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Abstract

STABILITY AND CLASSIFICATION OF POLYGON SPACES

Jack Love, PhD

George Mason University, 2019

Dissertation Director: Dr. Sean Lawton

We study the spaces of closed linkages of line segments in Rd, called polygon spaces,

and the action on them by the orthogonal and special orthogonal groups of matrices. A

polygon space Vd(`) is determined by an ordered list of edge lengths ` = (l1, . . . , ln) and the

dimension d ≥ 2 of the ambient space. It is well-known [KM95] that the space of admissible

edge lengths, given by a generalization of the triangle inequalities, is a combinatorial object

whose components determine certain features of Vd(`) and of the moduli space Md(`) =

Vd(`)/SO(d). We expand upon this classification program by describing explicitly the

variety Vd(`) in terms of those components.

We define the “dimension” of a polygon to be the dimension of the smallest affine

space containing the polygon’s edges. The interplay between dimension of polygons and

the dimension of the ambient space gives a new approach to the study of the moduli spaces

Md(`). In particular, we show that these spaces form a directed system for increasing d,

and that this system stabilizes at d = n, where n is the number of edges of the polygons

in Vd(`). As a tool toward this end we use a “diagonals” map that sends a polygon to its

ordered list of diagonal lengths, and show that this map is injective on polygons of relatively

small dimension.



We also take a detailed look at 4-gons, and construct the spaces Md(`) as CW -complexes

for all possible ` and d. These constructions expand upon known constructions for low

dimension. They also serve as an example of results presented earlier in the paper, and as

evidence for conjectures presented later.



Chapter 1: Introduction

1.1 Background

The study of polygon spaces fits within the larger study of configuration spaces of linkages,

which is extensive and dates back hundreds of years [KM02]. It is known that any compact

real algebraic variety is the configuration space of a linkage [DO05], as is the interior of

any compact manifold with boundary [Kou14]. There is an anecdote in which William

Thurston says a linkage can “sign your name” [Kin99], meaning that there exists a linkage

and a specified vertex of that linkage whose configuration space is an arbitrarily close

approximation of your signature. Linkages also appear in the applied sciences in the studies

of mechanical linkages [KM02] and of protein folding [DO05]. A linkage in which the initial

and terminal vertices are identical is called a polygon. Polygon spaces appear in the study

of symplectic geometry of Grassmannians [HK97] and a variation, hyperpolygon spaces, are

related to the study of Higgs bundles [GM13].

We will use the term polygon space to refer to the entire configuration space of poly-

gons with given edge lengths, whereas its corresponding “moduli space” is its quotient by

rotations and/or reflections in the ambient Euclidean space. It is known that if the edge

lengths are sufficiently generic, the corresponding space of polygons in Rd is smooth for

arbitrarily high d. The same can be said for moduli spaces with sufficiently generic edge

length vectors only if d is 2 or 3. Millson and Kapovich study moduli spaces of polygons in

R2 [KM95], and also in R3 [KM96] where they admit a natural complex-analytic structure,

whereas Farber and Fromm study smooth properties of polygon spaces in arbitrarily high

dimension [FF13]. We offer new results for both moduli spaces and polygon spaces for

arbitrary dimensions and all possible edge lengths.
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1.2 Summary

In Chapter 2 we define polygon spaces Vd(`) and show that they are real algebraic varieties.

We also define the “dimension” of a polygon, as distinct from the dimension of the ambient

space in which it lives, and show that the space Vd(`) is “stratified” by the dimension of the

polygons within it. We define the smooth and critical loci, V ○
d (`) and V ∧

d (`), of a polygon

space. We show that the smooth locus is a manifold and that the critical locus is the

dimension-1 stratum and is a subvariety. We then define a combinatorial object Dn ⊂ Rn

that describes the possible edge lengths ` that give rise to nonempty polygon spaces. The

object Dn is partitioned into a “border”, “open chambers”, and “walls”. We show that

when ` belongs to the border, Vd(`) consists of only its critical locus; when ` belongs to an

open chamber, Vd(`) consists of only its smooth locus; and when ` lies on an intersection

of k walls we give an explicit description of the critical locus V ∧
d (`) as the disjoint union of

k spheres.

In Chapter 3 we turn our attention to the moduli spaces Md(`) = Vd(`)/SO(d). We

define the diagonals map on Md(`) that maps a polygon to its ordered list of diagonal

lengths, and we show that this map is injective on polygons of dimension less than d. This

is the crucial step to the main result of this chapter: for fixed ` the moduli spaces Md(`)

form a direct system for increasing d, and this system stabilizes at d = n where n is the

length of `.

In Chapter 4 we take a detailed look at the moduli spaces of 4-gons. Our results from

Chapter 3 allow us to restrict our attention to Md(`) for d = 2,3,4. We also show that we

may restrict our attention to only finitely many ` in D4. We then construct all possible

homeomorphism types of moduli spaces of 4-gons as CW -complexes that are determined by

d and `. In Chapter 5 we use our observations from Chapter 4 to motivate new conjectures.

2



1.3 Groundwork and notation

We will be working with powers of Euclidean space Rd such as (Rd)n = Rdn. We denote

points in Rdn by X = (x1, . . . ,xn) where xi = (xi,1, . . . , xi,d) ∈ Rd. Given x ∈ Rd we let ∣x∣

denote the length of x. Concretely, if x = (x1, . . . , xd) then ∣x∣ =
√
x2

1 +⋯ + x2
d. We denote

the coordinate functions on powers of Rd as ri ∶ Rdn → Rd, ri(X) = xi, and the standard

coordinate functions on Rn as ri ∶ Rn → R, (x1, . . . , xn)↦ xi. Let

R[X] = R[x1, . . . ,xn] = R[x1,1, . . . , x1,d, . . . , xn,1, . . . , xn,d]

be the polynomial ring in d × n variables with coefficients in R. Given a subset S ⊂ R[X],

the zero-locus of S is

Z(S) = {X ∈ Rdn ∶ f(X) = 0∀ f ∈ S} .

A real algebraic variety is a set of the form Z(S). Given polynomials f1, . . . , fs ∈ R[X], we

let ⟨fi⟩i=1,...,s denote the ideal generated by the fi. Given an ideal I ⊂ R[X] we let V(I)

denote the real algebraic variety Z(I). Given varieties V1 ⊂ Ra, V2 ⊂ Rb, a regular map

f ∶ V1 → V2 is the restriction of a polynomial map Ra → Rb. The varieties V1 and V2 are

isomorphic, written V1 ≅ V2, if there are regular maps f ∶ V1 → V2 and g ∶ V2 → V1 such that

the compositions g ○ f and f ○ g are the identity maps on V1 and V2, respectively.

We let 0 denote the origin in Euclidean space, we let Sd denote the unit sphere in Rd,

and we let Id denote the d×d identity matrix. We let GL(d) denote the general linear group

of d × d matrices. Given T ∈ GL(d) we let T t denote the transpose of T and let det(T )

denote the determinant of T . We let O(d) and SO(d) denote the orthogonal and special

orthogonal groups of d × d matrices. Concretely,

O(d) = {T ∈ GL(d) ∶ TT t = Id} and SO(d) = {T ∈ GL(d) ∶ TT t = Id, det(T ) = 1}.

3



We let {e1, . . . ,ed} denote the standard basis for Rd. Given vectors x1, . . . ,xn in Rd we

let Span(x1, . . . ,xn) denote their span as a real vector subspace of Rd. Given a real vector

subspace L of Rd we let dim(L) denote its dimension as a real vector space. An affine

subspace of Rd is a translate of a linear subspace. The dimension of an affine subspace is

the dimension of the corresponding linear subspace. Two affine subspaces are orthogonal if

their corresponding linear subspaces are orthogonal. In particular, if A and B are orthogonal

affine subspaces of Rd and A ∩B = c, then for any a ∈ A, b ∈ B, the Pythagorean theorem

gives

∣a − b∣2 = ∣a − c∣2 + ∣c − b∣2.

The affine hull of a subset S of Rd, denoted Aff(S), is the intersection of all affine subspaces

of Rd containing S. A major result of Chapter 3 depends on intersections of spheres in Rd,

and we now define a particular kind of sphere toward that end. This definition is also used

in Lemma 2.1.8.

Definition 1.3.1. Given an affine subspace A ⊂ Rd, an A-sphere is a set of the form

S(A,c, ρ) ∶= {x ∈ Rd ∶ x ∈ A, ∣x − c∣ = ρ} ,

where c ∈ A and ρ > 0. The center of S(A,c, ρ) is c and its radius is ρ.

On several occasions we make use of the fact that the restriction of a continuous function

is continuous, so we prove it here.

Lemma 1.3.2. Let f ∶ A→ B be a continuous function of topological spaces, and let U be a

subset of A. Then the restriction of f to U is a continuous function f ∣U ∶ U → f(U) under

the subspace topology.

Proof. Let f ∶ A → B be a continuous function of topological spaces, and let U be a

subset of A. Let V ⊂ f(U) be open in the subspace topology, and let V ′ be open in

B so that V ′ ∩ f(U) = V . Then f−1(V ′) is open in A by continuity, so f−1(V ′) ∩ U

4



is open in U by the subspace topology. But f−1(V ′) ∩ U is precisely f ∣−1
U (V ). For the

inclusion f−1(V ′) ∩ U ⊂ f ∣−1
U (V ), let a ∈ f−1(V ′) ∩ U . Then f(a) ∈ V ′ and f(a) ∈ f(U),

so f(a) ∈ V ′ ∩ f(U) = V , so a ∈ f−1(V ). But also a ∈ U so a ∈ f ∣−1
U (V ). For the inclusion

f ∣−1
U (V ) ⊂ f−1(V ′) ∩ U , let a ∈ f ∣−1

U (V ). Then a ∈ U . Also, f(a) ∈ V ⊂ V ′, so f(a) ∈ V ′ so

a ∈ f−1(V ′). See the commutative diagram

A B

U f(U)

f

f ∣U

where the vertical arrows are inclusion maps.

5



Chapter 2: Polygon spaces

In this chapter we define our primary objects of study and state results about their differential-

geometric and real-algebraic structure.

2.1 Polygons, varieties, and dimension

We begin with two definitions for polygon spaces, one in terms of edges and the other in

terms of vertices.

Definition 2.1.1. Given ` = (l1, . . . , ln) ∈ Rn
>0 and d ≥ 2, the corresponding edge polygon

space is the set

Ed(`) = {P = (p1, . . . ,pn) ∈ Rdn ∶ ∣pi∣ = 1∀ i = 1, . . . , n,
n

∑
i=1

lipi = 0} .

Definition 2.1.2. Given ` = (l1, . . . , ln) ∈ Rn>0 and d ≥ 2, the corresponding vertex polygon

space is the set

Vd(`) = {P = (v1, . . . ,vn−1) ∈ Rd(n−1) ∶ ∣vi − vi−1∣ = li, i = 1, . . . , n} ,

where v0 = vn = 0. The vector vi is called a vertex of P for all i = 0, . . . , n. Let i, j ∈

{0, . . . , n − 1} with i < j. If j = i + 1 or (i, j) = (0, n − 1), the vertices vi,vj are called

adjacent. Otherwise, the vector vj − vi is called the (i, j)-th diagonal of P .

The elements of Ed(`) and Vd(`) are called polygons or n-gons where n is the length of

`. Definition 2.1.1 is the working definition in [FF13], though they implicitly use Definition

6



2.1.2 in one of their major propositions. We will be using both throughout this dissertation

as they lend themselves more naturally to different proofs and points-of-view. Figure 2.1

shows that the two definitions describe the same polygons, and Proposition 2.1.3 makes this

relationship explicit.

Proposition 2.1.3. Given ` = (l1, . . . , ln) ∈ Rn
>0, the polygon spaces Ed(`) and Vd(`) are

isomorphic real algebraic varieties.

Proof. To show that Ed(`) is a real algebraic variety define the polynomials

fi ∶ Rdn → R (x1, . . . ,xn)↦ x2
i,1 +⋯ + x2

i,d − 1, i = 1, . . . , n

gj ∶ Rdn → R (x1, . . . ,xn)↦ l1x1,j +⋯ + lnxn,j , j = 1, . . . , d.

Then fi((x1, . . . ,xn)) = 0 for all i = 1, . . . , n if and only if ∣xi∣ = 1 for all i = 1, . . . , n, and

gj((x1, . . . ,xn)) = 0 for all j = 1, . . . , d if and only if ∑ni=1 lixi = 0. Thus Ed(`) is the variety

V(I`), where I` = ⟨fi, gj⟩i=1,...,n; j=1,...,d.

To show that Vd(`) is a real algebraic variety define the polynomials

hi ∶ Rd(n−1) → R (x1, . . . ,xn−1)↦ (xi,1 − xi−1,1)2 +⋯ + (xi,d − xi−1,d)2 − l2i , i = 1, . . . , n,

with the understanding that x0,j = xn,j = 0 for all j = 1, . . . , d. Then hi((x1, . . . ,xn−1)) = 0

for all i = 1, . . . , n if and only if ∣xi − xi−1∣ = li for all i = 1, . . . , n, where x0 = xn = 0. Thus

Vd(`) is the variety V(I ′`), where I ′` = ⟨hi⟩i=1,...,n.

Now we show that Vd(`) and Ed(`) are isomorphic. Let ` = (l1, . . . , ln) ∈ Rn>0 and define

the polynomial map

ψ ∶ Rdn → Rd(n−1)

(x1, . . . ,xn)↦ (l1x1, l1x1 + l2x2, . . . ,
n−1

∑
i=1

lixi).

7



If P = (p1, . . . ,pn) ∈ Ed(`) then for all i = 1, . . . , n we have

∣ri(ψ(P )) − ri−1(ψ(P ))∣ =
RRRRRRRRRRR

i

∑
j=1

ljpj −
i−1

∑
j=1

ljpj

RRRRRRRRRRR
= ∣lipi∣ = li

so ψ(P ) ∈ Vd(`) and thus ψ restricts to a regular map of varieties. Abusing notation we say

that ψ ∶ Ed(`)→ Vd(`). Now since no li = 0 we may define the polynomial map

φ ∶ Rd(n−1) → Rdn

(x1, . . . ,xn−1)↦ (x1 − x0

l1
, . . . ,

xn − xn−1

ln
)

where we understand x0 = xn = 0. If V = (v1, . . . ,vn−1) ∈ Vd(`), then ∣ri(φ(V ))∣ = ∣vi−vi−1li
∣ =

1 for all i = 1, . . . , n, and ∑ni=1 liri(φ(V )) = ∑ni=1 vi−vi−1 = −v0+vn = 0, so φ(V ) ∈ Ed(`) and

thus φ restricts to a regular map of varieties φ ∶ Vd(`) → Ed(`). Finally, we have φ = ψ−1,

as shown here:

φ ○ ψ(P ) = φ(l1p1, l1p2 + l2p2, . . . ,
n−1

∑
i=1

lipi)

= ( l1p1 − 0

l1
,
l1p1 + l2p2 − l1p1

l2
, . . . ,

∑ni=1 lipi −∑n−1
i=1 lipi

ln
)

= (p1, . . . ,pn)

= P ;

8



ψ ○ φ(V ) = ψ (v1 − v0

l1
, . . . ,

vn − vn−1

ln
)

= (l1 (
v1 − v0

l1
) , l1 (

v1 − v0

l1
) + l2 (

v2 − v1

l2
) , . . . ,

n−1

∑
i=1

li (
vi − vi−1

li
))

= (v1, . . . ,vn−1)

= V.

Part of our work concerns polygon spaces Vd(`) for fixed d and varying `. Lemma

2.1.4 greatly simplifies this task by stating that two polygon spaces are isomorphic if their

corresponding edge lengths are permutations of each other.

Lemma 2.1.4. Given a permutation σ ∈ Sn, and ` ∈ Rn
>0, let σ(`) = (lσ(1), . . . , lσ(n)). The

polygon spaces Vd(`) and Vd(σ(`)) are isomorphic as varieties.

Proof. Given Proposition 2.1.3, we prove the equivalent statement that Ed(`) and Ed(σ(`))

are isomorphic as varieties. An element σ ∈ Sn induces a polynomial map

ψσ ∶ Rdn → Rdn, (x1, . . . ,xn)↦ (xσ(1), . . . ,xσ(n)).

If P = (p1, . . . ,pn) ∈ Ed(`), then ∑ni=1 lipi = 0, and thus ∑ni=1 lσ(i)pσ(i) = 0, so ψσ(P ) =

(pσ(1), . . . ,pσ(n)) ∈ Ed(σ(`)). Thus ψσ restricts to a regular map of varieties

ψσ ∶ Ed(`)→ Ed(σ(`)),

and has regular inverse given by ψσ−1 ∶ Ed(σ(`))→ Ed(`).

The notion of “dimension” of a polygon, which is distinct from the dimension of the

ambient space in which it lives, plays a large role in our work. We define it here.
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l1p1 v1

l2p2

v2

l3p3
v3

l4p4

v0

l1p1 v1

l2p2

v2

l3p3

v3l4p4

v0

Figure 2.1: Pictures of a 2-dimensional polygon (left) and a 3-dimensional polygon (right).
In both pictures, (v1,v2,v3) ∈ V3(`) and (p1,p2,p3,p4) ∈ E3(`), where ` = (l1, l2, l3, l4).

Definition 2.1.5. The dimension of a polygon P = (v1, . . . ,vn−1) ∈ Vd(`) is

dim(P ) ∶= dim(Span(v1, . . . ,vn−1)).

The k-stratum of Vd(`) is defined to be V k
d (`) ∶= {P ∈ Vd(`) ∶ dim(P ) = k}.

Remark 2.1.6. We define the dimension of a polygon P = (p1, . . . ,pn) ∈ Ed(`) as

dim(P ) ∶= dim(Span(p1, . . . ,pn)),

and the define the k-stratum of Ed(`) to be Ekd(`) ∶= {P ∈ Ed(`) ∶ dim(P ) = k}. The

isomorphisms of Proposition 2.1.3 preserve dimension.

Lemma 2.1.7. Let ` = (l1, . . . , ln) ∈ Rn>0 and let P ∈ Vd(`). Then dim(P ) ≤ min{n − 1, d}.

Proof. This follows immediately from the fact that Span(v1, . . . ,vn−1) is a linear subspace

of Rd spanned by n − 1 vectors.

The following lemma says that as long as the polygon space is not completely degenerate

(a notion to be made precise later), it contains polygons of all possible dimensions.

Lemma 2.1.8. Let ` ∈ Rn
>0. If V 2

d (`) ≠ ∅, then V k
d (`) ≠ ∅ for all k = 2, . . . ,min{n − 1, d}.
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Proof. It suffices to show for all k = 2, . . . ,min{n − 1, d} − 1, if V k
d (`) is nonempty, then

V k+1
d (`) is nonempty. Let k ∈ {2, . . . ,min{n − 1, d} − 1} and suppose V k

d (`) ≠ ∅. Let

P = (v1, . . . ,vn−1) ∈ V k
d (`). Given i ∈ {1, . . . , n − 1}, let Ui = Span({vj}j≠i) and let Li =

Aff(vi−1,vi+1). We claim there exists i ∈ {1, . . . , n − 1} such that vi ∈ Ui ∖ Li. Since

k < n − 1 there exists a linear dependence among {v1, . . . ,vn−1}, and thus there exists

i ∈ {1, . . . , n − 1} so that vi ∈ Ui. Now if vi ∈ Li, note that vi−1, vi, vi+1 are colinear.

But also, vi ∈ Span(vi−1,vi+1), so vi+1 ∈ Span(vi−1,vi), which is a subset of Ui+1. Thus

vi+1 ∈ Ui+1. Now if vi+1 ∈ Li+1, we have vi−1, vi, vi+1, vi+2 are colinear. But also by the

previous argument we have vi+2 ∈ Ui+2. By continuing this process, we must eventually find

vj ∈ Uj ∖ Lj , otherwise all of v1, . . . ,vn−1 are colinear and thus dim(P ) = 1, contradicting

k ≥ 2. Now let i ∈ {1, . . . , n−1} such that vi ∈ Ui∖Li. Let c be the orthogonal projection of vi

onto Li. Let A = Aff(U⊥i +c,vi). Let S = S(A,c, ∣vi−c∣) be an A-sphere, and let w ∈ S ∖Ui.

We claim that P ′ = (v1, . . . ,vi−1,w,vi+1, . . . ,vn−1) ∈ V k+1
d (`). See Figure 2.2. First we show

that P ′ ∈ Vd(`). It is enough to show ∣w − vi−1∣ = ∣vi − vi−1∣ and ∣vi+1 −w∣ = ∣vi+1 − vi∣. We

note that A and Li are orthogonal as affine subspaces of Rd and A ∩ Li = c. Thus since

w ∈ A and vi−1,vi+1 ∈ Li, we have

∣w − vi−1∣2 = ∣w − c∣2 + ∣c − vi−1∣2,

∣w − vi+1∣2 = ∣w − c∣2 + ∣c − vi+1∣2.

Also, since c is the orthogonal projection of vi onto Aff(vi−1,vi+1) we have

∣vi − vi−1∣2 = ∣vi − c∣2 + ∣c − vi−1∣2,

∣vi+1 − vi∣2 = ∣vi+1 − c∣2 + ∣c − vi∣2.

Finally, since w, vi ∈ S we have

∣w − c∣ = ∣vi − c∣.

11



It follows from the above equations that

∣w − vi−1∣ =
√

∣w − c∣2 + ∣c − vi−1∣2

=
√

∣vi − c∣2 + ∣c − vi−1∣2

= ∣vi − vi−1∣,

and

∣vi+1 −w∣ =
√

∣vi+1 − c∣2 + ∣c −w∣2

=
√

∣vi+1 − c∣2 + ∣c − vi∣2

= ∣vi+1 − vi∣.

Thus P ′ ∈ Vd(`). Lastly, since

k = dim(Span(v1, . . . ,vn−1)) = dim(Span(v1, . . . ,vi−1,vi+1, . . . ,vn−1))

and Span(v1, . . . ,vi−1,vi+1, . . . ,vn−1)) ⊊ Span(v1, . . . ,vi−1,w,vi+1, . . . ,vn−1)) we have

dim(P ′) = dim(Span(v1, . . . ,vi−1,w,vi+1, . . . ,vn−1)) = k + 1,

so P ′ ∈ V k+1
d (`).
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Li

vi−1

w

vi+1

vi

Ui

S

c

Figure 2.2: A picture of the process used in the proof of Lemma 2.1.8, to create a (k + 1)-
dimensional polygon from a k-dimensional polygon.

For i = 1, . . . , d define the lower-i layer of Vd(`), denoted Si, to be the union ⋃k≤i V k
d (`),

and define the above-i layer of Vd(`), denoted V k>i
d (`), to be Vd(`) ∖ Si.

Lemma 2.1.9. The lower-i layer Si of Vd(`) is closed in Vd(`)

Proof. The rank function rank ∶ Mm×n → N, where N denotes the natural numbers, that

takes an m × n matrix to its rank is lower semicontinuous, and thus rank−1({1, . . . , i}) is

a closed subset of Mm×n. For P = (v1, . . . ,vn−1) ∈ Vd(`), identify P with the d × (n − 1)

matrix (vt1, . . . ,vtn−1). Then Si = rank∣−1
Vd(`)

({1, . . . , i}).

2.2 The space of admissible edge lengths

In this section we describe the set of ` for which the polygon space Vd(`) is nonempty. We

will see that this set has combinatorial properties that govern the structure of Vd(`). Define

the polygon inequalities on Rn to be

li ≤
1

2

n

∑
k=1

lk for i = 1, . . . , n. (2.1)
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These inequalities are equivalent to

li ≤∑
k≠i

lk for i = 1, . . . , n, (2.2)

since

li ≤
1

2

n

∑
k=1

lk ⇐⇒
1

2
li ≤

1

2

n

∑
k≠i

lk ⇐⇒ li ≤
n

∑
k≠i

lk.

Note that the triangle inequalities are the special case when n = 3. The polygon inequalities

define a polyhedral cone in Rn. Let Ln be the solution set to the polygon inequalities

intersected with the strictly positive orthant:

Ln = {` ∈ Rn ∶ li ≤∑
k≠i

lk and li > 0 ∀ i = 1, . . . , n} .

Then Ln is the cone defined by the polygon inequalities minus the faces li = 0, i = 1, . . . , n.

See Figure 2.3.

l1
l2

l3

Figure 2.3: A picture of L3 defined by the triangle inequalities. The dashed lines represent
the faces li = 0, i = 1,2,3.
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Proposition 2.2.1. The polygon space Vd(`) is non-emtpy if and only if ` ∈ Ln.

Proof. We prove the equivalent statement, that Ed(`) is non-empty if and only if ` ∈ Ln,

following the proof in [KM95]. Inducting on n, the base case n = 3 is equivalent to the

triangle inequalities, which are well-known to give necessary and sufficient conditions for

three positive real numbers to be the edge lengths of a triangle. Now suppose n ≥ 4 and

suppose the proposition holds for (n − 1)-gons. Let ` = (l1, . . . , ln) ∈ Rn>0 satisfy (2.1). We

claim there exists i ∈ {1, . . . , n} such that li + li+1 ≤ 1
2 ∑

n
k=1 lk (where we understand ln+1 to

mean l1). If not, for all i ∈ {1, . . . , n} we have li + li+1 > 1
2 ∑

n
k=1 lk, and thus

2 ⋅
n

∑
k=1

lk =
n

∑
k=1

lk + lk+1 > n ⋅
1

2

n

∑
k=1

lk ≥ 2 ⋅
n

∑
k=1

lk,

which is a contradiction since n ≥ 4. Given i such that li + li+1 ≤ 1
2 ∑

n
k=1 lk, we have `′ =

(l1, . . . , li−1, li+li+1, li+2, . . . , ln) satisfies (2.1). Thus by the induction hypothesis there exists

(p1, . . . ,pn−1) ∈ Ed(`′), so

l1p1 + . . . + li−1pi−1 + (li + li+1)pi + li+2pi+1, . . . , lnpn−1 = 0,

and thus

l1p1 + . . . + li−1pi−1 + lipi + li+1pi + li+2pi+1, . . . , lnpn−1 = 0,

so (p1, . . . ,pi−1,pi,pi,pi+1, . . . ,pn−1) ∈ Ed(`). See Figure 2.4.

For the other direction let (p1, . . . ,pn) ∈ Ed(`). Let i ∈ {1, . . . , n} and let a and q be a

scalar and unit vector, respectively, such that lipi + li+1pi+1 + aq = 0. Then (pi,pi+1,q) is

a triangle in Ed((li, li+1, a)), so by the triangle inequalities,

li ≤ a + li+1. (2.3)
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Also, by definition we have (p1, . . . ,pi−1,q,pi+2, . . . ,pn) ∈ Ed(`′) where

`′ = (l1, . . . , li−1, a, li+2, . . . , ln),

so by the induction hypothesis,

a ≤ l1 +⋯ + li−1 + li+2 +⋯ + ln. (2.4)

Equations (2.3) and (2.4) together imply that li ≤ l1+⋯+li−1+li+1+⋯+ln. Since i was chosen

arbitrarily, it follows that ` satisfies the polygon inequalities (2.2). See Figure 2.5.

We observe that if ` = (l1, . . . , ln) ∈ Ln, then λ` = (λl1, . . . , λln) ∈ Ln for all λ > 0. The

following lemma says the isomorphism type of Vd(`) remains constant when scaling `.

Lemma 2.2.2. For λ > 0 let λ(l1, . . . , ln) = (λl1, . . . , λln). The polygon spaces Vd(`) and

Vd(λ`) are isomorphic as varieties.

Proof. We show that the edge polygon spaces Ed(`) and Ed(λ`) are in fact identical as

sets. The result then follows by Proposition 2.1.3. We have P = (p1, . . . ,pn) ∈ Ed(`) if and

only if ∑ni=1 lipi = 0 if and only if λ∑ni=1 lipi = 0 if and only if ∑ni=1 λlipi = 0 if and only if

P ∈ Ed(λ`).

Lemma 2.2.2 says that our task of studying isomorphism types of varieties as ` varies

in Ln is reduced to studying those as ` varies in some slice of Ln. Consider the hyperplane

H = {` ∈ Rn ∶
n

∑
i=1

li = 1} .

Definition 2.2.3. The normalized edge length space of n-gons is

Dn ∶= Ln ∩H = {` ∈ Rn ∶
n

∑
i=1

li = 1, li ≤∑
k≠i

lk and li > 0 ∀ i = 1, . . . , n}
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...

li+2 li + li+1

li−1

...

(a)

...

li+2
li+1

li

li−1

...

(b)

Figure 2.4: If ` = (l1, . . . , ln) satisfies the polygon inequalities, then there is some i so that
(l1, . . . , li−1, li + li+1, li+2, . . . , ln) does as well. Then by the induction hypothesis there is a
polygon with edge lengths (l1, . . . , li−1, li + li+1, li+2, . . . , ln) (Subfigure 2.4a), and thus there
is a polygon with edge lengths ` (Subfigure 2.4b).

...

li+2

li+1

li

li−1

...

(a)

...

li+2 a

li−1

...

(b)

Figure 2.5: If a polygon has edge lengths ` = (l1, . . . , ln) (Subfigure 2.5a), then for every
i ∈ {1, . . . , n} there exists a polygon with edge lengths `′ = (l1, . . . , li−1, a, li+2, . . . , ln) where
li ≤ a+ li+1 (Subfigure 2.5b). By the induction hypothesis, a ≤ l1 +⋯+ li−1 + li+1 +⋯+ ln. In
conjunction with li ≤ a + li+1, and since i was chosen arbitrarily, we conclude ` satisfies the
polygon inequalities (2.2).
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If ` = (l1, . . . , ln) ∈ Ln, then λ` ∈ Dn where λ = 1/∑ni=1 li. Thus by Lemma 2.2.2, every

polygon space of n-gons is isomorphic to Vd(`) for some ` ∈ Dn. We note that the closure

of Dn is

cl(Dn) = {` ∈ Rn ∶
n

∑
i=1

li = 1, li ≤∑
k≠i

lk and li ≥ 0 ∀ i = 1, . . . , n} ,

which is an (n− 1)-dimensional polytope in Rn, and that Dn is the polytope cl(Dn) minus

the faces li = 1, i = 1, . . . , n. The boundary of Dn is

∂(Dn) = {` ∈ Rn ∶
n

∑
i=1

li = 1, and li =∑
k≠i

lk or li = 0 for some i ∈ {1, . . . , n}} .

We define the border of a subset S of a topological space to be the intersection of S with

the boundary of S. We let b(S) denote the border of S. Then the border of Dn is

b(Dn) = {` ∈ Rn ∶
n

∑
i=1

li = 1, and li =∑
k≠i

lk for some i ∈ {1, . . . , n}} . (2.5)

See Figure 2.6.

Figure 2.6: The closure of D4 has the combinatorial type of a 3-dimensional cross-polytope
[KM95]. This pictures shows the border b(D4), which is the union of the interiors of facets
li = ∑k≠i lk, i = 1,2,3,4. The missing triangular facets are given by li = 0, i = 1,2,3,4, and
are not part of D4.
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The border is one part of a more general “critical” subset of Dn. We define the compo-

nents of this subset here.

Definition 2.2.4. For a = (a1, . . . , an) ∈ {±1}n define Ia = {i ∈ {1, . . . , n} ∶ ai = 1}. Then a

gives a linear map

fa ∶ Rn → R, (x1, . . . , xn)↦∑
i∈I

xi −∑
i∉I

xi,

and the map fa defines a linear hyperplane Ha = f−1
a (0). A wall of Dn is an intersection

Wa ∶=Ha∩Dn for some a ∈ {±1}n. Given ` ∈Dn we define the depth of `, denoted depth(`),

to be the number of distinct walls Wa containing `. Let A` = {a ∈ {±1}n ∶ a1 = 1 and ` ∈Wa}.

See Figure 2.7

Remark 2.2.5. The walls of Dn give a polytopal complex whose support is cl(Dn). This

complex is addressed in Chapter 5.

Figure 2.7: The picture shows the walls of D4. The walls on the border are given by
li = ∑k≠i lk, i = 1,2,3,4, and the walls that intersect the interior of D4 are given by l1 + l2 =
l3 + l4, l1 + l3 = l2 + l4, and l1 + l4 = l2 + l4 [KM95].

Lemma 2.2.6. Let ` ∈Dn. Then depth(`) = ∣A`∣.

Proof. The hyperplanes Ha and Hb are identical if and only if a = ±b, and thus Wa =Wb

if and only if a = ±b. Thus every wall containing ` can be written Wa where a ∈ A`, and if

a, b ∈ A` with a ≠ b, then Wa and Wb are distinct walls containing `.
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2.3 Degenerate and non-degenerate loci

Consider the map F ∶ Rd(n−1) → Rn defined by

(x1, . . . ,xn−1)↦ (∣x1 − x0∣, . . . , ∣xn − xn−1∣),

where x0 = xn = 0. Let

Ω = {(x1, . . . ,xn−1) ∶ xi ≠ xi−1∀i = 1, . . . , n}.

Lemma 2.3.1. The restriction F ∣Ω ∶ Ω → Rn is a smooth map of manifolds, and Vd(`) =

F ∣−1
Ω (`).

Proof. The conditions xi = xi−1, i = 1, . . . , n − 1 define a closed set of Rd(n−1), so Ω is open

in Rd(n−1) and is thus a manifold. The coordinate functions of F are

fk(X) ∶= rk(F (X)) = ∣xk − xk−1∣ = ((xk,1 − xk−1,1)2 +⋯ + (xk,d − xk−1,d)2)1/2

for k = 1, . . . , n, and their partial derivatives have the form

∂fk
xi,j

=
xk,j − xk−1,j

∣xk − xk−1∣
if i = k, (2.6)

∂fk
xi,j

=
−(xk,j − xk−1,j)

∣xk − xk−1∣
if i = k − 1, (2.7)

∂fk
xi,j

= 0 otherwise. (2.8)

These and all higher partial derivatives ∂sfk
xsi,j

exist at X = (x1, . . . ,xn−1) if and only if

∣xk − xk−1∣ ≠ 0
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for all k = 1, . . . , n − 1, i.e., if and only if X ∈ Ω. Thus F ∣Ω ∶ Ω → Rn is a smooth map of

manifolds. To see that Vd(`) is a subset of Ω, we first note that Vd(`) = F−1(`) whenever

` ∈ Rn
>0. Let (v1, . . . ,vn−1) ∈ Vd(`). Then by the definition of Vd(`) we have ∣vi − vi−1∣ = li

and li > 0 for all i = 1, . . . , n, so vi ≠ vi−1 for any i = 1, . . . , n, and thus (v1, . . . ,vn−1) ⊂ Ω.

Definition 2.3.2. Let F ∶ M → N be a smooth map of manifolds where M ⊂ Rm and

N ⊂ Rn, and let m ∈M . The Jacobian of F at m, denoted dFm, is the n×m matrix whose

entry in the i-th row and j-th column is ∂fi
∂xj

evaluated at m. The point m ∈M is a regular

point of F if rank(dFm) = n. Otherwise, m is called a critical point of F .

We let Ω○ and Ω∧ denote the sets of regular points and critical points of F . Given the

result Vd(`) = F ∣−1
Ω (`) of Lemma 2.3.1, we may write Vd(`) = F ∣−1

Ω○(`) ⊔ F ∣−1
Ω∧(`). Let V ○

d (`)

and V ∧
d (`) denote F ∣−1

Ω○(`) and F ∣−1
Ω∧(`), respectively.

Proposition 2.3.3. The set V ∧
d (`) of critical points of F contained in Vd(`) is the dimension-

1 stratum V 1
d (`) of Vd(`). Equivalently, the set V ○

d (`) of regular points of F contained in

Vd(`) is the union ⋃k>1 V
k
d (`) of dimension-k strata of Vd(`) for k > 1.

Proof. Given X = (x1, . . . ,xn−1) ∈ Ω, we will show that the Jacobian of F at X is not

surjective if and only if the xi are colinear, and therefore P ∈ V ∧
d (`) if and only if dim(P ) = 1.

We follow the proof of the related Proposition 3.1 in [FF13]. The entries of dFX are given

in Equations (2.6)-(2.8). Let (dFX)k denote the k-th row vector of dFX . By indexing the

columns of dFX as

(1,1), . . . , (1, d), . . . , (n − 1,1), . . . (n − 1, d)

we may write

(dFX)k = (0, . . . ,0,
−(xk − xk−1)
∣xk − xk−1∣

,
xk − xk−1

∣xk − xk−1∣
,0, . . . ,0)

where 0 = (0, . . . ,0) ∈ Rd, the vector
−(xk−xk−1)
∣xk−xk−1∣

has column indices (k − 1,1), . . . , (k − 1, d),
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and the vector xk−xk−1
∣xk−xk−1∣

has column indices (k,1), . . . , (k, d). Thus given a point

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt1

⋮

ytn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rd(n−1), where yi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yi,1

⋮

yi,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

we have

(dFX)k(Y ) = ⟨−(xk − xk−1)
∣xk − xk−1∣

, yk−1⟩ + ⟨ xk − xk−1

∣xk − xk−1∣
, yk⟩

= ⟨yk − yk−1,
xk − xk−1

∣xk − xk−1∣
⟩ .

where ⟨⋅, ⋅⟩ denotes the standard Euclidean dot product, and y0 = yn = 0 ∈ Rd. To simplify

notation, define the unit vectors uk = xk−xk−1
∣xk−xk−1∣

for k = 1, . . . , n. Then for all k = 1, . . . , n and

all Y ∈ Rd(n−1) we have (dFX)k(Y ) = ⟨yk − yk−1,uk⟩, and thus

dFX(Y ) = ((dFX)1(Y ), . . . , (dFX)n(Y ))

= (⟨y1 − y0,u1⟩, . . . , ⟨yn − yn−1,un⟩).

The image dFX(Rd(n−1)) is a vector subspace of Rn, so if dFX is not surjective for some

X = (x1, . . . ,xn−1) ∈ Ω, then there is a nonzero vector a = (a1, . . . , an) ∈ Rn such that for all

Y ∈ Rd(n−1), dFX(Y ) lies in the hyperplane orthogonal to a. Thus for all Y ∈ Rd(n−1) we
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have

0 = ⟨a, dFX(Y )⟩

=
n

∑
k=1

ak⟨yk − yk−1,uk⟩

=
n

∑
k=1

⟨yk − yk−1, akuk⟩

= (⟨y1, a1u1⟩ − ⟨y0, a1u1⟩) + (⟨y2, a2u2⟩ − ⟨y1, a2u2⟩) +⋯ + (⟨yn, anun⟩ − ⟨yn−1, anun⟩)

=
n−1

∑
k=0

⟨yk, akuk − ak+1uk+1⟩.

where we understand a0u0 to be 0. Since Y can be generally chosen, it must be that

akuk − ak+1uk+1 = 0 for all k = 1, . . . , n − 1. Since X ∈ Ω, uk ≠ 0 for any k ≠ 0. Thus if some

ak≠0 = 0, then ak−1 = ak+1 = 0 and thus a = (0, . . . ,0) contradicting our choice of a. Thus no

ak≠0 = 0 and we conclude that the uk, and thus the xk, are colinear. Conversely, if the xk are

colinear then so are the uk, so there is linear dependence among every pair {uk,uk+1}, and

thus there exists some nonzero vector a = (a1, . . . , an) ∈ Rn such that akuk − ak+1uk+1 = 0

for all k = 1, . . . , n − 1. Thus we have

0 =
n−1

∑
k=1

⟨yk, akuk − ak+1uk+1⟩ = ⟨a, dFX(Y )⟩

for all Y ∈ Rd(n−1), so the image dFX(Rd(n−1)) is contained in the hyperplane orthogonal to

a, and thus dFX is not surjective.

Proposition 2.3.4. The set V ○
d (`) is a manifold of dimension d(n − 1) − n.

Proof. We show that Ω○ is an open subset of Ω which is in turn an open set of Rd(n−1),

and thus Ω○ is a manifold of dimension d(n − 1). Then since V ○
d (`) = F ∣−1

Ω○(`) consists of
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regular points of F , by the Implicit Function Theorem (Theorem 1.38 in [War83]) V ○
d (`) is a

submanifold Ω○ of dimension d(n−1)−n. To see that Ω○ is an open subset of Ω, consider the

map h ∶ Ω → R, X ↦ det(dFX ⋅ dF tX). The map h is continuous since matrix multiplication

and the determinant map are continuous, and since the maps X → dFX and X → dF tX are

continuous by the definition of Ω. Thus h−1(R ∖ {0}) is open in Ω. A point X ∈ Ω is a

regular point of F if and only if rank(dFX) = n, if and only if rank(dFX ⋅ dF tX) = n, if and

only if det(dFX ⋅ dF tX) ≠ 0, if and only if X ∈ h−1(R ∖ {0}). Thus the set of regular points

Ω○ of F is the open set h−1(R ∖ {0}) of Ω.

Proposition 2.3.5. The dimension-1 stratum V 1
d (`) is isomorphic as a variety to the

disjoint union of depth(`) many spheres.

Proof. Let ` ∈ Dn, and recall the set A` = {a ∈ {±1}n ∶ a1 = 1 and ` ∈ Wa} from Definition

2.2.4. For each a ∈ A`, each i = 2, . . . , n, and each j = 1, . . . , d define the map

ha,i,j ∶ Rdn → R

(x1, . . . ,xn)↦ xi,j − aix1,j .

Let Va denote the variety V(⟨ha,i,j⟩i=2,...,n; j=1,...,d) and let Σ` = ⋃a∈A` Va. Consider the

variety

Ed(`) ∩Σ` = ⋃
a∈A`

Ed(`) ∩Va.

We observe that if a,b ∈ A` are distinct, then Va∩Vb = {(0, . . . ,0)}. Thus since (0, . . . ,0) ∉

Ed(`), we have

Ed(`) ∩Σ` = ⊔
a∈A`

Ed(`) ∩Va.

By Remark 2.1.6 we have V 1
d (`) ≅ E

1
d(`), so it remains to show that E1

d(`) = Ed(`) ∩ Σ`,

and that for all a ∈ A` we have Ed(`) ∩Va ≅ Sd−1.
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First we show that E1
d(`) = Ed(`) ∩ Σ`. Note that for any X = (x1, . . . ,xn) ∈ Rdn, if

X ∈ Va for some a ∈ A` then xi = aix1 for all i = 2, . . . , n, and thus the xi are colinear. Thus

if P ∈ Ed(`) ∩ Σ` ⊂ Rdn then P ∈ E1
d(`). Now let P = (p1, . . . ,pn) ∈ E1

d(`). Then the pi

are colinear so since the pi are unit vectors there is some a ∈ {±1}n with a1 = 1 such that

pi = aip1 for all i = 2, . . . , n. Since P ∈ Ed(`) we have ∑ni=1 lipi = 0, but since pi = aip1 for

all i = 2, . . . , n we have ∑ni=1 liaip1 = 0 and thus ∑ni=1 aili = 0. Thus ` ∈Wa so a ∈ A`, and we

have P ∈ Ed(`) ∩Σ`.

Now we define an isomorphism Sd−1 → Ed(`) ∩ Va for each a ∈ A`. For all ` ∈ Dn

and all a ∈ A` define the polynomial map ψa ∶ Rd → Rdn, x ↦ (a1x, . . . , anx). We claim

that ψa restricts to a regular map of varieties Sd−1 → Ed(`) ∩Va. Let u ∈ Sd−1. To show

that ψa(u) ∈ Ed(`) we must show that ψa(u) ∈ (Sd−1)n and ∑ni=1 liri(ψa(u)) = 0; to show

that ψa(u) ∈ Va it suffices to show that ri(ψa(u)) = air1(ψa(u)) for all i = 1, . . . , n. Since

u ∈ Sd−1 and a ∈ {±1}n, we have ψa(u) ∈ (Sd−1)n, and since a ∈ A` we have ∑ni=1 liai = 0 and

thus ∑ni=1 liri(ψa(u)) = ∑ni=1 liaiu = 0. Therefor ψa(u) ∈ Ed(`). Now if a ∈ A` then a1 = 1 so

r1(ψa(u)) = u, so ri(ψa(u)) = air1(ψa(u)) for all i = 1, . . . , n. Therefor ψa(u) ∈ Va. Thus

ψa restricts to a regular map of varieties Sd−1 → Ed(`) ∩ Va. To see that this map is an

isomorphism, define the polynomial map φ ∶ Rdn → Rd, (x1, . . . ,xn) ↦ x1. If (p1, . . . ,pn) ∈

Ed(`) then p1 ∈ Sd−1 so φ restricts to a regular map of varieties Ed(`) ∩ Va → Sd−1. It

remains to show that ψa ○ φ and φ ○ ψa are the identity maps on Ed(`) ∩ Va and Sd−1,

respectively. Let (p1, . . . ,pn) ∈ Ed(`) ∩Va. Then pi = aip1 for all i = 1, . . . , n, so

ψa ○ φ((p1, . . . ,pn)) = ψa(p1) = (a1p1, . . . , anp1) = (p1, . . . ,pn).

Now let u ∈ Sd−1. If a ∈ A` then a1 = 1, so we have

φ ○ ψa(u) = φ((a1u, . . . , anu)) = a1u = u.
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Thus for each a ∈ A` we have Ed(`)∩Va ≅ Sd−1. This fact together with Equation ?? gives

V 1
d (`) ≅ ⊔

a∈A`

Ed(`) ∩Va ≅
depth(`)

⊔
i=1

Sd−1
i ,

completing the proof.

Proposition 2.3.6. If depth(`) = 0, then Vd(`) is a manifold of dimension d(n− 1)−n. If

` is on the border of Dn, then Vd(`) is isomorphic to a sphere.

Proof. If depth(`) = 0 then by Proposition 2.3.5 V 1
d (`) = ∅, so Vd(`) = V ○

d (`), Thus by

Proposition 2.3.4 Vd(`) is a manifold of dimension d(n − 1).

Now suppose ` ∈ b(Dn). We will show that Vd(`) = V 1
d (`), so that Vd(`) is the disjoint

union of depth(`) many spheres, and then we will show that depth(`) = 1. To show that

Vd(`) = V 1
d (`), given Remark 2.1.6 we prove the equivalent statement Ed(`) = E1

d(`). Since

` ∈ b(Dn), from Equation 2.5 we have lk = ∑i≠k li for some k ∈ {1, . . . , n}. If P ∈ Ed(`) then

0 = ∑ni=1 lipi, and thus lk(−pk) = ∑i≠k lipi. But since lk = ∑i≠k li, we have

∑
i≠k

li(−pk) =∑
i≠k

lipi, (2.9)

and thus ∣∑i≠k lipi∣ = ∑i≠k li. Therefor {lipi ∶ i ≠ k} is a collection of vectors whose sum

has length equal to the sum of the lengths of the vectors, and thus they must all point the

same direction, so there is some unit vector u such that pi = u for all i ≠ k. Now (2.9) can

be rewritten

∑
i≠k

li(−pk) =∑
i≠k

liu. (2.10)

Thus u = −pk so dim(P ) = 1. Since P was chosen arbitrarily in Ed(`) we have Ed(`) = E1
d(`).

It remains to show that depth(`) = 1. Again by Equation 2.5 there exists k ∈ {1, . . . , n}

such that lk = ∑i≠k li, and thus ` ∈Wa where Ia = {k}. Thus depth(`) ≥ 1. Now suppose for
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a contradiction depth(`) > 1. Then there exists some b ≠ ±a so that

∑
i∈Ib

li = ∑
i∉Ib

li. (2.11)

Without loss of generality we may assume k ∈ Ib. Then the left hand side of (2.11) is

lk +∑i∈Ib∖{k} li, so we may write (2.11) as

lk + ∑
i∈Ib∖{k}

li = ∑
i∉Ib

li. (2.12)

Since lk = ∑i≠k li we may write lk = ∑i∈Ib∖{k} li +∑i∉Ib li, and thus rewrite (2.12) as

∑
i∈Ib∖{k}

li +∑
i∉Ib

li + ∑
i∈Ib∖{k}

li = ∑
i∉Ib

li. (2.13)

But (2.13) implies 2 ⋅∑i∈Ib∖{k} li = 0, contradicting li > 0 for all i ∈ {1, . . . , n}.
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Chapter 3: Orbit spaces

In this chapter we turn our attention to orbit spaces of polygons under the action of the

orthogonal and special orthogonal groups. Our main result is that the orbit spaces form a

direct system with a stable limit.

3.1 Descriptions

We follow the treatment of orbit spaces in [Bre72]. Let G be a topological group. A

Hausdorff topological space X is a G-space if there exists a continuous map Θ ∶ G×X →X

such that:

(1) Θ(g,Θ(h,x)) = Θ(gh, x) for all g, h ∈ G, x ∈X;

(2) Θ(e, x) = x for all x ∈X, where e is the identity in G.

An element g ∈ G defines a homeomorphism θg ∶ X → X, x ↦ Θ(g, x), since (θg)−1 = θg−1 .

The set [x] = {θg(x) ∶ g ∈ G} is called the orbit of x under G. We let X/G denote the set of

orbits of elements of X, and we let π ∶X →X/G be the map x↦ [x]. Then X/G endowed

with the quotient topology is called the orbit space of X under G. Given an open set U ⊂X

we have π−1(π(U)) = ⋃g∈G θg(U), a union of open sets. Thus π−1(π(U)) is open, so by the

definition of open sets in the quotient topology, π(U) is open, and thus π is an open map.

Remark 3.1.1. If X is a G space and H is a subgroup of G, then X is an H space.

Lemma 3.1.2. The groups O(d) and SO(d) are compact topological groups.

Proof. The groups O(d) and SO(d) are topological subspaces of Rd2 , and the multiplication

and inverse maps are polynomial in Rd2 and are thus continuous, so O(d) and SO(d) are
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topological groups. To see they are compact consider the map g ∶ GL(d)→ GL(d) given by

T ↦ TT t. Then O(d) is the closed set g−1(Id). Moreover the condition TT t = Id implies

det(T ) ∈ {±1} which is a polynomial bound on the entries of T , so O(d) is closed and

bounded in Rd2 and is thus compact. Now SO(d) is the closed subset of O(d) given by

det ∣−1
O(d)(1), so SO(d) is compact as well.

Proposition 3.1.3. Vd(`) is an SO(d)-space and an O(d)-space.

Proof. By Remark 3.1.1 it suffices to show that Vd(`) is an O(d) space. Given that O(d) is

a topological group and Vd(`) ⊂ Rd(n−1) is a Hausdorff topological space since subspaces of

Hausdorff spaces are Hausdorff, it remains to define a continuous map Θ ∶ O(d) × Vd(`) →

Vd(`) that satisfies properties (1) and (2) above. Let T be an element of O(d) and let

x, y ∈ Rd. Since T is a linear isometry we have ∣T (x) − T (y)∣ = ∣T (x − y)∣ = ∣x − y∣. If

P = (v1, . . . ,vn−1) ∈ Vd(`) then by definition we have ∣vi − vi−1∣ = li for all i = 1, . . . , n, and

thus ∣T (vi)−T (vi−1)∣ = li for all i = 1, . . . , n. Thus by defining T (P ) ∶= (T (v1), . . . , T (vn−1))

we have a map Θ ∶ O(d) × Vd(`) → Vd(`) defined by Θ(T,P ) = T (P ). Moreover conditions

(1) and (2) above hold, as shown here:

(1)

Θ(T1,Θ(T2, P )) = Θ(T1, (T2(v1), . . . , T2(vn−1)))

= (T1(T2(v1)), . . . , T1(T2(vn−1)))

= (T1T2(v1), . . . , T1T2(vn−1))

= Θ(T1T2, P );

(2)

Θ(Id, P ) = (Id(v1), . . . , Id(vn−1)) = (v1, . . . ,vn−1) = P.
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Since the O(d) action is defined linearly, by viewing O(d) as a subset of (Rd)2, and Vd(`) as

a subset of Rd(n−1) the map Θ is the restriction of a linear map Ψ ∶ (Rd)2×Rd(n−1) → Rd(n−1).

Thus Θ is continuous.

We will work mainly with Vd(`) as an SO(d) space, so the notation [P ] will be reserved

for the SO(d) orbit of P . If we wish to refer to the O(d) orbit of P we will simply write

O(d)(P ).

Definition 3.1.4. The moduli space of closed n-gons in Rd is

Md(`) ∶= Vd(`)/SO(d).

For k = 1, . . . , d, the k-stratum of Md(`) is Mk
d (`) ∶= {π(P ) ∶ P ∈ V k

d (`)}. For i = 1, . . . , d−1

the above-i layer of Md(`) is M>i
d (`) ∶= ⋃k>iMk

d (`).

Lemma 3.1.5. The orbit space Md(`) is compact Hausdorff, and π ∶ Vd(`) → Md(`) is

closed. Also, the actions of O(d) and SO(d) on Vd(`) are proper.

Proof. Theorem 3.1 in Chapter I of [Bre72] says, in part, that if X is a G-space and G is

compact, then X/G is Hausdorff and π ∶ X → X/G is closed. If, in addition, X is compact

then X/G is compact. Since SO(d) is compact we have Md(`) is Hausdorff and π is closed.

Also, Vd(`) is closed since it is an algebraic variety, and it is bounded by the conditions

∣vi − vi−1∣ = li for i = 1, . . . , n, so Vd(`) is closed and bounded in Rd(n−1) and thus compact.

Therefor Md(`) is compact. The actions of O(d) and SO(d) on V d
d (`) are proper since

Vd(`) is Hausdorff and SO(d) and O(d) are compact [Bou98].

Lemma 3.1.6. The actions of O(d) and SO(d) on V d
d (`) are free.

Proof. It is enough to show that O(d) acts freely on V d
d (`). Let P = (v1, . . . ,vn−1) ∈ V d

d (`)

and let T ∈ O(d) such that T (P ) = P . We aim to show that T is the identity. Since
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dim(P ) = d the set {v1, . . . ,vn−1} contains a basis (vi1 , . . . ,vid) for Rd. Since T (vij) = vij

for all j = 1, . . . , d, T = Id.

Proposition 3.1.7. The stratum M1
d (`) is a discrete set of depth(`)-many points, and the

stratum Md
d (`) is a manifold.

Proof. Note that M1
d (`) is empty if depth(`) = 0 and Md

d (`) is empty if d ≥ n, neither of

which contradict the statement of the proposition. To see that Md
d (`) is a manifold, we

note that by Proposition 2.1.9, V d
d (`) is an open subset of Vd(`) and thus is open in V ○

d (`),

so V d
d (`) is a manifold. By Lemmas 3.1.6 and 3.1.5, the action on V d

d (`) by SO(d) is free

and proper. Thus since SO(d) is a Lie group that acts smoothly on Rd, and thus on Vd(`),

Md
d (`) = π (V d

d (`)) is a manifold by the Quotient Manifold Theorem ([Lee13]). To see that

M1
d (`) is a discrete set of depth(`)-many points, we note that by Proposition 2.3.5 Vd(`)

is the disjoint union of depth(`)-many spheres. The result then follows by the observation

that polygons P and P ′ lie on the same sphere in Vd(`) if and only if [P ] = [P ′].

Lemma 3.1.8. Given a permutation σ ∈ Sn, let σ(`) = (lσ(1), . . . , lσ(n)). The moduli spaces

Md(`) and Md(σ(`)) are homeomorphic.

Proof. In Lemma 2.1.4 we showed that Vd(`) and Vd(σ(`)) are isomorphic as varieties, by

showing that Ed(`) and Ed(σ(`)) are isomorphic as varieties. It remains to show that he

isomorphism ψσ from the proof of Lemma 2.1.4 is SO(d)-equivariant. Let P = (p1, . . . ,pn) ∈

Ed(`). Then we have

ψσ(T (P )) = ψσ(T (p1), . . . , T (pn)) = (T (pσ(1)), . . . , T (pσ(n))) = T (ψσ(P )).
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3.2 Intersections of spheres

In this section we take a slight detour to develop a fact about the intersections of finitely

many spheres in Rd. This fact, stated as Proposition 3.2.3, plays a key role in leading to the

main result of this chapter. Recall from Section 1.3 that given an affine subspace A ⊂ Rd,

an A-sphere is a set of the form

S(A,c, ρ) ∶= {x ∈ Rd ∶ x ∈ A, ∣x − c∣ = ρ} .

For the remainder of this section we simply say “sphere” to mean “A-sphere”. We say

a sphere S(A,c, ρ) is full-dimensional if A = Rd, in which case we may write S(c, ρ) to

mean S(Rd,c, ρ). Given S = S(A,c, ρ) we write S to mean S(c, ρ), i.e., the smallest full

dimensional sphere containing S. A sphere S(A,c, ρ) is orthogonal to an affine subspace

B if c ∈ B and A and B are orthogonal as affine spaces. Lemma 3.2.1 shows that the

intersection of a sphere and a plane is a sphere (or empty or a singleton), Lemma 3.2.2 uses

this fact to show that the intersection of two spheres is a sphere that is orthogonal to the

original spheres’ centers (or empty or a singleton), and Proposition 3.2.3 uses induction to

extend this result to finitely many spheres.

Lemma 3.2.1. Let S = S(A,c, ρ) be a sphere in Rd and let B be an affine subspace of

Rd. Then S ∩B is either empty, a singleton, or the sphere S(A ∩B,c′, ρ′) where c′ is the

orthogonal projection of c onto B and ρ′2 = ρ2 − ∣c − c′∣2.

Proof. Let S,B,c′, ρ′ be as above. Since c′ is the orthogonal projection of c onto B, then

∣c−c′∣ = ρ if and only if S ∩B = {c′} and ∣c−c′∣ > ρ if and only if S ∩B = ∅. Thus if S ∩B is

neither empty nor a singleton then ρ′ > 0, and it remains to show that S∩B = S(A∩B,c′, ρ′).

Note that for any x ∈ B we have

∣x − c′∣2 + ∣c − c′∣2 = ∣x − c∣2. (3.1)
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Let x ∈ S ∩ B. Since x ∈ S we have ∣x − c∣ = ρ, thus by equation (3.1) we have ∣x − c′∣2 =

ρ2 − ∣c − c′∣2 = ρ′2, so x ∈ S(A ∩ B,c′, ρ′). Now let x ∈ S(A ∩ B,c′, ρ′). Then ∣x − c′∣ = ρ′

so by equation (3.1), ∣x − c∣2 = ρ′2 + ∣c − c′∣2 = ρ2, so x ∈ S. Since x is also in B, we have

x ∈ S ∩B.

Lemma 3.2.2. Let S1 = S(A1,c1, ρ1), S2 = S(A2,c2, ρ2) be spheres in Rd. Then S1 ∩ S2 is

either empty, a singleton, or a sphere in Rd orthogonal to Aff(c1,c2).

Proof. It suffices to prove the statement for full-dimensional spheres. To see why, note that

if S1 ∩ S2 is neither empty nor a singleton, then S1 ∩ S2 is neither empty nor a singleton.

Thus if the statement holds for full-dimensional spheres, then S1∩S2 is a sphere orthogonal

to Aff(c1,c2). Now,

S1 ∩ S2 = (S1 ∩A1) ∩ (S2 ∩A2) = (S1 ∩ S2) ∩ (A1 ∩A2),

and thus S1 ∩ S2 is also a sphere by Lemma 3.2.1, and is orthogonal to Aff(c1,c2) since it

is a subset of S1 ∩ S2. Thus we may assume S1 and S2 are full-dimensional spheres in Rd.

Without loss of generality let c1 = 0 so that

S1 = S(0, ρ1) = {(x1, . . . , xd) ∶ x2
1 +⋯ + x2

d = ρ
2
1}, (3.2)

and let c2 = (c,0, . . . ,0) for some c ≠ 0 so that

S2 = S(c2, ρ2) = {(x1, . . . , xd) ∶ (x1 − c)2 + x2
2 +⋯ + x2

d = ρ
2
2}. (3.3)

Suppose S1 ∩ S2 ≠ ∅ and let x = (x1, . . . , xd) ∈ S1 ∩ S2. From (3.2) and (3.3) we have

x1 =
ρ21−ρ

2
2+c

2

2c . Let γ = ρ21−ρ
2
2+c

2

2c . Since x ∈ S1 we have γ ≤ ρ1; moreover if γ = ρ1 then x is the

only point on S1 with x1 = γ, and thus S1 ∩ S2 = {x}. Thus if S1 ∩ S2 is neither empty nor

a singleton we have γ < ρ1. Let ρ =
√
ρ2

1 − γ2 > 0 and let A = {(γ, x2, . . . , xd) ∶ xi ∈ R}. We
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claim that S1 ∩ S2 = S(A, (γ,0, . . . ,0), ρ). Note that whenever x ∈ A we have

∣x − 0∣2 = ∣x − (γ,0, . . . ,0)∣2 + ∣0 − (γ,0, . . . ,0)∣2, (3.4)

and

∣x − c2∣2 = ∣x − (γ,0, . . . ,0)∣2 + ∣c − (γ,0, . . . ,0)∣2. (3.5)

Let x ∈ S1 ∩ S2. Then x ∈ A so by (3.4) we have

∣x − (γ,0, . . . ,0)∣2 = ∣x − 0∣2 − ∣0 − (γ,0, . . . ,0)∣2

= ρ2
1 − γ2,

so x ∈ S(A, (γ,0, . . . ,0), ρ). Now let x ∈ S(A, (γ,0, . . . ,0), ρ). Then again x ∈ A so by (3.4)

we have

∣x − 0∣2 = ∣x − (γ,0, . . . ,0)∣2 + ∣0 − (γ,0, . . . ,0)∣2

= ρ2
1 − γ2 + γ2

= ρ2
1,

so x ∈ S1, and by (3.5) we have

∣x − c2∣2 = ∣x − (γ,0, . . . ,0)∣2 + ∣c − (γ,0, . . . ,0)∣2

= ρ2
1 − γ2 + (c − γ)2

= ρ2
2,

so x ∈ S2. Finally, A is clearly orthogonal to Aff(0,c2) = {(x1,0, . . . ,0) ∶ x1 ∈ R}.
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Figure 3.1: Two spheres and their intersection, which by Lemma 3.2.2 is another sphere
orthogonal to the line through the original spheres’ centers. This image is attributed to
[Wol12].

Proposition 3.2.3. Let S1, . . . , Sk be spheres in Rd where Si = (Ai,ci, ρi). Their intersec-

tion ⋂ki=1 Si is either empty, a singleton, or a sphere in Rd orthogonal to Aff(c1, . . . ,ck).

Proof. We induct on k. The base case k = 2 is Lemma 3.2.2. For the inductive step let

S1, . . . , Sk be as above and assume the Lemma holds for k − 1 spheres. Let

S =
k

⋂
i=1

Si = (
k−1

⋂
i=1

Si) ∩ Sk.

If S is neither empty nor a singleton, then ⋂k−1
i=1 Si is neither empty nor a singleton, thus

⋂k−1
i=1 Si is a sphere orthogonal to Aff(c1, . . . ,ck−1). Then by the base case, S is a sphere

orthogonal to Aff(c,ck), where c is the center of ⋂k−1
i=1 Si. Since ⋂k−1

i=1 Si is orthogonal to

Aff(c1, . . . ,ck−1) and since S ⊂ ⋂k−1
i=1 Si, then S is orthogonal to Aff(c1, . . . ,ck−1). Since S is

orthogonal to both Aff(c1, . . . ,ck−1) and Aff(c,ck), S is orthogonal to Aff(c,c1, . . . ,ck). Fi-

nally, since c is the center of⋂k−1
i=1 Si we have c ∈ Aff(c1, . . . ,ck−1), and thus Aff(c,c1, . . . ,ck) =

Aff(c1, . . . ,ck), completing the proof.
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In order to make use of Proposition 3.2.3 in the next section, we will need a fact about

how the orthogonal group O(d) acts on intersections of spheres. It is stated as Lemma

3.2.5.

Definition 3.2.4. Given a subset A ⊂ Rd, the point-wise stabilizer of A in O(d) is

O(d)A ∶= {T ∈ O(d) ∶ T (x) = x ∀x ∈ A}.

Lemma 3.2.5. Let S be a sphere in Rd orthogonal to a linear subspace L ⊂ Rd. Then

O(d)L acts transitively on S.

Proof. Let S be a sphere in Rd with center c and radius ρ, orthogonal to a linear subspace

L ⊂ Rd, and let x, y ∈ S. Let (u1, . . . ,uk) be an orthonormal basis for L. Since x −

c and y − c are both orthogonal to L, we may extend (u1, . . . ,uk) to two orthonormal

bases (u1, . . . ,uk,
x−c
∣x−c∣ ,uk+2, . . . ,ud) and (u1, . . . ,uk,

y−c
∣y−c∣ , tk+2, . . . , td). Since O(d) acts

transitively on orthonormal bases for Rd, there exists T ∈ O(d) such that T (ui) = ui for all

i = 1, . . . , k and T ( x−c
∣x−c∣) =

y−c
∣y−c∣ . Since T (ui) = ui for all i = 1, . . . , k, T ∈ O(d)L. Since T is

linear, ∣x − c∣ = ∣y − c∣ = ρ, and c ∈ L, we have

T (x) = T (x − c) + T (c) = ρ ⋅ T ( x − c

∣x − c∣
) + c = ρ ⋅ y − c

∣y − c∣
+ c = y − c + c = y.

36



3.3 The diagonals map

Let P = (v1, . . . ,vn−1) ∈ Vd(`). Let i, j ∈ {0, . . . , n − 1} with i < j − 1 and (i, j) ≠ (0, n − 1).

Then vi,vj are nonadjacent vertices of P ∈ Vd(`). Define the map

diagdi,j ∶ Vd(`)→ R

P ↦ ∣vj − vi∣

that takes a polygon to its (i, j)-th diagonal length. We claim the map diagdi,j is con-

tinuous. Note that it is the restriction to Vd(`) of the map g ∶ Rd(n−1) → R defined by

g((x1, . . . ,xn−1)) = ∣(xi − xj)∣, and g is the composition of the linear map (x1, . . . ,xn−1) ↦

(xi − xj) with the distance map x ↦ ∣x∣. Thus g is continuous, and therefor so is diagdi,j .

Order the diagonals lexicographically so that (i, j) < (k, l) if i < j or if i = k and j < l. There

are (n
2
)−n diagonals of P since there are (n

2
) vertex pairs and n of them are adjacent pairs.

The diagonals map on Vd(`) is the map

diagd ∶ Vd(`)→ R(
n
2
)−n

P ↦ (diagdi,j(P ))

that sends a polygon to its ordered list of diagonal lengths (see Figure 3.2). Since the

component maps of diagd are continuous, diagd is continuous.

Proposition 3.3.1 shows that the fibers of diagd are the O(d) orbits of Vd(`). Proposition

3.3.2 then shows that the O(d) orbit and the SO(d) orbit of a polygon are identical if the

polygon has small dimension relative to the ambient space, and thus for large enough d the

fibers of diagd are the SO(d) orbits of Vd(`). This allows the diagonals map to descend to

an embedding on Md(`), as shown in Theorem 3.3.4.
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v1

v2

v3

v0

diag0,2(P )

diag1,3(P )

Figure 3.2: A 4-gon with its two diagonal lengths labeled.

Proposition 3.3.1. For all P ∈ Vd(`), diag−1(diag(P )) = O(d)(P ).

Proof. The inclusion O(d)(P ) ⊂ diag−1(diag(P )) is immediate since O(d) consists of isome-

tries, and thus diag(P ) = diag(Q) for all Q ∈ O(d)(P ). Now we prove the inclusion

diag−1(diag(P )) ⊂ O(d)(P ).

Let Q ∈ diag−1(diag(P )) and write P = (v1, . . . ,vn−1), Q = (w1, . . . ,wn−1). Since v1, w1 lie

on the sphere centered at the origin S(0, l1), there exists T1 ∈ O(d) such that T1(w1) = v1.

Let Q1 = T1(Q) = (v1, T1(w2), . . . , T1(wn−1)). Note that v2 and T1(w2) both lie on the

intersection of spheres S(0,diag0,2(P ))∩S(v1, l2). By Proposition 3.2.3, this intersection is

either a singleton or a sphere orthogonal to the linear subspace L = Aff(0,v1). If a singleton,

take T2 = Id ∈ O(d); if not, by Lemma 3.2.5 there exists T2 ∈ O(d)L such that T2(w2) = v2.

In either case let Q2 = T2(Q1) = (v1,v2, T2○T1(w3), . . . , T2○T1(wn−1)). Next we note that v3

and T2○T1(w3) both lie on the intersection of spheres S(0,diag0,3(P ))∩S(v1,diag1,3(P ))∩

S(v2, l3). Again by Proposition 3.2.3, this intersection is either a singleton or a sphere

orthogonal to the linear subspace L = Aff(0,v1,v2). If a singleton, take T3 = Id ∈ O(d);

if not, by Lemma 3.2.5 there exists T3 ∈ O(d)L such that T3(T2 ○ T1(w3)) = v3. In either

case let Q3 = T3(Q2) = (v1,v2,v3, T3 ○ T2 ○ T1(w4), . . . , T3 ○ T2 ○ T1(vn−1)). Continuing in

this way completes the proof, taking T = Tn−1 ○ ⋯ ○ T1 as the element of O(d) for which

T (Q) = P .
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Proposition 3.3.2. Let P ∈ Vd(`). Then O(d)(P ) = SO(d)(P ) if and only if dim(P ) < d.

Proof. Let P ∈ Vd(`) with dim(P ) = k < d. Clearly SO(d)(P ) ⊂ O(d)(P ) since SO(d) ⊂

O(d). To see that O(d)(P ) ⊂ SO(d)(P ) let P = (v1, . . . ,vn−1), and let T (P ) ∈ O(d)(P ).

We seek a T ′ ∈ SO(d) so that T ′(P ) = T (P ). Let (e1, . . . ,ek) be an orthonormal ba-

sis for Span(0,v1, . . . ,vn−1) ⊊ Rd. Then (T (e1), . . . , T (ek)) is an orthonormal basis for

Span(0, T (v1), . . . , T (vn−1)) ⊊ Rd. Since SO(d) acts transitively on orthonormal bases of

proper subspaces of Rd, there exists T ′ ∈ SO(d) such that T ′(ei) = T (ei) for i = 1, . . . , k.

Thus T ′(vi) = T (vi) for i = 1, . . . , n − 1, so T ′(P ) = T (P ). For the other direction, suppose

dim(P ) = d. We want to show SO(d)(P ) ⊊ O(d)(P ). Let T ∈ O(d)∖SO(d). We claim that

T (P ) ∈ O(d)(P )∖SO(d)(P ). Suppose for a contradiction there exists T ′ ∈ SO(d)(P ) such

that T ′(P ) = T (P ). Then T−1T ′(P ) = P . Since dim(P ) = d, Lemma 3.1.6 says T−1T ′ = Id,

and thus T = T ′, contradicting T ′ ∈ SO(d) and T ∉ SO(d).

Since SO(d) consists of isometries, the maps diagdi,j and diagd on Vd(`) descend to maps

on Md(`):

[diagdi,j] ∶Md(`)→ R(
n
2
)−n

[P ]↦ diagdi,j(P );

[diagd] ∶Md(`)→ R(
n
2
)−n

[P ]↦ diagd(P ).

We may omit the superscript d from the diagonals maps when the dimension of the ambient

space Rd is clear from context. Let Dd(`) denote the image [diagd](Md(`)) = diagd(Vd(`)).

Lemma 3.3.3. The map [diag] ∶Md(`)→ R(
n
2
)−n is continuous.
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Proof. Consider the following commutative diagram.

Vd(`)

R(
n
2
)−n

Md(`)

diag

π

[diag]

Let U ⊂ R(
n
2
)−n be open. Since diag is continuous, diag−1(U) is open in Ed(`). Since π is

open, π(diag−1(U)) is open in Md(`). It remains to show [diagd]−1(U) = π(diag−1(U)).

Indeed both [diagd]−1(U) and π(diag−1(U)) are equal to the set {[P ] ∶ diag(P ) ∈ U}.

Theorem 3.3.4. The diagonals map [diagd] ∶Md(`)→ R(
n
2
)−n is an embedding if and only

if d ≥ n.

Proof. Since [diagd] is continuous, Md(`) is compact, and R(
n
2
)−n is Hausdorff, it suffices to

show that [diagd] is injective if and only if d ≥ n. Suppose d ≥ n and suppose [diagd]([P ]) =

[diag]d([Q]). Then diagd(P ) = diagd(Q), so by Lemma 3.3.1, O(d)(P ) = O(d)(Q). Since

d ≥ n, dim(P ) = dim(Q) < d so by Proposition 3.3.2, SO(d)(P ) = SO(d)(Q), and thus

[P ] = [Q]. Now suppose d < n. By Lemma 2.1.7, V d
d (`) ≠ ∅. To show that [diagd] is not

injective, let P ∈ V d
d (`) and let T ∈ O(d) ∖ SO(d). Then [T (P )] ≠ [P ], but [diagd]([P ]) =

[diagd]([T (P )].
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3.4 Stabilization of orbit spaces

Fix n ≥ 3. Given (x1, . . . , xd) ∈ Rd let (x,0) = (x1, . . . , xd,0) ∈ Rd+1. For all d > 2 define the

map

ad ∶ Rd(n−1) → R(d+1)(n−1)

(x1, . . . ,xn−1)↦ ((x1,0), . . . , (xn−1,0)).

Clearly ad is continuous. Moreover if ∣vi − vi−1∣ = li for all i = 1, . . . , n, then we have

∣(vi,0) − (vi−1,0)∣ = li for all i = 1, . . . , n, so the map ad restricts to a continuous map

Vd(`)→ Vd+1(`).

Lemma 3.4.1. If O(d)(P ) = O(d)(Q), then O(d + 1)(ad(P )) = O(d + 1)(ad(Q)).

Proof. If O(d)(P ) = O(d)(Q) we may write P = T (Q) for some T ∈ O(d). Note that

T ⊕ I1 ∈ O(d + 1), where I1 is the 1 × 1 identity matrix, and we have

(T ⊕ I1)(ad(Q)) = ad(T (Q)) = ad(P ).

Thus ad(P ) ∈ O(d + 1)(ad(Q)), but since distinct O(d + 1) orbits are disjoint we have

O(d + 1)(ad(P )) = O(d + 1)(ad(Q)).

Now, for d > 2 define the map

αd ∶Md(`)→Md+1(`) (3.6)

[P ]↦ [ad(P )].

Lemma 3.4.2. The map αd is continuous for all d > 2.
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Proof. Consider the following commutative diagram.

Vd(`) Vd+1(`)

Md(`) Md+1(`)

ad

πd πd+1

αd

Let U be an open subset of Md+1(`). Since πd+1 and ad are continuous and πd is open, we

have πd(a−1
d (π−1

d+1(U))) is open in Md(`), and it remains to show

πd(a−1
d (π−1

d+1(U))) = α−1
d (U).

Note that commutativity gives us

αd(πd(P )) = πd+1(ad(P )) (3.7)

for all P ∈ Vd(`). First we show α−1
d (U) ⊂ πd(a−1

d (π−1
d+1(U))). Let [P ] ∈ α−1

d (U). Then

αd(πd(P )) ∈ U , so by (3.7) we have πd+1(ad(P )) ∈ U . Thus P ∈ a−1
d (π−1

d+1(U)), so [P ] ∈

π(a−1
d (π−1

d+1(U))). For the other direction, let [P ] ∈ π(a−1
d (π−1

d+1(U))), and letQ ∈ a−1
d (π−1

d+1(U))

such that πd(Q) = [P ]. Since Q ∈ a−1
d (π−1

d+1(U)) we have πd+1(ad(Q)) ∈ U . Thus by (3.7)

we have αd(πd(Q)) ∈ U . But πd(Q) = [P ], so [P ] ∈ α−1
d (U).

Remark 3.4.3. We point out here that ad is an isometry, and thus diagd(P ) = diagd+1(ad(P )),

and [diagd]([P ]) = [diagd+1](αd([P ])) for all P ∈ Vd(`).

Lemma 3.4.4. Let [P ] ∈Md(`) with dim(P ) = k. Then there is a representative

(v1, . . . ,vn−1) ∈ [P ]

such that Span(v1, . . . ,vn−1) = Span(e1, . . . ,ek).
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Proof. If k = d the statement is trivial. If k < d, let (u1, . . . ,uk) be an orthonormal basis

for Span(v1, . . . ,vn−1) ⊊ Rd. Since SO(d) acts transitively on orthonormal bases of proper

subspaces of Rd, there exists T ∈ SO(d) such that T (ui) = ei for all i = 1, . . . , k, where

(e1, . . . ,ed) is the standard basis on Rd. Then T (P ) ⊂ Span(e1, . . . ,ek).

Proposition 3.4.5. Let ` ∈ int(Dn). The images Dd(`) = [diagd](Md(`)) for d ≥ 2 form a

chain of inclusions that stabilizes at d = n − 1 ∶

D2(`) D3(`) ⋯ Dn−1(`) Dn(`) Dn+1(`) ⋯

Proof. Remark 3.4.3 implies that [diagd](Md(`)) ⊂ [diagd+1](Md+1(`)). It remains to

show that [diagd+1](Md+1(`)) ⊂ [diagd](Md(`)) if d ≥ n − 1. Suppose d ≥ n − 1 and let

[diagd+1]([P ]) ∈ [diagd+1](Md+1(`)). Since d+1 > n−1, by Lemma 2.1.7, k = dim(P ) < d+1,

so by Lemma 3.4.4 there is a representative (v1, . . . ,vn−1) ∈ [P ] with Span(v1, . . . ,vn−1) ⊂

Span(e1, . . . ,ek) ⊊ Rd+1. Thus if p ∶ Rd+1 → Rd is projection onto the first d coordi-

nates, we have p(vi) ∈ Rd and ∣p(vi) − p(vi−1)∣ = ∣v1 − vi−1∣ = li for all i = 1, . . . , n. Thus

[p(v1), . . . , p(vn−1)] ∈ Md(`). Since truncating zeros does not affect diagonal lengths, we

have [diagd]([p(v1), . . . , p(vn−1)] = [diagd+1]([P ]), so [diagd+1]([P ]) ∈ [diagd](Md(`)).

Theorem 3.4.6. Let ` ∈ int(Dn), and let d > 2. Then Md(`) and Md+1(`) are homeomor-

phic if and only if d ≥ n.

Proof. Let ` ∈ int(Dn). We show that the map αd ∶ Md(`) → Md+1(`) in Equation 3.6 is

an embedding if and only if d ≥ n. We first show that αd is not injective if d < n. Since

` ∉ b(Dn), Proposition 2.3.6 says there exist P ∈ Vd(`) with dim(P ) > 1, so Lemma 2.1.8

says there exist P ∈ Vd(`) with dim(P ) = d. Let P ∈ Vd(`) with dim(P ) = d. Proposition

3.3.2 says the SO(d) orbit of P is a proper subset of the O(d) orbit of P , so there exists
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some Q ∈ O(d)(P ) ∖ [P ], and thus [P ] ≠ [Q]. However, as we will see, αd([P ]) = αd([Q]).

Since Q ∈ O(d)(P ) we have O(d)(P ) = O(d)(Q). Thus by Lemma 3.4.1 we have

O(d + 1)(ad(P )) = O(d + 1)(ad(Q)). (3.8)

But now ad(P ) and ad(Q) are polygons of dimension d in Vd+1(`), so Proposition 3.3.2 says

their O(d+1) orbits are equal to their SO(d+1) orbits. Thus (3.8) says [ad(P )] = [ad(Q)],

and thus αd([P ]) = αd([Q]).

Now we show that αd is a homeomorphism if d ≥ n. Consider the following commutative

diagram.

Md(`) Md+1(`)

R(
n
2
)−n

αd

[diagd] [diagd+1]

Remark 3.4.3 says [diagd]([P ]) = [diagd+1](αd([P ])) for all P ∈ Vd(`), and Theorem

3.3.4 says [diagd] and [diagd+1] are both embeddings, so the map [diagd+1]−1 ○ [diagd]

is a well-defined embedding equal to αd. By Proposition 3.4.5 we have [diagd](Md(`)) =

[diagd+1](Md+1(`)), so the embedding αd is onto, and thus

Corollary 3.4.7. For all 2 ≤ d < e define the map

αd,e ∶Md(`)→Me(`)

[P ]↦ αe−1 ○ ⋯ ○ αd([P ])

The pair ⟨Md(`), αd,e⟩ defines a directed system of topological spaces. If ` ∈ int(Dn)

limÐ→Md(`) =Mn(`).
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Proof. This is the content of Theorem 3.4.6 framed in the language of directed systems.

The relationship between the direct system of moduli spaces in Corollary 3.4.7 and the

direct system of their diagonals images in Proposition 3.4.5 is summed up in the diagram

below. The diagonals system stabilizes one dimension sooner than the moduli space system,

because the diagonals map does not see the difference between O(d) and SO(d) orbits of

polygons, which are still distinct in Mn−1(`) but collapse in Mn(`).

M2(`) M3(`) ⋯ Mn−1(`) Mn(`) Mn+1(`) ⋯

D2(`) D3(`) ⋯ Dn−1(`) Dn(`) Dn+1(`) ⋯
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Chapter 4: 4-gons

4.1 4-gons in R2

Millson and Kapovich proved the following theorem for 4-gons in R2.

Theorem 4.1.1 ([KM95]). Let ` ∈ int(D4). If depth(`) = 0, M2(`) is homeomorphic to

a circle or the disjoint union of two circles. If depth(`) = 1, M2(`) is homeomorphic to a

bouquet of two circles. If depth(`) = 2, M2(`) is homeomorphic to the union of two circles

identified at two different points. If depth(`) = 3, M2(`) is homeomorphic to the union of

three circles in which each pair of circles has a common point.

In this section we provide a constructive proof of Theorem 4.1.1 by presenting M2(`) as

a CW -complex for all ` ∈ int(D4). In Subsection 4.1.1 we show that M2(`) is CW -complex.

In Subsections 4.1.2, 4.1.3, 4.1.4, and 4.1.5, we describe the particular CW -complexes for

depth(`) = 0,1,2, and 3, respectively.

4.1.1 Building a CW -complex

In this subsection we show that M2(`) is a CW -complex of line segments. In Lemma 4.1.2

we define a line segment [a, b] in terms of `. In Lemma 4.1.4 we define a unique polygon

in Vd(`) for every value t ∈ [a, b]. Equations 4.2 use this unique polygon to define four

“standard” polygons in Vd(`) for every value t ∈ [a, b]. Lemma 4.1.6 and Corollary 4.1.7

show that these definitions give four embeddings of [a, b] into Md(`). Lemmas 4.1.8 and

4.1.9 show that the embeddings fill all of Md(`) (except for a special case to be safely ignored

until Subsection 4.1.5), and overlap only on their boundaries, if at all. This is enough to

conclude that Md(`) is a CW -complex of line segments [a, b].
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Lemma 4.1.2. Let ` = (l1, l2, l3, l4) ∈ int(D4). Then for all d ≥ 2, the image diagd0,2(Vd(`))

is a line segment [a, b] with 0 ≤ a < b. In particular,

diagd0,2(Vd(`)) = [max{∣l1 − l2∣, ∣l3 − l4∣},min{l1 + l2, l3 + l4}].

Proof. We have t ∈ diagd0,2(Vd(`)) if and only if (l1, l2, t), (t, l3, l4) ∈ D3, that is, if and only

if the triangle inequalities

t ≤ l1 + l2, t ≤ l3 + l4, t ≥ l1 − l2, t ≥ l3 − l4, t ≥ l2 − l1, t ≥ l4 − l3 (4.1)

are satisfied. Thus we have diagd0,2(V2(`)) = [a, b] where

a = max{l1 − l2, l2 − l1, l3 − l4, l4 − l3} = max{∣l1 − l2∣, ∣l3 − l4∣}, b = min{l1 + l2, l3 + l4}.

It remains to show 0 ≤ a < b. Clearly a ≥ 0. If a ≥ b then either there exists {i, j} ∈

{{1,2},{3,4}} such that li−lj ≥ li+lj , contradicting lj > 0, or there exist distinct {i, j},{k, l} ∈

{{1,2},{3,4}} such that li − lj ≥ lk + ll, i.e. li ≥ lj + lk + ll, contradicting ` ∈ int(D4). Thus

a < b, completing the proof.

Remark 4.1.3. It follows from the inequalities (4.1) that exactly one of l1 + l2 and l3 + l4 is

in [a, b]. Thus if l1 + l2 ∈ [a, b] then b = l1 + l2, and if l3 + l4 ∈ [a, b] then b = l3 + l4. Similarly,

exactly one of ∣l1 − l2∣ and ∣l3 − l4∣ is in [a, b]. Thus if ∣l1 − l2∣ ∈ [a, b] then a = ∣l1 − l2∣, and if

∣l3 − l4∣ ∈ [a, b] then a = ∣l3 − l4∣.

Let H1 be the nonnegative ray in R and let H2 = R ×H1 be the closed upper halfplane

in R2.

Lemma 4.1.4. Let A = H2 × (H1 × {0}) ×H2 ⊂ R6. For all ` ∈ int(D4) and all t ∈ [a, b] not

equal to 0, the fiber (diag0,2)−1(t) contains a unique polygon P ∈ A. We denote this polygon

(v1(t),v2(t),v3(t)).
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Proof. Let t ∈ [a, b] with t ≠ 0. Given any Q ∈ V2(`) we have O2(Q) ⊂ V2(`), and there is

some T ∈ O(3) such that T (Q) ∈ A. Thus if P ∈ diag−1
0,2(t) there exists T ∈ O(2) so that

T (P ) ∈ A and since T is an isometry we have T (P ) ∈ diag−1
0,2(t), thus proving existence. To

show uniqueness suppose (v1,v2,v3), (w1,w2,w3) ∈ A∩(diag2
0,2)−1(t). Then v2 = w2 = te1,

so both 0,v1, te1 and 0,w1, te1 are vertices of triangles with v1,w1 ∈ H2. Thus since t ≠ 0,

v1 = w1. Similarly, both 0,v3, te1 and 0,w3, te1 are vertices of triangles with v3,w3 ∈ H2,

so v3 = w3. See Figure 4.1.

v1(a)

v2(a)

v3(a)

v1(t1)

v2(t1)

v3(t1)

v1(t2)

v2(t2)

v3(t2)

v1(t3)

v2(t3)

v3(t3)

v1(t4)

v2(t4)

v3(t4)

v1(b)

v2(b)

v3(b)

Figure 4.1: Given ` ∈ int(D4) so that a ≠ 0, we show the unique polygon (v1(t),v2(t),v3(t))
of Lemma 4.1.4 for six values a < t1 < t2 < t3 < t4 < b ∈ [a, b].

Let (x1, x2) = (x1,−x2). Define the maps fi ∶ [a, b]→ V2(`), i ∈ {1,2,3,4} as follows:

f1(t) = (v1(t),v2(t),v3(t))

f3(t) = (v1(t),v2(t),v3(t))

f2(t) = (v1(t),v2(t),v3(t))

f4(t) = (v1(t),v2(t),v3(t))
(4.2)

where (v1(t),v2(t),v3(t)) is the unique polygon determined by t in Lemma 4.1.4 if t ≠ 0,

and (v1(0),v2(0),v3(0)) = (l1e2,0, l4e2). See Figure 4.2. We will be able to avoid the case

t = 0 until Subsection 4.1.5.
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v1(t)

v2(t)

v3(t) v1(t)

v2(t)

v3(t)

v1(t)

v2(t)

v3(t) v1(t)

v2(t)

v3(t)

Figure 4.2: Given ` ∈ int(D4) and t ∈ [a, b], t ≠ 0, we show, clockwise from top left, the
polygons f1(t), f2(t), f3(t), f4(t).

Remark 4.1.5. Given t ≠ 0, since f1(t) is the unique polygon in diag−1
0,2(t) ∩ A, then

f2(t) = (v1,v2,v3) is the unique polygon with (v1,v2,v3) ∈ diag−1
0,2(t) ∩A, f3 = (v1,v2,v3)

is the unique polygon with (v1,v2,v3) ∈ diag−1
0,2(t)∩A, and f4(t) = (v1,v2,v3) is the unique

polygon with (v1,v2,v3) ∈ diag−1
0,2(t) ∩A.

Lemma 4.1.6. The maps fi are embeddings [a, b]↪ V2(`).

Proof. It suffices to show that f1 is an embedding. Note that f1 has continuous inverse

diag0,2 ∶ im(f1) → [a, b]. Since continuous bijections from compact spaces to Hausdorff

spaces are homeomorphisms, and since [a, b] is Hausdorff, it remains to show that im(f1)

is a compact subspace of V2(`). Since V2(`) is itself compact it suffices to show that im(f1)

is closed in V2(`). The set A defined in Lemma 4.1.4 is closed in R6, so A ∩ V2(`) is closed

in V2(`), and A ∩ V2(`) is precisely im(f1).

Corollary 4.1.7. For i = 1,2,3,4, the map [fi] = π ○ fi ∶ [a, b]→M2(`) is an embedding.
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Proof. Since fi ∶ [a, b] → V2(`) is an embedding it suffices to show that π ∶ im(fi) →M2(`)

is an embedding. Since π is continuous it suffices to show that it is injective on im(fi). If

π(fi(t)) = π(fi(s)) then fi(t) and fi(s) must have the same diagonal lengths, so we have

t = diag0,2(fi(t)) = diag0,2(fi(s)) = s, so fi(t) = fi(s).

Lemma 4.1.8. If a ≠ 0 then M2(`) = ⋃i=1,2,3,4[fi]([a, b]).

Proof. Clearly⋃i=1,2,3,4[fi]([a, b]) ⊂M2(`), so it remains to showM2(`) ⊂ ⋃i=1,2,3,4[fi]([a, b]).

Let [P ] ∈ M2(`) and choose a representative P = (v1,v2,v3) with v2 = te1. Either

v1,v3 ∈ H2, v1,v3 ∈ H2, v1,v3 ∈ H2, or v1,v3 ∈ H2. If a ≠ 0 then t ≠ 0, so by Remark

4.2.4 P ∈ {f1(t), f2(t), f3(t), f4(t)}, and thus [P ] ∈ ⋃i=1,2,3,4[fi]([a, b]).

Lemma 4.1.9. Given i ≠ j in {1,2,3,4}, if fi(t) = fj(t) then t ∈ {a, b}.

Proof. If fi(t) = fj(t) then v1(t) = v1(t) or v3(t) = v3(t), so v1(t) = ±l1e1 or v3(t) = ±l4e1.

If v1(t) = ±l1e1 then since v2(t) = v1(t)+l2p2 we have te1 = ±l1e1±l2e1, so t ∈ {l1+l2, ∣l1−l2∣}.

By Remark 4.1.3, if t = l1 + l2 then t = b and if t = ∣l1 − l2∣ then t = a. On the other hand if

v3(t) = ±l4e1 then since v2(t) = v3(t)− l3p3 we have te1 = ±l4e1± l3e1 so t ∈ {l3+ l4, ∣l3− l4∣}.

If t = l3 + l4 then t = b and if t = ∣l3 − l4∣ then t = a.

Lemma 4.1.10. Let ` ∈ int(D4) and let [a, b] = diag0,2(V2(`)). Suppose a ≠ 0. Then

(i) a = ∣l1 − l2∣ if and only if f1(a) = f3(a) and f2(a) = f4(a);

(ii) a = ∣l3 − l4∣ if and only if f1(a) = f2(a) and f3(a) = f4(a).

(iii) b = l1 + l2 if and only if f1(b) = f3(b) and f2(b) = f4(b);

(iv) b = l3 + l4 if and only if f1(b) = f2(b) and f3(b) = f4(b).

Proof. We start by proving (i). The proofs of (ii), (iii), and (iv) will follow by permuting

symbols. If a = ∣l1−l2∣ then v2(a) = ∣l1−l2∣e1, so 0,v1(a), ∣l1−l2∣e1 are the vertices of a triangle

with edge lengths l1, l2, ∣l1 − l2∣, and thus are colinear. Since ∣l1 − l2∣ ≠ 0, v1(a) = ±l1e1 and
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thus v1(a) = v1(a). Therefore f1(a) = f3(a) and f2(a) = f4(a). Conversely, if f1(a) = f3(a)

and f2(a) = f4(a), then v1(a) = v1(a) so v1(a) = ±l1e1. Thus 0,v1(a),v2(a) are colinear

vertices of a triangle with edge lengths, l1, l2, a, so a = ∣l1 − l2∣. The proof of (ii) is identical

to that of (i) after replacing l1 by l3, l2 by l4, f1 by f3, f2 by f4, and v1 by v3. The proof

of (iii) is identical to that of (i) after replacing a with b and l1 − l2 with l1 + l2. The proof

of (iv) is identical to that of (ii) after replacing a with b and l3 − l4 with l3 + l4.

Proposition 4.1.11. For all ` ∈ int(D4)∖ {(1
4 ,

1
4 ,

1
4 ,

1
4
)}, the moduli space M2(`) is a CW-

complex of line segments.

Proof. Let ` ∈ int(D4) ∖ {(1
4 ,

1
4 ,

1
4 ,

1
4
)}. Since ` ≠ (1

4 ,
1
4 ,

1
4 ,

1
4
) there is some permutation of

the edge lengths so that a ≠ 0, thus by Lemma 3.1.8 we may assume a ≠ 0 without loss of

generality. Lemma 4.1.8 says M2(`) = [f1]([a, b]) ∪ [f2]([a, b]) ∪ [f3]([a, b]) ∪ [f4]([a, b]).

Lemma 4.1.6 says each [fi] is an embedding. Lemma 4.1.9 says that the [fi]([a, b]) do not

intersect on the interior of [a, b]. Together, these Lemmas present M2(`) as a CW-complex

of line segments [a, b], with characteristic maps [fi].

In the following subsections we see how the depth of ` determines exactly which of the

possibilities in Lemma 4.1.10 obtain, and thus determines the CW -complex M2(`). Recall

the space D4 and its walls from Figure 2.7, shown again in Figure 4.3

Figure 4.3: The space D4 and some of its walls.
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The walls of D4 not on the border of D4 are given by the equations

l1 + l2 = l3 + l4 (4.3)

l1 + l3 = l2 + l4 (4.4)

l1 + l4 = l2 + l3. (4.5)

4.1.2 Depth 0

Lemma 4.1.12. If ` ∈ D4 has depth 0, then M2(`) is homeomorphic to a circle or the

disjoint union of two circles.

Suppose depth(`) = 0. Since none of the wall equations (4.3), (4.4), (4.5) are satisfied,

we have l1 + l2 ≠ l3 + l4 and ∣l1 − l2∣ ≠ ∣l3 − l4∣. The four possibilities for the values of a and b,

along with the gluing relations implied by Lemma 4.1.10 are listed here:

(i) a = ∣l1 − l2∣ ≠ ∣l3 − l4∣ and b = l1 + l2 ≠ l3 + l4 Ô⇒ f1(a) = f3(a) ≠ f2(a) = f4(a) and

f1(b) = f3(b) ≠ f2(b) = f4(b)

(ii) a = ∣l3 − l4∣ ≠ ∣l1 − l2∣ and b = l3 + l4 ≠ l1 + l2 Ô⇒ f1(a) = f2(a) ≠ f3(a) = f4(a) and

f1(b) = f2(b) ≠ f3(b) = f4(b)

(iii) a = ∣l1 − l2∣ ≠ ∣l3 − l4∣ and b = l3 + l4 ≠ l1 + l2 Ô⇒ f1(a) = f3(a) ≠ f2(a) = f4(a) and

f1(b) = f2(b) ≠ f3(b) = f4(b)

(iv) a = ∣l3 − l4∣ ≠ ∣l1 − l2∣ and b = l1 + l2 ≠ l3 + l4 Ô⇒ f1(a) = f2(a) ≠ f3(a) = f4(a) and

f1(b) = f3(b) ≠ f2(b) = f4(b)

The CW-complex in Case (i) is shown in Figure 4.4; the CW-complex in Case (ii) is identical

to Case (i) after swapping f2 with f3. The CW-complex in Case (iii) is shown in Figure

4.5; the CW-complex in Case (iv) is identical to (iii) after swapping f2 with f3.
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im([f1]) im([f2])

im([f3]) im([f4])

[f1](a) = [f3](a) [f1](b) = [f3](b) [f2](a) = [f4](a) [f2](b) = [f4](b)

Figure 4.4: The CW-complex M2(`) when ` is in a depth-0 cell with a = ∣l1−l2∣ and b = l1+l2.

im([f1]) im([f3])

im([f2]) im([f4])

[f1](b) = [f2](b) [f3](b) = [f4](b)

[f1](a) = [f3](a)

[f2](a) = [f4](a)

Figure 4.5: The CW-complex M2(`) when ` is in a depth-0 cell with a = ∣l1−l2∣ and b = l3+l4.

4.1.3 Depth 1

Let ` be in a cell of depth 1 of D4. Then exactly one of equations (4.3), (4.4), and (4.5)

holds. By Lemma 3.1.8 it is enough to check the case when (4.3) holds. Then b = l1 + l2 =

l3 + l4 so f1(b) = f2(b) = f3(b) = f4(b). Also ∣l1 − l2∣ ≠ ∣l3 − l4∣, otherwise one of (4.4) or

(4.5) would hold as well. Thus either f1(a) = f3(a) ≠ f2(a) = f4(a) if a = ∣l1 − l2∣, or

f1(a) = f2(a) ≠ f3(a) = f4(a) if a = ∣l3 − l4∣. The CW-complex in the case a = ∣l1 − l2∣ is

shown in Figure 4.6; the case a = ∣l3 − l4∣ is identical after swapping f2 with f3.
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im([f1]) im([f2])

im([f3]) im([f4])

[f1](a) = [f3](a)
[f1](b) = [f2](b) = [f3](b) = [f4](b)

[f2](a) = [f4](a)

Figure 4.6: The CW-complex M2(`) when ` lies in a depth-1 cell with l1 + l2 = l3 + l4, and
a = ∣l1 − l2∣.

4.1.4 Depth 2

Given ` = (l1, l2, l3, l4) in a cell of depth 2 of D4, exactly two of equations (4.3), (4.4),

and (4.5) hold, and any two imply b = l1 + l2 = l3 + l4 and a = ∣l1 − l2∣ = ∣l3 − l4∣. Thus we

have f1(b) = f2(b) = f3(b) = f4(b) and f1(a) = f2(a) = f3(a) = f4(a). The corresponding

CW-complex is shown in Figure 4.7.

im([f1])

im([f2])

im([f4])

im([f3])

[f1](a) = [f2](a) = [f3](a) = [f4](a) [f1](b) = [f2](b) = [f3](b) = [f4](b)

Figure 4.7: The polygon space M`(2) when ` lies in a depth-2 cell.

4.1.5 Depth 3

If depth(`) = 0 then ` satisfies all three of equations (4.3), (4.4), and (4.5), and thus

l1 = l2 = l3 = l4 = 1/4, and in particular the line segment [a, b] is [0,1/2]. In this case

the union of images of line segments ⋃i=1,2,3,4[fi]([a, b]) does not make up all of M2(`).
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We construct two additional embeddings of line segments into M2(`). Given θ ∈ [0, π]

let Tθ ∈ SO(2) be counter-clockwise rotation through θ radians, and let T−θ ∈ SO(2) be

clockwise rotation through θ radians. Define two maps

g± ∶ [0, π]→ V2(`)

θ ↦ 1

4
(e2, 0, T±θ(e2)),

where e2 = (0,1) ∈ R2. See Figure 4.8

1
4e2

0

1
4 (T−π

4
(e2))

Figure 4.8: The polygon gi(π/4) ∈ Vd(`).

Clearly the maps g± are embeddings into R6 and thus into V2(`), so the maps [g±] ∶

[a, b] → M2(`), θ ↦ [g±(θ)] are embeddings as well. We also have [g+](0) = [g−](0) =

[f2](0) = [f3](0) = [(le2,0, le2)] and [g+](π) = [g−](π) = [f1](0) = [f3](0) = [(le2,0,−le2)].

Away from these points the pairwise intersections of im[g±], im[fi] are empty. We now

have six embeddings of line segments

[0, π]+, [0, π]−, [a, b]1, [a, b]2, [a, b]3, [a, b]4

into M2(`) whose images comprise all of M2(`) and intersect only on their boundaries. The

resulting CW -complex is shown in Figure 4.9.

55



[g+](0) = [g−](0) = [f2](0) = [f3](0)

[g+](π) = [g−](π) = [f1](0) = [f4](0)

[f1](b) = [f2](b) = [f3](b) = [f4](b)im([g−]) im([g+])

im([f3])

im([f4])

im([f2])

im([f1])

Figure 4.9: The CW-complex M2(`) when ` is the depth-3 cell l1 = l2 = l3 = l4.

4.2 4-gons in R3

Theorem 4.2.3 says thatM3(`) is homeomorphic to a sphere for all ` ∈ int(D4). Compare this

result to results developed in [HMM11] and [KM96]. In particular, Millson and Kapovich

show that if ` ∈ int(Dn) then M3(`) is complex-analytically isomorphic to the weighted

quotient of (S2)n by PLS(2,C), and this quotient is isomorphic to S2 when n = 4. [KM96].

We use the diagonals map to give a constructive proof in the special case n = 4 by showing

that M3(`) is homeomorphic to two disks glued together along their boundary.

Proposition 4.2.1. Let ` ∈ int(D4). Then D3(`) is homeomorphic to a disk.

Proof. Let ` ∈ int(D4) and recall from Lemma 4.1.2 that the set of (0,2)-diagonal lengths

of polygons in M3(`) form a closed line segment [diag3
0,2](M3(`)) = [a, b]. We prove the

case a = 0 and a ≠ 0 separately, starting with a ≠ 0.

Let ` ∈ int(D4) and suppose a ≠ 0. Given t ∈ [a, b] recall the standard polygons f1(t) =

(v1(t),v2(t),v3(t)) and f2(t) = (v1(t),v2(t),v3(t)) in V2(`) defined in Equations 4.2, and

shown again in Figure 4.10.
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v1(t)

v2(t)

v3(t)

v1(t)

v2(t)

v3(t)

Figure 4.10: The polygons f1(t) and f2(t) for some t ∈ [a, b].

Define the functions c ∶ [a, b]→ R, t↦ diag2
1,3(f1(t)) and d ∶ [a, b]→ R, t↦ diag2

1,3(f2(t)).

See Figure 4.11.

v1(t)

v2(t)

v3(t)

c(t)

v1(t)

v2(t)

v3(t)

d(t)

Figure 4.11: The polygons f1(t) and f2(t) for some t ∈ [a, b], with their (1,3)-diagonal
lengths labeled.

The maps c and d are continuous since f1, f2 and diag2
1,3 are continuous. We observe

that c(t) is the distance between two points v1(t), v3(t) in the upper halfplane and d(t) is

the distance between v1(t) and the reflection v3(t) in the lower halfplane. Thus c(t) ≤ d(t)

for all t ∈ [a, b], and c(t) = d(t) if and only if one of v1(t), v3(t) lie on the intersection of

the upper and lower halfplanes. Moreover, one of v1(t), v3(t) lie on the intersection of the

upper and lower halfplanes if and only if t ∈ {a, b}. See Figure 4.12.
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v1(b) v2(b)

v3(b)

c(b)
v1(b) v2(b)

v3(b)

d(b)

(a) If v1(t) lies on the intersection of the upper and lower halfplanes, then t ∈ {a, b} and c(t) = d(t)
In the example pictured we have t = b.

v1(a)

v2(a)

v3(a) = v3(a)

c(a) = d(a)

(b) If v3(t) lies on the intersection of the upper and lower halfplanes, then t ∈ {a, b} and c(t) = d(t).
In the example pictured we have t = a.

Figure 4.12: If t ∈ {a, b} then either v1(t) or v3(t) lies on the intersection of the upper and
lower halfplanes, and thus c(t) = d(t). Conversely, if c(t) = d(t) then either v1(t) lies on the
intersection of the upper and lower halfplanes (Figure 4.12a) or v3(t) lies on the intersection
of the upper and lower halfplanes (Figure 4.12b); in either case we have t ∈ {a, b}.

Thus c and d are continuous functions defined on the same closed interval [a, b], with

c(t) < d(t) on (a, b) and c(t) = d(t) on {a, b}, so the region in R` ⊂ R2 bounded by the

graphs of c and d is homeomorphic to a disc. See Figure 4.13.
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(a, c(a)) = (a, d(a)) (b, c(b)) = (b, d(b))

d([a, b])

c([a, b])

R`

Figure 4.13: Given ` ∈ int(D4) the graphs of c ∶ [a, b] → diag2
1,3(f1(t)) and d ∶ [a, b] →

diag2
1,3(f2(t)) bound a region R` homeomorphic to a disc if a ≠ 0.

It remains to show that the diagonals image D3(`) is equal to R`. Let t ∈ [a, b] so that

f1(t) and f2(t) are the polygons in Vd(`) in Figure 4.10. Figure 4.14 shows their images in

V3(`) under the map a2 ∶ (R2)4 → (R3)4 from Section 3.4.

(v1(t), 0)

(v2(t), 0)
(v3(t), 0)

(v1(t), 0)

(v2(t), 0)(v3(t), 0)

Figure 4.14: The polygons a2(f1(t)) and a2(f2(t)) in V3(`), where f1(t) and f2(t) are the
polygons in V2(`) from Figure 4.10.

Since a2 is an isometry (see Remark 3.4.3) we have diag3
1,3(a2(f1(t))) = diag2

1,3(f1(t)) =

c(t) and diag3
1,3(a2(f2(t))) = diag2

1,3(f2(t)) = d(t) for all t ∈ [a, b]. Every [P ] ∈ M3(`)

with (0,2)-diagonal t has a representative (v1,v2,v3) such that v1 = (v1(t),0) and v2 =

(v2(t),0). Thus v3 must lie on the dashed circle in Figure 4.15.
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Figure 4.15: The set of all polygons in (diag3
0,2)−1(t) of the form ((v1(t),0), (v2(t),0),v3)

is the set of ((v1(t),0), (v2(t),0),v3) such that v3 sits on a circle.

Conversely, every tuple of the form ((v1(t),0), (v2(t),0),v3) where v3 lies on the circle

is a polygon in V3(`). Thus for all t ∈ [a, b], the set of (1,3)-diagonal lengths of polygons

in M3(`) with (0,2)-diagonal length t is the set of distances from (v1(t),0) to points on

the dashed circle in Figure 4.15. This set of distances is precisely [c(t), d(t)]. Thus every

point in the region R` is [diag]([P ]) for some [P ] ∈ M3(`), and every [P ] ∈ M3(`) has

[diag]([P ]) ∈ R`.
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Most of what we have done so far applies to case a = 0. Let ` ∈ int(D4) such that a = 0.

The functions c ∶ [0, b] → R, t ↦ diag2
1,3(f1(t)) and d ∶ [0, b] → R, t ↦ diag2

1,3(f2(t)) are still

continuous functions with c(t) < d(t) on [0, b] and c(b) = d(b). However c(0) = ∣l1 − l3∣ ≠

d(0) = l1 + l3. See Figure 4.16.

v1(0)

v2(0)

v3(0)

v1(0)

v2(0)

v3(0)

Figure 4.16: The polygons f1(0) (left) and f2(0) (right).

Thus the graphs of c and d do not bound a region in R2. However the graphs of c and

d along with the line segment [(0, c(0), (0, d(0)] do bound a region R`,a=0, and this region

is again homeomorphic to a disk. See Figure

(0, d(0))

(0, c(0))

(b, c(b)) = (b, d(b))

d([a, b])

c([a, b])

R`,a=0

Figure 4.17: Given ` ∈ int(D4) such that a = 0, the graphs of c and d along with the line
segment [(0, c(0), (0, d(0)] bound a region homeomorphic to a disk.

It remains to show that the diagonals image D3(`) is equal to R`,a=0, but again most

of our work is done. If we let D3(`)a≠0 denote the diagonals image of all polygons P ∈
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M3(`) with diag0,2(P ) ≠ 0, then D3(`)a≠0 is equal to R`,a=0 minus the boundary component

[(0, c(0), (0, d(0)]. It remains to show that the diagonals image of all polygons P ∈M3(`)

with diag0,2 = 0 is equal to [(0, c(0), (0, d(0)], and this is clear from Figure

Figure 4.18: The diagonals image of all polygons P ∈ M3(`) with diag0,2 = 0 is equal to

[(0, c(0)), (0, d(0))].

Recall from Subsection 4.1.1 that H1 is defined to be the non-negative ray in R and

H2 = R ×H1 is the closed upper halfplane in R2. In addition let H3 = R2 ×H1 be the closed

upper halfspace in R3.

Lemma 4.2.2. Let B = (H2 × {0}) × (H1 × {(0,0)}) × H3 ⊂ (R3)3. Then for all (t, s) ∈

diag(V3(`)) with t ≠ 0, the fiber diag−1((t, s)) contains a unique polygon P ∈ B. We denote

this polygon (v1(t, s),v2(t, s),v3(t, s)).

Proof. Let (t, s) ∈ diag(V3(`)) with t ≠ 0. Given any Q ∈ V3(`) we have O3(Q) ⊂ V3(`), and

there is some T ∈ O(3) such that T (Q) ∈ B. Thus if P ∈ diag−1((t, s)) there exists T ∈ O(3)

so that T (P ) ∈ B and since T is an isometry we have T (P ) ∈ diag−1((t, s)), thus proving

existence. To show uniqueness suppose (v1,v2,v3), (w1,w2,w3) ∈ B ∩ (diag3)−1((t, s)).

Then v2 = w2 = te1, so both 0,v1, te1 and 0,w1, te1 are vertices of triangles with v1,w1 ∈

H2 × {0}. Thus since t ≠ 0, v1 = w1. Now, (0,v1,v2,v3) and (0,v1,v2,w3) are both

triangular pyramids with base {0,v1,v2} ⊂ R2 × {0}. Since the distances from the apex

v3 to the base vertices 0, v1, v2 are the same as the distances from the apex w3 to the
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base vertices 0, v1, v2 (they are, respectively, l4, s, and l3), we conclude that v3 = w3. See

Figure 4.19.

v1(t, s)

v2(t, s)

v3(t, s)

Figure 4.19: The unique polygon P ∈ diag−1((t, s)) ∩B for some (t, s) ∈ diag(V3(`)).

Theorem 4.2.3. Given ` ∈ int(D4), the moduli space M3(`) is homeomorphic to S2.

Proof. Let (x1, x2, x3) = (x1, x2,−x3). Define the maps

g1 ∶ D3(`)→ V3(`) g2 ∶ D3(`)→ V3(`)

(t, s)↦ (v1(t, s),v2(t, s),v3(t, s)) (t, s)↦ (v1(t, s),v2(t, s),v3(t, s)),

where (v1(t, s),v2(t, s),v3(t, s)) is the unique polygon in Lemma 4.2.2 if t ≠ 0, and

if t = 0 set v1(0, s) = l1e2, v2(0, s) = 0, and let v3(0, s) be the point in the upper half

of the coordinate hyperplane Span(e2,e3) uniquely determined by the closing conditions

∣vk − vk−1∣ = lk. See Figure 4.20.
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v1(t, s)

v2(t, s)

v3(t, s)

v1(t, s)

v2(t, s)

v3(t, s)

(a) The polygons g1((t, s) and g2((t, s)) for some (t, s) ∈ diag(V3(`)) with t ≠ 0.

v1(0, s)

v2(0, s)

v3(0, s)

v1(0, s)
v2(0, s)

v3(0, s)

(b) The polygons g1((0, s) and g2((0, s)) for some (0, s) ∈ diag(V3(`)).

Figure 4.20: The polygons g1((t, s) and g2((t, s)) for some (t, s) ∈ diag(V3(`)) with t ≠ 0
(Figure 4.20a) and with t = 0 (Figure 4.20b).

Remark 4.2.4. Since g1((t, s)) is the unique polygon in diag−1((t, s))∩B, then g2((t, s)) =

(v1,v2,v3) is the unique polygon with (v1,v2,v3) ∈ diag−1((t, s)) ∩B.

We claim that g1 and g2 are embeddings. It suffices to show that g1 is an embedding.

Note that g1 has continuous inverse diag ∶ im(g1)→D3(`). Since a continuous bijection from

a compact space to a Hausdorff space is a homeomorphism, and since D3(`) is Hausdorff,

it remains to show that im(g1) is compact. Since V3(`) is compact it suffices to show that

im(g1) is closed in V3(`). But B is closed in R9 and im(g1) is precisely the closed set

B ∩ V3(`).

Now we claim that [gi] = π ○ gi ∶ D3(`) → M3(`) is an embedding for i = 1, 2. Again,

it suffices to show that [g1] is an embedding, and since g1 ∶ [a, b] → V3(`) is an embedding

it suffices to show that π ∶ im(g1) → M3(`) is an embedding. Since π is continuous it
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suffices to show that it is injective on im(g1). If π(g1((t, s))) = π(g1((u, v))) then g1((t, s))

and g1((u, v)) must have the same diagonal lengths, so we have (t, s) = diag(g1((t, s))) =

diag(g1((u, v)) = (u, v), so g1((t, s)) = g1((u, v)). If t = 0.

Finally M4(`) = [g1](D3(`))∪ [g2](De(`)), and [g1]((t, s)) = [g2]((t, s)) if and only if t

is on the boundary of [a, b] and s is on the boundary of [ct, dt]; equivalently [g1]((t, s)) =

[g2]((t, s)) if and only if (t, s) ∈ ∂(D3(`)). Thus M4(`) is the sphere D3(`) ∪[gi] D3(`)

4.3 4-gons in R4

Theorem 4.3.1. For all ` ∈ int(D4), and for all d ≥ 4, Md(`) is homeomorphic to a disk.

Proof. By Theorem 3.4.6, Md(`) is homeomorphic to M4(`) for all d ≥ 4. By Theorem

3.3.4, M4(`) is homeomorphic to [diag4](M4(`)). By Proposition 3.4.5, [diag4](M4(`)) =

[diag3](M3(`)). By Proposition 4.2.1, [diag3](M3(`)) is homeomorphic to a disk.
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Chapter 5: Future directions

We first give a conjecture on the stratification of polygon spaces. Since Vd(`) is an algebraic

variety it is a stratified manifold. Since SO(d) is compact, Md(`) is a semi-algebraic set

and is thus also a stratified manifold.

Conjecture 5.0.1. The stratifications of Vd(`) and Md(`) by dimension are stratifications

by manifolds.

As evidence for Conjecture 5.0.1 we note that the diagonals image D4(`) of M4(`),

when ` = (1,1,1,1), is the region R in the non-negative orthant of R2 bounded by the

circle of radius 2 centered at the origin. The interior of R is a 2-manifold and is equal to

[diag4](M3
4 (`)). The interiors of the smooth boundary components of R are 1-manifolds and

are together equal to [diag4](M2
4 (`)). The remaining boundary components are the points

(0,0), (2,0), and (0,2), which are together equal to [diag4](M1
4 (`)). Since [diag4] is a

homeomorphism onto its image in this case, the stratificationM4(`) =M1
4 (`)⊔M2

4 (`)⊔M3
4 (`)

is a stratification by manifolds.

The next conjecture seeks to generalize a result of Farber and Fromm. The walls Wa

of Dn subdivide the closure of Dn into a polytopal complex Cn. A cell of Cn is the interior

of a polytope in Cn. An m-cell of Cn is the interior of an m-dimensional polytope in Cn.

It is known that if ` and `′ lie in the same (n − 1)-cell of Cn, then Vd(`) and Vd(`′) are

O(d)-equivariantly diffeomorphic [FF13]. Conjecture 5.0.2 seeks to generalize this to cells

of arbitrary dimension.

Conjecture 5.0.2. If ` and `′ lie in the same cell of Cn, then V ○
d (`) and V ○

d (`
′) are O(d)-

equivariantly diffeomorphic.
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We observe that if ` and `′ lie in the same cell then depth(`) = depth(`′). Thus if

Conjecture 5.0.2 holds we have decompositions Vd(`) = V ○
d (`) ⊔ V

1
d (`) and Vd(`) = V ○

d (`) ⊔

V 1
d (`), where V ○

d (`) and V ○
d (`

′) are diffeomorphic as manifolds, and V 1
d (`) and V 1

d (`
′) are

isomorphic as varieties, since they are both the disjoint union of depth(`) = depth(`′) many

spheres. The proof presented in [FF13] for the case depth(`) = 0 uses cobordisms. A

different proof, using Ehresmann’s Fibration Theorem is presented in the masters thesis of

Sean Lawton [Law03]. We conjecture that at least one of the proof methods, perhaps with

some modifications, may be applied to the non-generic case depth(`) > 0.

Our final conjecture refers to the stable limit of moduli spaces of `-gons.

Conjecture 5.0.3. The limit limÐ→Md(`) is contractible.

As evidence for Conjecture 5.0.3 we reference the case of 4-gons, in which limÐ→Md(`) is

homeomorphic to a disc.
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