
Generated by CamScanner from intsig.com

MODELING, ANALYSIS, AND IMPLEMENTATION OF FINITE DIFFERENCE SCHEMES

FOR NONLINEAR DIFFUSION WITH APPLICATIONS TO IMAGE PROCESSING

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at George Mason University

By

Armelle S. Franklin

Bachelor of Science

Temple University, 2007

Director: Padmanabhan Seshaiyer, Professor

Department of Mathematical Sciences

Spring Semester 2013

George Mason University

Fairfax, VA

ii

© 2013, Armelle S. Franklin

All Rights Reserved

iii

DEDICATION

This is dedicated to my motivating mother, brother, boyfriend and to the Lockheed

Martin IS&GS-National Engineering Leadership Development Program Class of

2011.

iv

ACKNOWLEDGEMENTS

I cannot thank Dr. Padmanabhan Seshaiyer (“Dr. Padhu”) enough for the extensive

time, attention and aid that he dedicated to my research and to me throughout my

efforts on this thesis. Special thanks to professors Dr. Daniel Anderson and Dr. Igor

Griva for being members of my committee. I would also like to thank the many

friends, relatives, and supporters who have made this happen. Many of my

coworkers helped me choose a topic, offered words of advice and my supervisors

were very flexible in allowing me time off to work on this thesis for which I am so

grateful.

v

TABLE OF CONTENTS

Page

List of Figures ... vii

List of Tables .. x

List of Abbreviations and Symbols.. xi

Abstract ... xii

Chapter I – Introduction .. 1

Chapter II – Numerical Methods .. 5

2.1 Explicit Perona-Malik Second Order Difference ... 6

2.2 Implicit Perona-Malik Second Order Difference: .. 12

2.3 Initial and Boundary Conditions .. 12

2.3 Shorthand Notation and Other Numerical Methods ... 14

Chapter III – Stability and Convergence .. 17

3.1 Stability Analysis of the Explicit Numerical Scheme .. 17

Theorem 3.1 ... 18

Lemma 3.1.1 .. 18

Lemma 3.1.2: ... 23

Lemma 3.1.3 .. 25

3.2 Stability Analysis of the Implicit Numerical Scheme 32

Theorem 3.2 ... 33

Lemma 3.2.1 .. 33

Lemma 3.2.2 .. 38

Chapter IV – MATLAB in a Literate Programming Style ... 42

4.1 Implementation of Explicit Perona-Malik Numerical Scheme 43

4.2 Implementation of Implicit Perona-Malik Numerical Scheme 49

4.3 Simulated Noise: Random (Additive), Gaussian and Speckle 59

Chapter V – Experimental Results .. 61

vi

5.1 Performance Metrics .. 61

5.2 Computational Grid and Interpolation Methods .. 76

5.2.1 Finer Computational Grid: Bilinear vs. Spline Interpolation...................... 77

5.2.2 Non-Uniform Computational Grid ... 81

Chapter VI – Conclusion and Future Work .. 86

Appendix A – MATLAB for Explicit PM Numerical Scheme .. 88

Appendix B – MATLAB for Implicit PM Numerical Scheme ... 93

Appendix C – MATLAB Script to run experiments with 1000 iterations 97

References ... 104

vii

LIST OF FIGURES

Figure Page
Figure 1: Numerical Discretization Grid .. 5

Figure 2: MATLAB code for creating the mesh grid to overlay the computational grid

space .. 42

Figure 3: MATLAB code for using bilinear interpolation to create the computational grid

space (i.e. the computational image)... 43

Figure 4: MATLAB code for using spline interpolation to create the computational grid

space (i.e. the computational image)... 43

Figure 5: MATLAB Flow for Explicit PM Numerical Scheme 43

Figure 6: MATLAB code to call function pm_explicit to run Explicit PM 2
nd

 Order

Difference scheme .. 44

Figure 7: MATLAB code for maximum allowed time step, dtmax 44

Figure 8: MATLAB code for time step calculated as 99% of dtmax 44

Figure 9: MATLAB code for padding image ... 46

Figure 10: MATLAB code for calculating the gradient of the intensities 46

Figure 11: MATLAB Code for choice of g function – diffusivity function coefficient ... 47

Figure 12: MATLAB code for calculating Explicit PM 2
nd

 Order Difference over each ((i,

j)) pixel of the computational grid .. 48

Figure 13: MATLAB Code to read MATLAB built-in image - cameraman.tif 48

Figure 14: MATLAB code to define parameters in run script for inputs to pm_explicit . 49

Figure 15: MATLAB code to downsample the final image to original image grid space

size (approximately).. 49

Figure 16: MATLAB Flow for Implicit PM Numerical Scheme 50

Figure 17: MATLAB Function for Implicit Matrix .. 50

Figure 18: MATLAB Code – pm_implicit_matrix.m... 52

Figure 19: MATLAB Code – pm_implicit_matrix.m - 1
st
 Half of Loop......................... 53

Figure 20: MATLAB Code – pm_implicit_matrix.m – 2
nd

 Half of Loop 55

Figure 21: MATLAB .. 56

Figure 22: MATLAB Code: pm_implicit.m – Bilinear Interpolation and Image Padding

... 56

Figure 23: MATLAB Code: Implicit PM Scheme (pm_implicit.m) – Part 1 of 3 57

Figure 24: MATLAB code – pm_implicit.m – Part 2 of 3 ... 57

Figure 25: MATLAB Code: pm_implicit.m – Part 3 of 3 .. 58

Figure 26: Implicit PM Scheme (pm_implicit.m)... 58

Figure 27: MATLAB code to run Implicit Scheme .. 59

Figure 28: MATLAB Code for Adding Random Noise (reduced by factor of 5). 59

viii

Figure 29: MATLAB built-in function imnoise for Gaussian and Multiplicative Noise

(Speckle) ... 60

Figure 30: Cameraman Image (256x256 TIFF) .. 61

Figure 31: Lena Image (512x512 TIFF) ... 61

Figure 32: Errors of Explicit (Red Star Dotted Line) and Implicit (Green Circle Solid

Line) Methods wrt ∆t. Decrease in error with smaller values of ∆t validate the

implementation of the algorithm ... 64

Figure 33: Explicit PM Visual Results for different values of ∆t for processing the

original image without any noise added (i.e. “Noise” Image = “Original” Image). 65

Figure 34: (ZOOM IN) Explicit PM Visual Results for different values of ∆t for

processing the original image without any noise added (i.e. “Noise” Image = “Original”

Image). .. 66

Figure 35: Implicit PM Visual Results for different values of ∆t for processing the

original image without any noise added (i.e. “Noise” Image = “Original” Image). 67

Figure 36: (ZOOM IN) Implicit PM Visual Results for different values of ∆t for

processing the original image without any noise added (i.e. “Noise” Image = “Original”

Image). .. 68

Figure 37: Explicit PM Visual Results for different values of ∆t for processing with

RANDOM NOISE added. .. 69

Figure 38: Implicit PM Visual Results for different values of ∆t for processing with

RANDOM NOISE added. .. 70

Figure 39: Explicit PM Visual Results for different values of ∆t for processing with

GAUSSIAN NOISE added. .. 71

Figure 40: Implicit PM Visual Results for different values of ∆t for processing with

GAUSSIAN NOISE added. .. 72

Figure 41: Explicit PM Visual Results for different values of ∆t for processing with

simulated SPECKLE. .. 73

Figure 42: Implicit PM Visual Results for different values of ∆t for processing with with

simulated SPECKLE. .. 74

Figure 43: Errors of Explicit (circle) and Implicit (asterix) Methods wrt different ∆t. 75

Figure 44: MATLAB Profile to view time consumption when running

MASTER_RUN_PERONA_MALIK.m script ... 76

Figure 45: Bilinear Interpolation of Original Image (BLUE) to 2x Finer Computational

Grid (RED) with dx= ½ and dy = ½ and ZOOM (right). ... 77

Figure 46: Spline Interpolation of Original Image (BLUE) to transform to 2x Finer

Computational Grid (RED) with dx= ½ and dy = ½ with ZOOM (right) 78

Figure 47: Explicit PM Visual Results with Bilinear Interpolation (2
nd

 row) and Spline

Interpolation (3
rd

 Row) for ∆x=∆y=1. No Noise Added. Each row has the final image

then the downsampled image. ... 79

Figure 48: Explicit PM Visual Results with Bilinear Interpolation (2
nd

 row) and Spline

Interpolation (3
rd

 Row) for ∆x=∆y=1/2. No Noise Added. Each row has the final image

then the downsampled image. ... 79

ix

Figure 49: Explicit PM Visual Results with Bilinear Interpolation (2
nd

 row) and Spline

Interpolation (3
rd

 Row) for ∆x=∆y=1/10. No Noise Added. Each row has the final image

then the downsampled image. ... 80

Figure 50: Explicit PM Visual Results with Bilinear Interpolation (2
nd

 row) and Spline

Interpolation (3
rd

 Row) for ∆x=∆y=1/20. No Noise Added. Each row has the final image

then the downsampled image. ... 80

Figure 51: Explicit PM on Non-Uniform Computational Grid with ∆x=1 and ∆y=1/2.

Spline Interpolation. No Noise Added. Bottom Left is the final image (larger image (i.e.

more elements since dx and dy are < 1)). Bottom Right is the downsampled image (back

to original size) ... 82

Figure 52: Explicit PM on Non-Uniform Computational Grid with ∆x=1/2 and ∆y=1.

Spline Interpolation. No Noise Added. Bottom Left is the final image (larger image (i.e.

more elements since dx and dy are < 1)). Bottom Right is the downsampled image (back

to original size) ... 82

Figure 53: Explicit PM on Non-Uniform Computational Grid with ∆x=1 and ∆y=1/3.

Spline Interpolation. No Noise Added. Bottom Left is the final image (larger image (i.e.

more elements since dx and dy are < 1)). Bottom Right is the downsampled image (back

to original size) ... 83

Figure 54: Explicit PM on Non-Uniform Computational Grid with ∆x=1/3 and ∆y=1.

Spline Interpolation. No Noise Added. Bottom Left is the final image (larger image (i.e.

more elements since dx and dy are < 1)). Bottom Right is the downsampled image (back

to original size) ... 83

Figure 55: Explicit PM on Non-Uniform Computational Grid with ∆x=∆y=1/20 . Spline

Interpolation. No Noise Added. Bottom Right is the final image (larger=more elements).

Bottom Left is the downsampled image (back to original size) 84

Figure 56: Explicit PM on Non-Uniform Computational Grid with ∆x=1 and ∆y=1/2.

Spline Interpolation. No Noise Added. Bottom Left is the final image (larger image (i.e.

more elements since dx and dy are < 1)). Bottom Right is the downsampled image (back

to original size) ... 84

Figure 57: MATLAB Function – pm_explicit_dt.m – Implementation of Explicit PM

Numerical Scheme .. 92

Figure 58: MATLAB Function – pm_implicit_dt.m – Implementation of Implicit PM

Numerical Scheme .. 96

Figure 59: MATLAB Script – MASTER_RUN_PERONA_MALIK_1000.m 99

Figure 60: MATLAB Script - PM_Explicit_Run.m ... 101

Figure 61: MATLAB Script - PM_Implicit_Run.m ... 103

x

LIST OF TABLES

Table 1: Description of Fixed Parameters .. 62

Table 2: Explicit PM Results for different values of ∆t for processing the original image

without any noise added.. 63

Table 3: Implicit PM Results for different values of ∆t for processing the original image

without any noise added.. 64

Table 4: Errors and average time of Explicit and Implicit schemes wrt different ∆t for

simulated noisy images ... 74

Table 5: Explicit PM Numerical Results for Bilinear and Spline Interpolation with

different ∆x=∆y values ... 81

Table 6: Explicit PM Scheme on Non-Uniform Grid Spacing ... 85

xi

LIST OF ABBREVIATIONS AND SYMBOLS

Boundary Condition .. BC

Contrast Parameter .. K

Copy of Equation ## .. (##cp)

Diffusion Coefficient Function .. c, c�∙�

Initial Condition .. IC

Intensity (pixel brightness) ... I

Left Hand Side (of equation) ... LHS

Partial Derivative with respect to time, t ... �� , ���
Partial Derivative with respect to x ... �	, ��	

Partial Derivative with respect to y ... �
 , ��

Partial Differential Equation .. PDE

Perona-Malik .. PM

Right Hand Side (of equation) ... RHS

Step size in the x direction ... ∆�

Step size in the y direction ... ∆

Step size in time (t) .. ∆�

 “With Respect To” ..wrt

xii

ABSTRACT

MODELING, ANALYSIS, AND IMPLEMENTATION OF FINITE DIFFERENCE

SCHEMES FOR NONLINEAR DIFFUSION WITH APPLICATIONS TO IMAGE

PROCESSING

Armelle S. Franklin, M.S.

George Mason University, 2013

Thesis Director: Dr. Padmanabhan Seshaiyer

This thesis proposes to model, analyze and implement a nonlinear diffusion model

problem for reduction in noise and speckle in image processing applications.

Specifically, the Perona-Malik model equation that is widely studied in the image

processing community is implemented via explicit and implicit finite difference

algorithms. The solution methodology converts discrete image data onto a finer

non-uniform grid space via interpolation techniques and applies the proposed

numerical algorithms to reduce noise. These numerical algorithms are investigated

analytically and computationally for appropriate choices of nonlinear diffusion

coefficient functions. We derived conditions for stability and convergence of the

proposed numerical algorithms. Numerical experiments are presented on

benchmark problems that show the robustness and reliability of the proposed

numerical schemes.

1

CHAPTER I – INTRODUCTION

Algorithmic enhancements to imagery infected with noise or speckle are

accomplished usually with application of a filter sometimes with a loss of accuracy.

This loss of accuracy is synonymous to loss of resolution due to an attempt to

smooth the image. The convolution of the infected imagery with a filter yields a

lower resolution image but with less noise or speckle. A very difficult obstacle to

overcome is the blurring of sharp edges in the scene content, a common artifact of

linear filtering.

It is well-known that solutions to these denoised images satisfy nonlinear

diffusion partial differential equations. These equations describe relationship

between the Intensity values with respect to time and space. Over the past two

decades there have been attempts to study and enhance denoised images through

various partial differential equations.

The first of these PDEs was introduced by Perona & Malik in 1987 which was

a nonlinear second order PDE. Namely, this model incorporated anisotropic

diffusion filters into the PDEs to generate smoother images while preserving edge

information (i.e. location). This nonlinear filter has been significant in processing,

enhancement and scale-space analysis of imagery. The idea of scale-space is

presented to correlate each solution of the PDE at each time step, t, to the next

“smoother” image. They also examined the benefits of nonlinear filtering with a

2

second order PDE for not only smoothing, but also edge detection in an image in

scale-space. The Perona-Malik equation is also known as anisotropic diffusion (in

image processing or computer vision), where the diffusion coefficient is taken to be

a function of the gradient of the intensity in the image. The anisotropic diffusion

equation that is the basis of the Perona-Malik equation follows:

�� 	= 	 ���� 	= div�c�x, y, t�∇I� = c�x, y, t�∆I	 +	∇c	 ∙ 	∇I (1)

���,
, �� is the diffusion coefficient at a given (x, y) and layer t. The ∇ denotes

the gradient and ∆ denotes the Laplacian operator (∆	= 	∇�). The unique feature of

the Perona and Malik deduced that the optimal choice of c in order to preserve edge

location accuracy is for ���,
, �� to be a function of the gradient of the intensity, I at

the given point:

���,
, �� = ��‖∇���,
, ��‖� (2)

Reweriting the divergence operator gives:

�� 	= 	 ���� 	= ∇ ∙ �g�|∇I|�∇I� (3)

3

Perona and Malik make careful selection of the ��‖∇���,
, ��‖� function

specifically to be bounded between 0 and 1. A common choice for this g function is

��ƺ� = 	 #$% ƺ&'((4)

Another traditional choice for the g function is

��ƺ� =)
)*% ƺ&'((5)

Note that the constant K is called a “contrast parameter”.

Perona and Malik’s research led to several updated models over the last few

years. In 2000, You and Kaveh [2] introduced a fourth order PDE that would further

enhance the smoothing with even less blur at the edge locations, but in this

anisotropic diffusion model, the diffusion coefficient is taken to be a function of the

Laplacian of the intensity in the image. In 2009, Hajiaboli [3] introduced a

modification to the You-Kaveh anisotropic diffusion model, by maintaining the same

function but returning to the Perona-Malik diffusion coefficient as a function of the

gradient of the intensities in the image. The development of these equations have

helped introduce a variety of nonlinear diffusion denoising models including fourth

order PDEs, spatially regularized models (See [1], [2], [3] and the references

4

therein). Most of these models have either been experimentally validated or

analytically studied. However, there is still a great need to develop numerically

stable approximations to such models which is the focus of this thesis.

In this paper, explicit and implicit finite difference schemes are examined

analytically and numerically for the Perona and Malik second order PDE. In Chapter

2 of this thesis we develop the finite differences of the Perona-Malik equation. In

Chapter 3 we will introduce the explicit method and show that under a stability

condition on the step size in time, the scheme is stable. We will also develop the

implicit method in Chapter 3 which will be shown to be unconditionally stable.

Chapter 4 introduces the reader to literate programming to summarize the MATLAB

implementation of the numerical difference schemes. Chapter 5 presents the

validation of the methods presented for a benchmark cameraman problem. Finally,

Chapter 6 presents conclusion and future research.

5

CHAPTER II – NUMERICAL METHODS

In this chapter we will develop the numerical methods for the associated

equation (1) presented in Chapter 1 with nonlinear diffusion. These equations are

implemented over finite grid spaces using the finite difference method for numerical

approximation to the partial differential equation. Finite differences are a simple

yet very powerful tool to approximate continuous derivatives on a discrete grid

space. Hence, each equation will be discretized using a nearest neighbor approach.

Figure 1: Numerical Discretization Grid

Consider the computational grid shown in figure (1). The intensity (or

brightness) values, Ii,j are associated with the nodes of the lattice, North, South, East

and West. The diffusion coefficients, ci,j, are represented midway between lattice

6

nodes, as shown in figure (1). It may be noted that in by Perona-Malik [1], You-

Kaveh [2] and Hajiaboli [3] and related papers, the grid spacing is always

considered to be uniform. In this work we will extend this to non-uniform grid

spacing.

2.1 Explicit Perona-Malik Second Order Difference

Consider the original nonlinear diffusion Perona-Malik equation (3). As

previously mentioned, the diffusion coefficient is defined as a function, g, of the

gradient of the intensities of the image, specifically, the norm of the gradient of I:

c�x, y, t� ∶= 	g�‖∇I�x, y, t�‖� ≈ c�∙� (6)

Substituting the shorthand of the diffusion coefficient function (6) back into

equation (3), we get:

�� 	= 	 ���� 	= ∇ ∙ �c�∙�∇I� (7)

The intensity, I(x,y,t), is a 2D function of space and thus the gradient will be with

respect to x and y. Equation (7) then becomes:

�� 	= ��	, �
� ∙ -��∙��	�, ��∙��
�. (8)

7

This simplifies to:

�� 	= �	���∙��	�� +	�
-��∙��
�. (9)

The resulting Perona-Malik equation in component form becomes:

���� 	= ��	 %��∙� ���	' + ��
 %��∙� ���
' (10)

Next, we examine the numerical approximation to each PDE term in equation

(10). The term on the left can be approximated using a forward difference in time as

follows:

�� = ���� = �/,0123$�/,01∆� (11)

Consider the forward difference for the first term of RHS of (10), in the x-direction:

��	 4%��∙� ���	'56,7 = 8�∙�49:9;5<23,=$8�∙�49:9;5<,=		∆> (12)

Backward differences are used to calculate the partial derivative of I wrt. X:

4?I?x
5

i*1,j = Ii21,j$Ii,j∆x
 and 4?I?x

5
i,j = Ii,j$Ii@1,j∆x

 (13)

8

Substitute the above backward difference approximations of
?A?> :

��	 %��∙� ���	' = 8�∙�B:<23,=@:<,=∆; C$8�∙�B:<,=@:<@3,=∆; C
∆> (14)

We approximate the diffusion coefficient, c, as an average at of the halfway between

two nodes, denoted as i+1/2 for c values between i+1 and i, and i-1/2 for c values

between i and i-1:

��	 %��∙� ���	' = 8<23(,=B:<23,=@:<,=∆; C$8<@3(,=B:<,=@:<@3,=∆; C
∆> (15)

Multiplying out the terms results in

��	 %��∙� ���	' = 8<23(,=A<23,=	$	8<23(,=A<,=	$D	8<@3(,=A<,=	$	8<@3(,=A<@3,=E
∆>((16)

Rewriting (16) with c terms as coefficients yields:

��	 %F�∙����	 ' = 8<23(,=A<23,=	$	G8<23(,=*	8<@3(,=HA<,=*	8<@3(,=A<@3,=
∆>((17)

9

Similarly, consider the finite differences in the y direction:

��
 %F�∙����
 ' = 8<,=23(A<,=23	$	G8<,=23(*	8<,=@3(HA<,=	*	8<,=@3(A<,=@3
∆I((18)

Substitute (11), (17), and (18) into equation (10) to get a model for the

numerical approximation of the Perona Malik equation. Note that the diffusion

coefficient, c�∙�, will always be evaluated at the current timestep, n:

�/,0123$�/,01∆� 		=
						8<23(,=J A<23,=$	G8<23(,=J *	8<@3(,=J HA<,=*	8<@3(,=J A<@3,=			

∆>(+
																																					8<,=23(J A<,=23$	G8<,=23(J *	8<,=@3(J HA<,=*	8<,=@3(J A<,=@3

∆I((19)

For a numerical approximation to equation (6) of the diffusion coefficient,

c�∙� = g�‖∇I�x, y, t�‖�, using the Euclidean (2-)norm, we get:

‖∇I�x, y, t�‖ = K-I>, II.K� = L-I>, II. ∙ -I>, II. = LI>� + II� (20)

10

Substitute equation (20) into equation (6):

c�∙� = gGLIx
2 + Iy

2H (21)

Evaluate c�∙� at the (i, j) pixel:

c6,7 = Mg�‖∇I‖�N6,7 = DgGLI>� + II�HE6,7 (22)

Consider the central differences of the intensity, I, in the x and y directions,

using a full step to the next and previous points, which yields denominators of

2∆��= 	∆� + ∆�� and 2∆
�= 	∆
 + ∆
�, respectively:

I> = ?A?> = A<23,=	$	A<@3,=�∆> and 	II = ?A?I = A<,=23	$	A<,=@3�∆I (23)

Substituting the numerical approximations of Ix and Iy in (23) into (22) yields:

ci,j = DgGL%Ii21,j	$	Ii@1,j
2∆x

'2 + %Ii,j21	$	Ii,j@1

2∆y
'2HE

i,j (24)

11

An average is taken to compute the diffusion coefficients at the halfway points:

c6*3(,7 = F/,0*F/23,0�

c6$3(,7 = F/@3,0*F/,0�

c6,7*3(= F/,0*F/,023�

c6,7$3(= F/,0@3*F/,0� (25)

Let n be the superscript that denotes the timestep for the Ii,j terms in the implicit

numerical scheme:

�/,0123$�/,01∆� 		= 						 8<23(,=J A<23,=J $	G8<23(,=J *	8<@3(,=J HA<,=J *	8<@3(,=J A<@3,=J 		
∆>(+

																																						8<,=23(J A<,=23J $	G8<,=23(J *	8<,=@3(J HA<,=J *	8<,=@3(J A<,=@3J
∆I((26)

Rewrite (26), given P) = ∆�∆	(and P� = ∆�∆
(:

�Q,RS*) =	P) Bc6*3(,7T I6*),7T + c6$3(,7T I6$),7T 	C + P� Bc6,7*3(
T I6,7*)T +	c6,7$3(

T I6,7$)T C +
G1 − P) Bc6*3(,7T +	c6$3(,7T C − P� Bc6,7*3(

T +	c6,7$3(
T CH �Q,RS (27)

12

2.2 Implicit Perona-Malik Second Order Difference:

Let (n+1) be the superscript that denotes the timestep of the Ii,j terms in (19):

�/,0123$�/,01∆� 		=
						8<23(,=J A<23,=J23 $	G8<23(,=J *	8<@3(,=J HA<,=J23*	8<@3(,=J A<@3,=J23 		

∆>(+
																																											8<,=23(J A<,=23J23 $	G8<,=23(J *	8<,=@3(J HA<,=J23*	8<,=@3(J A<,=@3J23

∆I((28)

Letting P) = ∆�∆	(and P� = ∆�∆
(:

�Q,RS*) G1 + P) Bc6*3(,7T +	c6$3(,7T C + P� Bc6,7*3(
T +	c6,7$3(

T CH −
	P) Bc6*3(,7T I6*),7T*) + c6$3(,7T I6$),7T*) 	C − P� Bc6,7*3(

T I6,7*)T*) +	c6,7$3(
T I6,7$)T*) C = �Q,RS (29)

2.3 Initial and Boundary Conditions

The initial condition is chosen to be the original image:

�Q,RW = �W-�Q ,
R. = �-�Q ,
R; � = 0. = Z[\�\]^_	�`^�# (30)

13

Neumann Boundary Conditions, wrt x and y, are used to define the values of

the intensity and diffusion coefficient c outside the boundaries to be within the same

as within the boundary. The Neumann BC imply �	 = 0 and �
 = 0, i.e. at the

boundaries we get:

∂>I = ?A?> = A<23,=$A<@3,=�∆> = 0 and ∂II = ?A?I = A<,=23$A<,=@3�∆I = 0 (31)

Let i = 0, 1, 2, …, I and j = 0, 1, 2, …, J denote the step values in the x and y

directions, respectively. At the lower boundary of x (i.e. i = 0):

4?A?>5W,7 = A3,=$A@3,=�∆> = 0 →	 �$),R =		 �),R (32)

At the upper boundary for x (i.e. i = I):

4?A?>5A,7 = A:23,=$A:@3,=�∆> = 0 →	 ��*),R =		 ��$),R (33)

Similarly, at the lower boundary of y (i.e. j = 0):

4?A?I56,W = A<,3$A<,@3�∆I = 0 →	 �Q,$) =		 �Q,) (34)

14

At the upper boundary for y (i.e. j = J):

4?A?I56,c = A<,d23$A<,d@3�∆I = 0 →	 �Q,e*) =		 �Q,e$) (35)

These boundary conditions affect the diffusion coefficients in a similar (25),

the boundary conditions are as followed:

4?8?>5W,7 = 83(,=$8@3(,=∆> = 0 ↔ c$3(,7 = c3(,7
4?8?>5A,7 = 8:23(,=$8:@3(,=∆> = 0 ↔ cA*3(,7 = cA$3(,7
4?8?I56,W = 8<,3($8<,@3(∆> = 0 ↔ c6,$3(= c6,3(

4?8?I56,c = 8<,d23($8<,d@3(∆> = 0 ↔ c6,c*3(= c6,c$3((36)

2.3 Shorthand Notation and Other Numerical Methods

New terminology based on the idea of a central difference operator, δg is

introduced to represent the finite differences in shorthand notation. The shorthand

notation for the finites difference of the Perona-Malik equation in the x-direction:

δx
2�cI�i,j = c

i21
2
,jn Ii21,j$	Gc

i21
2
,jn *	c

i@1
2
,jn HIi,j *	c

i@1
2
,jn Ii@1,j		

∆x2 (37)

15

and in the y-direction,

δy
2�cI�i,j = c

i,j21
2

n Ii,j21$	Gc
i,j21

2

n *	c
i,j@1

2

n HIi,j *	c
i,j@1

2

n Ii,j@1

∆y2 (38)

With this notation, equations (27) and (29), the explicit and implicit numerical

schemes for the Perona Malik Equation, become:

�/,0123$�/,01∆� 		= 	 δ>��cI�6,7T 	+ 	δI��cI�6,7T (39)

�/,0123$�/,01∆� 		= 	 δ>��cI�6,7T*) 	+ 	δI��cI�6,7T*) (40)

The shorthand notation can also be used to denote other numerical schemes

which are not investigated in this paper, but may offer promising results if

investigated in the future. The Crank-Nicolson numerical scheme of the Perona-

Malik equation is essentially an average of the explicit and implicit schemes:

 �/,0123$�/,01∆� 		=)� %δ>��c� +	δI��c�' -I6,7T*) + I6,7T . (41)

Note that ijk�l�mn,o = ijk�lm�n,o	.

16

The Alternating Direction Implicit (ADI) Method, commonly used in

petroleum manufacturing, allows the implementation of the numerical scheme to be

computed in half-time-steps, and solving in only one direction, x or y, at a time.

When in the x-direction, solve for the �Q,RS*3(and when in the y direction, solve for �Q,RS*3(

using the solution from the x-direction. So the ADI numerical scheme of the Perona-

Malik equation can be represented as:

�/,0123($�/,01∆p(= 	 δ>��cI�6,7T*3(+ 	δI��cI�6,7T

�/,0123$�/,0123(
∆p(= 	δ>��cI�6,7T*3(+ 	δI��cI�6,7T*) (42)

17

CHAPTER III – STABILITY AND CONVERGENCE

In this chapter we will discuss the stability of the explicit and implicit finite

difference schemes to approximate the Perona-Malik equation numerically. The

discussion is presented in one dimension (only with respect to x), but can be

directly extended to two-dimensions yielding similar results.

3.1 Stability Analysis of the Explicit Numerical Scheme

We start the discussion of the explicit numerical scheme for the Perona-Malik

function by rewriting the Perona-Malik anisotropic diffusion equation in 1-D:

�� 		= �c�I>�I>�	 ↔	 ���� 	= ��	 %� %���	' ���	'		 (43)

The explicit scheme derived in Section 2.1 (27) can be rewritten as followed:

�/123$�/1∆� 		= 						 8<23(J G:<23J @	:<J∆; H$	8<@3(J B:<J@	:<@3J
∆; C		

∆> (44)

The above finite difference has an initial condition of

�QW =	 �W��Q� (45)

18

Define a dot product with respect to ∆x of two N-dimensional vectors A and B to be

�q, r�∆	 = ∆	� qWrW + ∑ ∆�qQrQt$)Qu) + ∆	� qtrt	 (46)

From this definition of the dot product, we directly define a norm with respect to ∆�,

conventionally as follows:

 ‖A‖∆> = �q, q�∆>3((47)

We now prove the following theorem:

Theorem 3.1: Let �QS be the numerical solution to equation (44). If ∆�	 ≤ �∆	�(�	Fxyz where

∆t and ∆x are the respective temporal and spatial step sizes and �{|	 = `^�Q,S �QS we

then have:

	‖�S*)‖∆	 ≤ ‖�S‖∆	

To prove the theorem, we need the following lemmas:

Lemma 3.1.1 %�123$�1∆� , �S'∆	 + ∑ ∆�	�Q$3(
S %�/1$	�/@31

∆	 '� = 0tQu)

19

Proof of Lemma 3.1.1. Multiply both sides of equation (44) by �Q,RS :

%�/123$�/1∆� '	�QS =						 }8<23(J G:<23J @	:<J∆; H$	8<@3(J B:<J@	:<@3J
∆; C		

∆> ~ �QS (48)

for i=0,1,…N. These yield the following system:

								%��123$��1∆� ' �WS =	 }83(JB:3J@	:�J∆; C$	8@3(J B:�J@	:@3J∆; C		
∆> ~ �WS											

								%�3123$�31∆� ' �)S =	 }8�(JB:(J@	:3J∆; C$	83(JB:3
J@	:�J∆; C		

∆> ~ �)S																
																			⋮																								⋮																⋮																							⋮																															
%��@3123$��@31

∆� ' �t$)S =	 }8�@3(J B:�J@	:�@3J∆; C$	8�@�(J B:�@3J @	:�@(J∆; C		
∆> ~ �t$)S

								%��123$��1∆� ' �tS =	 }8�23(J B:�23J @	:�J∆; C$	8�@3(J B:�J@	:�@3J∆; C		
∆> ~ �tS (49)

20

Using the definition of the dot product, the terms on the left of (47) can be

combined to yield:

∆	� %��123$��1∆� ' �WS + ∑ ∆� %�/123$�/1∆� '	�QSt$)Qu) + ∆	� %��123$��1∆� ' �tS =
																																																																																										%�123$�1∆� , �S'∆	 (50)

In a similar fashion, adding the terms of RHS of (47) we get:

12	Dc)�T GI)
T −	IWT∆x H −	c$)�T GIWT − 	I$)T∆x HE �WS 		

+ 	 D���S G��
S −	�)S∆� H −	�)�S G�)

S − 	�WS∆� HE �)S +	………
+ D�t$)�

S G�tS −	�t$)S∆� H −	�t$��
S G�t$)S − 	�t$�S∆� HE �t$)S

+ 12 D�t*)�
S G�t*)S −	�tS∆� H −	�t$)�

S G�tS − 	�t$)S∆� HE �tS

 (51)

Recall the boundary conditions from Section 2.3, but rewritten for the 1-D case wrt x

only, i.e. i=0,1,…,N. Note that in the 1D case we have BC that affect the first term (i.e.

when i=0):

21

 c$3(= c3(and �$) =		 �) (52)

Substituting (52) into the first term of (51) yields:

)� 	�c3(T %A3J$	A�J∆> ' −	c$3(
T %A�J$	A3J∆> '� �WS = c3(T %A3J$	A�J∆> ' �WS (53)

Also, note that in the 1D case we have BC that affect the last term (i.e. when i=N):

c�*3(= c�$3(and ��*) =		 ��$) (54)

Again, substituting (54) into the last term of (51), yields:

)� ��t$3(
S %��@31 $	��1∆	 ' −	�t$3(

S %��1$	��@31
∆	 '� �tS = −�t$3(

S %��1$	��@31
∆	 ' (55)

Substituting (53) and (55) into (51), we get:

%�123$�1∆� , �S'∆	 =

−c3(T %A3J$	A�J∆> ' �WS

22

−	��(S %�(1$	�31∆	 ' �)S −	�3(S %�31$	��1∆	 ' �)S

−	��(S %��1$	�(1∆	 ' ��S −	��(S %�(1$	�31∆	 ' �)S

																			⋮																								⋮									
−�t$�(

S %��@31 $	��@(1
∆	 ' �t$�S −	�t$�(

S %��@(1 $	��@�1
∆	 ' �t$�S

 −�t$3(
S %��1$	��@31

∆	 ' �t$)S −	�t$�(
S %��@31 $	��@(1

∆	 ' �t$)S

−�t$3(
S %��1$	��@31

∆	 ' �t$)S (56)

Collecting similar difference terms %�<1$	�<@31
∆> ', we get:

%�123$�1∆� , �S'∆	 =

−c3(T�I)T −	IWT� %A3J$	A�J∆> '

−	��(S���S −	�)S� %�(1$	�31∆	 '

−	��(S���S −	��S� %��1$	�(1∆	 '

																			⋮																				
−�t$�(

S ��t$)S −	�t$�S � %��@31 $	��@(1
∆	 '

−�t$3(
S ��tS −	�t$)S � %��1$	��@31

∆	 ' (57)

23

It is obvious that a repeated pattern (series) is revealed above. We multiply every

term by
∆�
∆� and collect the terms to result in a summation on the RHS. Thus

equation (56) is consolidated to the following:

%�123$�1∆� , �S'∆	 = −∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> ' %�/1$	�/@31
∆	 '�6u) (58)

Which proves the result:

%�123$�1∆� , �S'∆	 + ∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> '� = 0�6u) ⧠

Lemma 3.1.2: %�123$�1∆� , �S'∆	 = − ∆�� ��123$�1∆� �∆	
� + K�123K∆;($‖�1‖∆;(�∆�

Proof. Consider rewriting �S as an expression of itself, �S*), and ∆�:

�S = ∆t %−)�' %�123$�1∆� ' + �123*�1� (59)

Substituting (60) into (58), we get:

%�123$�1∆� , �S'∆	 = %�123$�1∆� , ∆t %−)�' %�123$�1∆� ' + �123*�1� '∆	 (60)

24

It is possible to move the scalar values outside dot product and use distribution:

%�123$�1∆� , �S'∆	 = ∆t %−)�' %�123$�1∆� , �123$�1∆� '∆	 + %�123$�1∆� , �123*�1� '∆> (61)

The first term on the RHS of (62) is the norm, according to the norm definition (49).

Again, scalar values can be extracted to the outside of the dot product in the second

term above:

%�123$�1∆� , �S'∆	 = − ∆�� ��123$�1∆� �∆	
� +)�∆� ��S*) − �S, �S*) + �S�∆	 (62)

Rewrite the dot product in the last term above as:

��S*) − �S, �S*) + �S�∆	 		= 	��S*), �S*)�∆	 + ��S*), �S�∆	 	−
																																																						��S, �S*)�∆	 − ��S, �S�∆	 (63)

The interior terms of (64) cancel out. Observe that the first and last terms

are the square of the norms. Then (64) becomes:

%�123$�1∆� , �S'∆	 = − ∆�� ��123$�1∆� �∆	
� + K�123K∆;($‖�1‖∆;(�∆� ⧠

25

Lemma 3.1.3 ���123$��1∆� �∆	
� ≤	 ��∆	�(�{|	 	∑ ∆�	�Q$3(

S %�/1$	�/@31
∆	 '�tQ�)

Proof. Recall the explicit Perona-Malik numerical scheme for equation (44). At i=0,

given the boundary conditions �$3(= �3(and �$) = �). Equation (44) becomes:

��123$��1∆� 		= 	 83(JB:3J@	:�J∆; C$	8@3(J B:�J@	:@3J∆; C		
∆> = �∆	 �3(S %�31$	��1∆	 ' (64)

When i=N and given the boundary conditions that �t*3(= �t$3(and �t*) = �t$)

��123$��1∆� 		= 						 8�@3(J B:�23J @	:�J∆; C$	8�@3(J B:�J@	:�@3J∆; C		
∆> = − �∆	 �t$3(

S %��1$	��@31
∆	 ' (65)

The square of the defined ∆x-norm is equal to the dot product of the vector

with itself. So in the case of the finite difference wrt t, we have

���123$��1∆� �∆	
� = %��123$��1∆� , ��123$��1∆� '∆	 (66)

26

Incorporating the first and last and interior terms we can define the square of the

∆x-norm of the finite difference wrt. t as followed

���123$��1∆� �∆	
� = ∆	� %��123$��1∆� '� + ∆� %�3123$�31∆� '� +⋯+ ∆� %��@3123$��@31

∆� '� +
																												∆	� %��123$��1∆� '� (67)

Substitute the RHS of equations (68) and (69) that include BC and the explicit

scheme RHS for each interior point (i=1,…,N-1) into the above equation (71):

27

��tS*) − �tS∆� �∆	
�

=	∆�2 � 2∆� �)�S G�)
S −	�WS∆� H�� + ∆�

�
����S B��S −	�)S∆� C −	�)�S B�)S −	�WS∆� C		

∆� �
�

�

+	∆�
�
����S B��

S −	��S∆� C −	���S B��S −	�)S∆� C		
∆� �

�
�
+				⋯					

+ ∆�
�
��t$��

S B�t$)S −	�t$�S∆� C −	�t$��
S B�t$�S −	�t$�S∆� C		

∆� �
�

�

+ ∆�
�
��t$)�

S B�tS −	�t$)S∆� C −	�t$��
S B�t$)S −	�t$�S∆� C		

∆� �
�

�

+ ∆�2 �− 2∆� �t$)�
S G�tS −	�t$)S∆� H��

 (68)

Cancelling out the ∆x where necessary, we end up with a sum of squares of

differences, i.e.%�…�	-	�…�'�, except for first and last terms, which were expanded:

28

���123$��1∆� �∆	
� =

	∆	� G ��∆	�(B�3(SC� %�31$	��1∆	 '�H +)∆>G��(S %�(1$	�31∆	 ' −	�3(S %�31$	��1∆	 'H� +
)∆>G��(S %��1$	�(1∆	 ' −	��(S %�(1$	�31∆	 'H� +				⋯				+)∆>G�t$�(

S %��@31 $	��@(1
∆	 ' −

	�t$�(
S %��@(1 $	��@�1

∆	 'H� +)∆>G�t$3(
S %��1$	��@31

∆	 ' −	�t$�(
S %��@31 $	��@(1

∆	 'H� + ∆	� (69)

Claim: �x − y�� ≤ 	2�� + 2
� .

Proof of Claim. �x − y�� =	�� − 2�
 +
� 	≤ 	2�� + 2
�

 ↔ �� +
� 	≤ 	2�� + 2�
 + 2
�

 ↔ 0	 ≤ 	�� + 2�
 +
�

 ↔ 0	 ≤ 	 �� +
��

 �x − y�� ≤ 	2�� + 2
� ⧠

By the claim, we can employ this inequality on the RHS of (71). Multiplication of the

interior terms by
∆>∆> yields:

29

���123$��1∆� �∆	
� =	 ∆	�∆	�(G2 B�3(SC� %�31$	��1∆	 '�H + ∆	�∆	�(G2 B��(SC� %�(1$	�31∆	 '� +

	2 B�3(SC� %�31$	��1∆	 '�C +	 ∆	�∆	�(G2 B��(SC� %��1$	�(1∆	 '� + 2B��(SC� %�(1$	�31∆	 '�H +
				⋯				+ ∆	�∆	�(G2 B�t$�(

S C� %��@31 $	��@(1
∆	 '� +	2 B�t$�(

S C� %��@(1 $	��@�1
∆	 '�H +

∆	�∆	�(G2 B�t$3(
S C� %��1$	��@31

∆	 '� + 	2 B�t$�(
S C� %��@31 $	��@(1

∆	 '�H +
∆	�∆	�(G2 B�t$3(

S C� %��1$	��@31
∆	 '�H (70)

The RHS above collapses into a sum of terms with a repeated pattern that can thus

be consolidated into a single summation term (after adding like terms):

���123$��1∆� �∆	
� =	 ��∆	�(∑ ∆� B�Q$3(

S C� %�/1$	�/@31
∆	 '�tQu) (71)

Select the maximum value of the c function and remove from the product, defined

�{|	 to be defined as �{|	 ∶= 	`^�\ B�Q$3(
S C to introduce an inequality:

���123$��1∆� �∆	
� ≤	 ��∆	�(�{|	 	∑ ∆�	�Q$3(

S %�/1$	�/@31
∆	 '�tQ�) ⧠

30

Proof of Theorem 3.1. Using Lemmas 3.1 and 3.2, we get,

− ∆�� ��123$�1∆� �∆	
� + K�123K∆;($‖�1‖∆;(�∆� + ∑ ∆x	�Q$3(

S %�/1$	�/@31
∆> '� = 0�6u) (72)

Adding the first term on the LHS to the RHS in (64) removes the negative sign:

K�123K∆;($‖�1‖∆;(�∆� + ∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> '� = ∆�� ��123$�1∆� �∆	
��6u) (73)

Using Lemma 3.3 for the RHS of (75), we get:

K�123K∆;($‖�1‖∆;(�∆� + ∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> '��6u) ≤
																																											∆�� 	� ��∆	�(�{|	 	∑ ∆�	�Q$3(

S %�/1$	�/@31
∆	 '�tQ�) � (74)

We can then collect the coefficients for the summation on the LHS:

K�123K∆;($‖�1‖∆;(�∆� +	%1 − �∆��∆	�(�{|	'	∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> '��6u) ≤ 0 (75)

31

An assumption made by Perona and Malik in their 1990 paper, is that the choice of

the g function that describes the diffusion coefficient, c, is restricted to a domain of

[0,1]. This special choice of the g function forces the diffusion coefficient, c, to

remain within this domain. Then since ∆x > 0 and the square of the difference term

is greater than or equal to 0, the summation becomes positive. For the above

equation to hold true, given the second term is positive, the first term is forced to be

less than or equal to 0, which implies

K�123K∆;($‖�1‖∆;(�∆� 	≤ 0 (76)

Cross-multiplying the 2∆t by zero gives:

‖�S*)‖∆>� − ‖�S‖∆>� 	≤ 0							 ↔ 									 ‖�S*)‖∆>� ≤ ‖�S‖∆>� ⧠

Remark. The proof of Theorem 3.1 proves stability, i.e. the (n+1)-step is

bounded by the n-step, but with a condition on ∆t. Hence the explicit numerical

scheme for the Perona-Malik equation in 1D (and in higher dimensions) is stable if

and only if the following stability condition holds for ∆t, ∆x, and �{|	:

1 − �∆��∆	�(�{|	 	≥ 0	
↔	 �∆��∆	�(�{|	 	≤ 1	

32

↔ ∆�	 ≤ �∆	�(�	Fxyz (77)

When extended to the 2D case, the stability condition on ∆t becomes:

∆�	 ≤ �∆	�(�	F��;	�/� + �∆
�(�	F��;	�0� (78)

When dealing with the 2D case when the diffusion coefficient is c=1 or when the

maximum value of c is ���>	�Q� = ���>	�R� = 1 , then the stability condition on ∆t

becomes:

∆�	 ≤ 	 �∆	�(*�∆
�(�	 (79)

3.2 Stability Analysis of the Implicit Numerical Scheme

To examine the stability of the implicit numerical scheme of the Perona-

Malik equation, we consider the following implicit discretization:

�/123$�/1∆� 		= 						 8<23(J G:<23J23@	:<J23
∆; H$	8<@3(J G:<J23@	:<@3J23

∆; H		
∆> (80)

The above finite difference is considered with an initial condition of �QW =	 �W��Q�.

33

Theorem 3.2: The scheme represented in (80) is unconditionally stable.

Moreover:

‖�S*)‖∆	 ≤ ‖�S‖∆	

To prove the theorem, we need the following lemmas:

Lemma 3.2.1 %�123$�1∆� , �S*)'∆	 + ∑ ∆x	�Q$3(
S %�/123$	�/@3123

∆> '� = 0�6u)

Proof. Multiply both sides of equation (80) by �Q,RS*):

%�/123$�/1∆� '	�QS*) =						 }8<23(J G:<23J23@	:<J23
∆; H$	8<@3(J G:<J23@	:<@3J23

∆; H		
∆> ~ �QS*) (81)

For i=0,1,…N to generate the following list of equations:

								%��123$��1∆� ' �WS*) =	 }83(JG:3J23@	:�J23∆; H$	8@3(J G:�J23@	:@3J23∆; H		
∆> ~ �WS*)											

								%�3123$�31∆� ' �)S*) =	 }8�(JB:(J23@	:3J23∆; C$	83(JG:3
J23@	:�J23∆; H		

∆> ~ �)S*)																

34

																			⋮																								⋮																⋮																							⋮																															
%��@3123$��@31

∆� ' �t$)S*) =	 }8�@3(J G:�J23@	:�@3J23∆; H$	8�@�(J G:�@3J23@	:�@(J23∆; H		
∆> ~ �t$)S*)

								%��123$��1∆� ' �tS*) =	 }8�23(J G:�23J23@	:�J23∆; H$	8�@3(J G:�J23@	:�@3J23∆; H		
∆> ~ �tS*) (82)

Using the definitions for the dot product (46) and the norm (47), the LHS of

(82) for i=0,1,…,N in terms of the dot product which yields:

∆	� %��123$��1∆� ' �WS*) + ∑ ∆� %�/123$�/1∆� '	�QS*)t$)Qu) + ∆	� %��123$��1∆� ' �tS*) =
																																																																																		%�123$�1∆� , �S*)'∆	 (83)

In a similar fashion, add up the RHS of equation block (89) for i=0,1,…,N in

terms of the dot product which yields:

35

12	Dc)�T GI)
T*) −	IWT*)∆x H −	c$)�T GIWT*) − 	I$)T*)∆x HE �WS*) 		

+ 	 D���S G��
S*) −	�)S*)∆� H −	�)�S G�)

S*) − 	�WS*)∆� HE �)S*) +	………
+ D�t$)�

S G�tS*) −	�t$)S*)∆� H −	�t$��
S G�t$)S*) − 	�t$�S*)∆� HE �t$)S*)

+ 12 D�t*)�
S G�t*)S*) −	�tS*)∆� H −	�t$)�

S G�tS*) − 	�t$)S*)∆� HE �tS*)

 (84)

Using the boundary conditions from Section 2.3, for the 1-D case, c$3(= c3(

and �$) =		 �) and also c�*3(= c�$3(and ��*) =		 ��$), the first and last terms (i.e.

when i=0 and i=N) of the above equation (84) become:

)� 	�c3(T %A3J23$	A�J23
∆> ' −	c$3(

T %A�J23$	A3J23
∆> '� �WS*) = c3(T %A3J23$	A�J23

∆> ' �WS*) (85)

)� ��t$3(
S %��@3123$	��123

∆	 ' −	�t$3(
S %��123$	��@3123

∆	 '� �tS*) = −�t$3(
S %��123$	��@3123

∆	 ' (86)

36

With these terms, we get:

%�123$�1∆� , �S*)'∆	 =

−c3(T %A3J23$	A�J23
∆> ' �WS*)

−	��(S %�(123$	�3123
∆	 ' �)S*) −	�3(S %�3123$	��123

∆	 ' �)S*)

−	��(S %��123$	�(123
∆	 ' ��S −	��(S %�(123$	�3123

∆	 ' �)S*)

																			⋮																								⋮									
−�t$�(

S %��@3123$	��@(123
∆	 ' �t$�S*) −	�t$�(

S %��@(123$	��@�123
∆	 ' �t$�S*)

 −�t$3(
S %��123$	��@3123

∆	 ' �t$)S*) −	�t$�(
S %��@3123$	��@(123

∆	 ' �t$)S*)

−�t$3(
S %��123$	��@3123

∆	 ' �t$)S*) (87)

Collecting similar difference termsB��123$	��@3123
∆> C, we get the following

consolidated equation:

%�123$�1∆� , �S'∆	 =

37

−c3(T�I)T*) −	IWT*)� %A3J23$	A�J23
∆> '

−	��(S���S*) −	�)S*)� %�(123$	�3123
∆	 '

−	��(S���S*) −	��S*)� %��123$	�(123
∆	 '

																			⋮																				
−�t$�(

S ��t$)S*) −	�t$�S*)� %��@3123$	��@(123
∆	 '

−�t$3(
S ��tS*) −	�t$)S*)� %��123$	��@3123

∆	 ' (88)

Multiply every term by
∆	∆	 and collect the terms to result in a summation on the

RHS. Thus equation (95) is consolidated to the following:

%�123$�1∆� , �S*)'∆	 = −∑ ∆x	�Q$3(
S %�/123$	�/@3123

∆> ' %�/123$	�/@3123
∆	 '�6u) (89)

We add the summation on the RHS to the LHS to result in an equation equal to zero:

%�123$�1∆� , �S*)'∆	 + ∑ ∆x	�Q$3(
S %�/123$	�/@3123

∆> '� = 0�6u) ⧠

38

Lemma 3.2.2 %�123$�1∆� , �S*)'∆	 = ∆�� ��123$�1∆� �∆	
� + K�123K∆;($‖�1‖∆;(�∆�

Now consider rewriting �S*) as an expression of itself, �S, and ∆�:

�S*) = ∆t %)�' %�123$�1∆� ' + �123*�1� (90)

Substituting this expression for �S*) into the dot product (first term) in equation

(97) gives:

%�123$�1∆� , �S*)'∆	 = %�123$�1∆� , ∆t %)�' %�123$�1∆� ' + �123*�1� '∆	 (91)

By the properties of a dot product, we can move the scalar outside of the dot

product operation and distribute over the sum to get a sum of two dot products:

G�S*) − �S∆� , �SH∆	 = ∆t B12C G�S*) − �S∆� , �S*) − �S∆� H∆	 + G�S*) − �S∆� , �S*) + �S2 H∆>

 (92)

39

There is a norm introduced in the first term above, according to the

definition of a norm in equation (49). Also, the scalar values can be extracted to the

outside of the dot product in the second term above:

%�123$�1∆� , �S'∆	 = ∆�� ��123$�1∆� �∆	
� +)�∆� ��S*) − �S , �S*) + �S�∆	 (93)

By carefully following the properties of distribution wrt dot products, we can

rewrite the dot product in the last term above as:

��S*) − �S, �S*) + �S�∆	 		= 	 	��S*), �S*)�∆	 + ��S*), �S�∆	 	−
																																																																��S, �S*)�∆	 − ��S, �S�∆	 (94)

The interior terms of (97) cancel out. Observe that the first and last terms

are the square of the norms. Then (97) becomes:

%�123$�1∆� , �S*)'∆	 = ∆�� ��123$�1∆� �∆	
� + K�123K∆;($‖�1‖∆;(�∆� ⧠

Proof of Theorem 3.2. Substituting Lemma 3.2.2 into Lemma 3.2.1, we get:

∆�� ��123$�1∆� �∆	
� + K�123K∆;($‖�1‖∆;(�∆� + ∑ ∆x	�Q$3(

S %�/123$	�/@3123
∆> '� = 0�6u) (95)

40

The first term of (99) is positive since the scalar is positive because

∆� ≥ 0 → ∆�� ≥ 0	and the squared norm is positive. Now skip to the third term

(summation), we have that ∆� ≥ 0 and the squared difference is greater than zero.

We force the c values to be within [0,1] by choice of the g function, therefore

�Q$3(
S ≥ 0 and thus the summation is greater than or equal to zero. Now in order for

the tree terms above to sum two 0, given tow positive terms, it must be true that the

second term is less than or equal to zero. Consider that fact:

K�123K∆;($‖�1‖∆;(�∆� 	≤ 0 (96)

Cross-multiplying the 2∆t by zero gives:

 ‖�S*)‖∆>� − ‖�S‖∆>� 	≤ 0		 ↔ 	‖�S*)‖∆>� ≤ ‖�S‖∆>� ⧠

Remark. Then this brings us directly to the definition of stability and

convergence, i.e. we proved that the (n+1)-step is bounded by the n-step, without

any conditions on ∆t or any other parameter. The only careful choice that has to be

made is of the g function that determines c, with the safest choice being one that is

bounded by 0 and 1. In summary, we are confident that given a carful choice of the

41

diffusion coefficient function c, the Implicit Numerical Scheme for the Perona-Malik

function will always converge to stable solution regardless of choice of ∆t.

42

CHAPTER IV – MATLAB IN A LITERATE PROGRAMMING STYLE

Using the dissertation style of Van Den Boomgaard , we will examine how

MATLAB was used to implement the above numerical approximations, directly

within this paper to allow the reader to understand the implementation step-by-

step and reproduce similar results. All of the MATLAB implementations allow

processing on a non-uniform grid space which we call the computational grid space

as opposed to the image grid space which is the pixel space of the original image. A

mesh grid is created based on user defined step sizes for x and y, dx (= ∆x) and dy (

= ∆y), respectively:

[im_compX,im_compY] = meshgrid(dx:dx:Iorig_max,dy:dy:Jorig_max);

Figure 2: MATLAB code for creating the mesh grid to overlay the computational grid space

In order to create the computational grid space, an interpolation must be performed

to fill in the values between pixels. The built-in MATLAB function interp2 was used

to execute a bilinear interpolation:

im_comp =

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'linear');

Figure 3: MATLAB code for using

computational image)

The function interp2 was

im_comp =

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,

Figure 4: MATLAB code for using spline interpolation to create the computational grid space (i.e. the

computational image)

If dx = 1 and dy

image grid space and the processing will be done on a pixel by pixel basis.

4.1 Implementation of

The MATLAB implementation of the explicit PM numerical scheme is

illustrated in figure ():

Figure

Input Noisy Image

Loop (n): Compute

c(x,y) with g option

43

: MATLAB code for using bilinear interpolation to create the computational grid space (i.e. the

function interp2 was also used to examine spline interpolation:

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'spline'

: MATLAB code for using spline interpolation to create the computational grid space (i.e. the

 = 1 then the computational grid space will be equal to the

image grid space and the processing will be done on a pixel by pixel basis.

Implementation of Explicit Perona-Malik Numerical Scheme

The MATLAB implementation of the explicit PM numerical scheme is

Figure 5: MATLAB Flow for Explicit PM Numerical Scheme

Input Noisy Image

Transform to

Computational Grid

(Bilinear or Spline

Interpolation)

Pad Computational

Grid with

Neumann Boundary

Conditions

Loop (n): Compute

) with g option

Loop (i,j): Execute

Explicit Equation

Downsample Final

(denoised) Image

<optional step

interpolation to create the computational grid space (i.e. the

'spline');

: MATLAB code for using spline interpolation to create the computational grid space (i.e. the

al grid space will be equal to the

image grid space and the processing will be done on a pixel by pixel basis.

Scheme

The MATLAB implementation of the explicit PM numerical scheme is

Pad Computational

Grid with

Neumann Boundary

Conditions

Downsample Final

) Image

optional step>

44

A function named pm_explicit.m was created to execute Perona-Malik explicit

numerical scheme:

function [im_final varargout] =

 pm_explicit(im_orig,kval,dx,dy,dt,nsteps,tol,option_g,varargin)

Figure 6: MATLAB code to call function pm_explicit to run Explicit PM 2nd Order Difference scheme

The function outputs the result of the Perona-Malik equation. The inputs are the

original image, im_orig, the K value from the g functions (4) and (5), the step size in

the x direction, dx, the step size in the y direction, dy and the choice of the g

function, option_g. The first step involves calculating the upper bound on the step

size in time per the stability condition discussion in Section 3.1.

dtmax = (dx^2)*(dy^2)/(2*(dx^2 + dy^2));

Figure 7: MATLAB code for maximum allowed time step, dtmax

We choose the time step size to be just 1% less than the upper bound:

dt = dtmax - abs(dtmax)/100;

Figure 8: MATLAB code for time step calculated as 99% of dtmax

All of the processing is done on the computational grid space, which we will

also refer to as the image (specifically, im_comp, in the MATLAB code). The

computational image is created as mentioned in the discussion above and is then

padded on each side, based on the Neumann Boundary Conditions wrt to x and y, i.e.

at the boundaries we get:

?A?> = A<23,=$A<@3,=�∆> = 0 and
?A?I = A<,=23$A<,=@3�∆I = 0 (97)

45

It is important to keep in mind that in MATLAB all indices must start with 1

(not 0). So let i = 1, 2, …, Imax and j = 1, 2, …, Jmax denote the step values in the x

and y directions, respectively. At the lower boundary of x in MATLAB (i.e. i = 1):

4?A?>5),7 = A(,=$A�,=�∆> = 0 →	 �W,R =		 ��,R (98)

At the upper boundary for x (i.e. i = Imax):

4?A?>5A��>,7 = A:��;23,=$A:��;@3,=�∆> = 0 →	 ��{|	*),R =		 ��{|	$),R (99)

Similarly, at the lower boundary of y in MATLAB (i.e. j = 1):

4?A?I56,) = A<,($A<,��∆I = 0 →	 �Q,W =		 �Q,� (100)

At the upper boundary for y (i.e. j = Jmax):

4?A?I56,c��> = A<,d��;23$A<,d��;@3�∆I = 0 →	 �Q,e{|	*) =		 �Q,e{|	$) (101)

46

In MATLAB, the padding is executed with the following statements:

im_pad = zeros(Imax+2,Jmax+2);
im_pad(2:Imax+1,2:Jmax+1) = im_comp;
im_pad(1,2:Jmax+1) = im_pad(3,2:Jmax+1);
im_pad(Imax+2,2:Jmax+1) = im_pad(Imax,2:Jmax+1);
im_pad(2:Imax+1,1) = im_pad(2:Imax+1,3);
im_pad(2:Imax+1,Jmax+2) = im_pad(2:Imax+1,Jmax);

Figure 9: MATLAB code for padding image

Then at each (i, j) coordinate within the computational grid-space we

compute the numerical approximation to the gradient of the intensities:

% Solve for new intensity using only interior of padded computational

grid
for n=1:nsteps

 % Find c at each point, in order to find c at each point we need

 % Calculate the gradient of the intensities (of the padded image)
 gradI_x = zeros(size(im_pad));
 gradI_y = zeros(size(im_pad));

 for i=2:Imax+1
 for j=2:Jmax+1
 gradI_x(i,j) = (im_pad(i+1,j)-im_pad(i-1,j))/(2*dx);
 gradI_y(i,j) = (im_pad(i,j+1)-im_pad(i,j-1))/(2*dy);
 end
 end

… loop to be continued in Figure 11

Figure 10: MATLAB code for calculating the gradient of the intensities

47

The Euclidean norm of the gradient is computed and passed into the chosen g

function:

 … loop continued from Figure 10

% Calculate the 2-norm of the gradient of the intensities
 nrm_gradI = sqrt(gradI_x.^2 + gradI_y.^2);

 % Determine and evaluate the g function
 switch option_g
 case 1
 gfun = exp(-(nrm_gradI/kval).^2);
 case 2
 gfun = 1./(1+(nrm_gradI/kval).^2);
 otherwise
 gfun = ones(size(nrm_gradI)); % Gaussian Kernel
 end

 cval = gfun; % Is this step necessary???

… to be continued in Figure 12

Figure 11: MATLAB Code for choice of g function – diffusivity function coefficient

We iterate over the difference time steps to compute equation (20)

iteratively up to nsteps (number of time steps):

48

… loop continued from Figure 11

 % CHECK for no change between previous and current timesteps (< tol)
 im_prev = im_pad;

 for i=2:Imax+1
 for j=2:Jmax+1
 % Perform all calculations wrt X
 A1 = (cval(i+1,j)+cval(i,j))*(im_pad(i+1,j)-im_pad(i,j))/2;
 A2 = (cval(i,j)+cval(i-1,j))*(im_pad(i,j)-im_pad(i-1,j))/2;
 A = dt*(A1 - A2)/dx^2;

 % Perform all calculations wrt Y
 B1 = (cval(i,j+1)+cval(i,j))*(im_pad(i,j+1)-im_pad(i,j))/2;
 B2 = (cval(i,j)+cval(i,j-1))*(im_pad(i,j)-im_pad(i,j-1))/2;
 B = dt*(B1 - B2)/dy^2;

 im_pad(i,j) = im_pad(i,j) + A + B;
 end
 end

 iter_err = norm(im_prev - im_pad)/norm(im_prev);
 if iter_err < tol && n > 2
 break
 end

end

Figure 12: MATLAB code for calculating Explicit PM 2nd Order Difference over each ((i, j)) pixel of the

computational grid

To run the pm_explicit.m function code, first read in an image, e.g. built-in MATLAB

image, cameraman.tif:

im_orig = imread('cameraman.tif');

Figure 13: MATLAB Code to read MATLAB built-in image - cameraman.tif

49

Then use the following commands to set up the parameters and execute the

pm_explicit function to run the Explicit PM Numerical Scheme:

kval = 1/7;
nsteps = 7;
option = 1;
dx = 0.5;
dy = 0.5;

dt = 0.25;

tol = 1e-8;
[im_final exp_dt exp_n exp_ierr] =

 pm_explicit(im_noise,kval,dx,dy,dt,nsteps,tol,option);

Figure 14: MATLAB code to define parameters in run script for inputs to pm_explicit

The final result is in the processed computational grid (without padding).

Therefore you may want to downsample the final image by the dx and dy factors in

order to return to the image grid space for comparison purposes. The following

MATLAB command can be run (note, for optimal return to same image grid space

size, use dx = 1/M and dy = 1/N, i.e. the reciprocal of an integer):

im_down = downsample(downsample(im_final',ceil(1/dx))',ceil(1/dy));

Figure 15: MATLAB code to downsample the final image to original image grid space size (approximately)

4.2 Implementation of Implicit Perona-Malik Numerical Scheme

The MATLAB implementation for the Implicit Perona-Malik Numerical

Scheme is very similar to the Explicit Perona-Malik Numerical MATLAB

implementation. The only change will be the section of code that iterates over t

underlying equation. Instead in the implicit method a function,

pm_implicit_matrix.m, is executed to generate the matrix operator that represents

the coefficient matrix for the system of equations of the implicit method.

Figure

A function named pm_im

implicit numerical scheme:

function A = pm_implicit_matrix(Imax,Jmax,dt,dx,dy,cval)

Figure 17: MATLAB Function for Implicit Matrix

The implicit scheme requires this

term. Also, per the stability discussion in Section

Input Noisy Image

Loop (n): Compute c(

Build Implicit Matrix System

Simultaneous calculation of new image using A

50

implementation. The only change will be the section of code that iterates over t

Instead in the implicit method a function,

pm_implicit_matrix.m, is executed to generate the matrix operator that represents

the coefficient matrix for the system of equations of the implicit method.

Figure 16: MATLAB Flow for Implicit PM Numerical Scheme

function named pm_implicit.m was created to execute Perona

plicit numerical scheme:

A = pm_implicit_matrix(Imax,Jmax,dt,dx,dy,cval)

on for Implicit Matrix

implicit scheme requires this intermediate solver to solve for the n+1

term. Also, per the stability discussion in Section 3.2, there is no need to restrict the

Transform to

Computational Grid

(Bilinear or Spline

Interpolation)

Pad Computational Grid

Neumann Boundary

Conditions

Loop (n): Compute c(x,y) with g option

Build Implicit Matrix System

Simultaneous calculation of new image using A\b

Downsample Final

(denoised

<optional step

implementation. The only change will be the section of code that iterates over the

pm_implicit_matrix.m, is executed to generate the matrix operator that represents

the coefficient matrix for the system of equations of the implicit method.

plicit.m was created to execute Perona-Malik

intermediate solver to solve for the n+1

, there is no need to restrict the

Pad Computational Grid

with

Neumann Boundary

Conditions

Downsample Final

denoised) Image

optional step>

51

choice of the time step, ∆t, which no longer depends on the x and y step sizes. For

the implicit numerical scheme of the Perona-Malik function we take equation (29):

�Q,RS*) G1 + P) Bc6*3(,7T +	c6$3(,7T C + P� Bc6,7*3(
T +	c6,7$3(

T CH −
	P) Bc6*3(,7T I6*),7T*) + c6$3(,7T I6$),7T*) 	C − P� Bc6,7*3(

T I6,7*)T*) +	c6,7$3(
T I6,7$)T*) C = �Q,RS (102)

Rewrite equation (29) to be a system of unknown �S*) terms:

−	�Q*),RS*) BP)c6*3(,7T C − �Q$),RS*) 	BP)�Q$3(,RS 	C +	�Q,RS*) G1 + P) Bc6*3(,7T +	c6$3(,7T C +
P� Bc6,7*3(

T +	c6,7$3(
T CH − �Q,R*)S*) BP�c6,7*3(

T C − �Q,R$)S*) BP��Q,R$3(
S C = �Q,RS (103)

Coefficient for the �Q,RS*) term:

γ = G1 + P) Bc6*3(,7T +	c6$3(,7T C + P� Bc6,7*3(
T +	c6,7$3(

T CH (104)

52

Coefficients for the �Q*),RS*) and �Q$),RS*) terms, respectively:

�) = −BP)c6*3(,7T C,				α� 	= −BP)�Q$3(,RS 	C,			�¡¢�#:	�)*� = �) + ���	 (105)

Coefficients for the �Q,R*)S*) and �Q,R$)S*) terms, respectively:

β) = −BP�c6,7*3(
T C	,				β� = −BP��Q,R$3(

S C,			�¡¢�#:	¥)*� = ¥) + ¥�� (106)

The first step in pm_implicit_matrix.m calculates the P) and P� values:

lambda1 = dt/(dx^2);

lambda2 = dt/(dy^2);

Figure 18: MATLAB Code – pm_implicit_matrix.m

The coefficients are in terms of the c values at the halves, hence those

constants are explicitly calculated first. The cvals matrix variable of the c values is

passed into pm_implicit_matrix.m function. The coefficients γ, α), α�, β), and β� are

then calculated for each i and j at each iteration in time. The first portion of the

MATLAB to calculate all those values follows:

53

r = 0;

for j = 2:Jmax+1

 for i = 2:Imax+1

 r = r+1;

 ci1 = (cval(i+1,j)+cval(i,j))/2;

 ci2 = (cval(i,j)+cval(i-1,j))/2;

 cj1 = (cval(i,j+1)+cval(i,j))/2;

 cj2 = (cval(i,j)+cval(i,j-1))/2;

 gamma = 1 + lambda1*(ci1+ci2) +lambda2*(cj1+cj2);

 alpha1 = -lambda1*ci1;

 alpha2 = -lambda1*ci2;

 beta1 = -lambda2*cj1;

 beta2 = -lambda2*cj2;

… to be continued in Figure 20

Figure 19: MATLAB Code – pm_implicit_matrix.m - 1st Half of Loop

Now the system can be expressed in terms of the above coefficients γ, α), α�,

β), and β� . All terms are summed because the variables include the negative signs:

α)	�Q*),RS*) + α��Q$),RS*) 	+ γ�Q,RS*) +	β)�Q,R*)S*) + β��Q,R$)S*) = �Q,RS (107)

Consider holding n = 0, fix the j term, then for i=1,2,…,M=Imax we get

α)	��,R) + α��W,R) 	+ γ�),R) +	β)�),R*)) + β��),R$)) 																						= �),RW

α)	��,R) + α��),R) 	+ γ��,R) +	β)��,R*)) + β���,R$)) 																						= ��,RW

																																			⋮																																																																							⋮

54

α)	�¦,R) + α��¦$�,R) 	+ γ�¦$),R) +	β)�¦$),R*)) + β��¦$),R$)) = �¦$),RW

α)	�¦*),R) + α��¦$),R) 	+ γ�¦,R) +	β)�¦,R*)) + β��¦,R$)) 									= �¦,RW (108)

This will create a system of M (= Imax) equations for M unknowns. Let N = Jmax,

then the above system is repeated N times, resulting in an M*N equations. List the

intensities to be solved as one single (MN x 1)-dimensional vector, listing all values

of i(=1,2,…,M=Imax) for each j(=1,2,…,N=Jmax). The final system can be represented

by a (MN x MN) matrix A, left-multiplied by the MN-dimension vector of all

intensities. We illustrate with a 4x4 system:

§̈
¨̈
¨̈
¨̈
¨̈
©̈ ª �)*� 0 ¥)*� 0 0 0 0 0�� ª �) 0 ¥)*� 0 0 0 00 �� ª �) 0 ¥)*� 0 0 0¥� 0 0 ª �)*� 0 ¥) 0 00 ¥� 0 �� ª �) 0 ¥) 00 0 ¥� 0 �� ª �) 0 ¥)0 0 0 ¥)*� 0 0 ª �)*� 00 0 0 0 ¥)*� 0 �� ª �)0 0 0 0 0 ¥)*� 0 �� ª «¬

¬¬
¬¬
¬¬
¬¬
¬­

			 ∙ 			

§̈
¨̈
¨̈
¨̈
¨̈
©̈�),)S*)��,)S*)��,)S*)�),�S*)��,�S*)��,�S*)�),�RS*)
��,�S*)��.�S*)«¬

¬¬
¬¬
¬¬
¬¬
¬­

		= 	

§̈
¨̈
¨̈
¨̈
¨̈
©̈ �),)S��,)S��,)S�),�S��,�S��,�S�),�RS��,�S��.�S «¬

¬¬
¬¬
¬¬
¬¬
¬­

		

(109)

55

Recall that boundary conditions exist whenever i=1 or i=M=Imax or whenever j=1

or j=N=Jmax (see discussion in previous section surrounding equations (108)-

(111)). This is what causes the combined coefficients of �)*� and ¥)*�. The

following excerpt of code shows the second half of the loop that sets up the matrix

and updates the coefficients when at the boundaries.

…continued from Figure 19

 if (i-1) == 1

 alpha1 = alpha1 + alpha2;

 alpha2 = 0;

 end

 if (j-1) == 1

 beta1 = beta1 + beta2;

 end

 if (j-1) == Jmax

 beta2 = beta1 + beta2;

 end

 A(r,r) = gamma;

 if r < Imax*Jmax

 A(r,r+1) = alpha1;

 end

 if r > 1

 A(r,r-1) = alpha2;

 end

 if r <= Imax*Jmax-Jmax

 A(r,r+Jmax) = beta1;

 end

 if r > Jmax

 A(r,r-Jmax) = beta2;

 end

 end

end

Figure 20: MATLAB Code – pm_implicit_matrix.m – 2nd Half of Loop

The result is a standard matrix system, Ax=b. This is used in the parent function:

56

function [im_final varargout] =

 pm_implicit(im_orig,kval,dx,dy,dt,nsteps,tol,option_g,varargin)

Figure 21: MATLAB

As mentioned before the padding and transformation to the computational grid is

the same as that for the pm_explicit.m function. For completeness, all the first steps

are included again here:

% Create mesh of original image space and create mesh based on dx,dy

steps
[im_origX,im_origY] = meshgrid(1:Iorig_max,1:Jorig_max);
[im_compX,im_compY] = meshgrid(1:dx:Iorig_max,1:dy:Jorig_max);

% Use interpolation to create the intensities of the computational grid
im_comp =

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'linear');

im_pad = zeros(Imax+2,Jmax+2);
im_pad(2:Imax+1,2:Jmax+1) = im_comp;
im_pad(1,2:Jmax+1) = im_pad(3,2:Jmax+1);
im_pad(Imax+2,2:Jmax+1) = im_pad(Imax,2:Jmax+1);
im_pad(2:Imax+1,1) = im_pad(2:Imax+1,3);
im_pad(2:Imax+1,Jmax+2) = im_pad(2:Imax+1,Jmax);

Figure 22: MATLAB Code: pm_implicit.m – Bilinear Interpolation and Image Padding

After interpolation and padding, the iterations in time space are commenced,

prior to calling the pm_implicit_matrix.m, the c function values must be calculated.

for n=1:nsteps

 % Find c at each point, in order to find c at each point we need to

 % calculate the gradient of the intensities (of the padded image)

 gradI_x = zeros(size(im_pad));

 gradI_y = zeros(size(im_pad));

 for i=2:Imax+1

 for j=2:Jmax+1

 gradI_x(i,j) = (im_pad(i+1,j)-im_pad(i-1,j))/(2*dx);

 gradI_y(i,j) = (im_pad(i,j+1)-im_pad(i,j-1))/(2*dy);

57

 end

 end

 % Calculate the 2-norm of the gradient of the intensities

 nrm_gradI = sqrt(gradI_x.^2 + gradI_y.^2);

 % Determine and evaluate the g function

 switch option_g

 case 1

 gfun = exp(-(nrm_gradI/kval).^2);

 case 2

 gfun = 1./(1+(nrm_gradI/kval).^2);

 otherwise

 gfun = ones(size(nrm_gradI)); % Gaussian Kernel

 end

 cval = gfun;

… to be continued in Figure 24

Figure 23: MATLAB Code: Implicit PM Scheme (pm_implicit.m) – Part 1 of 3

The A matrix is then created per the discussion at the beginning of this section:

… continued from Figure 23

% Generate IJxIJ matrix to solve implicit system
 A = pm_implicit_matrix(Imax,Jmax,dt,dx,dy,cval);

… loop to be continued in Figure 25

Figure 24: MATLAB code – pm_implicit.m – Part 2 of 3

 In order to create the b vector, which is simply one long vector depicting the

intensity values at the current time step, the built-in MATLAB function “reshape”

was used. Since MATLAB is a column-major programming language, the reshape

function will traverse the intensity matrix by column which directly corresponds to

how the vector is describe above (fix j, select all I values). Once the matrix A and

vector b are created the system is solved with the built-in MATLAB command “\”:

58

… continued from Figure 24

 % CHECK for no change between previous and current timesteps (< tol)
 im_prev = im_pad;
 %toc

 im_bvec = reshape(im_pad(2:Imax+1,2:Jmax+1),Imax*Jmax,1);
 %toc

 im_xvec = A \ im_bvec;
 %toc

 im_pad(2:Imax+1,2:Jmax+1) = reshape(im_xvec,Imax,Jmax);
 toc

 iter_err = norm(im_prev - im_pad)/norm(im_prev);
 if iter_err < tol && n > 2
 break
 end

end

Figure 25: MATLAB Code: pm_implicit.m – Part 3 of 3

The final image is taken to be the interior of the padded image to remove the

logical boundary conditions:

im_final = im_pad(2:Imax+1,2:Jmax+1);

Figure 26: Implicit PM Scheme (pm_implicit.m)

Below are commands to set up the parameters and execute the pm_implicit

function to run the Implicit PM Numerical Scheme:

kval = 1/7;
nsteps = 100;
option = 2;
dt = 0.01;
dx = 1;
dy = 1;

tol = 1e-8;

[im_final imp_dt imp_n imp_ierr] =

59

pm_implicit(im_noise,kval,dx,dy,dt,nsteps,tol,option);

Figure 27: MATLAB code to run Implicit Scheme

4.3 Simulated Noise: Random (Additive), Gaussian and Speckle

In order to simulate a noisy image, random values are directly added to the

original image, hence why it is addressed as additive random noise. The built-in

MATLAB function “rand” is used which produces random values between [0,1]. The

noise is reduced or increased based on a factor. If it is a fraction then the noise is

reduced, if it is greater than 1, then it is increased. The added noise is saved to a

variable called “noise_floor” to store exactly what was added to the image for

simulated degradation:

noise_factor = 1/5;

noise_floor = rand(size(im_orig))*noise_factor;

im_noise = im2double(im_orig) + noise_floor;

Figure 28: MATLAB Code for Adding Random Noise (reduced by factor of 5).

The MATLAB Image Processing Toolbox (available in Student Edition)

contains a very convenient built-in function called “imnoise” to simulate various

types of noise. In this thesis Gaussian noise and Speckle were also examined as

sources of simulated noise for degrading the image. The speckle is multiplicative

noise created by im_noise = im_orig + n*im_orig, where n is random between [0,1]

and with default variance of 0.04) See implementations below:

im_gaussian = imnoise(im_orig,'gaussian');

im_speckle = imnoise(im_orig,'speckle');

60

Figure 29: MATLAB built-in function imnoise for Gaussian and Multiplicative Noise (Speckle)

A very useful resource is the MATLAB Help or www.mathworks.com for

more information on all MATLAB built-in functions. The full MATLAB functions are

included in the supplemental material with this thesis.

61

CHAPTER V – EXPERIMENTAL RESULTS

All experiments were performed with benchmark images in image

processing. Specifically, the “Camera Man” and “Lena” images were considered,

although majority of the work was investigated with the camera man image.

Figure 30: Cameraman Image (256x256 TIFF)

Figure 31: Lena Image (512x512 TIFF)

5.1 Performance Metrics

The first experimental analysis that was performed took into consideration

the theoretical attributes of the numerical schemes. Mainly, holding all parameters

the same and decreasing ∆t, the relative error of the solution to the original image

62

should decrease as well. It was noticed that this indeed was the case for both the

explicit and implicit MATLAB implementations, pm_explicit.m and pm_implicit.m,

respectively. In order to speed up the experiments, a subset of the cameraman.tif

image was used. The parameters (held constant) used for running the experiment

are listed in Table 1.

Parameter

MATLAB

Variable Name Value

Contrast Parameter, K kval 1/7

Step size in x direction, ∆x dx 1

Step size in y direction, ∆y dy 1

Choice of g function option 1

Maximum number of

iterations

nsteps 1000

Tolerance (between successive

iterations – stopping criteria)

tol 1e-9

Camera Man Image – Subset

Range

subX

subY

(30, 130)

(80, 180)
Table 1: Description of Fixed Parameters

The maximum number of iterations is set in case the tolerance is not reached.

The tolerance is checked against the relative error between iterations:

��#[^�\¢]	¯[[¢[= ‖�1−�]−1‖‖�1‖ < ±¢_#[^]�# (110)

 To determine the overall accuracy of the scheme, the relative error was

calculated against the original image and the final image:

63

²#_^�\³#	�´\]^_�	¯[[¢[= ‖�µ¶Q·QS|¸	�{|·¹�$�ºQS|¸	»¦	�{|·¹�‖‖µ¶Q·QS|¸	�{|·¹‖ (111)

The explicit PM numerical scheme processing time averaged at about 38-39 seconds

and the relative error was within one order of error compared with the ∆t. In other

words, if ∆t = 1E-N, then the relative error would be 1E-(N-1) or better.

Explicit - Original Image - No Noise Added

Delta-T
Number

Iterations
Relative

Error
Iteration

Error
Time

(sec)

2.475E-01 1000 2.823E-01 9.020E-05 39

1.000E-01 1000 2.122E-01 1.198E-04 37

1.000E-02 1000 8.721E-02 6.624E-05 39

1.000E-03 1000 3.368E-02 1.863E-05 38

1.000E-04 1000 5.939E-03 5.372E-06 38

1.000E-05 1000 6.342E-04 6.128E-07 38

1.000E-06 1000 6.384E-05 6.209E-08 38
Table 2: Explicit PM Results for different values of ∆t for processing the original image without any noise

added.

The implicit PM numerical scheme processing time averaged at about 17-18

minutes. Hence the implicit method was approximately 27 times slower compared

to the explicit method. The relative error was within two orders of error compared

with the ∆t (i.e. if ∆t = 1E-N, then the relative error would be 1E-(N-2) or better).

64

Implicit - Original Image - No Noise Added

Delta-T
Number

Iterations
Relative

Error
Iteration

Error
Time

(sec)

1.000E+00 1000 4.449E-01 9.770E-05 945

1.000E-01 1000 2.691E-01 1.555E-04 941

1.000E-02 1000 1.278E-01 6.465E-05 964

1.000E-03 1000 5.990E-02 3.445E-05 1066

1.000E-04 1000 1.019E-02 9.086E-06 1135

1.000E-05 1000 1.104E-03 1.065E-06 1166

1.000E-06 1000 1.113E-04 1.082E-07 1163
Table 3: Implicit PM Results for different values of ∆t for processing the original image without any noise

added.

Graphically we should see an increasing pattern, since theory says that the ∆t

is positively proportional to the error. This was confirmed in the experiment:

Figure 32: Errors of Explicit (Red Star Dotted Line) and Implicit (Green Circle Solid Line) Methods wrt ∆t.

Decrease in error with smaller values of ∆t validate the implementation of the algorithm

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

PM Explicit(*) and Implicit(o) Errors using loglog - NO NOISE ADDED

Timestep values

n
o
rm

(o
ri
g
-f

in
a
l)
/n

o
rm

(o
ri
g
)

PM Explicit

PM Implicit

65

From a numerical standpoint the methods are accurate. But in image

processing the visual context is more significant than the numerical errors. Like

Perona and Malik mentioned in their paper [1], the goal is to emphasize the

“semantically meaningful” aspects of the image. In visual analysis of the results,

only can one make the decision if the numerical scheme “worked”. These

experiments also help determine an optimal choice of ∆t.

Figure 33: Explicit PM Visual Results for different values of ∆t for processing the original image without any

noise added (i.e. “Noise” Image = “Original” Image).

Original Noise

dt=2.5e-01 (1000 iter)

 Error = 2.82259e-01

dt=1.0e-01 (1000 iter)

 Error = 2.12233e-01

dt=1.0e-02 (1000 iter)

 Error = 8.72091e-02

dt=1.0e-03 (1000 iter)

 Error = 3.36782e-02

dt=1.0e-04 (1000 iter)

 Error = 5.93915e-03

dt=1.0e-05 (1000 iter)

 Error = 6.34224e-04

dt=1.0e-06 (1000 iter)

 Error = 6.38399e-05

66

Figure 34: (ZOOM IN) Explicit PM Visual Results for different values of ∆t for processing the original image

without any noise added (i.e. “Noise” Image = “Original” Image).

It quickly becomes clear that for the Explicit PM method with the parameters

set in Table 1, the image has no meaning until ∆t is at least 1E-2 or smaller. The

Implicit Method demonstrated similar results.

Original Noise

dt=2.5e-01 (1000 iter)

 Error = 2.82259e-01

dt=1.0e-01 (1000 iter)

 Error = 2.12233e-01

dt=1.0e-02 (1000 iter)

 Error = 8.72091e-02

dt=1.0e-03 (1000 iter)

 Error = 3.36782e-02

dt=1.0e-04 (1000 iter)

 Error = 5.93915e-03

dt=1.0e-05 (1000 iter)

 Error = 6.34224e-04

dt=1.0e-06 (1000 iter)

 Error = 6.38399e-05

67

Figure 35: Implicit PM Visual Results for different values of ∆t for processing the original image without any

noise added (i.e. “Noise” Image = “Original” Image).

Original Noise

dt= 1 (1000 iter)

 Error = 4.44855e-01

dt=1.0e-01 (1000 iter)

 Error = 2.69064e-01

dt=1.0e-02 (1000 iter)

 Error = 1.27775e-01

dt=1.0e-03 (1000 iter)

 Error = 5.98967e-02

dt=1.0e-04 (1000 iter)

 Error = 1.01893e-02

dt=1.0e-05 (1000 iter)

 Error = 1.10391e-03

dt=1.0e-06 (1000 iter)

 Error = 1.11317e-04

68

Figure 36: (ZOOM IN) Implicit PM Visual Results for different values of ∆t for processing the original image

without any noise added (i.e. “Noise” Image = “Original” Image).

Given processing on the original image only, it that the optimal choice of ∆t wrt

error, runtime and visual analysis, is ∆t=1E-04. Although, the stability of the scheme

has been confirmed and the results are promising, it is essential to examine the

same results given degraded imagery. See Section 4.3 for details on the different

noise simulations. Our first degradation of the image is by adding random noise:

Original Noise

dt= 1 (1000 iter)

 Error = 4.44855e-01

dt=1.0e-01 (1000 iter)

 Error = 2.69064e-01

dt=1.0e-02 (1000 iter)

 Error = 1.27775e-01

dt=1.0e-03 (1000 iter)

 Error = 5.98967e-02

dt=1.0e-04 (1000 iter)

 Error = 1.01893e-02

dt=1.0e-05 (1000 iter)

 Error = 1.10391e-03

dt=1.0e-06 (1000 iter)

 Error = 1.11317e-04

69

Figure 37: Explicit PM Visual Results for different values of ∆t for processing with RANDOM NOISE added.

Original Noise

dt=2.5e-01 (1000 iter)

 Error = 4.12989e-01

dt=1.0e-01 (1000 iter)

 Error = 2.96091e-01

dt=1.0e-02 (1000 iter)

 Error = 2.37153e-01

dt=1.0e-03 (1000 iter)

 Error = 2.27881e-01

dt=1.0e-04 (1000 iter)

 Error = 2.27289e-01

dt=1.0e-05 (1000 iter)

 Error = 2.27393e-01

dt=1.0e-06 (1000 iter)

 Error = 2.27408e-01

70

Figure 38: Implicit PM Visual Results for different values of ∆t for processing with RANDOM NOISE added.

The second method to degrade the image is to add Gaussian noise to the image:

Original Noise

dt= 1 (1000 iter)

 Error = 5.76912e-01

dt=1.0e-01 (1000 iter)

 Error = 3.98963e-01

dt=1.0e-02 (1000 iter)

 Error = 2.73138e-01

dt=1.0e-03 (1000 iter)

 Error = 2.38240e-01

dt=1.0e-04 (1000 iter)

 Error = 2.28196e-01

dt=1.0e-05 (1000 iter)

 Error = 2.27475e-01

dt=1.0e-06 (1000 iter)

 Error = 2.27416e-01

71

Figure 39: Explicit PM Visual Results for different values of ∆t for processing with GAUSSIAN NOISE added.

Original Noise

dt=2.5e-01 (1000 iter)

 Error = 2.83314e-01

dt=1.0e-01 (1000 iter)

 Error = 2.18050e-01

dt=1.0e-02 (1000 iter)

 Error = 8.73203e-02

dt=1.0e-03 (1000 iter)

 Error = 3.74944e-02

dt=1.0e-04 (1000 iter)

 Error = 3.80601e-02

dt=1.0e-05 (1000 iter)

 Error = 4.18828e-02

dt=1.0e-06 (1000 iter)

 Error = 4.24000e-02

72

Figure 40: Implicit PM Visual Results for different values of ∆t for processing with GAUSSIAN NOISE added.

The last degradation of the image is by simulating speckle by multiplying the image

by random noise:

Original Noise

dt= 1 (1000 iter)

 Error = 4.52899e-01

dt=1.0e-01 (1000 iter)

 Error = 2.77251e-01

dt=1.0e-02 (1000 iter)

 Error = 1.34056e-01

dt=1.0e-03 (1000 iter)

 Error = 6.78481e-02

dt=1.0e-04 (1000 iter)

 Error = 3.96133e-02

dt=1.0e-05 (1000 iter)

 Error = 4.19354e-02

dt=1.0e-06 (1000 iter)

 Error = 4.24044e-02

73

Figure 41: Explicit PM Visual Results for different values of ∆t for processing with simulated SPECKLE.

Original Noise

dt=2.5e-01 (1000 iter)

 Error = 2.78195e-01

dt=1.0e-01 (1000 iter)

 Error = 2.08724e-01

dt=1.0e-02 (1000 iter)

 Error = 8.74320e-02

dt=1.0e-03 (1000 iter)

 Error = 3.87985e-02

dt=1.0e-04 (1000 iter)

 Error = 4.70776e-02

dt=1.0e-05 (1000 iter)

 Error = 5.37942e-02

dt=1.0e-06 (1000 iter)

 Error = 5.46358e-02

74

Figure 42: Implicit PM Visual Results for different values of ∆t for processing with with simulated SPECKLE.

Experiments to investigate noise used the parameters in Table 1. Visual analysis of

the final image for both explicit and implicit put preference on ∆t = 1E-3.

Relative Errors of Explicit and Implicit PM on Noisy Images

Random Noise Gaussian Noise Speckle

dt Explicit Implicit Explicit Implicit Explicit Implicit

1E-01 2.96E-01 3.99E-01 2.18E-01 2.77E-01 2.09E-01 2.69E-01

1E-02 2.37E-01 2.73E-01 8.73E-02 1.34E-01 8.74E-02 1.28E-01

1E-03 2.28E-01 2.38E-01 3.75E-02 6.78E-02 3.88E-02 6.13E-02

1E-04 2.27E-01 2.28E-01 3.81E-02 3.96E-02 4.71E-02 4.71E-02

1E-05 2.27E-01 2.27E-01 4.19E-02 4.19E-02 5.38E-02 5.38E-02

1E-06 2.27E-01 2.27E-01 4.24E-02 4.24E-02 5.46E-02 5.46E-02

Avg Time (s) 40 1056 38 1064 37 1072
Table 4: Errors and average time of Explicit and Implicit schemes wrt different ∆t for simulated noisy images

Original Noise

dt= 1 (1000 iter)

 Error = 4.45461e-01

dt=1.0e-01 (1000 iter)

 Error = 2.68985e-01

dt=1.0e-02 (1000 iter)

 Error = 1.28146e-01

dt=1.0e-03 (1000 iter)

 Error = 6.12822e-02

dt=1.0e-04 (1000 iter)

 Error = 4.71067e-02

dt=1.0e-05 (1000 iter)

 Error = 5.37937e-02

dt=1.0e-06 (1000 iter)

 Error = 5.46357e-02

75

In contrast to the experiment using the original image demonstrating the

theory that the error decreases with decreasing ∆t without lower bound is not

validated in the cases processing the noisy images. In fact, with ∆t < 1E-3, the error

stays the same or gets worse. Also, looking at the different errors for a specific

noise source, it shows that the Perona-Malik numerical schemes are most effective

against Gaussian and Speckle noise, hence the use in reduction in speckle for

Synthetic Aperture Radar (SAR) and ultrasound imagery, where speckle is a

common artifact.

Figure 43: Errors of Explicit (circle) and Implicit (asterix) Methods wrt different ∆t.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
0

Timestep (dt) values

n
o
rm

(o
ri
g
-f

in
a
l)
/n

o
rm

(o
ri
g
)

Relative Errors of Explicit and Implicit PM on Noisy Images

Random-Exp

Random-Imp

Gauss-Exp

Gauss-Imp

Speckle-Exp

Speckle-Imp

76

So now with all experiments reviewed, the optimal (suggested) choice for a time

step to run the Explicit and Implicit PM Numerical Schemes is with ∆t = 1E-3 and not

to far less.

Overall run time is an extremely significant factor in the discussion of explicit

versus implicit computational schemes. The MATLAB Profiler application was used

to examine the timing of the programs. The Implicit PM scheme always takes more

time and the majority of the time is spent creating implicit scheme coefficients

matrix within pm_implicit_matrix.m. Approximately 78% of the total runtime is

spent on creating this matrix of coefficients. Future efforts can be made on

optimizing the run time for computing this matrix, possibly starting with

vectorization rather than looping thru each element.

Figure 44: MATLAB Profile to view time consumption when running MASTER_RUN_PERONA_MALIK.m

script

5.2 Computational Grid and Interpolation Methods

The numerical schemes were written to allow for potential investigation of

different values of ∆x and ∆y to transform an original input image onto a

77

computational grid. The methods imply reciprocal fractions, i.e. given integers M

and N, ∆x=1/M and ∆y=1/N.

5.2.1 Finer Computational Grid: Bilinear vs. Spline Interpolation

For examining different interpolation methods all parameters were held

constant (see Table 1) with ∆t=1E-3. In order to run the interpolation schemes on a

finer grid, a mesh grid space must first be created to step in the x direction from 1 to

Imax and step in the y direction from 1 to Jmax. See below for a visual of the

original image as a mesh plotted next to the mesh of the computational grid for the

bilinear interpolation:

Figure 45: Bilinear Interpolation of Original Image (BLUE) to 2x Finer Computational Grid (RED) with dx= ½

and dy = ½ and ZOOM (right).

78

See below for a visual of the original image as a mesh plotted next to the

mesh of the computational grid for the spline interpolation:

Figure 46: Spline Interpolation of Original Image (BLUE) to transform to 2x Finer Computational Grid (RED)

with dx= ½ and dy = ½ with ZOOM (right)

It is not easy to visually see the differences of the computational grids

generated from bilinear versus spline interpolation visually. Experiments were run

with the original image (no noise added) to compare error results using either

bilinear or spline interpolation with fixed ∆t = 1, 1/2, 1/10, and 1/20. This analysis

was performed with the Explicit PM Method:

79

Figure 47: Explicit PM Visual Results with Bilinear Interpolation (2nd row) and Spline Interpolation (3rd Row)

for ∆x=∆y=1. No Noise Added. Each row has the final image then the downsampled image.

Figure 48: Explicit PM Visual Results with Bilinear Interpolation (2nd row) and Spline Interpolation (3rd Row)

for ∆x=∆y=1/2. No Noise Added. Each row has the final image then the downsampled image.

Original Noise

Explicit BILINEAR

dx= 01,dy= 01

dt=1.0e-03 (3 iter)

 Error = 1.91409e-04

Explicit SPLINE

dx= 01,dy= 01

dt=1.0e-03 (3 iter)

 Error = 1.91409e-04

Original Noise

Explicit BILINEAR

dx=5.00e-01,dy=5.00e-01

dt=1.0e-03 (3 iter)

 Error = 2.64498e-04

Explicit SPLINE

dx=5.00e-01,dy=5.00e-01

dt=1.0e-03 (3 iter)

 Error = 1.89593e-04

80

Figure 49: Explicit PM Visual Results with Bilinear Interpolation (2nd row) and Spline Interpolation (3rd Row)

for ∆x=∆y=1/10. No Noise Added. Each row has the final image then the downsampled image.

Figure 50: Explicit PM Visual Results with Bilinear Interpolation (2nd row) and Spline Interpolation (3rd Row)

for ∆x=∆y=1/20. No Noise Added. Each row has the final image then the downsampled image.

Original Noise

Explicit BILINEAR

dx=1.00e-01,dy=1.00e-01

dt=1.0e-03 (5 iter)

 Error = 1.86838e-03

Explicit SPLINE

dx=1.00e-01,dy=1.00e-01

dt=1.0e-03 (3 iter)

 Error = 7.06958e-04

Original Noise

Explicit BILINEAR

dx=5.00e-02,dy=5.00e-02

dt=6.2e-04 (3 iter)

 Error = 1.41392e-03

Explicit SPLINE

dx=5.00e-02,dy=5.00e-02

dt=6.2e-04 (3 iter)

 Error = 7.70429e-04

81

Below are the numerical results consolidated into a table. From the results,

we can see that for processing the original image with ∆t = 1E-3, the SPLINE

interpolation yields better results for the Explicit PM Scheme.

BILINEAR SPLINE

Imax Jmax dx=dy Rel. Error Time (s) Rel. Error Time (s)

101 101 1 1.9141E-04 0.2 1.9141E-04 0.2

201 201 1/2 2.6450E-04 0.6 1.8959E-04 0.5

1001 1001 1/10 1.8684E-03 27.2 7.0696E-04 16.4

2001 2001 1/20 1.4139E-03 101.1 7.7043E-04 101.0
Table 5: Explicit PM Numerical Results for Bilinear and Spline Interpolation with different ∆x=∆y values

5.2.2 Non-Uniform Computational Grid

In this thesis the focus was on uniform grid spaces but all schemes were

written to allow for running experiments on a non-uniform grid space (i.e. where ∆x

foes not equal ∆y). See examples below for preliminary results, to demonstrate the

functionality using SPLINE interpolation and ∆t=1E-3:

82

Figure 51: Explicit PM on Non-Uniform Computational Grid with ∆x=1 and ∆y=1/2. Spline Interpolation. No

Noise Added. Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)). Bottom

Right is the downsampled image (back to original size)

Figure 52: Explicit PM on Non-Uniform Computational Grid with ∆x=1/2 and ∆y=1. Spline Interpolation. No

Noise Added. Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)). Bottom

Right is the downsampled image (back to original size)

Original Noise

Explicit-Final

dx= 01,dy=5.00e-01

dt=1.0e-03 (20 iter)

 Error = 2.34146e-03

Original Noise

Explicit-Final

dx=5.00e-01,dy= 01

dt=1.0e-03 (20 iter)

 Error = 3.65708e-03

83

Figure 53: Explicit PM on Non-Uniform Computational Grid with ∆x=1 and ∆y=1/3. Spline Interpolation. No

Noise Added. Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)). Bottom

Right is the downsampled image (back to original size)

Figure 54: Explicit PM on Non-Uniform Computational Grid with ∆x=1/3 and ∆y=1. Spline Interpolation. No

Noise Added. Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)). Bottom

Right is the downsampled image (back to original size)

Original Noise

Explicit-Final

dx= 01,dy=3.33e-01

dt=1.0e-03 (20 iter)

 Error = 4.34596e-03

Original Noise

Explicit-Final

dx=3.33e-01,dy= 01

dt=1.0e-03 (20 iter)

 Error = 6.40787e-03

84

Figure 55: Explicit PM on Non-Uniform Computational Grid with ∆x=∆y=1/20 . Spline Interpolation. No Noise

Added. Bottom Right is the final image (larger=more elements). Bottom Left is the downsampled image (back

to original size)

Figure 56: Explicit PM on Non-Uniform Computational Grid with ∆x=1 and ∆y=1/2. Spline Interpolation. No

Noise Added. Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)). Bottom

Right is the downsampled image (back to original size)

The optimal choice of a non-uniform grid spacing will depend on the details

of the original input image or what dimension needs to be emphasiezed in

computation. Analysis of the few results summarized below shows that for this

Original Noise

Explicit-Final

dx=5.00e-01,dy=3.33e-01

dt=1.0e-03 (3 iter)

 Error = 2.40581e-04

Original Noise

Explicit-Final

dx=3.33e-01,dy=5.00e-01

dt=1.0e-03 (3 iter)

 Error = 3.40141e-04

85

subset of the cameraman.tif image, the Explicit PM numerical scheme with SPLINE

interpolation, generally more accurate when ∆x > ∆y.

Imax Jmax dx dy dt # Iter Rel. Error Iter Error Time (s)

201 101 1 1/2 0.001 20 2.3415E-03 1.1080E-04 5.2

101 201 1/2 1 0.001 20 3.6571E-03 1.6896E-04 3.5

301 101 1 1/3 0.001 20 4.3460E-03 1.9623E-04 3.7

101 301 1/3 1 0.001 20 6.4079E-03 2.7931E-04 3.5

301 201 1/2 1/3 0.001 3 2.4058E-04 7.2920E-05 0.8

201 301 1/3 1/2 0.001 3 3.4014E-04 9.5883E-05 1.2
Table 6: Explicit PM Scheme on Non-Uniform Grid Spacing

86

CHAPTER VI – CONCLUSION AND FUTURE WORK

Two numerical methods were investigated for implementing the Perona-

Malik equation for image denoising. The Explicit PM Scheme that is widely used in

the image processing world, is well-known. In this paper we were able to identify

exactly what factors contributed to a stable solution when running the explicit

method. The implicit numerical scheme that was examined proved to have much

more theoretically sound stability without any conditions on ∆t. Unfortunately, with

regards to computational time metrics, it is extremely hard to make the argument to

employ the implicit method due to its extremely high cost in terms of computation

time. It is a very slow method. Dependent upon the desired end result, parameters

chosen and computing platform, a user may be willing to expend the time cost for

the more stable solution from the implicit scheme. Future work on porting the

implicit computation onto a high performance computing platform may hold

promise in bringing down the runtimes. Extending the research of the Perona-Malik

equation and other nonlinear diffusion functions via other stable methods such as

Crank-Nicolson may yield a better trade-off between quality, stability and run-time.,

especially if implementing the Alternating Direction Implicit Method. Running on

user-defined computational grid spaces that are finer, coarser or non-uniform also

opens doors to a wide array of experiments tailorable to the unique attributes of the

87

input image. Understanding the theoretical stability and convergence properties of

the numerical schemes being implemented will help shape expectations of various

algorithms. The immediate plan after this work would be to examine the implicit

numerical schemes for the fourth order nonlinear diffusion models for image noise

reduction, especially those presented by You & Kaveh [2] and Hajiaboli [3].

88

APPENDIX A – MATLAB FOR EXPLICIT PM NUMERICAL SCHEME

function [im_final varargout] =

pm_explicit(im_orig,kval,dx,dy,dt,nsteps,tol,option_g,varargin)

%

% Perona-Malik Explicit Code

%

% FUNCTION PM_EXPLICIT_LOOP

%

% USAGE [im_final <dt> <n> iter_err>]=pm_explicit_loop(im_orig,

% kval,

% dx,dy,dt,

% nsteps,tol

% option_g,

% <verbose>)

%

% INPUTS im_orig = original image that requires smoothing,

% denoising, despeckle, etc

% kval = constant that scales down the variable of the

% g function

% dx = step size in x direction (delta x) used to

% create computational grid, currently a

% scalar (may be a function in future)

% dy = step size in y direction (delta y) used to

% create computational grid, currently a

% scalar (may be a function in future)

% dt = step size in time (delta t) used to create

% matrix operator used to solve the implicit

% system.

% Restricted to (dx^2)*(dy^2)/(2*(dx^2 + dy^2))

% nsteps = number of steps in t, i.e. the maximum

% allowed number of iterations (or solutions

% to the PDE), if the image does not converge

% tol = tolerance for image error between iterations

% since ||image(n+1)|| < ||image(n)||, so as

% the iterations continue the image doesn't

% changes as much. We stop as soon as the rel

% error < tolerance

% option_g = choice of g function (hard-coded)

% 1 ==> exp(-(nrm_gradI/kval).^2)

% 2 ==> 1./(1+(nrm_gradI/kval).^2)

% otherwise gaussian filter with coeffiecients

% = 1

% (optional) verbose = 'verbose' or 'v' to display plots of the

89

% various images created in the PM process

%

% OUTPUTS im_final = original image that requires smoothing,

% denoising, despecklye, etc

% (optional) dt = return the dt used, in case dt was greater

% than stability condition, it will be set to

% 99% of the maximum allowed value

% (optional) n = final number of iterations run to reach tol

% or if tol was not reached, n = nsteps

% (optional) iter_err = relative error of last two images at final

% iteration = norm(im_prev-im_pad)/norm(im_prev)

%

verbose = 'none';

if length(varargin) >= 1

 verbose = varargin{1};

end

% Calculate delta-time

dtmax = (dx^2)*(dy^2)/(2*(dx^2 + dy^2));

if dt >= dtmax

 dtbad = dt;

 dt = dtmax - abs(dtmax)/100;

 dterr=sprintf('dt = %d > dtmax = %d, default dt = %d (99pct of

dtmax)',...

 dtbad,dtmax,dt);

 disp(dterr)

end

% lambda1 = dt/(dx^2);

% lambda2 = dt/(dy^2);

% Convert image to double

im_orig = im2double(im_orig);

% Get dimensions of the image

[Iorig_max Jorig_max] = size(im_orig);

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(1), imshow(im_orig), title('Original')

% figure, subplot 231, imshow(im_orig), title('Original')

end

% Create mesh of original image space and create mesh based on dx,dy

steps

[im_origX,im_origY] = meshgrid(1:Iorig_max,1:Jorig_max);

[im_compX,im_compY] = meshgrid(1:dx:Iorig_max,1:dy:Jorig_max);

% Use interpolation to create the intensities of the computational grid

90

im_comp =

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'linear');

% figure,mesh(im_origX,im_origY,im_orig)

% hold on

% mesh(im_compX,im_compY,im_comp+50)

% hold off

[Imax,Jmax] = size(im_comp);

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(2), imshow(im_comp), title('Comput. Grid')

end

im_pad = zeros(Imax+2,Jmax+2);

im_pad(2:Imax+1,2:Jmax+1) = im_comp;

im_pad(1,2:Jmax+1) = im_pad(3,2:Jmax+1);

im_pad(Imax+2,2:Jmax+1) = im_pad(Imax,2:Jmax+1);

im_pad(2:Imax+1,1) = im_pad(2:Imax+1,3);

im_pad(2:Imax+1,Jmax+2) = im_pad(2:Imax+1,Jmax);

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(3), imshow(im_pad), title('Padded CompGrid')

end

% Solve for new intensity using only interior of padded computational

grid

for n=1:nsteps

 % Find c at each point, in order to find c at each point we need

 % Calculate the gradient of the intensities (of the padded image)

 gradI_x = zeros(size(im_pad));

 gradI_y = zeros(size(im_pad));

 for i=2:Imax+1

 for j=2:Jmax+1

 gradI_x(i,j) = (im_pad(i+1,j)-im_pad(i-1,j))/(2*dx);

 gradI_y(i,j) = (im_pad(i,j+1)-im_pad(i,j-1))/(2*dy);

 end

 end

 % Calculate the 2-norm of the gradient of the intensities

 nrm_gradI = sqrt(gradI_x.^2 + gradI_y.^2);

 % Determine and evaluate the g function

 switch option_g

 case 1

 gfun = exp(-(nrm_gradI/kval).^2);

91

 case 2

 gfun = 1./(1+(nrm_gradI/kval).^2);

 otherwise

 gfun = ones(size(nrm_gradI)); % Gaussian Kernel

 end

 cval = gfun; % Is this step necessary???

 if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(4), imshow(cval), title('C Values')

 end

 % CHECK for no change between previous and current timesteps (<

tol)

 im_prev = im_pad;

 for i=2:Imax+1

 for j=2:Jmax+1

 % Perform all calculations wrt X

 A1 = (cval(i+1,j)+cval(i,j))*(im_pad(i+1,j)-im_pad(i,j))/2;

 A2 = (cval(i,j)+cval(i-1,j))*(im_pad(i,j)-im_pad(i-1,j))/2;

 A = dt*(A1 - A2)/dx^2;

 % Perform all calculations wrt Y

 B1 = (cval(i,j+1)+cval(i,j))*(im_pad(i,j+1)-im_pad(i,j))/2;

 B2 = (cval(i,j)+cval(i,j-1))*(im_pad(i,j)-im_pad(i,j-1))/2;

 B = dt*(B1 - B2)/dy^2;

 im_pad(i,j) = im_pad(i,j) + A + B;

 end

 end

 iter_err = norm(im_prev - im_pad)/norm(im_prev);

 if iter_err < tol && n > 2

 break

 end

end

im_final = im_pad(2:Imax+1,2:Jmax+1);

results=sprintf('Total Iterations = %3d (dt = %3.1d), Iteration Error =

%6.4d (< tol = %5.3d)',...

 n,dt,iter_err,tol);

disp(results);

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(5), imshow(im_final), title('Final PM')

end

varargout{1} = dt;

varargout{2} = n;

92

varargout{3} = iter_err;

Figure 57: MATLAB Function – pm_explicit_dt.m – Implementation of Explicit PM Numerical Scheme

93

APPENDIX B – MATLAB FOR IMPLICIT PM NUMERICAL SCHEME

function [im_final varargout] =

pm_implicit(im_orig,kval,dx,dy,dt,nsteps,tol,option_g,varargin)

%

% Perona-Malik Implicit Code

%

% FUNCTION PM_IMPLICIT_LOOP

%

% USAGE [im_final <dt> <n> <iter_err>]=pm_implicit_loop(im_orig,

% kval,

% dx,dy,dt,

% nsteps,tol

% option_g,

% <verbose>)

%

% INPUTS im_orig = original image that requires smoothing,

% denoising, despecklye, etc

% kval = constant that scales down the variable of the

% g function

% dx = step size in x direction (delta x) used to

% create computational grid, currently a

% scalar (may be a function in future)

% dy = step size in y direction (delta y) used to

% create computational grid, currently a

% scalar (may be a function in future)

% dt = step size in time (delta t) used to create

% matrix operator used to solve the implicit

% system. No restriction except (0 < dt < 1)

% nsteps = number of steps in t, i.e. the maximum

% allowed number of iterations (or solutions

% to the PDE), if the image does not converge

% tol = tolerance for image error between iterations

% since ||image(n+1)|| < ||image(n)||, so as

% the iterations continue the image doesn't

% changes as much. We stop as soon as the rel

% error < tolerance

% option_g = choice of g function (hard-coded)

% 1 ==> exp(-(nrm_gradI/kval).^2)

% 2 ==> 1./(1+(nrm_gradI/kval).^2)

% otherwise gaussian filter with coeffiecients

% = 1

%(optional) verbose = 'verbose' or 'v' to display plots of the

% various images created in the PM process

% OUTPUTS im_final = original image that requires smoothing,

94

% denoising, despecklye, etc

%(optional) dt = same dt as above (kept here for consistency

% with pm_explicit_dt.m

%(optional) n = final number of iterations run to reach tol

% or if tol was not reached, n = nsteps

%(optional) iter_err = relative error of last two images at final

% iteration = norm(im_prev-im_pad)/norm(im_prev)

%

verbose = 'none';

if length(varargin) >= 1

 verbose = varargin{1};

end

% DO NOT HAVE RESTRICTION ON DELTA-T

% Convert image to double

im_orig = im2double(im_orig);

% Get dimensions of the image

[Iorig_max Jorig_max] = size(im_orig);

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(1), imshow(im_orig), title('Original')

% figure, subplot 231, imshow(im_orig), title('Original')

end

% Create mesh of original image space and create mesh based on dx,dy

steps

[im_origX,im_origY] = meshgrid(1:Iorig_max,1:Jorig_max);

[im_compX,im_compY] = meshgrid(1:dx:Iorig_max,1:dy:Jorig_max);

% Use interpolation to create the intensities of the computational grid

im_comp =

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'linear');

% figure,mesh(im_origX,im_origY,im_orig)

% hold on

% mesh(im_compX,im_compY,im_comp+50)

% hold off

[Imax,Jmax] = size(im_comp);

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(2), imshow(im_comp), title('Comput. Grid')

% subplot 232, imshow(im_comp), title('Comput. Grid')

end

95

im_pad = zeros(Imax+2,Jmax+2);

im_pad(2:Imax+1,2:Jmax+1) = im_comp;

im_pad(1,2:Jmax+1) = im_pad(3,2:Jmax+1);

im_pad(Imax+2,2:Jmax+1) = im_pad(Imax,2:Jmax+1);

im_pad(2:Imax+1,1) = im_pad(2:Imax+1,3);

im_pad(2:Imax+1,Jmax+2) = im_pad(2:Imax+1,Jmax);

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(3), imshow(im_pad), title('Padded CompGrid')

 % subplot 233, imshow(im_pad), title('Padded CompGrid')

end

% Do we need im_pad anymore? can we simply use im_comp at this point

% Solve for new intensity by solving x = A\b

for n=1:nsteps

 % Find c at each point, in order to find c at each point we need to

 % calculate the gradient of the intensities (of the padded image)

 gradI_x = zeros(size(im_pad));

 gradI_y = zeros(size(im_pad));

 for i=2:Imax+1

 for j=2:Jmax+1

 gradI_x(i,j) = (im_pad(i+1,j)-im_pad(i-1,j))/(2*dx);

 gradI_y(i,j) = (im_pad(i,j+1)-im_pad(i,j-1))/(2*dy);

 end

 end

 % Calculate the 2-norm of the gradient of the intensities

 nrm_gradI = sqrt(gradI_x.^2 + gradI_y.^2);

 % Determine and evaluate the g function

 switch option_g

 case 1

 gfun = exp(-(nrm_gradI/kval).^2);

 case 2

 gfun = 1./(1+(nrm_gradI/kval).^2);

 otherwise

 gfun = ones(size(nrm_gradI)); % Gaussian Kernel

 end

 cval = gfun; % Is this step necessary???

 if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(4), imshow(cval), title('C Values')

 % subplot 234, imshow(cval), title('C Values')

 end

 tic

96

 % Generate IJxIJ matrix to solve implicit system

 A = pm_implicit_matrix(Imax,Jmax,dt,dx,dy,cval);

 toc

 % CHECK for no change between previous and current timesteps (<

tol)

 im_prev = im_pad;

 %toc

 im_bvec = reshape(im_pad(2:Imax+1,2:Jmax+1),Imax*Jmax,1);

 %toc

 im_xvec = A \ im_bvec;

 %toc

 im_pad(2:Imax+1,2:Jmax+1) = reshape(im_xvec,Imax,Jmax);

 toc

 iter_err = norm(im_prev - im_pad)/norm(im_prev);

 if iter_err < tol && n > 2

 break

 end

end

clear A;

im_final = im_pad(2:Imax+1,2:Jmax+1);

results=sprintf('Total Iterations = %3d (dt = %3.1d), Iteration Error =

%6.4d (< tol = %5.3d)',...

 n,dt,iter_err,tol);

disp(results);

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')

 % In verbose mode, create figure of different images created

 figure(5), imshow(im_final), title('Final PM')

% subplot 235, imshow(im_final), title('Final PM')

end

varargout{1} = dt;

varargout{2} = n;

varargout{3} = iter_err;

Figure 58: MATLAB Function – pm_implicit_dt.m – Implementation of Implicit PM Numerical Scheme

97

APPENDIX C – MATLAB SCRIPT TO RUN EXPERIMENTS WITH 1000

ITERATIONS

% Script: MASTER_RUN_PERONA_MALIK_1000_2.m

% Master script to run various

clear all, close all, diary off;

%%

profile on

diary MASTER_RUN_PERONA_MALIK_Run_1000.txt

format longeng

%%

nsteps = 1000;

tol = 1e-9;

im_cam = imread('cameraman.tif');

subX = 30:130;

subY = 80:180;

im_orig = im_cam(subX,subY);

mypmresults_sub.im_orig = im_orig;

figure, imshow(im_orig)

im_cam_dbl = im2double(im_cam);

noise_factor = 1/5;

noise_floor = rand(size(im_cam_dbl))*noise_factor;

im_cam_noise = im_cam_dbl + noise_floor;

im_cam_gaussian = imnoise(im_cam,'gaussian');

im_cam_speckle = imnoise(im_cam,'speckle');

%% Run ORIGINAL IMAGE

fignum = 500;

PM_Explicit_Run

exp_results{1} = errvals;

clear im_noise

fignum = 550;

98

PM_Implicit_Run

imp_results{1} = errvals;

% Random Additive Noise directly to chip

im_noise = im_cam_noise(subX,subY);

mypmresults_sub.im_addnoise = im_noise;

fignum = 600;

PM_Explicit_Run

figure(gcf),title('PM Explicit: loglog(error) with RANDOM NOISE (CHIP-

ADD)')

exp_results{2} = errvals;

fignum = 650;

PM_Implicit_Run

figure(gcf),title('PM Implicit: loglog(error) with RANDOM NOISE (CHIP-

ADD)')

imp_results{2} = errvals;

%% Gaussian noise

im_noise = im_cam_gaussian(subX,subY);

mypmresults_sub.im_gaussian = im_noise;

fignum = 700;

PM_Explicit_Run

figure(gcf),title('PM Explicit: loglog(error) with GAUSSIAN NOISE')

exp_results{3} = errvals;

fignum = 750;

PM_Implicit_Run

figure(gcf),title('PM Implicit: loglog(error) with GAUSSIAN NOISE')

imp_results{3} = errvals;

%% Speckle (Multiplicative Noise)

im_noise = im_cam_speckle(subX,subY);

mypmresults_sub.im_speckle = im_noise;

fignum = 800;

PM_Explicit_Run

figure(gcf),title('PM Explicit: loglog(error) with SPECKLE NOISE')

exp_results{4} = errvals;

fignum = 850;

PM_Implicit_Run

figure(gcf),title('PM Explicit: loglog(error) with SPECKLE NOISE')

imp_results{4} = errvals;

mypmresults_sub.explicit = exp_results;

mypmresults_sub.implicit = imp_results;

99

diary off

profile viewer

Figure 59: MATLAB Script – MASTER_RUN_PERONA_MALIK_1000.m

diary PM_Explicit_Run_1000.txt

disp('===

=======');

disp(' ');

disp('Running PM_Explicit_Converge.m Script to view decline in error

rates');

% Check that the im_noise image exists, if not, use std cameraman image

if exist('im_orig') == 0

 im_orig = imread('cameraman.tif');

 im_orig = im_orig(1:174,1:174);

 disp('No original image was identified. Using cameraman.tif');

else

 disp('An original image in memory was identified. Using im_orig');

end

if exist('im_noise') == 0

 im_noise = im_orig;

 disp('No noisy image was identified. Using im_orig directly');

 myloglogtitle = sprintf('PM Explicit: loglog(error) with NO NOISE -

original');

 %fignum = 100;

else

 disp('A noisy image in memory was identified. Using im_noise');

 myloglogtitle = sprintf('PM Explicit: loglog(error) with NOISE

added');

 %fignum = 200;

end

% Set parameters for Perona Malik Explicit Scheme

if exist('nsteps') == 0

 nsteps = 10;

end

if exist('tol') == 0

 tol = 1e-8;

end

100

kval = 1/7;

option = 1;

dx = 1;

dy = 1;

disp(sprintf('Parameters:\n - K = %4.2d\n - Max N Steps = %4d\n -

Option %1d (choice of g)\n - Stepsizes: dx = %d, dy = %d',...

 kval,nsteps,option,dx,dy));

disp(sprintf(' - Tolerance = %d (between successive iterations)',tol));

disp('-----');

dvals = 0:6;

num_dt = length(dvals);

num_plots = num_dt+2;

figrows = ceil(sqrt(num_plots));

figcols = ceil(sqrt(num_plots));

if exist('fignum') == 0

 fignum = 101

end

figure(fignum), subplot(figrows,figcols,1), imshow(im_orig),

title('Original')

figure(fignum), subplot(figrows,figcols,2), imshow(im_noise),

title('Noise')

i = 0;

for d = dvals

 i = i+1;

 dt = 10^(-d);

 tstart = tic;

 [im_final exp_dt exp_n(i) exp_ierr(i)] =

pm_explicit(im_noise,kval,dx,dy,dt,nsteps,tol,option);

 %[im_final exp_dt exp_n(i) exp_ierr(i)] =

pm_explicit_dt(im_noise,kval,dx,dy,dt,nsteps,option,tol,'v');

 % Collect the dt values in a single array

 dtvals(i) = exp_dt;

 % Downsample final image to return to original image size

 im_down = downsample(downsample(im_final',ceil(1/dx))',ceil(1/dy));

 % Calculate error

 exp_err(i) = norm(im2double(im_orig)-

im_down)/norm(im2double(im_orig));

 exptime(i) = toc(tstart);

 figure(fignum), subplot(figrows,figcols,i+2),imshow(im_down),...

101

 title(sprintf('dt=%3.1d (%3d iter) \n Error =

%7.5d',exp_dt,exp_n(i),exp_err(i)));

end

format shorteng

disp('errvals = [dt-values #Iterations FinalError IterError

Time(sec)]');

errvals = [dtvals' exp_n' exp_err' exp_ierr' exptime']

figure(fignum+1), loglog(dtvals,exp_err), title(myloglogtitle),...

 xlabel('Timestep values'),ylabel('norm(orig-final)/norm(orig)')

diary off

Figure 60: MATLAB Script - PM_Explicit_Run.m

diary PM_Implicit_Run_1000.txt

disp('===

=======');

disp(' ');

disp('Running PM_Implicit_Converge.m Script to view decline in error

rates');

% Check that the im_noise image exists, if not, use std cameraman image

if exist('im_orig') == 0

 im_orig = imread('cameraman.tif');

 im_orig = im_orig(1:174,1:174);

 disp('No original image was identified. Using cameraman.tif');

else

 disp('An original image in memory was identified. Using im_orig');

end

if exist('im_noise') == 0

 im_noise = im_orig;

 disp('No noisy image was identified. Using im_orig directly');

 myloglogtitle = sprintf('PM Implicit: loglog(error) with NO NOISE -

original');

else

 disp('A noisy image in memory was identified. Using im_noise');

 myloglogtitle = sprintf('PM Implicit: loglog(error) with NOISE');

end

% Set parameters for Perona Malik Implicit Scheme

if exist('nsteps') == 0

 nsteps = 10;

102

end

if exist('tol') == 0

 tol = 1e-8;

end

kval = 1/7;

option = 1;

dx = 1;

dy = 1;

disp(sprintf('Parameters:\n - K = %4.2d\n - Max N Steps = %4d\n -

Option %1d (choice of g)\n - Stepsizes: dx = %d, dy = %d',...

 kval,nsteps,option,dx,dy));

disp(sprintf(' - Tolerance = %d (between successive iterations)',tol));

disp('-----');

dvals = 0:6;

num_dt = length(dvals);

num_plots = num_dt+2;

figrows = ceil(sqrt(num_plots));

figcols = ceil(sqrt(num_plots));

if exist('fignum') == 0

 fignum = 99

end

figure(fignum), subplot(figrows,figcols,1), imshow(im_orig),

title('Original')

tic

figure(fignum), subplot(figrows,figcols,2), imshow(im_noise),

title('Noise')

toc

i = 0;

for d = dvals

 i = i+1;

 dt = 10^(-d);

 tstart = tic;

 [im_final imp_dt imp_n(i) imp_ierr(i)] =

pm_implicit(im_noise,kval,dx,dy,dt,nsteps,tol,option);

 %[im_final imp_dt imp_n(i) imp_ierr(i)] =

pm_implicit_dt(im_noise,kval,dx,dy,dt,nsteps,option,tol,'v');

 % Collect the dt values in a single array

 dtvals(i) = imp_dt;

 % Downsample final image to return to original image size

 im_down = downsample(downsample(im_final',ceil(1/dx))',ceil(1/dy));

 % Calculate error

 imp_err(i) = norm(im2double(im_orig)-

im_down)/norm(im2double(im_orig));

103

 imptime(i) = toc(tstart);

 figure(fignum), subplot(figrows,figcols,i+2),imshow(im_down),...

 title(sprintf('dt=%3.1d (%3d iter) \n Error =

%7.5d',imp_dt,imp_n(i),imp_err(i)));

end

format shorteng

disp('errvals = [dt-values #Iterations FinalError IterError

Time(sec)]');

errvals = [dtvals' imp_n' imp_err' imp_ierr' imptime']

figure(fignum+1), loglog(dtvals,imp_err), title(myloglogtitle),...

 xlabel('Timestep values'),ylabel('norm(orig-final)/norm(orig)')

diary off

Figure 61: MATLAB Script - PM_Implicit_Run.m

104

REFERENCES

[1] P. &. M. J. Perona, "Scale-Space and Edge Detection Using Anisotropic Diffusion," IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 7, pp. 629-639,

1990.

[2] Y.-L. e. a. You, "Behavioral analysis of anisotropic diffusion in image processing," IEEE

Transactions on Image Processing, vol. 5, p. 1539–1553, 1996.

[3] M. R. Hajiaboli, "An Anisotropic Fourth-Order Partial Differential Equation for Noise

Removal," Concordia University, Montreal, Canada, 2009.

[4] R. Van Den Boomgaard, "Algorithms for Non-Linear Diffusion: Matlab in a Literate

Programming Style.," Intelligent Sensory Information Systems, University of Amsterdam.,

The Netherlands.

[5] USC GEOL557: Modeling Earth Systems, "Two-dimensional heat equation with FD,"

[Online]. Available:

http://geodynamics.usc.edu/~becker/teaching/557/problem_sets/problem_set_fd_2dheat.pdf.

[Accessed April 2013].

[6] "Chapter 7: The Diffusion Equation," [Online]. Available: http://pauli.uni-

muenster.de/tp/fileadmin/lehre/NumMethoden/WS0910/ScriptPDE/Heat.pdf. [Accessed

April 2013].

[7] "A METHOD FOR SAR SPECKLE REDUCTION BASED ON PARTIAL

DIFFERENTIAL EQUATION," The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, vol. XXXVII, no. Part B7, 2008.

105

CURRICULUM VITAE

Armelle S. Franklin graduated from Robinson High School, Fairfax, Virginia, in 2003.

She received her Bachelor of Science in Mathematics from Temple University in

2007. In 2008, as an employee of Lockheed Martin Corporation, Armelle was

selected to participate in the Engineering Leadership Development Program and is

now a Senior Systems Engineer. Armelle will graduate with her Master of Science in

Mathematics from George Mason University in Spring 2013.

