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ABSTRACT 

MODELING, ANALYSIS, AND IMPLEMENTATION OF FINITE DIFFERENCE 

SCHEMES FOR NONLINEAR DIFFUSION WITH APPLICATIONS TO IMAGE 

PROCESSING 

Armelle S. Franklin, M.S. 

George Mason University, 2013 

Thesis Director: Dr. Padmanabhan Seshaiyer 

 

This thesis proposes to model, analyze and implement a nonlinear diffusion model 

problem for reduction in noise and speckle in image processing applications.  

Specifically, the Perona-Malik model equation that is widely studied in the image 

processing community is implemented via explicit and implicit finite difference 

algorithms.  The solution methodology converts discrete image data onto a finer 

non-uniform grid space via interpolation techniques and applies the proposed 

numerical algorithms to reduce noise.  These numerical algorithms are investigated 

analytically and computationally for appropriate choices of nonlinear diffusion 

coefficient functions.  We derived conditions for stability and convergence of the 

proposed numerical algorithms.  Numerical experiments are presented on 

benchmark problems that show the robustness and reliability of the proposed 

numerical schemes. 
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CHAPTER I – INTRODUCTION 

Algorithmic enhancements to imagery infected with noise or speckle are 

accomplished usually with application of a filter sometimes with a loss of accuracy.  

This loss of accuracy is synonymous to loss of resolution due to an attempt to 

smooth the image.  The convolution of the infected imagery with a filter yields a 

lower resolution image but with less noise or speckle.   A very difficult obstacle to 

overcome is the blurring of sharp edges in the scene content, a common artifact of 

linear filtering.   

It is well-known that solutions to these denoised images satisfy nonlinear 

diffusion partial differential equations.  These equations describe relationship 

between the Intensity values with respect to time and space.  Over the past two 

decades there have been attempts to study and enhance denoised images through 

various partial differential equations. 

The first of these PDEs was introduced by Perona & Malik in 1987 which was 

a nonlinear second order PDE.  Namely, this model incorporated anisotropic 

diffusion filters into the PDEs to generate smoother images while preserving edge 

information (i.e. location).  This nonlinear filter has been significant in processing, 

enhancement and scale-space analysis of imagery.   The idea of scale-space is 

presented to correlate each solution of the PDE at each time step, t, to the next 

“smoother” image.  They also examined the benefits of nonlinear filtering with a 
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second order PDE for not only smoothing, but also edge detection in an image in 

scale-space.  The Perona-Malik equation is also known as anisotropic diffusion (in 

image processing or computer vision), where the diffusion coefficient is taken to be 

a function of the gradient of the intensity in the image.  The anisotropic diffusion 

equation that is the basis of the Perona-Malik equation follows:   

 

�� 	= 	 ���� 	= div�c�x, y, t�∇I� = c�x, y, t�∆I	 +	∇c	 ∙ 	∇I  (1) 

 

���, 
, �� is the diffusion coefficient at a given (x, y) and layer t.  The ∇ denotes 

the gradient and ∆ denotes the Laplacian operator (∆	= 	∇�).  The unique feature of 

the Perona and Malik deduced that the optimal choice of c in order to preserve edge 

location accuracy is for ���, 
, �� to be a function of the gradient of the intensity, I at 

the given point: 

 

���, 
, �� = ��‖∇���, 
, ��‖�      (2) 

 

Reweriting the divergence operator gives: 

 

�� 	= 	 ���� 	= ∇ ∙ �g�|∇I|�∇I�        (3) 
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Perona and Malik make careful selection of the ��‖∇���, 
, ��‖� function 

specifically to be bounded between 0 and 1.  A common choice for this g function is 

 

��ƺ� = 	 #$% ƺ&'(         (4) 

 

Another traditional choice for the g function is 

 

��ƺ� = )
)*% ƺ&'(         (5) 

 

Note that the constant K is called a “contrast parameter”. 

Perona and Malik’s research led to several updated models over the last few 

years.  In 2000, You and Kaveh [2] introduced a fourth order PDE that would further 

enhance the smoothing with even less blur at the edge locations, but in this 

anisotropic diffusion model, the diffusion coefficient is taken to be a function of the 

Laplacian of the intensity in the image.  In 2009, Hajiaboli [3] introduced a 

modification to the You-Kaveh anisotropic diffusion model, by maintaining the same 

function but returning to the Perona-Malik diffusion coefficient as a function of the 

gradient of the intensities in the image.  The development of these equations have 

helped introduce a variety of nonlinear diffusion denoising models including fourth 

order PDEs, spatially regularized models (See [1], [2], [3] and the references 
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therein).  Most of these models have either been experimentally validated or 

analytically studied.  However, there is still a great need to develop numerically 

stable approximations to such models which is the focus of this thesis.  

In this paper, explicit and implicit finite difference schemes are examined 

analytically and numerically for the Perona and Malik second order PDE.  In Chapter 

2 of this thesis we develop the finite differences of the Perona-Malik equation.  In 

Chapter 3 we will introduce the explicit method and show that under a stability 

condition on the step size in time, the scheme is stable.  We will also develop the 

implicit method in Chapter 3 which will be shown to be unconditionally stable.  

Chapter 4 introduces the reader to literate programming to summarize the MATLAB 

implementation of the numerical difference schemes.  Chapter 5 presents the 

validation of the methods presented for a benchmark cameraman problem.  Finally, 

Chapter 6 presents conclusion and future research. 
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CHAPTER II – NUMERICAL METHODS 

In this chapter we will develop the numerical methods for the associated 

equation (1) presented in Chapter 1 with nonlinear diffusion.  These equations are 

implemented over finite grid spaces using the finite difference method for numerical 

approximation to the partial differential equation.  Finite differences are a simple 

yet very powerful tool to approximate continuous derivatives on a discrete grid 

space.  Hence, each equation will be discretized using a nearest neighbor approach.   

 
Figure 1: Numerical Discretization Grid 

 

Consider the computational grid shown in figure (1).  The intensity (or 

brightness) values, Ii,j are associated with the nodes of the lattice, North, South, East 

and West.  The diffusion coefficients, ci,j, are represented midway between lattice 
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nodes, as shown in figure (1).  It may be noted that in by Perona-Malik [1], You-

Kaveh [2] and Hajiaboli [3] and related papers, the grid spacing is always 

considered to be uniform.  In this work we will extend this to non-uniform grid 

spacing. 

2.1 Explicit Perona-Malik Second Order Difference 

   

Consider the original nonlinear diffusion Perona-Malik equation (3).  As 

previously mentioned, the diffusion coefficient is defined as a function, g, of the 

gradient of the intensities of the image, specifically, the norm of the gradient of I: 

 

c�x, y, t� ∶= 	g�‖∇I�x, y, t�‖� ≈ c�∙�       (6) 

 

Substituting the shorthand of the diffusion coefficient function (6) back into 

equation (3), we get: 

 

�� 	= 	 ���� 	= ∇ ∙ �c�∙�∇I�        (7) 

 

The intensity, I(x,y,t), is a 2D function of space and thus the gradient will be with 

respect to x and y.  Equation (7) then becomes: 

 

�� 	= ��	, �
� ∙ -��∙��	�, ��∙��
�.     (8) 
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This simplifies to: 

�� 	= �	���∙��	�� +	�
-��∙��
�.      (9) 

 

The resulting Perona-Malik equation in component form becomes: 

 

���� 	= ��	 %��∙� ���	' + ��
 %��∙� ���
'      (10) 

 

Next, we examine the numerical approximation to each PDE term in equation 

(10).  The term on the left can be approximated using a forward difference in time as 

follows: 

 

�� = ���� = �/,0123$�/,01∆�         (11) 

 

Consider the forward difference for the first term of RHS of (10), in the x-direction: 

��	 4%��∙� ���	'56,7 = 8�∙�49:9;5<23,=$8�∙�49:9;5<,=		∆>       (12) 

 

Backward differences are used to calculate the partial derivative of I wrt. X: 

 

4?I?x
5

i*1,j = Ii21,j$Ii,j∆x
  and   4?I?x

5
i,j = Ii,j$Ii@1,j∆x

      (13) 
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Substitute the above backward difference approximations of  
?A?> : 

 

��	 %��∙� ���	' = 8�∙�B:<23,=@:<,=∆; C$8�∙�B:<,=@:<@3,=∆; C
∆>        (14) 

 

We approximate the diffusion coefficient, c, as an average at of the halfway between 

two nodes, denoted as i+1/2 for c values between i+1 and i, and i-1/2 for c values 

between i and i-1: 

 

��	 %��∙� ���	' = 8<23(,=B:<23,=@:<,=∆; C$8<@3(,=B:<,=@:<@3,=∆; C
∆>       (15) 

 

Multiplying out the terms results in  

 

��	 %��∙� ���	' = 8<23(,=A<23,=	$	8<23(,=A<,=	$D	8<@3(,=A<,=	$	8<@3(,=A<@3,=E
∆>(     (16) 

 

Rewriting (16) with c terms as coefficients yields: 

 

��	 %F�∙����	 ' = 8<23(,=A<23,=	$	G8<23(,=*	8<@3(,=HA<,=*	8<@3(,=A<@3,=
∆>(      (17) 
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Similarly, consider the finite differences in the y direction: 

 

��
 %F�∙����
 ' = 8<,=23(A<,=23	$	G8<,=23(*	8<,=@3(HA<,=	*	8<,=@3(A<,=@3
∆I(     (18) 

 

Substitute (11), (17), and (18) into equation (10) to get a model for the 

numerical approximation of the Perona Malik equation.  Note that the diffusion 

coefficient, c�∙�, will always be evaluated at the current timestep, n: 

 

�/,0123$�/,01∆� 		=
						8<23(,=J A<23,=$	G8<23(,=J *	8<@3(,=J HA<,=*	8<@3(,=J A<@3,=			

∆>( 		+
																																					8<,=23(J A<,=23$	G8<,=23(J *	8<,=@3(J HA<,=*	8<,=@3(J A<,=@3

∆I(     (19) 

 

For a numerical approximation to equation (6) of the diffusion coefficient, 

c�∙� = g�‖∇I�x, y, t�‖�, using the Euclidean (2-)norm, we get: 

 

‖∇I�x, y, t�‖ = K-I>, II.K� = L-I>, II. ∙ -I>, II. = LI>� + II�   (20) 
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Substitute equation (20) into equation (6): 

 

c�∙� = gGLIx
2 + Iy

2H        (21) 

 

Evaluate c�∙� at the (i, j) pixel: 

c6,7 = Mg�‖∇I‖�N6,7 = DgGLI>� + II�HE6,7     (22) 

 

Consider the central differences of the intensity, I, in the x and y directions, 

using a full step to the next and previous points, which yields denominators of  

2∆��= 	∆� + ∆�� and 2∆
�= 	∆
 + ∆
�, respectively: 

 

I> = ?A?> = A<23,=	$	A<@3,=�∆>    and  	II = ?A?I = A<,=23	$	A<,=@3�∆I     (23) 

 

Substituting the numerical approximations of Ix and Iy in (23) into (22) yields: 

 

ci,j = DgGL%Ii21,j	$	Ii@1,j
2∆x

'2 + %Ii,j21	$	Ii,j@1

2∆y
'2HE

i,j     (24) 
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An average is taken to compute the diffusion coefficients at the halfway points: 

 

c6*3(,7 = F/,0*F/23,0�   

c6$3(,7 = F/@3,0*F/,0�   

c6,7*3( = F/,0*F/,023�     

c6,7$3( = F/,0@3*F/,0�          (25) 

 

Let n be the superscript that denotes the timestep for the Ii,j terms in the implicit 

numerical scheme: 

 

�/,0123$�/,01∆� 		= 						 8<23(,=J A<23,=J $	G8<23(,=J *	8<@3(,=J HA<,=J *	8<@3(,=J A<@3,=J 		
∆>( 								+

																																						8<,=23(J A<,=23J $	G8<,=23(J *	8<,=@3(J HA<,=J *	8<,=@3(J A<,=@3J
∆I(      (26) 

Rewrite (26), given P) = ∆�∆	( and P� = ∆�∆
(: 

�Q,RS*) =	P) Bc6*3(,7T I6*),7T + c6$3(,7T I6$),7T 	C + P� Bc6,7*3(
T I6,7*)T +	c6,7$3(

T I6,7$)T C +
G1 − P) Bc6*3(,7T +	c6$3(,7T C − P� Bc6,7*3(

T +	c6,7$3(
T CH �Q,RS     (27) 
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2.2 Implicit Perona-Malik Second Order Difference: 
 

Let (n+1) be the superscript that denotes the timestep of the Ii,j terms in (19): 

�/,0123$�/,01∆� 		=
						8<23(,=J A<23,=J23 $	G8<23(,=J *	8<@3(,=J HA<,=J23*	8<@3(,=J A<@3,=J23 		

∆>( 								+
																																											8<,=23(J A<,=23J23 $	G8<,=23(J *	8<,=@3(J HA<,=J23*	8<,=@3(J A<,=@3J23

∆I(     (28) 

 

Letting P) = ∆�∆	( and P� = ∆�∆
(: 

 

�Q,RS*) G1 + P) Bc6*3(,7T +	c6$3(,7T C + P� Bc6,7*3(
T +	c6,7$3(

T CH −
	P) Bc6*3(,7T I6*),7T*) + c6$3(,7T I6$),7T*) 	C − P� Bc6,7*3(

T I6,7*)T*) +	c6,7$3(
T I6,7$)T*) C = �Q,RS   (29) 

 

2.3 Initial and Boundary Conditions 
 

The initial condition is chosen to be the original image: 

�Q,RW = �W-�Q , 
R. = �-�Q , 
R; � = 0. = Z[\�\]^_	�`^�#     (30) 
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Neumann Boundary Conditions, wrt x and y, are used to define the values of 

the intensity and diffusion coefficient c outside the boundaries to be within the same 

as within the boundary.  The Neumann BC imply �	 = 0 and �
 = 0, i.e. at the 

boundaries we get:  

 

∂>I = ?A?> = A<23,=$A<@3,=�∆> = 0  and ∂II = ?A?I = A<,=23$A<,=@3�∆I = 0    (31) 

 

Let i = 0, 1, 2, …, I and j = 0, 1, 2, …, J denote the step values in the x and y 

directions, respectively.  At the lower boundary of x (i.e. i = 0): 

 

4?A?>5W,7 = A3,=$A@3,=�∆> = 0 →	 �$),R =		 �),R         (32) 

 

At the upper boundary for x (i.e. i = I): 

 

4?A?>5A,7 = A:23,=$A:@3,=�∆> = 0 →	 ��*),R =		 ��$),R       (33) 

 

Similarly, at the lower boundary of y (i.e. j = 0): 

 

4?A?I56,W = A<,3$A<,@3�∆I = 0 →	 �Q,$) =		 �Q,)       (34) 
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At the upper boundary for y (i.e. j = J): 

 

4?A?I56,c = A<,d23$A<,d@3�∆I = 0 →	 �Q,e*) =		 �Q,e$)         (35) 

 

These boundary conditions affect the diffusion coefficients in a similar (25), 

the boundary conditions are as followed: 

 

4?8?>5W,7 = 83(,=$8@3(,=∆> = 0 ↔ c$3(,7 = c3(,7  
4?8?>5A,7 = 8:23(,=$8:@3(,=∆> = 0 ↔ cA*3(,7 = cA$3(,7  
4?8?I56,W = 8<,3($8<,@3(∆> = 0 ↔ c6,$3( = c6,3(  

4?8?I56,c = 8<,d23($8<,d@3(∆> = 0 ↔ c6,c*3( = c6,c$3(      (36) 

2.3 Shorthand Notation and Other Numerical Methods 
 

New terminology based on the idea of a central difference operator, δg is 

introduced to represent the finite differences in shorthand notation.  The shorthand 

notation for the finites difference of the Perona-Malik equation in the x-direction: 

δx
2�cI�i,j = c

i21
2
,jn Ii21,j$	Gc

i21
2
,jn *	c

i@1
2
,jn HIi,j *	c

i@1
2
,jn Ii@1,j		

∆x2      (37) 
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and in the y-direction,  

 

δy
2�cI�i,j = c

i,j21
2

n Ii,j21$	Gc
i,j21

2

n *	c
i,j@1

2

n HIi,j *	c
i,j@1

2

n Ii,j@1

∆y2      (38) 

 

With this notation, equations (27) and (29), the explicit and implicit numerical 

schemes for the Perona Malik Equation, become: 

 

�/,0123$�/,01∆� 		= 	 δ>��cI�6,7T 	+ 	δI��cI�6,7T       (39) 

�/,0123$�/,01∆� 		= 	 δ>��cI�6,7T*) 	+ 	δI��cI�6,7T*)      (40) 

 

The shorthand notation can also be used to denote other numerical schemes 

which are not investigated in this paper, but may offer promising results if 

investigated in the future.  The Crank-Nicolson numerical scheme of the Perona-

Malik equation is essentially an average of the explicit and implicit schemes: 

 

 �/,0123$�/,01∆� 		= 	 )� %δ>��c� +	δI��c�' -I6,7T*) + I6,7T .       (41) 

Note that  ijk�l�mn,o = ijk�lm�n,o	. 
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The Alternating Direction Implicit (ADI) Method, commonly used in 

petroleum manufacturing, allows the implementation of the numerical scheme to be 

computed in half-time-steps, and solving in only one direction, x or y, at a time.  

When in the x-direction, solve for the �Q,RS*3( and when in the y direction, solve for �Q,RS*3( 

using the solution from the x-direction.  So the ADI numerical scheme of the Perona-

Malik equation can be represented as: 

 

�/,0123($�/,01∆p( 					= 	 δ>��cI�6,7T*3( 	+ 	δI��cI�6,7T        

�/,0123$�/,0123(
∆p( 		= 	δ>��cI�6,7T*3( 	+ 	δI��cI�6,7T*)     (42) 
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CHAPTER III – STABILITY AND CONVERGENCE 

In this chapter we will discuss the stability of the explicit and implicit finite 

difference schemes to approximate the Perona-Malik equation numerically.  The 

discussion is presented in one dimension (only with respect to x), but can be 

directly extended to two-dimensions yielding similar results. 

3.1 Stability Analysis of the Explicit Numerical Scheme 
 

We start the discussion of the explicit numerical scheme for the Perona-Malik 

function by rewriting the Perona-Malik anisotropic diffusion equation in 1-D: 

 

�� 		= �c�I>�I>�	 ↔	 ���� 	= ��	 %� %���	' ���	'		      (43) 

 

The explicit scheme derived in Section 2.1 (27) can be rewritten as followed: 

 

�/123$�/1∆� 		= 						 8<23(J G:<23J @	:<J∆; H$	8<@3(J B:<J@	:<@3J
∆; C		

∆>       (44) 

 

The above finite difference has an initial condition of  

�QW =	 �W��Q�           (45) 
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Define a dot product with respect to ∆x of two N-dimensional vectors A and B to be 

 

�q, r�∆	 = ∆	� qWrW + ∑ ∆�qQrQt$)Qu) + ∆	� qtrt	     (46) 

 

From this definition of the dot product, we directly define a norm with respect to ∆�, 

conventionally as follows: 

 

   ‖A‖∆> = �q, q�∆>3(         (47)  

 

We now prove the following theorem: 

Theorem 3.1: Let �QS be the numerical solution to equation (44). If ∆�	 ≤ �∆	�(�	Fxyz where 

∆t and ∆x are the respective temporal and spatial step sizes and �{|	 = `^�Q,S �QS  we 

then have: 

	‖�S*)‖∆	 ≤ ‖�S‖∆	  

 

To prove the theorem, we need the following lemmas: 

 

Lemma 3.1.1   %�123$�1∆� , �S'∆	 + ∑ ∆�	�Q$3(
S %�/1$	�/@31

∆	 '� = 0tQu)    
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Proof of Lemma 3.1.1.  Multiply both sides of equation (44) by �Q,RS : 

 

%�/123$�/1∆� '	�QS =						 }8<23(J G:<23J @	:<J∆; H$	8<@3(J B:<J@	:<@3J
∆; C		

∆> ~ �QS    (48) 

 

for i=0,1,…N.  These yield the following system: 

 

								%��123$��1∆� ' �WS =	 }83(JB:3J@	:�J∆; C$	8@3(J B:�J@	:@3J∆; C		
∆> ~ �WS											  

								%�3123$�31∆� ' �)S =	 }8�(JB:(J@	:3J∆; C$	83(JB:3
J@	:�J∆; C		

∆> ~ �)S																  
																			⋮																								⋮																⋮																							⋮																															  
%��@3123$��@31

∆� ' �t$)S =	 }8�@3(J B:�J@	:�@3J∆; C$	8�@�(J B:�@3J @	:�@(J∆; C		
∆> ~ �t$)S    

								%��123$��1∆� ' �tS =	 }8�23(J B:�23J @	:�J∆; C$	8�@3(J B:�J@	:�@3J∆; C		
∆> ~ �tS     (49) 
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Using the definition of the dot product, the terms on the left of (47) can be 

combined to yield: 

 

∆	� %��123$��1∆� ' �WS + ∑ ∆� %�/123$�/1∆� '	�QSt$)Qu) + ∆	� %��123$��1∆� ' �tS =
																																																																																										%�123$�1∆� , �S'∆	 (50) 

 

In a similar fashion, adding the terms of RHS of (47) we get: 

 

12	Dc)�T GI)
T −	IWT∆x H −	c$)�T GIWT − 	I$)T∆x HE �WS 		

+ 	 D���S G��
S −	�)S∆� H −	�)�S G�)

S − 	�WS∆� HE �)S +	………
+ D�t$)�

S G�tS −	�t$)S∆� H −	�t$��
S G�t$)S − 	�t$�S∆� HE �t$)S

+ 12 D�t*)�
S G�t*)S −	�tS∆� H −	�t$)�

S G�tS − 	�t$)S∆� HE �tS 

           (51) 

Recall the boundary conditions from Section 2.3, but rewritten for the 1-D case wrt x 

only, i.e. i=0,1,…,N.  Note that in the 1D case we have BC that affect the first term (i.e. 

when i=0): 
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        c$3( = c3(    and    �$) =		 �)        (52) 

 

Substituting (52) into the first term of (51) yields: 

 

)� 	�c3(T %A3J$	A�J∆> ' −	c$3(
T %A�J$	A3J∆> '� �WS = c3(T %A3J$	A�J∆> ' �WS      (53) 

 

Also, note that in the 1D case we have BC that affect the last term (i.e. when i=N): 

 

c�*3( = c�$3(    and    ��*) =		 ��$)      (54) 

 

Again, substituting (54) into the last term of (51), yields: 

 

)� ��t$3(
S %��@31 $	��1∆	 ' −	�t$3(

S %��1$	��@31
∆	 '� �tS = −�t$3(

S %��1$	��@31
∆	 '   (55) 

 

Substituting (53) and (55) into (51), we get: 

 

%�123$�1∆� , �S'∆	 =  

−c3(T %A3J$	A�J∆> ' �WS  
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−	��(S %�(1$	�31∆	 ' �)S −	�3(S %�31$	��1∆	 ' �)S  

−	��(S %��1$	�(1∆	 ' ��S −	��(S %�(1$	�31∆	 ' �)S  

																			⋮																								⋮									  
−�t$�(

S %��@31 $	��@(1
∆	 ' �t$�S −	�t$�(

S %��@(1 $	��@�1
∆	 ' �t$�S   

 −�t$3(
S %��1$	��@31

∆	 ' �t$)S −	�t$�(
S %��@31 $	��@(1

∆	 ' �t$)S   

−�t$3(
S %��1$	��@31

∆	 ' �t$)S           (56) 

Collecting similar difference terms %�<1$	�<@31
∆> ', we get: 

%�123$�1∆� , �S'∆	 =  

−c3(T�I)T −	IWT� %A3J$	A�J∆> '  

−	��(S���S −	�)S� %�(1$	�31∆	 '  

−	��(S���S −	��S� %��1$	�(1∆	 '  

																			⋮																				  
−�t$�(

S ��t$)S −	�t$�S � %��@31 $	��@(1
∆	 '  

−�t$3(
S ��tS −	�t$)S � %��1$	��@31

∆	 '      (57) 
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It is obvious that a repeated pattern (series) is revealed above.  We multiply every 

term by 
∆�
∆�   and collect the terms to result in a summation on the RHS.  Thus 

equation (56) is consolidated to the following: 

 

%�123$�1∆� , �S'∆	 = −∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> ' %�/1$	�/@31
∆	 '�6u)     (58) 

 

Which proves the result: 

 

%�123$�1∆� , �S'∆	 + ∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> '� = 0�6u)        ⧠ 

 

Lemma 3.1.2:  %�123$�1∆� , �S'∆	 = − ∆�� ��123$�1∆� �∆	
� + K�123K∆;( $‖�1‖∆;(�∆�  

 

Proof.   Consider rewriting �S as an expression of itself, �S*), and ∆�: 

�S = ∆t %− )�' %�123$�1∆� ' + �123*�1�         (59) 

 

Substituting (60) into (58), we get: 

 

%�123$�1∆� , �S'∆	 = %�123$�1∆� , ∆t %− )�' %�123$�1∆� ' + �123*�1� '∆	    (60) 
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It is possible to move the scalar values outside dot product and use distribution: 

 

%�123$�1∆� , �S'∆	 = ∆t %− )�' %�123$�1∆� , �123$�1∆� '∆	 + %�123$�1∆� , �123*�1� '∆>  (61) 

 

The first term on the RHS of (62) is the norm, according to the norm definition (49).  

Again, scalar values can be extracted to the outside of the dot product in the second 

term above:  

   

%�123$�1∆� , �S'∆	 = − ∆�� ��123$�1∆� �∆	
� + )�∆� ��S*) − �S, �S*) + �S�∆	   (62) 

 

Rewrite the dot product in the last term above as: 

 

��S*) − �S, �S*) + �S�∆	 		= 	��S*), �S*)�∆	 + ��S*), �S�∆	 	−
																																																						��S, �S*)�∆	 − ��S, �S�∆	        (63) 

 

The interior terms of (64) cancel out.  Observe that the first and last terms 

are the square of the norms.  Then (64) becomes: 

 

%�123$�1∆� , �S'∆	 = − ∆�� ��123$�1∆� �∆	
� + K�123K∆;( $‖�1‖∆;(�∆�       ⧠ 
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Lemma 3.1.3  ���123$��1∆� �∆	
� ≤	 ��∆	�( 	�{|	 	∑ ∆�	�Q$3(

S %�/1$	�/@31
∆	 '�tQ�)  

 

Proof.   Recall the explicit Perona-Malik numerical scheme for equation (44).  At i=0, 

given the boundary conditions �$3( = �3( and �$) = �). Equation (44) becomes: 

 

��123$��1∆� 		= 	 83(JB:3J@	:�J∆; C$	8@3(J B:�J@	:@3J∆; C		
∆> = �∆	 �3(S %�31$	��1∆	 '      (64) 

 

When i=N and given the boundary conditions that �t*3( = �t$3( and �t*) = �t$) 

 

��123$��1∆� 		= 						 8�@3(J B:�23J @	:�J∆; C$	8�@3(J B:�J@	:�@3J∆; C		
∆> = − �∆	 �t$3(

S %��1$	��@31
∆	 '   (65) 

 

The square of the defined ∆x-norm is equal to the dot product of the vector 

with itself.  So in the case of the finite difference wrt t, we have 

 

���123$��1∆� �∆	
� = %��123$��1∆� , ��123$��1∆� '∆	       (66) 
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Incorporating the first and last and interior terms we can define the square of the 

∆x-norm of the finite difference wrt. t as followed 

 

���123$��1∆� �∆	
� = ∆	� %��123$��1∆� '� + ∆� %�3123$�31∆� '� +⋯+ ∆� %��@3123$��@31

∆� '� +
																												∆	� %��123$��1∆� '�        (67) 

 

Substitute the RHS of equations (68) and (69) that include BC and the explicit 

scheme RHS for each interior point (i=1,…,N-1) into the above equation (71): 



27 

 

��tS*) − �tS∆� �∆	
�

=	∆�2 � 2∆� �)�S G�)
S −	�WS∆� H�� + ∆�

�
����S B��S −	�)S∆� C −	�)�S B�)S −	�WS∆� C		

∆� �
�

�

+	∆�
�
����S B��

S −	��S∆� C −	���S B��S −	�)S∆� C		
∆� �

�
�
+				⋯					

+ ∆�
�
��t$��

S B�t$)S −	�t$�S∆� C −	�t$��
S B�t$�S −	�t$�S∆� C		

∆� �
�

�

+ ∆�
�
��t$)�

S B�tS −	�t$)S∆� C −	�t$��
S B�t$)S −	�t$�S∆� C		

∆� �
�

�

+ ∆�2 �− 2∆� �t$)�
S G�tS −	�t$)S∆� H��

 

              (68) 

 

Cancelling out the ∆x where necessary, we end up with a sum of squares of 

differences, i.e.%�…�	-	�…�'�, except for first and last terms, which were expanded: 



28 

 

���123$��1∆� �∆	
� =

	∆	� G ��∆	�( B�3(SC� %�31$	��1∆	 '�H + )∆>G��(S %�(1$	�31∆	 ' −	�3(S %�31$	��1∆	 'H� +
	 )∆>G��(S %��1$	�(1∆	 ' −	��(S %�(1$	�31∆	 'H� +				⋯				+ )∆>G�t$�(

S %��@31 $	��@(1
∆	 ' −

	�t$�(
S %��@(1 $	��@�1

∆	 'H� + )∆>G�t$3(
S %��1$	��@31

∆	 ' −	�t$�(
S %��@31 $	��@(1

∆	 'H� + ∆	�   (69) 

 

Claim:    �x − y�� ≤ 	2�� + 2
�    . 

Proof of Claim.  �x − y�� =	�� − 2�
 + 
� 	≤ 	2�� + 2
�  

  ↔ �� + 
� 	≤ 	2�� + 2�
 + 2
�  

  ↔ 0	 ≤ 	�� + 2�
 + 
�  

  ↔ 0	 ≤ 	 �� + 
��          

   �x − y�� ≤ 	2�� + 2
�         ⧠ 

 

By the claim, we can employ this inequality on the RHS of (71).   Multiplication of the 

interior terms by  
∆>∆> yields: 
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���123$��1∆� �∆	
� =	 ∆	�∆	�( G2 B�3(SC� %�31$	��1∆	 '�H + ∆	�∆	�( G2 B��(SC� %�(1$	�31∆	 '� +

	2 B�3(SC� %�31$	��1∆	 '�C +	 ∆	�∆	�( G2 B��(SC� %��1$	�(1∆	 '� + 2B��(SC� %�(1$	�31∆	 '�H +
				⋯				+ ∆	�∆	�( G2 B�t$�(

S C� %��@31 $	��@(1
∆	 '� +	2 B�t$�(

S C� %��@(1 $	��@�1
∆	 '�H +

∆	�∆	�( G2 B�t$3(
S C� %��1$	��@31

∆	 '� + 	2 B�t$�(
S C� %��@31 $	��@(1

∆	 '�H +
∆	�∆	�( G2 B�t$3(

S C� %��1$	��@31
∆	 '�H          (70) 

 

The RHS above collapses into a sum of terms with a repeated pattern that can thus 

be consolidated into a single summation term (after adding like terms): 

 

���123$��1∆� �∆	
� =	 ��∆	�(∑ ∆� B�Q$3(

S C� %�/1$	�/@31
∆	 '�tQu)     (71) 

 

Select the maximum value of the c function and remove from the product, defined 

�{|	 to be defined as �{|	 ∶= 	`^�\ B�Q$3(
S C to introduce an inequality: 

 

���123$��1∆� �∆	
� ≤	 ��∆	�( 	�{|	 	∑ ∆�	�Q$3(

S %�/1$	�/@31
∆	 '�tQ�)         ⧠ 
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Proof of Theorem 3.1.   Using Lemmas 3.1 and 3.2, we get, 

 

− ∆�� ��123$�1∆� �∆	
� + K�123K∆;( $‖�1‖∆;(�∆� + ∑ ∆x	�Q$3(

S %�/1$	�/@31
∆> '� = 0�6u)    (72) 

 

Adding the first term on the LHS to the RHS in (64) removes the negative sign:  

 

K�123K∆;( $‖�1‖∆;(�∆� + ∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> '� = ∆�� ��123$�1∆� �∆	
��6u)    (73) 

 

Using Lemma 3.3 for the RHS of (75), we get: 

 

K�123K∆;( $‖�1‖∆;(�∆� + ∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> '��6u) ≤
																																											∆�� 	� ��∆	�( 	�{|	 	∑ ∆�	�Q$3(

S %�/1$	�/@31
∆	 '�tQ�) �   (74) 

 

We can then collect the coefficients for the summation on the LHS: 

 

K�123K∆;( $‖�1‖∆;(�∆� +	%1 − �∆��∆	�( �{|	'	∑ ∆x	�Q$3(
S %�/1$	�/@31

∆> '��6u) ≤ 0   (75) 
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An assumption made by Perona and Malik in their 1990 paper, is that the choice of 

the g function that describes the diffusion coefficient, c, is restricted to a domain of 

[0,1].  This special choice of the g function forces the diffusion coefficient, c, to 

remain within this domain.  Then since ∆x > 0 and the square of the difference term 

is greater than or equal to 0, the summation becomes positive.  For the above 

equation to hold true, given the second term is positive, the first term is forced to be 

less than or equal to 0, which implies 

 

 
K�123K∆;( $‖�1‖∆;(�∆� 	≤ 0       (76) 

 

Cross-multiplying the 2∆t by zero gives: 

 

‖�S*)‖∆>� − ‖�S‖∆>� 	≤ 0							 ↔ 									 ‖�S*)‖∆>� ≤ ‖�S‖∆>�    ⧠ 

 

Remark.  The proof of Theorem 3.1 proves stability, i.e. the (n+1)-step is 

bounded by the n-step, but with a condition on ∆t.  Hence the explicit numerical 

scheme for the Perona-Malik equation in 1D (and in higher dimensions) is stable if 

and only if the following stability condition holds for ∆t, ∆x, and �{|	: 

1 − �∆��∆	�( �{|	 	≥ 0	  
↔	 �∆��∆	�( �{|	 	≤ 1	  
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↔ ∆�	 ≤ �∆	�(�	Fxyz          (77) 

 

When extended to the 2D case, the stability condition on ∆t becomes: 

 

∆�	 ≤ �∆	�(�	F��;	�/� + �∆
�(�	F��;	�0�        (78) 

 

When dealing with the 2D case when the diffusion coefficient is c=1 or when the 

maximum value of c is ���>	�Q� = ���>	�R� = 1 , then the stability condition on ∆t 

becomes: 

 

∆�	 ≤ 	 �∆	�(*�∆
�(�	            (79) 

 

3.2  Stability Analysis of the Implicit Numerical Scheme 
 

To examine the stability of the implicit numerical scheme of the Perona-

Malik equation, we consider the following implicit discretization:  

 

�/123$�/1∆� 		= 						 8<23(J G:<23J23@	:<J23
∆; H$	8<@3(J G:<J23@	:<@3J23

∆; H		
∆>     (80) 

 

The above finite difference is considered with an initial condition of  �QW =	 �W��Q�. 
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Theorem 3.2:  The scheme represented in (80) is unconditionally stable.   

Moreover: 

‖�S*)‖∆	 ≤ ‖�S‖∆	  

 

To prove the theorem, we need the following lemmas: 

 

Lemma 3.2.1   %�123$�1∆� , �S*)'∆	 + ∑ ∆x	�Q$3(
S %�/123$	�/@3123

∆> '� = 0�6u)  

 

Proof.  Multiply both sides of equation (80) by �Q,RS*): 

 

%�/123$�/1∆� '	�QS*) =						 }8<23(J G:<23J23@	:<J23
∆; H$	8<@3(J G:<J23@	:<@3J23

∆; H		
∆> ~ �QS*)  (81) 

 

For i=0,1,…N to generate the following list of  equations: 

 

								%��123$��1∆� ' �WS*) =	 }83(JG:3J23@	:�J23∆; H$	8@3(J G:�J23@	:@3J23∆; H		
∆> ~ �WS*)											  

								%�3123$�31∆� ' �)S*) =	 }8�(JB:(J23@	:3J23∆; C$	83(JG:3
J23@	:�J23∆; H		

∆> ~ �)S*)																  
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																			⋮																								⋮																⋮																							⋮																															  
%��@3123$��@31

∆� ' �t$)S*) =	 }8�@3(J G:�J23@	:�@3J23∆; H$	8�@�(J G:�@3J23@	:�@(J23∆; H		
∆> ~ �t$)S*)   

								%��123$��1∆� ' �tS*) =	 }8�23(J G:�23J23@	:�J23∆; H$	8�@3(J G:�J23@	:�@3J23∆; H		
∆> ~ �tS*)   (82) 

 

Using the definitions for the dot product (46) and the norm (47), the LHS of  

(82) for i=0,1,…,N in terms of the dot product which yields: 

 

∆	� %��123$��1∆� ' �WS*) + ∑ ∆� %�/123$�/1∆� '	�QS*)t$)Qu) + ∆	� %��123$��1∆� ' �tS*) =
																																																																																		%�123$�1∆� , �S*)'∆	   (83) 

 

In a similar fashion, add up the RHS of equation block (89) for i=0,1,…,N in 

terms of the dot product which yields: 
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12	Dc)�T GI)
T*) −	IWT*)∆x H −	c$)�T GIWT*) − 	I$)T*)∆x HE �WS*) 		

+ 	 D���S G��
S*) −	�)S*)∆� H −	�)�S G�)

S*) − 	�WS*)∆� HE �)S*) +	………
+ D�t$)�

S G�tS*) −	�t$)S*)∆� H −	�t$��
S G�t$)S*) − 	�t$�S*)∆� HE �t$)S*)

+ 12 D�t*)�
S G�t*)S*) −	�tS*)∆� H −	�t$)�

S G�tS*) − 	�t$)S*)∆� HE �tS*) 

           (84) 

 

Using the boundary conditions from Section 2.3, for the 1-D case,  c$3( = c3( 

and �$) =		 �) and also c�*3( = c�$3( and ��*) =		 ��$), the first and last terms (i.e. 

when i=0 and i=N) of the above equation (84) become: 

 

)� 	�c3(T %A3J23$	A�J23
∆> ' −	c$3(

T %A�J23$	A3J23
∆> '� �WS*) = c3(T %A3J23$	A�J23

∆> ' �WS*)    (85) 

 

)� ��t$3(
S %��@3123$	��123

∆	 ' −	�t$3(
S %��123$	��@3123

∆	 '� �tS*) = −�t$3(
S %��123$	��@3123

∆	 '  (86) 
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With these terms, we get: 

 

%�123$�1∆� , �S*)'∆	 =  

−c3(T %A3J23$	A�J23
∆> ' �WS*)  

−	��(S %�(123$	�3123
∆	 ' �)S*) −	�3(S %�3123$	��123

∆	 ' �)S*)  

−	��(S %��123$	�(123
∆	 ' ��S −	��(S %�(123$	�3123

∆	 ' �)S*)  

																			⋮																								⋮									  
−�t$�(

S %��@3123$	��@(123
∆	 ' �t$�S*) −	�t$�(

S %��@(123$	��@�123
∆	 ' �t$�S*)  

 −�t$3(
S %��123$	��@3123

∆	 ' �t$)S*) −	�t$�(
S %��@3123$	��@(123

∆	 ' �t$)S*) 

−�t$3(
S %��123$	��@3123

∆	 ' �t$)S*)          (87) 

 

Collecting similar difference termsB��123$	��@3123
∆> C, we get the following 

consolidated equation: 

 

%�123$�1∆� , �S'∆	 =  
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−c3(T�I)T*) −	IWT*)� %A3J23$	A�J23
∆> '  

−	��(S���S*) −	�)S*)� %�(123$	�3123
∆	 '  

−	��(S���S*) −	��S*)� %��123$	�(123
∆	 '  

																			⋮																				  
−�t$�(

S ��t$)S*) −	�t$�S*)� %��@3123$	��@(123
∆	 '  

−�t$3(
S ��tS*) −	�t$)S*)� %��123$	��@3123

∆	 '     (88) 

 

Multiply every term by 
∆	∆	   and collect the terms to result in a summation on the 

RHS.  Thus equation (95) is consolidated to the following: 

 

%�123$�1∆� , �S*)'∆	 = −∑ ∆x	�Q$3(
S %�/123$	�/@3123

∆> ' %�/123$	�/@3123
∆	 '�6u)    (89) 

 

We add the summation on the RHS to the LHS to result in an equation equal to zero: 

 

%�123$�1∆� , �S*)'∆	 + ∑ ∆x	�Q$3(
S %�/123$	�/@3123

∆> '� = 0�6u)     ⧠ 
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Lemma 3.2.2    %�123$�1∆� , �S*)'∆	 = ∆�� ��123$�1∆� �∆	
� + K�123K∆;( $‖�1‖∆;(�∆�  

 

Now consider rewriting �S*) as an expression of itself,  �S, and ∆�: 

 

�S*) = ∆t %)�' %�123$�1∆� ' + �123*�1�        (90) 

 

Substituting this expression for �S*) into the dot product (first term) in equation 

(97) gives: 

 

%�123$�1∆� , �S*)'∆	 = %�123$�1∆� , ∆t %)�' %�123$�1∆� ' + �123*�1� '∆	    (91) 

 

By the properties of a dot product, we can move the scalar outside of the dot 

product operation and distribute over the sum to get a sum of two dot products: 

 

G�S*) − �S∆� , �SH∆	 = ∆t B12C G�S*) − �S∆� , �S*) − �S∆� H∆	 + G�S*) − �S∆� , �S*) + �S2 H∆> 

    (92) 
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There is a norm introduced in the first term above, according to the 

definition of a norm in equation (49).  Also, the scalar values can be extracted to the 

outside of the dot product in the second term above: 

          

%�123$�1∆� , �S'∆	 = ∆�� ��123$�1∆� �∆	
� + )�∆� ��S*) − �S , �S*) + �S�∆	   (93) 

 

By carefully following the properties of distribution wrt dot products, we can 

rewrite the dot product in the last term above as: 

 

��S*) − �S, �S*) + �S�∆	 		= 	 	��S*), �S*)�∆	 + ��S*), �S�∆	 	−
																																																																��S, �S*)�∆	 − ��S, �S�∆	    (94) 

 

The interior terms of (97) cancel out.  Observe that the first and last terms 

are the square of the norms.  Then (97) becomes: 

%�123$�1∆� , �S*)'∆	 = ∆�� ��123$�1∆� �∆	
� + K�123K∆;( $‖�1‖∆;(�∆�      ⧠ 

 

Proof of Theorem 3.2.  Substituting Lemma 3.2.2 into Lemma 3.2.1, we get: 

 

∆�� ��123$�1∆� �∆	
� + K�123K∆;( $‖�1‖∆;(�∆� + ∑ ∆x	�Q$3(

S %�/123$	�/@3123
∆> '� = 0�6u)   (95) 
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The first term of (99) is positive since the scalar is positive because 

∆� ≥ 0 → ∆�� ≥ 0	and the squared norm is positive.  Now skip to the third term 

(summation), we have that ∆� ≥ 0 and the squared difference is greater than zero.  

We force the c values to be within [0,1] by choice of the g function, therefore 

�Q$3(
S ≥ 0 and thus the summation is greater than or equal to zero.  Now in order for 

the tree terms above to sum two 0, given tow positive terms, it must be true that the 

second term is less than or equal to zero.  Consider that fact: 

 

 
K�123K∆;( $‖�1‖∆;(�∆� 	≤ 0       (96) 

 

Cross-multiplying the 2∆t by zero gives: 

 

 ‖�S*)‖∆>� − ‖�S‖∆>� 	≤ 0		 ↔ 	‖�S*)‖∆>� ≤ ‖�S‖∆>�    ⧠ 

 

Remark.  Then this brings us directly to the definition of stability and 

convergence, i.e. we proved that the (n+1)-step is bounded by the n-step, without 

any conditions on ∆t or any other parameter.  The only careful choice that has to be 

made is of the g function that determines c, with the safest choice being one that is 

bounded by 0 and 1.  In summary, we are confident that given a carful choice of the 
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diffusion coefficient function c, the Implicit Numerical Scheme for the Perona-Malik 

function will always converge to stable solution regardless of choice of ∆t. 
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CHAPTER IV – MATLAB IN A LITERATE PROGRAMMING STYLE 

Using the dissertation style of Van Den Boomgaard , we will examine how 

MATLAB was used to implement the above numerical approximations, directly 

within this paper to allow the reader to understand the implementation step-by-

step and reproduce similar results.  All of the MATLAB implementations allow 

processing on a non-uniform grid space which we call the computational grid space 

as opposed to the image grid space which is the pixel space of the original image.  A 

mesh grid is created based on user defined step sizes for x and y, dx ( = ∆x ) and dy ( 

= ∆y), respectively: 

 

 

[im_compX,im_compY] = meshgrid(dx:dx:Iorig_max,dy:dy:Jorig_max); 

 

Figure 2: MATLAB code for creating the mesh grid to overlay the computational grid space 

 

In order to create the computational grid space, an interpolation must be performed 

to fill in the values between pixels.  The built-in MATLAB function interp2 was used 

to execute a bilinear interpolation: 

 

 

im_comp =  

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'linear'); 



 

 

Figure 3: MATLAB code for using 

computational image) 

 

The function interp2 was 

 

im_comp =  

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,

 

Figure 4: MATLAB code for using spline interpolation to create the computational grid space (i.e. the 

computational image) 

 

If dx = 1 and dy 

image grid space and the processing will be done on a pixel by pixel basis.  

4.1 Implementation of 
 

The MATLAB implementation of the explicit PM numerical scheme is 

illustrated in figure (): 

Figure 

 

Input Noisy Image

Loop (n): Compute 

c(x,y) with g option
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: MATLAB code for using bilinear interpolation to create the computational grid space (i.e. the 

function interp2 was also used to examine spline interpolation: 

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'spline'

: MATLAB code for using spline interpolation to create the computational grid space (i.e. the 

 = 1 then the computational grid space will be equal to the 

image grid space and the processing will be done on a pixel by pixel basis.  

Implementation of Explicit Perona-Malik Numerical Scheme

The MATLAB implementation of the explicit PM numerical scheme is 

 

Figure 5: MATLAB Flow for Explicit PM Numerical Scheme 

Input Noisy Image

Transform to 

Computational Grid 

(Bilinear or Spline 

Interpolation)

Pad Computational 

Grid with 

Neumann Boundary 

Conditions

Loop (n): Compute 

) with g option

Loop (i,j): Execute 

Explicit Equation

Downsample Final 

(denoised) Image

<optional step

interpolation to create the computational grid space (i.e. the 

 

'spline'); 

: MATLAB code for using spline interpolation to create the computational grid space (i.e. the 

al grid space will be equal to the 

image grid space and the processing will be done on a pixel by pixel basis.   

Scheme 

The MATLAB implementation of the explicit PM numerical scheme is 

 

Pad Computational 

Grid with 

Neumann Boundary 

Conditions

Downsample Final 

) Image

optional step>
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A function named pm_explicit.m was created to execute Perona-Malik explicit 

numerical scheme: 

 

function [im_final varargout] =  

   pm_explicit(im_orig,kval,dx,dy,dt,nsteps,tol,option_g,varargin) 

 

Figure 6: MATLAB code to call function pm_explicit to run Explicit PM 2nd Order Difference scheme 

 

The function outputs the result of the Perona-Malik equation.  The inputs are the 

original image, im_orig, the K value from the g functions (4) and (5), the step size in 

the x direction, dx, the step size in the y direction, dy and the choice of the g 

function, option_g.  The first step involves calculating the upper bound on the step 

size in time per the stability condition discussion in Section 3.1.   

 

dtmax = (dx^2)*(dy^2)/(2*(dx^2 + dy^2)); 

 

Figure 7: MATLAB code for maximum allowed time step, dtmax 

 

We choose the time step size to be just 1% less than the upper bound: 

 

dt = dtmax - abs(dtmax)/100; 

 

Figure 8: MATLAB code for time step calculated as 99% of dtmax 

 

All of the processing is done on the computational grid space, which we will 

also refer to as the image (specifically, im_comp, in the MATLAB code).  The 

computational image is created as mentioned in the discussion above and is then 

padded on each side, based on the Neumann Boundary Conditions wrt to x and y, i.e. 

at the boundaries we get:  

?A?> = A<23,=$A<@3,=�∆> = 0  and 
?A?I = A<,=23$A<,=@3�∆I = 0    (97) 
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It is important to keep in mind that in MATLAB all indices must start with 1 

(not 0).  So let i = 1, 2, …, Imax and j = 1, 2, …, Jmax denote the step values in the x 

and y directions, respectively.  At the lower boundary of x in MATLAB (i.e. i = 1): 

 

4?A?>5),7 = A(,=$A�,=�∆> = 0 →	 �W,R =		 ��,R         (98) 

 

At the upper boundary for x (i.e. i = Imax): 

 

4?A?>5A��>,7 = A:��;23,=$A:��;@3,=�∆> = 0 →	 ��{|	*),R =		 ��{|	$),R    (99) 

 

Similarly, at the lower boundary of y in MATLAB (i.e. j = 1): 

 

4?A?I56,) = A<,($A<,��∆I = 0 →	 �Q,W =		 �Q,�       (100) 

 

At the upper boundary for y (i.e. j = Jmax): 

 

4?A?I56,c��> = A<,d��;23$A<,d��;@3�∆I = 0 →	 �Q,e{|	*) =		 �Q,e{|	$)      (101) 
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In MATLAB, the padding is executed with the following statements: 

 

 

im_pad = zeros(Imax+2,Jmax+2); 
im_pad(2:Imax+1,2:Jmax+1) = im_comp; 
im_pad(1,2:Jmax+1)        = im_pad(3,2:Jmax+1); 
im_pad(Imax+2,2:Jmax+1)   = im_pad(Imax,2:Jmax+1); 
im_pad(2:Imax+1,1)        = im_pad(2:Imax+1,3); 
im_pad(2:Imax+1,Jmax+2)   = im_pad(2:Imax+1,Jmax); 

 

Figure 9: MATLAB code for padding image 

 

 

Then at each (i, j) coordinate within the computational grid-space we 

compute the numerical approximation to the gradient of the intensities: 

 

 

% Solve for new intensity using only interior of padded computational 

grid 
for n=1:nsteps 

  
    % Find c at each point, in order to find c at each point we need  

  
    % Calculate the gradient of the intensities (of the padded image) 
    gradI_x = zeros(size(im_pad)); 
    gradI_y = zeros(size(im_pad)); 

  
    for i=2:Imax+1 
        for j=2:Jmax+1 
            gradI_x(i,j) = (im_pad(i+1,j)-im_pad(i-1,j))/(2*dx); 
            gradI_y(i,j) = (im_pad(i,j+1)-im_pad(i,j-1))/(2*dy); 
        end 
    end 

 
… loop to be continued in Figure 11 

 

Figure 10: MATLAB code for calculating the gradient of the intensities 
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The Euclidean norm of the gradient is computed and passed into the chosen g 

function: 

 

 

 … loop continued from Figure 10 

 

% Calculate the 2-norm of the gradient of the intensities 
    nrm_gradI = sqrt(gradI_x.^2 + gradI_y.^2); 

  
    % Determine and evaluate the g function  
    switch option_g 
        case 1 
            gfun = exp(-(nrm_gradI/kval).^2); 
        case 2 
            gfun = 1./(1+(nrm_gradI/kval).^2); 
        otherwise 
            gfun = ones(size(nrm_gradI));       % Gaussian Kernel 
    end 

  
    cval = gfun;     % Is this step necessary??? 

 
… to be continued in Figure 12 

 

Figure 11: MATLAB Code for choice of g function – diffusivity function coefficient 

 

We iterate over the difference time steps to compute equation (20) 

iteratively up to nsteps (number of time steps): 
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… loop continued from Figure 11 

 

   % CHECK for no change between previous and current timesteps (< tol) 
    im_prev = im_pad; 

     
    for i=2:Imax+1 
        for j=2:Jmax+1 
            % Perform all calculations wrt X 
            A1 = (cval(i+1,j)+cval(i,j))*(im_pad(i+1,j)-im_pad(i,j))/2; 
            A2 = (cval(i,j)+cval(i-1,j))*(im_pad(i,j)-im_pad(i-1,j))/2; 
            A = dt*(A1 - A2)/dx^2; 

             
            % Perform all calculations wrt Y 
            B1 = (cval(i,j+1)+cval(i,j))*(im_pad(i,j+1)-im_pad(i,j))/2; 
            B2 = (cval(i,j)+cval(i,j-1))*(im_pad(i,j)-im_pad(i,j-1))/2; 
            B = dt*(B1 - B2)/dy^2; 

             
            im_pad(i,j) = im_pad(i,j) + A + B; 
        end 
    end 

  
    iter_err = norm(im_prev - im_pad)/norm(im_prev); 
    if iter_err < tol && n > 2 
        break 
    end 

     
end 

 

Figure 12: MATLAB code for calculating Explicit PM 2nd Order Difference over each ((i, j)) pixel of the 

computational grid 

 

 

To run the pm_explicit.m function code, first read in an image, e.g. built-in MATLAB 

image, cameraman.tif: 

 

 

im_orig = imread('cameraman.tif'); 

 

Figure 13: MATLAB Code to read MATLAB built-in image - cameraman.tif 
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Then use the following commands to set up the parameters and execute the 

pm_explicit function to run the Explicit PM Numerical Scheme: 

 

 

kval    = 1/7; 
nsteps  = 7; 
option  = 1; 
dx      = 0.5; 
dy      = 0.5; 

dt   = 0.25; 

tol     = 1e-8; 
[im_final exp_dt exp_n exp_ierr] =  

             pm_explicit(im_noise,kval,dx,dy,dt,nsteps,tol,option); 

 

Figure 14: MATLAB code to define parameters in run script for inputs to pm_explicit  

 

 

The final result is in the processed computational grid (without padding).  

Therefore you may want to downsample the final image by the dx and dy factors in 

order to return to the image grid space for comparison purposes.  The following 

MATLAB command can be run (note, for optimal return to same image grid space 

size, use dx = 1/M and dy = 1/N, i.e. the reciprocal of an integer): 

 

 

im_down = downsample(downsample(im_final',ceil(1/dx))',ceil(1/dy)); 

 

Figure 15: MATLAB code to downsample the final image to original image grid space size (approximately) 

 

4.2 Implementation of Implicit Perona-Malik Numerical Scheme 
 

The MATLAB implementation for the Implicit Perona-Malik Numerical 

Scheme is very similar to the Explicit Perona-Malik Numerical MATLAB 



 

implementation.  The only change will be the section of code that iterates over t

underlying equation.  Instead in the implicit method a function, 

pm_implicit_matrix.m, is executed to generate the matrix operator that represents 

the coefficient matrix for the system of equations of the implicit method.  

 

Figure 

 

A function named pm_im

implicit numerical scheme:

 

 

function A = pm_implicit_matrix(Imax,Jmax,dt,dx,dy,cval)

 

Figure 17: MATLAB Function for Implicit Matrix

 

The implicit scheme requires this

term.  Also, per the stability discussion in Section 

Input Noisy Image

Loop (n): Compute c(

Build Implicit Matrix System

Simultaneous calculation of new image using A

50 

implementation.  The only change will be the section of code that iterates over t

Instead in the implicit method a function, 

pm_implicit_matrix.m, is executed to generate the matrix operator that represents 

the coefficient matrix for the system of equations of the implicit method.  

Figure 16: MATLAB Flow for Implicit PM Numerical Scheme 

function named pm_implicit.m was created to execute Perona

plicit numerical scheme: 

A = pm_implicit_matrix(Imax,Jmax,dt,dx,dy,cval) 

on for Implicit Matrix 

implicit scheme requires this intermediate solver to solve for the n+1 

term.  Also, per the stability discussion in Section 3.2, there is no need to restrict the 

Transform to 
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implementation.  The only change will be the section of code that iterates over the 

pm_implicit_matrix.m, is executed to generate the matrix operator that represents 

the coefficient matrix for the system of equations of the implicit method.   

plicit.m was created to execute Perona-Malik 

intermediate solver to solve for the n+1 

, there is no need to restrict the 

Pad Computational Grid 

with

Neumann Boundary 

Conditions

Downsample Final 

denoised) Image

optional step> 
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choice of the time step, ∆t, which no longer depends on the x and y step sizes.  For 

the implicit numerical scheme of the Perona-Malik function we take equation (29): 

 

�Q,RS*) G1 + P) Bc6*3(,7T +	c6$3(,7T C + P� Bc6,7*3(
T +	c6,7$3(

T CH −
	P) Bc6*3(,7T I6*),7T*) + c6$3(,7T I6$),7T*) 	C − P� Bc6,7*3(

T I6,7*)T*) +	c6,7$3(
T I6,7$)T*) C = �Q,RS    (102) 

 

Rewrite equation (29) to be a system of unknown �S*) terms: 

 

−	�Q*),RS*) BP)c6*3(,7T C − �Q$),RS*) 	BP)�Q$3(,RS 	C +	�Q,RS*) G1 + P) Bc6*3(,7T +	c6$3(,7T C +
P� Bc6,7*3(

T +	c6,7$3(
T CH − �Q,R*)S*) BP�c6,7*3(

T C − �Q,R$)S*) BP��Q,R$3(
S C = �Q,RS    (103) 

 

Coefficient for the �Q,RS*) term: 

γ = G1 + P) Bc6*3(,7T +	c6$3(,7T C + P� Bc6,7*3(
T +	c6,7$3(

T CH   (104) 
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Coefficients for the �Q*),RS*)  and �Q$),RS*)  terms, respectively: 

 

�) = −BP)c6*3(,7T C,				α� 	= −BP)�Q$3(,RS 	C,			�¡¢�#:	�)*� = �) + ���	  (105) 

 

Coefficients for the �Q,R*)S*)  and �Q,R$)S*)  terms, respectively: 

 

β) = −BP�c6,7*3(
T C	,				β� = −BP��Q,R$3(

S C,			�¡¢�#:	¥)*� = ¥) + ¥��  (106) 

 

The first step in pm_implicit_matrix.m calculates the P) and P� values: 

 

lambda1 = dt/(dx^2); 

lambda2 = dt/(dy^2); 

  

Figure 18: MATLAB Code – pm_implicit_matrix.m 

 

The coefficients are in terms of the c values at the halves, hence those 

constants are explicitly calculated first.  The cvals matrix variable of the c values is 

passed into pm_implicit_matrix.m function.  The coefficients γ, α), α�, β), and β� are 

then calculated for each i and j at each iteration in time.  The first portion of the 

MATLAB to calculate all those values follows: 
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r = 0; 

for j = 2:Jmax+1 

    for i = 2:Imax+1 

        r = r+1; 

         

        ci1 = (cval(i+1,j)+cval(i,j))/2; 

        ci2 = (cval(i,j)+cval(i-1,j))/2; 

        cj1 = (cval(i,j+1)+cval(i,j))/2; 

        cj2 = (cval(i,j)+cval(i,j-1))/2; 

         

        gamma  = 1 + lambda1*(ci1+ci2) +lambda2*(cj1+cj2); 

        alpha1 = -lambda1*ci1; 

        alpha2 = -lambda1*ci2; 

        beta1  = -lambda2*cj1; 

        beta2  = -lambda2*cj2; 

 

… to be continued in Figure 20  

 

Figure 19: MATLAB Code – pm_implicit_matrix.m -  1st Half of Loop 

 

Now the system can be expressed in terms of the above coefficients γ, α), α�, 

β), and β� . All terms are summed because the variables include the negative signs: 

 

α)	�Q*),RS*) + α��Q$),RS*) 	+ γ�Q,RS*) +	β)�Q,R*)S*) + β��Q,R$)S*) = �Q,RS      (107) 

 

Consider holding n = 0, fix the j term, then for i=1,2,…,M=Imax we get   

 

α)	��,R) + α��W,R) 	+ γ�),R) +	β)�),R*)) + β��),R$)) 																						= �),RW   

α)	��,R) + α��),R) 	+ γ��,R) +	β)��,R*)) + β���,R$)) 																						= ��,RW   

																																			⋮																																																																							⋮  
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α)	�¦,R) + α��¦$�,R) 	+ γ�¦$),R) +	β)�¦$),R*)) + β��¦$),R$)) = �¦$),RW   

α)	�¦*),R) + α��¦$),R) 	+ γ�¦,R) +	β)�¦,R*)) + β��¦,R$)) 									= �¦,RW    (108) 

 

This will create a system of M (= Imax) equations for M unknowns.  Let N = Jmax, 

then the above system is repeated N times, resulting in an M*N equations.  List the 

intensities to be solved as one single (MN x 1)-dimensional vector, listing all values 

of i(=1,2,…,M=Imax) for each j(=1,2,…,N=Jmax).  The final system can be represented 

by a (MN x MN) matrix A, left-multiplied by the MN-dimension vector of all 

intensities.  We illustrate with a 4x4 system: 

§̈
¨̈
¨̈
¨̈
¨̈
©̈ ª �)*� 0 ¥)*� 0 0 0 0 0�� ª �) 0 ¥)*� 0 0 0 00 �� ª �) 0 ¥)*� 0 0 0¥� 0 0 ª �)*� 0 ¥) 0 00 ¥� 0 �� ª �) 0 ¥) 00 0 ¥� 0 �� ª �) 0 ¥)0 0 0 ¥)*� 0 0 ª �)*� 00 0 0 0 ¥)*� 0 �� ª �)0 0 0 0 0 ¥)*� 0 �� ª «¬

¬¬
¬¬
¬¬
¬¬
¬­

			 ∙ 			

§̈
¨̈
¨̈
¨̈
¨̈
©̈�),)S*)��,)S*)��,)S*)�),�S*)��,�S*)��,�S*)�),�RS*)
��,�S*)��.�S*)«¬

¬¬
¬¬
¬¬
¬¬
¬­

		= 	

§̈
¨̈
¨̈
¨̈
¨̈
©̈ �),)S��,)S��,)S�),�S��,�S��,�S�),�RS��,�S��.�S «¬

¬¬
¬¬
¬¬
¬¬
¬­

		  

(109) 
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Recall that boundary conditions exist whenever i=1 or i=M=Imax or whenever j=1 

or j=N=Jmax (see discussion in previous section surrounding equations (108)-

(111)).  This is what causes the combined coefficients of �)*� and ¥)*�.  The 

following excerpt of code shows the second half of the loop that sets up the matrix 

and updates the coefficients when at the boundaries.   

 

…continued from Figure 19  

 

        if (i-1) == 1 

            alpha1 = alpha1 + alpha2; 

            alpha2 = 0; 

        end 

         

        if (j-1) == 1  

            beta1 = beta1 + beta2; 

        end 

  

        if (j-1) == Jmax 

            beta2 = beta1 + beta2; 

        end         

         

        A(r,r) = gamma; 

        if r < Imax*Jmax 

            A(r,r+1) = alpha1; 

        end 

         

        if r > 1 

            A(r,r-1) = alpha2; 

        end 

         

        if r <= Imax*Jmax-Jmax 

            A(r,r+Jmax) = beta1; 

        end 

         

        if r > Jmax 

            A(r,r-Jmax) = beta2; 

        end 

    end 

end 

 

Figure 20: MATLAB Code – pm_implicit_matrix.m – 2nd Half of Loop 

 

The result is a standard matrix system, Ax=b.  This is used in the parent function:   
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function [im_final varargout] =   

  pm_implicit(im_orig,kval,dx,dy,dt,nsteps,tol,option_g,varargin) 

 

Figure 21: MATLAB 

 

As mentioned before the padding and transformation to the computational grid is 

the same as that for the pm_explicit.m function.  For completeness, all the first steps 

are included again here: 

 

% Create mesh of original image space and create mesh based on dx,dy 

steps 
[im_origX,im_origY] = meshgrid(1:Iorig_max,1:Jorig_max); 
[im_compX,im_compY] = meshgrid(1:dx:Iorig_max,1:dy:Jorig_max); 

  
% Use interpolation to create the intensities of the computational grid 
im_comp = 

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'linear'); 

 

im_pad = zeros(Imax+2,Jmax+2); 
im_pad(2:Imax+1,2:Jmax+1) = im_comp; 
im_pad(1,2:Jmax+1)      = im_pad(3,2:Jmax+1); 
im_pad(Imax+2,2:Jmax+1) = im_pad(Imax,2:Jmax+1); 
im_pad(2:Imax+1,1)      = im_pad(2:Imax+1,3); 
im_pad(2:Imax+1,Jmax+2) = im_pad(2:Imax+1,Jmax); 

 

Figure 22: MATLAB Code: pm_implicit.m – Bilinear Interpolation and Image Padding 

 

After interpolation and padding, the iterations in time space are commenced, 

prior to calling the pm_implicit_matrix.m, the c function values must be calculated. 

 

for n=1:nsteps 

  

    % Find c at each point, in order to find c at each point we need to 

    % calculate the gradient of the intensities (of the padded image) 

    gradI_x = zeros(size(im_pad)); 

    gradI_y = zeros(size(im_pad)); 

  

    for i=2:Imax+1 

        for j=2:Jmax+1 

            gradI_x(i,j) = (im_pad(i+1,j)-im_pad(i-1,j))/(2*dx); 

            gradI_y(i,j) = (im_pad(i,j+1)-im_pad(i,j-1))/(2*dy); 
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        end 

    end 

  

    % Calculate the 2-norm of the gradient of the intensities 

    nrm_gradI = sqrt(gradI_x.^2 + gradI_y.^2); 

  

    % Determine and evaluate the g function  

    switch option_g 

        case 1 

            gfun = exp(-(nrm_gradI/kval).^2); 

        case 2 

            gfun = 1./(1+(nrm_gradI/kval).^2); 

        otherwise 

            gfun = ones(size(nrm_gradI));       % Gaussian Kernel 

    end 

  

    cval = gfun;  

 

… to be continued in Figure 24 

 

Figure 23: MATLAB Code: Implicit PM Scheme (pm_implicit.m) – Part 1 of 3 

 

The A matrix is then created per the discussion at the beginning of this section: 

 

… continued from Figure 23 

 

% Generate IJxIJ matrix to solve implicit system 
    A = pm_implicit_matrix(Imax,Jmax,dt,dx,dy,cval); 

 

… loop to be continued in Figure 25 

 

Figure 24: MATLAB code – pm_implicit.m – Part 2 of 3 

 

 In order to create the b vector, which is simply one long vector depicting the 

intensity values at the current time step, the built-in MATLAB function “reshape” 

was used.  Since MATLAB is a column-major programming language, the reshape 

function will traverse the intensity matrix by column which directly corresponds to 

how the vector is describe above (fix j, select all I values).  Once the matrix A and 

vector b are created the system is solved with the built-in MATLAB command “\”: 
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… continued from Figure 24 

 

   % CHECK for no change between previous and current timesteps (< tol) 
    im_prev = im_pad; 
    %toc 

     
    im_bvec = reshape(im_pad(2:Imax+1,2:Jmax+1),Imax*Jmax,1); 
    %toc 

     
    im_xvec = A \ im_bvec; 
    %toc 

     
    im_pad(2:Imax+1,2:Jmax+1) = reshape(im_xvec,Imax,Jmax); 
    toc 

  
    iter_err = norm(im_prev - im_pad)/norm(im_prev); 
    if iter_err < tol && n > 2 
        break 
    end 

     
end 

 

Figure 25: MATLAB Code: pm_implicit.m – Part 3 of 3 

 

The final image is taken to be the interior of the padded image to remove the 

logical boundary conditions: 

 

im_final = im_pad(2:Imax+1,2:Jmax+1); 

 

Figure 26: Implicit PM Scheme (pm_implicit.m) 

 

Below  are commands to set up the parameters and execute the pm_implicit 

function to run the Implicit PM Numerical Scheme: 

 

kval    = 1/7; 
nsteps  = 100; 
option  = 2; 
dt      = 0.01; 
dx      = 1; 
dy      = 1; 

tol     = 1e-8; 

[im_final imp_dt imp_n imp_ierr] =  
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pm_implicit(im_noise,kval,dx,dy,dt,nsteps,tol,option); 

 

Figure 27: MATLAB code to run Implicit Scheme 

 

4.3 Simulated Noise: Random (Additive), Gaussian and Speckle 
 

In order to simulate a noisy image, random values are directly added to the 

original image, hence why it is addressed as additive random noise.  The built-in 

MATLAB function “rand” is used which produces random values between [0,1].  The 

noise is reduced or increased based on a factor.  If it is a fraction then the noise is 

reduced, if it is greater than 1, then it is increased.  The added noise is saved to a 

variable called “noise_floor” to store exactly what was added to the image for 

simulated degradation: 

 

noise_factor = 1/5; 

noise_floor = rand(size(im_orig))*noise_factor; 

im_noise = im2double(im_orig) + noise_floor; 

 

Figure 28: MATLAB Code for Adding Random Noise (reduced by factor of 5). 

 

 

The MATLAB Image Processing Toolbox (available in Student Edition) 

contains a very convenient built-in function called “imnoise” to simulate various 

types of noise.  In this thesis Gaussian noise and Speckle were also examined as 

sources of simulated noise for degrading the image.  The speckle is multiplicative 

noise created by  im_noise = im_orig + n*im_orig, where n is random between [0,1] 

and with default variance of 0.04) See implementations below: 

 

im_gaussian = imnoise(im_orig,'gaussian'); 

im_speckle  = imnoise(im_orig,'speckle'); 
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Figure 29: MATLAB built-in function imnoise for Gaussian and Multiplicative Noise (Speckle) 

 

A very useful resource is the MATLAB Help or www.mathworks.com for 

more information on all MATLAB built-in functions.  The full MATLAB functions are 

included in the supplemental material with this thesis. 
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CHAPTER V – EXPERIMENTAL RESULTS 

All experiments were performed with benchmark images in image 

processing.  Specifically, the “Camera Man” and “Lena” images were considered, 

although majority of the work was investigated with the camera man image.  

 

 

 
Figure 30: Cameraman Image (256x256 TIFF) 

 

 
Figure 31: Lena Image (512x512 TIFF) 

 

5.1 Performance Metrics 
 

The first experimental analysis that was performed took into consideration 

the theoretical attributes of the numerical schemes.  Mainly, holding all parameters 

the same and decreasing ∆t, the relative error of the solution to the original image 
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should decrease as well.  It was noticed that this indeed was the case for both the 

explicit and implicit MATLAB implementations, pm_explicit.m and pm_implicit.m, 

respectively.  In order to speed up the experiments, a subset of the cameraman.tif 

image was used.  The parameters (held constant) used for running the experiment 

are listed in Table 1. 

 

Parameter 

MATLAB 

Variable Name Value 

Contrast Parameter, K kval 1/7 

Step size in x direction, ∆x dx 1 

Step size in y direction, ∆y dy 1 

Choice of g function option 1 

Maximum number of 

iterations 

nsteps 1000 

Tolerance (between successive 

iterations – stopping criteria) 

tol 1e-9 

Camera Man Image – Subset  

Range 

subX 

subY 

(30, 130) 

(80, 180) 
Table 1: Description of Fixed Parameters 

 

The maximum number of iterations is set in case the tolerance is not reached.  

The tolerance is checked against the relative error between iterations: 

 

��#[^�\¢]	¯[[¢[ = ‖�1−�]−1‖‖�1‖ < ±¢_#[^]�#     (110) 

 

 To determine the overall accuracy of the scheme, the relative error was 

calculated against the original image and the final image: 
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²#_^�\³#	�´\]^_�	¯[[¢[ = ‖�µ¶Q·QS|¸	�{|·¹�$�ºQS|¸	»¦	�{|·¹�‖‖µ¶Q·QS|¸	�{|·¹‖    (111) 

 

The explicit PM numerical scheme processing time averaged at about 38-39 seconds 

and the relative error was within one order of error compared with the ∆t.  In other 

words, if ∆t = 1E-N, then the relative error would be 1E-(N-1) or better. 

 

Explicit - Original Image - No Noise Added 

Delta-T 
Number 

Iterations 
Relative 

Error 
Iteration 

Error 
Time 

(sec) 

2.475E-01 1000 2.823E-01 9.020E-05 39 

1.000E-01 1000 2.122E-01 1.198E-04 37 

1.000E-02 1000 8.721E-02 6.624E-05 39 

1.000E-03 1000 3.368E-02 1.863E-05 38 

1.000E-04 1000 5.939E-03 5.372E-06 38 

1.000E-05 1000 6.342E-04 6.128E-07 38 

1.000E-06 1000 6.384E-05 6.209E-08 38 
Table 2: Explicit PM Results for different values of ∆t for processing the original image without any noise 

added. 

 

The implicit PM numerical scheme processing time averaged at about 17-18 

minutes.  Hence the implicit method was approximately 27 times slower compared 

to the explicit method.  The relative error was within two orders of error compared 

with the ∆t (i.e. if ∆t = 1E-N, then the relative error would be 1E-(N-2) or better). 
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Implicit - Original Image - No Noise Added 

Delta-T 
Number 

Iterations 
Relative 

Error 
Iteration 

Error 
Time 

(sec) 

1.000E+00 1000 4.449E-01 9.770E-05 945 

1.000E-01 1000 2.691E-01 1.555E-04 941 

1.000E-02 1000 1.278E-01 6.465E-05 964 

1.000E-03 1000 5.990E-02 3.445E-05 1066 

1.000E-04 1000 1.019E-02 9.086E-06 1135 

1.000E-05 1000 1.104E-03 1.065E-06 1166 

1.000E-06 1000 1.113E-04 1.082E-07 1163 
Table 3: Implicit PM Results for different values of ∆t for processing the original image without any noise 

added. 

 

Graphically we should see an increasing pattern, since theory says that the ∆t 

is positively proportional to the error.  This was confirmed in the experiment: 

 

 

Figure 32: Errors of Explicit (Red Star Dotted Line) and Implicit (Green Circle Solid Line) Methods wrt ∆t.  

Decrease in error with smaller values of ∆t validate the implementation of the algorithm 
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From a numerical standpoint the methods are accurate.  But in image 

processing the visual context is more significant than the numerical errors.  Like 

Perona and Malik mentioned in their paper [1], the goal is to emphasize the 

“semantically meaningful” aspects of the image.  In visual analysis of the results, 

only can one make the decision if the numerical scheme “worked”.  These 

experiments also help determine an optimal choice of ∆t. 

 

 

Figure 33: Explicit PM Visual Results for different values of ∆t for processing the original image without any 

noise added (i.e. “Noise” Image = “Original” Image). 

 

Original Noise

dt=2.5e-01 (1000 iter) 

 Error = 2.82259e-01   

dt=1.0e-01 (1000 iter) 

 Error = 2.12233e-01   

dt=1.0e-02 (1000 iter) 

 Error = 8.72091e-02   

dt=1.0e-03 (1000 iter) 

 Error = 3.36782e-02   

dt=1.0e-04 (1000 iter) 

 Error = 5.93915e-03   

dt=1.0e-05 (1000 iter) 

 Error = 6.34224e-04   

dt=1.0e-06 (1000 iter) 

 Error = 6.38399e-05   
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Figure 34: (ZOOM IN) Explicit PM Visual Results for different values of ∆t for processing the original image 

without any noise added (i.e. “Noise” Image = “Original” Image). 

 

 

It quickly becomes clear that for the Explicit PM method with the parameters 

set in Table 1, the image has no meaning until ∆t is at least 1E-2 or smaller.  The 

Implicit Method demonstrated similar results.   

Original Noise

dt=2.5e-01 (1000 iter) 

 Error = 2.82259e-01   

dt=1.0e-01 (1000 iter) 

 Error = 2.12233e-01   

dt=1.0e-02 (1000 iter) 

 Error = 8.72091e-02   

dt=1.0e-03 (1000 iter) 

 Error = 3.36782e-02   

dt=1.0e-04 (1000 iter) 

 Error = 5.93915e-03   

dt=1.0e-05 (1000 iter) 

 Error = 6.34224e-04   

dt=1.0e-06 (1000 iter) 

 Error = 6.38399e-05   
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Figure 35: Implicit PM Visual Results for different values of ∆t for processing the original image without any 

noise added (i.e. “Noise” Image = “Original” Image). 

 

 

Original Noise

dt=  1 (1000 iter)  

 Error = 4.44855e-01

dt=1.0e-01 (1000 iter) 

 Error = 2.69064e-01   

dt=1.0e-02 (1000 iter) 

 Error = 1.27775e-01   

dt=1.0e-03 (1000 iter) 

 Error = 5.98967e-02   

dt=1.0e-04 (1000 iter) 

 Error = 1.01893e-02   

dt=1.0e-05 (1000 iter) 

 Error = 1.10391e-03   

dt=1.0e-06 (1000 iter) 

 Error = 1.11317e-04   
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Figure 36: (ZOOM IN) Implicit PM Visual Results for different values of ∆t for processing the original image 

without any noise added (i.e. “Noise” Image = “Original” Image). 

 

 

Given processing on the original image only, it that the optimal choice of ∆t wrt 

error, runtime and visual analysis, is ∆t=1E-04.  Although, the stability of the scheme 

has been confirmed and the results are promising, it is essential to examine the 

same results given degraded imagery.  See Section 4.3 for details on the different 

noise simulations.  Our first degradation of the image is by adding random noise: 

 

Original Noise

dt=  1 (1000 iter)  

 Error = 4.44855e-01

dt=1.0e-01 (1000 iter) 

 Error = 2.69064e-01   

dt=1.0e-02 (1000 iter) 

 Error = 1.27775e-01   

dt=1.0e-03 (1000 iter) 

 Error = 5.98967e-02   

dt=1.0e-04 (1000 iter) 

 Error = 1.01893e-02   

dt=1.0e-05 (1000 iter) 

 Error = 1.10391e-03   

dt=1.0e-06 (1000 iter) 

 Error = 1.11317e-04   
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Figure 37: Explicit PM Visual Results for different values of ∆t for processing with RANDOM NOISE added. 

 

 

Original Noise

dt=2.5e-01 (1000 iter) 

 Error = 4.12989e-01   

dt=1.0e-01 (1000 iter) 

 Error = 2.96091e-01   

dt=1.0e-02 (1000 iter) 

 Error = 2.37153e-01   

dt=1.0e-03 (1000 iter) 

 Error = 2.27881e-01   

dt=1.0e-04 (1000 iter) 

 Error = 2.27289e-01   

dt=1.0e-05 (1000 iter) 

 Error = 2.27393e-01   

dt=1.0e-06 (1000 iter) 

 Error = 2.27408e-01   
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Figure 38: Implicit PM Visual Results for different values of ∆t for processing with RANDOM NOISE added. 

 

The second method to degrade the image is to add Gaussian noise to the image:  

 

 

 

Original Noise

dt=  1 (1000 iter)  

 Error = 5.76912e-01

dt=1.0e-01 (1000 iter) 

 Error = 3.98963e-01   

dt=1.0e-02 (1000 iter) 

 Error = 2.73138e-01   

dt=1.0e-03 (1000 iter) 

 Error = 2.38240e-01   

dt=1.0e-04 (1000 iter) 

 Error = 2.28196e-01   

dt=1.0e-05 (1000 iter) 

 Error = 2.27475e-01   

dt=1.0e-06 (1000 iter) 

 Error = 2.27416e-01   
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Figure 39: Explicit PM Visual Results for different values of ∆t for processing with GAUSSIAN NOISE added. 

 

Original Noise

dt=2.5e-01 (1000 iter) 

 Error = 2.83314e-01   

dt=1.0e-01 (1000 iter) 

 Error = 2.18050e-01   

dt=1.0e-02 (1000 iter) 

 Error = 8.73203e-02   

dt=1.0e-03 (1000 iter) 

 Error = 3.74944e-02   

dt=1.0e-04 (1000 iter) 

 Error = 3.80601e-02   

dt=1.0e-05 (1000 iter) 

 Error = 4.18828e-02   

dt=1.0e-06 (1000 iter) 

 Error = 4.24000e-02   
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Figure 40: Implicit PM Visual Results for different values of ∆t for processing with GAUSSIAN NOISE added. 

 

The last degradation of the image is by simulating speckle by multiplying the image 

by random noise:  

 

 

Original Noise

dt=  1 (1000 iter)  

 Error = 4.52899e-01

dt=1.0e-01 (1000 iter) 

 Error = 2.77251e-01   

dt=1.0e-02 (1000 iter) 

 Error = 1.34056e-01   

dt=1.0e-03 (1000 iter) 

 Error = 6.78481e-02   

dt=1.0e-04 (1000 iter) 

 Error = 3.96133e-02   

dt=1.0e-05 (1000 iter) 

 Error = 4.19354e-02   

dt=1.0e-06 (1000 iter) 

 Error = 4.24044e-02   
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Figure 41: Explicit PM Visual Results for different values of ∆t for processing with simulated SPECKLE. 

 

 

Original Noise

dt=2.5e-01 (1000 iter) 

 Error = 2.78195e-01   

dt=1.0e-01 (1000 iter) 

 Error = 2.08724e-01   

dt=1.0e-02 (1000 iter) 

 Error = 8.74320e-02   

dt=1.0e-03 (1000 iter) 

 Error = 3.87985e-02   

dt=1.0e-04 (1000 iter) 

 Error = 4.70776e-02   

dt=1.0e-05 (1000 iter) 

 Error = 5.37942e-02   

dt=1.0e-06 (1000 iter) 

 Error = 5.46358e-02   



74 

 

 

Figure 42: Implicit PM Visual Results for different values of ∆t for processing with with simulated SPECKLE. 

 

Experiments to investigate noise used the parameters in Table 1.  Visual analysis of 

the final image for both explicit and implicit put preference on ∆t = 1E-3. 

Relative Errors of Explicit and Implicit PM on Noisy Images 

Random Noise Gaussian Noise Speckle 

dt Explicit Implicit Explicit Implicit Explicit Implicit 

1E-01 2.96E-01 3.99E-01 2.18E-01 2.77E-01 2.09E-01 2.69E-01 

1E-02 2.37E-01 2.73E-01 8.73E-02 1.34E-01 8.74E-02 1.28E-01 

1E-03 2.28E-01 2.38E-01 3.75E-02 6.78E-02 3.88E-02 6.13E-02 

1E-04 2.27E-01 2.28E-01 3.81E-02 3.96E-02 4.71E-02 4.71E-02 

1E-05 2.27E-01 2.27E-01 4.19E-02 4.19E-02 5.38E-02 5.38E-02 

1E-06 2.27E-01 2.27E-01 4.24E-02 4.24E-02 5.46E-02 5.46E-02 

Avg Time (s) 40 1056 38 1064 37 1072 
Table 4: Errors and average time of Explicit and Implicit schemes wrt different ∆t for simulated noisy images 

 

Original Noise

dt=  1 (1000 iter)  

 Error = 4.45461e-01

dt=1.0e-01 (1000 iter) 

 Error = 2.68985e-01   

dt=1.0e-02 (1000 iter) 

 Error = 1.28146e-01   

dt=1.0e-03 (1000 iter) 

 Error = 6.12822e-02   

dt=1.0e-04 (1000 iter) 

 Error = 4.71067e-02   

dt=1.0e-05 (1000 iter) 

 Error = 5.37937e-02   

dt=1.0e-06 (1000 iter) 

 Error = 5.46357e-02   
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In contrast to the experiment using the original image demonstrating the 

theory that the error decreases with decreasing ∆t without lower bound is not 

validated in the cases processing the noisy images.  In fact, with ∆t < 1E-3, the error 

stays the same or gets worse.    Also, looking at the different errors for a specific 

noise source, it shows that the Perona-Malik numerical schemes are most effective 

against Gaussian and Speckle noise, hence the use in reduction in speckle for 

Synthetic Aperture Radar (SAR) and ultrasound imagery, where speckle is a  

common artifact. 

 

Figure 43: Errors of Explicit (circle) and Implicit (asterix) Methods wrt different ∆t. 
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So now with all experiments reviewed, the optimal (suggested) choice for a time 

step to run the Explicit and Implicit PM Numerical Schemes is with ∆t = 1E-3 and not 

to far less. 

Overall run time is an extremely significant factor in the discussion of explicit 

versus implicit computational schemes.  The MATLAB Profiler application was used 

to examine the timing of the programs.  The Implicit PM scheme always takes more 

time and the majority of the time is spent creating implicit scheme coefficients 

matrix within pm_implicit_matrix.m.  Approximately 78% of the total runtime is 

spent on creating this matrix of coefficients.  Future efforts can be made on 

optimizing the run time for computing this matrix, possibly starting with 

vectorization rather than looping thru each element.   

 
Figure 44: MATLAB Profile to view time consumption when running MASTER_RUN_PERONA_MALIK.m 

script 

 

5.2 Computational Grid and Interpolation Methods 
 

The numerical schemes were written to allow for potential investigation of 

different values of ∆x and ∆y to transform an original input image onto a 
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computational grid.  The methods imply reciprocal fractions, i.e. given integers M 

and N, ∆x=1/M and ∆y=1/N.   

5.2.1 Finer Computational Grid: Bilinear vs. Spline Interpolation 
 

For examining different interpolation methods all parameters were held 

constant (see Table 1) with ∆t=1E-3.  In order to run the interpolation schemes on a 

finer grid, a mesh grid space must first be created to step in the x direction from 1 to 

Imax and step in the y direction from 1 to Jmax.  See below for a visual of the 

original image as a mesh plotted next to the mesh of the computational grid for the 

bilinear interpolation: 

    

Figure 45: Bilinear Interpolation of Original Image (BLUE) to 2x Finer Computational Grid (RED) with dx= ½ 

and dy = ½ and ZOOM (right). 
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See below for a visual of the original image as a mesh plotted next to the 

mesh of the computational grid for the spline interpolation: 

    
Figure 46: Spline Interpolation of Original Image (BLUE) to transform to 2x Finer Computational Grid (RED) 

with dx= ½ and dy = ½ with ZOOM (right) 

 

It is not easy to visually see the differences of the computational grids 

generated from bilinear versus spline interpolation visually.  Experiments were run 

with the original image (no noise added) to compare error results using either 

bilinear or spline interpolation with fixed ∆t = 1, 1/2, 1/10, and 1/20.   This analysis 

was performed with the Explicit PM Method: 
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Figure 47: Explicit PM Visual Results with Bilinear Interpolation (2nd row) and Spline Interpolation (3rd Row) 

for ∆x=∆y=1.  No Noise Added.  Each row has the final image then the downsampled image. 

 

 

Figure 48: Explicit PM Visual Results with Bilinear Interpolation (2nd row) and Spline Interpolation (3rd Row) 

for ∆x=∆y=1/2.  No Noise Added.  Each row has the final image then the downsampled image. 

 

Original Noise

Explicit BILINEAR

dx=  01,dy=  01

dt=1.0e-03 (  3 iter) 

 Error = 1.91409e-04

Explicit SPLINE

dx=  01,dy=  01

dt=1.0e-03 (  3 iter) 

 Error = 1.91409e-04

Original Noise

Explicit BILINEAR

dx=5.00e-01,dy=5.00e-01

dt=1.0e-03 (  3 iter) 

 Error = 2.64498e-04

Explicit SPLINE

dx=5.00e-01,dy=5.00e-01

dt=1.0e-03 (  3 iter) 

 Error = 1.89593e-04
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Figure 49: Explicit PM Visual Results with Bilinear Interpolation (2nd row) and Spline Interpolation (3rd Row) 

for ∆x=∆y=1/10.  No Noise Added.  Each row has the final image then the downsampled image. 

 

 

Figure 50: Explicit PM Visual Results with Bilinear Interpolation (2nd row) and Spline Interpolation (3rd Row) 

for ∆x=∆y=1/20.  No Noise Added.  Each row has the final image then the downsampled image. 

 

Original Noise

Explicit BILINEAR

dx=1.00e-01,dy=1.00e-01

dt=1.0e-03 (  5 iter) 

 Error = 1.86838e-03

Explicit SPLINE

dx=1.00e-01,dy=1.00e-01

dt=1.0e-03 (  3 iter) 

 Error = 7.06958e-04

Original Noise

Explicit BILINEAR

dx=5.00e-02,dy=5.00e-02

dt=6.2e-04 (  3 iter) 

 Error = 1.41392e-03

Explicit SPLINE

dx=5.00e-02,dy=5.00e-02

dt=6.2e-04 (  3 iter) 

 Error = 7.70429e-04
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Below are the numerical results consolidated into a table.  From the results, 

we can see that for processing the original image with ∆t = 1E-3, the SPLINE 

interpolation yields better results for the Explicit PM Scheme. 

 

BILINEAR SPLINE 

Imax Jmax dx=dy Rel. Error Time (s) Rel. Error Time (s) 

101 101 1 1.9141E-04 0.2 1.9141E-04 0.2 

201 201 1/2 2.6450E-04 0.6 1.8959E-04 0.5 

1001 1001 1/10 1.8684E-03 27.2 7.0696E-04 16.4 

2001 2001 1/20 1.4139E-03 101.1 7.7043E-04 101.0 
Table 5: Explicit PM Numerical Results for Bilinear and Spline Interpolation with different ∆x=∆y values 

 

5.2.2 Non-Uniform Computational Grid 
 

In this thesis the focus was on uniform grid spaces but all schemes were 

written to allow for running experiments on a non-uniform grid space (i.e. where ∆x 

foes not equal ∆y).  See examples below for preliminary results, to demonstrate the 

functionality using SPLINE interpolation and ∆t=1E-3: 
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Figure 51: Explicit PM on Non-Uniform Computational Grid with ∆x=1 and ∆y=1/2. Spline Interpolation.  No 

Noise Added.  Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)).  Bottom 

Right is the downsampled image (back to original size) 

 

 

 

Figure 52: Explicit PM on Non-Uniform Computational Grid with ∆x=1/2 and ∆y=1. Spline Interpolation.  No 

Noise Added.  Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)).  Bottom 

Right is the downsampled image (back to original size) 

 

Original Noise

Explicit-Final

dx=  01,dy=5.00e-01

dt=1.0e-03 ( 20 iter) 

 Error = 2.34146e-03

Original Noise

Explicit-Final

dx=5.00e-01,dy=  01

dt=1.0e-03 ( 20 iter) 

 Error = 3.65708e-03
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Figure 53: Explicit PM on Non-Uniform Computational Grid with ∆x=1 and ∆y=1/3. Spline Interpolation.  No 

Noise Added.  Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)).  Bottom 

Right is the downsampled image (back to original size) 

 

 

 

Figure 54: Explicit PM on Non-Uniform Computational Grid with ∆x=1/3 and ∆y=1. Spline Interpolation.  No 

Noise Added.  Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)).  Bottom 

Right is the downsampled image (back to original size) 

 

 

Original Noise

Explicit-Final

dx=  01,dy=3.33e-01

dt=1.0e-03 ( 20 iter) 

 Error = 4.34596e-03

Original Noise

Explicit-Final

dx=3.33e-01,dy=  01

dt=1.0e-03 ( 20 iter) 

 Error = 6.40787e-03
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Figure 55: Explicit PM on Non-Uniform Computational Grid with ∆x=∆y=1/20 . Spline Interpolation.  No Noise 

Added.  Bottom Right is the final image (larger=more elements).  Bottom Left is the downsampled image (back 

to original size) 

 

 

Figure 56: Explicit PM on Non-Uniform Computational Grid with ∆x=1 and ∆y=1/2. Spline Interpolation.  No 

Noise Added.  Bottom Left is the final image (larger image (i.e. more elements since dx and dy are < 1)).  Bottom 

Right is the downsampled image (back to original size) 

 

The optimal choice of a non-uniform grid spacing will depend on the details 

of the original input image or what dimension needs to be emphasiezed in 

computation.   Analysis of the few results summarized below shows that for this 

Original Noise

Explicit-Final

dx=5.00e-01,dy=3.33e-01

dt=1.0e-03 (  3 iter) 

 Error = 2.40581e-04

Original Noise

Explicit-Final

dx=3.33e-01,dy=5.00e-01

dt=1.0e-03 (  3 iter) 

 Error = 3.40141e-04
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subset of the cameraman.tif image, the Explicit PM numerical scheme with SPLINE 

interpolation, generally more accurate when ∆x > ∆y. 

Imax Jmax dx dy dt # Iter Rel. Error Iter Error Time (s) 

201 101 1 1/2 0.001 20 2.3415E-03 1.1080E-04 5.2 

101 201 1/2 1 0.001 20 3.6571E-03 1.6896E-04 3.5 

301 101 1 1/3 0.001 20 4.3460E-03 1.9623E-04 3.7 

101 301 1/3 1 0.001 20 6.4079E-03 2.7931E-04 3.5 

301 201 1/2 1/3 0.001 3 2.4058E-04 7.2920E-05 0.8 

201 301 1/3 1/2 0.001 3 3.4014E-04 9.5883E-05 1.2 
Table 6: Explicit PM Scheme on Non-Uniform Grid Spacing 
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CHAPTER VI – CONCLUSION AND FUTURE WORK 

Two numerical methods were investigated for implementing the Perona-

Malik equation for image denoising.  The Explicit PM Scheme that is widely used in 

the image processing world, is well-known.  In this paper we were able to identify 

exactly what factors contributed to a stable solution when running the explicit 

method.  The implicit numerical scheme that was examined proved to have much 

more theoretically sound stability without any conditions on ∆t.  Unfortunately, with 

regards to computational time metrics, it is extremely hard to make the argument to 

employ the implicit method due to its extremely high cost in terms of computation 

time.  It is a very slow method.  Dependent upon the desired end result, parameters 

chosen and computing platform, a user may be willing to expend the time cost for 

the more stable solution from the implicit scheme.  Future work on porting the 

implicit computation onto a high performance computing platform may hold 

promise in bringing down the runtimes.  Extending the research of the Perona-Malik 

equation and other nonlinear diffusion functions via other stable methods such as 

Crank-Nicolson may yield a better trade-off between quality, stability and run-time., 

especially if implementing the Alternating Direction Implicit Method.  Running on 

user-defined computational grid spaces that are finer, coarser or non-uniform also 

opens doors to a wide array of experiments tailorable to the unique attributes of the 
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input image.   Understanding the theoretical stability and convergence properties of 

the numerical schemes being implemented will help shape expectations of various 

algorithms.  The immediate plan after this work would be to examine the implicit 

numerical schemes for the fourth order nonlinear diffusion models for image noise 

reduction, especially those presented by You & Kaveh [2]  and Hajiaboli [3]. 
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APPENDIX A – MATLAB FOR EXPLICIT PM NUMERICAL SCHEME 

 

 

function [im_final varargout] = 

pm_explicit(im_orig,kval,dx,dy,dt,nsteps,tol,option_g,varargin) 

% 

% Perona-Malik Explicit Code 

% 

% FUNCTION      PM_EXPLICIT_LOOP 

% 

% USAGE         [im_final <dt> <n> iter_err>]=pm_explicit_loop(im_orig, 

%                                                               kval, 

%                                                             dx,dy,dt, 

%                                                            nsteps,tol 

%                                                             option_g, 

%                                                            <verbose>) 

% 

% INPUTS    im_orig     = original image that requires smoothing, 

%                         denoising, despeckle, etc 

%           kval        = constant that scales down the variable of the 

%                         g function 

%           dx          = step size in x direction (delta x) used to 

%                         create computational grid, currently a 

%                         scalar (may be a function in future) 

%           dy          = step size in y direction (delta y) used to 

%                         create computational grid, currently a 

%                         scalar (may be a function in future) 

%           dt          = step size in time (delta t) used to create 

%                         matrix operator used to solve the implicit 

%                         system.   

%                         Restricted to (dx^2)*(dy^2)/(2*(dx^2 + dy^2)) 

%           nsteps      = number of steps in t, i.e. the maximum  

%                         allowed number of iterations (or solutions 

%                         to the PDE), if the image does not converge 

%           tol         = tolerance for image error between iterations 

%                         since ||image(n+1)|| < ||image(n)||, so as 

%                         the iterations continue the image doesn't 

%                         changes as much.  We stop as soon as the rel 

%                         error < tolerance 

%           option_g    = choice of g function (hard-coded) 

%                         1 ==>  exp(-(nrm_gradI/kval).^2) 

%                         2 ==>  1./(1+(nrm_gradI/kval).^2) 

%                         otherwise gaussian filter with coeffiecients 

%                         = 1 

% (optional) verbose    = 'verbose' or 'v' to display plots of the 
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%                          various images created in the PM process 

% 

% OUTPUTS    im_final     = original image that requires smoothing, 

%                           denoising, despecklye, etc 

% (optional) dt           = return the dt used, in case dt was greater 

%                           than stability condition, it will be set to 

%                           99% of the maximum allowed value  

% (optional) n            = final number of iterations run to reach tol 

%                           or if tol was not reached, n = nsteps 

% (optional) iter_err     = relative error of last two images at final  

%                       iteration = norm(im_prev-im_pad)/norm(im_prev) 

% 

  

verbose = 'none'; 

  

if length(varargin) >= 1 

    verbose = varargin{1}; 

end 

  

% Calculate delta-time 

dtmax = (dx^2)*(dy^2)/(2*(dx^2 + dy^2)); 

  

if dt >= dtmax 

    dtbad = dt; 

    dt = dtmax - abs(dtmax)/100; 

    dterr=sprintf('dt = %d > dtmax = %d, default dt = %d (99pct of 

dtmax)',... 

        dtbad,dtmax,dt); 

    disp(dterr) 

end 

  

% lambda1 = dt/(dx^2); 

% lambda2 = dt/(dy^2); 

  

% Convert image to double 

im_orig = im2double(im_orig); 

  

% Get dimensions of the image 

[Iorig_max Jorig_max] = size(im_orig); 

  

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

    % In verbose mode, create figure of different images created 

    figure(1), imshow(im_orig), title('Original') 

%    figure, subplot 231, imshow(im_orig), title('Original') 

end 

  

  

% Create mesh of original image space and create mesh based on dx,dy 

steps 

[im_origX,im_origY] = meshgrid(1:Iorig_max,1:Jorig_max); 

[im_compX,im_compY] = meshgrid(1:dx:Iorig_max,1:dy:Jorig_max); 

  

% Use interpolation to create the intensities of the computational grid 
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im_comp = 

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'linear'); 

  

% figure,mesh(im_origX,im_origY,im_orig) 

% hold on 

% mesh(im_compX,im_compY,im_comp+50) 

% hold off 

  

[Imax,Jmax] = size(im_comp); 

  

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

    % In verbose mode, create figure of different images created 

    figure(2), imshow(im_comp), title('Comput. Grid') 

end 

  

  

  

im_pad = zeros(Imax+2,Jmax+2); 

im_pad(2:Imax+1,2:Jmax+1) = im_comp; 

im_pad(1,2:Jmax+1)      = im_pad(3,2:Jmax+1); 

im_pad(Imax+2,2:Jmax+1) = im_pad(Imax,2:Jmax+1); 

im_pad(2:Imax+1,1)      = im_pad(2:Imax+1,3); 

im_pad(2:Imax+1,Jmax+2) = im_pad(2:Imax+1,Jmax); 

  

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

    % In verbose mode, create figure of different images created 

    figure(3), imshow(im_pad), title('Padded CompGrid') 

end 

  

% Solve for new intensity using only interior of padded computational 

grid 

for n=1:nsteps 

  

    % Find c at each point, in order to find c at each point we need  

  

    % Calculate the gradient of the intensities (of the padded image) 

    gradI_x = zeros(size(im_pad)); 

    gradI_y = zeros(size(im_pad)); 

  

    for i=2:Imax+1 

        for j=2:Jmax+1 

            gradI_x(i,j) = (im_pad(i+1,j)-im_pad(i-1,j))/(2*dx); 

            gradI_y(i,j) = (im_pad(i,j+1)-im_pad(i,j-1))/(2*dy); 

        end 

    end 

  

    % Calculate the 2-norm of the gradient of the intensities 

    nrm_gradI = sqrt(gradI_x.^2 + gradI_y.^2); 

  

    % Determine and evaluate the g function  

    switch option_g 

        case 1 

            gfun = exp(-(nrm_gradI/kval).^2); 
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        case 2 

            gfun = 1./(1+(nrm_gradI/kval).^2); 

        otherwise 

            gfun = ones(size(nrm_gradI));       % Gaussian Kernel 

    end 

  

    cval = gfun;     % Is this step necessary??? 

  

    if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

        % In verbose mode, create figure of different images created 

        figure(4), imshow(cval), title('C Values') 

    end 

  

    

    % CHECK for no change between previous and current timesteps (< 

tol) 

    im_prev = im_pad; 

     

    for i=2:Imax+1 

        for j=2:Jmax+1 

            % Perform all calculations wrt X 

            A1 = (cval(i+1,j)+cval(i,j))*(im_pad(i+1,j)-im_pad(i,j))/2; 

            A2 = (cval(i,j)+cval(i-1,j))*(im_pad(i,j)-im_pad(i-1,j))/2; 

            A = dt*(A1 - A2)/dx^2; 

             

            % Perform all calculations wrt Y 

            B1 = (cval(i,j+1)+cval(i,j))*(im_pad(i,j+1)-im_pad(i,j))/2; 

            B2 = (cval(i,j)+cval(i,j-1))*(im_pad(i,j)-im_pad(i,j-1))/2; 

            B = dt*(B1 - B2)/dy^2; 

             

            im_pad(i,j) = im_pad(i,j) + A + B; 

        end 

    end 

  

    iter_err = norm(im_prev - im_pad)/norm(im_prev); 

    if iter_err < tol && n > 2 

        break 

    end 

     

end 

  

im_final = im_pad(2:Imax+1,2:Jmax+1); 

results=sprintf('Total Iterations = %3d (dt = %3.1d), Iteration Error = 

%6.4d (< tol = %5.3d)',... 

    n,dt,iter_err,tol); 

disp(results); 

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

    % In verbose mode, create figure of different images created 

    figure(5), imshow(im_final), title('Final PM') 

end 

  

varargout{1} = dt; 

varargout{2} = n; 
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varargout{3} = iter_err; 

 

Figure 57: MATLAB Function – pm_explicit_dt.m – Implementation of Explicit PM Numerical Scheme 
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APPENDIX B – MATLAB FOR IMPLICIT PM NUMERICAL SCHEME 

 

function [im_final varargout] = 

pm_implicit(im_orig,kval,dx,dy,dt,nsteps,tol,option_g,varargin) 

% 

% Perona-Malik Implicit Code 

% 

% FUNCTION      PM_IMPLICIT_LOOP 

% 

% USAGE     [im_final <dt> <n> <iter_err>]=pm_implicit_loop(im_orig, 

%                                                           kval, 

%                                                           dx,dy,dt, 

%                                                           nsteps,tol 

%                                                           option_g, 

%                                                           <verbose>) 

% 

% INPUTS    im_orig     = original image that requires smoothing, 

%                         denoising, despecklye, etc 

%           kval        = constant that scales down the variable of the 

%                         g function 

%           dx          = step size in x direction (delta x) used to 

%                         create computational grid, currently a 

%                         scalar (may be a function in future) 

%           dy          = step size in y direction (delta y) used to 

%                         create computational grid, currently a 

%                         scalar (may be a function in future) 

%           dt          = step size in time (delta t) used to create 

%                         matrix operator used to solve the implicit 

%                         system.  No restriction except (0 < dt < 1) 

%           nsteps      = number of steps in t, i.e. the maximum  

%                         allowed number of iterations (or solutions 

%                         to the PDE), if the image does not converge 

%           tol         = tolerance for image error between iterations 

%                         since ||image(n+1)|| < ||image(n)||, so as 

%                         the iterations continue the image doesn't 

%                         changes as much.  We stop as soon as the rel 

%                         error < tolerance 

%           option_g    = choice of g function (hard-coded) 

%                         1 ==>  exp(-(nrm_gradI/kval).^2) 

%                         2 ==>  1./(1+(nrm_gradI/kval).^2) 

%                         otherwise gaussian filter with coeffiecients 

%                         = 1 

%(optional) verbose     = 'verbose' or 'v' to display plots of the 

%                          various images created in the PM process 

% OUTPUTS   im_final     = original image that requires smoothing, 



94 

 

%                          denoising, despecklye, etc 

%(optional) dt           = same dt as above (kept here for consistency  

%                          with pm_explicit_dt.m 

%(optional) n            = final number of iterations run to reach tol 

%                          or if tol was not reached, n = nsteps 

%(optional) iter_err     = relative error of last two images at final  

%                        iteration = norm(im_prev-im_pad)/norm(im_prev) 

% 

  

  

verbose = 'none'; 

  

if length(varargin) >= 1 

  

    verbose = varargin{1}; 

end 

  

% DO NOT HAVE RESTRICTION ON DELTA-T 

  

% Convert image to double 

im_orig = im2double(im_orig); 

  

% Get dimensions of the image 

[Iorig_max Jorig_max] = size(im_orig); 

  

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

    % In verbose mode, create figure of different images created 

    figure(1), imshow(im_orig), title('Original') 

%    figure, subplot 231, imshow(im_orig), title('Original') 

end 

  

% Create mesh of original image space and create mesh based on dx,dy 

steps 

[im_origX,im_origY] = meshgrid(1:Iorig_max,1:Jorig_max); 

[im_compX,im_compY] = meshgrid(1:dx:Iorig_max,1:dy:Jorig_max); 

  

% Use interpolation to create the intensities of the computational grid 

im_comp = 

interp2(im_origX,im_origY,im_orig,im_compX,im_compY,'linear'); 

  

% figure,mesh(im_origX,im_origY,im_orig) 

% hold on 

% mesh(im_compX,im_compY,im_comp+50) 

% hold off 

  

[Imax,Jmax] = size(im_comp); 

  

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

    % In verbose mode, create figure of different images created 

    figure(2), imshow(im_comp), title('Comput. Grid') 

%    subplot 232, imshow(im_comp), title('Comput. Grid') 

end 
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im_pad = zeros(Imax+2,Jmax+2); 

im_pad(2:Imax+1,2:Jmax+1) = im_comp; 

im_pad(1,2:Jmax+1)      = im_pad(3,2:Jmax+1); 

im_pad(Imax+2,2:Jmax+1) = im_pad(Imax,2:Jmax+1); 

im_pad(2:Imax+1,1)      = im_pad(2:Imax+1,3); 

im_pad(2:Imax+1,Jmax+2) = im_pad(2:Imax+1,Jmax); 

  

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

    % In verbose mode, create figure of different images created 

    figure(3), imshow(im_pad), title('Padded CompGrid') 

  %  subplot 233, imshow(im_pad), title('Padded CompGrid') 

end 

  

% Do we need im_pad anymore?  can we simply use im_comp at this point 

% Solve for new intensity by solving x = A\b 

  

for n=1:nsteps 

  

    % Find c at each point, in order to find c at each point we need to 

    % calculate the gradient of the intensities (of the padded image) 

    gradI_x = zeros(size(im_pad)); 

    gradI_y = zeros(size(im_pad)); 

  

    for i=2:Imax+1 

        for j=2:Jmax+1 

            gradI_x(i,j) = (im_pad(i+1,j)-im_pad(i-1,j))/(2*dx); 

            gradI_y(i,j) = (im_pad(i,j+1)-im_pad(i,j-1))/(2*dy); 

        end 

    end 

  

    % Calculate the 2-norm of the gradient of the intensities 

    nrm_gradI = sqrt(gradI_x.^2 + gradI_y.^2); 

  

    % Determine and evaluate the g function  

    switch option_g 

        case 1 

            gfun = exp(-(nrm_gradI/kval).^2); 

        case 2 

            gfun = 1./(1+(nrm_gradI/kval).^2); 

        otherwise 

            gfun = ones(size(nrm_gradI));       % Gaussian Kernel 

    end 

  

    cval = gfun;     % Is this step necessary??? 

  

    if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

        % In verbose mode, create figure of different images created 

        figure(4), imshow(cval), title('C Values') 

    %    subplot 234, imshow(cval), title('C Values') 

    end 

    tic 
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    % Generate IJxIJ matrix to solve implicit system 

    A = pm_implicit_matrix(Imax,Jmax,dt,dx,dy,cval); 

    toc 

     

    % CHECK for no change between previous and current timesteps (< 

tol) 

    im_prev = im_pad; 

    %toc 

     

    im_bvec = reshape(im_pad(2:Imax+1,2:Jmax+1),Imax*Jmax,1); 

    %toc 

     

    im_xvec = A \ im_bvec; 

    %toc 

     

    im_pad(2:Imax+1,2:Jmax+1) = reshape(im_xvec,Imax,Jmax); 

    toc 

  

    iter_err = norm(im_prev - im_pad)/norm(im_prev); 

    if iter_err < tol && n > 2 

        break 

    end 

     

end 

clear A; 

  

im_final = im_pad(2:Imax+1,2:Jmax+1); 

results=sprintf('Total Iterations = %3d (dt = %3.1d), Iteration Error = 

%6.4d (< tol = %5.3d)',... 

    n,dt,iter_err,tol); 

disp(results); 

if strcmpi(verbose,'v') || strcmpi(verbose,'verbose')  

    % In verbose mode, create figure of different images created 

    figure(5), imshow(im_final), title('Final PM') 

%    subplot 235, imshow(im_final), title('Final PM') 

end 

  

varargout{1} = dt; 

varargout{2} = n; 

varargout{3} = iter_err; 

 

 

Figure 58: MATLAB Function – pm_implicit_dt.m – Implementation of Implicit PM Numerical Scheme 
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APPENDIX C – MATLAB SCRIPT TO RUN EXPERIMENTS WITH 1000 

ITERATIONS 

 

% Script: MASTER_RUN_PERONA_MALIK_1000_2.m 

% Master script to run various 

  

clear all, close all, diary off; 

%% 

  

profile on 

  

diary MASTER_RUN_PERONA_MALIK_Run_1000.txt 

format longeng 

  

%% 

nsteps = 1000; 

tol = 1e-9; 

im_cam = imread('cameraman.tif'); 

  

subX = 30:130; 

subY = 80:180; 

im_orig = im_cam(subX,subY); 

mypmresults_sub.im_orig = im_orig; 

  

figure, imshow(im_orig) 

  

im_cam_dbl = im2double(im_cam); 

  

noise_factor = 1/5; 

noise_floor = rand(size(im_cam_dbl))*noise_factor; 

im_cam_noise = im_cam_dbl + noise_floor; 

  

im_cam_gaussian = imnoise(im_cam,'gaussian'); 

  

im_cam_speckle = imnoise(im_cam,'speckle'); 

  

  

%% Run ORIGINAL IMAGE 

fignum = 500; 

PM_Explicit_Run 

exp_results{1} = errvals; 

  

clear im_noise 

fignum = 550; 
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PM_Implicit_Run 

imp_results{1} = errvals; 

  

  

% Random Additive Noise directly to chip 

  

im_noise = im_cam_noise(subX,subY); 

mypmresults_sub.im_addnoise = im_noise; 

  

fignum = 600; 

PM_Explicit_Run 

figure(gcf),title('PM Explicit: loglog(error) with RANDOM NOISE (CHIP-

ADD)') 

exp_results{2} = errvals; 

  

fignum = 650; 

PM_Implicit_Run 

figure(gcf),title('PM Implicit: loglog(error) with RANDOM NOISE (CHIP-

ADD)') 

imp_results{2} = errvals; 

  

%% Gaussian noise 

im_noise = im_cam_gaussian(subX,subY); 

mypmresults_sub.im_gaussian = im_noise; 

  

fignum = 700; 

PM_Explicit_Run 

figure(gcf),title('PM Explicit: loglog(error) with GAUSSIAN NOISE') 

exp_results{3} = errvals; 

  

fignum = 750; 

PM_Implicit_Run 

figure(gcf),title('PM Implicit: loglog(error) with GAUSSIAN NOISE') 

imp_results{3} = errvals; 

  

  

%% Speckle (Multiplicative Noise) 

im_noise = im_cam_speckle(subX,subY); 

mypmresults_sub.im_speckle = im_noise; 

  

fignum = 800; 

PM_Explicit_Run 

figure(gcf),title('PM Explicit: loglog(error) with SPECKLE NOISE') 

exp_results{4} = errvals; 

  

fignum = 850; 

PM_Implicit_Run 

figure(gcf),title('PM Explicit: loglog(error) with SPECKLE NOISE') 

imp_results{4} = errvals; 

  

mypmresults_sub.explicit = exp_results; 

mypmresults_sub.implicit = imp_results; 
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diary off 

  

profile viewer 

 

Figure 59: MATLAB Script – MASTER_RUN_PERONA_MALIK_1000.m 

 

 

 

 

diary PM_Explicit_Run_1000.txt 

  

disp('=================================================================

======='); 

disp(' '); 

disp('Running PM_Explicit_Converge.m Script to view decline in error 

rates'); 

  

% Check that the im_noise image exists, if not, use std cameraman image 

if exist('im_orig') == 0 

    im_orig = imread('cameraman.tif'); 

    im_orig = im_orig(1:174,1:174); 

    disp('No original image was identified. Using cameraman.tif'); 

else 

    disp('An original image in memory was identified. Using im_orig'); 

  

end 

  

  

if exist('im_noise') == 0 

    im_noise = im_orig; 

    disp('No noisy image was identified. Using im_orig directly'); 

    myloglogtitle = sprintf('PM Explicit: loglog(error) with NO NOISE - 

original'); 

    %fignum = 100; 

else 

    disp('A noisy image in memory was identified. Using im_noise'); 

    myloglogtitle = sprintf('PM Explicit: loglog(error) with NOISE 

added'); 

    %fignum = 200; 

end 

  

  

% Set parameters for Perona Malik Explicit Scheme 

if exist('nsteps') == 0 

    nsteps = 10; 

end 

if exist('tol') == 0 

    tol = 1e-8; 

end 
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kval    = 1/7; 

option  = 1; 

  

  

dx      = 1; 

dy      = 1; 

  

disp(sprintf('Parameters:\n - K = %4.2d\n - Max N Steps = %4d\n - 

Option %1d (choice of g)\n - Stepsizes: dx = %d, dy = %d',... 

    kval,nsteps,option,dx,dy)); 

disp(sprintf(' - Tolerance = %d (between successive iterations)',tol)); 

disp('-----'); 

  

dvals = 0:6; 

num_dt = length(dvals); 

  

num_plots = num_dt+2; 

figrows = ceil(sqrt(num_plots)); 

figcols = ceil(sqrt(num_plots)); 

  

if exist('fignum') == 0 

    fignum = 101 

end 

figure(fignum), subplot(figrows,figcols,1), imshow(im_orig), 

title('Original') 

figure(fignum), subplot(figrows,figcols,2), imshow(im_noise), 

title('Noise') 

  

i = 0; 

for d = dvals 

    i = i+1; 

    dt = 10^(-d); 

    

    tstart = tic; 

     

    [im_final exp_dt exp_n(i) exp_ierr(i)] = 

pm_explicit(im_noise,kval,dx,dy,dt,nsteps,tol,option); 

    %[im_final exp_dt exp_n(i) exp_ierr(i)] = 

pm_explicit_dt(im_noise,kval,dx,dy,dt,nsteps,option,tol,'v'); 

     

    % Collect the dt values in a single array 

    dtvals(i) = exp_dt; 

     

    % Downsample final image to return to original image size 

    im_down = downsample(downsample(im_final',ceil(1/dx))',ceil(1/dy)); 

     

    % Calculate error 

    exp_err(i) = norm(im2double(im_orig)-

im_down)/norm(im2double(im_orig)); 

  

    exptime(i) = toc(tstart); 

  

    figure(fignum), subplot(figrows,figcols,i+2),imshow(im_down),... 
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        title(sprintf('dt=%3.1d (%3d iter) \n Error = 

%7.5d',exp_dt,exp_n(i),exp_err(i))); 

end 

  

format shorteng 

disp('errvals = [dt-values #Iterations FinalError IterError 

Time(sec)]'); 

errvals = [dtvals' exp_n' exp_err' exp_ierr' exptime'] 

figure(fignum+1), loglog(dtvals,exp_err), title(myloglogtitle),... 

    xlabel('Timestep values'),ylabel('norm(orig-final)/norm(orig)') 

  

diary off 

 

 

Figure 60: MATLAB Script - PM_Explicit_Run.m 

 

 

 

 

diary PM_Implicit_Run_1000.txt 

  

disp('=================================================================

======='); 

disp(' '); 

disp('Running PM_Implicit_Converge.m Script to view decline in error 

rates'); 

  

% Check that the im_noise image exists, if not, use std cameraman image 

if exist('im_orig') == 0 

    im_orig = imread('cameraman.tif'); 

    im_orig = im_orig(1:174,1:174); 

    disp('No original image was identified. Using cameraman.tif'); 

else 

    disp('An original image in memory was identified. Using im_orig'); 

  

end 

  

  

if exist('im_noise') == 0 

    im_noise = im_orig; 

    disp('No noisy image was identified. Using im_orig directly'); 

    myloglogtitle = sprintf('PM Implicit: loglog(error) with NO NOISE - 

original'); 

else 

    disp('A noisy image in memory was identified. Using im_noise'); 

    myloglogtitle = sprintf('PM Implicit: loglog(error) with NOISE'); 

end 

  

  

% Set parameters for Perona Malik Implicit Scheme 

if exist('nsteps') == 0 

    nsteps = 10; 
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end 

if exist('tol') == 0 

    tol = 1e-8; 

end 

kval    = 1/7; 

option  = 1; 

  

dx      = 1; 

dy      = 1; 

  

disp(sprintf('Parameters:\n - K = %4.2d\n - Max N Steps = %4d\n - 

Option %1d (choice of g)\n - Stepsizes: dx = %d, dy = %d',... 

    kval,nsteps,option,dx,dy)); 

disp(sprintf(' - Tolerance = %d (between successive iterations)',tol)); 

disp('-----'); 

  

dvals = 0:6; 

num_dt = length(dvals); 

  

num_plots = num_dt+2; 

figrows = ceil(sqrt(num_plots)); 

figcols = ceil(sqrt(num_plots)); 

  

if exist('fignum') == 0 

    fignum = 99 

end 

figure(fignum), subplot(figrows,figcols,1), imshow(im_orig), 

title('Original') 

tic 

figure(fignum), subplot(figrows,figcols,2), imshow(im_noise), 

title('Noise') 

toc 

i = 0; 

for d = dvals 

    i = i+1; 

    dt = 10^(-d); 

    

    tstart = tic; 

     

    [im_final imp_dt imp_n(i) imp_ierr(i)] = 

pm_implicit(im_noise,kval,dx,dy,dt,nsteps,tol,option); 

    %[im_final imp_dt imp_n(i) imp_ierr(i)] = 

pm_implicit_dt(im_noise,kval,dx,dy,dt,nsteps,option,tol,'v'); 

     

    % Collect the dt values in a single array 

    dtvals(i) = imp_dt; 

     

    % Downsample final image to return to original image size 

    im_down = downsample(downsample(im_final',ceil(1/dx))',ceil(1/dy)); 

     

    % Calculate error 

    imp_err(i) = norm(im2double(im_orig)-

im_down)/norm(im2double(im_orig)); 
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    imptime(i) = toc(tstart); 

  

    figure(fignum), subplot(figrows,figcols,i+2),imshow(im_down),... 

        title(sprintf('dt=%3.1d (%3d iter) \n Error = 

%7.5d',imp_dt,imp_n(i),imp_err(i))); 

end 

  

format shorteng 

disp('errvals = [dt-values #Iterations FinalError IterError 

Time(sec)]'); 

errvals = [dtvals' imp_n' imp_err' imp_ierr' imptime'] 

figure(fignum+1), loglog(dtvals,imp_err), title(myloglogtitle),... 

    xlabel('Timestep values'),ylabel('norm(orig-final)/norm(orig)') 

  

diary off 

 

Figure 61: MATLAB Script - PM_Implicit_Run.m 
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