed for a PCUFPNTP test set (5 tests): 
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10110 term a + e, literal a and term ~b + ~c + e, literal b and term d + e, literal d 

00111 term a + e, literal e 

11010 term ~b + ~c + e, literal c 

11111 term ~b + ~c + e, literal e 

10101 term d + e, literal e 

 

Since PCUFPNTP is feasible for every literal, MNTP tests are not required. 

 

 

MUMCUT extension: a~bd + a~cd + e 

 

1. All UTP test set (15 tests): 

 

10110 term a~bd 

11010 term a~cd 

XXXX1 term e  

 

where XXXX is any combination of values except 1001, 1011, or 1101 

 

 

2. OTP test set (1 test): 

 

10011 terms a~bd and a~cd, terms a~bd and e, terms a~cd and e 

 

 

3. All NFP test set (13 tests): 

 

XXXX0 all literals 

where XXXX is any combination of values except 1001, 1011, or 1101 

 

Any point where e is FALSE and terms a~bd and terms a~cd are both FALSE is an NFP for literal e. The 

NFPs for the other literals are subsets of the set of all NFPs for literal e. 

 

 

4. n-MNFP test set  

 

For n > 1, no n-NFPs exist as every FALSE point is a 1-NFP for literal e since literal e is in a single-literal 

term. 
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PREDICATE 9 

 

Minimal DNF: ~a~b~cd~ef~g + ~abc~d~ef~g  

 

MUTP test set (2 tests): 

 

0001010 term ~a~b~cd~ef~g 

0110010 term ~abc~d~ef~g 

 

The MUTP criterion is feasible for both terms (as each term contains all unique literals there are no 

external literals to vary). Thus, only a single NFP is needed for each literal as follows: 

 

NFP test set (14 tests): 

 

1001010 term ~a~b~cd~ef~g, literal a 

0101010 term ~a~b~cd~ef~g, literal b 

0011010 term ~a~b~cd~ef~g, literal c 

0000010 term ~a~b~cd~ef~g, literal d 

0001110 term ~a~b~cd~ef~g, literal e 

0001000 term ~a~b~cd~ef~g, literal f 

0001011 term ~a~b~cd~ef~g, literal g 

1110010 term ~abc~d~ef~g, literal a 

0010010 term ~abc~d~ef~g, literal b 

0100010 term ~abc~d~ef~g, literal c 

0111010 term ~abc~d~ef~g, literal d 

0110110 term ~abc~d~ef~g, literal e 

0110000 term ~abc~d~ef~g, literal f 

0110011 term ~abc~d~ef~g, literal g 

 

 

Minimal CNF: ~a(~b + c)(~b + ~d)(b + ~c)(b  + d)~ef~g 

 

MUFP test set (12 tests): 

1001010 term ~a 

1110010 term ~a 

0100010 term ~b + c 

0111010 term ~b + ~d 

0011010 term b + ~c 

0000010 term b + d 

0001110 term ~e 

0110110 term ~e 

0001000 term f 

0110000 term f 

0001011 term g 

0110011 term g 

 

Since terms ~a, ~e, f and ~g are single-literal terms, any NTP for any other literal will also be an NTP for 

these four literals. Since MUFP is infeasible for terms (~b + c) and (~b + ~d) and (b + ~c) and (b + d), 

Partial-CUFPNTP tests are needed for each literal in these terms.  

 

Additional tests needed for a Partial-CUFPNTP test set (2 tests): 

 

No test   term ~b + c,   literal b because in an NTP for literal b in term ~b + c, literal d must be 1 
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0110010 term ~b + c,   literal c and term ~b + ~d, literal d 

No test   term ~b + ~d, literal b because in an NTP for literal b in term ~b + ~d, literal c must be 0 

No test   term b + ~c,   literal b because in an NTP for literal b in term b + ~c, literal d must be 0 

0001010 term b + ~c,   literal c and term b + d, literal d 

No test   term b + d,     literal b because in an NTP for literal b in term ~b + d, literal c must be 1 

 

Since Partial-CUFPNTP is not feasible for all literals, MNTP tests are required as specified below. 

However, each of these tests overlaps with the two tests to satisfy Partial-CUFPNTP given above, so no 

additional tests are required. 

 

0001010 term ~b + c,   literal b 

0001010 term ~b + ~d, literal b 

0110010 term b + ~c,   literal b 

0110010 term b + d,     literal b 

 

 

MUMCUT extension: ~a~b~cd~ef~g + ~abc~d~ef~g 

 

1. All UTP test set (2 tests): 

 

0001010 term ~a~b~cd~ef~g 

0110010 term ~abc~d~ef~g 

 

 

2. OTP test set (0 tests): 

 

Since each term contains all unique literals, no OTPs exist. 

 

 

3. All NFP test set (14 tests): 

 

1001010 term ~a~b~cd~ef~g, literal a 

0101010 term ~a~b~cd~ef~g, literal b 

0011010 term ~a~b~cd~ef~g, literal c 

0000010 term ~a~b~cd~ef~g, literal d 

0001110 term ~a~b~cd~ef~g, literal e 

0001000 term ~a~b~cd~ef~g, literal f 

0001011 term ~a~b~cd~ef~g, literal g 

1110010 term ~abc~d~ef~g, literal a 

0010010 term ~abc~d~ef~g, literal b 

0100010 term ~abc~d~ef~g, literal c 

0111010 term ~abc~d~ef~g, literal d 

0110110 term ~abc~d~ef~g, literal e 

0110000 term ~abc~d~ef~g, literal f 

0110011 term ~abc~d~ef~g, literal g 

 

 

4. n-MNFP test set (112 tests) 

 

Since every unique literal occurs in each term, test set size consists of all FALSE points except for 1-NFPs. 

128 possible tests exist with 2 TRUE points and 14 1-NFPs, leaving 112 n-NFPs for n > 1. 
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PREDICATE 13 

 

Minimal DNF: a + b + c + ~def~g~h + ij~l + ik~l 

 

MUTP test set (12 tests): 

 

100000000000 term a 

100111111111 term a 

010000000000 term b 

010111111111 term b 

001000000000 term c 

001111111111 term c 

000011000000 term ~def~g~h 

000011001111 term ~def~g~h 

000000001100 term ij~l 

000111111100 term ij~l 

000000001010 term ik~l 

000111111010 term ik~l 

 

Since terms a, b and c are single-literal terms, any NFP for any other literal will also be an NFP for these 

three literals. No PCUTPNFP tests are needed for term ~def~g~h as the MUTP criterion is feasible for this 

term. Thus, NFPs for literals in these terms can be chosen to overlap with other NFPs. PCUTPNFP tests are 

needed for literals in terms ik~l and ij~l. Literal j is the only literal in a multi-literal term that must be fixed 

(to FALSE) in a UTP for term ik~l. Literal k is the only literal in a multi-literal term that must be fixed (to 

FALSE) in a UTP for term ij~l. Thus, values for literals d, e, f, g and h do not need to be the same in the 

UTP – NFP pair chosen to satisfy the PCUTPNFP criterion for the literals in terms ij~l and ik~l. This 

allows the NFPs chosen for literals d, e, f, g and h to overlap with the NFPs chosen for literals i, j, k and l to 

satisfy the PCUTPNFP criterion.  

 

Additional tests needed for a PCUTPNFP test set (5 tests): 

 

000111000100 term ij~l, literal i (and an NFP for literal d) 

000001001000 term ij~l, literal j and term ik~l, literal k (and an NFP for literal e) 

000010001101 term ij~l, literal l (and an NFP for literal f) 

000011100010 term ik~l, literal i (and an NFP for literal g) 

000011011011 term ik~l, literal l (and an NFP for literal h) 

 

Since the PCUTPNFP criterion is feasible, MNFP tests are not required. 

 

Minimal CNF:  

 

(a + b + c + ~d + i)(a + b + c + e + i)(a + b + c + f + i) 

(a + b + c + ~g + i)(a + b + c + ~h + i)(a + b + c + ~d + ~l) 

(a + b + c + e + ~l (a + b + c + f + ~l) (a + b + c + ~g + ~l) 

(a + b + c + ~h + ~l)(a + b + c + ~d + j + k) 

(a + b + c + e + j + k) (a + b + c + f + j + k) 

(a + b + c + ~g + j + k)(a + b + c + ~h + j + k) 

 

MUFP test set (25 tests): 

 

Rather than enumerate all 25 tests, it is noted that each of the first 10 terms contributes 2 UFPs to a MUFP 

test set as literals j and k can each attain the values 0 and 1 in UFPs for each of these 10 terms. However, 

the MUFP criterion is still infeasible for each of these terms as there exist other external literals for each 
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term besides literals j and k which cannot vary in a UFP. The last five terms each have only a single UFP 

(the value of each external literal cannot vary). 

 

Since the MUFP criterion is infeasible for each term and no term consists of a single literal, PCUFPNTP 

tests are needed for each literal. 

 

 

 

Additional tests needed for a PCUFPNTP test set (63 tests): 

 

Rather than enumerate all 63 tests a counting argument is given. 80 literals appear in the minimal CNF 

expression and each requires a single NTP that corresponds to one of the UFPs chosen in the MUFP test 

set. Thus, 80 corresponding NTPs need to be added not accounting for overlapping. However, the 

following corresponding NTPs overlap: 

 

000011000010 – literals d, e, f, g, h in terms 1-5 

 

000011001011 – literals d, e, f, g, h in terms 6-10 

 

000011001000 – literals d, e, f, g, h in terms 11-15 

 

This reduces the size by 15 – 3 = 12. Furthermore, the corresponding NTP for literal i overlaps with the 

corresponding NTP for literal l in terms 1 and 6, terms 2 and 7, terms 3 and 8, terms 4 and 9 and terms 5 

and 10. This reduces test set size by another 5 test cases. Thus, test set size is 63. 

 

Since the PCUFPNTP criterion is feasible for every literal, MNTP tests are not required. 

 

 

MUMCUT extension: a + b + c + ~def~g~h + ij~l + ik~l 

 

1. All UTP test set (1377 tests): 

 

Terms a, b and c each have 434 UTPs as follows. A UTP for term a must start with 100, a UTP for term b 

must start with 010 and a UTP for term c must start with 001. The remaining 9 literals can vary in value for 

a total of 512 points. However, for 16 of these points, term ~def~g~h will be TRUE as 5 of the 9 literals 

have fixed values to make term ~def~g~h, leaving the other 4 literals to vary in value. For some of these 16 

points terms ij~l and/or ik~l will also be TRUE. Of the 9 original remaining literals, 3 must be fixed to 

make term ij~l TRUE and the other 6 can vary in value, leaving 64 points. However, for one half of these 

points literal k will be TRUE so term ik~l will be TRUE to reduce the size to 32 points. For one of the 

remaining 32 points, term ~def~g~h will be TRUE, leaving a total of 31 points. A similar analysis holds for 

term ik~l, reducing the original 512 points by an additional 31 points. Thus, test set size for all UTPs for 

term a is 512 – 16 – 31 – 31 = 434. The same size occurs for terms b and c.  

 

Term ~def~g~h has 13 UTPs. The values of literals a, b and c must all be fixed at 0 in a UTP for term 

~def~g~h. Thus, only the values of literals i, j, k and l can vary for a total of 16 points. However, 3 of these 

16 points make either term ij~l or ik~l TRUE (or make both TRUE), leaving 13 UTPs. 

 

Term ij~l has 31 UTPs. The values of literals a, b, c and k must all be fixed at 0 in a UTP for term ij~l. 

Thus, only the values of literals d, e, f, g and h can vary for a total of 32 points. However, 1 of these 32 

points makes term ~def~g~h TRUE, leaving 31 UTPs. 
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The ik~l has 31 UTPs. The values of literals a, b, c and j must all be fixed at 0 in a UTP for term ik~l. Thus, 

only the values of literals d, e, f, g and h can vary for a total of 32 points. However, 1 of these 32 points 

makes term ~def~g~h TRUE, leaving 31 UTPs. 

 

 

2. OTP test set (1 test): 

 

111011001110 makes every term TRUE so it makes every combination of two individual terms TRUE. 

 

 

3. All NFP test set (434 tests): 

 

AN NFP for literal a must start with 000 and make every other term FALSE. Thus, test set size is the same 

as the number of UTPs for term a (434). This is because both a UTP for term a and an NFP for literal a 

must make every other term FALSE. The all NFP test set for every other literal in the predicate is a subset 

of the all NFP test set for literal a. 

 

 

4. n-MNFP test set (62 tests) 

 

Since terms a, b and c each contain a single literal, n-MNFP does not apply to literals a, b, or c for n > 1. A 

combinatorial argument is made to derive test set size for the other literals. Test set size cannot exceed: 

 

2

1 2

! / !( )!
mnm

m m

r

n r n r
=

−∑∑  

 

which results in a test set size of 68. Term ~def~g~h has an n-MNFP test set size of 52 as mn = 5. Terms 

ij~l and ik~l each have an n-MNFP test set size of 8 as mn = 3. However, there is overlap amongst the n-

MNFP points for terms ij~l and ik~l such that of the combined 16 points, only 10 are distinct. Thus, test set 

size is 52 + 10 = 62.  
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PREDICATE 20 

 

Minimal DNF: ~a~bd~ef~g + ~abc~ef~g  

 

MUTP test set (4 tests): 

 

0001010 term ~a~bd~ef~g 

0011010 term ~a~bd~ef~g 

0110010 term ~abc~ef~g 

0111010 term ~abc~ef~g 

 

The MUTP criterion is feasible for both terms. Thus, only a single NFP is needed for each literal as 

follows: 

 

NFP test set (10 tests): 

 

1001010 term ~a~bd~ef~g, literal a 

0101010 term ~a~bd~ef~g, literal b and term ~abc~efg, literal c 

0010010 term ~a~bd~ef~g, literal d and term ~abc~efg, literal b 

0001110 term ~a~bd~ef~g, literal e 

0001000 term ~a~bd~ef~g, literal f 

0001011 term ~a~bd~ef~g, literal g 

1110010 term ~abc~ef~g, literal a 

0110110 term ~abc~ef~g, literal e 

0110000 term ~abc~ef~g, literal f 

0110011 term ~abc~ef~g, literal g 

 

 

Minimal CNF: ~a(~b + c)(b + d)~ef~g 

 

MUFP test set (12 tests): 

1001010 term ~a 

1110010 term ~a 

1100010 term ~b + c 

1101010 term ~b + c 

1000010 term b + d 

1010010 term b + d 

0001110 term ~e 

0110110 term ~e 

0001000 term f 

0110000 term f 

0001011 term ~g 

0110011 term ~g 

 

Since terms ~a, ~e, f and ~g are single-literal terms, any NTP for any other literal will also be an NTP for 

these four literals. The MUFP criterion is infeasible for (~b + c) and (b + d). However, the external literals 

that cannot vary in value for either of these terms are all in single-literal terms. Thus, any NTP will suffice 

for these four literals. 

 

NTP test set (2 tests): 

 

0001010 term ~b + c, literal b and term b + d, literal d 

0110010 term ~b + c, literal c and term b + d literal b 
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MUMCUT extension: ~a~bd~ef~g + ~abc~ef~g 

 

1. All UTP test set (4 tests): 

 

0001010 term ~a~bd~ef~g 

0011010 term ~a~bd~ef~g 

0110010 term ~abc~ef~g 

0111010 term ~abc~ef~g 

 

 

2. OTP test set (0 tests): 

 

Since one term contains b and the other contains ~b, no OTPs exist. 

 

 

3. All NFP test set (20 tests): 

 

1001010 term ~a~bd~ef~g, literal a 

1011010 term ~a~bd~ef~g, literal a 

0101010 term ~a~bd~ef~g, literal b and term ~abc~ef~g, literal c 

0010010 term ~a~bd~ef~g, literal d and term ~abc~ef~g, literal b 

0000010 term ~a~bd~ef~g, literal d 

0001110 term ~a~bd~ef~g, literal e 

0011110 term ~a~bd~ef~g, literal e 

0001000 term ~a~bd~ef~g, literal f 

0011000 term ~a~bd~ef~g, literal f 

0001011 term ~a~bd~ef~g, literal g 

0011011 term ~a~bd~ef~g, literal g 

1110010 term ~abc~ef~g, literal a 

1111010 term ~abc~ef~g, literal a 

0100010 term ~abc~ef~g, literal c 

0110110 term ~abc~ef~g, literal e 

0111110 term ~abc~ef~g, literal e 

0110000 term ~abc~ef~g, literal f 

0111000 term ~abc~ef~g, literal f 

0110011 term ~abc~ef~g, literal g 

0111011 term ~abc~ef~g, literal g 

 

 

4. n-MNFP test set (104 tests) 

 

A combinatorial argument is made to derive test set size. Test set size cannot exceed: 

 

2

1 2

! / !( )!
mnm

m m
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n r n r
=

−∑∑  

 

which results in a test set size of 228 as m = 2 and mn = 6 for each term. However, after removing TRUE 

points and NFPs and accounting for overlap amongst n-MNFP points, the test set size is 104. Note that 104 

accounts for all FALSE points except for the 1-NFPs. 
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 Appendix E RACC Test Set Size Analysis 

 

 

 

(From section 6.1) 

 

This section gives a detailed analysis of RACC test set size. 

 
 

For 5 unique literals, it is shown below that RACC test set size can be n + 2 tests. 

 

RACC test set size of n+2 for n=5  

 

abcd + !a!b!ce 

 

A RACC test set for literal d must include 1111X and 1110X where X is either 0 or 1 (but X must be the 

same in each point). A RACC test set for literal e must include 000X1 and 000X0 where X is either 0 or 1 

(but X must be the same in each point). There are two possible RACC tests for literal a as literal a appears 

in two different terms: 

 

Term 1 - 1111X (UTP) and 0111X (NFP) 

Term 2 - 000X1 (UTP) and 100X1 (NFP) 

 

There are two possible RACC tests for literal b as literal b appears in two different terms: 

 

Term 1 - 1111X (UTP) and 1011X (NFP) 

Term 2 - 000X1 (UTP) and 010X1 (NFP) 

 

There are two possible RACC tests for literal c as literal c appears in two different terms: 

 

Term 1 - 1111X (UTP) and 1101X (NFP) 

Term 2 - 000X1 (UTP) and 001X1 (NFP) 

 

Note that no overlap exists amongst any of the NFPs for any of the literals. This is also shown in Table 49. 

Note from Table 46 that the values of a, b, c prevent any overlap amongst NFPs for any of the unique 

literals. Thus five NFPs are required (one for each unique literal) and two UTPs are required (one for each 

term as literal d and literal e appear in different terms). Thus, a total of seven tests are required for RACC 

which is n + 2. 

 



 

207 

Table 49 Values of a, b and c in NFPs 

 

Literal Values of a, b, c in NFP 

a in term 1 011 

a in term 2 100 

b in term 1 101 

b in term 2 010 

c in term 1 110 

c in term 2 001 

d in term 1 111 

e in term 2 000 

 

 

 

The constraint that prevents any overlap amongst NFPs is that for each term in the predicate at least three 

of its literals are negated in every other term. This constraint that prevents NFP overlapping is called the 

triple negation constraint. For the predicate above, note that term 1 contains three literals (a, b, c) that are 

all negated in term 2. If just two literals had this relationship then NFP overlap would be possible. For 

example, consider abc + !a!bd. Note that an NFP for literal a in term 1 is 011X and that an NFP for literal b 

in term 2 is 01X1 such that 0111 is an overlapping NFP. This is why the author conjectures that maximum 

RACC test set size for 4 unique literals is n + 1. Not until 5 unique literals exist can one term have 3 

literals, a second term have each of the 3 literals negated and each term have one literal the other does not.  

 

For 6 unique literals, it is shown below that RACC test set size can be n + 2 tests. 

 

RACC test set size of n+2 = 2(n-2) for n=6  

 

abc + !a!bd + a!be + !abf 

 

Since literals c, d, e and f each appear in a different term, 4 UTPs are needed for RACC. Note also that the 

NFPs amongst literals c, d, e and f cannot overlap with each other because the NFP for literal c requires 

a=1,b=1 and the NFP for literal d requires a=0,b=0 and the NFP for literal e requires a=1,b=0 and the NFP 

for literal f requires a=0,b=1. Thus, at this point 8 tests are needed (4 UTPs and 4 NFPs) to satisfy RACC. 

No additional tests are needed though because the NFPs for literals a and b can overlap with NFPs for 

literals c, d, e and f (the triple negation constraint is not satisfied). For example, 011XX0 is an NFP for 

literal a in term 1 and literal f in term 4 and 101X0X is an NFP for literal b in term 1 and literal e in term 3. 

Therefore, n+2=8 tests are needed for RACC. 

 

Note that for n=6, n+2 = 2(n-2). Intuitively, 2(n-2) tests are needed because all but 2 literals (a and b) 

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a and b can 

overlap with other tests.) 

 

For 7 unique literals, it is shown below that RACC test set size can be n + 2 tests. 

 

RACC test set size of n+2 = 2(n-2) -1for n=7 

 

abc + !a!bd + a!be + !abf + g 
 

The only difference between this example and the one above is the addition of term 5 which has a single 

literal g. Thus, each of the 8 UTPs and NFPs chosen for RACC from the prior example can simply be 

augmented by letting g=0 in each of them. Then only one additional test is needed to satisfy RACC, namely 

a UTP for term 5 which is of the form XXXXXX1 such that the values of X make none of the first 4 terms 
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true. AN NFP for literal g can overlap with an NFP for another literal. For example, 0111100 is an NFP for 

literal a in term 1, literal f in term 4 and literal g in term 5. Thus, 9 tests are needed.  

 

Note that for n=7, n+2 = 2(n-2) - 1. Note also that 2(n-2) – 1 = 2(n-3) + 1. Intuitively, 2(n-3) + 1 tests are 

needed because all but 3 literals (a, b and g) require 2 tests (a UTP and an NFP) that cannot overlap with 

each other and one literal (literal g) requires a UTP that cannot overlap with any other test. (The tests for 

literals a and b as well as the NFP test for literal g can overlap with other tests). 

 

Before leaving the examination of maximum RACC test set size for 7 unique literals, note that the 

following predicate has a RACC test set size of n+1=8. 

 

abcd + !a!b!ce + a!bcf + a!b!cg 

 

This is because of the following two reasons:  

 

1) RACC tests for literals d, e, f and g require 2 tests (a UTP and an NFP) that cannot overlap with each 

other. 

 

2) NFPs for literals a, b and c can overlap with NFPs for literals d, e, f and g since the triple negation 

constraint does not hold. 

 

The above example will be called upon later because it is important in generating a general formula for 

maximum RACC test set size. The important thing to note is that the predicate in the example above 

repeats the literals a, b and c or their negations in each term. This example is referred to as the step 

example later since the number of literals that repeat in each term steps up by 1. 

 

 For 8 unique literals, it is shown below that RACC test set size can be n + 2 tests. 

 

RACC test set size of n+2 = 2(n-3) for n=8 

 

abcd + !abce + a!bcf + ab!cg + !a!bch 

 
Since literals d, e, f, g and h each appear in a different term, 5 UTPs are needed for RACC. Note also that 

the NFPs amongst literals d, e, f, g and h cannot overlap with each other because the NFP for literal d 

requires a=1,b=1,c=1 and the NFP for literal e requires a=0,b=1,c=1 and the NFP for literal f requires 

a=1,b=0,c=1 and the NFP for literal g requires a=1,b=1,c=0 and the NFP for literal h requires a=0,b=0,c=1. 

Thus, at this point 10 tests are needed (5 UTPs and 5 NFPs) to satisfy RACC. No additional tests are 

needed because the NFPs for literals a, b and c can overlap with NFPs for literals d, e, f and g (the triple 

negation constraint is not satisfied). For example, 01110XXX is an NFP for literal a in term 1 and literal e 

in term 2, 1011X0XX is an NFP for literal b in term 1 and literal f in term 3 and 1101XX0X is an NFP for 

literal c in term 1 and literal g in term 4.. Therefore, n+2=10 tests are needed for RACC. 

 

Note that for n=6, n+2 = 2(n-3). Intuitively, 2(n-3) tests are needed because all but 3 literals (a, b and c) 

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a, b and c can 

overlap with other tests.) 

 

RACC test set size of n+3 = 2(n-3) for n=9 

 

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci 

 

Since literals d, e, f, g, h and i each appear in a different term, 6 UTPs are needed for RACC. Note also that 

the NFPs amongst literals d, e, f, g, h and i cannot overlap with each other because the NFP for literal d 

requires a=1,b=1,c=1 and the NFP for literal e requires a=0,b=1,c=1 and the NFP for literal f requires 
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a=1,b=0,c=1 and the NFP for literal g requires a=1,b=1,c=0 and the NFP for literal h requires a=0,b=0,c=1 

and the NFP for literal i requires a=0,b=0,c=0. Thus, at this point 12 tests are needed (6 UTPs and 6 NFPs) 

to satisfy RACC. No additional tests are needed though because the NFPs for literals a, b and c can overlap 

with NFPs for literals d, e, f, g and i (the triple negation constraint is not satisfied).  

 

Note that for n=9, n+3 = 2(n-3). Intuitively, 2(n-3) tests are needed because all but 3 literals (a, b and c) 

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a, b and c can 

overlap with other tests.) 

 

RACC test set size of n+4 = 2(n-3) for n=10 

 

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci + a!b!cj 

 

Since literals d, e, f, g, h, i and j each appear in a different term, 7 UTPs are needed for RACC. Note also 

that the NFPs amongst literals d, e, f, g, h, i and j cannot overlap with each other because the NFP for literal 

d requires a=1,b=1,c=1 and the NFP for literal e requires a=0,b=1,c=1 and the NFP for literal f requires 

a=1,b=0,c=1 and the NFP for literal g requires a=1,b=1,c=0 and the NFP for literal h requires a=0,b=0,c=1 

and the NFP for literal i requires a=0,b=0,c=0 and the NFP for literal j requires a=1,b=0,c=0. Thus, at this 

point 14 tests are needed (7 UTPs and 7 NFPs) to satisfy RACC. No additional tests are needed though 

because the NFPs for literals a, b and c can overlap with NFPs for literals d, e, f, g, i and j (the triple 

negation constraint is not satisfied).  

 

Note that for n=10, n+3 = 2(n-3). Intuitively, 2(n-3) tests are needed because all but 3 literals (a, b and c) 

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a, b and c can 

overlap with other tests.) 

 

RACC test set size of n+5 = 2(n-3) for n=11 

 

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci + a!b!cj + !ab!ck 

 

Since literals d, e, f, g, h, i, j and k each appear in a different term, 8 UTPs are needed for RACC. Note also 

that the NFPs amongst literals d, e, f, g, h, i, j and k cannot overlap with each other because the NFP for 

literal d requires a=1,b=1,c=1 and the NFP for literal e requires a=0,b=1,c=1 and the NFP for literal f 

requires a=1,b=0,c=1 and the NFP for literal g requires a=1,b=1,c=0 and the NFP for literal h requires 

a=0,b=0,c=1 and the NFP for literal i requires a=0,b=0,c=0 and the NFP for literal j requires a=1,b=0,c=0 

and the NFP for literal k requires a=0,b=1,c=0. Thus, at this point 16 tests are needed (8 UTPs and 8 NFPs) 

to satisfy RACC. No additional tests are needed though because the NFPs for literals a, b and c can overlap 

with NFPs for literals d, e, f, g, i, j and k (the triple negation constraint is not satisfied).  

 

Note that for n=11, n+3 = 2(n-3). Intuitively, 2(n-3) tests are needed because all but 3 literals (a, b and c) 

require 2 tests (a UTP and an NFP) that cannot overlap with each other. (The tests for literals a, b and c can 

overlap with other tests.) 

 

The pattern described previously from n=7 to n=11 repeats starting with n=12. That is for n=12, a single 

term (containing a new unique literal) can be added to the example for n=11 and RACC test set size will be 

2(n-3) – 1 just as it was 2(n-2) – 1 for n=7. Then for n=13 to n=20, instead of each term containing literals 

a, b and c (or their negations) plus one additional literal, each term will begin with the literals a, b, c and d 

(or their negations) plus one additional literal. Thus, for n=13 to n=20 RACC test set size will be 2(n-4) 

just like it was 2(n-3) for n=8 to n=11. 

 

The reason this pattern repeats is that for n literals there are 2
n
 possible combinations of how the literals can 

be combined in terms of being negated or not negated. For example, for n=3, there are 8 possible 

combinations: 
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abc, ab!c, a!bc, !abc, a!b!c, !ab!c, !a!bc, !a!b!c 

 

 Each of these 8 possible combinations can be a term in the predicate and then a unique literal can be added 

to each term to bring the total number of literals to 3 + 8 = 11. Note that for n=3, 3 + 8 = 11 is the same as 

n + 2
n
 = 11. Thus, at n=12 it is not possible to add another term containing a new 12

th
 unique literal that 

also contains some combination of literals a, b and c (or their negations) without repeating a prior 

combination. Repeating a prior combination means that the NFP for the 12
th

 unique literal can overlap with 

an NFP for some other unique literal. For example, if term abcl was added to the example given for n=11, 

the NFP for literal l and the NFP for literal d could overlap as each term contains the same combination of  

literals a, b and c. So once n=12 occurs, the step example for n=7 becomes relevant. That is, adding a 

single term containing a single literal l to the predicate in the example given for n=11 will result in a 

RACC test set size that is 1 greater than stepping up the number of literals that repeat in each term from 3 

to 4. To make this more concrete, compare: 

 

abcd + !abce + a!bcf + ab!cg + !a!bch + !a!b!ci + a!b!cj + !ab!ck + l 
 

to 

 

abcde + abc!df + ab!cdg + a!bcdh + !abcdi + ab!c!dj + a!bc!dk + a!b!cdl 

 

RACC test set size for the first predicate is 2(n-3) – 1 = 2(n-4) + 1 because all but 4 literals require 2 tests 

(a UTP and NFP) that do not overlap with each other and literal l requires a UTP that does not overlap with 

any other test. 

 

RACC test set size for the second predicate is 2(n-4) because all but 4 literals require 2 tests (a UTP and 

NFP) that do not overlap with each other. 

 

Note the similarity between these two predicates and the two predicates examined for n=7. This shows how 

the pattern repeats. 

 

For n=13 to n=20, the pattern is similar to n=8 to n=11 except that the number of literals that repeats in 

each term changes from 3 (a, b and c) to 4 (a, b, c and d). The pattern stops at n=20 because there are 16 

possible combinations of a, b, c and d in terms of the literals being negated or not negated. Thus, there can 

be 16 such terms each of which contains some combination of a, b, c and d or their negations plus an 

additional unique literal to bring the total number of literals to 4 + 16 = 20. Note that for n=4, 4 + 16 = 20 

is the same as n + 2
n
 = 20. Thus, when n=21 the pattern continues as it did when n=7 and when n=12. 

Finally, note that n=7, n=12 and n=21 all have something in common. There exists an integer y such that n 

– (y + 2
y
) = 1. For n=7, y=2 and for n=12, y=3 and for n=21, y=4. 
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Appendix F RACC and RICC Single Minimal DNF Fault 
Detection Proof 

 

 

 

(From section 6.2) 

 

This appendix shows examples of how RACC and RICC miss detecting various minimal 

DNF faults as part of theorem 3. 

The Literal Negation Fault (LNF) 

Consider the following specification, f xa xb ab= + +  and the corresponding implementation 

fault, f xa xb ab' = + + . If f x represents the conditions under which literal x determines the outcome of f, 

then f ba bax = + , f bx bxa = +  and f ax axb = + . Constructing a test set for each of the literals 

yields f x = { , }010 011 , fa = { , }010 110  and fb = { , }011 001 . In each case, obviously RACC will return the 

expected outputs 0 and 1 since f i  defines the conditions under which literal i determines f. However, if the 

tests for f '  are run, the outputs again are 0 and 1. More specifically, where a triple represents the Boolean 

value of (abx): 

• (010, 011) for f ' yields expected outputs 0 and 1.  

• (010, 110) for f ' yields expected outputs 0 and 1. 

• (001, 011) for f ' yields expected outputs 0 and 1.  

In general, the way to miss the fault is to step around the term containing the LNF. In other words, the LNF 

can be missed when each literal in the term containing the LNF is found in at least one other term in f. Note 

that this does not include literal negations. In this example, note that literal b is true for the RACC tests for 

literal a and for the RACC tests for literal x. This means that the literal x in xb and the literal a in ab each 

determine the value of f for their respective test cases, stepping around the xa term which contains the 

literal negation. 
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The Term Omission Fault (TOF) 

Consider the same specification used to demonstrate the LNF: namely, f xa xb ab= + + . An 

implementation fault in this case could be f xa xb'= + . Then, a valid RACC test could 

be: f x = { , }100 101 , fa = { , }001101  and fb = { , }011 001 , or more simply, (100, 101, 001, 011). Then: 

• (100, 101) for f 'yields expected outputs 0 and 1. 

• (001, 101) for f 'yields expected outputs 0 and 1. 

• (001, 011) for f 'yields expected outputs 0 and 1. 

The expected outputs of f and f '  are the same and the TOF remains undetected. Another example where 

RACC could miss the TOF would be f xa xa= + . Clearly, literal x and a always determine f and hence 

any test for each literal would do, as long as the literal of interest changes from 1 to 0. Hence, if f xa' = , 

then tests (11, 10) for literal x would yield the results 1 and 0, whereas the tests (11, 01) for literal a would 

yield 1 and 0. Again, the expected outputs of f and f '  are the same and the TOF remains undetected.  

In general, RACC could miss the TOF if and only if all literals in the omitted term pi also appear 

elsewhere in the function (possibly also including literal negations). Consider the following formal 

argument:  

Let f be represented in terms of literal x, or f a x b x ci i
i

m

i

n

i
i

k

= + +
== =11 1

∪∪ ∪ . In order to determine under 

what conditions the literal x determines f, simply find the Boolean Derivative, or f a b cx i i
i

m

i

n

i
i

k

= ⊕∏
== =

[ ]
11 1

∪ ∪ . 

Suppose now that term b1 was omitted during implementation. 

Then f a x b x ci i
i

m

i

n

i
i

k

' = + +
== =21 1

∪∪ ∪ and f a b cx i i
i

m

i

n

i
i

k

' [ ]= ⊕∏
== =21 1

∪ ∪ . Hence, as long as the b1 term is not used during 

RACC testing for literal x (which means that some other term also contains x or its negation), the TOF 

would remain undetected. The preceding logic holds for all literals in the b1 term and likewise for a TOF in 

any bi or cj term. 
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The Operator Reference Fault (ORF) 

First, consider the case where an OR is incorrectly replaced with an AND. Consequently, let the 

specification be f ab cd abcd= + + and an incorrect implementation be 'f abcd abcd= + . Also, 

( )( )a
f c d b bcd= + ⊕  , ( )( )b

f c d a acd= + ⊕ , ( )( )c
f a b d abd= + ⊕  and ( )( )d

f a b c abc= + ⊕ . Then, 

test sets for f could be: 

• (1000, 0000) for f’ yields expected outputs 0 and 1. 

• (0100, 0000) for f’ yields expected outputs 0 and 1. 

• (0010, 0000) for f’ yields expected outputs 0 and 1. 

• (0001, 0000) for f’ yields expected outputs 0 and 1. 

The tests give the same outputs for f and f’ and hence RACC misses the ORF here. Consider the formal 

argument below of how the fault remains undetected. Again, let f a x b x ci i
i

m

i

n

i
i

k

= + +
== =11 1

∪∪ ∪  and a faulty 

implementation be
1 1

2 2 1

'
n m k

i i i
i i i

f a x a b b x c
= = =

 
= + + + 

 
∪ ∪ ∪ . Thus, the Boolean Derivatives 

are f a b cx i i
i

m

i

n

i
i

k

= ⊕∏
== =

[ ]
11 1

∪ ∪  and
1 1

2 2 1

' [ ]
m kn

x i i i
i i i

f a a b b c
= = =

 
= + ⊕ 

 
∏ ∪ ∪ , respectively. Therefore, if the tester is able 

to keep the ai values false, the bi values false and the ci values true (cj values false and the bi values true 

when the ORF occurs with a ci term), then the variable of interest will determine f and f’. In other words, if 

the tester can uphold that rule for all literals that are combined during the replacement of the OR operator, 

the ORF will remain undetected.  

Now consider the case where an AND is incorrectly replaced with an OR. Consequently, let the 

specification be f = abcd + ~a~b~c~d and an incorrect implementation be f’ = ab + cd + ~a~b~c~d. Then 

a determines the value of f when bcd ⊕  ~b~c~d is true, b determines the value of f when acd ⊕  ~a~c~d 

is true, c determines the value of f when abd ⊕  ~a~b~d is true and d determines the value of f when abc 

⊕  ~a~b~c is true. Using the same test sets as above for the ORF when OR was replaced by AND will 

yield identical outputs for f and f '  and hence RACC misses the ORF. 
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The Literal Omission Fault (LOF) 

This fault is extremely easy for RACC to miss; consider f xa xb= + and a corresponding LOF 

where f a xb' = + . Then, f bxa = , f axb =  and f a bx = + . Thus, potential test sets for RACC include: 

• (010), (011), where f’ yields the expected outputs 0 and 1. 

• (001), (101), where f’ yields the expected outputs 0 and 1. 

• (001), (011), where f’ yields the expected outputs 0 and 1. 

The expected outputs of f and f '  are the same and the LOF remains undetected. If the LOF is generated 

on a literal that also appears in another term outside of the one containing the LOF, then generating a test 

for that literal where the term containing the LOF is 0 will miss the fault. Note that in this example, the 

term containing the LOF (xa) is 0 for both RACC test points for the literal that is omitted (x). In no 

circumstance will a RACC test on any other literal catch the LOF either. Hence, the possibility of missing 

the LOF is exceedingly likely. Again, consider a formal argument. From before, if  

f a x b x ci i
i

m

i

n

i
i

k

= + +
== =11 1

∪∪ ∪ , then the Boolean Derivative for x is f a b cx i i
i

m

i

n

i
i

k

= ⊕∏
== =

[ ]
11 1

∪ ∪ . If literal x omitted 

during implementation, then f b a x b x ci i
i

m

i

n

i
i

k

' ( )= + + +
== =

1
21 1

∪∪ ∪ and the Boolean derivative 

becomes f b a b cx i i
i

m

i

n

i
i

k

' ( ) [ ]= ⊕∏
== =

1
21 1

∪ ∪ . As seen, if you have the term containing the LOF (b1 here) remain 

false when constructing RACC tests for literal x, then the Boolean Derivative for f’ remains unaffected, as 

does the result for f’. Considering another literal inside the b1 term, the only way it could reveal the LOF is 

if the term being omitted from f to f’ is the only literal that is holding b1 0 initially. However, this statement 

is impossible because then the missing literal also determines f, which is a contradiction that another literal 

in b1 determines f.  

The Literal Insertion Fault (LIF) 

For an example of where RACC misses the LIF, consider f a xb= + and f xa xb'= + . Then, f abx = , 

f x ba = +  and f axb = . Consequently, test sets for RACC include: 
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• (011), (010), where f’ yields the expected outputs 1 and 0. 

• (101), (001), where f’ yields the expected outputs 1 and 0. 

• (011), (001), where f’ yields the expected outputs 1 and 0. 

The expected outputs of f and f '  are the same and the LIF remains undetected. The formal argument 

proceeds as follows. Again, let f a x b x ci i
i

m

i

n

i
i

k

= + +
== =11 1

∪∪ ∪ , the Boolean Derivative for x 

be f a b cx i i
i

m

i

n

i
i

k

= ⊕∏
== =

[ ]
11 1

∪ ∪ , the implementation be f a x a b x ci i
i

m

i

n

i
i

k

' ( )= + + +
== =

1
12 1

∪∪ ∪  and the Boolean 

Derivative for the implementation be f a a b cx i i
i

m

i

n

i
i

k

' [( ) ]= + ⊕∏
== =

1
12 1

∪ ∪ . Then, the RACC tests for literal x will 

also work for f’, since setting a1 = 0 does not affect the outcome for f’x. Likewise, inserting the literal will 

have no bearing on the outcome from f to f’.  

The Literal Reference Fault (LRF) 

Consider the following specification of f ab cd ad bc= + + + and the implementation fault 

of f ac cd ad bc' = + + + . Then,  f cb dca = + , f ad cdb = + , f ab dac = +  and f bc abd = + . Potential 

RACC tests for each literal and outputs for f’ include: 

• (0101), (1101), where f’ yields the expected outputs of 0 and 1. 

• (0010), (0110), where f’ yields the expected outputs of 0 and 1. 

• (0100), (0110), where f’ yields the expected outputs of 0 and 1. 

• (0010), (0011), where f’ yields the expected outputs of 0 and 1. 

The expected outputs of f and f '  are the same and the LRF remains undetected. The first criterion 

for missing the fault is similar to the LOF; the replaced literal in the term containing the LRF must appear 

in another term in the Boolean Function. In addition, both the literal replacing the original literal and all 

other literals originally in the term containing the LRF must be in at least one other term in the function. 

More specifically, in this example a, b and c must appear in at least one other term of the function in order 

to step around testing the term containing the LRF. 
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The RICC criterion was established in order to determine under what conditions a literal does not 

determine the outcome of a Boolean function f and then flip that literal from 1 to 0. The logic is repeated 

both when f = 1 and f = 0, if feasible. RICC tests also can fail to detect 7 of the 9 faults in Lau and Yu’s 

fault hierarchy as shown below. 

The Literal Negation Fault (LNF) 

Consider the following specification f = a+b+c and an incorrect implementation of f a b c'= + + . 

Then, a does not determine the value of f when b + c is true, b does not determine the value of f when a + c 

is true and c does not determine the value of f when a + b is true.  

Consequently, potential RICC tests are: 

• (011, 111), yielding 1 for f and f’. 

• (001, 011), yielding 1 for f and f’. 

• (010, 011), yielding 1 for f and f’. 

It is infeasible to fulfill RICC tests and have f evaluate to 0 and therefore, only one pair of test cases is 

generated for each literal of interest. The results are the same for f and f’; therefore, RICC does not catch 

the fault in this case.  

The Term Omission Fault (TOF) 

Consider the following specification f x ab bc= + +  and an incorrect implementation of 

f ab bc'= + . Then, a does not determine the value of f when x + ~b is true, b does not determine the value 

of f when x + ac + ~a~c is true, c does not determine the value of f when x + b is true and x does not 

determine the value of f when ab + ~bc is true. Corresponding RICC tests for each literal and the values for 

f and f’ are listed in Table 50 below, where an “x” indicates the value may be 0 or 1 as long as it is the same 

value when the literal of interest is both 0 and 1. 
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Table 50 RICC Tests (TOF) 

 

Literal 

tested 
x a b c f f’ 

a 0 0 0 0 0 0 

a 0 1 0 0 0 0 

a x 0 0 1 1 1 

a x 1 0 1 1 1 

x 1 1 1 x 1 1 

x 0 1 1 x 1 1 

b x 1 0 1 1 1 

b x 1 1 1 1 1 

b 0 0 1 0 0 0 

b 0 0 0 0 0 0 

c 0 0 1 0 0 0 

c 0 0 1 1 0 0 

c x 1 1 0 1 1 

c x 1 1 1 1 1 

 

 

It is infeasible to fulfill RICC tests and have f evaluate to 0 when x is the literal of interest and 

hence, there are only two rows for literal x. The results are the same for f and f’; therefore, RICC does not 

catch the fault in this case.  

The Operator Reference Fault (ORF) 

First, consider the case where an OR is incorrectly replaced with an AND. Consequently, let the 

specification be f ab c d= + + and an incorrect implementation be f ab cd'= + . Then, a does not determine 

the value of f when c + d + ~b is true, b does not determine the value of f when c + d + ~a is true, c does 

not determine the value of f when ab + d is true and d does not determine the value of f when ab + c is true. 

RICC tests for each of the variables follow, along with the expected outputs for f’. 

• (0000, 1000), (0011, 1011), which yields expected outputs of 0 and 1 for f’. 

• (0000, 0100), (0011, 0111), which yields expected outputs of 0 and 1 for f’. 

• (1110, 1100), which yields expected outputs of 1 for f’. 

• (1100, 1101), which yields expected outputs of 1 for f’. 
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It is infeasible to fulfill RICC tests and have f evaluate to 0 when either c or d is the literal of interest 

and hence, there is only one pair of tests for literal c and literal d. Since f and f’ give the same outputs for 

the tests, the ORF (where OR is changed to AND) is missed in this case. Note that if the test case pair 

(0011, 0001) was chosen for literal c above instead of (1110, 1100) or if the test case pair (0011, 0010) was 

chosen for literal d above instead of (1100, 1101) then the ORF would have been detected. However, these 

test pairs are not required by RICC, so RICC does not guarantee the detection of the ORF. 

Now consider the case when an AND is incorrectly replaced with an OR. Consequently, let the 

specification be f = abcd and an incorrect implementation be f’ = ab + cd. Then a does not determine the 

value of f when ~b + ~c + ~d is true and b does not determine the value of f when ~a + ~c + ~d is true and 

c does not determine the value of f when ~a + ~b + ~d is true and d does not determine the value of f when 

~a + ~b + ~c is true. RICC tests for each of the variables follow, along with the expected outputs for f’. 

• (0000, 1000), which yields expected outputs of 0 for f’. 

• (0000, 0100), which yields expected outputs of 0 for f’. 

• (0000, 0010), which yields expected outputs of 0 for f’. 

• (0000, 00001), which yields expected outputs of 0 for f’. 

It is infeasible for f to evaluate to 1 for any literal of interest and therefore, only one test pair is given 

for each literal. Since f and f’ give the same outputs for the tests, the ORF (where AND is changed to OR) 

is missed in this case. Note that if instead of the above test cases, the test cases (0011, 1011) and (0011, 

0111) and (1100, 1110) and (1100, 1101) were chosen to satisfy RICC, then the ORF would have been 

detected. However, since these test cases are not required by RICC, RICC does not guarantee the detection 

of the ORF. 

The Literal Omission Fault (LOF) 

Consider the following specification f abc de= +  and an incorrect implementation 

of f ab de' = + . Then, a does not determine the value of f when de + ~b + ~c is true, b does not determine 

the value of f when de + ~a + ~c is true, c does not determine the value of f when de + ~a + ~b is true, d 

does not determine the value of f when abc + ~e is true and e does not determine the value of f when abc + 
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~d is true. Corresponding RICC tests for each literal and the values for f and f’ are listed in Table 51 below, 

where an “x” indicates the value may be 0 or 1 as long as it is the same value when the literal of interest is 

both 0 and 1. 

 

 

Table 51 RICC Tests (LOF) 
 

Literal 

tested 
a b c d e f f’ 

a 1 0 x 0 x 0 0 

a 0 0 x 0 x 0 0 

a 1 x x 1 1 1 1 

a 0 x x 1 1 1 1 

b 0 1 x 0 x 0 0 

b 0 0 x 0 x 0 0 

b x 1 x 1 1 1 1 

b x 0 x 1 1 1 1 

c 0 x 1 0 x 0 0 

c 0 x 0 0 x 0 0 

c x x 1 1 1 1 1 

c x x 0 1 1 1 1 

d 1 1 1 1 x 1 1 

d 1 1 1 0 x 1 1 

d 0 x x 1 0 0 0 

d 0 x x 0 0 0 0 

e 1 1 1 x 1 1 1 

e 1 1 1 x 0 1 1 

e 0 x x 0 1 0 0 

e 0 x x 0 0 0 0 

 

 

The results are the same for f and f’; therefore, RICC does not catch the fault in this case.  

The Literal Insertion Fault (LIF) 

Consider the following specification f ab cd e= + +  and an incorrect implementation 

of f ab cd ae'= + + . Then, a does not determine the value of f when cd + e + ~b is true, b does not 

determine the value of f when cd + e + ~a is true, c does not determine the value of f when ab + e + ~d is 

true, d does not determine the value of f when ab + e + ~c is true and e does not determine the value of f 

when ab + cd is true. Corresponding RICC tests for each literal and the values for f and f’ are listed in 
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Table 52 below, where an “x” indicates the value may be 0 or 1 as long as it is the same value when the 

literal of interest is both 0 and 1. 

 

 

Table 52 RICC Tests (LIF) 

 

Literal 

tested 
a b c d e f f’ 

a 0 x 1 1 x 1 1 

a 1 x 1 1 x 1 1 

a 0 0 0 x 0 0 0 

a 1 0 0 x 0 0 0 

b x 0 1 1 x 1 1 

b x 1 1 1 x 1 1 

b 0 0 0 x 0 0 0 

b 0 1 0 x 0 0 0 

c 1 1 0 x x 1 1 

c 1 1 1 x x 1 1 

c 0 x 0 0 0 0 0 

c 0 x 1 0 0 0 0 

d 1 1 x 0 x 1 1 

d 1 1 x 1 x 1 1 

d 0 x 0 0 0 0 0 

d 0 x 0 1 0 0 0 

e 1 1 x x 0 1 1 

e 1 1 x x 1 1 1 

 

 

It is infeasible to fulfill RICC tests and have f evaluate to 0 when e is the literal of interest and 

hence, there are only two rows for literal e. As seen, the results are the same for f and f’; therefore, RICC 

does not catch the fault in this case.  

The Literal Reference Fault (LRF) 

Consider the following specification f = ab + cd + ad + bc and an incorrect implementation of f’ 

= ac + cd + ad +bc. Then a does not determine the value of f when c + ~b~d is true and b does not 

determine the value of f when d + ~a~c is true and c does not determine the value of f when a + ~b~d is 

true and d does not determine the value of f when b + ~a~c is true. Corresponding RICC tests for each 

literal and the values of f and f’ are listed in Table 53 below. Note that the tests where all literals are 0 and 
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all literals are 1 are repeated in the table for clarity, but that it would only be necessary to actually use one 

of each. 

 

 

 

Table 53 RICC Tests (LRF) 

 

Literal 

tested 
a b c d f f’ 

a 0 0 0 0 0 0 

a 1 0 0 0 0 0 

a 0 1 1 x 1 1 

a 1 1 1 x 1 1 

b 0 0 0 x 0 0 

b 0 1 0 x 0 0 

b 1 0 x 1 1 1 

b 1 1 x 1 1 1 

c 0 0 0 0 0 0 

c 0 0 1 0 0 0 

c 1 x 0 1 1 1 

c 1 x 1 1 1 1 

d 0 x 0 0 0 0 

d 0 x 0 1 0 0 

d 1 1 1 0 1 1 

d 1 1 1 1 1 1 

 

 

The results are the same for f and f’; therefore, RICC test do not catch the fault in this case.  
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Appendix G RACC Single Minimal DNF Fault Detection 
Analysis 

 

 

 

(From section 6.2) 

 

This appendix gives details as to how RACC tests miss detecting minimal DNF faults 

using a single predicate as an example. 
 

Consider the following predicate used in the study:  aceh~f + bdeh~f +  acegf  +  bdegf. A RACC test 

set for this predicate can be formed from n+2=10 tests (described later) whereas a Minimal-MUMCUT test 

set consists of 16 tests as found by Kaminski and Ammann [19]. For this predicate there are 212 potential 

faults: 

1 ENF 

4 TNFs (4 terms exist) 

4 TOFs (4 terms exist) 

3 ORF+s (3 OR operators exist) 

20 LOFs (20 literals exist) 

20 LNFs (20 literals exist) 

16 ORF.s (16 AND operators exist) 

120 LRFs (because each term has 5 of the 8 literals)* 

24 LIFs (because each term has 5 of the 8 literals)** 

*For each of the 4 terms, each of the 5 literals in the term can be replaced by each of the 3 missing literals 

or the negation of each of the 3 missing literals. Thus, the total number of LRFs is 4 x 5 x 3 x 2 = 120. 

**For each of the 4 terms, each of the 3 missing literals or the negation of each of the 3 missing literals can 

be inserted. Thus, the total number of LIFs is 4 x 3 x 2 = 24. 

 

Of the 212 faults, RACC tests are guaranteed to detect only 5 of them, namely the 1 ENF and the 

4 TNFs. This leaves 207 faults which may or may not be detected. However, of these 207 faults, the RACC 
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test set chosen below only detects 103 of them. Thus, RACC tests fail to detect 104 of these 207 faults and 

104 of the 212 total faults. 

There are 8 unique literals (a-h) in the predicate. Literals a, c, e, f and h appear in term 1 and 

literals b, d and g (amongst others) appear in term 4. Thus, a RACC test can be composed by just 

considering literals a, c, e, f and h in term 1 and literals b, d and g in term 4. A UTP for term 1 is 10101001 

and a UTP for term 4 is 01011110. Thus, these two points satisfy RACC for the case where the predicate 

evaluates to true. The following are corresponding NFPs for each literal in term 1: 

a - 00101001 

c - 10001001 

e - 10100001 

f - 10101101 

h - 10101000 

The following are corresponding NFPs for b, d and g in term 4: 

b - 00011110 

d - 01001110 

g – 01011100 

 

These NFPs satisfy RACC for the case where the predicate evaluates to false. Thus, the 10 test points 

together satisfy RACC. This RACC test set will detect the following 108 faults: 

 

1 ENF 

An ENF is detected by any test point in the test set. 

 

4 TNFs  

Each TNF is detected by any NFP in the test set and the TNF for term 1 is also detected by the UTP for 

term 1 and the TNF for term 4 is also detected by the UTP for term 4. 
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2 TOFs  

The TOF for term 1 is detected by the UTP for term 1 and the TOF for term 4 is detected by the UTP for 

term 4. 

 

2 ORF+s 

Replacing OR with AND between terms 1 and 2 is detected by the UTP for term 1 and replacing OR with 

AND between terms 3 and 4 is detected by the UTP for term 4. 

 

11 LNFs 

Each LNF in term 1 is detected by the corresponding NFP for each literal in term 1 and is also detected by 

the UTP for term 1. Each LNF in term 4 is detected by the UTP for term 4 and the LNFs for b, d and g in 

term 4 are also detected by the corresponding NFPs for b, d and g. The LNF for g in term 3 is also detected 

because the corresponding NFP for f in term 1 in the test set also happens to be an NFP for g in term 3. 

 

9 LOFs  

Each LOF in term 1 is detected by the corresponding NFP for each literal in term 1. The LOFs for b, d and 

g in term 4 are also detected by the corresponding NFPs for b, d and g respectively. The LOF for g in term 

3 is also detected because the corresponding NFP for f in term 1 in the test set also happens to be an NFP 

for g in term 3. 

 

16 ORF.s  

Each occurrence of an AND replaced by OR in terms 1 and 4 is detected by both the corresponding NFP 

for the literal on the left of the AND and the corresponding NFP for the literal on the right of the AND. 

Since each AND in terms 1 and 4 has at least one operand with a corresponding NFP in the test set, all the 

ORF.s in terms 1 and 4 are detected. All the ORF.s in terms 2 and 3 also happen to be detected. When an 

ORF. occurs, a single term is split into two terms. Let us call the two terms X and Y. An ORF. can thus be 

detected by any false point that makes either term X or term Y true. It just so happens that the 
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corresponding NFPs chosen in the test set make either term X or term Y true for each possible ORF. in 

terms 2 and 3. For example, consider term 2 (bdeh~f) and the ORF. that splits the term into bd + eh~f. The 

corresponding NFP for literal g in term 4 (01011100) is such that b=1 and d=1. Thus, this point can detect 

this particular ORF. because for this point term bd evaluates to true. 

 

57 LRFs 

Every LRF involving replacing a literal in term 1 with some literal or the negation of some literal is 

detected because each literal in term 1 has a corresponding UTP-NFP pair in the test set. Thus, all 5 x 3 x 2 

= 30 LRFs involving a literal in term 1 are detected. (Each of the 5 literals in term 1can be replaced by each 

of the 3 external literals or their negations.)  Every LRF involving replacing literal b, d, or g in term 4 is 

detected by the RACC test set because each of these literals in term 4 has a corresponding UTP-NFP pair in 

the test set. Thus, all 3 x 3 x 2 = 18 LRFs involving literals b, d and g in term 4 are detected. Term 4 also 

contains literals e and f and although the test set does not include a corresponding NFP for either of these 

literals in term 4, it does include a UTP for term 4. Thus, 1/2 of the LRFs involving literals e and f in term 4 

are detected, meaning an additional 1/2 x 2 x 3 x 2 = 6 LRFs involving literals e and f in term 4 are 

detected. To see why consider the UTP for term 4: 01011110. Note that literals e and g are both true in the 

UTP. Note also that literals a, c and h are all false in the UTP. Thus, replacing literal e or g in term 4 with 

literal a, c, or h will result in term 4 (and thus the predicate) changing from true to false. Therefore, the test 

set detects these 6 LRFs. However, the test set does not detect any of the 6 LRFs where ~a or ~c or ~h 

replaces literal e or g in term 4 because ~a, ~c and ~h are all true in the UTP for term 4 in the test set. Thus, 

replacing literal e or g in term 4 with either ~a, ~c, or ~h will not change the value of term 4 or the 

predicate. In regards to term 3, there is no UTP for term 3 and no corresponding NFP for any literal in term 

3 in the test set. Thus, 5 x 3 x 2 = 30 LRFs go undetected at first glance. However, literal g in term 3 does 

have an NFP in the test set as the corresponding NFP for literal f in term 1 (10101101) is also an NFP for 

literal g in term 3. Thus, for literals a, c, e and f in term 3 all the LRFs go undetected (4 x 3 x 2 = 24 LRFs). 

However, for literal g in term 3, ½ x 1 x 3 x 2 = 3 LRFs are detected by the NFP above. Note that in the 

NFP above, literal g is false but that all other literals in term 3 are true. Thus, if literal g in term 3 is 
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replaced by a literal (or the negation of a literal) that evaluates to true, then term 3 will change from false to 

true for the NFP. Since b and d are false in this NFP and h is true, this means that replacing literal g in term 

3 with either ~b or ~d or h will be detected. 

 

6 LIFs 

AN LIF can only be detected by a UTP. No UTP exists for terms 2 or 3 in the test set, so the only LIFs that 

can be detected are LIFs involving terms 1 and 4. For terms 1 and 4, 1/2 of the LIFs are detected. This is 

because to detect all LIFs (assuming no equivalent LIFs exist), at least 2 UTPs are needed. Inserting a 

literal into a term can make a true term false but cannot make a false term true. Thus, the only way to detect 

the LIF is to select a UTP where the inserted literal (or the inserted negated literal) is false. Consider the 

UTP for term 1 in the test set: 10101001. Note that literals b, d and g are all false. Thus, inserting literal b, 

d, or g into term 1 will be detected as term 1 will change from true to false for the UTP given above. 

However, inserting ~b, ~d, or ~g into term 1 will not be detected because ~b, ~d and ~g are each true for 

the UTP given above. Thus, inserting any of these into term 1 will cause term 1 to still be true for the UTP 

given above. Since term 1 can have 6 LIFs and term 4 can have 6 LIFs and since 1/2 the LIFs are detected, 

a total of 6 LIFs are detected. 

RACC fails to detect 104 faults because these faults require additional UTPs or NFPs detect. 

Varying the RACC test set to focus on other literals and terms would have no impact on the number of 

faults detected. The actual faults detected would change, but not the number of them.  
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Appendix H RACC Tests and RACC Fault Detection 

 

 

 

(From section 6.2) 
 

For each predicate, this appendix lists the predicate in Minimal DNF, the RACC tests selected for 

the predicate and the percentage of faults detected by the RACC tests. 

 

1.  

a~bd~e~h~f  +  a~b~de~h~f  +  a~bcd~e~f  +  a~bc~de~f  +  ~ab~de~f 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

1001000 UTP for term 1 (covers a, b, d, e, f, h)  

1011001 UTP for term 3 (covers c)  

0001000 Corresponding NFP for a in term 1  

1101000 Corresponding NFP for b in term 1  

1001001 Corresponding NFP for c in term 3  

1000000 Corresponding NFP for d in term 1 NFP for e in term 2 

1001100 Corresponding NFP for e in term 1 NFP for d in term 2 

1001010 Corresponding NFP for f in term 1  

1001001 Corresponding NFP for h in term 1  

 

 

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 5/5 2/5 3/4 22/24 14/29 9/29 21/68 2/8 79/173 46% 

 

 

2.  

a~bc~d~e~gh~i~f  +  a~b~d~e~g~h~if  +  a~b~c~e~g~h~if  +  a~b~c~d~g~h~if  +  

a~bc~d~eg~h~f  +  a~bc~d~e~hi~f  +  a~b~cd~eg~h~f  +  a~b~cd~e~hi~f  +  a~b~c~deg~h~f  +  

a~b~c~de~hi~f  +  ~abc~d~e~hi~f  +  ~ab~cd~e~hi~f  +  ~ab~c~de~hi~f 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

101000010 UTP for term 1 (covers all literals)  

001000010 Corresponding NFP for a in term 1  

111000010 Corresponding NFP for b in term 1  

100000010 Corresponding NFP for c in term 1  

101100010 Corresponding NFP for d in term 1  

101010010 Corresponding NFP for e in term 1  

101001010 Corresponding NFP for f in term 1  

101000110 Corresponding NFP for g in term 1  

101000000 Corresponding NFP for h in term 1  

101000011 Corresponding NFP for i in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 13/13 1/13 1/12 74/92 9/105 9/105 0/192 0/15 108/548 20% 
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3.  

~a~bc~g~i~k~m  +  ~a~bcg~h~l~m  +  ~a~bc~g~hi~m  +  ~a~bcgi~l~m  +  ~a~bcgi~k~m  +   

~a~bc~h~k~m  +  ~ab~c~g~i~k  +  a~b~c~g~i~k  +  ~a~bc~i~kf  +  ~ab~c~g~hi  +  ~ab~cg~h~l  

+  a~b~c~g~hi  +  a~b~cg~h~l  +  ~a~bc~hif  +  ~ab~cgi~k  +  ~ab~cgi~l  +  a~b~cgi~k  +  

a~b~cgi~l  +       a~b~c~h~k  +  ~ab~c~h~k  +  a~b~cgf  +  ~ab~cgf  +  ~a~bcgf  +  a~b~c~d  +  

a~b~c~e 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

001110010010 UTP for term 1 (covers a, b, c, g, i, k, m)  

001110100100 UTP for term 2 (covers h, l)  

001111010011 UTP for term 9 (covers f)  

100010111111 UTP for term 24 (covers d)  

100100111111 UTP for term 25 (covers e)  

101110010010 Corresponding NFP for a in term 1 NFP for c in term 8 

011110010010 Corresponding NFP for b in term 1 NFP for c in term 7 

000110010010 Corresponding NFP for c in term 1 NFP for b in term 7 and a in term 

8 

100110111111 Corresponding NFP for d in term 24 and e in 

term 25 

NFP for k in term 17, f in term 

21, l in term 18 

001110010011 Corresponding NFP for f in term 9  

001110110010 Corresponding NFP for g in term 1 NFP for i in term 5, h in term 6, f 

in term 23 

001110110100 Corresponding NFP for h in term 2 NFP for i in term 4, f in term 23 

001110011010 Corresponding NFP for i in term 1 NFP for h in term 3, g in term 5, h 

in term 6 

001110010110 Corresponding NFP for k in term 1  

001110100110 Corresponding NFP for l in term 2 NFP for k in term 6, f in term 23 

001110010011 Corresponding NFP for m in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 25/25 5/25 6/24 111/121 42/146 26/146 335/1764 32/241 583/2493 23% 

 

 

4.  

a~bd  +  a~cd  +  e 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

10110 UTP for term 1 (covers a, bd)  

11010 UTP for term 2 (covers c)  

11111 UTP for term 3 (covers e)  

00110 Corresponding NFP for a in term 1  

11110 Corresponding NFP for b in term 1, c in term 2, e 

in term 3 
 

10100 Corresponding NFP for a in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 3/3 3/3 2/2 4/4 7/7 5/7 28/32 8/12 61/71 86% 
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5.  

a~g~i~k  +  ag~h~l  +  a~g~hi  +  agi~l  +  agi~k  +  a~h~k  +  a~c  +  a~b  +  f 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

111001001 UTP for term 1 (covers a, g, i, k)  

111010010 UTP for term 2 (covers h, l)  

110011111 UTP for term 7 (covers c)  

101011111 UTP for term 8 (covers b)  

111111111 UTP for term 9 (covers f)  

011001001 Corresponding NFP for a in term 1  

111011111 Corresponding NFP for b in term 2, c in term 7, f 

in term 9 

NFP for l in term 4, k in term 5 

111011001 Corresponding NFP for g in term 1 NFP for i in term 5, h in term 6 

111011010 Corresponding NFP for h in term 2 NFP for i in term 4 

111001101 Corresponding NFP for i in term 1 NFP for h in term 3, g in term 5, h 

in term 6 

111001011 Corresponding NFP for k  in term 1  

111010011 Corresponding NFP for l in term 2 NFP for k in term 6 

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 9/9 5/9 5/8 19/19 21/28 17/28 158/308 32/73 267/483 55% 

 

 

6.  

~ab~cdeg~hij~k~f  +  a~bc~deg~hij~k~f  +  ~ab~cde~g~h~jf  +  ~ab~cde~g~h~kf  +  

a~bc~de~g~h~jf  +  a~bc~de~g~h~kf 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

01011010110 UTP for term 1 (covers all literals)  

11011010110 Corresponding NFP for a in term 1  

00011010110 Corresponding NFP for b in term 1  

01111010110 Corresponding NFP for c in term 1  

01001010110 Corresponding NFP for d in term 1  

01010010110 Corresponding NFP for e in term 1  

01011110110 Corresponding NFP for f in term 1  

01011000110 Corresponding NFP for g in term 1  

01011011110 Corresponding NFP for h in term 1  

01011010010 Corresponding NFP for i in term 1  

01011010100 Corresponding NFP for j  in term 1  

01011010111 Corresponding NFP for k in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 6/6 1/6 1/5 41/52 11/58 11/58 0/144 0/12 72/342 21% 
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7.  

~ab~cde~g~i~j  +  ~ab~cde~h~i~k  +  a~bc~de~g~i~j  +  a~bc~de~h~i~k  +  a~bc~de~g~k  +   

a~bc~de~h~j  +  ~ab~cde~g~k  +  ~ab~cde~h~j 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

0101101001 UTP for term 1 (covers a, b, c, d, e, g, i, j)  

0101110010 UTP for term 2 (covers h, k)  

1101101001 Corresponding NFP for a in term 1  

0001101001 Corresponding NFP for b in term 1  

0111101001 Corresponding NFP for c in term 1  

0100101001 Corresponding NFP for d in term 1  

0101001001 Corresponding NFP for e in term 1  

0101111001 Corresponding NFP for g in term 1 NFP for h in term 8 

0101111010 Corresponding NFP for h in term 2 NFP for g in term 7 

0101101101 Corresponding NFP for i in term 1 NFP for k in term 7, h in term 8 

0101101011 Corresponding NFP for j  in term 1 NFP for k in term 7 

0101110011 Corresponding NFP for k in term 2 NFP for j in term 8 

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 8/8 2/8 2/7 39/52 20/60 14/60 68/296 4/32 158/524 30% 

 

 

8.  

~ab~cde~gh~f  +  a~bc~de~gh~f  +  ~ab~cdeg~hf  +  a~bc~deg~hf 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

01011001 UTP for term 1 (covers all literals)  

11011001 Corresponding NFP for a in term 1  

00011001 Corresponding NFP for b in term 1  

01111001 Corresponding NFP for c in term 1  

01001001 Corresponding NFP for d in term 1  

01010001 Corresponding NFP for e in term 1  

01011101 Corresponding NFP for f in term 1  

01011011 Corresponding NFP for g in term 1  

01011000 Corresponding NFP for h in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 4/4 1/4 1/3 21/28 8/32 8/32 N/A N/A 45/104 42% 

 

 

9.  

~a~b~cd~e~gf  +  ~abc~d~e~gf 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

0001010 UTP for term 1 (covers all literals)  

1001010 Corresponding NFP for a in term 1  

0101010 Corresponding NFP for b in term 1  

0011010 Corresponding NFP for c in term 1  
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Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

0000010 Corresponding NFP for d in term 1  

0001110 Corresponding NFP for e in term 1  

0001000 Corresponding NFP for f in term 1  

0001011 Corresponding NFP for g in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 2/2 1/2 1/1 12/12 7/14 7/14 N/A N/A 31/46 67% 

 

 

10.  

a~b~cd~eg~j~l~mf  +  a~b~cd~eh~j~l~mf  +  a~b~cd~ei~j~l~mf  +  a~b~cd~egj~k~mf  +   

a~b~cd~ehj~k~mf  +  a~b~cd~eij~k~mf 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

1001011000100 UTP for term 1 (covers a, b, c, d, e, f, g, j, l, m)  

1001010101010 UTP for term 5 (covers h, k)  

1001010011010 UTP for term 6 (covers i)  

0001011000100 Corresponding NFP for a in term 1  

1101011000100 Corresponding NFP for b in term 1  

1011011000100 Corresponding NFP for c in term 1  

1000011000100 Corresponding NFP for d in term 1  

1001111000100 Corresponding NFP for e in term 1  

1001001000100 Corresponding NFP for f in term 1  

1001010000100 Corresponding NFP for g in term 1 NFP for h in term 2, i in term 3 

1001010001010 Corresponding NFP for h in term 5 and i in 

term 6 

NFP for g in term 4 

1001011001100 Corresponding NFP for j in term 1 NFP for g in term 4 

1001010101110 Corresponding NFP for k in term 5 NFP for k in term 4 

1001011000110 Corresponding NFP for l in term 1  

1001011000101 Corresponding NFP for m in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 6/6 3/6 3/5 54/54 34/60 17/60 141/360 9/24 268/576 47% 

 

 

11.  

a~b~c~g~h~i~j~l  +  a~b~c~g~h~ij~k  +  a~b~c~g~h~i~jm  +  a~b~c~d~e~j~l  +  a~b~c~d~e~jm  

+ a~b~c~d~ej~k  +  a~b~c~j~l~f  +  a~b~cj~k~f  +  a~b~c~jm~f 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

1001110000100 UTP for term 1 (covers a, b, c, g, h, i, j, l)  

1000011110111 UTP for term 5 (covers d, e, m)  

1001101111010 UTP for term 8 (covers k, f)  

0001110000100 Corresponding NFP for a in term 1  

1101110000100 Corresponding NFP for b in term 1  

1011110000100 Corresponding NFP for c in term 1  
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Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

1001011110111 Corresponding NFP for d in term 5  

1000111110111 Corresponding NFP for e in term 5  

1001111111010 Corresponding NFP for f in term 8  

1001111000100 Corresponding NFP for g in term 1 NFP for f in term 7 

1001110100100 Corresponding NFP for h in term 1 NFP for f in term 7 

1001110010100 Corresponding NFP for i in term 1 NFP for f in term 7 

1001110001100 Corresponding NFP for j in term 5 NFP for k in term 2 

1001101111110 Corresponding NFP for k in term 8  

1001110000110 Corresponding NFP for l in term 1 NFP for m in term 3 

1000011110110 Corresponding NFP for m in term 5 NFP for l in term 4 

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 9/9 3/9 5/8 54/54 25/63 17/63 135/744 18/96 267/1047 26% 

 

 

12. Not included due to a missing right parenthesis 

 

 

13.  

a  +  b  +  c  +  ~def~g~h  +  ij~l  +  ik~l 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

100000000000 UTP for term 1 (covers a)  

010000000000 UTP for term 2 (covers b)  

001000000000 UTP for term 3 (covers c)  

000011000000 UTP for term 4 (covers d, e, f, g, h)  

000000001100 UTP for term 5 (covers i, j, l)  

000000001010 UTP for term 6 (covers k)  

000000000000 Corresponding NFP for a, b, c in term 1  

000111000000 Corresponding NFP for d in term 4  

000001000000 Corresponding NFP for e in term 4  

000010000000 Corresponding NFP for f in term 4  

000011100000 Corresponding NFP for g in term 4  

000011010000 Corresponding NFP for h in term 4  

000011000100 Corresponding NFP for i in term 5  

000011001001 Corresponding NFP for j in term 5  

000011001000 Corresponding NFP for k in term 6  

000011001101 Corresponding NFP for l in term 5  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 6/6 6/6 5/5 8/8 14/14 12/14 226/244 58/99 336/397 85% 
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14.  

ae~h  +  ad~h  +  ace  +  acd  +  be  +  bf 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

1000110 UTP for term 1 (covers a, e, h)  

1011001 UTP for term 4 (covers c, d)  

1100010 UTP for term 6 (covers b, f)  

0000110 Corresponding NFP for a in term 1 NFP for b in term 5 

1000010 Corresponding NFP for b in term 6, e in term 1 NFP for d in term 2 

1001001 Corresponding NFP for c in term 4 NFP for h in term 2 

1010001 Corresponding NFP for d in term 4 NFP for e in term 3 

1100000 Corresponding NFP for f in term 6 NFP for e in term 5, d in term 2 

1000111 Corresponding NFP for h in term 1 NFP for c in term 3, b in term 5 

ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 6/6 3/6 4/5 10/10 14/16 13/16 98/136 13/40 162/236 69% 

 

 

15.  

bei  +  bdi  +  bci  +  aei  +  aeg  +  adi  +  adg  +  aci  +  ach  +  acg  +  af 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

010010001 UTP for term 1 (covers b, e, i)  

100100100 UTP for term 7 (covers a, d, g)  

101000010 UTP for term 9 (covers c, h)  

100101000 UTP for term 11 (covers f)  

000100100 Corresponding NFP for a in term 7  

000010001 Corresponding NFP for b in term 1 NFP for a in term 4 

100000010 Corresponding NFP for c in term 9  

100000100 Corresponding NFP for d in term 7 NFP for e in term 5, c in term 10 

010000001 Corresponding NFP for e in term 1 NFP for d in term 2, c in term 3 

100100000 Corresponding NFP for f in term 11, g in term 7 NFP for i in term 6 

101000000 Corresponding NFP for h in term 9 NFP i in term 8, g in term 10 

010010000 Corresponding NFP for i in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 11/11 4/11 6/10 21/21 19/32 17/32 171/388 25/99 275/605 45% 

 

 

16.  

c~g~i~k~m  +  cg~h~l~m  +  c~g~hi~m  +  cgi~l~m  +  cgi~k~m  +  c~h~k~m  +  b~g~i~k  +  

a~g~i~k  + b~g~hi  +  bg~h~l  +  a~g~hi  +  ag~h~l  +  bgi~k  +  bgi~l  +  agi~k  +  agi~l  +  

a~h~k  +  b~h~k  +  ~i~kf +  ~hif  +  gf  +  a~e  +  a~d 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

001110010010 UTP for term 1 (covers c, g, i, k, m)  

010110100101 UTP for term 10 (covers b, h, l)  

000111110010 UTP for term 21 (covers f)  
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Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

100100010110 UTP for term 22 (covers a, e)  

100010010110 UTP for term 23 (covers d)  

000100010010 Corresponding NFP for a in term 22 NFP for b in term 7, a in term 8, f 

in term 19  

000110100101 Corresponding NFP for b in term 10 NFP for a in term 12 

000110010010 Corresponding NFP for c in term 1 NFP for b in term 7, a in term 8, f 

in term 19 

100110010110 Corresponding NFP for d in term 23 and e in 

term 22 

NFP for k in term 8 

000110110010 Corresponding NFP for f in term 21 NFP for f in term 19 

001110110010 Corresponding NFP for g in term 1 NFP for i in term 5, h in term 6, f 

in term 19 

010110110101 Corresponding NFP for h in term 10 NFP for i in term 13 

001110011010 Corresponding NFP for i in term 1 NFP for h in term 3, g in term 5, h 

in term 6 

001110010110 Corresponding NFP for k in term 1  

010110100111 Corresponding NFP for l in term 10  

001110010011 Corresponding NFP for m in term 1 NFP b in term 7, a in term 8, f in 

term 19 

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 23/23 5/23 6/22 59/64 25/87 22/87 316/1390 45/283 502/1980 25% 

 

 

17.  

acegij  +  acehik  +  bdegij  +  bdehik  +  acef  +  bdef 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

10101010110 UTP for term 1 (covers a, c, e, g, i, j)  

01011001101 UTP for term 4 (covers b, d, h, k)  

10101100000 UTP for term 5 (covers f)  

00101010110 Corresponding NFP for a in term 1  

00011001101 Corresponding NFP for b in term 4  

10001010110 Corresponding NFP for c in term 1  

01001001101 Corresponding NFP for d in term 2  

10100010110 Corresponding NFP for e in term 1  

10101000000 Corresponding NFP for f in term 5  

10101000110 Corresponding NFP for g in term 1  

01011000101 Corresponding NFP for h in term 4 NFP for f in term 6 

10101010010 Corresponding NFP for i in term 1  

10101010100 Corresponding NFP for j in term 1  

01011001100 Corresponding NFP for k in term 4 NFP for f in term 6 

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 6/6 3/6 4/5 26/26 17/32 12/32 154/352 17/64 240/524 46% 
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18.  

ace~j~k  +  ace~h~j  +  ace~g~k  +  bde~j~k  +  bde~h~j  +  bde~g~k  +  bde~i  +  ace~i 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

1010111100 UTP for term 1 (covers a, c, e, j, k)  

1010110101 UTP for term 2 (covers h)  

0101101110 UTP for term 6 (covers b, d, g)  

0101111011 UTP for term 7 (covers i)  

0010111100 Corresponding NFP for a in term 1  

0001101110 Corresponding NFP for b in term 6  

1000111100 Corresponding NFP for c in term 1  

0100101110 Corresponding NFP for d in term 6  

1010011100 Corresponding NFP for e in term 1  

0101111110 Corresponding NFP for g in term 6 NFP for j in term 4 

1010111101 Corresponding NFP for h in term 2 NFP for i in term 8 

0101111111 Corresponding NFP for i in term 7  

1010111110 Corresponding NFP for j in term 1 NFP for i in term 8 

1010111101 Corresponding NFP for k in term 1 NFP for i in term 8 

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 8/8 4/8 5/7 30/30 21/38 12/38 172/396 21/70 274/596 46% 

 

 

19.  

aceh~f  +  bdeh~f  +  acegf  +  bdegf 

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

10101001 UTP for term 1 (covers a, c, e, f, h)  

01011110 UTP for term 4 (covers b, d, g)  

00101001 Corresponding NFP for a in term 1  

00011110 Corresponding NFP for b in term 4  

10001001 Corresponding NFP for c in term 1  

01001110 Corresponding NFP for d in term 4  

10100001 Corresponding NFP for e in term 1  

10101101 Corresponding NFP for f in term 1 NFP for g in term 3 

01011100 Corresponding NFP for g in term 1  

10101000 Corresponding NFP for h in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 4/4 2/4 2/3 16/16 11/20 9/20 57/120 6/24 108/212 51% 
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20.  

~a~bd~e~gf   +   ~abc~e~gf  

 
Test Description and literal coverage NFPs for other literals that the 

Corresponding NFP overlaps with 

0001010 UTP for term 1 (covers a, b, d ,e, f, g)  

0111010 UTP for term 4 (covers c)  

1001010 Corresponding NFP for a in term 1  

0101010 Corresponding NFP for b in term 1and c in term 2  

0000010 Corresponding NFP for d in term 1  

0001110 Corresponding NFP for e in term 1  

0001000 Corresponding NFP for f in term 1  

0001011 Corresponding NFP for g in term 1  

 
ENF TNF TOF ORF+ ORF. LNF LOF LRF LIF Total Percent 

1/1 2/2 2/2 1/1 10/10 12/12 7/12 19/24 2/4 56/68 82% 
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Appendix I TRF-TIF Logic Mutations 

 

 

 

(From section 7.2) 
 

This Appendix gives the TRF-TIF logic mutations for one of the predicates examined. 

This predicate has 12 unique literals so 4096 tests are possible. However, to satisfy 

Minimal-MUMCUT only 17 tests are needed and there are also only 17 TRF-TIF logic 

mutations. Killing the resulting 17 mutants guarantees killing 506 other mutants that thus 

do not need to be generated. These other mutants correspond to mutants based on the 

mutation operators in the extended fault hierarchy (Figure 9). In other words, detecting 

the 17 TRF-TIFs guarantees detecting 506 other faults. 

 

After each mutation, a point is given indicating the values the literals need to be assigned 

to in order to detect the fault. Due to the large number of literals, 1 is used to represent 

TRUE and 0 is used to represent FALSE. A description of the point is also given in 

parentheses. 

 
PREDICATE 13 

 

Minimal DNF: a + b + c + ~def~g~h + ij~l + ik~l 

 

TRF/LIF mutations are: 

 

ab + ac + ad + ae + af + ag + ah + ai + aj + ak + al + b + c + ~def~g~h + ij~l + ik~l                                     

 

100000000000 (UTP for term a) 

 

ab +  ac + a~d + a~e + a~f + a~g + a~h + a~i + a~j + a~k + a~l + b + c + ~def~g~h + ij~l + ik~l                 

 

100111111111 (UTP for term a) 

 

a + ba + bc + bd + be + bf + bg + bh + bi + bj + bk + bl + c + ~def~g~h + ij~l + ik~l                                   

 

010000000000 (UTP for term b) 

 

a + ba + bc + b~d + b~e + b~f + b~g + b~h + b~i + b~j + b~k + b~l + c + ~def~g~h + ij~l + ik~l                

 

010111111111 (UTP for term b) 

 

a + b + ca + cb + cd + ce + cf + cg + ch + ci + cj + ck + cl + ~def~g~h + ij~l + ik~l                                       

 

001000000000 (UTP for term c) 

 

a + b + ca + cb + c~d + c~e + c~f + c~g + c~h + c~i + c~j + c~k + c~l + ~def~g~h + ij~l + ik~l                    

 

001111111111 (UTP for term c) 
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a + b + c + ~def~g~ha + ~def~g~hb + ~def~g~hc + ~def~g~hi + ~def~g~hj + ~def~g~hk + ~def~g~hl + 

ij~l + ik~l  

 

000011000000 (UTP for term ~def~g~h) 

 

a + b + c + ~def~g~ha + ~def~g~hb + ~def~g~hc + ~def~g~h~i + ~def~g~h~j + ~def~g~h~k + 

~def~g~h~l + ij~l + ik~l     

 

000011001111 (UTP for term ~def~g~h) 

 

a + b + c + ~def~g~h + ij~la + ij~lb + ij~lc + ij~ld + ij~le + ij~lf + ij~lg + ij~lh + ij~lk + ik~l                     

 

000000001100 (UTP for term ij~l) 

 

a + b + c + ~def~g~h + ij~la + ij~lb + ij~lc + ij~l~d + ij~l~e + ij~l~f + ij~l~g + ij~l~h + ij~lk + ik~l           

 

000111111100 (UTP for term ij~l) 

 

a + b + c + ~def~g~h + ij~l + ik~la + ik~lb + ik~lc + ik~ld + ik~le + ik~lf + ik~lg + ik~lh + ik~lj               

 

000000001010 (UTP for term ik~l) 

 

a + b + c + ~def~g~h + ij~l + ik~la + ik~lb + ik~lc + ik~l~d + ik~l~e + ik~l~f + ik~l~g + ik~l~h + ik~lj     

 

000111111010 (UTP for term ik~l) 

 

No TIF/LRF mutations are needed for literals a, b, or c as no equivalent LIF mutants exist when inserting a 

literal from a multi-literal term into term a, b, or c. 

 

No TIF/LOF mutations are needed for literals a, b, or c since a TIF/LOF would result in a TOF, which is 

detected by a TRF/LIF. 

 

No TIF/LRF mutations are needed for literals in term ~def~g~h since 1) any LRF mutation where a literal 

or the negation of a literal from term a, b, or c replaces a literal in term ~def~g~h results in a TOF or an 

LOF and 2) no equivalent LIF mutants exist when inserting a literal from term ij~l or term ik~l into term 

~def~g~h. 

 

TIF/LOF mutations are needed for the literals in term ~def~g~h but these mutations can overlap with the 

TIF/LRF mutations described below for literals in term ij~l and literals in term ij~l 

 

No TIF/LRF mutations are needed for term ij~l or term ik~l involving a literal in any of the first four terms 

since 1) any LRF mutation where a literal or the negation of a literal from term a, b, or c replaces a literal in 

term ij~l or term ik~l results in a TOF or an LOF and 2) no equivalent LIF mutants exist when inserting a 

literal from term ~def~g~h into term ij~l or term ik~l. 

 

However, inserting literal ~k into term ij~l results in an equivalent LIF mutant and inserting literal ~j into 

term ik~l results in an equivalent LIF mutant, so the following TIF/LRF mutations need to be generated: 

 

a + b + c + ~def~g~h + ij~l + ik~l + ~ij~l~k~a~b~cdef~g~h            

 

 (000111000100) - NFP literal d and for literal i in term ij~l for d 

 

a + b + c + ~def~g~h + ij~l + ik~l + i~j~l~k~a~b~c~d~ef~g~h        
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(000001001000) - NFP for literal e and for literal j in term ij~l and for literal k in term ik~l 

 

a + b + c + ~def~g~h + ij~l + ik~l + ijl~k~a~b~c~de~f~g~h             

 

(000010001101) - NFP for literal f and for literal l in term ij~l 

 

a + b + c + ~def~g~h + ij~l + ik~l + ~ik~l~j~a~b~c~defg~h     

 

(00001110010) - this is an NFP for literal g and for literal i in term ik~l 

 

a + b + c + ~def~g~h + ij~l + ik~l + ikl~j~a~b~c~def~gh          

 

(000011011011) – this is an NFP for literal h and for literal l in term ik~l 
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Appendix J Java Programs and TRF-TIF Mutations 

 

 

 

(From introduction to Chapter 9) 
 

This appendix gives the source code and example TRF-TIF mutations for 4 java 

programs used in a study comparing TRF-TIF mutation with muJava. 
 

 

Cal.java 

 

// Returns the number of days between two dates in the same year 

// Preconditions: day1 and day2 are in same year 

//                          1 <= month1 <= month2 <= 12 

//                          1 <= day1, day2 <= 31 

//                          range for year: 1 … 10000 

 

1 public class Cal  

2 { 

3    public static void main(String[] args) 

4    { 

5       int month1 = Integer.parseInt(args[0]); 

6       int day1 = Integer.parseInt(args[1]); 

7       int month2 = Integer.parseInt(args[2]); 

8       int day2 = Integer.parseInt(args[5]); 

9       int year = Integer.parseInt(args[6]); 

10       System.out.println(run(month1,day1,month2,day2,year)); 

11    } 

12     

13    private static int run(int month1, int day1, int month2, int day2, int year) 

14    { 

15       int numDays; 

16 

17       if ( (month2 == month1) )  numDays = day2 - day1; 

18       else 

19       { 

20          int daysIn[] = {0,31,0,31,30,31,30,31,31,30,31,30,31}; 

21 

22          int m4 = year % 4; 

23          int m100 = year % 100; 

24          int m400 = year % 400; 

25 

26          // startTag m100 == 0=F,m400 != 0=F;m4 != 0=T,m100 == 0=T 

27          if ( (m4 != 0) || (m100 == 0) && (m400 != 0) )  daysIn[2] = 28; 

28           

29          else daysIn[2] = 29; 

30 

31          numDays = day2 + daysIn[month1] - day1; 

32 

33          for (int i = month1 + 1; (i <= month2-1); i++) 
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34          { 

35             numDays = daysIn[i] + numDays; 

36          } 

37       } 

38        

39       return numDays; 

40    } 

41 } 

 

Tests  

 

Test  
Test Values 

(Program Input) 

1 1, 1, 12, 1, 4 

2 1, 1, 12, 1, 100 

3 1, 1, 12, 1, 400 

4 1, 1, 12, 1, 1 

5 1, 1, 1, 2, 1 

 

 

TRF-TIF Mutations 
 

Code 

Line 
Original Predicate Mutated Predicate 

Mutant 

Type 

Tests 

that kill 

mutant 

17 month2 == month1 TRUE  1,2,3,4 

17 month2 == month1 FALSE  5 

27 m4 != 0 || m100 == 0 && m400 != 0 
m4 != 0 && m100 == 0 || m4 

!= 0 && !(m400 != 0)  

|| m100 == 0 && m400 != 0 

TRF-

LIF 4 

27 m4 != 0 || m100 == 0 && m400 != 0 
m4 != 0 || m100 == 0 && 

m400 != 0 && m4 != 0 

TRF-

LIF 
2 

27 m4 != 0 || m100 == 0 && m400 != 0 
m4 != 0 || m100 == 0 && 

m400 != 0 || !(m4 != 0) && 

!(m100 == 0) && m400 != 0 

TIF-

LOF 1 

27 m4 != 0 || m100 == 0 && m400 != 0 
m4 != 0 || m100 == 0 && 

m400 != 0 || !(m4 != 0) && 

m100 == 0 && !(m400 != 0) 

TIF-

LOF 3 

 



 

242 

Prime.java 

 

// Returns the first X prime numbers where X is the input to the program 

 

1 public class Prime  

2 { 

3    public static void main(String[] args) 

4    { 

5     run(Integer.parseInt(args[0])); 

6    } 

7     

8    private static void run(int input) 

9    { 

10       int curPrime; 

11       int numPrimes; 

12       boolean isPrime; 

13       int[] primes = new int[100]; 

14 

15       primes[0] = 2; 

16       numPrimes = 1; 

17       curPrime = 2; 

18 

19       while ( (numPrimes < input) ) 

20       { 

21          curPrime++; 

22          isPrime = true; 

23           

24          for (int i=0; (i <= numPrimes-1); i++) 

25          { 

26             if ( (curPrime % primes[i] == 0) ) 

27             { 

28                isPrime = false; 

29                break; 

30             } 

31          } 

32          if ( (isPrime) ) 

33          { 

34             primes[numPrimes] = curPrime; 

35             numPrimes++; 

36          } 

37       } 

38 

39       for (int i=0; (i <= numPrimes-1); i++) 

41       { 

42          System.out.println("Prime: " + primes[i]); 

43       } 

44    } 

45 } 
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Tests 

 

Test  
Test Value 

(Program Input) 

1 4 

 

 

TRF-TIF Mutations 

 

Code 

Line 
Original Predicate Mutated Predicate 

Tests that 

kill mutant 

26 curPrime % primes[i] == 0 TRUE 1 

26 curPrime % primes[i] == 0 FALSE 1 

32 isPrime TRUE 1 

32 isPrime FALSE 1 
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TestPat.java 

 

// Tests for whether one string contains another string 

 

1 public class TestPat  

2 { 

3    public static void main(String[] argv) 

4    { 

5     run(argv); 

6    } 

7     

8    private static void run(String[] argv) 

9    { 

10       final int MAX = 100; 

11       char subject[] = new char[MAX]; 

12       char pattern[] = new char[MAX]; 

13 

14       if ( (argv.length != 2) ) 

15       { 

16          System.out.println("java TestPat String-Subject String-Pattern"); 

17          return; 

18       } 

19       subject = argv[0].toCharArray(); 

20       pattern = argv[1].toCharArray(); 

21       TestPat testPat = new TestPat(); 

22       int n=0; 

23 

24       if ( ((n = testPat.pat(subject,pattern)) == -1) ) 

25       { 

26          System.out.println("Pattern string is not a substring of the subject string"); 

27       } 

28       else 

29       { 

30          System.out.println("Pattern string begins at the character " + n); 

31       } 

32    } 

33 

34    public int pat(char[] subject, char[] pattern) 

35    { 

36       final int NOTFOUND = -1; 

37       int iSub = 0, rtnIndex = NOTFOUND; 

38       boolean isPat = false; 

39       int subjectLen = subject.length; 

40       int patternLen = pattern.length; 

41 

42       while ( (isPat == false) && (iSub + patternLen - 1 < subjectLen) ) 

43       { 

44          if ( (subject[iSub] == pattern[0]) ) 

45          { 

46             rtnIndex = iSub; 

47             isPat = true; 

48 
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49             for (int iPat = 1; (iPat < patternLen); iPat++) 

50             { 

51                if ( (subject[iSub + iPat] != pattern[iPat]) ) 

52                { 

53                   rtnIndex = NOTFOUND; 

54                   isPat = false; 

55                   break; 

56                } 

57             } 

58          } 

59          iSub++; 

60       } 

61       return rtnIndex; 

62    } 

63 } 

 

Tests  

 

Test  
Test Values 

(Program Input) 

1 “a” 

2 “abc”, “bc” 

3 “abc”, “bd” 

 

 

TRF-TIF Mutations 

 

Code 

Line 
Original Predicate Mutated Predicate 

Tests that 

kill mutant 

14 argv.length != 2 TRUE 2,3 

14 argv.length != 2 FALSE 1 

24 n = testPat.pat(subject,pattern) == -1 TRUE 2 

24 n = testPat.pat(subject,pattern) == -1 FALSE 3 

44 subject[iSub] == pattern[0] TRUE 2,3 

44 subject[iSub] == pattern[0] FALSE 2,3 

51 subject[iSub + iPat] != pattern[iPat] TRUE 2 

51 subject[iSub + iPat] != pattern[iPat] FALSE 3 
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TriType.java 

 

// Determines if a triangle is equilateral, isosceles, scalene, or invalid  

 

1 public class TriType 

2 { 

3      public static void main (String[] args) 

4        { 

5               

System.out.println(run(Double.parseDouble(args[0]),Double.parseDouble(args[1]),Double.parseDouble(ar

gs[2]))); 

6        } 

7 

8        private static int run(double Side1, double Side2, double Side3) 

9        { 

10               int triOut; 

11 

12                if ( (Side1 <= 0) || (Side2 <= 0) || (Side3 <= 0) )  

13                { 

14                        triOut = 4; 

15 

16                        return triOut; 

17                } 

18 

19                triOut = 0; 

20 

21                if ( (Side1 == Side2) )  

22                { 

23                        triOut = triOut + 1; 

24                } 

25                if ( (Side1 == Side3) )  

26                { 

27                        triOut = triOut + 2; 

28                } 

29                if ( (Side2 == Side3) )  

30                { 

31                        triOut = triOut + 3; 

32                } 

33                if ( (triOut == 0) )  

34                { 

35                        // startTag Side1+Side2 <= Side3=T,Side2+Side3 <= Side1=T;Side1+Side2 <= 

Side3=T,Side1+Side3 <=  

36                        //               Side2=T;Side2+Side3 <= Side1=T,Side1+Side3 <= Side2=T 

37 

38                        if ( (Side1+Side2 <= Side3) || (Side2+Side3 <= Side1) || (Side1+Side3 <= Side2) )  

39                        { 

40                             triOut = 4; 

41                        } 

42                        else 

43                        { 

44                                triOut = 1; 

45                        } 
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46                         

47                        return triOut; 

48                } 

49 

50                if ( (triOut > 3) )  

51                { 

52                        triOut = 3; 

53                } 

54                // startTag Side1+Side2 <= Side3=T,Side2+Side3 <= Side1=T;Side1+Side2 <= 

Side3=T,Side1+Side3 <=            

55                //               Side2=T;Side2+Side3 <= Side1=T,Side1+Side3 <= Side2=T 

56 

57                else if ( (Side1+Side2 <= Side3) || (Side2+Side3 <= Side1) || (Side1+Side3 <= Side2) )  

58                { 

59                     triOut = 4; 

60                } 

61                else 

62                { 

63                        triOut = 2; 

64                } 

65 

66                return triOut; 

67        } 

68 } 

 

 

 

Tests 

 

Test  
Test Values 

(Program Input) 

1 0, 1, 1 

2 1, 0, 1 

3 1, 1, 0 

4 1, 1, 1 

5 1, 2, 1 

6 1, 1, 2 

7 1, 2, 3 

8 3, 1, 2 

9 1, 3, 2 

10 3, 4, 5 

11 2, 2, 1 

 

 

TRF-TIF Mutations 

 

Code 

Line 
Original Predicate Mutated Predicate 

Mutant 

Type 

Tests 

that kill 

mutant 

12 
(Side1 <= 0) || (Side2 

<= 0) || (Side3 <= 0) 

(Side1 <= 0) && (Side2 <= 0) || (Side1 

<= 0) && (Side3 <= 0) || (Side2 <= 0) || 

(Side3 <= 0) 

TRF-LIF 1 
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Code 

Line 
Original Predicate Mutated Predicate 

Mutant 

Type 

Tests 

that kill 

mutant 

12 
(Side1 <= 0) || (Side2 

<= 0) || (Side3 <= 0) 

(Side1 <= 0) || (Side2 <= 0) && (Side1 

<= 0) || (Side2 <= 0) && (Side3 <= 0) || 

(Side3 <= 0) 

TRF-LIF 2 

12 
(Side1 <= 0) || (Side2 

<= 0) || (Side3 <= 0) 

(Side1 <= 0) || (Side2 <= 0) || (Side3 <= 0) 

&& (Side1 <= 0) || (Side3 <= 0) && 

(Side2 <= 0) 

TRF-LIF 3 

12 
(Side1 <= 0) || (Side2 

<= 0) || (Side3 <= 0) 

(Side1 <= 0) || (Side2 <= 0) || (Side3 <= 0) 

|| !(Side1 <= 0) && !(Side2 <= 0) && 

!(Side3 <= 0) 

TIF-LOF 4-12 

21 Side1 == Side2 TRUE  5,7-11 

21 Side1 == Side2 FALSE  4,6 

25 Side1 == Side3 TRUE  6-11 

25 Side1 == Side3 FALSE  4,5 

29 Side2 == Side3 TRUE  5-10 

29 Side2 == Side3 FALSE  4,11 

33 triOut == 0 TRUE  4,5,6,11 

33 triOut == 0 FALSE  7-10 

38 

(Side1+Side2 <= 

Side3) || (Side2+Side3 

<= Side1) || 

(Side1+Side3 <= 

Side2) 

(Side1+Side2 <= Side3) 

&&(Side2+Side3 <= Side1) || 

(Side1+Side2 <= Side3) && 

(Side1+Side3 <= Side2) || (Side2+Side3 

<= Side1) || (Side1+Side3 <= Side2) 

TRF-LIF 7 

38 

(Side1+Side2 <= 

Side3) || (Side2+Side3 

<= Side1) || 

(Side1+Side3 <= 

Side2) 

(Side1+Side2 <= Side3) || (Side2+Side3 

<= Side1) && (Side1+Side2 <= Side3) || 

(Side2+Side3 <= Side1) && 

(Side1+Side3 <= Side2) || (Side1+Side3 

<= Side2) 

TRF-LIF 8 

38 

(Side1+Side2 <= 

Side3) || (Side2+Side3 

<= Side1) || 

(Side1+Side3 <= 

Side2) 

(Side1+Side2 <= Side3) || (Side2+Side3 

<= Side1) || (Side1+Side3 <= Side2) && 

(Side1+Side2 <= Side3) || (Side1+Side3 

<= Side2) && (Side2+Side3 <= Side1)  

TRF-LIF 9 

38 

(Side1+Side2 <= 

Side3) || (Side2+Side3 

<= Side1) || 

(Side1+Side3 <= 

Side2) 

(Side1+Side2 <= Side3) || (Side2+Side3 

<= Side1) || (Side1+Side3 <= Side2) || 

!(Side1+Side2 <= Side3) && 

!(Side2+Side3 <= Side1) && 

!(Side1+Side3 <= Side2) 

TIF-LOF 10 

50 triOut > 3 TRUE  5,6,11 

50 triOut > 3 FALSE  4 

57 

(Side1+Side2 <= 

Side3) || (Side2+Side3 

<= Side1) || 

(Side1+Side3 <= 

Side2) 

(Side1+Side2 <= Side3) 

&&(Side2+Side3 <= Side1) || 

(Side1+Side2 <= Side3) && 

(Side1+Side3 <= Side2) || (Side2+Side3 

<= Side1) || (Side1+Side3 <= Side2) 

TRF-LIF 6 

57 

(Side1+Side2 <= 

Side3) || (Side2+Side3 

<= Side1) || 

(Side1+Side3 <= 

Side2) 

(Side1+Side2 <= Side3) || (Side2+Side3 

<= Side1) && (Side1+Side2 <= Side3) || 

(Side2+Side3 <= Side1) && 
(Side1+Side3 <= Side2) || (Side1+Side3 

<= Side2) 

TRF-LIF 11 
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Code 

Line 
Original Predicate Mutated Predicate 

Mutant 

Type 

Tests 

that kill 

mutant 

57 

(Side1+Side2 <= 

Side3) || (Side2+Side3 

<= Side1) || 

(Side1+Side3 <= 

Side2) 

(Side1+Side2 <= Side3) || (Side2+Side3 

<= Side1) || (Side1+Side3 <= Side2) && 

(Side1+Side2 <= Side3) || (Side1+Side3 

<= Side2) && (Side2+Side3 <= Side1)  

TRF-LIF 5 

57 

(Side1+Side2 <= 

Side3) || (Side2+Side3 

<= Side1) || 

(Side1+Side3 <= 

Side2) 

(Side1+Side2 <= Side3) || (Side2+Side3 

<= Side1) || (Side1+Side3 <= Side2) || 

!(Side1+Side2 <= Side3) && 

!(Side2+Side3 <= Side1) && 

!(Side1+Side3 <= Side2) 

TIF-LOF 4 

 



 

250 

Appendix K Compiere Queries 

 

 

 

(From introduction to chapter 10) 

 

This appendix gives details of the Compiere Queries used to compare TRF-TIF mutation 

with SQLMutation. 

 
Query 1 

 
View the query appears in:  C_Invoice_Candidate_v 

 

Schema: 

<schema> 

    <table name="C_Order"> 

        <column name="AD_Client_ID" type="number"/> 

        <column name="AD_Org_ID" type="number"/> 

        <column name="C_BPartner_ID" type="number"/> 

        <column name="C_Order_ID" type="number"/> 

        <column name="DocumentNo" type="number"/> 

        <column name="DateOrdered" type="date"/> 

        <column name="C_DocType_ID" type="number"/> 

        <column name="DocStatus" type="varchar"/> 

        <column name="InvoiceRule" type="char"/> 

    </table> 

       <table name="C_OrderLine"> 

        <column name="QtyOrdered" type="number"/> 

        <column name="QtyInvoiced" type="number"/> 

        <column name="PriceActual" type="number"/> 

        <column name="C_Order_ID" type="number"/> 

        <column name="QtyDelivered" type="number"/> 

    </table> 

   <table name="C_BPartner"> 

        <column name="C_BPartner_ID" type="number"/> 

        <column name="C_InvoiceSchedule_ID" type="number"/> 

    </table> 

   <table name="C_InvoiceSchedule"> 

        <column name="C_InvoiceSchedule_ID" type="number"/> 

        <column name="InvoiceFrequency" type="char"/> 

        <column name="InvoiceDayCutoff" type="number"/> 

        <column name="InvoiceDay" type="number"/> 

    </table> 

    <table name="C_DocType"> 

        <column name="C_DocType_ID" type="number"/> 

        <column name="DocBaseType" type="varchar"/> 

        <column name="DocSubTypeSO" type="varchar"/> 

    </table> 

</schema> 
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SQL: 

SELECT o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID, o.C_Order_ID, o.DocumentNo, 

o.DateOrdered, o.C_DocType_ID, 

SUM((l.QtyOrdered-l.QtyInvoiced)*l.PriceActual) AS TotalLines FROM C_Order o INNER JOIN 

C_OrderLine l ON o.C_Order_ID=l.C_Order_ID) INNER JOIN C_BPartner bp ON 

(o.C_BPartner_ID=bp.C_BPartner_ID) LEFT OUTER JOIN C_InvoiceSchedule si ON 

(bp.C_InvoiceSchedule_ID=si.C_InvoiceSchedule_ID) WHERE o.DocStatus IN ('CO','CL','IP') AND 

o.C_DocType_ID IN (SELECT C_DocType_ID FROM C_DocType WHERE DocBaseType='SOO' AND 

DocSubTypeSO NOT IN ('ON','OB','WR')) AND l.QtyOrdered <> l.QtyInvoiced AND 

(o.InvoiceRule='I' OR o.InvoiceRule='O' OR (o.InvoiceRule='D' AND l.QtyInvoiced<>l.QtyDelivered) OR 

(o.InvoiceRule='S' AND bp.C_InvoiceSchedule_ID IS NULL) OR (o.InvoiceRule='S' AND 

bp.C_InvoiceSchedule_ID IS NOT NULL AND ( (si.InvoiceFrequency IS NULL OR 

si.InvoiceFrequency='D') OR si.InvoiceFrequency='W') OR (si.InvoiceFrequency='T' AND 

((o.DateOrdered <= sysdate+si.InvoiceDayCutoff-1 AND sysdate >= o.DateOrdered+si.InvoiceDay-1) OR 

(o.DateOrdered <= sysdate+si.InvoiceDayCutoff+14 AND sysdate >= o.DateOrdered+si.InvoiceDay+14))) 

OR (si.InvoiceFrequency='M' AND o.DateOrdered <= sysdate+si.InvoiceDayCutoff-1 AND sysdate >= 

o.DateOrdered+si.InvoiceDay-1)))) GROUP BY o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID, 

o.C_Order_ID, o.DocumentNo, o.DateOrdered, o.C_DocType_ID  

 

WHERE clause as a Minimal DNF Predicate: 

Letting  

a=o.DocStatus IN ('CO','CL','IP') 

b=o.C_DocType_ID IN (SELECT C_DocType_ID FROM C_DocType WHERE DocBaseType='SOO' 

AND DocSubTypeSO NOT IN ('ON','OB','WR')) 

c=l.QtyOrdered <> l.QtyInvoiced 

d=o.InvoiceRule='I' 

e=o.InvoiceRule='O' 

f=o.InvoiceRule='D' 

g=l.QtyInvoiced<>l.QtyDelivered 

h=o.InvoiceRule='S' 

i=bp.C_InvoiceSchedule_ID IS NOT NULL 

j=si.InvoiceFrequency IS NULL 

k=si.InvoiceFrequency='D' 

l=si.InvoiceFrequency='W' 

m=si.InvoiceFrequency='T' 

n=o.DateOrdered <= sysdate+si.InvoiceDayCutoff-1 

o=sysdate >= o.DateOrdered+si.InvoiceDay-1 

p=o.DateOrdered <= sysdate+si.InvoiceDayCutoff+14 

q=sysdate >= o.DateOrdered+si.InvoiceDay+14 

r=si.InvoiceFrequency='M' 

 

the WHERE clause predicate can be expressed as 

 

abc(d + e + fg + hi + h!i(j + k + l + mno + mpq + rno))  

 

However the following combinations of literal values are infeasible where a comma separates literals and a 

semicolon separates combinations and TRUE is represented by 1 and FALSE is represented by 0: 

 

d=1,e=1;d=1,f=1;d=1,h=1;e=1,f=1;e=1,h=1;f=1,h=1;j=1,k=1;j=1,l=1;j=1,m=1;j=1,r=1;k=1,l=1;k=1,m=1;k

=1,r=1;l=1,m=1;l=1,r=1;m=1,r=1;i=1,j=0;i=1,k=1;i=1,l=1;i=1,m=1;i=1,n=1;i=1,o=1;i=1,p=1;i=1,q=1;i=1,r

=1;o=0,q=1;n=1,p=0 
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Based on these infeasibilities the literals can be reassigned as follows (notice that si.InvoiceFrequency IS 

NULL no longer appears in the predicate because it is redundant due to the infeasibilities) 

 

a=o.DocStatus IN ('CO','CL','IP') 

b=o.C_DocType_ID IN (SELECT C_DocType_ID FROM C_DocType WHERE DocBaseType='SOO' 

AND DocSubTypeSO NOT IN ('ON','OB','WR')) 

c=l.QtyOrdered <> l.QtyInvoiced 

d=o.InvoiceRule='I' 

e=o.InvoiceRule='O' 

f=o.InvoiceRule='D' 

g=l.QtyInvoiced<>l.QtyDelivered 

h=o.InvoiceRule='S' 

i=bp.C_InvoiceSchedule_ID IS NOT NULL 

j=si.InvoiceFrequency='D' 

k=si.InvoiceFrequency='W' 

l=si.InvoiceFrequency='T' 

m=o.DateOrdered <= sysdate+si.InvoiceDayCutoff-1 

n=sysdate >= o.DateOrdered+si.InvoiceDay-1 

o=o.DateOrdered <= sysdate+si.InvoiceDayCutoff+14 

p=sysdate >= o.DateOrdered+si.InvoiceDay+14 

q=si.InvoiceFrequency='M' 

 

Thus the new infeasible combinations are: 

 

d=1,e=1;d=1,f=1;d=1,h=1;e=1,f=1;e=1,h=1;f=1,h=1;j=1,k=1;j=1,l=1;j=1,q=1;k=1,l=1;k=1,q=1;l=1,q=1;i=

1,j=1;i=1,k=1;i=1,l=1;i=1,m=1;i=1,n=1;i=1,o=1;i=1,p=1;i=1,q=1;n=0,p=1;m=1,o=0 

 

The WHERE clause predicate in minimal DNF is: 

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn 

 

Mutants generated by the TRF-TIF tool: 
 

27 TRF/LIF mutants are generated as follows: 

 
abcd!e!f!hg + abcd!e!f!hi + abcd!e!f!h!j + abcd!e!f!hk + abcd!e!f!hl + abcd!e!f!h!m + abcd!e!f!h!n + 

abcd!e!f!h!o + abcd!e!f!h!p + abcd!e!f!hq + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop 

+ abchqmn  

 

abcd!e!f!h!g + abcd!e!f!hi + abcd!e!f!hj + abcd!e!f!hk + abcd!e!f!hl + abcd!e!f!h!m + abcd!e!f!h!n + 

abcd!e!f!h!o + abcd!e!f!h!p + abcd!e!f!h!q + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop 

+ abchqmn  

 

abcd!e!f!h!g + abcd!e!f!hi + abcd!e!f!hj + abcd!e!f!hk + abcd!e!f!h!l + abcd!e!f!h!m + abcd!e!f!h!n + 
abcd!e!f!h!o + abcd!e!f!h!p + abcd!e!f!hq + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop 

+ abchqmn  

 

abcd!e!f!h!g + abcd!e!f!hi + abcd!e!f!hj + abcd!e!f!h!k + abcd!e!f!hl + abcd!e!f!h!m + abcd!e!f!h!n + 

abcd!e!f!h!o + abcd!e!f!h!p + abcd!e!f!hq + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop 

+ abchqmn  
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abcd!e!f!h!g + abcd!e!f!h!i + abcd!e!f!hj + abcd!e!f!hk + abcd!e!f!hl + abcd!e!f!hm + abcd!e!f!hn + 

abcd!e!f!ho + abcd!e!f!hp + abcd!e!f!hq + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + 

abchqmn  

 

abcd + abce!d!f!hg + abce!d!f!hi + abce!d!f!h!j + abce!d!f!hk + abce!d!f!hl + abce!d!f!h!m + 

abce!d!f!h!n + abce!d!f!h!o + abce!d!f!h!p + abce!d!f!hq + abcfg + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce!d!f!h!g + abce!d!f!hi + abce!d!f!hj + abce!d!f!hk + abce!d!f!hl + abce!d!f!h!m + 

abce!d!f!h!n + abce!d!f!h!o + abce!d!f!h!p + abce!d!f!h!q + abcfg + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce!d!f!h!g + abce!d!f!hi + abce!d!f!hj + abce!d!f!hk + abce!d!f!h!l + abce!d!f!h!m + 

abce!d!f!h!n + abce!d!f!h!o + abce!d!f!h!p + abce!d!f!hq + abcfg + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce!d!f!h!g + abce!d!f!hi + abce!d!f!hj + abce!d!f!h!k + abce!d!f!hl + abce!d!f!h!m + 

abce!d!f!h!n + abce!d!f!h!o + abce!d!f!h!p + abce!d!f!hq + abcfg + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce!d!f!h!g + abce!d!f!h!i + abce!d!f!hj + abce!d!f!hk + abce!d!f!hl + abce!d!f!hm + 

abce!d!f!hn + abce!d!f!ho + abce!d!f!hp + abce!d!f!hq + abcfg + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce + abcfg!d!e!hi + abcfg!d!e!hj + abcfg!d!e!hk + abcfg!d!e!h!l + abcfg!d!e!h!m + 

abcfg!d!e!h!n + abcfg!d!e!h!o + abcfg!d!e!h!p + abcfg!d!e!hq + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce + abcfg!d!e!hi + abcfg!d!e!hj + abcfg!d!e!h!k + abcfg!d!e!hl + abcfg!d!e!h!m + 

abcfg!d!e!h!n + abcfg!d!e!h!o + abcfg!d!e!h!p + abcfg!d!e!hq + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce + abcfg!d!e!h!i + abcfg!d!e!hj + abcfg!d!e!hk + abcfg!d!e!hl + abcfg!d!e!hm + 

abcfg!d!e!hn + abcfg!d!e!ho + abcfg!d!e!hp + abcfg!d!e!hq + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce + abcfg!d!e!hi + abcfg!d!e!hj + abcfg!d!e!hk + abcfg!d!e!hl + abcfg!d!e!h!m + 

abcfg!d!e!h!n + abcfg!d!e!h!o + abcfg!d!e!h!p + abcfg!d!e!h!q + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce + abcfg!d!e!hi + abcfg!d!e!h!j + abcfg!d!e!hk + abcfg!d!e!hl + abcfg!d!e!h!m + 

abcfg!d!e!h!n + abcfg!d!e!h!o + abcfg!d!e!h!p + abcfg!d!e!hq + abchi + abchj + abchk + abchlmn + 

abchlop + abchqmn  

 

abcd + abce + abcfg + abchi!d!e!f!j!k!l!m!n!o!p!qg + abchj + abchk + abchlmn + abchlop + abchqmn  

 

abcd + abce + abcfg + abchi!d!e!f!j!k!l!m!n!o!p!q!g + abchj + abchk + abchlmn + abchlop + abchqmn  

 

abcd + abce + abcfg + abchi + abchj!d!e!f!k!l!q!i!g + abchj!d!e!f!k!l!q!i!m + abchj!d!e!f!k!l!q!i!n + 

abchj!d!e!f!k!l!q!i!o + abchj!d!e!f!k!l!q!i!p + abchk + abchlmn + abchlop + abchqmn  

 

abcd + abce + abcfg + abchi + abchj!d!e!f!k!l!q!ig + abchj!d!e!f!k!l!q!im + abchj!d!e!f!k!l!q!in + 

abchj!d!e!f!k!l!q!io + abchj!d!e!f!k!l!q!ip + abchk + abchlmn + abchlop + abchqmn  
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abcd + abce + abcfg + abchi + abchj + abchk!d!e!f!j!l!q!i!g + abchk!d!e!f!j!l!q!i!m + 

abchk!d!e!f!j!l!q!i!n + abchk!d!e!f!j!l!q!i!o + abchk!d!e!f!j!l!q!i!p + abchlmn + abchlop + abchqmn  

 

abcd + abce + abcfg + abchi + abchj + abchk!d!e!f!j!l!q!ig + abchk!d!e!f!j!l!q!im + abchk!d!e!f!j!l!q!in 

+ abchk!d!e!f!j!l!q!io + abchk!d!e!f!j!l!q!ip + abchlmn + abchlop + abchqmn  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn!d!e!f!j!k!q!io!pg + abchlop + abchqmn  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn!d!e!f!j!k!q!io!p!g + abchlop + abchqmn  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop!d!e!f!j!k!q!in!mg + abchqmn  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop!d!e!f!j!k!q!in!m!g + abchqmn  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn!d!e!f!j!k!l!io!g + 

abchqmn!d!e!f!j!k!l!io!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn!d!e!f!j!k!l!iog + 

abchqmn!d!e!f!j!k!l!iop  

 

44 TIF/LRF mutants are generated as follows: 

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

!a!e!f!hbcd!g!i!j!k!l!m!n!o!p!q  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

a!b!e!f!hcd!g!i!j!k!l!m!n!o!p!q  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

ab!c!e!f!hd!g!i!j!k!l!m!n!o!p!q  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abc!d!e!f!h!g!i!j!k!l!m!n!o!p!q  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

!a!d!f!hbce!g!i!j!k!l!m!n!o!p!q  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

a!b!d!f!hce!g!i!j!k!l!m!n!o!p!q  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

ab!c!d!f!he!g!i!j!k!l!m!n!o!p!q  
 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

!a!d!e!hbcfg!i!j!k!l!m!n!o!p!q  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

a!b!d!e!hcfg!i!j!k!l!m!n!o!p!q  
 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

ab!c!d!e!hfg!i!j!k!l!m!n!o!p!q  
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abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abc!f!d!e!hg!i!j!k!l!m!n!o!p!q  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abcf!g!d!e!h!i!j!k!l!m!n!o!p!q  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

!a!d!e!f!j!k!l!m!n!o!p!qbchi!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

a!b!d!e!f!j!k!l!m!n!o!p!qchi!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

ab!c!d!e!f!j!k!l!m!n!o!p!qhi!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abc!h!d!e!f!j!k!l!m!n!o!p!qi!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abch!i!d!e!f!j!k!l!m!n!o!p!q!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

!a!d!e!f!i!k!l!qbchj!g!m!n!o!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

a!b!d!e!f!i!k!l!qchj!g!m!n!o!p  
 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

ab!c!d!e!f!i!k!l!qhj!g!m!n!o!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abc!h!d!e!f!i!k!l!qj!g!m!n!o!p  
 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

!a!d!e!f!i!j!l!qbchk!g!m!n!o!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

a!b!d!e!f!i!j!l!qchk!g!m!n!o!p  
 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

ab!c!d!e!f!i!j!l!qhk!g!m!n!o!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abc!h!d!e!f!i!j!l!qk!g!m!n!o!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

!a!d!e!f!i!j!ko!p!qbchlmn!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

a!b!d!e!f!i!j!ko!p!qchlmn!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

ab!c!d!e!f!i!j!ko!p!qhlmn!g  
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abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abc!h!d!e!f!i!j!ko!p!qlmn!g  
 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abch!l!d!e!f!i!j!ko!p!qmn!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abchl!m!d!e!f!i!j!ko!p!qn!g  
 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abchlm!n!d!e!f!i!j!ko!p!q!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

!a!d!e!f!i!j!k!mn!qbchlop!g  
 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

a!b!d!e!f!i!j!k!mn!qchlop!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

ab!c!d!e!f!i!j!k!mn!qhlop!g  
 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abc!h!d!e!f!i!j!k!mn!qlop!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abch!l!d!e!f!i!j!k!mn!qop!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abchl!o!d!e!f!i!j!k!mn!qp!g  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

!a!d!e!f!i!j!k!lobchqmn!g!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

a!b!d!e!f!i!j!k!lochqmn!g!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

ab!c!d!e!f!i!j!k!lohqmn!g!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abc!h!d!e!f!i!j!k!loqmn!g!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abchq!m!d!e!f!i!j!k!lon!g!p  

 

abcd + abce + abcfg + abchi + abchj + abchk + abchlmn + abchlop + abchqmn + 

abchqm!n!d!e!f!i!j!k!lo!g!p  

 

Test points needed to kill mutants in terms of literal values: 
11110000010011110 detects a TRF-LIF:    original true and mutant false 

11110010000011111 detects a TRF-LIF:    original true and mutant false 

11110010000111110 detects a TRF-LIF:    original true and mutant false 
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11110010001011110 detects a TRF-LIF:    original true and mutant false 

11110010100000000 detects a TRF-LIF:    original true and mutant false 

11101000010011110 detects a TRF-LIF:    original true and mutant false 

11101010000011111 detects a TRF-LIF:    original true and mutant false 

11101010000111110 detects a TRF-LIF:    original true and mutant false 

11101010001011110 detects a TRF-LIF:    original true and mutant false 

11101010100000000 detects a TRF-LIF:    original true and mutant false 

11100110000111110 detects a TRF-LIF:    original true and mutant false 

11100110001011110 detects a TRF-LIF:    original true and mutant false 

11100110100000000 detects a TRF-LIF:    original true and mutant false 

11100110000011111 detects a TRF-LIF:    original true and mutant false 

11100110010011110 detects a TRF-LIF:    original true and mutant false 

11100001100000000 detects a TRF-LIF:    original true and mutant false 

11100011100000000 detects a TRF-LIF:    original true and mutant false 

11100011010011110 detects a TRF-LIF:    original true and mutant false 

11100001010000000 detects a TRF-LIF:    original true and mutant false 

11100011001011110 detects a TRF-LIF:    original true and mutant false 

11100001001000000 detects a TRF-LIF:    original true and mutant false 

11100001000111100 detects a TRF-LIF:    original true and mutant false 

11100011000111100 detects a TRF-LIF:    original true and mutant false 

11100001000101110 detects a TRF-LIF:    original true and mutant false 

11100011000101110 detects a TRF-LIF:    original true and mutant false 

11100011000011111 detects a TRF-LIF:    original true and mutant false 

11100001000011101 detects a TRF-LIF:    original true and mutant false 

01110000000000000 detects a TIF-LRF:    original false and mutant true 

10110000000000000 detects a TIF-LRF:    original false and mutant true 

11010000000000000 detects a TIF-LRF:    original false and mutant true 

11100000000000000 detects a TIF-LRF:    original false and mutant true 

01101000000000000 detects a TIF-LRF:    original false and mutant true 

10101000000000000 detects a TIF-LRF:    original false and mutant true 

11001000000000000 detects a TIF-LRF:    original false and mutant true 

01100110000000000 detects a TIF-LRF:    original false and mutant true 

10100110000000000 detects a TIF-LRF:    original false and mutant true 

11000110000000000 detects a TIF-LRF:    original false and mutant true 

11100010000000000 detects a TIF-LRF:    original false and mutant true 

11100100000000000 detects a TIF-LRF:    original false and mutant true 

01100001100000000 detects a TIF-LRF:    original false and mutant true 

10100001100000000 detects a TIF-LRF:    original false and mutant true 

11000001100000000 detects a TIF-LRF:    original false and mutant true 

11100000100000000 detects a TIF-LRF:    original false and mutant true 

11100001000000000 detects a TIF-LRF:    original false and mutant true 

01100001010000000 detects a TIF-LRF:    original false and mutant true 

10100001010000000 detects a TIF-LRF:    original false and mutant true 

11000001010000000 detects a TIF-LRF:    original false and mutant true 

11100000010000000 detects a TIF-LRF:    original false and mutant true 

01100001001000000 detects a TIF-LRF:    original false and mutant true 

10100001001000000 detects a TIF-LRF:    original false and mutant true 

11000001001000000 detects a TIF-LRF:    original false and mutant true 

11100000001000000 detects a TIF-LRF:    original false and mutant true 

01100001000111100 detects a TIF-LRF:    original false and mutant true 

10100001000111100 detects a TIF-LRF:    original false and mutant true 

11000001000111100 detects a TIF-LRF:    original false and mutant true 

11100000000111100 detects a TIF-LRF:    original false and mutant true 
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11100001000011100 detects a TIF-LRF:    original false and mutant true 

11100001000101100 detects a TIF-LRF:    original false and mutant true 

11100001000110100 detects a TIF-LRF:    original false and mutant true 

01100001000101110 detects a TIF-LRF:    original false and mutant true 

10100001000101110 detects a TIF-LRF:    original false and mutant true 

11000001000101110 detects a TIF-LRF:    original false and mutant true 

11100000000101110 detects a TIF-LRF:    original false and mutant true 

11100001000001110 detects a TIF-LRF:    original false and mutant true 

11100001000101010 detects a TIF-LRF:    original false and mutant true 

01100001000011101 detects a TIF-LRF:    original false and mutant true 

10100001000011101 detects a TIF-LRF:    original false and mutant true 

11000001000011101 detects a TIF-LRF:    original false and mutant true 

11100000000011101 detects a TIF-LRF:    original false and mutant true 

11100001000001101 detects a TIF-LRF:    original false and mutant true 

11100001000010101 detects a TIF-LRF:    original false and mutant true 

 

Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO C_Order VALUES (1,2,3,4,5,SYSDATE-365,6,'CO','I') 

INSERT INTO C_Order VALUES (14,15,3,4,16,SYSDATE+365,6,'CL','I') 

INSERT INTO C_Order VALUES (24,25,3,4,26,SYSDATE-366,6,'IP','O') 

INSERT INTO C_Order VALUES (27,28,3,4,29,SYSDATE+366,6,'CO',O') 

INSERT INTO C_Order VALUES (30,31,3,4,32,SYSDATE-367,6,'CO','D') 

INSERT INTO C_Order VALUES (37,38,3,4,39,SYSDATE+367,6,'CO','D') 

INSERT INTO C_Order VALUES (40,41,3,4,42,SYSDATE+368,6,'CO','S') 

INSERT INTO C_Order VALUES (43,44,3,4,45,SYSDATE-368,6,'CO','S') 

INSERT INTO C_Order VALUES (49,50,3,4,51,SYSDATE+369,6,'CC','I') 

INSERT INTO C_Order VALUES (55,56,3,4,57,SYSDATE+370,54,'CO','I') 

INSERT INTO C_Order VALUES (61,62,3,4,63,SYSDATE+371,6,'CO','B') 

INSERT INTO C_Order VALUES (64,65,3,4,66,SYSDATE+372,6,DD','O') 

INSERT INTO C_Order VALUES (68,69,3,4,70,SYSDATE+373,6,'CO','O') 

INSERT INTO C_Order VALUES (71,72,3,4,73,SYSDATE+374,6,'EE','D') 

INSERT INTO C_Order VALUES (75,76,3,4,77,SYSDATE+375,74,'CO','D') 

INSERT INTO C_Order VALUES (82,83,3,4,85,SYSDATE+376,6,'FF','S') 

INSERT INTO C_Order VALUES (87,88,3,4,89,SYSDATE+377,86,'CO','S') 

INSERT INTO C_Order VALUES (90,91,3,4,92,SYSDATE-369,6,'GG','S') 

INSERT INTO C_Order VALUES (94,95,3,4,96,SYSDATE-370,94,'CO','S') 

INSERT INTO C_Order VALUES (97,98,3,4,99,SYSDATE-371,6,'CO','C') 

INSERT INTO C_OrderLine VALUES (7,8,9,10,4,8) 

INSERT INTO C_OrderLine VALUES (17,18,19,20,4,21) 

INSERT INTO C_OrderLine VALUES (58,58,59,60,4,58) 

INSERT INTO C_OrderLine VALUES (78,78,79,80,4,81) 

INSERT INTO C_BPartner VALUES (3,11) 

INSERT INTO C_BPartner VALUES (3,NULL) 

INSERT INTO C_InvoiceSchedule VALUES (11,'D',12,13) 

INSERT INTO C_InvoiceSchedule VALUES (11,'M',22,23) 

INSERT INTO C_InvoiceSchedule VALUES (11,'T',33,34) 

INSERT INTO C_InvoiceSchedule VALUES (11,'W',35,36) 

INSERT INTO C_InvoiceSchedule VALUES (11,'T',46,355) 

INSERT INTO C_InvoiceSchedule VALUES (11,'T',-373,47) 

INSERT INTO C_InvoiceSchedule VALUES (11,'M',48,356) 

INSERT INTO C_InvoiceSchedule VALUES (11,'A',52,53) 

INSERT INTO C_InvoiceSchedule VALUES (11,'E',93,360) 

INSERT INTO C_InvoiceSchedule VALUES (11,'T',-371,362) 
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INSERT INTO C_InvoiceSchedule VALUES (11,'T',98,500) 

INSERT INTO C_InvoiceSchedule VALUES (11,'F',-374,100) 

INSERT INTO C_InvoiceSchedule VALUES (11,'T',-500,101) 

INSERT INTO C_InvoiceSchedule VALUES (11,'M',102,358) 

INSERT INTO C_InvoiceSchedule VALUES (11,'M',-375,361) 

INSERT INTO C_InvoiceSchedule VALUES (11,'M',104,502) 

INSERT INTO C_DocType VALUES ('SOO','AA') 

INSERT INTO C_DocType VALUES ('SOO','ON') 

INSERT INTO C_DocType VALUES ('XXX','BB') 

INSERT INTO C_DocType VALUES ('xxx','OB') 
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Query 2 

 

View the query appears in:  C_RfQResponseLine_v 

 

Schema: 

<schema> 

    <table name="C_RfQResponseLineQty"> 

        <column name="C_RfQResponseLineQty_ID" type="number"/> 

        <column name="C_RfQLineQty_ID" type="number"/> 

        <column name="Price" type="number"/> 

        <column name="Discount" type="number"/> 

        <column name="C_RfQResponseLine_ID" type="number"/> 

        <column name="IsActive" type="char"/> 

    </table> 

    <table name="C_RfQLineQty"> 

       <column name="C_UOM_ID" type="number"/> 

        <column name="BenchmarkPrice" type="number"/> 

        <column name="Qty" type="number"/> 

        <column name="C_RfQLineQty_ID" type="number"/> 

        <column name="IsActive" type="char"/> 

    </table> 

   <table name="C_UOM"> 

        <column name="UOMSymbol" type="varchar"/> 

        <column name="C_UOM_ID" type="number"/> 

    </table> 

   <table name="C_RfQResponseLine"> 

        <column name="C_RfQResponse_ID" type="number"/> 

        <column name="C_RfQResponseLine_ID" type="number"/> 

        <column name="C_RfQLine_ID" type="number"/> 

        <column name="AD_Client_ID" type="number"/> 

        <column name="AD_Org_ID" type="number"/> 

        <column name="IsActive" type="char"/> 

        <column name="Created" type="date"/> 

        <column name="CreatedBy" type="varchar"/> 

        <column name="Updated" type="date"/> 

        <column name="UpdatedBy" type="varchar"/> 

    </table> 

    <table name="C_RfQLine"> 

        <column name="Line" type="number"/> 

        <column name="M_AttributeSetInstance_ID" type="number"/> 

        <column name="Description" type="varchar"/> 

        <column name="Help" type="varchar"/> 

        <column name="DateWorkStart" type="date"/> 

        <column name="DeliveryDays" type="number"/> 

        <column name="C_RfQLine_ID" type="number"/> 

        <column name="M_Product_ID" type="number"/> 

        <column name="IsActive" type="char"/> 

    </table> 

    <table name="M_Product"> 

        <column name="Name" type="varchar"/> 

        <column name="DocumentNote" type="varchar"/> 

        <column name="UPC" type="number"/> 

        <column name="SKU" type="number"/> 
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        <column name="Value" type="number"/> 

        <column name="M_Product_ID" type="number"/> 

    </table> 

</schema> 

 

SQL: 

SELECT rrl.C_RfQResponse_ID, rrl.C_RfQResponseLine_ID, rrl.C_RfQLine_ID, 

rq.C_RfQResponseLineQty_ID, rq.C_RfQLineQty_ID, rrl.AD_Client_ID, rrl.AD_Org_ID, rrl.IsActive, 

rrl.Created, rrl.CreatedBy, rrl.Updated, rrl.UpdatedBy, 

'en_US' AS AD_Language, rl.Line, rl.M_Product_ID, rl.M_AttributeSetInstance_ID, COALESCE 

(p.Name || rl.M_AttributeSetInstance_ID, rl.Description) AS Name, CASE WHEN p.Name IS NOT NULL 

THEN rl.Description END AS Description, p.DocumentNote, p.UPC, p.SKU, p.Value AS ProductValue, 

rl.Help, rl.DateWorkStart, rl.DeliveryDays,     q.C_UOM_ID, uom.UOMSymbol, q.BenchmarkPrice, 

q.Qty, rq.Price, rq.Discount FROM C_RfQResponseLineQty rq 

INNER JOIN C_RfQLineQty q ON (rq.C_RfQLineQty_ID=q.C_RfQLineQty_ID) INNER JOIN C_UOM 

uom ON (q.C_UOM_ID=uom.C_UOM_ID) INNER JOIN C_RfQResponseLine rrl ON 

q.C_RfQResponseLine_ID = rrl.C_RfQResponseLine_ID) INNER JOIN C_RfQLine rl ON 

(rrl.C_RfQLine_ID=rl.C_RfQLine_ID) LEFT OUTER JOIN M_Product p ON 

(rl.M_Product_ID=p.M_Product_ID) WHERE rq.IsActive='Y' AND q.IsActive='Y' AND rrl.IsActive='Y' 

AND rl.IsActive='Y' 

 

WHERE clause as a Minimal DNF Predicate: 

Letting a=rq.IsActive='Y', b=q.IsActive='Y', c=rrl.IsActive='Y', d=rl.IsActive='Y' he WHERE clause 

predicate in minimal DNF is abcd 

 

Mutants generated by the TRF-TIF tool: 
1 FALSE mutant is generated as follows: false 

4 LOF mutants are generated as follows: bcd, acd, abd, abc 

  

Test points needed to kill mutants in terms of literal values: 

1111 detects a FALSE mutant:         original true and mutant false  

0111 detects an LOF:       original false and mutant true 

1011 detects an LOF:       original false and mutant true 

1101 detects an LOF:       original false and mutant true 

1110 detects an LOF:  original false and mutant true 

 

Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO C_RfQResponseLineQty VALUES (6,1,7,8,3,'Y') 

INSERT INTO C_RfQResponseLineQty VALUES (9,1,10,11,3,'O') 

INSERT INTO C_RfQLineQty VALUES (2,12,13,1,'Y') 

INSERT INTO C_RfQLineQty VALUES (2,14,15,1,'P') 

INSERT INTO C_UOM VALUES ('A',2) 

INSERT INTO C_RfQResponseLine VALUES (16,3,4,17,18,'Y',SYSDATE+1,'B',SYSDATE+2,'C') 

INSERT INTO C_RfQResponseLine VALUES (19,3,4,20,21,'N',SYSDATE+3,'D',SYSDATE+4,'E') 

INSERT INTO C_RfQResponseLine VALUES (42,43,44,45,46,'T',SYSDATE+7,'U',SYSDATE+8,'V')  

INSERT INTO C_RfQLine VALUES (22,23,'F','G',SYSDATE+5,24,4,5,'Y') 

INSERT INTO C_RfQLine VALUES (26,27,'H','I',SYSDATE+6,25,4,5,'Q') 

INSERT INTO M_Product VALUES ('J','K',30,31,32,5) 

INSERT INTO M_Product VALUES ('L','M',33,34,35,5) 

INSERT INTO M_Product VALUES ('W','X',47,48,49,50) 
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Query 3 

 

View the query appears in: C_RfQResponseLine_vt 

 

Schema: 

<schema> 

    <table name="C_RfQResponseLineQty"> 

        <column name="C_RfQResponseLineQty_ID" type="number"/> 

        <column name="C_RfQLineQty_ID" type="number"/> 

        <column name="Price" type="number"/> 

        <column name="Discount" type="number"/> 

        <column name="C_RfQResponseLine_ID" type="number"/> 

        <column name="IsActive" type="char"/> 

    </table> 

    <table name="C_RfQLineQty"> 

        <column name="C_UOM_ID" type="number"/> 

        <column name="BenchmarkPrice" type="number"/> 

        <column name="Qty" type="number"/> 

        <column name="C_RfQLineQty_ID" type="number"/> 

        <column name="IsActive" type="char"/> 

    </table> 

   <table name="C_UOM"> 

        <column name="UOMSymbol" type="varchar"/> 

        <column name="C_UOM_ID" type="number"/> 

    </table> 

   <table name="C_RfQResponseLine"> 

        <column name="C_RfQResponse_ID" type="number"/> 

        <column name="C_RfQResponseLine_ID" type="number"/> 

        <column name="C_RfQLine_ID" type="number"/> 

        <column name="AD_Client_ID" type="number"/> 

        <column name="AD_Org_ID" type="number"/> 

        <column name="IsActive" type="char"/> 

        <column name="Created" type="date"/> 

        <column name="CreatedBy" type="varchar"/> 

        <column name="Updated" type="date"/> 

        <column name="UpdatedBy" type="varchar"/> 

    </table> 

    <table name="C_RfQLine"> 

        <column name="Line" type="number"/> 

        <column name="M_Produce_ID" type="number"/> 

        <column name="M_AttributeSetInstance_ID" type="number"/> 

        <column name="Description" type="varchar"/> 

        <column name="Help" type="varchar"/> 

        <column name="DateWorkStart" type="date"/> 

        <column name="DeliveryDays" type="number"/> 

        <column name="C_RfQLine_ID" type="number"/> 

        <column name="M_Product_ID" type="number"/> 

        <column name="IsActive" type="char"/> 

    </table> 

    <table name="M_Product"> 

        <column name="Name" type="varchar"/> 

        <column name="DocumentNote" type="varchar"/> 

        <column name="UPC" type="number"/> 
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        <column name="SKU" type="number"/> 

        <column name="Value" type="number"/> 

        <column name="M_Product_ID" type="number"/> 

    </table> 

    <table name="AD_Language"> 

        <column name="AD_Language" type="varchar"/> 

        <column name="IsSystemLanguage" type="char"/> 

    </table> 

</schema> 

 

SQL: 

SELECT rrl.C_RfQResponse_ID, rrl.C_RfQResponseLine_ID, rrl.C_RfQLine_ID, 

rq.C_RfQResponseLineQty_ID, rq.C_RfQLineQty_ID, rrl.AD_Client_ID, rrl.AD_Org_ID, rrl.IsActive, 

rrl.Created, rrl.CreatedBy, rrl.Updated, rrl.UpdatedBy, 

l.AD_Language, rl.Line, rl.M_Product_ID, rl.M_AttributeSetInstance_ID, 

COALESCE(p.Name||rl.M_AttributeSetInstance_ID, rl.Description) AS Name, CASE WHEN p.Name IS 

NOT NULL THEN rl.Description END AS Description, p.DocumentNote, p.UPC, p.SKU, p.Value AS 

ProductValue, rl.Help, rl.DateWorkStart, rl.DeliveryDays, q.C_UOM_ID, uom.UOMSymbol, q.Qty, 

rq.Price, rq.Discount FROM C_RfQResponseLineQty rq INNER JOIN C_RfQLineQty q ON 

(rq.C_RfQLineQty_ID = q.C_RfQLineQty_ID) INNER JOIN C_UOM uom ON 

(q.C_UOM_ID=uom.C_UOM_ID) INNER JOIN C_RfQResponseLine rrl ON 

(rq.C_RfQResponseLine_ID=rrl.C_RfQResponseLine_ID) INNER JOIN C_RfQLine rl ON 

rrl.C_RfQLine_ID = rl.C_RfQLine_ID) LEFT OUTER JOIN M_Product p ON 

(rl.M_Product_ID=p.M_Product_ID) INNER JOIN AD_Language l ON (l.IsSystemLanguage='Y') 

WHERE rq.IsActive='Y' AND q.IsActive='Y' AND rrl.IsActive='Y' AND rl.IsActive='Y' 

 

WHERE clause as a Minimal DNF Predicate: 

Letting a=rq.IsActive='Y', b=q.IsActive='Y', c=rrl.IsActive='Y', d=rl.IsActive='Y' the WHERE clause 

predicate in minimal DNF is abcd 

 

Mutants generated by the TRF-TIF tool: 

1 FALSE mutant is generated as follows: false 

4 LOF mutants are generated as follows: bcd, acd, abd, abc 

  

Test points needed to kill mutants in terms of literal values: 

1111 detects a FALSE mutant:         original true and mutant false  

0111 detects an LOF:       original false and mutant true 

1011 detects an LOF:       original false and mutant true 

1101 detects an LOF:       original false and mutant true 

1110 detects an LOF:  original false and mutant true 

 

Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO C_RfQResponseLineQty VALUES (6,1,7,8,3,'Y') 

INSERT INTO C_RfQResponseLineQty VALUES (9,1,10,11,3,'N') 

INSERT INTO C_RfQLineQty VALUES (2,12,13,1,'Y') 

INSERT INTO C_RfQLineQty VALUES (2,14,15,1,'N') 

INSERT INTO C_RfQLineQty VALUES (37,38,39,40,'R')  

INSERT INTO C_UOM VALUES ('A',2) 

INSERT INTO C_UOM VALUES ('S',41)  

INSERT INTO C_RfQResponseLine VALUES (16,3,4,17,18,'Y',SYSDATE+1,'B',SYSDATE+2,'C') 

INSERT INTO C_RfQResponseLine VALUES (19,3,4,20,21,'N',SYSDATE+3,'D',SYSDATE+4,'E') 

INSERT INTO C_RfQResponseLine VALUES (42,43,44,45,46,'T',SYSDATE+7,'U',SYSDATE+8,'V')  

INSERT INTO C_RfQLine VALUES (22,25,23,'F','G',SYSDATE+5,24,4,5,'Y') 
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INSERT INTO C_RfQLine VALUES (26,29,27,'H','I',SYSDATE+6,28,4,5,'N') 

INSERT INTO M_Product VALUES ('J','K',30,31,32,5) 

INSERT INTO M_Product VALUES ('L','M',33,34,35,5) 

INSERT INTO M_Product VALUES ('W','X',47,48,49,50)  

INSERT INTO AD_Language VALUES ('O','Y') 

INSERT INTO AD_Language VALUES ('O','Z') 
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Query 4   

 

View the query appears in: M_InOut_Candidate_v 

 

Schema: 

<schema> 

    <table name="C_Order"> 

        <column name="AD_Client_ID" type="number"/> 

        <column name="AD_Org_ID" type="number"/> 

        <column name="C_BPartner_ID" type="number"/> 

        <column name="C_Order_ID" type="number"/> 

        <column name="DocumentNo" type="number"/> 

        <column name="DateOrdered" type="date"/> 

        <column name="C_DocType_ID" type="number"/> 

        <column name="POReference" type="varchar"/> 

        <column name="Description" type="varchar"/> 

        <column name="SalesRep_ID" type="number"/> 

        <column name="DocStatus" type="varchar"/> 

        <column name="isDelivered" type="char"/> 

        <column name="DeliveryRule" type="char"/> 

        <column name="IsDropShip" type="char"/> 

    </table> 

    <table name="C_OrderLine"> 

        <column name="M_Warehouse_ID" type="number"/> 

        <column name="QtyOrdered" type="number"/> 

        <column name="QtyDelivered" type="number"/> 

        <column name="PriceActual" type="number"/> 

        <column name="C_Order_ID" type="number"/> 

        <column name="M_Product_ID" type="number"/> 

        <column name="C_Charge_ID" type="number"/> 

        <column name="C_OrderLine_ID" type="number"/> 

    </table> 

   <table name="M_Product"> 

        <column name="M_Product_ID" type="number"/> 

        <column name="IsExcludeAutoDelivery" type="char"/> 

    </table> 

   <table name="M_InOutLine"> 

        <column name="M_InOut_ID" type="number"/> 

        <column name="C_OrderLine_ID" type="number"/> 

    </table> 

    <table name="M_InOut"> 

        <column name="M_InOut_ID" type="number"/> 

        <column name="DocStatus" type="varchar"/> 

    </table> 

    <table name="C_DocType"> 

        <column name="C_DocType_ID" type="number"/> 

        <column name="DocBaseType" type="varchar"/> 

        <column name="DocSubTypeSO" type="varchar"/> 

    </table> 

</schema> 

 

SQL: 
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SELECT o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID, o.C_Order_ID, o.DocumentNo, 

o.DateOrdered, o.C_DocType_ID, 

o.POReference, o.Description, o.SalesRep_ID, l.M_Warehouse_ID, SUM((l.QtyOrdered-

l.QtyDelivered)*l.PriceActual) AS 

TotalLines FROM C_Order o INNER JOIN C_OrderLine l ON (o.C_Order_ID=l.C_Order_ID) WHERE 

(o.DocStatus = 'CO' AND o.IsDelivered='N') AND o.C_DocType_ID IN (SELECT C_DocType_ID 

FROM C_DocType WHERE DocBaseType = 'SOO' AND DocSubTypeSO NOT IN ('ON','OB','WR')) 

AND o.DeliveryRule<>'M' AND (l.M_Product_ID IS NULL OR EXISTS (SELECT * FROM M_Product 

p WHERE l.M_Product_ID=p.M_Product_ID AND p.IsExcludeAutoDelivery='N')) AND l.QtyOrdered <> 

l.QtyDelivered AND o.IsDropShip='N' AND (l.M_Product_ID IS NOT NULL OR l.C_Charge_ID IS NOT 

NULL) AND NOT EXISTS (SELECT * FROM M_InOutLine iol INNER JOIN M_InOut io ON 

(iol.M_InOut_ID=io.M_InOut_ID) WHERE iol.C_OrderLine_ID=l.C_OrderLine_ID AND io.DocStatus 

IN ('IP','WC'))  

GROUP BY o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID, o.C_Order_ID, o.DocumentNo, 

o.DateOrdered, o.C_DocType_ID, o.POReference, o.Description, o.SalesRep_ID, l.M_Warehouse_ID 

 

WHERE clause as a Minimal DNF Predicate: 

Letting  

a=o.DocStatus = 'CO' 

b=o.IsDelivered='N' 

c=o.C_DocType_ID IN (SELECT C_DocType_ID FROM C_DocType 

  WHERE DocBaseType='SOO' AND DocSubTypeSO NOT IN ('ON','OB','WR')) 

d=o.DeliveryRule<>'M' 

e=l.M_Product_ID IS NULL 

j=EXISTS (SELECT * FROM M_Product p WHERE l.M_Product_ID=p.M_Product_ID AND 

p.IsExcludeAutoDelivery='N')) 

f=l.QtyOrdered <> l.QtyDelivered 

g=o.IsDropShip='N' 

h=l.C_Charge_ID IS NOT NULL 

i=NOT EXISTS (SELECT * FROM M_InOutLine iol  

        INNER JOIN M_InOut io ON (iol.M_InOut_ID=io.M_InOut_ID) 

        WHERE iol.C_OrderLine_ID=l.C_OrderLine_ID AND io.DocStatus IN ('IP','WC')) 

 

The WHERE clause predicate can be expressed as abcd(e + j)fg(!e + h)i 

 

However e=1,j=1 is an infeasible combination of literal values and thus the WHERE clause predicate in 

minimal DNF is  

abcdefghi + abcdjfgi 

 

Mutants generated by the TRF-TIF tool: 

 

 3 TRF/LIF mutants are generated as follows: 

 
abcdefghij + abcdjfgi  

abcdefghi + abcdjfgi!e!h  

abcdefghi + abcdjfgi!eh  

 

17 TIF/LRF mutants are generated as follows: 

 

abcdefghi + abcdjfgi + !a!jbcdefghi  

abcdefghi + abcdjfgi + a!b!jcdefghi  

abcdefghi + abcdjfgi + ab!c!jdefghi  

abcdefghi + abcdjfgi + abc!d!jefghi  
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abcdefghi + abcdjfgi + abcd!e!jfghi  

abcdefghi + abcdjfgi + abcde!f!jghi  

abcdefghi + abcdjfgi + abcdef!g!jhi  

abcdefghi + abcdjfgi + abcdefg!h!ji 

abcdefghi + abcdjfgi + abcdefgh!i!j  

abcdefghi + abcdjfgi + !a!ebcdjfgi!h  

abcdefghi + abcdjfgi + a!b!ecdjfgi!h  

abcdefghi + abcdjfgi + ab!c!edjfgi!h  

abcdefghi + abcdjfgi + abc!d!ejfgi!h  

abcdefghi + abcdjfgi + abcd!j!efgi!h  

abcdefghi + abcdjfgi + abcdj!f!egi!h  

abcdefghi + abcdjfgi + abcdjf!g!ei!h  

abcdefghi + abcdjfgi + abcdjfg!i!e!h 

 

Test points needed to kill mutants in terms of literal values: 
1111111110 detects a TRF-LIF:    original true and mutant false 

1111011111 detects a TRF-LIF:    original true and mutant false 

1111011011 detects a TRF-LIF:    original true and mutant false 

0111111110 detects a TIF-LRF:     original false and mutant true 

1011111110 detects a TIF-LRF:     original false and mutant true 

1101111110 detects a TIF-LRF:     original false and mutant true 

1110111110 detects a TIF-LRF:     original false and mutant true 

1111011110 detects a TIF-LRF:     original false and mutant true 

1111101110 detects a TIF-LRF:     original false and mutant true 

1111110110 detects a TIF-LRF:     original false and mutant true 

1111111010 detects a TIF-LRF:     original false and mutant true 

1111111100 detects a TIF-LRF:     original false and mutant true 

0111011011 detects a TIF-LRF:     original false and mutant true 

1011011011 detects a TIF-LRF:     original false and mutant true 

1101011011 detects a TIF-LRF:     original false and mutant true 

1110011011 detects a TIF-LRF:     original false and mutant true 

1111011010 detects a TIF-LRF:     original false and mutant true 

1111001011 detects a TIF-LRF:     original false and mutant true 

1111010011 detects a TIF-LRF:     original false and mutant true 

1111011001 detects a TIF-LRF:     original false and mutant true 

 

Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO C_Order VALUES (1,2,3,4,5,SYSDATE+1,6,'AA','BB',7,'CO','N','A','N') 

INSERT INTO C_Order VALUES (30,31,32,4,33,SYSDATE+2,6,'GG','HH',34,'II','N','D','N') 

INSERT INTO C_Order VALUES (35,36,37,4,38,SYSDATE+3,6,'JJ','KK',39,'CO','E','F','N') 

INSERT INTO C_Order VALUES (41,42,43,4,44,SYSDATE+4,40,'LL','KK',45,'CO','N','G','N') 

INSERT INTO C_Order VALUES (46,47,48,4,49,SYSDATE+5,6,'NN','OO',50,'CO','N','M','N') 

INSERT INTO C_Order VALUES (55,56,57,4,58,SYSDATE+6,6,'PP','QQ',59,'CO','N','I','H') 

INSERT INTO C_OrderLine VALUES (8,9,10,11,4,NULL,12,13) 

INSERT INTO C_OrderLine VALUES (16,17,18,19,4,15,20,13) 

INSERT INTO C_OrderLine VALUES (21,22,23,24,4,NULL,25,NULL) 

INSERT INTO C_OrderLine VALUES (26,27,28,29,4,15,NULL,13) 

INSERT INTO C_OrderLine VALUES (52,51,51,53,4,NULL,54,13) 

INSERT INTO C_OrderLine VALUES (61,60,60,62,4,15,NULL,13) 

INSERT INTO C_OrderLine VALUES (63,64,65,66,4,NULL,NULL,13) 

INSERT INTO M_Product VALUES (15,'N') // should only be in DB for mutants 2-3, 13-16, 18-20 (when 

j must = 1) 

INSERT INTO M_Product VALUES (15,'C') 
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INSERT INTO M_InOutLine VALUES (14,13) 

INSERT INTO M_InOut VALUES (14,'IP') // should only be in DB for mutants 12, 20 (when i must =0) 

INSERT INTO M_InOut VALUES (14,'EE') 

INSERT INTO C_DocType VALUES (6,'SOO','CC') 

INSERT INTO C_DocType VALUES (6,'SOO','ON') 

INSERT INTO C_DocType VALUES (6,'XXX','DD') 

INSERT INTO C_DocType VALUES (6,'XXX','OB') 
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Query 5 

 

View query appears in:   R_Request_v 

 

Schema: 

<schema> 

    <table name="R_Request"> 

        <column name="IsActive" type="char"/> 

        <column name="Processed" type="char"/> 

        <column name="DateNextAction" type="date"/> 

    </table> 

</schema> 

 

SQL: 

SELECT * FROM R_Request WHERE IsActive='Y' AND Processed='N' AND sysdate > DateNextAction 

 

WHERE clause as a Minimal DNF Predicate: 

Letting a=IsActive='Y', b=Processed='N', c=sysdate > DateNextAction the WHERE clause predicate in 

minimal DNF is abc 

 

Mutants generated by the TRF-TIF tool: 
1 FALSE mutant is generated as follows: false 

3 LOF mutants are generated as follows: bc, ac, ab 

  

Test points needed to kill mutants in terms of literal values: 

111 detects a FALSE mutant:          original true and mutant false  

011 detects an LOF:       original false and mutant true 

101 detects an LOF:       original false and mutant true 

110 detects an LOF:       original false and mutant true 

 

Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO R_Request VALUES ('Y','N',SYSDATE-1) 

INSERT INTO R_Request VALUES ('A','N',SYSDATE-2) 

INSERT INTO R_Request VALUES ('Y','B',SYSDATE-3) 

INSERT INTO R_Request VALUES ('Y','N',SYSDATE+1)
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Query 6 

 

View query appears in:   RV_BPartnerOpen 

 

Schema: 

<schema>     

   <table name="C_Payment_v"> 

        <column name="AD_Client_ID" type="number"/> 

 <column name="AD_Org_ID" type="number"/> 

 <column name="IsActive" type="char"/> 

 <column name="Created" type="date"/> 

 <column name="CreatedBy" type="varchar"/> 

 <column name="Updated" type="date"/> 

 <column name="UpdatedBy" type="varchar"/> 

 <column name="C_BPartner_ID" type="number"/> 

 <column name="C_Currency_ID" type="number"/> 

 <column name="PayAmt" type="number"/> 

 <column name="MultiplierAP" type="number"/> 

 <column name="C_Payment_ID" type="number"/> 

 <column name="C_InvoicePaySchedule_ID" type="number"/> 

 <column name="DateTrx" type="date"/> 

 <column name="IsAllocated" type="char"/> 

 <column name="DocStatus" type="varchar" /> 

    </table> 

</schema> 

 

SQL: 

SELECT p.AD_Client_ID, p.AD_Org_ID, p.IsActive, p.Created, p.CreatedBy, p.Updated, p.UpdatedBy, 

p.C_BPartner_ID, p.C_Currency_ID, p.PayAmt*MultiplierAP*-1 AS Amt, 

p.C_Payment_ID*p.MultiplierAP*-1 AS OpenAmt, p.DateTrx AS DateDoc, null FROM C_Payment_v p, 

WHERE p.IsAllocated='N' AND p.C_BPartner_ID IS NOT NULL AND p.DocStatus IN ('CO','CL') 

 

WHERE clause as a Minimal DNF Predicate: 

Letting a=p.IsAllocated='N', b=p.C_BPartner_ID IS NOT NULL, c=p.DocStatus IN ('CO','CL') the 

WHERE clause predicate in minimal DNF is abc 

 

Mutants generated by the TRF-TIF tool: 

1 FALSE mutant is generated as follows: false 

3 LOF mutants are generated as follows: bc, ac, ab 

  

Test points needed to kill mutants in terms of literal values: 

111 detects a FALSE mutant:          original true and mutant false  

011 detects an LOF:       original false and mutant true 

101 detects an LOF:       original false and mutant true 

110 detects an LOF:       original false and mutant true 

 

Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO C_Payment_v VALUES 

(1,2,'A',SYSDATE+1,"B",SYSDATE+2,"C",3,4,5,6,7,8,SYSDATE+3,'N',"CO") 

INSERT INTO C_Payment_v VALUES 

(9,10,'D',SYSDATE+4,"E",SYSDATE+5,"F",11,12,13,14,15,16,SYSDATE+6,'G',"CL") 

INSERT INTO C_Payment_v VALUES 

(17,18,'H',SYSDATE+7,"I",SYSDATE+8,"J",null19,20,21,22,23,SYSDATE+9,'N',"CO") 
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INSERT INTO C_Payment_v VALUES 

(24,25,'K',SYSDATE+10,"L",SYSDATE+11,"M",26,27,28,29,30,31,SYSDATE+12,'N',"AA") 
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Query 7 

View query appears in: RV_OpenItem 

 

Schema: 

<schema> 

    <table name="RV_C_Invoice"> 

        <column name="AD_Client_ID" type="number"/> 

        <column name="AD_Org_ID" type="number"/> 

        <column name="C_BPartner_ID" type="number"/> 

        <column name="C_Order_ID" type="number"/> 

        <column name="DocumentNo" type="number"/> 

        <column name="DateInvoiced" type="date"/> 

        <column name="C_Invoice_ID" type="number"/> 

        <column name="DocStatus" type="varchar"/> 

        <column name="IsSOTrx" type="char"/> 

        <column name="isPaid" type="char"/> 

        <column name="IsPayScheduleValid" type="char"/> 

        <column name="GrandTotal" type="number"/> 

        <column name="C_Currency_ID" type="number"/> 

        <column name="C_ConversionType_ID" type="number"/> 

       <column name="C_PaymentTerm_ID" type="number"/> 

    </table> 

    <table name="C_PaymentTerm"> 

        <column name="C_PaymentTerm_ID" type="number"/> 

        <column name="NetDays" type="number"/> 

        <column name="DiscountDays" type="number"/> 

        <column name="Discount" type="number"/> 

    </table> 

</schema> 

 

SQL: 

SELECT i.AD_Org_ID, i.AD_Client_ID, i.DocumentNo, i.C_Invoice_ID, i.C_Order_ID, 

i.C_BPartner_ID, i.IsSOTrx, i.DateInvoiced, p.NetDays, i.C_PaymentTerm_ID, i.DateInvoiced, 

i.DateInvoiced + p.DiscountDays AS DiscountDate,  

ROUND(i.GrandTotal*p.Discount/100,2) AS DiscountAmt, i.GrandTotal, i.C_Currency_ID, 

i.C_ConversionType_ID,  

i.C_PaymentTerm_ID, i.IsPayScheduleValid, null AS C_InvoicePaySchedule_ID FROM RV_C_Invoice I 

INNER JOIN C_PaymentTerm p ON (i.C_PaymentTerm_ID=p.C_PaymentTerm_ID) WHERE 

i.C_Invoice_ID <> 0 AND i.IsPayScheduleValid<>'Y' AND i.DocStatus<>'DR' 

 

WHERE clause as a Minimal DNF Predicate: 

Letting a=i.C_Invoice_ID <> 0, b=i.IsPayScheduleValid<>'Y', c=i.DocStatus<>'DR' the WHERE clause 

predicate in minimal DNF is abc 

 

Mutants generated by the TRF-TIF tool: 

1 FALSE mutant is generated as follows: false 

3 LOF mutants are generated as follows: bc, ac, ab 

  

Test points needed to kill mutants in terms of literal values: 
111 detects a FALSE mutant:          original true and mutant false  

011 detects an LOF:       original false and mutant true 

101 detects an LOF:       original false and mutant true 

110 detects an LOF:       original false and mutant true 
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Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO RV_C_Invoice VALUES (1,2,3,4,5,SYSDATE+1,6,"A",'B','C','D',7,8,9,10) 

INSERT INTO RV_C_Invoice VALUES (11,12,13,14,15,SYSDATE+2,0,"E",'F','G','H',16,17,18,10) 

INSERT INTO RV_C_Invoice VALUES (20,21,22,23,24,SYSDATE+3,6,"I",'J','K','Y',25,26,27,10) 

INSERT INTO RV_C_Invoice VALUES (29,30,31,32,33,SYSDATE+4,6,"DR",'L','M','N',34,35,36,10)  

INSERT INTO C_PaymentTerm VALUES (10,39,40,41) 
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Query 8 

 

View query appears in: RV_OpenItem 

 

Schema: 

<schema> 

    <table name="RV_C_Invoice"> 

        <column name="AD_Client_ID" type="number"/> 

        <column name="AD_Org_ID" type="number"/> 

        <column name="C_BPartner_ID" type="number"/> 

        <column name="C_Order_ID" type="number"/> 

        <column name="DocumentNo" type="number"/> 

        <column name="DateInvoiced" type="date"/> 

        <column name="C_Invoice_ID" type="number"/> 

        <column name="DocStatus" type="varchar"/> 

        <column name="IsSOTrx" type="char"/> 

        <column name="isPaid" type="char"/> 

        <column name="IsPayScheduleValid" type="char"/> 

        <column name="GrandTotal" type="number"/> 

        <column name="C_Currency_ID" type="number"/> 

        <column name="C_ConversionType_ID" type="number"/> 

        <column name="C_PaymentTerm_ID" type="number"/> 

    </table> 

    <table name="C_InvoicePaySchedule"> 

        <column name="C_Invoice_ID" type="number"/> 

        <column name="C_InvoicePaySchedule_ID" type="number"/> 

        <column name="DueDate" type="date"/> 

        <column name="DiscountDate" type="date"/> 

        <column name="DiscountAmt" type="number"/> 

        <column name="DueAmt" type="number"/> 

        <column name="isValid" type="char" /> 

    </table> 

</schema> 

 

SQL: 

SELECT i.AD_Org_ID, i.AD_Client_ID, i.DocumentNo, i.C_Invoice_ID, i.C_Order_ID, 

i.C_BPartner_ID, i.IsSOTrx, i.DateInvoiced, ips.DueDate, ips.DiscountDate, ips.DiscountAmt, 

ips.DueAmt AS GrandTotal, i.C_Currency_ID, i.C_ConversionType_ID, i.C_PaymentTerm_ID, 

i.IsPayScheduleValid, ips.C_InvoicePaySchedule_ID FROM RV_C_Invoice i 

INNER JOIN C_InvoicePaySchedule ips ON (i.C_Invoice_ID=ips.C_Invoice_ID) WHERE 

ips.C_InvoicePaySchedule_ID <> 0 

AND i.IsPayScheduleValid='Y' AND i.DocStatus<>'DR' AND ips.IsValid='Y' 

 

WHERE clause as a Minimal DNF Predicate: 

Letting a=ips.C_InvoicePaySchedule_ID <> 0, b=i.IsPayScheduleValid='Y', c=i.DocStatus<>'DR', 

d=ips.isValid='Y' the WHERE clause predicate in minimal DNF is abcd 

 

Mutants generated by the TRF-TIF tool: 

1 FALSE mutant is generated as follows: false 

4 LOF mutants are generated as follows: bcd, acd, abd, abc 

  

Test points needed to kill mutants in terms of literal values: 

1111 detects a FALSE mutant:         original true and mutant false  
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0111 detects an LOF:       original false and mutant true 

1011 detects an LOF:       original false and mutant true 

1101 detects an LOF:       original false and mutant true 

1110 detects an LOF:  original false and mutant true 

 
Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO RV_C_Invoice VALUES (1,2,3,4,5,SYSDATE+1,6,'A','B','C','Y',7,8,9,10) 

INSERT INTO RV_C_Invoice VALUES (11,12,13,14,15,SYSDATE+2,6,'D','E','F','X',16,17,18,19) 

INSERT INTO RV_C_Invoice VALUES (20,21,22,23,24,SYSDATE+3,6,'DR','H','I','Y',25,26,27,28) 

INSERT INTO C_InvoicePaySchedule VALUES (6,38,SYSDATE+5,SYSDATE+6,39,40,'Y') 

INSERT INTO C_InvoicePaySchedule VALUES (6,41,SYSDATE+7,SYSDATE+8,42,43,'Z') 

INSERT INTO C_InvoicePaySchedule VALUES (6,0,SYSDATE+9,SYSDATE+10,44,45,'Y') 
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Query 9 

 

View the query appears in:   RV_WarehousePrice 

 

Schema: 

<schema> 

    <table name="M_Product"> 

        <column name="M_Product_ID" type="number"/> 

        <column name="C_UOM_ID" type="number"/> 

        <column name="M_AttributeSet_ID" type="number"/> 

        <column name="AD_Client_ID" type="number"/> 

        <column name="IsSummary" type="char"/> 

        <column name="IsActive" type="char"/> 

        <column name="Discontinued" type="char"/> 

        <column name="Value" type="varchar"/> 

        <column name="Name" type="varchar"/> 

        <column name="UPC" type="number"/> 

        <column name="SKU" type="number"/> 

    </table> 

    <table name="M_ProductPrice"> 

        <column name="M_Product_ID" type="number"/> 

        <column name="IsActive" type="char"/> 

        <column name="Created" type="date"/> 

        <column name="CreatedBy" type="varchar"/> 

        <column name="Updated" type="date"/> 

        <column name="UpdatedBy" type="varchar"/> 

        <column name="M_PriceList_Version_ID" type="number"/> 

    </table> 

    <table name="C_UOM"> 

        <column name="C_UOM_ID" type="number"/> 

        <column name="UOMSymbol" type="varchar"/> 

    </table> 

    <table name="M_AttributeSet"> 

        <column name="M_AttributeSet_ID" type="number"/> 

        <column name="IsInstanceAttribute" type="char"/> 

    </table> 

    <table name="M_Warehouse"> 

        <column name="AD_Client_ID" type="number"/> 

        <column name="AD_Org_ID" type="number"/> 

        <column name="M_Warehouse_ID" type="number"/> 

        <column name="Name" type="varchar"/> 

        <column name="IsActive" type="char"/> 

    </table> 

</schema> 

 

SQL: 

SELECT w.AD_Client_ID, w.AD_Org_ID, CASE WHEN p.Discontinued='N' THEN 'Y' ELSE 'N' END 

AS IsActive,  

pr.Created, pr.CreatedBy, pr.Updated, pr.UpdatedBy, p.M_Product_ID, pr.M_PriceList_Version_ID, 

w.M_Warehouse_ID,    p.Value, p.Name, p.UPC, p.SKU, uom.C_UOM_ID, uom.UOMSymbol, 

p.M_Product_ID, pr.M_PriceList_Version_ID, w.M_Warehouse_ID, w.Name AS WarehouseName, 

COALESCE (pa.IsInstanceAttribute, 'N') AS IsInstanceAttribute 
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FROM M_Product p INNER JOIN M_ProductPrice pr ON (p.M_Product_ID=pr.M_Product_ID) INNER 

JOIN C_UOM uom ON (p.C_UOM_ID=uom.C_UOM_ID) LEFT OUTER JOIN M_AttributeSet pa ON 

(p.M_AttributeSet_ID = pa.M_AttributeSet_ID) INNER JOIN M_Warehouse w ON 

(p.AD_Client_ID=w.AD_Client_ID) WHERE p.IsSummary='N' AND p.IsActive='Y' AND pr.IsActive='Y' 

AND w.IsActive='Y' 

 

WHERE clause as a Minimal DNF Predicate: 

Letting a=p.IsSummary='N', b=p.IsActive='Y', c=pr.IsActive='Y', d=w.IsActive='Y' the WHERE clause 

predicate in minimal DNF is abcd 

 

Mutants generated by the TRF-TIF tool: 

1 FALSE mutant is generated as follows: false 

4 LOF mutants are generated as follows: bcd, acd, abd, abc 

  

Test points needed to kill mutants in terms of literal values: 
1111 detects a FALSE mutant:         original true and mutant false  

0111 detects an LOF:       original false and mutant true 

1011 detects an LOF:       original false and mutant true 

1101 detects an LOF:       original false and mutant true 

1110 detects an LOF:  original false and mutant true 

 

Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO M_Product VALUES (1,2,3,4,'N','Y','A',"AA","BB",5,6) 

INSERT INTO M_Product VALUES (1,2,3,4,'C','Y','D',"CC","DD",7,8) 

INSERT INTO M_Product VALUES (1,2,3,4,'N','E','F',"EE","FF",9,10) 

INSERT INTO M_ProductPrice  VALUES (1,'Y',SYSDATE+1,"",SYSDATE+2,"GG",11) 

INSERT INTO M_ProductPrice VALUES (1,'G',SYSDATE+3,"H",SYSDATE+4,"I",12) 

INSERT INTO C_UOM VALUES (2,"J") 

INSERT INTO M_AttributeSet VALUES (3,'K') 

INSERT INTO M_Warehouse VALUES (4,13,14,"HH",'Y') 

INSERT INTO M_Warehouse VALUES (4,15,16,"II",'L') 
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Query 10   

 

View the query appears in: C_Invoice_LineTax_vt 

 

Schema: 

<schema> 

    <table name="C_InvoiceLine"> 

        <column name="AD_ORG_ID" type="number"/> 

        <column name="C_Invoice_ID" type="number"/> 

        <column name="C_InvoiceLine_ID" type="number"/> 

        <column name="AD_Client_ID" type="number"/> 

       <column name="IsActive" type="char" /> 

        <column name="Created" type="date"/> 

        <column name="CreatedBy" type="varchar"/> 

        <column name="Updated" type="date"/> 

        <column name="UpdatedBy" type="varchar"/> 

        <column name="C_UOM_ID" type="number" /> 

        <column name="Line" type="number" /> 

        <column name="Description" type="varchar" /> 

    </table> 

    <table name="AD_Language"> 

         <column name="AD_Language" type="char"/> 

         <column name="IsBaseLanguage" type="char"/> 

         <column name="IsSystemLanguage" type="char"/> 

    </table> 

</schema> 

 

SQL: 

SELECT il.AD_Client_ID, il.AD_Org_ID, il.IsActive, il.Created, il.CreatedBy, il.Updated, il.UpdatedBy, 

l.AD_Language, il.C_Invoice_ID, il.C_InvoiceLine_ID, null, null, null, null, il.Line, null, null, null, 

il.Description, null, null, null, null, null, null, 

null, null, null, null, null, null, null, null, null, null, null, null, null, null FROM C_InvoiceLine il, 

AD_Language l WHERE il.C_UOM_ID IS NULL AND l.IsBaseLanguage='N' AND 

l.IsSystemLanguage='Y' 

 

WHERE clause as a Minimal DNF Predicate: 

Letting a=il.C_UOM_ID IS NULL, b=l.IsBaseLanguage='N', c=l.IsSystemLanguage='Y' the WHERE 

clause predicate in minimal DNF is abc 

 

Mutants generated by the TRF-TIF tool: 

1 FALSE mutant is generated as follows: false 

3 LOF mutants are generated as follows: bc, ac, ab 

  

Test points needed to kill mutants in terms of literal values: 

111 detects a FALSE mutant:          original true and mutant false  

011 detects an LOF:       original false and mutant true 

101 detects an LOF:       original false and mutant true 

110 detects an LOF:       original false and mutant true 

 

Test points needed to kill mutants in terms of rows added to a test database: 

INSERT INTO C_InvoiceLine VALUES 

(1,2,3,4,'A',SYSDATE+1,"AA",SYSDATE+2,"BB",NULL,10,"EE") 

INSERT INTO C_InvoiceLine VALUES (5,6,7,8,'B',SYSDATE+3,"CC",SYSDATE+4,"DD",9,11,"FF") 
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INSERT INTO AD_Language VALUES ('A','N','Y') 

INSERT INTO AD_Language VALUES ('B','C','Y') 

INSERT INTO AD_Language VALUES ('D','N','E') 
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