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Abstract

DYNAMICAL AND RADIATIVE PROPERTIES OF X-RAY PULSAR ACCRETION
COLUMNS: EFFECTS OF GAS AND RADIATION PRESSURE

Brent Frederick West, PhD

George Mason University, 2011

Dissertation Director: Dr. Peter A. Becker

Previous research to investigate the dynamics of luminous X-ray pulsars and the ob-

served spectra has largely been confined to the single-fluid model in which the higher lu-

minosity permits the accreting flow to be regarded as a radiation-dominated ideal fluid. In

this regime, the inflowing ionized gas held no special significance when investigating the

dynamics of accretion column formation and the associated radiation-dominated standing

shock through which the fluid must pass. This PhD research examines the dynamical im-

portance of gas pressure in both low-luminosity and high-luminosity X-ray pulsars in which

the pressure of the ionized gas may play a significant role in column formation and its

associated dynamics. The “two-fluid” model is implemented by coupling radiation and gas

as interacting fluids. The fluids pass through a radiation sonic point located in a shock

wave where the radiation sound speed equals the bulk fluid speed. The precise location of

the sonic point largely depends upon the details of the upstream boundary conditions for

the incident radiation and gas sound speeds. The parameter space for the incident sound

speeds is mapped and the associated temperature, pressure, and density distributions are

calculated as functions of the altitude in the column. The complete dynamical problem is

fully modeled by defining five fundamental free parameters, namely: (1) the polar cap size,



(2) the altitude at the top of the accretion column, (3) the incident radiation Mach number,

(4) the parallel scattering cross-section, and (5) the angle-averaged scattering cross-section.

All of the other model parameters are derived from these fundamental free parameters. The

resulting X-ray spectral formation is investigated through numerical computation based on

the transport equation developed by Becker & Wolff (2007) which accounts for the bulk

and thermal Comptonization inside the accreting gas.

The Becker & Wolff (2007) model generally gives good agreement with the observational

data for high-luminosity pulsars. However, that model did not include a self-consistent

hydrodynamical calculation of the velocity profile for the accreting gas. This PhD research

extends the Becker & Wolff (2007) model by self-consistently calculating the velocity profile

in a conical geometry, including the dynamical effect of both the gas pressure and the

radiation pressure. The resulting X-ray spectra are compared with the observations for a

variety of sources covering a wide range of luminosity. The resulting parameter values are

compared with those obtained using the Becker & Wolff (2007) model. Consideration of

the energy and angular dependencies of the electron scattering cross section will allow a

more detailed interpretation of the observed energy-dependent pulse profiles, allowing us to

obtain a deeper understanding of the extreme physics occurring in these sources.



Chapter 1: Introduction

After the discovery of the neutron in 1932, scientists speculated about the possible

existence of a star composed entirely of neutrons. Nearly a quarter of a century later, the

existence of neutron stars was confirmed by the discovery of pulsars and accreting binary

neutron stars using the Uhuru satellite. Like black holes, neutron stars allow us to explore

the properties of matter under the most extreme conditions observable in nature.

1.1 Rotation-Powered Pulsars

Rapidly spinning and strongly magnetized neutron stars that radiate at the expense of

their rotational energy are known as rotation-powered pulsars. It was noticed that their

spin periods increase with time. This rotational slow-down is thought to be caused mainly

through braking torque exerted on the neutron star by its magneto-dipole radiation. Young

rotation-powered pulsars can be divided into two groups, Crab-like and Vela-like, which have

slightly different observational characteristics mainly associated with the evolution of pulsar

properties with age. Crab-like pulsars display phased-aligned X-ray, gamma-ray, optical,

and radio pulsations, which hints that the emission is non-thermal and originates from

the same location in the pulsar magnetosphere. They are the youngest rotation-powered

pulsars. A large percentage of the total soft X-ray flux is emitted from the co-rotating

magnetosphere. In contrast, adolescent Vela-like pulsars do not exhibit phase-aligned pulses

at different energies, and their optical radiation is faint compared to that of the younger

Crab-like pulsars. The pulsed fraction of soft X-ray flux is also lower, with a substantial

thermal contribution. The sample size for both types of pulsars is still too small to determine

if their apparent differences are caused early in pulsar life or are due to some other factors

such as surroundings or inherent pulsar properties.
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1.2 Accretion-Powered Pulsars

Neutron stars may also be powered through accretion from a larger companion star in a

binary star system. A binary X-ray pulsar consists of a neutron star, orbiting a normal

star, that absorbs gas from the normal star. The first accretion-powered binary system,

Centaurus X-3, was discovered in 1971 (Giacconi et al.) using data from the OSO 8 satellite.

In the binary scenario the pulsar’s strong gravitational field pulls plasma (ionized gas) from

the outer atmosphere of the normal star or stellar wind onto the pulsar’s magnetic polar cap.

The polar cap is a natural consequence of the extremely strong magnetic field, which guides

the matter down in an accretion column above the magnetic pole. The accretion column

emits radiation due to the interplay between inflowing ionized gas, photon radiation, the

strong magnetic field, and bulk fluid motion. Emission is especially affected at the stellar

surface where bulk fluid stagnation causes the strongest optically thick dynamics.

1.3 Radio-Silent Pulsars

Besides rotation-powered pulsars, there also exist radio-silent neutron stars which are fur-

ther divided into anomalous X-ray pulsars (AXPs), soft gamma-ray repeaters (SGRs), and

“quiescent” neutron star candidates in supernova remnants (SNRs). AXPs and SGRs may

turn out to be magnetars. Magnetars are neutron stars with an extremely strong magnetic

field (B ≥ 1014G) that powers the high energy radiation. Observations also exist from

radio-quiet neutron stars with purely thermal and blackbody-like spectra which make them

candidates to be genuine isolated neutron stars.

Today’s X-ray observatories, such as NASA’s Chandra X-ray Observatory, perform very

detailed observations. Examples include Cassiopeia A (Figure 1.1), which is an X-ray

remnant of an exploded star, and the crab nebula pulsar (Figure 1.2), in which cosmic rays

are whipped away at relativistic speeds. Over 100,000 X-ray sources have been detected so

far, and today we know of more than 160 accretion-powered X-ray pulsars in binary star

systems.
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Figure 1.1: Cassiopeia A (NASA). Figure 1.2: Crab Nebula (NASA).

1.4 Intent of Research

In this PhD dissertation, I conduct an investigation of strongly magnetized, accretion pow-

ered X-ray pulsars as seen from Earth. The study of accretion powered X-ray pulsars

is important for understanding their internal structure and composition which determine

their thermal evolution. Therefore, measuring temperature and density profiles at the stel-

lar surface is an important diagnostic tool for studying super-dense matter. We can better

understand the stellar properties by developing detailed models describing the physics gov-

erning the production of the observed X-ray spectra. Consequently neutron stars in binary

systems are an important source of information regarding the evolution of stars, globular

clusters, and the galaxies in which they are found.

My PhD research encompasses two major themes: (1) pulsar accretion column formation

and dynamical structure, and (2) the nature of photon radiation production and transport.

I specifically investigate mid to high-luminosity pulsars with observed luminosities ≥ 1036

erg sec−1. This requires a detailed investigation of how photons and ionized gas interact

with each other to form the structure of the accretion column and drive the production of

the observed X-ray spectra.

Becker (1998) investigated and modeled the dynamical structure of the accretion column

in high-luminosity pulsar. In this model the column geometry was assumed to be cylindrical,
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plane-parallel, and steady-state. Becker obtained the velocity profile describing the steady,

non-relativistic flow of an ideal fluid which passes through a radiation-dominated shock and

comes to rest at the stellar surface. The exact location of the shock transition is largely

determined by the incident upstream radiation Mach number. The shock ultimately plays a

vital role in the first-order Fermi energization (bulk Comptonization) of the X-ray photons.

My PhD research focuses on the two-fluid approach used by Becker & Kazanas (2001)

to investigate the interaction of cosmic rays and gas in plane-parallel flows. I use photon

radiation and gas as the interacting fluids and study how bremsstrahlung and cyclotron

energy losses cool the gas as it comes to rest at the stellar surface. Comptonization can

both cool or heat the gas depending on the thermal relationship between the electrons and

photons.

We follow the conceptual ideas first proposed by Basko & Sunyaev (1976) to estimate

the relative importance of gas pressure on the column dynamics. For a given accretion rate

Ṁ , the accretion luminosity LX is given by:

LX = Ṁ
GM∗
R∗

, (1.1)

where M∗ and R∗ are the mass and radius of the neutron star, respectively, and G is the

universal gravitational constant. The accepted values for the mass and radius are 1.4M⊙

and 106 cm, where M⊙ = 1.99×1033 grams is the Sun’s mass. According to equation (1.1),

the accretion rate Ṁ is directly proportional to the accretion luminosity LX , which follows

from the fact that the gravitational potential energy per unit mass at the stellar surface is

equal to GM∗/R∗. In a low-luminosity pulsar, the pressure of the emergent radiation field is

low, and therefore it has only a minor effect on the velocity profile for the accreting gas. We

expect that the accreting gas travels at high speeds until it decelerates sharply just above

the stellar surface. We make two assumptions from this: (1) the radiation is in thermal

equilibrium (blackbody), and (2) the kinetic energy flux of the inflowing fluid is balanced
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in the opposite direction by the emergent gas and radiation pressures. Mathematically we

write this as:

1

2
ρv⃗3 = σSBT

4
e + v⃗nkTe, (1.2)

where σSB is the Stefan-Boltzmann constant and σSBT
4
e is the upward energy flux associated

with blackbody radiation at temperature Te. The energy flux associated with the ionized

gas pressure at velocity v⃗ is v⃗nkTe where we use the ideal gas law:

Pg = nkTe. (1.3)

For a given polar cap radius of r0 cm the associated mass flux near the stellar surface is:

J =
Ṁ

πr20
, (1.4)

and by making the assumption that radiation pressure has only a minor effect on the

accreting material we will use the free-fall equation to approximate the bulk fluid velocity

close to the surface:

v2ff =
2GM∗
R∗

. (1.5)

Using the fact that J⃗ = ρv⃗ and ρ = ni,emp we substitute equations (1.3), (1.4), and (1.5)

into equation (1.2) to obtain the following relationship between luminosity LX and polar

cap radius r0:

LX

πr20

[
1− R∗

GM∗

kTe
mp

]
= σSBT

4
e . (1.6)

Equation (1.6) is plotted in Figure 1.3. The horizontal axis is the luminosity LX and the

vertical axis is the polar cap radius r0. Multiple curves are plotted for different electron

temperatures. Electron temperatures are not expected to rise above 5× 108 K which is the

hottest temperature plotted.
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Figure 1.3: Rough order-of-magnitude plot of the parameter space where gas dynamics is
expected to play a role within the accretion column as a function of luminosity LX and
polar cap radius r0. The radiation and gas are in thermal equilibrium (blackbody) and
curves are shown for various temperatures Te typically encountered in the column.

To provide some perspective, the five X-ray pulsars modeled in this dissertation research

are plotted in Figure 1.3. The polar cap sizes for each currently represent my best model

comparisons. The dashed circle represents a rough approximation to the region in which we

expect gas dynamics to be important. We call this the “region for inclusive gas dynamics”.

There is no equation governing the location of this circle. It is placed on the graph such

that it does not extend beyond a luminosity of 1037 erg sec−1 and does not cross an electron

temperature beyond approximately 5 × 108 Kelvin. A luminosity of 1037 erg sec−1 was
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chosen because we are interested in low-luminosity sources, and certainly any luminosity

higher than 1037 erg sec−1 is a high-luminosity source. We do not expect temperatures

within the column to extend beyond 5×108 Kelvin. We see that both X-PER and Vela X-1

fall within the dashed circle. Hence, gas pressure is expected to be dynamically important

in these two sources. Vela X-1 roughly approximates the mid-point below which we consider

pulsars as having a low luminosity. At luminosities above LX ∼ 1037 erg sec−1 we expect

radiation pressure to dominate.

At the top of the accretion column, boundary conditions for the incident radiation

and gas Mach numbers are coupled with an improved set of hydrodynamical equations in

which the bulk fluid passes through a sonic point (total Mach number equals unity). The

complete dynamical solution is obtained by defining five free parameters: polar cap size r0 in

units of cm, starting dimensionless accretion column height r̃start, incident radiation Mach

number Mr0, and two electron scattering cross-sections for photons traveling either parallel

to (σ∥) to or perpendicular (σ⊥) the column centerline axis. Fluid bulk velocity profiles

are numerically calculated and the ideal gas law is used to find the column temperature,

pressure, and density as a function of distance from the stellar surface. The dynamical

effects of the radiation and the ionized gas are both included in the model, which is cast

in a conical geometry as a reasonable and mathematically convenient approximation to the

magnetic dipole.

My PhD research employs the proven finite element method to solve a new transport

equation that accounts for spherical geometry rather than cylindrical geometry. This yields

the photon distribution as a function of energy and height above the stellar surface. The

bulk velocity profile is exact and numerically calculated. It is used instead of the Becker

& Wolff approximation, and electron temperature is computed rather than assumed to be

constant. All of this results in more realistic physics within the accretion column, and thus

a more accurate spectra production. The emergent phase-averaged spectra is compared to

data from the well-known pulsars X-PER, Vela X-1, HER-X1, CEN-X3, and LMC X-4.
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Finally, we analyze electron scattering cross-sections for photon propagation in the trans-

port equation to understand how changes in model parameters affect the comparison with

observed data.
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Chapter 2: An Overview of X-Ray Pulsar Observations

Nearly a half-century has passed since we began X-ray imaging our universe. The first

X-ray telescope was developed in 1963 (Giacconi) and made images of hotspots in the sun’s

atmosphere. Close to a decade later, in the early 1970’s, technology was improved and

observations outside our solar system began with NASA’s Uhuru X-ray satellite. Since

that time significant achievements and optical sensitivity improvements were made and our

knowledge of X-ray sources increased dramatically. Table 2.1 is a quick look at some of the

major X-ray satellites over the past four decades.

The Einstein observatory, HEAO-2, was a key mission in X-ray astronomy from 1978

to 1981. It was a NASA mission which involved a consortium of scientists fromm mul-

tiple institutions, including the Harvard-Smithsonian Center for Astrophysics, Columbia

University, NASA/Goddard Space Flight Center, and MIT. It had a sensitivity several one

hundred times greater than any mission before it and also was the first X-ray mission to use

focusing optics with imaging detectors. Einstein was responsible for lifting X-ray astronomy

into the mainstream of astronomical research.

EXOSAT, the European X-ray Observatory Satellite, was operational from 1983 until

1986. Its payload consisted of three instruments that produced spectra, images, and light

curves in various energy bands. EXOSAT had instruments the provided improved resolution

in the 1-50keV band, as well as two low-energy imaging telescopes that were sensitive in

the energy range 0.05-2keV, providing the first detailed observations in the EUV band.

The ROSAT satellite was a joint venture between Germany, the United Kingdom, and

the United States. It was in operation from June, 1990 until it was turned off in February,

1999. At the time its telescope consisted of the largest X-ray mirrors ever built. ROSAT per-

formed the first all-sky surveys with imaging telescopes leading to the discovery of 125,000

X-ray and 479 EUV (extreme ultraviolet) sources.
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Table 2.1: X-ray Instrumentation Satellites and Some Significant Accomplishments.

Satellite Country Duration Accomplishments
Aerobee Rocket U.S. 1962 Discovery of 1st cosmic X-ray source and

the X-ray background.
Uhuru U.S. 1970-1973 Discovered that neutron stars or black

holes accrete matter from companion
stars.

Vela satellites U.S. 1969-1979 Discovered gamma ray bursts and X-ray
bursters.

Ariel V U.K. 1975-1980 Discovered brightest X-ray source seen at
the time.

SAS-3 (Small Astronomy Satellite) U.S. 1975-1980 Discovered X-ray emission from a white
dwarf star.

High Energy Astronomy
Observatory-1 (HEAO-1)

U.S. 1977-1979 Conducted research on wide range of
X-ray energies, X-ray background, and
spectra of active galactic nuclei.

Einstein X-ray Observatory U.S. 1978-1981 First X-ray telescope with mirrors. Sig-
nificant scope in X-ray images, locating
7,000 X-ray sources, and brought about
study of dark matter.

EXOSAT E.S.A. 1983-1986 Discovered quasi-periodic oscillations
from neutron stars and black holes.

Roentgen satellite Germany 1990-1999 Significant contributions to the study of
upper atmospheres of many stars, made
the first detection of radiation from the
surface of neutron star.

Advanced Satellite for Cosmology
and Astrophysics (ASCA)

Japan 1993-2000 Found first evidence of gravitational red-
shift due to gravity field around a black
hole. Detailed studies of X-ray spectra in
supernova remnants.

Rossi X-ray Timing Explorer
(RXTE)

U.S. 1995-Present Can study rapid time variations in the
emission of cosmic X-ray sources. Sug-
gests evidence for warping of spacetime
in vicinity of black holes.

BeppoSAX Italy & The
Netherlands

1996-2002 Scientific payload can cover three decades
of energy, from 0.1 to 300 keV. High pre-
cision recording of gamma-ray bursts.

Chandra X-ray Observatory U.S. 1999-Present Unprecented sensitivity and precision.
Significant contributions and discoveries
related to stars, the nature of black holes,
high-energy matter and anti-matter, for-
mation and evolution of galaxies.

XMM-Newton E.S.A. 1999-Present Detailed studies of spectra of supernova
remnants, accretion disks around black
holes, stars, and other sources.

High Energy Transient Explorer
(HETE-2)

U.S., Japan,
France, & Italy

2000-Present State-of-the-Art research on detection
and localization of gamma-ray bursts.
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2.1 The Beginnings of X-Ray Pulsar Research

A first investigation of the physics of accretion onto compact stars, combining the effects of

stellar magnetic fields and rotation, was performed by Lamb, Pethick, and Pines (1973). In

the standard model developed by these authors, accretion-powered pulsars convert kinetic

energy into X-ray radiation as accreting matter flows onto the neutron star’s magnetic polar

caps. Infalling matter (ionized hydrogen gas) extracted from the atmosphere of the normal

companion star is channeled onto one or both magnetic caps by the strong magnetic field.

Figure 2.1 shows an artist’s rendition of a neutron star accreting gaseous material from

the companion star, and Figure 2.2 shows gas accretion along the magnetic field and the

production of X-rays near the polar cap.

Figure 2.1: Accreting pulsar (top) and its companion star (left) form a binary star system.
The pulsar attracts matter from the companion star due to its close proximity and strong
gravitational pull. (NASA).

2.2 Photon Spectra and Light Curves

The magnetic poles contain “hot spots” where the extremes of the magnetic field, plasma

density, and radiation transport couple together. The high temperatures in the hot spot

are caused by the conversion of gravitational potential energy into kinetic energy, and then
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Figure 2.2: Basic features of accretion onto pulsar magnetic pole are shown. To the right is
a close-up view near the stellar surface. The “hot spot” near the surface produces X-rays
that escape through the walls of the accretion column (Lamb, Pethick, and Pines 1973).

into thermal energy at the base of the accretion column, where the matter crashes onto the

surface of the star. The combination of the radiation-beaming properties of the accretion

structure and the rotation of the star creates a “pulse profile” in the frame of a distant

observer when the normalized amplitude of the observed flux is plotted versus the period

(or phase) of rotation. These plots are also called “light curves.”

Figures 2.3 and 2.4 show two light curves (White et al. 1983), the first from the low-

luminosity pulsar X-PER and the second from the high-luminosity pulsar CEN X-3 (White

et al. 1983). The graphs in this case are further subdivided into different energy bands, but

light curves from other publications or studies might be energy-integrated such that only

one curve is shown. We see that X-PER has a period of 835 seconds and a luminosity of

∼ 4× 1033 erg sec−1 (this is equivalent to log10[Lx] = 33.6) shown in the upper right on the

figure. CEN X-3 has a much smaller pulse period of 4.84 seconds and a higher luminosity

of log10[Lx] = 37.9 . 1036 erg sec−1.

Lower luminosity pulsars (. 1036 erg sec−1) tend to show a sinusoidal-like trend in the

pulse profile with a small dependence on photon energy between energy bands. At higher

luminosities the pulse profiles begin to display energy dependencies. Some of the highest
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Figure 2.3: X-PER pulse profile, a low-luminosity pulsar with a period of 835 seconds.
White et al. (1982) found evidence to suggest low-luminosity pulars such as X-PER have a
longer pulse period. (White et al. 1982).
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Figure 2.4: Pulse profile for high-luminosity pulsar CEN X-3 with a period of only 4.84
seconds. The pulse shape for each energy band shows a slight change with energy. Other
high-luminosity pulsars show significant profile changes with energy. (White et al. 1982).
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Table 2.2: Some X-ray Pulsars and Associated Properties.

Source (name) Distance (kpc) Pulse Period (sec) Luminosity log10[Lx]
X-PER 1.3±0.4 835s 33.6

4U1145-61 1.5 292s 35.0
4U1258-61 2 272s 35.8
OAO1653-40 1.7 38s 35.4-36.8
4U0900-40 1.4 283s 36.4
4U1223-62 1.8 700s 36.4
4U1538-52 5.5 529s 36.6
4U0115+63 3.5 3.61s 37.0
HER X-1 5 1.24s 37.4
CEN X-3 8 4.84s 37.9
GX1+4 9 115s 38.0
SMC X-1 50 0.72s 38.7

luminosity pulsars (& 1037 erg sec−1) even show pulse profiles with phase reversals between

the energy bands. It’s important to mention that the longest pulse period pulsars tend to

have the lowest luminosities (White et al. 1983). Table 2.2 shows a dozen X-ray pulsars

and their associated properties. We list pulsars used in the published analysis of White et.

al. (1983) and Coburn et. al. (2002). The lowest luminosity pulsars are at the top of the

list and highest luminosity pulsars are at the bottom.

Figure 2.5: X-PER phase-averaged profile. (White et al. 1983).
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Figure 2.6: CEN X-3 phase-averaged profile. The visible bump at 6-7 keV is due to an
iron source emmission. The cutoff energy for CEN X-3 is approximately 11 keV where the
photon count drops at a steeper decent. (White et al. 1983).

2.3 Phase-Averaged Spectra

Analysis of the X-ray spectra is often performed by averaging the pulses over many cycles

and displaying these as phase-averaged (or rotation-averaged) profiles. Figures 2.5 and

2.6 show the equivalent phase-averaged spectra corresponding to X-PER and CEN X-3,

respectively.

Phase-averaged spectra are generally represented by a power law with energy index α,

up to some high-energy cutoff location which is typically between 10 and 60 keV. The value

of α is most always less than 1.0. An iron (Fe) emission feature between 6 and 7 keV is

sometimes recognizable in the phase-averaged profile with equivalent widths ranging from

100 to 600 eV (White et al. 1983). The high-energy cutoff is commonly denoted by the

variable Ec, and the profile shape beyond the cutoff energy is modeled by an exponential

function.

Coburn et al. (2002) describe in detail three analytical functions commonly used to

empirically model the pulsar continuum. Although these functional forms have no physical

basis, they are often used to characterize the observed spectral shapes. The first function
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is the power law with high-energy cutoff (PLCUT):

PLCUT(E) = AE−Γ

 1 (E ≤ Ecut)

e−(E−Ecut)/Efold (E > Ecut) ,
(2.1)

where Γ is the photon index and Ecut and Efold are the cutoff and folding energy. The

second function (Tanaka 1986) uses the same power law Γ but instead uses a Fermi-Dirac

form of the high-energy cutoff (FDCO):

FDCO(E) = AE−Γ 1

1 + e(E−Ecut)/Efold
. (2.2)

The third function (Mihara 1995) uses two power laws (Γ1 and Γ2) in combination with an

exponential cutoff (NPEX):

NPEX(E) = A(E−Γ1 +BE+Γ2e−E/Efold . (2.3)

2.4 Pulse-Phase Spectroscopy

There are physical processes within the accretion column that can be easily masked if we

only investigate the phase-averaged profiles, which are averaged over the pulsar spin pe-

riod. Pulse-phase spectroscopy provides valuable insight into the phase-dependent spectral

changes across the energy continuum observed as the pulsar spins (Serlemitsos et al. 1975;

Pravdo et al. 1978). An inferred spectrum is obtained by multiplying an analytical model

of the incident spectrum with a previously determined X-ray detector response matrix.

We look at the spectra of the extensively studied source Hercules X-1 (HER X-1; Pravdo

et al. 1977) to highlight some benefits of pulse-phase spectroscopy. Figure 2.7 shows the

energy integrated (2-31 keV) pulse light curve (net counts per second) as a function of pulse

phase obtained with the cosmic X-ray spectroscopy experiment (CXS) onboard the OSO 8
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instrument. The CXS used an argon-filled proportional counter. We see the pulse shape in

figure 2.7 between 2 to 30keV. There are 62 temporal bins which comprise this light curve.

Pulse phase is simply an indication of the temporal evolution of the observed photon count

due to the spin of the pulsar. The top graph in the figure shows a double-peaked pulse

with a dominant first peak followed by a second peak. There are clearly two distinct peaks

within one complete phase.

Figure 2.7: Energy integrated pulse light curve of pulsar Hercules X-1. The main pulse
clearly has two distinct peaks within one complete phase (Pravdo et al. 1977).

In this HER X-1 example an automatic spectral fitting program was used to obtain the

best-fit parameters for a simple spectral model. The model chosen was a power law with

an additional multiplicative factor of the form:

spectrum ∝ e−αE−3
, (2.4)

where α is a free parameter and E is the photon energy. Equation (2.4) is used as a measure

of gross spectral shape. It determines the region in which the soft-to-hard spectral change

occurs.
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The parameters in the middle and bottom portions of figure 2.7 are a measure of spectral

change activity. Spectral changes often occur with the temporal changes in pulse phase. In

the case of HER X-1 the peak pulse intensity rises slower at higher energies. The first peak

is more narrow at higher energy and also occurs at a later phase. The ‘spectral turnover’

parameter in the bottom of the figure shows relatively no spectral change activity during

the main peak of the pulse profile. This is called a ‘hard region. Regions of relatively more

spectral change is referred to as ‘soft’.

Figure 2.8: Pulse spectra for Hercules X-1 obtained at different pulse phases. The lower and
upper curves are caused by different physical processes within the accretion column. The
pulse shape arises from an energy-independent scattering process in the stellar atmosphere
but the spectral changes arise from elementary processes near the stellar surface (Pravdo
et al. 1977).

Figure 2.8 shows two curves as a function of energy. The top curve shows the spectra

from a single temporal bin within the hardened region of the pulse shape. The bottom

curve is the spectra analyzed from a time bin in the region between the two pulse peaks.

This clearly shows an uneven relationship between intensity and spectral changes in the

pulse. Overall the energy-integrated pulse shape results from energy-independent scattering

processes in the stellar atmosphere, while the spectral changes arise from processes near the

stellar surface (Pravdo et al. 1977).

A second example of pulse phase spectroscopy comes from the source CENTAURUS

X-3 (CEN X-3). The pulse profile is shown in figure 2.4 and the spectra is shown in figure
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2.9. Here we see the incident spectra of CEN X-3 at three different pulse phases: centered

on the principal peak (P), the interpulse (I), and pulse minimum(L). You can clearly see

the iron line emission in the pulse minimum spectra.

Figure 2.9: Pulse spectra for CEN X-3 at three different phases centered on the principal
peak (P), the interpulse (I), and pulse minimum (L). (White et al. 1982).

Recent work by Coburn et al. (2002) analyzed how cyclotron resonance scattering

features (CRSFs) correlate with the shape of the pulse spectra (also called “cyclotron lines”).

The line-like spectral features arise as a result of the scattering of photons by electrons

with quantized energy levels (Landau levels) due to the pulsar’s magnetic field (Mészáros

1992). CRSF widths are roughly proportional to their energy and provide insight into the

magnetic field strength. Coburn et al. (2002) also showed a correlation between magnetic

field strength and the spectral cutoff energy.

In the next chapter we will briefly discuss work by Becker and Wolff (2005, 2007b)

which eliminates the need to phenomenologically model the high-energy cutoff region using

empirical fitting functions such as those in equations (2.1), (2.3), and (2.2). They provided

the first physically motivated calculation of the spectrum which accurately reproduces the

power-law variation commonly seen in many accreting X-ray pulsar spectra.
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Chapter 3: Current Theory of Accretion Column Formation

In this chapter we review the current dynamical theory of accretion columnn formation.

Drawing upon ideas presented by Lamb, Pethick, and Pines (1973), Davidson (1973), Basko

& Sunyaev (1975, 1976), and Wang & Frank (1981), we follow the concepts used to describe

the structure of pulsar accretion column formation in modern theories by Becker (1998),

Bykov & Krassilchtchikov (2004), and Canalle et. al. (2005).

The current dynamical theories of accretion column formation focus exclusively on either

radiation-dominated flows or gas-dominated flows, in which the gas is composed of ions and

electrons in a fully ionized plasma. However, none of the current models implement a two-

fluid concept whereby gas and radiation fluids are mutually considered. The Becker (1998)

model focuses exclusively on radiation-dominated flows with a standing, radiative shock.

Both the Canalle et al. (2005) and Bykov & Krassilchtchikov (2004) models investigate

accretion dynamics of a plasma fluid with a quasi-stationary shock. Canalle et al. (2005)

apply an accreting, single-fluid model to the post-shock region only and the region above

the shock only establishes an upper boundary condition. Bykov & Krassilchtchikov (2004)

investigate a two-component model of ions and electrons which have the same bulk velocity

but different temperatures along the column. My PhD research implements a never-before

considered two-fluid model in which the pressure is provided by both the gas and the

radiation.

All of the previously published dynamical models show that a shock is present in the

accretion column, whether stationary or quasi-stationary, as the inflowing material slows

before approaching the stellar surface. A shock must occur in pulsar accretion columns since

the material starts out with a highly supersonic velocity (close to the speed of light), and it

essentially comes to rest at the stellar surface. The shock compression ratio, however, varies

21



in the different models. Canalle et al. (2005) assume that the upstream Mach number tends

to infinity and use the Rankine-Hugoniot condition to derive the post-shock velocity, which

is equal to precisely 1
4 of the pre-shock velocity. The Bykov & Krassilchtchikov (2004)

model uses the well-known Godunov method to investigate the shock discontinuity, and

their numerical results show a similar compression ratio of approximately 1
4 . Neither of

these models provides an adequate description of accretion onto an X-ray pulsar since the

material must come to rest in the downstream region.

The Becker (1998) model implements a radiation-dominated shock which must be ra-

diative in nature in order to convert the kinetic energy of the infalling gas into radiation

such that the accreting material (considered as an ideal fluid) can come to rest at the stellar

surface. The radiative shock is a continuous velocity transition and possesses a definite sonic

surface profile as shown in Figure 3.1. The shock plays a crucial role in photon energization

via the first-order Fermi energization process. The first-order Fermi energization process is

the process whereby the accreting background plasma gas will compress and perform P dV

work on the radiation, thereby transferring an energy gain to the photons. The inflow speed

of the accreting electrons is much higher than their thermal velocity, and this dominates the

energy spectrum dynamics except at the higher energy bands. Previous models studying

radiative pulsar accretion flow neglected the role of the shock in upscattering the radia-

tion and forming the emitted spectrum. This makes the Becker model an attractive prime

candidate for further scientific inquiry.

All the model geometries are simplified for ease of analysis and physical interpreta-

tion. Whereas Becker uses a one-dimensional, plane parallel geometry, both Bykov & Kras-

silchtchikov and Canalle et al. implement a curvilinear coordinate system which is natural

for the dipole-field geometry of the magnetic field lines. In the hydrodynamic equations,

however, all three models adopt a one-dimensional velocity of highly constrained flow along

the field lines due to the large magnetic field strengths of X-ray pulsars.

We expect that in high-luminosity X-ray pulsars the radiation pressure dominates over

gas pressure (Prad ≫ Pgas). Becker used this approach in which the pulsar luminosity LX
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Figure 3.1: Infalling gas (fully-ionized hydrogen) passes through a radiation-dominated,
standing shock while coming to rest at the stellar surface. (Becker & Wolff 2007).

satisfies the constraint LX & Lcrit such that the accreting gas passes through a radiation-

dominated, standing shock and comes to rest (stagnates) at the stellar surface. Lcrit is given

by (Becker 1998; Basko & Sunyaev 1976):

Lcrit ≡
2.72× 1037σT√

σ⊥σ∥

M∗
M⊙

r0
R∗

, erg sec−1 (3.1)

where M∗ is the stellar mass, R∗ is the stellar radius, r0 is the polar cap radius (we assume

a cylindrical geometry such that it is also the radius of the accretion column), σT is the

Thomson scattering cross section, and σ∥ and σ⊥ define mean values for the electron scat-

tering cross-sections for photons radiating parallel and perpendicular to the magnetic field,

respectively. Equation (3.1) gives the relationship between the luminosity LX and mass

accretion rate Ṁ :

LX =
GM∗Ṁ

R∗
, (3.2)
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where Ṁ is related to the mass flux J using:

Ṁ = πr20J (3.3)

for a polar cap with radius r0. In the Becker (1998) dynamical solution for bulk flow,

a unique relationship exists between the luminosity LX and mass flux J for a radiation

dominated flow which satisfies bulk stagnation at the stellar surface. Using equation (5.5)

from Becker (1998) for the mass flow rate Ṁ and substituting into equation (3.2) we obtain

equation (3.1). This is applicable for a strong shock where the incident radiation Mach

number is expected to be large.

Becker also showed that high-luminosity pulsars have high accretion mass flow rates

in which the flux exceeds the Eddington flux by roughly two orders of magnitude (∼100).

The Eddington flux is the inflowing mass flux of the plasma gas at which point the force of

gravity acting upon an average electron-proton couplet is exactly offset by the momentum

transferred to the couplet via radiation scattering. In X-ray pulsar accretion flows, the

inflowing plasma is funneled onto the small polar cap by the super-strong magnetic field.

The magnetic field pressure far exceeds the radiation, gas, and ram pressures of the

fluid as it moves towards the polar cap. To show an order-of-magnitude comparison between

these pressures, we assume that the accretion column is in thermal equilibrium at a constant

temperature Te. Radiation pressure is given by the Stefan-Boltzmann law:

Pr =
1

3
aT 4

e , (3.4)

where a = 7.56× 10−15 erg cm−3 deg−4. Gas pressure is given by the ideal gas law:

Pg = ni,ekTe, (3.5)

where ni,e = ni = ne is the number density of electrons and ions, k is Boltzmann’s constant,
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and Te is the electron temperature. The kinetic ram pressure of the bulk fluid is given by:

Pram =
1

2
ρv2, (3.6)

where v is the bulk fluid speed and ρ is the mass density. We approximate the bulk fluid

speed using the free-fall velocity:

v2ff =
2GM∗
R∗

, (3.7)

where M∗ and R∗ are the stellar mass and radius, respectively. Finally, for a magnetic field

of strength B the magnetic field pressure is given by:

Pmagnetic =
B2

8π
. (3.8)

To obtain typical values for the temperature and mass density we refer to Figure 4.1. We

choose a temperature of Te = 108K, a mass density of ρ = 100g cm−3 for approximately

the maximum values we expect to encounter within the accretion column. We choose a

magnetic field strength of Bfield = 1012G as a conservative value. Using these values in

equations (3.4)-(3.8) we obtain the values for typical pressures. These are summarized in

Table 3.1. We see that, using the values listed in this paragraph, the magnetic field pressure

is stronger than all other pressures by a factor of nearly 106. In this situation the magnetic

field pressure will have a tight hold on the plasma gas and confine it to the accretion column.

The ions and electrons will not escape.

The inflowing gas scatters the radiation and causes it to diffuse out the side walls of the

accretion column rather than propagate upstream. A “fan” beam pattern emerges rather

than a vertical “pencil” pattern. In contrast to this, however, sub-Eddington pulsars have

lower mass flow rates that result in lower-luminosity and in these sources, the ordinary gas

component has much more influence upon the overall dynamic pressure within the accretion

column. The Bykov & Krassilchtchikov (2004) and Canalle et al. (2005) models adopt the
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Table 3.1: Pressures Expected within Accretion Column

Pressure Type Abbreviation Magnitude Relative Strength

Blackbody Pr = (1/3)aT 4
e 2.52× 1017 6.3× 10−6

Gas Pg = ni,ekTe 8.25× 1015 2.1× 10−7

Ram (kinetic) Pram = (1/2)ρv2 1.80× 1016 4.5× 10−7

Magnetic field Pmagnetic = B2/8π 3.98× 1022 1

sub-Eddington approach of gas dominated flows and neglect the radiation fluid. Instead,

both models incorporate upper boundary conditions in which the accreting material is

considered to be a cold, supersonic, free-falling gas.

Common to all three models is the implementation of hydrodynamic conservation equa-

tions. We mentioned earlier that Bykov & Krassilchtchikov and Canalle et al. consider

dipole geometry in one dimension along the field lines. We look at the Becker model here

and discuss where the other models deviate. Becker adopts a one-dimensional, steady-state

cylindrical geometry where the conservation equations of mass, momentum, and energy are

given by:

∂ρ

∂t
= −∂J

∂x
= 0 (3.9)

∂

∂t
(ρv) = −∂I

∂x
= 0 (3.10)

∂

∂t

(
1

2
ρv2 + Uradiation

)
= −∂E

∂x
+ U̇escape + U̇absorbed + U̇emitted = 0, (3.11)

where the x variable describes the spatial dimension directed towards the stellar surface.

The variables J , I, and E represent the fluxes for mass, momentum, and total energy,

respectively. Uradiation is the internal energy density of the radiation and the U̇ terms on

the right-hand-side of equation 3.11 represent the rate of change of internal radiation energy

density due to radiation escape from the accretion column walls, photon absorption by the

gas within the column, and photons emitted by the gas, respectively. Mathematically the
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fluxes are represented by the following expressions:

J = ρv (3.12)

I = P + ρv2 (3.13)

E =
1

2
ρv3 + Pv + Uv − c

∂P

∂τ∥
, (3.14)

where P, U, ρ, and v are the fluid radiation pressure, internal energy density, mass density,

and flow velocity, respectively. The speed of light is given by c. The optical depth τ∥ is

related to the spatial dimension using

dτ∥ = neσ∥dx, (3.15)

where the local electron density ne is a function of height above the stellar surface and plays

an important role in the diffusion of the radiation energy along the accretion column axis.

An important assumption made is that the flow is optically thick to electron scattering

perpendicular to the flow direction. We use the diffusion term in equation (3.14) to model

the escaping radiation flux Frad:

Frad = −c ∂P
∂τ∥

. (3.16)

To investigate equation (3.16) we convert the optical depth to the spatial domain using

equation (3.15) to obtain:

Frad = − c

neσ∥

∂P

∂r
. (3.17)

The quantity c/(neσ∥) has units of cm2 sec−1 and is the diffusion coefficient for radiation

traveling parallel to the accretion column axis. Therefore, as the radiation moves towards

the stellar surface the radiation pressure will increase and cause a spatial gradient. The
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gradient multiplied by the diffusion coefficient yields the energy flux. This provides the

mechanism for the formation of a radiative shock which drives the very important first-

order Fermi energization of photons. The approach of Wang & Frank (1981) is used in

which constant, energy-averaged electron scattering cross sections σ∥ and σ⊥ describe the

scattering of photons propagating parallel and perpendicular to the column magnetic field,

respectively.

The Becker model (1998) is unique because it applies a diffusion approximation to the

energy flux that effectively models the radiative nature of the standing shock. In this model,

the energy flux E decreases as the gas approaches the stellar surface due to the escape of

radiation energy through the walls of the accretion column. There are important physical

effects, however, not included by Becker (1998). These include gravity, bremsstrahlung ra-

diation production and re-absorption losses, and cyclotron radiation emission. The Canalle

et al. (2005) model implements gravity effects in addition to a cooling function with a

power-law dependence on density and temperature. This cooling function allows for a

crude investigation of flow dynamics for bremsstrahlung and cyclotron losses. The Bykov

& Krassilchtchikov model (2004) includes bremsstrahlung and cyclotron cooling losses, and

they also add corrections for effective forces acting on the ions and electrons, which include

gravity, radiative pressure, and friction forces in the atmosphere.

Continuing our review of Becker’s model, we can reasonably assume in equation (3.11)

that U̇absorbed + U̇emitted ≈ 0 because the fluid is radiation-dominated and any energy sup-

plied to the radiation field is supplied by the photons themselves. In this case the energy

insertion processes of thermal Comptonization, bremsstrahlung heating, or cyclotron heat-

ing can alter the shape of the spectra but they do not result in a net change in internal

energy. My PhD research considers new dynamics in which bremsstrahlung and cyclotron

emission production and absorption losses play a major role in the accretion column dy-

namical structure. The relationship between internal energy density and pressure is given
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by:

U =
P

γrad − 1
, (3.18)

where the value for the specific heat ratio (adiabatic index for radiation) is given the constant

value γrad = 4/3.

Steady-state solutions are sought such that time-dependent terms can be eliminated.

Although the Bykov & Krassilchtchikov model solves time-dependent equations, their solu-

tion quickly converges to a static condition that we can use to compare against the Becker

solution. The Canalle et al. model solves for steady-state solutions as well. Returning to the

Becker model, the desired steady-state conditions permit the mass and momentum fluxes

to be conserved, but the energy flux decreases as the fluid approaches the stellar surface

due to the energy escaping through the column walls via the rate of energy escape term

U̇esc in (3.14). These conditions led Becker to arrive at the important dynamical equation

that governs the flow structure:

d

dτ

(
− 7

2
µ2 + 7µ+

dµ

dτ

)
= −3θξ2µ2

(
7

4
− µ

)
, (3.19)

where µ and τ are dimensionless parameters defined as:

µ ≡ v

vc
, τ ≡ vc

c
τ∥, (3.20)

and vc is the critical velocity, which is the flow velocity at the sonic point. The sonic point

is the height in the column where the Mach number with respect to the radiation sound

speed equals unity (M = 1).

The variable ξ is defined as the loss parameter:

ξ2 ≡ mp
2c2

r02J2σ⊥σ∥
, (3.21)
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which describes the strength of energy loss due to the radiation escaping across the accretion

column outer walls. The variable θ is called the transparency function and is approximated

as θ(τ) ∼ 1 in the space between the sonic point and the stellar surface. This corresponds to

radiative flow downstream of the sonic point. Setting θ = 0 would result in purely adiabatic

flow with no radiative losses. mp is the proton mass and r0 is the polar cap radius.

The downstream boundary conditions are crucial to understanding the physics at the

stellar surface. We follow the approach first considered by Davidson (1973) and Basko &

Sunyaev (1975, 1976) to maintain the requirement of a fluid stagnation boundary condition.

All three of the newer models require stagnation at the stellar surface. These provide a

simple and plausible explanation for the behavior of the fluid velocity below the shock

transition. Bykov & Krassilchtchikov require stagnation but their model shows that a

positive stellar surface energy flux remains. I later show in my research that the bulk fluid

velocity does not necessarily stagnate. My HER-X1 dynamic solution shows a small residual

velocity remains at the stellar surface, and the CEN-X3 solution shows an even larger bulk

velocity remains.

We take a closer look now at the stellar surface boundary condition that requires a

radiative, stagnating flow. After passing through the shock the matter accumulates on the

polar cap to such great extent that mathematically we have:

lim
x→xst

Massacc(x) → ∞, (3.22)

where Macc is the mass inside the accretion column. Using the relationship given in equation

(3.15) the parallel scattering optical depth at the stellar surface is also:

lim
x→xst

τ∥(x) → ∞, (3.23)

and it can be shown that as τ∥ → ∞ the total energy flux vanishes at the surface of the star

(not accounting for the energy flux associated with gravity) which leads to the additional
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downstream boundary condition of

lim
τ∥→∞

E(τ) → 0. (3.24)

This is called the “mirror condition”. The requirement of stagnation at the stellar surface

leads to an eigenvalue condition for the loss parameter ξ, yielding the specific value ξ2 =

(8/3)ϵc.

Solving equation (3.19) yields the fluid velocity profile and the shock location relative

to the stellar surface:

µ(τ) =

(
7

2ϵc + 7

)(
1− tanh

[
7

2
(τ − τ∗)

])
, (3.25)

where:

τ∗ ≡
2

7
tanh−1

(
2

7
ϵc

)
. (3.26)

A precise form of the transparency function θ(τ) is chosen such that downstream θ ≈ 1

between the sonic point and stellar surface, and θ → 0 in the upstream region where the

flow is assumed to be adiabatic. Becker (1998) adopted the form:

θ(τ) =
1

2

{
1 + tanh

[
7

2

(
τ − 2

7
tanh−1

(
2ϵc − 4

3

))]}
(3.27)

where ϵc is the dimensionless energy flux at the sonic point:

ϵc ≡
E

Jv2c

∣∣∣∣
τ=0

, (3.28)

where τ was established to be zero at the sonic point. We convert from energy flux to the
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incident (upstream) mach number M∞ via the relationship

M∞ =

√
6

2ϵc − 1
, (3.29)

which will allow us to use M∞ as a free input parameter. This relationship was obtained by

allowing τ → −∞ at the far upstream location (essentially adiabatic flow) and combining

the dynamic solution for µ(τ) with the relationship between Mach number and µ. Becker

(1998) provides more detail on these equations.

Figure 3.2: Analytical solution of dynamical equation (3.19) showing velocity ratio µ ≡ v/vc
and the transparency function θ(τ) plotted as a function of the scaled scattering optical
depth τ (Becker 1998). The incident mach numbers for the solid and dashed lines are
M∞ = 10 and M∞ = 2.45, respectively. The transparency function initially is zero and
increases to almost unity at the critical point (τ = 0). Far upstream the incident velocity is
greater than the critical velocity (τ < 0), is equal to critical velocity at τ = 0, and stagnates
at the stellar surface near τ = 1.0 (Becker 1998).

In the limiting case of a strong shock where M∞ → ∞ we see that ϵc → 1
2 and ξ2 → 4

3

(Becker 1998; Basko & Sunyaev 1976). Using this result and converting to x coordinates

we arrive at the exact analytical solution for fluid velocity along the column:

v(x) =
7

4

[
1−

(
7

3

)−1+x/xst
]
vc, (3.30)

where the quantity xst defines the distance between the sonic point and the stellar surface
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and is given by (Becker 1998)

xst =
r0

2
√
3

(
σ⊥
σ∥

)1/2

ln

(
7

3

)
. (3.31)

Figure 3.2 shows the numerical solution to the dynamical equation for the Becker model.

The incident mach numbers for the solid and dashed lines are M∞ = 10 and M∞ = 2.45,

respectively. The sonic point is located at τ = 0. The two sets of curves show the values

of the variable µ(τ) and the transparency function θ(τ). Far upstream (τ = −1.5) the

value of µ is greater than unity because the incident velocity is greater than the critical

velocity µ ≡ v/vc > 1, whereas the transparency function is zero. As the flow approaches the

critical point (τ = 0) the theta function approaches unity, and the velocity equals the critical

velocity such that µ = 1. The fluid stagnates at the stellar surface and the transparency

function θ(τ) is closely equal to unity between the sonic point and the surface. This solution

provides an accurate description of the flow structure between the sonic point and the stellar

surface for cylindrical geometry.

The Canalle et al. (2005) model investigates flow only in the post-shock region in

contrast to a numerical analysis along the full column length. This is a disadvantage because

an assumption about the shock strength must be made prior to solving the problem, and

the solution will not provide a fluid velocity profile upstream of the shock. Aside from this,

Canalle et al. found that the dipolar geometry of the problem resulted in proportionally

higher pressures throughout the post-shock region as compared to a purely cylindrical-

geometry model of Cropper et al. (1999). See figure 3.3. Canalle et al. also noticed that

compressional heating due to the dipolar geometry was as important as radiative cooling

and gravity in determining the structure of the post-shock flow in accreting white-dwarf

stars.

Bykov & Krassilchtchikov (2004) perform a time-dependent numerical analysis along

the entire column length up to several star radii from the stellar surface. They model the

33



Figure 3.3: Post-shock pressure profiles of Canalle model (2005) in both cylindrical and
dipole coordinates. The horizontal axis shows distance above the stellar surface. The stellar
surface is at (r−1)/(rs−1) = 0 on the left and the radiation shock is at (r−1)/(rs−1) = 1
on the far right. The pressure for dipole geometry is proportionally higher than the purely
cylindrical coordinates.

one-dimensional motion of the accreting plasma along the magnetic field dipole lines. Their

equations are integrated from an initial state at t = 0 to a current state at a moment t in

a number of time steps ∆t. Their results show that a strong, collisionless shock evolves in

about 10−5 seconds. After several free-fall periods a quasi-stationary state of the column

with a stable accretion shock is usually reached. They also discovered that the accretion

dynamics significantly depend on the detailed structure of the magnetic fields about 103 cm

from the surface.

The Becker model provides the first steps towards a complete, self-consistent description

for both the shock dynamical structure and the radiative transfer in the column. However,

the resulting velocity profile does not incorporate the effects of the gas pressure, the strong

gravitational field, or the dipole structure of the column.

34



Chapter 4: The Physics of X-Ray Spectra Formation

Until recently, attempts to calculate the spectra of accretion-powered X-ray pulsars usually

did not yield good agreement with the observed spectra. This lack of agreement reflects the

phenomenological nature of the methods that were employed in those efforts. In this chapter,

I review the current state of the field and describe the methods used in the dissertation to

calculate the spectra of X-ray pulsars based on the detailed microphysics occurring in the

accretion columns.

4.1 Radiation Hydrodynamics

The intent of this section is to review the fundamentals of radiation transport and to

investigate the validity of the diffusion approximation employed in the dissertation research.

The radiation field can be described by either a photon distribution function f or the

spectral radiation intensity Iν . The intensity has units of erg sec−1 cm−2 sr−1 ν−1. We

say the intensity is the energy crossing a unit area at a given point per unit time per unit

frequency and per unit solid angle in the direction of interest. A distribution function f

captures the concept of the particle nature of radiation where we introduce the concept of

the quanta. Each quanta has an energy hν. The phase space density f is related to the

intensity Iν by the following:

f =
dN

dV d3p
=

Iν
h4ν3/c2

, (4.1)

where the momentum space volume element, in spherical momentum-space coordinates, is:

d3p =

(
h

c

)3

ν2dνdΩ. (4.2)
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The key ingredient that makes this relationship possible is that a quanta has an energy hν

and a momentum hν/c. From equation (4.1) we see the units of the phase space density

function are the total number of photons N per a volume element V per differential photon

momentum space. The quantum nature of the photon allows us to work with either function

and easily switch to the other. In our application the radiation transport equation can be

written as:

1

c

∂Iν
∂t

+ n · ∇Iν = jν − kνIν , (4.3)

where Iν is the intensity (erg sec−1 cm−2 sr−1 ν−1), jν is the emission coefficient (erg sec−1

cm−3 sr−1 ν−1), kν is the scattering coefficient (cm−1), and n represents a unit vector which

points in the direction of radiation propagation. The emission coefficient and scattering

coefficient describe the interaction of radiation and matter. Energy is either (1) removed

from matter and added to the radiation (via the jν emission term), or (2) energy is scattered

by matter and removed from the radiation (via the −kνIν scattering term).

The presence of the unit vector n indicates the intensity has a directional dependence.

We are going to replace the direction-dependent intensity in the radiative transport equation

with the angle-averaged distribution function which directly governs the spectral energy

density and energy flux. By using the distribution function the angular distribution of the

radiation is not present when considering the radiation interaction with the bulk fluid.

The diffusion approximation greatly simplifies solving equation (4.3). In our applica-

tion the approximation is accurate when the photon scattering mean free paths are small

compared to other length scales. Mathematically we can write this as:

kνL≫ 1, (4.4)

where L is a typical length in the problem and here kν refers to a scattering coefficient.

This is simply the optical depth τ and describes a probability per unit length kν that a

photon will scatter with matter as it traverses some thickness L. An optically thick medium
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(τ ≥ 1) is one in which the average photon of frequency ν cannot traverse the entire medium

without being scattered. The scattering mean free path (1/kν) is small and the radiation

density should change little over this distance. We can consider the radiation field for such

small gradients to be almost isotropic.

The diffusion approximation is an expansion in the scattering mean free path (1/kν) in

which successive approximations for obtaining Iν are terminated after the first two terms.

We use the assumption that kν is large (scattering mean free path is small) and has a very

small correction to the first term. The the diffusion approximation equation is written as:

Iν =
jν
kν

− 1

kν

(
1

c

∂jν/kν
∂t

+ n · ∇ jν
kν

)
. (4.5)

There is no need to find additional approximations because we are assuming kν is large and

the next term would be negligible.

We obtain additional properties from the intensity by taking its angle moments. The

angle θ described here represents the angular distance from the normal vector n to some

differential amount of flux from the solid angle dΩ. The first moment of equation (4.5)

yields the proper energy flux in the diffusion approximation. The differential energy flux is

equal to:

dFν = Iν cosθ dΩ ∝ erg s−1 cm−2 Hz−1, (4.6)

which represents the energy crossing a unit area of a detector per unit time due to a beam of

radiation making an angle θ with respect to the detector. The total energy flux is therefore

given by:

Fν =

∫
dFν =

∫
Iν cos θdΩ ∝ erg s−1 cm−2 Hz−1, (4.7)

where the bounds of integration cover the angle subtended by the source at the detector.
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The total energy density is likewise given by:

Uν =

∫
dUν =

∫
1

c
IνdΩ ∝ erg cm−3 Hz−1, (4.8)

We relate the phase space density function f to the energy density Uν by substituting

equation (4.1) into equation (4.8) to obtain:

Uν =

∫
dUν =

∫
h4ν3

c3
fdΩ. (4.9)

Finally, the second moment in the diffusion approximation yields the pressure and is

found by multiplying by nn and integrating over all angles. In one dimension we obtain:

Pν =

∫
nn Iν dΩ (4.10)

=
1

3

[
4π

c

jν
kν

− 4π

kνc2
∂

∂t

(
jν
kν

)]
(4.11)

=
1

3
Uν . (4.12)

We see that by using the diffusion approximation the Eddington approximation in equation

(4.12) follows.

4.2 Justification for the Ideal Gas

An essential element in the modeling of structure in the accretion column is the Equation-

of-State (EOS) that describes in precise mathematics how the pressure of matter responds

to changes in its density and temperature. Figure 4.1 shows a temperature-density log-log

plot of the regions which are governed by different equations of state (H. Bradt, Asrophysics

Processes, Cambridge University Press 2008). The boundaries between the several regions
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are lines of equal pressure. Our research is limited to nondegenerate material in the upper

left quadrant of the graph in which the column temperature is sufficiently high (∼ 106-

108K) and the density is low (ρ ∼ 10−4-100 g cm−3). We neglect any effects from electron

degeneracy and quantum mechanics throughout this research because the densities are

low enough and the temperatures are high enough such that classical Maxwell-Boltzmann

statistics apply.

Figure 4.1: A temperature-density log-log plot shows the regions where different equations
of state apply. The boundaries between the several regions are lines of equal pressures. Our
research is limited to the upper-left quadrant of the plot which is governed by nondegenerate
matter. (H. Bradt, Asrophysics Processes, Cambridge University Press 2008)

The ionized plasma gas (hydrogen) we are investigating has a temperature Te which

contains particles traveling in random directions with a wide range of speeds. We can

rightfully suppose the gas is in thermal equilibrium because collisions allow the energy to

be equally shared among all the particles. The ionized gas has interparticle forces (elec-

trostatic interaction between the electrons and protons) but their potential energies are an
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order of magnitude less than the kinetic energy density. The Maxwell-Boltzmann (MB)

distribution is perfectly suited for such a scenario in which the gas is comprised of pointlike

and nonrelativistic particles with negligible interparticle forces.

As long as the ionized gas interaction energies are small compared with their kinetic

energies we shall use the equation of state of a perfect gas to describe the radiation and gas

fluids. The physical form of our equation of state is:

P =
R

µ
ρT. (4.13)

This can be re-written as:

P = (γ − 1)ρe. (4.14)

where γ = cp/cV is the ratio of specific heats. The quantity ρe is the internal energy density

U . When γ = 4/3 we obtain for radiation:

Pr =
1

3
Ur. (4.15)

This establishes that the radiation can be treated as an ideal gas with γ = 4/3. However, we

can only assign a temperature to the radiation field if it is in full thermodynamic equilibrium

with the matter, which probably occurs close to the bottom of a pulsar accretion column.

4.3 Becker & Wolff Model

A new model for X-ray spectral formation was recently developed by Becker and Wolff

(2005a, 2005b) based upon the “bulk” Comptonization (i.e., the first-order Fermi energiza-

tion) of photons due to the convergence of the gas in the accretion column. A first-order

Fermi term is included in the transport equation which accounts for the transfer of proton

kinetic energy to the photons via electron scattering as the photons travel back and forth

across the accretion shock. Thermal Comptonization was ignored in their “bulk” model,
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and as a result the computed X-ray spectrum contained no high-energy cutoff. Not in-

cluding the effects of thermal Comptonization corresponds physically to a “cold plasma” in

which the thermal velocity of the electrons is much less than the dynamical (bulk) velocity.

Becker and Wolff were successfully able to reproduce the observed spectra of several sources

using the pure bulk Comptonization model. Figure 4.2 shows the count rate spectrum of

X-ray pulsar 4U 1258-61 which is in good agreement with the Becker & Wolff numerical

solution.

Figure 4.2: Numerical solution of Becker & Wolff bulk Comptonization model (2005a,
2005b) for column-integrated count rate spectrum of X-ray Pulsar 4U 1258-61. The solid,

dashed, and dot-dashed lines correspond to accretion column densities of NH = 0, 3× 1021,
and 9×1021 cm−2, respectively. The pulsar spectrum does not have a high-energy cutoff. In
this case the first-order Fermi energization process dominates the energy exchange between
the electrons and photons. (Becker & Wolff 2005).

However, many bright X-ray pulsars have a high-energy quasi-exponential cutoff at ∼20-

30 keV which suggests there is another physical process that must be taken into account

besides pure bulk Comptonization. This can be explained as a result of thermal Comp-

tonization. Thermal Comptonization is a two-step process in which high-frequency photons

lose energy to electrons via Compton scattering and subsequently the low-frequency photons

gain energy via inverse Compton scattering. The thermal process is described mathemat-

ically by the Kompaneets (1957) equation. Becker & Wolff (2007) extended their original

model to account for this.
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4.3.1 Photon Transport Equation

Bulk and thermal Comptonization effects are included in a transport equation used to model

the production of the emergent radiation spectrum (Becker & Wolff 2007). Source photons

(also called “seed” photons) are introduced into the accretion column via Bremsstrahlung,

Cyclotron, and blackbody processes. Bremsstrahlung and Cyclotron photons are introduced

throughout the length of the column whereas blackbody radiation is produced only at the

thermal mound surface. The source photons scatter with electrons, diffuse throughout the

accretion column, and eventually escape through the column walls to produce the observed

X-ray spectrum.

We introduce the time independent, flux-conservation form f(z, ϵ) of the photon distri-

bution function (Gleeson & Axford 1967; Skilling 1975; Becker 1992):

∂f

∂t
= 0 = −∇ · Fparticle +

1

ϵ2
∂

∂ϵ

(
ϵ2D

∂f

∂ϵ

)
− 1

ϵ2
∂

∂ϵ

(
ϵ2⟨ϵ̇⟩lossf

)
− 1

3ϵ2
∂

∂ϵ

[
ϵ2 (ϵv⃗ · ∇f)

]
+ ḟsource − ḟescape − ḟabs, (4.16)

where v < 0 to indicate that bulk velocity is towards the stellar surface. The specific particle

flux Fparticle (where the “particles” are photons) is given by:

Fparticle = −κ∇f − v⃗ϵ

3

∂f

∂ϵ
. (4.17)

The phase-space density of photons is represented by f , ϵ is the photon energy, D is the

momentum diffusion coefficient given by:

D =
neσ̄c

mec2
kTe
ϵ2
, (4.18)
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the momentum loss rate ⟨ϵ̇⟩loss is:

⟨ϵ̇⟩loss = −neσ̄c

mec2
ϵ2, (4.19)

and the ḟ terms represent the rate of change of the phase-space density due to photon

source production, escape, and absorption.

When we combine equations (4.16) through (4.17) and implement cylindrical, plane-

parallel geometry we obtain a photon distribution function f(z, ϵ) which satisfies the trans-

port equation (Becker & Begelman 1986; Blandford & Payne 1981a; Becker 2003):

∂f

∂t
+ v

∂f

∂z
=
dv

dz

ϵ

3

∂f

∂ϵ
+

∂

∂z

(
c

3neσ∥

∂f

∂z

)
− f

tesc

+
neσc

mec2
1

ϵ2
∂

∂ϵ

[
ϵ4
(
f + kTe

∂f

∂ϵ

)]
+
Q(z, ϵ)

πr02
, (4.20)

where f is normalized such that ϵ2f(z, ϵ)dϵ gives the number density of photons in the energy

range between ϵ and ϵ+ dϵ. The ḟabs term is not included here because bremsstrahlung ab-

sorption was not included in the Becker & Wolff (2007) cylindrical model. The z coordinate

is used to describe the distance from the stellar surface (where the stellar surface is located

at z = 0). The photon source function Q(z, ϵ) is also normalized so that ϵ2Q(z, ϵ)dϵdz

gives the number of seed photons injected into the accretion column per unit time between

column height z and z + dz with energy between ϵ and ϵ + dϵ. The various terms in the

transport equation contribute to f as follows:

• Comoving time derivative:

ḟadvection =
∂f

∂t
+ v

∂f

∂z
. (4.21)
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• First-order Fermi energization of the electrons (the “bulk” Comptonization):

ḟbulk Comptonization =
dv

dz

ϵ

3

∂f

∂ϵ
. (4.22)

• Spatial diffusion along the accretion column axis:

ḟdiffusion =
∂

∂z

(
c

3neσ∥

∂f

∂z

)
. (4.23)

• Photon escape through the column walls:

ḟescape =
f

tesc
. (4.24)

• Thermal Comptonization through application of the Kompaneets (1957) operator:

ḟKompaneets =
neσc

mec2
1

ϵ2
∂

∂ϵ

[
ϵ4
(
f + kTe

∂f

∂ϵ

)]
. (4.25)

This equation was first published in 1956 by the Soviet physicist Aleksander Kompa-

neets. It describes the time rate of change of the photon distribution function (the

evolution of the spectrum) due to Compton scattering, or Comptonization. The first

term in equation (4.25) represents the rate of change of f due to energy transferred

from photons to electrons in the Comptonization process, also known as the “recoil

effect” in which the radiation is “cooled” and the photon wavelength increases on

scattering from electrons. The second term in equation (4.25) represents the rate of

change in f due to the statistical increase of energy (“heating”) of the photons by

hotter electrons which corresponds to a diffusion in photon phase space. In a perfectly

thermalized environment the gas and radiation are in equilibrium and the Kompaneets
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contribution to the transport equation (4.20) is zero.

• Photon source term for the production of seed radiation throughout the column. This

term includes the primary sources of seed photons from Bremsstrahlung and Cyclotron

emission, as well as blackbody radiation at the thermal mound (Arons et al. 1987):

ḟsources =
Q(z, ϵ)

πr02
. (4.26)

Following the approximation given by Wang & Frank (1981), Becker & Wolff approxi-

mate the mean scattering cross section for photons propagating parallel and perpendicular

to the field as follows:

σ∥ ≈ σT

(
ϵ

ϵc

)2

, (4.27)

and

σ⊥ ≈ σT , (4.28)

where ϵ is the mean photon energy and ϵc is the Cyclotron energy. However, a problem

arises with finding the value for the mean photon energy because the radiative transfer

problem must be solved before its value can be calculated. A work-around to this problem

is to use the loss parameter in (3.21) to redefine the parallel scattering cross-section as

σ∥ =

(
πr0mpc

Ṁξ

)2 1

σ⊥
. (4.29)

The third and final scattering cross-section appearing in the transport equation is the

angle-averaged cross section σ̄. Becker & Wolff verified that σ∥ ≪ σ̄ ≪ σ⊥ as they developed

their numerical model. This is in good agreement with the expected values (Canuto et al.

1971).

The approach used by Becker & Wolff (2007) for solving the transport equation is to
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obtain the Green’s function fG(z0, z, ϵ0, ϵ) and then calculate the particular solution for

the spectrum f(z, ϵ) associated with an arbitrary photon source Q(z, ϵ) using the integral

convolution (Becker 2003)

f(z, ϵ) =

∫ ∞

0

∫ ∞

0

fG(z0, z, ϵ0, ϵ)

Ṅ0

ϵ0
2Q(z0, ϵ0)dϵ0dz0, (4.30)

where fG(z0, z, ϵ0, ϵ) describes the radiation distribution at location z and energy ϵ due to

the injection of Ṅ0 photons per second with energy ϵ0 from a monochromatic source at

location z0.

4.3.2 Analytic Solution to the Photon Transport Equation

The first step in solving the transport equation (4.20) is to make a change of variables from

z to τ (scattering optical depth parallel to magnetic field) in the steady-state transport

equation governing the Green’s function fG by using the relationships

dτ = ne(z)σ∥dz, τ(z) =

∫ z

0
ne(z

′)σ∥dz
′. (4.31)

After some algebra the transport equation for the Green’s function is given by:

v

c

∂fG
∂τ

=
1

c

dv

dτ

χ

3

∂fG
∂χ

+
1

3

∂2fG
∂τ2

− ξ2v2

c2
fG

+
σ

σq

kT e

mec2
1

χ2

∂

∂χ

[
χ4(fG +

∂fG
∂χ

)

]

+
Ṅ0δ(χ− χ0)δ(τ − τ0)

πr02ckTeϵ02
, (4.32)
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where the dimensionless energy parameter χ is defined by

χ(ϵ) ≡ ϵ

kTe
, (4.33)

and the dimensionless parameter ξ is the same as previously mentioned in section 3 on

accretion column formation:

ξ ≡ πr0mpc

Ṁ
√
σ∥σ⊥

. (4.34)

Lyubarskii & Sunyaev (1982) showed that equation (4.32) is separable in energy and

space dimensions when the velocity profile v(τ) has the form (where α is a positive constant)

v(τ) = −αcτ, (4.35)

which leads to the calculation of the velocity profile required for separability (switching

back to z coordinates this time):

v(z) = −
(
σ∥

σ⊥

) 1
4
(
2αz

ξr0

) 1
2

c. (4.36)

Equation (4.36) provides the velocity solution which allows us to separate and solve the

transport equation for the Green’s function in (4.32). As Becker (1998) previously showed,

however, there is an exact solution for flow velocity which satisifies the boundary condition

of stagnation at the stellar surface, which is given by

vexact(z) = −vff

[
1−

(
7

3

)− z
zsp

]
, (4.37)

where vff represents the free-flow velocity far upstream (considered infinity in this case) and
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is used as the starting velocity in the analysis:

vff ≡
√

2GM∗
R∗

, (4.38)

and zsp represents the distance from the stellar surface to the sonic point:

zsp ≡
r0

2
√
3

(
σ⊥
σ∥

) 1
2

ln

(
7

3

)
. (4.39)

Figure 4.3: The solid line represents the approximate velocity profile which allows for
separating the Green’s function for the transport equation. The dashed line represents the
exact velocity profile as found by Becker (1998). The velocity v is normalized by the speed
of light c and appears in dimensionless units along the vertical axis. Both curves stagnate at
the stellar surface (z/zsp = 0) and also have the same value at the sonic point (z/zsp = 1).

(Becker 1998).

Becker & Wolff use the approximate (separable) velocity profile in (4.36) in order to

solve for the Green’s function in (4.32). The shapes for both the separable velocity profile

and the exact velocity profile are shown in Figure 4.3. The constant α is found by equating

the two solutions at the sonic point where z/zsp = 1. The two functions agree fairly well,

although close to the stellar surface the separable profile overestimates the velocity.

In the Becker & Wolff model the net effect from bulk Comptonization is modeled using
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the separable velocity profile. Although it isn’t exact, it does satisfy the boundary conditions

and approximates the exact solution very well. Becker & Wolff found the exact closed-form,

analytical solution for the Green’s function fG (as shown in equations (58) and (59) from

their 2007 paper) by using the separable velocity in (4.36).

After the Green’s function solution is found the analysis can proceed to calculate the

spectrum for an arbitrary photon source. The particular solution for the emitted photon

spectrum is written as

Ṅϵ(z, ϵ) =

∫ ∞

0

∫ ∞

0

ṄG
ϵ (z0, z, ϵ0, ϵ)

Ṅ0

ϵ20Q(z0, ϵ0)dϵ0dz0, (4.40)

where ṄG
ϵ (z0, z, ϵ0, ϵ) is given by

ṄG
ϵ (z0, z, ϵ0, ϵ) ≡

πr20ϵ
2

tesc(z)
fG(z0, z, ϵ0, ϵ), (4.41)

and tesc(z) is the escape timescale as a function of height and represents the quantity of

time required before a photon escapes outside the column wall.

The total emitted radiation distribution corresponds approximately to the phase-averaged

spectrum from the X-ray pulsar. An integration must be completed over the entire vertical

length of the accretion column. Integrating over the entire length for a monochromatic

source provides the column-integrated Green’s function for the escaping photon spectrum:

ΦG
ϵ (z0, ϵ0, ϵ) ≡

∫ ∞

0
ṄG

ϵ (z0, z, ϵ0, ϵ)dz, (4.42)

and ΦG
ϵ dϵ is the total number of photons escaping from the column per unit time with

energy between ϵ and ϵ+ dϵ. Combined with equation (4.40) the particular solution for the
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column-integrated spectrum for any source Q as a function of photon energy becomes:

Φϵ(ϵ) =

∫ ∞

0

∫ ∞

0

ΦG
ϵ (z0, z, ϵ0, ϵ)

Ṅ0

ϵ20Q(z0, ϵ0)dϵ0dz0. (4.43)

The radiation spectrum from the column for any source Q is found using equation (4.40)

for the altitude-dependent spectra Ṅϵ(z, ϵ) and equation (4.43) for the column-integrated

spectra Φϵ(ϵ). The spectra calculation is a straightforward process because Becker &

Wolff found the analytical solution for the altitude-dependent Green’s function ṄG
ϵ and

the column-integrated Green’s function ΦG
ϵ .

4.3.3 Photon Emission Sources

The source term Q contains information about the emissions from three sources of seed

photons: Bremsstrahlung, Cyclotron, and black-body radiation. These are the primary

sources from accretion-powered X-ray pulsars (Arons et al. 1987). The Bremsstrahlung and

blackbody emissions create broadband continuum radiation while the Cyclotron produces

almost purely monochromatic radiation. Obtaining Q for each term is made possible by

using the photon emissivity ṅϵ via

ϵ2Q(z, ϵ)dϵdz = πr20ṅϵdϵdz, (4.44)

where ṅϵdϵ is the number of photons produced per unit time per unit volume with energy

between ϵ and ϵ+ dϵ.

The emission of Cyclotron photons results from the collisions of electrons (with protons)

to the n=1 Landau state, followed by radiative decay to the n=0 ground state. Thermal

Comptonization causes a broadening of the Cyclotron line due to diffusion in energy space.

Becker & Wolff use a monochromatic expression for the source term Qcyc which is localized
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in energy and distributed in space. In cgs units this is given by

Qcyc(z, ϵ) ≡ 1.92× 1052r20ρ
2B

− 7
2

12 H

(
ϵc
kTe

)
e−

ϵc
kTe δ(ϵ− ϵc). (4.45)

The blackbody distribution results from photon production at the surface of the thermal

mound. By relating the Planck distribution (with a specific blackbody intensity and gas

temperature at the thermal mound) to a newly defined function S(ϵ) in which ϵ2S(ϵ)dϵ

represents the number of photons emitted from the surface per second in the energy range

between ϵ and ϵ+ dϵ, Becker & Wolff arrive at the blackbody source term of

Qbb(z, ϵ) ≡ S(ϵ)δ(z − zth) =
2π2r20
c2h3

δ(z − zth)

e
ϵ

kTth − 1
, (4.46)

and, in contrast to Cyclotron photons, the blackbody source term is localized in physical

space but has a broadened energy dependence (continuum).

Bremsstrahlung emission is the third and final photon source mechanism. This is caused

by the electrons colliding with protons in the gaseous plasma as they decelerate along along

the magnetic field lines in the accretion column. It is commonly called “free-free” emission

or “breaking” radiation. For a plasma of fully ionized hydrogen the source term is

Qff(z, ϵ) ≡ 1.16× 1037r20ρ
2T

− 1
2

e e−
ϵ

kTe . (4.47)

The three source terms of Cyclotron, blackbody, and Bremsstrahlung radiation each have

their own particular solution for the column-integrated spectrum of the escaping radiation.

The terms are summed to arrive at the total column-integrated spectrum

Φtot
ϵ (ϵ) ≡ [Φcyc

ϵ +Φbb
ϵ +Φff

ϵ ]Ac(ϵ), (4.48)

where the term Ac(ϵ) takes into account a Gaussian Cyclotron absorption feature (Heindl
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& Chakrabarty 1999; Orlandini et al. 1998; Soong et al. 1990).

Equation (10.19) is used to calculate the phase-averaged photon count rate as viewed

from Earth:

Fϵ(ϵ) ≡
Φtot
ϵ (ϵ)

4πD2
, (4.49)

where D is the distance to the emitting X-ray source. Figure 4.4 shows the theoretical

solution for the count rate of pulsar Her X-1. The components of Bremsstrahlung radiation,

Cyclotron emission, blackbody radiation, and iron emission are all included to form the total

spectrum.

Figure 4.4: Column-integrated count rate spectrum Fϵ(ϵ) for HER X-1 as theoretically
derived by Becker & Wolff (2007). The components of Bremsstrahlung radiation, Cyclotron
emission, blackbody radiation, and iron emission are all included to form the total spectrum.
(Becker & Wolff 2007).
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4.4 Wolfram Model Extensions

There are simplifying assumptions with the Becker & Wolff model that require further

investigation. Among these include the correct velocity profile of the inflowing bulk fluid, the

thermal structure of the plasma, boundary conditions at the edges of the accretion column

structure, the effects of gravity upon the overall radiation dynamics, and the geometry of

the column.

Recent research performed by Ken Wolfram (2011) helped to reduce some of the as-

sumptions and provided a physical basis for the underlying physics. His research developed

a self-consistent, radiative transfer and hydrodynamic model to describe accretion-powered

X-ray pulsars.

Wolfram developed a set of three coupled ordinary differential equations based on conical

geometry to describe the velocity profile, energy flux, and radiation pressure within the

accretion column.

New boundary conditions were established which included a mirror condition at the

stellar surface and a photon free-streaming condition at the top of the column. Gravity

effects were included which shed new information on the velocity profile and the location of

a radiative shock above the stellar surface.

Wolfram developed and numerically solved a new photon transport equation in conical

geometry that used the velocity profile from the dynamic solution of the three ordinary

differential equations. The inverse Compton temperature was computed from the solution

of the transport equation, and this was used as the basis for establishing a 1D electron

temperature along the length of the column.

4.5 Comparisons with Previous Models

In this chapter we reviewed the underlying physics of radiation hydrodynamics and the

applicability of the equation of state for an ideal gas. After that we introduced the photon

distribution function representing the change in photon phase-space density due to bulk fluid
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motion and bulk Comptonization, photon diffusion along the column, photon escape through

the accretion column walls, and thermal Comptonization. This provided a foundation upon

which we reviewed in detail the cylindrical accretion column model of Becker & Wolff

(2007) and briefly reviewed the more recent model enhancements by Wolfram (2011). Both

the Becker & Wolff (2007) and Wolfram (2011) models will be compared with the results

obtained using my own model which is described in Chapters 5 and later. We will compare

all three models using a solution for the phase-averaged spectra of HER-X1. My results for

the X-ray pulsars CEN X-3 and LMC X-4 will be compared with the Becker & Wolff (2007)

model, and for the X-ray pulsar X-PER we will compare the phase-averaged spectra using

the Becker & Wolff (2005) model. Finally, using my new model we will introduce a new

solution for the low-luminosity pulsar Vela X-1 which has never been presented before. In

addition to the phase-averaged spectra, specific parameters we will compare are the electron

temperature, polar cap radius, and scattering cross-sections.
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Chapter 5: X-Ray Pulsar Accretion Column Dynamics

The current state of the art in pulsar accretion dynamics was discussed in Chapter 3. In my

dissertation research, I use a significantly more realistic dynamical model that incorporates

the effects of gas pressure, strong gravity, conical geometry, and a detailed treatment of

cyclotron and bremsstrahlung emission and absorption processes. This involves the first-

ever implementation of the “two-fluid” model (Becker & Kazanas 2001) in the context of

a pulsar accretion column in which radiation and fully-ionized gas are coupled within the

column.

The complete dynamical problem is modeled by defining five free parameters with ap-

propriate boundary conditions. All other model parameters are derived from these five free

parameters:

1. polar cap size r0

2. starting accretion column height r̃start

3. incident radiation Mach number Mr0

4. parallel scattering cross-section σ∥

5. angle-averaged scattering cross-section σ

The X-ray spectral formation is investigated by solving a new photon transport equation

using finite element numerical analysis which accounts for the bulk and thermal Comp-

tonization in the accreting gas. Solving the transport equation requires knowledge of the

velocity, density, and temperature profiles throughout the accretion column. Previously

Becker & Wolff (2007) used an approximate velocity profile to solve the transport equation

via the separation of variables method. We instead use an exact bulk velocity profile to
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solve the transport equation numerically. The velocity and temperature profiles are obtained

by coupling and solving the hydrodynamic conservation equations using Mathematica. The

photon transport equation, using the Mathematica velocity and temperature profiles, is sub-

sequently solved using the COMSOL Multiphysics computer program. The phase-averaged

X-ray spectra are computed by solving the transport equation, and the results are compared

with the observed data for specific sources. The parameter values obtained using the new

model are compared with those obtained using the currently available theoretical models.

Canalle et al. (2005) recognized that dipolar geometry resulted in proportionally higher

pressures and compressional heating throughout the post-shock region as compared to

purely cylindrical geometry, and Bykov & Krassilchtchikov (2004) pointed out that accre-

tion dynamics are sensitive to the detailed structure of the conical-shaped magnetic fields

close to the surface. In this PhD research, we approximate the dipolar accretion column ge-

ometry using a conical geometry, as expressed in a spherical polar coordinate system. This

provides an improvement to the Becker & Wolff (2007) model which used only a cylindrical

geometry. The dynamic problem is so complex that we limit our research to one dimension.

5.1 Convention and Dimensionless Variables

All variables noted in the conservation equations with a tilde symbol (∼) are dimensionless.

It’s important to note that later in section 9.2 we introduce the energy variable ϵ̃ which

indicates photon energy in units of keV. Spatial distance is measured by the radial vector

r⃗ in units of centimeters. We set the direction pointing outward from the stellar surface as

the +r̂ direction. The dimensionless variable r̃ is the spatial coordinate normalized by the

standard unit of distance RG:

r̃ ≡ r

RG
, (5.1)
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where RG is the gravitational length determined by the neutron star mass:

RG =
GM∗
c2

, (5.2)

where G is the universal gravitational constant, M∗ is the stellar mass (set equal to 1.4

MSun = 1.4M⊙ for all models except Vela X-1. The stellar mass used for Vela X-1 is 1.86

MSun), and c is the speed of light. The value of RG is approximately 2.07km.

Velocity is measured by the vector v⃗ and a negative magnitude indicates bulk flow

towards the stellar surface in units of cm sec−1. The dimensionless variable ũ is the ve-

locity normalized by the speed of light c. It is computed from the dynamical equations in

Mathematica and is simply the ratio of velocity and c:

ũ ≡ v

c
. (5.3)

We also obtain the dimensionless parameters for pressure and energy flux:

P̃ ≡
(
r̃star
r̃

)2 P

Jc
≡
(rstar

r

)2 P
Jc
, (5.4)

and

Ẽ ≡ E

Jc2
, (5.5)

where J = J(r̃) is the mass flux and a function of radial distance r̃ from the stellar surface.

We note here that photon energy ϵ̃ is given in units of keV and photon energy ϵ is given in

units of ergs. We relate ϵ̃ and ϵ via the following conversion:

ϵ =
ϵ̃

6.24× 108
(5.6)
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We make the assumption that the radiation and gas fluids behave as ideal gases. In an

ideal gas, sound waves are caused by small disturbances in pressure. We assume the distur-

bances are adiabatic. From the continuity and the Euler equations the relationship between

pressure, density, and sound speed is derived:

a =

[(
∂P

∂ρ

)
S

]1/2
, (5.7)

where a denotes sound speed, P is pressure, and ρ is density. The subscript s indicates that

the derivative is taken at a constant entropy. The dimensionless sound speed ã is also the

sound speed a normalized by the speed of light c:

ã =
a

c
. (5.8)

In the passage of adiabatic sound waves we use the polytropic equation of state, given

by:

P = Kργ , (5.9)

where K is a constant. The adiabatic exponent, γ, is given by the quantity:

γ =

(
∂ln(P )

∂ln(ρ)

)
S

, (5.10)

where the derivative is taken at constant entropy S.
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Using equation (5.9) we simplify the ∂P/∂ρ term in equation (5.7):

(
∂P

∂ρ

)
S

=
∂

∂ρ
(Kργ)

= Kγργ−1

= γ
Kργ

ρ

= γ
P

ρ
, (5.11)

and so the sound speed is simply:

a2 = γ
P

ρ
. (5.12)

The total pressure P contains both gas pressure Pg and radiation pressure Pr. We relate

the total sound speed a to the gas and radiation sound speeds,a2g and a2r , using equation

(5.12):

a2 =

(
∂P

∂ρ

)
S

=

(
∂

∂ρ
(Pg + Pr)

)
S

=

(
∂Pg

∂ρ

)
S

+

(
∂Pr

∂ρ

)
S

= a2g + a2r . (5.13)

The total Mach number is the ratio of the bulk fluid speed |v| to the total sound speed

a:

M =
|v|
a
. (5.14)
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We square both sides of equation (5.14) and substitute for total sound speed a using equation

(5.13) to obtain the relationship between the total Mach numberM , gas Mach number Mg,

and radiation Mach number Mr. We have:

M2 =
v2

a2

=
v2

a2r + a2g
, (5.15)

which leads to:

v2

M2
= a2r + a2g

1

M2
=

a2r
v2

+
a2g
v2

=
1

M2
r

+
1

M2
g

. (5.16)

In the preceding analysis of sound speeds and Mach numbers we summarize the two impor-

tant relationships between the bulk fluid, gas, and radiation:

a2 = a2g + a2r (5.17)

1

M2
=

1

M2
r

+
1

M2
g

. (5.18)

Dimensionless gas and radiation sound speeds are denoted by the variables ãg and ãr

where ã is the dimensionless sound speed defined in equation (5.8). They are related to the

pressure of species i via the following:

P̃i =

(
r̃star
r̃

)2 ã2i
ũγi

, (5.19)
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where i indicates either radiation or gas parameters, respectively. Variations in pressure

imply variations in sound speed. We use γg = 5/3 for the nonrelativistic gas and γr = 4/3

for the relativistic radiation.

5.2 Total Pressure and the Ideal Gas Law

Total gas pressure Pgas is a superposition of the ion (proton) and electron pressures, Pi and

Pe, respectively. The ideal gas law tells us that:

Pgas = Pi + Pe

= nikTi + nekTe. (5.20)

We assume the electrons and ions have Maxwellian distributions with temperatures Ti and

Te, respectively. However, the magnetic field B is so strong that the electrons are essentially

frozen to the magnetic field lines. The larmor (gyration) radius is directly proportional to

the particle’s mass, and so the electrons have a gyration radius about 1836 times smaller

than that for protons. In this magnetized environment the electrons are not considered

to have a three-dimensional Maxwellian velocity distribution, but instead have only a one-

dimensional distribution along the B field. The electrons can move freely along the field

lines but not so easily in the other two dimensions. As a result we make the assumption

that the electron pressure contribution to equation (5.20) is only 1/3 the normal value. The

gas dynamics in the parallel direction (along B) are most important because the velocity,

pressure, and temperature gradients we are investigating occur in the radial dimension,

along B rather than across B. The magnetic field pressure is orders of magnitude stronger

than gas and radiation pressures, and so any discussion of particles moving in the perpen-

dicular direction is dominated by the “freezing” effect of the magnetic pressure. Using this
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argument we modify equation (5.20) to obtain:

Pgas = nikTi +
1

3
nekTe. (5.21)

Following the arguments by Aarons, Klein, and Lea (1987), the relationship between mass

density ρ and proton mass mp is given by:

Z2
effni =

∑
Z2ni(Z) =

ρ

mp
. (5.22)

We use Z2
eff = 1.41 which is appropriate for a fully ionized plasma of cosmic composition.

This leads to:

1.41ni =
ρ

mp
, (5.23)

and equation (5.21) is modified again to obtain:

Pgas =
ρ

1.41mp
kTi +

1

3
nekTe. (5.24)

The fully ionized plasma ensures charge neutrality such that ne = ni and equation (5.24)

becomes:

Pgas =
ρ

1.41mp
k

(
Ti +

1

3
Te

)
. (5.25)

We make the assumption that ion-electron equilibration timescale is so small that the elec-

trons and ions have essentially the same temperature. We do not assume a two-temperature

fluid structure. Therefore Ti = Te and equation (5.25) becomes:

Pgas =
ρ

1.41mp
k

(
Te +

1

3
Te

)
=

4

3

ρ

1.41mp
kTe. (5.26)
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The value of the coefficient on the right-hand side of equation (5.26) is (4/3)× (1/1.41) =

0.945. For our purposes we will approximate this as being equal to 1. Therefore we assume:

4

3
× 1

1.41
≈ 1, (5.27)

and equation (5.26) becomes:

Pgas ≈
ρ

mp
kTe = nkTe. (5.28)

Therefore we use the ideal gas law for the gas pressure throughout this research and define

the number density n = ni = ne.

5.3 Conical Geometry

To approximate dipolar geometry in one dimension we transform from cylindrical coordi-

nates to spherical polar coordinates along the r̂ direction for accretion within a cone. In

this model, the streamlines of the infalling matter are all radial vectors pointing towards

the center of the star. Figure 5.1 shows the geometry of the column. The conic angle θ

forms the accretion column cone. At the stellar surface the polar cap has a radius r0. The

height above the stellar surface is equal to r and at the surface it is simply the stellar radius

of 106cm.

We transform the divergence operator in the steady-state conservation of mass flux

equation, where J = ρv:

∂ρ

∂t︸︷︷︸
= 0

+∇ · (ρv) = 0

1

r2
∂

∂r

[
r2ρv

]
= 0, (5.29)
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Figure 5.1: The conical model geometry implements spherical polar coordinates with a
conic angle θ. The polar cap radius is r0 and the escape distance at some height r̃ is equal
to r tan θ (r̃RG tan θ).
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which leads to the important relations:

J =
Ṁ

r2Ω
, (5.30)

and

Ω = 2π (1− cosθ) , (5.31)

where the mass flux is J , mass accretion rate is Ṁ , and Ω is the solid angle defined by the

conic half-angle θ (which we call the conic angle). The tangent of the conic angle is the

ratio of the escape distance rescape to the column height r. In the limit that r → R∗ we

have rescape → r0 (at the polar cap) and the conic angle is:

tan θ =
r0
R∗

. (5.32)

Therefore, at the stellar surface the conic angle θ is equal to:

θ = atan

(
r0
R∗

)
. (5.33)

5.4 Bounded Polar Cap Radius

Lamb, Pethick, and Pines (1973) provided some insight into the upper limit of the polar

cap radius r0. They refer to the area where the accreting material encounters the stellar

surface as a “hot spot”. The hot spot has an area equal to ΩR2
∗ where R∗ is the stellar

radius. The constraint placed on the hot spot is that it has an area less than or equal to

(R∗/rA)R
2
∗, where rA is the Alfvén radius. Mathematically we state this as:

ΩR2
∗ ≤

(
R∗
rA

)
R2

∗. (5.34)
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The Alfvén radius is given in cgs units by (Becker & Wolff (2007); Lamb et al. (1973)):

rA = 2.6× 108
(

B

1012

)4/7( R∗
10km

)10/7(M∗
M⊙

)1/7( LX

1037erg s−1

)−2/7

, (5.35)

where B is the magnetic field strength, M∗ is the neutron star mass, M⊙ is the solar mass

constant, and LX is the accretion luminosity. The Alfvén radius rA represents the distance

at which point the magnetic field of the pulsar begins to influence the motion of the infalling

matter. Figure 5.2 shows a conceptual image of a pulsar and its associated accretion disk.

The angle formed by the pulsar centerline axis, θ, and some position r on the magnetic field

is related via the following:

r = Requator sin
2 θ, (5.36)

which follows for a dipole field line geometry where Requator is the distance r at the equator.

The last of the undistorted field lines which close inside rA lies at an angle θc such that at

the stellar surface r = R∗ and Requator = rA:

sin2 θc =
R∗
rA
. (5.37)

The geometry of the dipole field (the last undistorted field line) requires that any conic

angle formed by the polar cap must be less than or equal to the critical conic angle θc:

θ ≤ θc. (5.38)

Because the stellar radius is much larger than the polar cap sizes we expect (R∗ ≫ r0),

we can use the small angle approximation on equations (5.32) and (5.37) to approximate
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Figure 5.2: Image of a pulsar with an accretion disk of matter in orbit around the pulsar.
The Alfvén radius rA is the location where the magnetic field of the pulsar begins to influence
the motion of the infalling matter. At rA the magnetic pressure B2/8π is equated with the

ram pressure of the infalling material ρv2. The angle θ governs the dipole nature of the

field line according to r = Requator sin
2 θ. (image courtesy of NASA)
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tan θ ≈ θ and sin2 θc ≈ θ2c , thereby giving the requirement on r0:

tan θ =
r0
R∗

≈ θ (5.39)

sin2 θc =
R∗
rA

≈ θ2c . (5.40)

Using equation (5.38) leads to the result obtained by Lamb et al. (1973):

r0 ≤ R∗

(
R∗
rA

)1/2

. (5.41)

The derivation for rA is found by equating the magnetic pressure of the stellar field,

B2/8π, with the ram pressure of the accreting material which is given by ρv2 (the momentum

density in the plasma is ρv, and so its momentum flux is (ρv)v which has the same units

as pressure). The magnetic field strength is represented by B = µ/r3 where at the stellar

surface B = B0, v
2 = 2GM∗/r represents the free-fall velocity, and the mass density ρ is

approximated by ρ ≈ Ṁ/(4r2πv) where Ṁ is the mass flow rate. Equating we have:

B2

8π
= ρv2

µ2

r6
1

8π
=

Ṁ

4αr2πv

2GM∗
r

. (5.42)

The mass flow rate Ṁ is substituted with the accretion luminosity LX at the star using:

LX =
GṀM∗
R∗

. (5.43)

By combining equations (5.42) and (5.43) and a little algebra we obtain the expression for

rA as shown in equation (5.35). The Alfvén radius for a neutron star with typical stellar
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parameters is ≈ 108 cm and for white dwarfs (where the radius is much larger at ≈5000km)

the Alfvén radius is in the range of 108−1010 cm. Substituting equation (5.31) for the solid

angle Ω into equation (5.34) we obtain the constraint:

2π (1− cos θ) ≤ R∗
rA
. (5.44)

Rearranging equation (5.44) we obtain:

cos θ ≥
(
1− R∗

2πrA

)
, (5.45)

and taking the inverse cosine we get:

θ ≤ acos

(
1− R∗

2πrA

)
. (5.46)

As a very general approximation for an expected polar cap size we use equations (5.46) and

(5.32) to relate the polar cap radius r0 to the Alfvén radius rA:

r0 ≤ R∗ tan

[
acos

(
1− R∗

2πrA

)]
, (5.47)

or equivalently,

r0 ≤ R∗ ×

√
1− (1−R∗/2πrA)

2

1−R∗/2πrA
. (5.48)

Figure 5.3 shows a plot of equation (5.48) which gives an expected polar cap radius of

≈ 5.5× 104cm (550m) using an Alfvén radius rA of 108 cm. The models in this dissertation

have polar cap sizes in general agreement with this rough approximation. See Tables 12.1,

12.2, and 12.3 for actual polar cap sizes used in the models.
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Figure 5.3: Plot of the logarithm (base 10) of the approximate polar cap radius r0 for a
given Alfvén radius rA using typical stellar parameters. As a rough approximation for an
Alfvén Radius of 108cm (106m) we expect the polar cap radius to be ≈ 5.5×104cm (550m).
This agrees approximately for the models used in this dissertation research.
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Using equation (5.35) for the Alfvén radius we can get an even better approximation

of the expected polar cap radius by introducing magnetic field strength B and accretion

luminosity LX . Figure 5.4 shows a plot of the bounded upper constraint on polar cap radius

r0 (in units of meters) as a function of the accretion luminosity LX (logarithm base 10) and

the magnetic field strength B. Also plotted are the five X-ray pulsar sources which were

modeled in this dissertation research. The five sources have a polar cap radius that is below

the theoretical upper bound predicted by equation (5.48).

5.5 Photon Propagation and Escape

The meaning of optical depth (τ⊥ and τ∥) changes in the conical geometry framework as

compared to cylindrical geometry. Optical depth is associated with the direction of photon

propagation, and we still use these two “directions” in our research. Figure 5.1 shows rescape,

the perpendicular distance from the centerline to the column wall for a given height r. In

cgs units the escape distance is given by:

rescape = r tan θ, (5.49)

and in dimensionless units the escape distance is equal to:

rescape = RGr̃ tan θ. (5.50)

The parallel direction is analogous to the cylindrical geometry definition (see equation

3.15):

τ∥(r̃) = ne(r̃)σ∥r̃, (5.51)

but for τ⊥ we measure the photon escape distance perpendicular (r⊥) from the centerline, in

the outward direction, towards the column edge. The perpendicular optical depth becomes:

τ⊥(r̃) = σ⊥ne(r̃)r⊥ = σ⊥ne(r̃)RGr̃ tan θ, (5.52)
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Figure 5.4: Plot showing the bounded upper constraint on the polar cap radius r0 as a
function of the accretion luminosity LX (logarithm base 10) and the magnetic field strength

B (in units of 1012G. The constraint is shown in units of meters. The five X-ray pulsar
sources modeled in this dissertation research are plotted with their corresponding polar
cap radius. All five sources are below the theoretical constrained upper limit per equation
(5.48).
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and the escape time is defined in the probabilistic manner like Becker & Wolff (2007) as:

tesc =
r⊥τ⊥
c

=
R2

Gr̃
2 tan2 θσ⊥ne(r̃)

c
. (5.53)

We use this definition of escape time in the numerical solution for the photon distribution

function f(r̃, ϵ̃).

5.6 Thermal Mound Properties

The primary process for creation and destruction of photons within the column is through

bremsstrahlung emission and bremsstrahlung thermal free-free absorption. At the thermal

mound surface we expect that, on average, a photon is absorbed as it travels in the perpen-

dicular direction from the column centerline. This criteria establishes the presence of the

top of the thermal mound. Below the thermal mound the optical depth increases beyond

unity as the vast majority of photons are absorbed. We follow the method of Becker & Wolff

(2007) and set the thermal free-free perpendicular optical thickness equal to unity across

the top surface of the thermal mound. Parameters at the thermal mound are described

with the subscript “th”:

τffth ≡ rthα
ff
R = 1, (5.54)

where αff
R is the Rosseland mean of the free-free absorption coefficient and rth measures the

radial height of the thermal mound:

rth = RGr̃ tan θ. (5.55)

5.7 Relativistic Effects Near Stellar Surface

Here we perform a brief analysis of the magnitude of gravitational mass effects upon

the space-time geometry within the accretion column. It’s important to introduce the
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4-dimensional invariant space-time metric ds2 (Rindler 2006):

ds2 = c2dt2 − dx2 − dy2 − dz2. (5.56)

The metric describes a 4-dimensional space in which space and time are combined and

we focus our attention on events (x, y, z, t). We can think of the metric as the squared

displacement ds2 between two events in 4-dimensional space-time. Working with the metric

provides an absolute framework for exact physical thought, and with it we have tremendous

insight into the interconnections between space and time, momentum and energy, force and

power, electric and magnetic fields, all thanks to Einstein’s Special and General Theories

of Relativity.

The velocity of the free-falling material in the accretion column does not approach

speeds high enough for the special relativistic effects of time dilation and length contraction

to occur. Even near the stellar surface the free-fall velocity is v/c ≈ 0.6, and the Lorentz

factor γ(v) only increases by ≈0.25%:

γ(0.6c) =
1√

1− (0.6)2
= 1.25. (5.57)

The Lorentz factor changes by such a small amount that special relativistic effects are

negligible and we do not need to introduce additional complexity into the dynamics of the

bulk flow.

Einstein’s General Theory of Relativity tells us that gravitating matter acts on space-

time through the metric ds2. The matter distorts the metric and gives it curvature. There-

fore, our common-sense notion of events (x, y, z, t) or (x + δx, y + δy, z + δz, t + δt) may

be dramatically changed depending on the severity of curvature distortion. The orbits of

particles are determined by the metric (the space-time geometry) in the field of a given mass

distribution. In our case the neutron star warps the fabric of space-time that determines the

particle paths. In General Relativity gravity is no longer a force, but instead an inherent

74



property of the space-time geometry itself. We make a quick investigation to determine

how much the Neutron star warps the geometry of space-time, especially near the stellar

surface, thereby deviating from the Newtonian framework.

To simplify our analysis we make the assumption that the neutron star is a spherically

symmetric mass in otherwise empty space. This provides sufficient complexity in our case

because we only want to understand how the pulsar mass warps the field geometry. In 1916

Schwarzschild, using these assumptions, found an exact solution for Einstein’s vacuum field

equations by obtaining the metric:

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (5.58)

where r represents the distance to the center of the neutron star in cm, θ is the inclination

from the column centerline axis, ϕ is the azimuthal angle around the centerline, and m is:

m =
GM∗
c2

. (5.59)

As it turns out we see from equation (5.2) that m is defined the same as the dimensionless

gravitational length RG. Equation (5.58) is called the “Schwarzschild metric” and it is still

the most important exact solution to the Einstein field equations.

We follow the argument by Rindler (2006) that shows the static gravitational field can

be represented with the canonical metric form (Rindler equation 9.5):

ds2 = e2Φ/c2c2dt2 − dl2, (5.60)

where Φ is the relativistic potential energy and dl2 is a Euclidean 3-space with corresponding

metric in polar coordinates:

dl2 = dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (5.61)
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Comparing the canonical metric in equation (5.60) with the Schwarzschild metric in equation

(5.58) the relativistic potential ΦR is given in dimensionless radial units r̃ by (Rindler

equation 11.14):

ΦR(r̃) =
c2

2
ln

(
1− 2m

RGr̃

)
. (5.62)

The potential is a radial field and a function of radial distance r̃. The corresponding

gravitational field strength, however, is a function of the radial ruler distance l. Therefore,

gR (acceleration due to gravity) for our radial field is (Rindler equation 11.15):

gR ≡ |∇ΦR| =
dΦ

dl
=

dΦ

dr

dr

dl
=

mc2

(RGr̃)2

(
1− 2m

RGr̃

)−1/2

. (5.63)

The ratio dr/dl is found by comparing equations (5.58) and (5.60). From this we see that:

dl =

√
dr2

1− 2m/r
− r2

(
dθ2 + dϕ2 sin2 θ

)
. (5.64)

Taking dl/dr yields:

dl

dr
=

dr(
1− 2m

r

)
dl
, (5.65)

and from this we get the ratio dr/dl used in equation (5.63):

dr

dl
=

√
1− 2m

r
. (5.66)

We use an upper case “R” in equation (5.63) to indicate a relativistic quantity. The

corresponding values for Newtonian gravitational potential energy ΦN is:

ΦN = −GM∗
RGr̃

, (5.67)

76



and the gravitational field strength gN is given by:

gN ≡ |∇ΦN| =
GM∗
(RGr̃)2

. (5.68)

In equation (5.63) we see that the relativistic gravitational field becomes infinite at the

Schwarzschild radius (r̃ = 2, or equivalently r = 2m). This is not the case for the Newtonian

value. The Schwarzschild radius turns out to be the event horizon of a black hole where

photons themselves can no longer escape the pull of gravity, beyond which everything (even

light!) is consumed by the black hole. However, for our study the Schwarzschild solution

terminates at the pulsar surface and the critical radius r = 2m is irrelevant, except to note

it is located below the pulsar stellar surface.

Figure 5.5 shows a logarithm plot of the relativistic (blue curve) and Newtonian (red

curve) gravitational field strengths g (cm sec−2) using a central body stellar mass of M∗ =

1.4M⊙. The starting point for the graph (r̃ = 33.4) corresponds to the starting accretion

column height for HER X-1. The vertical black line shows the Schwarzschild radius at

r̃ = 2 (or r = 2m = 2RG) and the red vertical line shows the pulsar stellar surface at

r̃ = 4.83611. For larger r̃ the relativistic value for g becomes Newtonian (g ∼ GM∗/r
2)

where r = RGr̃. Figure 5.6 shows a plot of the relativistic (blue curve) and Newtonian (red

curve) gravitational field potential Φ. At the Schwarzschild radius of r̃ = 2 we see that the

relativistic value goes to negative infinity (for these arguments the deepest potential well

occurs at the center of the central body).

Both Figures 5.5 and 5.6 show a small deviation between the relativistic and Newtonian

curves. It is negligible at larger distances where we do not worry about including relativistic

corrections to the coupled conservation equations. The starting heights for the pulsars

modeled in this dissertation research are listed in Tables 12.2 and 12.3. The starting height

for the source X Persei (X-PER) is only ≈12 meters above the stellar surface where there

is a relativistic deviation of gR from the Newtonian gN by ≈ 30%. The same applies for
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the relativistic gravitational potential ΦR. Although not insignificant, we will not include

relativistic corrections to the force of gravity or the potential energy. If there were an order

of magnitude or larger difference we would need to use the relativistic values. Investigating

these full relativistic effects requires investigation beyond my dissertation.
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Figure 5.5: Logarithm plot of the relativistic (blue curve) and Newtonian (red curve) grav-

itational field strengths g (cm sec−2) for a central body of stellar mass 1.4M⊙. The black
vertical line represents the Schwarzschild radius at r̃ = 2 where the relativistic value be-
comes infinite. The red vertical line is the pulsar stellar radius.
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Figure 5.6: Plot of the relativistic (blue curve) and Newtonian (red curve) gravitational
field potential Φ (ergs) for a central body of stellar mass 1.4M⊙. The black vertical line
represents the Schwarzschild radius at r̃ = 2 where the relativistic value goes to negative
infinity. The red vertical line is the pulsar stellar radius.
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Chapter 6: Conservation Equations

In an actual X-ray pulsar accretion column, the dynamical structure of the gas is coupled

with the radiative transfer problem through the appearance of the radiation pressure in

equation (3.14), which applies to the case of plane-parallel flow. Previous attempts to solve

the coupled problem have ignored the effect of the gas pressure, but it is necessary to include

this effect in low-luminosity pulsars because the pressure of the outgoing radiative flux will

not have a dominant effect upon the accreting material. As a result, the material will fall

freely to the surface of the neutron star where the ionized gas accumulates and is contained

via the strong magnetic pressure. In this situation the flux of the infalling material is

balanced by the opposing energy flux of the emergent radiation and the accumulated gas.

In this dissertation, I carry out the first self-consistent calculation of the hydrodynamical

structure of the accretion column by focusing on four quantities which, taken together,

completely describe the dynamical structure of the column. These four quantities are the

gas sound speed ag, the radiation sound speed ar, the total energy flux E, and the bulk

flow speed u.

The hydrodynamical model comprises four first-order, coupled, nonlinear ordinary dif-

ferential equations that allow the evaluation of the set of derivatives:

∂ãr
∂r̃

,
∂Ẽ

∂r̃
,

∂ãg
∂r̃

, and
∂ũ

∂r̃
. (6.1)

Obtaining the final set of solutions for these equations requires an iterative approach

because of the Comptonization term in the gas energy density equation. We describe the

iteration procedure in more detail in section 10.4. After the solution converges, we expect

the ratio of inverse-Compton temperature to electron temperature to stabilize for all values
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of r̃.

6.1 Radiation Sound Speed Derivative

The total energy flux incorporates effects from (1) variations in gas pressure and energy

density along the column as a function of height, (2) the diffusion of radiation governed by

changes in radiation pressure gradients in the parallel direction, (3) the advection of kinetic

energy, and (4) gravity, yielding:

Etot =
1

2
ρv3︸ ︷︷ ︸

bulk motion

+ v(Pg + Ug) + v(Pr + Ur)︸ ︷︷ ︸
fluid pressure and energy density

− c
∂Pr

∂τ∥︸ ︷︷ ︸
diffusion

+
GM∗J

r︸ ︷︷ ︸
gravity

, (6.2)

where the velocity magnitude is less than zero (v < 0) to indicate that bulk flow is towards

the stellar surface.

To obtain the partial-differential equation for radiation sound speed we convert the

radiation pressure derivative term (∂Pr/∂τ∥) in equation (6.2) to the spatial coordinate,

convert the pressure Pr to sound speed ar, and then isolate the sound speed term. We

start by converting the energy density terms Ug and Ur to the respective pressure using the

following relationship between energy density and pressure:

Ug =
Pg

γg − 1
(6.3)

Ur =
Pr

γr − 1
. (6.4)

The parallel scattering optical depth is converted to its spatial coordinate via the following

relationship:

dτ∥ = neσ∥dr. (6.5)
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We define the mass flux J as:

J = −ρv. (6.6)

The negative sign is included because velocity v < 0 to indicate that bulk flow is towards

the stellar surface, and therefore J is a positive quantity by adding the negative sign. We

introduce Γ as the following:

Γi =
γi

(γi − 1)
. (6.7)

Using equations (6.4), (6.5), (6.6), and (6.7) in equation (6.2) we obtain total energy

flux solely in terms of gas and radiation pressure:

Etot =
1

2
ρv3 + vΓgPg + vΓrPr −

c

neσ∥

[
∂Pr

∂r

]
− GM∗ρv

r
. (6.8)

The gas and radiation pressures are converted to sound speed using equation (5.19) to

obtain:

Etot =
1

2
ρv3 + ρv

a2g
γg − 1

+ ρv
a2r

γr − 1
− cmp

σ∥ργr

∂

∂r

[
a2rρ
]
− GM∗ρv

r
. (6.9)

The total energy flux Etot is changed to a dimensionless quantity Ẽtot by dividing by Jc2:

Ẽtot =
Etot

Jc2

= −1

2
ũ2 −

ã2g
γg − 1

− ã2r
γr − 1

+
2mpãr

ρσ∥γrRGũ

[
∂ãr
∂r̃

]
+

mpã
2
r

ρ2σ∥γrRGũ

[
∂ρ

∂r̃

]
+

1

r̃
, (6.10)

where we used the following relationship:

GM∗
c2RG

= 1. (6.11)
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After isolating the ∂ãr/∂r̃ term and simplifying we obtain:

∂ãr
∂r̃

=
γr
2ãr

(
ρũσ∥RG

mp

)[
Ẽtot +

1

2
ũ2 +

ã2g
γg − 1

+
ã2r

γr − 1
− 1

r̃

]
− ãr

2ρ

[
∂ρ

∂r̃

]
. (6.12)

We use equation (5.30) for mass flux J , and the fact that J = −ρv, to convert density to

the following:

ρ = − Ṁ

ΩR2
Gcr̃

2ũ
. (6.13)

The mass density partial derivative term is evaluated and simplified to the following:

1

ρ

[
∂ρ

∂r̃

]
= −

[
2

r̃
+

1

ũ

∂ũ

∂r̃

]
. (6.14)

Substituting equations (6.13) and (6.14) into equation (6.12) we obtain:

∂ãr
∂r̃

= − γr
2ãr

1

βr̃2

[
Ẽtot +

1

2
ũ2 +

ã2g
γg − 1

− 1

r̃
+

ã2r
γr − 1

]
+
ãr
r̃

+
ãr
2ũ

[
∂ũ

∂r̃

]
, (6.15)

where we introduce the dimensionless parameter β:

β =
cmpΩRG

Ṁσ∥
. (6.16)

Rearranging terms in equation (6.15) leads to the following:

∂ãr
∂r̃

=
1

2

ãr
ũ

[
∂ũ

∂r̃

]
− γr

2β

1

ãr r̃2

Ẽtot +
1

2
ũ2 +

ã2g
γg − 1

− 1

r̃︸ ︷︷ ︸
F̃r

+
ã2r

γr − 1

+
ãr
r̃
. (6.17)
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We define the dimensionless radiation flux F̃r as:

F̃r = Ẽtot +
1

2
ũ2 +

ã2g
γg − 1

− 1

r̃
, (6.18)

and we express the radiation sound speed derivative in its final form in terms of F̃r:

∂ãr
∂r̃

=
1

2

ãr
ũ

[
∂ũ

∂r̃

]
− γr

2β

1

ãr r̃2

[
F̃r +

ã2r
γr − 1

]
+
ãr
r̃

(6.19)

6.2 Radiation Energy Flux

The dimensionless radiation flux F̃r shown in equation (6.18) is an important quantity

because it has upstream and downstream boundary condition requirements. It’s not imme-

diately obvious, but the total energy flux in equation (6.2) naturally contains the radiation

flux Fr in cgs units. Radiation energy density relates to radiation pressure using equation

(6.4):

Ur =
Pr

γr − 1
. (6.20)

We convert the radiation pressure terms to radiation energy density in equation (6.2) to

obtain:

Etot =
1

2
ρv3 + v

(
γg

γg − 1

)
Pg +

4

3
vUr −

c

3neσ∥

∂Ur

∂r︸ ︷︷ ︸
=Fr

−GM∗J

r
. (6.21)

Isolating the radiation flux to one side we have:

Fr = Etot −
1

2
ρv3 − v

(
γg

γg − 1

)
Pg +

GM∗J

r
. (6.22)
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We divide Fr by Jc2 to non-dimensionalize the radiation flux:

F̃r =
Fr

Jc2

=
Etot

Jc2
−

1
2ρv

3

Jc2
−
v
(

γg
γg−1

)
Pg

Jc2
+

GM∗J
r

Jc2

= Ẽtot +
1

2
ũ2 +

ã2g
γg − 1

− 1

r̃
, (6.23)

and we see that equation (6.18) and equation (6.23) are equivalent. This is a consistency

check that shows the radiation flux appears naturally in the total energy flux equation and

is verified by the relationship:

4

3
vUr −

c

3neσ∥

∂Ur

∂r
= Jc2

[
Ẽtot +

1

2
ũ2 +

ã2g
γg − 1

− 1

r̃

]
. (6.24)

The radiation flux Fr can also be derived by integrating the specific flux vector F⃗ :

F⃗ = −κ∇⃗f − v⃗ϵ

3

∂f

∂ϵ
, (6.25)

where κ is the diffusion coefficient:

κ =
c

3neσparallel
, (6.26)

the photon distribution function is f , and v⃗ < 0 to indicate bulk flow is towards the stellar

surface. A negative radiation flux indicates energy flow towards the stellar surface.

After multiplying the specific flux vector F⃗ in equation (6.25) by ϵ3 and integrating over
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all energies we obtain the radiation flux in cgs units:

Fr =

∫
ϵ3Fdϵ (6.27)

=
4

3
vUr −

c

3neσ∥

∂Ur

∂r
, (6.28)

which is exactly the same term in the total energy flux of equation (6.21). The specific flux

vector represents the spatial component of the two-dimensional photon transport equation.

We impose boundary condition requirements on the transport equation which allows us to

gain insight into the behavior of the radiation flux at the top of the accretion column (the

starting location) and the bottom (the stellar surface). Boundary conditions are described

in Chapter 7.

6.3 Total Energy Loss

The steady-state energy conservation equation describes escaping radiation losses. We re-

strict the gas to flow along magnetic field lines but the photons are free to escape from the

column. We model the direction of escaping radiation perpendicular to the column cen-

terline (the centerline corresponds to the axis of the cone of accretion). The steady-state

(∂/∂t = 0) energy conservation equation becomes:

∂

∂t

(
1

2
ρv2 + Ur + Ug + Ugravity

)
︸ ︷︷ ︸

=0

= −∇ · Etot + U̇esc + U̇abs + U̇emit︸ ︷︷ ︸
≈0

0 = −∇ · Etot + U̇esc. (6.29)

We assume the total rate of energy absorbed and emitted by the radiation is approximately

zero (U̇abs + U̇emit) because the radiation energy density is much larger than gas energy

density. This means that any energy added to (absorbed by) the radiation field is actually
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provided by the radiation field itself (emitted by). The models we discuss in Chapter 11

validate this assumption.

We express the energy flux divergence in equation (6.29) in spherical coordinates and

the equation is rewritten as:

1

r2
∂

∂r

[
r2Etot

]
= U̇esc

= −Ur
w⊥
r0
, (6.30)

where w⊥ is the diffusion velocity in the perpendicular direction:

w⊥ =
c

τ⊥
, (6.31)

c is the speed of light, and τ⊥ is the perpendicular optical thickness. We use equations

(5.19) and (6.4) to convert radiation energy density Ur to radiation sound speed ar, and

then we expand the derivative in equation (6.30) to obtain:

−∂Etot

∂r
− 2Etot

r
=

a2rρ

γr(γr − 1)

c

neσ⊥r
2
0

. (6.32)

We convert the total energy flux to a dimensionless quantity by dividing by Jc2 as shown

in equation (6.10):

Ẽtot =
Etot

Jc2
, (6.33)

and using r̃ = r/RG from equation (5.1) we obtain the dimensionless equation:

∂
(
JẼtot

)
∂r̃

= −2JẼtot

r̃
− mpcã

2
r

γr(γr − 1)σ⊥r̃2RGtan2θ
. (6.34)
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Using equation (5.30) for the mass flux J it can be easily shown that:

1

J

∂J

∂r̃
= −2

r̃
. (6.35)

We expand the derivative in equation (6.34), substitute equation (6.35), and insert the

beta parameter using equation (6.16) to express the total energy loss partial-differential

equation:

∂Ẽtot

∂r̃
= − β

γr(γr − 1)

σ∥

σ⊥

1

tan2 θ
ã2r (6.36)

6.4 Gas Sound Speed Derivative

We include the effects of four heating and cooling processes in the gas energy density

conservation equation. Cooling processes include bremsstrahlung and cyclotron emission

losses. Bremsstrahlung absorption is strictly a gas heating process, and Compton scattering

is capable of heating or cooling.

To derive the gas energy density equation we start with the First Law of Thermody-

namics:

De

Dt︸︷︷︸
1

+Pg

D
(
1
ρ

)
Dt︸ ︷︷ ︸
2

= q̇︸︷︷︸
3

, (6.37)

where internal energy e is in units of erg g−1, gas pressure Pg is in units of erg cm−3, density

ρ is in units of g cm−3, and q̇ is in units of erg g−1 sec−1. Each term is described by the

following:

• Term 1 indicates the Langrangian rate of change of gas specific internal energy. The

Lagrangian derivative is also called the comoving derivative. Its full mathematical

operation is given by:

D

Dt
=

∂

∂t
+ v

∂

∂r
, (6.38)
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where r represents a spatial dimension. We see the comoving time derivative includes

the time rate of change as well as the change due to bulk motion with velocity v.

• Term 2 is the rate per unit mass at which the gas pressure Pg is doing work on the

gas fluid.

• Term 3 is the rate per unit mass at which heat is being exchanged from external

sources, which relates to the rate of energy exchange per unit volume by the following:

U̇tot = ρq̇. (6.39)

We multiply the specific internal energy e by mass density ρ to obtain the gas energy density

Ug:

Ug = ρe, (6.40)

and the gas pressure Pg is converted to internal energy density Ug by using equation (6.4):

Ug =
Pg

γg − 1
. (6.41)

We substitute equations (6.40) and (6.41) into equation (6.37) and use the fact that the

mass density does not change with time (∂ρ/∂t=0). The result is the conservation equation

for internal energy density of the gas:

DUg

Dt
= γg

Ug

ρ

Dρ

Dt
+ U̇tot, (6.42)

where the total energy exchange rate U̇tot is the addition of all four heating and cooling

processes:

U̇tot = U̇ff + U̇cyc + U̇Compton + U̇absorb. (6.43)

The U̇ff term describes the rate of energy removal from the gas as a result of bremsstrahlung
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free-free emission, U̇cyc is the gas cooling rate due to cyclotron emission, U̇Compton describes

the energy exchange rate due to Comptonization between photons and electrons (this pro-

cess can either heat or cool the gas), and U̇absorb is the gas heating rate due to thermal

free-free bremsstrahlung absorption. These processes are described in more detail below.

Expanding the comoving derivative in equation (6.42) we obtain the following:

∂Ug

∂t︸︷︷︸
=0

+v
∂Ug

∂r
= γg

Ug

ρ
v
∂ρ

∂r
+ U̇tot (6.44)

where (v < 0) indicates bulk flow towards the stellar surface.

Gas sound speed is derived from (6.44) via the relationships Ug = Pg/(γg − 1) and

Pg = a2gρ/γg to obtain the third conservation equation:

∂ãg
∂r̃

= (1− γg)

[
1

2

ãg
ũ

(
∂ũ

∂r̃

)
+
ãg
r̃

]
− 1

2
γg(γg − 1)

ΩRG
3

Ṁc2
r̃2

ãg

[
U̇tot

]
(6.45)

Two important equations derived in this analysis are stated here for future reference.

The gradients of gas and radiation pressure are:

∂Pg

∂r̃
=

cṀ

ΩRG
2

ã2g
r̃2ũ

[
1

ũ

(
∂ũ

∂r̃

)
+

2

r̃

]
+

(γg − 1)RG

cũ

[
U̇tot

]
(6.46)

∂Pr

∂r̃
=

cṀ

ΩRG
2

[
1

βũr̃4

(
Ẽtot +

1

2
ũ2 +

ã2g
γg − 1

+
ã2r

γr − 1
− 1

r̃

)]
. (6.47)

The Comptonization process is described in more detail in section 9.5. We mention here

that the energy exchange rate depends on the ratio of the inverse-Compton temperature TIC

to the electron temperature Te. We find the inverse-Compton temperature after solving for

the photon distribution function f(r̃, ϵ). A converged solution is found using an iterative
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approach in which the photon distribution function is continually refined until the ratio

between the previous and new TIC stabilizes. The iteration procedure is discussed in section

10.4.

Here we show the radiation energy density equation to contrast with the gas energy

density shown in equation (6.44). The radiation energy density derivation is described in

more detail in section 9.4. The steady-state conservation equation is given by:

v
∂Ur

∂r
= γr

Ur

ρ
v
∂ρ

∂r
− Ur

tesc
+∇ · κ∇Ur − U̇tot. (6.48)

Notice that the U̇tot term has a negative value in equation (6.48) whereas the term in the

gas energy equation (6.44) is positive. This makes sense because energy removed from the

gas is transferred to the radiation and vice-versa. Photon escape is included in the Ur/tesc

term which equals the divergence of the total energy flux:

∇ · Etot = − Ur

tesc
. (6.49)

The derivation of this relationship is shown in the appendix.

6.4.1 Thermal Bremsstrahlung (Free-Free Emission)

Thermal bremsstrahlung or free-free emission is radiation due to the acceleration of a charge

in the Coulomb field of another. The primary radiators are the electrons. The emitted

radiation cools the gas as the electrons radiate photons that eventually escape from the

accretion column walls (unless the photon is absorbed as part of the thermal free-free

absorption process). We use the term “thermal” because the electrons are assumed to have

only a 1D thermal distribution of speeds corresponding to Maxwell-Boltzmann statistics.

The electrons are so tightly held to the magnetic field that essentially their only degree of

freedom is along the parallel direction, aligned with the B-field lines.
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We start with the thermal Bremsstrahlung total power emitted per unit volume per

hertz which is given by equation (5.14a) from Rybicki & Lightman (1979). We use the

energy-dependent equation because our numerical model in COMSOL is two-dimensional,

and so it has upper and lower energy boundaries in the computational domain. Therefore,

the bremsstrahlung cooling term in Mathematica takes into account upper and lower photon

energies. We insert a negative sign in front of (5.14a) to account for the energy removal

(cooling) from the gas:

U̇ff
ν = −

(
25πe6

3mec3

)(
2π

3kme

)1/2

T−1/2
e Z2nenie

− hν
kTe ḡff , (6.50)

where e is the absolute value of the electric charge carried by an electron in units of stat-

coulombs, Z is the integer charge of the ion, ne and ni are the number density of electrons

and ions, respectively, ν is the photon frequency, h is Planck’s constant, k is the Boltzmann

constant, and ḡff is called the Gaunt factor and accounts for quantum effects. We assume

the gas is fully ionized such that ne = ni, we let Z = 1 because the ion has a +1 charge,

and we neglect quantum effects by setting ḡff = 1. We integrate equation (6.50) over the

range of frequencies from νmin to νmax to obtain the total power emitted per unit volume:

U̇ff = −
(
25πe6

3mec3

)(
2π

3kme

)1/2

T−1/2
e n2i

∫ νmax

νmin

e−
hν
kTe dν

= −
(
25πe6

3mec3

)(
2π

3kme

)1/2

T−1/2
e n2i

(
e−

hνmin
kTe − e−

hνmax
kTe

)
kTe
h
. (6.51)

The number density is converted to mass flux J and velocity v using J = −ρv:

ne = ni =
ρ

mp
=

J

vmp
. (6.52)

We use equation (5.30) for J and convert to dimensionless quantities to obtain the number
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density:

ne · ni = n2e = n2i =

(
Ṁ

mpcΩR2
Gũ

)2

. (6.53)

The electron temperature is converted to gas sound speed by using J = −ρv, equations

(5.19) and (5.30), and the Ideal Gas Law:

kTe =
Pg

ni

=
mpPg

ρ

= mpc
2ũ

(
r̃2

r̃2star

)
P̃g

=

(
mpc

2

γg

)
ã2g. (6.54)

Substituting equations (6.53) and (6.54) into (6.51) we obtain the final form of the thermal

bremsstrahlung cooling rate in units of erg sec−1 cm−3:

U̇ff = −
(
25πe6

3mec3

)(
2π

3kme

)1/2(mpc
2

kγg
ã2g

)1/2
(

Ṁ

mpcΩR2
Gr̃

2ũ

)2(
k

h

)(
e
− ϵminγg

mpc2ã
2
g − e

− ϵmaxγg

mpc2ã
2
g

)
,

(6.55)

where ϵmin and ϵmax are the minimum (lower) and maximum (upper) photon energies of

the computational domain, respectively. In all of our models we set the lower boundary at

0.01keV and the upper boundary at 100keV.

6.4.2 Cyclotron Emission

The electrons are confined tightly to the magnetic field in rectilinear motion as the gas

accretes to the stellar surface. The magnetic field is so strong that gyrational motion is

assumed negligible and the most of the electrons are in the ground Landau state (n=0).
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However, if the energy transfer in an electron-ion encounter exceeds the cyclotron energy

the electron can experience gyration which results in an excitation to the first Landau

level (n=1), followed by radiative decay to the ground state (n=0) and the production of

radiation known as cyclotron emission. Cyclotron emission is a process that removes energy

from (cools) the gas.

To find the cyclotron cooling rate U̇cyc we start with the cyclotron emissivity ṅcycϵ which

gives the production rate of cyclotron photons per unit volume per unit energy using equa-

tions (7) and (11) from Arons, Klein, & Lea (1987):

ṅcycϵ = 2.10× 1036ρ2B
−3/2
12 H

(
ϵc
kTe

)
e−

ϵc
kTe δ (ϵ− ϵc) , (6.56)

where B12 is the magnetic field strength in units of 1012G, ϵc = (2π/h)ωc ≈ 11.57B12 is the

cyclotron energy in units of keV, and H (ϵc/kTe) is a piecewise function defined by:

H

(
ϵc
kTe

)
=

 0.15
√
7.5 : ϵc

kTe
≥ 7.5

0.15
√

ϵc
kTe

: ϵc
kTe

< 7.5.
(6.57)

We multiply equation (6.56) by the photon energy ϵ and integrate over all energies to obtain

the cooling rate. We insert a negative sign because energy is removed from the gas:

U̇cyc = −
∫ ϵmax

ϵmin

ṅcycϵ ϵ dϵ

= −2.10× 1036ρ2B
−3/2
12 H

(
ϵc
kTe

)
e−

ϵc
kTe ϵc. (6.58)

We use equations (6.52), (6.53), and (6.54) to substitute for gas density ρ and electron

temperature Te to arrive at the final form for the cyclotron cooling rate in units of erg sec−1
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cm−3:

U̇cyc = −

(
2.1× 1036Ṁ2ϵc

c2RG
4B

3/2
12

)
1

Ω2r̃4ũ2
H

(
ϵc
kTe

)
e
− ϵcγg

mpc2ã
2
g . (6.59)

6.4.3 Comptonization Heating and Cooling

Compton scattering and inverse-Compton scattering provide an energy transfer mechanism

between photons and electrons. Compton scattering occurs as high-energy photons inelas-

tically transfer their energy to the electrons in the rapidly compressing gas in the column.

Inverse-Compton scattering results in energy exchange from the electrons to soft photons.

The evolution of the photon distribution function f(r̃, ϵ̃) is primarily determined by Comp-

ton scattering because the convergence of the distribution depends on the temperature

relationship between the photons and the electrons. This process of energy exchange is

known as Comptonization.

The full description for the dynamics between the electrons and photons is described

in sections 9.4 and 9.5. Here we introduce the fundamental idea by considering a thermal

distribution of electrons in the non-relativistic limit. The scattering event between an

electron and a photon must be considered in the realm of relativistic particle mechanics

because the photon possesses a momentum hν/c as well as an energy hν. This introduces

an intrinsic positive scalar, m0, the Newtonian proper or rest-mass. The basic axiom of

collision mechanics in this case is the conservation of the 4-momentum P of both the electron

and photon: the sum of the 4-momenta of the particles going into a point-collision is the

same as the sum of the 4-momenta of those coming out. The 4-momentum P is analogous

to the momentum of a particle in three dimensions with the inclusion of the relativistic

concept of rest mass m0 (me in this case for the rest mass of an electron).

Rybicki & Lightman (1979) perform the calculation for the single scattering of a photon

by an electron and derive equations for the photon energy before and after the collision

in both the laboratory frame (observer’s frame K) and the electron’s rest frame (K′). In

the electron’s rest frame (K′) the electron has no motion and the loss in photon energy is
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described by Rybicki & Lightman (1979) equation (7.33) where ϵ′ indicates the incident

photon energy and ϵ′1 indicates the scattered photon energy:

∆ϵ′

ϵ′
≡ ϵ′1 − ϵ′

ϵ′
= − ϵ′

mc2
. (6.60)

In the lab frame (K), however, the post-collision electron must gain some energy αkTe and

the energy exchange must be described by Rybicki & Lightman (1979) equation (7.34):

∆ϵ

ϵ
= − ϵ

mc2
+
αkTe
mc2

. (6.61)

The coefficient α is found by assuming that photons and electrons are in complete equilib-

rium and interact only through scattering events, in which case the photons are described

by a Bose-Einstein distribution. The average photon energy ⟨ϵ⟩ is found by averaging ϵ over

the Bose-Einstein distribution to obtain ⟨ϵ⟩ = 3kTe. Equation (6.61) is used to find that

α = 4.

Equation (7.36) from Rybicki & Lightman (1979) summarizes the energy transfer per

scattering for nonrelativistic electrons in thermal equilibrium:

(∆ϵ) =
ϵ

mc2
(4kTe − ϵ) . (6.62)

We see in equation (6.62) that photons lose energy when ϵ > 4kTe. This describes Comp-

ton scattering energy exchange. However, if 4kTe > ϵ the energy is transferred from the

electrons to the photons in a process called inverse Compton scattering. When ∆ϵ = 0 the

temperature Te is called the inverse Compton temperature TIC.

The energy exchange term, U̇Compton, is given by equation (6.63). It is derived in section
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9.4 where we develope the radiation energy density equation:

U̇Compton =
4neσ̄ckTe
mec2

[g(r̃)− 1]Ur. (6.63)

The energy exchange rate has a positive or negative value depending on g(r̃). A g(r̃) greater

than unity results in heat addition to the gas. A magnitude less than unity causes the gas

to cool. We use equation (6.54) to substitute gas sound speed ãg for Te, and equations

(5.19) and (6.4) to convert radiation energy density Ur to radiation sound speed ar, and

also equation (6.53) to substitute for number density ne to obtain the final form of the

Compton energy exchange rate for the gas:

U̇Compton =

(
4Ṁ2c

γgγr(γr − 1)meRG
4

)
σ

Ω2
[g(r̃)− 1]

ã2gã
2
r

r̃4ũ2
, (6.64)

where g(r̃) is the ratio of inverse-Compton temperature to electron temperature.

g(r̃) ≡ TIC
Te

=
1

4kTe

∫∞
0 ϵ4f(r̃, ϵ)dϵ

4
∫∞
0 ϵ3f(r̃, ϵ)dϵ

. (6.65)

6.4.4 Bremsstrahlung (Free-Free) Absorption

Thermal free-free bremsstrahlung absorption of radiation by an electron in the field of an

ion is described by Kirchhoff’s law:

jffν = αff
νBν(T ), (6.66)
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where jffν is the emission coefficient, αff
ν is the thermal free-free absorption coefficieint, and

Bν(T ) is the blackbody Planck function:

Bν(T ) =
2hν3

c2

e
hν
kTe − 1

. (6.67)

The emission coefficient is related to equation (6.50) via the following relationship:

U̇ff
ν = 4πjffν . (6.68)

Substituting equations (6.67) and (6.68) into (6.66) we obtain the frequency-dependent

thermal free-free absorption coefficient given by equation (5.18b) from Rybicki & Lightman

(1979):

αff
ν = 3.7× 108T−1/2

e neniν
−3
(
1− e−hν/kTe

)
ḡff . (6.69)

Using equation (6.69) we express the rate of energy absorbed by the gas as:

U̇absorb = Urα
ff
ν c, (6.70)

where Ur is the radiation energy density:

Ur =
1

γr(γr − 1)

(
cṀ

R2
GΩ

)
ã2r
ũr̃2

. (6.71)

The two energy exchange terms of Comptonization, U̇Compton, and thermal free-free

absorption, U̇absorb, play a special role in the conservation equation dynamics. Whereas

the bremsstrahlung and cyclotron cooling terms are functions of the spatial domain only,

the Comptonization and absorption energy exchanges depend on both position and photon

energy, and so are two-dimensional in nature. This creates a problem because we work
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in only the spatial domain with respect to the coupled conservation equations used for the

hydrodynamic solutions. There is a cyclotron energy appearing in the cyclotron cooling term

but it does not vary over the energy domain and is simply a constant (ϵc ≈ 11.57B12keV),

and so cyclotron cooling is only a 1D function in the spatial domain. Comptonization energy

exchange includes the effects from the energy domain through the g(r̃) function. Equation

(6.65) shows how moments of the photon distribution function f(r̃, ϵ̃) are calculated in both

the numerator and denominator. Therefore, g(r̃) inherently contains energy information but

is still only a function in the spatial domain. The free-free absorption coefficient αff
ν , on

the other hand, must be averaged to eliminate the energy dependence. The absorption

coefficient is called the Rosseland mean (αR) when it is averaged over the full energy band.

6.4.5 Starting Conditions for Comptonization and Absorption Energy

Exchange

We make initial assumptions about U̇Compton and U̇absorb which require a “best” guess for

each.

• The initial value for g(r̃) is set to unity such that the Comptonization term U̇Compton

is zero. This means we initially assume that the inverse Compton temperature TIC

and the electron temperature Te are equal, i.e. we assume zero net exchange between

the photon and electrons along the entire length of the column:

U̇Compton =
4σ̄cṀ2

meR4
GΩ

2γgγr(γr − 1)

ã2gã
2
r

r̃4ũ2
[g(r̃)− 1]︸ ︷︷ ︸

=0 initially when g(r̃)=1

. (6.72)

• The initial value for U̇absorb is defined using the Rosseland mean absorption coefficient

αff
R. The Rosseland mean is found by averaging combined scattering and absorption

over all frequencies. Therefore, the Rosseland mean is a 1D function in the spatial

domain which is exactly what we need in the conservation equations. See Rybicki &
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Lightman (1979) Chapter 5 for a thorough explanation:

αff
R = 1.7× 10−25T−7/2

e neni

= 1.7× 10−25

(
kγg
mpc2

)7/2
(

Ṁ

mpcΩR2
G

)2
1

ã7g r̃
4ũ2

, (6.73)

where ni = ne. We use (6.73) and the definition of Ur from equation (6.71) to obtain

the initial bremsstrahlung absorption term:

U̇absorb = Urα
ff
Rc

=

(
1.7× 10−25

)
c2Ṁ

γr(γr − 1)RG
2Ω

(
kergγg
mpc2

)7/2
(

Ṁ

mpcΩRG
2

)2
ã2r

ã7gũ
3r̃6

. (6.74)

Equations (6.65) and (6.70) remind us that the g(r̃) function and the absorption coef-

ficient αff
ν both depend on position and energy. Here we only described their initial values

which reduces their dependence to only the spatial domain. In subsections 10.4.1 and 10.4.2

we describe how the Comptonization and absorption terms include energy dependencies

which are essential to converging the distribution function solution.

6.5 Acceleration Equation

In the Langrangian (comoving) frame the bulk fluid momentum conservation equation is

given by:

Dv

Dt
= −1

ρ
∇Ptotal −

Fgravity

ρ
, (6.75)

where v < 0 indicates flow towards the stellar surface. The force due to gravity is given by:

Fgravity =
GM∗ρ

r2
. (6.76)
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The dynamics are steady-state and we reduce the comoving derivative to obtain the

bulk velocity derivative ∂ũ/∂r̃ in terms of gas and radiation pressures:

∂ũ

∂r̃
=

ΩR2
Gr̃

2

cṀ

[
ψ
∂Pg

∂r̃
+
∂Pr

∂r̃

]
− 1

r̃2ũ
. (6.77)

The symbol ψ is a flag whereby we can choose to “turn off” the gas pressure; setting the

flag to zero allows us to ignore any gas pressure effects if the radiation pressure becomes

the dominant term:

∂Pg

∂r̃
=


∂Pg

∂r̃ : ψ = 1

0 : ψ = 0.
(6.78)

The gas pressure Pg and radiation pressure Pr are converted to dimensionless quantities

using equation (6.46), and we make use of equation (6.19) for ãr and (6.45) for ãg to obtain

the bulk velocity derivative:

∂ũ

∂r̃
=

ũ

ũ2 − ψã2g

[
ψ
2ã2g
r̃

− 1

r̃2
+

1

βr̃2

(
Ẽtot +

1

2
ũ+

ã2g
γg − 1

− 1

r
+

ã2r
γr − 1

)
+
ψ(γg − 1)RG

3Ωr̃2

c2Ṁ
U̇tot

]
, (6.79)

and in terms of radiation flux F̃r we obtain the following:

∂ũ

∂r̃
=

ũ

ũ2 − ψã2g

[
ψ
2ã2g
r̃

− 1

r̃2
+

1

βr̃2

(
F̃r +

ã2r
γr − 1

)
+
ψ(γg − 1)RG

3Ωr̃2

c2Ṁ
U̇tot

]
(6.80)

Gas pressure is ignored when we set ψ = 0. This is the fourth and final conservation

equation. Appropriate boundary conditions are discussed in the next chapter.
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Chapter 7: Accretion Column Boundary Conditions

7.1 Upstream Boundary Conditions

In this chapter I describe the three boundary conditions imposed at the upper surface of

the accretion column in order to carry out the integration required to determine the column

structure. The first two conditions require that the velocity and its radial derivative match

the corresponding values for the free-fall velocity. The third condition establishes that the

upper surface of the accretion column is a free-streaming surface, from which the photons

freely escape in the vertical direction. These various conditions are reviewed in detail below.

7.1.1 Free-fall Bulk Velocity

We make the initial assumption that the backpressure of gas and radiation pressure are

negligible at the top of the accretion column such that the inflowing bulk fluid has a velocity

and derivative equal to the free-fall condition. These are designated with the subscript

“start”. The free-fall velocity is equal to:

v2 =
2GM∗
r

. (7.1)

We convert v and r to dimensionless quantities to obtain:

c2ũ2 =
2GM∗
RGr̃

. (7.2)
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Rearranging equation (7.2) we obtain the starting velocity ũstart:

ũstart = −
(
2

r̃

)1/2
∣∣∣∣∣
r̃=r̃start

. (7.3)

Taking the derivative of equation (7.3) with respect to r̃ we obtain the following:

∂ũ

∂r̃

∣∣∣∣
start

= − 1

r̃2ũ

∣∣∣∣
r̃=r̃start

. (7.4)

7.1.2 Free-streaming Radiation

At the top of the column we require that photons travel in only the radial (outward) direction

with a velocity exactly equal to the speed of light. We call this condition “free-streaming”.

Here the radiation energy flux has a positive magnitude because the photons travel outward:

Fr = cUr|start . (7.5)

Converting to dimensionless radiation sound speed and bulk velocity we obtain:

F̃r = − 3

γr

ã2r
ũ

∣∣∣∣
start

. (7.6)

Equation (7.6) is used in the calculation of the incident (starting) energy flux.

The specific flux vector is:

F⃗ = −κ∇⃗f − v⃗ϵ

3

∂f

∂ϵ
, (7.7)

104



where κ is the diffusion coefficient, f is the photon distribution function, and v < 0. Mul-

tiplying (7.7) by ϵ3 and integrating over all energies we obtain the radiation energy flux:

Fr =

∫ ∞

0
ϵ3Fdϵ (7.8)

= − c

3neσ∥

[
dUr

dr

]
+

4

3
vUr (7.9)

= − c

3neσ∥RG

[
dUr

dr̃

]
+

4

3
cũUr, (7.10)

where the diffusion coefficient κ is:

κ = − c

3neσ∥
. (7.11)

At the upper boundary we equate equation (7.5) with equation (7.10) to obtain an

important definition for the change in radiation energy density Ur as a function of accretion

column height:

dUr

dr̃
= neσ∥RG[4ũ− 3]Ur (7.12)

=
(4ũ− 3)

β

Ur

r̃2|ũ|
. (7.13)

where β is defined in equation (6.16):

β =
cmpΩRG

Ṁσ∥
, (7.14)
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and electron density ne is derived from equation (6.53):

ne =

(
Ṁ

mpcΩR2
G|ũ|

)
. (7.15)

Equation (7.13) provides a free-streaming requirement relating radiation pressure and

its corresponding derivative. In subsection 7.1.4 we use this to help solve the momentum

equation for the required incident gas Mach number Mg0.

7.1.3 Incident Energy Flux

The free-streaming condition is used in the calculation of the incident (starting) energy flux.

Using equations (6.23) and (7.6) we obtain for the starting energy flux:

Ẽstart =

[
−1

2
ũ2 −

ã2g
γg − 1

− 3

γr

ã2r
ũ

+
1

r̃

]∣∣∣∣∣
r̃=r̃start

. (7.16)

The starting energy flux depends on radial position r̃start (location of the top of the column),

bulk velocity ũ, and sound speeds ãg and ãr.

7.1.4 Starting Gas and Radiation Mach Numbers

Our model requires values for incident gas and radiation Mach numbers in order to solve the

four coupled conservation equations. We need to convert sound speed to a Mach number.

This conversion is made using the definition of Mach number:

Mi0 = − ũ

ãi
, (7.17)

where the subscript “i” denotes gas or radiation.. The incident radiation Mach numberMr0

is a free parameter and varies as the user investigates various pulsars. The starting gas Mach
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number Mg0, however, is not a free parameter. Mg0 has to be calculated by solving the

momentum conservation equation which incorporates the free-streaming boundary condition

of equation (7.13).

The momentum conservation equation is:

∂ũ

∂r̃
=

ΩR2
Gr̃

2

cṀ

[
ψ
∂Pg

∂r̃
+
∂Pr

∂r̃

]
− 1

r̃2ũ
, (7.18)

where ψ is a flag which can have a value of 0 or 1 depending on whether we choose to

neglect the gas pressure such as in a radiation-dominated scenario. Equation (7.18) shows

the incident free-fall velocity derivative boundary condition (see equation 7.4) can only be

satisfied when:

ψ
∂Pg

∂r̃
+
∂Pr

∂r̃
= 0

∣∣∣∣
r̃=r̃start

. (7.19)

We rewrite this as:

∂Pr

∂r̃
= −ψ∂Pg

∂r̃

∣∣∣∣
r̃=r̃start

. (7.20)

This is the key equation for solving the required incident gas Mach number Mg0. In terms

of radiation energy density we write the expression as:

1

3

∂Ur

∂r̃
= −ψ∂Pg

∂r̃

∣∣∣∣
r̃=r̃start

. (7.21)

The free-streaming requirement is embedded within the ∂Ur/∂r̃ term. We use this whether

or not we neglect gas pressure Pg. Neglecting gas pressure (ψ = 0) is essentially the same

as saying:

∂Pr

∂r̃
≈ ∂Pg

∂r̃
≈ 0. (7.22)

We accept this as approximately true any time we assign ψ = 0.
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Starting Gas Mach Number when Gas Pressure is not Neglected

When we do not neglect gas pressure we let ψ = 1 and use equation (7.21) and the free-

streaming condition of equation (7.13) to give:

1

3

[
neσ∥RG(4ũ− 3)Ur

]
= −∂Pg

∂r̃
. (7.23)

The gas pressure gradient is given in equation (6.46) which we found earlier in section 6.4

from our analysis of the gas energy equation. Substituting this and converting to gas and

radiation sound speeds we get the final form of the free-streaming momentum equation

when gas pressure is not neglected:

1

γr
σ∥RG [4ũ− 3] ã2rne

∣∣∣∣
start

=

(
ã2g

[
− 1

r̃2ũ2
+

2

r̃

]
+

(γg − 1)RG

ρc3ũ

[
U̇total

])∣∣∣∣
r̃=r̃start

. (7.24)

We solve equation (7.24) numerically to give the correct value of the starting gas Mach

number Mg0.

Starting Gas Mach Number when Gas Pressure is Neglected

If we choose to neglect gas pressure we assume the following relationship:

∂Pr

∂r̃
≫ ∂Pg

∂r̃︸︷︷︸
≈0

, (7.25)
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and the momentum conservation equation is modified to only account for changes in radi-

ation pressure:

∂ũ

∂r̃
=

ΩR2
Gr̃

2

cṀ

[
ψ
∂Pg

∂r̃
+
∂Pr

∂r̃

]
︸ ︷︷ ︸

∂Pg
∂r̃

≪ ∂Pr
∂r̃

− 1

r̃2ũ
(7.26)

=
ΩR2

Gr̃
2

cṀ

[
∂Pr

∂r̃

]
− 1

r̃2ũ
, (7.27)

In terms of radiation energy density we can rewrite as:

∂ũ

∂r̃
=

ΩR2
Gr̃

2

3cṀ

[
∂Ur

∂r̃

]
− 1

r̃2ũ
, (7.28)

and we substitute the free-streaming condition for ∂Ur/∂r̃ to obtain the following expression

for bulk velocity derivative at the top of the column when we neglect gas pressure:

∂ũ

∂r̃
=

[
(4ũ− 3)

βγr

ã2r
r̃2ũ2

− 1

r̃2ũ

]∣∣∣∣
r̃=r̃start

. (7.29)

Equation (7.29) shows that by neglecting gas pressure we have no choice but to relax the

requirement of a bulk velocity derivative equal to the free-fall derivative. To solve for Mg0

we use equation (6.46) and the assumption that gas pressure is neglected (∂Pg/∂r̃ ≈ 0):

∂Pg

∂r̃︸︷︷︸
≈0

=
cṀ

ΩRG
2

ã2g
r̃2ũ

[
1

ũ

(
∂ũ

∂r̃

)
+

2

r̃

]
+

(γg − 1)RG

cũ

[
U̇total

]
. (7.30)
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Substituting for the velocity derivative using equation (7.29) we obtain the final form of the

free-streaming momentum equation when gas pressure is neglected:

0 = c2ã2gρ

[
1

ũ

(
(4ũ− 3)

βγr

ã2r
r̃2ũ2

− 1

r̃2ũ

)
+

2

r̃

]
+

(γg − 1)RG

cũ

[
U̇total

]
. (7.31)

We solve this numerically to obtain the value of the starting gas Mach number Mg0 for the

case of neglecting Pg.

7.2 Stellar Surface Boundary Conditions

7.2.1 Fluid Bulk Velocity and Stagnation

The lower boundary condition assumes bulk velocity stagnation (ũ . 0.05) as the fluid

comes to rest near the stellar surface. The ideal stagnation scenario would have a bulk

velocity equal to zero at the stellar surface. However, the observed spectrum and the

computed model spectrum are determined by the free model parameters and ultimately the

bulk velocity profile. The bulk velocity depends upon the free model parameters. If the

stellar surface velocity was too high (above ≈ 0.05c) the model was considered unacceptable

and parameters were adjusted. My research investigated five pulsar models (LMC X-4, CEN

X-3, HER X-1, Vela X-1, and X-PER) and the surface bulk velocity was less than ≈ 0.05c

for all models.

7.2.2 Surface Radiation Flux and the Mirror Condition

The specific photon flux vector was given earlier in equation (7.7):

F⃗ = −κ∇⃗f − v⃗ϵ

3

∂f

∂ϵ
, (7.32)

where v < 0 indicates bulk flow towards the stellar surface. At the top of the accretion

column we require photons to travel at the speed of light in the outward direction as part of
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the free-streaming boundary condition. However, at the stellar surface we have to describe

photon transport in which no radiation energy enters underneath the stellar surface. We

call this a mirror condition in which the specific flux vector is zero:

0 = −κ∇f − vϵ

3

∂f

∂ϵ

∣∣∣∣
r̃stellar surface

. (7.33)

We see from equation (7.16), however, that the value of the total energy flux Ẽtot at the

stellar surface still has a value of 1/r̃star even if the stagnation velocities are close to zero:

Ẽtot =

−1

2
ũ2 −

ã2g
γg − 1

− 3

γr

ã2r
ũ︸ ︷︷ ︸

≈ 0 if stagnation

+
1

r̃


∣∣∣∣∣∣∣∣∣
stellar surface

≈ 1

r̃star
. (7.34)

The photon transport equation f(r̃, ϵ̃) is two-dimensional that depends on radial position

r̃ and photon energy ϵ̃ (keV). The mirror condition in equation (7.33) requires the radial

component of the transport equation Γr̃ to equal zero at the stellar surface. The full

transport equation is derived in Chapter 9, but here we show the radial component Γr̃ to

understand how it relates to the specific flux:

Γr̃ =

[(
ϵ̃

χ

)2

RGr̃
2

(
− c

3neσ∥RG

∂f

∂r̃
− 1

3
cũϵ̃

∂f

∂ϵ̃

)]
, (7.35)

where χ = 6.24 × 108. The terms in the second set of parentheses in equation (7.35)

are equivalent to the specific flux vector from equation (7.7) when the dimensionless r̃ is

converted to radial position r using r = RGr̃ and dimensionless velocity ũ is converted to
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velocity v using v = cũ:

(
− c

3neσ∥RG

∂f

∂r̃
− 1

3
cũϵ̃

∂f

∂ϵ̃

)
= −κ∇⃗f − v⃗ϵ

3

∂f

∂ϵ
, (7.36)

where κ is given by equation (7.11).
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Chapter 8: Solving the Coupled Conservation Equations

The bulk velocity and temperature profiles along the accretion column height are found by

solving the following four coupled, first-order differential conservation equations:

∂ãr
∂r̃

=
1

2

ãr
ũ

[
∂ũ

∂r̃

]
− γr

2β

1

ãr r̃2

[
F̃r +

ã2r
γr − 1

]
+
ãr
r̃

(8.1)

∂Ẽtot

∂r̃
= − β

γr(γr − 1)

σ∥

σ⊥

1

tan2 θ
ã2r (8.2)

∂ãg
∂r̃

= (1− γg)

[
1

2

ãg
ũ

(
∂ũ

∂r̃

)
+
ãg
r̃

]
− 1

2
γg(γg − 1)

ΩRG
3

Ṁc2
r̃2

ãg

[
U̇tot

]
(8.3)

∂ũ

∂r̃
=

ũ

ũ2 − ψã2g

[
ψ
2ã2g
r̃

− 1

r̃2
+

1

βr̃2

(
F̃r +

ã2r
γr − 1

)
+
ψ(γg − 1)RG

3Ωr̃2

c2Ṁ
U̇tot

]
, (8.4)

where ãr is radiation sound speed, Ẽtot is total energy flux, ãg is gas sound speed, and ũ is

bulk velocity. The radiation energy flux F̃r is given by equation (6.23):

F̃r = Ẽtot +
1

2
ũ2 +

ã2g
γg − 1

− 1

r̃
. (8.5)

Setting ψ = 0 allows us to ignore gas pressure when the model is considered radiation dom-

inated. We solve the four coupled equations using a numerical partial differential equation

solver with the Mathematica computer program.

There are three important X-ray pulsar physical parameters we establish as constant

throughout this research:
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1. Pulsar stellar radius is set to R∗ = rstar = 106cm.

2. Pulsar mass is set to 1.4MSun = 1.4M⊙ =M∗.

3. We follow Ventura (1979), Wang & Frank (1981), and Becker (1998) by setting the

perpendicular electron scattering cross-section equal to the Thomson cross section:

σ⊥ = σT. (8.6)

The rationale for setting σ⊥ = σT is that we consider photons traveling either perpendicular

or parallel to the magnetic field B. There are two polarized photon modes: (1) ordinary

mode (m=1) polarized with the wave electric vector in the plane of the magnetic field B

and the photon momentum, and (2) extraordinary mode (m=2) polarized with the wave

electric field perpendicular to the plane of the magnetic field B and the photon momentum.

The total scattering cross-section is given by equations (13) and (14) from Arons, Klein, &

Lea (1987). The ordinary mode (m=1) scattering cross section is well approximated by:

σm=1
s = σT

[
sin2(θs) + fs(ϵ)cos

2(θs)
]

(8.7)

and the extraordinary mode (m=2) scattering cross section is approximated by:

σm=2
s = σTf(ϵ) (8.8)

where θs is the scattering angle relative to the magnetic field and fs(ϵ) is approximated by:

fs(ϵ) =

 1 : ϵ ≥ ϵc(
ϵ
ϵc

)2
: ϵ ≤ ϵc

(8.9)

Photons propagating perpendicular to the magnetic field are dominated by the ordinary

polarization mode in which the photon momentum forms an angle of π/2 radians relative to
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B, and so cos(θs) = cos(π/2) = 0 and sin(θs) = sin(π/2) = 1 in equation (8.7). Therefore

the perpendicular scattering cross-section is well approximated by setting σ⊥ = σT.

There are five free parameters which must be provided prior to solving the four coupled

conservation equations:

1. Polar cap size r0. Polar cap size is given in units of cm.

2. Starting accretion column height r̃start in dimensionless radial units. From equation

(5.2) we see that one dimensionless radial unit is equal to ≈ 2.07km.

3. Incident radiation Mach number Mr0.

4. Parallel scattering cross-section σ∥ in units of cm2.

5. Angle-averaged scattering cross-section σ in units of cm2.

The angle-averaged cross-section is not needed by Mathematica to solve the conservation

equations the first time the computation is performed. However, the numerical solver for the

photon transport equation requires both cross-sections. The final solution for bulk velocity

and electron temperature requires multiple computations using an iterative procedure in

which the solution is continuously refined. This means that Mathematica needs the angle-

averaged cross-section on the second and subsequent solutions (the initial solution is the

0th iteration, the second solution is the found during the 1st iteration, and so on).

Two parameters which are derived from the free parameters are (1) incident gas Mach

number and (2) incident energy flux. The incident gas Mach numberMg0 is described thor-

oughly in section 7.1.4. Mg0 cannot be set as a free parameter because the free-streaming

upstream boundary condition must satisfy the momentum conservation equation. Choosing

Mr0 as a free parameter produces a specific Mg0. The incident Mg0 is solved from equa-

tion (7.24) when we do not neglect gas pressure. We solve equation (7.31) if we ignore gas

pressure (ignoring gas pressure implies the model to be radiation dominated). The incident

energy flux is given by equation (7.16) and depends upon starting radial position r̃start at
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Table 8.1: Summary of HER X-1 Model Parameters.

Number Parameter Description Value

1 R∗ Stellar radius 106cm

2 M∗ Pulsar mass 1.4×MSun

3 σ⊥ Perpendicular scattering cross-section σT

4 σ∥ Parallel scattering cross-section free-parameter

5 σ Angle-averaged scattering cross-section free-parameter

6 r0 Polar cap size free-parameter

7 r̃start Starting accretion column height free-parameter

8 Mr0 Incident radiation Mach number free-parameter

9 Mg0 Incident gas Mach number derived

10 Ẽstart Incident total energy flux derived

the top of the column, starting free-fall bulk velocity ũ, and gas and radiation sound speeds

ãg and ãr.

We see there are a total of four coupled conservation equations and ten parameters (three

constant, five free, and two derived) that define our X-ray pulsar model. The parameters are

summarized in Table 8.1. The coupled equations are first-order differential equations which

we solve using the NDSolve command in Mathematica with appropriate Dirichlet boundary

conditions at the top of the column. Because they are first-order we must provide the initial

value for each variable before running the computation. The computation domain starts

at the top of the accretion column (r̃start) and extends the entire length of the accretion

column to the stellar surface. In dimensionless units the stellar surface is located at r̃star =

R∗/RG = 4.83611 where the stellar radius R∗ = 106cm.

Figures (8.1) and (8.2) show a sample solution in conical geometry using parameters

for HER-X1 with a 40 meter polar cap size. This initial solution solved for dimensionless

bulk velocity ũ, radiation sound speed ãr, gas sound speed ãg, and total energy flux Ẽ.

Horizontal axis displays radial distance r̃. The incident Mach numbers are Mr0 = 63.3

and Mg0 = 277.028 and the starting location is r̃start = 33.0. The beta parameter is

β = 0.0784223 and corresponds to a constant mass flow rate of Ṁ = 1.11 × 1017 g sec−1.
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The vertical red line represents the stellar surface at r̃ = 4.83611. The dashed orange line

shows the location where the radiation Mach number is equal to unity at r̃ = 5.99916. The

energy flux at the stellar surface is Ẽ = 0.205487.

radiation Mach number = 1

stellar surface energy flux

radiation sound speed

total energy flux

gas sound speed

bulk velocity
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Becker & Wolff (2007) cylindrical velocity solution
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Figure 8.1: Example solution in conical geometry for dimensionless bulk velocity ũ, radiation

sound speed ãr, and total energy flux Ẽ. This is the initial solution using parameters for
HER-X1. We use a polar cap radius of 40 meters in the calculation. The horizontal axis
displays radial distance (r̃) from the stellar center.

After solving for ũ, ãr, ãg, and Ẽtot, the gas and radiation pressures are found using

(5.19). The ideal gas law is used to give the electron temperature profile across the column:

Te(r̃) =
Pg(r̃)

ne(r̃)kB
, (8.10)

where kB is the Boltzmann constant. Figures 8.3 and 8.4 show the corresponding pressure

and temperature profiles.
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Figure 8.2: Example solution for HER X-1 showing the gas sound speed (ãg) profile. Gas

sound speed is significantly lower (≈ 1 to 2 orders of magnitude) than the radiation sound
speed ãr and bulk velocity ũ.
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Figure 8.3: Example solution for HER X-1 showing the gas and radiation pressures based
on the parameters of Table 8.1.

The bulk velocity and electron temperature profiles are exported into ASCII text files.

The numerical solver for the photon transport equation inputs these files prior to solving for

the photon distribution function f(r̃, ϵ̃). Mathematica imports updated information from

the solved transport equation to use for the next iteration process whereby the hydrodynam-

ical solution is updated from the previous computation. The updated information consists

of the following: (1) new absorption coefficient profile αff
Ur
, and (2) new inverse-Compton

temperature profile TIC. Both of these are introduced in section 10.4 where solution con-

vergence and the iteration procedure is discussed in detail.

To demonstrate the high degree of self-consistency of the solutions for the conservation

equations shown in equations (8.1) through (8.4) we plot the left-hand side (LHS) and

right-hand side (RHS) of each conservation equation and the corresponding error between

them. These figures demonstrate that Mathematica is able to correctly solve the conser-

vation equations to a high degree of precision. Table 8.2 shows the conservation equations
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Figure 8.4: Example solution for HER X-1 showing the gas temperature Te based on the
parameters of Table 8.1.

Table 8.2: Self-Consistency Plots of the Conservation Equations. The error between the
left-hand side (LHS) and the right-hand side (RHS) of each conservation equation is a
relative error.

Name of Associated Plot of Relative Error Between

Conservation Equation ODE LHS and RHS LHS and RHS

Momentum Equation dũ/dr̃ Figure 8.5 Figure 8.6

Radiation Sound Speed dãr/dr̃ Figure 8.7 Figure 8.8

Gas Sound Speed dãg/dr̃ Figure 8.9 Figure 8.10

Total Energy Flux Loss dẼ/dr̃ Figure 8.11 Figure 8.12
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and the Figures associated with each.
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Figure 8.5: Plot of the left and right-hand sides (LHS and RHS) of the momentum equation
dũ/dr̃. The solid blue curve is the LHS and the dashed green curve is the RHS.
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Figure 8.6: Plot of the error between the LHS and RHS of the equation for the momentum
equation dũ/dr̃.
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Figure 8.7: Plot of the left and right-hand sides (LHS and RHS) of the radiation sound
speed conservation equation (dãr/dr̃). The solid blue curve is the LHS and the dashed
green curve is the RHS.
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Figure 8.8: Plot of the error between the LHS and RHS of the equation for dãr/dr̃.
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Figure 8.9: Plot of the left and right-hand sides (LHS and RHS) of the gas sound speed
conservation equation (dãg/dr̃). The solid blue curve is the LHS and the dashed green curve
is the RHS.
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Figure 8.10: Plot of the error between the LHS and RHS of the equation for dãg/dr̃.

125



5 10 15 20 25 30

-0.08

-0.06

-0.04

-0.02

0.00

r
�

LH
S

an
d

R
H

S
of

E� '@
rD

Figure 8.11: Plot of the left and right-hand sides (LHS and RHS) of the energy flux con-

servation equation (dẼ/dr̃). The solid blue curve is the LHS and the dashed green curve is
the RHS.
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Figure 8.12: Plot of the error between the LHS and RHS of the equation for dẼ/dr̃.
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Chapter 9: Solution of the Photon Transport Equation

The transport equation is a non-linear, partial differential equation (PDE) of elliptic type,

which can be solved numerically using the finite element method. The calculation is carried

out within the COMSOL Multi-Physics 3.5a computing environment (hereafter referred to

as COMSOL).

9.1 The PDE Problem

We express the transport equation in the general PDE form because we can define specific

flux vector components in both the spatial and energy domains. In this case we write the

general form within the domain Ω and associated boundary conditions ∂Ω as:


∇ · Γ⃗ = F in Ω

−n · Γ⃗ = G+
(
∂R
∂u

)T
µ on ∂Ω

0 = R on ∂Ω

(9.1)

COMSOL establishes the general form in the following way. The first equation (9.1i) is

the general form PDE, the second equation describes the Neumann boundary conditions,

and the third equation describes the Dirichlet boundary conditions. Γ⃗, F , G, and R are

parameters that can be functions of the radial coordinate r, the distribution function so-

lution f , and the derivatives of f (either spatial or energy derivatives). As a final note we

mention that F , G, and R are all scalars, whereas Γ⃗ is the two-dimensional flux vector with

coordinates in both the spatial and energy domains. T indicates the transpose and µ is a

Lagrange multiplier.

128



We need to make an important note regarding the divergence operator ∇ · Γ⃗ shown in

equation (9.1). All vector operators associated with COMSOL are recognized in Cartesian

coordinates only. The flux vector Γ has both spatial and energy components. This means

the divergence of the flux vector is taken as:

∇ · Γ⃗ = F (9.2)

∂

∂r
Γr +

∂

∂ϵ
Γϵ = F, (9.3)

where Γr and Γϵ represent the components of the flux vector Γ in “Cartesian” coordinates:

Γrr̂ + Γϵϵ̂ = Γ⃗. (9.4)

In the next section we show how the two-dimensional flux vector Γ⃗ is ideally suited

to describe specific flux quantities using definitions established in previously published re-

search.

9.2 Photon Transport Equation

Our goal is to obtain a transport equation in the general flux form of equation (9.1). We

start with the time-independent transport equation for an isotropic particle distribution

function f which we introduced earlier in equation (4.16) in the flux vector form (Gleeson

& Axford 1967; Skilling 1975; Becker 1992):

∂f

∂t
= 0 = −∇ · Fparticle +

1

ϵ2
∂

∂ϵ

(
ϵ2D

∂f

∂ϵ

)
− 1

ϵ2
∂

∂ϵ

(
ϵ2⟨ϵ̇⟩lossf

)
− 1

3ϵ2
∂

∂ϵ

[
ϵ2 (ϵv⃗ · ∇f)

]
+ ḟsource − ḟescape − ḟabs, (9.5)
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where v < 0 to indicate that bulk velocity is towards the stellar surface, and the specific

particle flux Fparticle (where the “particles” are photons) is given by:

Fparticle = −κ∇f − vϵ

3

∂f

∂ϵ
. (9.6)

Combining equations (9.5) and (9.6) with the momentum diffusion coefficient D from equa-

tion (4.18) and the momentum loss rate ⟨ϵ̇⟩ from equation (4.19) we obtain the vector

transport equation:

∇·
[
−κ∇f − v⃗ϵ

3

∂f

∂ϵ

]
=

1

ϵ2
∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
+ḟsource−ḟescape−ḟabs,

(9.7)

where bremsstrahlung absorption is included via the ḟabs term.

To obtain the flux vector form of equation (9.1) we write out the divergence and gradient

terms in spherical polar coordinates, multiply both sides by ϵ2r2, and isolate the spatial

and energy flux vector components to one side to obtain the flux vector equation in general

form:

∂

∂r

[
ϵ2r2

(
−κ∇f − vϵ

3

∂f

∂ϵ

)]
︸ ︷︷ ︸

Γr

+
∂

∂ϵ

[
ϵ2r2

(
−neσ̄c

mec2

[
f + kTe

∂f

∂ϵ

]
+
ϵv

3

∂f

∂r

)]
︸ ︷︷ ︸

Γϵ

= ϵ2r2
(
ḟsource − ḟesc − ḟabs

)
︸ ︷︷ ︸

F

, (9.8)

where the two-dimensional flux vector Γ⃗ is separated into the specific spatial and energy
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components:

Γ⃗ = Γr r̂ + Γϵϵ̂. (9.9)

Notice how the spatial component Γr in equation (9.8) still contains the specific flux vector

mentioned previously in equation (9.6). We complete the derivation of the full transport

equation by converting the spatial coordinate r (units of cm) to dimensionless coordinate r̃

and the energy coordinate ϵ (units of erg) to be expressed as ϵ̃ (units of keV). The spatial

coordinate is converted into a dimensionless coordinate r̃ using the following relationship:

r̃ =
r

RG
, (9.10)

where RG was described in section 5.1. For energy we have to convert ergs to keV using

the following relationship:

ϵ (ergs) =
ϵ̃ keV

6.24× 108
, (9.11)

where ϵ̃ is photon energy in units of keV. After making these two conversions in equation

(9.8), we use χ = 6.24 × 108 and substitute for the diffusion coefficient κ (see equation

7.11) to obtain the final form of the photon transport equation. The following is input into

COMSOL exactly as it appears:

∂

∂r̃

[(
ϵ̃

χ

)2

RGr̃
2

(
− c

3neσ∥RG

∂f

∂r̃
− 1

3
cũϵ̃

∂f

∂ϵ̃

)]
︸ ︷︷ ︸

Γr̃

+
∂

∂ϵ̃

[
χR2

Gr̃
2

(
ϵ̃

χ

)2
(
−neσ̄c
mec2

(
ϵ̃

χ

)2 [
f + kTeχ

(
∂f

∂ϵ̃

)]
+
ϵ̃

χ

cũ

3RG

∂f

∂r̃

)]
︸ ︷︷ ︸

Γϵ̃

=

(
ϵ̃

χ

)2 Qsources

Ω
−
(
ϵ̃

χ

)2

R2
Gr̃

2

(
f

tesc
+

f

tabs

)
︸ ︷︷ ︸

F

, (9.12)
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where Qsources is the superposition of all photon source production (bremsstrahlung, cy-

clotron, and blackbody) and tesc is the escape time given previously in equation (5.53). The

absorption time, tabs, describes the average time required for a photon to be reabsorbed

through the bremsstrahlung absorption process (free-free absorption). Mathematically we

write the absorption time as:

1

tff
=

1

tabs
= cαff

ϵ̃ , (9.13)

where αff
ϵ̃ is the energy-dependent thermal free-free absorption coefficient in units of cm−1.

Note that it’s both a spatial and energy dependent term. From Rybicki & Lightman (5.18b)

the coefficient is:

αff
ϵ̃ = 3.7× 108 T−1/2

e

[
Ṁ

R2
GmpcΩ

1

r̃2ũ

]2 [
h

(ϵ̃/χ)

]3 [
1− e−

(ϵ̃/χ)
kTe

]
. (9.14)

As an interesting exercise we write in vector form the steady-state photon transport

equation in conical geometry (Becker & Begelman 1986; Blandford & Payne 1981a; Becker

2003):

u⃗ · ∇f︸ ︷︷ ︸
comoving derivative

=
ϵ

3
(∇ · u⃗)∂f

∂ϵ︸ ︷︷ ︸
bulk Comptonization

+∇ ·
(

c

3neσ∥
∇f
)

︸ ︷︷ ︸
spatial diffusion

+
neσ̄c

mec2
1

ϵ2
∂

∂ϵ

[
ϵ4
(
f + kTe

∂f

∂ϵ

)]
︸ ︷︷ ︸

thermal Comptonization

− f

tesc︸︷︷︸
photon escape

− f

tff︸︷︷︸
free-free absorption

+
Qsources

Ωr2︸ ︷︷ ︸
photon production

, (9.15)

where free-free absorption is included and thermal Comptonization is described by the

Kompaneet’s operator (1957). Here theQsources term is the superposition of bremsstrahlung,
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cyclotron, and blackbody seed photons. The following terms are equivalent:

ḟsource =
Qsources

Ωr2
(9.16)

ḟescape =
f

tesc
(9.17)

ḟabs =
f

tff
. (9.18)

It’s important to note that in equation (9.15) the divergence and gradient operators in

this case are not isolated to the cartesian coordinate system only. Our model uses conical

geometry, and so we must ensure to use spherical coordinates when expanding the vector

terms.

9.3 Photon Emission Sources

As a first step in the computation of the photon spectrum we look at how conical geometry

alters the three photon emission source terms: bremsstrahlung, cyclotron, and blackbody.

We modify (4.44) to account for conical geometry instead of a cylindrical accretion column.

In the cylindrical model the surface area of the column is πr20 at all heights, but in con-

ical geometry the surface area of the cone at a specific height r is Ωr2. We rewrite the

relationship between the source term Q and photon emissivity ṅϵ as:

ϵ2Q(r, ϵ)dϵdr = (Ωr2star)ṅϵdϵdr. (9.19)

Thermal bremsstrahlung free-free emissivity for photons is based upon equation (5.14b)

from Rybicki & Lightman (1979) which gives the photon production rate per unit volume

per unit energy:

ṅffϵ = 3.68× 1036ρ2T−1/2
e ϵ−1e−ϵ/kTe . (9.20)
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Combining equations (9.19) and (9.20) we obtain the source term for bremsstrahlung photon

emission:

Qff(r, ϵ) ≡ 3.68× 1036Ωr2ϵ−3ρ2T−1/2
e e−ϵ/kTe . (9.21)

Cyclotron emissivity was given earlier in equation (6.56):

ṅcycϵ = 2.10× 1036ρ2B
−3/2
12 H

(
ϵc
kTe

)
e−

ϵc
kTe δ (ϵ− ϵc) , (9.22)

and using equation (9.19) the associated cyclotron source emission is given by:

Qcyc(r, ϵ) ≡ 6.11× 1051Ωr2ρ2B
−7/2
12 H

(
ϵc
kTe

)
e−ϵc/kTeδ(ϵ− ϵc). (9.23)

The source term for blackbody radiation is defined as:

Qbb(r, ϵ) ≡ S(ϵ)δ(r − rth), (9.24)

where S(ϵ) is related to the Planck distribution via the following relationship:

ϵ3S(ϵ)dϵ = (Ωr2th)πB(ϵ)dϵ, (9.25)

and B(ϵ) is the blackbody intensity given by the Planck function from equation (6.67):

Bν(T ) =
2hν3

c2

e
hν
kTe − 1

. (9.26)

We combine equations (9.24) and (9.25) to give the blackbody photon source term:

Qbb(r, ϵ) ≡ S(ϵ)δ(r − rth) =
2πΩr2th
c2h3

δ(r − rth)

eϵ/kTth − 1
. (9.27)
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The combination of the three terms in equations (9.21), (9.23), and (9.27) is equal to the

Qsources term shown in the photon transport equation of (9.12).

9.4 Radiation Energy Density Ordinary Differential Equa-

tion

There are two independent methods for calculating the photon number density and pho-

ton energy density. These provide a convenient means for checking the solution for self-

consistency. The first method involves a simplified analysis of the photon transport equa-

tion. To find the internal energy density we multiply equation (9.15) by ϵ3dϵ and then

integrate over ϵ ∈ [0,∞]. To find the number density we multiply by ϵ2dϵ instead and

integrate over the same ϵ ∈ [0,∞].

To find the internal energy density Ur we perform the following integral operation:

Ur(r̃) =

∫ ∞

0
ϵ3f(r̃, ϵ)dϵ, (9.28)

where f is the photon distribution function. The complete derivation of the ODE is supplied

in the appendix. Here we only state the highlights. After applying the integral operation

on equation (9.7) we get the following:

∇ ·
[
−κ∇Ur +

4

3
v⃗Ur

]
=

4neσ̄ckTe
mec2

[1− g(r)]Ur +
v⃗

3
· ∇Ur

+

∫ ∞

0

Qsources

Ωr2
ϵ3dϵ− Ur

tesc
− c

∫ ∞

0
αff
ϵ ϵ

3fdϵ, (9.29)

where v < 0 indicates bulk flow towards the stellar surface and the variable g(r) is:

g(r) ≡ TIC
Te

≡ 1

4kTe

∫∞
0 ϵ4f(r, ϵ)dϵ∫∞
0 ϵ3f(r, ϵ)dϵ

. (9.30)
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The variable g is the ratio of the inverse Compton temperature TIC to the electron temper-

ature Te. This is explained in more detail in subsection 9.5. You also get the same ODE

as shown in equation (9.29) if we applied the integral operation of equation (9.28) on the

vector form of equation (9.15).

The general form ODE of equation (9.1) is favorable because it is easy to model in

COMSOL using a flux vector with an accompanying source term. The divergence operator

in equation (9.29) is expanded in spherical coordinates and after some algebra we obtain

the final general form of the radiation energy density ordinary differential equation:

∂

∂r̃

RGr̃
2

(
− c

3neσ∥RG

∂Ur

∂r̃
+

4

3
cũUr

)
︸ ︷︷ ︸

Fr


︸ ︷︷ ︸

ΓUr
r̃

=

4neσ̄ckTeR
2
Gr̃

2

mec2
[1− g(r)]Ur︸ ︷︷ ︸

Comptonization

+
1

3
cRGr̃

2ũ

[
∂Ur

∂r̃

]
︸ ︷︷ ︸

bulk motion

+

∫ ∞

0

Qsources

Ω
ϵ3dϵ︸ ︷︷ ︸

production

−
R2

Gr̃
2

tesc
Ur︸ ︷︷ ︸

escape

− cR2
Gr̃

2

∫ ∞

0
αff
ϵ ϵ

3fdϵ︸ ︷︷ ︸
absorption

. (9.31)

Each of the terms is labeled to show its contribution to the ODE. We see the familiar

radiation flux term Fr and the Ur ODE flux vector ΓUr
r̃ is simply RGr̃

2Fr:

Fr ≡ − c

3neσ∥RG

∂Ur

∂r̃
+

4

3
cũUr (9.32)

ΓUr
r̃ ≡ RGr̃

2

(
− c

3neσ∥RG

∂Ur

∂r̃
+

4

3
cũUr

)
. (9.33)

136



The ODE is set up properly to match the general form ODE in COMSOL.

∇ · Γ⃗ = ∇ ·
[
ΓUr
r̃
ˆ̃r
]
= F. (9.34)

In subsection 10.5.3 we investigate another method to find the solution to equation (9.31)

which is independent of COMSOL, whereas the COMSOL solution for Ur is found by

integrating the solution of the photon distribution function f :

Ur(r̃) =

∫ ∞

0
ϵ3f(r̃, ϵ)dϵ. (9.35)

Solving the radiation energy density ODE is completely independent of f . If Ur is the same

for both methods we have verification that the COMSOL numerical solver accurately and

consistently solved the photon distribution function f .

9.5 Photon-Electron Energetics

The ODE in dimensionless form governing photon energy density is given by (9.31). The

Comptonization term,

U̇Comptonization =
4neσ̄ckTe
mec2

[1− g(r)]Ur, (9.36)

is very significant and warrants further discussion. A positive U̇Comptonization describes the

rate of energy transfer from the electrons to the photons. A negative quantity implies

energy removal from the photons. Compton scattering and inverse Compton scattering

provide an energy transfer mechanism between photons and electrons. Compton scattering

occurs as high-energy photons inelastically transfer their energy to the electrons in the

rapidly compressing gas in the column. The opposite is inverse Compton scattering which

results in energy exchange from the electrons to soft photons.
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We follow the approach of Becker & Begelman (1986) to describe the energy exchange

process via inelastic scattering between electrons and photons. The inverse Compton tem-

perature is the temperature the electrons must maintain in order to exchange zero net

energy with the photons. The method used to accomplish this dynamic is through the

variable g(r̃):

g(r̃) ≡ TIC
Te

=
1

4kTe

∫∞
0 ϵ4f(r̃, ϵ)dϵ∫∞
0 ϵ3f(r̃, ϵ)dϵ

. (9.37)

The value of g(r̃) depends only on the photon distribution function and the electron tem-

perature. Equation (9.36) describes a rate of energy transfer from the gas to the radiation

(erg sec−1 cm−3). However, in our gas energy density equation (see 6.63) we have to ac-

count for energy addition to the gas. In a sense, U̇gas = −U̇radiation as the photons and

plasma interact and transfer energy between each other on the Comptonization timescale.

This requires the [1− g(r)] term in the radiation energy density equation to be written as

[g(r)− 1] in the gas energy density equation. Mathematically this is stated as:

U̇Compton = −U̇Comptonization

= −
(
4neσ̄ckTe
mec2

[1− g(r)]Ur

)

=
4neσ̄ckTe
mec2

[g(r̃)− 1]Ur. (9.38)

We obtain the final form of the Comptonization rate by expressing equation (9.38) in terms

of dimensionless sound speeds and bulk velocity:

U̇Compton =
4σ̄cṀ2

meR4
GΩ

2γgγr(γr − 1)

ã2gã
2
r

r̃4ũ2
[g(r̃)− 1]. (9.39)

Equation (9.39) is used in the derivation of the gas energy density equation (see equation
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6.42).

We iteratively solve the four coupled conservation equations until the change in TIC is

within 99% of the previous TIC. Iteration is described later in section 10.4. The U̇Compton

term has a primary role of adjusting TIC during this process. After each iteration a new bulk

velocity and gas temperature are found, and the ratio of TIC to Te continuously converges.

Our goal is to obtain a distribution function which drives Te and TIC as close to each other

as possible, for all r̃ along the column.

9.6 Photon Number Density Ordinary Differential Equation

Deriving the ODE for photon number density nph follows a similar procedure as that used

to solve for Ur in the radiation energy density ODE. To find nph we operate on each term

in the transport equation with
∫∞
0 ϵ2dϵ and use the relation:

nph(r̃) =

∫ ∞

0
ϵ2f(r̃, ϵ)dϵ. (9.40)

The full derivation of the nph ODE is included in the appendix. Here we present the final

result. We apply the integral operation on equation (9.7) and obtain:

∇ ·
[
−κ

∂nph
∂r

+ v⃗nph

]
=

1

Ωr2

∫ ∞

0
Qsourcesϵ

2dϵ−
nph
tesc

−
∫ ∞

0
ḟabsϵ

2dϵ, (9.41)

where v < 0 indicates bulk flow towards the stellar surface and ḟabs describes the rate of

photon absorption. We expand the divergence operator in spherical coordinates and after

some algebra we obtain the general form of the photon number density ordinary differential
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equation:

∂

∂r̃

[
r̃2cũnph −

r̃2c

3neσ∥RG

(
∂nph
∂r̃

)]
︸ ︷︷ ︸

Γn
r̃

=
1

ΩRG

∫ ∞

0
Qsourcesϵ

2dϵ︸ ︷︷ ︸
production

−RGr̃
2

(
nph
tesc

)
︸ ︷︷ ︸

escape

−RGr̃
2c

∫ ∞

0
αff
ϵ fϵ

2dϵ︸ ︷︷ ︸
absorption

. (9.42)

The photon number density ODE in equation (9.42) is in the desired general form. We

enter the equation in this form into the COMSOL numerical solver. In subsection 10.5.4

we solve this ODE and compare it to the solution of nph using a separate method.
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Chapter 10: Numerical Solution of the Transport Equation

COMSOL Multiphysics is a computer environment that employs the finite element method

(FEM) to solve engineering problems based on partial differential equations. In our appli-

cation, COMSOL is used to solve the photon transport equation, which is a second order,

elliptical, nonlinear partial differential equation:

∂

∂r̃

[(
ϵ̃

χ

)2

RGr̃
2

(
− c

3neσ∥RG

∂f

∂r̃
− 1

3
cũϵ̃

∂f

∂ϵ̃

)]
︸ ︷︷ ︸

Γr̃

+
∂

∂ϵ̃

[
χR2

Gr̃
2

(
ϵ̃

χ

)2
(
−neσ̄c
mec2

(
ϵ̃

χ

)2 [
f + kTeχ

(
∂f

∂ϵ̃

)]
+
ϵ̃

χ

cũ

3RG

∂f

∂r̃

)]
︸ ︷︷ ︸

Γϵ̃

=

(
ϵ̃

χ

)2 Qsources

Ω
−
(
ϵ̃

χ

)2

R2
Gr̃

2

(
f

tesc
+

f

tabs

)
︸ ︷︷ ︸

F

. (10.1)

By combining the COMSOL algorithm with the dynamical solution of the conservation

equations obtained using Mathematica, we are able for the first time to solve the full

transport equation using realistic spatial distributions for the inflow velocity and the electron

temperature. The output of the COMSOL step is the photon distribution as a function of

energy and height above the stellar surface.

10.1 Building the Mesh over the Computational Domain

Before we solve the 2D photon transport equation we need to understand the underlying

details on the creation of the computational domain, including the applicable boundary
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conditions. The mesh generator partitions the 2D subdomain into quadrilateral mesh el-

ements. The mesh is very easy to build and the quantity of elements is limited only by

computing power and memory. For three of our models (HER X-1, Vela X-1, and CEN

X-3) we established a 600 × 600 quadrilateral mesh and then divided each rectangle for a

total of 720,000 triangular elements. Our model for LMC X-4 used a 800×800 quadrilateral

mesh with divided rectangles for a total of 1,280,000 elements! A mesh with 1.28 million

elements requires nearly 20GB of computer memory and reaches the upper limits of capabil-

ity on modern personal computer hardware. X-PER used a similar grid size. This quantity

of elements is needed due to the rapid exponential changes in pressures and temperature

near the stellar surface. As an example, Figure 8.1 shows how bulk velocity slows from ≈

50% of the speed of light at r̃ ≈ 7 to only ≈ 2% at the stellar surface (r̃ = 4.83611). Figure

8.3 shows how gas and radiation pressure increase nearly two orders of magnitude over the

same distance. The dynamics change so rapidly that we must have a very dense mesh.

10.2 Setting Boundary Conditions in COMSOL

The boundaries of the domain in COMSOL can be established with any combination of

Neumann and Dirichlet boundary conditions. However, our model uses only the Neumann

condition which specifies the value of the derivative of the solution on the boundary. The

equation for setting this condition was shown in equation (9.1):

−n · Γ⃗ = G+

(
∂R

∂u

)T

µ, (10.2)

where n is the outward normal unit vector, Γ⃗ is the flux vector, G is a function of the

distribution function f , R is a scalar value that specifies the Dirichlet condition, T is the

transpose, and µ is the Lagrange multiplier.

The two-dimensional computational domain and associated boundary conditions are

shown in Figure 10.1. The spatial component is represented where the stellar surface is
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on the left and top of the column is on the far right. The energy component represents

the vertical axis of the rectangle. Boundaries 1, 2, and 3 have Neumann conditions of zero

derivative with respect to the outward normal component at the boundary surface (G=0).

Boundary 4 describes the free-streaming Neumann condition discussed at length in sub-

section 7.1.2. Because G=0 at boundaries 1, 2, and 3, the numerical solver permits zero

“leakage” such that the distribution function is conserved. The free-streaming condition

at boundary 4 permits leakage because photons travel out the top of the accretion column

with speed c.

Figure 10.1: The rectangle shows the two-dimensional computational domain and boundary
conditions for the photon distribution function f(r̃, ϵ̃). The energy component of the do-
main, ϵ̃, is represented in the vertical direction of the rectangle. The horizontal axis shows
the spatial component r̃.

10.2.1 Stellar Surface Boundary Condition

The transport equation is shown in equation (9.12). To set the stellar surface boundary

condition we are only interested in the radial component Γr̃ of the flux vector Γ⃗. At the
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surface we impose the mirror boundary condition by setting the specific flux vector equal

to zero. We recall from equation (7.7) that the specific flux vector is:

F⃗ = −κ∇⃗f − v⃗ϵ

3

∂f

∂ϵ
. (10.3)

The mirror condition requires the photon diffusion to exactly balance bulk advection. There-

fore, Γr̃ = 0, and this implies the outward normal of the flux vector, G, is also zero (the

outward normal in this case refers to the unit normal vector which points into the star).

The Lagrange multiplier µ is set to zero because we are not considering any type of reaction

forces at the boundaries, and so the boundary condition of equation (10.2) simplifies to:

G = −n · Γ⃗. (10.4)

In the remaining discussion we will no longer consider the Lagrange multiplier term and

therefore we do not show it in the equations. We introduce the radial component of the

flux vector, Γr̃, and set it equal to zero to obtain:

G = −n · Γ⃗r̃ (10.5)

= −
(
ϵ̃

χ

)2

RGx
2

(
− c

3neσ∥RG

∂f

∂r̃
− 1

3
cũϵ̃

∂f

∂ϵ̃

)
︸ ︷︷ ︸

boundary condition =0

(10.6)

= −
(
ϵ̃

χ

)2

RGx
2(0), (10.7)

where we force F⃗ = 0 at the stellar surface by setting G=0. The constant χ converts energy

from keV to ergs.

Although the value for G at the stellar surface is zero regardless, we enter the expression

for G in COMSOL exactly as it appears in equation (10.7). The significance of this will be
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more apparent when we discuss the free-streaming condition at the top boundary.

10.2.2 Upper and Lower Energy Boundaries

The upper and lower energy boundaries also maintain the mirror boundary condition to

ensure there is no energy component leakage past the boundaries when COMSOL com-

putes the distribution function. The boundary condition for the ϵ̃ boundaries is set by the

following:

G = −n · Γ⃗ (10.8)

= −Γϵ̃. (10.9)

The energy component of the flux vector is shown from equation (9.12):

Γϵ̃ = χR2
Gr̃

2

(
ϵ̃

χ

)2
(
−neσ̄c

mec2

(
ϵ̃

χ

)2 [
f + kTeχ

(
∂f

∂ϵ̃

)]
+
ϵ̃

χ

cũ

3RG

∂f

∂r̃

)
. (10.10)

We impose the mirror condition by setting (10.10) equal to zero to obtain the energy

boundary condition:

G = −χR2
Gr̃

2

(
ϵ̃

χ

)2
(
−neσ̄c

mec2

(
ϵ̃

χ

)2 [
f + kTeχ

(
∂f

∂ϵ̃

)]
+
ϵ̃

χ

cũ

3RG

∂f

∂r̃

)
︸ ︷︷ ︸

mirror condition requires Γϵ̃=0

(10.11)

= 0. (10.12)

There is no free-streaming condition applicable at the energy boundaries. To satisfy the

Neumann energy boundary condition for ϵ̃ the entries for G in COMSOL are simply set to

0.
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10.2.3 Free-Streaming Boundary Condition

The groundwork for establishing the Neumann boundary condition at the top of the accre-

tion column was described in subsection 7.1.2. The top of the column is unique because

photon leakage is allowed and the mirror condition is not desired. The free-streaming con-

dition permits photons to travel with speed c in the outward radial direction.

The photon specific flux vector F⃗ is given by equation (7.7):

F⃗ = −κ∇⃗f − v⃗ϵ

3

∂f

∂ϵ
. (10.13)

The outward photon flux at the top of the column is simply the photon distribution f

multiplied by c. The boundary condition is then established by the following:

G = −n · Γr̃ (10.14)

= −
(
ϵ̃

χ

)2

RGx
2

(
− c

3neσ∥RG

∂f

∂r̃
− 1

3
cũϵ̃

∂f

∂ϵ̃

)
︸ ︷︷ ︸

free-streaming requires = cf

(10.15)

= −
(
ϵ̃

χ

)2

RGx
2(cf). (10.16)

The Neumann boundary condition in COMSOL is established at the top of the accretion

column by setting the field for G in COMSOL exactly as it appears in equation (10.16).

Table 10.1 summarizes the four Neumann boundary conditions that are established by

setting the value of G at each of the four boundaries.

10.3 Numerical Solution of Photon Transport Equation

Mathematica exports the bulk velocity and temperature profiles to ASCII text files. COM-

SOL imports the data in those files, interpolates internal velocity and temperature functions,

and then solves the transport equation on the meshed grid using the boundary conditions
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Table 10.1: Summary of Neumann Boundary Conditions.

Boundary Description Neumann Condition

1 Stellar Surface G = − (ϵ̃/χ)2RGx
2(0)

2 Lower Energy G = 0

3 Upper Energy G = 0

4 Top of Column G = − (ϵ̃/χ)2RGx
2(cf)

described in section 10.2 and summarized in Table 10.1. The computation time usually takes

less than one minute. More mesh elements result in longer computation times. The geom-

etry of the mesh also affects the computation time. We used quadrilateral mesh elements

but there are triangular mesh schemes as well.

We saw in chapter 8 an example solution to the coupled dynamic equations using pa-

rameters for HER X-1. The corresponding photon distribution function f(r̃, ϵ̃) computed

by COMSOL is shown in Figure 10.2. This solution is a critically important centerpiece

of my research. All transport phenomena for HER-X1 are calculated from f , as well as

radiation flux Fr, radiation energy density Ur, and photon density nph. The plot is given in

log10 units. The vertical axis is in units of keV and the horizontal axis is in dimensionless

units of r̃. Notice that f changes dramatically over the full spatial-energy domain by nearly

a factor of 10100!

The distribution function allows us to solve for the phase-averaged photon count rate

spectrum Fϵ(ϵ) (counts sec
−1 cm−2 keV−1). Following the procedure outlined by Becker &

Wolff (2007) and making proper adjustments for the conical shape of the accretion column,

the photon spectrum emitted through the accretion column walls is:

Ṅϵ(r̃, ϵ) ≡
ΩR2

Gr̃
2ϵ2

tesc(z)
f(r̃, ϵ), (10.17)

where f(r̃, ϵ) is the COMSOL numerical solution to the photon distribution function. The
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Figure 10.2: Example 2D numerical solution of the photon distribution function f(r̃, ϵ) for
HER X-1 using a divided quadrilateral 600× 600 mesh for a total of 720,000 elements. The
plot is shown in log10 units. The vertical axis is in units of keV and the horizontal axis is
in dimensionless units of r̃ = r/RG.
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vertically integrated total photon spectrum emitted through the walls of the column is:

Φtot
ϵ (ϵ) ≡ Ac(ϵ)

∫ ∞

0
Ṅϵ(r̃, ϵ)dr̃, (10.18)

where Ac(ϵ) is a Gaussian cyclotron absorption feature (e.g., Heindl & Chakrabarty 1999;

Orlandini et al. 1998; Soong et al. 1990). Recall that the three photon source terms of

cyclotron, blackbody, and bremsstrahlung radiation each have their own particular solution

for the column-integrated spectrum of the escaping radiation. The terms contribute to the

total column-integrated spectrum as follows:

Φtot
ϵ (ϵ) ≡ [Φcyc

ϵ +Φbb
ϵ +Φff

ϵ ]Ac(ϵ) (10.19)

where the term Ac(ϵ) takes into account a Gaussian cyclotron absorption feature (Heindl

& Chakrabarty 1999; Orlandini et al. 1998; Soong et al. 1990). Finally we calculate the

phase-averaged photon count rate spectrum at Earth using:

Fϵ(ϵ) ≡
Φtot
ϵ (ϵ)

4πD2
, (10.20)

where D is the distance to the pulsar in centimeters. This provides the numerical solution of

the spectrum emitted from the accretion column of an X-ray pulsar which may be compared

with satellite observations.

10.4 Solution Convergence and the Iteration Procedure

The basis for finding a converged (final) photon distribution function is the stabilized be-

havior of the inverse-Compton temperature TIC. This relates directly to energy addition

(heating) to and energy removal (cooling) from the ionized gas. Recall from section 6.4

a total of four heating and cooling processes in the gas energy density equation. Cooling
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processes include bremsstrahlung and cyclotron losses. Free-free bremsstrahlung absorption

is a gas heating process, and Compton scattering may be a heating or a cooling process

depending on the relationship between TIC and Te. The two processes which have a dynamic

effect on the stabilization (and therefore the distribution function covergence) of TIC are (1)

Compton scattering and (2) bremsstrahlung absorption. In the paragraphs that follow we

describe the procedure for determining the final rate of energy exchange between the elec-

trons and photons through the Comptonization process, and the inescapable consequences

upon the absorption of radiation by the gas, otherwise known as thermal bremsstrahlung

(free-free) absorption.

The Comptonization energy exchange term described in section 9.5 contains TIC via the

variable g(r̃), which is simply its ratio with electron temperature:

g(r̃) ≡ TIC
Te

=
1

4kTe

∫∞
0 ϵ4f(r̃, ϵ)dϵ∫∞
0 ϵ3f(r̃, ϵ)dϵ

. (10.21)

In its fundamental definition the ratio contains moments of the distribution function in both

the numerator and denominator as shown in equation (10.21):

U̇Compton =
4σ̄cṀ2

meR4
GΩ

2γgγr(γr − 1)

ã2gã
2
r

r̃4ũ2
[g(r̃)− 1] (10.22)

=
4σ̄cṀ2

meR4
GΩ

2γgγr(γr − 1)

ã2gã
2
r

r̃4ũ2

 TICTe︸︷︷︸
≡g(r̃)

−1

 (10.23)

=
4σ̄cṀ2

meR4
GΩ

2γgγr(γr − 1)

ã2gã
2
r

r̃4ũ2


1

4kTe

∫∞
0 ϵ4f(r̃, ϵ)dϵ

4
∫∞
0 ϵ3f(r̃, ϵ)dϵ︸ ︷︷ ︸
≡TIC

Te

−1

 . (10.24)
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10.4.1 The 0th Iteration

The first time we solve the coupled conservation equations using Mathematica (the “0th”

iteration) two fundamental assumptions are made with respect to the gas energy density:

1. We initially assume zero Comptonization in the gas energy density conservation equa-

tion (see equation 6.45). This is accomplished by setting g(r̃) = 1 which effectively

sets the inverse-Compton and electron temperatures equal to each other (TIC = Te).

Then the total energy exchange rate is initially the addition of only three processes:

U̇
(0)
tot = U̇ff + U̇cyc + U̇absorb + U̇compton︸ ︷︷ ︸

=0 for n=0

(10.25)

where U̇
(n)
tot indicates the nth iteration, and in this case n=0.

2. We initially assume thermal bremsstrahlung (free-free) absorption is only dependent

upon the spatial domain and we use the Rosseland mean of the free-free absorption

coefficient, αff
R, rather than the more accurate spatial and energy dependent absorption

coefficient αff
ν . To be correct, thermal bremsstrahlung (free-free) absorption is actually

dependent upon both the energy and spatial domains:

U̇absorb =
Ur

tff
(10.26)

= Urα
ff
ν c, (10.27)

where tff is the time required for a photon of energy ϵ to be absorbed by an electron and

αff
ν is the frequency-dependent free-free absorption coefficient (Rybicki & Lightman

5.18b):

αff
ν = 3.7× 108T−1/2

e Z2neniν
−3
(
1− e−hν/kTe

)
ḡff . (10.28)

Here Z is the atomic number, ni = ne is the ionized gas number density, ν is the photon
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frequency, and ḡff is the frequency-dependent gaunt factor. A problem arises because

Mathematica solves the coupled conservation equations in the spatial dimension only.

Therefore, we initially use the Rosseland mean of the free-free absorption coefficient:

U̇
(0)
absorb = Urα

ff
Rc, (10.29)

where (Rybicki & Lightman 5.20):

αff
R = 1.7× 10−25T−7/2

e Z2neniḡR, (10.30)

and ḡR is Rosseland mean of the frequency-dependent gaunt factor. We set both ḡff

and ḡR equal to unity in our calculations.

We implement these two assumptions to develop the initial U̇tot term in the gas energy

density conservation equation:

U̇
(0)
tot = U̇ff + U̇cyc + Urα

ff
Rc. (10.31)

Mathematica solves the coupled conservation equations and we export the bulk veloc-

ity ũ and electron temperature Te to COMSOL. Then the transport equation is solved in

COMSOL and the photon distribution function f(r̃, ϵ̃) is computed. Using this, a new TIC

is computed by taking energy moments of f . What becomes immediately obvious is that

TIC no longer equals Te, and g(r̃) ̸= 1 throughout regions along the column height. Our

initial assumption that TIC = Te was wrong! The heating and cooling process of Comp-

tonization is now occuring because TIC and Te are not in equilibrium at all locations. We

cannot escape the fact here that Comptonization is changing the spectrum as electrons and

photons exchange energies, therefore we must repeatedly compute a new TIC and observe

its stabilizing behavior. This requires iterating the process that finally “converges” when

the ratio of the previous and updated values of TIC stabilize to some acceptable value. In
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this research we deem a solution converged when the TIC ratio ≥ 0.95 (≥ 95% converged).

The complete dynamic picture within the column must include (1) the Comptonization

effects as a result of the differences between TIC and Te, and (2) changes to the absorption

coefficient αff
ν . Both the U̇Compton and U̇absorb terms are updated as we converge TIC using

the iterative procedure. After the 0th iteration we can no longer accept g(r̃) = 1. The

electrons and photons participate in energy exchange thereby causing g(r̃) ̸= 1 within the

column. Equation (10.24) reminds us that the Comptonization contribution is dependent

upon the inverse-Compton temperature TIC, and hence ultimately the distribution function

f .

10.4.2 The 1st and Subsequent Iterations

In subsection 10.4.1 we described how g(r̃) ̸= 1 as a result of the differences between TIC

and Te when solving for the photon distribution function f the first time (the 0th iteration).

We made initial assumptions in the gas energy equation about the two non-cooling terms,

U̇Compton and U̇absorb. The terms change over the course of the iteration procedure because

the photon distribution function is converging to a final solution. This has a direct effect

on the inverse-Compton temperature TIC and the thermal free-free absorption coefficient

αff
ν as the iteration progresses. Here we discuss how Comptonization changes over the 1st

and subsequent iterations and then we discuss the evolution of the absorption coefficient.

Compton Heating During Iteration

The subsequent iterations require a treatment of the definition of g(r̃) which is contained

in the Comptonization term:

U̇Compton =
4σ̄cṀ2

meR4
GΩ

2γgγr(γr − 1)

ã2gã
2
r

r̃4ũ2

[
TIC
Te

− 1

]
. (10.32)

We need to express Te somehow in terms of only the four available dependent variables
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of the coupled conservation equations. The solution is to use the ideal gas law, the definition

of mass density, and the definition of sound speed:

Pg = nekTe (10.33)

ρ = nemp (10.34)

a2g =
γgPg

ρ
. (10.35)

We use these definitions to convert Te to an expression containing only constants and the

gas sound speed ãg:

Te =
Pg

nek

=
a2gρ

γg

1

nek

=
mpa

2
g

γgk

=

(
mpc

2

γgk

)
ã2g. (10.36)

Substituting the definition for Te into g(r̃) results in the following:

g(r̃) =
TIC
Te

=
1(

mpc2

γgk

)
ã2g

TIC

=
γgk

mpc2
1

ã2g
TIC. (10.37)

The Comptonization term U̇Compton is modified to include the updated inverse-Compton
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temperature profile:

U̇Compton =
4σ̄cṀ2

meR4
GΩ

2γgγr(γr − 1)

ã2gã
2
r

r̃4ũ2

[
γgk

mpc2
1

ã2g
TIC − 1

]
. (10.38)

Equation (10.38) is the term used in the subsequent iterative steps.

Thermal Free-Free Absorption During Iteration

Equation (10.38) provides one of two necessary adjustments during each iteration to the

U̇tot term in the gas sound speed conservation equation. The second adjustment pertains to

the evolution of the two-dimensional thermal free-free absorption coefficient αff
ν . Solving the

coupled conservation equations in only one dimension requires us to average the coefficient

over the radiation energy density using f(r̃, ϵ):

αff
Ur
(r̃) =

∫ ϵmax

ϵmin
ζ(r̃, ϵ)αff

ϵ (r̃, ϵ)ϵ
3f(r̃, ϵ)dϵ∫ ϵmax

ϵmin
ϵ3f(r̃, ϵ)dϵ

=

∫ ϵmax

ϵmin
ζ(r̃, ϵ)αff

ϵ (r̃, ϵ)ϵ
3f(r̃, ϵ)dϵ

Ur(r̃)
(10.39)

where ζ(r̃, ϵ) is a binary logic operator set equal to 1 when the conditions for thermal

bremsstrahlung absorption are satisfied and set equal to 0 when conditions are not satisfied.

We call ζ(r̃, ϵ) the absorption flag and it correspond to the type of photon absorption

formalism we use. In this research I present two types of absorption formalisms:

1. The first absorption formalism involves an expression relating photon energy to ther-

mal energy (or equivalently gas temperature Te):

ζ(r̃, ϵ) =

 1 : ϵ
kTe(r̃)

≤ bremssratio

0 : ϵ
kTe(r̃)

> bremssratio,
(10.40)

where bremssratio is a constant and quantifies the relationship between photon energy
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and gas temperature below which the phenomena of absorption commences. The value

of bremssratio is based upon the best spectral comparison between my model and the

observed data. This dissertation research using my new model shows the value of

bremssratio is highest for Vela X-1 at 0.390 and lowest for LMC X-4 at 0.107.

2. The second absorption formalism closely follows from Becker & Wolff (2007) which

expresses a relationship between the photon scattering length lsc and absorption length

labs:

lsc =
1

σTne
(10.41)

labs =
1

αff
ν

. (10.42)

The criterion for the commencement of thermal free-free absorption in this second

absorption formalism is defined in the following way:

ζ(r̃, ϵ) =

 1 : absorbratio ≤ αff
ν

σTne

0 : absorbratio > αff
ν

σTne
,

(10.43)

where absorbratio is a constant relating the photon scattering length and absorption

length. Becker & Wolff (2007) set the scattering length exactly equal to the absorption

length, but in our case we modify the spatial relationship via the absorbratio constant.

As the iteration proceeds, the Comptonization term is continuously updated with the

information contained in the TIC term. Mathematica computes new solutions for ũ, ãr, ãg, Ẽ,

the bulk velocity ũ and electron temperature Te are exported to COMSOL which then again

solves for a new photon distribution function f(r̃, ϵ̃) and a new TIC. Figure 10.3 outlines

the significant steps in the iteration procedure.
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Solution is 

Converged

Export U and Te

to COMSOL

Figure 10.3: Iteration procedure to find the converged photon distribution function f(r̃, ϵ̃)
and inverse-Compton temperature TIC.
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10.5 Independent Verification of COMSOL Numerical Solu-

tion

Figure 10.2 provides an example of the numerical solution of the photon distribution function

f(r̃, ϵ). There are four independent verification methods described in this section which

substantiate that COMSOL accurately calculates the distribution function.

10.5.1 Comparison of the Green’s Function for the Escaping Radiation

Spectrum

The first verification involves comparing two independent methods of obtaining the Green’s

function solution for the escaping radiation spectrum using the steady-state transport equa-

tion governing the Green’s function fG. The escaping radiation spectrum ṄG
ϵ is found from

the computed fG. Using Becker & Wolff (2007) equation (64), the relationship between the

Green’s function solution and the escaping spectrum is:

ṄG
ϵ ≡ πr20ϵ

2

tesc(z)
fG(z0, z, ϵ0, ϵ). (10.44)

Additionally, the steady-state, non-linear, second-order partial differential equation in cylin-

drical coordinates for the Green’s function (Becker & Wolff 2007, equation (21)) is:

v
∂fG
∂z

=
dv

dz

ϵ

3

∂fG
∂ϵ

+
∂

∂z

(
c

3neσ∥

∂fG
∂z

)
− fG
tesc

+
neσ̄c

mec2
1

ϵ2
∂

∂ϵ

[
ϵ4
(
fG + kTe

∂fG
∂ϵ

)]
+
Ṅ0δ(ϵ− ϵ0)δ(z − z0)

πr02ϵ20
. (10.45)

The independent verification comes from the different methods used to solve equation

(10.45). Becker & Wolff (2007) had to approximate the velocity profile for v(z) in such

a way that the transport equation could be separated into energy and space functions,
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g(λ, τ) and h(λ, χ), respectively:

fλ(τ, χ) ≡ g(λ, τ)h(λ, χ), (10.46)

where λ is a separation constant and χ is a dimensionless variable given by χ = ϵ/kTe (not

to be confused with the χ = 6.24× 108 when converting keV to ergs). Their solution for fG

is expressed as an infinite series containing expansion coefficients Cn, energy eigenfunctions

gn(τ), and spatial eigenfunctions hn(χ):

fG(τ0, τ, χ0, χ) ≡
∞∑
n=0

Cngn(τ)hn(χ). (10.47)

Numerical computation via the COMSOL FEM method does not require any separation

of variables method to solve the transport equation. We are able to directly solve equation

(10.45) in COMSOL. We use the same velocity profile as Becker & Wolff (2007) but we do

not require fG to consist of an infinite series of eigenfunctions. There will always be some

degradation in fG if it is expressed in terms of a series of increasingly higher-order terms.

The amount of error between the “true” solution and the series solution for fG depends

on how many terms are omitted from the infinite series. Hence, we expect the COMSOL

numerical solution to be more accurate than the series solution obtained with Mathematica.

Figures 10.4 and 10.5 show the Green’s Function solution of the escaping radiation

spectrum for both the Becker & Wolff (2007) analytic solution and the COMSOL numerical

solution, respectively. There are multiple curves plotted in each of the four quadrants as a

result of choosing different values of energy and column height for the injection source term

of Ṅ0 photons per second with energy ϵ0 from a monochromatic source at location z0. The

plots show the escaping spectrum for different values of optical depth τ rather than column

height z because Becker & Wolff (2007) solved the transport equation in τ -space. However,

the transport equation in COMSOL was solved using z coordinates. A simple conversion

from z to τ -space was used such that the COMSOL solution can easily be compared to the
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Becker & Wolff (2007) solution. This conversion from z to τ -space is given by equation (28)

from Becker & Wolff (2007):

τ(z) =

(
σ∥

σ⊥

)1/4( 2z

αξr0

)1/2

, (10.48)

where σ∥ and σ⊥ are the parallel and perpendicular scattering cross-sections, respectively,

z is the height in the accretion column above the stellar surface, α is a positive constant

which appears in the definition of the velocity profile (see Becker & Wolff (2007) equation

27) that meets the requirement for separability of the transport equation into both spatial

and energy eigenfunction equations, ξ is a dimensionless parameter discussed earlier from

equation (3.21), and r0 is the polar cap radius in cylindrical coordinates. As it turns out

that constant α is of the order unity.

Overall there is exceptional agreement between Figures (10.4) and (10.5) for all twelve

curves in all four quadrants. It is interesting to note that the COMSOL numerical solution

shows more pronounced peaks in the rate of photon injection at the ϵ0 location on the

energy axis. This is possibly due to the fact that the COMSOL numerical solution ideally

contains an infinite series of energy and spatial terms, whereas the Mathematica solution

had to terminate the series at some n <∞ which resulted in less higher-order terms.

10.5.2 Comparison of HER-X1 Spectrum using Becker & Wolff (2007)

Analytic Solution

A second independent verification is a comparison of the solution for the phase-averaged

spectra of HER X-1 between the Becker &Wolff (2007) solution and the COMSOL numerical

solutions, all of which were calculated in cylindrical coordinates. The details for computing

the phase-averaged spectra from the distribution function are covered thoroughly in sec-

tion 11.1. COMSOL was used to compute two HER X-1 cylindrical models with different

parameters. The first COMSOL model implemented the same parameters as the Becker &
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Figure 10.4: The escaping radiation spectrum for the Becker &Wolff (2007) Green’s function
solution is plotted. There are multiple curves plotted as a result of choosing different values

of energy ϵ and column height z for the injection source term of Ṅ0 photons per second
with energy ϵ0 from a monochromatic source at location z0. (Becker & Wolff 2007)

161



-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-8

-7

-6

-5

log Ε

lo
g

N 
ΕG
HΤ

0,
Τ

,Ε
0,
Ε
L

Ε0=0.1keV Α=0.1

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-9

-8

-7

-6

-5

log Ε

lo
g

N 
ΕG
HΤ

0,
Τ

,Ε
0,
Ε
L

Ε0=1.0keV Α=0.1

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
-9

-8

-7

-6

-5

-4

log Ε

lo
g

N 
ΕG
HΤ

0,
Τ

,Ε
0,
Ε
L

Ε0=0.1keV Α=0.4

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
-10

-9

-8

-7

-6

-5

log Ε

lo
g

N 
ΕG
HΤ

0,
Τ

,Ε
0,
Ε
L

Ε0=1.0keV Α=0.4

Τ = 1.0

Τ = 1.0

Τ = 1.0

Τ = 1.0
0.1

0.1

0.1

0.1

0.01

0.01

0.01

0.01

Figure 10.5: The escaping radiation spectrum for the COMSOL Green’s function numerical
solution is plotted. There is excellent agreement between the Becker & Wolff (2007) Green’s
function solution and the COMSOL numerical solution.
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Table 10.2: HER X-1 Parameters for Cylindrical Models.

Parameter Becker & Wolff (2007) COMSOL Model 2 COMSOL Model 1

Te (K) 6.25× 107 7.25× 107 6.25× 107

σ⊥ σT σT σT

σ̄ 2.93× 10−4σT 2.50× 10−4σT 2.93× 10−4σT

σ∥ 4.15× 10−5σT 1.50× 10−5σT 4.15× 10−5σT

Starting height 6.64 7.49 10.8

Wolff (2007) model with the exception of the starting height. The second COMSOL model

implemented new values for the parallel scattering cross section σ∥, angle-averaged cross

section σ̄, and electron temperature Te while the starting height was established by the

model parameters shown in equation (10.50). Table 10.2 summarizes the parameters that

varied between the Becker & Wolff (2007) solution and the two COMSOL models.

To match the Becker & Wolff (2007) spectral fit for COMSOL Model 1 spectra the

starting height was set to r̃ = 10.8 and all other parameters were equal to those used in

the Becker & Wolff (2007) model. The astute observer of figure (8.1) may recognize that a

starting height of r̃ = 10.8 has important consequences on the magnitude of the cylindrical

velocity solution with respect to the free-fall velocity. Equation (29) from Becker & Wolff

(2007) provides the cylindrical model velocity in cgs units as:

v(z) = −
(
σ∥

σ⊥

)1/4( 2αz

ξ r0/RG

)1/2

c, (10.49)

where r0 is the polar cap radius in cm and the RG converts r0 to dimensionless radial units.

The Becker & Wolff (2007) cylindrical model starting height is z̃max = 6.64 but at a starting

height of r̃ = 10.8 the corresponding velocity of the cylindrical model is 0.999c! Clearly the

COMSOL cylindrical model has a larger accretion column starting height, and to match the

Becker & Wolff (2007) calculated spectra with the COMSOL Model 1 spectra the condition

of matching free-fall velocity breaks down. In COMSOL Model 2 we varied the parallel
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scattering cross section σ∥, angle-averaged cross section σ̄, and electron temperature Te.

The starting height zmax was correctly determined by equation (80) from Becker & Wolff

(2007):

zmax =
R∗
2

(1 + 4GM∗r0ξ

αc2R2
∗

√
σ⊥
σ∥

)1/2

− 1

 . (10.50)

We convert zmax to dimensionless radial units by dividing by RG:

z̃max =
zmax

RG
, (10.51)

and then we can compare starting heights for z̃ and r̃ using the same dimensionless scale.

The purpose here is not to focus on the assumptions made but rather to observe how

close the COMSOL spectrum can match the Becker & Wolff (2007) spectrum, and starting

heights of r̃ = 10.8 and r̃ = 6.64 are certainly acceptable. Figure 10.6 shows the three

solutions plotted alongside the observed data points (red dots) for HER X-1. The green

curve is the Becker & Wolff (2007) analytic solution. The red curve is the COMSOL Model

1 numerical solution and the black curve is the COMSOL Model 2 numerical solution. The

match is very good between the three models. The excellent comparison between these

curves is further evidence that COMSOL is correctly solving the photon transport equation

to obtain the distribution function.

10.5.3 Comparison of Radiation Energy Density ODE

A third independent method of verifying the concistency of the COMSOL calculation of

the photon distribution function f(r̃, ϵ̃) is to calculate the radiation energy density Ur by

three different techniques and then plot the relative error between them.

The first technique to calculate Ur is to use the conservation equation solution for ãr,

derive Pr, and then use the Eddington approximation that Ur = 3Pr. Chapter 8 describes
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Figure 10.6: The COMSOL Model 1 numerical solution for the phase-averaged spectrum
of HER X-1 (red curve) and the COMSOL Model 2 numerical solution (black curve) is
shown with the analytical solution (green curve) from Becker & Wolff (2007). The red dots
indicate the observed data points.
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how to solve for ãr. The radiation pressure is derived from the definition of sound speed:

Pr =

(
ρc2

γr

)
ã2r

= −
(
J

cũ

)(
c2

γr

)
ã2r

= −

(
Ṁ

ΩR2
Gr̃

2

)(
1

cũ

)(
c2

γr

)
ã2r

= −

(
Ṁc

ΩR2
Gγr

)
ã2r
r̃2ũ

(10.52)

where ũ < 0 indicates bulk flow towards the stellar surface, J = −ρv is a mass flux, and:

J =
Ṁ

ΩR2
Gr̃

2
(10.53)

is the solution to the steady-state conservation of mass equation:

∇ · (ρv⃗) = 0. (10.54)

Ur is found by using the Eddington approximation from equation (4.12):

Ur = 3Pr. (10.55)

A second and third technique is to solve the ODE for Ur using both COMSOL and

Mathematica. The ODE is described in detail in section 9.4. The final general form of the
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equation is given by equation (9.31):

d

dr̃

[
RGr̃

2

(
− c

3neσ∥RG

dUr

dr̃
+

4

3
cũUr

)]
=

4neσ̄ckTeR
2
Gr̃

2

mec2
[1− g(r)]Ur +

1

3
cRGr̃

2ũ

[
dUr

dr̃

]
+

∫ ∞

0

Qsources

Ω
ϵ3dϵ

−
R2

Gr̃
2

tesc
Ur − cR2

Gr̃
2

∫ ∞

0
αff
ϵ ϵ

3fdϵ. (10.56)

The one-dimensional Ur ODE allows us to solve it using both Mathematica and COM-

SOL. Figure 10.7 shows a plot of three curves which represents all three techniques used to

calculate Ur. The blue curve (curve 1) was obtained using ãr from the Mathematica dynam-

ical solution to the coupled conservation equations. The red curve (curve 2) was obtained

from the COMSOL solution to the Ur ODE. There is very good agreement between the red

and blue curves. The yellow curve (curve 3) was found from the Mathematica solution to

the Ur ODE in equation (10.56).

The yellow curve (curve 3) starts to deviate above approximately r̃ = 20 and the er-

ror grows above a few percentage around r̃ = 30. Figure 10.8 shows the relative error

between the Mathematica dynamic solution for Ur (curve 1) and both the COMSOL and

Mathematicca ODE solutions (curve 2 and curve 3).

There are two possible explanations for the deviation in the Mathematica Ur ODE

solution (yellow curve). The first explanation is due to non-matching boundary condi-

tions between Mathematica and COMSOL. Mathematica implements the free-streaming,

upstream boundary condition in terms of the spatial derivative of Ur (see equation 7.13):

dUr

dr̃
= neσ∥RG(4ũ− 3)Ur. (10.57)

In COMSOL, however, the free-streaming Neumann boundary condition is defined with
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Figure 10.7: Three curves are plotted for the solution of the radiation energy density Ur

from several independent methods. The blue curve (curve 1) was based on the Mathematica
dynamic solution for ãr from the coupled conservation equations. The red curve (curve 2)
was obtained from the COMSOL solution to the Ur ODE. These show very good agreement.
The yellow curve (curve 3) was found from the Mathematica solution to the Ur ODE shown
in equation (10.56).
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Figure 10.8: This shows the relative error from the Mathematica dynamic solution for Ur

between the COMSOL Ur ODE solution (curve 2) and the Mathematica ODE solution
(curve 3). The deviation in the Mathematica Ur ODE solution is due to inconsistent
boundary conditions between Mathematica and COMSOL.
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respect to the negative of the outward normal of the spatial flux vector. The principle is

described in section 10.2.3 and shown in equation (10.16), but for the Ur ODE we describe

the outward flow of energy (free-streaming) by cUr:

G = −
(
ϵ̃

χ

)2

RGx
2(cUr). (10.58)

The non-matching boundary conditions for the Ur ODE may contribute to an energy density

deviation near the top of the column.

A second and more likely explanation for the deviation of the Mathematica ODE solution

near the top of the column is due to the nature of the g(r̃) function. Recall that initially we

set g(r̃) equal to unity when we first solved the coupled conservation equations. I discuss

in subsection 10.4.1 how, after solving for the distribution function on the 0th iteration,

the inverse-Compton temperature TIC and the electron temperature Te are not equal at

all locations along the column. Our initial assumption that g(r̃) = 1 everywhere was not

correct. It’s an appropriate choice to use g(r̃) = 1 the first time because there will always

be some uncertainty as to how to define g(r̃). Setting g(r̃) = 1 is a “best” first guess.

To solve the Ur ODE as best as possible requires a more valid g(r̃) function. From

equation (9.31) the final general form of the Ur ODE was given as:

d

dr̃

[
ΓUr
r̃

]
=

4neσ̄ckTeR
2
Gr̃

2

mec2
[1− g(r)]Ur +

1

3
cRGr̃

2ũ

[
dUr

dr̃

]

+

∫ ∞

0

Qsources

Ω
ϵ3dϵ−

R2
Gr̃

2

tesc
Ur − cR2

Gr̃
2

∫ ∞

0
αff
ϵ ϵ

3fdϵ, (10.59)

where the flux vector is:

ΓUr
r̃ = RGr̃

2

(
− c

3neσ∥RG

dUr

dr̃
+

4

3
cũUr

)
︸ ︷︷ ︸

Fr

, (10.60)
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and Fr is the radiation energy density flux. The best way to find g(r̃) is to rearrange terms

and isolate g(r̃) to one side. After some algebra we obtain the following:

g(r̃)required = 1 +
1

µ(r̃)U∗
r

(
− d

dr̃
[Γr̃] +

1

3
cRGr̃

2ũ

[
dU∗

r

dr̃

]
+

∫ ∞

0

Qsources

Ω
ϵ3dϵ

−
R2

Gr̃
2

tesc
U∗
r − cR2

Gr̃
2

∫ ∞

0
αff
ϵ ϵ

3fdϵ

)
, (10.61)

where:

µ(r̃) =
4neσ̄ckTeR

2
Gr̃

2

mec2
. (10.62)

An asterisk “∗” is placed on the radiation energy density U∗
r to signify that g(r̃)required can

only be solved if we know a-priori the profile for U∗
r . Fortunately, we already know U∗

r from

the Mathematica solution to the coupled conservation equations (see equation 10.55). After

performing this calculation using the U∗
r profile from Mathematica we obtain g(r̃)required as

shown in Figure 10.9.

Figure 10.9 summarizes the dilemma in trying to exactly solve the Ur ODE. There will

always be a discrepancy in our solution if g(r̃)required ̸= 1. The calculations of the integrals

in equation (10.61) are also inexact which add further uncertainties. It is impossible to

accurately assign some initial value of g(r̃). Our best procedure is to assume initially that

TIC = Te so that g(r̃) = 1, and then allow the iteration procedure to converge the solution.

10.5.4 Comparison of Photon Number Density ODE

The fourth method to verify the self-consistency of the photon distribution function f(r̃, ϵ)

is to calculate and compare the photon number density nph. We can compute the photon

density also using three independent methods. A first method (method 1) to compute nph

is to multiply the distribution function f by ϵ2 and integrate over the energy range from

171



5 10 15 20 25 30
0.8

1.0

1.2

1.4

1.6

1.8

2.0

r�

R
eq

ui
re

d
gH

r� L
F

un
ct

io
n

Figure 10.9: Plot of the required g(r̃) function to accurately solve the radiation energy
density Ur ODE in equation (9.31).
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zero to infinity as shown previously in equation (9.40):

n(r̃) =

∫ ∞

0
ϵ2f(r̃, ϵ)dϵ. (10.63)

A second and third method to calculate nph (method 2 and 3) is to solve the photon number

density nph ODE using both Mathematica and COMSOL. The nph ODE was discussed in

section 9.6. The general final form is given by:

d

dr̃

[
r̃2cũnph −

r̃2c

3neσ∥RG

(
dnph
dr̃

)]
=

1

ΩRG

∫ ∞

0
Qsourcesϵ

2dϵ−RGr̃
2

(
nph
tesc

)
−RGr̃

2c

∫ ∞

0
αff
ϵ fϵ

2dϵ. (10.64)

Although difficult to see, Figure 10.10 shows three overlapping curves plotted along the

length of the accretion column. The first curve is the COMSOL numerical solution using

the photon distribution function f (method 1). The second curve is a plot of the photon

number density nph ODE using Mathematica (method 2). The third curve was found by

solving the nph ODE with COMSOL (method 3). These three independent methods of

calculating photon density nph are in excellent agreement with each other, which not only

confirms the distribution function f was calculated correctly, but it also demonstrates the

high accuracy between Mathematica and COMSOL for solving the ODE.

Let’s take a quick look at the errors between each of these three methods. We use

method 1 as the baseline photon density found using the distribution function per equation

(9.40). Figures 10.11 and 10.12 represent the error between the baseline and the other two

methods (methods 2 and 3), respectively. We see there is very good agreement except near

the stellar surface where the error reaches ∼ 1.7% for both methods 2 and 3. The reason for

this is probably due to inconsistencies between the theoretical ideal boundary condition of

the ODE at the stellar surface and the actual boundary condition inherent with the photon
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Figure 10.10: Three overlapping curves are plotted for the solution of the photon number
density nph. The first solution was found using the COMSOL numerical solution for the
photon distribution function f . The second solution resulted from solving the photon
number density nph ODE in Mathematica. The third solution was found by solving the nph
ODE with COMSOL. The separate methods produced solutions in very good agreement
with each other.
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distribution function. The theoretical ideal boundary condition associated with the nph

ODE is the “mirror” condition which requires both radiation energy density flux and bulk

velocity to be zero. However, we know that this is impossible to achieve (where both v = 0

and Fr = 0), although we can do our best to tweak the model parameters. So we solve the

nph ODE with boundary conditions at the stellar surface which we know are not entirely

accurate with respect to the distribution function.
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Figure 10.11: Percentage error is plotted as a function of column height between the photon
number density nph ODE solution found with Mathematica and the number density solution
found using the photon distribution function f .

Figure 10.13 shows the relative error between the two methods of solving the nph ODE

(methods 2 and 3). There is a high degree of accuracy (≤ 0.036% error along the column)

between Mathematica and COMSOL when each independently solves the nph ODE. This

again gives us confidence that COMSOL’s numerical algorithms are correct.
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Figure 10.12: Percentage error is plotted as a function of column height between the photon
number density ODE solution found with COMSOL and the number density solution found
using the photon distribution function f .
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Figure 10.13: Percentage error is plotted as a function of column height between the photon
number density nph ODE solution found with Mathematica and the same nph ODE solved
with COMSOL.
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Chapter 11: Astrophysical Applications

In this chapter we first describe the fitting procedure used to model a chosen X-ray pulsar

and then we present the main research results. A detailed analysis for CEN X-3 is provided.

The X-PER, Vela-X1, HER X-1, and LMC X-4 results are briefly presented to show the

degree of model convergence and the associated phase-averaged spectra for each.

11.1 Fitting Procedure

We now describe the fitting procedure for extracting model parameters for a specific source.

The general procedure is divided into twelve basic steps:

• STEP 1: The stellar radius and pulsar mass are set to the widely accepted values of

106cm and 1.4M⊙, respectively.

• STEP 2: Published literature provides the pulsar magnetic field strength B and lumi-

nosity L. The magnetic field determines the cyclotron energy ϵc and the luminosity

provides the mass flow rate Ṁ . The mass flow rate is also a parameter that determines

the β parameter given by equation (6.16) which gives a measure of the inverse of the

mass flow rate. The β parameter appears in the coupled conservation equations.

• STEP 3: Select the starting accretion column height r̃start in dimensionless units. The

data from the five pulsars modeled in this dissertation research shows the starting

height varies widely based upon the pulsar luminosity. One dimensionless radial unit

is equal to ≈ 2.1km.

• STEP 4: Select a value for the incident radiation Mach numberMr0. We do not select

an initial value for the incident gas Mach numberMg0 becauseMg0 is calculated based
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upon satisfying the conservation of momentum equation at the top of the column as

described in subsection 7.1.4.

• STEP 5: Select an appropriate value for the electron parallel scattering cross-section

σ∥. Recall from equation (4.27) that we expect σ∥ to be much less than the Thomson

cross-section:

σ∥ ≈ σT

(
ϵ

ϵc

)2

. (11.1)

A good initial choice is a value close to those listed in Becker & Wolff (2007).

• STEP 6: Select appropriate value for the angle-averaged scattering cross-section σ̄.

The value for σ̄ has a significant role in the rate of energy exchange in the Comp-

tonization term discussed in § 9.5:

U̇Compton =
4σ̄cṀ2

meR4
GΩ

2γgγr(γr − 1)

ã2gã
2
r

r̃4ũ2
[g(r̃)− 1]. (11.2)

This term appears in the gas energy equation as part of the four coupled conservation

equations solved by Mathematica. The cross-section σ̄ also appears in the energy

component of photon distribution flux vector (see equation 9.12). We initially as-

sume that g = 1 (the 0th iteration) which means there is initially zero contribution

from the U̇Compton term to the overall conservation equation dynamics. Mathemat-

ica does not use σ̄ the very first time we solve the coupled conservation equations

because the U̇Compton term containing it is initially set to zero. However, σ̄ must be

defined any time COMSOL solves the transport equation. After the 0th iteration the

Comptonization term is non-zero and depends upon the updated TIC:

U̇Compton =
4σ̄cṀ2

meR4
GΩ

2γgγr(γr − 1)

ã2gã
2
r

r̃4ũ2

[
γgk

mpc2
1

ã2g
TIC − 1

]
. (11.3)
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• STEP 7: The initial bremsstrahlung absorption term U̇abs uses the Rosseland mean of

the thermal free-free absorption coefficient. We use the definition of radiation energy

density Ur from equation (6.71) and the Rosseland mean to obtain:

U̇abs = Urα
ff
Rc

=

[
1

γr(γr − 1)

(
cṀ

R2
GΩ

)
ã2r
ũr̃2

]
︸ ︷︷ ︸

=Ur

1.7× 10−25

(
kγg
mpc2

)7/2
(

Ṁ

mpcΩR2
G

)2
1

ã7g r̃
4ũ2


︸ ︷︷ ︸

=αff
R

c

=
1.7× 10−25c2Ṁ

γr(γr − 1)RG
2Ω

(
kγg
mpc2

)7/2
(

Ṁ

mpcΩRG
2

)2
ã2r

ã7gũ
3r̃6

. (11.4)

After the initial iteration we average the energy-dependent absorption coefficient αff
Ur

over the radiation energy density as described in subsection 10.4.2 for the absorption

formalisms. The rate of absorption is then defined using the updated absorption

coefficient from equation (10.39):

U̇abs = Urα
ff
Ur
c

=

[
1

γr(γr − 1)

(
cṀ

R2
GΩ

)
ã2r
ũr̃2

] [∫
ζαff

ϵ ϵ
3fdϵ

Ur

]
c, (11.5)

where ζ = ζ(r̃, ϵ) is the absorption flag that describes the thermal free-free absorption

formalism. The absorption flag uses either the bremssratio or absorbratio constants

to determine the point at which absorption is activated. This is further described in

subsection 10.4.2.

• STEP 8: Solve the coupled conservation equations (8.1) through (8.4) using the Math-

ematica computer program. The bulk velocity and temperature profiles, ũ and Te,

are derived from Mathematica are sent to COMSOL.
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• STEP 9: Build the computational mesh and domain in COMSOL and solve the

transport equation to obtain the numerical solution for the photon distribution func-

tion f(r̃, ϵ). We have the choice to include any of the bremsstrahlung, cyclotron,

and blackbody photon source terms in the transport equation. The inverse-Compton

temperature TIC, photon density nph, radiation energy density Ur, and absorption

coefficient αff
Ur

are computed using f .

The iteration procedure will repeat at STEP 6 if the solution has not converged.

The updated TIC and αff
Ur

are returned to Mathematica for inclusion in the updated

coupled conservation equations. We proceed to step 10 if the solution converged.

• STEP 10: Compute the height-dependent photon spectrum emitted through the walls

of the accretion column:

Ṅϵ(r̃, ϵ̃) ≡
ΩR2

Gr̃
2(ϵ̃/χ)2

tesc(r̃)
f(r̃, ϵ̃). (11.6)

• STEP 11: Compute the vertically integrated photon spectrum emitted through the

walls of the accretion column:

Φtot
ϵ (ϵ̃) ≡ Ac(ϵ)

∫ ∞

0
Ṅϵ(r̃, ϵ̃)dr̃, (11.7)

where Ac represents the Gaussian cyclotron absorption feature as shown in Becker &

Wolff (2007) equation (132). Specifically we must select values for dc and σc:

Ac(ϵ̃) ≡ 1− dc

σc
√
2π
e−(ϵ̃−ϵ̃c)2/2σ2

c . (11.8)

• STEP 12: Calculate the phase-averaged photon count rate spectrum measured at
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Earth (at a distance of D from the pulsar to the observatory at Earth):

Fϵ(ϵ̃) ≡
Φtot
ϵ (ϵ̃)

4πD2
. (11.9)

11.2 Computing the CEN X-3 Spectrum

We choose to conduct a detailed analysis of the high-mass X-ray binary CEN X-3, the first

X-ray pulsar ever discovered and still one of the brightest known. It was found in 1971

using the United State’s Uhuru observation satellite. It has a companion (Krzeminski’s

Star) with a mass of approximately 20 solar masses. The pulsar rotates every 4.8 seconds.

The binary system has an estimated distance of 8 kpc (Burderi 2000). Figure 11.1 depicts

a conceptual image of CEN X-3 and its companion star. The star is much larger than our

own sun which is shown as the small red circle on the far left.

We compute the spectrum from escaping photons due to bulk and thermal Comptoniza-

tion of seeds photons from bremsstrahlung, cyclotron, and blackbody photon sources. We

analyze the spectrum based upon the bremssratio and absorbratio absorption formalisms

described in subsection 10.4.2. Therefore, although the X-ray source remains the same, we

gain insight into how the different absorption formalisms affect the radiation hydrodynamics

and subsequent phase-averaged spectrum. Equation (10.18) expresses the total spectrum of

Comptonized radiation escaping from the column and equation (10.20) is used to compute

the observed spectrum based on parameters shown in Table 11.1.

We adopt commonly accepted values for the stellar mass M∗ = 1.4M⊙ and radius

R∗ = 10km, respectively. The magnetic field is B = 2.63 × 1012 G (Burderi et al. 2000),

the mass flow rate is Ṁ = 1.51 × 1018 g sec−1 (based on the observed luminosity), the

scattering cross-section for photons propagating perpendicular to the magnetic field is given

by σ⊥ = σT (see equation 4.28), the parallel scattering cross-section is set to 2.68×10−4σT,

the angle-averaged scattering cross-section is set to 1.0σT, the polar cap is r0 = 240m,

the starting height for the accretion column is r̃start = 110.601 dimensionless units, the
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Figure 11.1: Artist’s rendering of the high-mass X-ray pulsar CEN X-3 and its companion
(Krzeminski’s Star). The pulsar rotates every 4.8 seconds. The binary system has an
estimated distance of 8 kpc. The size of our own sun is shown on the left side as a small
red circle. (Image courtesy of NASA).

Table 11.1: CEN X-3 Model Parameters.

Number Parameter Description Value

1 R∗ Stellar radius 106cm

2 M∗ Pulsar mass 1.4M⊙

3 σ⊥ Perpendicular scattering cross-section σT

4 σ∥ Parallel scattering cross-section 0.000268σT

5 σ Angle-averaged scattering cross-section 1.0σT

6 r0 Polar cap size 24000 cm

7 r̃start Starting accretion column height 110.601

8 Mr0 Incident radiation Mach number 4.8

9 Mg0 Incident gas Mach number 140.956

10 Ẽstart Incident total energy flux derived
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incident radiation Mach number Mr0 is 4.8, and the source distance D is 8 kpc using

published estimates. The initial value for Mg0 is 130.732 which satisfies the conservation

of momentum equation and the upstream free-streaming boundary condition, but its value

changes after each iteration. The final value for Mg0 was 140.956 and 140.190 for the

bremssratio and absorbratio absorption formalisms, respectively. The incident total energy

flux Ẽtot is derived by combining equations (7.3), (7.16), and (7.17).

11.3 CEN X-3 Solution Using bremssratio Absorption For-

malism

In this section we discuss the solution of the spectrum using the bremssratio absorption

formalism. We used a value of bremssratio=0.114. The definition of the absorption flag

ζ(r̃, ϵ) is given by:

ζ(r̃, ϵ) =

 1 : ϵ
kTe(r̃)

≤ 0.114

0 : ϵ
kTe(r̃)

> 0.114.
(11.10)

A bremssratio of 0.114 can be interpreted as meaning that bremsstrahlung absorption

initiates when the ratio of photon energy to electron thermal temperature (energy) is less

than or equal to 0.114. Using the Boltzmann constant, the electron temperature is converted

to units of energy via ϵ = kTe. For a quick approximate analysis of this meaning, an electron

temperature of 107 K corresponds to an energy of ≈ 0.86 keV. Therefore, a photon will have

an energy of roughly 0.114× 0.86 ≈ 0.098 keV below which point absorption initiates. The

hottest electron temperatures do not exceed roughly 108K for the dynamic solutions in our

source models, and so we expect that absorption is limited to those energies below ≈ 1 keV.

The bremssratio formalism is a one-dimensional function that only depends on electron

temperature as a function of position r̃. However, the absorbratio formalism depends on

both position and energy with respect to scattering length lsc and absorption length labs,

and so the same argument for the initiation of absorption is not as simple.
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Our CEN X-3 model required eight iterations to obtain a solution that is over 99.5%

converged. This means COMSOL computed a new photon distribution function a total of

nine times. The ninth time the computed TIC temperature was compared to the previously

computed TIC. The ratio of these two temperatures was greater than 99.5% along the entire

length of the column. Stated mathematically:

TIC8

TIC9

≥ 0.995, (11.11)

where TICn represents the TIC profile computed on the nth iteration (n=8,9). Figure 11.5

shows convergence of the ratio to a final value greater than 99.5%.

11.3.1 Velocity Profiles

The final velocity profiles are plotted in Figures 11.2 and 11.3. The radiation sonic point

is located at r̃ = 11.09 which is roughly one stellar radii above the stellar surface. The

bulk velocity profile between the radiation sonic point and the stellar surface is called a

“sinking” regime and was predicted by Basko & Sunyaev (1976) when the accretion rate is

greater than the limiting luminosity. Only a part of the total energy released by accretion

radiates out the sides of the column and the remaining part penetrates under the surface

of the neutron star.

11.3.2 Temperature Profile

The electron and inverse-Compton temperatures, Te and TIC, are plotted in figure 11.4.

Here we see almost complete equilibrium between the two. Near the top of the column

there is a small deviation in temperature, but the two temperatures quickly merge. Figure

11.5 shows covergence of the inverse-Compton temperatures to within 99.5%. The final

ratio between the electron and inverse-Compton temperature is plotted in figure 11.6.
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Figure 11.2: CEN X-3 dynamic solution to the coupled conservation equations using the
parameters of Table 11.1. The velocity profiles are plotted for bulk velocity, radiation sound
speed, gas sound speed, and the cylindrical velocity solution from Becker & Wolff (2007).
The vertical axis is in dimensionless units normalized by the speed of light c. A negative
value indicates the flow is towards the stellar surface.
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Figure 11.3: Expanded view of the CEN X-3 dynamic solution for gas sound speed (dimen-
sionless units). The gas sound speed is roughly two orders of magnitude less than the bulk
velocity and radiation sound speed. Electron temperature is directly proportional to the
square of the gas sound speed. See equation (6.54).
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Figure 11.4: CEN X-3 electron and inverse-Compton temperature profiles Te and TIC in
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Figure 11.5: CEN X-3 convergence of TIC ratio.
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Figure 11.6: CEN X-3 g(r̃) function which is the ratio of TIC to Te.

11.3.3 Pressure Profiles

The pressure profiles are plotted in figure 11.7. Here we see very close agreement between

the Mathematica radiation pressure (dynamic solution of the coupled conservation equation

for radiation sound speed ãr and then converted to radiation pressure Pr) and the radiation

pressure computed by COMSOL. The radiation pressure clearly dominates over gas pressure

in the higher luminosity pulsars. In general, it dominates in all but the lowest-luminosity

pulsars (i.e. X-PER).

11.3.4 Phase-Averaged Photon Spectrum

We show the numerical solution to the photon transport equation and the phase-averaged

spectrum. The logarithm of the converged photon distribution function is shown in Figure

11.8.

The phase-averaged profile for CEN X-3 obtained using my model is shown in Figure
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Figure 11.7: Plot of the CEN X-3 pressure profiles in cgs units (dynes). The Mathematica
radiation pressure is the dynamic solution to the coupled conservation equation for radiation
sound speed ãr and then converted to pressure Pr.
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Figure 11.8: Plot of the logarithm (base 10) of the converged photon distribution function
f(r̃, ϵ̃) for CEN X-3, obtained after eight iterations.
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11.9. The observed data comes from the BeppoSAX observatory reported by Burderi et al.

(2000). The red dots indicate data points associated with the observed data. We include a

cyclotron absorption feature centered on the cyclotron energy at ≈ 30keV.

Phase-averaged spectra for CEN X-3 

using converged solution with the 

bremssratio absorption formalism.
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Figure 11.9: Plot of the phase-averaged count rate spectrum for CEN X-3. The red dots
indicate data points associated with the observed data.

11.3.5 Analysis of CEN X-3 Accretion Column Dynamics

Here we present a detailed analysis of the internal accretion column dynamics for CEN X-3

to highlight specific physical processes.
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Spectrum Inside the Accretion Column

Figure 11.10 shows a plot of photon energy (keV) vs. f(r̃, ϵ̃) for various radial locations,

from the near the top of the column to near the stellar surface. The take-away here is that

the spectrum inside the column is larger near the stellar surface for all photon energies

ϵ̃ ≥ 10−0.3 keV. Below ≈ 10−0.3 keV we see that bremsstrahlung absorption reduces the

photon spectrum closer to the surface. Photon density increases as we approach the stellar

surface.
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Figure 11.10: CEN X-3 plot of photon energy (keV) vs. f(r̃, ϵ̃) for various radial locations,
from the near the top of the column to near the stellar surface.

Photon Absorption

Here we present the CEN X-3 results for free-free photon absorption. Figure 11.11 shows

the free-free absorption time as a domain plot for all photon energies and accretion column
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heights, and Figure 11.12 diplays the absorption time for various column heights as a func-

tion of photon energy. We see that the absorption time decreases exponentially towards

the stellar surface, and the lowest photon energies are absorbed exponentially faster than

higher energy photons at the same height.

Figure 11.11: CEN X-3 domain plot of the logarithm (base 10) of the thermal free-free
absorption time (seconds) for all photon energies and accretion column heights.

An optically thick medium is one in which an average photon cannot traverse the entire

medium without being absorbed. This condition is satisfied when the optical depth (optical
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Figure 11.12: CEN X-3 plot of the thermal free-free absorption time as a function of altitude
in the column. Photons are absorbed exponentially faster as we approach the stellar surface,
and the lowest energy photons are absorbed orders of magnitude faster than higher energy
photons for the same column height.
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thickness) is equal to or greater than unity. Figures 11.13 through 11.15 provide insight

into the CEN X-3 free-free absorption optical thickness (τ⊥) for photons traveling in the

perpendicular direction from the centerline. The domain plot in Figure 11.13 shows the

thickness is less than unity over most of the domain. Only at the lowest photon energies

and close to the stellar surface is the thickness greater than one. Figure 11.14 plots the

thickness at various column heights as a function of photon energies. We see in Figure 11.15

where the free-free absorption optical thickness is greater than unity. There is significantly

more photon absorption at the stellar surface where the thickness rises rapidly. Here we

expect nearly all photons with energies below ≈17keV to be absorbed.

Figure 11.16 shows a plot of the Rosseland absorption coefficient αff
R (top curve) and the

energy-dependent coefficient averaged over the radiation energy density αff
Ur

(bottom two

curves) found using equations (6.73) and (10.39), respectively. The bottom two curves show

the value of αff
Ur

on the 0th iteration (blue curve) and 8th iteration (red curve), respectively.

Photon Escape

Here we discuss the dynamics of photon escape in the CEN X-3 converged model. Figure

11.17 shows a domain plot of the escaping photon count rate log10(Ṅ) over all photon

energies (keV) and column heights. Figure 11.18 shows the rate of photons escaping through

the walls of the accretion column at various heights as a function of photon energy. Close

to the stellar surface the rate of photon escape is highest for photons above ≈10keV. For

energies below 10keV we see that free-free absorption causes the reduction in the rate of total

photon escape. Figure 11.19 shows a plot of Ṅ(r̃), the energy-integrated rate of escaping

photons as a function of radial height. This is found by integrating equation (11.6) over all

energies:

Ṅ(r̃) =

∫ ϵ̃max

ϵ̃min

Ṅ(r̃, ϵ̃)dϵ̃ =

∫ ϵ̃max

ϵ̃min

[
ΩR2

Gr̃
2(ϵ̃/χ)2

tesc(r̃)
f(r̃, ϵ̃)

]
dϵ̃. (11.12)
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Figure 11.13: CEN X-3 domain plot of the thermal free-free absorption optical thickness.

197



stellar surface

top of column

r
�

= 4.84

15

8

110

30
60

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
10-7

10-4

0.1

100

105

logHkeVL

fr
ee
-

fr
ee

ab
so

rp
ti

on
th

ic
kn

es
s

Figure 11.14: CEN X-3 plot of the thermal free-free absorption optical thickness as a
function of energy at various altitudes in the column.

The energies ϵmax and ϵmin correspond to the upper and lower bounds of the computational

domain in COMSOL. Below the radiation sonic point we see a break in the rapid rise of

photon escape. This reduction in the rate of escape is expected because of the large increase

in the absorption optical depth below ≈ r̃ = 10, as shown in Figures 11.13 through 11.15.

Core Thermal Structure

A very interesting result was discovered when the pressure profiles were calculated. Figure

11.20 shows the relationship between radiation pressure and a corresponding blackbody

pressure. By a “corresponding blackbody pressure”, we mean that if we assume the col-

umn is a pure blackbody the corresponding blackbody pressure is found by equating the
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Figure 11.15: CEN X-3 domain plot of where the thermal free-free absorption optical depth
is greater than unity. At the stellar surface nearly all photons with energies less than 17keV
are absorbed.
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Figure 11.16: Plot of the CEN X-3 Rosseland absorption coefficient αff
R (top curve) and the

energy-dependent coefficient averaged over the radiation energy density αff
Ur

(bottom two

curves). The bottom two curves plot the value of αff
Ur

on the 0th iteration (blue curve) and

8th iteration (red curve), respectively.
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Figure 11.17: CEN X-3 domain plot for the rate of total photons escaping through the walls

of the accretion column log10(Ṅ) [sec−1 keV−1 cm−1] over all photon energies and column
heights.
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Figure 11.18: CEN X-3 plot of the rate of photons escaping through the walls of the accretion
column at various heights as a function of photon energy.
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Figure 11.19: CEN X-3 plot of the energy-integrated rate of escaping photons through the

walls of the accretion column Ṅ(r̃) as a function of radial height.
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Eddington’s aproximation with the Stefan-Boltzmann law:

Pr =
1

3
Ur (11.13)

=
1

3
aT 4

e , (11.14)

where Ur is the radiation energy density, Te is the electron temperature, and a is the ther-

modynamic constant. The radiation pressure Pr is derived from the Mathematica solution

to the coupled conservation equation for ãr (see subsection 10.5.3).
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Figure 11.20: Gas pressure, radiation pressure, and the associated blackbody pressure corre-
sponding to Te per the Stefan-Boltzmann law. Notice that radiation pressure is significantly
higher than the blackbody pressure. This indicates significant temperature gradients within
the accretion column.

We expect the radiation within the column to be in thermal equilibrium as the electrons

and photons interact to exchange zero net energy between them. This is shown by the
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g(r̃) function, plotted in Figure 11.6, being very close to unity along the entire column.

Therefore, the radiation pressure and the blackbody pressure are expected to be almost

identical because the electron temperature and inverse-Compton temperature are so close

to each other. What we observe, however, is that the radiation pressure is significantly

higher than the blackbody pressure! Figure 11.21 shows the ratio of radiation pressure

to blackbody pressure. The radiation pressure is an order of magnitude larger at higher

altitudes. Closer to the stellar surface, however, the radiation pressure experiences a steep

increase and becomes larger than the blackbody pressure by over two orders of magnitude.
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Figure 11.21: Ratio of the radiation pressure to the associated blackbody pressure corre-
sponding to Te per the Stefan-Boltzmann law.

There is a unique accretion column temperature structure suggested by these findings.

The temperature in the core (along the centerline) is related to the radiation energy density
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according to the Stefan-Boltzmann law:

Tcore =

(
Ur

a

)1/4

. (11.15)

In our model the energy flux radiated through one wall is:

Frad =
1

2

Ur

tesc
RG r̃ tanθ, (11.16)

where θ is the conic angle. The factor of 2 in the denominator appears because there are two

directions in which photons can propagate (two perpendicular direction from the centerline

in our 1D model). Radiation can escape to the right or to the left from the centerline

(perpendicular) and we need to divide the total flux between both directions. The walls

would radiate an energy flux corresponding to a surface temperature of Teff if we assume

the accretion column is a pure blackbody:

Teff =

(
Frad

σSB

)1/4

(11.17)

=

(
1

σSB

1

2

Ur

tesc
RGr̃ tan θ

)1/4

. (11.18)

Figure 11.22 is a plot of four temperature profiles for our CEN X-3 example. The core

temperature is the hottest and is deep within the column near the centerline. The inverse-

Compton and electron temperatures nearly overlap and are only a few times cooler than

the core temperature. The bottom curve is the effective temperature and is closest to the

electron temperature. These curves imply temperature gradients between the centerline

and the column walls. However, we cannot proceed with a full analysis until a 2D spatial

model is created. Currently our 1D model assumes constant temperature across the column

and we cannot calculate temperature gradients.
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Figure 11.22: Plot of the temperatures (Kelvin) in the accretion column which implies there
are gradients between the core and column edges.
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11.4 CEN X-3 Solution Using absorbratio Absorption For-

malism

Figure 11.23 shows the convergence of CEN X-3 using the absorbratio absorption formal-

ism. Convergence was achieved after 11 iterations to nearly 99.5%. Figure 11.24 shows the

phase-averaged photon count rate spectrum Fϵ(ϵ) measured at Earth. We gain insight into

the differences between the two absorption formalisms from Figure 11.25. There is generally

good agreement between the two except near the stellar surface where the model using the

absorbratio formalism shows a reduction in radiation pressure. The dynamics in this case

provide an opportunity for further research.

CEN X-3 convergence of the TIC ratio

using the absorbratio absorption formalism.
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Figure 11.23: CEN X-3 plot of the convergence of the inverse-Compton temperature TIC
using the absorbratio absorption formalism.
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Phase-averaged spectra for CEN X-3

using converged solution with the

absorbratio absorption formalism.
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Figure 11.24: CEN X-3 plot of the phase-averaged photon count rate spectrum using the
absorb absorption formalism.
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COMSOL radiation pressure using 

bremssratio absorption formalism.

COMSOL radiation pressure using 

absorbratio absorption formalism.
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Figure 11.25: CEN X-3 plot showing the COMSOL calculated radiation pressure for both
the bremssratio and the absorbratio absorption formalisms. There is generally very good
agreement between the two formalisms except near the stellar surface.
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11.5 LMC X-4

The LMC X-4 plots for the spectrum and convergence of TIC are shown in Figures 11.26

and 11.27 (respectively). The spectrum comparison is in very good agreement with the

observed data and modification of the spectrum by cyclotron absorption was not needed.

LMC X-4 phase-averaged spectrum
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Figure 11.26: LMC X-4 plot of the phase-averaged photon count rate spectrum using the
bremssratio absorption formalism.

11.6 HER X-1

The solution for HER X-1 converged after two iterations. The phase-averaged spectrum

is shown in Figure 11.28 and the convergence of the inverse-Compton temperature TIC is

211



1st iteration

11th iteration
³99%  converged

20 40 60 80 100 120
0.98

1.00

1.02

1.04

1.06

r�

T
IC

R
at

io

Figure 11.27: LMC X-4 plot of the convergence of the inverse-Compton temperature TIC
using the bremssratio absorption formalism.
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shown in Figure 11.29.

HER X-1 phase-averaged spectrum
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Figure 11.28: HER X-1 plot of the phase-averaged photon count rate spectrum using the
bremssratio absorption formalism.

11.7 Vela X-1

Vela X-1 and X-PER are interesting case studies for low-luminosity sources where we ex-

pect gas dynamics to play a more vital role in the pressure structure within the accretion

column. The model for Vela X-1 converged to within ≈ 95% after 18 iterations. The evo-

lution of the inverse-Compton temperature TIC is shown in Figure 11.30. Downstream of

the radiation sonic point the electron temperature and inverse-Compton temperatures are
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Figure 11.29: HER X-1 plot of the convergence of the inverse-Compton temperature TIC
using the bremssratio absorption formalism.
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in complete equilibrium. The sinking regime extends through a much larger portion of the

overall column length. The length of the column is only 1.36 km, which is much smaller

than the previously discussed sources of HER X-1, CEN X-3, and LMC X-4. We used a

stellar mas of 1.86M⊙ which is why the stellar surface starts at r̃∗ = 3.64008 instead of

r̃∗ = 4.83611 for all other pulsar sources (see equations (5.1) and (5.2) which define the

dimensionless stellar radius R∗). The radiation sonic point is near the top of the column

rather than in the lower portion. The phase-averaged spectrum is shown in Figure 11.31.
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Figure 11.30: Vela X-1 plot of the convergence of the inverse-Compton temperature TIC
using the bremssratio absorption formalism.

11.8 X-PER

X-PER was the only model to manifest a gas sonic point within the accretion column. The

starting height is significantly less than the other pulsar sources. The top of the column

is approximately 12 meters from the stellar surface. Compared to the other sources this
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Figure 11.31: Vela X-1 plot of the phase-averaged photon count rate spectrum using the
bremssratio absorption formalism.
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is extremely close. Figure 11.32 shows the phase-averaged spectrum using the bremssratio

absorption formalism. There is not clear evidence of a high-energy turnover. Instead we see

somewhat of a concave upward shape (an ankle) which starts in the vicinity of ≈ 101.1keV.

The velocity profiles are shown in Figure 11.33. The flow rapidly converges from a

free-fall velocity of ≈ 0.64c to near complete stagnation over a distance of only 0.5 meters!

Notice the sinking regime extends over most of the column. At the top of the column

there is a radiation sonic point followed by the gas mediated sonic point. Essentially the

accretion column starts just above the shock locations. Figure 11.34 shows the gas sonic

point where the gas Mach number equals the bulk velocity. A discontinuity could exist

anywhere upstream of the gas sonic location for a very strong gas mediated shock where the

maximum “jump” ratio is 1/4. However, the true jump was not modeled in Mathematica

due to difficulties of implementing the solver across a shock discontinuity. We chose to

accept a smooth gas mediated sonic transition.

Figure 11.35 shows the electron temperature Te as well as the inverse-Compton temper-

ature TIC. The two are fully Comptonized in the sinking regime. At the top of the column

(before the two sonic locations) the temperatures are higher. The presence of the gas sonic

point causes the electron temperature to drop rapidly into the fully thermalized sinking

regime. Figure 11.36 shows the evolution of TIC over the iteration procedure. The model

shows approximately 94% convergence. There is a slight deviation between Te and TIC in

the region just before the gas sonic location, as shown by the g(r̃) function in Figure 11.37.

In the sinking regime the two temperatures are clearly in full thermal equilibrium where

g(r̃) = 1.

Finally, Figure 11.38 shows a plot of Ṅ(r̃), the rate of photons escaping (logarithm

base 10) from the accretion column as a function of radial height. The escape mechanism

is dominated in the small upstream region near the radiation sonic point, followed by a

rapid drop as the bulk flow crosses the gas sonic transition. In the fully thermalized sink-

ing regime the rate of photon escape is nearly constant. This plot highlights how photon

escape is important at the radiation sonic point. This is where photons bounce back and
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forth across the shock in the rapidly converging flow and gain energy through the Fermi

fist-order mechanism via collisions with infalling electrons (the scattering centers).

phase-averaged spectra for X-PER using 

the bremssratio absorption formalism
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Figure 11.32: X-PER logarithm (base 10) of the phase-averaged spectrum. No high-energy
turnover is evident.
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Figure 11.33: Plot of the X-PER velocity profiles. The flow is rapidly converging from a
free-fally velocity of ≈ 0.64c to near stagnation within a distance of only a few meters.
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Figure 11.34: Plot of the gas sonic location for the X-ray pulsar source X-PER.
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Figure 11.35: Plot of the logarithm (base 10) of the X-PER electron temperature Te and
the inverse-Compton temperature TIC (Kelvin).
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Figure 11.36: Plot of the convergence of the inverse-Compton temperature TIC for the source
X-PER. The model is approximattely 94% converged.
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electrons and photons are in full thermodynamic 

equilibrium in the post-sonic sinking regime

4.837 4.838 4.839 4.840 4.841
0.90

0.95

1.00

1.05

1.10

1.15

1.20

r
�

gH
r� L

fu
nc

ti
on

Figure 11.37: Plot of the g(r̃) function for the X-ray pulsar source X-PER. The electrons
and photons are in full thermodynamic equilibrium in the post-sonic sinking regime.
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escaping photons within the column

as a function of position

photon escape at the radiation

sonic point dominates the 

photon escape mechanism
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Figure 11.38: Plot of the logarithm (base 10) of the escaping photons from the accretion
column as a function of radial height. Notice the photon escape is an order of magnitude
higher in the vicinity of the radiation sonic point, followed by a rapid drop as the bulk flow
converges and crosses the gas sonic location.
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Chapter 12: Conclusions

This dissertation research expanded the boundaries for understanding the dynamics of ac-

cretion column flow and the observed phase-averaged X-ray spectra. For the first time I used

a significantly more realistic dynamical model that incorporated the effects of gas pressure,

strong gravity, conical geometry, and a detailed treatment of cyclotron and bremsstrahlung

emission and absorption processes. This involved the first-ever implementation of the “two-

fluid” model (Becker & Kazanas 2001) in the context of a pulsar accretion column in which

radiation and fully-ionized gas are coupled within the column. Previous attempts to solve

the coupled problem have ignored the effect of the gas pressure, but it is necessary to include

this effect in low-luminosity pulsars because the pressure of the outgoing radiative flux will

not have a dominant effect upon the accreting material. In this dissertation, I carried out

the first self-consistent calculation of the radiation field and the hydrodynamical structure

of the accretion column. I focused on four quantities which, taken together, completely

describe the dynamical structure of the column. These four quantities are the gas sound

speed, ag, the radiation sound speed, ar, the energy flux, E, and the flow speed, u.

The complete dynamical problem was modeled by defining five free parameters with

appropriate boundary conditions. All other model parameters were derived from these five

free parameters: (1) polar cap size r0, (2) starting accretion column height r̃start, (3) incident

radiation Mach numberMr0, (4) parallel scattering cross-section σ∥, and (5) angle-averaged

scattering cross-section σ.

I employed the proven finite element method to numerically solve for the first time a new

photon transport equation that accounted for spherical geometry rather than cylindrical ge-

ometry over the full range of luminosities. This yielded the photon distribution as a function

of energy and height above the stellar surface. The bulk velocity profile was exact and nu-

merically calculated. It was used instead of the Becker & Wolff approximation, and electron
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temperature was computed rather than assumed to be constant. I also implemented the

first-ever solution iteration procedure whereby the the inverse-Compton temperatures were

updated during each iteration step until the inverse-Compton and electron temperatures

stabilized to within acceptable limits.

12.1 Model Comparisons

We can finally combine the results from the previous chapters to compute the phase-averaged

spectrum from selected accretion powered X-ray pulsars. The parameters for HER X-1 are

summarized in Table 12.1 which includes a comparison between the Becker & Wolff (2007)

cylindrical model, the COMSOL cylindrical model, the conical geometry model by Wolfram

(2011), and my most-recent model. A full listing of pulsars implemented using my new

model is shown in Tables 12.2 and 12.3 which includes the pulsars X-PER, Vela X-1, HER

X-1, CEN X-3, and LMC X-4.

The parameter data for the four HER X-1 models listed in Table 12.1 provide insight

into the differences between cylindrical and conical geometry. My model and the Wolfram

(2011) model (both implement conical geometry) have a significantly higher accretion col-

umn starting height as compared to the Becker & Wolff (2007) analytical and COMSOL

models (both implement cylindrical geometry). The angle-averaged cross-section is sig-

nificantly larger for the conical models which strongly suggests that photon propagation is

predominantly in the perpendicular direction because the cross-sections are essentially equal

to the Thomson cross-section (σT). The parallel scattering cross-section is nearly an order

of magnitude larger for the conical models compared to the cylindrical models. Finally, in

terms of the distance to the stellar surface as a percentage of the overall column length, the

radiation sonic point occurs relatively much closer to the surface for the conical geometry

models. The notable difference between the Wolfram (2011) model and my model is the

value of the bulk velocity at the stellar surface. The Wolfram (2011) velocity is more than

an order of magnitude smaller at 0.00043c as compared to my model at 0.0148c. My model
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includes the dynamics of gas pressure but the Wolfram (2011) model does not. It’s possible

that the interaction of the gas pressure in my two-fluid model does not allow bulk fluid

kinetic energy to escape as quickly (in the form of radiation) which results in additional

kinetic energy (bulk velocity) at the stellar surface.

The pulsars implemented using my new model are shown in Tables 12.2 and 12.3 which

include X-PER, Vela X-1, HER X-1, CEN X-3, and LMC X-4. I include the Wolfram (2011)

model for HER X-1 to provide additional insight. Important observations from the data

comparison include the following:

• Immediately obvious for the lower luminosity pulsars X-PER and Vela X-1 in Table

12.2 is the low starting height r̃start of 4.8375 for X-PER and 4.3 for Vela X-1. Vela

X-1 has a stellar mass of 1.86M⊙ which corresponds to a stellar radius of r̃∗ = 3.64008,

therefore the length of the accretion column is smallest for X-PER with a starting

height only a few meters above the stellar surface! Vela X-1 has a total column length

of 1.81km. These results agree with Basko & Sunyaev (1976) for pulsars with a low

rate of accretion where the inflowing material falls freely down close to the stellar

surface. In the case of X-PER the bulk fluid decelerates from a free-fall velocity of

≈ 0.6c to stagnation over a distance of only a few meters. The dynamics involved in

such a case demonstrates the extreme environments we find near the stellar surfaces

of these pulsars. The radiation sonic point location and total accretion column length

increase with increasing luminosity. It is interesting to note that the accretion column

length of LMC X-4 is ≈ 105 times longer than X-PER. Figure 12.1 shows a log-log plot

of the accretion column length versus the pulsar luminosity and the corresponding best

linear fit. There is a power-law relationship in which an order of magnitude increase

in luminosity corresponds roughly to an order of magnitude increase in the accretion

column length.

• The only model that results in the formation of a gas sonic point is X-PER. The

luminosity of X-PER is very low and the starting accretion column height is essentially

at the stellar surface (only ≈10 meters above the stellar surface). Radiation pressure
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Table 12.1: Comparison of HER X-1 model parameters between Becker & Wolff (2007),
the COMSOL cylindrical model, the conical geometry model by Wolfram (2011), and the
conical geometry two-fluid model by West (2011).

X-ray Pulsar HER X-1 HER X-1 HER X-1 HER X-1

(BW 2007) (BW 2007) (Wolfram) (West)

Model Geometry cylindrical cylindrical conical conical

Spectra Computation analytical numerical numerical numerical

Computation Engine Mathematica COMSOL COMSOL COMSOL

bremssratio Constant n/a n/a 0.145 0.14

Ṁ (g sec−1) 1.11× 1017 1.11× 1016 1.11× 1017 1.11× 1017

log10 [Luminosity] 37.31 37.31 37.31 37.31

B12 (1012G) 3.80 3.80 3.80 3.80

Mass (M⊙) 1.4 1.4 1.4 1.4

Stellar Radius R∗ (cm) 1.0× 106 1.0× 106 1.0× 106 1.0× 106

Polar Cap r0 (cm) 4400 4000 4000 4000

Distance from Earth (kpc) 5.0 5.0 5.0 5.0

Cyclotron std. dev. (keV) 0.01 0.01 0.01 0.01

Blackbody std. dev. (r̃) 0.01 0.01 0.01 0.01

Starting Height (r̃start) 6.64 7.49 33.4 33.4

Radiation Sonic Point (r̃) 5.57058 5.9998 ≈ 7.4 6.0369

Gas Sonic Point (r̃) n/a n/a n/a n/a

Stellar Surface (r̃) 4.83611 4.83611 4.83611 4.83611

Column Length (km) 3.7 5.5 59.1 59.1

σ⊥/σT 1.0 1.0 1.0 1.0

σ̄/σT 2.93× 10−4 2.50× 10−4 0.986 1.0

σ∥/σT 4.15× 10−5 1.50× 10−5 1.11× 10−4 9.00× 10−5

Mr0 n/a n/a n/a 63.3

Mg0 n/a n/a n/a 293.407

Maximum Te (107K) 6.25 7.25 12.0 9.87

Minimum Te (107K) 6.25 7.25 0.6 0.31

vsurface 0 0 0.00043c 0.0148c
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Figure 12.1: Log-log plot of the accretion column length versus the luminosity for five X-
ray pulsars. There is clearly a power-law relationship. Every order of magnitude increase
in luminosity corresponds roughly to an order of magnitude increase in the length of the
accretion column.
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Figure 12.2: Log-log plot of the accretion column aspect ratio (column height/polar cap
radius) versus the luminosity for five X-ray pulsars. A power-law relationship is evident. Ev-
ery order of magnitude increase in luminosity corresponds roughly to an order of magnitude
increase in the aspect ratio of the accretion column.
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appears to dominate in all but the lowest luminosity pulsars.

• The angle-averaged electron scattering cross section σ̄ is much larger in conical geom-

etry as compared to the cylindrical geometry model of Becker & Wolff (2007). LMC

X-4 used σ̄ = 0.24σT and was the only X-ray pulsar which did not implement a full

Thomson cross-section for σ̄.

• The electron scattering cross sections σ⊥, σ∥, and σ̄ for X-PER and Vela X-1 are equal

to the Thomson cross section σT. In these lowest luminosity pulsars the accretion

column length is relatively small and the accreting gas is falling freely close to the

stellar surface with a high velocity (≈ 0.6c). The scattering processes are dominated

by pure Thomson scattering.

• We can see in Figure 12.3 the parallel scattering cross-section increases as σ∥ ∝

(ϵ̄/ϵc)
5.35, which is much stronger than the predicted variation of σ∥ ∝ (ϵ̄/ϵc)

2. We

attribute this to factors such as (1) the geometry of the source, (2) the angular de-

pendence of the cyclotron scattering cross-section, and (3) the neglect of resonance in

the cross-section at the cyclotron energy.

• The bulk velocities at the stellar surface for HER X-1 (0.0148c), CEN X-3 (0.0517c),

and LMC X-4 (0.015c) do not fully stagnate. There is a residual bulk velocity that

indicates the fluid smashes into the dense stellar surface. The primary reason for this

may simply be due to the high accretion rate whereas the lower luminosity pulsars Vela

X-1 and X-PER have bulk velocities at the stellar surface much closer to stagnation.

• The only model analyzed in this research using the absorbratio absorption formalism

was CEN X-3 in which absorbratio was set to 0.23. Using equations (10.41), (10.42),

and (10.43) we see that absorption initiates when labs ≤ (1/0.23) × lsc, or when the

absorption length is less than or equal to approximately 4.35 scattering lengths. The

bremssratio formalism initiated absorption when ϵ̃/(kTe) ≤ 0.114. Both the bremss-

ratio and absorbratio formalisms resulted in converged models that nearly match
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Figure 12.3: Log-log plot of the parallel scattering cross-section (as a multiple of Thomson
cross-section) for both the theoretical value and the model results.

231



each other with respect to converged model parameters. However, we can draw no

conclusion here regarding a potential relationship between photon energies and scat-

tering/absorption lengths until more models are implemented with the absorbratio

formalism.

12.2 Discussion

I investigated five binary X-ray pulsar models using my new model: LMC X-4, CEN X-3,

HER X-1, Vela X-1, and X-PER. These were chosen such that my model could be tested

over the full range of luminosities. A summary of the major findings include the following:

• The radiation sonic point location and total accretion column length increase with

increasing luminosity. A power-law relationship shows that an order of magnitude

increase in luminosity corresponds roughly to an order of magnitude increase in the

accretion column length. Similarly, the polar cap size increases with increasing lumi-

nosity.

• The only model that resulted in the formation of a gas sonic point was X-PER. The

luminosity of X-PER is very low and the starting accretion column height was only

10 meters above the stellar surface). Radiation pressure still dominates in all but the

lowest luminosity pulsars.

• All electron scattering cross sections for the lower luminosity pulsars X-PER and

Vela X-1 are equal to the Thomson cross section σT. The scattering processes are

dominated by pure Thomson scattering.

• Bulk fluid velocity does not stagnate in all cases. There is not enough data to derive a

specific relationship between pulsar luminosity and surface bulk fluid velocity, but the

higher-luminosity sources demonstrate that a small percentage of bulk fluid velocity

smashes into the stellar surface.
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Table 12.2: Summary of Model Parameters for X-PER, Vela X-1, and HER X-1.

X-ray Pulsar X-PER Vela X-1 HER X-1 HER X-1

(Wolfram) (West)

Model Geometry conical conical conical conical

Spectra Computation numerical numerical numerical numerical

Computation Engine COMSOL COMSOL COMSOL COMSOL

Absorption Formalism bremssratio bremssratio bremssratio bremssratio

bremssratio Constant 0.132 0.39 0.145 0.14

absorbratio Constant n/a n/a n/a n/a

Ṁ (g sec−1) 7.53× 1014 2.15× 1016 1.11× 1017 1.11× 1017

log10 [Luminosity] 35.14 36.73 37.31 37.31

B12 (1012G) 3.30 2.60 3.80 3.80

Mass (M⊙) 1.4 1.86 1.4 1.4

Stellar Radius R∗ (cm) 1.0× 106 1.0× 106 1.0× 106 1.0× 106

Polar Cap r0 (cm) 6000 13500 4000 4000

Distance from Earth (kpc) 0.7 2.0 5.0 5.0

Cyclotron stn. dev. (keV) 0.01 0.01 0.01 0.01

Blackbody stn. dev. (r̃) 0.01 0.01 0.01 0.01

Starting Height (r̃start) 4.8375 4.3 33.4 33.4

Radiation Sonic Point (r̃) 4.841561 4.28007 ≈ 7.4 6.0369

Gas Sonic Point (r̃) 4.841452 n/a n/a n/a

Stellar Surface (r̃) 4.83611 3.64008 4.83611 4.83611

Column Length (km) 0.0116 1.81 59.1 59.1

σ⊥/σT 1.0 1.0 1.0 1.0

σ̄/σT 1.0 1.0 0.986 1.0

σ∥/σT 1.0 1.0 1.11× 10−4 9.00× 10−5

Mr0 2.68 20 n/a 63.3

Mg0 470.0 273.068 n/a 293.407

Maximum Te (107K) 5.52 10.8 12.0 9.87

Minimum Te (107K) 1.13 0.57 0.6 0.31

vsurface 0.000104 0.0004c 0.00043c 0.0148c
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Table 12.3: Summary of Model Parameters for CEN X-3 and LMC X-4. CEN X-3 was im-
plemented with both the bremssratio absorption formalism and the absorbratio absorption
formalism.

X-ray Pulsar CEN X-3 CEN X-3 LMC X-4

(formalism I) (formalism II)

Model Geometry conical conical conical

Spectra Computation numerical numerical numerical

Computation Engine COMSOL COMSOL COMSOL

Absorption Formalism bremssratio absorbratio bremssratio

bremssratio Constant 0.114 n/a 0.107

absorbratio Constant n/a 0.23 n/a

Ṁ (g sec−1) 1.51× 1018 1.51× 1018 2.00× 1018

log10 [Luminosity] 37.31 38.45 38.57

B12 (1012G) 2.63 2.63 3.28

Mass (M⊙) 1.4 1.4 1.4

Stellar Radius R∗ (cm) 1.0× 106 1.0× 106 1.0× 106

Polar Cap r0 (cm) 24000 24000 26500

Distance from Earth (kpc) 8.0 8.0 55.0

Cyclotron stn. dev. (keV) 0.01 0.01 0.01

Blackbody stn. dev. (r̃) 0.01 0.01 0.01

Starting Height (r̃start) 110.601 110.601 128

Radiation Sonic Point (r̃) 11.09419 11.09421 18.392

Gas Sonic Point (r̃) n/a n/a n/a

Stellar Surface (r̃) 4.83611 4.83611 4.83611

Column Length (km) 218.7 218.7 254.7

σ⊥/σT 1.0 1.0 1.0

σ̄/σT 1.0 1.0 0.24

σ∥/σT 2.68× 10−4 2.68× 10−4 5.55× 10−4

Mr0 4.8 4.8 9.5

Mg0 140.956 140.19 174.868

Maximum Te (107K) 6.85 6.88 8.75

Minimum Te (107K) 0.81 0.84 0.33

vsurface 0.0517c 0.0517c 0.015c
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• The relationship between incident radiation and gas Mach numbers (Mr0 and Mg0,

respectively) is still undetermined. The data from only 5 X-ray pulsars is inconclusive.

This requires further investigation.
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Appendix A: Derivations

A.1 Divergence of Total Energy Flux

We start with equation (6.2) for the total energy flux Etot:

Etot =
1

2
ρv3 + v(Pg + Ug) + v(Pr + Ur)− c

∂Pr

∂τ∥
− GM∗ρv

r
, (A.1)

where (v < 0) indicates bulk flow is towards the stellar surface. We convert from the parallel

optical depth dimension τ∥ to the radial dimension r via the conversion:

∂

∂τ∥
=

1

neσ∥

∂

∂r
. (A.2)

We use the Eddington’s approximation to convert radiation pressure Pr to radiation

energy density Ur and gas pressure Pg to gas energy density Ug by setting the specific heat

of the ionized gas γg equal to 5/3:

Pr = (γr − 1)Ur =
1

3
Ur (A.3)

Pg = (γg − 1)Ug =
2

3
Ug. (A.4)

Combining equations (A.1) through (A.4) we can rewrite the total energy flux as:

Etot =
1

2
ρv3 + v (γgUg) + v (γrUr)−

c

3neσ∥︸ ︷︷ ︸
κ

∂Ur

∂r︸︷︷︸
∇Ur

−GM∗ρv

r
. (A.5)

The diffusion coefficient κ is defined and the partial derivative of Ur is rewritten in
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vector form to obtain:

Etot =
1

2
ρv3 + v (γgUg) + v (γrUr)− κ∇Ur −

GM∗ρv

r
, (A.6)

where the gradient operator ∇ is understood to operate on the energy density Ur in the

radial direction only:

∇ ≡ ∂

∂r
. (A.7)

The mass flux J is equal to −ρv because v < 0 indicates bulk flow towards the stellar

surface. We use this to convert all ρv combinations in (A.6) to the mass flux J :

Etot = −1

2
v2J − γg

Ug

ρ
J − γr

Ur

ρ
J − κ∇Ur +

GM∗J

r
. (A.8)

Taking the divergence of both sides of (A.8) we obtain:

∇ · Etot = ∇ ·
[
J

(
−1

2
v2 − γg

Ug

ρ
− γr

Ur

ρ
+
GM∗
r

)]
−∇ · κ∇Ur. (A.9)

We define a new dummy function Υ for the purposes of simplifying the problem:

Υ = −1

2
v2 − γg

Ug

ρ
− γr

Ur

ρ
+
GM∗
r

, (A.10)

and equation (A.9) simplifies to:

∇ · Etot = ∇ · [JΥ]−∇ · κ∇Ur. (A.11)

We use the product rule in the divergence operator and the conservation of mass equation

for J (i.e. ∇ · J = 0) to obtain the following expression for the divergence of total energy
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flux:

∇ · Etot = Υ(∇ · J)︸ ︷︷ ︸
=0

+J · ∇Υ−∇ · κ∇Ur (A.12)

= J · ∇Υ−∇ · κ∇Ur (A.13)

= J
∂Υ

∂r
−∇ · κ∇Ur. (A.14)

The last term on the right side of equation (A.14) allows us to introduce the radiation

energy equation:

v
∂Ur

∂r
= γr

Ur

ρ
v
∂ρ

∂r
− Ur

tesc
+∇ · κ∇Ur − U̇tot. (A.15)

We combine equations (A.14) and (A.15) to eliminate the ∇·κ∇Ur term and we obtain

the following combination:

∇ · Etot = J
∂Υ

∂r
− Ur

tesc
− U̇tot − v

∂Ur

∂r
+ γr

Ur

ρ
v
∂ρ

∂r
. (A.16)

The presence of the U̇tot term in equation (A.16) allows us to introduce the gas energy

density equation which is given by equation (6.44):

v
∂Ug

∂r
= γg

Ug

ρ
v
∂ρ

∂r
+ U̇tot. (A.17)

Combining equations (A.16) and (A.17) to eliminate U̇tot we obtain the following:

∇ · Etot = J
∂Υ

∂r
− Ur

tesc
− v

∂Ug

∂r
+ γg

Ug

ρ
v
∂ρ

∂r
− v

∂Ur

∂r
+ γr

Ur

ρ
v
∂ρ

∂r
. (A.18)

The dummy function Υ = Υ(r) is a function of radial position r. Before we proceed

with equation (A.18) we need to apply the derivative operator to all the terms contained
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in Υ(r):

∂Υ

∂r
=

∂

∂r

[
−1

2
v2 − γg

Ug

ρ
− γr

Ur

ρ
+
GM∗
r

]
(A.19)

= −1

2

∂

∂r

[
v2
]
− γg

∂

∂r

[
Ug

ρ

]
− γr

∂

∂r

[
Ur

ρ

]
+

∂

∂r

[
GM∗
r

]
(A.20)

= −v∂v
∂r

− GM∗
r2

− γg
ρ

∂Ug

∂r
− γr

ρ

∂Ur

∂r
+
γgUg

ρ2
∂ρ

∂r
+
γrUr

ρ2
∂ρ

∂r
. (A.21)

When we multiply equation (A.21) by J we obtain the following:

J
∂Υ

∂r
= −J

(
v
∂v

∂r
+
GM∗
r2

)
− J

γg
ρ

∂Ug

∂r
− J

γr
ρ

∂Ur

∂r
+ J

γgUg

ρ2
∂ρ

∂r
+ J

γrUr

ρ2
∂ρ

∂r
, (A.22)

and remembering that J = −ρv we can simplify equation (A.22) to obtain:

J
∂Υ

∂r
= −J

(
v
∂v

∂r
+
GM∗
r2

)
+ vγg

∂Ug

∂r
+ vγr

∂Ur

∂r
− vγg

Ug

ρ

∂ρ

∂r
− vγr

Ur

ρ

∂ρ

∂r
. (A.23)

We return to equation (A.18) and substitute for Υ using equation (A.23):

∇ · Etot = −J
(
v
∂v

∂r
+
GM∗
r2

)
+ vγg

∂Ug

∂r
+ vγr

∂Ur

∂r
− vγg

Ug

ρ

∂ρ

∂r
− vγr

Ur

ρ

∂ρ

∂r

− Ur

tesc
− v

∂Ug

∂r
− v

∂Ur

∂r
+ γg

Ug

ρ
v
∂ρ

∂r
+ γr

Ur

ρ
v
∂ρ

∂r
. (A.24)

Two pairs of terms cancel in equation (A.24) and we are left with the following:

∇ · Etot = −J
(
v
∂v

∂r
+
GM∗
r2

)
− Ur

tesc
+ vγg

∂Ug

∂r
+ vγr

∂Ur

∂r
− v

∂Ug

∂r
− v

∂Ur

∂r
. (A.25)
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The term in the parentheses is easily recognized from the momentum conservation equa-

tion. Using equation (6.75) we can restate the momentum equation by the following:

v
∂v

∂r
+
GM∗
r2

= −1

ρ

∂Ptotal

∂r
. (A.26)

Substituting equation (A.26) into equation (A.25) and substituting v = −J/ρ we obtain

the following:

∇ · Etot = −v∂Ptotal

∂r
− Ur

tesc
+ vγg

∂Ug

∂r
+ vγr

∂Ur

∂r
− v

∂Ug

∂r
− v

∂Ur

∂r
(A.27)

= −v∂Ptotal

∂r
+ v(γg − 1)

partialUg

∂r
+ v(γr − 1)

∂Ur

∂r
− Ur

tesc
. (A.28)

We substitute with equations (A.3) and (A.4) to relate pressure and energy density for both

the radiation and gas, and equation (A.28) simplifies to the following:

∇ · Etot = −v∂Ptotal

∂r
+ v

∂Pg

∂r
+ v

∂Pr

∂r︸ ︷︷ ︸
=0

− Ur

tesc
. (A.29)

The total pressure is equal to the addition of gas and radiation pressure, and so the first

three terms on the right side of equation (A.29) cancel. We finally arrive at the result we

wanted to obtain:

∇ · Etot = − Ur

tesc
. (A.30)
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A.2 Photon Energy Density ODE

To find the photon energy density equation we start with the vector transport equation

from (9.7):

∇·
[
−κ∇f − v⃗ϵ

3

∂f

∂ϵ

]
=

1

ϵ2
∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
+ḟsource−ḟescape−ḟabs

(A.31)

To find the energy density Ur ODE we operate on each f in equation (A.60) with the

following:

Ur =

∫ ∞

0
ϵ3fdϵ. (A.32)

Operating on the left-hand side (LHS) of equation (A.60) using the operator in equation

(A.32) we have the following:

∫ ∞

0
ϵ3[LHS]dϵ =

∫ ∞

0
∇ ·
[
−κ∇f − v⃗ϵ

3

∂f

∂ϵ

]
ϵ3dϵ

= ∇ ·
[
−κ ∂

∂r

(∫ ∞

0
ϵ3fdϵ

)
− v

3

(∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ

)]

= ∇ ·
[
−κ∂Ur

∂r
− v

3

(∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ

)]

= ∇ ·
[
−κ∇Ur −

v

3

(∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ

)]
. (A.33)

To find the last term on the right-hand side (RHS) of equation (A.33) we have to integrate
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by parts:

u = ϵ4

du = 4ϵ3dϵ

dv =
∂f

∂ϵ
dϵ

v =

∫
dv =

∫
∂f

∂ϵ
dϵ = f |∞0 . (A.34)

To find v we have to take the distribution function f at the boundaries of ϵ = 0 and ϵ = ∞.

Using the results of equation (A.34) we have the following for integrating by parts:

∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ = uv −

∫
vdu

= ϵ4f |∞0 −
∫ ∞

0
4ϵ3fdϵ. (A.35)

The distribution function f(r, ϵ) evaluated at the upper and lower energy boundaries has

some important properties. In the limit that ϵ → 0 the distribution f must go to zero to

prevent an infinite energy density. Likewise in the limit that ϵ→ ∞ the distribution f must

also go to zero. Here and throughout the rest of the derivation we shall discard the terms

f |∞0 without apology. For a thorough investigation of f in the limit that ϵ → 0,∞ see the

appendix in Wolfram (2011).

We return to equation (A.35) and apply the arguments made to the distribution function

in the limits that ϵ→ 0,∞ for f |∞0 :
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∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ = ϵ4 f |∞0︸︷︷︸

=0

−
∫ ∞

0
4ϵ3fdϵ

= −
∫ ∞

0
4ϵ3fdϵ

= −4

∫ ∞

0
ϵ3fdϵ

= −4Ur (A.36)

Using the result from equation (A.36) we return to equation (A.33) to obtain the fol-

lowing for the LHS of the Ur ODE:

∇ ·
[
−κ∇Ur −

v

3

(∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ

)]
= ∇ ·

[
−κ∇Ur −

v

3
(−4Ur)

]

= ∇ ·
[
−κ∇Ur +

4

3
vUr

]
(A.37)

Next we operate on the first term on the RHS of equation (A.60) with the operator from

equation (A.32):

∫ ∞

0

1

ϵ2
∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
ϵ3dϵ =

∫ ∞

0
ϵ
∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
dϵ (A.38)
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We expand the right-hand side of equation (A.38):

∫ ∞

0
ϵ
∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
dϵ

=
neσ̄c

mec2

[∫ ∞

0
ϵ
∂

∂ϵ

[
ϵ4f + kTeϵ

4∂f

∂ϵ

]
dϵ

]
− v⃗

3

∫ ∞

0
ϵ
∂

∂ϵ

[
ϵ3 · ∇f

]
dϵ. (A.39)

Reducing further we have:

=
neσ̄c

mec2

[∫ ∞

0
ϵ
∂

∂ϵ

[
ϵ4f
]
dϵ+

∫ ∞

0
ϵ
∂

∂ϵ

[
kTeϵ

4∂f

∂ϵ

]
dϵ

]
− v⃗
3

∫ ∞

0
ϵ

[
ϵ3
∂

∂ϵ
[∇f ] +∇f ∂

∂ϵ

[
ϵ3
]]

dϵ

=
neσ̄c

mec2

[∫ ∞

0
ϵ

[
ϵ4
∂f

∂ϵ
+ f

∂

∂ϵ

(
ϵ4
)]

dϵ+ kTe

∫ ∞

0
ϵ

[
ϵ4
∂2f

∂ϵ2
+
∂f

∂ϵ

∂

∂ϵ

(
ϵ4
)]

dϵ

]

− v⃗

3

[∫ ∞

0
ϵ4
∂

∂ϵ
[∇f ] dϵ+

∫ ∞

0
ϵ∇f

(
3ϵ2
)
dϵ

]

=
neσ̄c

mec2

∫ ∞

0
ϵ5
∂f

∂ϵ
dϵ︸ ︷︷ ︸

term 1

+4

∫ ∞

0
ϵ4fdϵ︸ ︷︷ ︸

term 2

+ kTe

∫ ∞

0
ϵ5
∂2f

∂ϵ2
dϵ︸ ︷︷ ︸

term 3

+4kTe

∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ︸ ︷︷ ︸

term 4



− v⃗

3

∫ ∞

0
ϵ4
∂

∂ϵ

(
∂f

∂r

)
d︸ ︷︷ ︸

term 5

ϵ+ 3

∫ ∞

0
ϵ3
∂f

∂r
dϵ︸ ︷︷ ︸

term 6

 . (A.40)

There are six terms in equation (A.40) we need to evaluate.
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• Term 1 is integrated by parts:

u = ϵ5

du = 5ϵ4dϵ

dv =
∂f

∂ϵ
dϵ

v =

∫
dv =

∫
∂f

∂ϵ
dϵ = f |∞0 . (A.41)

We have for the integral:

∫ ∞

0
ϵ5
∂f

∂ϵ
dϵ = uv −

∫
vdu

= ϵ5f |∞0︸ ︷︷ ︸
=0

−
∫ ∞

0
5ϵ4fdϵ

= −5

∫ ∞

0
ϵ4fdϵ (A.42)

• We leave term 2 untouched for the moment and will re-visit its purpose when we form

the final Ur ODE:

term 2 ≡ 4

∫ ∞

0
ϵ4fdϵ. (A.43)

• Term 3 is also integrated by parts:

u = ϵ5

du = 5ϵ4dϵ

dv =
∂2f

∂ϵ2
dϵ

v =

∫
dv =

∫
∂2f

∂ϵ2
dϵ =

∂f

∂ϵ

∣∣∣∣∞
0

. (A.44)

245



We have for the integral:

kTe

∫ ∞

0
ϵ5
∂2f

∂ϵ2
dϵ = kTe

(
uv −

∫
vdu

)

= kTe

ϵ5∂f∂ϵ
∣∣∣∣∞
0︸ ︷︷ ︸

=0

−
∫ ∞

0
5ϵ4

∂f

∂ϵ
dϵ


= kTe

(
−5

∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ

)
. (A.45)

The presence of ∂f/∂ϵ in equation (A.45) indicates we have to integrate by parts

a second time. We already performed this integration and the result is shown in

equation (A.36): ∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ = −4Ur. (A.46)

Using equation (A.46) we are able to determine term 3:

kTe

(
−5

∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ

)
= kTe(−5)(−4Ur) = 20kTeUr (A.47)

• Term 4 uses the calculation found previously in equation (A.36) and we obtain the

following for the integral:

4kTe

∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ = 4kTe(−4Ur) = −16kTeUr (A.48)
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• Term 5 is rearranged by taking the partial derivative with respect to r outside integral:

∫ ∞

0
ϵ4
∂

∂ϵ

(
∂f

∂r

)
dϵ =

∂

∂r

[∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ

]

=
∂

∂r
[−4Ur]

= −4
∂Ur

∂r

= −4∇Ur (A.49)

• For term 6 we rearrange the partial derivative and use equation (A.32) to obtain:

3

∫ ∞

0
ϵ3
∂f

∂r
dϵ = 3

∂

∂r

[∫ ∞

0
ϵ3fdϵ

]

= 3
∂Ur

∂r

= 3∇Ur (A.50)

We add the six terms from equations (A.42), (A.43), (A.47), (A.48), (A.49), and (A.50) to

obtain equation (A.38):

∫ ∞

0

1

ϵ2
∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
ϵ3dϵ =

neσ̄c

mec2

[
−
∫ ∞

0
ϵ4fdϵ+ 4kTeUr

]
+
v⃗

3
∇Ur (A.51)

We operate on the second term on the RHS of equation (A.60) with the operator from
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equation (A.32) to obtain the following:

∫ ∞

0

[
ḟsource − ḟescape − ḟabs

]
ϵ3dϵ =

∫ ∞

0

Qsources

Ωr2
ϵ3dϵ︸ ︷︷ ︸

photon production

−
∫ ∞

0

f

tescape
ϵ3dϵ︸ ︷︷ ︸

photon escape

− c

∫ ∞

0
αff
ϵ ϵ

3fdϵ︸ ︷︷ ︸
photon absorption

. (A.52)

We used the energy dependent free-free absorption coefficient αff
ϵ to describe the rate of

change of f due to bremsstrahlung absorption:

ḟabs =
f

tff
= cαff

ϵ f. (A.53)

The integral in the photon escape term in equation (A.52) is evaluated using equation (A.32)

to obtain energy density Ur:

∫ ∞

0

f

tescape
ϵ3dϵ =

Ur

tescape
. (A.54)

A first form of the Ur ODE is obtained by substituting equation (A.54) for photon

escape and adding equations (A.37), (A.51), and (A.52):

∇ ·
[
−κ∇Ur +

4

3
vUr

]
=
neσ̄c

mec2

[
−
∫ ∞

0
ϵ4fdϵ+ 4kTeUr

]
+
v⃗

3
∇Ur

+

∫ ∞

0

Qsources

Ωr2
ϵ3dϵ− Ur

tesc
− c

∫ ∞

0
αff
ϵ ϵ

3fdϵ. (A.55)
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The first term on the RHS of equation (A.55) contains information about the inverse-

Compton temperature TIC. We rearrange this term to obtain:

neσ̄c

mec2

[
−
∫ ∞

0
ϵ4fdϵ+ 4kTeUr

]
=

4neσ̄ckTe
mec2

[
1−

∫∞
0 ϵ4fdϵ

4kTeUr

]
Ur. (A.56)

The second term in the brackets on the RHS of equation (A.56) is recognized as the g(r)

function from equation (6.65), which is the ratio of inverse-Compton temperature TIC to

electron temperature Te:

g(r̃) ≡ TIC
Te

=
1

4kTe

∫∞
0 ϵ4f(r̃, ϵ)dϵ

4
∫∞
0 ϵ3f(r̃, ϵ)dϵ

(A.57)

Combining equations (A.55), (A.56), and (A.57) we finally obtain the Ur ODE:

∇ ·
[
−κ∇Ur +

4

3
v⃗Ur

]
=

4neσ̄ckTe
mec2

[1− g(r)]Ur +
v⃗

3
· ∇Ur

+

∫ ∞

0

Qsources

Ωr2
ϵ3dϵ− Ur

tesc
− c

∫ ∞

0
αff
ϵ ϵ

3fdϵ. (A.58)

249



A.3 Photon Number Density ODE

Finding the photon energy density equation is very similar to finding the radiation energy

density equation except that we operate on each f in equation (9.7) with the operator:

nph =

∫ ∞

0
ϵ2fdϵ. (A.59)

Using the vector transport equation from (9.7):

∇·
[
−κ∇f − v⃗ϵ

3

∂f

∂ϵ

]
=

1

ϵ2
∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
+ḟsource−ḟescape−ḟabs

(A.60)

we operate first on the left-hand side (LHS) of equation (A.60) using the operator in equation

(A.59) we have the following:

∫ ∞

0
ϵ2[LHS]dϵ =

∫ ∞

0
∇ ·
[
−κ∇f − v⃗ϵ

2

∂f

∂ϵ

]
ϵ3dϵ

= ∇ ·
[
−κ ∂

∂r

(∫ ∞

0
ϵ2fdϵ

)
− v

3

(∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ

)]

= ∇ ·
[
−κ

∂nph
∂r

− v

3

(∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ

)]

= ∇ ·
[
−κ∇nph −

v

3

(∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ

)]
(A.61)

To find the last term on the right-hand side (RHS) of equation (A.61) we have to integrate
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by parts:

u = ϵ3

du = 3ϵ2dϵ

dv =
∂f

∂ϵ
dϵ

v =

∫
dv =

∫
∂f

∂ϵ
dϵ = f |∞0 . (A.62)

To find v we have to take the distribution function f at the boundaries of ϵ = 0 and ϵ = ∞.

Using the results of equation (A.62) we have the following for integrating by parts:

∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ = uv −

∫
vdu

= ϵ3f |∞0 −
∫ ∞

0
3ϵ2fdϵ. (A.63)

We use the same argument as before (in the derivation of the Ur ODE) for evaluating f(r, ϵ)

in the limit that ϵ → 0 and ϵ → ∞. See the appendix in Wolfram (2011) for a detailed

discussion. For equation (A.63) we get:

∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ = ϵ3 f |∞0︸︷︷︸

=0

−
∫ ∞

0
3ϵ2fdϵ

= −
∫ ∞

0
3ϵ2fdϵ

= −3

∫ ∞

0
ϵ2fdϵ

= −3nph (A.64)
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Using the result from equation (A.64) we return to equation (A.61) to obtain the fol-

lowing for the LHS of the nph ODE:

∇ ·
[
−κ∇nph −

v

3

(∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ

)]
= ∇ ·

[
−κ∇nph −

v

3
(−3nph)

]
= ∇ · [−κ∇nph + vnph] (A.65)

Next we operate on the first term on the RHS of equation (A.60) with the operator from

equation (A.59):

∫ ∞

0

1

ϵ2
∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
ϵ2dϵ =

∫ ∞

0

∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
dϵ (A.66)

We expand the right-hand side of equation (A.66):

∫ ∞

0

∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
dϵ

=
neσ̄c

mec2

[∫ ∞

0

∂

∂ϵ

[
ϵ4f + kTeϵ

4∂f

∂ϵ

]
dϵ

]
− v⃗

3

∫ ∞

0

∂

∂ϵ

[
ϵ3 · ∇f

]
dϵ. (A.67)

Reducing further we have:

=
neσ̄c

mec2

[∫ ∞

0

∂

∂ϵ

[
ϵ4f
]
dϵ+

∫ ∞

0

∂

∂ϵ

[
kTeϵ

4∂f

∂ϵ

]
dϵ

]
− v⃗
3

∫ ∞

0

[
ϵ3
∂

∂ϵ
[∇f ] +∇f ∂

∂ϵ

[
ϵ3
]]

dϵ
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=
neσ̄c

mec2

[∫ ∞

0

[
ϵ4
∂f

∂ϵ
+ f

∂

∂ϵ

(
ϵ4
)]

dϵ+ kTe

∫ ∞

0

[
ϵ4
∂2f

∂ϵ2
+
∂f

∂ϵ

∂

∂ϵ

(
ϵ4
)]

dϵ

]

− v⃗

3

[∫ ∞

0
ϵ3
∂

∂ϵ
[∇f ] dϵ+

∫ ∞

0
∇f

(
3ϵ2
)
dϵ

]

=
neσ̄c

mec2

∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ︸ ︷︷ ︸

term 1

+4

∫ ∞

0
ϵ3fdϵ︸ ︷︷ ︸

term 2

+ kTe

∫ ∞

0
ϵ4
∂2f

∂ϵ2
dϵ︸ ︷︷ ︸

term 3

+4kTe

∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ︸ ︷︷ ︸

term 4



− v⃗

3

∫ ∞

0
ϵ3
∂

∂ϵ

(
∂f

∂r

)
d︸ ︷︷ ︸

term 5

ϵ+ 3

∫ ∞

0
ϵ2
∂f

∂r
dϵ︸ ︷︷ ︸

term 6

 . (A.68)

There are six terms in equation (A.68) we need to evaluate.

• Term 1 is integrated by parts:

u = ϵ4

du = 4ϵ3dϵ

dv =
∂f

∂ϵ
dϵ

v =

∫
dv =

∫
∂f

∂ϵ
dϵ = f |∞0 . (A.69)

253



We have for the integral:

∫ ∞

0
ϵ4
∂f

∂ϵ
dϵ = uv −

∫
vdu

= ϵ4f |∞0︸ ︷︷ ︸
=0

−
∫ ∞

0
4ϵ3fdϵ

= −4

∫ ∞

0
ϵ3fdϵ (A.70)

• We leave term 2 untouched for the moment and will re-visit its purpose when we form

the final nph ODE:

term 2 ≡ 4

∫ ∞

0
ϵ3fdϵ. (A.71)

• Term 3 is also integrated by parts:

u = ϵ4

du = 4ϵ3dϵ

dv =
∂2f

∂ϵ2
dϵ

v =

∫
dv =

∫
∂2f

∂ϵ2
dϵ =

∂f

∂ϵ

∣∣∣∣∞
0

. (A.72)
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We have for the integral:

kTe

∫ ∞

0
ϵ4
∂2f

∂ϵ2
dϵ = kTe

(
uv −

∫
vdu

)

= kTe

ϵ4∂f∂ϵ
∣∣∣∣∞
0︸ ︷︷ ︸

=0

−
∫ ∞

0
4ϵ3

∂f

∂ϵ
dϵ


= kTe

(
−4

∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ

)
. (A.73)

The presence of ∂f/∂ϵ in equation (A.73) indicates we have to integrate by parts a

second time:

u = ϵ3

du = 3ϵ2dϵ

dv =
∂f

∂ϵ
dϵ

v =

∫
dv =

∫
∂f

∂ϵ
dϵ = f |∞0 . (A.74)

We have for the integral:

∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ = uv −

∫
vdu

= ϵ3f |∞0︸ ︷︷ ︸
=0

−
∫ ∞

0
3ϵ2fdϵ

= −3

∫ ∞

0
ϵ2fdϵ

= −3nph (A.75)
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Using equation (A.75) we are able to determine term 3:

kTe

(
−4

∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ

)
= kTe(−4)(−3nph) = 12kTenph (A.76)

• Term 4 uses the calculation found previously in equation (A.75) and we obtain the

following for the integral:

4kTe

∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ = 4kTe(−3nph) = −12kTenph (A.77)

• Term 5 is rearranged by taking the partial derivative with respect to r outside integral:

∫ ∞

0
ϵ3
∂

∂ϵ

(
∂f

∂r

)
dϵ =

∂

∂r

[∫ ∞

0
ϵ3
∂f

∂ϵ
dϵ

]

=
∂

∂r
[−3nph]

= −3
∂nph
∂r

= −3∇nph (A.78)

• For term 6 we rearrange the partial derivative and use equation (A.59) to obtain:

3

∫ ∞

0
ϵ2
∂f

∂r
dϵ = 3

∂

∂r

[∫ ∞

0
ϵ2fdϵ

]

= 3
∂nph
∂r

= 3∇nph (A.79)

We see that equations (A.70) and (A.71) cancel each other, equations (A.76) and (A.77)

cancel each other, and also equations (A.78) and (A.79) cancel each other. Therefore
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equation (A.66) is zero:

∫ ∞

0

1

ϵ2
∂

∂ϵ

[
ϵ2
(
neσ̄c

mec2
ϵ2
[
f + kTe

∂f

∂ϵ

]
− ϵv⃗

3
· ∇f

)]
ϵ2dϵ = 0. (A.80)

We operate on the second term on the RHS of equation (A.60) with the operator from

equation (A.59) to obtain the following:

∫ ∞

0

[
ḟsource − ḟescape − ḟabs

]
ϵ2dϵ =

∫ ∞

0

Qsources

Ωr2
ϵ3dϵ︸ ︷︷ ︸

photon production

−
∫ ∞

0

f

tescape
ϵ2dϵ︸ ︷︷ ︸

photon escape

− c

∫ ∞

0
αff
ϵ ϵ

2fdϵ︸ ︷︷ ︸
photon absorption

. (A.81)

We used the energy dependent free-free absorption coefficient αff
ϵ to describe the rate of

change of f due to bremsstrahlung absorption:

ḟabs =
f

tff
= cαff

ϵ f. (A.82)

The integral in the photon escape term in equation (A.81) is evaluated using equation (A.59)

to obtain photon number density nph:

∫ ∞

0

f

tescape
ϵ2dϵ =

nph
tescape

. (A.83)

A final form of the nph ODE is obtained by substituting equation (A.83) for photon

escape and adding equations (A.65), (A.80), and (A.81):

∇ · [−κ∇nph + vnph] = 0 +

∫ ∞

0

Qsources

Ωr2
ϵ2dϵ−

nph
tesc

− c

∫ ∞

0
αff
ϵ ϵ

2fdϵ. (A.84)
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Appendix B: Model Constants & Expressions

B.1 Physical Constants & Conversion Factors

Table B.1: Physical Constants & Conversion Factors

M⊙ 1.9889× 1033 Solar mass (g)

me 9.10938188× 10−28 Electron mass (g)

mp 1.67262158× 10−24 Proton mass (g)

c 2.99792458× 1010 Speed of light (cm s-1)

k 1.3806504× 10−16 Boltzmann constant (erg K-1)

G 6.67428× 10−8 Gravitational constant (dyne

cm2 g-2)

h 6.62606896× 10−27 Planck’s constant (ergs Hz-1)

σT 6.6524586× 10−25 Thomson cross section (cm2)

parsec 3.085677581× 1018 Astronomical distance (cm)

kpc 1000 parsec Kiloparsec (cm)

γg 5/3 Gas specific heat ratio

γr 4/3 Radiation specific heat ratio
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B.2 Model Expressions

Table B.2: Model Expressions

Name Expression Description

δ(x− x0)
1√
2πσx

e−(x−x0)2/(2σ2
x) Gaussian approximation to delta

function

RG
GM∗
c2

Gravitational length units [cm]

Lx
GM∗Ṁ

R∗
Luminosity [ergs s-1]

θ(Ω) cos−1
(
1− Ω

2π

)
Conic Half-angle [rad]

rcap r0 Polar cap radius [cm]

Acap Ωr20 Accretion impact area at stellar
surface [cm2]

ϵc
qhB

2πmec
Cyclotron energy [ergs]

A(r) Ωr2 Cone cross sectional area [cm2]

ũ(r̃) v/c Dimensionless velocity [units of
c]

ρ(r̃) Ṁ
Ac|ũ| Gas density [g cm-3]

ne(r̃)
ρ
mp

Electron number density [e-

cm-3]

tesc(r̃)
neσ⊥r2escape

c Photon column escape time [s]

κ(r̃) c
3neσ∥

Diffusion coefficient[cm2 s-1]

nph(r̃)
∫
ϵ2f(r̃, ϵ)dϵ Photon number density [cm−3]

F#(r̃) −κdnph

dr̃ + cunph Photon number flux [ph cm-2 s-1]

Ur(r̃)
∫
ϵ3f(r̃, ϵ)dϵ Photon energy density [erg cm−3]

ar(r̃)
√
γrPr/ρ Radiation sound speed [cm

sec−1]

ag(r̃)
√
γgPg/ρ Gas sound speed [cm sec−1]

TIC(r̃)
1
4k

∫
ϵ4fdϵ∫
ϵ3fdϵ

Inverse Compton Temperature
[K]

Continued on next page
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Table B.2 – continued from previous page

Name Expression Description

Qff(r, ϵ) 3.68× 1036Ωr2ϵ−3ρ2T
−1/2
e e−ϵ/kTe Bremsstrahlung source Function

Qbb(rth, ϵ)
2πΩr2th
c2h3

δ(r−rth)

eϵ/kTth−1
Blackbody source function

Qcyc(r, ϵc) 6.11× 1051Ωr2ρ2B
−7/2
12 H

(
ϵc
kTe

)
e−ϵc/kTeδ(ϵ− ϵc) Cyclotron source function

H(ϵc/kTe)

 0.15
√
7.5 : ϵc

kTe
≥ 7.5

0.15
√

ϵc
kTe

: ϵc
kTe

< 7.5
Cyclotron switch function

Qsources Qff +Qcyc +Qbb Total source function

Ṅ(r̃, ϵ) Aϵ2f
tesc

Photon wall emission spectrum
[ph s-1 cm-1 erg-1]

Φϵ(ϵ)
∫
Ṅdr̃ Column integrated spectrum

[sec−1 erg−1]

αff
ν (r̃, ϵ) 3.7× 108T

−1/2
e neniν

−3
(
1− e−hν/kTe

)
ḡff Bremsstrahlung absorption coef-

ficient [cm-1]

αff
R(r̃) 1.7× 10−25T

−7/2
e neni Rosseland mean absorption coef-

ficient [cm−1]

αff
Ur

∫
ϵ3αff

νfdϵ∫
ϵ3fdϵ

Mean absorption coefficient for

energy density

F⊕
Φϵ(ϵ)
4πD2 Spectral flux [s-1 cm-2 keV-1] at

earth
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Appendix C: Glossary of Symbols

Physical symbols used throughout the text are listed below, along with a brief description

of their meaning.

Table C.1: Symbol Definitions

Symbol Description

a Acceleration [cm s-2]

a Radiation sound speed [cm s-1]

ã Nondimensional radiation sound speed (a/c)

A Cone cross sectional area [cm2]

Acap Accretion impact area at stellar surface [cm2]

B,B12 Neutron star magnetic field [gauss]

c Speed of light [cm s-1]

D Distance to pulsar [kpc]

e Electron charge [statcoulomb]

E Energy [ergs]

Ẽ Dimensionless energy flux [erg s-1 cm-2]

f, f (⃗r, ϵ) Photon distribution function [ph cm-3 erg-3]

fG Photon distribution Green’s function [ph cm-3 erg-3]

F⃗ Radiation flux vector [ph cm-2 s-1 erg-3]

F Energy flux [ergs cm-2 s-1]

F⊕ Spectral flux at earth [cm-2 s-1 keV-1]

g Gravitational acceleration [cm s-2]

ḡff Bremsstrahlung Gaunt factor ∼ 1

G Gravitational constant [dyne cm2 g-2]

G COMSOL Neumann boundary condition
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Table C.1 – continued from previous page

Symbol Description

h Planck’s Constant [ergs Hz-1]

H Cyclotron switch function (Arons et al. 1987)

J Mass flux [g cm-2 s-1]

k Boltzmann constant [ergs K-1]

lsc Scattering mean free length [cm]

labs Absorption mean free length [cm]

LEdd Eddington luminosity [ergs s-1]

L,Lx Luminosity [ergs s-1]

me Electron mass [g]

mp Proton mass [g]

M⊙ Solar mass [g]

M∗,M Neutron star mass [g]

Ṁ Mass accretion rate [g s-1]

n(ν) Photon occupation number

nph Photon number density [ph cm-3]

ne Electron number density [e- cm-3]

ni Proton number density [p+ cm-3]

ṅϵ Photon volume emission rate (emissivity) [ph s-1 cm-3 erg-1]

ṅcycϵ Cyclotron photon emissivity [ph s-1 cm-3 erg-1]

ṅffϵ Bremsstrahlung photon emissivity [ph s-1 cm-3 erg-1]

Ṅ Photon wall emission spectrum [ph s-1 cm-1 erg-1]

Pr Radiation pressure

Pg Gas pressure

Qsources Total source function [ph s-1 cm-1 ergs-3]

Qbb Blackbody source function [ph s-1 cm-1 ergs-3]

Qcyc Cyclotron source function [ph s-1 cm-1 ergs-3]
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Table C.1 – continued from previous page

Symbol Description

Qff Bremsstrahlung source function [ph s-1 cm-1 ergs-3]

r Radial distance to origin [cm]

r̃ Nondimensional distance to origin (r/RG)

rescape Escape distance across column from centerline axis [cm]

rcap, r0 Accretion polar cap radius [cm]

RG Gravitational length [cm]

rstart, r̃start Position of top of column

r̃th Distance to top of thermal mound [cm]

R∗ Neutron star radius [cm]

t Time [s]

tesc Photon column escape time [s]

tff , tabs Photon absorption mean time [s]

Te Electron temperature [K]

Tcore Column core effective temperature [K]

Teff Column effective surface temperature [K]

TIC Inverse Compton temperature [K]

Tth Thermal mound characteristic temperature [K]

u Dimensionless velocity [units of c]

Ur Photon energy density [ergs cm-3]

v Scalar velocity [cm s-1]

ũ Dimensionless scalar velocity (v/c)

v⃗ Velocity vector [cm s-1]

vff Free-fall velocity [cm s-1]

V Volume [cm3]

w⊥ Photon mean diffusion velocity perpendicular to axis [cm s-1]

z Altitude above stellar surface [cm]
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Table C.1 – continued from previous page

Symbol Description

zsp Altitude of the sonic point [cm]

zth Altitude of top of thermal mound [cm]

α Becker approximate velocity parameter

α Absorption coefficient [cm-1]

αff
ν Bremsstrahlung absorption coefficient [cm-1]

αff
R Rosseland mean absorption coefficient [cm-1]

αff
Ur

Mean absorption coefficient for Energy density [cm-1]

β Energy flux loss parameter

γ Adiabatic index

Γ⃗ COMSOL conserved flux vector

Γr̃,Γϵ̃ r̃ and ϵ̃ components of Γ⃗

δ(x− x0) Dirac delta function

ϵ Energy [ergs]

ϵ̃ Energy [keV]

ϵc Cyclotron energy [ergs] (11.57B12(keV))

θ Cone Half-angle [rad]

κ Diffusion coefficient [cm2 s-1]

ν Radiation frequency [Hz]

ξ Becker ξ parameter ∝ taccrete/tesc

ρ Gas density [g cm-3]

σT Thomson cross section [cm2]

σ⊥ Perpendicular scattering cross section [cm2]

σ∥ Parallel scattering cross section [cm2]

σcyc Standard deviation for cyclotron gaussian

σbb Standard deviation for bb gaussian

σ̄ Angle averaged scattering cross section [cm2]
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Table C.1 – continued from previous page

Symbol Description

τ Optical depth

τabs Absorption optical depth

τ⊥ Perpendicular scattering optical depth

τ∥ Parallel scattering optical depth

Φϵ Column integrated spectrum [ph s-1 erg-1]

Ω Solid angle [sr]
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