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Dissertation Director: Dr. Iosif Vaisman 

 

This dissertation explores the relationship between protein structural and 

topological properties using computational geometry approach. A representative 

nonredundant dataset containing 10,220 individual protein chains with known structures 

was created, and each amino acid residue in the set was matched to the corresponding 

codon. The Delaunay tessellation of all proteins in the dataset resulted in the four-body 

statistical potentials with both 20 letter amino acid alphabet and 61 letter codon alphabet. 

Compositional, geometric, and topological patterns in the codon based representation 

were identified and influence of the synonymous codons on protein structure was 

assessed. Both amino acid and codon based potentials were extensively tested for 

reliability and consistency and their performance in a number of applications was 

evaluated. Computational mutagenesis approach, where the new potentials were used in 

the machine learning models for predicting protein fitness and activity changes caused by 

mutations, demonstrated high accuracy of the predictions. In addition, a new method for 
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accurate identification of kinked α-helices by using both geometric and topological 

parameters was developed.  
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CHAPTER 1 : OVERVIEW 

1.1 Introduction to silent mutations in proteins 

Synonymous codons are translated into the same amino acids, and they were 

originally thought to have no effect on protein function or biocompatibility or 

evolutionary processes, hence the so-called "silent mutations" [1-3]. Recent evidence, 

however, shows that more than 50 human diseases afflicting most organ systems have 

been identified to be associated with synonymous mutations [1, 4], such as congenital 

disorder of glycosylation type ld (mutations G55G in ALG3 gene) [5], familial 

adenomatous polyposis (mutations R623R H652H; R653R in APC gene) [6, 7], 

androgen-insensitivity syndrome (mutations S888S in AR gene), [6] etc. Chen and co-

workers conducted a survey of 21,429 diseases-Single Nucleotide Polymorphism (SNPs) 

associations from a pool of 2,113 studies exploring human diseases and their association 

with non-synonymous SNPs and synonymous SNPs. Their results showed that a similar 

likelihood and effect size for human diseases association was observed from non-

synonymous SNPs and synonymous SNPs [8]. Their findings are consistent with the 

estimate that 5%~10% of human genes contain at least one region where synonymous 

mutations could be harmful by Chamary and Hurst [4]. The understanding of 

synonymous codons has important clinical and technological implications. In addition to 

their impact on disease risks described above, it is becoming more and more evident the 
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SNPs have a major role in individual differences observed in how patients respond to 

medical treatments in terms of efficacy and effectiveness, adverse effects and disease 

progression. For example, synonymous mutations in transporter ATP-binding cassette 

sub-family B member 1 (ABCB1) have shown implications in drug resistance to 

chemotherapeutic agents [9]. As personalized medicine is under intense research, and 

pharmacogenetics focuses on variation in the enzymes and transporters that determine the 

disposition of small molecule drugs, due consideration should be given to synonymous 

mutations.  

Though increasing evidence shows that synonymous mutations are associated 

with human diseases, the underlying molecular mechanisms in details of this association 

is rarely known. The results of various studies suggested a series of mechanisms for 

synonymous mutations in affecting the yields of active, correctly folded proteins and thus 

have an impact on physiological activity [10]. Recent evidence in the control of gene 

expression suggested that the dominance of regulation lies in translation level [11]. While 

it is generally accepted that codon bias contributes to translation efficiency by tuning the 

elongation rate of the protein synthesis process, the codon usage bias research is a 

potential promising perspective to understand the synonymous mutations’ role in protein 

structure and function. Codon usage bias in many different organisms indicated that 

synonymous codons were under evolutionary pressure [4, 12]. The rapid advances in the 

knowledge in protein synthesis and folding have led to new evidence that synonymous 

mutations can lead to abnormal mRNA splicing associated with human diseases [6]. A 

recent fascinating evidence is discovered by Bartoszewksi et al. that a synonymous 
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substitution in the cystic fibrosis transmembrane conductance regulator (CFTR), in which 

synonymous mutation from ATC to ATT encoding Isoleucine (Ile, I), leads to changes in 

the mRNA structure and subsequently a misfolded protein, which is associated with 

cystic fibrosis in humans. Corrected mRNA structure and higher protein levels were 

observed after returning synonymous mutations from ATT back to ATC [13].  

In summary, analysis of synonymous codons and synonymous mutations can 

provide insights into a better understanding of factors influencing protein structures and 

potential function alterations. Previous computational studies explored the association 

between synonymous codons and protein secondary structures including α-helix, β-

sheets, and coils, but a more comprehensive investigation on the structural relationship 

among amino acid residues encoded by synonymous codons has not been conducted yet. 

Additionally, there is a knowledge gap of how synonymous mutations influence the 

secondary structure and tertiary structure, and the subsequent protein function.  

1.2 Introduction to Delaunay tessellation method in protein structure analysis 

Delaunay tessellation is a widely used technique to assess structural and 

topological properties of proteins [14-31]. By using Delaunay tessellation, a protein is 

described as a set of points in three-dimensional space represented by (usually) α-carbon 

atoms in amino acid residues. Delaunay tessellation of a protein structure generates an 

aggregate of space-filling irregular tetrahedra called Delaunay simplices. The vertices of 

each simplex define objectively four nearest neighbor α-carbon atoms in amino acid 

residues. Throughout this dissertation, Delaunay tessellation is the most fundamental 



 
 

4 
 

method to assess and quantify the structural and topological properties of proteins. The 

detailed procedures to perform Delaunay tessellation are included in Chapter 2.  

1.3 Introduction to computational mutagenesis methods 

Saturation point mutagenesis is a tool for protein mutation-function analysis [21, 

32-37]. In a given residue, all 19 amino acid or all 60 non-stop codon substitutions were 

introduced. The functional impact (e.g., fitness, activity) caused by each one of the amino 

acid or synonymous codon substitutions in proteins are experimentally determined. The 

mutagenesis scores can be used as outcomes to quantify the impact of mutations on 

protein fitness and activity. We estimated Delaunay potentials in mutants and wild type 

proteins, reflecting the structural impacts of mutations. We linked mutagenesis scores and 

topological variables with protein experimental fitness/activity data, aiming to predict 

how protein fitness/activity change when new mutations were introduced.  

1.4 Overview of the work presented here 

My objectives for this dissertation were to improve existed knowledge-based 

potential scores, identify and characterize abnormal secondary structure, and link protein 

structure and function by using Delaunay tessellation. Additionally, the potential scores 

were utilized in computational mutagenesis methods to predict the topological impacts of 

cancer-causing silent mutations compared to non-cancer-causing ones.  

In Chapter 2, we created a dataset containing 10,220 individual protein chains 

with annotations of codons, amino acids, secondary structures, and α-carbon coordinates. 

We performed Delaunay tessellation on the proteins and calculated knowledge-based 

potential scores for different Delaunay simplex composition. The potential scores for 
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each simplex composition at the amino acid level were compared to a previous study, 

which had a smaller dataset, to test whether Delaunay tessellation can achieve reliable 

and reproducible results across different datasets. Additionally, knowledge-based 

potential scores were further estimated at the codon level as an extension of the previous 

studies. With the codon level potential scores, we further investigated whether cancer-

causing silent mutations had different topological structures compare to non-cancer-

causing silent mutations.  

In Chapter 3, we investigated whether the previously established computational 

mutagenesis methodology can be generalized to another protein, β-lactamase, by taking 

advantage of the publicly available saturation mutagenesis fitness data of β-lactamase at 

both amino acid and codon level. We investigate β-lactamase at the amino acid level in 

details, and compare performance at the amino acid level vs. codon level. We also 

applied the methodology to more proteins with mutagenesis activity data. Additionally, 

we tested whether model built for one protein can be used to predict mutagenesis score 

for another protein in the same activity category. The methods were also applied to 

pairwise amino acid substitutions. 

In Chapter 4, we developed a new method, “ValgusHel”, to classify α-helices into 

kinked, curved, and normal ones based on their geometry and topological properties. We 

validated the method by comparing the classification agreement with other available 

methods. This new method may serve as an additional method for researchers to identify 

kinked α-helices in the function-structure analysis. 
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CHAPTER 2 : FOUR-BODY POTENTIAL ANALYSIS USING DELAUNAY 
TESSELLATION AND THEIR APPLICATION IN CANCER-CAUSING SILENT 

MUTATION TOPLOGICAL ANALYSIS 

2.1 Overview 

In this chapter we created a dataset containing 10,220 protein chains with codon, 

amino acid, secondary structure annotations, and α-carbon coordinates. We performed 

Delaunay tessellation on proteins and obtained Delaunay simplices represented by both 

amino acid and codon compositions. We estimated knowledge-based potential for each 

simplex composition. The potential estimation for the same simplex composition at 

amino acid level in this study was compared to a previous study, which had a smaller 

dataset and analysis performed at only amino acid level. The result agreement would 

show whether Delaunay tessellation was able to produce reliable and consistent results 

across different datasets. We also explored factors impacting the potentials and improved 

the methods. The association between protein subgroups (enzymes, hydrolases) and 

potential estimations were explored. Knowledge-based potentials disturbance caused by 

cancer-causing vs. non-cancer-causing silent mutations were compared to reveal the 

impact of silent mutations on protein structure and function by using the computational 

mutagenesis methods.  

2.2 Materials and methods 

2.2.1 Protein sequences and structures database construction  

A set of 10,220 proteins were obtained from the PDB using the PISCES web 

server by applying the following filtering criteria: (1) resolution ≤2.0 angstrom (Å); (2) 
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crystallographic residual factor (or reliability factor or the R-value) ≤0.25; (3) maximum 

pairwise sequence identity ≤30%; (4) protein chain length 100-1,000 amino acid residues; 

(5) X-ray as experimental method. This set is abbreviated as 10220culled.  

DNA sequences encoding protein in the 10220culled were collected by using 

BLAST+ [38], a sequence similarity searching tool downloaded from the National Center 

for Biotechnology Information (NCBI) website. All nucleotide sequence data, with 

entries from all traditional divisions of GenBank (the NIH genetic sequence database, an 

annotated collection of all publicly available DNA sequences), European Molecular 

Biology Laboratory (EMBL), and DNA DataBank of Japan (DDBJ) were downloaded 

from NCBI blast database. Only the accession number, the start and end position of the 

matched nucleotide sequence in the database was returned by TBLASTN, but not the 

sequence itself. Biopython was used as the extraction tool for DNA [39]. All protein 

sequences read from the 5' end (the phosphoryl end) to the 3' end (the hydroxyl end) in 

the collected dataset. Nucleotide sequences containing character 'Y' (indicate ' Cytosine 

(C)' or ' Thymine (T)'), 'N' (indicate 'any'), or 'R' (indicate ' Adenine (A)' or ' Guanine 

(G)') were removed due to uncertainty from the dataset. No or very few missing residues 

is required in Delaunay tessellations. Therefore, we found the longest common substring 

(DNA match protein sequence) and kept those having ≥20 residues. Codons for all 

residues were also annotated in proteins in the 10220culled. Most proteins have many 

tblastn results, we selected those with protein and DNA in the same organism and lowest 

e-values. Individual protein chain secondary structures in the 10220culled were collected 

from DSSP.  The 10220culled is a dataset containing 10,220 codon and amino acid 
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labeled individual protein chain, secondary structure annotations, and α-carbon 

coordinates.  

2.2.2 Secondary structure preference of synonymous codons 

After creating a dataset which contains 10,220 individual protein chains with 

different level annotations (codon, α-carbon, secondary structure), we examined whether 

synonymous codons had different preference to form secondary structures. 

Methionine and Tryptophan were excluded because they don’t have synonymous 

codons. A total of 1,836,434 residues with DSSP annotations were collected. Secondary 

structures are defined by DSSP based on hydrogen bonding patterns, including H (4-turn 

helix or alpha-helix), G (3-turn helix or 3-10 helix), I (5-turn helix or pi-helix), B 

(isolated beta-bridge), E (extended strand in beta-sheet conformation), S (bend), T (turn) 

and C (coil). Secondary structures are classified in two ways: (1) simple 3 classes, which 

contains alpha-helix (H, G, I), beta-strands (B, E) and coils (S, T, C); (2) all 8 classes, H, 

G, I, B, E, S, T, C. In each way of classes, we got the observed number of each codon in 

different secondary structures. The expected number of each codon in different secondary 

structure were then calculated by using number of synonymous codons in the 

corresponding amino acid multiplied by the number of secondary structures in 

corresponding amino acid. For example, there are 33,687 of A1 (A for Alanine), 158,788 

of Alanine, and 73,430 α-helix formed by Alanine in the total dataset. The expected 

number of A1 with α-helix is 33687/158788×73,430=15578. After calculating all 

expected number of each codon in different secondary structures, we performed a chi-

square test to determine whether there was a statistically significant difference between 
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the expected number and the observed number for each of codon in different secondary 

structure.  

2.2.3 Knowledge-based potential estimation 

Pyhull [40, 41] was used to perform Delaunay tessellation [14, 27] on protein 

structure analysis based on the coordinates of each α-carbon atom, the first carbon atom 

that attaches to a functional group. The protein is described as a set of points in three-

dimensional space represented by α-carbon atoms in amino acid residues. Delaunay 

tessellation of a protein structure generates an aggregate of space-filling irregular 

tetrahedra called Delaunay simplices. The vertices of each simplex define objectively 

four nearest neighbor α-carbon atoms in amino acid residues. Computation of Delaunay 

tessellation was performed on proteins in 10220culled. The Delaunay simplices were 

obtained with a 12 Å cutoff on all edges. No simplex with an edge length greater than 12 

Å was counted. Information of each Delaunay simplex, including the combination of four 

amino acids positioned on four vertices, the residue number of each amino acid in the 

protein sequence, the distance of each two vertices by residue number, the length of six 

edges, the volume, the tetrahedrality, and secondary structure of each residue, were 

collected for further use. The frequency of each kind of simplex based on amino acid or 

codon residue compositions was calculated. The distribution of tetrahedrality and volume 

for each category was also calculated.  

Simplices classification was done based on the way the peptide chain threads 

through them that was introduced in previous studies [14, 27]. There are five types of 

simplices. In type 0, none of the four residues in the simplex are consecutive. In type 1, 
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there is one and only one pair of amino acid residues is consecutive. In type 2, two pairs 

of residues are consecutive and these two pairs are separated in the sequence. In type 3, 

three residues are consecutive and the fourth is a distant one. In type 4, all four residues 

in the simplex are consecutive in the protein primary sequence.  

Volume and tetrahedrality are two geometrical parameters being used to describe 

the tetrahedra. Tetrahedrality is a quantitative measure of the degree of distortion of the 

Delaunay simplices from the ideal tetrahedron, the equation to calculate the tetrahedrality 

shows below: 

 

Equation 2-1 

' =
∑ (#!$#")#!$"

&'##̅ , 

where li is the length or the i-th edge, and ) ̅is the mean length of the edges of the given 

simplex. 

Log-likelihood is a knowledge-based potential based on Boltzmann’s principle: 

frequently observed states corresponding to low energy states of the system [42]. Log-

likelihood was calculated to represent the preference of a simplex exists in naturally 

occurring proteins. Log-likelihood of simplices from different categories was defined as: 

 

Equation 2-2 

+)*+# = ),-&,
-!"%&
.!"%&

, 

where fijkl is the observed frequency of simplices with amino acid or codon types i, j, k 

and l at their vertices; pijkl was defined as: 
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Equation 2-3 
.)*+# = /0)0*0+0#, 

where ai, aj, ak, and al are the observed frequencies of the individual amino acid or codon 

types; and combinatorial factor c is defined as: 

 

Equation 2-4 

/ = /!
∏ (2!!)'
!

, 

where n is the number of distinct residue types in a quadruplet and t, is the number of 

amino acids or codons of type i. All simplices identified in this study were ranked by the 

log-likelihood. 

2.2.4 Comparison of amino acid level knowledge-based potential results with a 

previous study 

This dissertation is built on the study by Taylor et al. [43]. In their work, x-ray 

structures of 1,417 non-homologous protein chains were obtained from the PISCES web 

server. There were no missing Carbon-alpha coordinates, resolution ≤2.2 Ǻ, 

crystallographic R-factor ≤0.23, and maximum pairwise sequence identity ≤30% in their 

dataset. Because PDB contains more entries since then (122,021 x-ray entries in 2017 vs. 

34,249 in 2006), this dissertation includes a larger dataset, the 10220culled. The larger 

sample size in this dissertation may reveal new knowledge of knowledge-based potentials 

by comparing results in these two studies. Additionally, the knowledge-based potentials 

were also calculated at codon level, an extension of only at amino acid level in Taylor et 

al [28]. 
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We explored the effect of restricting simplex edge length, simplex compositions 

with low number of simplices, and sequence bias on the correlation between potentials in 

this study and Taylor et al. Fast Low-Probability Subsequences (fLPS) locates sequences 

with high bias, where certain abnormal high frequencies of amino acids may make 

potential estimation less accurate.   

2.2.5 Examining potentials distribution difference between synonymous codons 

After calculating potential scores for all simplex composition, we would like to know 

if synonymous codons form different potential score patterns. We looked at simplices 

with the codon pattern of  

13) =	{!)#)$)%)} 

where P is the potential, xi is the i-th synonymous codon of amino acid X and yi, zi, ti 

are i-th synonymous codons of amino acid Y, Z, T, and i (2, 3, 4, 6) is the number of 

synonymous codons depending on the specific amino acid. X is different from Y, Z, T 

while Y, Z, T may be the same amino acid. We performed z-tests to examine whether the 

mean potentials are the same between the potential distributions on any two of !) in 

!)#)$)%). For example, Alanine has 4 synonymous codons, and we performed t-test on the 

6 pairs among 5&#)$)%), 54#)$)%), 55#)$)%), and 5/#)$)%) .	To serve as a control, we 

additionally compared the potential means of !)#)$)%) and &)#)$)%), where X and M are 

different amino acids.  

We also test double synonymous codons distribution. We performed similar 

analysis on  

13!3) =	 {!)!)#)$)} 
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where P is the potential, xi is the i-th synonymous codon of amino acid X and yi, zi 

are i-th synonymous codons of amino acid Y, Z, and i (2, 3, 4, 6) is the number of 

synonymous codons depending on its specific amino acid. X is different from Y, Z while 

Y, Z may be the same amino acid. Then we performed z-tests to examine whether the 

mean potentials are the same between the potential distributions on any two of !) in 

!)!)#)$). For example, Alanine has 4 synonymous codons, and we performed t-test on the 

6 pairs among 5&5&#)$), 5454#)$), 5555#)$), and 5/5/#)$) .	To serve as a control, we 

additionally compared the potential means of !)!)#)$) and &)&)#)$), where X and M are 

different amino acids.  

2.2.6 Investigating protein structure and function change by silent mutations 

through knowledge-based potentials 

2.2.6.1 Dataset creation 

For those silent mutations causing cancers, we aim to study whether we can detect 

the protein structure changes in terms of Delaunay tessellation knowledge-based 

potentials by using computational mutagenesis methods. We selected 15 genes whose 

mutations are known to cause human cancers (Table 2-1). We downloaded the protein 

structure data from PDB and secondary structure from DSSP. We searched each protein 

in PDB 1D Coordinate Service and obtained the corresponding position on genome and 

the codon for each amino acid residue. PDB provides genome position information for 

most amino acids in the dataset. We kept a few amino acids without genome position in 

the Delaunay tessellation to keep protein structure integrity, but they were not used in the 

computational mutagenesis part. 
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Table 2-1 Proteins studied for silent mutations causing cancers 
Gene PDB ID Method Resolution 

(Å) 
Number of 
residues 

Residue 
range 

PDB 
missing 
residues 

BRAF 5ITA.A X-ray 1.95 250 448-718 598-615, 
628-630 

BRCA1 1JM7.A NMR  103 1-103  
 4IGK.A X-ray 1.75 252 1646-

1859 
1816-1818 

CDK4 2W96.B X-ray 2.30 264 4-295 42-47, 239-
260 

CHEK2 1GXC.A X-ray 2.70 116 92-207 - 
 2CN5.A X-ray 2.25 281 210-504 255-268 
EGFR 3QWQ.A X-ray 2.75 613 2-614 - 
 5UG9.A X-ray 1.33 280 702-985 749-752 
EP300 3BIY.A X-ray 1.70 317 1287-

1664 
1520-1580 

 3T92.A X-ray 1.50 90 7-96 - 
 5BT3.A X-ray 1.05 113 1049-

1161 
- 

FHIT 1FIT.A X-ray 1.85 124 2-147 82, 107-126, 
135 

FLT3 1RJB.A X-ray 2.10 133 572-710 649-654 
HRAS 121P.A X-ray 1.54 166 1-166  
MLH1 4P7A.A X-ray 2.30 303 3-336 86-97, 301-

319 
PDGFRA 5GRN.A X-ray 1.77 112 584-695 - 
PRNP 4KML.A X-ray 1.50 109 117-225 - 
PTEN 1D5R.A X-ray 2.10 268 14-281 - 
RET 2IVS.A X-ray 2.00 284 713-1012 828-843 
TP53 1TUP.A X-ray 2.20 196 94-289 - 
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2.2.6.2 Four-body statistical potentials and computational mutagenesis 

We tessellated each protein and obtained the knowledge-based potentials by 

following the methods described in 2.2.2 Knowledge-based potential estimation. By 

following the definitions proposed by Masso et al. (2019) [32], we added up the potential 

scores of all the Delaunay simplices in the proteins. For each residue, a residue 

environment score (RES) is the sum of potential scores from all simplices this given 

residue belongs to. The number of simplices a residue belongs to varies. We ordered the 

collective RES scores for all amino acid positions in each protein to create to a potential 

profile as described by previous studies [32]. Residual score quantifies the relative 

change in sequence-structure compatibility in mutations 

 We calculated residue scores (RS) and residue profiles by following equations 

below: 

 

Equation 2-5 
78	 = .6 − .7 

where RS is residue score, p is potential, pm is potential of mutants, and pn is potential of 

native protein.  

2.2.6.3 Protein variant feature vectors  

We collected those silent mutations that may cause human cancer from 

SynMICdb [44]. SynMICdb provides locations, nucleotide of both wild type and 

mutation, and a SynMICdb score to measure the likelihood of a silent mutation that have 

a function impact [44]. We matched local profile with SynMICdb score with same wild 

type and mutation of each residue, resulting in a total of 208 matches. Each of the 208 
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matches have residue information, residual score, and SynMICdb score. We examined 

the correlation between residue score and SynMICdb score. We created a control dataset 

including 413 residues whose synonymous codon mutations likely do not cause cancer. 

For example, if A1 to A2 mutation in a gene was cancer-causing in the dataset, we 

deduced that A1 to A3 and A1 to A4 were possibly not cancer-causing and they were 

included as controls. We compared the residual score distribution in these two datasets. 

We also created 5 balanced combine datasets, each contains 208 cancer-causing and 208 

non-cancer-causing local profile. We use random forest and naïve Bayes to make 5-fold 

cross-validation and would like to see by using local profile, if we could differentiate 

synonymous mutation that cause or not cause cancer.  

2.3 Results and Discussions 

2.3.1 Knowledge-based potential results 

Frequencies of amino acids in the 10220culled dataset was shown in Figure 2-1. 

While Alanine (A), Leucine (L) and Glycine (G) had the highest frequencies, Cysteine 

(C), Methionine (M) and Tryptophan (W) had the lowest ones.  
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(A) 

 
(B) 

 
Figure 2-1 Frequency of amino acids in 10220culled dataset. 

 

 

 

Distribution’s pattern of volume and tetrahedrality across the five types of 

simplices were presented in Figure 2-2. The distribution curve of the type 4 simplices had 

the sharpest and narrow peak, i.e. the lowest volume and lowest distortion of 

tetrahedrality but the highest density. This result was expected because it is common in 

most proteins that four consecutive residues are nearest neighbors to each other. Different 
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types of simplices showed different distributions of volume and tetrahedrality, and a 

possible explanation was that they were correlated with the conventional secondary 

structure assignment of contained residues [45].  

 

 

 

 

   (A)                                                                               (B) 

Figure 2-2 The distribution of volume and tetrahedrality of simplices in different simplex 
types. 

 

 

 

Knowledge-based potential scores, or log-likelihood ratios, of each simplex 

composition at amino acid level and at codon level was presented in Figure 2-3. At amino 

acid level, we observed 8,854 simplex compositions, only one theoretical simplex 

composition (WWWW, Tryptophan, Trp) was not found (Figure 2-3(A)). This is not 
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surprising considering the frequency of natural occurring W is low and its side chain is 

long. The 10 simplices with the highest potentials were CCCC, CCCH, CCCW, CCCM, 

CCCG, CCCF, CCCS, CCCY, CCCN, and CCCR. Disulfide bridges could be a reason 

for high prevalence of Cysteine (Cys, C). At codon level, a total of 600,995 simplex 

compositions were observed, contrasting with a theoretically maximum number of 

635,276. We observed similar trend in knowledge-based potential distributions at the 

amino acid level and codon level.  

 

 

 

   

(A)  (B) 

Figure 2-3 Log-likelihood ratio of Delaunay simplices at (A) amino acid level and (B) 
codon level. Simplex compositions were ranked from high potentials to low potentials on 
X-axis.  
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2.3.2 Secondary structure preference of synonymous codons results 

When structures are categorized into 3 simple classes (H, E, and C), we found that 

31 out of 54 AA-structure showed statistically significant different observed vs. expected 

synonymous codon number distributions, with p-values <0.05 in the Chi-square tests 

(Figure 2-4A). When structures are categorized into 8 classes, 47 out of 144 AA-structure 

showed statistically significant different observed vs. expected synonymous codon 

number distributions (Figure 2-4B). The results suggested that some synonymous codons 

had different preference to form secondary structures. In Figure 2-4B, synonymous 

codons have less degree of preference in G, I, B, S and C but higher degree of 

preferences in Alanine and Threonine. I (pi-helix) may need to excluded from the results 

since the number of codons is very low (average is only 6 in different codons compare to 

4,446 in other secondary structures). 
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(A). 3-classes secondary structure (B). 8-classes secondary structure 

Figure 2-4 Chi-square test results of the observed and expected number of synonymous 
codons in 18 amino acids in different secondary structures. P-values ≥0.05 are 
highlighted in yellow. 
 

 

 

 

2.3.3 Amino acid level potential estimations comparing with a previous study  

Out of 8,855 possible types of simplices, 8,854 (99.99%) were observed in 

10220culled in this study and 8,851 (99.95%) in Taylor’s dataset (2006) [28]. The mean 

counting of each simplex composition is 909 in 10220culled vs. 160 in Taylor’s. The 

overall potential of all simplex compositions in 10220culled is similar to Taylors’ 
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(0.0332 vs. 0.0258). We found that the knowledge-based potentials estimated for the 

same simplex composition in 10220culled were highly correlated (slope of 1.00, R-

square of 0.90) with those in Taylor’s (2016) (Figure 2-5 (A)). We explored why the 

correlation R-square was only 0.90.  

Table 2-2 lists the potentials of top 10 simplex compositions deviated most from 

the regression line in Figure 2-5 (A). There was a greater number of simplices in the 

example simplex compositions in the 10220culled compared to that in Taylor’s study. 

The density plots in Figure 2-5 (B) confirms this observation. Restricting simplex 

compositions with a low number increased the correlation R-square between the 

potentials in 10220culled and Taylor’s study [28]. The potential estimations may not be 

accurate when there are only a few simplices in the simplex composition. By removing 

simplex compositions with cutoffs (1 to 1000), the correlation R-squares increased 

continuously at counting of simplices cutoffs 1-600 and plateaued at cutoffs 600-1000. 

However, the higher the cutoffs, the fewer simplices left for each simplex composition. 

The larger sample size in 10220culled may bring more accurate estimation of potentials 

for simplices, which is an improvement compared to Taylor’s study.  
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(A) 

 
(B) 

Figure 2-5 Knowledge-based potential results comparison from 10220culled dataset and 
Taylor’s (2006) dataset. (A) Scatter plot showing the correlation of estimated potentials 
for the same simplex composition between the two studies. A regression line was shown 
with estimated a correlation slope with an R-square. (B) Density plots of each simplex 
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composition. Number of each simplex is the number of simplices in each simplex 
composition represented by amino acid residues.  
 

 

 

Table 2-2 Knowledge-based potential score examples in 10220culled dataset in this 
dissertation and in the dataset in a previous study 

Dataset 
10220culled in this 

dissertation 
Taylor (2006) 

Simplex 
Knowledge-based 

potential score 
N 

Knowledge-based 
potential score 

N 

CNNW 0.119 45 -0.535 2 

CIKW 0.079 136 -0.506 7 

MQWW 0.390 36 -0.164 2 

CDMW 0.079 49 -0.470 3 

DMMM 0.489 40 -0.061 3 

MMTW 0.402 71 -0.115 5 

MMMT 0.468 35 -0.034 3 

DHWW 0.285 58 -0.210 3 

CIWW 0.339 33 -0.144 2 

KMMQ 0.169 103 -0.290 9 



 
 

25 
 

 

 
Figure 2-6 Distribution of number of simplices in 10220culled and Taylor’s dataset. R-
square in Y-axis (left) is the correlation R-square between potentials estimated in 
10220culled and potentials estimated in Taylor’s study for the same simplex composition. 
Number of scatter potentials in Y-axis (right) is the number of unique simplex 
compositions. Least number of simplices in X-axis is the cutoff to restrict simplex 
compositions with a number of simplices no less than the cutoffs. 

 

 

 

Restricting simplex sequence bias also impacted the correlation R-square of 

potential estimations in 10220culled and Taylor’s study (Figure 2-7). We found that by 

removing simplices with fast Low Probability Subsequences (fLPS) p-value <10-16, the 

correlation R-square increased. When fLPS was fixed, restricting simplex compositions 

to have at least 20, 40, 60, 80, or 100 simplices brought monotonically higher R-square 

values compared to no restriction. Figure 2-8 shows the impact of simplex edge length 
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cutoffs and restricting simplex compositions on the correlation R-square. We found that 

the combination of higher simplex edge length cutoffs and higher minimal number of 

simplices cutoffs resulted in higher correlation R-square.   

Overall, we found that the knowledge-based potential estimations for the same 

simplex compositions in 10220culled dataset in this dissertation highly agreed with those 

in Taylor’s study, suggesting the method is reliable in achieving stable results across 

different datasets. Additionally, the larger sample size in 10220culled may improve the 

potential estimations for some simplex compositions that only have few observations in 

Taylor’s study. Restricting fLPS p-values, simplex compositions with low numbers, and 

simplex edge lengths can increase the correlation R-squares between potentials for the 

same simplex compositions in 10220culled and the ones in Taylor’s study.  
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Figure 2-7 Impact of fLPS p-value and least number of simplices on the correlation R-
square between potentials for the same simplex composition in 10220culled and Taylor’s 
study. Y-axis is fLPS p-value in exponent of power of 10. Different color shows the 
effect of removing simplex compositions containing simplices less than N (0, 20, 40, 60, 
80, or 100).  
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Figure 2-8 Impact of minimum number of simplices cutoff and Delaunay simplex edge 
length cutoffs on the correlation R-square between potentials for the same simplex 
composition in 10220culled and Taylor’s study. Cutoff unit is angstrom (Å). Minimum 
number of simplices in X-axis is the cutoff to restrict simplex compositions with a 
number of simplices no less than the cutoffs. 

 

 

 

2.3.4 Learning curves of potential estimations in the 10220cullled dataset 

We demonstrated the effect of the training set size in correlation R-square 

between potential estimations in 10220culled and the ones in the training set (Figure 2-9). 

At the amino acid level, we found that a relatively small training set (approximately 

1,500 proteins) yields a correlation R-square of 0.9. When the sample size further 

increased to greater than 3000, the correlation R-square plateaued out. At the codon level, 

however, the correlation R-square increased continuously when training set size 

increased from 1000 to 8000 proteins, reaching an R-square of around 0.8 in the end. A 
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much larger training set at the codon level was needed to yield the same correlation R-

square of 0.9 at the amino acid level. This result suggested that our dataset of 10,220 

proteins was not enough in sample size to analyze knowledge-based potentials at the 

codon level. Additionally, there are 8,855 theoretical simplex compositions at amino acid 

but 635,276 at the codon level. We obtained a total of 8,049,726 simplices with a mean 

number of simplices in each simplex composition is 909 at amino acid level but only 13 

at the codon level. There were many simplex compositions had very few simplices at the 

codon level. The potential estimations at the codon level may be less accurate than those 

at amino acid level. It’s an important next step in the future when more protein structural 

data are available in PDB. 
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Figure 2-9 Learning curve of number of training set. R-square is the correlation R-square 
between mean knowledge-based potentials in 10220culled dataset and the ones in the 
training set.  

 

 

2.3.5 Potentials distribution difference between synonymous codons 

Figure 2-10 showed the z-tests results. A total of 79 out of 87 (90.8%) pairs had 

p-values <0.05, suggesting there was statistically significant difference of mean potentials 

between two potential distributions. The results may indicate synonymous codons were 

associated with different potential distribution. The comparison results of the potential 

means of the any two simplex compositions are shown in Figure 2-11, where 1659 out of 

1743 (95.2%) comparisons with p-value <0.05. The results 90.8% and 95.2% were 

similar in Figure 2-10, suggesting that the impacts of synonymous codons may in the 

similar degree of those between codons of different amino acids.   
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Figure 2-10 Z test results of the mean potentials of synonymous codon pairs of !)#)$)%) 
and !)#)$)%) , where xi is the i-th synonymous codon of amino acid X and yi, zi, ti are ith 
synonymous codons of amino acid Y, Z, T, and i (2, 3, 4, 6) is the number of 
synonymous codons depending on its specific amino acid. X is different from Y, Z, T 
while Y, Z, T may be the same amino acid. P-values of 0.05 is highlighted in the red 
dashed line. 
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Figure 2-11 Z test results of the mean potentials of synonymous codon pairs of !)#)$)%) 
and &)#)$)%) , where xi and mi is the ith synonymous codon of amino acid X and M 
respectively, and yi, zi, ti are ith synonymous codons of amino acid Y, Z, T, and i (2, 3, 4, 
6) is the number of synonymous codons depending on its specific amino acid. X/M is 
different from Y, Z, T while Y, Z, T may be the same amino acid. X and M can be 
different or same amino acid. P-values of 0.05 is highlighted in the red dashed line. 
 

 

 

When comparing double codon simplex in synonymous codon pairs, we presented the 

z-test results in 
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. A total of 75 out of 87 (86.2%) synonymous pairs of !)!)#)$) and !)!)#)$) had different 

mean potentials (z-test, p-value < 0.05) in 

, and 1581 out of 1643 (96.2%) all pairs with !)!)#)$) and &)&)#)$) had different mean 

potentials (z-test, p-value < 0.05) in Figure 2-13.  
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Comparing single and double codon simplex in synonymous codon pairs, we 

found that results are relatively consistent: among those 8 synonymous codon pairs which 

had similar potential means (p-value >0.05), 5 of them (A1-A3, L2-L3, P1-P3, S1-S3, V1-

V3) had the same results in double codon pairs.  

Triple codon simplices are also tested, however, due to number of counting in 

codons, the results may not accurate. 

 

 

 
Figure 2-12 Z test results of the mean potentials of synonymous codon pairs of !)!)#)$) 
and !)!)#)$) , where xi is the i-th synonymous codon of amino acid X and yi, zi are i-th 
synonymous codons of amino acid Y, Z, and i (2, 3, 4, 6) is the number of synonymous 
codons depending on its specific amino acid. X is different from Y, Z while Y, Z may be 
the same amino acid. X and M can are different amino acids. P-values of 0.05 is 
highlighted in the red dashed line. 
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Figure 2-13 Z test results of the mean potentials of synonymous codon pairs of !)!)#)$) 
and &)&)#)$) , where xi and mi is the i-th synonymous codon of amino acid X and M, 
respectively, and yi, zi are i-th synonymous codons of amino acid Y, Z, and i (2, 3, 4, 6) is 
the number of synonymous codons depending on its specific amino acid. X is different 
from Y, Z while Y, Z may be the same amino acid. P-values of 0.05 is highlighted in the 
red dashed line. 
 
 
 
 
 
2.3.6 Potentials comparison among protein subgroups 

The knowledge-based potentials of the 3,667 enzyme proteins and 6,553 non-

enzyme proteins are shown in Figure 2-14. Their potentials showed a strong positive 

correlation with a R-square of 0.90 in Figure 2-14(A) at the amino acid level, and a 
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positive correlation with a much lower R-square of 0.35 in Figure 2-14(C) at the codon 

level. We observed that potentials in the first half and second half enzyme proteins had a 

strong correlation of 0.93 with a R-square of 0.88 in Figure 2-14(B), indicating potentials 

within the enzyme class were similar. By applying the same methods, we found that the 

potentials of the 1,843 hydrolase proteins and 8,377 non-hydrolase proteins showed a 

similar trend in Figure 2-15. The results suggested that protein subgroups (enzymes vs. 

non-enzymes, hydrolases vs. non-hydrolases) may have minimal influence on 

knowledge-based potential estimations at the amino acid level. The protein subgroups, 

however, may have an impact on the potential estimations at the codon levels, or the 

results are simply caused by the inaccurate estimation of potentials at codon levels. We 

cannot draw conclusions at this time.  
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(A) (B) 

  
(C) (D) 

 
Figure 2-14 Potential comparison between enzymes vs. non-enzymes at (A) amino acid 
level, (C) codon level, (D) codon level (heatmap). Enzymes are random split into half and 
their potential scatter plot shows in (B). 
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(A) (B) 

 

 

(C)  
 
Figure 2-15 Potential comparison between hydrolases vs. non-hydrolases at (A) amino 
acid level, (B) codon level and (C) codon level (heatmap) 

 

 

 

2.3.7 Linking protein structure and functions by silent mutations  

Figure 2-16 (A) demonstrates the density distribution of residual scores by using 

Delaunay tessellation from cancer causing silent mutations and non-cancer-causing silent 

mutations. Overall, the distribution of residual scores was similar. Residual score of 0 

suggests the mutation causes no disturbance in local structures around the mutation site, 

which is expected as mostly silent mutations cause no function change in proteins. When 

residual score was 0, cancer-causing silent mutations had a lower density compared to 
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non-cancer-causing silent mutations. This result may suggest cancer causing mutations 

caused more structure disturbance than non-causing mutations. Cancer distribution 

slightly shift to left, but overall, we did not see significant different between two 

distributions. When we looked at individual genes, HRAS gene had the most distinct 

residual score distribution between cancer vs. non-cancer-causing silent mutations in 

Figure 2-16(B).  

 

 

 

 

 
 

(A) (B) 
 

Figure 2-16 Distribution of residue scores between cancer causing silent mutations vs. 
non-cancer-causing silent mutations in (A) histogram with all gene combined and (B) 
boxplot for each individual gene.  
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 Table 2-3 reports the BAR results of Naïve Bayes and Random Forest using 5-

fold cross-validation on WEKA. In the 5 balanced datasets that each contained 208 

cancer causing and 208 non-cancer-causing silent mutations, we found similar BARs, all 

slightly above 0.5 by using Naïve Bayes or Random Forest. When we shuffled the silent 

mutations to cancer causing or non-cancer causing, the BARs were lower and closer to 

0.5. The results suggested that the signal of residual scores from cancer causing silent 

mutations was low, not enough to differentiate from the residual scores from non-cancer-

causing silent mutations. In the scatter plot, we found that the correlation between 

residual score and SynMICdb scores was not correlated (R2=0.01) (Figure 2-17). 

 

 

 

Table 2-3 BAR results of Naïve Bayes and Random Forest using 10-fold cross-validation 
(WEKA) 

 

 

 

Method 
Data 
processing 

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 

Naïve Bayes Original 0.577 0.536 0.574 0.552 0.555 

 shuffled 0.497 0.495 0.508 0.492 0.486 

Random 
Forest 

Original 0.558 0.489 0.516 0.475 0.514 

 shuffled 0.486 0.459 0.459 0.516 0.475 
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Figure 2-17 Correlation between residual scores and SynMICdb scores. 

 

 

 

2.3.8 Conclusions  

In summary, we have created a novel dataset containing 10,220 protein chains 

with codon, amino acid, secondary structure annotations, and α-carbon coordinates. We 

performed Delaunay tessellation on the proteins and obtained knowledge-based potentials 

at both amino acid and codon levels. For each simplex composition at amino acid level, 

potential estimations in this study highly agreed with the results in a previous study, 

validating Delaunay tessellation performs reliably in different datasets. The larger sample 

size in this study improved the potential estimations for some simple compositions that 

only had few simplices observed. Restricting simplex edge length and sequence bias also 

improved the potential estimation. Protein subgroups of enzymes, hydrolases influenced 

potential estimation at the codon level but not at the amino acid level. Learning curves 

showed a much larger sample size was required to achieve the same correlation R-square 
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at codon level compared to amino acid level. Including more available protein structures 

to perform codon level potential analysis is an important next step. Cancer-causing 

synonymous mutations and non-cancer-causing synonymous mutations in our dataset had 

similar residual scores. We did not observe different protein topological properties by 

using local profiles between them.   
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CHAPTER 3 : EXPLORING FITNESS AND ACTIVITY OF PROTEIN 
MUTANTS WITH COMPUTATIONAL MUTAGENESIS AND MACHINE 

LEARNING TECHNIQUES  

3.1 Overview 

This study explores the implementation of the computational mutagenesis 

methods from Masso et al. (2019) [46] to examine the generalizability of the methods in 

different proteins and aims to extend the methods in a novel angle to perform the analysis 

at the codon level. We used the computational mutagenesis technique based on a four-

body statistical knowledge-based potential [33, 47] to examine the structural impacts of 

mutation variants of β-lactamase, which had available solved structure data and 

experimentally fitness data. β-lactamase (PDB ID: 1ZG4) is a type of enzyme (EC 

3.5.2.6) produced by some bacteria that is responsible for their resistance to β-lactam 

antibiotics such as penicillin, cephalosporins, cephamycin and carbapenems [48]. The 

fitness dataset of β-lactamases protein at both the amino acid and codon levels were 

obtained from Mehlhoff et al. (2020) [49]. β-lactamases protein contains 263 amino acids. 

We have access to fitness scores for all 19 single residue β-lactamases mutants at 

positions 26-290 except for position 239 and 253, which are missing residues in PDB. 

For all 263 ×19= 4,997 β-lactamases variants, both residual  and local profile vectors 

were calculated. Additionally, the fitness scores of single residue substitution mutations 

at the codon level are also available. The structural changes and corresponding 

experimentally fitness score changes caused by single amino acid or codon substitution 

on protein structure were linked. Random forest classification and regression machine 
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learning algorithms were used to predict fitness based on structures. We used cross-

validation to evaluate model performance, and conduct control experiments for 

evaluation of statistical significance. Built from Masso et al.  (2019), this study explores 

the sensitivity and specificity of computational mutagenesis at a codon level and 

investigates the generalizability of the model on a different protein as additional analysis. 

The results will add knowledge on how to study and predict fitness and structure changes 

caused by mutations in proteins.  

A previous study used machine learning models to predict function determining 

or buried residues through the analysis of saturation mutagenesis techniques using 12 

published deep mutagenesis scanning datasets. The publicly available datasets bring an 

exciting opportunity for us to apply the computational mutagenesis on them. 

Additionally, the mutation’s impact was measured in activity score in different selections 

rather than fitness scores in β-lactamases. We will also examine whether the model built 

for one protein can be applied to other proteins. The results may bring important 

knowledge on the application of computational mutagenesis techniques on protein 

activities in a more diverse protein library.  

3.2 Materials and Methods  

3.2.1 Four-body statistical potential estimation using Delaunay tessellation in β-

lactamase 

We performed Delaunay tessellation on the β-lactamase protein at both amino 

acid and codon levels by following the methods described in 2.2.2 Knowledge-based 

potential estimation. By following the definitions proposed by Masso et al. (2019) [32], 
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we added up the potential scores of all the Delaunay simplices in the proteins. For each 

residue, a residue environment score (RES) is the sum of potential scores from all 

simplices this given residue belongs to. The number of simplices a residue belongs to 

varies. We ordered the collective RES scores for all amino acid positions in each protein 

to create to a potential profile as described by previous studies [32].     

3.2.2 Computational mutagenesis on β-lactamase 

For a single amino acid residue substitution mutant in the β-lactamase protein, the 

knowledge-based potentials of its substitution mutations to the other 19 amino acid 

residues were calculated. A few key definitions are adapted from the work by Masso et 

al. (2019) [46] in this chapter. Residual score is the difference of total potential between 

the of mutant and the native protein, representing the relative change in sequence-

structure compactivity caused by the mutation. Residual profile is the difference of total 

potential profiles (component-wise subtraction of vectors) between the mutant and the 

native protein. The Comprehensive Mutation Profile (CMP) score is the mean residual 

scores of all 19 amino acid substitutions, representing the average impact of single 

residue substitution mutations on the structural compatibility of the protein sequence 

[32].  

We compared the residual scores results in different amino acid subgroups. Based 

on their physicochemical properties, the 20 amino acid types were divided into six 

subsets as (A, S, T, G, P), (D,E, N, Q), (R, K, H), (F, Y, W), (V, L, I, M), (C) [50]. 

Amino acid substation within a subset is categorized as Conservative (C) substitutions 

and the rest are categorized as Non-Conservative (NC) substitutions [32]. Additionally, 
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residues were divided into polar (C, G, H, N, Q, S, T, W, Y), apolar (A, F, I, L, M, P,V), 

and charged (D, E, K, R) [32].we examined the residual CMP scores across these 

categories.  

3.2.3 β-lactamases variant feature vectors, machine learning, and model evaluation 

We ran the models in two approaches. In the first approach, we used a supervised 

learning algorithm to build a predictive model which was a complex non-linear function 

of the inputs and produced outputs based on the training data. We created a 267-

dimensional (267D, 20 amino acid rows × 267 columns) residual profile for the β-

lactamase protein, including 263 β-lactamase single residue substitution variants 

(columns #1-263), position number of the mutation (column #264), native residue 

(column #265), replacement residue (column #266), and the experimentally determined 

fitness value (column #267). The 267D residual profile was included in supervised 

machine learning algorithms to train predictive models where the fitness value 

(column#267) is the output attribute while all preceding components are input variants.  

In the second approach, we created a 28-dimensional (28D, 20 amino acid rows × 

28 columns) local profile for the β-lactamases protein, including the same 27 input 

attributes (columns #1-27) as Masso et al.  (2019) and the experimentally determined 

fitness value of β-lactamase protein (column #28). Specifically, columns #1-27 for each 

β-lactamase variant are: (#1) mutated position number; (#2) native amino acid; (#3) 

replacement amino acid; (#4) residue score; (#5-10) EP scores at the six nearest 

neighbors (sorted)from the residual profile; (#11-16) amino acid identities at the six 

nearest neighbors (sorted); (#17-22) difference in primary sequence numbers between 
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that of the mutated position and those of the six neighbors (sorted); (#23-24) mean 

volume and mean tetrahedrality for all tetrahedra in the tessellation of β-lactamase that 

share the C-alpha coordinate of the mutated residue as a vertex; (#25) tessellation-based 

location of the mutated position in the protein (surface, undersurface, or buried); (#26) 

the number of edge contacts it has with surface residue positions; (#27) the secondary 

structure at the mutated position [32]. Random forest classification and regression 

algorithms were implemented using Weka software package of machine learning tools 

[51, 52] and Python. The experimentally determined numerical fitness value (column 

#28) was the output and the variables (columns #1-27) were inputs in the regression 

model. Random forest classification algorithms require the output of the training set have 

categorical rather than numerical values, and the trained models can predict the 

classification outcomes. All 4,997 β-lactamases variants were grouped into the two 

equally sized fitness categories (increased versus decreased β-lactamases variant fitness 

relative to the native protein) by using the median fitness value as the cutoff.  

We applied the Leave-One-Out Cross-Validation (LOOCV) and 10-fold Cross-

Validation (10-fold CV) procedures to evaluate model performance. Using 10-fold CV, 

the β-lactamases variants were initially placed into ten disjoint subsets of equal size with 

the following steps: (1) one subset was retained (10% of the data), while a model was 

trained using combined β-lactamases variants from the other nine subsets (90% of the 

data); (2) a well-trained model is used to predict (known) β-lactamase variants in the 

retention set; (3) we repeat the process to allow each subset be held-out once and 

predicted. With LOOCV, each β-lactamase variant forms its own subset (i.e., singleton) 
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in the initial step before going through the same iterative process as the 10-fold CV. We 

categorize the suitability of β-lactamase variants relative to wild type β-lactamase as 

increased (P, positive) or decreased (N, negative). Random forest classifier predictions 

were evaluated by 8: = ;:<;"%"="%# = 89
89:;<, 8. = ;.:/">"/"%# = 8<

8<:;9, and 11? =

.,;%""=:	.@:A"/%"=:	=0)B: = 89
89:;9, where TP is True Positives, TN is True negatives, 

FP is False Positives, and FN is False Negatives. Performance[37] measures including 

C0)0</:A	5//B@0/#	@0%: = C57 = 0.5 × (8: + 8.), area (AUC) under the receiver 

operating characteristic (ROC) curve, and Matthew’s correlation coefficient (MCC). In 

random forest regression predictions, Pearson’s correlation coefficient (r) between the 

experimentally determined fitness values and the predicted ones and the root mean square 

error (RMSE) were calculated. Furthermore, by using the median fit as a threshold, all 

random forest regression model fit values (actual values and predicted values) are 

converted into categories in order to calculate the classification performance indicators 

given above, and then the results are compared with the results of the random forest 

model. 

3.2.4 Computational mutagenesis methods on protein activities  

A recent study used machine learning models to predict function determining or 

buried residues through the analysis of saturation mutagenesis techniques [37]. The study 

made the 12 deep mutagenesis scanning datasets publicly available, and we extend this 

computational mutagenesis methodology to these datasets, which include individual 

datasets of proteins and provide mutation’s impact on protein activities as shown in Table 
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3-1. For datasets included, the residue numbers ranged from 52 to 261 with single residue 

substitution mutations ranging from 988 to 4,959 (Table 3-1).  

We performed same machine learning techniques as described in 3.2.3. We 

noticed that the protein activity selection can be categorized (e.g., antibiotic resistance, 

Ubiquitin ligase activity). After building the prediction models, we interchangeably 

applied the model built for one protein to predict activity scores for another protein in the 

same category (e.g., antibiotic resistance), evaluating the generalizability of models.  

 

 

 

Table 3-1 Protein mutation activity datasets   
Dataset PDB ID # of 

residue
s 

# of single 
residue 
substitution
s 

Host Selection Citation 

BRCA1-
E3 

1JM7.A 99 1358 S. cerevisiae Ubiquitin 
ligase 
activity 

Starita et 
al. (2015) 
[53] 

BRCA1-
Y2H 

1JM7.A 99 1359 S. cerevisiae Binding 
activity 
(Y2H) 

Starita et 
al. (2015) 
[53] 

CcdB 3VUB.
A 

98 1627 E. coli Toxin 
activity 

Adkar et 
al. (2012) 
[54] 

Gal4 3COQ.
A 

57 1083 S. cerevisiae Transcriptio
n factor 
activity 

Kitzman et 
al. (2015) 
[55] 

GB1 1PGA.
A 

52 988 Streptococcu
s sp. group 
G 

IgC-Fc 
binding 

Olson et al. 
(2014) [56] 

Hsp90 2CG9.
A 

202 3814 S. cerevisiae Chaperone 
activity 

Mishra et 
al. (2016) 
[57] 
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Dataset PDB ID # of 
residue
s 

# of single 
residue 
substitution
s 

Host Selection Citation 

KKA2 1ND4.
A 

253 4807 E. coli Antibiotic 
resistance 

(Melnikov 
et al. 
(2014)) 
[58] 

NUDT1
5 

5LPG.
A 

154 2692 E. coli Abundance 
and drug 
sensitivity 

Suiter et al. 
(2020) [59] 

PSD95 1BE9.A 83 1577 E. coli Ligand 
binding 

McLaughli
n et al. 
(2012) [60] 

Ras 5P21.A 163 3097 E. coli Antibiotic 
resistance 

Bandaru et 
al. (2017) 
[61] 

TEM1 1ZG4.A 261 4959 E. coli Antibiotic 
resistance 

Stiffler et 
al. (2015) 
[62] 

Ubiquiti
n 

1UBQ.
A 

72 1154 S. cerevisiae Ubiquitin 
ligase 
activity 

Roscoe et 
al. (2013) 
[63] 

Note: Mutagenesis libraries were partly obtained from Bhasin et al. [37]. One dataset in 
Bhasin et al., Pab1 (RRM domain) using 1CVJ, was not included due to many unmatched 
residues between PDB and experimentally determined activity data. 

 

 

 

3.2.5 Computational mutagenesis methods on double mutations 

 Olson et al. (2014) published their work quantifying the effect of all pairwise 

mutations in the IgG-binding domain of protein G (GB1), and they made the data 

available [56]. We applied the same computational mutation genesis methods described 

in 3.2.3 and 3.2.4 on this pairwise mutation dataset.   
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3.3 Results and discussions 

3.3.1 Fitness scores summary of β-lactamases 

Residue scores were calculated for all 263 β-lactamases variants upon each of 19 

possible amino acid residue replacements at position 26-290 (except 239 and 253) in the 

β-lactamases structure. We grouped the mutants based on their experimental fitness 

categories (i.e., decreased versus increased relative to the median fitness of β-lactamases 

protein of -0.0126 at amino acid level and -0.0148 at codon level) and residual scores 

were averaged in each the above grouping category.  

We found that overall variants had negative mean residual score regardless of 

increased or decreased experimentally determined fitness score category (  
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Table 3-2). This is different from the results from the study by Masso et al. (2019) 

where the increased category had a positive mean residual score and the decreased 

category had a negative score [32]. We could, however, tell that the mean residual scores 

were different in the increased vs. decreased categories in this study as their confidence 

intervals did not overlap. Possible reasons included: (1) relatively high missingness of the 

experimentally determined fitness score of β-lactamases: 106 out of 5,260 (2.0%) missing 

at amino acid level, 938 out of 16,043 (5.8%) missing at codon level; (2) the impact of 

the threshold value to equally divide the 4,997 variants into decrease and increase groups. 

There is significant difference in the mean fitness scores in the Increased vs. Decreased 

variants in student’s t-test (-0.19 vs. -0.66, p-value < 0.0001). After subgrouping the 

variants into conservative (C)/non-conservative (NC) amino acid [50] substitutions of the 

native residues, we found that non-conservative (NC) amino acid substitutions are strong 

drivers for the structure-function relationship in both the increased and decreased fitness 

score category, although both C and NC substitutions have impacts in the same direction. 

The results were as expected since conservative amino acids are more similar to each 

other and their substitution within the conservative category would bring limited impact. 

In contrast, we would expect to see more impact of a non-conservative amino acid 

substitution.  
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Table 3-2 Beta-lactamases protein structure-function relationship. All refers to the 
collection of all 4997 β-lactamase variants with experimental fitness data. C/NC is a 
subset of these variants and represents conservative/non-conservative amino acid 
substitutions of natural residues. The data in the right table is the average of the residual 
scores for the relevant subset of mutants. All numbers in parentheses on the graph or 
table row/column headers are counts of the total number of mutants in the subset. 

 

Category 
(number) 

Increased (2499), mean 95% 
CI 

Decreased (2498), mean 95% 
CI 

All(4997) 
-0.26 
(-0.31, -0.21) 

-0.53 
(-0.59, -0.47) 

C(827) 
-0.14 
(-0.22, -0.07) 

-0.09 
(-0.18, 0.01) 

NC(4170) 
-0.29 
(-0.35, -0.23) 

-0.59 
(-0.65, -0.52) 
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3.3.2 Residual scores distinguish between categories of β-lactamases amino acids 

We found a strong inverse correlation (r2=0.78) between CMP and RES in Figure 

3-1. The polarity of the native amino acid did not impact the correlation between CMP 

and RES (see no obvious cluster in the same polarity subgroups). There was a linear 

relationship between residual CMP score and RES among hydrophobic residues, 

suggesting substitutions among hydrophobic residues may have a higher impact on 

protein topological properties. These results are consistent with the Ras protein results by 

Masso et al. (2019) [32].  

 

Figure 3-1 CMP scores for the β-lactamases amino acids vs. their residue environment 
scores. At each amino acid position, the 19 β-lactamase variants were categorized into 
hydrophobic, polar, and uncharged groups. 

 

 

 

3.3.3 Machine learning models for predicting β-lactamases variant fitness 

Table 3-3 reports the Leave-one-out cross-validation (LOOCV) performance 

results at the amino acid level. When using the Random Forest Classification (RFC), 
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LOOCV performance on β-lactamases variant datasets at the amino acid level has a 0.72 

sensitivity and 0.75 specificity in residue profile classification, a 0.73 sensitivity and 0.75 

specificity in local profile classification. Overall, the model performance metrics 

(Sensitivity, Specificity, PPV, BAR, MCC, and AUC) are quite comparable using the 

residual profiles vs. the local profiles (Table 3-3). The array presented in Figure 3-2 

clearly visualized the RFC LOOCV predictions obtained for all 4,997 β-lactamases 

variants in the residual profiles dataset. When using Random Forest Regression (RFR), 

LOOCV performance on β-lactamases variant datasets at the amino acid level has a r of 

0.64 and RMSE of 0.05 in residue profiles and r of 0.67 and RMSE of 0.05 in local 

profiles. Again, the model performance metrics (r, RMSE, BAR, MCC) are quite 

comparable using the residual profiles vs. the local profiles in the RFR.  

Control datasets are created by randomly shuffling the experimentally determined 

fitness output for the β-lactamases variants in each original dataset. The modeling 

performance dropped significantly by using the shuffled data compared to the original 

variants data in both residual profiles or local profiles in random forest classification. The 

AUC dropped from 0.80 to 0.50 in residual profiles and from 0.70 to 0.51 in local 

profiles, suggesting the models are performing no better than random guessing 

(AUC=0.5). 
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Table 3-3 LOOCV performance on β-lactamases variant data sets at amino acid level. 

Model Profile Processed Sensitivity Specificity PPV BAR MCC AUC 

RFC 

Residual 
Original 0.72 0.75 0.76 0.73 0.46 0.80 

Shuffled 0.50 0.50 0.51 0.50 0.00 0.50 

Local 
Original 0.73 0.75 0.75 0.74 0.48 0.80 

Shuffled 0.52 0.52 0.53 0.52 0.03 0.51 

Model Profile Processed r RMSE - BAR MCC - 

RFR 

Residual  
Original 0.64 0.05 - 0.70 0.40 - 

Shuffled -0.01 0.07 - 0.55 0.07 - 

Local 
Original 0.67 0.05 - 0.71 0.41 - 

Shuffled 0.00 0.07 - 0.52 0.02 - 

Note: RFC = Random Forest Classification; RFR = Random Forest Regression; 
PPV=positive predictive value; BAR=balanced accuracy rate; MCC=Matthew's 
correlation coefficient; AUC= area under the curve; RMSE=root mean squared error.  
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Figure 3-2 Random forest classification leave-one-out cross-validation (LOOCV) 
prediction array for all 4,997 β-lactamases variants (Residual Profiles data set). 
Collectively, these predictions yield the performance summary data in the top row. 
Columns correspond to the β-lactamases amino acid positions, and rows represent the 19 
different types of residue replacements with wild type. A β-lactamases variant is labeled 
correct (green) if its experimental and predicted fitness categories are identical; 
otherwise, the variant is labeled incorrect (brown). 

 

 

 

We evaluated the significance of β-lactamases prediction performance. Figure 3-3 

illustrates that Random Forest Regression predicted fitness has a correlation (r=0.67) with 

the β-lactamases variant experimentally determined fitness values. The 0.67 r value in 

this study is lower than the r value of 0.79 from the study by Masso et al. (2019) [46]. 

Besides the inherent differences in β-lactamases protein vs. β-lactamases protein as the 

materials, different sources/quality of experimental fitness data may influence the r value 

differences as well. For the missing values in the experimentally determined fitness 

values in β-lactamases, we replaced them with the mean of the available fitness values 
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from all other mutations at the same position. Additionally, the collateral fitness effects 

we observed were associated with TEM-1/ preTEM-1 aggregation, improper signal 

sequence cleavage, impaired release of the mature protein from the membrane, incorrect 

disulfide-bond formation, induction of stress-response pathways, and pleiotropic changes 

in cell phenotype [61].  

 

 

 

 

Figure 3-3 Evaluating the significance of β-lactamases prediction performance. The 
scatter plot compares the tree regression leave-one-out cross-validation (LOOCV) 
predicted values obtained for β-lactamase variability values (using a local feature data 
set) with their experimental measurements. 

 

 

 

Table 3-4 reports the Leave-one-out cross-validation (LOOCV) performance on β-
lactamases variant data sets at codon level. Using Random Forest Classification, LOOCV 
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performance on β-lactamases variant datasets at the codon level has a 0.71 sensitivity and 
0.70 specificity in residue profile classification, a 0.71 sensitivity and 0.70 specificity in 
local profile classification. Higher model performance was obtained in residual profiles 
compared to shuffled residual profiles, and in local profiles compared to shuffled local 
profiles, suggesting the importance of signals encoded in the β-lactamases variant input 
attributes for effectively determining the fitness values. The array presented in Figure 3-4 
clearly demonstrates the random forest LOOCV predictions obtained for all 16,043 β-
lactamases variants in the Residual Profiles dataset. Using Random Forest Regression, 
LOOCV performance on β-lactamases variant datasets at the codon level has a r of 0.56 
in residue profiles and r of 0.59 in local profiles. We found that the sensitivity and 
specificity for random forest classification and regression were lower at codon level 
compared to amino acid level, respectively in Table 3-3 and  

Table 3-4. The results may suggest that additional input at the codon level did not 

improve the model performances in predicting the experimentally determined fitness. 

Linking back to results in 2.3.3 Learning curves of potential estimations in the 

10220cullled dataset, where we found that the knowledge-based potential estimations 

may be less accurate due to inadequate sample size, we think this may contribute to the 

low sensitivity and specificity at codon level. We cannot draw conclusions for this 

finding at this time.  

 

 

Table 3-4 LOOCV performance on β-lactamases variant data sets at codon level. 
Model Profile Processed Se Sp PPV BAR MCC AUC 

RFC 
Residual 

Original 0.71 0.70 0.69 0.71 0.41 0.77 
Shuffled 0.51 0.51 0.53 0.51 0.02 0.51 

Local 
Original 0.70 0.69 0.69 0.70 0.40 0.77 
Shuffled 0.50 0.50 0.51 0.50 0.00 0.50 

Model Profile Processed r RMSE - BAR MCC - 

RFR 
Residual 

Original 0.56 0.05  0.69 0.37 - 
Shuffled -0.01 0.07  0.51 0.03 - 

Local 
Original 0.59 0.05  0.69 0.38 - 
Shuffled -0.01 0.07  0.51 0.01 - 
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Note: RFC = Random Forest Classification; RFR = Random Forest Regression; 
Se=sensitivity; Sp=specificity; PPV=positive predictive value; BAR=balanced accuracy 
rate; MCC=Matthew's correlation coefficient; AUC= area under the curve; RMSE=root 
mean squared error.  
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Figure 3-4  Random forest classification leave-one-out cross-validation (LOOCV) 
prediction array for all 16,043 β-lactamases variants (Residual Profiles data set) at codon 
level. Collectively, these predictions yield the performance summary data in the top row. 
Columns correspond to the β-lactamases amino acid positions, and rows represent the 61 
different types of residue replacements with codon notation. A β-lactamases variant is 
labeled correct (green) if its experimental and predicted fitness categories are identical; 
otherwise, the variant is labeled incorrect (red). 
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We found that β-lactamases variants for which polar amino acids replaced polar, 

apolar, or charged amino acid were predicted in a similar accurate level, with a BAR 

range 0.69-0.75 (Table 3-5). In general, the performance of our model was similar across 

amino acid substitutions categorized into polar, apolar, or charged categories.   

 

 

 

Table 3-5 Mean random forest leave-one-out cross-validation (LOOCV) prediction 
performance (β-lactamases variant Local Profiles) based on side chain polarities of the 
native and new amino acids at the mutated position. 

New/native 
Polar Apolar Charged 

BAR MCC % BAR MCC % BAR MCC % 
Polar 0.73 0.46 0.14 0.74 0.49 0.12 0.75 0.50 0.07 

Apolar 0.72 0.44 0.20 0.70 0.40 0.13 0.73 0.47 0.09 
Charged 0.70 0.39 0.12 0.73 0.46 0.09 0.69 0.39 0.04 

Note: BAR=balanced accuracy rate; MCC=Matthew's correlation coefficient.  

 

 

 

We found that predictions for mutations at residue positions on the protein 

undersurface were found to be the most accurate relative to those that are more buried. 

The predictions for mutations at residue positions in β-lactamases coils and helices were 

most accurate when compared to strands ( 

Table 3-6).  
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Table 3-6 Mean random forest leave-one-out cross-validation (LOOCV) prediction 
performance (β-lactamases variant Local Profiles) based on depth and secondary 
structure. 
  BAR MCC % 

Depth 
Buried 0.54 0.08 0.03 
Undersurface 0.73 0.45 0.41 
Surface 0.72 0.44 0.57 

Secondary structure 
Strand 0.68 0.37 0.17 
Helix 0.73 0.46 0.44 
Coil 0.74 0.47 0.39 

Note: BAR=balanced accuracy rate; MCC=Matthew's correlation coefficient. 

 

 

 

3.3.4 Learning curves exploration in β-lactamase models 

Learning curves demonstrated the relationship between model performance and 

the size of training set using both the residual profiles and local profiles (Figure 3-5). We 

found that the mean Random Forest Classification performance including PPV and BAR 

in 10-fold CV increased as the training set increased from 500 to 2,500 but plateaued 

after approximately 2500 in both the residual profiles and local profiles. MCC tent to 

continuously increase with greater training set size. R value increases slightly while 

RMSE stayed largely consistent with greater training set size. However, the largest 

dataset we collect from the original data is 4,998, which indicate if we have more data, 

the precision might go higher. 
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(A) (B) 

  

(C) (D) 

Figure 3-5 Learning curves. The plots reveal the degree to which performance is 
improved as the number of TEM variants in the training set is increased. Each point 
represents the average over ten runs of 10-fold CV, and the error bars indicate the 
standard deviation. Plots were generated by using both types of TEM variant data sets 
(Residual Profiles and Local Profiles feature vectors) with both random forest 
classification and tree regression. PPV=positive predictive value; BAR=balanced 
accuracy rate; MCC=Matthew's correlation coefficient; AUC= area under the curve; 
RMSE=root mean squared error.  
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3.3.5 Inclusion of deep learning exploration 

To examine if deep learning algorithm improves the results, we performed 

Artificial Neural Network (ANN) to the data using Tensorflow Keras. The basic 

architecture we used is the feed-forward neural network (FFNN). There were many 

hyper-parameters need to be tuned before performing. These parameters were: number of 

neurons in the input and hidden layers, number of hidden layers, dropout rate, optimizer, 

learning rate, regularizer, loss function, activation function, epoch and batch size. The 

basic idea is to change one hyper-parameter at one time and keep the others, plot both 

training and cross-validation accuracies, choose the point where both training and cross-

validation have good performance. The final hyper-parameters used in classification: (1) 

input layer has 40 neurons, 3 hidden layers each has 80 neurons; input and hidden layer 

both use ReLU function; output layer use softmax function; (2) kernel regularizer for 

each layer: L1 regularization penalty=1e-5; (3) loss function: Sparse Categorical 

Crossentropy; (4) optimizer: Adam, learning rate=5e-4; (5) Epoch: 100; (6) Batch: 15. 

Regression use same hyper-parameters, except the loss function use mean absolute error. 

We applied the obtained tuning hyper-parameters in the ANN model. We compared the 

ANN result with random forest classification with 10-fold cross validation. 

Table 3-7 and  

Table 3-8 report the model performance with 10-fold cross-validation using either 

random forest classification (Table 3-7) /random forest regression ( 



 
 

66 
 

Table 3-8) or ANN models. Overall ANN models did not improve the model 

performance.  

To investigate if synonymous codons provide additional information in creating 

the model, we randomly shuffled synonymous codons for each of the 20 amino acids for 

1000 times. For example, Alanine has 4 codons: A1, A2, A3 and A4, and we shuffled all 

the Alanine codons but kept other local profile variables unchanged. The results are 

presented in Table 6, row 4. The random forest classification sensitivity increased from 

0.70 at original codon level to 0.71 at the synonymous codons shuffled level while the 

specificity stayed the same of 0.70. RFC at the codon level did not achieved better model 

performance than at the shuffled codon level suggests that synonymous codons do not 

provide additional information helpful in predicting the β-lactamases protein fitness by 

using topological models.  

 

 

 

Table 3-7 Comparison of 10-fold cross-validation prediction performance (β-lactamases 
variant Local Profiles) at the amino acid or codon level using Random Forest 
Classification (RFC) or Artificial Neural Networks (ANN). 

Level Amico acid Codon 

Metric 
Sensi
tivity 

Speci
ficity PPV BAR MCC 

Sensi
tivity 

Speci
ficity PPV BAR MCC 

RFC 0.73 0.72 0.71 0.72 0.45 0.70 0.70 0.69 0.70 0.40 
ANN 0.73 0.71 0.70 0.72 0.44 0.72 0.69 0.67 0.71 0.42 
RFC 

shuffling 
- - - - - 0.70 0.69 0.68 0.70 0.40 

Note: PPV=positive predictive value; BAR=balanced accuracy rate; MCC=Matthew's 
correlation coefficient. RFC = random forest classification; ANN = Artificial Neural 
Network. 
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Table 3-8 Comparison of 10-fold cross-validation prediction performance (β-lactamases 
variant Local Profiles) at the amino acid or codon level using Random Forest Regression 
(RFR) or Artificial Neural Networks (ANN). 

Level Amico acid Codon 
Metric r RMSE BAR MCC r Metric RMSE BAR MCC r 
RFR 0.67 0.05 0.71 0.41 0.67 0.59 0.05 0.69 0.39 0.59 
ANN 0.62 0.05 0.73 0.45 0.62 0.58 0.05 0.70 0.40 0.58 

Note: RFC = Random Forest Classification; ANN = Artificial Neural Network; 
BAR=balanced accuracy rate; MCC=Matthew's correlation coefficient.  

 

 

 

3.3.6 Mutagenesis on protein activities 
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Table 3-9 reports the 10-fold cross-validation results in Random Forest 

Regression (RFR). We observed moderately high r values in 0.70-0.88, where GB1 

dataset yielded the highest r value. When the experimentally determined activity score 

was rescaled, we obtained the same r values but different RMSE, most of which were 

reduced. This result indicates that rescaling minimally impacts the activity score. 

Rescaling transformed the data and made most datapoints lie within the normal 

distribution with a mean of zero, narrowing down the range of the original data. Rescaled 

data are more comparable and they bring more easily interpreted results. 
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Table 3-9 10-fold cross-validation, random forest regression results 
 Reported Rescaled 

Dataset r RMSE r RMSE 
BRCA1-E3 0.70 0.30 0.70 0.15 
BRCA1-Y2H 0.77 0.15 0.77 0.22 
CcdB 0.70 1.28 0.71 0.18 
Gal4 0.71 2.01 0.71 0.28 
GB1 0.88 0.93 0.88 0.17 
Hsp90 0.83 0.21 0.83 0.19 
KKA2 0.68 0.41 0.68 0.34 
NUDT15 0.80 0.22 0.80 0.15 
PSD95 0.79 0.25 0.79 0.19 
Ras 0.79 0.19 0.79 0.28 
TEM1 0.80 0.62 0.80 0.24 
Ubiquitin 0.76 0.22 0.76 0.20 

Note: RMSE = Root-Mean-Square Deviation. Mutagenesis libraries were obtained from 
Bhasin et al [37].  

 

 

 

 After rescaling the activity score and categorized them into increased or decreased 

categories by comparing with the median values, we found that the 10-fold cross-

validation results stayed high. Missing result in the CdcB dataset was due to excessive 

zeros in the dataset.  
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Table 3-10 10-fold cross-validation, random forest classification, median, rescaled 
 Sensitivity Specificity PPV BAR MCC PRC 
BRCA1-E3 0.78 0.79 0.80 0.79 0.57 0.86 
BRCA1-Y2H 0.67 0.69 0.70 0.68 0.35 0.74 
CcdB - - - - - - 
Gal4 0.84 0.81 0.80 0.83 0.65 0.89 
GB1 0.88 0.89 0.89 0.88 0.76 0.95 
Hsp90 0.79 0.81 0.81 0.80 0.60 0.87 
KKA2 0.78 0.77 0.77 0.77 0.55 0.82 
NUDT15 0.81 0.79 0.82 0.80 0.60 0.77 
PSD95 0.77 0.79 0.80 0.78 0.57 0.87 
Ras 0.80 0.82 0.82 0.81 0.61 0.89 
TEM1 0.80 0.81 0.81 0.80 0.60 0.88 
Ubiquitin 0.81 0.82 0.81 0.81 0.63 0.90 

Note: PPV=positive predictive value; BAR=balanced accuracy rate; MCC=Matthew's 
correlation coefficient.  

 

 

 

We found that overall models were not generalizable within datasets containing 

proteins evaluated for the same activity categories in Table 3-1. In the antibiotic 

resistance category, using TEM1 as training set and Ras as the test dataset resulted in the 

highest sensitivity of 0.65. In the ubiquitin ligase activity category, using BRCA1-E3 as 

the training dataset and UB as the test dataset brought a sensitivity of 0.56. Overall, the 

sensitivity, specificity, PPV etc. criteria suggested that model generalization was not 

good.  
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Table 3-11 Model performance by using different training and test datasets in two protein 
activity categories 
Activity Training 

dataset 
Test 
dataset 

Model performance 
Sensiti
vity 

Specif
icity 

PPV BAR MCC AUC 

Antibioti
c 
resistance 

Ras KKA2 0.56 0.55 0.47 0.55 0.11 0.58 
Ras TEM1 0.63 0.59 0.52 0.61 0.21 0.66 
KKA2 Ras 0.55 0.60 0.73 0.57 0.14 0.59 
KKA2 TEM1 0.58 0.64 0.74 0.61 0.21 0.64 
TEM1 Ras 0.65 0.61 0.56 0.63 0.26 0.66 
TEM1 KKA2 0.64 0.59 0.50 0.62 0.23 0.66 

Ubiquitin 
ligase 

UB BRCA1
-E3 

0.52 0.56 0.73 0.54 0.08 0.57 

BRCA1
-E3 

UB 0.56 0.55 0.42 0.55 0.11 0.59 

Note: PPV=positive predictive value; BAR=balanced accuracy rate; MCC=Matthew's 
correlation coefficient; AUC = area under curve.  

 

 

 

3.3.7 Mutagenesis on double residue mutations 

We found that the computational mutagenesis methods resulted in high 

sensitivity, specificity, PPV etc. metrics in model performance by using either residual 

profile or local profile as the outcomes in Table 3-12. The shuffled profiles served as a 

control group had close to 0.5 sensitivity, specificity, and PPV, validating the method is 

working properly. We ran sensitivity analysis by including only 1/10, 1/100, and 1/000 

random samples of the total 270,990 mutation instances in Table 3-12, and we found 

relatively lower performance metrics including sensitivity, specificity, PPV etc. 

compared to results in Table 3-12. However, even when the only 271 instances were 

included, the sensitivity, specificity, PPV etc. metrics were still high. The effect of 
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including different number of instances on model performance was demonstrated in 

Figure 3-6, where 30k-40k was large to bring a sufficiently high model performance. 

These results suggested that the created model can predict the impacts of double residue 

mutations on protein fitness well.  

 

 

 

Table 3-12 10-fold cross validation, median, classification, instance =270,990 
Profile Process Sensitivity Specificity PPV BAR MCC AUC 
residual  original 0.96 0.95 0.95 0.95 0.90 0.99 
 shuffled 0.49 0.51 0.47 0.50 -0.00 0.50 
local  original 0.95 0.94 0.94 0.94 0.89 0.99 
 shuffled 0.49 0.51 0.46 0.50 -0.00 0.50 

 Note: PPV=positive predictive value; BAR=balanced accuracy rate; MCC=Matthew's 
correlation coefficient; AUC = area under curve.  
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Table 3-13 10-fold cross validation, median, classification, instance number varies 
instance Profile Process Sensitivity Specificity PPV BAR MCC AUC 

27,099 
residual  

original 0.92 0.94 0.94 0.93 0.85 0.98 
shuffled 0.50 0.50 0.49 0.50 -0.00 0.50 

local  
original 0.90 0.92 0.91 0.91 0.82 0.97 
shuffled 0.50 0.49 0.51 0.50 -0.00 0.50 

2,710 
residual  

original 0.86 0.88 0.89 0.87 0.74 0.94 
 shuffled 0.51 0.50 0.53 0.51 0.02 0.51 
 

local  
original 0.85 0.84 0.84 0.85 0.69 0.92 

 shuffled 0.46 0.53 0.41 0.49 -0.01 0.50 
271 

residual  
original 0.77 0.83 0.88 0.80 0.58 0.86 

 shuffled 0.54 0.55 0.49 0.55 0.09 0.55 
 local  original 0.72 0.74 0.74 0.73 0.46 0.78 
 shuffled 0.51 0.52 0.50 0.51 0.03 0.52 

Note: PPV=positive predictive value; BAR=balanced accuracy rate; MCC=Matthew's 
correlation coefficient; AUC = area under curve.  

 

 

 

  

(A) (B) 

Figure 3-6 Model performance by including different number of instances in the 10-fold 
cross-validation. (A) Using residual profile as inputs. (B) Using local profile as inputs.  
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We found that the residual score for mutation 1 and that for mutation 2 had a very 

low Pearson’s correlation coefficient of 0.12. Fitness for mutation 1 and fitness mutation 

2 also had a very low correlation coefficient of 0.03. We also found the correlation 

between fitness of mutation 1&2 was moderately positively correlated with fitness for 

mutation 1 or fitness for mutation 2. The results are as expected. Only one mutation 

residual score or fitness score cannot predict the fitness score of double mutations. 

Topological property changes can be used in predicting the fitness scores of double 

mutations by using the computational mutagenesis methods.  

 

 

 

Table 3-14 Residual scores, mutation fitness scores, and double mutation fitness score 
Pearson’s correlation coefficients 

 

Residual 
score for 
mutation 
1 

Residual 
score for 
mutation 
2 

Fitness 
for 
mutation 
1 

Fitness 
for 
mutation 
2 

Fitness 
for 
mutation 
1&2 

Residual score for mutation 1 - - - - - 
Residual score for mutation 2 0.12 - - - - 
Fitness for mutation 1 0.00 0.17 - - - 
Fitness for mutation 2 0.29 0.02 0.03 - - 
Fitness for mutation 1&2 0.23 0.15 0.60 0.70 - 

 

 

 

We found that each variable was weakly correlated to the fitness class by using 

local profile or residual profile in Figure 3-7. Considering the high model performance in 



 
 

75 
 

Table 3-12, we think the results in this figure suggest that there was no dominating effect 

of any variables in predicting fitness class but each variable contributed a small part in 

the prediction. It’s useful to include all these variables as model inputs for a reliable 

model prediction on protein activity.  

 

 

 

  
(A) (B) 

Figure 3-7 Pearson’s correlation coefficients between variables and fitness class at (A) 
residue profile and (B) local profile.  

 

 

 

3.4 Conclusions 

We applied the machine learning techniques on various proteins which had 

experimentally determined fitness or activity scores by using the saturation mutagenesis 

methods. We extended the prediction at both amino acid level and codon level, although 
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amino acid level prediction had better model performance. By using computational 

mutagenesis, local profile can be used to predict the impact of mutations on fitness or 

activity in different proteins with good model performance. Model performance 

improved in double mutation protein activity score prediction. Model created for one 

protein had low performance when being applied to a different protein, suggesting low 

generalizability. The results may be useful to quantify and predict protein fitness and 

activity changes caused by mutations in different proteins.  
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CHAPTER 4 : VALGUSHEL, A NOVEL METHOD TO IDENTIFY AND 

CHARACTERIZE KINKED ΑLPHA-HELICES 

4.1 Overview 

We develop a new approach, “ValgusHel”, to identify kinked α-helices in proteins 

based on their geometrical (ValgusHel-geometry) and topological structures (ValgusHel-

topology). We compare the agreement between this two-part method and characterize 

kinked helices after classification. In ValgusHel-geometry, in an α-helix with at least 9 

residues (i, i+1, …, i+8), we calculated the helix angle formed by a helix axis in residues 

i, i+1, …, i+5 and a second helix axis in residues i+3, i+4, …, i+8. Based on the 

calculated helix angles, the center residues (i+4) and 9-residue α-helix fragments were 

classified as kinked (>30°), curved (19-30°) or normal (≤19°) residues or sequences, 

respectively. Entire α-helices were classified as kinked, curved, or normal helices based 

on the highest helix angles estimated. We measured structure alignment deviations of 

kinked, curved and normal α-helices from a model ideal helix using Root Mean-Square 

Deviation (RMSD). We examined the residues frequency and calculated sequence 

similarity score within and across the kinked, curved and normal helices groups. DSSP 

variables of residues within the α-helices or residues characteristics of surrounding 

environment around α-helices were included in Random Forest Classification to predict 

the presence of kinked/normal α-helices. In ValgusHel-topology, we tessellated the 

protein structures into Delaunay simplices and explored the association between the 

distribution of types of simplices within a helix and the kinked, curved or normal helix 
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classification determined by ValgusHel-geometry. We used N-gram in different sequence 

fragment to determine helix classification (kinked, curved, normal) based on Delaunay 

simple type stacking within a helix. We compared the agreement of helix classification 

by using ValgusHel-geometry and ValgusHel-topology. In our data set, a total of 2,621 

(0.94%) residues were classified as kinked residues, 17,536 (6.31%) as curved residues, 

and 257,853 (92.75%) as normal residues. Among kinked and curved residues, mean 

RMSD monotonically increase when the calculated helix angles increase from 15-46°. 

Within group sequence similarity scores show highest sequence diversity within kinked 

sequences group. Both DSSP variables within α-helices and residue characteristics in 

surrounding environment of α-helices predicts helix angles and thus α-helices 

classifications with relatively high sensitivity and specificity. By using the distribution of 

types of Delaunay simplices, we were able to identify kinked helices at both sensitivity 

and specificity equal to 0.75. N-gram based on the distribution of types of Delaunay 

simplices is useful to identify kinked helices, and a combination of fragment length (m 

≥12) and N-gram (N≥8) may result in an acceptable identification result. The helix 

classification agreement was as high as 0.76 between ValgusHel-geometry and 

ValgusHel-topology. ValgusHel can be used to identify and characterize kinked and 

curved α-helices. ValgusHel-topology may bring better results and higher consistency 

compared to using geometric method alone. This method may be useful in future studies 

to examine structure-function relationships in kinked α-helices. 
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4.2 Introduction 

α-helix is the most common type of protein secondary structure [64, 65]. Previous 

studies have found α-helix do not always have a straight helix axis [66-69]. Hall et al. 

found that 44% of a total of 405 transmembrane helices were kinked [70]. Blundell et al. 

found that most α-helices were curved [67]. Evidence shows that solvent induced 

distortions [67], peptide bond distortions [68], or proline residues [71] are possible 

reasons for kinked α-helices. The underlying causes of helical kinds have not been fully 

revealed. The points provided by the helical kinks easily allow for confirmatory changes 

and structural variations, so they usually have important functions in proteins [72-75]. 

Evidence shows kinks in α-helices have important biological functions. For example, 

Law et al. (2016) found that changes in kinks could be related to the binding of agonists 

or antagonist in G-protein-coupled receptors (GPCRs) in receptor activation through 

confirmation change [76]. Kinks in transmembrane helices provide various sizes, shapes, 

and electrostatic properties of ligand binding pockets in different GPCR subfamilies [75]. 

Studies found that a kinked α-helix could function as a funnel in ion-channels [77, 78]. 

However, helical kinks are often neglected in the discussion and not being annotated or 

misleadingly annotated in Protein Data Bank (PDB) [79].  

Some algorithms have been developed to identify kinks in helices. HELANAL-

Plus sorts helices into kinked, curved, or linear helices via estimated bend angles formed 

by two helix axes, each formed by a set of four consecutive α-Carbon atoms within the 

helix [66, 80]. Prokinked is a highly specific protocol to evaluate proline induced 

distortions in helices via determining helical axes [81], and it has limited sensitivity to 
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detect kinked introduced by non-proline residues [66]. MC-HELAN detects and 

characterizes helical kinks through a Monte Carlo approach determined helical axes. In 

MC-HELAN, a helix will not be characterized if the algorithm is not converging to a 

single position [66]. Comparison of algorithms sensitivity to detect kinked helices 

between HELANAL-Plus and MC-HELAN showed relatively low agreement. For 

example, in the same data set containing 842 helices, HELANAL-Plus sorted 275 (33%) 

helices into kinked helices while MC-HELAN sorted 516 (61%) helices into kinked 

helices [66]. Kinked Finder fits a cylinder over six residues with five residue overlapping 

and characterized a helix as ‘kink’ if helix axes angles >20° [82]. AH^AH, a web based 

survey investigating how humans provide a different to determine if protein α-helices are 

kinked, provides another perspective to compare the kinked α-helices identification with 

the above computer algorithms [83]. In this background, additional algorithms to identify 

kinked helices are needed to provide more knowledge on helical kinks structure and their 

characterization.  

Most studies investigated kinked α-helices inside the environment of the α-

helices. Evidence shows that proline is a powerful sequence signature of helical kinks 

[70, 79, 82, 84-87] although up to two-thirds of kinked helices do not have proline [70, 

79]. Hall et al. found that Ser, Thr, and Gly are common in kinked helices [70]. 

Langelaan et al. observed changes in prevalence of other polar residues within helices 

[79]. Sequence preferences in kinked helices have been used to predict the presence of 

kinked helices (e.g., TMKink) [87]. Langelaan et al. found that initial attempts to predict 

membrane protein kinks using only the protein sequence were unsuccessful [69].   
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Whether or how the surrounding amino acid residues impact the kinked α-helices 

has been largely unexplored. Not limited to the residue prevalence within α-helices but 

including nearby residues around the helical kinks may improve the characterization of 

helical kinks. Kinks are generally conserved despite changes in sequence, which indicates 

that the characterization of the kinked helix should consider both local sequence effects 

and more global interactions with neighboring helices [76, 84].  

Kinked helices can be viewed as topological changes from normal helices with 

straight axes. Examining the differences of topological characteristics between kinked 

and normal helices may be useful to identify and characterize kinked helices. Delaunay 

tessellation has been used to define each amino acid residue’s nearest neighbors in three-

dimensional (3D) protein structures [43]. Each amino acid is abstracted to a point, and the 

protein structure is then tessellated to form a set of non-overlapping, irregular, space-

filling tetrahedra, whose vertices form a Delaunay simplex [43]. The four residues 

connected by a simplex edge are considered nearest neighbors [43]. However, to the best 

of our knowledge, Delaunay tessellation has not been used to identify and study kinked 

α-helices’ nearest neighbor residues. In a pilot study, we found that among simplices type 

211 [43] whose four residues are all within α-helices, 97.5% are formed by residues i, 

i+3, i+4, i+7, where i is the residue number. Considering on average 3.6 residues form a 

helix turn, i and i+7 are not likely to become nearest neighbors in a standard helix but 

possible if the helix is bent. We further visualized these locations in PyMOL software 

and found there was a bend in the middle of these α-helices. We hypothesized that the 

bend may decrease the distance between residue i and residue i+7 so that there may 



 
 

82 
 

become nearest neighbors. Additionally, the distribution of Delaunay simplex types 

represents structure characteristics of α-helices, and we are interested to see if this 

distribution is associated with helix angle of α-helices and whether the distribution can be 

used to predict the helix angle thus helix classification (kinked or normal).  

We propose the “ValgusHel” method, which includes both a geometry and a 

topological method, to identify and characterize kinked α-helices. ValgusHel-geometry 

calculates helix angles and then identify and classify α-helices based on helix angles. 

Based on the classification results, we examined the sequence and structure 

characteristics within and across different α-helices groups based on helix angles. 

ValgusHel-topology uses topological characteristics obtained from Delaunay tessellations 

to identify and characterize kinked α-helices. More topological characteristics of kinked 

α-helices were explored. We further explore the agreement in identifying kinked α-

helices between ValgusHel-geometry and ValgusHel-topology in this study.   

4.3 Materials and Methods 

4.3.1 ValgusHel Method Definition  

 “ValgusHel” is a collection of a geometry method and a topological method to 

identify and characterize kinked α-helices. 

4.3.1.1 Part 1: ValgusHel-geometry 

“ValgusHel-geometry” is the method of dividing an α-helix into a set of six 

consecutive amino acid residues, three amino acid residues overlapping sextuplet. Each 

sextuplet forms a cylinder observation unit. In an α-helix containing n (n≥9) amino acid 

residues, we included a set of six consecutive amino acid residues i, i+1, i+2, …, i+5, to 
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form a cylinder j within the α-helix. The last three amino acid residues, i+3, i+4, and 

i+5, together with amino acid residues i+6, i+7, and i+8, are included to form the next 

cylinder j+1. We calculated the helix angle between the cylinder j’s axis and the cylinder 

j+1’s axis (Figure 4-1). Since the amino acid residue i+4 is at the midpoint of the nine 

consecutive amino acid chain (residue i to i+8), we assigned the helix angle to this 

midpoint amino acid residue i+4. We categorized amino acid residue i+4 as a “normal 

residue” if its helix angle is ≤19°, a “curved residue” if the helix angle is 19-30°, a 

“kinked residue” if the helix angel is >30°. The sequence containing residues i to i+8 was 

categorized as “normal sequence”, “curved sequence”, and “kinked sequence” based on 

the center residue i+4 helix angles. In a whole α-helix sequences that may contain 

multiple ValgusHel-geometry observation units, we categorized it as normal α-helix 

(with all helix angles ≤19°), a curved α-helix (with the greatest helix angles 19-30°), or a 

kinked α-helix (at least one helix angle >30°).  

In “ValgusHel-geometry”, we chose the number of “6” and “3” in a balance of 

observation units and detection sensitivity after trials of different combinations in the 

pilot study. If a cylinder is formed by many residues (e.g., 10), we may be able to find 

bent axis but not be able to accurately locate the bend position. On the other hand, if a 

cylinder is formed by few residues (e.g., 4), the cylinder axis may not be accurate. Five 

overlapping residues lead to greatest number of observation units while zero overlapping 

residue leads to smallest number of observation units. With five overlapping residues, we 

are concerned that only α-helices with extreme kinked or bend can be detected, which led 

us to use three overlapping residues.  
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Figure 4-1 Illustration of defining a helix angle using ValgusHel-geometry. Axis 1 is the 
axis of the cylinder formed by residue i, i+1, …, i+5 and axis 2 is the axis of the cylinder 
formed by residue i+3, i+4, …, i+8. Residue i+4 is the center amino acid residue in 
residues i to i+8, and the calculated helix angle between axis 1 and axis 2 is annotated on 
it. The fragment containing residue i to i+8 is classified as normal α-helix (helix angle 
≤19°), kinked α-helix (helix angle >30°), or curved α-helix (helix angle 19-30°).  

 

 

 

4.3.1.2 Part 2: ValgusHel-topology 

4.3.1.2.1 Part 2.1: t-numbers  

 “ValgusHel-topology” is the method to identify kinked α-helices based on the 

topological characteristics by using Delaunay tessellation. Each amino acid residue was 

represented by a point, which is collocated with the α-carbons of an amino acid residue. 

The method further tessellated the protein structure to form a set of non-overlapping, 

irregular, and space filling tetrahedrons, whose vertices form a Delaunay simplex [43]. 

Residues contained in a simplex edge are considered nearest neighbors [43]. We divided 

protein sequences into 9-residue fragments and performed Delaunay tessellation on them. 

We classified the obtained Delaunay simplices into five types by following the 
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classification method based on the way the main amino acid sequence chain threads 

through the simplices proposed by Taylor et al. (2015).[43] Then the obtained Delaunay 

simplices were represented by simplex type # (0, 1, 2, 3, or 4). We want to know the 

number of simplices of each type that a residue belongs to. Previous studies called these 

sums t-numbers [14, 27]. For example, if a residue is a vertex in five type 0 simplices, six 

type 1 simplices, seven type 2 simplices, eight type 3 simplices, nine type 4 simplices, its 

t-numbers are t(0)=5, t(1)=6, t(2)=7, t(3)=8, and t(4)=9. A residue can participate in 

different number of simplices with various simplex type distributions. For each residue, 

combining its t-numbers with the helix angles and thus helix classification (kinked, 

curved, normal) determined by the “ValgusHel-geometry” method, we ran Random 

Forest Classification in the following format:  

 

Equation 4-1 
JK	~	%(0) + %(1) + %(2) + %(3) + %(4) 

where HC is helix classification.  

We tested if there were associations between the residue’s t-numbers and helix 

angle classification, and if we could predict helix angle classification based on the t-

numbers. 

4.3.1.2.2 Part 2.2: N-gram 

In a protein sequence, we ranked all obtained simplices based on the containing 

residue number and gave the simplices a stacking index from 1 to n, where n is the total 
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number of simplices. Next, we annotated each stacking index with simplex type number 

(0, 1, 2, 3, 4). Therefore, a sequence was represented by a set of simplex type numbers. 

For example, an example sequence fragment contained 9 simplices, and the sequence’s 

simplex type stacking index is 421421421 in Table 4-1.    

 

 

 

Table 4-1 Simplex type stacking index in an example sequence  

Stacking index 

Simplex 
composition 
represented 

by AA 

Vertex1 
residue# 

Vertex2 
residue# 

Vertex3 
residue# 

Vertex4 
residue# 

Simplex type 

1 TGLI 100 101 102 103 4 
2 TGIV 100 101 103 104 2 
3 TIVE 100 103 104 107 1 
4 GLIV 101 102 103 104 4 
5 GLVS 101 102 104 105 2 
6 GVSK 101 104 105 108 1 
7 LIVS 102 103 104 105 4 
8 LISL 102 103 105 106 2 
9 LSLE 102 105 106 109 1 

 

 

 

We proceed with N-gram approach. For each N value (N = 3, 4, 5, …, 20), we 

created a N-gram frequency table within normal, kinked, and curved helices within the 

whole data set, respectively. Then we reformatted the frequency table to reflect the 

frequency normal, kinked, and curved helices within each combination in each N-gram.  



 
 

87 
 

We tried different combinations of fragment length m (8 to 20) and N-gram with 

N (3 to 20). Take m=9 and N=5 as an example, we divided a helix sequence by 9 

consecutive simplex indexes identified in the previous step (e.g., 421421421). Next, we 

select 5 consecutive simplices out of the 9-residue fragment, resulting in 5 possible 5-

gram: 42142, 21421, 14214, 41242, and 21421. We calculated the scores of normal, 

curved, and kinked, respectively, as below:  

 

Equation 4-2 

8= =	Q>),=

'

)?&
 

 

where S is score, f is frequency, which is the calculated frequency from the 5-gram table 

from the data set, s is the helix structure of normal, curved, or kinked, and i is one of the 

5 possible 5-gram. The stacking type for this fragment is determined by the structure type 

with the highest score. For the example sequence above, normal helices have the highest 

score, and the 9-residue fragment 421421421 is annotated as N, where N is Normal.  

4.3.2 Data set preparation 

We created a data set containing 8,826 individual protein chains and 46,604 α-

helices for α-helix classification by using ValgusHel-geometry and ValgusHel topology. 

The dataset is downloaded from PDB with the following criteria: sequence identity < 

30%, resolution higher than 2 Angstrom, r-factor ≤0.25, sequence length between 100-

1000. This dataset is abbreviated as 8826culled.  
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4.3.3 Kinked α-helices identification using ValgusHel geometry method 

To compare the method sensitivity of ValgusHel-geometry to MC-HELAN, and 

HELANAL-Plus, we used a published data set containing 140 proteins and 887 α-helices 

from the MC-HELAN server [88]. Kinked residues identified by the MC-HELAN 

method are already labeled. In this MC-HELAN data set, we identified kinked α-helices 

on each protein chain using the ValgusHel-geometry and the HELANAL-Plus method. 

We compared the kinked α-helices identification results from the ValgusHel-geometry, 

MC-Helena, and HELANAL-Plus methods.  

There are a total of 177 helices with annotations of kinked, curved or straight 

classifications on AHAH [83]. We performed ValgusHel-geometry and HELANAL-Plus 

on this AHAH data set to compare the results agreement.   

Next, for each observation unit (9 consecutive amino acid residues), we calculated 

a Root-Mean-Square Deviation (RMSD) by comparing its structure to a model ideal helix 

which has a straight axis in structure alignment. A lower RMSD suggests higher 

similarity between the structure of interest and the ideal alpha-helix model. We examined 

the relationship between RMSD and calculated helix angles.  

We applied the ValgusHel-geometry method to classify residues and helices into 

normal, curved, and kinked residues and helices, respectively by following the criteria 

described above. We also categorized the nine non-overlapping sequence (e.g., residues i 

to i+8) into normal, curved, or kinked sequences based on their corresponding center 

residue helix angle. We compared the sequence similarity by using the BLOSUM62 

penalty table within and across different sequence normal/curved/kinked groups [89].  
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4.3.4 Association between sequence and structure in kinked α-helices 

Sequences are classified as normal, curved, or kinked sequences based on helix 

angles as described above. We used Jalview to cluster sequences by using average 

distance with BLOSUM62 to build a hierarchical tree [90]. Since Jalview limits number 

of input entries, we randomly selected and input 15,000 out of 95,210 sequences. The six 

clusters with the greatest number of sequences were included for further analysis. We 

examined the helix angles within each of the six clusters.  

We identified all coils and beta-strands secondary structures with greater or equal 

to 9 consecutive residues in our data set [91]. Because equal number of sequences 

between two sequence comparison groups is required, and the kinked sequence group has 

the lowest sequence number (N=752), we randomly selected 752 out of 56,826 sequences 

in the normal sequence group, 752 out of 37,632 sequences in the curved sequence group, 

and 752 out of 2,755 of the coiled-coils and out of 38,402 of beta-strands to compare, 

respectively. Within each group, one sequence is compared to the rest 751 sequences, 

producing K@'44 = 282,376 sequence similarity scores, which are further processed to 

produce an overall mean similarity score within the group. When comparing two 

sequence groups, each sequence in group 1 is compared to all the sequences in group 2, 

producing 752 × 752 = 565,504 sequence similarity scores, which are further processed 

to produce an overall mean similarity score between group 1 and group 2.  

 We were interested to see whether kinked helices were due to a kink position in 

the center of the fragment or the whole fragment is kinked. To explore the kink position 

within the 9-residue fragment described above, in each of the 9-residue sequence 
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(N=775), we removed the center residue. A pair of two helix fragments, each containing 

four-residues, were obtained from each 9-residue sequence. We did structure alignment 

of each pair of the 4-residue helix fragments with a model ideal helix and added up the 

two RMSD from two fragments.  

To find whether Leucine was associated with kinked helices, we also identified 

coiled-coils and leucine zippers among all the kinked helices by using the methods by 

Lupas et al. (1991) [91]. We summarized the number of kinked helices that belong to 

leucine zippers or transmembrane proteins.  

We examined whether identified kinked helices would be predicted as helices 

instead of coils by Jpred 4 [92]. We included all 9-residue kinked alpha-helix fragments 

and calculated trees using Average distance BLOSUM62 on Jalview [93]. We picked 5 

clusters with most similar sequences while allowing each cluster to include 20 to 39 

sequences. Next, we found sequence motif for each cluster using MEME [94]. We used 

the motif regular expression to scan against protein sequence databases of Swiss-Prot and 

TrEMBL in ScanProsite [95, 96]. In the hit results, we randomly picked 50 hits for each 

cluster if the hit number is greater than 50. We used Jpred 4 to predict secondary 

structures of clusters 1-4, where cluster 5 was not included due to low hit number. The 9-

residue fragments were matched with corresponding secondary structures predicted by 

Jpred 4. For each residue (1 to 9), we calculated the frequency of different secondary 

structures and their average confidence scores.  
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4.3.5 Prediction of normal, curve, and kinked residues based on variables (DSSP or 

Delaunay tessellation) in Random Forest Classification 

We were interested to see whether using the ‘ACC’, ‘TCO’, ‘KAPPA’, ‘Α’, PHI’, 

‘PSI’ variables from DSSP would predict the classification of normal vs. non-normal 

(curve and kink) residue defined by ValgusHel-geometry. Based on the results of 

ValgusHel-geometry, we coded the center residues i+4 as 1 for non-normal (curve and 

kink) residues and 0 for normal residues. We ran Random Forest Classification (RFC) 

models to predict whether residues are normal or non-normal using the ‘ACC’, ‘TCO’, 

‘KAPPA’, ‘Α’, PHI’, ‘PSI’ variables as independent variables. While DSSP variables are 

within the helices, we also explored whether the surrounding residues to the 

normal/curve/kinked residues are useful in predicting the helix angles defined by 

ValgusHel-geometry. Using Delaunay tessellation, we tessellated the entire α-helices and 

located the nearest neighbor residues to them. No simplices with edge length >12 

angstrom was included. Residue distance and edge length, along with amino acid type, 

sequence secondary structure, amino acid locations (buried or on surface), are included as 

independent variables in the RFC models to predict the helix angle and thus the 

classification of normal vs. non-normal residues.  

4.3.6 Kinked α-helices identification using ValgusHel-topology method 

We performed the ValgusHel-topology method on our data set with a 

combination of fragment length (m =8 to 20) and N-gram (N=3 to 20). We annotated 

each fragment with N (Normal), K (Kinked), or C (Curved) based on the results.   
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We created a confusion matrix with the number of kink, curved, and normal 

helices identified by ValgusHel-geometry and ValgusHel-topology on our data set. We 

calculated sensitivity, specificity, and Balanced Accuracy Rate (BAR) to evaluate the 

agreement.  

4.4 Results and discussion 

4.4.1 Characteristics of calculated helix angles 

In the 8826culled dataset, we identified 46,615 α-helices by using the ValgusHel-

geometry method. We annotated a total of 278,010 residues with helix angles and their 

distribution is shown in Figure 4-2. There are 257,853 (92.75%) normal residue, 17,536 

(6.31%) curved residue and 2,621 (0.94%) kinked residues. There are 34,575 (74.17%) 

normal α-helices, 10,827 (23.23%) curved α-helices, and 1,213 (2.60%) kinked α-helices.  
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(A) (B) 

Figure 4-2 Helix angles distribution by using ValgusHel method. A total of 278,010 helix 
angles were estimated in Our data set (Figure 2A). Figure 2B shows the zoom in results 
when helix angles ≥20°. 

 

 

 

Comparing with a model ideal α-helix which forms a cylinder with straight axis 

and only by Alanine. Using six residues to form a cylinder, we found that even a model 

ideal helix has a helix angel of 11.91°. RMSD increase monotonically when the 

calculated helix angles increase from approximately 14-46° and fluctuated when the 

calculated helix angles increased from approximately 46-70° (Figure 4-3). The dip of 

RMSD occurred when the helix angle was approximately 12-14°.We further divide non-

normal helices, fragments and residues into curve (helix angle 19-30°) and kinked (helix 

angle >30°). Figure 4-3 shows that higher helix angles defined by ValgusHel-geometry 

are associated more structure deviations from a model ideal helix with a straight axis, 



 
 

94 
 

bringing more validation evidence of the method. In Figure 4-3, the mean RMSD 

increased monotonically when the helix angles increased from 14-46°, agreeing with our 

assumption that greater helix angles are associated with more “bend” of the helix barrel 

and more deviation from the standard normal helix barrel. Theoretically, an α-helix has 

3.6 residues per turn [97], and using 6 residues to define axis may lead to slightly 

different axis in a model ideal helix. In fact, we estimated that a model ideal helix has a 

helix angle of 11.9°. Therefore, we deduced that a helix angle close to 11.9°, either 

higher or lower, was more likely to be within a straight/normal helix. The fluctuation of 

RMSD when helix angles increased from 46-70° may be due to small sample size (Figure 

4-3).  

 

Figure 4-3 The relationship between Root Mean Square Deviation (RMSD) and 
calculated helix angles (°) by using ValgusHel-geometry. Error bars are standard 
deviations. 
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4.4.2 Validation of ValgusHel geometry method against HELANAL-plus, MC-

HELAN, and AHAH 

 In the data set from the containing 887 α-helices from the MC-HELAN server. 

The kinked α-helix identification agreement was 45.5% between ValgusHel and 

HELANAL-Plus, 67.1% between ValgusHel and MC-HELAN, and 58.9% between 

HELANAL-Plus and MC-HELAN. The agreement among the three methods was 45.7% 

(Figure 4-4). Figure 4-5 demonstrates the α-helices identified as kinked ones by 

ValgusHel-geometry, HELANAL-plus, and AHAH in the data set provided on AHAH 

website , respectively. A total of 48.6% of all α-helices were identified as kinked α-

helices by all the three methods. A total of 61.0% of all α-helices were identified as 

kinked ones by both ValgusHel-geometry and HELANAL-plus, and 65.5% by both 

ValgusHel-geometry and AHAH (Figure 4-5). Relatively fair percent of the kinked α-

helices identified by ValgusHel-geometry were also identified by the MC-HELAN and 

HELANAL-Plus methods (Figure 4-4). Although there is no “gold standard” of defining 

a kinked α-helix, the relatively high agreement with MC-HELAN and HELANAL-Plus 

supports the validity of ValgusHel-geometry. The moderate agreement between AHAH 

and ValgusHel-geometry is comparable to the agreement between AHAH and 

HELANAL-Plus (Figure 4-6), suggesting ValgusHel-geometry brings equivalent 

alignment with human perspective in identifying kinked α-helices compared to 

HELANAL-Plus.  
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Figure 4-4 Number of α-helices categorized as kinked α-helices by using ValgusHel-
geometry, HELANAL-Plus and MC-HELAN methods in a data set provided on the MC-
HELAN server. The total number of α-helices was 887. The edges of the triangle 
represent the agreement of α-helices classified as kinked α-helices by two methods on the 
vertices. The circle in the middle represent the agreement of α-helices classified as 
kinked α-helices by the three methods.  

 

 

 

 

Figure 4-5 Percent of α-helices categorized as kinked α-helices by using ValgusHel-
geometry, HELANAL-Plus and AHAH methods in the data set provided on AHAH 
website. The total number of α-helices was 177. The edges of the triangle represent the 
agreement of α-helices classified as kinked α-helices by two methods on the vertices. The 
circle in the middle represent the agreement of α-helices classified as kinked α-helices by 
the three methods.  
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4.4.3 Amino acid residues frequency in different α-helices groups 

Figure 4-6 illustrates difference of amino acid frequencies between kinked 

residues/helices and normal residues/helices. We found that the difference frequency (%) 

is highest in Leucine (L), Glycine (G), Alanine (A) and lowest in Valine (V), Isoleucine 

(I), and Glutamic acid (E) at the residue level (Figure 4-6A). Interesting to observe L and 

V are on the top opposite site, though they are similar amino acids. Proline (P) had 

highest difference of frequency and A had the lowest one at the helices level (Figure 

4-6B). In Figure 4-6B, the high helix angles annotated at prolines residues agrees with the 

previous studies suggesting that Proline (P) may be a powerful sequence signature of 

helical kinks [70, 79, 82, 84-87]. However, the low prevalence of Proline in kinked 

helices suggests Proline is not necessary in kinked helices. Yohannan et al. (2003) 

proposed mutation to proline initially induces kinks in transmembrane proteins, but the 

mutation was replaced by further mutation but the kinked structure stays [84].  
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(A) (B) 

Figure 4-6. Difference of amino acid frequencies (%) in (A) all residues and (B) all 
helices. Difference of frequency (%)=frequency (%)i  in kinked residue/helix group- 
frequency (%)i in normal residue/helix group. i (1 to 20) represents 20 natural amino 
acids.  

 

 

 

4.4.4 Sequence similarity in different cluster and α-helices groups 

 Based on sequence similarity scores within and across sequence clusters from 

BLOSUM62, the distributions of sequence helix angles are similar across clusters (Figure 

4-7).  Table 4-2 reports the sequence identity and helix angles after clustering the 

sequences first. In the sequence identity degree between two sequences <0.5 group, the 

Pearson’s correlation coefficient was 0.372 between the helix angles. A total of 33.6% of 

all pairs of sequences had the same helix angles. The results were higher (0.428 and 

38.1%) in sequence identity degree between two sequences >0.5 group, where the 

sequences were more similar to each other, although the difference was relatively small. 
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Figure 4-7 shows different sequence cluster groups have similar helix angle distribution, 

suggesting sequence may not strongly correlated with helix angles. However, in Table 

4-2, we observed higher Pearson’s correlation coefficient in groups with sequence 

identify degree >0.5 compared to those with sequence identify degree < 0.5 (0.428 vs. 

0.372). Combining results from Figure 4-7 and Table 4-2 together, we think that helix 

sequences may be correlated with helix angles but the correlations may not be strong. 

 

 

 

 

Figure 4-7 Density of sequence helix angles in each of the six sequence clusters. The 
calculated helix angles (°) were obtained by using ValgusHel-geometry. Cluster 1-6 were 
top sequence clusters obtained from Jalview based on sequence similarity. Since Jalview 
limits number of input entries, we randomly selected and input 15,000 out of 95,210 
sequences.  
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Table 4-2 Sequence identity and helix angles by clustering sequences 
Sequence identity 
degree between two 
sequences 

Number of 
sequences 

Pearson’s 
correlation 
coefficient 

Percent of two 
sequences with same 
helix angles (%) 

<0.5 30,396 0.372 33.6 
>0.5 30,396 0.428 38.1 

 

 

 

Table 4-3 reports the sequence similarity score of sequences comparing with an 

ideal α-helix. Sequences in the normal group (center residue helix angle ≤19°) had the 

highest similarity score of -6.814 (SD 6.683) while sequences in the kinked group (center 

residue helix angle >30°) had the lowest similarity score of -8.132 (SD 6.807). Sequence 

similarity scores were higher in coiled-coils and β-strands than kinked sequences, which 

may suggest large diversity in kinked helices sequences. When we compared sequence 

similarity scores across groups, we found that similarity score between normal vs. curve 

(-6.986) and between normal vs. kinked (-7.956) are lower than that within normal (-

6.814), suggesting differences existed in sequences between normal vs. curved sequence 

groups and between normal vs. kinked sequence groups, with the degree of difference 

greater in the normal vs. kinked comparison. In Table 4-3, the finding that sequence 

similarity scores are highest within normal groups and lowest within the kinked group 

suggest that sequences in kinked group were more diverse. There may be multiple 

patterns of sequences leading to the kinked structure. In the motif regular expression 

patterns, we observed some differences among kinked vs. normal helices (Figure 4-8, 

Figure 4-9, and Table 4-5). We found Proline or Glycine positioning in close to center 
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locations may be a signal for kinked helices while Proline, W, and D on the two ends of 

the 9-residue sequence fragment may be a signal for normal helices. We found some 

interesting results in the secondary structures predicted by Jpred 4. The frequencies of 

helix were lower at residue number 6-9 among kinked helices compared to normal 

helices (Figure 4-10, Figure 4-11). We are unclear why this happened. One possible 

reason is that some kinked α-helices were categorized as coils by Jpred due to their 

similar structures. For example, a short helix connected to a coil may be identified as a 

single helix structure with a kink/curve.  

 

 

 

Table 4-3 Mean sequence similarity score with SD of different sequence groups by 
clustering helix angles. N=752 in each group.  
 Normal Curve Kink β-strand Coil 
Normal -6.814 

(6.683)                           
    

Curve -6.986 
(6.766) 

-7.195 
(6.851) 

   

Kink -7.956 
(6.559) 

-7.982 
(6.634) 

-8.132 
(6.807) 

  

β-
strand 

-7.976 
(6.182) 

-8.095 
(6.198) 

-8.788 
(6.273) 

-7.933 
(6.535) 

 

Coil -8.661 
(6.084) 

-8.796 
(6.138) 

-9.123 
(6.205) 

-9.374 
(6.218) 

-7.982 
(6.702) 

Note: SD = standard deviation. Significant difference was observed between any two 
comparison (p-value =0).  
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 Table 4-4 reports the sequence identify score of sequences comparing with an 

ideal α-helix. Normal helices had the highest sequence identify score (0.073) while 

kinked helices and β-strand had the lowest score (0.066). Overall, the trend was similar in 

Table 4-3 and Table 4-4.  

 

 

 

Table 4-4 Mean sequence identity score with SD of different sequence groups by 
clustering helix angles. N=752 in each group.  

  Normal Curved Kinked β-strand Coil 
Normal 0.073 (0.088)         
Curved 0.069 (0.086) 0.068 (0.085)       
Kinked 0.066 (0.083) 0.065 (0.083) 0.066 (0.084)     
β-strand 0.062 (0.081) 0.062 (0.080) 0.059 (0.079) 0.066 (0.083)   
Coil 0.056 (0.077) 0.056 (0.076) 0.055 (0.076) 0.055 (0.077) 0.067 (0.084) 

Note: SD = standard deviation.  

 

 

 

The clustering results and obtained motif regular expressions in kinked α-helices 

from average distance BLOSUM62 on Jalview are presented in Table 4-5. Among the 

775 identified kinked α-helices, the motif regular expressions from the 5 clusters are also 

presented in Figure 4-8. We observed Proline (P) and Glycine (G) was dominate in the 

middle positions of 6 or 7. Clustering and motif regular expression results in normal α-

helices are presented in Table 4-5 and Figure 4-9. A total of 8000 normal α-helix 
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fragments were included in the clustering, and only the randomly selected 8 clusters were 

shown in Figure 4-9.  

 

 

 

Table 4-5 Clustering results of α-helix fragments (N=775)  

α-helix Clusters Number of sequences Motif Number of hits 

Kinked   

1 20 LEA[LI]AP[LY][VI]D 17 
2 20 [IL]XEX[LM]E[KR]YV 50 
3 21 Y[LY]EK[HY]L[DE]E[YF] 18 
4 39 LAXXLXP[IL][LI] 40 
5 21 LLAEHGEEG 2 

Normal 

1 29 LEX[LI]Q[KQ][LI][IV]D 50 
2 40 LPE[LI]XE[ILA][LI]A 43 
3 29 E[AD]D[FL][VL]K[ILV][IL]N 47 
4 37 EEL[LV]K[KE]L[KE]E 39 
5 44 WDX[IA]XAX[LV]E 28 
6 25 [IV][LVI]X[DE]A[LI][KE][EA]A 35 
7 24 [DE][AE][AR][AE]A[LIV]XRW 41 
8 24 [EP]W[AL]KEILKQ 2 
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(A) (B) (C) 

(D) (E) 

 

Figure 4-8 Kinked helix cluster motif logo. (A)-(E) are from clusters 1 to 5 in Table 4-5. 
Numbers in x-axis are residue number within the 9-residue fragment. Bit score in y-axis 
is measurement of certainty. Higher bit score indicates higher certainty to observe the 
amino acid at the residue position in x-axis.  
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(A) (B) (C) 

(D) (E) (F) 

(G) (H) 

 

Figure 4-9 Normal helix cluster motif logo. (A)-(H) are from clusters 1 to 8 in Table 4-5. 
Numbers in x-axis are residue number within the 9-residue fragment. Bit score in y-axis 
is measurement of certainty. Higher bit score indicates higher certainty to observe the 
amino acid at the residue position in x-axis. 

 

 

 

 We obtained “hits” by searching the motifs in Table 4-5 against the protein 

sequence databases. The secondary structure predictions of these “hits” made by Jpred 4 

showed different frequencies of helix at residues 5-9, where Jpred 4 predicted higher 
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frequencies of coils in kinked α-helices compared to normal α-helices (Figure 4-10). We 

further examined the helix frequency among normal vs. kinked α-helices at residues 1 to 

9, and results are presented in Figure 4-11. Normal and kinked α-helices were predicted 

to have similar helix frequencies at residues 1-5 while normal α-helices had wider range 

of helix frequencies. However, at residues 6-9, we found kinked α-helices had lower 

predicted helix frequencies with wider range compared to normal α-helices, consistent 

with results in Figure 4-10. 

 

 

 

(A) (B) 

Figure 4-10 Predictions made by Jpred 4 among (A) normal helix clusters and (B) kinked 
helix clusters. Numbers in x-axis are residue number within the 9-residue fragment. Jpred 
4 confidence uses the y-axis scale on the right (scale 0 to 10).  
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Figure 4-11 Boxplot of helix clusters among kink and normal helix clusters. Median, 25th 
percentile (Q1), 75th percentile (Q3), minimum (Q1 – 1.5IQR) and maximum (Q3 
+1.5IQR) are shown. Outliers are shown as dots. IQR = interquartile range.  

 

 

 

 Figure 4-12A shows the average of helix angles at different residue locations 

among the ideal, normal, kinked, and curved α-helices, respectively (Figure 4-12A). 

Residue location 0 is the center residue in the 9-residue sequence fragment. We observed 

highest average of helix angles in kinked α-helices at residue 0 and lower helix angles as 

the residue number moves from 0 to +/-3, suggesting the kinked position is more 

prevalent at center residue. The trend was similar in curved α-helices. The mean RMSD 

of the 9-residue sequence (N=775) after taking out the center residue are shown in Figure 

4-12B-C. A total of 101 (13%) 9-residue  sequences were divided into two short normal 

helices (sum RMSD<0.2), 669 (86%) were divided in one normal and one kinked helices 

(sum RMSD 0.2-0.5), and 5 (1%) were divided into two kinked helices (sum 
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RMSD>0.5). In Figure 4-12B, we found that the sum of RMSD from two 4-residue 

fragment is lower than the RMSD from the 9-residue fragment, suggesting the center 

residue may be the kink position. In Figure 4-12C, we found that when the sequence was 

divided into two normal helix fragments, the RMSD dropped, which may suggest the 

center residue is the only kinked location. When the sequence was divided into one 

normal and one kinked helix fragments, RMSD also dropped, and a remaining kinked 4-

residue helix fragment may suggest there are more than one kinked location within the 9-

residue sequences. The two kinked 4-residue helix fragments group may suggest at least 

three kinked locations within the 9-residue sequences (Figure 4-12C). In Figure 4-12, we 

attempted to locate how many kinked positions within a 9-residue observation unit using 

ValgusHel-geometry. While Figure 4-12B suggests that kink position were likely at the 

center residue position in the 9-residue sequence fragment, Figure 4-12C suggestions 

there may be more kink positions except the center residue. A total of 87% kinked 

sequences have at least one 4-residue kinked fragments, suggesting more than one kinked 

position in the 9-residue sequence (Figure 4-12C).   
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(A) (B) 

 

 

(C)  

Figure 4-12 The relationship between a 9-residue sequence RMSD and the sum of two 4-
residue sequence RMSD. In the 9-residue sequence (N=775), the center residue is 
removed, producing two sequence fragments, each containing 4 residues. The 9-residue 
sequence is aligned and compared with a model ideal helix. (A) average of helix angles at 
different residue locations among ideal, normal, kinked, or curve α-helices. Residue 0 is 
the center residue of the 9-residue sequence fragment. (B) center residue 0 was removed 
from the 9-residue sequence fragment, resulting in two 4-residue fragments. The sum of 
the RMSD from the two 4-residue fragment is the y-axis. Color dots and lines 
represented the classification of the 9-residue sequence. (C) center residue 0 was 
removed from the 9-residue sequence fragment, resulting in two 4-residue fragments. The 
sum of the RMSD from the two 4-residue fragment is the y-axis. Color dots and lines 
represented the classification of the two 4-residue fragments.  
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We found a total of 230 coiled-coils and 18 leucine zippers out of 46,615 helices. 

The low number of coiled-coils and leucine zippers may suggest they are not the main 

reasons behind the kinked helices. 

4.4.5 Kinked and normal α-helices prediction using DSSP and Local profile 

 Table 4-6 reports the random forest classification (RFC) or random forest 

regression (RFR) performance in predicting helix angles thus kinked helices by using the 

DSSP variables including N-H-->O, O-->H-N, N-H-->O, O-->H-N, TCO, KAPPA, 

ALPHA, PHI, PSI. The performance of RFC is good and balanced with a sensitivity of 

0.89 and a specificity of 0.90. RFR had a r of 0.81 with a standard deviation of 0.02. In 

Table 4-6, our kinked α-helices classification results were well predicted by using the 

DSSP variables with a 0.89 sensitivity and 0.90 specificity, supporting that ValgusHel-

geometry is a valid method in α-helices identification and classification.  

 

 

 

Table 4-6 DSSP random forest 10-fold, evenly data set (n=15,487 for each class). 
Model Dataset Precision Recall F-Measure MCC ROC Area 

RFC 
Original  0.890 0.890 0.890 0.781 0.951 
Shuffled  0.502 0.502 0.502 0.004 0.504 

Model Dataset r RMSE    

RFR 
Original  0.799 6.042    
Shuffled  -0.01 10.328    
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Table 4-7 reports the RFC and RFR performance in predicting helix angles thus 

kinked helices by including residue distance and edge length of the nearest neighbors of 

the kinked residues. When using RFC, a lower sensitivity of 0.75 and a specificity of 0.75 

were obtained compared to using DSSP variables in Table 4-6. RFR had a r of 0.568 with 

a RMSE of 7.714. Table 4-7 explores the use of residue neighbors’ characteristics around 

the kinked residues to predict the identification of kinked and curved α-helices. The 

results in Table 4-7 suggest that nearest neighbors’ information, along with the centered 

amino acid information, may be useful in predicting helix angles by using random forest 

classification or random forest regression. Unlike DSSP variables, the characteristics 

from nearest neighbor residues help us explore the how predictive the surrounding 

protein structure information are when predicting the kinked residues.  

 

 

 

Table 4-7 Local profile random forest 10-fold, evenly data set (n=11,747 for each class). 
Model Dataset Precision Recall F-Measure MCC ROC Area 

RFC 
Original  0.750 0.750 0.750 0.500 0.830 
Shuffled  0.5000 0.500 0.500 0.000 0.500 

Model Dataset r RMSE    

RFR 
Original  0.568 7.714    
Shuffled  -0.007 8.876    

Note: RFC = random forest classification, RFR = random forest regression, MCC = 
Matthew's correlation coefficient, RMSE = Root Mean Square Error.  
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4.4.6 Random forest classification using Delaunay simplex type descriptor (t-

numbers)  

  
Figure 4-13 shows simplex type distribution within α-helices. Simplex type #4 

had the highest prevalence in normal, curved, and kinked helices, followed by simplex 

type 2 and 1. Simplex type 0 was only observed in kinked helices, and simplex type #3 

was dominated by kinked helices. By using ValgusHel-topology, in Figure 4-13, we 

found that the types of Delaunay simplices had different distributions in kinked, curved, 

and normal helices. For example, most helices in simplex type #0 and #3 are kinked. We 

used these simplex type distribution (t-number) feature to train models with the helix 

classification of kinked, curved, or normal obtained from the ValgusHel-geometry part as 

the outcome.  
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(A) (B) 

Figure 4-13 Percentage of simplex types in normal, curved, and kinked helices. Simplex 
types (0, 1, 2, 3, and 4) are adopted from Taylor et al. (2015). Figure 8(B) is a zoom in 
for Figure 8(A) to show details of percentage lower than 1%.  

 

 

 

We found that using simplex type numbers (t-numbers) in a helix to predict 

whether the helix was normal, kinked or curved brought about reasonable results (Table 

4-8). The sensitivity to detect kinked and curved helices were 0.78 and 0.79, respectively. 

The specificity to detect kinked helices was highest of 0.82. We further predict the helix 

classification based on the simplex type distribution within a helix. We found the model 

was sensitive to detect kinked helices with a sensitivity of 0.78 and curved helices with a 

sensitivity of 0.79 (Table 4-8). In terms of specificity, we found that the model had the 

highest specificity of 0.82 to detect kinked helices and 0.54 to detect curved ones (Table 

4-8). The lower specificity to detect curved helices were expected, as it is difficult to 

differentiate between kinked and curved helices. Considering these criteria values are 
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acceptable, we think the distribution of types of Delaunay simplex may be useful to 

identify kinked, curved, or normal helices.     

 

 

 

Table 4-8 10-fold performance results for each class using random forest classification 
 Sensitivity Specificity BAR 
Kinked 0.78 0.82 0.80 
Curved 0.79 0.54 0.67 
Normal 0.96 0.71 0.83 

 

 

 

4.4.7 Agreement between ValgusHel-geometry and ValgusHel-topology methods 

using N-gram 

  
Figure 4-14 demonstrates the agreement between topological and geometrical 

methods to identify normal, kinked, and curved helices. True Positive (TP) is the number 

of α-helices classified as kinked α-helices by both the ValgusHel-geometry and 

ValgusHel-topology. Sum is the number of total α-helices included. Higher True Positive 

(TP)/Sum indicates higher agreement between ValgusHel-geometry and ValgusHel-

topology. The ValgusHel-topology N-gram results had high (~0.76) agreement with 

ValgusHel-geometry method results. The effect of fragment length (8 to 20) in 

combination with different N-grams (4 to 20) was also demonstrated in Figure 4-14. We 

compared the result agreement of ValgusHel-geometry park and topology part and 
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presented the results in Figure 4-14. We found that a combination of fragment length (m 

≥12) and N-gram (N≥8) may result in an acceptable True Positive/SUM. We observed 

the agreement is as high as 0.76 using this combination. The agreement was moderately 

high considering the agreement among other methods was relatively low (Figure 4-4, 

Figure 4-5). The subjectivity of kinked helices identification and the complexity in the 

structure of kinked helices were possible reasons for not very high agreement. The effect 

of different combinations of fragment length and N-grams was demonstrated in this 

figure, which also served as evidence for selecting m and N in future studies. Based on 

the results, we think a fragment length of 12 and N number of 8 may be a start point for 

future studies.  

Overall, this study explores a new method to identify and study kinked helices 

geometrically and topologically. As the definition of “kinked” is still largely subjective, 

we will validate our approach with more published methods as more helix structures 

become available. We addressed the limitation of selecting “6” and “3” in ValgusHel-

geometry in the Methods part. We tried different combinations of different residues 

forming cylinders and different overlapping residues but chose 6-3 mainly for the 

consideration of kinked detection sensitivity. We applied the new method in a relatively 

large data set and explored the association between kinked structures and sequences, and 

between kinked structures and its nearest 3D neighbor residues. ValgusHel-topology 

offers an opportunity to identify kinked or curved helices without replying on measuring 

geometry angles. Delaunay tessellation can be used to aid in the identification of normal, 

curved and kinked α-helices from a topological viewpoint, yielding comparable results to 
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the geometry method. Topological method may bring better results and higher 

consistency compared to using geometric method alone. Our method may be useful for 

future studies identifying and characterizing kinked helices, and revealing the function-

structure relationship in kinked helices.  

 

 

 

 

Figure 4-14 Agreement between topological and geometrical methods at different 
fragment length and N-grams. True Positive (TP) is the number of α-helices classified as 
kinked α-helices by both the ValgusHel-geometry and ValgusHel-topology. Sum is the 
number of total α-helices included.  TP/SUM reflects the agreement between topological 
and geometry methods. 
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4.5 CONCLUSIONS 

We develop a new method “ValgusHel” to identify and annotate kinked and 

curved α-helices by using both geometric and topological characteristics. Topological 

method may bring better results and higher consistency compared to using geometric 

method alone. 9-residue sequence pairs with higher sequence identity (>0.5) had higher 

helix angle similarity compared to those with lower sequence identity (<0.5), although 

the difference was small. Sequence similarity is lowest within kink, then curved, and 

highest in normal α-helices. “ValgusHel” may be useful in future studies to examine 

structure-function relationships in kinked α-helices.  
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CHAPTER 5 : CONCLUSIONS 

This dissertation focuses on analysis of structural and topological variations in 

amino acids encoded by synonymous codons, and their application in predicting protein 

fitness/activity and α-helix secondary structure classification. In Chapter 2, we 

successfully created the 10220culled dataset containing 10,220 individual protein chains 

with codon, amino acid sequence, secondary structure, and α-carbon coordinates. Since 

there are no other similar datasets publicly available and this 10220culled dataset may be 

used by researchers for related protein structure-function research. Although Delaunay 

tessellation is adequately applied in a previous study (2006) [28] to examine the 

knowledge-based potential results, we re-applied the method to a much larger dataset and 

extended the analysis to codon level rather than amino acid level alone. Moreover, we 

explored how factors (e.g., simplex sequence bias, simplex edge length, low number of 

simplices in certain simplex compositions) impacted the potential estimation and 

improved the estimation through restricting these factors. While synonymous codons 

have been associated with some human diseases, the learning curve results may suggest 

that potential estimation at codon level to be less accurate due to inadequate sample size. 

These findings may be useful for future researcher in using Delaunay tessellation and 

considering performing analysis at codon level with more protein structure available in 

PDB in the future. We did not observe significant topological property differences in 

proteins caused by cancer-causing vs. non-cancer-causing silent mutations. In Chapter 3, 

tested whether the methodology of computational mutagenesis methods designed for Ras 
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protein was transferable to β-lactamase and other proteins, taking advantage of more 

proteins have saturation mutagenesis function data. While developing a machine learning 

model for each protein may result in better model performance, it is challenging for 

researchers studying proteins without created models. Thus, we examined whether model 

built for one protein can be used for another protein in the same activity category (e.g., 

antibiotic resistance). While this generalizability result is not good, the results can still 

serve as references for researchers to explore more variables to be included to improve 

the model in future works. The model performance was very good when predicting 

pairwise amino acid substitutions. In Chapter 4, the new ValgusHel method showed 

acceptable reliability and detectability to identify kinked, curved, and normal α-helices. 

Sequence similarity is lowest within kinked, then curved, and highest in normal α-helices. 

The ValgusHel-geometry and ValgusHel-topology had good agreement, and n-gram 

using protein topological properties may be more reliable than the geometry method 

alone. While the agreement in such classification is generally low in current available 

methods, this ValgusHel method may serve as an additional method to identify and 

annotate protein α-helices and contribute to the protein structure-function research field.   
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APPENDIX 

Appendix Table 1 Codon labels used in Database based on Standard Genetic Codon 
Chart 
 

 

1st base 
2nd base 

3rd base 
T C A G 

T 

TTT F1 
Phe/F 

TCT S1 

Ser/S 

TAT Y1 
Tyr/Y 

TGT C1 
Cys/C 

T 

TTC F2 TCC S2 TAC Y2 TGC C2 C 

TTA L1 

Leu/L 

TCA S3 TAA - 
Stop 

TGA - Stop A 

TTG L2 TCG S4 TAG - TGG W1 Trp/W G 

C 

CTT L3 CCT P1 

Pro/P 

CAT H1 
His/H 

CGT R1 

Arg/R 

T 

CTC L4 CCC P2 CAC H2 CGC R2 C 

CTA L5 CCA P3 CAA Q1 
Gln/Q 

CGA R3 A 

CTG L6 CCG P4 CAG Q2 CGG R4 G 

A 

ATT I1 

Ile/I 

ACT T1 

Thr/T 

AAT N1 
Asn/N 

AGT S5 
Ser/S 

T 

ATC I2 ACC T2 AAC N2 AGC S6 C 

ATA I3 ACA T3 AAA K1 
Lys/K 

AGA R5 
Arg/R 

A 

ATG M1 Met/M ACG T4 AAG K2 AGG R6 G 

G 

GTT V1 

Val/V 

GCT A1 

Ala/A 

GAT D1 
Asp/D 

GGT G1 

Gly/G 

T 

GTC V2 GCC A2 GAC D2 GGC G2 C 

GTA V3 GCA A3 GAA E1 
Glu/E 

GGA G3 A 

GTG V4 GCG A4 GAG E2 GGG G4 G 
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