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ABSTRACT 

THE EFFECTS OF PERCEIVED COMPETENCE, PREDICTABILITY, AND 
CONTEXT OF INTERACTION ON PERCEIVED HUMAN-LIKENESS AND 
HUMAN-AI INTERACTIONS  

Stephanie Tulk Jesso, Ph.D. 

George Mason University, 2020 

Dissertation Director: Dr. Eva Wiese 

 

As robots and AI are designed for social interactions and incorporated into the 

world, it is important to examine the extent to which humans can perceive such artificial 

agents as humanlike based solely on the observation of their behaviors. The while 

psychologists, neuroscientists, computer scientists and designers have studied related 

phenomena for many years, more work is required to develop a deep understanding of 

how people perceive the actions of AI compared to humans within a complex, interactive 

environments, and how this varies as a function of the AI’s competence in navigating that 

environment.  

The experiments outlined in this dissertation attempt to clarify how individuals 

make distinctions of human-likeness on the basis of observable behavior, how the 

perception of human-likeness is related to the perceptions of competence at a given task 

as well as how predictable or explainable these behaviors are perceived to be, and finally 



xiii 
 

how the context in which these judgements are made contributes to expectations and 

overall perceptions of a complex mind.  

The results from these experiments suggest (1) that increased competence at a 

task is accompanied with an increase in perception of human-likeness, (2) the 

relationship between perceived predictability/explainability and human-likeness depends 

on how competent an entity is perceived to be and (3) the context of an interaction can 

lead to different expectations of human-likeness and can potentially affect the overall 

relationship individuals develop with human and AI entities. 
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INTRODUCTION 

Differentiating Human and AI Actions 

While the fields of Human-AI interactions (HAI) and Human-Robot Interactions 

(HRI) are still developing today, human perception of non-human agents has been a topic 

of interest to multiple scientific fields for many years. While the research has yielded 

many insights, some major questions remain that are pivotal to our understanding of how 

to design effective HAI and HRI.  

 

Anthropomorphism and Mind Perception 

Some have found that only devices with very “humanlike” physical appearance can elicit 

humanlike social interactions from human interaction partners (MacDorman & Ishiguro, 

2006). If an agent is perceived as having a mind, as humans are by default (Epley, Waytz 

& Cacioppo 2007; Gray, Gray & Wegner, 2007), individuals may adopt the “intentional 

stance” (Dennett, 1989), or the conscious belief that the agent has a “mind of its own” that 

is capable of rational, intentional thoughts and executing actions on its own accord. This 

top-down belief can affect how attentional resources are deployed so that the person is 

sensitive to subtle social cues such as gaze direction (Wykowska et al., 2014; Caruana et. 

al., 2017) which, in the context of many social interactions, can help people communicate 

important information effectively (Frischen, Bayliss & Tipper, 2007; Mutlu et al., 2009). 

https://static1.squarespace.com/static/51e3f4ede4b053e5f0062efd/t/51f7e119e4b0021e844852cc/1375199513450/on-seeing-human.pdf
https://static1.squarespace.com/static/51e3f4ede4b053e5f0062efd/t/51f7e119e4b0021e844852cc/1375199513450/on-seeing-human.pdf
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The perception that a non-human agent has a “mind of its own” can be triggered by 

perceived similarity to humans through observations of humanlike appearance and motion, 

personal motivations like a need to explain negative or evil acts, but also the observation 

of behaviors that appear to be independent (see Waytz et al., 2010a for a review). The types 

of behaviors artificial agents exhibit, e.g., physical characteristics of a robot’s motion 

(Wykowska et al., 2015; Bisio et al., 2014), executing goal directed actions (Gazzola et al., 

2007), engaging in humanlike activity such as eye contact (Kompatsiari et al., 2019), joint 

attention (Pfeiffer et al., 2011), or acting unpredictably as if of their own volition (Short et 

al., 2010; Hayes et al., 2014; Waytz et al., 2010b; Salem et al., 2013), and the context an 

agent’s actions are presented in (e.g., competitive or cooperative: Pfeiffer, 2011) can have 

strong impacts on the overall perceptions of these agents.  

Competence and Anthropomorphism 

There seems to be a gap in the literature related to how skill or competence at a task affects 

the perception of human-likeness. Humans seem to assess competence in others regularly 

and universally, and the perception of competent elicits positive attribution and social 

treatment when the entity is also perceived as good-natured (Fisk, Cuddy & Glick, 2006). 

The perception of competence may be related to the perception of “agency”, or the capacity 

to plan and act of one’s own volition (Waytz et al., 2010a). While Waytz, Heafner & Epley 

(2014) found that the attribution of human-likeness could increase the trust that an agent 

was competent, they did not directly manipulate competence to measure the effect on 

human-likeness.  

While competence may be an expectation of human-like entities, perfection may 

https://www.ncbi.nlm.nih.gov/pubmed/20579932
https://pdfs.semanticscholar.org/3713/ad51a1900f524b91b6184760709dfec8adad.pdf
http://www.cogsci.bme.hu/%7Ektkuser/kepek/journalreadingclub2010/13fiskesoccog.pdf
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be a default expectation of AI. The “perfect automation schema” has been theorized after 

examining peoples’ use of automated decision aids (Dzindolet et al., 2002). Dzindolet and 

colleagues found evidence that participants had a pre-existing assumption that automation 

should provide near-perfect information, and that those who were warned that the 

automated aid was not perfect used it more than those who were not warned. Merritt et al. 

(2015) expanded upon the theory and demonstrated that the perfect automation schema 

may be more related to a perception of all-or-none (i.e., automation works perfectly or not 

at all) rather than an assumption of very high-level, competent performance. 

A gap in our current understanding is how people will evaluate advanced AI that is capable 

of human-level performance on complex tasks. Some examples have emerged in the past 

few years and have excelled at tasks that humans once believed that only a human could 

accomplish (Mnih et al., 2015; Silver et al., 2017; Vinyals et al., 2019; McKinney et al., 

2020). When it comes to the evaluation of AI that can perform competently at complex 

social tasks, observations of their movements and actions will likely affect overall 

perceptions of mind. 

Perception of Animate vs. Inanimate Objects 

A human’s ability to distinguish between movements produced by animate and inanimate 

objects is developed in infancy (Rakison & Poulin-Dubois, 2001). Rakison and Poulin-

Debois theorized that infants pay attention to seven different characteristics of motion to 

help them make such determinations, including different qualities of the movement itself, 

if motion has a purpose (goal directed or not), and if the motion was intentional or 

https://psycnet-apa-org.mutex.gmu.edu/fulltext/2001-16969-002.pdf
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accidental. Biological motion, or motion that is produced by biological organisms from 

their organic musculoskeletal systems, may also provide a strong indication of animacy 

that helps infants learn distinctions (Poulin-Dubois, Crivello & Wright, 2015). An infant’s 

sensitivity to biological motion may also be an early stage in their development of Theory 

of Mind (Frith & Frith, 1999).  

Sensitivity to biological motion is a social mechanism that helps humans sense 

actions and intentions from observing movement (Blakemore & Decety, 2001). The extent 

to which activation in social brain areas differs when observing human and robots/AI 

actions has been studied extensively (for a review, see Wiese, Metta & Wykowska, 2017). 

Some research has demonstrated that the human action-perception system is similarly 

sensitive to actions performed by humans and mechanistic robots (Gazzola et al., 2007, 

Bisio et al., 2014). However, others have shown that non-human social agents do not 

activate the more complex social brain areas to the same extent that human interaction 

partners do (Takahashi et al., 2014; Wang & Quadflieg, 2015; Sanfey et al., 2003). 

However, the technological advancement of the artificial agents used in these studies is 

still far from human-level competence, and more work is needed to adequately trigger the 

perception that such agents have complex mental states (Wiese, Metta & Wykowska, 

2017). Understanding human expectations for robot behavior can help guide the 

development of cognitive models that can be implemented in such agents to better align 

them for desirable HAI and HRI in the real world (Breazeal & Scassellati, 1999; 

MacDorman, 2006). It is still necessary to conduct further research to understand how 

humans will perceive the actions that AI agents carry out to accomplish their tasks, and 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116910
https://science.sciencemag.org/content/286/5445/1692
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whether or not it induces the belief that such actions were carried out thoughtfully by an 

entity that possesses a mind that thinks and makes decisions like humans do, or simply as 

machines carrying out mechanical actions. 

 

Theory of Mind  

While infant humans can learn to classify and understand objects around them based on 

motion, our broader understanding of other people is complex and our need for 

understanding other people goes beyond discerning simple motion and actions. Theory of 

Mind (ToM) entails the attribution of complex mental states onto other entities and allows 

humans to perceive others as having their own thoughts, emotions, beliefs, desires and 

intentions as a mechanism to understand and predict their behaviors (Premack & Woodruff, 

1978; Baron-Cohen, Leslie & Frith, 1985). An early psychological experiment related to 

ToM was Heider and Simmel’s 1944 Study of Apparent Behavior. It showed that humans 

ascribed complex mental states and intentions to moving simple shapes after watching 

animated vignettes where the shapes moved around the screen (Heider & Simmel, 1944). 

This stimuli was later adapted to study ToM with neuroscientific methodology (Castelli et 

al., 1999; Martin & Weisberg, 2003). When the vignettes of moving shapes were 

interpreted as depictions of social interactions, participants had greater neural activity in 

social and emotional brain areas, compared to when vignettes were interpreted as 

mechanical actions, where greater activity was observed in regions associated with 

identifying usable tools (Martin & Weisberg, 2003). Importantly, this interpretation did not 

rely on human morphology or biological motion, indicating that even without other 

http://cs.engr.uky.edu/%7Esgware/reading/papers/heider1944experimental.pdf
https://www.researchgate.net/profile/Fulvia_Castelli/publication/222690823_Movement_and_Mind_A_Functional_Imaging_Study_of_Perception_and_Interpretation_of_Complex_Intentional_Movement_Patterns/links/5d09fe11458515ea1a70bc0c/Movement-and-Mind-A-Functional-Imaging-Study-of-Perception-and-Interpretation-of-Complex-Intentional-Movement-Patterns.pdf
https://www.researchgate.net/profile/Fulvia_Castelli/publication/222690823_Movement_and_Mind_A_Functional_Imaging_Study_of_Perception_and_Interpretation_of_Complex_Intentional_Movement_Patterns/links/5d09fe11458515ea1a70bc0c/Movement-and-Mind-A-Functional-Imaging-Study-of-Perception-and-Interpretation-of-Complex-Intentional-Movement-Patterns.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450338/pdf/nihms9563.pdf
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outwardly human-like qualities, robots or AI that appear to act in social ways may be able 

to trigger ToM in humans. 

It is no surprise that roboticists have focused on the development of social robots and AI 

that can trigger ToM in humans (Brezeal and Scassellati, 1999) and have their own ability 

to represent others with ToM (Scassellati, 2000; Rabinowitz et al., 2018). The purpose of 

developing robots that can exhibit and trigger ToM is to allow for easier interpretation of 

social actions and better human-robot/AI relationships (Brezeal and Scassellati, 1999; 

Scassellati, 2000). If robots and AI are developed with sufficient ToM-triggering abilities, 

it is possible that they will be seen as entities with intelligence, and it may become difficult 

to distinguish between such entities and humans in certain tasks, yet much more work 

remains to understand how to develop robots and AI that can reliably trigger ToM. 

 

The Turing Test 

One method for investigating how distinct or similar AI-produced social actions are to 

human-produced actions is to evaluate how accurately individuals can distinguish between 

these. Such an approach provides both an indication of how similar an agent’s observable 

behavior is to our expectations of human behavior and an indication of how “intelligent” 

or competent an artificial agent is perceived to be at a certain task. Alan Turing, father of 

modern computers, described a test in which a human would evaluate a machine in five 

minutes of unrestricted conversation and decide whether they believed they were 

communicating with an actual human or a machine. If 30% of judges were convinced the 

machine was a human, it would have passed the Turing Test and should be considered 

http://cs-www.cs.yale.edu/homes/scaz/papers/Breazeal-Scaz-IROS99.pdf
http://groups.csail.mit.edu/lbr/hrg/2000/Humanoids2000-tom.pdf
https://arxiv.org/abs/1802.07740
http://cs-www.cs.yale.edu/homes/scaz/papers/Breazeal-Scaz-IROS99.pdf
http://groups.csail.mit.edu/lbr/hrg/2000/Humanoids2000-tom.pdf
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“intelligent”, as they could display human-level competence in a conversation (Turing, 

1950). While this typical Turing Test tests the conversational capacity of AI, a few studies 

have conducted the test on the basis of behavior (Pfeiffer et al., 2011; Wykowska et al., 

2015; Osawa et al., 2012; Tulk et al., 2018). Results indicate that humans are sensitive to 

true human-likeness in low level behaviors and can distinguish between human- and AI-

controlled arm motion with above chance accuracy (Wykowska et al., 2015), but the 

context of the interaction affects the way the behavior is judged such that people have 

different expectations of humanlike behaviors in cooperative, competitive, and naive 

contexts (Pfeiffer et al., 2011). Judging accurately is still a difficult task (Osawa et al., 

2012; Tulk et al., 2018), and people may have pre-existing assumptions about what robotic 

movements look like (Wykowska et al., 2015). Importantly, these behavioral Turing Tests 

involved AI with simplistic cognitive abilities and performance, so they cannot provide a 

conclusive understanding of how a complex agent that has internal thoughts, beliefs and 

intentions will be evaluated or perceived. There is still a need for research involving 

complex and Social AI to better understand how perception of human-likeness is affected 

by the presence of complex cognitive abilities in AI. 

 

Human-AI Interactions 

To fully understand Human-AI Interactions (HAI), it is important to know the extent to 

which people will form relationships with AI that resemble human-human relationships 

over the course of interactions, including how interested humans are in cooperating or 

competing with AI entities when they have the freedom to decide for themselves.   
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Game Theory and Social Decision Making  

Deciding how to treat others across different social contexts is a complex process that 

involves evaluations of the interaction partner, considerations of what each party has to 

gain or lose, and the relationship between entities (Lee, 2008). It is unsurprising that social 

decision making involves social and emotional brain areas that respond differently 

depending on the level of mind that is perceived in an interaction partner (Takahashi et al., 

2014; Sanfey et al., 2003). To explore this further, many researchers have used game theory 

to help elucidate the many complexities of social decision making. Game theory is a 

mathematical framework that allows for the examination of motivations and strategies 

within interactions between different actors (Ross, 2001). Historically, it has been used to 

understand cooperative and competitive relationships in economics (Axelrod and 

Hamilton, 1981; Miller, 1996), evolutionary biology (Trivers, 1971; McNamara et al, 

2008) and computer science (Leibo et al., 2017), but also as an experimental tool to study 

social decision making in psychology (Sally, 1995) and neuroscience (Sanfey et al., 2003; 

Lee, 2008; Takahashi et al., 2014). 

 

A common social phenomenon studied in game theory experiments is reciprocity 

in cooperative or competitive actions, where kindness is returned and unfairness is 

punished. Humans have evolved with a strong expectation and tendency towards 

reciprocity in social interactions (Gouldner, 1960). This can be demonstrated in one of the 

most popular game theory games called the Prisoner’s Dilemma Game (PDG, as seen in 

Figure 1), in which the two actors must consider strategy in the presence of greed and fear. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2413175/
https://www-jstor-org.mutex.gmu.edu/stable/2092623?seq=1#metadata_info_tab_contents
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While mutual cooperation ensures a better outcome than mutual competition, it requires 

mutual trust because each actor has more to gain one-way competition (i.e., you compete 

and your partner cooperates) which induces the greed for a better outcome as well as the 

fear of being taken advantage of if your partner competes while you cooperate. While a 

traditional economic view of the interaction predicts the outcome of mutual defection, 

when people actually play the PDG in sequential games, mutual cooperation is often 

achieved through reciprocity (Axelrod and Hamilton, 1981). Tit-for-tat, or the choice to 

act with perfect reciprocity in sequential games or interactions, is a social strategy that 

enforces mutual cooperation by showing an interaction partner that their best choice is to 

cooperate, as competing is punished in subsequent rounds to a degree that eliminates any 

winnings gained by competing (Axelrod & Hamilton, 1981). Humans have also been 

observed using tit-for-tat with robot interaction partners just as they would with human 

partners (Sandoval et al., 2015), though it is inconclusive whether or not this tendency was 

instinctual or meant to display social information to the robot agents. 

 

In addition to the PDG, there are many other game theory games that give insights 

into other types of social interactions. The numbers depicted in a game theory matrix (see 

Figure 1) represent player motivations and allow for the comparison of social context in 

addition to understanding outcomes. For instance, the context of the PDG is very different 

from the Stag Hunt game, in which two hunters decide whether or not to work together to 

take down a stag or work separately to catch a rabbit each. Since each hunter knows that 

they cannot capture a stag alone, and that the meat they gain from a stag is more than the 

http://www.psych.ualberta.ca/%7Ephurd/cruft/Axelrod-science.pdf
https://link.springer.com/article/10.1007/s12369-015-0323-x
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meat from a rabbit, mutual cooperation is a natural result; see Figure 1. When compared to 

a representation of global nuclear deterrence, or the game of Mutual Assured Destruction, 

neither actor has much to gain from mutual cooperation, but is extremely motivated to 

avoid mutual competition for fear of catastrophic destruction and an end to human 

civilization; see Figure 1. While each of these three games can result in mutual cooperation, 

the motivations and social context around each game is very different. An additional 

benefit to the mathematical representation is that it provides a simple way to translate 

between social context and machine language. Empirical game theoretic analyses, where 

matrix weights and corresponding games are derived from empirical performance data, can 

be used to understand the social dynamics in multi-agent systems (Wellman, 2006; Leibo 

et al., 2017). People in the field of HRI/HAI have advocated a game-theoretic approach to 

understanding strategies in decision making during HRI/HAI (Lee & Hwang, 2008) and 

for developing approaches for training AI to have satisfying and appropriate relationships 

with humans (Hadfield-Menell et al., 2016; Palaniappan et al., 2017).  

A gap in current literature is an understanding of how individuals choose to interact 

with AI without any motivational influence. Research on true HAI within games have fixed 

the interactions to strictly cooperative (Ehsan et al., 2018) or competitive interactions 

(Silver et al., 2017; Vinyals et al., 2019), which may be useful for understanding how far 

AI has advanced, but not how humans naturally perceive interactions or how humans might 

choose to develop these relationships on their own over the course of interactions. 

 
 
 

https://www.researchgate.net/profile/Kangwoo_Lee/publication/226845750_Human-Robot_Interaction_as_a_Cooperative_Game/links/573b217208ae9ace840e9dfb.pdf
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Figure 1: The Prisoner’s Dilemma Game (PDG), Stag Hunt Game, and Mutual Assured Destruction. In the PDG, two 
players must decide whether to cooperate or compete with one another. While more can be gained from mutual 
cooperation, the temptation to compete and the fear of being taken advantage of by another player can lead to mutual 
competition and a worse outcome. While mutual competition is predicted by a traditional economic standpoint, mutual 
cooperation is often reached when actors play repeated PDGs with a tit-for-tat strategy. Unlike the PDG, both players 
in the Stag Hunt Game gain the most from mutual cooperation than any other strategic decision. In the Mutual Assured 
Destruction Game, while both parties have nothing to gain from mutual cooperation, they have everything to lose from 
mutual competition. 
 

HAI in Videogames 

When investigating how humans interact with AI, it is important to create AI that has the 

ability to respond to humans on its own without using “Wizard of Oz” techniques to fake 

a response because people’s perceptions of agents are affected by subtle cues such as timing 

of a response or movement (Epstein, Roberts & Beber, 2009; Wykowska et al., 2015) or 

mode of interaction (Short et al., 2010). Videogames can provide an environment to study 

how humans interact with AI socially because they are already developed for rich social 

interactions, and many provide the opportunity to make custom modifications to game code 

which can allow researchers to build systems to capture behavioral data from within the 

game. Videogames have been used as a platform for training and evaluating AI 
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performance (Laird & VanLent, 2001; Mnih et al., 2015), and to investigate how humans 

perceive human and AI performances differently by measuring human behavior and 

subjective experience (Tulk et al., 2018; Ehsan et al., 2018) as well as physiological 

measures (Lim & Reeves, 2009). 

 

Research Questions 

While there is a strong academic history of studying human perceptions of robots and 

Simple AI, it is apparent that gaps remain in our understanding of how humans will 

perceive competent AI that can exhibit human-level performance.  

It is not well understood currently if the actions of competent AI will be perceived 

as purely mechanical actions carried out based on human-made programming, or as a result 

of decisions made by intentional minds with complex inner states. If these perceptions are 

non-binary and occur on a spectrum, more work is needed to understand the features of 

that spectrum. While humans have been shown to perceive complex ToM states while 

knowingly watching the actions of non-human agents, there is still a lack of understanding 

of how the perception of ToM states can be triggered behaviorally or as a result of non-

verbal interactions with such AI. Finally, more work is needed to understand how humans 

are likely to treat such agents socially, if they will naturally be regarded as collaborators or 

competitors, and what types of behaviors and qualities can affect this relationship. 

 
Understanding these gaps in the current literature lead to the following research question:  
 

1. How do people differentiate between actions produced by other humans and 
“mechanical” actions produced by AI? 
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After a pilot study (i.e., Experiment 1) was conducted to answer question 1, 2 additional 
questions came into focus: 

2. To what extent do competence and predictability contribute to the perception of 
human-like behavior? 

3. What characteristics of social interactions do humans use to differentiate between 
humans and AI, and how do Human-Human Interactions and Human-AI 
Interactions (HAI) differ within a complex environment? 

The following experiments have been developed to answer these questions. 

Research 

To develop a fuller understanding of human perceptions of AI and how it affects HAI, three 

experiments have been conducted in which participants observed and/or interacted with AI 

of different levels of competence within popular videogames, Super Mario World and 

Don’t Starve Together. Experiments 1 and 3 featured a behavioral Turing Test, where 

participants judged the identity of human and AI agents and were interviewed about what 

behavioral cues led to these decisions. Experiment 2 had participants respond with the 

extent to which they perceived agents as humanlike based on observable behaviors on 10-

point Likert scales rather than a Turing Test. In all experiments, additional measures were 

recorded to better understand participants’ overall perceptions of agents related to their 

actual and perceived identities. 
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EXPERIMENT 1: MARI/O 

How do people differentiate between actions produced by other humans and 

“mechanical” actions produced by AI? 

The first experiment was developed as an exploratory pilot study. The purpose of the first 

experiment is to characterize how people differentiate between actions produced by other 

humans and actions produced by AI. Specifically, this experiment was designed to answer 

question 1: how do people differentiate between actions produced by other humans and 

“mechanical” actions produced by AI. Participants watched pre-recorded vignettes of the 

game Super Mario World played by human and AI players. The human players included a 

total beginner who had never played any 2D Mario game prior, and an experienced player 

who had played the game many times throughout his life. The AI included an early-

generation and late-generation of a genetic algorithm / neural network (Stanley & 

Miikkulainen, 2001; adapted for Mario by Youtuber Seth Bling, Bling, 2015). Participants 

watched vignettes of each agent and rated them as beginners/experts and human/AI, then 

responded to a structured interview about their ratings and justifications for those ratings. 

 

Participants 

Participants include 27 undergraduates recruited from George Mason University’s Sona 

system (14 female, average age 20.6 years, SD = 1.7). On average, they spent 5.4 hours on 

a computer each day (SD = 2.6 hours). The only screening criterion was that participants 

be over the age of 18. 

https://twitter.com/SethBling?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
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The primary data of interest in this study was the qualitative data generated by the 

interviews, therefore a sample size of 27 participants was considered sufficient. Often, 

anywhere from 5 - 50 participants are collected for studies that involve in-depth interviews 

(Dworkin, 2012). Each participant was asked 6 questions for each of the 4 agents and 2 

additional questions, yielding 702 natural language responses. A post hoc power analysis 

was conducted using G*Power to determine the power for the ANOVAs used to analyze 

quantitative data given the number of participants used in this study. With a medium-large 

effect size f = 0.35, α error probability of .05, the observed power = 0.41. 

  

Stimuli 

Four different agents were selected for the Turing Test: Human Beginner (HB) and 

Expert (HE), and AI Beginner (AB) and Expert (AE). Each played the game Super Mario 

World on a PC via the BizHawk emulator. Human recordings came from two 

undergraduate research assistants: one who had never before played any 2D Mario game 

(HB), and one who claimed to have had a lot of prior experience with Super Mario World 

throughout his life (HE). The AI sequences were generated by recording the performance 

of an agent that learned how to play the game through a NEAT (NeuroEvolution for 

Augmenting Topologies) genetic algorithm (Stanley and Miikkulainen, 2002). This agent 

was based on Seth Bling’s original MarI/O implementation of the NEAT algorithm 

(Stanley & Miikkulainen, 2001). The genetic algorithm used each genome’s fitness and 

random mutations to “breed” new generations that eventually learned how to play the 

game. An adaptation was created to include total coins collected and overall game score in 
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the calculation of fitness in order to more closely resemble a human’s motivation when 

learning to play the game. This addition resulted in more complex behaviors; for instance, 

the AI would sometimes move backwards (right to left) to jump on enemies or collect coins 

that were missed, whereas the original would never move backwards. Performance was 

recorded over the course generation of neuroevolution, with performances from an early 

generation constituting the Beginner AI (AB), and the final generation constituting the 

Expert AI (AE). Video vignettes were made for the 4 different agents, each playing through 

the first level of Super Mario World. Each agent’s performance was recorded and 

subdivided into individual vignettes, each starting at the beginning of the level and 

terminating either when Mario died or finished the level. All recordings were first screened 

and vignettes were selected to exhibit the full range of each agent’s behaviors and errors. 

No sound was recorded. The total number of vignettes for each agent were: 11 for AE, 11 

for AB, 8 for HB, 10 HE, resulting in approximately 5 total minutes of video length for 

each agent. 

  

Apparatus 

Participants watched videos on a 19-inch ASUS VB Series VB198T-P monitor with a 4:3 

aspect ratio and refresh rate of 60 Hz, sitting approximately two feet away from the 

monitor, and indicated their responses through a keyboard. Google Forms was used to 

administer a basic demographic survey and record responses to interview questions. 

Stimuli videos were recorded using OBS screen recording software. Adobe Premiere was 
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later used to cut videos into vignettes and crop the display such that only the game screen 

was visible for all vignettes.  

 

Measures 

Participants filled out a basic demographic questionnaire including their gender, age, 

education level, average time spent on a computer per day and average time spent playing 

videogames per week.  

After each trial, participants’ decisions about an agent’s identity (humanness: 

human or AI, and expertise: beginner or expert) and Reaction Times were recorded through 

keyboard responses. The eight interview questions are presented as follows: 

1. What is your experience and approximate skill with Mario? 

2. What agent do you think you were watching? Why? (Asked after blocks 1-

4) 

3. What features of the performance made you think it was (Expert/beginner)? 

(Asked after blocks 1-4) 

4. What features of the performance made you think it was (Human/AI)? 

(Asked after blocks 1-4) 

5. What do you think the agent’s goal was while they were playing? (Asked 

after blocks 1-4) 

6. What made you think it wasn't (Expert/Beginner)? (Asked after blocks 1-4) 

7. What made you think it wasn’t (Human/AI)? (Asked after blocks 1-4) 
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8. If you were going to play a game with one of the agents, which one would 

you prefer? Would it be cooperative or competitive, and why? 

 

 While the interview questions were preplanned, research assistants would often 

ask follow-up questions to encourage participants to elaborate on their responses to collect 

as much qualitative data as possible. Interview responses given after each block were 

transcribed by a research assistant to record the final explicit decision of each agent’s 

identity (the Turing Test/humanness and expertise) and the verbatim natural language 

participants used to describe agents while answering each question. After completing all 

blocks, participants were asked what strategy (cooperative or competitive) they would use 

if they were to play a game with one of the 4 agents in the future and justifications for this 

decision. 

  

Procedure 

Participants were instructed that they would be performing a series of Turing Tests 

after observing the 4 agents (HB,HE,AB,AE) play Super Mario World, in which they 

would need to indicate if they believed the agent was a human or an AI, and if the agent 

was a beginner or expert. Super Mario World is a 2 dimensional platformer videogame in 

which players collect points and avoid enemies as they move through the level. Game 

actions are limited to moving right, left, jumping, ducking, and spinning while jumping. 

Players must perform these actions at appropriate times to gain points and avoid being 

killed by enemies or other obstacles, all the while moving towards the right of the screen 
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to complete the level. The player has a limited amount of lives to expend before a game 

over, which can be seen in the upper left corner of the screen. The player can also see how 

much time they have remaining to complete the level and the amount of coins and points 

they have earned in the upper right on the screen. An example view of the game can be 

seen in Figure 2. 

 
 
 

 

Figure 2: A Typical View of the Game Super Mario World.  
 

Participants were told that they would watch a series of performances (vignettes) from one 

of the four agents, presented at random. Within each block, participants watched all 

vignettes rated the player as a beginner or expert, and human or AI after each on trial by 

key press on a keyboard. To indicate their response, participants positioned their hands on 

a keyboard with their index fingers on the “w” and “o” keys, and their thumbs on the “x” 
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and “m” keys. On the left hand, a key response of “w” corresponded to the belief that the 

agent’s identity was HE, and response of “x” corresponded to the belief that the agent’s 

identity was HB. On the right hand, “o” corresponded to AE, and “m” to AB. As Reaction 

Time was recorded for analysis, participants were instructed to keep their hands in position 

on the keyboard for the entire block so they were ready to respond when prompted. Once 

a participant finished a block, they were verbally interviewed about their overall 

perceptions of the agent and their final explicit belief of whether the agent was a human. 

The trial sequence within each block was as follows: participants watched a 

vignette of the agent playing the first level of Super Mario World, selected at random from 

the full list of the agent’s performances. Prior to the presentation of the vignette, a fixation 

cross was presented for 500ms. After the vignette ended, a screen was presented asking 

participants to give their response through the keyboard. Once participants responded, a 

new trial would begin, and this cycle continued until participants had watched and 

responded to each vignette within the block.  

After participants finished each block, the researcher conducted a brief interview 

to understand participants’ final decision on the agent’s identity (humanness and expertise), 

what performance features and overall qualities led them to this decision, and depending 

on their decision on humanness, what made them think it was not the other agent type (i.e., 

interview questions 2-7). Finally, after completing all four blocks, participants were asked 

about their cooperative and competitive preferences if they were to play a game as a co-

player with any of the agents and what factors influenced that decision. The experiment 

took about 30 minutes to complete. 
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Quantitative Analysis 

Performance on the Turing Test was evaluated by comparing the relative frequency 

that players were rated as humans. T-tests were used to compare accuracy in detecting 

humanness against chance on individual trials (similar to Wykowska et al., 2015) to 

estimate how sensitive participants were to humanness in the experiment. 

Participants’ keyboard responses indicating beliefs of humanness and expertise 

after each trial were subjected to two 2 (Humanness: human vs. AI) x 2 (Expertise: beginner 

vs. expert) ANOVAs. A Linear Mixed Effect (LME) model was used to analyze reaction 

times for each trial with respect to the agent’s Humanness and Expertise. 

 

Qualitative Analysis  

Natural language responses to interview questions were recorded through transcription and 

coded and analyzed by two raters to determine how people described their perceptions of 

each agent, including what qualities are commonly associated with humans and AI (when 

considering true and perceived identity), what qualities led to accurate and inaccurate 

identification of agents, and how language varied with expertise. 

 The qualitative analysis was a multi-step process. First, categories were developed 

for coding the interviews. This was first done in a bottom-up fashion using Grounded 

Theory (Suter, 2012, Glaser, 1998; Glaser & Strauss, 1967), where interview data was first 

reviewed without pre-existing expectations of categories. Interview questions 2, 4, and 7 

were focused on during the qualitative analysis as these were most related to the research 

question. While reviewing interview data, attention was paid to themes that seemed to 
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emerge in order to determine if these occurred with enough frequency to include them in 

the overall categories. After first reading through all the data, coming up with categories 

ad hoc, and conversations with my doctoral advisor, a nearly final set of categories was 

decided upon, and all interview data from the relevant questions was then coded.  

To calculate inter-rater reliability, a consensus approach was adopted between two 

raters, in which raters first worked independently to rate all interview data from the relevant 

questions, then reconciled differences to reach a greater consensus by reconsidering all 

instances where coded texts were inconsistent between the two (Syed & Nelson, 2015). 

Two raters used the near final set of categories and began coding interviews. After an initial 

pass, minor modifications to the categories were adopted (splitting or combining concepts) 

to arrive at the final set of categories. RQDA (R Qualitative Data Analysis; Huang, 2016) 

was then used to code interviews. In RQDA, the raters read through interview data text and 

could highlight specific text with the cursor and mark it with any category. In this way, the 

actual phrases each rater associated with each category were saved, as well as the overall 

frequency of categories, and the whole processed interviews that indicated how and which 

sections were coded. After the raters finished coding interviews, a python script was written 

to compare the consistency of codes by listing out all statements that were coded by one or 

both raters. In order to adopt a consensus, each rater was given a copy of the python output 

to determine if they agreed or disagreed with the other rater when there was inconsistency, 

as well as to re-examine their own inconsistent codes. Cohen’s Kappa was calculated as a 

measure of Inter-rater reliability based on the final decisions, and a χ2 between raters was 

calculated to show the likelihood of agreement between the raters.  
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Finally, an empirical game theoretic analysis was performed on participants’ responses to 

their strategic preferences for future interactions with the agents as a representation of the perceived 

social context between actors (similar to Wellman, 2006 and Leibo et al., 2017). The empirical 

game theoretic analysis was based on an analysis of stated strategic preferences and justification of 

those preferences in order to determine what game theory game best represented the relationship. 

First, relative approximations of game theory matrix weights were determined from participants’ 

statements. Figure 3 shows a matrix with variables representing the payoffs for each player given 

the outcome. The participants’ preference was given the highest value, and other relative values 

were determined based on accompanying statements. Symmetry (i.e., players 1 and 2 have the same 

payoffs for self/other decision pairs, A = B, C = F, D = E, G = H) is generally assumed.  

 
 
 

 
Figure 3: Game Theory Matrix with Variables Representing Individual Payoffs. The first position in each cell 
represents player 1’s payoff and the second position represents player 2’s payoff. 

 
 
 

 
For example, if a participant said they preferred cooperation, and the justification is that 

they assumed both players would perform better if they worked towards the same goal, it implies 

symmetry because they prefer that player 2 also cooperates, and each has more to gain from mutual 

cooperation than all other options. That means that A = B > C,D,E,F,G,H. It also implies that utility 
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in the game (e.g., survival, score) is important to the player, so options in which player 2 competes 

while player 1 cooperates should be worst, as this situation would likely yield the worst score, so 

C < A,B,E,G,H. Since the participant did not mention that they were fearful that they could be taken 

advantage of or that either has something to gain from tricking their partner into cooperation while 

choosing to compete, it doesn’t suggest that there is a strong difference between D and H, and since 

symmetry is assumed, D = F = G = H, so A = B > D,F,G,H > C = E. This configuration is consistent 

with a Stag Hunt. Importantly, a Stag Hunt is a coordination game with two pure strategy Nash 

Equilibria, meaning that each player is better off knowing what the other is doing when making 

their decision, and better outcomes are achieved by choosing to coordinate (Ross, 2001). 

Similarly, if a participant expresses that they prefer to compete for the challenge and for 

enjoyment, it implies that they prefer if player 2 competes too, as this leads to maximum challenge 

and enjoyment, so symmetry is assumed. Since their preference is for mutual competition, 

achieving a higher score than player 2 is important, so C is again the worst outcome. Again, the 

lack of strong evidence that there is fear of being taken advantage of, so D is approximately equal 

to H, and again D = F = G = H, so G = H > A,B,D,F > C = E. This type of configuration is consistent 

with a coordination game, and is similar to a Stag Hunt, except with a reversed preference of mutual 

competition over cooperation (Ross, 2001).  

Conversely, a participant saying they would compete because they assume they 

would easily overtake player 2 implies that the outcome for choosing competition is always 

better than cooperation, so E,H > A,C. If beating player 2 is the desired outcome, this would 

be even easier if player 2 cooperates, so E > G. Since winning is preferred, the worst 

outcome is C, therefore E>G>A>C, which is consistent with a Deadlock. Unlike a 

coordination game, Deadlock has 1 pure strategy Nash Equilibrium, where a player has no 
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incentive to coordinate with the other player and does best when choosing competition 

(Ross, 2001). 

  

Results 

Quantitative Results 

On the Turing Test, human players were explicitly rated as humans greater than 70% of 

the time (84%, SD = 36.7%, for human beginner, 74%, SD = 43.8%, for human expert), 

suggesting that their performances were perceived as humanlike. Similarly, the AI beginner 

was rated an AI 78% of the time, SD = 41.6%, in explicit responses. However, the expert 

AI was explicitly rated as a human 58% of the time, SD = 49.4%, indicating that this agent 

was perceived as a human more often than correctly identified as an AI. Importantly, some 

participants were uncertain of an agent’s identity and did not make an explicit report. In 

terms of rated expertise, all agents we labeled as beginners or experts received the same 

explicit rating by greater than 70% of participants, validating that their expertise was in 

general perceived as intended. 

For keyboard responses on individual trials, t-tests revealed that accuracy in 

detecting Humanness was significantly above chance for the human beginner (63% 

accurate, t(215) = 4.09, p < .001), human expert (64% accurate, t(268) = 4.89, p < .001), 

and AI beginner (62% accurate, t(296) = 4.49, p < .001), whereas accuracy in detecting 

Humanness was nearly significantly below chance for AI expert (45% accurate, t(295) = -

1.63, p =.052), all one-tailed. 
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Average percent of trials rated as human were significantly impacted by 

Humanness (F(1, 104) = 10.00, p < .001, ηp2 = .088) but not Expertise (F(1, 104) = 2.66, 

p = .106, ηp2= .025); the Humanness x Expertise interaction (F(1, 104) = 2.27, p = .135, 

ηp2= 0.021) was also not significant.  

As a post hoc analysis, a one-way ANOVA was conducted with player as an 

Independent Variable (IV)  and average ratings of humanness in trials as a Dependent 

Variable (DV), which was significant (F(3,104) = 4.98, p = 0.003). A Tukey’s Honestly 

Significant Difference (HSD) showed that the differences between the HB (mean = 63.4%, 

SD = 24.1%) and AB (mean = 37.3%, SD = 36.6%) was significant (p = 0.007), as was the 

difference between the HE (mean = 64.3%, SD = 23.7%) and AB (p = 0.005). No other 

differences were significant. Results can be seen in Figure 4. 

 
 
 

  
Figure 4. Percent of All Trials Each Agent is Rated as Human (Response of HB or HE) Across All Participants. Both 
human agents and the expert AI agent were rated as human significantly more often than the beginner AI. 
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Humanness significantly impacted the average percent of trials in which players were rated 

as experts (F(1, 104) = 31.99, p < .001, ηp2= 0.235), as did Expertise (F(1, 104) = 90.31, p 

< .001, ηp2 = 0.465). The interaction was also significant (F(1, 104) = 4.12, p < .05, ηp2 = 

0.038). A post hoc Tukey’s HSD showed that there were significant differences between 

the HB (mean = 36.6%, SD = 28.3%) and the AB (mean = 0.7%, SD = 2.4%; p < 0.001), 

the HE (mean = 71.4%, SD = 29.6%) and the AB (p < 0.001), the HB and AE (mean = 

54.4%, SD = 24.3%; p = 0.038), the HE and HB (p < 0.001), and the AB and AE (p < 

0.001). The difference between the HE and AE was nearly significant (p = 0.056). Results 

can be seen in Figure 5. 

 
 

 

 
Figure 5. Percent of Trials that Each Agent was Rated as an Expert. All agents’ ratings are significantly different from 
one another. 
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Average Reaction Times (RTs) can be seen in Figure 6. A LME model was created to 

control for repeated measures and investigate how Humanness and Expertise affected 

reaction times throughout trials. An ANOVA was then conducted on the model to compare 

the effects of Humanness and expertise. Humanness significantly affected RT (F(1, 1048) 

= 26.92, p < .001), as did Expertise (F(1, 1048) = 11.27, p < .001). The interaction was also 

significant (F(1, 1048) = 25.34, p < .001).  

 
 
 

 

Figure 6: Average Reaction Times (In MS) of Responses for Each Agent. Humanness and Expertise significantly 
affected reaction times. The interaction was also significant.  
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Qualitative Results  

From the qualitative analysis, 324 responses (3 interview questions * 4 agents * 27 

participants) were analyzed resulting in 19 unique categories and 550 coded statements. 

Three additional categories (used Yoshi, had personality, and was pre-programmed) were 

coded, but the coded data were either unreliable or did not add any value to the analysis, 

and were removed. Each category, count, percent of participants who mentioned the code 

at least once, Cohen’s Kappa, and χ² is presented in Table 1. After the initial categorization, 

mid-level and overarching categories were created by examining how the categories related 

to each other in the context of the participants’ task (i.e., axial coding; Suter, 2012). The 

mid-level categories were related to how much top-down information was used when the 

observations were made. Some mid-level categories were associated with bottom-up 

observation of the player’s behaviors with little interpretation (e.g., observing repetitive 

behavior or no mistakes being made), while others involved top-down interpretation of the 

performance and the perception of ToM states (e.g., having goals during gameplay or 

experimenting with the game), or top-down interpretations that produced assumptions 

about the player without implying ToM states (e.g., not learning or having no goals while 

playing). Finally, one category was related to a pre-existing assumption that was expressed 

independently of observations of behavior (the belief that a skilled AI would make no 

mistakes). The overarching categories were related to whether the behavior being described 

was seen as salient and unpredictable (e.g., observing an agent make a mistake, which by 

nature are unintended and therefore typically not predictable, or perceiving that the player 

is learning or experimenting with the game, which can produce novel behavior), or 
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predictable or explainable in the sense that the behavior is simplistic and lacks remarkable 

actions (e.g., being repetitive or not making any mistakes), or that the behavior is viewed 

through an explainable lens when top-down interpretations are applied (e.g., performing 

actions to achieve an assumed goal or pausing for a moment to make a decision). Some 

categories were not exclusive to predictable or unpredictable behavior. Results including 

these mid-level and overarching categories are presented in Table 2 along with counts 

associated with perceived Humanness and Expertise.  
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Table 1: Summary of Coded Statements from Qualitative Analysis. The table shows the category, a representative 
example, the total count of coded statements associated with the category and relative frequency that it was mentioned 
by all participants, Cohen’s Kappa as a measure of inter-rater reliability and a χ² between raters to show the likelihood 
of agreement between raters.  
 

 

 

  

category example
total count (and % of 

participants who 
mentioned code)

Cohen's 
Kappa

χ² between raters

AI makes no or few mistakes "The Expert AI wouldn't make any mistakes" 17 (37%) 1 (1,324) = 302.11, p < 0.001

does not learn
"the player didn't adapt to the situation and 

made the same mistakes."
19 (52%) 0.721 (1,324) = 159.48, p < 0.001

experimenting
"Experimented with strategy. Seemed like it 

was learning"
41 (81%) 0.942 (1,324) = 278.5, p < 0.001

flowing

"AI because the agent knew how to time 
the jumps and didn't run into anything that 

would prevent it from continuing in the 
game."

16 (44%) 0.966 (1,324) = 281.91, p < 0.001

has goals or intentions
"Made an attempt to get more points and 

coins."
37 (63%) 0.969 (1,324) = 294.34, p < 0.001

has knowledge
"It knew the ways in which to complete the 

level."
29 (63%) 1 (1,324) = 311.85, p < 0.001

has no goals
"The agent just walked straight and didn't 

hit the boxes to collect coins."
8 (30%) 0.932 (1,324) = 242.73, p < 0.001

has no knowledge
"The agent would not jump pass the 

obstacle and didn't have knowledge of what 
to do next."

10 (33%) 1 (1,324) = 291.43, p < 0.001

has thoughts and reasoning
"The player had less mistakes and it second 

guessed in most cases."
14 (37%) 0.961 (1,324) = 276.26, p < 0.001

is skilled
"The agent did everything perfectly and 

there was no hesitation of anything"
19 (52%) 1 (1,324) = 286.3, p < 0.001

is unskilled
"The player was defeated more frequently 

and ran into a lot of enemies"
21 (48%) 0.974 (1,324) = 291.33, p < 0.001

learning "Agent was taking time to learn strategy" 31 (59%) 0.924 (1,324) = 267.11, p < 0.001

makes decisions
"The Expert Human seemed to make human 

decisions and there was hesitation."
25 (56%) 0.797 (1,324) = 197.28, p < 0.001

makes mistakes
"Human because it would make mistakes 

similar to what I would do"
59 (85%) 0.957 (1,324) = 290.97, p < 0.001

no or few mistakes
"The agent did everything perfectly and 

there was no hesitation"
18 (44%) 0.869 (1,324) = 230.29, p < 0.001

precise "very precise and methodical." 10 (26%) 1 (1,324) = 291.43, p < 0.001

repeatitive behavior "Did the same thing every time" 44 (85%) 1 (1,324) = 315.54, p < 0.001

seeks information
"it wanted to make sure to play the game 

right because it read the instructions."
11 (37%) 0.951 (1,324) = 264, p < 0.001

unpredictable or random
"It wasn't perfect and it was going at 
different paces. The jumps were even 

different."
14 (44%) 1 (1,324) = 300.26, p < 0.001
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Table 2: Categories Associated with Predictable and Unpredictable Behaviors and Counts for Perceived Humanness 
and Perceived Expertise. The higher count of perceived Humanness and Expertise is highlighted for each category. 
 

 
 
 
 

 
 
Game Theoretic Analysis 

Three typical game theory games were empirically derived from interview responses 

during the empirical game theoretic analysis: a coordination game, in which mutual competition 

was selected for fun, a Stag Hunt, in which mutual cooperation is selected for greater utility in 

achieving a higher score, and Deadlock, where the player chooses to compete regardless of what 

the other player decides because they believe they are more skilled and can win. Results can be 

seen in Table 3.  

overarching 
category

mid-level category category
perceived 

as AI
perceived 

as H
perceived 

as B
perceived 

as E

flowing 10 (30%) 6 (22%) 3 (7%) 13 (41%)

is skilled 8 (30%) 11 (33%) 0 (0%) 19 (52%)

no or few mistakes 11 (30%) 7 (22%) 1 (4%) 17 (41%)

precise movements 7 (22%) 3 (11%) 2 (7%) 8 (22%)

repeatitive behavior 32 (67%) 12 (33%) 31 (70%) 13 (37%)

pre-existing assumption AI makes no or few mistakes 4 (15%) 13 (30%) 6 (19%) 11 (30%)

has goals or intentions 12 (26%) 25 (59%) 10 (37%) 27 (48%)

has knowledge 11 (30%) 18 (44%) 7 (19%) 22 (56%)

has thoughts and reasoning 3 (11%) 11 (30%) 7 (26%) 7 (22%)

makes decisions 2 (7%) 23 (52%) 10 (33%) 15 (33%)

is unskilled 5 (19%) 16 (30%) 21 (48%) 0 (0%)

makes mistakes 27 (59%) 32 (59%) 42 (81%) 17 (41%)

unpredictable or random 2 (7%) 12 (37%) 11 (33%) 3 (11%)

experimenting 4 (15%) 37 (70%) 22 (52%) 19 (56%)

learning 3 (11%) 28 (56%) 23 (56%) 8 (22%)

seeks information 3 (7%) 8 (30%) 10 (33%) 1 (4%)

has no goals 4 (15%) 4 (15%) 8 (30%) 0 (0%)

has no knowledge 7 (7%) 7 (26%) 7 (33%) 7 (0%)

does not learn 17 (48%) 2 (4%) 18 (52%) 1 (4%)

behavior is 
unpredictable

observation of base 
behavior without 

deeper interpretation

perception of ToM 
states

describes either 
predictable or 
unpredictable 

behavior

assumptions based on 
perceived behavior/not 

ToM states

total count (and % of participants who 
mentioned code at least once)

behavior is 
predictable or 

explainable

observation of base 
behavior without 

deeper interpretation

perception of ToM 
states
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Table 3: Empirical Game Theoretic Analysis of Responses from the MarI/O Experiment. Three typical game theory 
games were derived from interview responses: a coordination game, in which mutual competition was selected for fun, 
a Stag Hunt, in which mutual cooperation is selected for greater utility in achieving a higher score, and Deadlock, 
where the player chooses to compete regardless of what the other player decides because they believe they are more 
skilled and can win. 
 

 
 
 
 
 
 

Discussion 

From the coded interviews, a pattern began to emerge related to perceptions of human-

likeness, competence, and behaviors that were described as random or unpredictable, or 

predictable and explainable in the sense that they emerged from having intentions and goals 

while playing the game.  

 In terms of the relationship between perceived human-likeness and competence, 

qualitative and quantitative data suggested there may be a non-linear relationship where 
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perceptions of human-likeness increased with agent competence but peaked at the level of 

intermediate.  

The first indication of this non-linear relationship is in the quantitative data. 

Participants in this experiment perceived the beginner AI as a beginner and as an AI most 

frequently (rated beginner by 100.0%, SD = 0%, of participants in explicit ratings, and 

rated human by 22%, SD =  41.6%, of participants). On the opposite end of the spectrum, 

the expert human was rated as an expert most frequently (rated expert by 88.9%, SD =  

31.4%, of participants), and rated as a human less frequently than the beginner human 

(74.1% and 84.0% rated human, respectively). Participants’ explicit ratings of human-

likeness and expertise can be seen in Figure 7. A second order polynomial trend line was 

added to this data which shows the peak perceived human-likeness at around 50% 

expertise, or intermediate level. 

  
 
 
 

 
Figure 7: Explicit Ratings of Human-Likeness by Expertise in the MarI/O Experiment. A second order polynomial 
best fit line has been added, which shows that perceived human-likeness peaks at mid-level expertise. 
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The second indication of this non-linear relationship is related to a pre-existing 

assumption about highly expert or perfect performances that was stated by many of the 

participants. Many responses seemed to suggest that there may be a pre-existing 

assumption that at a competent level, humans still make mistakes while an AI would not 

(i.e., “AI makes no or few mistakes” category). Overall, 37%, SD = 48.2%, of participants 

explicitly stated this assumption. Some examples include: 

 

HE perceived as HE: “AI would have minimal mistakes.” 

 

AE perceived as HE: “Human [because] the agent made a few errors. I don't think 

an expert computer would make those typical errors.” 

 

The expectation was generally used as a basis to compare observed behavior against in 

order to rate agents. This perception may be related to the perfect automation schema 

(Dzindolet et al., 2002), in which people have pre-existing assumptions that functional 

automation should have perfect performance.  

The relationship between predictability and unpredictability also arose out of the 

analysis of the qualitative data. While analyzing the interviews, a number of concepts were 

coded from the cues participants used to distinguish between human and AI performances. 

Upon further analysis, the coded statements could be grouped by predictability or 

explainability, where statements related to given codes seemed to describe performances 

as either predictable/explainable or unpredictable/novel. 
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Table 2 shows the overarching categories, mid-level categories, and counts (with 

percentage of participants who had one or more codes in the category) associated with each 

category. A noticeable pattern emerged once the higher counts/percent for Human-likeness 

and Expertise were highlighted. Categories associated with unpredictability were more 

often associated with perceived human-likeness at a beginner level, whereas categories 

associated with predictability are often associated with either human-likeness at an expert 

level (i.e., competent performances), or AI-ness at a beginner level. The pattern suggests 

that perceived human-likeness and expertise may have a relationship with perceptions of 

behavior that is either seen as predictable or unpredictable. 

When participants described performances, sometimes they described them in 

elaborate detail and referenced aspects of the player’s cognition as they played through the 

game. For example:  

 

HB perceived as HB: “Human because it knew how to stop to learn and think to 

figure out how to play the game. It wasn't perfect and it was going at different 

paces.” 

 

AE perceived as HE: “The player was more selective and there seemed to be more 

strategy behind it.” Or “The player did really well at the beginning, but had to 

think about which move to take while performing tasks.” 
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This may imply that they perceived an intelligent mind and ToM states in the player while 

watching them play the game that helped participants to understand and explain their 

actions in the game. Participants sometimes also described the performance in 

unpredictable terms, seeming to not know what the player would do next. For example: 

 

AE perceived as HE: “More spinning than normally and didn't seem stuck in the 

same behaviors and it seemed like the player was having fun like a human would.” 

 

AB perceived as HB: “Beginner Human [because] the player didn't collect coins 

and there was inconsistent and sporadic jumping.” 

 

Furthermore, the agents’ perceived human-likeness and competence/expertise seemed to 

interact with the overall perception of performances that were seen as predictable or 

unpredictable. Specifically, when a performance was perceived as predictable and skilled, 

descriptions seemed to indicate more perceived ToM states and more complex cognition 

(e.g., having goals and intentions, reasoning, making decisions, being precise) compared 

to predictable performances that were unskilled (e.g., repetitive, aimless). Some examples 

of predictable/explainable behavior include: 

 

AE perceived as HE: “The expert human seemed to make human decisions and 

there was hesitation.” 
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AE perceived as HB: “The player was still learning how to play, but they 

understood how to avoid losing the game and also to beat enemies” 

 

AB perceived as AB: “The agent kept making the same patterns of mistakes.” 

 

AB perceived as AB: “The agent just walked straight and didn't hit the boxes to 

collect coins.” 

 

   

As seen in these quotes, participants’ language when describing these agents’ behaviors 

sometimes include assumptions about the players’ motivations and they remembered 

observing specific performances in the game. These quotes seem to speak to the 

observation of behaviors that are easily explainable, either due to being repetitive in nature 

or because the participant can intuitively understand the players’ underlying goals or 

decisions.  

When it came to descriptions of unpredictable behavior, even descriptions of 

unskilled behaviors that were unpredictable were often perceived as humanlike. Some 

examples include: 

 

AB perceived as HB: “Beginner Human [because] the player didn't collect coins 

and there was inconsistent and sporadic jumping.” 
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AB perceived as HB: “The player was fairly slow and it didn't hit any targets. The 

player was ducking for no reason. The player would lose quite obviously to the 

enemy and it didn't know how to defend.” 

 

AE perceived as HB: “The player played longer, but there were more random 

tactics. It just raced through without a clear objective” 

 

While these participants described the players as having poor performance and perceived 

them as beginners, these AI players were also perceived as humans, which seems to be in 

part related to their unpredictable behavior. 

 The results from the empirical game theoretic analysis indicated that the strategic 

or social context perceived by participants can be easily mapped onto a few typical game 

theory games. While there may be some indication of an overall pattern (more complex 

contexts are perceived or preferred for competent humans, and simple competitive contexts 

are preferred for incompetent AI), there is not enough information available in this 

experiment to say anything conclusively. 

 Results from Experiment 1 suggest that the answer to research question 1 (How do 

people differentiate between actions produced by other humans and “mechanical” actions 

produced by AI?) is that participants may use pre-existing knowledge of how humans think 

and feel to interpret observations of behavior (i.e., ToM states). Additionally, participants 

may have pre-existing expectations of AI (i.e., the Perfect Automation Schema). Finally, 
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participants’ perception of human-likeness may be influenced by how skilled or competent 

a player is perceived to be, as well as the presentation of novel and unpredictable behavior.  

 Overall, results from Experiment 1 suggest that two areas for follow-up research 

may be meaningful to explore: (1) the extent to which perceptions of skill/competence and 

predictability influenced the perception of human-likeness, and (2) how a more 

ecologically valid context of interaction may influence these overall perceptions, as well 

as how social relationships differ in Human-Human Interactions and Human-AI 

Interactions (HAI) after the interaction occurs. 

 Experiment 2, therefore, was developed to investigate skill/competence and 

predictability with more concrete, quantitative methods as opposed to the qualitative 

methods from Experiment 1.  

Experiment 3 was developed to provide an immersive and complex social 

environment in which participants could make evaluations of human-likeness based on 

observations of complex behaviors (social and survival) while playing a videogame. Here, 

observable behaviors came from both the observation of how a co-player played the game 

and non-verbal social interaction, where participants and co-players (humans and AI) could 

interact however they desired within an open world survival videogame (Don’t Starve 

Together). 
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EXPERIMENT 2: THE RELATIONSHIP BETWEEN PERCEIVED 
PREDICTABILITY, COMPETENCE AND HUMAN-LIKENESS IN MARI/O 

To what extent do competence and predictability contribute to the perception of 

human-like behavior? 

From Experiment 1, participants described agents in rich terms that were codified, 

revealing a complex relationship between perceived human-likeness, predictability, and 

competence. The second experiment is intended to investigate the extent to which 

competence and predictability contribute to the perception of human-like behavior in an 

attempt to answer the second research question: to what extent do competence and 

predictability contribute to the perception of human-like behavior? While the first 

experiment hinted at the type of relationship that may be present, Experiment 2 will answer 

the question in a more thorough and rigorous way and shed further light on the first research 

question. 

 While competence was intentionally varied for all experiments, predictability was 

not. In Experiment 1, participants described behaviors in terms that either indicated that 

they perceived different agents’ behaviors as predictable and explainable (e.g., repeating 

an action or acting in a way that was intuitive if the player had human-like motivations and 

mind) or as unpredictable or random (e.g., being aimless, jumping at random times, or 

experimenting with the environment in new ways). While seeing an agent as predictable 

can be associate with very simple behaviors like repeatedly performing the same action, a 

humanlike mind can also be considered predictable when we can intuit the goals and 

intentions (i.e., Theory of Mind; Premack & Woodruff, 1978; Baron-Cohen, Leslie & Frith, 
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1985). Similarly, it is possible that participants perceived these actions as explainable in 

that they resulted from trying to achieve goals, and the perception of goal-directedness is 

associated with the perception of animate motion (Rakison & Poulin-Dubois, 2001). In 

Experiment 1, participants who perceived an AI agent as competent and described them in 

predictable terms often perceived the agent as a human. In addition, these terms were often 

associated with understanding the cognition and intentions of the agent. For example:  

AE perceived as HE: “Human because there was some hesitation and selective 

human behavior.” 

While the participant could have perceived pauses in the agent’s motion in a variety of 

ways, it is described as “hesitation” and “selective”, as if to imply that the agent was 

making purposeful decisions while playing the game.  

Additionally, acting predictability in a joint action task can also lead to the 

perception that an interaction partner is trying to coordinate with their interaction partner, 

which can also imply human-likeness. Pfeiffer et al. (2011) demonstrated that in a naive 

context, the act of frequently engaging in joint attention (i.e., predictably looking at the 

same object that a participant was looking at) increased perception of human-likeness, 

whereas in a cooperative context (i.e., trying to engage in joint attention as often as 

possible), the perception of human-likeness was increased both when joint attention was 

frequently engaged, as well as when it was frequently avoided (i.e., predictably looking 

away for the object a participant was looking at). This indicates that the perception of 

predictability can influence the perception of human-likeness, and that this perception is 

dependent on the context of an interaction. In the same study, a competitive context (i.e., 

https://psycnet-apa-org.mutex.gmu.edu/fulltext/2001-16969-002.pdf
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trying to avoid joint attention) eliminated the correlation of predictability and perception 

of human-likeness. This may imply that overall “predictability” is not just perceived in 

relation to observed behavior but is accompanied by the interpretation of the intentions 

behind that behavior. It is possible that participants in the Pfeiffer study who were in a 

cooperative context but had an interaction partner that never successfully engaged in joint 

attention believed their interaction partner was trying to engage, and was just really bad at 

the task, or that they were intentionally toying with them, whereas in a competitive context, 

the interpretation of intentions may not have been as clear. The ability to perceive 

intentions in the interaction partner may have increased the perception of human-likeness.   

 

On the other end of the spectrum, the observation of random or unpredictable 

behavior has been observed to increase with anthropomorphism. One relatively easy 

method for designing behavior that is perceived as human-like is to have a robot or AI 

agent act in ways that appear random, unpredictable, or violate people’s expectations, 

although this can also cause these agents to be perceived as less attractive or likable (Waytz 

et al., 2010b; Short et al., 2010; Hayes et al., 2014). There are two note-worthy exceptions 

in recent studies (Salem et al., 2013; Kompatsari et al. 2019). When performing an 

unpacking task, ASIMO, the large, white, humanoid robot built by Honda (Shigemi et al., 

2019), was observed occasionally making incorrect hand gestures (incongruent direction 

as a verbal instruction). These “errors” increased anthropomorphism, the extent to which 

participants liked the robot, and interest in future interactions even while participants 

knowingly performed worse at the task (Salem et al., 2013). Kompatsari et al. (2019) 
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demonstrated that a robot which engaged in joint eye gaze independent of task increased 

ratings of human-likeness and likability. However, both studies involved a technologically 

sophisticated, embodied robot in a non-competitive task (compared to the competitive tasks 

in Short et al., 2010 and Hayes et al., 2014). So factors like amusement and novelty may 

have played a role during the studies but might not be present if such agents were a normal 

part of life. Of additional consideration is that different modes of unpredictable behavior 

(for instance, the verbal cheat and active cheat conditions of Short et al., 2010) can affect 

mind perception in dramatically different ways (i.e., “it malfunctioned”, or “it tried to 

cheat”, respectively), so it is important to consider how different behaviors communicating 

the same intent can lead to distinct interpretations. While a simple set of behavioral 

characteristics that can effectively trigger anthropomorphism and mind perception would 

be desirable for robot and AI designers (Wiese, Metta & Wykowska, 2017), more work is 

needed to elucidate the types of perceived behaviors lead to desired interpretations in HAI 

and HRI. 

 

Hypotheses for Experiment 2 

The hypotheses for this experiment are that (H1) the relationship between 

competence and perceived human-likeness will be non-linear, and that as perceived 

competence increases, perceived human-likeness will generally increase, but will peak at 

the level of intermediate skill. Perception of human-likeness will decrease at the level of 

expertise due to perceptions related to the Perfect Automation Schema (Dzindolet et al., 

2002), which was seen in the results from Experiments 1 and 2. An example of what this 
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may look like is presented in Figure 8. Furthermore, (H2) the relationship between 

predictability/explainability and perceived human-likeness will be affected by perceived 

competence, which is presented in Figure 9. At a beginner level, highly predictable 

behaviors will be perceived with low human-likeness, and human-likeness will generally 

increase as unpredictability increases because predictability at a beginner level is likely to 

be associated with repetitive behavior rather than complex but highly explainable 

behaviors, and unpredictability has been shown to increase anthropomorphism (Waytz et 

al., 2010b; Short et al., 2010; Hayes et al., 2014). Intermediates will have a nonlinear 

relationship, in which performances perceived as highly predictable/explainable or highly 

unpredictable will be perceived with high human-likeness because the predictable 

behaviors will be explainable as ToM states (e.g., reasoning, having knowledge), as was 

seen in results from Experiment 1, and unpredictability will again increase 

anthropomorphism. The pattern for experts may be somewhere between these two, as 

behaviors will be complex enough to demonstrate complex mental states, but the 

perception of human-likeness will be muted overall due to the pervasive opinion that expert 

level performances are more likely to come from AI.  

 



46 
 

 
Figure 8: Hypothesized Human-Likeness and Skill Results from Experiment 2. This corresponds with H1. It is 
predicted that perceived human-likeness will in general increase with perceived skill, but that the peak value will be at 
the level of intermediate. 
 

 
Figure 9: Hypothesized Perceived Human-Likeness and Perceived Predictability/Unpredictability by Expertise Results 
from Experiment 2. This corresponds with H2. It is predicted that agents perceived as beginners, intermediates and 
experts will have different relationships between perceived human-likeness and predictability, with a positive linear 
relationship for beginners, a u-shaped relationship for intermediates, and something between the two for experts. 
 

  
 

Participants 

The experiment includes 111 participants, where 100 were from Amazon’s Mechanical 

Turk (mTurk; mean age: 36.43, SD: 10.06; 48 females) and 11 from George Mason’s Sona 

System (mean age: 25.45, SD: 5.57; 11 females). The screening criteria were that 
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participants be over 18 years of age and currently reside in the US. In total, 122 participants 

were collected from mTurk, but 22 participants were removed from the data set due to 

failing an attention check question (see Measures), finishing faster than possible (faster 

than 17 minutes), answering 90% or more of trials in the exact same way, or having an IP 

address that indicated that they resided outside of the US. No participants were removed 

from the Sona sample. 

A post hoc power analysis was conducted, assuming a medium effect size f2 = .15, 

α error probability of 0.05 and 2 predictors (skill and predictability), a sample size of 111 

yielded a power of 0.96. 

  

Stimuli 

The stimuli in this experiment included vignettes of game play from the same AI and 

human players as Experiment 1 playing the first level of Super Mario World. The one 

exception was that the AI beginner (AB), which was replaced with a version with slightly 

more training than the AB used in Experiment 1. The purpose of this substitution was that 

the AB in Experiment 1 was labeled as an expert much less often than the HB and many 

of the performances were repetitive, which likely affected overall perceptions of human-

likeness and skill.  

 There were 6 vignettes for each player. All vignettes were between 3 and 8 second 

in length. Each vignette was intended to showcase one type of behavior at a time (e.g., 

interacting with enemies, having a pattern of jumping, collecting coins, or pausing to 

consider a decision). There were 6 vignettes for each player. Each set of vignettes were 
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balanced such that both beginners had 2 vignettes displaying an obvious mistake (dying 

after being hit by an enemy) and experts had 1 vignette with an obvious mistake. All player 

vignettes featured 1 vignette where the player completed the level, and all players had 

vignettes featuring similar experiences from throughout the level. Vignettes were 

converted into GIFs that played on a loop with approximately 500ms of black screen at the 

beginning of the vignette to indicate when it began again.  

  

Apparatus 

Participants used their own computers to complete the study. The experiment was hosted 

on Qualtrics and completed online in one sitting. Participants found the study either 

through signing up on the Sona System website or through Amazon’s Mechanical Turk 

(mTurk). 

 

Measures 

All measures for this study were quantitative. Participants responded to each question via 

mouse click. All measures were recorded via Qualtrics. 

For each trial, participants watched a brief vignette, then indicated their perceptions 

of how likely a player was human, the player’s skill level at the game, and how predictable 

they believe the player’s actions were on 10 point Likert scales. The questions read as 

follows: 

1. How likely is this agent a human? 

2. How would you rate the skill of this agent? 
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3. How predictable were this agent’s actions? 

 

After responding to the three Likert measures, participants were asked to select character 

traits they associated with the player given the performance they just watched. The question 

and 18 character trait options are presented in Table 4. These traits were presented in 3 

pages with 6 on each page. These traits come from the categories derived from qualitative 

data in Experiment 1. Some traits are presented with their opposite (e.g., “makes mistakes” 

and “makes no mistakes”). Whenever an opposite occurred, the pair of traits was presented 

side by side on a page. 

 
 

 
Table 4: Character Trait Question and Character Traits Derived from Experiment 1. In Experiment 3, participants 
watched a vignette and selected any and all traits they associated with the player. Traits were presented in 3 groups 
(seen in columns) so that participants were not overwhelmed when making selections. These were always presented in 
the same order to make it easier to respond over the 24 trials. The same presentation of terms occurred for the last 2 
questions about character traits typically associated with humans and AI. 
 

 

 

makes mistakes thinking
experiments with 

game

makes no 
mistakes

flowing random

makes decisions
learns from 

actions
has knowledge

repetitive doesn’t learn no knowledge

precise actions has goals has skills

seeks information has no goals has no skills

Options

Question to participants: Please select any and all 
terms you would associate with this agent
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After each block, participants were asked about their overall perceptions of human-

likeness, expertise and predictability on 10-point Likert scales, and about their strategic 

preferences for playing a game with the player in the future, and asked to indicate a reason. 

The options given have strategies and justifications that match the game theoretic games 

identified in Experiments 1 & 3. It can be noted that Experiment 3 was conducted prior to 

Experiment 2, so the insights were used. The question, options, and associated game theory 

games are presented in Table 5. 

 
 

 
Table 5: Strategic Preference Question, Options, and Corresponding Game Theoretic Games. Participants are asked 
about their strategic preferences after each block and asked to indicate their preference along with a justification. Each 
preference and justification corresponded to a specific game theoretic game. 
 

 
 
 

 
At the end of all four blocks, participants selected any and all character traits they typically 

associated with humans and AI. The questions read as follows (terms seen in Table 5):  

1. Please select any and all terms you would typically associate with human 

players. 

Option Game Theoretic Game
Cooperatively, because I prefer cooperative 

games
Coordination, with cooperation 

as preference

Cooperatively, because we could do better 
working together

Stag Hunt

Cooperatively, because I don’t want to lose Mutual Assured Destruction 

Competitively, because it’s more fun
Coordination, with competition 

as preference

Competitively, because I think I would win 
easily

Deadlock

Competitively, because I couldn’t trust that they 
would cooperate

Social Dilemma

Question to participants: If you were to play a game in the future with this 
agent, would you prefer to play cooperatively or competitively, and why?
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2. Please select any and all terms you would typically associate with AI players. 

On the version that is placed on mTurk, two attention check questions were 

included and presented at random points in the experiment after a block within the Likert 

questions. The questions read as follows:  

1. If you are paying attention right now, select three. 

2. If you are paying attention right now, select eight.  

  

Procedure 

Participants first gave informed consent and answered a brief demographic questionnaire. 

Participants were instructed that they would be observing the 4 players (HB,HE,AB,AE) 

play Super Mario World and evaluating the players based on their (the participant’s) overall 

perceptions (for a detailed description of the game, refer to Experiment 1).  

Next participants were given instructions and information on the structure of the 

experiment. Throughout the experiment, participants watched vignettes, then rated how 

likely the player was human, how skilled the player was, and how predictable their actions 

were based on the performance through Likerts (see Measures). After the Likerts, 

participants selected any and all of the 18 character traits they associated with that player 

based on the vignette. Since the vignettes were presented as GIFs that repeated, they could 

watch the GIF repeat as much as they desired.  

Participants were informed that they would watch each of the 4 agents in 4 

individual blocks, where each block included 6 trials from one of the agents. Participants 

were only informed that some of the players were humans and some were AI, and not that 
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we classified some as beginners and experts. All blocks were presented in random order, 

and all trials were randomized within blocks. 

Before beginning the experiment, participants watched a video of the entire first 

level being played through so that they knew what to expect throughout the trials. After 

reading the instructions and watching the video, participants completed one practice trial. 

The vignette played in the practice trial and the video of the first level did not include any 

footage that was included in the experimental stimuli (i.e., the vignettes for each player). 

At the end of the experiment, participants selected any and all of the 18 character 

traits they typically associated with human and AI players (two separate questions, see 

Measures). These two questions were presented in random order to participants. The entire 

experiment took approximately 30 – 45 minutes, depending on the participant’s pace. 

  

Quantitative Analysis 

First, all measures based on 1 to 10 Likert scales were transformed by subtracting 1, such 

the lowest values were 0 and the highest values were 9. Analysis of Variance (ANOVA) 

was used to understand how players were rated differently across the three measures: 

perceived human-likeness, perceived skill, and perceived predictability.  

A linear regression was conducted to understand how average perceived skill 

affected average perceived human-likeness. Next, a second order polynomial contrast was 

included in the regression of average perceived skill on average perceived human-likeness, 

and the two models were compared with an ANOVA to determine if one was significantly 

better at explaining the variance.  
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A multiple regression with a polynomial contrast were conducted to determine the 

effect of average perceived predictability on average perceived human-likeness for 3 levels 

of average perceived skill: beginner, intermediate, and expert.  

Next, a cluster analysis was conducted to understand the relationship between the 

character traits (i.e., derived categories from Experiment 1) and the three measures: 

perceived human-likeness, perceived skill, and perceived predictability. The same cluster 

analysis was then repeated to understand the relationship between the Game Theoretic 

games (GT games). Additionally, a chi-squared analysis was used to investigate the 

relationship between agents and GT games, then ANVOAs were used to understand any 

relationship between GT games and average perceived human-likeness, skill and 

predictability. 

  

Results 

Perceptions of Individual Players 

To gain a better understanding of how each player was perceived, 3 ANOVAs were 

conducted for average perceived human-likeness, average perceived skill, and average 

perceived predictability with respect to players. Average perceived human-likeness was 

not significantly different across players, F(3,440) = 1.63, p = 0.181, ηp2 = 1.011, nor was 

average perceived predictability across players, F(3,440) = 0.50, p = 0.685, ηp2 = 0.003. 

Average perceived skill was significantly different across players, F(3,440) = 7.40, p < 

0.001, ηp2 = 0.048. A post hoc Tukey’s HSD showed that there were significant differences 

between the AE (mean = 5.74, SD = 2.46) and AB (mean = 4.86, SD = 2.70; p = 0.002), 
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the HE (mean = 5.56, SD = 2.61) and AB (p = 0.025), the HB (mean= 4.82, SD = 2.70) 

and AE (p = 0.001), and the HE and HB (p = 1.015). The differences were not significant 

between the HB and AB (p = 0.998) nor the HE and AE (p = 0.881). Results can be seen 

in Figure 10. 

 
 

 

 
 

Figure 10: Perceived Skill by Player. There were no significant differences between the beginner players, or the expert 
players, but all other differences were significant. Standard error bars are presented with average perceived skill. 

 

Perceived Human-likeness and Skill  

Hypothesis 1 was that the relationship between perceived human-likeness and perceived 

skill would by polynomial in nature, with a general increase in perceived human-likeness 

as perceived skill increased, and higher levels of perceived human-likeness at the 

intermediate level. To examine this, first a linear regression was run for average perceived 
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human-likeness by average perceived skill. The model was significant, F(1,442)= 129.70, 

p <.001, R2 = 0.23, and the equation is average perceived human-likeness = average 

perceived skill * 0.038 + 3.53. Next, a regression with a polynomial contrast was run for 

average perceived human-likeness by average perceived skill. The model was significant, 

F(2,441)= 74.77, p <.001, R2 = 0.25, where R2 was higher than in the first model, indicating 

that it explained more of the variance. The equation is average perceived human-likeness 

= (average perceived skill)2 * 0.064 + 5.00. Next, the two models were compared with an 

ANOVA, which showed that the second model which included the polynomial contrast did 

lead to a significantly better model fit than did the linear model, F(1,441) = 15.53, p < 

0.001, which confirms part of H1.  

However, when looking at the equation and a scatter plot with the best fit line 

(polynomial, see Figure 11), the direction of the polynomial trend line was different than 

hypothesized in that perceived human-likeness was lower at the perceived level of 

intermediate. Upon inspection of the scatterplot, it was observed that there was a high 

degree of variability for players rated below the expert level which appeared to be driven 

by the variability in perceived human-likeness, where players with a high average 

perceived human-likeness had wide variability in perceived skill (seen in Figure 11). Since 

the second hypothesis necessitated the observation of low, medium and high levels of 

perceived skill in relation to perceived human-likeness and perceived predictability, a post 

hoc analysis of low, medium and high levels of perceived human-likeness in relation to 

perceived skill and perceived predictability was also examined. 
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Figure 11: Average Perceived Human-Likeness by Average Perceived Skill. The best fit trendline has been added to 
the figure, and is non-linear. It was determined that the trendline is quadratic in nature. 

  
 

 
Perceived Human-likeness in Relation to Perceived Predictability and Skill 

Hypothesis 2 was that there would be differing patterns for perceived human-likeness and 

perceived predictability according to 3 levels of perceived skill: beginner, intermediate, 

and expert. In particular, it was hypothesized that there would be a linear pattern at the 

level of beginner, where an increase in perceived unpredictability would be associated with 

an increase in perceived human-likeness, and that a polynomial trend would exist for 

intermediate and expert levels, where perceived human-likeness would be high at the low 

and high ends of perceived predictability; there was not a strong hypothesis for experts, but 

it was believed that the pattern would be between that of beginner and intermediate, which 

was directly related to H1, where it was hypothesized that perceived human-likeness would 

be lower for experts than intermediates.   
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To assess H2, again, a linear regression was first run for average perceived human-

likeness by average perceived predictability. The model was significant, F(2,441)=90.79, 

p <.001, R2 = 0.17, and the equation is average perceived human-likeness = average 

perceived predictability * 0.38 + 3.81. Next, a regression with a polynomial contrast was 

run for average perceived human-likeness by average perceived skill. The model was 

significant, F(2,441)=58.24, p <.001, R2 = 0.21, where R2 was higher than in the first model, 

indicating that it explained more of the variance. The equation is average perceived human-

likeness =  average perceived predictability * -0.47 + (average perceived predictability)2 * 

0.08 + 5.74. Next, the two models were compared with an ANOVA, which showed that 

the second model which included the polynomial contrast did lead to a significantly better 

model fit than did the linear model, F(1,441) = 21.48, p < 0.001. 

Next, a multiple regression with a polynomial contrast was run for average 

perceived human-likeness with respect to average perceived predictability with 3 levels of 

average perceived skill: beginner (average rating of 3 or less, n = 154), intermediate 

(average rating of 7 or less, n = 148), and expert (average rating above 7, n = 142). These 

groups are as close to balanced as could be achieved. The multiple polynomial regression 

equation was significant, F(8,438) = 18.44, p < 0.001, R2 = 0.24.  

 An ANOVA was used to compare the regression to a model that did not include 

levels of average perceived skill. While that equation was also significant, F(2,441) = 

58.24, p < 0.001, R2 = 0.21, the ANOVA revealed that the equation that included levels of 

average perceived skill was a significantly better fit, F(6,435) = 4.30, p < 0.001. 
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Since average perceived skill was a categorical variable, an ANOVA was run on 

the regression model of average perceived human-likeness with respect to average 

perceived predictability with 3 levels of average perceived skill to compare the main effects 

and interaction. The main effect of average perceived skill level was significant, F(2,435) 

= 8.93, p < 0.001, ηp2= 0.039, as were the linear trend of average perceived predictability, 

F(2,435) = 99.26, p < 0.001, ηp2 < 0.001, and the quadratic trend, F(2,435) = 22.45, p < 

0.001, ηp2 =0.009. The interactions between the linear trend of average perceived 

predictability and average perceived skill level was not significant, F(2,435) = 1.41, p = 

0.244, ηp2 < 0.001, nor was the interaction between the quadratic trend and average 

perceived skill level, F(2,435) = 2.55, p = 0.079, ηp2  < 0.001, though it was close to 

significant. A scatterplot with best fit regression lines for each level of skill is presented in 

Figure 12. 

 
Figure 12: Average Perceived Human-Likeness by Average Perceived Unpredictability. Predictability is reverse coded 
to give unpredictability, which is what was presented with H2. Regression lines are presented for average perceived 
skill levels of beginner, intermediate, and expert. There was a main effect of average perceived skill level, and linear 
and quadratic trends for perceived predictability. It can be seen that at the level of expert, low and high predictability 
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are related to higher average perceptions of human-likeness. The same type of non-linear pattern is present for the 
levels of intermediate and beginner, but average perceived human-likeness is lower for lower levels of perceived skill.  
 
 
 
As a post hoc analysis, since average perceived human-likeness seemed to drive the 

variability in Figure 11, regressions were run for average perceived predictability by 

average perceived skill. First, a linear regression was conducted to see, which was 

significant, F(1,442) = 386.5, p < 0.001, R2 = .47. Next, a regression was run with a second 

order polynomial contrast, which was also significant, F(2,441) = 236.10, p < 0.001, R2 = 

.51, and explained more of the variance than the linear model. Next an ANVOA was run 

on the two models, and it was determined that the equation with the polynomial contrast 

was significantly better at explaining the variance than was the linear model. The equation 

is average perceived predictability = F(1, 441) = 46.23, p < 0.001.  

Next, a multiple regression with polynomial contrasts was run for average 

perceived predictability with respect to average perceived skill with 3 levels of average 

perceived human-likeness: low (average rating of 5.2 or less, n = 156), medium (average 

rating of 6.7 or less, n = 141), and high (average rating above 6.7, n = 147). These groups 

are as close to balanced as could be achieved. The multiple polynomial regression equation 

was significant, F(8,435) = 62.81, p < 0.001, R2 = 0.53.  

An ANOVA was used to compare the results of this model to the model without 

the 3 levels of average perceived human-likeness, and it was determined that the equation 

that included levels of average perceived human-likeness was a significantly better fit, 

F(6,435) = 2.96, p = 0.008. 
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Since average perceived human-likeness was a categorical variable, an ANOVA 

was run on the regression model to compare the main effects and interaction. The linear 

trend of average perceived skill was significant, F(2,435) = 437.34, p < 0.001, ηp2 < 0.001, 

and quadratic trend, F(2,435) = 47.45, p < 0.001, ηp2  = 0.042. The main effect of average 

perceived human-likeness level was not significant, F(2,435) = 2.70, p = 0.068, ηp2 = 0.012, 

though it was close to significant. The interaction between the linear trend of average 

perceived skill and average perceived human-likeness level was not significant, F(2,435) 

= 1.33, p = 0.266, ηp2 < 0.001, but the interaction between the quadratic trend and average 

perceived human-likeness level was significant, F(2,435) = 4.81, p = 0.009, ηp2  = 0.022. 

Results are presented in Figure 13. 

 

 
Figure 13: Average Perceived Predictability for Levels of Perceived Human-Likeness. (left) Average perceived 
human-likeness by average perceived skill. (right) Average perceived predictability by average perceived skill and 
level of perceived human-likeness. The regression lines are included for high, medium and low levels of average 
perceived human-likeness. 
 
 
 
Finally, since the main effect of average perceived human-likeness level was nearly 

significant, the levels were next split as follows: low (average rating of 3 or less, n = 35), 
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medium (average rating above 3 and up to 6, not including 3, n =191), and high (average 

rating above 6, n = 218). When the polynomial multiple regression was run for perceived 

predictability by perceived skill with these 3 levels of perceived human-likeness, the 

equation was significant, F(8,435) = 65.72, p < 0.001, R2 = 0.54. The ANOVA conducted 

on the regression model showed a significant main effect of average perceived human-

likeness level, F(2,435) = 6.02, p = 0.002, ηp2 = 0.027, as well as the linear trend of average 

perceived skill, F(2,435) = 448.22, p < 0.001, ηp2 < 0.001, and the quadratic trend of 

average perceived skill, F(2,435) = 48.63, p < 0.001, ηp2 =0.038, and the interaction 

between levels of average perceived human-likeness and the quadratic trend of average 

perceived skill, F(2,435) = 6.20, p = 0.002, ηp2 = 0.028. The interaction between the level 

of average perceived human-likeness and the linear trend of average perceived skill was 

not significant, F(2,435) = 2.25, p = 0.107, ηp2 < 0.001. Figure 14 shows a comparison of 

the results presented in Figure 13 with balanced group sizes to these results with 

unbalanced group sizes at even levels. It is important to note that this model (with 

unbalanced groups) explained more of the variability than did the prior model (with 

balanced groups; R2 = 0.54 and R2 = 0.53, respectively), though an ANOVA could not be 

run on the two models because the model was saturated (same variables, only slightly 

different groupings), so there were no remaining degrees of freedom to run statistics on. 
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Figure 14: Average Perceived Predictability by Average Perceived Skill Depending on Levels Of Humanness and 
Group Sizes. (left) Average perceived predictability by average perceived skill and level of perceived human-likeness 
with balanced groups. (right) Average perceived predictability by average perceived skill and level of perceived 
human-likeness with unbalanced groups and even bin sizes. While a significant main effect of level of human-likeness 
was achieved with even bin sizes (nearly significant with balanced group sizes), the regression lines in each figure are 
very similar, indicating that the same basic pattern exists between the two level distinctions. 
 
 
 
Cluster Analysis of Character Traits.  

Character traits selected by participants were analyzed both in terms of the traits 

participants selected for each trail and the overall character traits participants typically 

associated with humans and AI. A cluster analysis could not be performed for the overall 

traits typically associated with humans and AI because these final questions were not 

accompanied by any trials or the three measures (perceived human-likeness, skill and 

predictability). Instead, the overall percent of participants who typically associated traits 

with humans and AI was examined, and these results can be seen in Figure 15. These 

character traits were sorted by the difference between percentages (i.e., percent AI – 

percent H) to show which traits are more commonly associated with humans and AI. 
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Figure 15: Percent of Participants who Typically Associated Each Character Trait with Humans and AI. These 
percentages are sorted such that traits more associated with human-likeness (i.e., difference between two percentages is 
high with a higher overall percent for humans) are on the left and traits more associated with AI-ness (i.e., difference 
between two percentages is high with a higher overall percent for AI) on the right. Percentages that are close to equal 
are in the middle. 
 
 
 
A cluster analysis was conducted for the character traits with respect to the averages of 

perceived human-likeness, skill and predictability. To do this, for every character trait, 

every trial in which that character trait was selected was marked, and the perceived human-

likeness, skill and predictability participants indicated for that trial was included in an 

overall average of the three measures for that character trait.  

First, the Euclidean equation was used to calculate the correlation distance between 

measures (see Figure 16). 
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Figure 16: Results from Euclidian Distance Equation for Character Traits. Higher values (in red) indicate larger 
distance between terms. 

 
 
 
Next, the Elbow method was used to estimate the optimal number of clusters, and 

2 was determined to be the best number (see Figure 17).  

 
Figure 17: Optimal Number of Clusters According to Elbow Analysis for Character Traits. 
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Next, a k-means clustering unsupervised learning algorithm was used to separate 

the character traits into groups (see Figure 18). The average perceived human-likeness is 

6.35 for cluster 1 and 7.02 for cluster 2. Average perceived skill is 4.72 for cluster 1 and 

6.93 for cluster 2. Average perceived predictability is 5.76 for cluster 1 and 6.52 for cluster 

2.  ANOVAs demonstrated that average perceived human-likeness by cluster was 

significant, F(1,16) = 13.9, p = 0.002, part eta = 0.465, average perceived skill by cluster 

was significant, F(1,16) = 65.02, p < 0.001, part eta = 0.803, and average perceived 

predictability by cluster was significant, F(1,16) = 19.50, p < 0.001, part eta = 0.549. 

 
 
 

 
Figure 18: Cluster Plot of Character Traits. 
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Finally, individual plots were created for character traits along the dimensions of average 

perceived human-likeness and average perceived skill (Figure 19) and average perceived 

human-likeness and average perceived predictability (Figure 20).  

 
 

 

 

Figure 19: Character Traits by Average Perceived Human-Likeness and Average Perceived Skill. 
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Figure 20: Character Traits by Average Perceived Human-Likeness and Average Perceived Predictability. 
 
 
 
Statistics and Cluster Analysis for Game Theoretic Social Context 

A X2 analysis comparing the relationship between player and strategy was significant, X2 

= (15,444) = 27.95, p = 0.022. Figure 21 shows the proportion of participants who selected 

each GT game for each player. 
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Figure 21: Percent of Participants who Selected Each GT Game for Each Player. The first three games (coord_coop, 
stag, and mutual) are cooperative games with different contexts and the last three games (coord_comp, deadlock, and 
dilemma) are competitive games with different contexts. 
 
 
 
The ANOVA for average perceived human-likeness for GT game was not significant, 

F(5,438) = 0.95, p = 0.448, ηp2 = .011, nor was the ANOVA for average perceived 

predictability for GT game, F(5,438) = 2.22, p = 0.051, ηp2 = 0.025, though it was nearly 

significant. The ANOVA for average perceived skill was significant for GT game, F(5,438) 

= 7.48, p < 0.001, ηp2 = 0.079. A post hoc Tukey’s HSD showed that there were significant 

differences between deadlock (mean = 4.49, SD =2.87) and cooperative coordination 

(mean = 5.76, SD = 2.54; p < 0.001), deadlock and mutual assured destruction (mean = 

5.69, SD = 2.31; p = 0.003), deadlock and stag hunt (mean = 5.66, SD = 2.43; p = 0.001), 

and cooperative coordination and social dilemma (mean = 4.62, SD = 2.92, p = 0.041). No 

other differences were statistically significant. Results can be seen in Figure 22. 
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Figure 22: Average Perceived Skill by GT Game. Standard error bars are presented along with average perceived skill. 
The first three games (coord_coop, stag, and mutual) are cooperative games with different contexts and the last three 
games (coord_comp, deadlock, and dilemma) are competitive games with different contexts. 
 
 
 
A cluster analysis was conducted for the GT game with respect to the averages of perceived 

human-likeness, skill and predictability. To do this, for every GT game, every block in 

which that GT game was selected was marked, and the average perceived human-likeness, 

skill and predictability for that block was included in an overall average of the three 

measures for that GT game.  

First, the Euclidean equation was used to calculate the correlation distance between 

measures (see Figure 23). 
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Figure 23: Results from Euclidian Distance Equation for GT Games. Higher values (in red) indicate larger distance 
between terms. 

 
 
 
Next, the Elbow method was used to estimate the optimal number of clusters, and 

2 was determined to be the best number (see Figure 24).  

 

 
Figure 24: Optimal Number of Clusters According to Elbow Analysis for GT Games. 
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Next, a k-means clustering unsupervised learning algorithm was used to separate 

the GT games into groups (see Figure 25). The average perceived human-likeness is 6.68 

for cluster 1 and 6.78 for cluster 2. Average perceived skill is 5.55 for cluster 1 and 6.57 

for cluster 2. Average perceived predictability is 5.87 for cluster 1 and 6.51 for cluster 2.  

ANOVAs demonstrated that average perceived human-likeness by cluster was not 

significant, F(1,4) = 0.19, p = 0.687, part eta = 0.045, but average perceived skill by cluster 

was significant, F(1,4) = 23.12, p = 0.009, part eta = 0.852, and average perceived 

predictability by cluster was significant, F(1,4) = 27.29, p = 0.006, part eta = 0.872. 

 

 
Figure 25: Cluster Plot of GT Games. 
 
 
 
Finally, an individual plot was created for GT games along the dimensions of average 

perceived skill and average perceived predictability (Figure 26).  
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Figure 26: GT Games by Average Perceived Skill and Average Perceived Predictability. 
 
 
 

Discussion 

While H1 was not entirely supported, the relationship between competence (i.e., skill) and 

perceived human-likeness was non-linear. The trend indicated that overall, as perceived 

competence increased, so did perceived human-likeness, with the level of perceived 

human-likeness trending lower at the level of intermediate and perception of human-

likeness was maximum at the highest level of competence (i.e., the opposite direction of 

what was hypothesized).  

The observed relationship between average perceived human-likeness and average 

perceived skill may have been influenced by a couple factors. First, there was a high degree 

of variability in average perceived human-likeness below the level of expert. A visual 

inspection of the scatterplot of average perceived human-likeness by average perceived 

skill seemed to indicate that this variability may have been driven by perceived human-

likeness. For instance, at a low level of perceived human-likeness, players had lower levels 
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of perceived skill and none were rated at the level of expert, whereas at a high level of 

perceived human-likeness, players’ average ratings of perceived skill ranged from very low 

to very high. This pattern led to the post hoc analyses of perceived predictability by 

perceived skill with respect to 3 levels of human-likeness, which gave some indication that 

the relationship between perceived predictability and skill differed at the level of medium 

perceived human-likeness. While an obvious reason for this may be that it is harder to 

perceive behaviors of unknown origin as explainable/predictable, it is possible that some 

deeper reason is at play. For instance, it is possible that bottom-up perceptions of the three 

measures (human-likeness, skill and predictability) interact before a final perception is 

reached. Perhaps at a medium level of perceived humanness, there is no strong 

understanding of how to interpret motivations that lead to behavior (i.e., applying ToM), 

so the perception of an agent that jumps up and down is perceived as “random” rather than 

“having a goal in mind” (e.g., learning the controls or experimenting with the level). It is 

possible that if ToM was applied, the perception that the player had a goal could have 

influenced the final interpretation of human-likeness and skill. Future research would be 

needed to understand this relationship. 

Second, there was also a bias towards higher ratings of skill and human-likeness. 

This was not entirely unanticipated, as stimuli was designed to be ambiguous. Ambiguous 

stimuli may have been more likely to be perceived as intermediate competence and middle 

level human-likeness. Additionally, vignettes were very brief (ranging from 3 to 8 seconds 

each), which may have also contributed to ambiguity. 
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H2 was also only partially supported. Beginner, intermediate and expert levels of 

competence did have an effect on the best fit trendlines for perceived human-likeness by 

perceived predictability, and the low and high end of predictability were associated with 

higher levels of perceived human-likeness for intermediate and expert levels, however, the 

beginner and expert levels did not show that pattern predicted. Additionally, there was a 

positive linear trend where increased predictability was related to increased perceived 

human-likeness, which was opposite of what was predicted. 

Additionally, the trendline associated with the expert level had the maximum curvature 

that was expected of the intermediate level. However, H1 was that maximum perceived 

human-likeness should be associated with the intermediate level, and it was predicted that 

perceived human-likeness would decrease at the level of expert, but this was not the case. 

The maximum curvature associated with the level of expert is possibly due to this 

relationship. If this is the case, just like with H1, the fact that vignettes were very brief and 

intentionally ambiguous may have affected this relationship. 

The cluster analysis of character traits showed that ToM traits seemed to have closer 

distance than traits that were not related to ToM states. ToM states were mostly clustered 

together (cluster 2), except for seeks information. The cluster that contained the ToM states 

also included the traits makes no mistakes, flowing, precise, and skill, and this cluster 

overall had significantly higher levels of perceived human-likeness, skill, and 

predictability. This is in line with the explanation that agents who were perceived as 

sufficiently human-like and sufficiently skilled demonstrated actions that were predictable 
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in the sense that participants could intuitively understand the motivations of the player by 

using ToM. 

Overall, while some qualities match the category system from Experiment 1, others 

have shifted levels of perceived predictability or human-likeness. This may also relate to 

the fact that increased perceived predictability was associated with increased perceived 

human-likeness (which was again opposite from H2). One thing that stood out was the 

traits “making mistakes” and “making no mistakes”. While in Experiment 1, “making 

mistakes” was often associated with human-likeness, and some participants expressed that 

AI should “make no or very few mistakes” (i.e., a bias in line with the Perfect Automation 

Schema), these patterns were not present in the cluster analysis. However, when looking at 

the character traits participants explicitly associated with humans or AI (i.e., results in 

Figure 15), these patterns were present as “makes mistakes” was more often associated 

with humans than AI and “making no mistakes” was more often associated with AI than 

humans. It is possible that this bias was present and affected some other perceptions of 

these players (for instance trust, which was not measured in this experiment), but that it did 

not actually affect perception of human-likeness during the experiment.     

 

The analyses for the GT games demonstrated that player type did affect the types of game 

selected, as did average perceived skill, and average perceived predictability was almost 

significant, whereas average perceived human-likeness was not. Overall, average 

perceived human-likeness was not different across all agents, meaning that participants 

could not distinguish between AI and human players overall. It is interesting that even 
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while they were not able to reliably distinguish between these players, some of the GT 

games selected for these players had the same pattern as in Experiment 1. What is more 

interesting is that this pattern exits even though participants did not know the true identity 

of players (i.e., true human-likeness or true skill) when they selected games in this 

experiment but were able to make game selections for any hypothetical agent in 

Experiment 1 (see Table 3 and Figure 21). For instance, in this experiment and Experiment 

1, deadlock was more frequently selected for beginner players, and was highest for the AB. 

Similarly, in both Experiments, Stag Hunt was the most frequently selected game for HE, 

and the highest frequency of Stag Hunt was for the HE. The cluster analysis revealed 2 

clusters, where both coordination games (cooperative and competitive), Stag Hunt and 

Mutual Assured Destruction were clustered together, and the social dilemma and Deadlock 

were in a separate cluster. Clusters were distinctly split across perceived predictability and 

perceived skill. 

 

Overall, results from Experiment 2 suggest that the answer to research question 2 

(i.e., to what extent do competence and predictability contribute to the perception of 

human-like behavior) is that in general, increased perceptions of competence lead to an 

increased perception of human-likeness, but the relationship is non-linear, and the causal 

relationship is not fully understood (i.e., does perception of human-likeness increase 

perceived skill, is it the other way around, or does it depend on other factors?). Overall, a 

higher value of perceived predictability was associated with higher values of perceived 

human-likeness, but this pattern was different for different perceived levels of 
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skill/competence, such that at a higher level of perceived competence, high and low values 

of perceived predictability were associated with higher values of perceived human-

likeness. This type of pattern was predicted (thought it was believed that perceptions of 

human-likeness would be maximized at the intermediate level). Additionally, from the 

cluster analysis, ToM states in general had higher levels of perceived human-likeness, skill, 

and predictability, suggesting that the actions of players who were perceived as sufficiently 

humanlike and sufficiently skilled were perceived as predictable because a participant 

could intuitively understand that player’s motivations by using ToM. While that was the 

expectation prior to conducting this experiment, future research would be needed to 

specifically prove that theory. 
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EXPERIMENT 3: DON’T STARVE TOGETHER 

What characteristics of social interactions do humans use to differentiate between 

humans and AI, and how do Human-Human Interactions and Human-AI 

Interactions (HAI) differ within a complex environment?  

 
The purpose of the third experiment was to expand upon the findings from the pilot study 

(i.e., Experiment 1) to understand how people make distinctions between humans and AI 

when they are given the ability to interact however they want within a complex game 

environment. In particular, what characteristics of social interactions do humans use to 

differentiate between humans and AI, and how do Human-Human Interactions and 

Human-AI Interactions (HAI) differ within a complex environment. Participants played an 

open world survival style videogame with one of 4 possible types of humans and AI co-

players.  

In Experiments 1 and 2, the context of judgement was a typical psychological 

experiment, where participants watched vignettes and then responded about their 

perceptions of the agents. In the real world, judgements of others occur on the basis of 

interaction as well as observing behaviors in complex and dynamic contexts. According to 

the results presented in Pfeiffer et al., (2011), the context of an interaction can affect the 

way behavior is perceived, and in particular, whether or not predictable behavior is 

perceived as human-like. In this experiment, participants have the opportunity to observe 

a co-player’s behavior and engage in social interactions with them.  
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Participants 

In total, 114 undergraduate students (mean age: 20.7, SD: 3.69; 64 females) participated in 

this study. Overall, 26 participants were removed due to some glitches associated with the 

modifications made to the game or other technical difficulties (e.g., game crashing after 

the experiment was started, internet connectivity issues, agent continuing to run into a wall 

or standing still for more than half the experiment), or incomplete datasets leaving early, 

and neglecting to fill out some questionnaires, which resulted in a total 88 usable data sets 

(mean age: 20.8, SD: 4.19; 47 female). The only screening criteria were that participants 

had no prior experience playing the game and were over the age of 18. Participants reported 

spending an average of 5.6 hours (SD = 2.70) on a computer per day and an average of 

5.28 hours (SD = 8.16) playing videogames per week.  

 The number of participants collected for this study is consistent with, if not greater 

than, similar studies involving actual robots or AI (Salem et al., 2013; Wykowska et al., 

2015; Hayes et al., 2014; Mutlu et al., 2009, etc.). Smaller sample sizes are generally 

accepted due to the difficulty of experimental set up and the frequent removal of 

participants due to technical difficulties. A post hoc power analysis was conducted to 

determine the power associated with the number of participants included in this study. With 

a medium effect size f2(V) = 0.154, α error probability of 0.05, n = 88, groups = 4, and 24 

response variables, the observed power = 0.76. An attempt was made to collect more data, 

but George Mason University shut down due to COVID-19 before any additional data 

could be collected.   
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Stimuli 

Four different agents were selected for the Turing Test, who participants played with in the 

game Don’t Starve Together: The two human co-player types included a Confederate 

Human co-player who was given no instructions other than to play the game however he 

wanted to. The second human co-player type was another participant, such that two 

participants unwittingly played in tandem and judged the other participant. The two AI co-

players included a Simple AI and a Social AI. The Simple AI was programmed to display 

human-like actions during game play (collecting resources, fighting or running away from 

monsters, interacting with a participant when they engaged with it), but had no incentives 

during the game. The behavior tree for the Simple AI co-player can be seen in Figure 27. 

The Social AI was developed with a cognitively plausible behavior tree that allowed it to 

use human-like motivations for survival and interaction behaviors within the game, as well 

as a machine learning algorithm to learn from social interactions and decide for itself how 

to treat participants in the game. This agent played the game more competently than the 

Simple AI in the sense that it actually tried to survive and interact, rather than just imitating 

common human behavior in the game. The behavior tree for the Social AI co-player can 

be seen in Figure 28. 

 The two avatars that players and co-players used were “Wilson” and “Woodie”; see 

Figure 29. These two avatars were selected for their similar features and relatively normal 

appearances compared to other available avatars in the game. In the AI conditions, the 

participant played as Wilson and the AI co-player played as Woodie. The avatar 

assignment was specified to make the start up procedure as straightforward as possible for 
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research assistants, as improperly starting the game with the re-search modifications or 

improperly adding the co-player to the game could cause the game to crash or result in 

missing data. 

 
 
 

 

Figure 27: The Simple AI’s Behavior Tree. The Simple AI’s behavior was governed by this behavior tree.  
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Figure 28: The Social AI’s Behavior Tree. The Social AI’s behavior consisted of two main components. The first 
component was a behavior tree that was designed from participant’s statements about what constituted humanlike 
behavior in the game. The Social AI kept track of its own “neediness” based on its current player stats (health, hunger 
and sanity) and how many resources it had in inventory, or how well it was currently surviving in the game and made 
decisions based on how needy it was in the moment. The second component involved a POMDP (Emami, Hamlet & 
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Crane, 2015) that kept a memory of other agents it interacted with, estimated for itself the social context, and made 
decisions based on how it was being treated by the participant. 
 
 
 

 
 

Figure 29: DST Player Avatars: Wilson (left) was played by the participant; Woodie (right) was played by half of the 
participants in the human condition and by the Confederate Human, Simple AI and Social AI. 

  
 
 

Apparatus 

Two copies of the game Don’t Starve Together were purchased and modified to record 

participants’ in-game behavior and interactions with co-players. Modifications were also 

made to make the game a little easier for the participant (e.g., they could never actually die, 

but were not informed of this fact), and the chat function was disabled to ensure that all 

interactions were behavioral. The game was played on PCs through the Steam gaming 

platform (Valve, 2003). Participants were given the option to use either an Xbox style 

controller or mouse and keyboard. All questionnaires were administered through Google 

Forms. Interviews were conducted verbally and transcribed by the researcher. 
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Measures 

While playing the game, various behavioral measures are recorded associated with the 

participants’ in-game behaviors, performance, and interactions with co-players: 1) distance 

between player avatars within the game environment   (measured in approximate 

centimeters on the monitors), 2) how often participants gave / received items to / from co-

players, and 3) how often participants attacked co-players / were attacked by co-players.  

Participants also complete four surveys during the study. Prior to playing the game, 

participants filled out a generic demographics survey. After playing the game, participants 

filled out a series of questions to indicate how much they enjoyed their interactions in the 

game and with the co-player, how much they liked and trusted the co-player, and how much 

they would like to play an-other game in the future with the co-player , how much they 

would prefer to play cooperatively and how much they would prefer to play competitively 

with the co-player, a presence questionnaire to indicate what extent did they feel like the 

game and the other player were “real” (Schneider et al., 2004), and the Godspeed 

questionnaires of anthropomorphism, animacy, likeability, perceived intelligence, and 

perceived safety (Bartneck et al., 2009) to indicate how participants perceived each co-

player after their interactions. 

After playing the game and completing the questionnaires, participants were 

interviewed with the following questions: 

1. What agent do you think you were playing with? 
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2. On a scale from 1-10, with 1 being the least, 10 being the most, how 

confident are you that the agent was (Human/AI)? 

3. What experience level do you think the agent has (beginner, intermediate, 

expert) Why?  

4. On a scale from 1-10, with 1 being the least, 10 being the most, how 

“socially intelligent” (i.e., able to understand your intentions, knowingly act 

in a social way, or able to decide whether or not to cooperate with you) do 

you think the other agent was? 

5. What made you think the agent was or was not “socially intelligent”? 

6. What features made you think it was a (human/AI) player? Why? 

7. What features of the performance made you think it was NOT a 

(human/AI)? Why? 

8. What do you think the agent's goal was while they were playing? 

9. If you were going to play another game with this agent, would you prefer a 

cooperative or competitive game, and why? 

 

While the interview questions were preplanned, research assistants would often ask follow-

up questions to encourage participants to elaborate on their responses to collect as much 

qualitative data as possible.  
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Procedure 

At the beginning of the experiment, participants read the consent form and verbally 

confirmed that they consented to be in the study, then filled out the demographic 

questionnaire and were given instructions for the experiment. In the experiment, 

participants play Don’t Starve Together, an immersive, multiplayer wilderness survival 

game in which players collect resources from the environment (e.g., food and fire wood) 

and craft tools and other objects (e.g., hats, armor, hand tools) to survive. Figure 30 shows 

a typical game view. The game operates on a day cycle, with a clock at the top right side 

of the screen indicating when it is morning, evening or night. At night, the entire field turns 

dark, and players must find light to see their environment and stay alive. Players can track 

how well they are performing by looking at their health, hunger, and sanity levels that are 

displayed on three icons in the top right of the screen, just under the clock. Players can also 

see how many items they have stored in their inventory (displayed at the bottom of the 

screen) and can interact with the crafting tab displayed on the left side of the screen to 

determine what items they can build given the resources carried in their inventory. 
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Figure 30: A Typical DST Game Scene: Both players (Wilson and Woodie) are in view. Both players are within the 
“home base” that featured some barriers, a cook pot and a constant light source that offered protection at night. The 
game statistics (hunger, health, sanity) are displayed in the upper right corner of the screen. The player’s inventory is 
displayed on the bottom of the screen. On the left side of the screen is the “crafting tab” where players can view and 
pick from different recipes to build different items to aid in survival in the game once they have collected the necessary 
resources. 

 
 
 
Players can play the game however they desire, including exploring the vast 

environment, fighting or befriending creatures found in the environment, or building 

equipment to help them survive and progress in the game.  

Participants were then told that they would be playing Don’t Starve Together with 

another player, and were instructed that they could do whatever they wanted in the game 

and towards the co-player (including exchanging goods like food, clothing, tools; fighting 

one another, and assisting each other in hunting food or fighting monsters), and that at the 

end we would ask them if they believed that the co-player was a human or an AI agent. 

They were also informed that chat within the game was disabled, and that all 

communication within the game would be behavioral. 
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After a 5-minute practice play, where participants are given some tips on how play 

the game and were allowed to ask questions, participants were then asked to leave the 

computer area while the experimenter brought the co-player into the game  by initializing 

their avatar in the home base. In the confederate and tandem conditions, an online server 

was created on one lab computer where Wilson was selected as the player avatar, and the 

researchers communicated via text messaging on their phones to connect a secondary 

computer to the server and initialize Woodie, who was played either by the confederate co-

player or another participate in the tandem condition. In both AI conditions, an online 

server was created with Wilson as the participant’s avatar, and a new instance of the AI co-

player (Simple AI or Social AI) was created with Woodie as the avatar. In the Social AI 

condition, the POMDP was running in a terminal in the background, and was not visible to 

the participant at any point. Once both players were initialized within the environment, the 

participant played the game with their co-player for approximately 30 minutes. During the 

experiment, data was saved after every interaction participants have with the environment 

and with the co-player for subsequent analysis. After playing for 30 minutes, the game was 

turned off and participants filled out the Godspeed measure, the presence questionnaire and 

the enjoyment questionnaire. Finally, participants were verbally interviewed about the 

perceived identity of the co-player and their overall impressions. At the end of the 

experiment, participants were told the true identity of their co-player and thanked for their 

participation. The experiment took about 1 hour to complete. 
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Quantitative Analysis 

In-game distance between players (on-screen distance between player avatars) and in-game 

behaviors (how often players interacted with each other by exchanging gifts, helping each 

other in combat or hunting, or attacking each other) were compared across co-player 

identity (i.e., Human-likeness) as well as perceived identity (i.e., Perceived Human-

likeness). All survey measures were also compared across Human-likeness and Perceived 

Human-likeness. 

As in Experiment 1, performance on the Turing Test was evaluated by comparing 

the relative frequency that co-players were rated as humans. Accuracy in detecting Human-

likeness was compared against chance (similar to Wykowska et al., 2015) to estimate how 

sensitive participants were to human-likeness in the experiment. 

Data was analyzed using a MANOVA with co-player identity and perceived 

human-likeness of co-player as IVs and the 6 behavioral measures (average in-game 

distance between players, health, hunger, sanity, and total times the participant interacted 

with, and was interacted with by the co-player) and 16 questionnaire measures (to what 

extent did participants feel like the game and co-player were “real”, how much participants 

liked and trusted co-players, how much they enjoyed the interaction, would like to play 

again in the future with the co-player, how much they would like to play cooperatively and 

competitively with the co-player, averages on each of the Godspeed questionnaires: 

anthropomorphism, animacy, likability, perceived intelligence and perceived safety) as 

DVs (22 total DVs). 
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Qualitative Analysis 

Participants were interviewed about their perceptions of the co-player and their natural 

language responses were analyzed and coded by two raters to determine what cues 

participants used to determine human-likeness in the game. The same bottom-up procedure 

was used to generate the category system in this experiment as was used in Experiment 1. 

Given the amount of quantitative data in this experiment, only question 6 (“What features 

made you think it was a (human/AI) player?”) was analyzed in the qualitative analysis. A 

consensus between the two raters was obtained using the same procedure as in Experiment 

1 and inter-rater reliability was calculated in the same way with Cohen’s Kappa and χ² 

between the two raters. Using the same procedure as in Experiment 1, an empirical game 

theoretic analysis was performed on participants’ responses to how they would prefer to 

play with the same co-player in the future (cooperatively or competitively) and their 

justifications for that decision. 

  

Results 

 
Qualitative Results 

Overall, the Confederate Human co-player was judged as a human by 18.2%, SD = 38.6%, 

of participants, the Tandem Human co-player as a human by 45.5%, SD = 49.8%, of 

participants, the Simple AI co-player a human by 22.7%, 41.9%, of participants, and the 

Social AI co-player as a human by 31.8%, SD = 46.6%, of participants. Overall, 70% of 

co-players were rated AI and 30% were rated human. Every co-player was rated as an AI 

more than 50% of the time. Accuracy in detecting humanness for the Confederate Human 
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was significantly below chance (18.2% accurate, t(21) = -3.78, p < .001). Accuracy in 

detecting humanness for the Tandem Humans was not significantly below chance (45.5% 

accurate, t(21) = -0.42, p = 0.340). Accuracy in detecting humanness for the Simple AI was 

significantly above chance (77.3% accurate, t(21) = 2.98, p = 0.004), as was accuracy for 

the Social AI (68.2% accurate, t(21) = 1.79, p =.044), all one-tailed. 

The Confederate Human co-player was explicitly rated as an expert more often than 

any other player (36%, SD = 48.1%, of participants), and beginner least often of any other 

player (9%, SD = 28.7% of participants), while the Simple AI was rated as a beginner most 

often (55%, SD = 49.8%, of participants), and the Tandem Human co-players and Social 

AI co-players were rated as intermediates most often (68%, SD = 46.6%, of participants 

and 55%, SD = 49.8%, of participants, respectively). Figure 6 shows perceived human-

likeness by calculated expertise with a second order polynomial best fit line. As seen in 

Figure 31, perceived human-likeness seems to peak at around 40%.  

 
 
 

 
Figure 31: Explicit Ratings of Human-Likeness by Expertise in The DST Experiment. Similar to Figure 6 and the 
MarI/O experiment, a second order polynomial best fit line has been added and shows that perceived human-likeness 
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peaks near mid-level expertise. *Since participants were allowed to rate the co-player as a beginner, intermediate or 
expert, expertise is calculated by (%_rated_beginner * 0 + %_rated_intermediate * 0.5 + %_rated_expert * 1). 
 
 
 
MANOVAs were conducted for behavioral and questionnaire data. A MANOVA was 

conducted with co-player identity and perceived human-likeness as IVs and 22 behavioral 

and questionnaire measures as DVs. The multivariate result was significant for co-player 

identity, Pillai’s Trace = 1.80, F = 4.04, df = (3,78), p < 0.001, indicating that there were 

differences in participant perceptions and interactions with different co-players. The 

significant univariate effects for co-player identity are presented in Table 6. While a 

number of measures varied significantly by co-player identity, of note are the number of 

times players and co-players interacted with one another, which is highest for the Social 

AI, the ratings of how much participants trusted co-players (Figure 32a), liked co-players 

(Figure 32b), and perceived the co-player as a “real person” (Figure 33a). There were also 

significant differences in mean ratings on four of the five Godspeed measures (Animacy, 

Intelligence, Likability, and Anthropomorphism).  

A post hoc Tukey’s HSD showed that there were significant differences in ratings 

of how much co-players were trusted between the Confederate Human (mean = 5.23, SD 

= 2.31) and the Social AI (mean = 2.36, SD = 1.47; p < 0.001). No other differences were 

significant, though the difference between the Confederate Human and Simple AI (mean 

= 3.45, SD = 2.61) was nearly significant (p = 0.059), as was the difference between the 

Tandem Human (mean = 4.14, SD = 2.62) and the Social AI (p = 0.059). Results can be 

seen in Figure 32a.  
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A post hoc Tukey’s HSD showed that there were significant differences in ratings 

of how much co-players were liked between the Confederate Human (mean = 5.45, SD = 

1.99) and the Social AI (mean = 3.55, SD = 1.57; p = 0.011). No other differences were 

significant. Results can be seen in Figure 32b. 

A post hoc Tukey’s HSD showed that there were significant differences in ratings 

of co-players as a “real person” between the Simple AI (mean = 3.27, SD = 2.25) and the 

Social AI (mean = 5.14, SD = 2.29; p = 0.032). No other differences were significant, 

though the difference between the Tandem Human (mean = 5.00, SD = 2.25) and Simple 

AI was nearly significant (p = 0.054). Results are shown in Figure 33a. 

The MANOVA result was also significant for perceived human-likeness, Pillai’s 

Trace = 0.69, F = 5.90, df = (1,78), p < 0.001, indicating that participants’ perceptions of 

co-players and the interaction was impacted by whether or not participants believed the co-

player was a human. The significant univariate effects for perceived human-likeness are 

presented in Table 7. Mean ratings of how much the co-player was perceived as a “real 

person” is shown in Figure 33b. There were also significant differences in mean ratings on 

two of the five Godspeed measures (Anthropomorphism and Animacy).  
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Table 6: Significant Univariate Effects for Co-player Identity. 
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* Interactions from participant included times in which participants “gave” the co-player items by placing them at the feet of the co-
player (less than 7 approx. cm away on the screen). Many participants expressed that they did this instead of using the “give” function 
that was programmed specifically for this interaction. While this added to the number of times participants interacted, it is not considered 
in the number of co-player interactions in the tandem condition, as it is less salient than the “give” function and participants may not 
have noticed this.  
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Table 7: Significant Univariate Effects for Turing Test Response (i.e., Perceived Human-likeness) 
 

 

 

 

 
Figure 32: Mean Ratings of How Much Participants Trust (Left) and Like (right) the Co-Players. The Confederate 
Human co-player was trusted and liked more than any other co-player.  
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Figure 33. Mean Participant Ratings of Co-Players as a “Real Person” for Co-Player Identity (Left) and Perceived 
Identity (Right). The Social AI received the highest mean ratings of being perceived as a “real person” and the 
confederate Simple AI received the lowest mean ratings. Participants who perceived the co-player as a human also 
reported higher mean ratings of perceiving co-players as a “real person”. 

  
 
 

Quantitative Results 

Results from the qualitative analysis are presented in Table 8. Eighty-eight statements were 

analyzed. The same qualitative analysis process was followed for Experiment 3 as was in 

Experiment 1. While some cues/categories are the same as in Experiment 1, many are 

unique to Experiment 3 because differences in paradigm (i.e., observation vs. interaction) 

led participants to use different cues. Since the amount of qualitative data analyzed was 

much smaller than Experiment 1, and the intent was to focus more on quantitative data, no 

further attempt was made to determine mid-level or overarching categories. As a follow up 
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analysis, χ² tests were used to provide a look at what cues led to the perception of human-

likeness and were associated with which co-players. The table is sorted by overall cue (i.e., 

category) frequency, with the most common cue occurring 31 times and the least common 

cue occurring 2 times. χ² results were significant for movement, interaction between 

players, and acting cooperatively with respect to perceived human-likeness, where 

interaction between players and acting cooperatively were more associated with perceived 

human-likeness and mentioning qualities of movement was more associated with the 

perception of AI-ness. χ² results were significant for random or unpredictable behavior and 

too much interaction between players with respect to co-player identity, where both 

qualities were more associated with the Social AI. 

 The mid-level and overarching categories from Experiment 1 were applied, but the 

value in mid-level categories especially was limited as most cues were based on the direct 

observation of behavior without a lot of interpretation provided within question 6. For most 

cues, predictability and unpredictability here seemed to be more related to whether the co-

player’s behavior violated what was expected of human co-players. Results are shown in 

Table 9. 
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Table 8: Summary of Coded Statements from Qualitative Analysis. The table shows the cue participants used, a 
representative example, the total count of coded statements associated with the cue and relative frequency that it was 
mentioned by all participants, Cohen’s Kappa as a measure of inter-rater reliability and a χ² between raters, and counts, 
relative frequencies, and χ² tests broken down by perceived human-likeness and co-player identity. 
 

 

 

 

 

cue example

count (and 
% of 

particip-
ants who 

mentioned 
cue)

Cohen's 
Kappa

χ² between 
raters

perceived 
as human

perceived 
as AI

χ² for 
perceived 
human-

ness

Confed-
erate 

human

Tandem 
human

Simple 
AI

Social AI
χ² for Co-

player 
identity

not enough 
interactions with 

participant

"When the game started, they 
immediately walked away. I 
would expect that a person 
would try and tell if I was 

hostile or friendly."

31 (35%) 0.87
(1,88) = 
63.04, p 
<0.001

6 (23%) 25 (40%)
(1,88) = 
1.42, p = 

0.234
9 (41%) 7 (32%) 10 (45%) 5 (23%)

(1,88) = 
2.84, p =  

0.417

movement
"They were very active and 
their movement was fluid"

18 (20%) 0.678
(1,88) = 
35.95, p 
<0.001

2 (8%) 20 (32%)
(1,88) = 
4.34, p = 

0.037
8 (36%) 3 (14%) 8 (36%) 3 (14%)

(1,88) = 
5.78, p =  

0.123

interacted with 
environment

"He knows what to do in this 
game. Everytime I saw him, he 

kept working."
15 (17%) 0.649

(1,88) = 
31.33, p 
<0.001

6 (23%) 9 (15%)
(1,88) = 
0.56, p = 

0.456
4 (18%) 5 (23%) 4 (18%) 2 (9%)

(1,88) = 
1.69, p =  

0.64

skilled

"They were getting resources 
and building stuff, like they 

knew what to do in the 
game."

15 (17%) 0.767
(1,88) = 
46.05, p 
<0.001

4 (15%) 11 (18%)
(1,88) = 0, 

p = 1
5 (23%) 5 (23%) 3 (14%) 2 (9%)

(1,88) = 
2.32, p =  

0.508

interacted with 
participant

"helped me chase the rabbit 
and helped with other tasks"

14 (16%) 0.767
(1,88) = 
45.18, p 
<0.001

10 (38%) 5 (8%)
(1,88) = 

10.59, p = 
0.001

3 (14%) 5 (23%) 3 (14%) 4 (18%)
(1,88) = 
1.05, p =  

0.789
not enough 

interactions with 
environment

"It didn't collect the logs after 
the trees were cut down"

12 (14%) 0.629
(1,88) = 
28.39, p 
<0.001

1 (4%) 11 (18%)
(1,88) = 
1.79, p = 

0.181
0 (0%) 3 (14%) 4 (18%) 5 (23%)

(1,88) = 
5.36, p =  

0.147

random/unpredict-
able behavior

"Player 2 would attack for no 
reason"

12 (14%) 0.705
(1,88) = 
37.54, p 
<0.001

4 (15%) 8 (13%)
(1,88) = 0, 
p = 0.972

1 (5%) 2 (9%) 0 (0%) 9 (41%)
(1,88) = 

19.03, p =  0

unskilled

"The way he was moving, 
there was obvious confusion. 
Seems he was trying to learn 

something"

8 (9%) 0.377
(1,88) = 

10.62, p = 
0.0011

3 (12%) 5 (8%)
(1,88) = 
0.03, p = 

0.869
1 (5%) 1 (5%) 5 (23%) 1 (5%)

(1,88) = 
6.46, p =  

0.091

too much 
interaction with 

participant

"just following me around and 
attacking as often as possible 
until I attacked him back once 

or twice."

8 (9%) 0.751
(1,88) = 
39.05, p 
<0.001

3 (12%) 5 (8%)
(1,88) = 
0.03, p = 

0.869
0 (0%) 0 (0%) 2 (9%) 6 (27%)

(1,88) = 
12.97, p =  

0.005

cooperative 
behavior

"The fact he interact with me, 
he gave me so many things"

5 (6%) 0.739
(1,88) = 
34.53, p 
<0.001

4 (15%) 1 (2%)
(1,88) = 
4.41, p = 

0.036
1 (5%) 2 (9%) 0 (0%) 2 (9%)

(1,88) = 
2.41, p =  

0.492

weird interactions 
with environment

"The continuous movement 
and goal satiation. He never 
stopped. He ran far out too."

3 (3%) 0.649
(1,88) = 
24.93, p 
<0.001

0 (0%) 6 (10%)
(1,88) = 
1.31, p = 

0.252
3 (14%) 2 (9%) 1 (5%) 0 (0%)

(1,88) = 3.6, 
p =  0.308

learning
"followed around, mimicked 

actions, and was observant of 
me from time to time"

3 (3%) -0.0156
(1,88) = 0, p 

= 1.000
2 (8%) 1 (2%)

(1,88) = 
0.69, p = 

0.408
1 (5%) 1 (5%) 1 (5%) 0 (0%)

(1,88) = 
1.05, p =  

0.788

repeatitive
"It was very predictable when 

he would come up to me"
2 (2%) 0.661

(1,88) = 
10.25, p 
<0.001

0 (0%) 2 (3%)
(1,88) = 
0.01, p = 

0.906
0 (0%) 0 (0%) 1 (5%) 1 (5%)

(1,88) = 2, p 
=  0.572

competitive 
behavior

"the other agent played more 
independently after I ignored 

him. He also took my berries."
2 (2%) 0.661

(1,88) = 
10.25, p 
<0.001

1 (4%) 1 (2%)
(1,88) = 0, 

p = 1
0 (0%) 1 (5%) 0 (0%) 1 (5%)

(1,88) = 2.1, 
p =  0.553

count (and % of 
participants who 
mentioned cue)

count (and % of participants who 
mentioned cue)
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Table 9: Overarching Categories and Mid-Level Categories from Experiment 1 Applied to Cues of Human-Likeness. 
 

 
 
 
  

Game Theoretic Analysis 

An empirical game theoretic analysis was conducted on participants’ responses to 

how they would choose to interact strategically in the future. Results are presented in Table 

10. As in Experiment 1, a coordination game, Stag Hunt and Deadlock were described by 

participants. In addition, participants also described Mutual Assured Destruction and a 

social dilemma (see Figure 1 for a description). Again, the ability to interact with the co-

player may have affected participants’ overall perceptions of co-players and resulted in 

more complex games being described. 

 

 

 

 

 

overarching 
category

mid-level category cue

interacted with environment
skilled

interacted with participant
repeatitive

not enough interactions with participant
not enough interactions with environment

random/unpredictable behavior
unskilled

too much interaction with participant
weird interactions with environment

perception of ToM learning
movement

cooperative behavior
competitive behavior

either

predictable

unpredictable

observation of base 
behavior without deeper 

interpretation

observation of base 
behavior without deeper 

interpretation

observation of base 
behavior without deeper 

interpretation
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Table 10: Empirical Game Theoretic Analysis of Responses from the DST Experiment. Five typical game theory 
games were derived from interview responses. As in Experiment 1, there was a coordination game, in which mutual 
competition was selected for fun, a Stag Hunt, in which mutual cooperation is selected for greater utility in achieving a 
higher score, and Deadlock, where the player chooses to compete regardless of what the other player decides because 
they believe they are more skilled and can win. In addition to the games seen in Experiment 1, analysis yielded Mutual 
Assured Destruction, in which players avoid conflict out of fear of the cost of retaliation, and a social dilemma, in 
which a player wants to engage in mutual cooperation, but has doubts about how much they can trust the second player, 
resulting in competition. 
 

 
 
 
 

Discussion 

The same inverted U-shape is seen for perceived human-likeness by expertise as was seen 

in Experiment 1, though the peak is shifted to the right (see Figures 7 and 31). The reporting 

method varied between the two experiments, as did the percent of all agents that were 

perceived as humans, which likely affected these values. In general, again there is evidence 

that the intermediate level of competence has a higher association with perception of 

human-likeness than do extreme beginner or extreme expert levels. 
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Some cues (i.e., categories) used to determine human-likeness were similar to 

Experiment 1, including random behavior and repetitive or predictable behavior.  Some 

examples include:  

Tandem Human as AI: “The movement seemed a little more random than I 

expected.” 

 

Social AI as AI: “It was very predictable when he would come up to me. The first 

thing I did to interact with player 2 was to give him something, and he attacked. If 

a person, it made sense if it was a person, but every other time he would come up 

and either give me something or attack.” 

 

Social AI as Human: “Player 2 would attack for no reason; would give me stuff to 

help out, but biggest indicator was to protect, but [by the] 2nd night they were on 

the other side of the map doing something on their own.” 

 

While some participants in this experiment often relied on expectations of humanlike 

interactions (resulting in predictability or unpredictability) to make determinations of 

human-likeness, there were overall many more participants who believed that the co-player 

was an AI, regardless of true identity, when compared to Experiment 1. This bias may have 

affected how perceptions of predictability and unpredictability were related to perceptions 

of human-likeness. 
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However, the most commonly used cues included whether or not the participant 

perceived that the co-player tried to interact with them, or if the co-player was interacting 

too much. Overall, 61.3%, SD = 44.5%, of participants based their decision of human-

likeness in whole or in part on if and how the co-player interacted with them. It is likely 

that the ability to interact in Experiment 3 influenced participants’ evaluation process and 

caused the cues/categories to be different than in Experiment 1.  

From these results, the answer to research question 3 (“What characteristics of 

social interactions do humans use to differentiate between humans and AI, and how do 

Human-Human Interactions and Human-AI Interactions (HAI) differ within a complex 

environment?”) seems to be that firstly, the way distinctions are made differs when the 

observation of behavior occurs with or without the opportunity to interact. In this 

experiment, even in encounters where interactions are not required but a matter of choice, 

participants often judged human-likeness based on whether or not, and how much, they 

perceived that a co-player tried to interact with them. Most often, human-likeness was 

assumed when the co-player was seen as being interactive, but not excessively interactive.  

A number of differences between interactions with co-players were reported by 

participants. Most notably, while the Confederate Human was perceived as a human least 

often, he was liked and trusted more than any other co-player. Conversely, while the Social 

AI was perceived as a “real person” more often than any other player, and explicitly rated 

as a human second most frequently, it was trusted and liked less than any other player. This 

may indicate that the perception of human-likeness itself did not dictate the extent to which 

a co-player was liked or trusted, but the overall impression gained during the interaction 
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did. Additionally, it means that an entity need not be perceived as a human to be trusted 

and liked. While the qualitative results give some indications about what was different in 

the overall interactions with the different co-players, some of this may be related to the 

specific context of this experiment (i.e., playing a multiplayer videogame in a lab with a 

stranger of unknown identity without the ability verbally communicate). Still, it is 

interesting that while each participant was able to have a unique experience with the game 

and their co-player, some overall differences (like trusting, liking) varied significantly 

depending on co-players. 
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OVERALL DISCUSSION OF FINDINGS 

While human perceptions of the behavior of non-human agents has been a topic of 

research for many years, the study of how complex, AI generated behaviors are perceived 

and what specific behavioral qualities lead to the perception of human-likeness has been 

missing.  

Overall, the qualities of observable behaviors that affect the perception of human-

likeness are complex. The pilot experiment (i.e., Experiment 1) hinted that perceived 

competence, predictability, and context may have an influence on the perception of human-

likeness when observing behavior, and Experiments 2 and 3 explored these relationships 

more thoroughly.  

 

Competence and Predictability 

Interpretation of Findings 

It makes intuitive sense that competence/skill would affect perceptions of humanness, as 

our typical experience with other people is that they can competently navigate the world 

around them, but AI is still not universally competent. From Experiment 1, as an AI 

becomes more competent, it seems to be perceived with increased perceptions of 

humanness. However, from the interviews, it appeared that maximum human-likeness was 

perceived at the level of intermediate, and that these perceptions decreased at the level of 

expert because humans may have expected that competent AI should never make any 
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mistakes (i.e., the Perfect Automation Schema) whereas competent humans still make 

mistakes for various reasons.  

 In Experiment 2, it was observed that average perceptions of humanness generally 

increased with average perceptions of skill/competence, but that perceived human-likeness 

was maximum at the level of expert and dipped lower at the level of intermediate. The 

reason for this seemed to be due to a high degree of variability in perceived human-likeness. 

This result, as well as the cluster analysis of character traits, seemed to show no evidence 

that the Perfect Automation Schema affected perceptions of human-likeness in this study.    

The relationship between perceived competence, predictability and human-likeness 

was also important to further investigate. In Experiment 1, while competence and 

humanness were intentionally manipulated, predictability was not directly manipulated, yet 

the sentiment came up often in interviews. Participants’ statements and previous literature 

seemed to indicate a relationship in which behaviors that were unpredictable could be 

perceived as human-like due to a desire to better understand the player (i.e., the effectance 

motivation; Waytz et al., 2010b), but the perception that behaviors were predictable could 

either come from the perception that they were simple and repetitive (more often associated 

with a beginner level of skill), or that they were predictable because the player had human-

like thoughts and motivations that produced the behavior (e.g., having thoughts or 

reasoning, experimenting with the level, or having goals; ToM states), and these ToM 

states were more often associated with the perception of humanness and competence. 

In Experiment 2, it was determined that relationship between average perceived 

humanness and average perceived predictability was non-linear, and that average perceived 
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predictability differed across 3 levels of average perceived skill (main effect of skill level 

and nearly an interaction between skill level and the quadratic contrast). In particular, at 

the level of expert, the relationship between perceived humanness and skill had the 

maximal U-shape, where perceived humanness was high at both the high and low ends of 

perceived predictability. There is also some evidence from the cluster analysis that ToM 

was perceived when human-likeness and skill were sufficiently high, as the cluster 

containing the majority of ToM states had significantly higher average perceived 

humanness, skill and predictability. This possibly provides support to the theory that at 

sufficiently high levels of skill, performances can be perceived as predictable and 

humanlike due to the ability to perceive them as the result of humanlike thoughts and 

motivations (i.e., applying ToM). 

 

Significance of Results 

While the relationship between competence and human-likeness has previously been 

assumed in the literature (Fisk, Cuddy & Glick, 2006; Waytz et al., 2010a), Experiment 2 

goes further to investigate that connection than any known currently published research. 

While Waytz, Heafner & Epley (2014) were able to show that increased human-likeness 

in an autonomous vehicle could increase the perception of competence, human-likeness 

was manipulated through adding humanlike features like a name, gender and voice, and 

competence was not manipulated at all. In this study, all physical features stayed constant 

across all players (all used the avatar Mario and no sound was included), and the only 

difference was how players behaved within the game. By having participants observe these 

http://www.cogsci.bme.hu/%7Ektkuser/kepek/journalreadingclub2010/13fiskesoccog.pdf
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behavioral differences across players, it was seen that perceived humanness did increase 

with perceived competence (i.e., skill). However, the causal relationship was not 

determined by this study (i.e., does an increase in perceived human-likeness increase the 

perception of competence, does the perception of competence increase the perception of 

human-likeness, or do both affect the perception of the other). 

Interestingly, in Experiment 2 overall, average perceived humanness increased with 

predictability (i.e., decreased with unpredictability). This was contrary to the hypothesis 

for the experiment as well as prior literature (Waytz et al., 2010b; Short et al., 2010; Hayes 

et al., 2014; Salem et al., 2013; Kompatsari et al. 2019). It is possible that this is related to 

the fact that the stimuli was overall perceived with higher levels of human-likeness and 

skill. If this was the case, it is also possible that if stimuli was included for players (human 

and AI) that had lower skill, the pattern of perceived human-likeness and predictability for 

low skilled players would have more closely matched what was predicted. However, it is 

also possible that the results hold true and that in the context of playing a videogame, 

especially one that is so well known throughout the world, people associate unpredictability 

at a lower skill level with non-humanness. This is actually in line with the findings of 

Pfeiffer et al. (2011), in which, (1) context affected the relationship between predictability 

and perceived humanness, and (2) that in certain contexts, maximum unpredictability had 

the lowest levels of perceived human-likeness.  

Still, Experiment 2 has demonstrated that the relationship of perceived human-

likeness and predictability of actions is affected by the perceived level of skill, and that at 

high levels of skill, low and high values of predictability are associated with high values 
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of perceived human-likeness. To my knowledge, no other research has specifically 

explored this relationship before. This may indicate that at sufficiently high levels of 

perceived skill and human-likeness, actions are interpreted as the result of a human-like 

mind with thoughts and motivations (i.e., applying ToM), and that this provides a lens to 

better explain behavior. 

 

Context of Interaction and Social Context 

After the pilot study, what remained unclear was if the same qualities used to make 

determinations of humanness solely on the basis of observed behavior would be the same 

qualities used in a context more related to real world interactions, where participants could 

decide to interact with the player however they wanted when making determinations of 

humanness. From the empirical game theoretic analysis, there was some indication that 

social context was perceived differently for human and AI players. However, in 

Experiment 1, participants were asked at the end to select any agent to play a cooperative 

or competitive game with, and so there was no evidence of how they would respond for 

individual players if they did not know their true identity.  

 

Interpretation of Findings 

Overall, whether or not, and how co-players engaged participants in social interactions 

seemed to be the cue most commonly used by participants to determine humanness, though 

it was not always a reliable cue of true humanness. In the context of a less ecologically 
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valid experiment, or experiments that do not include the potential for social interaction 

(e.g., Experiments 1 and 2), this finding would not be possible.  

Additionally, competence was again manipulated in Experiment 3, but the 

manipulation was slightly different. Experiments 1 and 2, competence was manipulated by 

including “beginner” and “expert” human and AI players (i.e., varying skill). In 

Experiment 3, competence was varied for the human players by including a Confederate 

Human player who became skilled over the course of the experiment (i.e., competent or 

skilled) and including participants as co-players for other participants in the tandem 

condition who had never played the game before (i.e., unskilled). For the AI co-players, 

the Simple AI had low competence in the sense that it had a simple behavior tree that was 

only intended to give the appearance that it was playing the game, when in reality, it paid 

no attention to its own performance (i.e., health, hunger, sanity) or the participant in the 

game. The Social AI, on the other hand, had competence in the sense that it actually 

attempted to play the game and interact in social ways with the participant (i.e., the 

cognitively plausible behavior tree for survival behavior and POMDP to decide social 

behavior). In the context of the interactive game, the increase in competence of the Social 

AI did seem to be accompanied with an increase in the perception of human-likeness, but 

the arguably more “competent” human confederate player received the lowest explicit 

ratings of humanness and lower ratings of perceived human-likeness (i.e., “real person” 

and the GS questionnaires) than the Tandem Human players. It is possible that this is 

related to the fact that the human confederate had the largest average in-game distance 

between players (i.e., he stayed further away on average than did the other co-players), 
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making it difficult for players to interact with him over the course of the experiment. Since 

engaging in social interactions was very commonly used as a cue to indicate humanness, 

is possible that this distance and lack of interaction caused the Confederate Human to be 

perceived as less human-like. Another possibility is that this perception was related to his 

perceived competence. The Confederate Human was perceived as an expert most often, 

and it is possible that something like the Perfect Automation Schema caused him to be 

perceived as more AI-like (i.e., he’s too good to be human). The perception that he was an 

expert may also contribute to positive perceptions of trust and liking, though this could not 

be said conclusively from these results.   

 Additionally, the social context described in interviews and coded using the 

empirical game theoretic analysis differed from Experiments 1 and 2. GT games described 

in Experiment 1 were further explored in Experiments 2 and 3. In Experiment 3, while the 

same 3 GT games found in Experiment 1 were also found in Experiment 3, 2 additional 

games (Mutual Assured Destruction and a social dilemma). It seems likely that the context 

of Experiment 3 (i.e., an interactive game) influenced the overall perceived relationships 

participants developed with co-players. Afterall, relationships are developed over time and 

as a result of how we interact with others. In Experiment 3, participants had much more 

time to observe the co-player, and were actually able to interact with them unlike in 

Experiments 1 and 2. While Experiment 2 included all 5 games (which was translated to 6 

games when the coordination game was split into cooperative or competitive preferences), 

the results more closely resembled those of Experiment 1, again offering some indication 

that allowing for interactions in a complex environment rather than simply observing brief 
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vignettes of behavior can affect the overall perception of social context with an interaction 

partner.  

 
 
Significance of Results 

Results from Experiment 3 show that social interaction is an expectation of human-

likeness. Overall, humans were not very sensitive to true humanness in the game 

environment when they could only interact and observe non-verbally. Overall, all players 

were rated humans less than 50% of the time, however, there were differences between the 

co-players that speaks to the overall effect of competence on perceived human-likeness. 

The pattern in Figure 31 is the same as is seen in Figure 7 (from Experiment 1), though this 

pattern is not present in Experiment 2. While the reason for this pattern is not totally 

clarified by these three experiments, it speaks to the fact that the perception of human-

likeness based on the observation of behavior is complex, and the evaluation is affected by 

context as well as perceived competence. Future research would be necessary to fully 

clarify the relationship between competence and human-likeness, as well as identify other 

factors that influence perceptions of human-likeness at middle and high levels of perceived 

competence. 

Additionally, the Turing Test is still a standard for evaluating the human-likeness 

of AI. While in the original Turing Test, participants only have 5 minutes of unrestricted 

conversation via text, Experiment 3 allowed participants unrestricted interaction for 30 

minutes within a complex and dynamic environment, and the Social AI still passed the 

Turing Test (i.e., greater than 30% perceived the co-player to be a human). This co-player 
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was designed to be competent and human-like by using a cognitively plausible behavior 

tree for survival behaviors as well as a learning algorithm to interact socially with 

participants. In other words, the Social AI co-player was developed with a human-like mind 

that decided for itself how to play the game and interact, and this did lead to greater 

perceptions of human-likeness over a Simple AI. However, while the Social AI was 

perceived as a human more frequently, it had the lowest levels of perceived trust and liking. 

This finding is in line with previous research that shows that an increase in the perception 

of human-likeness of a non-human is often accompanied by consequences in how 

positively they are perceived overall (Waytz et al., 2010b; Short et al., 2010; Hayes et al., 

2014). Interestingly, the Confederate Human player received low ratings of human-

likeness and was explicitly identified as a human least often, yet received the highest 

ratings of skill, trust and liking. This is a hopeful outcome for future HAI, as it indicates 

that the perception of human-likeness is not required for a co-player to be trusted and liked, 

although it also suggests that there are still qualities of true humanness that need to be 

understood and incorporated into an AI to lead to these positive perceptions. 
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