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Abstract

PERFORMANCEMANAGEMENT FOR ENERGY HARVESTINGWIRELESS SENSOR
NETWORKS

Bo Zhang, PhD

George Mason University, 2012

Dissertation Director: Dr. Robert Simon, Dr. Hakan Aydin

A Wireless Sensor Network (WSN) consists of spatially distributed sensor nodes which

monitors environmental conditions such as temperature, humidity, sound or pressure, etc.

Recently there is increasing need to design Wireless Sensor Network systems that support

applications with intensive monitoring and control activities. This application class often

has significant data collection and processing requirements, requiring increased levels of

energy consumption as compared to other WSN applications. Further, many deeply em-

bedded WSN systems with these data collection and processing requirements are expected

to operate without manual battery recharging for several decades, and therefore require

energy harvesting techniques. For this class of systems, there are currently few e↵ective ap-

proaches that balance careful energy management with high performance communication

and computation requirements.

My dissertation addresses the above problem. Specifically, I propose a set of algorithms

and control methods for energy management in performance-sensitive WSN systems, and

harvesting-aware rate allocation for application utility maximization. First I formally define

the problem of energy harvesting-aware energy management as two optimization problems,

one for individual sensor nodes and another for multi-hop sensor networks. I propose



energy management algorithm to solve both problems optimally and e�ciently. These solu-

tions combine two energy saving techniques, Dynamic Voltage Scaling (DVS), and Dynamic

Modulation Scaling (DMS), alongside with energy harvesting techniques. I then address a

harvesting aware rate allocation problem with the objective of utility maximization. The

problem is solved with an optimal centralized algorithm and a distributed algorithm.

I conducted extensive simulation-based experiments to evaluate the e↵ectiveness of my

proposed algorithms. Specifically I developed simulation software using TOSSIM, the stan-

dard WSN simulator, and EPANET, a public domain, water distribution system modeling

program. This software simulates in high fidelity the computation and communication ac-

tivities of WSN nodes, and considers a variety of network setups, energy harvesting profiles

(solar and water), and application scenarios, etc. My algorithms are implemented within

this simulation environment and compared against a series of rival algorithms under various

experimental setups. Extensive simulation results demonstrate the significant advantage of

my algorithms over the rival algorithms.



Chapter 1: Introduction

There is increasing need to deploy deeply embedded Wireless Sensor Network (WSN) sys-

tems capable of lasting several decades in an unattended fashion. Examples of such appli-

cations range from structure health monitoring systems [1, 2], water distribution systems

[3, 4] to underwater acoustic sensor networks [5, 6]. A major challenge faced by designers

of this application class is that system lifetime is heavily constrained by the limitations of

on-board battery power. As a result, there is significant interest in designing and analyzing

e�cient WSN energy management algorithms.

Common approaches for WSN energy management include ultra-e�cient radio and chip

design [7,8], energy-e�cient Medium Access Control (MAC) protocol design [9–11], energy-

aware routing protocols [12,13] and dynamic voltage and modulation scaling [14,15]. How-

ever, energy e�cient algorithms by themselves are not adequate to achieve years or decades

long unattended operation as the stored energy inside of a battery will ultimately be de-

pleted. As a result, there has been a significant level of interest in designing energy har-

vesting WSN systems [16–18]. Energy harvesting is a technique to harvest energy from

environmental sources, such as water flow, wind, vibration, and solar radiation to produce

storable energy. For such systems a critical concept is that of energy neutrality : systems

must consume less energy than that can be produced [16].

Because the availability of harvested environmental power is often limited and time-

varying, energy neutrality cannot be achieved without deliberate management of node en-

ergy consumption. First, due to the limitation in energy harvesting availability, energy

consumption must be carefully controlled not to exceed the amount of stored energy. Fur-

ther, since for many environmental sources the harvesting availability varies significantly

over time, energy consumption management must be carefully managed.
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The challenge of designing energy-harvesting WSNs is further complicated by the fact

that many embedded WSN applications such as lab-on-a-chip systems [3] and WSN-based

multimedia processing [19] have significant data collection and processing requirements. As

compared to earlier WSN application requirements, these intensive computational and com-

munication requirements dramatically increase WSN energy demands. In addition to these

computational and communication requirements many deeply embedded WSN applications

will have unexpected workload bursts. For instance, a WSN used for monitoring water dis-

tribution systems needs to dramatically increase its activities when undergoing a biological

attack. Based on the above description there is clearly a need for supporting performance

sensitive energy harvesting systems. Moreover, many WSN applications may have strin-

gent performance level requirements, such as deadlines for sensing task execution and data

reporting, lowest acceptable sensing rate, etc. Such performance level requirements must

be strictly guaranteed while performing energy management.

An important part of my research is to make combined use of two energy management

techniques, Dynamic Voltage Scaling (DVS) [20] and Dynamic Modulation Scaling (DMS)

[15]. The DVS technique saves computational energy by simultaneously reducing the CPU

supply voltage and frequency and hence the computation speed. The DMS technique saves

communication energy by scaling down the radio modulation level and hence the commu-

nication speed. For battery powered sensor nodes, the goal of energy management used to

be minimizing energy consumption or maximizing lifetime. This is not suitable for energy

harvesting WSNs due to unawareness of the need for harvested energy management. Ob-

serving this need, my work aims at maximizing energy reserves while meeting application

performance requirements, so as to maximize the systems ability to e↵ectively respond to

an system uncertainty. Such uncertainties could be fluctuation of the system workloads or

harvested environmental power which potentially result in unexpected lower energy storage.

Another important portion of my research is on utility-oriented design of energy har-

vesting WSN systems. The rapid introduction of new software and hardware functionalities

has stimulated the development of complex WSN applications. For this new generation of

2



applications, maximizing the value or utility of sensed data, as perceived by end-users, is of

paramount importance. For most WSN systems, a major constraint to utility maximization

is the limited and time-varying energy availability of sensor nodes. Though utilizing energy

harvesting techniques can alleviate this conflict, the goal of simple utility maximization is

still constrained by the need for managing unpredictable energy supplies.

In my research, utility is related to the rate at which WSN nodes collect data from

the target environment. The higher the data collection rate, the higher the utility. Unlike

many existing works where utility is a linear function of rate, my research models utility as a

concave function [21–23]. That is, the increase of utility value slows down as rate increases.

This is because for many WSN applications increasing the level of sensed data reporting

only increases the utility of the application in sub-linear fashion. Consider, for instance,

video or motion sampling as part of an intrusion detection system. Since humans can only

move at a certain speed, sampling above a specific threshold only marginally increases the

utility of the application. The utility perceived by application end-user is the aggregate

utility achieved jointly by all the nodes in the network.

As data collection rate increases, system utility can definitely increase however the en-

ergy consumption level of nodes also increases. A major design issue is the conflict between

the need for utility maximization, and the limited battery capacity. This is because when

utility is increased by collecting data faster, the energy consumption goes up as well po-

tentially causing energy storage depletion. Therefore my goal is to maximize the aggregate

utility over a WSN system through allocations of data collection rate to nodes, while ensur-

ing energy neutral operations for any nodes. I formulate this goal as an concave optimization

problem and propose MAX-UTILITY, an epoch-based rate allocation algorithm to solve it.

The algorithm exploits the concavity of the utility function and a special property of tree-

structured networks to allocate rates to nodes as evenly as possible, while maintaining the

minimum data collection rate required by the application and the available energy and

data forwarding capacity of the nodes. I formally prove the optimality of algorithm MAX-

UTILITY in the sense of utility maximization. For a system with N nodes, my algorithm

3



has a time complexity of O(N3). I also develop a distributed version of this algorithm for

use in systems without central control points. To the best of my knowledge, this is the first

optimal solution to maximize general network utility through rate assignments to individual

nodes in tree-structured sensor networks while guaranteeing energy neutrality.

1.1 Thesis Overview

The hypothesis of my dissertation can now be presented:

Thesis Hypothesis

Time and rate sensitive wireless sensor networks (WSNs) that utilize en-

ergy harvesting require new methods for e↵ective performance engineering.

Algorithms that use a joint Dynamic Voltage and Dynamic Modulation Scaling

techniques will significantly improve the reliability and resiliency of such net-

works. Further, the sensing and reporting requirements of this class of WSNs

can be e↵ectively expressed as a concave utility function. Algorithmic tech-

niques that exploit the special structure of this function will also substantially

enhance network performance.

This dissertation describes a general device and application model for energy harvesting

WSN systems. New energy management schemes utilizing DVS and DMS techniques are

proposed with the objective of guaranteeing non-interruptive application services. Novel

data collection rate allocation algorithm will be proposed to maximize utility of WSN

systems while guaranteeing energy neutral operation for any sensor nodes. This work will

be evaluated via both analytical methods and high-fidelity simulation.

My approach to harvesting-aware energy management and maximal-utility rate alloca-

tion involves several focus areas:

• An architecture of energy harvesting WSN systems which includes DVS-DMS capable

WSN node model, energy harvesting model, network and application model.
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• A careful quantification of the performance requirements of energy-harvesting WSN

systems.

• A formal definition of utility of WSN applications.

• The use of an epoch based approach to manage harvested and consumed energy.

• The use of both DVS and DMS as a method for energy management.

• The use of rate allocation as a method for utility maximization.

The outcome of this work is (1) a set of algorithms and protocols capable of maximizing

energy levels of sensor nodes, with an ultimate goal of improving emergency resilience of

performance-senstive and mission critical energy harvesting WSN systems. (2) a set of rate

allocation algorithms for maximizing application utility of WSN systems while guaranteeing

energy neutrality for any sensor nodes.

1.2 Dissertation Roadmap

The rest of my dissertation continues as follows: first, I present a basic background and

related work chapter (Chapter 2) on energy harvesting WSN systems, the use of DVS and

DMS techniques for energy management, and utility maximization through sensing and

reporting rate allocation. Next, I give the architecture of such systems including DVS-DMS

capable WSN node model, energy harvesting model, tree-structured network model, and a

formal definition of application utility (Chapter 3). In Chapter 4-6, I present the research

work I have finished, including a series of DVS-DMS based energy management algorithms

for loosely-coupled and tightly-coupled WSN systems, and rate allocation algorithms for

maximizing utility of WSN systems. In Chapter 7, I propose how to implement the above

algorithms on real WSN nodes as future work. Finally, Chapter 8 concludes my research

work.
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Chapter 2: Related Work

A wireless sensor network (WSN) comprises a set of spatially distributed nodes that are

used to monitor the physical world [1,3,5]. Each node consists of one or more sensors, such

as temperature, sound, vibration, chemical, etc. Each node is also equipped with a low-

power wireless transceiver and micro-controller, a small amount of memory, and an energy

source, typically a battery. Sensor nodes range in size from a can of soda down to the size of

a grain of dust. They are meant to be easily deployable and relatively inexpensive. When

deployed sensor nodes form an autonomously functioning wireless ad hoc network.

WSNs are used for many types of military, civilian and industrial applications, including

battlefield surveillance [24], environmental monitoring [25], industrial process control and

home automation [26]. WSN nodes generally report their readings to and receive instruc-

tions from one or more base stations. This chapter focuses on the background and directly

related work in the area of performance sensitive WSNs that use energy harvesting. For a

general overview of WSNs see [27].

The need for careful energy management has long motivated much activity in WSN

research. Representative e↵orts include work in energy e�cient link level protocols [11,28],

various methods of probabilistic or dynamic forms of radio and CPU duty cycling [9, 19,

29, 30], topology control [31] and in-network data aggregation [32], to name a few areas.

There has also been increased interest in using both Dynamic Voltage Scaling (DVS) and

Dynamic Modulation Scaling (DMS) as means of power control [14, 15, 33,34].

Although numerous energy management techniques have been proposed to save energy

and extend system lifetime, carried-on batteries have finite energy storage and will ulti-

mately be exhausted. Further, in many circumstances it is di�cult or impossible to replace

the batteries. Therefore energy harvesting techniques are leveraged to sustain WSN nodes
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perpetually. Because of the limited and time-varying environmental energy availability, ex-

isting energy and performance management approaches for battery-powered systems cannot

be applied directly to energy harvesting WSN systems. This dissertation presents a series

of harvesting-aware approaches to energy and performance management of WSN systems.

One part of this work proposes DVS-DMS based energy management algorithms which

maximizes energy reserve of sensor nodes, while meeting all the performance requirements

of WSN applications. The ultimate aim is to improve system capacity to deal with energy

shortage caused by emergency situations. This is in contrast to the traditional goal of

energy management, i.e. energy consumption minimization. Another part of the work is

a rate allocation algorithm which maximizes application utility of WSN systems through

assignment of data collection rate to WSN nodes, while ensuring energy neutral operation.

Utility maximization is of paramount importance to next-generation WSN applications, as

opposed to merely maximizing throughput of data.

2.1 Performance Sensitive WSNs

The first few generations of WSNs were designed to operate with minimal performance

requirements and best-e↵ort service. The underlying assumption was that data loss and

reporting delays were acceptable, under many circumstances. However, as WSN system

capabilities evolve there is increasing interest in deploying applications that have stringent

computational and communication requirements. Examples include systems for multimedia

processing requiring actions such as in-network image analysis, distributed processing and

timely communication [35], systems for micro-fluidic (”lab-on-a-chip”) analysis [3], real-

time systems for spot utility pricing [36] and battlefield management systems for target

identification and tracking [37].

In addition to having computational and control constraints, many types of performance

sensitive WSN applications should have reserved energy capacity to rapidly respond to un-

usual or emergency situations [38, 39]. Consider a WSN responsible for monitoring water

quality for a metropolitan area such as Washington, D.C. Such system has over 1,300 miles

7



of pipes and if implemented would require ten’s of thousands of monitoring nodes. The

monitoring system would need to rapidly react throughout the pipe network to events such

as a biological contamination by dramatically increasing the sampling rate, communica-

tion workload and actuator manipulation. Other WSN monitoring systems have similar

requirements. One important aspect of my technical approach is addressing the need for

maintaining su�cient energy capacity for emergency situations.

Another important class of performance sensitive systems will need to operate over the

course of several decades. This class includes WSNs used to monitor critical infrastruc-

tures such as building health monitoring, highway maintenance, oil pipeline support and

above mentioned systems for water supply monitoring and measuring [1,40]. For reasons of

expense, accessibility and environmental friendliness systems in this application class will

benefit from sustainable energy harvesting solutions.

One consequence of these applications increased workload demands is that power require-

ments are also increased. Further, even systems that use prediction based energy harvesting

are subject to errors [16, 41]. An overestimation in energy availability (i.e. the predicted

value is larger than the actual value) may induce overuse of the available energy, and poten-

tially empty energy storage. One of the goals of my work is to maximize the energy storage

level of WSN nodes, while meeting the application performance requirements.

Note that performance sensitive and real-time embedded systems have long been an area

of study. Aydin et al. addressed power-aware scheduling for real-time periodic tasks using

DVS. The authors first propose an o✏ine algorithm to compute the optimal CPU frequency

levels for all the tasks in the task set, while assuming a worst-case workload scenario. The

derived frequency levels are optimal in that they minimize the total energy consumption,

while guaranteeing the timely completion of all the tasks. Then, a dynamic reclaiming

algorithm reduces CPU frequencies at run time to reclaim energy when the actual work-

loads of some tasks are less than the worst-case estimations. Finally, an aggressive speed

reduction algorithm will further reduce the frequency levels to achieve even larger energy

saving. Aydin et al. target system-level energy management for real-time periodic tasks.
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The authors considered the CPU frequency-independent powers (or o↵-chip powers) that

are consumed by memory access, I/O operations etc., in addition to frequency-dependent

power consumption (on-chip power) by CPU, and determined that the system-level energy

consumption does not monotonically decrease with the frequency level. They then formu-

late the energy minimization problem as a non-linear optimization problem, and solve it

optimally by manipulating the Karush-Kuhn-Tucker optimality conditions. [42] and [43] fo-

cus on scheduling periodic computational tasks in a power aware manner. Both techniques

perform well for systems which the computational energy dominates the overall energy con-

sumption. However, their computation-oriented task model ignores communication energy,

and is unsuitable for WSN systems.

Furthermore, [44] solved a reward maximization problem for real-time embedded systems

utilizing energy harvesting. They considered real-time tasks with multiple versions, where

each version has di↵erent workload demand and reward. The reward of a task version is

modeled as a concave function of its required workload demands. Then, depending on the

predictions of the amount of harvested power, their solution determines for each task a task

version and task execution speed. While ensuring the timely completion of all the tasks,

and also that the consumed energy is no larger than the harvested energy, the derived task

versions and CPU frequencies maximize the total rewards obtained. Though [44] considered

a simple energy harvesting model, it is one of the earliest works that exploiting the use of

DVS for energy harvesting systems. Moreover, they assumed a system consisting of real-

time tasks that are executed within periodically invoked frames, which motivated the use

of frame-based task model in my work.

2.2 DVS and DMS for WSN Energy Management

Dynamic Voltage Scaling (DVS) and Dynamic Modulation Scaling (DMS) are two energy

saving techniques widely used in wireless embedded systems. It is natural to consider

these techniques for WSN energy management. With DVS the processor is operated at
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a low supply voltage/frequency levels in order to save energy [45, 46]. DMS reduces the

data transmission rate for a specific modulation technique, in order to exploit the convex

dependence between the transmission rate and power [14, 15, 47], and thus saving energy.

Both DVS and DMS techniques have been recently fine-tuned by the research community by

incorporating frequency-independent or rate-independent power components and avoiding

energy ine�cient operation points [15, 43,48].

As an example of related work in DVS and DMS, Kumar et al. addressed a resource

allocation problem with the aim of minimizing the overall CPU and radio energy consump-

tion[14]. They assume a system containing a mixed set of computation and communication

tasks. An initial speed schedule is assumed to be given. This initial speed schedule preserves

the precedence relation between tasks, and satisfies applications timing constraints. By an-

alyzing the power consumption characteristics of di↵erent tasks and also the available time

before deadlines, the overall energy consumption is minimized by adjusting compute and

communicate speeds. In [49], the energy management problem is formulated as a convex

optimization problem. Genetic algorithms are proposed to find out the optimal compu-

tation and communication speeds for maximum energy savings, while ensuring the timely

completion of the workloads.

Both [15] and [50] explored the use of DMS in multi-hop wireless sensor networks. In

[50], Yu et al. proposed a DMS-based approach for a multi-hop chain of sensor nodes.

Their goal is to balance the energy consumption of sensor nodes on the chain by scaling

the communication speed, while ensures timely routing of data between the two ends of the

chain. In [15], Yu et al. extended their approach to tree-based WSNs. They assumed a data

gathering application in which a remote base station periodically collects sensed data from

sensor nodes over a tree-based routing structure. They proposed centralized and distributed

algorithms to minimize the total energy consumption across all nodes in the network by

adjusting nodes communication speeds, while guaranteeing that the base station gathers

sensed data from all the nodes within an end-to-end timing constraint.

The work presented in [14,15,49,50] all assume battery-powered systems without energy
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harvesting capabilities. Their ultimate goal for using DVS and/or DMS is to prolong sys-

tem lifetime by reducing energy consumption, without considering issues such as ensuring

perpetual operation through energy harvesting. Further, [15] and [50] consider only com-

munication energy, while ignoring the fact that computational activities are quite time and

energy consuming in modern WSN applications.

2.3 Energy Harvesting

The current generation of WSN nodes are generally powered by batteries. A typical TelosB

node, using two AA cells, will exhaust its power supply after a few days running at a

full duty cycle. As a result a number of prototype energy harvesting WSN nodes had been

designed and implemented. In [16], the authors described Heliomote, a solar powered sensor

node. Heliomote harvests solar energy to sustain its operation during daytime, the unused

energy is stored in batteries for use in the evening. The work described in [16] is the first to

propose a theoretical model of environmentally powered sensor networks. The authors of

[17] discuss Prometheus, which utilizes a two-level energy storage architecture. Its first-level

energy bu↵er consists of a super-capacitor which is characterized by its slow deteriorating

process and large energy storage capacity. These two properties make super-capacitors the

ideal primary energy bu↵er which may experience high energy throughput. The second-level

bu↵er consists of a Lithium battery which have the benefit of low power leakage, and hence

can hold harvested energy longer. The authors claim that Prometheus can survive 43 years

under a 1% load, and 4 years under a 10% load, and 1 year under a 100% load. In [18],

the authors proposed Everlast, a super-capacitor operated sensor nodes. Everlast adopted

a power transfer hardware which enables the solar cells to charge the super-capacitors at

the maximum power point, hence achieves high power transfer e�ciency.

Many existing studies have explored algorithmic support for energy harvesting WSNs. In

[33], Moser et al. proposed the LSA algorithm (Lazy Scheduling Algorithm) for scheduling

periodic real-time tasks in the context of energy harvesting. They noticed that completing

tasks before their deadlines has no benefit, but rather steals energy from successive tasks.
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This potentially leads to future deadline misses due to overhasty energy usage. Motivated

by this, the LSA defers task execution as late as possible (but before deadline), thus avoids

unnecessary deadline misses. Liu et al. ([34]) proposed EA-DVFS (Energy-Aware Dynamic

Voltage and Frequency Scaling) which improves the energy e�ciency of LSA algorithm by

using DVS, thus further reducing deadline misses. The EA-DVFS achieves this by reduc-

ing the computation speed when high speeds could potentially leads to energy depletion.

However, both LSA and EA-DVFS manage only the CPU energy, while ignoring radio

energy.

Other research ([51,52]) considered the maximization of application performance. Specif-

ically performance is correlated with sensing and reporting rate, task workload in [52] and

[51] respectively. Both of these papers formulate the problem in terms of an optimization

goal, with an objective of maximizing performance. An important constraint is to ensure

that nodes energy reserve never drops to zero. The authors then solve the problem using

standard optimization algorithms. The ultimate goal of these works is to fully utilize the

harvested energy in order to maximize system performance. I notice that many WSN ap-

plications do not have this requirement. Rather, the number of sense tasks and associated

computation and communication activities are fixed by the environment and application.

Additionally, they consider only individual nodes, and cannot be extended to a multi-hop

network environments.

Additional related work includes [53] and [54], which target harvesting-aware design for

multi-hop sensor networks. The work in [53] proposed a distributed approach for finding

the optimal lexicographic rate assignment in the context of multi-hop, energy harvesting

sensor networks. They considered a tree-based multi-hop network with a set of data source

nodes that periodically generates data packets, and forwards them to a base station. In [54],

the authors designed a novel energy harvesting aware routing algorithm for sensor networks

with renewable energy. Their work is distinguished from the existing WSN routing schemes

in that it is aware of the spatial di↵erences in nodes energy harvesting abilities and instant

residual energy storage. By considering the disparity among nodes energy availability, they
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defined a harvesting aware cost function, and apply the classic shortest-path algorithm for

determining the routing paths. The goal is to balance routing load and hence resulted

energy consumption among sensor nodes all over the network, so as to avoid overloading

and exhausting a small group of ”hot-spot” nodes.

Finally, [55] and [56] propose energy budgeting algorithms. An energy budget defines

the maximum energy that can be consumed by a node over a given time interval. Their

goal is to reduce the variance of energy budget over time. Specifically, [55] describes a

probabilistic observation approach for harvesting solar energy that attempts to minimize

energy allocation variance among nodes. [56] presented an approach for reducing variance

of node’s duty cycle using adaptive control theory. The motivation of both studies is par-

ticularly important to applications that requiring operating under a constant performance

level.

The fundamental di↵erence between the above work in energy harvesting and my pro-

posed work is that I focus on mission-critical and performance sensitive applications.

2.4 Rate allocation for utility maximization

Rate allocation for wireless sensor networks has been explored in [21,23,41,53,57]. The work

proposed by [53] is reviewed in 2.3. [41] proposes a rate control approach for a single energy

harvesting node to achieve a series of objectives including the maximization of average

sensing rate over time. These objectives are formulated as optimization problems and

solved using multi-parametric control algorithms. [55, 57] propose a flow control algorithm

for energy harvesting WSNs. As mentioned in 2.3, [55] finds an energy budget assignment

that minimizes the variance of energy assigned over time. Using this formulation the flow

control algorithm in [57] maximizes the amount of data collected over the network, given

that no node consumes more energy than the assigned budget.

An implicit assumption in [41, 53, 57] is that the system utility increases linearly with

the rate of nodes. However, for many applications the increase of utility slows down as rate
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increases (the diminishing returns principle). Using this observation, [21–23] model system

utility as a concave and non-decreasing function of rate, and propose primal-dual based

algorithms to maximize utility over the entire network. Among these works, [21] is the most

related one to mine that target utility maximization for energy harvesting WSNs. However,

[21–23] all assume specific utility functions that are continuously di↵erentiable, which may

limit their application for a more general class of functions. Moreover, their proposed

solutions are not optimal, and can incur high control overhead and unpredictable running

time, thus potentially limiting their practical implementation within resource-constrained

WSN systems.

Research presented in [58,59] formulate the Network Utility Maximization (NUM) prob-

lem for Internet congestion control. Primal-dual based algorithms are proposed to solve the

problem. The issue I target shares the same structure with the NUM problem, but is for

a WSN environment. The utility maximization problem has been also extensively studied

for real-time embedded systems. [60] addresses utility maximization for energy-constrained

systems that execute periodic real time tasks. The objective is to maximize the total utility

obtained from execution of these tasks, while satisfying the deadlines of all the tasks, the

tight system energy budget and the minimum system performance requirement. In [44], the

authors extend the approach in [60] for solar-powered embedded systems. However, [44]

only considers two di↵erent epochs in each day. [51, 61] address a similar problem as [44]

but with a more complex system model. They assume a highly dynamic energy harvesting

model, and assume that WSN applications have multiple discrete service and performance

levels, and each has di↵erent utility values and energy demands. The problem is then to de-

cide when to select which service level to run in order to maximize the total utility, without

over-using the available energy.
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Chapter 3: Device Model

This chapter describes the basic sensor node model used within the dissertation. Without

loss of generality, I assume that each node has several functional units, including an energy

harvester head, an energy storage module, a DVS capable CPU, a DMS capable radio,

as well as required sensor suites. The harvester head is energy source-specific, such as a

solar panel or wind generator. This model is shown in Figure 3.1. The rest of this chapter

provides the technical details of this model.

3.1 Energy Consumption Model for DVS-DMS Capable Wire-

less Sensor Nodes

The node consumes power via either processing, wireless communication or sensing. I now

describe how to model energy consumption for an individual node. The basic time interval

over which energy consumption is calculated is called a frame, defined di↵erently in 4 and 5.

I assume each DVS-enabled CPU has m discrete frequencies f
min

= f1 < ... < f
m

= f
max

,

and each DMS-enabled radio has n discrete modulation levels, b
min

= b1 < ... < b
n

=

b
max

. I use the terms frequency and computation speed interchangeably. In practice, the

modulation level represents the number of bits encoded in one signal symbol [15]. To

understand this relationship, let R be the fixed symbol rate. Then modulation level b is

associated with communication speed d expressed as:

d = R · b (3.1)

Let esen represents the energy required for each sensing which is a constant. The com-

putation energy is a function of the computation speed f and supply voltage V
dd

[42].
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Communication energy is a function of the communication speed d [15]. Let ecp and ecm

represent the computation and communication energy in a frame, respectively, and are given

below:

ecp = [↵fV 2
dd

+ P ind,cp] · (C/f) (3.2)

ecm = [�R(2d/R � 1) + P ind,cm] · (M/d) (3.3)

Above, C and M are the computation and communication workloads in a frame. C is

the number of CPU cycles to be processed, while M is the number of bits to be transmitted.

The ↵ in Eq. (3.2) is the CPU switching capacitance, which is a constant. The � in Eq.

(3.3) is a constant determined by the transmission quality and noise level [15]. The terms

↵fV 2
dd

and �R(2d/R� 1) give the speed-dependent power of CPU and radio which vary with

f , V
dd

and d. P ind,cp and P ind,cm are two constants representing the speed-independent

power of CPU and radio. By using DVS, the supply voltage V
dd

can be reduced linearly

alongside with f to obtain energy saving (i.e. f / V
dd

), making the speed-dependent CPU

power a cubic function of f . My model assumes a su�cient level of coordinated sleeping and

transmission scheduling, so that the radio energy consumed by listening channel activities

is not a significant factor. Finally, the total energy consumed in a frame, ec is given by:

ec = esen + ecp + ecm (3.4)

3.2 Energy Harvesting and Storage Model

The energy storage unit (e.g. rechargeable battery or super-capacitor) has a maximum en-

ergy capacity of �max joules. This unit receives power from energy harvester, and delivers

power to the sensor node. I take the commonly used approach that the amount of harvested

power is uncontrollable, but reasonably predictable, based on the energy source type and
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Figure 3.1: Device model of an energy harvesting sensor node

harvesting history [16]. To capture the time-varying nature of environmental energy, time

is divided into epochs of length S. Harvested power is modeled as an epoch-varying function

denoted by P h

i

, where i is the epoch sequence number. P h

i

remains constant within each

epoch i, but changes for di↵erent epochs. To be precise, P h

i

is the actual power received

by energy storage including the loss during power transfer from energy harvester to energy

storage, and the power leakage of energy storage. The time unit used for harvesting predic-

tion is one epoch. The prediction horizon, H, is an interval comprising a number of epochs

for which predictions can be reasonably made. The system needs to know the harvested

power prediction of only the coming epoch, at the epoch start.

When a sensor node is executing tasks, it draws power from the energy storage. When

the energy level drops to zero, the energy storage is forced to stop discharging. On the

contrary, when the energy level approaches �max, the energy storage stops charging to avoid

energy overflow. In [16], the authors proposed the concept of energy neutrality condition

which basically requires sensor nodes to maintain positive energy storage at all time. This

is a necessary condition for an energy harvesting sensor node to operate non-interruptively.
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Depending on the types of energy storage device, power usage and power harvesting

may happen concurrently or non-concurrently. Several papers assumed that concurrent

harvesting/usage capability is commonly available ([17], [16]). However, [62] pointed to the

need for special hardware mechanisms to separate charge and discharge currents, which

may be expensive for sensor nodes. In such systems, energy cannot be consumed (i.e. no

sensing, computation or computation activity can take place) while harvesting energy.

3.3 Performance-Sensitive WSN Applications

In my work the basic unit for WSN application execution is referred as task. The sensor

nodes execute task within periodic invoked frames. There are a total of three task types:

sensing, computation and communication. I assume in each frame that a sensor node per-

forms sensing first, then processes the sensor reading (computation), and finally transmits

the processed data (communication).

In order to model a time-critical WSN application, I assume the execution of tasks must

be completed within a specified deadline. For low-power, multi-hop WSN applications where

end to end data delivery delay is often excessively large, this requirement is necessary to

guarantee the freshness of sensed data.

I model two types of time-critical WSN systems, loosely-coupled and tightly-coupled

systems. Due to the di↵erences in how sensor nodes are coupled, timing requirement for

these two types of systems are di↵erent. For loosely-coupled systems, the task execution

deadline is specified for individual nodes while for tightly-coupled system where distributed

nodes must collaborate to accomplish a joint task, it makes more sense to specify an end to

end deadline. The formal definition of deadline for both system types is given in Chapter

4 and 5 respectively. Moreover, Chapter 4 and 5 describes the ways for calculating task

execution delay at individual nodes and the end-to-end delay.
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3.4 Utility-Oriented WSN Applications

The rapid introduction of new software and hardware functionalities has stimulated the de-

velopment of complex wireless sensor network (WSN) applications. For the next-generation

WSN applications, maximizing utility that are perceived by end users is of paramount

importance. I model utility as a function of how frequently sensor nodes sense and report

sensor readings. Much previous work in this area assumes that utility increases linearly with

sensing and reporting rate [41, 52, 53, 57], therefore the maximization of the network-wide

data collection rate leads to utility maximization.

However, for many WSN applications increasing the level of sensed data reporting only

increases the utility of the application in sub-linear fashion. Consider, for instance, video

or motion sampling as part of an intrusion detection system. Since humans can only move

at a certain speed, sampling above a specific threshold only marginally increases the utility

of the application. For this reason, I models utility as a non-decreasing concave function,

such that its rate of increase (marginal utility) decreases as the sensing and reporting rate

increases [21–23]. The utility perceived by application end-user is the aggregate utility

achieved jointly by all the nodes in the network. The formal definition of utility is given in

Chapter 6.

The remaining three chapters present my research. Chapter 4 and 5 propose DVS-DMS

based energy management solutions for time-critical energy harvesting WSN systems. Chap-

ter 4 targets loosely-coupled systems while Chapter 5 targets tightly-coupled systems. Chapter

6 addresses utility maximization for energy harvesting WSNs through rate allocation.
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Chapter 4: Joint DVS-DMS Energy Management for

Loosely-Coupled Systems

To accurately define the problem, I first give the task model for a single node scenario. Due

to the simplicity in managing sensor activities and energy usage, I organize the operations

of a sensor node as periodically invoked tasks. I model three sensor operations: sense,

computation and communication. A sense operation measures a physical quantity and

generates raw reading. A computation operation may involve processing the raw data,

aggregating data from other nodes or performing management of networking activities. A

communication operation involves sending or receiving data packets. I will denote each one

of these three basic operations as a subtask.

The above three subtasks are combined to form three task types. Sense subtasks are

performed periodically and most frequently by a sensor node, followed by compution and

then communicatation. Based on this observation the three task types are sense-only (SO),

sense-computation (SC), and sense-computation-communicatation (SCC). I refer to one

invocation of task as a task instance. A new task instance is invoked every ⇡ time units

(i.e., with period ⇡) and its type is known when it arrives. The task instances are executed

on frame basis [44]. A frame refers to a time interval of length ⇡ during which a task instance

is invoked, executed and completed. In order to maintain acceptable system performance,

each task instance must be completed within the frame period ⇡. For example, the jth task

instance is invoked at the beginning of the jth frame (i.e. at time (j � 1) · ⇡) and must

complete its execution within that frame (i.e. by time j ·⇡). Since each frame contains only

one task instance, I use the terms frame and task instance interchangeably for convenience.

The tuple {Isen
j

, Icp
j

, Icm
j

} identifies the type of a frame j. The elements in the tuple

are binary-valued with ”1” indicating the existence of the specified subtasks, and ”0” if
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Figure 4.1: A sequence of frames of di↵erent types

not. For instance, a sense-computation frame with frame type {1,1,0} consists of a sense

subtask followed by a computation subtask, but no communication. I assume the types

of frames are determined by the application. Fig. (4.1) illustrates a sequence of frames of

di↵erent types. SN, CP and CM represent sense, computation and communication subtasks

respectively.

Using the notation from Chapter 3, the execution time of the computation and com-

munication subtasks in frame j equal C/f
j

and M/d
j

respectively. I make a common

assumption that the e↵ective data transmission time dominates the overall communication

time thereby enabling us to ignore the carrier sense time [14, 15, 49]. Sensing time is de-

noted as a constant tsen. The total execution time texe
j

in frame j of type {Isen
j

, Icp
j

, Icm
j

}

at computation speed f
j

and communication speed d
j

is given as:

texe
j

= Isen
j

· tsen + Icp
j

· (C/f
j

) + Icm
j

· (M/d
j

) (4.1)

21



4.1 Energy Management with Energy Harvesting

Energy management is required to improve the systems resilience to emergency or fault-

driven situations which may deplete a nodes energy storage. At the same time we still

need to meet the applications performance (timing) requirements. Such energy depletion

might result from many system uncertainties, e.g. workload burst or errors in prediction

of harvested power. Motivated by this, I aim at maximizing the minimum energy level

observed over time. The benefit of this goal is that the extra energy can be used to service

unexpected workloads or new application tasks that are introduced into the system, and to

cover epochs or time periods where the amount of harvested power is less than expected.

In an attempt to capture all the parameters of the problem, I start with a couple of

definitions. This will allow me to formulate the problem in a precise manner. The energy

level at the end of epoch i �
i

is given by:

8i 2 [1, N ],�
i

= �init +
iX

k=1

Eh

k

�
iX

k=1

Ec

k

(4.2)

where �init is the initial energy level in a horizon. N is the number of epochs in a prediction

horizon. Eh

k

and Ec

k

are the harvested and consumed energy in epoch k respectively. Starting

with �init, �
i

may increase or decrease depending on the consumed and harvested energy

in intermediate epochs.

In my epoch-based approach, the jth frame of an epoch i is denoted by the pair (i, j).

Now, within an epoch i, the energy level at the end of a frame j, is:

�
i,j

= �
i�1 +

jX

k=1

eh
i,k

�
jX

k=1

ec
i,k

(4.3)

In other words, starting with the ending energy level �
i�1 in epoch i� 1 (which is also the

starting energy level in epoch i), �
i,j

is determined by the harvested and consumed energy
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in frame (i, j) and all its preceding frames, eh
i,k

, ec
i,k

, k 2 [1, j]. eh
i,k

is defined in 3.2, 3.3 and

3.4 while eh
i,k

is defined later in this section.

Note that there are bS/⇡c frames in an epoch. S is defined in 3.2. The consumed energy

in an epoch, Ec

i

is given as:

Ec

i

=

bS/⇡cX

j=1

ec
i,j

(4.4)

ec
i,j

is the energy consumption in frame (i, j) (Eq. (3.4)). The harvested energy Eh

i

is given

as:

Eh

i

=

bS/⇡cX

j=1

eh
i,j

(4.5)

eh
i,j

= P h

i

· th
i,j

(4.6)

eh
i,j

is the harvested energy in frame (i, j). As mentioned in 3, the harvested power P h

i

is a

known constant and fixed over all frames in epoch i. th
i,j

is the e↵ective energy harvesting

time in frame (i, j). In concurrent harvesting model, the system can continuously harvest

power throughout a frame, hence:

th
i,j

= ⇡ (4.7)

On the other hand, in non-concurrent harvesting model, task execution and energy har-

vesting cannot occur concurrently. Since texe
i,j

is the total execution time in frame (i, j)

(Eq. (4.1)), then th
i,j

equals:

th
i,j

= ⇡ � texe
i,j

(4.8)

At this point, I can start formulating my objective as an optimization problem. The
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objective is to maximize the minimum energy level over all the frames in a horizon:

�
min

= min{�
i,j

| 8i 2 [1, N ], j 2 [1, bS/⇡c]} (4.9)

The variables of the problem are the computation and communication speeds f
i,j

, d
i,j

, used

in any frame (i, j) in the horizon. Recall that by managing f
i,j

and d
i,j

, one can adjust

the harvested and consumed energy and hence regulate the energy levels. Thus, I need to

determine the optimal speeds f
i,j

, d
i,j

for each frame (i, j) in the horizon that achieve this

objective. I will later show that the optimal communication speed d
i,j

is unique for a given

(entire) epoch (i.e. it does not change from frame to frame). Similarly, it will turn out that

for a given epoch one needs to derive only two computation speeds (one for SC and one for

SCC frames, respectively).

The optimization problem is called Energy Management with Energy Harvesting (EMEH)

and given by Eq. (4.10) to (4.14).

Max. �
min

(4.10)

s.t. 8i 2 [1, N ], j 2 [1, bS/⇡c]

0 < �
i,j

 �max (4.11)

texe
i,j

 ⇡ (4.12)

f
min

 f
i,j

 f
max

(4.13)

d
min

 d
i,j

 d
max

(4.14)

The objective is maximizing �
min

4.9. The constraint (4.11) enforces that the energy level

�
i,j

in any frame is confined to the range (0,�max]. �
i,j

> 0 must hold in order to ensure

energy neutrality. Also, I require that �
i,j

 �max to model the energy storage capacity of

the sensor node. The constraint (4.12) ensures the timely completion of workloads in a given

frame. The constraints (4.13) and (4.14) give the lower and upper bounds for computation
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and communication speeds, respectively.

Notice that the problem EMEH is essentially a non-linear program, because the frame

energy level �
i,j

(Eq. (4.3)) depends on the non-linear energy consumption function, ec
i,j

(Eq. (3.4)). My strategy to solve this problem is given as follows. I first focus on designing

an energy management algorithm for any single, given epoch with known initial energy

level and harvested power. Then, I show that by iteratively invoking this algorithm for

each epoch I can solve the horizon-based problem EMEH optimally. I start by proposing

Theorem 1 as follow.

Theorem 1. Starting with arbitrary initial energy level in an epoch i, iteratively maximizing

the increment of energy level of each frame (i, j), ��
i,j

= �
i,j

� �
i,j�1, j 2 [1, bS/⇡c]

beginning with the first frame, maximizes the energy level at the end of any frame in epoch

i.

The proof for this theorem is given in the Appendix. Since applying Theorem 1 maxi-

mizes �
i,j

, 8j 2 [1, bS/⇡c] in epoch i, the following corollary is easily justified.

Corollary 1. Iteratively maximizing the energy level increment in each frame (i, j), ��
i,j

,

maximizes the minimum energy level observed in any frame of epoch i.

Theorem 1 implies the existence of an algorithm which maximizes the energy level at

the end of any epoch i, �
i

by greedily accumulating energy over each frame in epoch i. I

refer to this optimal algorithm as DVMS.

Then, I can now observe the following. Starting with the initial energy level in the

horizon, i.e. �init, the ending energy level in epoch 1, �1 is maximized by invoking algo-

rithm DVMS for epoch 1, which in turn supplies the maximum possible initial energy level

for epoch 2. The same reasoning would apply to the 2nd, 3rd,...,N th epochs as well, as

long as the new harvesting rate is fed into the algorithm DVMS at the start of each new

epoch. Therefore, I conclude that by iteratively invoking algorithm DVMS for each epoch,

I can achieve the objective of problem EMEH which maximizes the minimum energy level

observed in any frame of the horizon, �
min

.
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The optimality of DVMS and Corollary 1 also imply the following:

Corollary 2. If the algorithm DVMS cannot find a feasible solution to a specific instance

of the problem EMEH, then that instance does not admit any feasible solution.

Finally, I notice that violation of the constraint �
i,j

 �max will never happen in practice,

simply because the energy harvester is assumed to stop charging the storage device when

the energy level approaches the capacity �max.

4.2 Epoch-Based Energy Management

While maximization of energy increments over consecutive frames is optimal as indicated by

Theorem 1, I still need to determine the optimal computation and communication speeds

to achieve that objective. Since the harvesting rate changes only from epoch to epoch,

a natural strategy is to solve the problem for each epoch separately. In this way I can

focus on designing the epoch-based algorithm DVMS. As mentioned in 4.1, the basic idea

of algorithm DVMS is to accumulate as much energy as possible in each frame of a given

epoch. This will lead to the maximum possible stored energy at the end of the epoch. I

achieve this objective by iteratively solving a Single-Frame Energy Management (SFEM )

problem for each frame in the epoch.

The problem SFEM has e↵ectively two variants. In my analysis, I consider only the

solution for the SCC frame because it is the most general one; the SC type is a special

case of the SCC type where M = 0. Note that since its energy consumption function

is not controllable through DVS and DMS, I do not include SO frames in the analysis.

Although one epoch contains bS/⇡c frames, I claim that the above problem needs to be

solved only once for the first SCC frame in each epoch, that is, the optimal computation

and communication speeds derived can be fixed for all SCC frames within the epoch. This

claim is supported by the observation that the harvested power and workloads are identical

for all SCC frames in one epoch. One parameter that may vary is the initial energy level

for di↵erent frames in the epoch. At first, it looks like di↵erent starting energy levels may
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result in di↵erent frame-level computation and communication speed assignments while

trying to enforce the maximum energy level constraint �
i,j

 �max. However, recall that

the storage device automatically stops charging when the energy level approaches �max,

hence the maximum capacity does not need to appear as a constraint in the frame level

energy management problem. The fixed speeds yield also a benefit on the implementation

side: in general, a sensor node will need to convey every change in its modulation level b

(communication speed d) to its receiving node. Therefore, fixing d within each epoch makes

a practical implementation possible. Finally, note that the computation speed f could be

di↵erent for the computation subtasks in SC and SCC frames, since voltage scaling is the

only energy management tool for SC frames. The problem SFEM is specified as follows:

Max. ��
i,j

s.t. texe
i,j

 ⇡

f
min

 f
i,j

 f
max

d
min

 d
i,j

 d
max

The objective is to maximize the energy level increment in a frame, while satisfying the

application performance requirements.

4.2.1 Concurrent harvesting model

In this case, the stored energy eh is constant (Eq. (4.6) and (4.7)). Thus, maximizing

�� = eh � ec is equivalent to minimizing ec which is a function of f and d (Eq. (3.4)). In
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this case, the problem becomes:

Min. ec = esen + ecp(f) + ecm(d) (4.15)

s.t. tsen + C/f +M/d  ⇡ (4.16)

f
min

 f  f
max

(4.17)

d
min

 d  d
max

(4.18)

Considering the nature of computation and communication energy consumption functions,

the objective function can be seen to be convex. The problem has two unknowns (f and

d), three inequality constraints. I denote this problem as SFEM-C.

4.2.2 Non-concurrent harvesting model

In this case, the harvesting time th is variable with the execution speeds f and d, i.e.,

th = ⇡ � tsen � (C/f) � (M/d) (Eq. (4.8)). Thus, saving energy by reducing speed will

sacrifice harvesting opportunity, and may lead to even smaller ��. Hence, unlike the

concurrent case, minimum energy consumption does not imply the maximum energy level

increment. In this case, the problem becomes:

Max. eh � ec = thP h � [esen + ecp(f) + ecm(d)]

s.t. tsen + C/f +M/d+ th = ⇡

0  th  ⇡

f
min

 f  f
max

d
min

 d  d
max

This problem has a concave objective function, three unknowns (f , d and th), one equality

constraint, and three inequality constraints. Since maximizing a concave objective function

h() is equivalent to minimizing a convex function �h(), this problem leads to a convex
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program as well. I denote the problem as SFEM-N.

4.3 Frame-Level Energy Management

In order to solve SFEM-C, I temporarily ignore the constraint (4.16) (timing requirement).

By ignoring it, f and d can be scaled arbitrarily within their available ranges. Thus, the

overall energy consumption ec is minimized by minimizing the CPU energy ecp and radio

energy ecm separately. The speeds f⇤, d⇤ which yield the minimum ecp and ecm can be

found by equalizing their first derivatives to zero:

Now, I take constraint (4.16) into consideration. If f⇤, d⇤ satisfy constraint (4.16), I

consider two special cases:

• if f
min

 f⇤  f
max

, d
min

 d⇤  d
max

, then the optimal solution is fopt = f⇤,

dopt = d⇤.

• if f⇤ < f
min

and/or d⇤ < d
min

, then fopt = f
min

and/or dopt = d
min

. This is because

ecp and ecm are monotonically-increasing in f 2 [f⇤,+1] and d 2 [d⇤,+1].

In [43], Aydin et al. derived f⇤ under an equivalent CPU energy model and referred it as

the energy-e�cient frequency. Also, d⇤ can be called the energy-e�cient communication

speed. If f⇤, d⇤ violate constraint (4.16), the solution is more complicated. I note that

problem SFEM-C can be rewritten as:

Min. esen + ecp(tcp) + ecm(tcm)

s.t. tsen + tcp + tcm  ⇡

C/f
max

 tcp  C/f
min

M/d
max

 tcm  M/d
min

I use the computation and communication time (in a frame), tcp = C/f and tcm = M/d as

the new variables. This makes problem SFEM-C a separable optimization problem with
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the following structure:

Min.
pX

k=1

F
k

(x
k

)

s.t.
pX

k=1

x
k

 ⇡

8k, x
k,min

 x
k

 x
k,max

Above xks are equivalent to f and d. p is the number of variables which equals 2 for my

optimization problem. In [43] and [63], it has been shown that any problem with the above

structure can be solved in time O(p3) by manipulating Karush-Kuhn-Tucker optimality

conditions ([64]). Since in problem SFEM-C, p = 2, it can be solved in constant time. The

same method can be extended to solve problem SFEM-N which is also a separable problem.

The detail of this method can be found in [43] and [63]. The derived tcp, tcm are then used

to compute the optimal speeds fopt, dopt. Finally, fopt and dopt might not be available on

the target hardware with discrete speed levels. However, I can use the lowest f and d which

satisfy f � fopt, d � dopt, to guarantee the timely completion of the workloads.

4.4 Numerical Evaluation

Though I have demonstrated the optimality of algorithm DVMS for energy level maximiza-

tion, I ran a set of experiments to determine the actual improvement in stored energy and

�
min

, compared to the schemes that use either no or one of the voltage and modulation

scaling techniques, under both concurrent and non-concurrent harvesting models. The sim-

ulations are conducted using TOSSIM, the standard WSN simulator [65]. In addition to

the normal workload conditions where the worst-case application demand is constant, I also

considered an emergency mode where there are sudden, unexpected peaks in the demand.

The emergency mode is introduced to assess the scheme’s capacity to cope with run-time
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uncertainties and minimize service interruptions.

4.4.1 Node architecture and workload models

I consider two types of workloads, normal and emergency. The normal computation and

communication workloads are generated randomly according to uniform distribution within

the ranges C=[1, 2000000] CPU cycles, and M=[1, 128] bytes. The emergency mode is

simulated by increasing the workload of frames by u times, where u ranges in [1, 2]. I

assume that the sensor node encountered v emergencies in the horizon, each of which lasts

w consecutive epochs. v and w are both random integers in the range of [0, 10]. My

simulations used SCC frames.

Table 4.1: Specification of Intel Xscale Pxa27x

Freq.(MHz) 104 208 312 416 520 624
Power(mW ) 116 279 390 570 747 925

The hardware basis for a DVS-DMS capable platform is the widely available iMote-2

sensor node [66]. The iMote-2 platform has a Intel Xscale PXA27x CPU [67] and a ChipCon

CC2420 radio [68]. The frequency and power specification of PXA27x processor is given in

Table 4.1. I derived the radio speed-independent power P cm,ind = 26.5mW, radio symbol

rate R = 62.5k symbols/sec, and � = 2.74 ⇥ 10�8 based on CC2420 specification [68] and

Eq. (3.3). I note that the CC2420 is not DMS-capable, so as in [15] I assume four modulation

levels, b = {2, 4, 6, 8} which give four communication speeds: d = {125, 250, 375, 500} kbps

(Eq. (3.1)). The radio energy is calculated using Eq. (3.3). I assume a light sensor TSL2561

[69] which takes 12ms to get one reading and consume 0.72mW. I assume the harvested

energy is obtained from solar radiation, and use the solar power harvesting trace over one

day provided in [16] as my harvesting profile. Solar energy can be harvested in either

concurrent or non-current mode. I use the results in [16] to fix the harvesting cycle at
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H = 24hours. This horizon is then divided into 96 epochs, each has a length S = 15mins.

I simulated the execution of each invoked frame and set the frame period at ⇡ = 30ms.

Each sensor node uses a rechargeable battery with capacity �max = 4000 joules. All nodes

start with the same initial energy level, �init = 2400 joules.

Although there are no existing schemes that are directly comparable to my approach,

I have defined three new baseline schemes for comparison purposes. First, the NPM (No-

Power-Management) scheme fixes both frequency and modulation level at the maximum

across all epochs. Second, the DVS scheme scales only the frequency optimally, while fixing

the modulation level at its maximum level. Third, the DMS scheme scales the modulation

level optimally, while fixing the frequency at the maximum level. I use the metric frame skip

ratio to measure the capacity of di↵erent schemes to cope with uncertainties, defined as the

percentage of failed frames (missed deadline) due to empty energy storage in the horizon.

Notice that this ratio also captures the scope of service interruption time: the higher the

frame skip ratio, the longer the service interruption time.

For each of the experiments below, I ran 96 full epochs 1000 times. I then computed

the average stored energy at the end of each epoch and plotted it as a data point.

4.4.2 Impact of joint voltage and modulation scaling

In Fig. 4.2a, I compare di↵erent schemes in stored energy of a sensor node executing normal

workload, while harvesting concurrently. Among all the schemes, the energy level increases

in the daytime as the sunlight intensity increases, and decreases in the evening due to

the absence of sunlight. In all schemes, DVMS achieves the highest energy level. At the

�
min

point (appeared around 8 : 00am), DVMS stores 1800 joules (45.0% full) which is

significantly higher than 1100 joules (27.5% full) for NPM, 1400 joules (35% full) for both

DVS and DMS. As opposed to DVS or DMS schemes, the DVMS stores more energy since

it has wider power scaling range, and always selects the most energy e�cient speeds which

yield the smallest energy consumption. All schemes have zero frame skip ratio which means

no service interruption occurred.
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In Fig. 4.2b, I ran the same experiment, but assumed non-concurrent harvesting. Again,

DVMS stores more energy than all other schemes. The �
min

point (appearing at midnight)

is about 1200 joules (30.0% full) for DVMS which is higher than 0 joule (empty) for NPM,

300 joules (7.5% full) for DVS, and 800 joules (20.0% full) for DMS. The DVMS stores

the most energy as it uses the speeds which optimally balancing energy consumption and

harvesting. Only NPM su↵ers 2.1% frame skip ratio.
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Figure 4.2: Energy level - Normal mode

In Fig. 4.3a and 4.3b, I compare di↵erent schemes for a node executing emergency

workloads, while harvesting concurrently and non-concurrently. The stored energy by all

schemes decreases significantly compared to Fig. 4.2a and 4.2b due to the extra energy used

by emergency workloads. The DVMS beats all other schemes again in stored energy and

causes no service interruption. In Fig. 4.3a, no schemes su↵ers service interruption, while

in Fig. 4.3b the DVS and NPM have skip ratio of 4.2% and 10.4%.

In all the above figures, the DVMS scheme stores significantly more energy than all other

schemes, and never su↵ers service interruption. Under emergency mode, some schemes ran

out of energy in the middle of operation for up to 10% time of service which potentially

causes disasters to mission-critical applications. My experiments indicate the benefits of
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my algorithm in term of both stored energy and resilience to system uncertainties.
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Chapter 5: Joint DVS-DMS Energy Management for

Tightly-Coupled Systems

I next turn attention to the energy management problem over an multi-hop network of

sensor nodes. This network-level problem will share the same basic device model as the

single-node problem. To precisely formulate the problem, I start by giving the definition

of my network and application model. Note that some of the definitions were previously

given in the discussion of the single-node problem, but are restated here in the context of

a multi-hop system.

5.1 Network and Application Model

The system consists of N sensor nodes and the set of wireless communication links connect-

ing them. A sensor node is denoted as V
i

. Base stations or control points are denoted as BS.

The N nodes are further divided into two di↵erent types. Source nodes perform sensing,

processing and communication operations, while relay nodes only perform processing and

communication. My data processing architecture is quite general, and supports systems

that perform some levels of aggregation at each node, as well as systems that do not allow

any aggregation. I represent a time-critical and performance sensitive WSN application by

requiring that all source nodes report their readings, which may or may not be aggregated

into other readings, every ⇡ time units. The time interval ⇡ is the length of a data collection

frame. In other words, all sensed, processed or aggregated data must reach BS by the end

of each frame. For example, at the start of the kth frame (i.e., at time (k � 1) · ⇡), each

source node senses the target environment and sends the sensed data to BS. The data must

reach BS by the end of the kth frame, at time k · ⇡.
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On a per-frame basis, energy consuming activities within each node are represented

using a task-based model. In this way, frame-based energy consumption is determined by

examining the power demands of individual tasks. There are a total of three task types: a

sensing task, a computation task and a communication task. Without loss of generality and

in order to simplify the modeling process, I assume the three tasks are executed in the order

of sense!computation!communication. That is, in each frame, a node performs sensing

first, then processes the sensor reading, then transmits the processed data. Note that the

sense task is performed only by the source nodes. The workloads of the computation and

communication tasks of any node V
i

are fixed over any frame in a given epoch, and denoted

as C
i

and M
i

, respectively.

I assume that each node uses standard WSN energy management techniques for tran-

sitioning to sleep states when there is no active task. In this chapter, I consider only

concurrent energy harvesting model. I also assume that computation and communication

speeds only change at the start of an epoch. This design decision reduces the required

level of control and synchronization overhead. Using this analysis I can calculate the time

required by each node V
i

to carry out all activities during frame k, referred as the per-

node latency, l
i,k

. The per-node latency depends upon the computation speed f
i,k

and the

communication speed d
i,k

. Then l
i,k

is given by

l
i,k

= tsen +
C
i

f
i,k

+
M

i

d
i,k

(5.1)

tsen is the sensing time which is a constant. tsen equals zero for relay nodes. I make a

common assumption that the e↵ective data transmission time dominates the overall com-

munication time so I ignore the carrier sense time [14], [49], [15]. Thus, the communication

time is inversely proportional to d
i,k

.

The system is organized into a data collection and processing tree rooted at BS. In

order to support time-critical operation I must define and calculate the maximum data

collection latency and individual path latency. These two values are used in the optimization
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formulation in 5.2 to ensure that all latency requirements are maintained. A node V
i

receives

data from a set of child nodes that are denoted as Children(V
i

). Node V
i

forwards packets

to its parent node, denoted as Parent(V
i

). Then the maximum data collection latency

L
tot,k

of frame k is the time interval between the start of frame k, and when BS collects all

sensed data, given by

L
tot,k

= Max.{L
i,k

+ l
i,k

|V
i

2 Children(BS)} (5.2)

Above, L
i,k

is the latency of the subtree rooted at node V
i

, i.e. L
i,k

= Max.{L
j,k

+ l
j,k

|V
j

2

Children(V
i

)}. The subtree rooted at a leaf node contains only the leaf itself, and hence

incurs zero latency.

Next, I define the path ⇢
i

from a node V
i

to the root BS as the series of nodes and

wireless links connecting V
i

and BS. The notation V
j

2 ⇢
i

signifies that node V
j

is an

intermediate node on path ⇢
i

. The latency H
i,k

of ⇢
i

is given by

H
i,k

=
X

j:V
j

2⇢
i

l
j,k

(5.3)

Note that by resolving the recursion in Eq. (5.2), L
tot,k

actually equals to the latency of the

longest path in the tree, i.e., Max.{H
i,k

|8⇢
i

}.

5.2 Harvesting Aware Speed Selection

Based on the network model presented in 5.1, I now formally define the Harvesting Aware

Speed Selection (HASS) problem. My goal is to maintain end-to-end performance while

maximizing system’s resilience to abnormal or emergency situations. This is accomplished

by maximizing the minimum energy level of any node.

The computation and communication speeds at individual nodes are adjusted at the

start of each epoch, and remain fixed throughout that epoch. As defined in 3.2, an epoch
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is a time interval over which an energy harvesting prediction can be reasonably made. For

an arbitrary epoch, the energy consumption ec
i,k

(Eq. 3.4) and performance latencies L
i,k

,

H
i,k

of node V
i

are fixed over any frame k. For simplicity I therefore rewrite them as ec
i

, L
i

and H
i

. Then the energy level �
i

of a node V
i

at the end of a given epoch is given as:

�
i

= �init

i

+ P h

i

· S � bS/⇡c · ec
i

(5.4)

�init

i

is the starting energy level of V
i

in the epoch. Recall that S is the epoch length. bS/⇡c

gives the number of frames in an epoch. Using this notation, I define �
min

as

�
min

= Min.{�
i

|8V
i

} (5.5)

Then the goal of my approach is to maximize �
min

. The variables of the problem are

the computation and communication speeds f
i

, d
i

used by any node V
i

in an epoch. Given

N nodes in the tree, there are 2N unknowns in the problem. The optimal solution to this

problem consists of N speed configurations (f
i

, d
i

), one for each node which maximize �
min

.

The problem HASS is given as:

Max. �
min

(5.6)

s.t. 8⇢
i

, H
i

 ⇡ (5.7)

8V
i

, f
i

2 [f
min

, f
max

], d
i

2 [d
min

, d
max

] (5.8)

8V
i

, 0 < �
i

 �max (5.9)

The constraint (5.7) ensures that the latency of any path ⇢
i

in the tree is smaller than the

frame period ⇡. As mentioned in 5.1, this is equivalent to ensuring that the latency of the

entire tree is smaller than ⇡. The constraint (5.8) gives the available ranges of f and d. The

constraint (5.9) requires that the energy level of any node V
i

must be confined to the range

(0,�max]. The left hand side of constraint (5.9) (called the positivity constraint) must hold
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in order to ensure energy neutrality, while the right hand side (called the capacity constraint)

is used to model energy storage capacity. Given known and constant harvested power, and

fixed speeds and power consumption, the variation of energy level also fix throughout an

epoch, i.e. either monotonically increase or decrease at a fixed rate. Therefore, ensuring a

positive energy level at the end of an epoch also ensures positive energy level at the end of

any frame in that epoch.

5.3 Centralized and Distributed Solutions

Now I present both centralized and distributed solutions to the HASS problem. The cen-

tralized solution solves the problem optimally, while the distributed version is appropriate

for systems that need to avoid single control point.

I first give Lemma 1 which states that solving problem HASS with full constraint set

is equivalent to solving the same problem but without constraint (5.9). This enables me to

remove constraint (5.9) and focus on a new problem obtained in this manner, denoted as

HASS-N. Note that the objective function and all other constraints are retained in HASS-N.

Lemma 1. If in the optimal solution to HASS-N, �
min

is strictly positive, then the solution

to HASS is identical to that of HASS-N. Otherwise, HASS does not have a feasible solution.

The proof of Lemma 1 is given in the Appendix. Now I can focus on solving problem

HASS-N. Solving HASS-N requires non-linear optimization techniques, since it has a non-

linear objective function (Eq. (5.6)). Such costly methods are di�cult to implement on

resource-constrained sensor nodes. I will show how to obtain an optimal solution e�ciently.

A naive approach to solve HASS-N is to exhaustively search over all possible solutions.

For a system with N nodes where each node has m computation speeds and n communi-

cation speeds, there are (mn)N possible solutions, making brute force search impractical.

However, I notice that many di↵erent solutions yield identical �
min

which is justified later

in the next paragraph. Using this observation I can simply enumerate each possible �
min

,

check if there exists a feasible solution that yields a minimum energy level (among any node)
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equaling the enumerated �
min

, while satisfying constraints (5.7) and (5.8). The highest

�
min

that passes this check is by definition the maximum �
min

that I am looking for.

For each node, mn speed configurations correspond to mn di↵erent power consumption

levels. Since each node’s power consumption is fixed throughout an epoch, a node has

exactly mn energy consumption levels over an epoch. Thus, given a known starting energy

level and a fixed prediction for how much energy can be harvested, a sensor node could

end with at most mn di↵erent energy levels in an epoch. Given N nodes, at the end of an

epoch, there could be at most mnN di↵erent energy levels in the network, and �
min

can be

only of these possible values. The set of possible �
min

s is referred as EL (Energy Level),

and has a size of mnN .

5.3.1 Centralized solution

I call the centralized HASS algorithm CHASS, given in Algorithm 1. It runs on the base

station, and assumes that BS must collect �init from each node in the system, and is aware

of the available speed configurations of sensor nodes. CHASS first computes the possible

energy levels of all the nodes using Eq. (5.4) to build the set EL, then sorts EL in non-

increasing order (line 1). CHASS proceeds iteratively over the sorted EL starting from the

first element (i.e. the highest energy level in EL) (line 2). In each iteration p, it solves a

decision problem, called Feasible Solution denoted by FS
p

, by calling algorithm Is-Feasible

(line 3). The pth element in EL, EL[p] is input to Is-Feasible. The problem FS
p

is specified

as ”Is there a solution which yields �
min

=EL[p], while satisfying constraints (5.7-5.8)?”

The loop in line 2-9 iterates through all the elements in EL. It continues if the answer

to problem FS
p

, ans
p

is negative, and terminates once it met a FS
p

with positive answer,

i.e. in iteration z where FS
z

is the first problem encountered with positive answer, z =

Min.{p 2 [1, |EL|]|ans
p

= TRUE} (line 4-8). By definition of problem HASS-N and FS,

and the ordering of EL, EL[z] is the maximum �
min

that can be achieved (line 5), while

satisfying all the constraints. If CHASS proceeds to the end of EL and never received a

positive answer to any of the FS
p

, this implies problem HASS-N has no feasible solution.
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The algorithm Is-Feasible for solving problem FS
p

is given in Algorithm 2. The algo-

rithm has one input, the energy level enumerated in iteration p of CHASS, EL[p]. It has

three returned values, the answer to problem FS
p

, ans
p

, and two speed sets of length N ,

F ⇤, D⇤ which contain f and d derived for all the nodes in the current iteration. F ⇤, D⇤ are

returned only if ans is positive, otherwise they are empty.

Algorithm 1 CHASS

1: Compute and sort EL (in non-increasing order)
2: for p = 1 to |EL| do
3: [ans

p

, F ⇤
p

, D⇤
p

] = call Is-Feasible(EL[p])
4: if ans

p

== TRUE then

5: Max �
min

= EL[p]
6: [F opt, Dopt] = [F ⇤

p

, D⇤
p

]
7: Break from for-loop
8: end if
9: end for

First, by making �
min

= EL[p] (line 1), �
i

� �
min

= EL[p] must hold for any node V
i

.

Then the algorithm calls function find fastest for each node (line 2-4) to search over all its

mn speed configurations for the fastest one, while yielding �
i

� EL[p]. Let �
i

(f, d) and

l
i

(f, d) represent the energy level and per-node latency achieved using speed configuration

(f, d). Then, find fastest returns a speed configuration for V
i

, (F ⇤[i], D⇤[i]) which satisfies:

F ⇤[i] 2 {f1, fm}, D⇤[i] 2 {d1, dn} (5.10)

�
i

(F ⇤[i], D⇤[i]) � EL[p] (5.11)

8(f 0
, d

0
) 2 {(f, d)|�

i

(f, d) � EL[p])}, (5.12)

l
i

(F ⇤[i], D⇤[i])  l
i

(f
0
, d

0
)

Since there are only mn combinations of f and d, find fastest can search for (F ⇤[i], D⇤[i])

using brute force. find fastest also returns the per-node latency lmin

i

at V
i

achieved by

using the derived (F ⇤[i], D⇤[i]). Note that lmin

i

is the least achievable latency according to
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Eq. (5.12). Next, for each path ⇢
i

, I compute its latency H
i

by summing up any lmin

j

, V
j

2 ⇢
i

(line 5). Since (F ⇤, D⇤) minimizes the per-node latency at any node, it also minimizes the

latency of any path H
i

. Therefore, if H
i

 ⇡, 8⇢
i

, the constraint (5.7) is met, then the

answer to problem FS
p

is positive (line 6-7). Otherwise, constraint (5.7) can never be met,

hence the answer is negative (line 8-9). Note that it is possible that function find fastest

does not return an answer, as there may exist some nodes having no possible energy level

larger than the input EL[p]. In this case, the algorithm immediately rejects EL[p]. The

speed sets F ⇤, D⇤ found in iteration z is set to be the optimal solution to problem HASS-N

and also HASS (line 6 in Algorithm 1). EL[z] is set to be the maximum achievable �
min

(line 5 in Algorithm 1).

Algorithm 2 Is-Feasible - Input: EL[p]

1: �
min

= EL[p]
2: for i = 1 to N do
3: (F ⇤[i], D⇤[i], lmin

i

) = call find fastest(�
min

) on V
i

4: end for
5: Compute H

i

=
P

j:V
j

2⇢
i

lmin

j

for any path ⇢
i

6: if 8⇢
i

, H
i

 ⇡ then
7: ans = TRUE
8: else
9: ans = FALSE, F ⇤, D⇤ = ;

10: end if
11: return [ans, F ⇤, D⇤]

It is possible to reduce the runtime of the above algorithm. In order to do so I present

Lemma 2 and Corollary 3, which is used as the basis for CHASS⇤, the faster algorithm.

The key idea of CHASS⇤ is to implement a binary search for FS
z

. This will reduce the

number of iterations in CHASS from O(|EL|) to O(log(|EL|)).

Lemma 2. For any node V
i

, the least per-node latency found by invoking algorithm Is-

Feasible with �1 as input is no smaller than the one found with �2 as input, where �1 � �2.

The proof of Lemma 2 is given in the Appendix. Given Lemma 2, the following corollary

stands:

42



Corollary 3. For any node V
i

, the least per-node latency found in iteration p is no smaller

than the one found in iteration q, 8q � p.

Corollary 3 holds because EL[p] � EL[q], given that EL was sorted in non-increasing

order. Corollary 3 implies that the latency of any path found in iteration p is also no smaller

than the one found in iteration q, 8q � p. Therefore, I can implement the search for FS
z

using binary search. The search starts from the pth element of EL, p = |EL|
2 , and

• continues on the left half ([1, p� 1]) if FS
p

has positive answer. Due to smaller path

latency found in iteration q, q > p, any FS problem on the right half must also have

positive answer, hence it is unnecessary to search that half. Rather, on the left half,

I may find a problem FS with larger achievable �
min

.

• continue on the right half (i.e. [p+1, |EL|]) if FS
p

has negative answer. Due to even

larger path latency found in iteration q where q < p, any FS on the left half must

violate constraint (5.7), thus has negative answer.

The binary search continues on either half depending on the answer to FS
p

, until FS
z

is

found. The binary search based implementation reduces the number of iterations in CHASS

from O(|EL|) to O(log(|EL|)).

Complexity analysis: Given mn speed configurations, the runtime of find fastest

is O(mn). Given N nodes, the loop in line 2-4 of Algorithm 2 has runtime O(mnN).

Also, computing the latency for all paths (line 5) takes O(N) time since there are N

nodes. Therefore, the runtime of Is-Feasible is O(mnN). Since CHASS⇤ iterates for

O(log(|EL|))=O(log(mnN)) rounds, its total complexity is O(mnN log(mnN)). Since m

and n are typically much smaller than N , the algorithm can be seen as an e�cient one

in practice. In terms of the communication overhead, the gathering of initial energy levels

from all the nodes at BS requires one round of data collection.
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5.3.2 Speed reduction for nodes on non-critical paths

I note that the function find fastest in Algorithm 2 produces node speed assignments

that run at the highest possible speed configuration that satisfies �
i

� �
min

. This speed

assignment is not always desirable or necessary, and I now present a scheme to reduce

speed for the unnecessarily fast nodes, given that �
min

has been maximized by CHASS.

First I define the critical path. Given the speed assignment derived by CHASS, a critical

path in the tree is any path on which no nodes can further reduce their computation or

communication speeds without violating constraint (5.7). Note that such critical paths

must exist. This is because if the tree does not contain a critical path, then the speed of

nodes can be further reduced without violating the constraint (5.7). This will increase the

energy level of these nodes, hence CHASS will proceed to a new iteration and find a higher

�
min

. This contradicts the optimality of CHASS that �
min

is already maximized.

Recall that H
i

is the latency for packets from V
i

to reach BS, and L
i

is the time for V
i

to collect packets from all its descendent source nodes. For any node V
i

on a critical path,

H
i

is fixed since the speed of any node on ⇢
i

cannot be further reduced. Since the latency

from V
i

to BS is fixed at H
i

, in order for V
i

to collect and forward packets sensed by its

descendent nodes to BS within the latency constraint ⇡, any of those packets must reach

V
i

in no more than time ⇡ � H
i

. In other words, the collection latency of V
i

, L
i

must be

smaller than ⇡ �H
i

. Therefore ⇡ �H
i

can be interpreted as the latency constraint at V
i

,

denoted as LC
i

.

I refer to the speed reduction scheme as SpeedReduction, and give it in Algorithm 3.

SpeedReduction reduces speeds of nodes based on the speed assignment derived by CHASS.

Line 1 identifies the path with the largest latency in the tree, denoted as ⇢max. Notice that

⇢max must be a critical path, and the base station is also on ⇢max.

Lines (2-7) iterate over every node V
i

on ⇢max (from BS down to the leaf node on ⇢max) to

reduce speeds of their descendent nodes, while ensuring that the resulted collection latency

L
i

is smaller than the latency constraint at V
i

, LC
i

. Specifically, in each iteration of the

for-loop, procedure DoSpeedReduction is called over any immediate children of V
i

, except
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the one resided on ⇢max. The procedure DoSpeedReduction given in Algorithm 4 executes in

recursive fashion. In this way, lines (2-7) will ultimately visit every node in the tree exactly

once, in a top-down fashion.

Algorithm 3 SpeedReduction

1: Identify ⇢max in the tree.
2: for any node V

i

on ⇢max, from BS down to the leaf node on ⇢max do
3: LC

i

= ⇡ �H
i

4: for any child V
j

of V
i

do

5: If V
j

62 ⇢max then DoSpeedReduction(LC
i

, V
j

);
6: end for
7: end for

Algorithm 4 DoSpeedReduction

1: Input: LC
i

, V
j

2: (f̃ , d̃) = argmin{Ec(f, d)|L
j

+ l
j

(f, d)  LC
i

}
3: Assign (f̃ , d̃) to V

j

4: Set LC
j

= LC
i

� l
j

(f̃ , d̃) = ⇡ �H
i

� l
j

(f̃ , d̃)
5: for any child V

k

of V
j

do

6: DoSpeedReduction(LC
j

, V
k

);
7: end for

Now I specify Algorithm 4, DoSpeedReduction. DoSpeedReduction has two inputs, the

node V
j

whose speed is to be reduced, and the collection latency constraint of its parent,

LC
i

. DoSpeedReduction reduces speed for V
j

, while fixing the speeds of V
j

’s children. That

is, l
j

(f, d) is to be increased, while L
j

remains fixed. Specifically lines (2-3) reduce the speed

configuration of any node V
j

to a level (f̃ , d̃) that yields the minimum energy consumption

Ec(f̃ , d̃) (Eq. 3.4), among any (f, d)s that give L
j

+ l
j

(f, d)  LC
i

. This will yield the

maximum energy level increment at these nodes. The reduction of speed to (f̃ , d̃) will yield

a new latency at V
j

, l
j

(f̃ , d̃).

After the speed reduction at V
j

, lines (5-7) continue reducing the speeds of V
j

’s children

V
k

s, where the latency constraint LC
j

at V
j

is set to ⇡ � H
i

� l
j

(f̃ , d̃) in line 4. As

procedure DoSpeedReduction executes recursively until the leaf nodes are reached, it visits

every descendent node of V
i

, and reduces their speeds.

DoSpeedReduction has the desirable property of reducing the speed of nodes it visits
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earlier in the procedure. This is desirable because in any tree-structured network, high level

nodes, nodes which will be visited earlier by the procedure, have more descendant nodes

than the low level nodes, and hence are more critical to the system in terms of network

connectivity. Therefore, one need to obtain more energy for these nodes in order to prevent

them from energy depletion and consequently network partition and service interruption.

Complexity analysis: As mentioned earlier in this subsection, SpeedReduction and

the recursive procedure DoSpeedReduction visit every node in the network exactly once.

For each node visited, DoSpeedReduction finds the speed configuration (f̃ , d̃) according to

line 2 of DoSpeedReduction which has time cost of O(mn) given mn speed configurations.

Therefore, given N nodes in the network, the total complexity of SpeedReduction is O(mnN).

5.3.3 Distributed Version

Next I describe the distributed HASS solution called DHASS. The purposes of the dis-

tributed version is to enable any node in the network to act as the base station, thereby

enabling that node to make command and control decisions.

The algorithm DHASS also proceeds in binary-search fashion. It requires one initial-

ization round during which each sensor node sends an initialization message containing

two pieces of information, its estimated lowest and highest energy levels at the end of the

epoch, denoted as �low and �high. After the initialization round, all the nodes agree on the

global lowest and highest achievable energy levels (within the entire tree). The continuous

range between the two energy levels is the starting binary search space. It then runs for Y

computation rounds, each of which corresponds to one iteration of binary search, and solves

one instance of problem FS using the distributed Is-Feasible. In each computation round,

the midpoint of the search space is used as the input energy level to Is-Feasible. Given that

input, each node calls function find fastest individually to derive its fastest speed configura-

tion and associated per-node latency. It then computes the accumulative latency at it, i.e.

L
i

+ l
i

and sends to its parent as a latency message. The parent computes its accumulative

latency as well based on the received latency messages from its children. By making all
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the nodes compute and report their latencies accumulatively, the latency of the entire tree

L
tot

will be ultimately computed at the root. The root then compares L
tot

to ⇡ in order

to determine the answer to problem FS, and disseminates it to all the nodes as a decision

message. Note that any node in the network can be the root.

In the initialization round, each node estimates its local �low, �high, then forwards to its

parent as an initialization message. �
low

is calculated using Eq. 3.4 and 5.4 while assuming

use of the highest speed configuration. �
high

is also calculated using these two equations

but assuming the lowest speed configuration. A node receives initialization messages from

its children, and compares �low, �high received to its own values, in order to derive �low and

�high among its children and itself. The derived �low, �high are sent to its parent as well.

When the root receives initialization messages from all its children, it derives the global �low

and �high which actually equals to the minimum and maximum elements in EL, Min(EL),

Max(EL). Then the root disseminates the global �low and �high to all the nodes for the use

in the first computation round. Their values will be updated in each computation round

according to a rule given in the following paragraphs. The initialization round ends when

all the nodes have received the global �low and �high values.

The procedure of the distributed Is-Feasible is di↵erent for non-root and root nodes.

Algorithm 5 presents the non-root node case, while Algorithm 6 presents the root node

case. Both proceed iteratively for Y computation rounds. Y is tunable parameter defined

by system designers. Each computation round starts by requiring the leaf nodes to send

latency messages upwards over the tree. These latency messages will then trigger the

computation procedure on the non-leaf nodes.

Lines 3-26 in Algorithm 5 specify the procedure of the distributed Is-Feasible in one

computation round at the non-root nodes. Line 26 starts a new computation round by

directing the execution to line 3. Algorithm 5 has two inputs �low and �high which have

been derived in the initialization round, and outputs the optimal speed configuration and

the maximum �
min

found, i.e. MAX �
min

. It also uses a variable round to keep track of

the current computation round. round is initialized to 0.
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Algorithm 5 Procedure of Distributed Is-Feasible at a non-root node Vi

1: Input: �low, �high

Output: (F opt[i], Dopt[i]), MAX �
min

2: Initialization: round = 0
3: round = round+ 1
4: if V

i

is a non-leaf node then
5: Wait to receive L

j

+ lmin

j

from every child V
j

6: end if
7: Compute L

i

= Max.{L
j

+ lmin

j

|V
j

2 Children(V
i

)}
8: Compute X = �low+�high

2

9: (⇤, ⇤, lmin

i

) = find fastest(X,V
i

)

10: Send L
i

+ lmin

i

to Parent(V
i

)
11: Wait to receive decision message (containing ans) from the root
12: if ans == TRUE then
13: �low = X
14: else
15: �high = X
16: end if
17: if round == Y then
18: if ans == TRUE then
19: MAX �

min

= X
20: else
21: MAX �

min

= �low

22: end if
23: (F opt, Dopt, ⇤) = find fastest(MAX �

min

, V
i

)
24: Return
25: end if
26: Goto line 3

Algorithm 6 Procedure of Distributed Is-Feasible at the root

1: Wait until L
j

+ lmin

j

has been received from all children

2: L
tot

= Max.{L
j

+ lmin

j

|V
j

2 Children(Root)}
3: if Ltot  ⇡ then
4: ans = TRUE
5: else
6: ans = FALSE
7: end if
8: Disseminate ans across the tree
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Algorithm 5 can be explained as follows: Line 3 sets the current computation round. If

node V
i

is a non-leaf node, then before it starts computation, it must wait to receive latency

messages from each of its children V
j

(line 4-6). A latency message contains L
j

+ lmin

j

computed by its child V
j

. Using the received L
j

+ lmin

j

, V
i

computes its collection latency

L
i

using Eq. 5.1 in line 7. If V
i

is a leaf node which has no child, then it has L
i

= 0

and does not wait for latency messages. Next in line 9, V
i

derives the smallest per-node

latency lmin

i

while satisfying �
i

� X, by calling function find fastest specified in 5.10-5.13.

X = �low+�high

2 is the input energy level in the current computation round (line 8). Then

V
i

adds up lmin

i

to L
i

, sends to its parent (line 10), and waits to receive decision message

to be disseminated from the root (line 11).

In Algorithm 6, the specification of the root-side procedure of distributed Is-Feasible. As

each node V
i

receives L
j

+ lmin

j

from its children, it computes and sends its own L
i

+ lmin

i

,

the root will compute the total collection latency L
tot

after receiving L
j

+ lmin

j

from all

its children (line 1-2). In line 3-7, the root compares L
tot

to the latency constraint ⇡. If

L
tot

 ⇡, the root sets the answer to the associated problem FS in the current round, i.e.

ans as TRUE; otherwise it sets ans to FALSE. Finally, the root disseminates ans across

the tree (line 8).

Returning to Algorithm 5, when V
i

receives the decision message from the root (line 11),

it updates the binary search range (represented by �low and �high) for the next computation

round. This is based on the answer ans enclosed in the decision message. If ans == TRUE,

V
i

sets �low to X which directs the binary search to the higher half of the current search

range, otherwise it sets �high = X which directs the search to the lower half (line 12-16).

Then V
i

starts a new computation round by directing the execution to line 3. Finally, if

the current computation round is the Y th round (line 17), then V
i

determines MAX �
min

as follow:

• If ans == TRUE, MAX �
min

is set to be the X in the Y th round (line (18-19)).
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• Otherwise, MAX �
min

is set to be the �low in the Y th round (line (20-22)).

Using the derived MAX �
min

, V
i

calls function find fastest to determine the optimal speed

configuration (F opt[i], Dopt[i]) (line 23), and terminates (line 24).

I now present Theorem 2, showing that the performance of DHASS is very close to

optimal.

Theorem 2. The maximum �
min

found by algorithm DHASS is smaller than the optimal

value, by at most (Max(EL)�Min(EL))/2Y�1.

The proof of Theorem 2 can be found in the Appendix. As seen from Theorem 2, using

a larger Y for DHASS achieves closer performance to the optimal, however this comes at

cost of higher complexity shown as follow.

Complexity analysis: In a computation round, the major time cost of a node comes

from function find fastest which equals O(mn). Given Y computation rounds, the total

cost is O(mnY ). The root compares L
tot

to ⇡ in each computation rounds, this causes a

time cost of O(Y ). In the initialization round, each node sends exactly one initialization

message. In any computation round, each node sends exactly one latency message. The

optimal speed configurations are computed on each node individually, hence there is no

dissemination cost.

5.4 Performance Evaluation

I performed a series of simulations to evaluate the e↵ectiveness of my HASS approaches.

Specifically, the goal of the evaluation is to determine how well both the CHASS and DHASS

algorithm maximize the minimum energy level across the system. I considered two WSN

application types: aggregating and non-aggregating application. The evaluation examined

a number of workload scenarios, including several emergency scenarios where there are

sudden, unexpected peaks in the demand.
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5.4.1 Experimental methodology

Without loss of generality I evaluated my approaches within a WSN system designed for

residential monitoring of water usage and quality. My approach can also be applied to WSN

systems that utilizing di↵erent energy sources, such as solar or wind energy. Each customer

(residence) is coupled to a supply pipe through a water meter. The purpose of the water

meter may be to measure the amount of water used by each customer, monitor the water

quality, and alike. Future water meters will be used to provide customers and companies

instantaneous pricing information, measurements of water quality, detecting the presence

of containments, and alike. My simulation environment assumes that each water meter is

coupled with a DVS-DMS enabled node. Energy is harvested from the flow of water. The

amount of harvested energy is therefore dependent upon the rate at which the customer

uses water. To my best knowledge, my work is the first to simulate energy harvesting WSN

systems utilizing water energy source.

I have developed simulation software upon TOSSIM: the standard high-fidelity WSN

simulator, combined with EPANET [70], a public domain, water distribution system mod-

eling program developed by the US Environmental Protection Agency’s Water Supply and

Water Resources Division. My simulator can take as input a variety of WSN topologies,

water distribution system configurations and customer usage patterns. Based on water uti-

lization and water quality patterns, the software simulates energy harvesting, and various

WSN processing and communication activities. The presented results are based upon a

100 node residential water distribution topology. The topology is derived from an existing

suburban area of 100 houses with nodes spaced approximately 50 to 75 ft. apart. The 100

nodes installed in the houses then form a WSN system. I use the Collection Tree Protocol

[71] to organize the nodes into a data collection tree.

Due to the repetitive water usage pattern with a cycle of 6 hours as supported by

EPANET, I fix the harvesting horizon at H = 6 hours. A horizon is then divided into

24 epochs with equal length S = 15 minutes. I run EPANET for 48 hours, containing

8 horizons or equivalently 192 epochs, and obtained hydraulic simulation reports. Using
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Figure 5.1: Water energy harvesting profile

these reports I generate water energy harvesting profile for each node based on the observed

water usage at the customer. Note that the di↵erence in the amount of water used across

residences will lead to quite di↵erent power harvesting profiles across nodes. Fig. 5.1 shows

the harvesting profile of one selected node. I assume concurrent energy harvesting model

for all the experiments below. The frame period is set to ⇡ = 240ms, and therefore each

epoch contains 3750 frames.

Both algorithm CHASS and DHASS were implemented in my simulation environment.

Although there are no schemes that are directly comparable to my algorithms, I imple-

mented a baseline scheme called No-Power-Management (NPM ). Unlike the HASS ap-

proaches, NPM scheme is harvesting-unaware in the sense that it uses the highest fre-

quency and modulation level on all the nodes in order to guarantee data collection tim-

ing constraint. My experiments considered two basic application types: applications that

support complete-aggregation and applications that do not require any aggregation (non-

aggregation). By complete-aggregation, I mean that each node aggregates multiple packets

received into one single packet, while in the non-aggregation case a sensor node forwards

all packets to its parent without aggregation. The packet size is randomly selected between

M=[64, 128] bytes following uniform distribution, and the computational workload is ran-

domly selected between C=[0, 3000000] cycles. These two scenarios produce highly di↵erent

levels of workload and network tra�c.

I assume almost the same hardware platform as specified in 4.4, including a DVS-capable
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CPU, a DMS-capable radio, a light sensor, except that I model a water energy harvester

instead of solar panel. Also, due to relatively narrower range of energy level variation in

water-powered WSN systems, I reduce the battery capacity from 4000 joules to 1000 joules,

and each node has a starting energy level of 600 joules. Nodes operate in either normal or

emergency mode. I represent the emergency mode by increasing the frame-based workload

by w times upon the normal mode, where w is a tunable parameter. This reflects the fact

that nodes will need to perform additional duties during those times. I simulate emergency

scenarios by introducing contaminants into the system at random time. This can be done

by deteriorating the water quality at the water reservoir or certain residences in EPANET

(such as a biological attack on a water supply). As the contaminant spreads out, the water

quality in the residences will decrease and finally been detected by sensor nodes. A sensor

node then switches to emergency mode and perform additional workloads over a series of

epochs, until the water quality returns to normal.

I consider three di↵erent types of emergency scenarios which a↵ecting the system in

di↵erent patterns. The first type is random (RAND) attack. In this case, nodes fail accord-

ing to a negative exponential distribution, and are picked according to a random uniform

distribution from among all the nodes still operating in normal mode. This represents an

event that suddenly impacts the system, such as a power blackout, industrial catastrophe,

etc. The second mode is a spreading attack (SPRD). This represents an emergency that

increases its area of impact over time. I introduce contaminant into the system from one

randomly selected contamination source node. The contaminant spreads out of the system

with the flow of water, and lasts a few epochs until water valves are shut o↵ to stop further

spreading. One example is a terrorist attack on a water supply, where a contaminate is

introduced via a reservoir, and is spread throughout the system. The third mode is area

instant (INST) attack. Under this scenario a large contiguous area of the network is af-

fected. I prevent spreading of contaminant by shutting o↵ the water valves. I simulated

one emergency in each horizon, while an emergency started in one horizon may continue to

a↵ect multiple successive horizons.
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Figure 5.2: Min. energy level, non-aggregation: Normal mode

5.4.2 Results

In CHASS scheme, the set EL contains 2400 elements, given 6 CPU frequencies, 4 modula-

tion levels, and 100 nodes. In DHASS scheme, we set the number of search iterations to be

log(|EL|) ⇡ 11. In the NPM scheme, I fix both the frequency and modulation level at the

maximum across all epochs. I evaluated the performance of my algorithms under normal

and all three emergency modes. Each scenario was tested using complete aggregation and

no aggregation. I assume the emergency workloads of computation and communication are

w times the normal workloads. I first fix w at 2.0, and compare di↵erent schemes in term

of the achieved �
min

. Then, I gradually increase w from 1.5 to 3.0 (with step size of 0.5)

to evaluate the resilience of our schemes against various intensity levels of emergency.
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Figure 5.3: Min. energy level, non-aggregation: RAND mode
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Figure 5.4: Min. energy level, non-aggregation: SPRD mode
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Non-aggregating applications

In Fig. 5.2-5.4, I compare di↵erent schemes in terms of the achieved �
min

, while assuming

non-aggregating applications. I fix the emergency level w at 3.0, meaning that the emer-

gency workload is three times the normal workload. In normal mode (Fig. 5.2), the �
min

value can be seen to vary semi-repetitively. It stays close to full capacity at most time,

however drops down twice in every horizon (24 epochs). This is because the workload and

energy demand in normal mode is relatively low, such that the energy level is dominantly

a↵ected by the amount of harvested water energy which varies in repetitive pattern. How-

ever in Fig. 5.3-5.4, the significantly increased workload demand (in RAND and SPRD

emergency modes) turns to have a dominant e↵ect on energy level, therefore one emergency

in each horizon leads to one drop of �
min

in each horizon. This observation demonstrates

the e↵ects of harvested energy and workload demand over energy level when operating in

di↵erent work modes.

As seen from all above figures, in the normal and emergency modes, the CHASS scheme

achieves the highest �
min

, followed by DHASS with slightly lower �
min

, and then NPM.

In normal mode (Fig. 5.2), NPM scheme also achieves a high �
min

. This is because the

harvested energy is much larger than energy demand in normal mode. As workload demand

increases in emergency modes (Fig. 5.3-5.4), the performance of NPM drops drastically;

its achieved �
min

drops to zero around the 58th epoch for all three emergency modes. This

implies that at least one node in the network fails to maintain non-empty energy storage

and is forced to stop operation. The failure of these nodes will cause service interruption

to the entire data collection application during the rest of the epochs. Such lasting service

interruption is clearly unacceptable for mission-critical applications. In comparison both

HASS approaches achieve much higher �
min

than NPM (Fig. 5.3-5.4). This is because

the HASS method allows energy-rich nodes run at faster speeds and therefore permits to

allow the harvesting-poor nodes to slow down. The reduced speeds allow the weak nodes

to maintain higher energy storage level, hence enhance the system’s capacity to deal with

emergencies.
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Notice that DHASS achieves a �
min

level very close to that of CHASS. In normal mode

(Fig. 5.2), the achieved �
min

of CHASS and DHASS almost overlap. In emergency modes,

the performance di↵erence between them increases slightly due to the increased influence of

workload demands over energy level. This observation indicates that DHASS scheme can

achieve near-optimal performance when it runs enough number of binary search iterations,

as claimed in Theorem 2.

Table 5.1: Percentage of interrupted nodes: NPM, Non-aggregation

w 1 1.5 2.0 2.5 3.0
RAND 0% 0% 27.2% 31.6% 33.4%
SPRD 0% 0% 38.7% 41.6% 43.2%
INST 0% 0% 32.8% 53.9% 55.2%

I then conducted a stress test over the system while using di↵erent schemes. I raise

the intensity of emergency by increasing the value of w from 1.5 to 3.0 with an increment

of 0.5. The aim of this stress test is to evaluate the resilience of di↵erent schemes to

various emergency intensities. I measure the system resilience to emergency in terms of the

percentage of nodes that are interrupted by energy depletion. Note that if a node runs out

of energy, all its descendent nodes would lose contact with BS, hence are also interrupted.

The smaller the percentage of interrupted nodes under the same emergency intensity, the

higher resilience supported by a scheme compared to others.

Table 5.1 gives the percentage of interrupted nodes in all three emergency modes under

various emergency intensities, using NPM scheme. As seen from Table 5.1, as emergency

intensity increases, the percentage of interrupted nodes increases noticeably in all modes

when using NPM, implying the low resilience of the harvesting-unaware NPM scheme to

emergency situations. I then found that though there are very limited number of nodes

who ran out of energy in the network, large amount of nodes are also interrupted. This is

because the depleted nodes are mostly close to BS which have large group of descendent
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Figure 5.5: Min. energy level, complete aggregation: Normal mode

nodes and thereby high workload demands. The depletion of these nodes interrupts all

their descendent nodes. While using CHASS and DHASS, the same increase in emergency

intensity interrupts no node at all in the network. The results of the stress test demonstrates

the benefit of my harvesting-aware approaches in mitigating the impact of emergencies over

the system.

Aggregating applications

For aggregating applications, I repeat the same set of experiments conducted for non-

aggregating applications. In Fig. 5.5-5.7, I also fix the emergency intensity at w = 3.0 and

plotted the �
min

achieved by using di↵erent schemes. In all the modes, CHASS and DHASS

schemes again achieve much higher �
min

than NPM. DHASS performance is very close to

the CHASS scheme. As seen from all figures, the �
min

achieved by the HASS approaches

never drops to zero, while the achieved �
min

by NPM schemes drops to zero many times.

I then repeat the stress test. No nodes are interrupted when HASS scheme is used, while
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Figure 5.7: Min. energy level, complete aggregation: INST mode
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large percentage of nodes are interrupted when emergency intensity increase to w = 3.0 for

the INST and SPRD modes.

Table 5.2: Percentage of interrupted nodes using NPM - aggregation

w 1 1.5 2.0 2.5 3.0
RAND 0% 0% 0% 0% 26.9%
SPRD 0% 0% 0% 0% 49.1%
INST 0% 0% 0% 0% 47.5%

Next I present in Fig. 5.8 the achieved �
min

using CHASS scheme for networks of

di↵erent sizes (with 36, 64 and 100 nodes). As seen from the figure, the 36-nodes network

has the highest �
min

, followed by 64-nodes and 100-nodes networks. Although the di↵erence

of �
min

among di↵erent networks is small, I observe that the smaller the network, the higher

the value of �
min

. This is because given the fixed end to end latency constraint (240 ms),

nodes in large networks have more hops in a path to BS, thus the intermediate nodes have

less time slack for processing and communication, thereby must use high computation and

communication speeds.

In Fig. 5.9, I assume inaccurate prediction of harvested energy and workloads, and

plot �
min

values for SPRD attack, at emergency level w = 3.0 for aggregating applications.

That is, the actual amount of energy harvested is up to 25% higher or lower than the

harvesting prediction. Also, the actual computation and communication workloads, C and

M are 25% lower than the workload prediction, as both C and M are the worst-case

workloads and tasks may complete earlier. As seen from the figures, the HASS approaches

still outperforms NPM under assumption of probabilistic energy harvesting and workloads,

however the performance di↵erence decreases as compared to Fig. 5.6 which share the same

experiment setting but with accurate harvesting and workload predictions. This is because

due to prediction inaccuracy the HASS schemes outputs sub-optimal speed assignment,
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while NPM scheme is not a↵ected by prediction inaccuracy as it always uses the maximum

speed configuration.

I calculated the communication overhead of DHASS. In the experiments, DHASS re-

quires each node to send 1 initialization message, and 11 latency messages for the 11 com-

putation rounds. Since DHASS needs to run only once in each epoch, each node sends in

total 12 control messages in an epoch. Given a frame period ⇡ = 240 ms, and epoch length

S = 15 minutes, each node executes 3750 frames and sends 3750 data messages. Therefore I

derive the communication overhead to be 12/(3750+12) ⇡ 0.32%. This implies that HASS

approaches have also the benefit of high e�ciency.

Finally I derived that the CHASS algorithm outperforms the baseline algorithm NPM

with close to 100% confidence. The computation and communication workloads in one frame

are selected randomly (following uniform distribution) from the range C = (0 � 3000000)

cpu cycles and M = (64 � 128) bytes respectively. The simulation is repeated 100 times.

I collected the value of �
min

achieved by both algorithms at the end of an epoch over all

100 simulation runs. I take the di↵erence of the values of �
min

by CHASS and NPM for
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each simulation run, and computed the confidence intervals of these �
min

di↵erences with

di↵erent confidence levels. Since I repeated the experiment for 100 times, I used z-value

for computing the confidence intervals [74]. I then found that zero is never included in the

computed confidence interval even with close to 100% confidence level. This implies the

CHASS algorithm outperforms NPM with close to 100% confidence [74].

The reason which the CHASS algorithm outperforms NPM with high confidence is that

CHASS is formally proved to be optimal in term of maximization of �
min

, and that the

calculation of �
min

and collection latency is based on Eq. 5.5 and Eq. 5.2 respectively

(TOSSIM does not support DVS and DMS, and does not provide ways for computing these

values). Therefore the achieved �
min

by the baseline algorithm NPM cannot be higher

than that is achieved by CHASS with any input values of computational or communication

workloads.
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Chapter 6: Maximal-Utility Rate Allocation

Chapter 4 and 5 target maximizing energy storage level of sensor nodes using DVS and DMS

techniques while ensuring application performance requirements. This chapter targets max-

imizing the utility of WSN applications by assigning data collection rates to sensor nodes,

given limited energy harvesting availability and minimum application performance require-

ment. It shares the same energy harvesting model, network topology and data collection

paradigm to the work proposed in Chapter 4 and 5. However we do not use DVS and DMS

to manage energy consumption. Rather we assume energy consumption is fixed for each in-

vocation of sensing-processing-communication task while epoch-based energy consumption

can be controlled by varying the invocation rate of tasks.

6.1 Network and application model

I consider general WSN applications that periodically collect data from N sensor nodes

populated over the target environment. The nodes are organized into a data collection tree

using any tree construction protocol, such as the Collection Tree Protocol (CTP) [71]. A

sensor node is denoted as V
i

, and the base station is denoted as BS. Within a tree-based

routing structure, at any time each node V
i

is connected to BS by a single path ⇢
i

consisting

of zero or more intermediate nodes. I use the notation V
i

2 ⇢
j

to indicate that V
i

resides

on a given path ⇢
j

.

A node V
i

senses the environment and sends the resulting data in packets towards BS

along the path ⇢
i

, at rate r
i

. These packets are referred as internal packets. Each node

V
i

may also forward external packets at a certain rate. These are received from the set of

descendant nodes {V
j

}, where V
i

resides on V
j

’s path to BS, i.e. V
i

2 ⇢
j

. Therefore the

total outbound tra�c at V
i

equals r
i

+
P

j:V
i

2⇢
j

r
j

. I refer to r
i

as V
i

’s internal packet rate,
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and
P

j:V
i

2⇢
j

r
j

as its external packet rate.

Sensor nodes produce utility by sensing and reporting data to BS. Therefore I define the

utility accrued by any node V
i

as a function of its packet rate r
i

, U(r
i

). U is a positive, non-

decreasing and concave function. Then I define the aggregate utility U tot accrued jointly

by all N nodes in the network as:

U tot =
NX

i=1

U(r
i

) (6.1)

Now I define the energy consumption model which is di↵erent to that is defined earlier

in 3.1 which assumes DVS and DMS capabilities. My energy model assumes, without

loss of generality, that sensing and processing energy costs are fixed, relatively negligible

and can be ignored. I therefore consider the radio transceiver as the main consumer for

energy consumption. Packet routing results in two types of energy consuming activities,

packet transmission and reception. I denote the energy spent on transmitting an internal

or external packet as etx, where etx can be measured in advance. Packet reception also

consumes energy. My architecture assumes that reception energy is controlled by the MAC

layer, using techniques such as TDMA or duty-cycled LPL approaches such as B-MAC [11].

Therefore I model per-epoch reception energy as a constant Erx which is dependent on the

epoch length. I can calculate, at each node V
i

, the total energy consumed Ec

i

by handling

internal and external packets in an epoch of length S as:

Ec

i

= etx · (r
i

+
X

j:V
i

2⇢
j

r
j

) · S + Erx (6.2)

I also assume that each node V
i

has a pre-assigned per-epoch energy budget B
i

. Such

energy budgets can be produced by algorithms such as [51,55,57], based on the predictions of

harvested energy for any of the epochs in the horizon. Further, related work such as [16,21]

require that a sensor node can consume no more than the amount of energy harvested in
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any epoch. For these models a node’s allocated energy budget in any epoch is set to the

amount of energy it can harvest. Any of these energy budgeting algorithms guarantees the

energy-neutral operation across all epochs.

6.2 The Maximal Utility Rate Allocation Problem

In this section, I define my rate allocation problem for energy harvesting WSN systems.

My objective is to maximize the network utility U tot (Eq. (6.1)), given the limited energy

harvesting ability of nodes. I achieve this goal by adjusting packet rate r
i

. Since the

harvested power changes from epoch to epoch, the rates of nodes need to be re-adjusted in

every epoch. I formulate this objective as an optimization problem called Network Utility

Maximization with Energy Harvesting (NUM-EH ) as:

Max U tot (6.3)

s.t. 8V
i

,

Ec

i

 B
i

(6.4)

r
i

� rmin (6.5)

r
i

+
X

j:V
i

2⇢
j

r
j

 Rcap

i

(6.6)

The optimal solution to the above problem consists of the rates for all N nodes, i.e.

{r1, . . . , rN} that maximizes U tot. The constraint (6.4) enforces that the energy consump-

tion Ec

i

of any node V
i

must be smaller than the assigned energy budget B
i

in an epoch.

The constraint (6.5) enforces that the rate of any node must be higher than the minimum

required value rmin, in order to maintain the basic service level at individual nodes. Fi-

nally, to avoid packet congestion the total packet rate at any V
i

, i.e. r
i

+
P

j:V
i

2⇢
j

r
j

must

be smaller than V
i

’s packet forwarding capacity denoted by Rcap

i

.
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I observe that NUM-EH is a concave maximization problem with three linear con-

straints. This is seen from Eq. (6.2), where Ec

i

is a linear function of r
i

and the set of

external rates {r
j

}. I notice that this problem is a special case of the well-known net-

work utilization maximization problem [21, 58, 59] which can be solved using primal-dual

based algorithms. However, such algorithms are typically too computationally expensive

for resource-constrained sensor nodes. I instead propose a polynomial-time algorithm to

solve the problem optimally and cost-e↵ectively.

6.3 Rate Allocation Algorithm

In this section, I propose the algorithm MAX-UTILITY that optimally solves problem

NUM-EH. MAX-UTILITY is applicable to arbitrary utility functions that are concave and

non-decreasing. I first propose a centralized version of this algorithm that can be run on a

base station. I then show how to implement MAX-UTILITY in a fully distributed fashion

so resource-constrained sensor nodes can collaboratively produce optimal rate assignments.

First, I show that the constraint (6.4) and (6.6) can be combined into one single con-

straint as follows. Substituting the equality (6.2) into constraint (6.4) gives:

Ec

i

= etx · (r
i

+
X

j:V
i

2⇢
j

r
j

) · S + Erx  B
i

(6.7)

yielding:

r
i

+
X

j:V
i

2⇢
j

r
j

 B
i

� Erx

etx · S (6.8)

The right-hand side of the above inequality, B

i

�E

rx

e

tx·S , is a constant as B
i

, Erx, etx and

S are all known constants. This can be combined with constraint (6.6) into one single
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constraint, r
i

+
P

j:V
i

2⇢
j

r
j

 CAPACITY
i

where:

CAPACITY
i

= Min

⇢
Rcap

i

,
B

i

� Erx

etx · S

�
(6.9)

I refer to CAPACITY
i

as the rate capacity of node V
i

. I can re-write problem NUM-EH

concisely as:

Max U tot =
NX

i=1

U(r
i

)

s.t. 8V
i

, r
i

� rmin (6.10)

8V
i

, r
i

+
X

j:V
i

2⇢
j

r
j

 CAPACITY
i

(6.11)

I refer to constraint (6.10) as the min-rate constraint, and constraint (6.11) as the capacity

constraint.

6.3.1 The centralized version

Now I present the centralized version of algorithm MAX-UTILITY. Before the algorithm

starts, the BS collects two pieces of information from each node. The first is the rate

capacity CAPACITY
i

, computed locally by each node using Eq. (6.9). The second is

the node id of parent of each node, and the BS uses the parenthood relation of nodes to

derive the structure of the existing data collection tree. MAX-UTILITY allocates rates as

evenly as possible to nodes, while also satisfying constraints (6.10-6.11). Given an arbitrary

concave, non-decreasing functions U , this will maximize network utility U tot. This property

is formally given later in Proposition 1. MAX-UTILITY runs in multiple iterations, and

assigns rates to a subset of nodes in each iteration. The iteration ends when rates are

assigned to all N nodes.

The algorithm has two lists of inputs and one output. The first input list contains N
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rate capacities CAPACITY
i

, one for each node V
i

. The second list contains N vectors, one

for each V
i

. Denote the subtree rooted at node V
i

by ⌧
i

. The vector of each V
i

contains

all the nodes in the subtree ⌧
i

rooted at V
i

. This vector is derived based on the previously

discovered tree structure. For notational simplicity I re-use ⌧
i

to represent this vector. The

output is the rate assignment vector derived by MAX-UTILITY, denoted by R̃[].

MAX-UTILITY uses one global variable and three per-node variables that are updated

from iteration to iteration. The global variable ASSIGNED SET is a set containing all

the nodes in the network that have been assigned rates so far. As will be seen later, in each

iteration MAX-UTILITY adds at least one node to ASSIGNED SET . The algorithm

terminates when all N nodes are in ASSIGNED SET . Next I declare three per-node

variables. First, CAP [i] is the remaining capacity of node V
i

, initialized to CAPACITY
i

.

Second, unassigned[i] is a subset of ⌧
i

containing any nodes in ⌧
i

that have not yet been

assigned rates. unassigned[i] includes V
i

itself, and is initialized to ⌧
i

. Finally, r
c

[i] is the

maximum common rate for nodes in unassigned[i]. Table 6.1 summarizes these notations.

This construction is illustrated in Fig. 6.1. In the 1st iteration, when none of nodes in

subtree ⌧7 rooted at V7 have been assigned, unassigned[7] contains all four nodes in ⌧7,

{V1, V2, V6, V7}. The last variable r
c

[i] is the maximum common rate that can be assigned

to the nodes in unassigned[i]. r
c

[i] is computed by dividing V
i

’s remaining rate capacity

CAP [i] by |unassigned[i]| which is the number of nodes in unassigned[i], i.e. r
c

[i] =

CAP [i]
|unassigned[i]| . For example, in the 1st iteration, r

c

[7] = CAPACITY7
|unassigned[7]| =

16
4 = 4.

MAX-UTILITY, shown in Algorithm 7, is specified as follows. Line 2 initializes

ASSIGNED SET to ;, CAP [i] to CAPACITY
i

, and unassigned[i] to ⌧
i

. In lines 3-5, for

any node V
i

I check whether it has su�cient capacity to sustain the minimum required rate

rmin for all the nodes in its subtree ⌧
i

. If there exists a node with insu�cient capacity, then

there is no feasible rate assignment that can satisfy the min-rate constraint and capacity

constraint (at V
i

) at the same time. At this point MAX-UTILITY terminates immediately

with empty R̃[]. Line 6 starts the rate assignment loop which will terminate when all N
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Algorithm 8 Algorithm MAX-UTILITY

1: - Input: {CAPACITY
i

} and {⌧
i

}; Output: R̃[]
2: - Initialization: ASSIGNED SET = ;,

8V
i

, CAP [i] = CAPACITY
i

, unassigned[i] = ⌧
i

3: for each node V
i

in the network do
4: If CAP [i] < rmin · |unassigned[i]|, then return ;
5: end for
6: while |ASSIGNED SET | < N do
7: for any node V

i

62 ASSIGNED SET do
8: r

c

[i] = CAP [i]/|unassigned[i]|
9: end for

10: Find out V
u

which has the least r
c

[i] among any V
i

62 ASSIGNED SET
11: for any node V

i

2 unassigned[u] do

12: Set R̃[i] = r
c

[u], and add V
i

to ASSIGNED SET
13: end for
14: for any node V

i

62 ASSIGNED SET do
15: if V

u

2 unassigned[i], i.e. V
i

is V
u

’s ancestor then
16: CAP [i] = CAP [i]� r

c

[u] · |unassigned[u]|
17: end if
18: if V

u

2 unassigned[i] then
19: for any node V

j

2 unassigned[u] do
20: Remove V

j

from unassigned[i].
21: end for
22: end if
23: end for
24: end while
25: return R̃[].
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nodes are assigned. In lines 7-9, for any node V
i

62 ASSIGNED SET , I compute the max-

imum common rate r
c

[i] that can be assigned to the nodes in unassigned[i] (line 8). In line

10, I find the node V
u

which has the least r
c

[i] among any V
i

62 ASSIGNED SET . Then

for any nodes in unassigned[u], MAX-UTILITY assigns r
c

[u] to them and adds them to

ASSIGNED SET (line 11-13).

Table 6.1: List of notations

CAP [i] The remaining rate capacity
of node V

i

unassigned[i] The set of unassigned nodes in
V
i

’s subtree ⌧
i

|unassigned[i]| The size of unassigned[i]
ASSIGNED SET The set of assigned nodes

R̃[] The rate assignment derived
by MAX-UTILITY

r
c

[i] The maximum common rate
for nodes in unassigned[i]

V
u

The node with the least
r
c

[i] among all the unassigned
nodes

Next, lines 14-23 update CAP [i], and unassigned[i] for any nodes without an assigned

rate. Specifically, since any node V
i

where V
u

2 unassigned[i] are ancestors of V
u

and

need to forward packets received from the nodes in unassigned[u], I need to subtract r
c

[u] ·

|unassigned[u]| (i.e. the total tra�c that V
i

received from V
u

) from their CAP [i] values (line

15-17). For any other nodes that are not ancestors of V
u

, their CAP [i] values remain the

same. Moreover, any nodes V
j

2 unassign[u] with newly assigned rates must be removed

from the unassigned[i] sets of any node V
i

that is an ancestors of V
u

, i.e. V
u

2 unassigned[i]

(line 18-22). The rate assignment process from line 7 to 23 continues until all N nodes are

assigned.
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Figure 6.1: Example Data Collection Tree

As can be seen, in each iteration, MAX-UTILITY picks a V
u

which has the least com-

mon rate r
c

[i] among any unassigned node V
i

, and assigns r
c

[u] uniformly to any nodes in

unassigned[u], then produces a pruned tree by removing any newly assigned nodes. I refer

to the node with the least common rate r
c

[i] among any nodes in a tree (or pruned tree)

as the critical node of the tree. Note that in any iteration, the selected V
u

is the critical

node in the tree (pruned tree). The concept of critical node plays an important role in the

optimality proof.

Steps of MAX-UTILITY are illustrated through an example. In Fig. 6.1, before the

1st iteration starts, r
c

[6] = 7
2 = 3.5, r

c

[7] = 16
4 = 4, r

c

[8] = 10
3 , rc[9] =

13
2 = 6.5. Line

10 picks V8 as V
u

, and line 12 assigns R̃[3] = R̃[4] = R̃[8] = 10
3 , and adds V3, V4, V8 to

ASSIGNED SET . Since this assignment does not a↵ect any other nodes, lines 14-23 are

not executed. In the 2nd iteration, V6 is picked as V
u

, so MAX-UTILITY assigns R̃[1] =

R̃[6] = 3.5, and updates CAP [7] = 16 � 7 = 9, and unassigned[7] = {V2, V7}. V1, V6 are

added to ASSIGNED SET . In the 3rd iteration, V7 is picked as V
u

as r
c

[7] = 9/2 = 4.5 <
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r
c

[9] = 6.5. MAX-UTILITY assigns R̃[2] = R̃[7] = 4.5, marks V2, V7 assigned and makes no

update. In the 4th iteration, V9 is picked as V
u

, MAX-UTILITY assigns R̃[5] = R̃[9] = 6.5,

and adds V5, V9 to ASSIGNED SET . Since all the nodes are now in ASSIGNED SET ,

the algorithm terminates and returns R̃[] = {3.5, 4.5, 10/3, 10/3, 6.5, 3.5, 4.5, 10/3, 6.5}.

6.3.2 Optimality of algorithm MAX-UTILITY

In Eq. (6.1), the network utility U tot is defined as the aggregate utility accrued jointly by all

the nodes,
P

N

i=1 U(r
i

). Since U(r
i

) is concave, U tot can be maximized by assigning packet

rates to nodes as evenly as possible, while satisfying the min-rate, and capacity constraints

at any nodes. This observation is supported by the following proposition, which can be

proved based on the properties of concave functions:

Proposition 1. Given n non-negative real numbers

{r1, . . . , rn} where
P

n

i=1 ri  W (W is any non-negative constant),
P

n

i=1 U(r
i

) (U is a

concave, non-decreasing function of r) is maximized when r1 = r2 = . . . = r
n

= W/n.

Now I prove that the rate assignment R̃[] derived by Algorithm MAX-UTILITY maxi-

mizes U tot, while satisfying constraints (6.10-6.11). For the sake of contradiction, I assume

that R̃[] is not optimal, and that there exists an optimal assignment R⇤[] which di↵ers from

R̃[]. The network utility resulting from R⇤[] is denoted by U tot,⇤. I will show that R⇤[] 6= R̃[]

contradicts the optimality of R⇤[], hence proving that R⇤[i] = R̃[i] must hold for every node

V
i

in the network. I first propose Lemma 3, which is proved in the Appendix.

Lemma 3. Given an arbitrary tree-based network, the optimal rate assignment R⇤[] must

assign equal rates to all nodes in unassigned[u], where V
u

is the critical node of the tree.

Lemma 3 implies that R⇤[] must assign a common rate denoted as R⇤[u] to all the nodes

in unassigned[u]. I now present Lemma 4, which shows that R⇤[u] must be equal to r
c

[u],

i.e. the maximum common rate that can be assigned to nodes in unassigned[u].
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Lemma 4. Given an arbitrary tree-based network where V
u

is the critical node in the

tree, the optimal rate assignment R⇤[] must assign a common rate r
c

[u] to any nodes in

unassigned[u], regardless of the rates assigned to other nodes in the tree.

The proof of Lemma 4 can be found in the Appendix. Since 8V
i

2 unassigned[u], R̃[i] =

r
c

[u] holds (line 12), Lemma 4 implies that 8V
i

2 unassigned[u], R⇤[i] = R̃[i] must hold.

In other words R̃[] derived by MAX-UTILITY is optimal for any nodes in unassigned[u],

where V
u

is the critical node. Since assigning R⇤[u] = r
c

[u] to any node V
i

2 unassigned[u]

is optimal regardless of what rates are assigned to the rest of nodes, I can focus on finding the

optimal rate assignment for a partial tree formed by disregarding any nodes in unassigned[u]

(i.e. removing nodes in unassigned[u] from unassigned[i] of any ancestors of V
u

), and

setting CAP [i] = CAP [i] � r
c

[u] · |unassigned[u]| for any node V
i

that is an ancestor of

V
u

. Note that the partial tree generated in this way contains exactly the set of nodes

remaining unassigned at the beginning of the 2nd iteration of MAX-UTILITY. Also each

node in the partial tree must have the same CAP [i] and unassigned[i] as they have in the

2nd iteration of MAX-UTILITY. Since Lemma 4 applies to an arbitrary tree, it holds for

this partial tree as well. In other words, R⇤[] must assign a common rate r
c

[u
0
] to any nodes

V
i

2 unassigned[u
0
], where V

u

0 is the critical node of the partial tree.

Since the structure and capacity of the partial tree is the same as the updated tree in

the 2nd iteration, the critical node V
u

0 must be exactly the V
u

picked by MAX-UTILITY in

the 2nd iteration. Thus MAX-UTILITY must also assign r
c

[u
0
] to any V

i

2 unassigned[u
0
].

Therefore, 8V
i

2 unassigned[u
0
], R̃[i] = r

c

[u
0
] must hold. Since 8V

i

2

unassigned[u
0
], R⇤[i] = r

c

[u
0
] holds as implied by Lemma 4, I have 8V

i

2 unassigned[u
0
],

R̃[i] = R⇤[i] must hold. That is, R̃[] is optimal for any nodes in unassigned[u
0
]. Again, I

may disregard any nodes in unassigned[u
0
] and focus on the new partial tree formed in this

way. The new partial tree has the same structure and capacities as the updated tree in the

3rd iteration of MAX-UTILITY. As iteratively pruning the tree (partial tree) and applying
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Lemma 4 to the generated partial trees until all the nodes are pruned except the root BS,

I have proved that the R̃[] derived by MAX-UTILITY is completely identical to R⇤[], and

therefore R̃ is optimal for the entire original tree.

Complexity analysis:

I show that for N nodes, the centralized MAX-UTILITY runs in O(N3) time. I first

focus on one iteration of the while-loop from lines 6-24. The for-loop from lines 7 to 9 has

complexity O(N), since there are O(N) unassigned nodes in each iteration. The selection

of V
u

in line 10 has complexity O(N) as this is equivalent to finding the minimum element

among O(N) r
c

[i] values. The rate assignment to nodes in unassigned[u] in lines 11-13 has

complexity O(N) as well, since the size of unassigned[u] is O(N). The for-loop from lines 14

to 23 has complexity of O(N2). In each loop, I need to update CAP [i] and unassigned[i]

for O(N) unassigned nodes V
i

. Updating CAP [i] for each V
i

takes O(1) time (line 16),

while updating each unassigned[i] take O(N) time as it requires removal of O(N) nodes

(lines 19-21). Thus, the entire for-loop completes in O(N2) time as there are O(N) nodes

V
i

62 ASSIGNED SET . Therefore, each iteration of MAX-UTILITY completes in O(N2)

time.

Next the number of iterations of MAX-UTILITY is given by O(N), as the set

ASSIGNED SET is initially empty and each iteration adds at least one node to

ASSIGNED SET . Therefore, the total complexity of MAX-UTILITY is O(N3). For prac-

tical purposes I expect that the number of iterations will be small. This is because the nodes

that are close to the root have more descendent nodes, hence much larger unassigned[i]

than the nodes in the lower levels of the tree. Therefore the high level nodes usually have

small r
c

[i] values and are more likely to be picked as V
u

. Since once these nodes are picked

as V
u

, all nodes in their unassigned[i] sets are assigned and added to ASSIGNED SET at

once in one iteration, the set ASSIGNED SET will grow rapidly and the expected num-

ber of iterations of MAX-UTILITY should be small. I will justify this assertion through

simulation analysis.
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6.3.3 The distributed version

I now present the distributed version of MAX-UTILITY, referred as MAX-UTILITY-D. I

decompose and distribute the computations in Algorithm 7 to every node in the network.

The purpose of MAX-UTILITY-D is to support systems that do not possess or make use

of a single resource-rich central control point. MAX-UTILITY-D only requires a single

coordinator node such as a routing tree root. The tree root can be any node in the network.

The root does not perform computations but only disseminates the minimum common rate

r
c

[u] to all other nodes.

MAX-UTILITY-D is specified as follows. Initially, each node individually computes its

rate capacity CAPACITY
i

using Eq. (6.9). Then MAX-UTILITY-D starts an initialization

stage during which all the nodes send an empty control packet to the root. If a node V
i

receives a control packet from another node V
j

, then V
i

knows V
j

resides in its subtree ⌧
i

.

By the end of the initialization stage, each node knows its subtree ⌧
i

, and hence the initial

unassigned[i]. Using CAPACITY
i

and |unassigned[i]|, V
i

computes the common rate r
c

[i]

that can be assigned to nodes in unassigned[i].

Each iteration of MAX-UTILITY-D consists of two stages. The first stage determines

the minimum common rate r
c

[u] and the critical node V
u

in the tree by requiring all the

nodes forward their r
c

[i] values to the root. In the second stage, the root disseminates r
c

[u]

across the network, and all nodes in unassign[u] receive and use r
c

[u] as their packet rate.

In the first stage, each leaf node in the tree V
i

sends its computed r
c

[i] towards the root. V
i

’s

parent V
j

receives r
c

[i], compares r
c

[i] to r
c

[j] of itself, and forwards the larger of the two

upwards. V
j

also temporarily stores any received r
c

[i]. This process proceeds over the entire

tree in bottom-up fashion, and finally the root discovers the minimum common rate r
c

[u] in

the tree. Then in the second stage the root disseminates r
c

[u] across the tree. When a node

receives r
c

[u] from the root, it compares r
c

[u] to its local r
c

to identify whether it is the

critical node. If it is not the critical node, it then compares r
c

[u] to each of the previously

stored r
c

values of its descendent nodes to find out who is the critical node. In this way

75



the critical node V
u

identifies itself, and commands all unassigned nodes in unassigned[u]

to use r
c

[u] as their rates for the coming epoch. This rate assignment command can be

piggybacked in the packet for disseminating r
c

[u].

After the dissemination of r
c

[u] completes, all the nodes has learned the identity of the

critical node V
u

, either by comparing r
c

[u] to its own or stored r
c

values, or from the rate

assignment command issued by V
u

. Finally, I need to update CAP [i] and unassigned[i]

of the nodes remaining unassigned. If a node V
i

is an ancestor of V
u

, it has to update

CAP [i] = CAP [i] � r
c

[u] · |unassigned[u]| and then remove all nodes in unassigned[u]

from unassigned[i]. At the end of the iteration, each node discards the temporarily stored

information and continues to the next iteration. In the next iteration, only the nodes

remaining unassigned participate. The rate assignment iteration continues until all the

nodes are assigned.

Complexity analysis:

In MAX-UTILITY-D, the tree root only disseminates r
c

[u]. Each non-root node requires

O(N) comparisons in each iteration. This is because each non-root node compares its own

r
c

to O(N) r
c

values received from its descendent nodes (the 1st stage), and compares r
c

[u]

disseminated by the root to its own r
c

and O(N) temporarily stored r
c

. Further, updating

CAP [i] and unassigned[i] takes O(N) time for each node as described in the complexity

analysis of centralized MAX-UTILITY.

Now I analyze the message complexity of the algorithm. The initialization stage re-

quires one round of network-wide data collection. In each iteration, the determination of

r
c

[u] requires all the nodes to report their r
c

[i] values, thus incurring another round of

data collection. The root then announces r
c

[u] to all the nodes, incurring one round of

network-wide data dissemination. In each data collection and dissemination round, each

node sends exactly one packet. Given O(N) iterations, MAX-UTILITY-D needs O(N)

rounds of network-wide data collection and dissemination. Finally, as mentioned in the

analysis of the centralized MAX-UTILITY, the expected number of iterations is much lower

than N in practice.
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6.4 Performance Evaluation

Though I have formally proved the optimality of MAX-UTILITY, I have conducted a series

of simulation experiments to evaluate its performance gain and overhead. I compare my

algorithm against an alternative heuristic, called Random Rate Augmentation (RRA). The

specification of RRA is given in the Appendix. By design, the rate assignment derived

by RRA is also feasible in term of satisfying constraint (6.10-6.11). Although RRA is not

optimal, it achieves reasonably high utility values as it maximizes total packet rate (flow)

over the tree. Other algorithms, such as the one proposed in [21] are not directly comparable

to ours, since their application and network model are di↵erent.

I compare the two rate allocation algorithms under various experiment settings that

consider di↵erent energy budgeting schemes, utility functions, and network sizes. Without

loss of generality, I consider solar-powered sensor networks in my simulation. The solar

power harvesting profile is obtained from the Hamburg University of Technology [72]. I set

the length of horizon to one day (24 hours) which is further divided into 96 epochs each with

length of 15 minutes. I assume two energy budgeting schemes, denoted as Strictly Energy

Neutral (SEN) and Maximum Uniform Budget (MUB). The SEN scheme assigns the exact

amount of harvested energy as the energy budget for any epoch. For the evening epochs

with extremely low harvested energy, SEN assigns a minimum energy budget equaling 5J

to maintain the minimum rate rmin. The MUB scheme computes the maximum uniform

energy budget across all 96 epochs while satisfying the min-rate and capacity constraints,

and assigns this budget to every epochs. The MUB scheme uses the algorithm proposed

in [51]. Note that the energy budget varies across epochs if SEN scheme is used, while the

budget remains constant if MUB scheme is used. I am interested in evaluating how di↵erent

budgeting schemes a↵ect the network utility. This helps system designers in choosing the

right energy budgeting scheme for their applications. I consider three di↵erent concave

utility functions: log(100r + 1) (denoted as LOG),
p
100r (SQR) and log[

p
1000r + 1]

(denoted as composite utility or CPST). I use the coe�cients 100 and 1000 with r because
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Figure 6.2: Solar energy harvested throughout a day.

r is commonly small. Finally, I repeat my simulation in six networks of di↵erent size,

containing 25, 36, 64, 100, 169, 225 nodes respectively. I examine the accrued utilities, and

the algorithm overhead as the network grows.

The sensor nodes are organized into a collection tree using the CTP protocol. The energy

consumption for transmitting a packet is randomly selected from the range (0.05 � 0.1)J .

This range is obtained based on the measurements in [73]. The energy storage device has

capacity of 1000J. The initial energy level in the horizon is set to 500J. The minimum rate

rmin is set to 0.01, i.e. 1 packet per 100 seconds.

6.4.1 Simulation results

I evaluated algorithm MAX-UTILITY and RRA in TOSSIM/TinyOS. I present my eval-

uation results along four dimensions: accrued network utility U tot; rate (r
i

) distribution

among nodes; energy level variation across epochs of two selected nodes; algorithm running

time and control overhead. I calculate the energy level �
k

of a node at the end of the kth
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epoch using the formulas below:

�1 = Min.{�init + P h

1 · S � Ec

1,�
max}

�
k

= Min.{�
k�1 + P h

k

· S � Ec

k

,�max}

�init is the initial energy level. �max is the energy capacity. Recall that P h

k

is the harvested

power, S is the epoch length, and Ec

k

is the energy consumed in epoch k (Eq. (6.2)). �
k�1

is the ending energy level in the previous epoch k�1, which is also the starting energy level

in epoch k. P h

k

· S gives the energy harvested in epoch k.

In Fig. 6.2, I show the solar energy trace, along with the energy budget assignments

derived by SEN and MUB schemes. As seen from the figure, the amount of solar energy

reaches its peak in the afternoon due to high sunlight intensity. The line representing the

energy budget assignment derived by SEN overlaps the line representing the solar energy

in noon and afternoon. This is because SEN assigns the amount of harvested energy as

the energy budget for any epochs, except for the evening epochs in which the harvested

energy is less than 5J. Finally, MUB assigns the highest uniform budget (around 11J) for

any epochs.

6.4.2 Network utility

In Fig. 6.3 and 6.4, I compare the utility accrued by MAX-UTILITY and RRA algorithm.

I show the results for the 100-node network. In each figure I plot the utility values in all

96 epochs, for all three utility functions. In each figure, I plot six utility lines, one for each

combination of the three utility functions and two rate allocation algorithms.

Fig. 6.3 assumes SEN energy budgeting scheme. Since SEN scheme assigns the harvested

energy as the energy budget, I observe that the variations in accrued utility indicate similar

pattern as the harvested energy (Fig. 6.2). Specifically the utility reaches its peak in the

afternoon since high solar energy availability leads to high rate capacity CAPACITY
i

at any

nodes. For any utility functions, MAX-UTILITY (OPT) achieves significantly higher utility
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Figure 6.3: Utility accrued by max-utility (opt) and rra, with di↵erent utility functions, SEN
budgeting.

than RRA. Specifically for SQR, the utility value increases above 500 in the afternoon if

MAX-UTILITY is used. However, if RRA is used, the utility accrued never increases above

300. For the rest of the day, MAX-UTILITY achieves utility figures that are mostly above

200, while RRA achieves utility figures that are around 100.

In Fig. 6.4, I repeat the simulation for MUB energy budgeting. Because the MUB

scheme is used, the energy budget B is uniform across di↵erent epochs, thus yielding con-

stant rate capacities at nodes and much more stable utility performance in all six lines.

Again, MAX-UTILITY achieves much higher utility than RRA. For SQR, the utilities ac-

crued by MAX-UTILITY remain around 350 throughout the day, while the one for RRA

remains around 150. As seen from Fig. 6.3 and 6.4, I observe that the MUB scheme main-

tains stable and high utility at any time and is hence suitable for the applications which

desire utility stabilization. On the other hand, SEN energy allocation achieves very high

utility when harvesting ability is high and is suitable for the applications where maximum

utility is sought.
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Figure 6.4: Utility accrued by max-utility (opt) and rra, with di↵erent utility functions, MUB
budgeting.

6.4.3 Rate assignment and energy storage level

In this section, I show the resulting rate assignment and energy storage levels of the two

algorithms. First, I plot in Fig. 6.5 the distribution of rates of all the nodes in the 100

nodes network at midnight, while using the SEN scheme and the CPST utility function.

From the figure, I observe that MAX-UTILITY tends to distribute rates more evenly across

nodes than RRA. The rate assignment by MAX-UTILITY has standard deviation of 0.1268,

while for RRA the deviation equals 0.1936. In Fig. 6.6(a-b) I plot the energy levels of a

heavily-loaded node and a lightly-loaded node in 96 epochs. The heavily-loaded node is

high in the tree, thus has higher workload and energy demand and lower energy level. As

seen from the figure, the energy neutral condition is maintained for both nodes at all times.

6.4.4 The impact of network size

Now I study the impact of network size on performance and overhead of MAX-UTILITY.

In Fig. 6.7, I increase the size of the network from 25 nodes to 225 nodes, and plot the
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Figure 6.6: Variation of Energy levels over 96 epochs of (a) a lightly-loaded node; (b) a heavily-
loaded node.
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Figure 6.7: Total utility accrued by MAX-UTILITY in networks of di↵erent size

utility accrued by MAX-UTILITY. This simulation assumes SEN energy budgeting and

LOG utility. I observe from the plot that the utility grows steadily as the network grows

from 25 nodes to 169 nodes. As computed, the average utility is 78.10 for 25 nodes network,

109.34 for 36-nodes network, 142.84 for 64-nodes network, 203.79 for 100-nodes network,

396.54 for 169-nodes network, respectively. However, as the network size increases to 225,

the utility increases to only 403.48. In other words the utility growth almost stops. This

is because that, although there are potentially more utility contributors in the 225-nodes

network, the achievable utility is constrained by the nodes that are close to the tree root,

since the rate capacity of these nodes does not change with the network size. System

designers must be aware of this phenomenon while choosing the network size and routing

patterns.

I measure the actual running time of MAX-UTILITY in terms of the number of iterations

shown in Table 6.2. Again, I assume 6 network sizes. As seen from the table, the number

of iterations does not increase with the network size. On the contrary, I observe that the

25-node network requires the largest number of iterations, 9.97, while the 64-nodes network
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requires the smallest number of iterations, 6.99. Based on the tree structure I observe that

the number of iterations depends heavily on the number of children the tree root has. As

mentioned in 6.3.2, the children of the root have large group of descendent nodes, hence are

more likely to be picked as the critical node V
u

. Once they become V
u

, all their descendent

nodes are added to the set ASSIGNED SET in one iteration. This leads to the rapid

growth of ASSIGNED SET .

I count the average number of control packets sent by a node in each invocation of

the distributed MAX-UTILITY to be 27.32 in 100-nodes network. If the node operates at

rate r
i

= 1 packet per second then 900 data packets will be sent in an epoch. The packet

overhead is then 27.32/900 ⇡ 3%. This indicates that the MAX-UTILITY-D is an entirely

feasible alternative to MAX-UTILITY.

Table 6.2: The number of iterations of MAX-UTILITY as a function of network size

Num. of nodes 25 36 64 100 169 225
Num. of iterations 9.97 7.99 6.99 7.99 8.99 8.99

Finally I derived that our algorithm MAX-UTILITY outperforms the rival algorithm

RRA with close to 100% confidence. The energy consumption for transmitting one packet

is selected randomly (following uniform distribution) from the range (0.05�0.1)Joule. The

simulation is repeated 50 times. I collected the accrued utility value by both algorithms at

the end of an epoch over all 50 simulation runs. I then take the di↵erence of the utility

values of MAX-UTILITY and RRA for each simulation run, and computed the confidence

intervals of these utility di↵erences with di↵erent confidence levels. Since I repeated the

experiment for 50 times, I used z-value for computing the confidence intervals [74]. I then

found that zero is never included in the computed confidence interval even with close to

100% confidence level. This implies MAX-UTILITY outperforms RRA with close to 100%

confidence [74].
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The reason which MAX-UTILITY outperforms RRA with high confidence is that MAX-

UTILITY is formally proved to be optimal in term of utility maximization, and that the

calculation of energy consumption, rate capacity and utility value is based on Eq. 6.2, Eq.

6.9 and Eq. 6.1 respectively (TOSSIM does not provide ways for computing these values).

Therefore the accrued utility by the rival algorithm RRA cannot be higher than that is

accrued by MAX-UTILITY with any input values of per-packet energy consumption.
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Chapter 7: Future Work

This chapter describes my future research work. A major part of future work is to implement

on real sensor motes the energy management algorithms proposed in chapter 5 and 6 and

maximal utility rate allocation algorithm proposed in chapter 6. This allows evaluating

real-world performance of the algorithms. The detailed implementation of the algorithms

can be found in the Appendix.

Another part of my future work is to consider probabilistic workload model for DVS-

DMS based energy management. Probabilistic workload can be represented in two ways.

First, an entire communication or computation task might not exist possibly because the

sensed data is not of interest to the application or the sensed value is beyond the meaningful

range. The probability which a task is to be executed can be given as Pr
i

. Second, the

workload of a communication or computation task, i.e. M and C is probabilistic where the

worst case workload can still be estimated. The probability which the workload of a task is

M or C can be given as Pr(M), Pr(C). The energy management algorithm must consider

the workload unpredictability while achieving the objective.
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Chapter 8: Conclusion

My dissertation proposes energy and performance management solutions for energy har-

vesting Wireless Sensor Networks. I first present an architecture for energy harvesting

WSN systems which contains an epoch-based energy harvesting model, a DVS-DMS capa-

ble device and energy consumption model, a network topology model and data collection

paradigm, a performance-sensitive WSN application model, and utility model for data col-

lection WSN systems.

I then propose joint DVS-DMS energy management approaches for loosely-coupled and

tightly-coupled WSN systems. The approaches maximize the energy storage level of sensor

nodes by adjusting radio modulation levels and CPU frequencies while satisfying all the

application performance requirements. Through this objective we ensure highly resilient

performance under both normal and emergency situations. I formulate this objective as op-

timization problems, and solved them optimally with centralized and distributed algorithms.

Through simulation we show our algorithms achieve significantly higher performance than

a baseline approach under both normal and emergency situations.

Another important portion of my dissertation addresses a utility maximization problem

for energy harvesting sensor networks. Utility is defined as concave and non-decreasing

function of nodes sensing rate. I proposed MAX-UTILITY, a rate allocation algorithm to

maximize the total utility achieved jointly by all the nodes, while ensuring energy neutrality

for any nodes. I formally proved the optimality of the algorithm, and indicated that the

algorithm can derive optimal rate assignment in O(N3) time where N is the network size.

Finally, extensive simulation results demonstrate its superior performance.
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Chapter 9: Appendix

Proof of Theorem 1

Let �G
i,j

and �A
i,j

denote the ending energy levels in frame (i, j), obtained by iteratively

maximizng energy level increment of each frame, and that obtained by an arbitrary scheme

A. Similarly, we denote ��G
i,j

and ��A
i,j

as the energy level increments in frame (i, j),

obtained by our iterative scheme and scheme A. The initial energy level in epoch i is

denoted as �init

i

= �
i�1. We will prove the theorem by induction over the frame sequence

number, j.

Base case: If j=1, we have �G
i,1 = �init

i

+��G
i,1, �

A

i,1 = �init

i

+��A
i,1. Since ��G

i,1 � ��A
i,1

is valid by definition, �G
i,1 � �A

i,1 is justified.

Now, suppose the statement holds for j = 1, 2 . . . n � 1 frames in epoch i. Based on

our induction assumption, we have �G
i,n�1 � �A

i,n�1. We claim that Theorem 1 also holds in

frame (i, n), i.e., �G
i,n

� �A
i,n

. We distinguish two cases:

• �G
i,n

= �max: the energy level reaches �max at the end of frame (i, n). Since the energy

level achieved by any scheme A cannot exceed �max, our claim holds.

• �G
i,n

< �max: Note that if �G
i,n

< �max, the optimal energy increment obtained by

G after considering the constant harvested power and worst-case workload in frame

(i, n) is not constrained by the maximum capacity constraint (otherwise �G
i,n

would

be equal to �max). This enables us to deduce that ��G
i,n

� ��A
i,n

, since regardless of

the initial energy level at frame (i, n), G by definition accumulates energy which is at

least equal to that yielded by any other scheme A during frame (i, n), as long as the

constraint �G
i,n

< �max is not violated. Also recall that by induction assumption, we
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have �G
i,n�1 � �A

i,n�1. Therefore, we have �G
i,n

= �G
i,n�1+��G

i,n

� �A
i,n�1+��A

i,n

= �A
i,n

.

Thus, our claim holds as well.

Hence, we proved Theorem 1.

Proof of Lemma 1:

We denote the optimal solution of problem HASS-N as SN , and its corresponding

minimum energy level as �N

min

. SN is optimal in the sense that it maximizes �
min

, without

considering constraint (5.9). We denote the optimal solution of problem HASS as S⇤, and

its corresponding minimum energy level as �⇤
min

. We show that, if SN satisfies the positivity

constraint which also means �N

min

> 0, then we have S⇤ = SN ; otherwise, S⇤ does not exist.

We consider the following three cases:

• If in SN , 0 < �
i

 �max, 8 V
i

, obviously, we have S⇤ = SN .

• In case that SN leads to �
i

> �max, 9V
i

, we claim that the compute and communicate

speeds contained in SN can be still used. This is because as soon as the maximum

capacity of the energy storage is reached, the harvesting circuitry can be automatically

turned o↵, keeping its energy level at �max. In another words, in this case, we still

have S⇤ = SN .

• If SN leads to �
i

 0, 9i, this implies �N

min

 0. Assume S⇤ exists, then we have

8V
i

, �
i

> 0 in S⇤, since S⇤ must satisfy the positivity constraint by definition. This

indicates �⇤
min

> 0 � �N

min

which contradicts the fact that SN maximizes �
min

(recall

that the feasible region of HASS is contained in that of HASS-N). Therefore, if SN

violates the positivity constraint, S⇤ cannot exist.

Proof of Lemma 2:

Let (f1, d1) and (f2, d2) denote the fastest speed configurations at V
i

found when the

algorithm FS is invoked by using �1 and �2 as input respectively, where �1 � �2. We use
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lmin

i,1 and lmin

i,2 to denote the (least) per-node latencies at V
i

obtained by using (f1, d1) and

(f2, d2), respectively. We will show lmin

i,1 � lmin

i,2 .

When the FS problem is solved with �1 as input, (f1, d1) yields lmin

i,1 , while satisfying

�
i

(f1, d1) � �1. When it is solved with �2 as input, the function find fastest could at least

find (f2, d2) = (f1, d1) which yields lmin

i,2 = lmin

i,1 , while satisfying �
i

(f2, d2) � �2 (because

�
i

(f2, d2) = �
i

(f1, d1) � �1 � �2). In many cases, (f2, d2) will yield an even smaller lmin

i,2 .

Proof of Theorem 2:

Denote �low and �high in the Y th round as �low,Y and �high,Y , respectively. According

to the property of binary search, in the Y th round, the maximum �
min

which is our search

target is confined to the range [�low,Y ,�high,Y ]. As a result, the maximum �
min

can be

larger than the �
min

found in the Y th round by at most �high,Y ��low,Y . In the Y th round,

�high,Y � �low,Y = (Max(EL)�Min(EL))/2Y�1.

Proof of Lemma 3:

For the purpose of contradiction, we assume that, in R⇤[], nodes in unassigned[u] are

assigned unequal rates {µ1, . . . , µ|unassigned[u]|}. However, as shown by Proposition 1 if this

assumption holds we can always further increase U tot,⇤ by equalizing {µ1, . . . , µ|unassigned[u]|}

to a common rate R⇤[u]=
µ1+...+µ|unassigned[u]|

|unassigned[u]| . This contradicts the optimality of R⇤[]. There-

fore, equal rate assignment to nodes in unassigned[u] is a necessary condition for the opti-

mality of R⇤[].

We still need to show such rate equalization does not violate the min-rate and capacity

constraints (Eq. (6.10-6.11)). This is justified as follow. First, the min-rate constraint is

not violated, because the new common rate R⇤[u] must be larger than the minimum of

{µ1, . . . , µ|unassigned[u]|}, which is in turn larger than rmin (due to the feasibility of R⇤[]).

The rate capacity constraint is also satisfied. This is because V
u

is the critical node with the

least common rate r
c

among any nodes in the tree. Thus, r
c

[u] cannot be larger than r
c

[i]

of any node V
i

in unassigned[u]. Further, R⇤[u]  r
c

[u] must hold, since if R⇤[u] > r
c

[u] we
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have R⇤[u] · |unassigned[u]| > r
c

[u] · |unassigned[u]|, which gives µ1+ . . .+µ|unassigned[u]| >

CAP [u]. This implies that R⇤[] violates the capacity constraint which contradicts the

feasibility of R⇤[]. Since R⇤[u]  r
c

[u], and r
c

[u]  r
c

[i], 8V
i

2 unassigned[u] we know

the common rate R⇤[u] cannot be larger than the maximally allowed common rate r
c

[i] of

any node V
i

in unassigned[u], hence cannot violate the capacity constraint at these nodes.

Finally, the capacity violation cannot happen to any nodes outside unassigned[u] since the

total packet flow at V
u

does not change after the rate equalization. Therefore, we have

proved that in R⇤[], any nodes in unassigned[u] must use a common rate.

Proof of Lemma 4:

In Lemma 3, we have shown that in R⇤[] all nodes in unassigned[u] must be assigned

a common rate R⇤[u], where V
u

is the critical node in the tree. Now we show that this

common rate R⇤[u] must be equal to r
c

[u] in order for R⇤[] to be optimal. Recall that

r
c

[u] = CAP [u]
|unassigned[u]| . Notice that nodes in unassigned[u] cannot be assigned a common

rate R⇤[u] that is higher than r
c

[u] as this will exceed V
u

’s capacity, so R⇤[u] > r
c

[u] cannot

hold. Therefore we assume R⇤[u] < r
c

[u]. We show this assumption cannot hold either, and

thereby R⇤[u] = r
c

[u] must hold.

If R⇤[u] < r
c

[u] holds, we assert that the rate capacity of V
u

is not fully utilized. This

is because R⇤[u] < r
c

[u] means

R⇤[u] · |unassigned[u]| < r
c

[u] · |unassigned[u]| = CAP [u]

Since the left-hand side of the above inequality gives the total packet rate at V
u

, if R⇤[u]

is assigned to every nodes in unassigned[u], this inequality implies V
u

’s capacity CAP [i] is

under-utilized.

Given that V
u

’s capacity is under-utilized, we make another assertion that there exists

a node V
k

, an ancestor of V
u

, that must have its rate capacity fully utilized. This is because

if all the ancestors of V
u

are also under-utilized, then we can further increase U tot,⇤ by
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increasing R⇤[u] by an amount of ✏/|unassigned[u]|, where ✏ > 0 is the strictly positive,

minimum un-utilized capacity among any ancestors of V
u

. This contradicts the optimality

of R⇤[]. If there are multiple such V
k

nodes, we consider the one that is in the lowest level

of the tree.

Given the existence of V
k

, we assert that in R⇤[] there must exist a node V
j

2 ⌧
k

and

V
j

62 unassigned[u] which has rate R⇤[j] > R⇤[u]. (Recall that ⌧
k

is the subtree rooted at

V
k

.) This is because if no node in ⌧
k

has rate higher than R⇤[u], then the total packet rate

at V
k

must be strictly smaller than R⇤[u] · |⌧
k

| (|⌧
k

| is the number of nodes in ⌧
k

), and in

turn no larger than r
c

[k] · |⌧
k

| = CAP [k], i.e. V
k

’s capacity. R⇤[u] · |⌧
k

|  r
c

[k] · |⌧
k

| holds

because R⇤[u] < r
c

[u] is assumed, and r
c

[u]  r
c

[k] since V
u

has the least r
c

among any

nodes in the tree. This implies the capacity of V
k

is under-utilized which contradicts our

previous assertion that V
k

is fully utilized. Thus we justify the existence of such V
j

.

Next, given R⇤[j] > R⇤[u], we know that the marginal utility of the concave utility

function U at point R⇤[j] is lower than that at R⇤[u]. Therefore we can further increase

U tot,⇤ by decreasing R⇤[j] by a strictly positive amount ✏
0
, and increasing R⇤[u] for each node

in unassigned[u] by the amount of ✏

0

|unassigned[u]| , as long as R⇤[j] > R⇤[u] holds. In other

words, we can always increase U tot,⇤ by reducing the di↵erence between R⇤[j] and R⇤[u].

This rate adjustment cannot violate the min-rate constraint as R⇤[u] > rmin. The capacity

constraint is also not violated, as the decrease of R⇤[j] does not increase the total packet

rate at any nodes. The increase of R⇤[u] by ✏

0

|unassigned[u]| will not exceed the capacities of

any V
u

’s ancestors inside ⌧
k

, as long as ✏
0
is no larger than the minimum unused capacity of

any ancestors of V
u

in ⌧
k

. This is because V
k

is the lowest ancestor of V
u

whose capacity is

fully utilized, hence any ancestors of V
u

inside ⌧
k

(i.e. below V
k

) must have positive unused

capacity. Further, the total packet rate at any V
u

’s ancestors outside ⌧
k

does not change

after the rate adjustment, so their capacity constraints cannot be violated either.
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Therefore, the feasible increase of U tot,⇤ contradicts the optimality of R⇤[], hence justi-

fying that R⇤[u] < r
c

[u] cannot hold, and R⇤[u] = r
c

[u] must hold in order for R⇤[] to be

optimal. Therefore we have proved Lemma 4.

Specification of the RRA algorithm

The RRA algorithm initially allocates rmin to every node, and updates the remaining

capacity of nodes accordingly. If this violates the capacity constraints at some nodes, then

we know there exists no feasible assignments for the given network. Otherwise, we start

from that assignment and progressively improve U tot by augmenting the rates of nodes

with unused capacity. Specifically, based on the initial assignment, RRA randomly selects

a node V
i

with positive remaining capacity, and determines the maximum possible rate

increment which V
i

and its ancestors can a↵ord. Then RRA adds up this increment to V
i

’s

current rate, and zeros out its remaining capacity. RRA updates the remaining capacity of

other nodes accordingly. This is the end of one round of augmentation. We then continue

augmenting other nodes until no node has remaining capacity. The resulting rates of nodes

is the final utility achieved by RRA.

Implementation of Centralized and Distributed MAX-UTILITY

9.1 Specification of Maximal-Utility Rate Allocation Proto-

col

Chapter 6 proposes MAX-UTILITY, a rate allocation algorithm for maximizing application

utility in energy harvesting WSN systems. Both centralized and distributed versions of the

algorithm are proposed, namely MAX-UTILITY-C and MAX-UTILITY-D. For my future

work I would like to implement MAX-UTILITY on real sensor motes.
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9.1.1 The Centralized Protocol

The centralized MAX-UTILITY runs on the base station. First the base station has to

collect from every node the information necessary for calculation of the optimal rate as-

signment. This includes the parent node ID, and the rate capacity CAPACITY
i

. The

parent ID is used for discovering the structure of the data collection tree, so as to derive

unassigned[i] for every node V
i

. CAPACITY
i

is calculated individually by each node.

These two pieces of information are used to calculate the maximum common rate r
c

[i].

First the base station sends a collect info message to all the nodes for collecting infor-

mation from them. The nodes response with a collect info reply containing the requested

information. To ensure collection of all the necessary information, a data collection protocol

that guaranteeing reliable end to end data delivery must be used. A reliable collection proto-

col must support message acknowledgement and message retransmission upon transmission

failure. Reliable delivery can be enforced either between each pair of communicating nodes

or in an end-to-end fashion.

The base station starts calculation of algorithm MAX-UTILITY after it hears back

from every node. The specification of the algorithm can be found in Chapter 7. MAX-

UTILITY outputs the max-utility rate assignment. The base station has to disseminate the

derived rate assignment as message rate assignment to all the nodes. The rate assignment

is essentially a set of (node ID, rate) mappings. Note that regular sensor nodes are not

involved in the execution of the algorithm.

Below I formally define the two message types: collect info for data collection, and

rate assignment for disseminating rate assignment. Both messages contain a type field

expressed as 4-bytes integer which indicates the message type. Message collect info contain

two additional fields, parent id and capacity which are the information requested by base

station. All three fields are expressed as 4-bytes integer. For collect info request, these

two fields are left empty and padded with meaningless value. A rate assignment message

also contains two additional fields (both are in 4-bytes integer), the ID of the node to be

assigned and the rate to be assigned. Therefore both collect info and rate assignment have
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three fields with a payload size of 12 bytes.

Since a sensor network may comprise hundreds of nodes, and every node needs to be

assigned a rate, the entire rate assignment could be a large chunk of data. On another

hand, the standard payload size of WSN message (⇡ 30 bytes by default) is quite limited.

The rate assignment has to be divided into multiple parts (that can fit into a standard

message) and disseminated separately. The number of parts (messages) is proportional to

the number of nodes in the network. For example, if the network size is 100, the total size

of network-wide rate assignment is 1200 bytes which has to be disseminated in at least ⇡ 40

separate rate assignment messages. For a network of size 1000 nodes, the rate assignment

size increases to 12000 bytes which must be packed into ⇡ 400 separate messages. Therefore

an e�cient way for rate assignment dissemination must be used.

Next I present an e�cient way for disseminating rate assignment to nodes. First note

that since the rate assigned to a given node is only needed by that node, it is unnecessary

to disseminate the rate to other nodes. Second, as mentioned in the specification of MAX-

UTILITY, any nodes in a same node group unassigned[u] identified by the critical node

V
u

are assigned a common rate i.e. r
c

[u]. Because of these two properties, the base station

needs to unicast the rate r
c

[u] to only the critical node V
u

, and from there the rate is

broadcast to the nodes in the node group unassigned[u]. Recall that any nodes in the node

group unassigned[u] are descendent nodes of the critical node V
u

, the rate value is relayed

node by node in downward direction following the subtree rooted at V
u

. Note that this

avoids unnecessary dissemination of r
c

[u] to nodes not in unassigned[u]. However, since

only the base station knows the member nodes in node group unassigned[u] while node V
u

has no clue at all, the problem is then to stop further relaying of r
c

[u] when the message

reaches the boundary of unassigned[u].

The above problem can be solved using the following two observations. First as per

its definition, node groups in a data collection tree are separated by their critical nodes.

Furthermore, the only way to reach the nodes in a given node group is through its critical

node. Each node group has only two neighboring node groups, the one where its critical
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node connects to (sitting above it); and the one connects to it (sitting below it). Therefore

the downwards relaying of a rate assignment message within a given node group can stop

when it reaches the critical node of a neighboring node group (i.e. the boundary of two

node groups).

9.1.2 The Distributed Protocol

Now I present a distributed protocol denoted by MAX-UTILITY-D. It consists of one round

of tree structure discovery stage where every node discover the structure of the subtree

rooted at itself (stage 1), followed by multiple rate assignment iterations (stage 2). The

base station does not have to collect any information from sensor nodes in advance. It only

plays a role of coordinator.

MAX-UTILITY-D defines four types of message exchanged among nodes as below:

• structure discovery : This message is sent by the base station and sensor nodes to

perform tree structure discovery. If the message is sent by base station, then it is

a command for nodes to start structure discovery. Any nodes receive the command

response with a structure discovery reply. The original sender of a message can be

learned from the message header. The payload of this message only contains one field,

a type field (4-bytes integer) that is set to structure discovery (or reply).

• start assignment : This message is sent by the base station as a command to start

a new rate assignment iteration. This message only contains a type field set to

start iteration.

• rate: This message is sent by a regular node to report the minimummaximum common

rates r
c

among itself and all its descendent nodes. This message contains three fields,

a type field set to rate, the value of r
c

(in (4, 8)-bytes integer), and the ID (4-bytes

integer) of the node who has the minimum r
c

value. Note that r
c

might be a floating

number, however most WSN node platforms do not support this data type, the nodes

have to multiply the floating number by a number that is multiple of 10 to make it
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integer.

• rate assignment : This message is sent by the base station to disseminate the value of

r
c

[u]. It contains a type field set to rate assignment, the value of r
c

[u] (in (4, 8)-bytes

integer), and critical node giving the ID of critical node V
u

(4-bytes integer).

Every node needs to maintain a set unassigned[i] and its remaining rate capacity. I

specify the tree structure discovery stage step by step as below:

• The base station announces the start of this stage by sending a structure discovery

message over the tree.

• Every sensor node responses to the received structure discovery message by sending

a structure discovery reply towards the base station.

• Any node receiving a structure discovery reply adds the original sender (not the relay

sender) of the reply message to its set unassigned[i]. Note that a node receives

structure discover reply messages only from its descendant nodes, thus by the end of

stage 1 the set unassigned[i] is constructed.

• Finally every node computes its local rate capacity CAPACITY
i

, and maximum

common rate r
c

[i] = CAPACITY

i

|unassigned[i]| .

Next I give the steps in one rate assignment iteration:

• The base station announces the end of stage 1, and the start of the first rate assignment

iteration, by disseminating a start assignment message.

• After received a start assignment message, the non-leaf nodes simply pass the message

down to its children, while the leaf nodes response to the message by sending its

maximum common rate r
c

[i] included in a rate message up towards the base station.

• A non-leaf node receives rate messages from its children, compares its own r
c

[i] with

the ones received, then forwards the minimum one along with the ID of node who has

r
c

[i] up to its parent.
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• When base station receives rate messages from all its children, it knows which node

has the minimum r
c

value (i.e. the critical node) among any nodes in the network

(i.e. V
u

), and the value of r
c

[u] (critical rate). Then it disseminates a rate assignment

message to nodes which contains these two pieces of information.

• A node identifies itself as the critical node V
u

, or it learns who is the critical node

after receiving the rate assignment message. The critical node V
u

and any nodes in

unassigned[u] use r
c

[u] as their rate for the coming epoch. One problem is how can

the nodes in unassigned[u] know V
u

is their critical node.

This problem is solved by making V
u

to modify the critical node field of to zero (non-

existing node id) before passing down the rate assignment message. The nodes in

unassigned[u] could learn V
u

is their critical node if the critical node field equals

zero.

• Update of rate capacity and unassigned[i]: Any node V
i

that is an ancestor of V
u

must update their rate capacity and unassigned[i] according to line 14-23 in algorithm

spec. This is done by deducting the total assigned rate to nodes in unassigned[u],

and removing any nodes in unassigned[u] from the set unassigned[i].

• After an interval of time after base station disseminates rate assignment message, it

assumes the end of the current iteration, then starts a new iteration by disseminating

a new start iteration message. Only the nodes remaining unassigned participate in

the new iteration. Base station knows all the nodes in the network have been assigned

if no rate message is received.
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