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Abstract

PROBABILISTIC REASONING FOR DYNAMIC SPECTRUM ACCESS

Todd W Martin, PhD

George Mason University, 2016

Dissertation Director: Dr. Kuo-Chu Chang

Dynamic Spectrum Access (DSA) systems combine situational awareness development,

decision assessment, and spectrum adaptation to provide greater spectrum access to wireless

systems. While significant progress has been made in system dynamics and policy confor-

mance reasoning, concern still exists regarding a DSA systems ability to reliably determine

the operating conditions for policy compliance in situ. Current methods in literature and

recent FCC policies generally develop global operating constraints based on a priori mod-

eling and analysis, which potentially reduces DSA system performance in all cases in order

to mitigate risks that occur only in a few cases. Furthermore, the a priori determination

of in situ operating constraints is inconsistent with the premise of a “smart” or “cognitive”

wireless system.

The primary hurdle to in situ compliance is situational awareness uncertainty, which

results from the inherently stochastic nature of wireless communications and dynamics of

spectrum user activity. Lacking trusted mechanisms for handing in situ uncertainty in

DSA systems, regulators manage uncertainty and associated risk through policy specifica-

tions that impose conservative operating constraints in order to maintain high degrees of

interference prevention. In managing risk via specifying inflexible a priori rules, the process



is necessarily and provably inefficient in the majority of operating conditions.

The thesis proposed and tested here is that improved spectrum sharing is possible via

in situ probabilistic reasoning coupled with rule specifications that enable DSA spectrum

access flexibility. The observation is made that current spectrum management processes

are based in part on mitigating and managing risk. The concept of risk management is

extended as a means to manage DSA spectrum access behaviors such as transmit power

and standoff distance. The result is a risk-constrained spectrum access model, in which

DSA systems govern their behaviors based on situational uncertainty subject to operating

below a specified level of risk.

The research provides logical, mathematical, analytical, and quantitative evidence to

support the thesis. Logically, it is shown that the reasoning process leading to lower levels

of uncertainty provides lower levels of risk or increased performance at the same level of

risk. A probabilistic reasoning model is constructed based on the assertion that DSA pro-

cesses are inherently causal, which motivates a causal inference approach to DSA situational

awareness using Functional Causal Models. The approach provides a formal and systematic

means for probabilistic reasoning that is built upon well-established engineering models for

wireless communications and the theoretical foundation of causal networks while incorpo-

rating uncertainty inherent in wireless communications and DSA operations. The model is

used to demonstrate the link between path loss uncertainty and permitted DSA behaviors

in a risk-constrained construct. Theoretical relationships are developed and analyzed. A

simulation model is developed and results from several notional scenarios are presented. All

results support the thesis.



Chapter 1: Introduction

Dynamic spectrum sharing concepts are being developed to enable continued growth in

wireless broadband services [1, 2]. By allowing spectrum users to dynamically access spec-

trum subject to real-time conditions, spectrum access efficiency increases can be achieved

and enable greater wireless user capacity and/or density. Dynamic Spectrum Access (DSA)

technologies have progressed in many areas but methods for providing trusted and reli-

able interference avoidance remains a challenge. Regulatory processes and implementation

approaches are subsequently limited in their effectiveness.

The following sections provide an overview of spectrum management and DSA, asso-

ciated implementation challenges, and a proposed concept for enabling greater spectrum

sharing. Section 1.1 describes the basic spectrum management process as it exists today,

proposed approaches for enabling dynamic spectrum sharing, and key issues affecting spec-

trum sharing gains. Section 1.2 presents an example showing the impact that uncertainty

inherent in mobile wireless operations has on spectrum sharing potential. Sections 1.3

and 1.4 then propose the thesis that probabilistic reasoning can increase spectrum access

efficiency and provide an overview of the research and evaluation approach.

1.1 Spectrum Management and Dynamic Spectrum Access

Dynamic Spectrum Access (DSA) systems are wireless devices that adapt their transmis-

sion characteristics to opportunistically use available spectrum rather than rely on static

spectrum assignments. They employ various technologies and algorithms to make more

effective and efficient use of available spectrum by real-time adjustment of spectrum utiliza-

tion in response to changing environmental conditions and user objectives. Ultimately, DSA
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systems are envisioned to have the authority and responsibility for managing their spec-

trum access “behaviors”—the means by which they adapt their operating characteristics

such as frequency, power, and bandwidth—in a manner that enables spectrum sharing with

other spectrum users [3,4]. They take advantage of spectrum access opportunities resulting

from temporal and geographical variations caused by wireless user activity dynamics, signal

propagation phenomenology, and mobility.

The DSA concept is very different than the current mode of spectrum access and man-

agement, which uses a centralized man-in-the-loop process of granting spectrum access to

users [1, 2, 5]. Under the current approach, access is granted to enable a range of wireless

services such as mobile communications, television (TV) broadcasts, and various radar ap-

plications in a manner that minimizes interference among users. Spectrum is allocated to

service types and assigned to specific users based upon service needs and constraints derived

from extensive modeling and analyses. In this manner, current spectrum management prac-

tices specify spectrum access behaviors a priori ; that is, system operating behaviors such

as maximum transmit power and bandwidth are specified at the time of regulation using

some set of prior assumptions about possible operating conditions. Those regulations apply

for long time periods (typically years) and generally large geographic extents (regional or

national) and must be suitable for a diverse range of possible operating environments (e.g.,

urban and rural, flat and mountainous terrain). DSA systems, however, are ultimately envi-

sioned to determine their own spectrum access behaviors in situ for comparatively shorter

periods of time. They observe local environmental conditions, to which they apply sets

of regulatory policies defining operating principles in order to derive permitted spectrum

usage behaviors. This real-time adaptation provides the potential to dramatically increase

spectrum access for wireless services relative to what can be accomplished with the current

spectrum management process.
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Figure 1.1: High-level depiction of applications associated with various spectrum bands

1.1.1 Spectrum Management

Spectrum management is fundamentally concerned with the allocation and assignment of

wireless spectrum to wireless services and users in a manner that meets service needs and

minimizes interference among services and users. Electromagnetic waves generated at differ-

ent frequencies propagate differently and dictate system characteristics such as link range,

channel capacity, and equipment size and power requirements [6–8]. Different service types

are therefore allocated to different portions of the spectrum based upon the suitability of

a spectrum band’s physical characteristics, the services’ requirements (e.g., mobility), and

characteristics of the corresponding equipment (e.g., size and power). Figure 1.1 provides

an example of how some common wireless services and applications are allocated across

various spectrum bands [9]. 1

Within those service classes, current spectrum regulatory and management practices

grant long-term, exclusive spectrum assignments to specific users. The exclusivity of the

assignments along with their long duration and broad geographic scope, however, is at odds

1See [10] for a complete allocation of US Federal services.
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with how spectrum is actually used for many services. Actual usage for many applications,

service types, and users varies on a much shorter timescale (sub-seconds to minutes) and

smaller geographic scale (meters to tens of kilometers) than the assignment scope due to

intermittent usage and user mobility. The mismatch between static assignments and dy-

namic usage produces inefficient spectrum usage. Measurements of spectrum usage indicate

that significant amounts of spectrum—as much as 90% in some cases—are unused at any

given time and location [5,11–13]. This high inefficiency occurs despite the fact that nearly

all the spectrum in the measured bands is assigned to users. Studies determined that the

underlying issue limiting increased spectrum use is one of spectrum access (i.e., the ability

to access available spectrum) rather than scarcity of spectrum availability [5].

The dichotomy between assignment and usage rates results from the characteristics of

users’ spectrum access and geographic considerations for signal propagation and spectrum

assignment. Many spectrum devices do not constantly emit energy; they only emit when

information is to be exchanged with other devices. This on/off nature creates temporally-

varying usage that results in “unused” spectrum. If the wireless service includes mobile

users, then the movement of users away from a particular area creates additional unused

spectrum. Similarly, the assignments for a given frequency are done in a way that ensures

sufficient geographic separation among users to avoid the possibility of interference among

them. Conservative assumptions regarding signal propagation are commonly used, resulting

in large separations among re-used frequencies. This large separation produces locations

where neither user’s signal can be detected and the spectrum goes unused.

Examples of geographic and temporal variations in spectrum use are shown in Figures

1.2 through 1.4. Figure 1.2 shows the approximate coverage area for all broadcast TV

stations operating on channel 7 (174-180 MHz) as reported by Spectrum Bridge2. In gen-

eral, broadcast TV stations operating on the same frequency are assigned with significant

geographic spacing between them, causing spectrum to remain unused in much of the US.

Figure 1.3 shows a map of broadcast TV channel availability—essentially the inverse of

2See whitespaces.spectrumbridge.com
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Figure 1.2: TV Band channel 7 spectrum coverage areas (red) for the Continental US (from
the Spectrum Bridge TV Spectrum Exclusion Zone Database)

broadcast TV channel use density—throughout the United States (US) as reported by the

Google Spectrum Database3. It is easily seen that heavy TV channel use occurs around

metropolitan areas, while few channels are used in lightly populated areas.

Figure 1.4 provides a waterfall plot of spectrum usage variation in time and frequency

from an NTIA spectrum study [14]. The data show detections of transmitted signals within

the 763–800 MHz band (horizontal axis) for a period of approximately 58 hours (vertical

axis). Some frequencies are used almost continuously in time (appearing as vertical lines)

while others show different degrees of usage variation over the measurement time period.

Some of the dynamics may be attributed to differences in the service characteristics while

others may be attributed to user behaviors (e.g., mobility or daily life patterns). Regard-

less, the data demonstrate how the dynamics of spectrum use create significant spectrum

availability that varies significantly in time and frequency.

3www.google.com/get/spectrumdatabase
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Figure 1.3: TV Band spectrum availability map for the Continental United States (from
the Google Spectrum Database)

Figure 1.4: NTIA Spectrum Measurement Example - Denver
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Figure 1.5: Cisco mobile data forecast 2014-2019.

1.1.2 Dynamic Spectrum Access

The motivation for DSA stems from the need to increase spectrum access to meet increasing

demands for wireless services. While individual studies vary on the amount of historical

and projected mobile data demand growth, they all indicate an accelerated rate of growth

such as that shown in Figure 1.5 [15] and Figure 1.6 [16]. The continued growth is driven

by increased demand for existing services such as mobile broadband as well as by emerging

applications such as the Internet of Things (IoT). By contrast, the amount of spectrum

available to support the increased demand cannot grow at a comparable rate; spectrum

suitable for most wireless services—particularly mobile wireless services—is limited by a

combination of physical properties of wireless signal propagation and technology constraints

as discussed in Section 1.1.1. That spectrum is already allocated and assigned to other

services and users and only modest increases in spectrum access are possible with traditional

technologies and spectrum management practices.

Thus providing spectrum to meet increased demand requires the ability to increase the
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Figure 1.6: US mobile service usage statistics from the CTIA 2015 Annual Summary Report.

density of users. Various mechanisms such as smaller, denser cells or opportunistically

offloading data demand to WiFi provide some mitigation for individual service providers,

but do not enable sharing among different services [17]. Enabling spectrum sharing requires

operational and technical solutions coupled with new regulatory processes. Users sharing a

common portion of the spectrum in a given area must be able to coexist without causing

harmful interference to each other.

Numerous operating concepts and system technologies have been investigated to enable

spectrum sharing (see e.g., [1,18,19]). Sharing approaches use varying degrees of interaction

among spectrum users, ranging from cooperative to non-cooperative sharing. Cooperative

sharing entails that all spectrum users seeking a shared portion of the spectrum implement

a common spectrum access protocol that affords each user access to spectrum resources

without causing harmful interference to other users. While conceptually attractive, coop-

erative sharing imposes standardization and potential information sharing requirements on

users that may be unattractive in terms of economics (e.g., equipment and infrastructure
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costs), security in the information exchange channel, or limited flexibility to quickly adopt

new technologies as they emerge over time [20]. By contrast, non-cooperative sharing al-

lows users to “opportunistically” access available spectrum. These opportunistic users must

employ potentially more complex mechanisms for inferring when to access spectrum, with

what transmit powers, and for how long in order to avoid causing harmful interference

to other spectrum users. In between these two sharing types are variations that employ

differing degrees of coordination. The ability to implement any DSA approach requires

complimentary development of technologies and new regulatory processes.

Technology and regulatory developments to date demonstrate that significant potential

and interest exists for increasing spectrum access through various DSA mechanisms (see e.g.,

[1, 21]). Concerted research efforts from the Defense Advanced Research Projects Agency

(DARPA) and the National Science Foundation (NSF) beginning circa 2001 established

significant momentum in DSA-related research, including the development of algorithms,

sensing technologies, policy-based reasoning capabilities, and hardware prototypes within

the DoD, industry, and commercial sectors [22–26].4 The progress has enabled new pol-

icy and regulatory efforts that pursue implementations of DSA technologies. In 2010, a

Presidential Memorandum was issued to reallocate 500 MHz of spectrum to support the

rapidly growing demand for wireless broadband [27]. The initiative was further defined in

the United States (US) Federal Communications Commission (FCC) and US Department of

Commerce National Telecommunication and Information Administration (NTIA) Ten Year

Plan [28, 29]. Included in the plans were considerations for the development and eventual

deployment of dynamic spectrum sharing technologies. The FCC sought to apply some of

the DSA principles for increased spectrum utilization by enabling access to unused televi-

sion (TV) spectrum [30]. Meanwhile, the President’s Council of Advisors on Science and

Technology (PCAST) released a report in 2012 advocating for DSA on a larger scale for

increasing wireless broadband access to consumers [1]. The continued desire by commercial

4See also http://www.nsf.gov/cise/cns/prowin.jsp and solicitations NSF 04-540, NSF 05-505, NSF
06-516, and NSF 07-507
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Figure 1.7: Three-tiered spectrum access framework proposed in the PCAST report and
implemented by the FCC policies governing spectrum sharing in the 3.5 GHz band.

broadband providers for more spectrum access and the US Government’s need to maintain

sufficient public services resulted in a spectrum sharing approach to be implemented in the

3.5 GHz band (covering 3.55-3.655 GHz) that uses exclusion zones to protect incumbent

users and provide spectrum access on a tiered basis [31].5

The FCC policies governing the 3.5 GHz sharing approach follows a three-tiered ap-

proach proposed in the PCAST report [1,2]. As depicted in Figure 1.7, the highest level is

Federal Primary Access, which provides unencumbered access for existing Federal services

such as radar and satellite downlink. Those services were found to be geographically and/or

temporally sparse and provide significant potential for spectrum sharing. Secondary Ac-

cess provides dynamic spectrum sharing through coordination with other secondary access

users via spectrum access managers, which may provide guaranteed secondary access con-

ditions (e.g., bandwidth, duration) in exchange for payment. General Authorized Access

provides for opportunistic access, which enables spectrum users access on a non-guarantee

basis—possibly without coordination among users—provided they do not impose harmful

interference on other users belonging to the other two tiers.

5The discussion here focuses on developments in the US, but it should be noted that significant research
and regulatory activity is also occurring in Europe and Asia.
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The PCAST and FCC tiered access approach reflects concerns regarding the extent

to which DSA systems can sufficiently understand their environment and operate without

causing harmful interference to other spectrum users. DSA devices were originally envi-

sioned to be highly-autonomous and adaptive, operating in a largely decentralized manner.

They would understand the relevant spectrum rules governing spectrum access, understand

their operating environment, and adapt their spectrum access behaviors (e.g., frequency,

transmit power, and bandwidth) accordingly. Thus DSA systems would be able to under-

stand constraints; characterize their environment to evaluate an action’s compliance with

policies (e.g., interference power limits); and develop spectrum access strategies that meet

DSA user goals (e.g., data rates). Approaches for codifying operating rules and constraints

as machine-readable policies have been developed and undergone varying degrees of test-

ing [32–34]. Methods for situational understanding have been pursued, including real-time

spectrum sensing and the use of database information. Ultimately, however, the ability to

attain a sufficient real-time understanding of the operating environment and ensure that

spectrum access behaviors can meet user goals (e.g., capacity) and policy constraints (e.g.,

non-interference) remains a challenge. Regulators are therefore pursuing spectrum sharing

architectures having centralized access control mechanisms to minimize the likelihood of

interference among users.

1.2 The Impact of Uncertainty on Spectrum Access

A fundamental hurdle for reliably determining the implications of a DSA system’s actions

is uncertainty stemming from practical limits on situational awareness, the inherent prob-

abilistic nature of wireless communications, and limited knowledge about the world state.

Perhaps the most significant compliance concern is the risk of causing harmful interference

to other spectrum users due to decisions made by DSA systems with imperfect and incom-

plete awareness. Interference avoidance depends on the DSA system’s ability to assess the

impact of its desired operations on other spectrum users while meeting user needs. Lacking
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an accepted method for operating with imperfect and incomplete knowledge, policy-makers

and spectrum regulators must use conservative mechanisms and assumptions to mitigate

interference risks when developing spectrum sharing policies. Similarly, broadband service

providers hesitate to adopt spectrum sharing technologies and business models due to the

risks associated with providing reliable service to a customer base in an uncertain environ-

ment.

The TV whitespace implementation illustrates some of the key issues associated with

spectrum management, DSA implementation, and the impact of uncertainty on policy on

efficient spectrum access [30]. While not universally considered to be DSA, the TV White

Space operating concept was a notable step in that direction.6 The proximate cause for

the limited flexibility afforded to devices operating under the TV White Space policy is the

a priori process by which spectrum access behaviors were specified. Two ultimate causes

are the uncertainty inherent in wireless spectrum usage and the inability for existing DSA

technologies to enable trusted operations in an uncertain environment. Without solutions to

the latter two issues, regulators have limited ability to afford users with significant degrees

of freedom.

These issues and their impact are discussed in the following sections. A summary of

the TV White Space policy is presented in the following section. The connection between

uncertainty, spectrum access regulation, and spectrum access efficiency limitations are then

discussed in Section 1.2.2. Further, it is concluded that gains in spectrum access will neces-

sarily be limited unless a process is established that incorporates and manages uncertainties

associated with spectrum access.

1.2.1 A Summary of the TV White Space Policy

White Space refers to spectrum that is unused at any given time or location. The term

stems from spectrum measurements (see e.g., [11]) associated with early DSA research.

6A distinction is sometimes made between DSA systems and “opportunistic white space radios” such as
TVBDs (see e.g., [1, pg. 31]). For the purposes of this thesis, TVBDs are treated as a DSA device having a
subset of possible DSA characteristics.
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Plots of spectrum occupancy as a function of time depicted unoccupied spectrum as empty

or “white” spaces on the graphs (see e.g., Figure 1.4); thus the term “white space” emerged

as a term to describe unused spectrum. TV White Space refers specifically to VHF and

UHF television broadcast bands that are either unassigned or unused in a given area. US

television broadcast services are allocated spectrum in the 54-72 MHz, 76-88 MHz, 174-216

MHz, 470-608 MHz, and 614-692 MHz bands, with 6 MHz allocated to each TV channel.

Assignments vary by location, and not all TV channels are used for broadcast in any given

area for reasons that include broadcast TV market demand and spectrum management

practices for interference avoidance among broadcasters as described in Section 1.1.1. While

some other wireless services such as low-power wireless microphones were authorized to use

unused TV spectrum, opportunistic use of the unused spectrum was not permitted prior to

the FCC TV White Space regulations [30].

The primary challenge faced by a practical DSA implementation in the TV bands cen-

tered around the ability to protect broadcast TV receivers and low-power wireless micro-

phone systems operating in the TV bands from harmful interference. Both systems use

a broadcast mode of operation, which includes one set of devices that actively transmit

but do not receive signals, and another set of devices that are receive-only. In the case of

TV, one broadcast tower transmits to many TV receivers spread throughout a designated

service area. Conversely, wireless microphone systems use a centralized receiver to pro-

cess signals from one or more microphones equipped with low-power transmitters. In both

cases, the TV and microphone receivers are passive spectrum users. While sensing-based

DSA systems can detect the presence of the transmitters given a sufficiently-strong signal,

they cannot readily determine the presence of the passive receivers. The receivers, however,

are the devices that would incur interference. Regulators determined that protection of

the passive receivers may not be done reliably by sensing techniques, which could result in

potential interference by DSA users due to missed detections. Thus without other informa-

tion regarding the presence of active receivers, DSA systems would need to rely on other

mechanisms to determine if they could operate at a given location and time.
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To overcome the sensing challenge, the FCC implemented the use of exclusion zones,

which are geographic regions in which a TV band device (TVBD) cannot transmit. The

FCC rules specify that portable TVBDs can transmit at 100 mW (20 dBm) if they a) are

able to determine their own location to within ±50 meters, b) are in a permitted geographic

location, and c) are not within 400 meters of a registered, low-power wireless microphone

[30]. The policy essentially creates two types of exclusion zones. The first exclusion zone

provides interference protection to TV broadcast receivers within reception range of a given

TV transmitter (see Figure 1.2), while the second creates a similar (but geographically

smaller) exclusion zone around locations using wireless microphone devices. These locations

are specified in a controlled database, which must be accessed by the TVBD before it can

operate [30].

In determining the size of the exclusion zones and associated minimum standoff distance,

the policy-makers specified a range of signal propagation conditions that could exist. By

modeling those environments, they estimated the probability that a TVBD signal power

imposed on a TV or wireless microphone receiver would cause harmful interference. Thus

they were able to evaluate the risk of causing harmful interference to the receivers given

various standoff distances, TVBD transmit powers, and signal propagation assumptions. To

be acceptable, the specified transmit power and standoff distance limits needed to produce

a low probability of interference across all possible operating conditions (e.g., rural and

urban, flat and mountainous). Thus the operating limits are necessarily determined by

generally low probability “worst case” operating conditions to achieve an acceptably low

risk of interference.

While the TVWS policy provided for greater geographical sharing than previously ex-

isted, achievable spectrum access gains are still limited by the use of a priori spectrum

access behavior determinations. TVBDs are afforded the ability to access unused spectrum

based on their location, but the decision relies on an a priori process that pre-defines their

behavior (e.g., transmit power) for all time and all locations regardless of actual in situ

spectrum usage and environmental conditions. This practice of creating a single transmit
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power and standoff distance limit to be applied universally to all situations is shown to

be highly inefficient in the following sections. Specifically, it is shown that this a priori

process of establishing universal operating conditions to achieve an acceptable level of risk

necessarily leads to very inefficient spectrum access.

1.2.2 An Analysis of Spectrum Access Limitations

Of fundamental concern to the regulators and operators is avoiding harmful interference,

which is caused by insufficient Signal to Interference plus Noise Ratio (SINR) or Carrier to

Interference plus Noise Ratio (CINR) at the receiver. SINR is given as

SINR =
P ∗rx

P ∗rx,int +N∗
(1.1)

where P ∗rx is the received power of the wanted signal, P ∗rx,int is the received power of the

interfering signal, and N∗ is broadband environmental noise.7,8 To establish a threshold

condition, the lowest acceptable SINR or CINR for interference-free TV or wireless mi-

crophone operation is established. Similarly, a minimum received signal power P ∗rx is de-

termined, which establishes a maximum acceptable interfering signal level P ∗rx,Int from a

TVBD at the TV or wireless microphone receiver.

The maximum transmit power of the TVBD and minimum standoff distance is then

determined by a combination of TVBD service goals and signal propagation. Many of the

performance goals—such as link range and data rate—are functions of the TVBD transmit

power. TVBD transmit power also translates into interference power at the protected user

by

Prx,TV BD = Ptx,TV BD − Lp, (1.2)

7Note that variables annotated with “∗” use a power scale; all others are expressed in decibel (dB) scale.
8For CINR, P ∗Rx and P ∗Rx,Int are the received power of the wanted and interfering carrier signal, respec-

tively.
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where Lp is the signal power loss from the TVBD transmitter to the TV or wireless micro-

phone receiver [7]. Thus for a given interference power limit Prx,int of a protected receiver,

trades can be made between TVBD maximum transmit power and minimum standoff dis-

tance subject to a specified path loss model Lp such that Prx,TV BD < Prx,int.

Path loss, however, depends on signal propagation, which is a random process and

must be treated statistically. The mean path loss is affected by factors including terrain,

foliage, man-made structures, weather (e.g., humidity, rain), and antenna heights of the

transmitter and receiver. In conducting predictive studies, statistical path loss models such

as the Irregular Terrain Model (ITM) are used to account for environmental variations

and uncertainties [6, 35–38] and can produce path loss predictions based on confidence

levels (see Figure 1.8) The general path loss models are augmented with other models for

evaluating specific situations (e.g., cosite interference) along with data from propagation

and interference experiments. Given the results of path loss and interference studies, one

can assess the statistical characteristics of the operating conditions relative to interference

probability, which can be use as a measure of risk (e.g., the 99% confidence in interference-

free operation).

To illustrate, let the probability of interference ΦInt be defined as the probability qint

that the received interfering TVBD signal power Prx,TV BD exceeds the interference power

threshold Prx,int:

ΦInt = Φ(Prx,TV BD ≥ Prx,int) = qint. (1.3)

For a given TVBD transmit power Ptx,TV BD, (1.2) and (1.3) become

ΦInt = Φ(Ptx,TV BD − Lp ≥ Ptx,TV BD − Lp,int) = Φ(Lp ≤ Lp,int) (1.4)

where Lp,int is the minimum path loss such that Prx,int > Ptx,TV BD − Lp,int. The result

in (1.4) therefore states that interference probability can be defined as the probability that

the actual path loss Lp is less than the minimum path loss required to ensure that the
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Figure 1.8: Example path loss as a function of distance for various percentile levels. Pro-
duced from the Irregular Terrain Model.

interfering signal power is less than Prx,int at the protected receiver. Referring to Figure

1.9, it is shown that

ΦInt = Φ(Lp ≤ Lp,int) = qint, (1.5)

where the probability qint can be interpreted as a measure of interference risk. Thus given

some uncertainty about the propagation environment (as well as other factors that will be

addressed in later chapters), one can evaluate the probability (i.e. risk) of interference for

some set of candidate spectrum access behaviors.

Applying these concepts to the TV Whitespace rules provides insights into the issues

and limitations associated with traditional spectrum management. Recall that the TV

Whitespace rules specified a minimum standoff distance and maximum transmit power

based on a priori analyses. To assess the appropriateness of those specifications, Erpek et.

al. [39] conducted a study of the TV White Space standoff distance specification.

The study compared the requisite standoff distance specified by the FCC with sets of
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Figure 1.9: Percentile mapping from an interference path loss threshold value Lp,int to the

exceedance probability P (Lp ≥ Lp,int) = q, where q represents interference risk.

measured data. Path loss data was determined from received signal power measurements

from a transmitter with known power and location. Data was collected from a total of 4094

measurement locations associated with three indoor public venues. The resulting path loss

results are shown in Figure 1.10 with each location indicated by a different color marker in

the graph [39]. The study concluded that the standoff distance could be significantly re-

duced to 131 m—compared with the policy-specified 400 m distance—with zero probability

of interference given the measurement conditions. Thus the model used by the FCC pro-

duced results that were much more conservative than the measured conditions and resulted

in much stricter standoff distances than what could be supported under the measured con-

ditions. Other studies further illustrate the difficulty in applying a priori signal propagation

predictions without knowledge of the specific propagation environment (see e.g., [40, 41]).

The disconnects between model predictions and actual results anecdotally point to po-

tential performance limitations imposed by a priori specification of spectrum access behav-

iors. In specifying behaviors under the current regulatory process, limitations must account

for a range of operating conditions and associated uncertainties. Modeled results reflect gen-

eralized conditions and are not necessarily representative of any specific condition. Their
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Figure 1.10: TV Whitespace path loss data from three wireless microphone venues (provided
courtesy of Shared Spectrum Company.

formulations are based largely upon statistical characterizations of signal attenuation phe-

nomenology [36]. Relying on a priori rather than in situ behavior determination, significant

spectrum access opportunities and efficiencies may be lost. Increasing predictive accuracy

can only occur by an increased understanding (i.e., reduced uncertainty) regarding the in

situ conditions and applying the corresponding inputs to the model.

1.3 Thesis: Probabilistic Reasoning for DSA Systems

The discussions presented here anecdotally demonstrate the inherent reliance of spectrum

access policies and behaviors on risk mitigation. In managing risk, spectrum access efficiency

is necessarily reduced. The extent of that reduction depends upon the amount of uncertainty

present at the time the spectrum access behaviors are determined. The key to increased

spectrum access, therefore, is to establish DSA mechanisms that are able to a) characterize

and assess the levels of uncertainty in the decision-making process, and 2) make those

determinations in situ.
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Regulators must have confidence that the such processes and the systems that use them

are able to reliably operate under uncertainty. Primarily, regulators will need assurance that

the DSA systems can evaluate the interference risks of candidate actions and select those

that are below some specified threshold. Additionally, potential DSA network users must

have confidence that the DSA systems can maintain reliable access to sufficient spectrum

that meets their Quality of Service or Quality of Experience needs.

It is proposed here that DSA systems must be able to characterize and sufficiently man-

age uncertainty and associated risks. Situational awareness must incorporate uncertainty

assessments derived from sets of qualified algorithms and in situ observations to enable

DSA behaviors to be managed according to risk conditions. Polices must also be written

to ensure interference prevention without being overly restrictive. They should govern the

resulting effects that are desired while permitting DSA systems to determine the means by

which those conditions are met. This concept is perhaps best described as risk-constrained

spectrum access, in which spectrum policies specify the minimum interference risk threshold

and DSA systems employ qualified algorithms for assessing risk. Proving that in situ prob-

abilistic reasoning in DSA systems enables greater spectrum access potential than existing

methods is a first step towards such an approach.

The research conducted and presented in this dissertation addresses the hypothesis that

in situ probabilistic reasoning in DSA systems enables greater spectrum access potential

than existing methods. The thesis is based upon the observation that uncertainty charac-

terizations in DSA knowledge represent useful information for situational awareness and

decision-making but are not exploited by any known DSA model. As a result, current ap-

proaches must rely on conservative assumptions and heuristics—generally applied a priori

during policy development—to account for risks associated with uncertainty. As demon-

strated in the TV whitespace example, the result is a loss in spectrum access in the majority

of cases to protect against risks associated with a very small percentage of outcomes. It

is proposed that applying probabilistic reasoning to locally-collected observations regard-

ing the operating environment can reduce situational awareness uncertainty, thus enabling

20



better spectrum sharing assessments and greater spectrum sharing efficiency.

1.4 Research Approach Summary

The thesis is evaluated in two ways. A general argument is made in Chapter 2 that proba-

bilistic reasoning with in situ information provides greater spectrum access efficiency than

current methods that specify operating behaviors from a priori assessments. The line of

reasoning is built upon the characterization of spectrum management in terms of risk man-

agement. It then argues that a priori behavior specifications lead to worst-case spectrum

access efficiency, which can be improved without increasing risk through in situ assessments

of environmental conditions and the application of probabilistic reasoning.

Specifically, they analysis shows that the current process of specifying spectrum access

behaviors (e.g., DSA transmit powers and exclusion zones) during the policy formulation

process limits system performance and spectrum efficiency due to the risk of rare events.

Since regulators and users desire low levels of interference risk (e.g., ≈ 5%), spectrum

sharing policies are driven by low probability events that occur in the tails of a probability

distribution. The operating limits are only efficient when actual conditions correspond

with those associated with the risk threshold, and are by definition inefficient under more

favorable conditions. If risk is set to a low probability such as 5%, then more favorable

conditions exist 95% of the time.

The magnitude of the inefficiency lies with the combination of the low risk threshold

and uncertainty associated with the assessment of spectrum access behaviors. Currently,

spectrum sharing policies specify transmit powers and exclusion zones based on a priori

analysis—that is, analysis conducted at the time of policy specification using generalized

information rather than within the specific context of a specific situation. Because of the

uncertain nature of signal propagation and user behaviors, the analysis contain significant

amounts of uncertainty that are shown in this thesis to increase the magnitude of spectrum

sharing inefficiencies.

The key to minimizing the inefficiency therefore requires a reduction in uncertainty
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regarding the spectrum sharing environment. Specifically, gaining a better estimate of the

path loss between the spectrum users provides the ability to increase spectrum sharing.

Reducing uncertainty therefore requires the ability to establish spectrum access behaviors

using information focused on the specific operating context.

Given the general argument, an inference model that defines logical and mathematical

relationships among information types, information sources, and decision attributes for DSA

communication systems is developed and characterized in Chapter 3. The inference model

builds on well-established communication theory relationship and enables assessments of

performance differences as functions of situational uncertainty and risk.

The inference model uses a form of Bayesian Network called a Functional Causal Model.

It leverages theoretically-based, analytical formulations for awareness and decision process-

ing, which are implemented in a computer-based model for conducting analyses. The core

inference model was derived from a causal interpretation of mathematical models that define

relevant phenomena (e.g., signal propagation). The probabilistic model enables situation-

specific uncertainty characterizations and governs spectrum access according to established

risk thresholds. Specifically, spectrum sharing behaviors are shown to be functions of how

well a DSA system can assess path loss to neighboring spectrum users. Increased levels of

uncertainty lead to decreased transmit power and increased standoff distances between the

DSA and protected users (PUs). Conversely, if a DSA system can improve its estimate of

the path loss (e.g., through spectrum sensing), then it has greater spectrum access potential

without increasing interference risk.

The probabilistic reasoning model is developed into a computer-based simulation that

is used to analyze multiple scenarios in Chapter 4. The analysis addresses eight different

spectrum access conditions categorized into two scenario types. The first category repre-

sents mobile PU conditions, in which significant uncertainty exists regarding the DSA→PU

distance and associated path loss. The second category represents conditions in which the

DSA→PU distance is known with small uncertainty (similar to the TV Whitespace and 3.5

GHz band situations). The results show that the probabilistic reasoning model produced
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increased capabilities when permitted by the updated findings, but also further restricted

them when required. Specifically, capacity, link range, and spectrum access efficiency po-

tential were increased with corresponding increases path loss between the DSA and PU.

The converse held true as well; the metrics indicated lower performance levels under less

favorable operating conditions.

The concepts developed in this thesis enable additional capabilities in spectrum sharing.

Appendix A develops a decision model for DSA based on the probabilistic reasoning ap-

proach in this thesis. Probabilistic decision-making is a natural extension of the probabilistic

reasoning model. The decision model uses utility theory—specifically multi-attribute util-

ity theory—to enable evaluation and choice among alternative DSA actions. Utility theory

provides an axiomatic system of choice evaluation that captures the relationships among

goals, constraints, and uncertainty in a decision-making process. The decision model in-

corporates DSA channel capacity, interference, and monetary cost for spectrum access as

decision attributes into a joint utility function.

The utility function is simulated and analyzed to assess DSA decision behaviors and

trades under a range of spectrum sharing options and degrees of situational uncertainty.

The analyses demonstrate the impact of spectrum usage volatility on preferences between

emerging usage options under the tiered access model. Formulations are developed that

identify the impact of cost and spectrum access uncertainty on decision trades between

General Authorized Access (access without guarantees) and fee-based Secondary Access

(access with guarantees). Analysis also characterizes decision trades between fee-based and

auction-based spectrum pricing, leading to the insight that auction-based pricing incurs

a distinct disadvantage relative to fee-based pricing due to the inherent uncertainty and

pricing volatility.

The underlying probabilistic reasoning model for spectrum access is also applied to a

satellite communications (SATCOM) system in Appendix B. SATCOM systems and net-

works require reliable management decisions for efficient and effective use of SATCOM

resources. High demand on a SATCOM payload increases resource allocation challenges
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and amplifies the impacts of service shortfalls from unforeseen changes in user demand or

service capabilities due to issues such as weather. By applying the probabilistic reasoning

with risk-based assessments, SATCOM operators can assess the impacts of uncertainty on

SATCOM system performance. The probabilistic reasoning method enables the quantita-

tive representation of SA uncertainties and probabilistic reasoning for prediction, planning,

and diagnosis of SATCOM payload performance. Furthermore, it provides the ability to

conduct risk-based decision-making.

Thus the research presented in the following chapters and appendices presents a concept

that has application to many aspects of spectrum usage and sharing. Chapter 2 provides the

foundational argument that current spectrum sharing practices are necessarily and systemi-

cally limited in their ability to provide for effective spectrum sharing. Given the framework

of that assessment, Chapter 3 develops the probabilistic reasoning model, mathematical ba-

sis for risk-constrained spectrum access, and theoretical foundation for assessing spectrum

sharing potential as a function of situational awareness uncertainty. Chapter 4 presents and

analyses simulation results of the concepts developed in Chapter 3, providing insight and

demonstrating the viability of the probabilistic reasoning concept. Appendix A extends the

probabilistic reasoning model with a multi-attribute decision model, enabling DSA systems

to make spectrum access decisions based on multiple decision factors. Finally, Appendix

B demonstrates the application of the probabilistic reasoning model to SATCOM resource

management.
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Chapter 2: A Logical and Mathematical Argument

This chapter provides a generalized logical and mathematical argument1 that in situ prob-

abilistic reasoning can improve spectrum access potential under situational uncertainty.

The argument first establishes the premise that risk mitigation is an essential element in

spectrum management. It summarizes the principles of the spectrum management process

discussed in Chapter 1. It then formulates the basis for uncertainty as the means by which

spectrum access risks can be assessed and defines the relationships among uncertainty, risk,

and spectrum access efficiency. Finally, it shows that context-specific probabilistic reasoning

for DSA systems provides the potential to reduce the assessment of situational uncertain-

ties relative to a priori processes, therefore reducing risks associated with spectrum access

decision-making and providing a corresponding improvement in spectrum access.

2.1 Risk Management Foundations of Spectrum Management

A central function of spectrum management is enabling access to spectrum while mitigating

harmful interference among spectrum users [42]. When a new spectrum user requests access

to spectrum, the spectrum user submits the desired characteristics of its equipment oper-

ating parameters (e.g., frequency band, signal bandwidth, operating locations/areas, and

transmit power) to the spectrum regulators. Those system characteristics are tied to the

goals (e.g., coverage area and data capacity) of the proposed wireless service. Regulators

evaluate the potential impact that the new user and associated service could have on other

spectrum users. To be granted a license to operate, the proposed system characteristics and

associated operations must maintain an acceptable risk level with respect to interference to

1While the argument in this chapter acts as a type of general proof for the thesis, the term “proof” is
withheld because the argument is not structured as a formal proof.
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other users.2

In the assessment process described in Chapter 1, spectrum users and regulators utilize

various analysis tools to conduct interference and performance assessments. Among them

are signal propagation models that predict signal power levels across a geographic area

as they propagate from the transmitter. Propagation models typically include random

processes to characterize the complex interaction between an electromagnetic signal and its

environment [6]. In using these models, regulators are able to assess the likelihood that the

proposed spectrum use will cause harmful interference to other spectrum users. Similarly,

the new spectrum user can determine the likelihood that the proposed spectrum access rules

will provide sufficient coverage area and data capacity.

One prominent propagation model is the Irregular Terrain Model (ITM) [36, 37]. The

ITM is a computer model for RF signal propagation at frequencies between 20 MHz and

20 GHz [36, 37]. It implements the Longley-Rice propagation model [38] and statistical

analyses that incorporate terrain features affecting signal propagation and attenuation.

The computer model was developed by the National Telecommunications and Information

Administration (NTIA) Institute for Telecommunication Sciences (ITS) and is often used in

developing and evaluating spectrum regulations and policies in the U.S. (see e.g., [35]). The

treatment of uncertainty in the ITM provides a convenient framework for understanding

the main aspects of signal propagation uncertainty.

The ITM groups uncertainty in three categories, which are incorporated into the math-

ematical propagation model [36]. The first category is time variability, which reflects long-

term variations (days to years) in signal propagation due primarily to environmental changes

(e.g., foliage). The second category is location variability, which accounts for differences in

signal propagation among communications links having identical characteristics (e.g., link

range and transmitter power) and operating in a similar propagation environment (e.g., ter-

rain features), but with a variation in geographic location. The third and final uncertainty

type is situation variability, which attempts to capture the less tangible aspects of signal

2Other factors–including economic and social benefits and risks–also enter the decision process but are
not addressed here. The primary focus of this effort is on technical aspects related to spectrum access.
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propagation uncertainty and is sometimes referred to as “prediction error”.

The ITM model produces statistical prediction of signal strength loss (i.e., path loss)

as a function of distance using the three variability categories. The probability assessments

are expressed as quantiles, with a given result represented as a joint function A(qT , qL, qS).

This function is interpreted as, “In qS of like situations there will be at least qL of the

locations where the attenuation does not exceed A(qT , qL, qS) for at least qT of the time”

[36]. If the exact locations of transmitter and receiver are known, digitized terrain data are

used to more accurately characterize the path loss rather than use location variability. The

joint function A(qT , `, qS) is then produced where ` represents the specified link conditions

using terrain profile data associated with the specific locations. As potential variations of

the three uncertainty factors are reduced or eliminated, the resulting uncertainty produced

by the model is similarly reduced.

Other scenario-based uncertainty factors may also enter the assessment that are assumed

to be known values used as inputs to the propagation models. For example, path loss is

specified as a function of link range. While the ITM calculates path loss uncertainty for a

specified link range, a DSA system may not know the distances between itself, or it may

only be known only with a significant degree of uncertainty. Similarly, receiver performance

characteristics (e.g., interference rejection) for protected users can vary among equipment

types, manufacturers, and model variants. A probability-based assessment of spectrum

access would need to add these factors into the distribution. Characterizing them as random

variables and allowing them to be grouped into a common fourth category E for the purposes

of this assessment would result in a joint probability function of A(qT , qL, qS , qE).

The methodology for establishing exclusion zones in the 3.5 GHz spectrum sharing rules

provides an example of how spectrum management processes address uncertainty factors

[2, 31]. The 3.5 GHz band built in part on the existing TVWS approach discussed in Sec-

tion 1.2.1 and followed from the PCAST report recommendations [1]. The rules enable

low-powered small cell deployments in frequency bands already in use for other services and
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Figure 2.1: Example 3.5 GHz study exclusion zone confidence contours.

establish exclusion zones to protect radar systems. The NTIA, which manages Federal Gov-

ernment spectrum usage, undertook a study to determine the extent of the exclusion zones

[31]. The model developed for the study involved probabilistic factors associated with the

locations of the small cell user equipment, quantities of users (referred to as “market pen-

etration”), and building characteristics in urban areas. A Monte Carlo simulation process

was used to evaluate signal propagation, resulting in confidence intervals for quantifying

the uncertainty associated with interference potential to the radar. Figure 2.1 presents an

example of the exclusion zone confidence interval contours for a shipborne radar in a par-

ticular location and orientation produced in [31]. Exclusion zones were established at the

95 percent confidence level based on the composite results of all possible shipborne radar

locations and orientations.

As the example shows, spectrum regulators and users assess the risks of the proposed

spectrum usage with respect to the range of uncertainty factors associated with spectrum

sharing. They evaluate spectrum access rules in terms of interference to other spectrum

users as well as the technical and economic viability of the proposed spectrum service. Risk
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can be formally treated by determining the probability of meeting, exceeding, or falling

short of some threshold. In the case of interference, risks can be assessed in the context of

creating unwanted signal power that exceeds some received power level at a given location.

Alternatively, an applicant can assess the probability that the proposed regulations enable

the new spectrum user to achieve some threshold usage capability (e.g., link range, channel

capacity, or populations served). In both cases, risks are used as a basis for making spectrum

access decisions.

2.2 Defining Uncertainty, Risk, and Spectrum Access Effi-

ciency

Before establishing an argument in support of the proposed thesis, a few key concepts need

to be more formally and clearly defined. These concepts—namely uncertainty, risk, and

spectrum access efficiency—are essential in the argument. While they have been treated

anecdotally thus far, they require more formal definitions to ensure clarity in the arguments

made in the following section.

Uncertainty can be defined or quantified using various measures such as entropy or vari-

ance [43,44]. Information entropy as proposed by Shannon [45] has applications in machine

learning [46], which relates to the DSA process of information discovery and classification.

The focus here, however, is on parameter estimation. Thus uncertainty will be characterized

in this study by the variance associated with a probability distribution. The relationship

between uncertainty and variance is a commonly accepted one and is readily connected to

the Bayesian probability and utility theory concepts presented later.

Risk is defined here as the exceedance probability for some uncertain event. As asserted

in the previous section, spectrum management involves risk management. Spectrum access

behaviors such as maximum transmit powers and standoff distances are determined in part

by establishing acceptable probabilities of interference under a range of operating conditions.

As presented in Figure 1.9 of Section 1.2.2, interference risk can be defined as the probability
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q that the power imposed by a DSA system Prx on a protected user will exceed some specified

interference power threshold Prx,int and is defined by

ΦInt = Φ(Prx ≥ Prx,int) =

∫ ∞
Prx,int

φ (Prx) = q. (2.1)

It is similarly shown that interference risk can be expressed in terms of path loss. In this

case, however, interference risk is defined as the probability q that the encountered path

loss Lp is less than a threshold path loss Lp,int and is defined by

ΦInt = Φ(Lp ≤ Lp,int) =

∫ Prx,int

0
φ (Lp) = q. (2.2)

The risk concept can easily be extended to other attributes such as capacity and cost. To

ensure clarity and generality in subsequent discussions, risk will be defined as the probability

q associated some action do(·) produces a result x that violates (i.e, exceeds or falls short

of) some threshold condition xq. The existence of an upper or lower threshold will be made

apparent by the particular attribute x under discussion.

Note that risk as used here differs somewhat from the approach of assessing Value at

Risk (VaR) [47]. VaR is the amount of the parameter at risk, typically within some specified

time period or frame of reference. In the context of interference from spectrum sharing,

VaR would be the magnitude of Prx,int associated with some risk level q. While current

approaches of interference specifications typically use a single threshold value, regulators

could potentially specify degrees of harm associated with a graduated scale of Prx,int thresh-

olds and associated risks q. To maintain consistency with current approaches, the approach

selected here specifies a single interference threshold and associated risk level q.

The final term to be defined is spectrum access efficiency. Qualitatively, spectrum access

efficiency is used here to refer to the difference between the optimal and selected spectrum

access behaviors. The comparison is made relative to the specific situation in which the
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spectrum user operates and in the context of one or more quantifiable dimensions. Individual

measures include link capacity, monetary cost associated with sharing, interference risk, and

link range or coverage area. Aggregate measures are those that assess the overall effects

with respect to group of spectrum users. That category includes network or user density,

which is the number of networks (or users) per unit area. Those metrics will be presented

in Chapter 3 and expressed either in a differential context (i.e., ∆x) or relative context (i.e.,

x2
x1

) to understand general insights across a range of scenarios.

2.3 A Logical Argument

As discussed in Chapter 1, current spectrum access processes produce policies that specify

fixed sets of spectrum access behaviors. The adjective “fixed” refers to the universal nature

of the specifications—such as the standoff distance or maximum transmit power in the

TVWS and 3.5 GHz policy—that are unchanging even if a radio could exceed them without

causing harmful interference to other users. The process of establishing fixed or universally-

applied spectrum access behaviors in order to maintain acceptable levels of risk in uncertain

environments necessarily leads to inefficient spectrum access. It can be illustrated by a

simple reasoning exercise:

1. In establish operating limits, a spectrum access policy must consider all possible con-

ditions χ for which the policy applies (i.e., all times, locations, and situations);

2. Policies establish limits on spectrum access behaviors (e.g., transmitter power, band-

width, and standoff distances) associated with a specified probability of interference,

which can be characterized by a probability threshold q;

3. These operating limits are only efficient when actual conditions χi correspond with

those associated with q, i.e., χi = χq and are necessarily inefficient under more favor-

able conditions χi 6= χq such that χi ≺ χq;

4. Policies necessarily lead to inefficient spectrum access in 1− q percent of conditions.
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That is, by establishing an operating behavior such that some resulting condition x

meets a threshold condition xq subject to some risk q, more favorable conditions occur

with a probability ≈ 1− q;

5. Since in general q � 0.5 to attain low interference risk, this process is necessarily

inefficient in the majority of scenarios. That is, more favorable conditions χi ≺ χq

exist in 1− q percent of situations;

Reducing the magnitude of this inefficiency requires a reduction in the range between

the expected value E[χ] = v̄ and threshold percentile value vq. That is, reducing the uncer-

tainty decreases the variance, which results in a smaller differential between the expected

value and risk quantile and a corresponding increase in spectrum access efficiency. This

assertion depends on the assumption that variance necessarily decreases with decreased un-

certainty. While no universal proof is known to exist to support this claim, Chen et. al.

[48], have developed the sufficient and necessary conditions under which the relationship

holds. Specifically, the following theorem is presented:

“Let X be a random variable with cumulative distribution function F (x). If

F (x) is log-concave on any interval C, then Var{X|X ∈ A} ≤ Var{X|X ∈ B}

for any intervals A ⊂ B ⊂ C.” [48]

The log-concavity condition for many common continuous distributions is assessed by

Bergstrom and Bagnoli [49], showing that many commonly-used distributions fulfill the

criteria. Chen [48] further demonstrates that the sufficient conditions similarly apply to

discrete distributions including unimodal, geometric, and Poisson functions. Therefore, the

arguments made here will be subject to those conditions.

Given those conditions, consider two alternative spectrum access decision processes.3

The first uses only a priori information and analyses to establish acceptable spectrum ac-

cess behaviors. The second process augments the a priori information with in situ obser-

vations and assessments to determine acceptable spectrum access behaviors. Suppose the

3Note that the argument is developed here in the context of DSA systems, but is applicable to any system
with similar processes.
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two decision processes are equivalent in the sense that both will produce the same result

given the same information. Also let both processes be able to sufficiently characterize

their respective state spaces, accounting for all possible states and associated probabilities

of occurrence. Thus the in situ assessments revise the probability assessments of the a piori

process rather than the expansion of the state spaces.4

To construct the general argument, let the decision processes characterize any future

state χi in which a wireless system may operate by a set of attributes. Without loss of gener-

ality, suppose the relevant attributes are time T ≡ {t0, t1, . . . tJ}, location L ≡ {l0, l1, . . . lK},

situation S ≡ {s0, s1, . . . sM}, and environment E ≡ {e0, e1, . . . eN} as presented in Section

2.1. Suppose further that each attribute’s values are mutually exclusive such that only one

value for each attribute can exist for any given state χi. Thus each state can be uniquely

defined as:

χi = {T = tj , L = lk, S = sm, E = en}. (2.3)

Also let each attribute have some non-zero probability of occurring. The probability of each

state χi in the state space χ is therefore a function of the attribute probabilities:

P (χi) = P (T = tj , L = lk, S = sm, E = en). (2.4)

The probability characteristics of the state space χ is then dependent upon the probability

characteristics of the attributes T, L, S,E. The set of all possible relevant operating con-

ditions can be defined as the power set of the attributes, namely χ ≡ {T × L × S × E}.

Applying this construct to the two decision processes, let the first state space χ1 represent

the range of possible future states to be considered under the existing a priori regulatory

scheme, and χ2 represent the range of possible states under the in situ reasoning scheme.

4Note that this argument does not apply to learning processes that include the discovery and introduction
of state spaces not included in the original set [50]. Such learning processes may (although perhaps not

necessarily) lead to better decisions relative to those made with the original (incomplete) state space but
are beyond the scope of this effort.
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As previously discussed, the a priori regulatory model generally must establish risk

thresholds that apply for longer periods of time as well as greater range of locations, situ-

ations, and environments than a system enabled to make in situ assessments. Thus it can

be shown that T1 ⊇ T2, L1 ⊇ L2, and S1 ⊇ S2, which in turn necessarily leads to χ1 ⊇ χ2.

Therefore any possible state considered by the in situ process will be also considered by

the a priori process. Further, the in situ process may eliminate (i.e., apply zero probability

to) one or more states in χ1 based on new information. Given those conditions, it follows

that χ2 ⊆ χ1 and Var{χ1} ≥ Var{χ2} by Chen’s theorem [48]. Thus in situ probabilistic

reasoning in DSA systems enables greater spectrum access potential than existing methods,

which establish operating limits using a priori information.

While a complete accounting of all elements in {T, L, S,E} may be impractical (perhaps

even impossible), it is practical to account for their effects with respect to χ. Consider the

case where χ represents path loss LP (χ). It is infeasible to enumerate all the possible

conditions {T, L, S,E} that belong to χ, but it is quite easy to establish the relevant range

of values for LP (χ) a priori. That is, the uncountably large state space associated with χ

maps to a reasonably small range of relevant values for LP (χ), which can be determined a

priori and in situ. It will be shown later that the same reasoning applies to other relevant

parameters in the DSA reasoning model such as distance and transmit power.

What may be lost with incomplete enumeration of the state space, however, is the accu-

racy of probability valuations associated with the values of LP (χ). By not fully accounting

for the elements of χ, it may not be possible to properly characterize φ(χ). This limitation,

however, provides further support to the proposed hypothesis. A priori assessments gen-

erally must incorporate a larger set of possible state spaces than in situ processes, making

accurate a priori probability assessments more difficult than in situ assessments that con-

sider much smaller state spaces. By beginning with the a priori probability assessment, a

DSA system can refine it with information acquired in situ—eliminating some states and

accounting for a greater percentage of relevant states and thus reduce uncertainty.
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This process of improving estimates by gaining information through observations is well-

studied in estimation theory and in applications such as signal processing and tracking.

The Fisher Information provides a metric for assessing the amount of information that an

observation provides regarding some other parameter [51]. Given some observation x, the

variance of a related (but unobserved) variable θ is given by

Var (θ) = −E

[
∂2 lnφ(x; θ)

∂θ2

]−1

. (2.5)

As the observation x noise (i.e., the variance) decreases, the Fisher Information is increased

and the variance of the estimate of θ is decreased.

In a similar manner, the Kalman Filter provides a means for updating an estimate

given the information associated with an observation [51,52]. The Kalman Filter algorithm

contains a factor often referred to as the “filter gain”, which determines the rate at which

the estimate is updated in response to the measurement. The filter gain is a function of

the measurement and prior estimate error variances. As the measurement error variance

approaches zero, the measurement contains more information and the filter gain increases.

Thus we see another example of how increased information attained through an observation

leads to decreased uncertainty regarding an estimation.

2.4 Summary

The discussion here provides an argument supporting the thesis that in situ probabilistic

reasoning in DSA systems enables greater spectrum access potential than existing methods.

Section 2.1 asserted that risk management is a core element in spectrum management.

Spectrum access behaviors are constrained in large part by acceptable levels of risk, which

can be represented as probabilities that establish confidence levels associated with factors

such as interference. Together with the anecdotes provided in Chapter 1, it is shown that

uncertainty becomes a limiting factor in spectrum access potential. It is demonstrated that
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behaviors established a priori that are associated with a probability q (i.e., risk level of q)

are necessarily lead to inefficient access in 1− q percent of situations. Given that q � 0.5,

inefficient behaviors are established in the majority (� 0.5 percent) of cases.

To increase spectrum access, the uncertainty associated with spectrum behavior deter-

mination must be reduced. Current spectrum practices make a priori determinations, which

entail significant levels of uncertainty due to their application to a broad scope (time du-

ration, geographic extent, and operating environments). DSA systems, however, have the

potential to characterize their particular operating environment and make in situ uncer-

tainty assessments, resulting in potentially reduced levels of uncertainty relative to those

of the a priori process. A logical argument of the thesis is supported by the mathematical

basis and conditions under which the argument holds.

To expound on the argument, the following chapters develop a model that incorporates

probability assessments in the DSA situational awareness and decision process. Chapter 3

establishes a probabilistic situational awareness and reasoning model. It establishes the the-

oretical basis for the model and identifies the formal relationships between uncertainty and

DSA performance. Chapter 4 analyzes the simulation results of the probabilistic reasoning

model in a range of scenarios.
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Chapter 3: A Probabilistic Reasoning Model for Dynamic

Spectrum Access

A DSA probabilistic reasoning model enables a DSA system to characterize risks (e.g.,

probability of causing harmful interference or achieving a user-specified need) derived from

a set of qualified algorithms and imperfect information. The characterization must be such

that—despite the uncertainty—a DSA system can make a valid decision relative to the

specified goals and constraints and adapt its behavior accordingly. That decision may be

to access a particular wireless channel with some set of transmission characteristics or to

withhold a transmission in favor of continued information gathering. Ultimately, the model

must allow a DSA system to evaluate the cause-effect relationships of observable phenomena

and its own actions.

Causality is not only a fundamental characteristic of DSA systems, but is the principle

problem that DSA systems attempt to solve. Specifically, DSA systems attempt to identify

actions that lead to (i.e., cause) the provisioning of sufficient communications capacity while

not creating (i.e., not causing) harmful interference to other spectrum users. Therefore they

need to make assessments about their operating environment based on acquired awareness,

and then use that information to project the potential consequences of alternative actions.

In causal terms, the DSA system is inferring the cause of its observations and then inferring

the effects of prospective interventions (e.g., transmissions) in the operating environment.

Thus the notion of DSA is not possible without the basic assumption of cause and effect—

both in terms of deriving situational awareness from observations and assessing the effects

of prospective actions. Evaluating causes and effects, however, is laden with uncertainty

due partly to limitations on situational awareness and partly due to the inherent stochastic

nature of wireless communications processes. Thus awareness may be characterized by
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imperfect and incomplete information.

One approach for capturing the causal and probabilistic nature of the DSA inference

problem is to use probabilistic Functional Causal Models (FCMs) [53,54] for DSA situational

awareness. FCMs can provide a logical and ontological rigor consistent with accepted policy-

based reasoning methods [32–34] while enabling the ability to reason about cause-effect

relationships and risks associated with potential DSA actions. FCMs can be developed

naturally from well-known functional relationships used in communications theory (e.g.,

signal propagation and detection) to quantify variables and associated uncertainties.

The following section provides an overview of Functional Causal Models, including the

underlying theory and rationale for application to the DSA domain. Section 3.2 then

develops a DSA situational awareness FCM, which is used in Section 3.3 to characterize

the theoretical uncertainty relationships among model parameters applied to a computer

simulation model in Chapter 4.

3.1 Causal inference for DSA systems

Causality among a set of entities or observations implies the existence of an ontological or

structural relationship rather than a mere associative one [53,54]. Associative relationships

can be fully characterized by joint probability distributions and related concepts such as

correlation, likelihood, and conditional independence. Causal relationships, however, re-

quire more than statistical characteristics in defining their interrelationships; they require

concepts such as influence, effect, and explanation that involve an ordering or temporal

relationship such that effect follows cause.

Functional causal inference models indicate the functional cause-effect relationships

among a set of variables. The definition of a (deterministic) causal model Cd is formally

defined [53] as a triple Cd = 〈U, V, F 〉 where

1. U is a set {U1, U2, . . . , Un} of background variables that are determined by factors

outside the model;
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2. V is a set {V1, V2, . . . , Vn} of endogenous variables that are determined by background

and other endogenous variables. Vi is therefore determined by the set of all other

variables, i.e., U ∪ V \ Vi;

3. F is a set {f1, f2, . . . , fn} of functions such that each fi is a mapping from the respec-

tive domains of Ui ∪ PAi to Vi:

vi = fi (pai, ui) , i = 1, . . . , n, (3.1)

where pai are the parents PAi ⊆ V \ Vi of vi. Each fi in vi = fi(pai, ui), i = 1, . . . , n

assigns a value to Vi that depends on the values of a select set of variables in V ∪ U ,

and the entire set F has a unique solution V (u).

A probabilistic causal model Cp follows from the definition of Cd as a pair Cp =

〈Cd, P (u)〉 where P (u) is a probability function defined over the domain of U . The func-

tions fi comprising C (either Cd or Cp) in their general form are sets of equations, which

represent a structural equation model (SEM). The relationships defined by the functions

can represent physical or other well-codified relationships from various domains (e.g., eco-

nomic). Due to the causal nature of the functions, queries representing specific actions or

conditions can be applied to a SEM by fixing the value of one or more variables X = x. In

applying such changes, a submodel is created from the original SEM, which is itself a valid

SEM. Formally, a submodel C(x) is defined in C as C(x) = 〈U, V, Fx〉 such that X ⊆ V , x is

a particular realization of X, and Fx = {fi : Vi /∈ X} ∪ {X = x}. Thus the transformation

between C and C(x) is a modification of F .

As a consequence, a causal model C can be queried to determine the effects of (potential)

actions and explore the characteristics of alternative world states. Pearl [53] defines a causal

calculus around an action “do(X = x)”, which applies a set of alterations to F and produces

Fx. The result is a transformation of C into C(x) via some (minimal) set of alterations.

The calculus of do(·) thus enables queries regarding interventions—“What is the expected
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response of Y due to action do(X = x)?”—and counterfactuals—“Would Y = y in situation

U = u had X been x?” Those types of queries along with predictive capabilities of the causal

network are essential for decision-making.

A Functional Causal Model (FCM) combines the functional relationships of SEMs, the

potential outcome framework, and graphical models for probabilistic reasoning [54]. Con-

sequently, every causal model Cd and probabilistic causal model Cp can be represented as a

directed graph G(Cd) and G(Cp), respectively. Variables of vi = fi(pai, ui) are represented

as nodes, with edges connecting parent and background variables (pai, ui) to endogenous

variables vi. The direction of edges naturally follows the direction of influence, that is from

(pai, ui) to vi. A probabilistic causal model can be represented as a Bayesian Network.

The do(·) operator acts upon the nodes of the graph, affecting the value of the represented

variables and therefore generating sub-graphs to answer queries regarding interventions and

counterfactuals. Note that the edges are not altered (but may be made irrelevant) by the

do(·) operator, thus ensuring that the resulting model is consistent with (i.e., is a submodel

of) the original model.

The modeling and inferential characteristics of causal modeling as presented here sup-

port the awareness and decision-making functions of DSA systems. Key characteristics that

are fundamentally enabling to DSA systems include the following:

1. Formal mechanisms to support DSA decision-making through assessing cause-effect

relationships of candidate actions

2. Formal mechanisms for learning through counterfactual queries and observations fol-

lowing interventions

3. Potentially lower data acquisition requirements

4. Support for spectrum regulatory processes through the use of ontology-based models

with provable logic structures and SEMs built upon accepted engineering methods.

A cause-effect determination is essential for the action-based DSA process, which seeks to

achieve the desired goals through some action. The causal calculus is unique in its ability to
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differentiate between causes and effects; associative (i.e., non-causal) logics can only indicate

degrees of correlation among conditions and symptoms. For example, associative methods

can only determine that the magnitudes of a transmit power Ptx and received power Prx are

correlated; they cannot specify whether Ptx influences Prx or vice versa. Causal methods,

however, encode cause-effect information into the ontological structure derived from the

physical meaning of the SEM, thus allowing the determination of actions and conditions

preceding some event. That is, the logic Ptx → Prx derived from physical principles is

encoded along with the functional relationship Prx = f (Ptx, Lp).

Additionally, the interventional nature of DSA operations requires a formal mechanism

for reasoning about changing environmental conditions. A DSA system is a participant in

the environment that it observes; acting within that environment potentially has a causal

effect on other users and thus changes the nature of the environment. Associative methods

can only establish validity under static environmental conditions or make assumptions of

conditional independence between past and present states [55]. Similarly, DSA systems must

make decisions in dynamic, partially-observable conditions; observations are taken over time

and used to support decisions involving anticipated conditions in some future time frame.

Underlying conditions—spectrum occupancy, propagation conditions, transmitter/receiver

positions—within those two frames can change significantly. Furthermore, a causal approach

is needed to support the function of interacting (e.g., transmitting, collecting evidential data

for greater awareness) with entities in the observed environment and in some cases seeking

to determine the effect of those actions on others (e.g. interference) [56].

Functional causal modeling may also help with DSA learning potential. While learning

is not a necessary function of DSA systems1, performance can theoretically be improved

through better prediction based on learned concepts. Learning may happen through various

DSA methods including passive observations, statistical analysis, observations regarding re-

sponses to interventions, and counterfactual queries. As previously stated, interventional

queries seek to predict the results of actions based on existing (perceived) conditions, where

1A differentiate here between DSA as an adaptive process and learning new concepts as a supplement to
that process.
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counterfactual queries seek to predict the results of actions using hypothetical conditions.

Thus a causal model allows a DSA system to explore the combined effects of conditions, ac-

quired knowledge, and actions on performance and policy compliance in a manner analogous

to the discovery of policy constraints in proposed policy control mechanisms [32–34].

FCMs may also have generally lower observational data requirements relative to associa-

tive models that result from knowledge inherent in causal relationships [57]. Causal models

tend to be sparser as they are often formed by natural processes with well-defined variables

[56]. Lower data acquisition requirements translates to reduced data collection demand and

reduced information processing needs. The timeframe for making decisions in a DSA sys-

tem is dictated by the operating environment; quickly-changing environments require more

rapid decisions to maintain sufficient link capacity and avoid causing harmful interference

to other users. Reduced data collection and processing requirements provide better support

for those conditions than a process with higher data collection and processing burdens.

Support for regulatory compliance is essential for technology implementation in DSA

systems. As discussed in Chapter 1, existing DSA policy reasoning efforts were established

due to the need to ensure regulatory compliance and have generally been viewed favor-

ably by the regulatory community [32–34]. While policy controls deduce the constraints

and permissions specified by the established rules governing spectrum access, they require

a compatible quantitative computing approach for developing strategies. Causal models

representing relevant operational conditions and causal phenomenology provide the ability

to make risk assessments based on acquired awareness that characterize possible in situ

conditions. An FCM approach provides logical inference chains that leverage mathematical

expressions of physical phenomena, ontological information regarding cause-effect relation-

ships, and the inference methods of Bayesian Networks. Chains of probabilistic reasoning

can be built around (and thus gain credibility from) commonly-accepted mathematical rela-

tionships among observational and consequential variables of the model. The causal nature

of the encoded information along with the do(·) calculus enables prediction, intervention,

and counterfactual queries for awareness development.
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The following section presents a conceptual architecture and examples of a causal rea-

soning approach to DSA situational awareness. They are then used for characterizing the

theoretical uncertainty relationships among model parameters in Section 3.3 and to develop

a computer simulation model in Chapter 4.

3.2 Functional causal models for DSA

As previously stated, DSA systems assess the cause of observed phenomena and the effects

of any possible action they wish to take. The effects primarily fall into two categories: the

potential impact to other spectrum users (i.e., interference) relative to established policy

constraints; and the impact to its own performance relative to user goals (e.g., link ca-

pacity). The basis for establishing those assessment models can be built from established

principles and mathematical representations of wireless signal propagation and communica-

tion systems that are widely used by engineers, system designers, and spectrum managers

(see e.g., [6, 7]). Leveraging the probabilistic foundation of communications theory, these

same sets of principles and associated mathematical models can be developed into situa-

tional awareness and reasoning models for DSA systems that are represented as Functional

Causal Models.

Consider first the signal power Prx at some receiver, which (in decibel scale) is the

transmitted power Ptx less the magnitude of the path loss Lp:

Prx = Ptx − Lp. (3.2)

Letting Ptx and Lp be independent random variables, the received power probability distri-

bution conditioned on Ptx and Lp can be defined as

φ (Prx|Ptx, Lp) = φ (Ptx − Lp) . (3.3)

The graphical representation of the resulting received power FCM is given in Figure 3.1a,
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Figure 3.1: Graphical depictions of functional causal models for a) received power, b) SINR,
and c) capacity.

which is formally defined as

G (Prx = 〈U, V, F 〉) for


U ≡ {Lp, Ptx}

V ≡ {Prx}

F ≡ {Prx = Ptx − Lp}

(3.4)

Similar FCMs can be developed for other key parameters such as link capacity, which is

a function of the signal-to-interference-plus-noise ratio (SINR). SINR indicates the relative

proportion of wanted signal power Prx to the total of unwanted signal power Pint (interfer-

ence) and environmental noise N0 integrated over the channel bandwidth W . Interference

arises from other intentional transmitters on the same frequency band and unintentional

signals (e.g., harmonics) generated by RF and electromagnetic devices. SINR is given in

linear scale by

SINR∗ =
P ∗rx

P ∗int +N∗
, (3.5)

where the superscript “*” used here indicates linear scale variables (i.e., power in Watts or
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milliWatts and SINR as a ratio). Using the conversion to decibel scale,

X = 10 log10(X∗), (3.6)

SINR is also given as

SINR = Prx − PI+N (3.7)

where PI+N is the total noise power from the interference and noise given by

PI+N = 10 log10 (P ∗int +N∗) . (3.8)

Note that P ∗int and N∗ are in linear scale and converted from decibel scale using the inverse

of (3.6). The SINR FCM is given in Figure 3.1b and is formally defined as

G (SINR = 〈U, V, F 〉) for



U ≡ {Prx, Pint, N}

V ≡ {SINR,PI+N}

F ≡


PI+N = 10 log10 (P ∗int +N∗)

SINR = Prx − PI+N


. (3.9)

Link capacity C is then found as a function of SINR by

C = W log10 (1 + SINR∗) bits/s (3.10)

where W is the bandwidth of the channel and SINR∗ is a ratio in linear scale. The
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associated FCM is given in Figure 3.1c, which is formally defined as

G (C = 〈U, V, F 〉) for


U ≡ {SINR,W}

V ≡ {C}

F ≡ {C = W log10 (1 + SINR∗)}

. (3.11)

The equations presented above are regularly combined to present various communica-

tions link analyses. The resulting system of equations is by definition a Structural Equation

Model (SEM) as described in Section 3.1. The FCMs from Figure 3.1 can similarly be com-

bined into a larger FCM, such as the one in Figure 3.2 representing a communications link.

The graph definition becomes

G (Link = 〈U, V, F 〉) = G(Prx) ∪G(SINR) ∪G(C)

for



U ≡ {Lp, Ptx, Pint, N,W}

V ≡ {Prx, SINR,C}

F ≡



Prx = Ptx − Lp,

PI+N = 10 log10 (P ∗int +N∗)

SINR = Prx − PI+N

C = W log10 (1 + SINR∗)



(3.12)

The model in Figure 3.2 can be appended with additional elements to extend the model

and include additional concepts. For example, path loss Lp as depicted in the model is

defined as a background variable U and is characterized by factors and an associated model

that are external to the FCM. Alternatively, a path loss model can be included in the FCM

if those variables can be estimated and are important for the DSA reasoning process. Thus

path loss would become an endogenous variable (i.e.,Lp ∈ V ), with the defining parameters
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Figure 3.2: Communications link functional causal model.

added as background variables U .

The model can also be expanded to encompass a larger reasoning process or situational

model. Note that Pint is a received power and can be represented using (3.2) and the FCM

in Figure 3.1. Similarly, the effect of multiple interfering emitters could be modeled and

aggregated into the SINR calculation. The FCM shown in Figure 3.3 illustrates a case with

two interference sources, each using the received power FCM to represent the corresponding

link.

Models can also be combined to represent the cause-effect awareness needed by a DSA

system. A DSA causal model contains three basic components. The first is the impact that

the DSA system would have on a protected user (PU), for which some maximum interference

power threshold may be established. This can be modeled as a propagation path from the

DSA transmitter to the PU receiver G(Prx,D→P ) using (3.2) and the FCM in Figure 3.1a.

The same received power model can also be used for the second component, which is the

impact that the PU signal would have on the DSA receiver in terms of interference power

G(Prx,P→D). The third component is the resulting link performance, which can be modeled

using the G(LinkD→D) FCM shown in Figure 3.2. These three components can be combined
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Figure 3.3: Communications link functional causal model with multiple interference sources.

to create the DSA situational awareness model shown in Figure 3.4, and are defined by

G (DSA = 〈U, V, F 〉) = G(Prx,D→P ) ∪G(Prx,P→D) ∪G(LinkD→D)

for



U ≡ {Lp,D→P , Ptx,D, Lp,P→D, Ptx,P , N,W}

V ≡ {Prx,D→P , Prx,P→D, Prx,D→D, PI+N , SINR,C}

F ≡



Prx,D→P = Ptx,D − Lp,D→P ,

Prx,P→D = Ptx,P − Lp,P→D,

Prx,D→D = Ptx,D − Lp,D→D,

PI+N = 10 log10

(
P ∗rx,P→D +N∗

)
,

SINR = Prx,D→D − PI+N ,

C = W log2 (1 + SINR∗)



(3.13)

48



Figure 3.4: DSA situational awareness functional causal model.

.

The FCM in Figure 3.4 can be directly applied to DSA systems that incorporate sensing.

When a DSA system senses the spectrum, it observes sum of the noise N and any signal that

is present on the channel, which corresponds with PI+N . This sensed power is equivalent

to the signal plus interference term in the SINR equation (3.8).

To illustrate how a DSA system would use the sensing model to gather information

about its local environment, let the DSA system establish its prior beliefs regarding chan-

nel characteristics and the potential users. The prior data may come from a combination of

location awareness via onboard GPS sensors, propagation models of the local environment

as described in Chapter 2, and protected user data derived from regulatory policies and

databases [32–34]. Let spectrum policies provide the users with a specified degree of pro-

tection from interference, as discussed in Chapter 2. Thus the DSA system wishes to use

the prior beliefs and knowledge of regulatory constraints and user goals to determine if it

is able to access the channel at a given capacity level without causing harmful interference
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to any protected user (PU) that may be present.

To evaluate a given communications channel, the DSA system needs to determine its

maximum permitted transmit power Ptx,D,max, which in part establishes the maximum

channel capacity. The maximum transmit power is set by the maximum interference power

Pint at the PU by Φ (Prx < Pint) ≥ q as defined in Chapter 2. Thus, Prx,D→P is set to

Pint and the maximum transmit power is determined by the uncertainty associated with

the path loss Lp,D→P :

Pint = Ptx,D,max − Lp,D→P,q (3.14)

where Lp,D→P,q is the path loss associated with the corresponding risk level q and is defined

as

Φ (Prx,D→P ≥ Pint) =

∫ ∞
Pint

φ (Prx,D→P ) =

∫ Lp,D→P,q

0
φ (Lp,D→P ) = q. (3.15)

With Ptx,D,max defined, the DSA can now refine the channel capacity estimate on the DSA

link. Thus the DSA determines Φ (C|U,Prx,D→P ≤ Pint) where U is the set of background

variables. From a causal perspective, this equates to G (DSA|do(Ptx,D ≤ Ptx,D,max)).

When sensing the RF environment to gain a better estimate of the path loss to the PU,

Lp,D→P , it observes PI+N and infers the path loss posterior probability (Lp,D→P |PI+N )

using Bayes’ theorem

φ (Lp,D→P |PI+N ) =
φ (PI+N |Lp,D→P )φ (Lp,D→P )

φ (PI+N )
, (3.16)

where

• φ (Lp,D→P |PI+N ) is the updated (posterior) path loss probability given the measure-

ment;

• φ (PI+N |Lp,D→P ) is the likelihood distribution of observed power given the prior path

loss probability;
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• φ (Lp,D→P ) is the prior path loss probability distribution; and

• φ (PI+N ) is the measured received power probability.

The FCM would then be updated to G (DSA|PI+N ). The DSA system can then use the

updated graph in determining Ptx,D,max and C as before, giving

G
(
DSA|do

(
Ptx,D ≤ Ptx,D,max|Lp,D→P |PI+N

))
. (3.17)

Note that DSA systems would generate the SA FCM from Figure 3.4 for each channel

it wished to evaluate. A scalable means for creating and managing the FCM is therefore

necessary given that the DSA would want to evaluate potentially hundreds of channels, each

possibly having multiple PUs. To find a solution, first consider that each channel can be

represented independently. Thus the FCM for a given channel such as the one in Figure 3.4

becomes the largest FCM (modulo the number of PUs on the channel). Next, observe that

each FCM contains some repeated subnets, each of which was built from smaller building

blocks—one for each equation in the FCM as depicted in Figure 3.1. It can be seen that

the DSA system can compose large SA models from a relatively small number of subnets.

Multi-Entity Bayesian Networking (MEBN) theory provides a means for composing those

larger models in a way that is ontologically consistent and provably sound with respect to

first order logic and BN theory [58]. With the MEBN approach, the FCMs of Figure 3.1

become MEBN Fragments (MFrags), which are the basic building blocks for the FCM. The

process is analogous to object oriented programming’s use of classes to generate complex

computer models having many objects derived from a small set of class definitions. This

approach will be demonstrated in the simulation model development in Chapter 4 as well

as the satellite communication (SATCOM) model in Appendix B.3.

The following sections analyze a DSA FCM based on the one developed here. Section

3.3 conducts an assessment of the theoretical relationships among the model’s elements with

respect to uncertainty. Chapter 4 implements the FCM in a simulation model and assesses

the ability to reduce situational uncertainty through sensing and thereby improve spectrum
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access performance as argued in Chapter 2.

3.3 Theoretical Characterization and Analysis of DSA Situ-

ational Awareness Uncertainty

The DSA FCM provides the basis for characterizing DSA situational awareness uncertainty.

Specifically, uncertainty associated with the background variables U propagate through the

model and determine the uncertainty associated with key operating conditions such as

interference and capacity. Of particular importance is understanding the impact that path

loss uncertainty between the DSA transmitter and PU receiver Lp,D→P has on DSA SA and

predicted performance.

As shown in (3.14), the path loss Lp,D→P,q determines the maximum transmit power

Ptx,D,max which in turn affects DSA link capacity C. It will also be shown that Lp,D→P,q also

affects the requisite standoff distance and spectrum access density, defined as the number

of wireless networks per unit area.

The following sections develop the theoretical relationships between path loss uncer-

tainty, DSA system behavior and performance bounds, and spectrum access efficiency. Sec-

tion 3.3.1 establishes the theoretical characterization for each variable in terms of its relation

to path loss mean µLp,D→P,q , standard deviation σLp,D→P,q , and risk q. Section 3.3.2 uses

those equations to establish DSA behavior and performance bounds as well as spectrum

access efficiency impacts as functions of changes path loss mean ∆µLp,D→P,q and standard

deviation ∆σLp,D→P,q , which enable assessments in term of uncertainty σ2
Lp,D→P,q

.

3.3.1 Theoretical Characterization of DSA SA Uncertainty

Beginning with the DSA→PU subgraph in Figure 3.4, the signal power that the DSA

transmitter imposes on the PU receiver is given by (3.2). The received power at the PU from

the DSA Prx,D→P represents unwanted power (i.e., interference) and must meet interference
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limits specified by spectrum policies. The mean and variance of Prx,D→P are

µPrx,D→P = µPtx,D − µLp,D→P , (3.18a)

σ2
Prx,D→P = σ2

Ptx,D
+ σ2

Lp,D→P . (3.18b)

Using the risk-constrained spectrum access concept presented in Chapter 2 and further

developed in Section 3.2, a specified risk threshold can be defined in terms of a percentile

q associated with the received DSA power at the PU. The DSA must transmit such that

the received power Prx,D→P at the PU is less than the interference threshold Prx,int with

probability of at least q; that is Φ(Prx,D→P < Prx,int) ≥ q. With Lp = Ptx−Prx, and setting

the DSA transmit power to some maximum permitted value Ptx,D,q, the interference power

constraint (3.15) can be rewritten as

Φ(Lp,D→P ≥ Ptx,D,q − Prx,D→P ) = Φ(Lp,D→P ≥ Lp,D→P,q) ≥ q. (3.19)

For a fixed transmit power Ptx,D,q, the probability distribution of the path loss φ (Lp,D→P )

defines the received power distribution φ (Prx,D→P ) as

φ (Prx,D→P ) = φ (Lp,D→P,q) + Ptx,D,q. (3.20)

Thus φ (Prx,D→P ) is φ (Lp,D→P,q) shifted by an amount equal to Ptx,D,q.

The percentile (i.e., risk) q can therefore be associated with some path loss value

Lp,D→P,q on the probability distribution φ (Lp,D→P ) as specified in (3.14) and (3.15). Specif-

ically, Lp,D→P,q can be expressed in terms of the path loss mean µLp,D→P and some multiple

aq of σLp,D→P by

Lp,D→P,q = µLp,D→P − aqσLp,D→P (3.21)

as illustrated in Figure 3.5.
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Figure 3.5: The relationship between path loss mean µLp , standard deviation σLp , and

interference risk percentile q.

Given (3.14) and (3.21), the maximum DSA transmit power associated with the risk

level q and PU interference threshold Prx,int is then defined as a function of µLp,D→P and

σ2
Lp,D→P

by

Ptx,D,q = Prx,int + µLp,D→P − aqσLp,D→P . (3.22)

Note that this expression directly links the risk-constrained DSA transmit power Ptx,D,q to

the PU interference threshold Prx,int, risk level q, and SA uncertainty associated with the

operating environment. Specifically, Ptx,D,q increases linearly with mean DSA→PU path

loss increases, and is reduced as DSA→PU uncertainty σLp,D→P increases.

With Ptx,D,q defined, the DSA system can assess the potential DSA link capacity C

using the functional relationships defined in (3.13). Capacity is defined as

C = W log2 (1 + SINR∗) . (3.23)

Defining a closed-form solution for µC requires an approximation for the logarithm term.
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The first-order Taylor Series approximation for mean is given as [59,60]:

E [f(X)] ≈ f(µX) (3.24)

The mean of (3.23) can be found as

µC ≈W log2 (1 + µSINR∗) (3.25)

A similar approximation of the variance, however, is not guaranteed to be valid for large

variances [61,62]. A characterization of the impacts of uncertainty will be made empirically

in Section 3.3.2 as well as in the simulation results of Chapter 4.

The SINR∗ mean can similarly be approximated by applying the first order Taylor

Series to (3.13):

µSINR∗ ≈ 100.1µSINR (3.26)

Defining useful expressions for the SINR mean requires several steps. First, let SINR

be defined in terms of Lp,D→P,q by the following derivation:

SINR = Prx,D→D − PI+N

= Prx,D→D − 10 log10

(
P ∗rx,P→D +N∗

)
(3.27)

= Ptx,D − Lp,D→D − 10 log10

(
P ∗rx,P→D +N∗

)
.

Applying the risk constrained transmit power limit given in (3.22) then gives the SINR

function

SINR = Prx,D→P,int + µLp,D→P − aqσLp,D→P − Lp,D→D−

10 log10

(
P ∗rx,P→D +N∗

)
. (3.28)
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The approximation for µPI+N using the first-order Taylor Series approximation (3.24) is

then given as follows:

µPI+N ≈ 10 log10

(
µP ∗rx,P→D + µN∗

)
. (3.29)

The function can be further developed by considering the corresponding means of P ∗rx,P→D

and N∗. For P ∗rx,P→D:

µP ∗rx,P→D ≈ 10
0.1µPrx,P→D , (3.30)

The noise term is similarly found:

µN∗ ≈ 100.1µN , (3.31)

Folding (3.29), (3.30), and (3.31) back into (3.28) provides the SINR mean:

µSINR ≈Prx,D→P,int + µLp,D→P − aqσLp,D→P − µLp,D→D

− 10 log10

(
10

0.1µPrx,P→D + 100.1µN
)

(3.32)

The expression for µSINR in (3.32) can be combined with (3.26) and (3.25) for defining

capacity C as a function of µLp,D→P and σLp,D→P .

The mathematical relations in (3.18) through (3.32) provide a theoretical basis for char-

acterizing and evaluating the impact of uncertainty in the DSA probabilistic reasoning

model proposed in Section 3.2. It is easily shown by inspection of the equations that in-

creases in path loss uncertainty σ2
Lp,D→P

reduce the transmit power (3.32) and consequently

the potential capacity available to a DSA system. The following section builds on this

theoretical basis to quantitatively analyze the impacts and further assess capacity, standoff

distance, and network density impacts.
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3.3.2 Theoretical Analysis of Uncertainty Impacts on DSA

The thesis proposed in Chapter 1 and formulated in Chapter 2 from a theoretical perspec-

tive relies upon the assertion that reduced levels of uncertainty lead to improved levels of

performance (e.g., spectrum access efficiency or user utility) at equivalent levels of risk. This

section provides mathematical support to the thesis by deriving theoretical formulas that

enable quantitative comparisons of relative performance as functions of situational uncer-

tainty. The formulations enable quantitative comparisons of a priori and in situ processes, or

comparisons of imperfect assessments relative to the actual state (i.e., perception vs. truth).

The assessments are specifically conducted as functions of DSA→PU path loss parameters

µLp,D→P and σLp,D→P , which reflects the primary importance of Lp,D→P characterizations

on DSA spectrum access performance. As uncertainty is characterized by the variance (see

Section 2.2), analyses regarding DSA awareness and behavior limits are further provided as

functions of DSA→PU path loss varaince σ2
Lp,D→P

.

The first assessment is the variation of the DSA→PU path loss interference risk limit

Lp,D→P,q as a function of risk q and σLp,D→P . The variation between two conditions or

beliefs can be defined from (3.21) as the difference

∆Lp,D→P,q = Lp,D→P,q,2 − Lp,D→P,q,1

= ∆µLp,D→P −
(
aq,2σLp,D→P ,2 − aq,1σLp,D→P ,1

)
. (3.33)

In this formulation, the change ∆Lp,D→P,q is linear with any difference in the means of the

two conditions. If the means are equivalent, then the change ∆Lp,D→P,q is a function of the

risk q (aq is a function of q) and uncertainties as quantified by σ. Further, if the risk level

remains constant between the two cases, then (3.33) becomes

∆Lp,D→P,q = aq
(
σLp,D→P ,1 − σLp,D→P ,2

)
. (3.34)
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Figure 3.6: Relative path loss ∆Lp,D→P,q change as a function of uncertainty σ2
Lp,D→P

and
aq.

Thus increased uncertainty σ2
Lp,D→P

reduces the path loss limit Lp,D→P,q non-linearly and

in proportion to aq, which is has a multiplying effect as shown in Figure 3.6.2

An assessment of ∆Lp,D→P,q as a function of risk q needs to be made in the context

of the probability distribution. The context-specific variations occur because the mapping

from some path loss value Lp to a risk level q depends upon the probability distribution

characteristics (i.e., distribution type and defining parameters). For the purposes of this

assessment, consider the range of Beta probability distributions shown in Figure 3.7. The

distributions present variations in skewness and dispersion for a set of distribution means

normalized on the range (0,1).

First consider path loss variation as a function of distribution mean and variance. Figure

3.8 illustrates the relative path loss limit Lp,D→P,q as a function of risk q for various σ2
Lp,D→P,q

calculated across the normalized range 0 ≤ Lp,D→P ≤ 1. Note that each series corresponds

to a distribution in Figure 3.7 (left). Figure 3.8 shows that greater uncertainty σ2
Lp,D→P,q

2Note that the use of a common aq in the two cases assumes similarity in the probability distributions
for the two cases. Otherwise aq,1 6= aq,2
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Figure 3.7: Beta pdfs for a range of variances (left) and means (right).

leads to lower estimated path loss threshold Lp,D→P,q for a given percentile q. Thus as

uncertainty increases, the DSA must base its behaviors on increasingly conservative (i.e.,

low) DSA→PU path loss estimates. It also shows the accelerating rate of decrease as

q → 0%. Figure 3.9 depicts path loss variation as a function of uncertainty σ2
Lp,D→P,q

at a

risk level q = 0.99 for various distribution means associated with Figure 3.7 (right). The

data show how skewness imposes a non-linear rate of path loss change.

As defined in (3.22) , the risk-derived path loss Lp,D→P,q determines the risk-constrained

DSA transmit power Ptx,D,q. Thus the variation in maximum transmit power ∆Ptx,D,q can

be derived from (3.22) and (3.33) as:

∆Ptx,D,q = Ptx,D,q,2 − Ptx,D,q,1

= ∆µLp,D→P −
(
aq,2σLp,D→P ,2 − aq,1σLp,D→P ,1

)
, (3.35)

where the assumption is made that the interference power threshold at the protected user

Prx,D→P,q is identical for the two cases. Note that the result for ∆Ptx,D,q is identical to that

of ∆Lp,D→P,q. Thus the variations of ∆Ptx,D,q are identical to those of ∆Lp,D→P,q presented

in Figures 3.6, 3.8, and 3.9. Furthermore, the same characterizations apply to the received
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Figure 3.8: Relative path loss ∆Lp,D→P as a function of interference percentile q for various

Beta probability distributions with mean µLp,D→P = 0.5 and path loss uncertainty σ2
Lp,D→P

.

Figure 3.9: Relative path loss ∆Lp,D→P as a function of path loss uncertainty σ2
Lp,D→P

for

various probability distributions Beta(µLp,D→P , σLp,D→P ).
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DSA signal power Prx,D→D, which is linearly related to Ptx,D by Prx,D→D = Ptx,D−Lp,D→D

as given in (3.13).

Uncertainty Impacts on DSA Capacity Assessments

Prx,D→D in turn affects the DSA link capacity and/or the link distance at which a particular

capacity can be attained. Starting with (3.25), the change in expected capacity µC can be

found as:

∆µC ≈ W
[
log2

(
1 + µSINR∗2

)
− log2

(
1 + µSINR∗2

)]
≈ W log2

(
1 + µSINR∗2
1 + µSINR∗1

)
. (3.36)

To achieve sufficient capacity, most radio systems require SINR � 1 [7, 63–65]. Applying

this condition yields

∆µC ≈W log2

(
µSINR∗2
µSINR∗1

)
. (3.37)

Applying the equation for µSINR∗ from (3.26):

∆µC ≈ W log2

(
100.1µSINR2

100.1µSINR1

)

≈ W log2

(
100.1(µSINR2

−µSINR1)
)

(3.38)

≈ 0.1W log2(10)∆µSINR.

The expression for ∆µSINR can be derived from (3.32). Since the analysis here is

focused on the impact of DSA→PU path loss estimation changes on performance, let all

parameters remain constant across SINR1 and SINR2 except for those related to Lp,D→P .
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The resulting expected SINR difference expression is then

∆µSINR ≈ µLp,D→P ,2 − aq,2σLp,D→P,2 − 10 log10

(
10

0.1µPrx,P→D,2 + 100.1µN
)

−
[
µLp,D→P ,1 − aq,1σLp,D→P,1 − 10 log10

(
10

0.1µPrx,P→D,1 + 100.1µN
)]

≈ ∆µLp,D→P −
(
aq,2σLp,D→P,2 − aq,1σLp,D→P,1

)
(3.39)

− 10 log10

(
10

0.1µPrx,P→D,2 + 100.1µN

10
0.1µPrx,P→D,1 + 100.1µN

)

Under the conditions where a common risk level q is applied, (3.39) further simplifies to

∆µSINR ≈ ∆µLp,D→P − aq∆σLp,D→P − 10 log10

(
10

0.1µPrx,P→D,2 + 100.1µN

10
0.1µPrx,P→D,1 + 100.1µN

)
(3.40)

Thus the capacity change expression in (3.38) becomes

∆µC ≈ 0.1W log2(10)

[
∆µLp,D→P − aq∆σLp,D→P

− 10 log10

(
10

0.1µPrx,P→D,2 + 100.1µN

10
0.1µPrx,P→D,1 + 100.1µN

)]
. (3.41)

To understand the relevant impact of risk and uncertainty on ∆µC in (3.41), consider two

performance bounding cases. For the first case, let noise be the dominant SINR component;

that is N � Prx,P→D. Under this condition, the last term in (3.41) is 0, simplifying the

equation to:

∆µC ≈ 0.1W log2(10)
(
∆µLp,D→P − aq∆σLp,D→P

)
. (3.42)
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For the second case, let Prx,P→D � N . The expected capacity change is then

∆µC ≈ 0.1W log2(10)

[
∆µLp,D→P − aq∆σLp,D→P − 10 log10

(
10

0.1µPrx,P→D,2

10
0.1µPrx,P→D,1

)]

≈ 0.1W log2(10)
[
∆µLp,D→P − aq∆σLp,D→P −

(
µPrx,P→D,2 − µPrx,P→D,1

)]
(3.43)

≈ 0.1W log2(10)
(
∆µLp,D→P − aq∆σLp,D→P −∆µPrx,P→D

)

The PU power received by the DSA system Prx,P→D is given in (3.13), and it can easily be

shown that ∆µPrx,P→D = −∆µLp,D→P for a given Ptx,P . Substituting in (3.43) gives

∆µC ≈ 0.1W log2(10)
(
∆µLp,D→P − aq∆σLp,D→P + ∆µLp,D→P

)
≈ 0.1W log2(10)

(
2∆µLp,D→P − aq∆σLp,D→P

)
(3.44)

Thus the change in expected capacity is approximately bounded by the two conditions:

∆µC ≈


0.1W log2(10)

(
∆µLp,D→P − aq∆σLp,D→P

)
if N � Prx,P→D

0.1W log2(10)
(
2∆µLp,D→P − aq∆σLp,D→P

)
if Prx,P→D � N

(3.45)

The two cases in (3.45) indicate that ∆µC varies (approximately) linearly with changes

in path loss mean µLp,D→P and non-linearly with uncertainty σ2
Lp,D→P

. Specifically, ∆µC

varies approximately 0.1 ln(10) = 0.33 bits/sec/Hz per dB change in the DSA→PU path

loss mean in the noise limited case. However, path loss affects the interference limited case

twice, resulting in an approximate 0.66 bits/sec/Hz per dB change in the DSA→PU path

loss mean. With respect to uncertainty σ2
Lp,D→P

, ∆µC varies in proportion to 0.33∆σ2
Lp,D→P

and 0.66∆σ2
Lp,D→P

for the noise limited and interference limited cases, respectively. The

approximations for the two cases are presented in Figures 3.10 through 3.13 based on the
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Figure 3.10: Expected capacity variation ∆µc as a function of DSA→PU path loss uncer-
tainty change ∆σ2

Lp,D→P
and aq.

Beta probability distributions from Figure 3.7.

Uncertainty Impacts on DSA Link Range and Coverage Area

Situational awareness uncertainty can also impact DSA link ranges or coverage areas, which

can be converted to other relevant metrics such as populations served for a given area. Link

range is a function of transmit power Ptx and signal attenuation (3.4). To compare the

change in transmit power required to attain equivalent receive power levels (and therefore

theoretical capacity) at two different operating conditions, the following relation is estab-

lished:

Ptx,D,1 − LP,D→D,1 = Ptx,D,2 − LP,D→D,2. (3.46)

Signal attenuation varies by environment and numerous estimation models exist [6,66–68].

For analysis here, let the exponential representation be used:

Lp,D→D = −10α log10

(
c

4πfd

)
, (3.47)
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Figure 3.11: Expected capacity variation ∆µc as a function of DSA→PU path loss risk q
and uncertainty σ2

Lp,D→P
.

Figure 3.12: Expected capacity variation ∆µc as a function of DSA→PU path loss uncer-
tainty change ∆σ2

Lp,D→P
and ∆µLp,D→P for N � Prx,P→D.
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Figure 3.13: Expected capacity variation ∆µc as a function of DSA→PU path loss uncer-
tainty change ∆σ2

Lp,D→P
and ∆µLp,D→P for Prx,P→D � N .

where α is the path loss exponent on the DSA→DSA link, d is the distance from the

transmitter, c is the speed of light, and f is the signal carrier frequency. Link distance can

be found as a function of path loss as

dD→D =
c

4πf
10

1
10α

Lp,D→D . (3.48)

The change in link distance as a function of path loss change can be established by consid-

ering the distance ratio defined as

δD→D =
d2

d1
= 100.1α−1(Lp,D→D,2−Lp,D→D,1),

= 100.1α−1(Ptx,D,2−Ptx,D,1). (3.49)
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Figure 3.14: DSA link distance ratio as a function of DSA→PU path loss mean change
∆µLp,D→P and path loss decay α.

Applying (3.35) gives the ratio of maximum DSA link range ratio of the posterior to prior

beliefs:

δD→D,max = 100.1α−1(∆Ptx,D,q) = 100.1α−1(∆Lp,D→P,q),

= 10
0.1α−1

(
∆µLp,D→P,q−aq∆σLp,D→P,q

)
. (3.50)

Note that the formulation assumes a common interference risk q, which allows for a com-

mon value of aq. Figures 3.14 and 3.15 illustrate the change in δD→D,max as functions of

∆µLp,D→P,q and uncertainty ∆σ2
Lp,D→P,q

, respectively, for various values of α.

In a similar manner, the relative area Π = A2
A1

enables a similar assessment of spectrum

access potential in the context of network area coverage. Given Area A = πd2
D→D where

dD→D is link distance and the distance ratio result from (3.50) gives an area ratio of

ΠD→D,max = δ2
D→D,max = 10

0.2α−1
(

∆µLp,D→P,q−aq∆σLp,D→P,q
)

(3.51)
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Figure 3.15: DSA link distance ratio as a function of DSA→PU path loss uncertainty change
∆σ2

Lp,D→P
and aq.

Figures 3.16 and 3.17 illustrate the change in ΠD→D,max as functions of ∆µLp,D→P,q and

uncertainty ∆σ2
Lp,D→P,q

, respectively, for various values of α.

While significant capacity, distance, and area coverage gains due to reductions in un-

certainty may be theoretically possible, achievable gains will be limited by practical limits

on DSA transmit power. Those limits may be imposed by equipment characteristics or by

policy fiat. The benefit of increased SA may then come in terms of decreased standoff dis-

tances (see e.g., the TVWS example from Section 1.2), which results in increased network

density (i.e., more wireless networks per area).

Uncertainty Impacts on Spectrum Access Efficiency

The impact of uncertainty on spectrum access efficiency is somewhat different than the

capacity, link range, and coverage area impacts defined in the prior two sections. The

system behavior metrics presented in the previous two sections result directly from the

allowed (or required) change in transmit power associated with changes in path loss mean

and uncertainty. Spectrum access efficiency as will be defined here, however, is characterized
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Figure 3.16: DSA coverage area ratio as a function of DSA→PU path loss mean change
∆µLp,D→P and path loss decay α.

Figure 3.17: DSA coverage area ratio as a function of DSA→PU path loss uncertainty
change ∆σ2

Lp,D→P
and aq.

69



by the minimum interference-free DSA→PU distance achievable at some specified DSA

transmit power. Thus rather than asking, “What is the maximum possible capacity, link

distance, or coverage area given a change in path loss belief?”, this section asks, “What is the

minimum possible DSA→PU standoff distance and associated spectrum access density?”

For this analysis, suppose that the DSA system wishes to transmit some power Ptx,D.

To avoid causing interfere to a PU having a threshold Prx,int requires a minimum path loss

given by

Lp,D→P,min = Ptx,D − Prx,int. (3.52)

The minimum DSA→PU standoff distance dD→P,min at which Lp,D→P,min occurs depends

upon the propagation environment.

Suppose that some path loss model is used in determining the distance a priori. As with

the link range analysis, let the model be defined as in (3.47). The distance is then given by

dD→P,min =
c

4πf
10−0.1α−1Lp,D→P,min . (3.53)

Once the DSA system attains an updated path loss, the minimum standoff distance dD→P,min

may change. The relative change between prior and posterior can be defined by

δD→P =
dD→P,min,post
dD→P,min,prior

= 10−0.1Lp,D→P,min(α−1
post−α

−1
prior). (3.54)

If the DSA→PU distance is known at the time of the DSA observation, then αprior and

αpost are found by

α =
Lp,D→P,q

10 log10

(
c

4πfd

) , (3.55)

where the prior and posterior values of Lp,D→P,q are used to determine αprior and αpost,

respectively.
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If the distance is not known, then αprior and αpost cannot be found directly. An upper

bound, however, can be used here for analysis. To do so, assume that the observation

leading to the posterior belief in φ(Lp,D→P ) is attributed only to an update in the path

loss model (i.e., α). Thus the belief for φ(dD→P ) is unchanged from prior to posterior. The

relative change in α can then be defined from (3.53) as:

αpost
αprior

=
Lp,D→P,q,post

10 log10

(
c

4πfd

) 10 log10

(
c

4πfd

)
Lp,D→P,q,prior

,

=
Lp,D→P,q,post
Lp,D→P,q,prior

. (3.56)

Solving for αprior and substituting into the relative standoff distance ratio in (3.54) gives

δD→P,min = 10
−0.1Lp,D→P,min

(
α−1
post−

Lp,D→P,q,post
Lp,D→P,q,prior

α−1
post

)

= 10
−0.1Lp,D→P,minα

−1
post

(
1−

Lp,D→P,q,post
Lp,D→P,q,prior

)
. (3.57)

Note that (3.57) represents an upper bound on the standoff distance ratio δD→P,min. If

the posterior updated belief in φ(Lp) results in an update in φ(dD→P ), then the ratio in

(3.56) is reduced, which produces a smaller change in standoff distances. The lower bound

is logically given when all the updated belief in φ(Lp,D→P ) is attributed to an update in

φ(d). Under those conditions, αprior = αpost and it is easily shown from (3.54) that the

standoff distance ratio δD→P,min = 1.

Given the standoff distance ratios in (3.54) and (3.57), the required exclusion zone area

can be determined. Since the standoff distance dD→P,min defines the minimum DSA→PU
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separation, it also defines the radius of the exclusion zone area:

ΠD→P,min =
AD→P,min,post
AD→P,min,prior

= δ2
D→P,min,

= 10−0.2Lp,min(α−1
post−α

−1
prior). (3.58)

The coverage area ratio ΠD → P,min can be used to evaluate changes in potential network

density due to increased geographic sharing. Let each network require a geographical area

A. Density ρ is the number of networks per area, i.e., ρ = A−1 networks per unit area:

Ωmax =
ρmax,post
ρmax,prior

=
Amin,prior
Amin,post

= Π−1
D→P,min = δ−2

D→P,min,

= 100.2Lp,D→P,min(α−1
post−α

−1
prior). (3.59)

In closing out this section, it should be noted that the spectrum efficiency metrics

developed here are approximations designed to provide a first-order analysis. Numerous

path loss models exist that define the change in total signal attenuation (i.e., path loss) as

a function of distance [6,7,66,68–70]. Each is based on a particular set of assumptions and

empirical observations. The one selected in (3.53) provides a convenient representation that

enables an assessment of uncertainty impacts on DSA system performance and spectrum

access. The interpretation of the metrics should be viewed within the correct context.

Specifically, the intent and application of the metrics is threefold:

1. To provide quantitative support to the thesis, illustrating that in situ reasoning pro-

vides the potential for greater spectrum access than existing a priori determinations

2. To approximate the relative magnitude of changes in spectrum access efficiency as a

function of uncertainty regarding DSA→PU path loss.

3. To gain some general insight into permitted DSA system behaviors given sets of beliefs

As first-order approximations, the accuracy of the gains (or loss) magnitudes may not
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immediately translate to achievable performance levels, which are subject to factors such

as equipment limitations (e.g., demodulator capabilities) as well as service-specific factors

associated with the range of wireless users [8, 71–74].

Nonetheless, important insights can be gleaned from the metrics and associated findings

for given scenarios. First and foremost, they are able to distinguish whether a difference

between a prior and posterior belief results in a gain or loss. An increase in path loss at

risk level q (i.e., Lp,D→P,q) means that the DSA can either transmit more power, move

closer to the PU, or some combination of the two. Conversely, a reduction in path loss

Lp,D→P,q means that the DSA must either transmit less power, move further from the PU,

or some combination of the two. Second, the variation of the metrics with their respective

variables such as path loss uncertainty provides insight regarding how they affect the metric.

Some can be understood by direct observation of the various equations; others—particularly

relative changes in metric values between risk levels—may be best understood in the context

of the simulation examples provided in the next section.
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Chapter 4: Simulation and Analysis of DSA the Situational

Awareness Model

A simulation model and associated analyses are presented in this section to demonstrate the

DSA probabilistic reasoning process, illustrate the theoretical foundations developed in the

prior section, and support the thesis. The model is depicted in Figure 4.1 and is principally

Java-based, using the Netica Java API [75] as the basis for BN functionality. Custom Java

code (labeled “FCMNet”) was developed for constructing and managing the FCMs in a

MEBN-like fashion [58].1 FCMNet builds the FCMs from a library of MFrags as described

in Section 3.2 and composes them into a DSA SA FCM. For the purposes of this study,

FCMNet implements only the modular BN composition aspect of MEBN; the ontological

aspects [76,77] are not explicitly modeled as they are easily managed for a BN model of the

scope presented here. JSON-formatted script files are generated from MATLAB code that

defines each node’s prior probability characteristics as well as any observations made by the

DSA system (e.g., sensed PI+N ). The MATAB script generator uses various probabilistic

models of physical world phenomenology such as signal attenuation and fading. The FCM

Analysis module processes the script files, using the FCMNet module for functions such

as instantiating the BN model, applying prior probabilities and observations to nodes, and

querying the BN to extract node probability distributions. FCM Analysis also manages the

creation of data files containing probability distribution statistics of FCM nodes.

The FCM built and analyzed for each of the cases below is shown in Figure 4.2. It is

derived from the DSA SA FCM defined in (3.13). The Netica model excludes SINR and

capacity due to probability distribution accuracy limitations associated with the exponential

1FCMNet was conceived under this effort and funded partly under National Science Foundation Grant
1250521 and United States Air Force Research Laboratories Grant FA9453-15-C-0401.
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Figure 4.1: Simulation model block diagram.

functions required to convert from decibel to linear scale.2 The model enables the core of

the DSA SA FCM to be conducted within the model; calculations of SINR and capacity

are easily conducted outside the model (e.g., using MATLAB).

All scenarios use a common DSA process for in situ situational observation and reason-

ing about the environment. Each scenario begins with a set of prior beliefs that can be

derived from some set of a priori information or analyses. For example, potential PU device

characteristics such as transmitter power levels and receiver interference thresholds can be

extracted from published knowledge bases such as those used for TV Whitespace access

[30]. Propagation environment characteristics can be extracted from a piori assessments or

data from local sensors [78–100]. Once the priors are established, a DSA learning cycle is

initiated. Each cycle contains a sensing period and BN update. Multiple received power

samples are collected within a given sensing window, converted to probability distribution

over the received power levels, and then applied to the DSA SA FCM as an observation of

PI+N (represented by “rxPwr PU DSA tot” in Figure 4.2). The updated beliefs are then

2Netica must discretize the probability distributions at each node. Resulting small estimation differences
are typically negligible with linear transformations between parameters. The exponential function associated
with SINR∗ amplifies the errors.
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Figure 4.2: DSA SA FCM used for simulation and analyses (as depicted in the Netica GUI).

propagated to the other nodes. The resulting posterior probability distributions for each

node are queried and used as prior probability distributions for the next observation-update

cycle. The resulting change in parameter probabilities are then assessed to evaluate the ef-

fect of in situ observations and probabilistic reasoning on DSA system performance and

spectrum access efficiency.

The path loss model used in the simulation includes large-scale propagation effects

as well as small-scale fading. The ITM is used for generating large-scale path loss, and

a Ricean model is used for determining the small-scale fades [6, 36, 37]). ITM inputs are

provided in Table 4.1. Parameter specifications are representative of mobile and fixed-mobile

spectrum usage in a temperate environment with moderate terrain. Site selections are

specified as random placement to indicate that they may either be mobile or not purposely

located to maximize signal strength. The variability parameters tq and lq are specified to

maximally account for all possible location and time variability factors included in the model

[36, 37]). ITM data is generated from q = [0.01, . . . , 0.99] in steps of 0.01 for link ranges of

d = [0.01, . . . , 10] km in increments of 0.01 km; examples for q = [0.01, 0.05, 0.5, 0.95, 0.99]

are shown in Figure 4.3.

Because the DSA system modeled here uses spectrum sensing to provide in situ estimates
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Table 4.1: ITM path loss model parameter settings

Parameter Values

Distance (d) [1, . . . , 10] km
Frequency (f) 556 MHz
Transmitter Height (ht) 3 m
Receiver Height (hr) 3 m
Transmitter Site Selection 0 (Random)
Receiver Site Selection 0 (Random)
Radio Climate 5 (Continental Temperate)
Polarization 1 (Vertical)
Time Variability Quantile (tq) 0.99
Location Variability Quantile (lq) 0.99
Confidence Quantile (sq) [0.01,. . . ,0.99]
Terrain Type 3 (Hills)
Relative Permitivity 15 (Average Ground)
Conductivity 0.005 Siemens/m (Average Ground)
Surface Refractivity 301 (Continental Temperate)

Figure 4.3: ITM path loss data as a function of distance and confidence quantiles q =
(0.01, 0.05, 0.50, 0.95, 0.99)).
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of path loss, sample-to-sample variations in received power that occur due to various signal

propagation phenomenology need to be included. These small-scale variations result from

transmitter-to-receiver geometry changes on the order of a wavelength as well as variations

of reflectors along the signal path [6, 101]. The statistical characteristics of small-scale

fading are typically modeled by Rayleigh, Ricean, or Gaussian distributions. Rayleigh

fading is generally characterized by a signal that has many reflected components without

any one single dominant one. If reflections are minor and a strong signal component exists,

then a Gaussian fading model can be used. If a dominant signal component exists along

with significant reflected power, then the Ricean distribution provides a good model of the

fading characteristics. The Ricean can also be shown to approximate both the Rayleigh

and Gaussian under low and high signal dispersion and is selected as the small-scale fading

model for this study [6, 51,102].

The Ricean distribution is given by

φ(r) =


r
σ2 exp

−(r2+A2)
2σ2 I0

(
Ar
σ2

)
, for A ≥ 0, r ≥ 0

0 for r < 0

(4.1)

where

• σ2 is the total reflection power

• A is the amplitude of the dominant direct component

• I0 is the modified zero-order Besssel function of the first kind (see e.g., [103]).

A common parameter for expressing the ratio of dominant to multipath power is the Ricean

factor K defined as

K = 10 log10

(
A2

2σ2

)
dB. (4.2)

Examples of Ricean probability distributions for several values of K are shown in Figure
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Figure 4.4: Ricean small-scale fading probability distributions for K = [0.3.9.12], σ2 = 1.

4.4. The corresponding fading depths for 1000 samples are shown in Figure 4.5 relative to

the large-scale path loss value derived from the ITM.

It is important to connect the model used here to the framework defined in Sections 2.2

and Section 2.3. Note that the variability and confidence quantiles, link range uncertainty,

and other probabilistic characterizations such as PU transmit power capture the time,

location, situation, and environment uncertainty attributes defining the state space χ =

{T, L, S,E} as presented in Section 2.3. The first three attributes are provided by the ITM

itself; environmental uncertainty encompasses the remaining uncertainty factors included

in the model. The model uses the defined state space, prior probability assessments, and

observations to evaluate the probability of the various state spaces consistent with Section

2.3. Thus the DSA system modeled here falls within the framework of the logical argument

as well as the conditions of Chen’s theorem connecting variance reduction with uncertainty

reduction [48,49]. Demonstrating variance reductions and ties the corresponding effects on

DSA behaviors and spectrum access efficiencies to uncertainty reductions in support of the

thesis.
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Figure 4.5: Ricean fading as a function of time (left) and the corresponding theoretical
probability distribution distribution (right) for K = [0, 3, 6, 12] dB.
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Analyses are provided in the following sections for two scenario categories. The first

category represents a mobile PU environment. It investigates model behavior and parameter

estimation capabilities when significant prior uncertainty exists for the DSA→PU distance

dD→P , path loss Lp,D→P , and PU transmit power Ptx,P . The second category evaluates

FCM capabilities in a situation similar to the TVWS scenario. It models a known PU

transmit power Ptx,P and small uncertainties with respect to the distance dD→P .

4.1 Scenario 1: Unknown PU Location, Transmit Power, and

Path Loss

The first category of scenarios is the most general DSA scenario, in which the PU location,

transmit power, and corresponding DSA→PU are not known. Thus the DSA system must

rely on a priori data to establish initial beliefs for those parameters and use spectrum sensing

with in situ probabilistic reasoning to improve its estimates of the local environment.

The prior DSA→PU path loss probability φ (Lp,D→P ) is derived from ITM data. The

data discussed above is sampled at 1 dB increments along the entire 10 km path in 10

m increments. Given that no PU location is known, a uniform distribution is applied

across all distances. The resulting histogram is normalized, producing the path loss prior

distribution φ (Lp,D→P ) shown in Figure 4.6. The resulting mean and standard deviation

are µLp,D→P = 127.8 dB, σLp,D→P = 13.15 dB.

Other parameter prior beliefs are specified as shown in Table 4.2. The PU transmit

power Ptx,P is specified with equal probability at three possible power levels, providing a

12 dB range between the minimum and maximum values. The distribution represents cases

where multiple transmitter types can be used or the existence of a single transmitter having

variable transmit power. Such data would be made available from a database containing PU

equipment characteristics [1,32–34] . The DSA transmit power Ptx,D prior is given a uniform

distribution, which allocates equal probability accross the range of possible transmit powers

of the selected device. The receiver noise and the DSA→DSA path loss Lp,D→D prior beliefs
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Figure 4.6: DSA→PU path loss prior probability density function φ (Lp,D→P ) and cumula-

tive density function Φ (Lp,D→P ).
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Table 4.2: Spectrum SA model parameter prior belief settings.

Parameter Prior Belief

PU Transmit Power φ (Ptx,P ) U[24,30,36] dBm
DSA Transmit Power φ (Ptx,D) U(0,36) dBm
Noise φ (N) N(-110, 1.5) dBm
DSA-DSA Path Loss φ (Lp,D→D) N(80, 3) dB

are both specified as normal distributions. The noise power distribution models additive

white Gaussian noise (AWGN). Additionally, the Ricean fade model is given by K = 6 and

σ = 2.

At the start of the scenario, the prior beliefs are established in the FCM and propagated

to the endogenous variables (e.g., Prx,P→D, PI+N ). The DSA then senses the spectrum,

taking 1000 samples of the channel. The spectrum sensing observations measure the ag-

gregate received power PI+N . The samples taken during the sensing window are then used

to generate a probability distribution φ (PI+N ), which becomes the noisy observation. The

FCM is then updated to reflect the spectrum observation, updating the prior beliefs of the

other nodes.

Within this general scenario framework, four distinct cases are examined—each de-

fined by the relative difference between the means of the prior and observed sensed power

µPI+N ,prior and µPI+N ,obs, respectively. Scenario 1-1 evaluates a situation where µPI+N ,prior ≈

µPI+N ,obs, providing the ability to directly evaluate the effects of uncertainty reductions ab-

sent any gain or loss from a change in µLp,D→P . Scenario 1-2 investigates the condition where

µPI+N ,obs < µPI+N ,prior, while Scenario 1-3 addresses the condition µPI+N ,obs > µPI+N ,prior.

Scenario 1-4 investigates the condition where the received power is below the noise, i.e.,

µPI+N ,obs < µN .

4.1.1 Scenario 1-1: Equivalent Observed and Expected Sensed Power

Figure 4.7 shows the prior along with the posterior power for the first time step for this

first case. Given the observed power distribution, the FCM beliefs are updated to produce
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posterior uncertainties for the affected nodes. Of primary interest is the effect on φLp,D→P ;

in particular the change in path loss associated with the risk threshold Lp,D→P,q. As can be

seen in Figure 4.8, φLp,D→P changes significantly. The standard deviation is reduced from

13.15 to ≈ 5.4. The distribution also now shows three peaks; each of which corresponds

to one of the PU transmit powers Ptx,P in Table 4.2 with a span corresponding to that

of the sensed power PI+N . The CDF in Figure 4.9 shows that the mean remains largely

unchanged, and it is found that risk thresholds Lp,D→P,q have changed from 104 dB to 120

dB at q = 0.05, and from 89 dB to 120 dB at q = 0.01.

Figure 4.10 illustrates how Lp,q changes over time. The plot shows contours for q =

0.01, 0.05, 0.5, 0.95, 0.99 over the 25 simulation time steps. It is seen that the distribution

changes significantly after the first observation-update cycle and remains approximately the

same for the remainder of the simulation. The mean (q = 0.5) is shown to have little change

in this scenario due to the fact that µPI+N ,prior ≈ µPI+N ,obs. The other percentiles are pulled

closer to the mean due to the reduced variance that resulted from the observation. It can

also be seen that the path loss associated with q = 0.01 and q = 0.05 are nearly equivalent

following the observation.

The results can be used for validating the theoretical relationships derived in Chapter

3. Validation of the priors begins with the exogenous parameters (Ptx,P , Lp,D→P , and N),

using the equations in Section 3.3.1 to derive the theoretical values for the endogenous

parameters (Prx,P→D and PI+N ). The simulation prior values specified in Table 4.3 are

taken directly from the model data files. Validation of the posterior results is performed by

calculating the parameter values in reverse order beginning with the observed PI+N . The

data show close agreement between the simulation results and theoretical expectations.

The DSA→PU path loss belief updates derived from the observations can be used to

assess system performance and spectrum access efficiency impacts as defined in Chapter 3.

The change in risk constrained transmit power ∆Ptx,D,q from (3.35) is defined as:

∆Ptx,D,q = ∆µLp,D→P −
(
aq,2σLp,D→P ,2 − aq,1σLp,D→P ,1

)
. (4.3)
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Figure 4.7: Scenario 1-1 DSA→PU sensed power PI+N prior and posterior PDFs for the
first time step.

Figure 4.8: Scenario 1-1 DSA→PU path loss prior and posterior PDFs.
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Figure 4.9: Scenario 1-1 DSA→PU path loss prior and posterior CDFs.

Figure 4.10: Scenario 1-1 DSA→PU path loss percentiles q = {0.01, 0.05, 0.50, 0.95, 0.99}
as a function of time
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Table 4.3: Scenario 1-1 DSA SA model validation data.

Parameter
Prior Belief Posterior Belief

Theory Simulation Theory Simulation

µPtx,P (dBm) 30.0 N/A 30.0 30.0

µLp,D→P (dB) 127.8 N/A 129.0 129.2

µPrx,P→D (dBm) -97.8 -98.5 -99.0 -98.7

µN (dBm) -110.0 N/A -110.0 -110.0
µPI+N (dBm) -97.5 -98.7 N/A -98.7

Recall from Section 3.3.1 that the terms aqσLp,D→P define the path loss associated with

some risk level (i.e., percentile) q. The values of aqσLp,D→P changed from 24.50 dB to 8.88

dB at q = 0.05, and from 39.50 dB to 9.26 dB at q = 0.01. The values of µLp,D→P,q changed

slightly, from 128.50 to 129.17. Thus the changes in risk constrained transmit power for

Scenario 1-1 are

∆Ptx,D,q =


0.67− (8.88− 24.50) = 16.29 dBm for q = 0.05,

0.67− (9.26− 39.50) = 30.24 dBm for q = 0.01.

(4.4)

The increased transmit power potential is directly applied to (3.41). Normalizing for an

arbitrary bandwidth W gives the change in expected capacity in b/s/Hz:

∆µc ≈


0.1 log2(10)

[
16.29− 10 log10

(
10−9.87+10−11)

10−9.85+10−11)

)]
= 5.8 for q = 0.05,

0.1 log2(10)
[
30.24− 10 log10

(
10−9.87+10−11)

10−9.85+10−11)

)]
= 10.7 for q = 0.01.

(4.5)

While the theoretical capacity gains are significant, the higher range of gains may be

impractical for actual DSA systems due to various channel effects and system design limita-

tions. The increased power ∆Ptx,D,q, however, could enable use of additional DSA system

and service types.

Potential link range increases due to increased transmit power potential enabled by the
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change in path loss are defined by the link ratio given in (3.49) and are found as:

δD→D,max =


101.629α−1

for q = 0.05,

103.092α−1
for q = 0.01.

(4.6)

The corresponding area coverage increase for a DSA network resulting from the increased

power and link range are

AD→D,max =


103.258α−1

for q = 0.05,

106.183α−1
for q = 0.01.

(4.7)

Spectrum efficiency gains can be determined as described in Section 3.3.2 by assessing

the minimum standoff distance with the prior and posterior conditions. In this manner the

prior acts as the a priori assessment while the posterior is the in situ assessment. The ratio

of posterior to prior standoff distances is given as δD→P,min in (3.54), which requires α for

the prior and posterior beliefs. Since distance is not known, (3.57) is used to provide an

estimate. Note that since the prior condition is used to specify the minimum path loss in

this analysis, Lp,D→P,min = Lp,D→P,q,prior. Thus δD→P,min becomes

δD→P,min = 10
−0.1Lp,D→P,minα

−1
post

(
1−

Lp,D→P,q,post
Lp,D→P,q,prior

)
, (4.8)

= 10−0.1α−1
post∆Lp,D→P,q . (4.9)

The standoff distance ratios for the two risk thresholds is then found to be

δD→P,min =


10−1.629α−1

post for q = 0.05,

10−3.092α−1
post for q = 0.01.

(4.10)
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Table 4.4: Scenario 1-1 spectrum access gains from probabilistic reasoning.

Parameter
Prior to Posterior Change
q = 0.05 q = 0.01

∆µLp,D→P,q (dB) 0.67 0.67

aq∆σLp,D→P,q (dB) -15.62 -30.24

∆Ptx,max (dB) 16.29 30.92
∆c (bits/s/Hz) 5.8 10.7

The corresponding area ratios are then found from (3.58) as

ΠD→P,min =


10−3.258α−1

post for q = 0.05,

10−6.138α−1
post for q = 0.01,

(4.11)

with the network density ratios given by (3.59) becoming

ΩD→P,min =


103.258α−1

post for q = 0.05,

106.138α−1
post for q = 0.01.

(4.12)

Table 4.4 provides a summary of Scenario 1-1 results. In this scenario, probabilistic rea-

soning from in situ observations significantly reduces uncertainty in the path loss estimate,

giving the potential for increased link ranges, DSA channel capacity, or spectrum access

efficiencies. Because the prior and posterior mean path losses µLp,D→P,q are nearly identical,

the majority of the changes are a direct result of reduced path loss uncertainty σLp,D→P,q .

4.1.2 Scenario 1-2: Observed Power Lower than Expected

Scenario 1-2 investigates a scenario where the observed power PI+N is less than the prior

estimate. This situation represents a case where signal attenuation is greater than expected,

the PU may be at a further distance or transmitting at a lower power, or some combination.
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Figure 4.11: Scenario 1-2 DSA→PU sensed power PI+N prior and posterior PDFs for the
first time step.

The measured power is as shown in Figure 4.11, with the difference ∆PI+N = −10 dB. This

results in a posterior path loss mean µLp,D→P,q that is less than the prior as shown in Figures

4.12 and 4.13.

Figure 4.14 shows the change in path loss distribution percentile levels over time. As

with Scenario 1-1, the distribution converges to a steady state after the first observation.

This scenario, however, exhibits more frequent small fluctuations between time steps that

found in Scenario 1-1 (see Figure 4.10). The cause of the increased fluctuations is due

to the increased influence of noise N in PI+N due to the weak PU signal Prx,P→D. The

influence of the noise—which fluctuates with each observation as previously described—is

more pronounced at the higher percentiles (q = 0.05, 0.01) where noise begins to dominate

the sensed power.

The various parameters and metrics are calculated as with Scenario 1-1 and presented

in Table 4.5. The change in expected path loss ∆µLp,D→P,q due to the -10 dB difference in

expected vs. observed PI+N is 9.46 dB. The change in uncertainty ∆σLp,D→P,q is comparable

to Scenario 1-1. The cumulative effect of increased path loss mean and reduced variance
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Figure 4.12: Scenario 1-2 DSA→PU path loss prior and posterior PDFs.

Figure 4.13: Scenario 1-2 DSA→PU path loss prior and posterior CDFs.
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Figure 4.14: Scenario 1-2 DSA→PU path loss percentiles q={0.01, 0.05, 0.50, 0.95, 0.99}
as a function of time

Table 4.5: Scenario 1-2 spectrum access gains from probabilistic reasoning.

Parameter
Prior to Posterior Change
q = 0.05 q = 0.01

∆µLp,D→P,q (dB) 9.46 9.46

aq∆σLp,D→P,q (dB) -16.49 -29.95

∆Ptx,max (dB) 25.96 39.42
∆c (bits/s/Hz) 11.2 15.6
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allow for an increased transmit power of ∆Ptx,max = 25.96, 39.4 dBm. The majority of

the difference relative to Scenario 1-1 (∆Ptx,max = 16.29, 30.92 dBm) can be traced to the

difference in ∆µLp,D→P,q between the two scenario, which is ultimately caused by differences

in µPI+N .

As with Scenario 1-1, the increased path loss estimate enables greater capacity, link

range, and coverage area. Similarly, the potential for increased spectral efficiency is greater.

Thus the in situ observations provide for gains in all aspects under this scenario.

4.1.3 Scenario 1-3: Observed Sensed Power Higher than Expected

Unlike the prior scenario where the sensed power was lower than expected, this scenario

evaluates the effects on potential DSA behaviors with the sensed power PI+N is higher than

expected. This situation represents a case where signal attenuation is less than expected,

the PU may be closer or transmitting at a higher power, or some combination of situational

differences. The measured mean power is shown in Figure 4.15 and is 30 dB greater than

the expected. This results in a posterior path loss mean µLp,D→P,q that is approximately 27

dB less than the prior as shown in Figures 4.16 and 4.17 and in Table 4.6.

Figure 4.18 shows the change in path loss distribution percentile levels over time. As with

the previous scenarios, the distribution converges to a steady state after the first observation.

The change in expected path loss ∆µLp,D→P,q due to the 30 dB difference in expected

vs. observed PI+N is -27.38 dB. Interestingly, the change in uncertainty aq∆σLp,D→P,q =

15.34, 28.88 dB is comparable to the prior scenarios. This consistent reduction in uncertainty

regardless of ∆PI+N is due to the low variance of the received power relative to the prior

belief.

The cumulative effect of reduced path loss mean and variance for this scenario exhibit

an interesting effect. At q = 0.05, the 27.38 dB reduced path loss outweighs the 15.34 dB

gain due to reduced uncertainty for a net -12.04 change in path loss. At q = 0.01, however,

the 28.88 dB gain due to reduced path loss uncertainty is greater than the change in the

mean. This latter case results in a 1.5 dB increase in path loss. Thus the DSA system
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Figure 4.15: Scenario 1-3 DSA→PU sensed power PI+N prior and posterior PDFs for the
first time step.

Figure 4.16: Scenario 1-3 DSA→PU path loss prior and posterior PDFs.
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Figure 4.17: Scenario 1-3 DSA→PU path loss prior and posterior CDFs.

Table 4.6: Scenario 1-3 spectrum access gains from probabilistic reasoning.

Parameter
Prior to Posterior Change
q = 0.05 q = 0.01

∆µLp,D→P,q (dB) -27.38 -27.38

aq∆σLp,D→P,q (dB) -15.34 -28.88

∆Ptx,max (dB) -12.04 1.05
∆c (bits/s/Hz) -13.0 -8.5

would need to reduce its power by ∆Ptx,max = −12.04 dB relative to the prior condition

for a policy that specifies the 5% risk threshold, while it could increase it by 1.5 dB or a

policy that specifies the 1% risk threshold.

The different net changes in path loss at the two risk thresholds also creates different

spectrum access efficiency results. At q = 0.05, a greater standoff distance is required in the

posterior case relative to the prior belief. This in turn results in reduced network density

potential. The opposite is found at q = 0.01; standoff distance can be reduced and network

density increased. Thus different DSA system behaviors are generated based on differences

in prior vs. posterior beliefs coupled with differences in risk thresholds.
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Figure 4.18: Scenario 1-3 DSA→PU path loss percentiles q={0.01, 0.05, 0.50, 0.95, 0.99}
as a function of time

The key insight to this outcome is that the probabilistic reasoning model developed

here is able to govern system behaviors according to the in situ conditions. Observations

that call for decreased transmit power and/or increased standoff distance are able to be

identified. These cases that result in greater constraints on DSA system behavior are vital

for spectrum sharing and coexistence. Thus the probabilistic reasoning approach provides

an effective method for establishing efficient spectrum access.

4.1.4 Scenario 1-4: PU Signal Power Less than Noise Power

This fourth and final case under Scenario 1 explores the behavior of the probabilistic rea-

soning model when the received PU signal Prx,P→D becomes exceedingly week. Here the

sensed power is shown in Figure 4.19, which includes noise N as well as the PU signal

component. The mean received PU signal level is µPrx,P→D = −116 dBm, while the average

noise is µN = −110 dBm for a composite µPI+N = −112 dBm and SNR = −6 dB.

Figures 4.20 and 4.21 illustrate the resulting change in path loss belief. Note that

the posterior belief depicted in the figure is the average result. It’s apparent variance is
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Figure 4.19: Scenario 1-4 DSA→PU sensed power PI+N prior and posterior PDFs for the
first time step.

much greater than the prior cases, which is the result of the significant fluctuations in the

distribution mean between samples as can be seen in Figure 4.22. As with Scenario 1-2, the

variations come from the significant influence of N and its associated random characteristics

incorporated into the simulation model. For each sample, however, the variance is on par

with the other cases.

While the metrics in Table 4.7 provide the results in terms of the average of each sample,

they may require adjustment to account for the sample-to-sample variation in µPI+N . Large

swings in Lp,D→P seen in Figure 4.22 (exceeding 10 dB at low percentiles) would cause the

DSA radio to make frequent adjustments to its behaviors (e.g. transmit power) on short

timescales that may diminish the channel’s benefit. Further, the significant variations create

risk that the DSA would cause interference to a PU. Thus the addition of a filtering or

averaging process (e.g., Kalman Filter) for extracting the statistics across multiple sensing

windows may be needed.

As the SNR of the PU signal decreases, it will eventually be overtaken completely by the

noise N . From the theoretical assessment, one would expect the path loss (and resulting
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Figure 4.20: Scenario 1-4 DSA→PU path loss prior and posterior PDFs.

Figure 4.21: Scenario 1-4 DSA→PU path loss prior and posterior CDFs.
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Figure 4.22: Scenario 1-4 DSA→PU path loss percentiles q={0.01, 0.05, 0.50, 0.95, 0.99}
as a function of time

Table 4.7: Scenario 1-4 spectrum access gains from probabilistic reasoning.

Parameter
Prior to Posterior Change
q = 0.05 q = 0.01

∆µLp,D→P,q (dB) 14.88 14.88

aq∆σLp,D→P,q (dB) -16.70 -30.12

∆Ptx,max (dB) 31.58 45.00
∆c (bits/s/Hz) 13.9 18.3
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metrics) to approach ±∞. That condition is comparable to the typical logic employed

in Listen-Before-Talk (LBT) spectrum access schemes: if no detection is made, then the

process concludes that a PU is absent (see e.g., [90,104]). Thus missed detections and very

weak PU signals present problems in those cases.

The DSA FCM, however, may be able to mitigate such cases. For the FCM to produce

a significantly large transmit power, the sensed noise probability φ(N) would need to match

very closely to the noise prior. Even if such a match were to occur, recall that the path loss

has been defined with non-zero probability over a limited range. In this set of scenarios,

that range was determined by the range of path losses that could occur out to 10 km,

which corresponds roughly to a maximum non-zero probability path loss of 170 dB. Any

observation that exceeds that limit would be deemed inconsistent with the model, either

indicating that the model is incorrect or that no signal is present.

Recall, however, that the priors for path loss and PU transmit power were based on a

consistent set of assumptions; the path loss prior φ(LP,D→P ) was specified based on the

PU→DSA distance dP→D over which a DSA sensor would detect a PU transmitting at its

maximum power Ptx,P,max. Thus changes to those exogenous parameters would require that

those priors (which are associated with some model of the world external to the FCM) be

adjusted consistently.

More practically, however, is an interpretation that the maximum path loss specified

for φ(LP,D→P ) is the sensing or awareness horizon of the the DSA. Beyond that horizon,

the DSA can only assume that a PU possibly exists. Thus, it must make it’s decision

based on the limits of φ(LP,D→P ) (and the other exogenous parameters). In this sense, the

probabilistic reasoning model developed here would have an implicit limit on the maximum

DSA transmit power of

Ptx,D,max ≤ Prx,int + max (Lp,D→P ) (4.13)
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4.1.5 Scenario 1 Summary

The analyses of the four Scenario 1 cases provides validation to the theoretical relationships

developed in Chapter 3 and significant insight into the characteristics of the DSA FCM. First

and foremost is the ability of the probabilistic reasoning model to improve the theoretical

performance of DSA. In most cases presented here, the significant reduction in uncertainty

led to increases in performance (e.g., capacity and link range) as well as decreased standoff

distance and increased network density. One case, however, did demonstrate the ability to

improve interference prevention capabilities when updated beliefs indicated that the path

loss was lower than indicated by the prior.

It was further demonstrated that the potential for improved spectrum access efficiency

scales with the difference between the a priori and in situ assessments. Figures 4.23 and

4.24 illustrate the standoff distance ratio δD→P,min and network density Ωmin metrics as

functions of the difference in prior to observed received power for each of the scenarios. It

is found that required standoff distances decreased (i.e., lower δD→P,min) with decreasing

sensed power. Consequently, the potential density of networks increases with decreasing

sensed power. The magnitude of those changes are dependent upon the path loss model

applied. Overall, the results from this scenario support the thesis.

4.2 Scenario 2: Known PU Location

For this set of scenarios, the location of the transmitter is known and the DSA is able to

determine its own position to within ±50 m as illustrated in Figure 4.25. The parameters

from Scenario 1 are used here (see Tables 4.1 and 4.2), with the exception of path loss

φ(Lp,D→P ), which must be re-defined to account for the change in φ(dD→P ). A uniform

distribution with respect to distance is applied to the ITM model within the ranges 350 ≤

dD→P ≤ 450, giving φ(Lp,D→P ) and Φ(Lp,D→P ) shown in Figure 4.26.

As with Scenario 1, the DSA uses the a priori assessments as an initial set of prior

beliefs. It then senses the spectrum and updates its beliefs based on the observations. The
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Figure 4.23: Scenario 1 prior to posterior distance ratio δD→P,min as a function of sensed

power PI+N and α for q = 0.05 (dashed lines) and q = 0.01 (solid lines).

Figure 4.24: Scenario 1 prior to posterior density ratio Ωmin as a function of sensed power
PI+N and α for q = 0.05 (dashed lines) and q = 0.01 (solid lines).
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Figure 4.25: Geometry for a DSA policy with known PU location ± 50 m and 400 m
exclusion zone radius.

Figure 4.26: Scenario 2 DSA→PU path loss prior probability density function φ (Lp,D→P )

and cumulative density function Φ (Lp,D→P ) for distance to PU at 400 m ± 50 m.
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Figure 4.27: Scenario 2 DSA→PU sensed power PI+N prior and posterior PDFs for the
first time step.

posterior beliefs of one observation-update cycle then become the prior beliefs of the next.

The sensed power and resulting path loss beliefs for the four scenarios are shown in

Figures 4.27 through 4.29. Similar to Scenario 1, the corresponding changes in path

loss ∆Lp,D→P,q are proportional to the difference in prior to posterior mean sensed power

∆µPI+N . Additionally, the temporal characteristics of the estimates shown in Figures 4.30

through 4.33. The variances as shown in the figures and in Tables 4.8 and 4.9, however, are

smaller, with risk threshold values ranging from approximately 10–15 dB below the mean as

opposed to 15–30 dB in Scenario 1. Thus the impact of a greatly reduced prior distribution

is seen here.

The spectrum access efficiency metrics δD→P,min and Ωmin are presented in Figures

4.34 and 4.35, respectively. It is observed that—even though distance is known within a

fairly small uncertainty—potentially significant gains can be found for reducing standoff

distances and increasing network density. With the understanding that the data in the

figures likely represent estimates of an upper bound, potential standoff distance reductions

104



Figure 4.28: Scenario 2 DSA→PU path loss prior and posterior PDFs.

Table 4.8: Scenario 2 spectrum access gains from probabilistic reasoning, q=0.05.

Parameter
Prior to Posterior Change

Scenario 1-1 Scenario 1-2 Scenario 1-3 Scenario 1-4

∆µLp,D→P,q (dB) -0.09 9.42 -26.06 27.69

aq∆σLp,D→P,q (dB) -10.08 -10.58 -10.06 -10.02

∆Ptx,max (dB) 10.08 20.00 -16.00 37.71
∆c (bits/s/Hz) 3.3 9.8 -14.0 21.5

Table 4.9: Scenario 2 spectrum access gains from probabilistic reasoning, q=0.01.

Parameter
Prior to Posterior Change

Scenario 1-1 Scenario 1-2 Scenario 1-3 Scenario 1-4

∆µLp,D→P,q (dB) -0.09 9.42 -26.06 27.69

aq∆σLp,D→P,q (dB) -16.00 -15.70 -16.06 -15.35

∆Ptx,max (dB) 16.00 25.13 -10.00 43.04
∆c (bits/s/Hz) 5.3 11.5 -12.0 23.3
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Figure 4.29: Scenario 2 DSA→PU path loss prior and posterior CDFs.

Figure 4.30: Scenario 2-1 DSA→PU path loss percentiles q={0.01, 0.05, 0.50, 0.95, 0.99}
as a function of time
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Figure 4.31: Scenario 2-2 DSA→PU path loss percentiles q={0.01, 0.05, 0.50, 0.95, 0.99}
as a function of time

Figure 4.32: Scenario 2-3 DSA→PU path loss percentiles q={0.01, 0.05, 0.50, 0.95, 0.99}
as a function of time
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Figure 4.33: Scenario 2-4 DSA→PU path loss percentiles q={0.01, 0.05, 0.50, 0.95, 0.99}
as a function of time

on the order of 25–50% are estimated due to the reduction in uncertainty in Scenario 2-

1, which corresponds with the data at ∆PI+N ≈ −1 dB. Thus the data indicate that

a probabilistic reasoning model can produce significant spectrum access efficiency gains in

cases such as the TV Whitespace conditions where location uncertainty is small but path loss

uncertainty persists. It can be shown that the maximum spectrum access efficiency gains—

i.e., minimum δD→P,min and maximum Ωmin—are subject to the maximum risk-constrained

path loss difference ∆LD→P,q,max = LD→P,max−LD→P,q,prior, where LD→P,q,prior represents

the a priori threshold. Specifically, the minimum δD→P,min and maximum Ωmin are given

as

δD→P,min = 10−0.1α−1
post(LD→P,q,prior−LD→P,max) (4.14)

and

ΩD→P,min = 100.2α−1
post(LD→P,q,prior−LD→P,max). (4.15)
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Figure 4.34: Scenario 2 prior to posterior distance ratio δD→P,min as a function of sensed

power PI+N and α for q = 0.05 (dashed lines) and q = 0.01 (solid lines).

Figure 4.35: Scenario 2 prior to posterior density ratio Ωmin as a function of sensed power
PI+N and α for q = 0.05 (dashed lines) and q = 0.01 (solid lines).
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4.3 Summary and Concluding Remarks

The simulations and analyses conducted here provide significant analytical and quantitative

support for thesis. The results demonstrate the ability to establish a probabilistic reason-

ing model that can reduce situational awareness uncertainty relative to a priori assessments

through in situ observation and probabilistic reasoning. The results corroborate the theo-

retical findings and analyses from Chapter 3. They demonstrate the relationships between

path loss uncertainty and permitted system behavior limitations and the ability to govern

behaviors as a function of risk.

With the risk-constrained behaviors, it was shown that aggregate changes in path loss

mean and variance affect DSA behaviors in terms of permitted transmit power determi-

nation leading to corresponding changes in capacity and link range. Changes in spectrum

access efficiency metrics such as standoff distance and network density are similarly affected.

The model demonstrated the correct behavior; increasing capabilities when permitted by

the updated findings and further restricting them when required. Specifically, capacity and

link range potential were increased with corresponding increases path loss; required stand-

off distance and network density were likewise affected. The converse held true as well;

the metrics indicated lower performance levels with path loss estimates were decreased as

predicted by the theoretical assessments in Chapter 3.

Finally, the observations were shown to hold across a range of scenarios. Location

uncertainty affected the extent of the gains achieved with uncertainty reduction, but the

gains were still significant even with low levels of location uncertainty.
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Chapter 5: Research Summary

As wireless demands increase, spectrum sharing techniques are becoming increasingly im-

portant. Research into methods for enabling Dynamic Spectrum Access (DSA) has made

significant progress in many areas and has enabled some spectrum sharing capabilities.

Current and emerging sharing policies, however, are limited in two aspects. First, they use

centralized spectrum access mechanisms to compensate for a lack of trusted interference

mitigation technique in distributed DSA systems. Second, they specify spectrum access

behaviors (e.g., DSA transmit powers and exclusion zones) during the policy formulation

process in advance of a specific operating context, which then potentially limits the behavior

due to the risk of rare events.

Spectrum management can be cast (in part) as a risk management process. In this

context, the current method of a priori behavior specification can be shown as necessarily

and systemically inefficient:

1. In establish operating limits, a spectrum access policy must consider all possible con-

ditions for which the policy applies (i.e., all times, locations, and situations);

2. Policies establish limits on spectrum access behaviors (e.g., transmitter power, band-

width, and standoff distances) associated with a specified probability of interference,

which can be characterized by a percentile threshold q;

3. These operating limits are only efficient when actual conditions correspond with those

associated with q, and are by definition inefficient under more favorable conditions;

4. Given that more favorable conditions occur with a probability 1−q, policies therefore

necessarily lead to inefficient spectrum access in 1− q percent of conditions;
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5. Since in general q � 0.5 to attain low interference risk, this process is necessarily

inefficient in the majority of scenarios;

Reducing the magnitude of this inefficiency requires a reduction in the range between the

mean and threshold percentiles. That reduction requires reducing uncertainty—i.e., reduc-

ing the variance of the underlying probability distribution. Reducing uncertainty therefore

requires the ability to establish spectrum access behaviors using information focused on the

specific operating context.

The research conducted under this effort addressed the thesis that in situ probabilistic

reasoning coupled with policy specifications enables greater spectrum sharing efficiency than

current a priori specification methods. The thesis is supported by theoretically, analytically,

and quantitatively.

Theoretical support comes from the argument in Chapter 2 that in situ uncertainty

assessments can be made within a more focused context than a priori assessment methods.

Thus, the a priori state space χ1 over which probability assessments are made is larger than

that of the in situ process χ2. If the in situ state space is a subset of the a priori state space

(χ2 ⊆ χ1), it can be shown that Var{χ1} ≥ Var{χ2} by Chen’s theorem [48]. Thus theory

shows that in situ probabilistic reasoning in DSA systems enables greater spectrum access

potential than existing methods, which establish operating limits using a priori information.

A probabilistic reasoning model is then developed and characterized in Chapter 3. The

model builds on Pearl’s Causality Theory [53] combined with well-established principles

from communications theory. Viewing the DSA process in a causal context guides the de-

velopment of the resulting Functional Causal Model (FCM), which describes the mathemat-

ical and logical relationships among DSA systems, protected users (PUs), and performance

parameters such as transmit power, interference, and channel capacity. The method pro-

vides two key capabilities. First, it enables in situ assessment of uncertainties based on

local conditions and observations. Second, extends the concept of risk-constrained spec-

trum access—determining spectrum access behaviors based on uncertainty and risk—from

the current a priori process into in situ probabilistic reasoning.
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It is shown through analysis of the underlying mathematical relationships that the prob-

abilistic reasoning method enables DSA system behaviors to be governed by risk thresholds

coupled with uncertainty assessments. Specifically, it is shown that DSA→PU path loss

uncertainty is the fundamental characteristic that determines spectrum access capabilities.

Given that a DSA system must operate at or below some permitted risk level q, spectrum

access behaviors are governed by

Lp,D→P,q = µLp,D→P − aqσLp,D→P .

All relevant DSA spectrum access behaviors, performance parameters, and spectrum effi-

ciency metrics can be expressed as function of path loss uncertainty based on this expression.

It is shown that higher levels of uncertainty σ2
Lp,D→P

result in reduced levels of DSA system

behavior (capacity and link range) and spectrum access efficiency (standoff distance and

network density).

The probabilistic reasoning model is developed into a computer model for simulation

and analysis presented in Chapter 4. The analysis addresses eight different spectrum access

conditions categorized into two scenario types. The first category represents mobile PU

conditions, in which significant uncertainty exists regarding the DSA→PU distance and

associated path loss. The second category represents conditions in which the DSA→PU

distance is known with small uncertainty (similar to the TV Whitespace and 3.5 GHz

band situations). Within each category, the sensed PU power was varied relative to the

prior expectation so as to assess the resulting posterior beliefs and associated changes in

spectrum access behaviors. Using the concept of risk-constrained behaviors, it was shown

that the probabilistic reasoning model produced spectrum access behaviors corresponding

with aggregate changes in path loss mean and variance. The model demonstrated increased

capabilities when permitted by the updated findings and further restricting them when

required. Specifically, capacity and link range potential were increased with corresponding

increases path loss; required standoff distance and network density were likewise affected.
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The converse held true as well; the metrics indicated lower performance levels with path

loss estimates were decreased as predicted by the theoretical assessments in Chapter 3.

Thus the thesis is supported by theoretically, analytically, and quantitatively.

5.1 Applications

The concepts developed in this thesis enable additional capabilities in spectrum sharing.

Appendix A develops a decision model for DSA based on the probabilistic reasoning ap-

proach in this thesis. Probabilistic decision-making is a natural extension of the probabilistic

reasoning model. The decision model uses utility theory—specifically multi-attribute util-

ity theory—to enable evaluation and choice among alternative DSA actions. Utility theory

provides an axiomatic system of choice evaluation that captures the relationships among

goals, constraints, and uncertainty in a decision-making process. The decision model in-

corporates DSA channel capacity, interference, and monetary cost for spectrum access as

decision attributes into a joint utility function.

The utility function is simulated and analyzed to assess DSA decision behaviors and

trades under a range of spectrum sharing options and degrees of situational uncertainty.

The analyses demonstrate the impact of spectrum usage volatility on preferences between

emerging usage options under the tiered access model. Formulations are developed that

identify the impact of cost and spectrum access uncertainty on decision trades between

General Authorized Access (access without guarantees) and fee-based Secondary Access

(access with guarantees). Analysis also characterizes decision trades between fee-based and

auction-based spectrum pricing, leading to the insight that auction-based pricing incurs

a distinct disadvantage relative to fee-based pricing due to the inherent uncertainty and

pricing volatility.

The underlying probabilistic reasoning model for spectrum access is also applied to a

satellite communications (SATCOM) system in Appendix B. SATCOM systems and net-

works require reliable management decisions for efficient and effective use of SATCOM

resources. High demand on a SATCOM payload increases resource allocation challenges
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and amplifies the impacts of service shortfalls from unforeseen changes in user demand or

service capabilities due to issues such as weather. By applying the probabilistic reasoning

with risk-based assessments, SATCOM operators can assess the impacts of uncertainty on

SATCOM system performance. The probabilistic reasoning method enables the quantita-

tive representation of SA uncertainties and probabilistic reasoning for prediction, planning,

and diagnosis of SATCOM payload performance. Furthermore, it provides the ability to

conduct risk-based decision-making.

5.2 Contributions

The research summarized in this dissertation provides several contributions to the existing

body of research regarding spectrum sharing and communications system modeling.

First, the research characterizes the spectrum management process of interference mit-

igation as a risk management process. It recognizes the use of probabilities and confidence

levels in the analyses process and associated models supporting spectrum access policy spec-

ifications. The processes and models essentially seek to characterize the level of risk and

then develop rules that constrain spectrum access behaviors subject to desired risk levels.

This process gives rise to the concept of risk-constrained spectrum access.

Second, the research builds on the risk management aspects to logically show that

existing methods for specifying spectrum sharing behaviors necessarily lead to inefficient

spectrum access. The issue is shown to be systemic and only resolvable if the context in

which behaviors are specified can be limited to those associated with actual operational

conditions.

Third, the research establishes a DSA probabilistic reasoning model that enables spec-

trum sharing subject to situational uncertainty and risk. The model builds on Causality

Theory and wireless communications theory that allows a DSA system to reason about

observations and make corresponding probability assessments regarding potential actions.

The risk-constrained spectrum access concept is applied as a means for governing DSA sys-

tem behaviors. It is demonstrated in theory and simulations that method adjusts behavior
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limits in accordance with uncertainty levels a risk thresholds.

Fourth, the FCM basis of the DSA probabilistic reasoning model can be extended to

complex DSA decision-making and to more general wireless communications problems. Ap-

pendix A extends the DSA FCM developed in this thesis with a multi-attribute utility

model, demonstrating how the probabilistic reasoning model enables greater DSA decision-

making capabilities. Appendix B provides an example of its application to a satellite

communications (SATCOM) system. The modeling technique enables risk-based assess-

ments on parameters other than interference (e.g., channel capacity) and provides a general

mechanism for performance assessment, risk-constrained system management, and decision-

making.

5.3 Summary and Future Research

The research conducted here represents a starting point for further exploration of probabilis-

tic reasoning in DSA and other wireless communications systems. The research established

the fundamental capability to incorporate probabilistic reasoning into spectrum sharing as

a means for improve system performance and overall spectrum sharing capabilities related

to interference prevention and increased spectrum access efficiency. It develops the concept

of risk-based spectrum access, which allows regulators to specify levels of interference risk

thresholds that must be maintained for spectrum access behaviors. Together with situa-

tional uncertainty assessments, the risk thresholds govern DSA system behaviors according

to estimations of operating conditions. Numerous extensions and applications follow from

the results in addition to the decision-making and SATCOM applications presented in Ap-

pendices A and B.

One important area of additional research is the assessment of estimation capabilities.

The research presented in this thesis is based on a DSA system’s perception of the oper-

ating environment. Understanding how well a DSA system can estimate the propagation

environment is critical in evaluating the viability of applying the concept to actual systems.

The model approach assumes the ability to adequately assess important factors such as PU
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transmit powers using data published in regulator databases. The extent to which that

data enables probabilistic assessments of prior distributions affects the difference between

truth and perception and ultimately the effectiveness of the approach.

Within the context of DSA application, the model can be extended to temporal spectrum

sharing. The scenarios evaluated here are principally focused on geographic sharing so that a

relationship can be established with existing and emerging spectrum sharing policies. While

each scenario encompasses multiple observation-update cycles, the assumption is that the

mean signal levels are almost constant across the entire time period. The scenarios model a

dynamic Bayesian Network where the priors of one time step are equivalent to the posteriors

of the previous time step. A dynamic PU signal along with algorithms that predict channel

usage and availability based on observations could be applied. Numerous such algorithms

exist in literature (see e.g. [82, 90,97,105–108]).

Additionally, the model can be extended to multi-channel and multi-user scenarios. A

multi-channel implementation may be more than simply replicating the DSA FCM for each

channel, and may additionally include external process that apply sensing and channel se-

lection strategies to optimize overall spectrum access. Additionally, multi-user scenarios

enable cooperative sensing among collaborative DSA systems, and the process for evaluat-

ing permitted behaviors depends on collectively evaluating the impact that multiple DSA

devices would have on multiple PUs. Some related work can be found in [79,82–96,98,99].
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Appendix A: DSA Decision-Making Under Uncertainty with

Probabilistic Reasoning

Various decision processes can be applied for DSA spectrum access. The most basic is

perhaps the declaration of a channels as “open” or “occupied”, then selecting one that is

“best” among all radios wishing to directly communicate with each other [104]. In the

simplest decision schemes, the valuation of best may be measured by a single parameter

such as maximum transmit power (see e.g., [74,109]), which translates into channel capacity

and link range as discussed in Chapters 3 and 4.

It is more likely, however, that DSA decisions will need to consider multiple attributes

including capacity, interference, and perhaps even monetary cost among others. Therefore a

DSA decision process needs to understand the relative importance of each decision attribute

and how to reach a satisfactory or perhaps even optimal decision. Multi-attribute utility

theory provides the foundation for developing joint utility functions that take into account

multiple decision factors (attributes), each of which captures an essential element of the

objectives and constraints [110]. The decision process evaluates multiple spectrum access

options and selects the one having the greatest overall expected utility.

Probabilistic decision-making is a natural extension of the FCM approach [53]. The

model presented here uses utility theory—specifically multi-attribute utility theory [110]—

to enable evaluation and choice among alternative DSA actions. Utility theory provides

an axiomatic system of choice evaluation that captures the relationships among goals, con-

straints, and uncertainty in a decision-making process.

The decision-making and situational awareness processing functions of a DSA system as

depicted in Figure A.1 would use an FCM as discussed in Chapter 3 and associated queries

in a complimentary manner. The Awareness Processing function would be responsible for

estimating the relevant world state as defined by some FCM containing random variables

and their relationships. A DSA system would directly update observable random variables

through some data acquisition process (e.g., sensing or database access), and counterfactual
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Figure A.1: Conceptual situational awareness and decision-making functional architecture.

queries (‘Would Y = y in situation U = u had X been x?”) could be used to learn from past

observations. Unobserved random variables and higher-order (abstracted) concepts would

be inferred to produce a composite situational awareness defining the DSA system’s belief

about the relevant world state as demonstrated in Chapter 3. The Decision Processing

function would use interventional queries (“What is the expected response of Y due to

action do(X = x)?”) on the acquired information to evaluate possible outcomes and their

expected utilities. The DSA system would select the action do(x) with the greatest expected

utility and inform the situational awareness function of the expected state to be used in

evaluating the next set of observations and actions.

The intent of the overall process is to allow a DSA system to make decisions, which are

choices among a set of options (or actions) that produce consequences (or outcomes) and

are made with the intent of achieving some objective (e.g., channel capacity). In utility

theory, the value or worth of alternative consequences is often placed in a relative rather
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than absolute context. That is, they are ordered according to preference. Furthermore,

decisions may require the use of probability and inference due to uncertainties that exist

regarding inputs to the decision process. As demonstrated in Chapter 3, the output of

the SA model is a set of probability distributions for variables such as channel capacity.

Utility theory uses a decision system comprised of a) a set of one or more attributes and

probabilities comprising the essential elements of the objectives, b) a quantitative model

reflecting the decision-maker’s preferences for and among each of the attributes, and c)

mechanisms allowing the decision-maker to make trades among alternative actions.

At an operational level, DSA systems must place importance on regulatory compliance

for factors such as non-interference with protected users. DSA system users, however, need

to attain sufficient levels of service, such as reliable link capacities and perhaps other mea-

sures of service quality. Additionally, DSA system use may need to make decisions related

to cost such as could occur with secondary sharing and auction-based access. The following

sections identify key principles in defining a DSA decision model, provide a derivation for

a multi-attribute DSA utility function, and illustrate its integration with the SA model of

the previous section for decision-making.

The next section identifies a core set of DSA decision attributes, which are developed

into a DSA utility function in Section A.2. A theoretical assessment of the DSA utility

function is conducted in Section A.3 supported by simulation results in Section A.4.

A.1 DSA Decision Attributes

Establishing a decision model for a DSA system requires sufficient definition of key oper-

ating elements of a DSA system. The elements encompass goals and desired outcomes,

constraints, uncertainties, and preferences for making trades among the goals and optimiz-

ing the outcome among a set of alternative actions. The attributes selected for the decision

model should possess several key characteristics [110]:

• Completeness: The set of attributes must collectively be adequate indicators of the
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degree to which an objective is met. Thus they are comprehensive in that they capture

all the relevant aspects of the objective such that a decision-maker can understand

the mapping between attaining a particular attribute level and achieving the overall

objective.

• Operational: Each attribute must be observable and measureable by the decision-

maker in a manner that supports timely decisions. The set of attributes should enable

alternative actions to be assessed and compared, providing a sufficient degree of ex-

planation to the decision-maker as to the trades to be made among the options. Each

attribute must also enable the incorporation of uncertainty by expressing a probability

or belief measure with each attribute level.

• Decomposable: Where large dimensionality exists in the problem, it should enable

decomposition into manageable sets of tasks.

• Nonredundancy: Attributes should be defined to avoid incorporation of consequences

in more than one attribute.

• Minimal: The set of attributes should be small in number to increase the operational-

ity of the resulting decision model.

Three fundamental goals of DSA systems proposed as attributes for the spectrum utility

model developed here are 1) the availability of sufficient (reliable) wireless channel capacity;

2) avoidance of harmful interference to other spectrum users; and 3) monetary cost (or

profit). The following sections describe the rationale for selecting capacity, interference, and

cost as the attribute set in the spectrum utility. Examples of the attributes are presented

with a focus on their elements and why they (individually and collectively) meet the desired

criteria.

A.1.1 Capacity

A primary goal of a DSA system is to provide the user with a desired degree of information

carrying capacity. That capacity goal comes with several qualifiers such as reliability and
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duration. Capacity also has a direct impact on other aspects of system performance such

as latency. Thus capacity for a given amount of time is the goal and factors indicating how

the capacity is achieved (e.g., bandwidth, power, and duration) as well as quality of service

(QoS) characteristics are elements of the capacity attribute. The trade space within each of

those elements define constraints upon capacity and can be used to qualify viable options.

The capacity formulation as defined by (3.10) provides a basic view of expected capacity

and can be expanded to account for other essential factors in DSA system operation. For

example, the DSA system may wish to understand the total data that can be transferred,

which is the capacity integrated over time, e.g.,
∫
tC(t)dt. The DSA system may also include

other factors affecting throughput such as overhead from reliability mechanisms (e.g., error

correction coding, retransmission). Detailed models can be developed for various protocols

and combined with channel capacity to either determine a) the resulting throughput offered

to the user for a given spectrum usage option, b) the capacity characteristics needed to meet

a specified level of user throughput, c) or the quality of service that can be provided to data

flows and applications. Those capacity-related concepts would be reflected as augmentations

to the DSA FCM shown previously in Figure 3.4. Thus capacity in some form provides

extensive insight for extent to which spectrum use opportunities meet user data transport

needs.

A.1.2 Interference

The second metric of interest for DSA operation is the effect on other spectrum users.

Several interference metrics have been proposed in literature, including interference tem-

perature, increased error rates, reduced coverage areas, and outage times [5, 109, 111–113].

The appropriate metric depends on technical and regulatory considerations and must cor-

relate with interference effects on the protected system. Metrics could include energy into

a receiver, signal structures (e.g., harmonics), relative frequency spacing of signals, proto-

cols (e.g, media access control, error correction coding), time (durations and rates), and
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application responses to disruptions (e.g., radar detection range loss, increased data re-

transmissions).

One primary issue shared among all interference monitoring techniques is difficulty in

establishing DSA system awareness of the interference potential at any given physical lo-

cation. Any RF device has a limited ability to accurately determine spectral energy at a

distance. Furthermore, interference results from the aggregated power from multiple sources;

thus DSA interference assessments or policies must account for possible emissions from mul-

tiple RF sources in determining the allowable transmission power characteristics. Remote

measurement and reporting of interference via a dedicated sensor network, feedback from

an affected user, or from other devices [78–100] can increase the accuracy of energy esti-

mates and account for energy from all RF sources, but implementation complexity imposes

engineering challenges and system costs.

Nonetheless, managing signal levels and avoiding harmful interference is a fundamental

requirement for a DSA system. The specific FCM attribute used for the decision model will

be Prx,D→P , which is the signal power that the DSA imposes on the PU.

A.1.3 Monetary cost

The broad scope of economic considerations for DSA spans all facets of system develop-

ment and operation including costs for device and infrastructure development, regulatory

compliance, and spectrum leasing [20, 114, 115]. While all three of those factors are inter-

connected, the focus here is on economic elements influencing in situ operational trades

among various decisions. The type of cost model desired here relates to the cost that a user

would be required to pay for access. Thus system costs such as infrastructure costs are not

relevant to the decision process once a particular spectrum access model and system design

are implemented.

Under the emerging tiered access concept being developed for the 3.5 GHz sharing rules

(see Figure 1.7), DSA systems may incur varying costs for accessing spectrum on a sec-

ondary basis [2]. Some portions of the spectrum will have free access while others may
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require payment for access, perhaps with contractual guarantees of quality in return for

payment. Peha and Panichpapiboon [115] point out that spectrum quality guarantees are a

fundamental motivation for users to pay for secondary access rather than utilize uncoordi-

nated access with no QoS guarantees. Other contractual guarantees such as access duration,

transmit power, and channel bandwidth are other likely elements of any secondary sharing

agreement. The DSA user could then make trades between coordinated and uncoordinated

access based on cost versus benefit. Thus a DSA system would reasonably need to make

preference judgments that include monetary cost.

Three alternative spectrum sharing options result from the mix of access guarantees and

access pricing models:

1. Access at no cost. Access to spectrum is provided at no cost similar to existing ISM

bands used for 802.11 systems. Access mechanisms will most likely be uncoordinated,

but regulators could impose a lightweight coordination protocol or common etiquette

to ensure fair access. No quality guarantees would exist other than those that result

from regulatory constraints for fair access.

2. Auction-based pricing. Secondary users compete for access from spectrum brokers by

placing bids for spectrum resource guarantees (e.g., bandwidth and transmit power).

3. Fixed pricing. Spectrum providers use defined pricing models that are known to users

in advance.

Several common pricing aspects exist for the latter two . Principally, spectrum providers

would seek to maximize profit while spectrum users would seek to minimize cost [20, 115,

116]. It’s reasonable to expect spectrum cost models to specify a minimum price with

real-time prices determined in accordance with spectrum supply and demand [117]. Fur-

thermore, it is reasonable to expect that the service agreements established via auction

or fixed pricing are legal contracts that define the constraints imposed on the secondary

user (e.g., bandwidth, duration, transmit power) of the lease as well as spectrum quality

guarantees from the provider (e.g., maximum interference levels that secondary users could
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incur). Practical pricing models would likely incorporate bandwidth, duration, spectrum

quality, spectrum availability (supply v. demand), and transmit power. While conceptually

discussed in literature, a spectrum pricing model covering that scope, however, is not yet

established [115–117].

A greater understanding of DSA users’ attitudes toward cost in relation to capacity and

interference will help better define cost utility functions, but is not a prerequisite for creating

a general model to demonstrate the fundamental concepts. Moreover, the spectrum utility

model developed here can be used to further an understanding of DSA users’ attitudes

toward cost and impact on trades among various spectrum access and cost models.

Whereas capacity and interference are explicitly modeled in the DSA FCM from Figure

3.4, monetary cost is not. Cost could easily be integrated into the model. For example,

suppose a rate-based cost (cost per unit time) is established as a function of DSA transmit

power P channel bandwidth W , as well as guarantees regarding interference levels Pint from

other spectrum users. Such a model would be represented as

G (M = 〈U, V, F 〉) for


U ≡ {Ptx, Pint,W}

V ≡ {M}

F ≡ {M = f (Ptx, Pint,W )}

(A.1)

and shown in Figure A.2.

If cost is a linear function of Ptx,D, W , and Prx,P→D, with associated cost rates m1

$/dBm, m2 $/Hz, and m3 $/dBm, the cost M can be expressed as

M = m1Ptx,D +m2W +m3Prx,P→D. (A.2)
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Figure A.2: Spectrum sharing cost functional causal model.

The mean and variance µM and σ2
M are given by

µM = m1µPtx,D +m2W +m3µPrx,P→D (A.3a)

σ2
M = σ2

Ptx,D
+ σ2

Prx,P→D (A.3b)

for a known bandwidth W . Ptx,D is a controlled variable in that the DSA system evaluates

each option by do(Ptx,D), so the mean here is simply Ptx,D with no variance, which is defined

in terms of path loss characteristics and the PU interference threshold in (3.22).

A.1.4 Further Attribute Considerations

Capacity, interference, and monetary cost provide a set of attributes for a spectrum utility

model that capture the fundamental elements of DSA operation. Together, the attributes

generally meet the criteria for attribute selection. Interference monitoring presents some

operational challenges but is a primary metric for assessing a DSA system’s impact on

other spectrum users. Furthermore, uncertainty models can be developed for the attributes

as discussed above and shown in Sections 3.2 and 3.3. The set of attributes is certainly

manageable and will be shown to impose little complexity.

The completeness of the proposed attributes in comprehensively characterizing all rele-

vant decision-making attributes may vary by user or application. Some users may wish to

include other attributes relevant to a particular DSA system implementation, architecture,
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or usage. The attributes propose here, however, do provide sufficient insight in assessing and

characterizing the use of the FCM and multi-attribute decision-making for DSA systems.

A.2 Defining a Spectrum Utility Function

Each of the three attributes correlates to a distinct utility in the DSA decision process.

Collectively they create a set of potentially conflicting objectives, requiring a joint utility

function that defines trades among them and produces a joint utility assessment. This

section identifies the relevant characteristics of the individual utility functions and derives

the joint utility function as a multi-attribute utility function built upon the three individual

utility functions.

A.2.1 Spectrum Utility Function Derivation

Determining the form of the joint spectrum utility function requires an understanding of

the relationships among the attributes as well as insight into desired behavior of the joint

utility function. Principle among the attribute relationships is utility independence, which

is a necessary and sufficient condition for establishing a joint utility function composed of

individual utility functions [110]. If two attributes are mutually utility independent, then

individual utility functions established over each attribute can be combined to generate a

joint utility function. Defined formally, attribute X is utility independent of attribute Y

when conditional preferences for lotteries on X do not depend upon the particular value Y .

As an example utility independence assertion, the relative preference of capacity levels for

a radio or user is based on the ability to fulfill throughput demand and does not vary based

on a given cost or interference potential. Similar utility independence assertions are made

for the other attributes.

While those conditions are necessary for mathematical consistency, other constraints are

needed from the DSA context to ensure logical consistency. Specifically, it is necessary that

the joint utility function have a non-zero value if and only if all of the individual utilities

are non-zero. A spectrum utility value of 0 must be found if either the expected capacity is
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insufficient, expected interference levels are too high, or expected costs are unacceptable.

A multi-attribute utility function with mutual utility independence as asserted here can

be shown to have the form

ku(x) + 1 =
n∏
i=1

[kui(xi) + 1] (A.4)

where u(x) is the joint utility function and ui(xi) are marginal utility functions for xi ∈ X

[110, 118]. The marginal utility functions are defined as ui(xi) = u(xi, x
0
¬i), which means

that ui(xi) is evaluated with all attributes x ∈ X except xi set to their minimum utility

values x0. According to the desired constraints, the joint utility function must exhibit the

characteristic:

ui(x
0
i )⇒ u(x) = 0. (A.5)

That is, the joint utility u(x) = 0 when any of the individual utilities ui(xi) = 0. Evaluating

(A.5) under the specified conditions of u(xi, x
0
¬i) yields

1 = kui(xi) + 1. (A.6)

But ui(xi) cannot be 0 everywhere, and the multiplicative form of (A.4) is conditioned

upon k 6= 0. The result in (A.6) indicates the existence of a “null condition” such that

the decision-maker is indifferent to the values of the complimentary attributes when one or

more of the other attribute values is x0
i [118].

To continue the derivation, a reversal can be applied [118] such that u(x0
i ) = 1, u(x1

i ) = 0,

and k = −1. The joint utility function u(x) also takes on the same reversal. Applying the

constraint of (A.5) with the reversal now gives

u(x0
i ) = 1⇒ u(x) = 1. (A.7)
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Applying the constraint as before produces the desired result

[1− u(xi, x
0
¬i)] = [1− u(xi)]

∏
j∈¬i

[1− uj(x0
j )] = 0. (A.8)

The resulting utility function is now given by the multiplicative form of (A.4) with k = −1:

1− ku(x) =

n∏
i=1

(1− kui(xi)) (A.9)

With k < 0 the substitution u
′
(x) = −[ku(x)+1] can be applied [118], which gives the final

form

u
′
(x) =

n∏
i=1

u
′
i(xi). (A.10)

The preference ordering can also be expressed in the more traditional frame of u
′
(x0
i ) =

0, u
′
(x1
i ) = 1.

For the decision attributes used here—capacity C, interference I, and monetary cost

M—the joint utility function becomes

u(C, I,M) =
∏

i=C,I,M

ui(xi) = uC(c)ui(I)uM (m). (A.11)

The form of the resulting function matches intuition, which is supported by formal decision

and preference theory. The joint utility is 0 if any of the individual attribute utilities is

0. Thus if interference potential is unacceptably high for a given action, the interference

and joint utilities will both be 0. The DSA system can then discard the option from

consideration. Conversely, if all the individual utilities are maximized, the joint utility is

also maximized.

To use the spectrum utility function for decision-making, a DSA system would evaluate
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the expected utility of each option under consideration and select the the optimum. Given

the expected utility definition in (A.15), the expected utility of the spectrum utility func-

tion given some candidate decision do(x) (e.g., channel selection and transmit power) then

becomes

E [U(C, I,M)|do(x)] =

∫
C,I,M

uC(c)uI(i)um(M)φ (C, I,M |do(x)) dc di dm. (A.12)

The joint probability φ(C, I,M |do(x)) is derived from the DSA SA model from Figures

3.4 and A.2 as shown in Figure A.3. It can be observed from the FCM that capacity C,

interference I, and cost M probabilities are all independent given some transmit power

Ptx,D. This (conditional) independence indicates that the joint probability of the spectrum

utility function can then be represented as

φ(C, I,M |Ptx,D) = φ (C|Ptx,D)φ (I|Ptx,D)φ (M |Ptx,D) . (A.13)

The expected value of the spectrum utility function is then the product of the expected

values of the individual utility functions [119]

E
[
u(C, I,M)

]
= E [uC(c)] E [uI(i)] E [uM (m)] . (A.14)

A.2.2 Characteristics of Utility Functions

Utility functions are subjective characterizations of the decision-maker’s preferences and

attitudes toward gains and risks. The decision process uses the utility functions in con-

junction with their associated probability distributions to determine the expected utility

of various options, then selects the optimal option. Expected utility indicates the average

level of utility (i.e., worth) that a decision-maker could expect if selecting that particular

option, and provides as a means for evaluating, preference ordering, and decision-making
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Figure A.3: DSA probabilistic reasoning and decision-making model.
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among a set of alternative options when uncertainty exists in the decision process (see e.g.,

[120]). Given a utility function U(x) that specifies the preference ordering of values of some

attribute x having a probability density of φ(x), the expected utility is given as

E [U(x)] =

∫
x
U(x)φ(x)dx. (A.15)

To make decisions among alternative options in a given decision, the DSA system would

prefer the option with the best expected utility. That is, given two options L1 and L2, the

DSA would prefer L1 only if its expected utility was greater than that of L2:

L1 � L2 ⇔ E [U (L1)] > E [U (L2)] . (A.16)

The risk attitudes associated with utility functions reflect the behavior that stems from

them. Risk behavior can be characterized using a few basic concepts. The first is that of a

certainty equivalent, which is the attribute level x̂ at which the decision-maker is indifferent

between a guarantee of getting x̂ or proceeding with a decision under uncertainty with an

expected outcome of E [U(L)] and the possibility of attaining a value of x that is better or

worse than x̂ [110]. The certainty equivalent is formally defined as the attribute value x̂

such that

u(x̂) = E [u(x)] . (A.17)

The concept of risk attitude indicates the relative value that the DSA user applies to

the range attribute levels within the context of uncertainty [110]. The function ultimately

encodes risk aversion, risk proneness, or risk neutrality.1 Risk aversion indicates a preference

to bypass a decision made under uncertainty in exchange for the guarantee of having the

expected attribute level µx. The result, however, is that the expected utility of the uncertain

1Utility functions can also be piecewise combinations of the three fundamental risk attitudes.
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decision is greater than the utility of the expected attribute level, that is

u(x̂) = E [u(x)] > u(µx) = U (E [x]) . (A.18)

Thus the risk-averse decision-maker is willing to settle for less than the certainty equivalent

x̂ to avoid the risks associated with the decision. Conversely, risk proneness indicates a

preference for proceeding with the decision under uncertainty rather than a guarantee of

having the expected attribute level. It follows that the certainty equivalent for a risk prone

function is preferred to the expected attribute level. The three risk attitudes are then

defined in terms of the expected outcome utility relative to the certainty equivalent utility:

Risk Averse: u(x̂) < u(µx) (A.19a)

Risk Prone: u(x̂) > u(µx) (A.19b)

Risk Neutral: u(x̂) = u(µx). (A.19c)

For monotonically increasing or decreasing functions,2 the shape of the utility function

indicates a decision-maker’s attitudes toward risk [110]. A concave, convex, or linear utility

function indicates risk aversion, risk proneness, or risk neutrality—respectively—as shown

in Figure A.4.

The concept of a risk premium indicates the degree of risk aversion or proneness existing

in a decision option [110]. It defines how much of an attribute a decision-maker is willing to

give up relative to the average to avoid uncertainty-related risks. It is positive for risk averse

utility functions and negative for risk prone utility functions. Risk premium is defined as

2The principles here can easily be extended to other functions that are piecewise monotonic.
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Figure A.4: Examples of monotonically increasing (top) and decreasing (bottom) utility
functions exhibiting a) risk aversion, b) risk proneness, c) and risk neutrality.

the difference between the expected attribute value and certainty equivalent

RP (x) = x̄− µx (A.20a)

RP (x) = x̂− µx (A.20b)

for monotonically increasing and decreasing utility functions, respectively.

Risk premium can also be expressed in terms of an attribute’s variance σ2
x for some

forms of utility functions. Arrow [121] and Pratt [122] established the relationship between

an attribute’s variance and the associated risk premium as

RP ≈ −σ
2
x

2

U ′′(x)

U ′′′(x)
(A.21)

across some region of x having constant risk attitude and non-distorted probability [123–

125]. A utility function has a constant risk attitude if the risk premium is constant across

the attribute range. The class of utility functions having the form a + b · ecx are shown to
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have a constant risk attitude, with the risk attitude determined by the constant c [110]. For

such a utility function, the Arrow-Pratt measure of risk aversion in (A.21) becomes

RP ≈ −cσ
2
x

2
. (A.22)

A direct assessment of uncertainty on the decision trades can also be made in some

cases. Consider again a comparison of two spectrum access options L1 and L2. Applying

the definition of preference ordering in (A.16) with the certainty equivalent from (A.18)

provides

L1 � L2 ⇔ U
(
X̂1,k

)
> U

(
X̂2,k

)
. (A.23)

Given the positive affine transformation nature of the utility functions used here [120], the

relationship can be mapped from the utility domain to the attribute domain:

Increasing U(X): L1 � L2 ⇔ X̂1 > X̂2 (A.24a)

Decreasing U(X): L1 � L2 ⇔ X̂1 < X̂2. (A.24b)

The preference ordering conditions of (A.24) can further be defined in terms of the

expected value µXi and uncertainty σ2
Xi

by applying the risk premium definition from (A.20)

to (A.24) defines the ordering for a monotonically increasing utility function in terms of the

expected costs and risk premiums:

Increasing U(X): µX1 −RPX1 > µX2 −RPX2 (A.25a)

Decreasing U(X): µX1 −RPX1 < µX2 −RPX2 (A.25b)

If the region of interest across X meets the criteria for the Arrow-Pratt measure of risk

aversion [123], (A.21) can be applied to (A.25), allowing its expression in terms of µX and
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σ2
X :

L1 � L2 ⇔

Increasing U(X): ∆µX >
∆σ2

X

2

U ′′(X)

U ′′′(X)
(A.26a)

Decreasing U(X): ∆µX <
∆σ2

X

2

U ′′(X)

U ′′′(X)
. (A.26b)

This formulation enables direct assessment of attribute trades as a function of uncertainty,

such as that associated with price volatility.

The final concept of a utility gain is developed and proposed here and offers a means for

quantifying the difference between two multi-attribute utilities specified by a multiplicative

utility function. Utility gain specifies the magnitude of utility improvement needed in one

subset of attributes to overcome the shortfall existing in others. Indifference between two

options L1 and L2 exists if their expected utilities are equivalent:

L1 ∼ L2 ⇔ E [U(L1)] = E [U(L2)] (A.27)

If the utility of some subset of attributes XS ⊂ X is known for the two options, has

he multiplicative form, and independent probabilities as shown in (A.14), then the gain

required in the remaining attributes X¬S ⊂ X for choice indifference is specified by the

ratios of the expected utilities:

∏
X¬S

E [u(L1)]

E [u(L2)]
=
∏
XS

E [u(L2)]

E [u(L1)]
(A.28)

Using this relationship, assessments can be made regarding the utility gain of one set of

attributesXS required to compensate for shortfalls in the utility levels of the other attributes

X¬X relative to an alternative options. As will be shown in the following section, (A.28)
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can also be used to evaluate the impact of uncertainty on utility assessments.

The concepts of risk attitude, certainty equivalent, risk premium, and utility gain pre-

sented in this section enable assessments of DSA decision-making and behavior with imper-

fect awareness. The following section develops a joint utility function, to which the concepts

presented here are applied in Sections A.3 and A.4 to demonstrate the relationship between

uncertainty and decision-making concepts.

A.3 Theoretical Assessment of DSA Decision-Making

Two comparisons are of particular interest given emerging dynamic spectrum access regula-

tory and economic concepts as described in Chapter 1 [1, 2]. Uncertainties associated with

imperfect situational awareness as well as spectrum usage and cost volatility may force

spectrum sharing users to make decisions under uncertainty as to the preferred type of

spectrum access. Decisions could include choices among the three spectrum sharing modes.

Section A.3.1 analyzes spectrum user decision-making between General Authorized Access

and fee-based secondary sharing; Section A.3.2 assesses trades between fixed pricing and

auction-based pricing models.

A.3.1 Decision Trades between General Authorized Access and Secondary

Access

General Authorized Access requires no monetary cost in exchange for spectrum access, but

it has no guarantee of spectrum access. Therefore its ability to access sufficient spectrum

to attain the desired channel capacity is subject to the volatility of spectrum availability.

If volatility is high, then the user may be required to make frequent adjustments to aspects

such as frequency selection, bandwidth, and transmit power, which directly affect the overall

achievable channel capacity. High volatility may affect both the expected capacity µC and

uncertainty σ2
C . Alternatively, the spectrum user may elect to use a Secondary Access

option having mechanisms enabling guaranteed capacity C at a specified price M . Given

the spectrum utility function (A.11) and preference ordering, a Secondary Access option
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LS is preferable to a General Access option LG if:

LS � LG ⇔ E [U(LS)] > E [U(LG)] . (A.29)

Using utility gain (A.28), the expected monetary cost utility E[U(M)] can be defined as

a function of the other expected utilities as:

E [UM (mS)] >
E [UC(cG)] E [UI(iG)] E [UM (mG)]

E [UC(cS)] E [UI(iS)]
(A.30)

Recognizing that no monetary cost is associated with the opportunistic access option, its

expected cost utility E[UM (mG)] = 1. Similarly, E[UI(iS)] = 1 because the centralized

spectrum access manager is responsible for managing interference [1, 2]. Those insights

simplify (A.30) to

LS � LG ⇔ E [UM (mS)] > E [UI(iG)]
E [UC(cG)]

E [UC(cS)]
(A.31)

Thus for a secondary sharing service to be preferred over an opportunistic access option, its

monetary cost utility E[U(M)] must be greater than the ratio of the remaining opportunistic

and secondary sharing expected utilities.

To illustrate the trades on preference ordering, consider uncertainty in the form of Beta

probability distributions with mean and variance µx = 0.5, σ2
x as shown in Figure A.5. Let

utility functions be constant risk with decay constant c. Monetary cost M and Interference

I utilities are assumed to be monotonically decreasing functions, such as those illustrated

in Figure A.6. Figure A.7 shows the expected General Access cost utility as a function

of the various utility function decay constants. For a given E [UI(iG)] and E [UC(cS)], the

expected monetary cost utility E[U(M)] will have similar behavior. The impact of spectrum

volatility is shown to increase expected utility in risk prone utility functions (negative decay

constant) and decrease it in risk averse utility functions. The magnitude of the impact can
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Figure A.5: Beta pdfs for a range of variances.

be characterized by the risk premium of (A.20), which is shown in Figure A.8.

A.3.2 Decision Trades between Fixed and Auction Pricing

A similar assessment can be made for trades between a Secondary Access sharing option

using fixed pricing LF and one using auction-based pricing LA. Let both options provide

identical operating environments, providing equivalent interference risk and associated ex-

pected utility. Thus the decision trades depend upon the expected utilities for cost and

capacity with the preference ordering of LA � LF given:

E [UM (mA)] E [UC(cA)] > E [UM (mF )] E [UC(cF )] (A.32)

Thus spectrum user preferences for auction price is only preferable to a fixed price option if

LA � LF ⇔
E [UM (mA)]

E [UM (mF )]
>

E [UC(cF )]

E [UC(cA)]
(A.33)
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Figure A.6: Constant risk, monotonically increasing utility functions.

Figure A.7: Expected capacity utility for General Access as a function of utility function
decay c and spectrum access volatility σ2.
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Figure A.8: Risk premium for General Access as a function of utility function decay c and
spectrum access volatility σ2.

This finding is significant, as it states that there is a distinct disadvantage of the auction

option. If the spectrum user is risk averse, the uncertainty of the auction price drives down

the expected cost utility E [UM (mA)]. This can be seen by considering the case of equivalent

capacity utilities and applying (A.26) to the cost utilities:

LA � LF ⇔ µMA
+
cMσ

2
MA

2
< µMF

. (A.34)

Thus it can be shown that the auction pricing option will only be selected by Secondary

Access users under one of the following conditions:

1. If the capacity utilities of the two options are equal, the expected cost of the auction

price µMA
must be lower than that of the fixed price option by more than the risk

premium
cMσ

2
MA

2 . Applying (A.26) provides the difference in terms of the variance:

∆µM >
σ2
MA

2
cM . (A.35)
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2. If the cost utilities of the two options are equal, the expected capacity utility of the

auction option must be greater than that of the fixed price option.

3. If capacities and expected costs are different between the two options, the auction

must have some combination of lower expected cost and increased expected capacity

to overcome the penalty paid for cost uncertainty.

The following section presents a simulation of the spectrum sharing decision model. It

illustrates a decision among four different spectrum access options and discusses the results

in the context of the theoretical findings presented in this section.

A.4 Decision-Making Simulation, Analysis, and Insights

Consider a DSA system that seeks to make a choice among four different spectrum access

alternatives. Each alternative has some unique characteristic that is representative of the

three spectrum access methods discussed previously. While the cases presented here are

notional, they highlight the general insights regarding decision trades among alternative

spectrum access models that were developed in the previous section.

The DSA system considered here will have two basic components; namely the awareness

model and decision model. The awareness model uses the FCM shown in Figure A.3, which

enables the DSA system to assess expected performance and spectrum policy compliance

given uncertain and imprecise information regarding the operating environment and charac-

teristics of other spectrum users as illustrated in Chapter 4. The model captures the mutual

influences between the DSA and protected users (PUs) as well as the probabilities associ-

ated with the three decision attributes: Capacity C, monetary cost M , and interference I

to PUs.

The three attributes map to marginal utility functions ui(xi), which are represented as

hexagonal nodes and inform the decision. Capacity will be characterized by the aggregate

capacity over time, which indicates the expected amount of data in megabytes (Mb) that

is transferred over a specified period of time. Interference will be measured in terms of the
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Table A.1: Utility function parameters for the example.

Attribute xi
Parameter Values
x(0) x(1) c

C (Mb) 0 70 Mb -3
I (dBm) Pint − 3 dB Pint 5
M ($) 0 1 5

DSA power received at the PU. Monetary cost indicates any payment required for accessing

spectrum (e.g., spectrum leasing) and will be measured as a function of transmitted power

Ptx, bandwidth W , and time in terms of cost per dBm-MHz-sec. Thus using a given amount

of spectrum for a period of time results in a specific total cost.

Each marginal utility function selected for the study uses a constant risk attitude. The

minimum and maximum utility values used for the example are given in Table A.1. Capacity

is given a utility of 0 if no data can be sent; the maximum utility is assigned to the ability

to send the desired amount of data within the prediction window. For interference utility,

a utility of 0 is given to any DSA power received at the PU that is greater than the risk-

constrained interference power threshold Pint specified by the policy. The maximal utility

is mapped to a received power Prx that has a 3 dB margin below the threshold Pint; the

margin influences the DSA to provide additional interference mitigation beyond the policy

specification. Resource usage utility is given a utility value of 1 for no energy expended

and 0 for completely expending the remaining energy of the battery. Similarly, monetary

cost has the highest utility value at M = 0 and lowest utility value at M = Mmax. The

cost scale is normalized, giving Mmax = 1. The decay constants c used for the marginal

utility functions are also provided in Table A.1. The functions indicate risk aversion for

each attribute, which influence the DSA behavior to make conservative decisions in seeking

greater capacity while avoiding interference and cost risks.

The decision process evaluates the expected utility E[U(L)] of each option. The marginal

utility functions are combined with the probability measures derived from Figure A.3 using
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context-specific uncertainties described below. It can be shown that the probability distri-

butions for each decision attribute are mutually independent given the DSA transmit power

Ptx (Ptx d-separates the attributes). The expected value of the spectrum utility function is

therefore given by (A.12). This methodology is applied to the utility valuations made using

the scenario-specific values.

The four spectrum access options in this example include two General Authorized Access

and two Secondary Access alternatives. For General Access, the DSA system can choose

from geographic sharing and geo-temporal sharing options. For geographic sharing, the

DSA system would transmit at a maximum power Ptx such that all PU networks would

be beyond the interference range of its signal. For geo-temporal sharing, the DSA system

would employ temporal sharing with other nearby PUs, transmitting only when the channel

is available. In geographic sharing, the DSA may need to transmit at a lower power and

operate at a low channel capacity, but has a lower risk of interruption due to the presence of

other spectrum users. For geo-temporal sharing, the DSA may need to pause transmissions

while other spectrum users are transmitting, but it can potentially transmit at a higher

power to provide higher instantaneous capacity.

The DSA system can also access spectrum by Secondary Access, in which it leases spec-

trum from a spectrum provider. One option provides for fixed pricing while the other uses

auction-based pricing, both of which include transmit power limits, bandwidth, duration,

and quality (e.g., limits on interference from other users). With the exception of cost for

the auction-based pricing option, the terms of the agreements are assumed to be known at

the time of the decision assessment.

For this example, the DSA system uses a 10 sec prediction window for evaluating each

of four possible spectrum access options. The parameters differentiating the four spectrum

access options are given in Table A.2. A frequency f = 1 GHz and bandwidth B = 2

MHz are used for all options. The basis of the geo-temporal sharing option is identical to

the geographic sharing case, but the DSA system seeks to transmit only during periods

in which the nearest PU is not accessing the channel. The secondary sharing options use
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Table A.2: Scenario parameters for the four spectrum access options.

Param.
General Access Secondary Access

Geographic Geo-temporal Fixed Price Auction

Ptx,pu Beta(1.167,1.167)
d Unif(0,10) km
α Beta(1.08,4.32) N/A
Tsen 10%
Prx N(-80,1) dbm N(-102,1) dBm
Twin Tpred Beta(8.625,2.875) Tpred Tpred
C 0 1

B N(1,0.1)

the same inference structure as the opportunistic strategies, but specify the probability of

Pint as 0 to reflect that the DSA system would pay for (temporary) access with specified

guarantees. The fixed price option is therefore determined by the DSA-DSA portion of the

FCM from Figure A.3. The auction pricing option, however, must also make a probability

assessment of the spectrum price, which is characterized using the monetary cost node M .

The total cost of each secondary sharing option will therefore depend upon the transmit

power, bandwidth, and access duration. A transmit power Ptx of 27 dBm is derived such

that 70 Mb can be transmitted within the 10 sec prediction window.

The expected utilities calculated for each option are shown in Table A.3, and the cor-

responding expected values are shown in Table A.4. Based on the overall expected utility

E[U(L)], the DSA system would prefer the Geo-temporal sharing option, with an expected

utility of 0.981. The DSA predicts that it can transmit a maximum power of 37 dBm at

greater than 99% confidence of no harmful interference for an expected duration of almost

8 sec. The expected capacity of 72.5 Mb would exceed the desired capacity of 70 Mb. By

comparison, the Geographic option is predicted to allow a transmit power near 20 dBm for

the entire 10 sec prediction window, sending about 39.5 Mb.

Note that the expected capacity utility E[uC ] < 1 for the Geo-temporal option despite

the expectation of exceeding the desired aggregate capacity. The reduced expected utility

results from the presence of capacity uncertainty, which produces a risk premium. The
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Table A.3: Expected utilities for the four spectrum access options

Expected General Access Secondary Access

Utility Geographic Geo-temporal Fixed Price Auction

E[uC(L)] 0.857 0.987 1.000 1.000
E[uI(L)] 0.984 0.994 1.000 1.000
E[uM (L)] 1.000 1.000 0.847 0.839

E[U(L)] 0.843 0.981 0.847 0.839

Table A.4: Expected values for the four spectrum access options

Expected Opportunistic Access Secondary Sharing

Value Geographic Geo-temporal Fixed Price Auction

E[C] 39.5 Mb 72.5 Mb 72.5 Mb 72.5 Mb
E[I] -96.8 dBm -97.5 dBm N/A N/A

E[M ] 0 0 0.6 0.6

capacity uncertainty of σ2
C = 4.43 Mb2 is calculated from the FCM, producing a risk

premium of RPC ≈ 7.35 Mb per (A.22). The approximation matches well with RPC = 7.75

Mb calculated using (A.20).

The two Secondary Access options also exhibit the effects of uncertainty on utility

valuation and preference ordering. As shown in Table A.4, the two options are predicted

to produce the same expected outcomes (values) for all attributes. The Fixed Price option,

however, has a greater expected utility, which can easily be traced to the cost uncertainty

incurred by the Auction Pricing option. While the auction is shown to have the same

expected cost as the Fixed Price option, the DSA system incurs cost risk if choosing to

enter the auction. The model produces an auction price uncertainty of σ2
C = 0.001, which

by (A.26) requires an expected auction price µM < 0.598 for the auction to be preferred

over the fixed-pricing option.

The utility gain analysis of (A.31) can be applied to determine preference conditions for

the Secondary Access options over the geo-temporal option. With the expected utility values

from Table A.3, the cost utility of a Secondary Access option must be E[U(MS)] > 0.98,
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which is a significant increase over the cost utilities of 0.847 and 0.839 shown in Table A.3.

The application of the theoretical formulations from Sections A.2 and A.3 presented here

illustrate the trades that must be considered in evaluating spectrum sharing architectures.

It can be seen that user preferences and situational uncertainty can have significant effects

on the decisions behaviors of spectrum users.

A.5 DSA Decision-Making Summary

Dynamic Spectrum Sharing architectures under development will implement various forms

of spectrum sharing. The spectrum sharing models have significant implications on business

models for those that administer the sharing process as well as those that use it. The work

presented here identifies the fundamental elements for assessing dynamic spectrum user

behaviors and identifies decision trades that impact their use and viable business models

for secondary spectrum providers.

A spectrum utility model using multi-attribute utility theory forms the users’ decision

model. The model allows a user to make trades among preferences for key attributes such

as channel capacity, monetary cost, and interference potential. The model is used here to

demonstrate the impact of spectrum usage volatility on preferences between free spectrum

access without access guarantees and fee-based spectrum access with access guarantees.

Analysis also characterizes decision trades between fee-based and auction-based spectrum

pricing. Analysis indicates that auction-based pricing incurs a distinct disadvantage relative

to fee-based pricing due to the inherent uncertainty and pricing volatility.
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Appendix B: Application of Function Causal Modeling for a

Communications Satellite Link

Satellite communication (SATCOM) systems and networks require reliable management

decisions for efficient and effective use of SATCOM resources. SATCOM systems that

support dynamic user demands such as disaster relief require frequent and sometimes rapid

reconfigurations. Disaster relief SATCOM demands are particularly difficult to manage due

to high geographic concentrations of users, often correlated resource demands, and need

to adapt to evolving situations and plans. Furthermore, emerging end-user technology and

applications such as imagery and high-rate video dissemination place significant demands on

payload resources. The high demand on a SATCOM payload increases resource allocation

challenges and amplifies the impacts of service shortfalls from unforeseen changes in user

demand or service capabilities due to issues such as weather.

Recent and ongoing research efforts are investigating autonomous adaptation capabil-

ities for SATCOM to enhance man-in-the-loop payload management processes. Some ef-

forts explore the potential for intelligent/cognitive SATCOM payloads (specifically packet-

switching payloads) to self-manage higher layer functions such as dynamic bandwidth al-

location, dynamic channel selection, and quality of service (QoS) provisioning [126, 127].

Other efforts seek to increase the effectiveness and responsiveness of centralized payload

control centers (see e.g [128]), particularly for older SATCOM systems with limited on-

board processing capability. Dynamic SATCOM resource management studies have also

been extended to include anti-jamming capabilities [129]. In either case, the expectation is

that autonomous adaptation will react faster than a human-in-the-loop system and decrease

service degradations. Autonomous resource management capabilities, however, would need

to be highly trusted by SATCOM operators and users before implementation.

Policy-based approaches can provide high degrees of trust and have been proposed for

dynamic SATCOM resource management [126,127], which can provide a provable decision-

making capability similar to those developed for dynamic spectrum management systems
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[32–34]. While the policy-based reasoning process is shown to be trustable in a computa-

tional sense, trusting these types of systems in an operational setting is hindered by the

imperfect and often incomplete information that is available for decision-making.

Decision quality—whether by human operators or an autonomous algorithm—is af-

fected by the aggregate degree of SA information uncertainty. Increased uncertainty leads

to increased risks associated with decisions. While policy-based management capabilities

provide a framework for establishing trusted decision-making, they do not readily address

the characterization of SA uncertainty. This capability requires a probabilistic SA model

to be integrated with the policy-based reasoning system.

The probabilistic SA approach proposed in Chapter 3 can be extended to SATCOM

resource management. The FCM method enables the quantitative representation of SA un-

certainties and probabilistic reasoning for prediction, planning, and diagnosis of SATCOM

payload performance. Furthermore, it provides the ability to conduct risk-based decision-

making within a policy-based resource management scheme [126,127] and assess the impact

of SA uncertainties on SATCOM resource management risks.

This appendix explores the FCM approach in the context of SATCOM resource manage-

ment and planning. Sec. B.1 provides the theoretical relationships that define a SATCOM

FCM along with an example. Sec. B.2 applies the model to SATCOM resource man-

agement; specifically the relationship between uncertainty, risk, and SATCOM resource

allocation.

B.1 A SATCOM Probabilistic SA and Reasoning Model

Models used for communication systems including SATCOM payloads are founded on prob-

abilistic concepts [7, 130–132]. Phenomena affecting communications link characteristics—

attenuation, polarization loss, scintillation, etc.—and information capacity are based upon

stochastic concepts and are generally expressed in probabilistic terms. SATCOM resource

management decision processes must therefore account for the stochastic characterizations

affecting system performance in order to appropriately implement strategies and behaviors.
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Within the context of a SATCOM situational awareness capability, the received power

FCM encodes information collected by the SATCOM monitoring system to infer the un-

observed variables. The observation variables will depend upon the awareness acquisition

capabilities of the system. Not all variables can be established directly from observations

or other data, and those that can be observed will generally have some associated degree

of uncertainty. Multiple factors such as weather, depolarization, and air moisture content

affect the total path loss Lp of the link. The overall uncertainty is the aggregate of the

uncertainties associated with each factor.

Figure B.1 is an FCM representation of a SATCOM link, which can be built from

the MFrags shown in FiguresB.2 - B.5. The MFrags can be assembled to create FCMs of

individual, regenerated, or transponded SATCOM links. Furthermore, they can be extended

to build models containing multiple links and multiple satellites. Figure B.2 shows the

MFrags associated with the transmitter characteristics in the model. Transmitter system

loss Lsys for the example model is the aggregate of feed radome losses, Lfeed and Lrad,

respectively. Pointing errors are captured in the pointing offset loss MFrag and is a function

of the pointing offset ω and aperture half-power beamwidth θ3dB. In general, knowledge

of θ3dB will have high accuracy due to testing, but uncertainty regarding ω may have

some notable effects, particularly in highly-mobile ground terminals. Finally, the equivalent

isotropic radiated power (EIRP) is the combination of the transmitter power Ptx, aperture

gain Gtx, and system loss Lsys.

Similarly, MFrags that characterize phenomenology affecting the transmitted signal

power along the path from the transmitter aperture to the receiver aperture are shown

in Figure B.3. These capture the signal strength losses due to atmospheric attenuation

Latm, ionospheric effects Lion, and free-space loss Lfs. Those affects are each represented in

separate MFrags, which are aggregated in the Path Loss MFrag to calculate the total path

loss Lpath. The total link loss Llink is calculated in the Link Loss MFrag, which combines

the path loss Lpath with the signal losses due to transmitter and receiver pointing errors

Lpt. The signal power at the receiver aperture is then the EIRP less the link loss Llink.
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Figure B.1: SATCOM SA FCMs

Figure B.2: SATCOM Transmitter FCMs
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Figure B.3: SATCOM Link FCMs

Receiver MFrags are shown in Figure B.4, which include parameters needed to translate

the received signal and noise at the aperture into the carrier to noise power spectral density

ratio (C/N0) sent to the modem. Potential interference (e.g., intermodulation, cosite, and

jamming) is characterized here in terms of equivalent interference noise temperature Tint,

which is given in degrees Kelvin by the following relationship

Tint =
1

kB
100.1Nint (B.1)

where Nint is the interference noise in dBW and kb is Boltzmanns constant in W/Hz-K.

The Total System Noise Temperature MFrag combines the interference noise temperature,

receiver component noise temperature Trx, and environmental noise temperature N0 to

determine the total system noise temperature Tsys. The receiver gain-to-noise temperature

ratio MFrag calculates the G/T figure of merit, which is then used to determine the C/N0

in the Carrier-to-Noise PSD MFrag. For links that are transponded, the C/N0,tot can be

152



Figure B.4: SATCOM receiver FCMs

calculated in an MFrag as the combination of uplink and downlink C/N0 as shown in Figure

B.4.

MFrags that represent performance metrics of Bit Error Rate (BER) and channel ca-

pacity C are shown in Figure B.5. The C/N0 at the demodulator (C/Nmod) incorporates

the system losses such as line losses and modem component losses. This value is then used

to determine the BER probability distribution, which is also a function of the modulation

M . Other MFrags can be developed to calculate additional metrics and figures of merit

such as link margin and data throughput, but are not necessary here to demonstrate the

concept.

The MFrags from Figures B.2–B.5 are now used to build the single SATCOM link FCM

shown in Figure B.1. In this example, most MFrags are instantiated once. The system loss

Lsys and pointing loss Lpt, however, are instantiated twice; once each for the transmitter

and receiver. Boltzmanns constant, which was used in the Interference Noise Temperature

and Carrier-to-Noise PSD MFrags, is instantiated once but connected to both the C/N0 and

Tint nodes. The FCM represented in Figure B.1 can now be used to represent situational
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Figure B.5: SATCOM Metric FCMs

awareness of the specified link, evaluate system performance, perform planning, and conduct

diagnostic queries in support of a SATCOM resource management capability.

The following sections provide the theoretical formulations associated with the FCM as

well as a simulation example.

B.1.1 Theoretical Relationships

The FCM captures the high-level elements associated with a typical link budget [130,132],

including transmitter and receiver losses due to system imperfections as well as path losses

due to atmospheric attenuative effects. To begin consider the Equivalent Isotropic Radiated

Power (EIRP) in Figure B.2, which is defined functionally here as:

EIRP = Ptx +Gtx − Ltx,sys, (B.2)

where Ptx, Gtx, and Ltx,sys are the transmitter power, gain, and system losses, respectively.

The system losses are further defined by the feed and radome losses:

Ltx,sys = Lfeed + Lrad. (B.3)

The values of those parameters may contain some degree of variation due to physical phe-

nomenology or may only be known/predictable with some degree of uncertainty. The FCM
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Figure B.6: SATCOM EIRP Functional Causal Model

as represented in Figure B.6 and its associated functional components capture that uncer-

tainty by expressing the probability distribution associated with each parameter. Thus the

transmitter system loss probability distribution associated with (B.3) is given by:

φ (Ltx,sys) = φ (Ltx,sys|Lfeed, Lrad)φ (Lfeed)φ (Lrad) . (B.4)

Subsequently, the EIRP probability distribution is then:

φ (EIRP ) =φ (EIRP |Ltx,sys, Ptx, Gtx)φ (Ltx,sys|Lfeed, Lrad) (B.5)

φ (Lfeed)φ (Lrad)φ (Ptx)φ (Gtx) . (B.6)

The means and variances associated with the probability distributions can be used to

directly assess the expected uncertainty relationships among the various parameters. The

transmitter system loss mean µ and variance σ2 are given simply as:

µLtx,sys = µLfeed + µLfeed (B.7a)

σ2
Ltx,sys = σ2

Lfeed
+ σ2

Lfeed
. (B.7b)
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Similarly, EIRP mean and variance are given as:

µEIRP = µPtx + µGtx − µLtx,sys

= µPtx + µGtx −
(
µLfeed + µLfeed

)
(B.8a)

σ2
EIRP = σ2

Ptx + σ2
Gtx + σ2

Ltx,sys

= σ2
Ptx + σ2

Gtx + σ2
Lfeed

+ σ2
Lfeed

(B.8b)

The same principles and concepts can be applied to the entire SATCOM link model. In

this model, it can be shown that the carrier-to-noise ratio C/N may be used as a proxy for

assessing link performance. That is, capacity C and bit error rate (BER) are functions of

C/N . C/N is found as a function of the received power Prx and gain-to-temperature ratio

G/T :

C

N
= Prx − 10 log10 (kB) +

G

T
. (B.9)

Noting that the Boltzmann’s constant kB has no associated variance, the mean and variance

are found as:

µC/N = µPrx − 10 log10 (kB) + µG/T (B.10a)

σ2
C/N = σ2

Prx + σ2
G/T (B.10b)

The received power Prx mean and variance is subsequently given as

µPrx = µEIRP − µLlink (B.11a)

σ2
Prx = σ2

EIRP + σ2
Llink

(B.11b)

where EIRP is defined in (B.2-B.8), and Llink represents the total losses associated with
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Figure B.7: SATCOM Downlink Functional Causal Model

the SATCOM link.

The mean and variance relationships among the various parameters associated with

Llink are largely linear, with the exception of free space loss Lfs and pointing losses Lpt,tx

and Lpt,rx, which contain non-linear functions. While the probability distribution and asso-

ciated mean and variance can easily be found numerically within the FCM for a particular

situation, a closed form functional representation requires an approximation. Using a Tay-

lor Series1 approximation as defined in (3.24) the free space loss mean and variance are then

given as:

µLfs ≈ 20 log10

(
c

4πfµdl

)
(B.12a)

σ2
Lfs
≈
(

20

ln(10)µdl

)
σ2
dl
. (B.12b)

1Note that applying the Taylor Series to non-linear functions assumes that conditions meet convergence
criteria [61,62].
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Pointing losses Lpt,tx and Lpt,rx are similarly approximated using a Taylor Series esti-

mate. Pointing loss in Figure B.7 is the sum of the losses due to off-axis pointing ω of the

transmit and receive antennas and imperfections regarding the 3dB contour θ3dB. Each of

the pointing losses is given by [130]

Lpt,k = 12.5 log10

(
1− cos(0.25θ3dB)

1 + 0.64 (1− cos(ω))

)
. (B.13)

To account for uncertainties, let (B.13) be given as

Lpt,k = 12.5 log10

(
g1(θ3dB)

g2(ω)

)
(B.14)

where

g1(θ3dB) = 1− cos(0.25θ3dB) (B.15a)

g2(ω) = 1 + 0.64 (1− cos(ω)) . (B.15b)

Applying the Taylor Series approximation (3.24) to (B.15) gives

µg1 ≈ 1− cos(0.25µθ3dB ) (B.16a)

σ2
g1 ≈ (0.25 sin(0.25µθ3dB ))2 σ2

θ3dB
(B.16b)

and

µg2 ≈ 1 + 0.64 (1− cos(µω)) (B.17a)

σ2
g2 ≈ (0.64 sin(µω))2 σ2

ω. (B.17b)
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Substituting back into (B.14) gives the final result

µLpt,k ≈12.5 log10

(
1− cos(0.25µθ3dB )

1 + 0.64 (1− cos(µω))

)
(B.18a)

σ2
Lpt,k ≈

(
12.5

ln(10)

)2
[(

0.64 sin(µω)

1 + 0.64 (1− cos(µω))

)2

σ2
ω

+

(
0.25 sin(0.25µθ3dB )

1− cos(0.25µθ3dB )

)2

σ2
θ3dB

. (B.18b)

The receiver gain-to-temperature ratio G/T includes environmental, system, and inter-

ference noise sources and similarly requires approximation for a closed form expression of

the mean and variance. Given in dB K−1 as

G

T
= Grx − 10 log10 (Tsys) , (B.19)

the mean and variance are approximated by

µG/T ≈ µG − 10 log10

(
µTsys

)
(B.20a)

σ2
G/T ≈ σ

2
Grx +

(
10

ln(10)µTsys

)2

σ2
Tsys . (B.20b)

System noise temperature Tsys in Kelvin (K) is the sum of the environmental noise tem-

perature T0, receiver noise temperature Trx, and interference noise temperature Tint, which

gives (B.20) as

µG/T ≈ µG − 10 log10 (µT0 + µTrx + µTint) (B.21a)

σ2
G/T ≈ σ

2
Grx +

(
10

ln(10)

)2 σ2
T0

+ σ2
Trx

+ σ2
Tint

(µT0 + µTrx + µTint)
2 . (B.21b)
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Noise from intentional and unintentional sources are treated in this example as broad-

band noise spread across the channel bandwidth B. While T0 and Trx are inputs to the

model, the interference noise temperature Tint is calculated from the measured noise power

spectral density (PSD) Nint in dBW Hz−1 (to be calculated in the model) at the aperture

as

Tint =
1

kB
100.1Nint , (B.22)

where kB is Boltzmann’s constant in W/K/Hz. The determination of the interference noise

Nint depends upon the scenario. If the links between the interference sources and receiver

is modeled, then Nint will be calculated from the received PSD. The mean and variance are

estimated from the Taylor Series (3.24) as

µTint ≈
1

kB
100.1µNint (B.23a)

σ2
Tint ≈

(
1

kB
100.1µNint ln

(
1

kB
100.1

))2

σ2
Nint . (B.23b)

Using theoretical mean and variance relationships above, the carrier-to-noise ratio un-

certainty σ2
C/N is found as

σ2
C/N ≈ σ

2
EIRP + σ2

Lfs
+ σ2

Latm + σ2
Lion + σ2

Lpt,tx + σ2
Lpt,rx

+ σ2
Grx +

(
10

ln(10)µTsys

)2 σ2
T0

+ σ2
Trx

+ σ2
Tint

(µT0 + µTrx + µTint)
2 . (B.24)

Similarly, the carrier-to-noise ratio mean µC/N is given as:

µC/N ≈ µPtx+µGtx −
(
µLtx,feed + µLtx,rad + µLfs + µLatm + µLion + µLpt,tx + µLpt,rx

)
+ µGrx − 10 log10

(
µT0 + µTrx +

1

kB
100.1µNint

)
. (B.25)
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Many (if not most) of the input parameters to the model in Figure B.7 are not precisely

known during the planning process and therefore contain various degrees of uncertainty

[130, 132]. Predictions of link loss factors stemming from weather, signal depolarization,

pointing errors, and other effects such as foliage may be characterized statistically but

not known with high certainty until the time of operation. Similarly noise from potential

interference sources may vary, especially with mobile SATCOM ground terminals operating

in dense RF environments. The FCM representation presented here inherently incorporates

uncertainties into the model and enables analyses of their impacts.

B.1.2 SATCOM Functional Causal Model Example

To illustrate the FCM concept, suppose that the data from Table B.1 is used to assess

expected system performance of the model in Figure B.7. Input parameters are modeled

as random variables having the specified distribution types (e.g., Gaussian or Beta) and

associated parameters. Uncertainty is represented by the standard deviation, with higher

standard deviations (relative to the mean) indicating higher degrees of uncertainty.2

In this example, a SATCOM downlink is modeled which has uncertainties in path loss,

transmitter, and receiver elements. As a result, the received SNR is found to have significant

uncertainty as shown in Figure B.8, with a mean value of 20.9 dB and standard deviation

of 4.5 dB for this Baseline Case. The uncertainty places the 95% confidence level for SNR

at 12 dB, as shown in Figure B.9. The Baseline Case has a mean of µSNR = 20.9 dB and

variance of σ2
SNR = 20.25. The Reduced Uncertainty case has the same mean but a smaller

variance of σ2
SNR = 4.84, resulting in a 5 dB relative SNR gain associated with the 95%

confidence level. If information quality can be improved to reduce the uncertainties in half,

then the result is a 2.2 dB SNR standard deviation. The magnitude of SNR uncertainty

reduction relative to the baseline case increases the 95% confidence level to 17 dB SNR as

shown in Figure B.9. The uncertainty reduction in this example translates to a 5 dB SNR

gain. Thus the FCM model can translate information or awareness uncertainty regarding

2Note that probability distribution types specified in the Consultative Committee for Space and Data
Systems standard 401.0 [132] could also be used.
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Table B.1: Scenario input parameters for the SATCOM FCM example.

Parameter Value Parameter Value

Link Parameters

Channel Freq. (f) 12 GHz Channel BW (B) 250 kHz
Modulation (M) 8-PSK Link Distance (d) 40,000 km
Rain Loss (Lrain) Beta(4.9,8.16), Gasseous Loss (Lgas) N(1,0.01) dB

[0,8] dB
Pol. Loss (Lpol) Beta(2.14,2.27), Scint. Loss (Lsc) Beta (3.37,6.74),

[0,3] dB [0,6] dB

Transmitter Parameters

Feed Loss (Ltx,feed) N(1,0.01) dB Radome Loss (Lrad) 0 dB
Aperture Gain (Gtx) N(38,0.1) dBi 3dB Beamwidth (θ3dB) N(2◦,0.01◦)
Pointing Error (ωtx) N(1◦,0.5◦) Tx Power (Ptx) N(10,0.01) dBW

Receiver Parameters

Feed Loss (Lrx,feed) N(1,0.01) dB Radome Loss (Lrad) N(0.5,0.05) dB
Aperture Gain (Grx) N(48,0.1) dBi 3dB Beamwidth (θ3dB) N(2.5◦,0.01◦)
Pointing Error (ωrx) N(1◦,0.5◦) Sys. Noise Temp (Tsys) N(290,0.25) K
Sky Noise Temp (T0) N(45,0.25) K Int. Noise (Nint) N(-240,12) dB/Hz

the SATCOM operating conditions into performance gains and losses.

A FCM-based model inherently enables SATCOM configuration planning using the same

model that is used for the predictive analysis discussed in the previous section. While predic-

tive assessments infer expected SATCOM performance from system settings and operating

conditions, planning assessments infer required SATCOM system settings from operating

conditions and desired performance thresholds. Bayesian Network algorithms are able to

do this reverse inference using the same model that is used for the predictive cases. The

following section presents an approach that enables planners to manage SATCOM resources

in accordance with risk thresholds and situational uncertainty.
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Figure B.8: Modem SNR probability distribution function for the baseline and reduced
uncertainty cases.

Figure B.9: Modem SNR exceedance probability for the baseline and reduced uncertainty
cases.
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B.2 Risk-Constrained SATCOM Resource Management

Various techniques have been studied for managing SATCOM resources (see e.g. [133–136]).

Allocation assessment and optimization methods explore resource dimensions including fre-

quency reuse, channel bandwidth (e.g., time slot and traffic) allocation, and satellite trans-

mitter power. The optimality of each technique relies on some assessment of expected user

demand and achievable link performance. Such predictions, however, have varying degrees

of uncertainty as described above. SATCOM resource allocation processes therefore need

to incorporate risk factors into the selected technique.

The probabilistic nature of FCM can be used to plan SATCOM resources subject to

desired risk thresholds. With this approach, SATCOM planners identify the performance

goals and associated risk levels for each link or user. The resulting resource allocation (e.g.,

transmitted power Ptx) and link parameters (e.g., modulation type) needed to achieve the

performance goals at the specified risk (or confidence) levels will vary with the level of

uncertainty.

Consider a desired performance parameter X that has some degree of uncertainty σ2
X

associated with its achievable value in a given scenario. Let the probability distribution

be given as φ(X) with an associated cumulative probability distribution Φ(X). Further

suppose that it is desired to have some value of X that does not fall below some threshold

xq with a probability greater than q. Thus the total probability of attaining X ≤ xq be

given by

Φ(X ≤ xq) =

∫ xq

−∞
φ(X). (B.26)

Referring to the illustration in Figure B.10, the probability Φ(X ≤ xq) = q can be used to

define a risk level. It is also illustrated that the threshold xq can be defined as a function

of the mean value µX and a multiple a of the standard deviation σX . Thus for a given µX

and risk q, greater uncertainty leads to lower threshold values xq. Alternatively, it may be

desirable to place an exceedance risk threshold on a parameter. The risk calculation then
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Figure B.10: Illustration of mapping from a value xq to the associated risk q for shortfall

risk Φ(X ≤ xq) = q (left) and exceedance risk Φ(X ≥ xq) = q.(right).

becomes

Φ(X ≥ xq) = 1− Φ(X ≤ xq) = 1−
∫ xq

−∞
φ(X). (B.27)

The exceedance risk case is illustrated in right hand plot of Figure B.10.

These concepts can be applied to the SATCOM FCM to establish risk-constrained man-

agement of SATCOM resources. In this approach, uncertainty assessments of SATCOM

links are made using the FCM and available planning information. Performance and as-

sociated risk thresholds for attributes of interest are then applied to each link, allowing

planners to determine the corresponding SATCOM resources using inference capabilities of

the FCM. The resulting method allows planners to optimize resources allocations subject to

the risk constraints (perhaps using techniques such as those in [133–136]). It further allows

planners to evaluate performance gains associated with reducing uncertainty levels for each

parameter in the FCM.

To illustrate, consider the uncertainty formulations from Section B.1.1. Further, let C/N

values be assessed such that its uncertainty is given as a probability distribution φ(C/N)

having a mean µC/N and variance σ2
C/N given by (B.10) and (B.24). Suppose that a user

requires a given C/N level with some degree of confidence q, and the SATCOM resource
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manager wishes to determine the transmit power Ptx required to provide the necessary level

of service.

The carrier-to-noise value at the associated risk level is found as:

C/Nq = µC/N + a
√
σ2
C/N . (B.28)

The uncertainty σ2
C/N is the cumulative uncertainty of the SATCOM model as given by

(B.24). Thus, the requisite transmit power level can be found by (B.25) and (B.28) as:

µPtx ≈ C/Nq − a
√
σ2
C/N − µGtx + µLtx,feed + µLtx,rad + µLfs + µLatm + µLion

+µLpt,tx + µLpt,rx − µGrx + 10 log10

(
µT0 + µTrx +

1

kB
100.1µNint

)
. (B.29)

The change in transmit level ∆µPtx resulting from a change in σ2
C/N (all other factors

remaining constant) can be found as:

∆µPtx ≈ a
(√

σ2
C/N,1 −

√
σ2
C/N,2

)
(B.30)

Figure B.11 illustrates the power difference given a change in uncertainty for several con-

fidence levels. It can be seen that even small changes in uncertainty have an impact on

transmit power requirements. It is therefore important for SATCOM operators to charac-

terize and reduce the amount of uncertainty to attain desired performance and maximize

SATCOM resource usage.

A similar analysis can be done for interference noise Nint. Its relationship to σ2
C/N is

given in (B.23), (B.24), and (B.30). The results are plotted in Figure B.12.
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Figure B.11: SATCOM transmit power increase ∆Ptx as a function of carrier-to-noise un-
certainty σ2

C
N

and confidence level q.

Figure B.12: SATCOM transmit power increase ∆Ptx as a function of interference noise
uncertainty σ2

Nint
and confidence level q.
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B.3 Summary

Advanced SATCOM resource management capabilities are envisioned to provide for dy-

namic resource adaptation. The advanced capabilities require a SATCOM situational

awareness and decision-making approach that represents the cause and effect linkage of

relevant phenomenology and operating conditions on link performance. Further, the model

must enable the assessment and decision-making under uncertain conditions.

The FCM approach presented here enables predictions of SATCOM link conditions stem-

ming from weather, signal depolarization, pointing errors, and other effects having various

degrees of uncertainty. The FCM representation presented here inherently incorporates

uncertainties into the model and enables analyses of their impacts.

The probabilistic nature of FCM can be used to plan SATCOM resources subject to

desired risk thresholds. With this approach, SATCOM planners identify the performance

goals and associated risk levels for each link or user. The resulting resource allocation (e.g.,

transmitted power Ptx) and link parameters (e.g., modulation type) needed to achieve the

performance goals at the specified risk (or confidence) levels will vary with the level of

uncertainty.
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