
ON SELECTION BIAS MAGNITUDES

by

Julius Alexander Najab
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Psychology

Committee:

Director

Department Chairperson

Program Director

Dean, College of
Humanities and Social Sciences

Date: Spring Semester 2014
George Mason University
Fairfax, VA



On Selection Bias Magnitudes

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Julius Alexander Najab
Master of Arts

George Mason University, 2007
Bachelor of Arts

University of Arizona, 2002

Director: Patrick E. McKnight, University Professor and Chair
Department of Psychology

Spring Semester 2014
George Mason University

Fairfax, VA



Copyright c© 2014 by Julius Alexander Najab
All Rights Reserved

ii



Acknowledgments

I am who I am and accomplished what I have with the help of many people and I would
like to thank just a few of them here. Su-Lin Trepanitis, Kelvin Najab, Steve Ellis, Tu-
sing Touchton, and Patrick E. McKnight. Su-Lin, Steve, Kelvin, and Tu-sing prepared and
contributed to my development and character in ways that I will never be able to repay or
truly express. Any and all of my scientific accomplishments, insights, and skills are due to
Patrick E. McKnight and his tireless efforts and encouragement. Each of you contributed
much to putting me in this position and I thank you.

iii



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Selection Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Prior Studies of Selection Bias . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Prior Estimates of Selection Bias Effects . . . . . . . . . . . . . . . . . . . . 5
1.4 Why Estimate Selection Bias Effects? . . . . . . . . . . . . . . . . . . . . . 6

1.5 Using Selection Bias Effects - Estimate & Subtract . . . . . . . . . . . . . . 6

1.6 Purpose of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Selection Bias Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Research Assistants . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Experimental Rooms . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Measuring Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Treatment Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Aim 1: Estimating Selection Bias Effects . . . . . . . . . . . . . . . 25

2.5.3 Aim 2: Estimating Distributions of Selection Bias Effects . . . . . . 27

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Treatment Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Ability as a Direct Selection Variable . . . . . . . . . . . . . . . . . . 30

3.1.2 Gender as an Indirect Selection Variable . . . . . . . . . . . . . . . . 31
3.2 Aim 1: Estimating Selection Bias Effects . . . . . . . . . . . . . . . . . . . . 33

iv



3.2.1 Pretest Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Posttest Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Aim 2: Estimating Distributions of Selection Bias Effects . . . . . . . . . . 35

3.3.1 Distributions of Selection Bias Effects at Pretest . . . . . . . . . . . 35
3.3.2 Estimating Area Under the Curve (AUC) for probability . . . . . . . 36

3.3.3 Distributions of Selection Bias Effects at Posttest . . . . . . . . . . . 37
3.3.4 Predicting Selection Bias via Selection Mechanism . . . . . . . . . . 38

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1 Aim 1: Estimating Selection Bias Effects . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Direct Selection Mechanism . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Indirect Selection Mechanism . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Aim 2: Distributional Properties of Selection Bias Effects . . . . . . . . . . 44

4.3 Relating Selection Mechanism and Selection Bias . . . . . . . . . . . . . . . 46

4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.1 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Treatment Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.3 Treatment Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 Non-Generalizable Posterior Distributions . . . . . . . . . . . . . . . 49
4.4.5 Potential Range Restriction in the Direct Mechanism . . . . . . . . . 49

4.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.1 Appendix: Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.2 An example of selection bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.3 A Clear Definition of Selection Bias . . . . . . . . . . . . . . . . . . . . . . 53
A.3.1 Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.3.2 Randomization - The process . . . . . . . . . . . . . . . . . . . . . . 56

A.3.3 Randomization - The outcome . . . . . . . . . . . . . . . . . . . . . 56
A.3.4 Sampling or sample characteristics . . . . . . . . . . . . . . . . . . . 57

A.3.5 Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.3.6 Effect size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.4 Justifying a focus on selection bias . . . . . . . . . . . . . . . . . . . . . . . 60

A.5 Methods to Treat Selection Bias . . . . . . . . . . . . . . . . . . . . . . . . 62
A.5.1 Don Rubin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.5.2 Donald T. Campbell . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.5.3 A brief history of estimating selection bias . . . . . . . . . . . . . . . 79

A.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

v



B Vocabulary Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C Mathematics Performance Revised . . . . . . . . . . . . . . . . . . . . . . . . . . 110
D R Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

vi



List of Tables

Table Page

2.1 Selection and Outcome Variable Correlations . . . . . . . . . . . . . . . . . 15
2.2 Ability Selection Group Descriptives . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Ability Selection Group Descriptives . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Gender Selection Group SAT Descriptives . . . . . . . . . . . . . . . . . . . 18

2.5 Gender Selection Group ETS Descriptives . . . . . . . . . . . . . . . . . . . 19

3.1 Direct Selection Group MPR Descriptives . . . . . . . . . . . . . . . . . . . 30

3.2 Indirect Selection Group MPR Descriptives . . . . . . . . . . . . . . . . . . 32

3.3 ES for Pretest Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 ES for Posttest Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Resampled Pretest Effects Descriptive Statistics . . . . . . . . . . . . . . . . 36

3.6 Resampled Posttest Effects Descriptive Statistics . . . . . . . . . . . . . . . 38

A.1 Table of selection bias treatment procedures . . . . . . . . . . . . . . . . . . 80

A.2 Table of keystone selection bias related contributions . . . . . . . . . . . . . 82

A.3 Table of selection bias effect sizes . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



List of Figures

Figure Page

2.1 Causal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Design for ability selection variable . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Design for gender - the pseudo selection variable . . . . . . . . . . . . . . . 14

3.1 MPR for the direct selection variable . . . . . . . . . . . . . . . . . . . . . . 31
3.2 MPR for the indirect selection variable . . . . . . . . . . . . . . . . . . . . . 33
3.3 Pretest effect distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Combined Distributions AUC . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Posttest effect distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Selection variable-pretest correlation predicting posttest bias effect size . . . 40

3.7 Regression diagnostic plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1 Regression Discontinuity Design . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



Abstract

ON SELECTION BIAS MAGNITUDES

Julius Alexander Najab, PhD

George Mason University, 2014

Dissertation Director: Dr. Patrick E. McKnight

Selection bias remains the most prominent threat to validity in social and behavioral

sciences. Non-equivalence between groups prior to an intervention reduces our ability to

evaluate or infer intervention effects. Some methodologists argue that the effects due to

selection bias may be estimated and subtracted from observed effects. If the estimate and

subtract method were tenable then social scientists might be able to better understand past,

present and future findings by employing this relatively simple procedure. Unfortunately,

despite its prominence, selection bias remains largely unknown with respect to its magnitude

of effect. The current dissertation aimed to do two things to facilitate the estimate and

subtract method. First, I estimated the mean effect for selection bias effects in two different

domains. The purpose for the different domains was to ensure that the estimates derived in

one domain generalize into at least one other domain. Second, I used a resampling procedure

to estimate the distribution of possible effect sizes due to selection bias. The sampling

distribution allowed me to estimate the probability of any effect - at least according to

the current study and, more importantly, to introduce a method that other researchers

may employ in future studies similar to this study. Both aims were met by experimentally

manipulating a study to produce selection bias effects. My overall aim was to demonstrate

that an experimental procedure to manipulate, estimate,



and model selection bias was both possible and fruitful. Through this demonstration, I

encourage other researchers to consider an experimental approach to better understanding

threats to validity.



Chapter 1: Introduction

Selection bias threatens scientific inference because its very presence means that compar-

isons groups are different for a reason outside of the researcher’s manipulation. Since se-

lection bias threatens scientific validity, researchers direct substantial attention, effort and

resources to protect against or adjust this bias. Selection bias is theorized to occur and has

been empirically observed in studies without random assignment (RA). The observation

of selection bias in non-randomized (NR) studies has caused serious concern among social

science researchers, with many suggesting that NR studies are unsuitable methodological

designs for scientific research (Procedures and standards handbook (Version 3.0), 2013). Re-

search examining the differences in selection bias effects between NR and RA studies has

rarely focused on the presence and magnitude of selection bias itself; instead, the research

offers an evaluation of the effectiveness of adjustment tools designed to reduce bias. Few

studies have directly measured the magnitude of selection bias effects. Of those studies

from which a measure of selection bias can be measured or inferred, findings provide mixed

messages about the magnitude of these effects - adding further uncertainty about the ac-

tual influence of selection bias on scientific results. Still, no previous study explicitly and

directly manipulated selection bias in order to evaluate the influence.

Prior work (Donley & Ashcraft, 1992; Shadish, Clark, & Steiner, 2008) manipulated

selection bias indirectly via self-selection or other mechanisms but this study is the first to

not rely on self-selection to directly manipulate selection bias. Researchers remain deeply

concerned about selection bias and with little known about the magnitude of its influence

or the probability of its relevance. Without this knowledge, researchers have no empirical

basis for their concerns. The current study aims to produce selection bias explicitly and

directly to assess the potential severity - as measured by the magnitude and probability of

effects.
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1.1 Selection Bias

Selection bias is defined as any initial difference observed between comparison groups that is

relevant to the outcome measure (Campbell, 1957). These initial differences often interact

with the treatment and result in a compounded posttest difference from which it is diffi-

cult to disentangle the true treatment effect (B. Smith & Sechrest, 1991). The creation of

non-equivalent groups is inherent in selection bias due to relevant participant variables that

are not statistically controlled for (Campbell & Stanley, 1963; Shadish, Cook, & Campbell,

2002). For example, consider the evaluation of a new mathematics educational curriculum.

If a disproportionate number of participants with high math ability are assigned to the new

curriculum relative to the standard curriculum, then the results will be biased towards the

adoption of the new mathematics curriculum. The higher scores obtained by the partici-

pants in the new curriculum may be attributed to the curriculum being a better program or

to the group’s personal abilities or the interaction between the two factors. That bias, while

present at pretest, becomes relevant at posttest largely due to pretest differences. Although

a conceptual definition of selection bias has been firmly established in the literature and

throughout social science, the classifications or causes of the bias are less clear and less

understood with respect to their varying impacts of the outcome measure.

There are several types of classifications based on how participants are selected or as-

signed to groups including self, geographic, and administrative (Guo & Fraser, 2010; Shadish

et al., 2002). Recent findings suggest that these classifications alone are not beneficial for

identifying non-equivalent comparison groups because any of these assignment methods

may result in non-equivalent comparison groups. Instead, focusing on assignment variables

directly related or proximal to the potential selection bias are better suited for modeling

bias in results than assignment variables indirectly related or distal to selection (Steiner,

Cook, Shadish, & Clark, 2010). Mounting evidence suggests that typical “off-the-shelf”

variables (e.g. demographic variables) are poor predictors of selection bias while variables

closer to the selection mechanism (e.g. motivation, ability) perform better in identifying

2



and reducing causes of selection bias (Cook, Shadish, & Wong, 2008; Glazerman, Levy, &

Myers, 2003; Shadish et al., 2008; Steiner et al., 2010). For example, including the influence

of math ability on the mathematics treatment mentioned previously would likely produce

better estimates of modeling bias than would be yielded from including musical ability. In

accord with this perspective, this study focuses on selection variables related to the assign-

ment mechanism (i.e., direct or indirect) rather than the overarching classification types of

how (e.g., self, geographic, etc.).

1.2 Prior Studies of Selection Bias

Historically, RA studies have been viewed as less susceptible to selection bias relative to NR

studies. Still, early predictions and theoretical work stated that NR designs could produce

results similar to RA results given a mechanism for creating a suitably matched compari-

son group (Rubin, 1974). Researchers across the social sciences studied the reliability and

validity of these predictions and theories using detailed examinations of field studies, sys-

tematic quantitative and qualitative reviews, simulations, and more recently, laboratory

experiments (Cook et al., 2008; Dehejia & Wahba, 1999; LaLonde, 1986; Lipsey & Wilson,

1993; Shadish et al., 2008) (see Appendix for greater detail).

Results from an NR study in economics that evaluated a training program’s effect on

employees’ earnings underestimated the program’s effectiveness relative to results obtained

in a RA study using similar data (Fraker & Maynard, 1987; LaLonde, 1986). Those findings

were immediately questioned and tested by other economic researchers due to concerns

about the inclusion of poor comparison groups and failure to incorporate modern statistical

adjustment tools (e.g. sample selection, propensity score matching) and they found minimal

bias in NR study results (Dehejia & Wahba, 1999; Heckman, Hotz, & Dabos, 1987). Still,

these attempts to improve causal inference in NR designs by using better comparison groups

and modern statistical tools were questioned in a subsequent meta-analysis (Glazerman et

al., 2003).
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After those initial comparison studies in economics, researchers in other social science

fields began to conduct detailed NR and RA design comparisons. As observed within

economics, a similar pattern of divergent, inconclusive, and caveated conclusions for the

resiliency of NR designs to selection bias effects presented itself in educational (Heinsman

& Shadish, 1996), medical (Benson & Hartz, 2000; Ferriter & Huband, 2005) and psycho-

logical research (Shadish & Ragsdale, 1996). Comparisons between NR and RA results

overwhelmingly showed divergent results presumed to represent selection bias effects (see

Appendix A for greater detail).

Given the unreliable effects for selection bias within NR designs and their adjustment

tools, no consensus exists regarding the presence and size of these effects. A thorough re-

view of the literature, however, revealed that various researchers across the social sciences

agreed upon several aspects of selection bias within NR designs (Cook et al., 2008; Ferriter

& Huband, 2005; Glazerman et al., 2003; Shadish, 2010). First, NR studies reliably approxi-

mated RA experimental results for both methodological (e.g. comparison groups, Regression

Discontinuity) and statistical (e.g. Heckman sample selection, propensity score matching)

techniques when the comparison group matched the experimental group and when the sta-

tistical assumptions were not violated, respectively. Second, comparisons groups from NR

studies worked adequately when the participants in the comparison were matched on vari-

ables directly relevant to the outcome measure (Cook et al., 2008; Shadish, 2010). Third,

statistical tools to account for selection bias worked better when the selected covariates

were not basic demographic variables but instead were indicators of motivation or ability

(Dehejia & Wahba, 1999; Heckman et al., 1987; Pohl, Steiner, Eisermann, Soellner, & Cook,

2009; Shadish et al., 2008) (see Appendix A for greater detail). Taken together, NR designs

were potentially effective at approximating RA experimental results only when comparison

groups were rigorously selected and appropriate covariates were included in the statistical

tools - conditions not regularly met by researchers. The failure to meet these conditions

resulted in some researchers viewing NR studies as a poor design choice (Glazerman et al.,

2003; Shadish, 2010).
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Despite the empirical knowledge regarding when NR results approximate RA results,

the magnitude of selection bias in NR studies remains unknown. Few studies that present

standardized selection bias effects or differences between NR and RA study results provide

findings that vary significantly and unpredictably. The estimation of reliable selection bias

magnitudes could result in greater confidence in NR study findings, along with decreased

reticence to use NR designs.

1.3 Prior Estimates of Selection Bias Effects

Shapiro and Shapiro (1983) included assignment mechanism (random or not) as a moderator

in their quantitative review of psychotherapies, and yielded a standardized selection bias

effect of d = .20. About a decade later, a meta-analysis on psychotherapy outcomes reported

a selection bias effect of d = .52 (Shadish & Ragsdale, 1996). Those two effects are the

closest to a replication of selection bias for a specific content that exists.

Reviews that incorporated primary studies from a breadth of content areas yielded

small to medium selection bias effects. Via a reivew across multiple programs within and

outside psychology, Lipsey and Wilson (1993) estimated selection bias to be quite low

(d = .06) whereas another review (Heinsman & Shadish, 1996) of selected psychological

treatment programs reported a modest but higher effect (d = .25). The higher, .25 effect

was not consistent across content areas, with the included outcomes; Scholastic Aptitude

Test coaching (d = .01), academic achievement ability groups (d = -.21), juvenile drug use

prevention (d = .15), and psychosocial interventions for post surgery outcomes (d =.03)

(Heinsman & Shadish, 1996). As would be expected, quantitative reviews that used an

average across results are less variable than the differences observed between single studies

directly manipulating selection bias.

A well controlled, but methodologically flawed, quasi-experimental study assessed dif-

ference due to participant self-selection and produced posttest effect sizes between d = .73

and 1.38 (Donley & Ashcraft, 1992). In contrast, a more methodologically sound design
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by Shadish, Clark and Steiner (2008) produced only a medium posttest effect sizes (d =

.24). Still further, a direct replication of Shadish et al. (2008) in Germany found only a

small effect (d = .06) (Pohl et al., 2009). Across a variety of studies that either comprehen-

sively reviewed the published literature or directly manipulated selection leads to a simple

conclusion - there are no stable estimates of selection bias effects other than the basic fact

that they may be present and produce small to medium effects. Perhaps prior reviews

and manipulation studies were not designed to produce the maximum effect nor were they

designed to produce replicable effects. Regardless, the current estimates of selection bias

effects appear far smaller than what might warrant the attention.

1.4 Why Estimate Selection Bias Effects?

As alluded to previously, estimating selection bias effects enable researchers to better un-

derstand the magnitude and probability of the problem. Researchers who fear the unknown

may end up expending tremendous (financial, material, personnel, and opportunity) re-

sources over-correcting for a trivial problem and ignore the more pressing concerns. Se-

lection bias - just one of many potential threats to internal validity - garners tremendous

attention in the research literature and by researchers themselves. Failure to appreciate the

problem adequately leads to our current situation of ritualistic research design use rather

than principled and empirically supported best practices.

1.5 Using Selection Bias Effects - Estimate & Subtract

Estimating the magnitude and probability of selection bias enables researchers to adhere

to a more empirically-driven decision making process. If selection bias distributions and

probabilities can be reliably estimated for different assignment related variables, then a

statistical adjustment procedure called Estimate & Subtract (E&S; Reichardt & Gollob,

1989) may serve as an alternative to resource intensive tools to reduce the impact of selection

bias (e.g. propensity scores, Heckman sample selection, and Instrumental Variable; see

6



Appendix A for greater detail on the traditional statistical adjustment tools). E&S is a

relatively new and untested approach to reducing or eliminating selection bias in NR study

results. As a statistical adjustment tool it has received less attention than other adjustment

techniques due to the absence of reliable selection bias magnitudes and the absence of any

distributions for those magnitudes.

A distinct advantage to the E&S tool over other statistical tools is its simplicity. For

example, if selection bias were known to produce a modest effect (e.g, d = 0.3) for a

particular population and an NR study published a large effect (e.g., d = 0.9), then the E&S

method would estimate the “true” influence of the treatment to be a more moderate effect

(i.e., d=0.6 = 0.9 - 0.3). Propensity score matching, Heckman sample selection models, and

instrumental variables require researchers to collect additional data during the study itself

- a situation that either does not exist or places a burden on archival data analysts that

may never be met. Consider these requirements: these statistical adjustment tools require

numerous covariates and large sample sizes that make many of these procedures unavailable

(Guo & Fraser, 2010; Shadish et al., 2008; Steiner et al., 2010). Even if the requirements of

these statistical techniques are met, there are guarantees that useful conditional probabilities

or the appropriate selection model will be estimated - both situations that compromise the

effectiveness of these statistical tools (Cook et al., 2008; Dehejia & Wahba, 1999; Heckman

& Navarro-Lozano, 2004; Steiner et al., 2010).

Estimate & Subtract relies upon the prior estimates of selection bias effects and the prob-

ability density functions around those effects. Creating a point estimate and a distribution

is beneficial for decision making regarding experimental design selection and empirical evi-

dence evaluation (examples can be read below). Distributions help decision making through

using confidence intervals as well as probabilities. A probability density function is useful

for calculating the area under the curve and, in so doing the probability for any given value.

A selection bias effect size distribution, thus, is valuable for creating a probability density

curve and for calculating the area under that curve. Using the area under the curve, an

investigator may compute a probability for any given effect size. The reason why a known

7



distribution is preferred to an unknown or unknowable distribution is simply a matter of

efficiency. If the selection bias probability distribution matches a known probability distri-

bution function then the effect size probabilities may be readily looked up in established

tables. Tables, however, are no longer essential for estimating areas under curves. There

are more advanced mathematical procedures available on standard computers that enable

us to estimate the area under a curve. Known distributions are not essential but they are

extremely helpful. Using those tables or computer functions, a researcher may estimate

the probability of any potential selection bias effect size. The first example is an a priori

problem where the researcher must make a forecast of the potential selection bias threat;

the second example poses a similar problem but, in this case is a retrospective or post-hoc

analysis of a completed study. Both examples illustrate the utility of the estimate and

subtract method via the probability density function.

Example 1 (a priori decisions): A researcher considers conducting a study using a NR

design. The study assesses an educational skill development programs effect on a specific

outcome. Based upon prior research, the researcher expects a treatment effect size of 1.5

(Cohen’s d). Now, the researcher asks the question: “what is the probability that my design

will produce an effect that may be fully attributable to selection bias?” Given the standard

normal distribution we discussed previously, the probability that the selection bias effect

would be equal to or greater than .2 is equal to the area under the curve from the mean

to infinity. That area, according to the standard function for normal distributions is equal

to 0.50. Thus, the researcher has a probability of 0.50 of exceeding the mean selection bias

effect. Reichardt and Gollab (1989) proposed estimating the size of validity threats primarily

to improve decision making with biased study results. If selection bias effect sizes conform

to a normal distribution (µ = .20, σ = .6, for this example) then researchers can evaluate

the observed study effects in context of the quantified validity threat effects. Utilizing the

selection bias distribution a researcher expecting a 1.5 effect size can make an argument that

even if the results contain selection bias the difference of the selection effect (an expected
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d = .2) does not make a meaningful difference. This information helps researchers make a-

priori design decisions. However, if the expected studys result is a smaller effect than that

large effect, a selection bias distribution with the previously described properties would

assist the researcher in deciding a better avenue for obtaining defensible results will be with

the additional resource costs that come with an experimental design or switch to a stronger

design like regression discontinuity, or preparing for a biased effect by measuring relevant

covariates (like ability) in order to make post hoc statistical adjustments.

Example 2 (post-hoc decisions): A researcher implemented an educational skill devel-

opment program using a non-randomized design. The researcher found their program’s

treatment effect to be d = .7. Meta-analyses summarize the average treatment effect size

at .5 (Cohen’s d). However, much of published primary research utilized experimental de-

signs. Leaving the researcher to question “How much of the observed effect is due to the

treatment or to selection bias?” If for this example using estimated selection bias distri-

bution the researcher could broadly answer how much bias is possibly due to the selection

threat by creating a confidence interval around the suspected selection bias magnitude and

then subtract that empirically derived range from the study’s observed effect as intended

by Reichardt and Gollab. Returning to the theoretical normal distribution of selection bias

effect with a mean of d = .2 and standard deviation of d = .6 the researcher can argue that

their observed effect size is larger than previous research possibly due to selection bias and

not to the treatment program. Arguing with 95% confidence (obtained by multiplying the

selection bias probability distribution’s standard deviation by the 1.96 z-score) any selec-

tion bias effects range from d = - .98 to d = 1.38. Thus, the observed d = .7 can not only

plausibly be described as partly due to selection bias but the entire observed effect is well

within a 95% confidence interval for an average selection bias effect. Now the researcher can

report on the quantified amount of uncertainty about the effectiveness of their implemented

treatment program. The researcher could now report with some confidence and empirical

evidence on both the treatment effect and the selection bias effect that make up in part

(other potential validity threats notwithstanding) the total observed effect. Estimate &
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Subtract was thought up as a method for quantifying validity threat estimates and assist

researchers to determine those threat estimates are acceptable using a modicum of empirical

justification.

Without these two parameters (i.e., prior estimates and probability density functions

of selection bias effects), the E&S technique fails to hold any advantage over the more

burdensome and complicated statistical tools. Fortunately, one study does provide easily

replicable treatments and measures for estimating selection bias effects across content areas

and assignment variables (Shadish et al., 2008). That study formed the basis for the current

study; I provide the relevant details of it below.

Shadish et al. (2008) designed and implemented a truly comparable study of NR and

RA results from a sample of participants that was not limited to only self-selection and

no control over the selection variable like previous quasi-experimental, simulation studies,

and meta-analyses. The researchers implemented a doubly randomized preference trial by

randomly assigning participants to either a Randomized Control Trial (RCT) or quasi-

experimental study. Participants assigned to the RCT were either randomly assigned to

a mathematics or vocabulary treatment condition. Treatments and outcome measures for

mathematics and vocabulary were selected because of their relevance to many NR studies in

education and due to their relatively easy and controllable implementation in a laboratory

setting. Participants assigned to the quasi-experimental study chose either a mathematics

or vocabulary treatment based on their own preference. Participants received the same

measures pre and post treatment.

The objective of the Shadish et al. (2008) study was not to manipulate selection bias or to

even measure selection bias effects. Instead, the author’s aimed to examine how well various

statistical adjustment tools reduced selection bias effects. To do so, they compared the

RCT results to adjusted quasi-experiment results, finding that most adjustment procedures

(linear regression, propensity score matching, propensity scores as covariates, and various

propensity score matching techniques) effectively removed selection bias effects (Pohl et al.,

2009; Shadish et al., 2008; Steiner et al., 2010).
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The present study does not aim to replicate the methods and objectives of Shadish et

al. (2008). However, the treatments and measures from this well controlled and previously

replicated experiment provide an important starting point for the establishment of selection

bias magnitudes. As such, I have incorporated much of the Shadish et al. (2008) treatments,

measures, and procedures in this study.

1.6 Purpose of Study

Despite a variety of possible threats to validity, selection bias receives the highest level

of attention among psychological researchers. Selection bias arises when groups are non-

equivalent by design or by circumstance. Most scientists rely on random assignment (RA) as

the gold-standard to counter the potential influence of selection bias. Many researchers pre-

sume that without random assignment, selection bias 1) is ubiquitous in non-randomized

(NR; observational and quasi-experimental) studies (Shadish et al., 2002), 2) inevitably

threatens the study’s conclusions, and 3) deserves our attention above all other threats.

These presumptions lead to research practices that minimize the use of NR designs and

lead to the development of numerous cumbersome NR statistical adjustment procedures.

To date, it is unclear how likely (probability) selection bias is to occur or to what ex-

tent (magnitude) selection bias influences results. The following study provides the first

empirical manipulation and estimation of selection bias’ probability and magnitude.

The goal of the present study was two-fold: A) to estimate the magnitude of selection

bias effects for direct and indirect selection bias variables, B) resample the estimated mag-

nitudes of selection bias effects to estimate the probability distribution around the point

estimates. This work represents an initial step in the estimation of probabilities and mag-

nitudes of the various threats to validity. The purpose of this dissertation is to directly

address those goals. In so doing, I expected the following: 1) selection bias can be manip-

ulated and will produce substantial variability in treatment effect sizes, 2) the variability

will be moderated by the selection bias mechanism.
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Chapter 2: Methods

The current study consisted of a randomized trial where selection bias was explicitly manipu-

lated. A basic, randomized controlled trial (i.e., experimental design) along with a procedure

similar to a prior study by Shadish et al. (2008) enabled me to meet both aforementioned

goals. The following chapter provides the details of the design, procedure, measures, pre-

liminary analyses, and computational algorithms. I based my design, measurement model,

and analysis on the causal model in Figure 2.1. Each of the model details will be fully

explained in the following sections.

Figure 2.1: Causal model

2.1 Participants

One hundred fifteen (N = 115) undergraduate students enrolled in a large, mid-atlantic uni-

versity volunteered and received course credit for their participation in the study. Students
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were informed that they would either receive a vocabulary or mathematics lecture as part

of the study. Students met selection criteria for the experiment based on their self-reported

math SAT scores, an approximation of math ability. Approximately 95% (N=109) of par-

ticipants produced their requested verified SAT scores (the other 5% provided unofficial

SAT scores but were retained in the data analyses).

2.2 Design

The design used to generate selection bias estimates was a two-arm block randomized trial.

I chose this design because it allowed me to both experimentally manipulate selection bias

as well as measure alternative designs (i.e., quasi-experimental or NR) and their potential

selection bias effects. With respect to the experimental manipulation, I used self-reported

math ability as a blocking factor. Math ability - even self-reported - served as a variable

directly relevant to the treatment. Participants who differ on math ability prior to treat-

ment, by definition, are non-equivalent and their non-equivalence impacts the treatment

and its potential outcome. To ensure maximal differences by design, I divided participants

into either high or low math ability groups prior to randomization and then randomly as-

signed to either a mathematics or a vocabulary treatment condition. Thus, I created four

groups - Math Ability (2 levels) X Treatment Condition (2 levels) - see Figure 2.2. For

example, Participants with high math ability were assigned into either the High-Math (i.e.,

high math ability participants who received the mathematics treatment) or High-Vocab

(i.e., high math ability participants who received the vocabulary treatment) groups. The

blocking variable allowed me to manipulate the strength of the selection bias mechanism

where that “ability” interacted with the treatment. In short, I created a selection by treat-

ment interaction. As a main effect, the mathematics treatment represented the strong,

selection bias-relevant condition while the vocabulary treatment represented the weak, se-

lection bias-irrelevant condition. Participants’ math ability (i.e., the blocking variable) and

gender (i.e, pseudo selection bias variable that served as my, post-hoc blocking variable for
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later analyses) served as the direct and indirect selection variables to produce the maximum

and minimum differences between groups (see Figure 2.2). Pretest measurement is at O1

for the High-Math group and the corresponding posttest measurement point is at O2. All

pretests have odd numbers (i.e., O1,O3,O5,O7) while all posttests have even numbers (i.e.,

O2,O4,O6,O8).

Figure 2.2: Design for ability selection variable

Figure 2.3: Design for gender - the pseudo selection variable
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2.2.1 Selection Bias Mechanisms

To create both strong and weak selection bias, I used two separate mechanisms based upon

the logic provided by Steiner et al. (2010). Steiner et al. (2010) differentiated between direct

or indirect relationships for selection variables to treatments and outcomes. In the present

study, the selection variable (math ability) related directly to both the treatment and to

the outcome, achievement on a mathematics exam. Math ability was assessed using math

scores from the Scholastic Aptitude Test (SAT). The indirect mechanism of selection was

generated by using gender as a proxy. This study relied upon math SAT scores being a

good predictor of math performance (i.e., the MPR; see Figure 2.1). As such, math SAT

scores ought to have a greater relationship to pretest MPR scores than to vocabulary SAT,

gender, RG-I, and participant’s lecture preference. Math SAT had a greater relationship

with MPR than gender, RG-I score, and treatment preference (see Table 2.1). I provide

further details of these two mechanisms (ability and gender) below.

Table 2.1: Selection and Outcome Variable Correlations

Math Performance Revised at Pretest

Math SAT 0.62

Reasoning General-I 0.46

Vocabulary SAT 0.41

Gender 0.11

Treatment Preference 0.10

Direct Selection via Math Ability

Participants in the high ability group were required to have a minimum 630 math SAT score

while those in the low ability group had a maximum 530 math SAT score. Those values

were based upon a rationale for creating maximal differences with the available sample.
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An SAT math score of 630 is in the upper quartile (75th percentile) while a score below

530 represents the 50th or lower percentiles. The available sample (see Participants section

above) required me to restrict the selection and cut score range because few participants

had extremely low scores. Thus, I used the most defensible cut scores to maximize selection

bias. The recently reported US national average math SAT score was 516 (SD = 116) for

college bound high school students (College Board, 2010). This average varies one or two

points from earlier years. Males average 534 (SD = 118) while females average 499 (SD =

112) for the same national sample. The differences between my two math ability groups

reflect approximately one standard deviation separation according to those norms.

High ability groups had similar means (682 and 690) and distributions for their math

SAT scores across vocabulary and mathematics (see Table 2.2). Low ability groups had

similar means (487 and 489) and distributions for their math SAT scores (see Table 2.2).

There is nearly a 200 point math SAT score difference between the means of the high and

low math ability groups.

Table 2.2: Ability Selection Group Descriptives

Math SAT Vocabulary SAT

Ability-Tx n M SD SE M SD SE

High-Math 25 682 39 7.89 578 73 14.61

High-Vocab 22 690 43 9.14 623 94 20.13

Low-Math 36 487 39 6.55 526 72 12.06

Low-Vocab 32 489 36 6.45 491 92 16.32
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Table 2.3: Ability Selection Group Descriptives

Reasoning General-I Vocabulary General-II

Ability-Tx n M SD SE M SD SE

High-Math 25 8.7 2.4 0.48 23.4 3.9 0.78

High-Vocab 22 8.8 2.7 0.56 24.7 3.7 0.80

Low-Math 36 5.9 1.9 0.32 21.2 3.4 0.56

Low-Vocab 32 5.6 2.1 0.37 21.7 4.2 0.73

Indirect Selection via Gender

Gender served as a pseudo selection variable indirectly related to the treatment and the

outcome. Participants were not assigned to treatment conditions according to gender.

Previous related studies using gender as a covariate in selection bias reduction procedures

found it to be of limited use and weakly related to the outcome variable (Cook, Steiner,

& Pohl, 2009; Cook & Steiner, 2010; Steiner et al., 2010). Following data collection,

pseudo-comparison groups were created based on participants’ gender. The same four-

group pre-post design based on participants’ math ability groups was simulated using the

newly created gender-based pseudo group (See Figure 2.3). Replicating the original design,

males were either in the Male-Math (i.e., male participants who received the mathematics

treatment; N = 30), or the Male-Vocab (i.e., male participants who received the vocabulary

treatment; N = 27), while females were in the Female-Math (i.e., female participants who

received the mathematics treatment; N = 31), or the Female-Vocab (i.e., female participants

who received the vocabulary treatment; N = 27) groups. The point biserial correlation

(rpb = .20) between gender (males = 1; females = 0) indicating that males had higher

self-reported SAT scores. Regardless of the direction, the selection mechanism generated

by gender ought to be weaker compared to the selection mechanism generated by the more
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direct measure of SAT scores.

The pseudo, gender-based groups had sample sizes ranging from 27 to 31. The male

groups had similar math SAT scores of 582 and 598 for the math and vocabulary treatments

respectively (see Table 2.4. While the female groups also had similar math SAT scores of 552

and 544 for the math and vocabulary treatments respectively. While there is a consistent

math SAT score difference between the male and female groups, the difference is well within

the standard deviations for either group. Unlike the groups created by math ability having

a small difference between the pseudo gender based groups is preferable. Tables 2.2 and 2.4

show clear differences between the math ability based groups and the pseudo gender based

groups with respect to their math SAT scores.

Table 2.4: Gender Selection Group SAT Descriptives

Math SAT Vocabulary SAT

Gender-Tx n M SD SE M SD SE

Male-Math 30 582 110 20.15 541 63 11.58

Male-Vocab 27 598 117 22.53 556 99 19.09

Female-Math 31 552 97 17.42 554 88 15.83

Female-Vocab 27 544 90 17.33 533 127 24.39
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Table 2.5: Gender Selection Group ETS Descriptives

Reasoning General-I Vocabulary General-II

Gender-Tx n M SD SE M SD SE

Male-Math 30 8.7 2.4 0.48 23.4 3.9 0.78

Male-Vocab 27 8.8 2.7 0.56 24.7 3.7 0.80

Female-Math 31 5.9 1.9 0.32 21.2 3.4 0.56

Female-Vocab 27 5.6 2.1 0.37 21.7 4.2 0.73

2.2.2 Treatments

Shadish’s (2008) two educational skill area treatments were left unchanged for the present

study. The vocabulary lecture included fifty rare words presented via computer on a large

projection screen as well as on each participant’s computer screen. Each word was presented

with its definition, phonetic spelling, and was used in an example sentence. RA’s read each

word and each example sentence aloud.

The mathematics treatment lecture described 5 rules for solving exponential equations.

Each rule was presented with a title, a description of the rule, and an example. RA’s read the

rule, its description, and the example aloud from a large overhead screen projection while it

simultaneously appeared on each participant’s personal computer screen. Participants were

not permitted to ask questions at anytime during either treatment presentation or during

testing.

2.3 Procedure

RA’s greeted participants upon their arrival and requested participants’ official math SAT

scores (e.g., a screen print out from the College Board website, or official transcripts). Sub-

sequently, RA’s assigned an identification number to each participant, and provided them
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with a pen and a blank piece of paper. Identification numbers indicated the participants’

treatment group assignment; treatment group assignment was blinded to participants, but

not to RA. Participants were randomly assigned into treatment groups, but were matched

based on exact math SAT scores to create equal group sizes. For example, if the first par-

ticipant with a perfect 800 math SAT score was randomly assigned to the math treatment

group, then the next participant with a perfect 800 math SAT score would be assigned

to the vocabulary treatment group. After being given identification numbers, participants

were directed to the proper treatment room for the start of the experiment. RA’s in each

condition informed the participants that they would be completing a series of questionnaires

and tests. All participants received all the questionnaires and tests for each condition (i.e.,

math and vocabulary tests), regardless of treatment group assignment. Participants were

administered half the items from two untimed tests (Vocabulary Performance and Math

Performance Revised), followed by a demographics questionnaire, and two timed tests (Vo-

cabulary General-II, Reasoning General-I). Upon completion of this portion of the experi-

ment, RA’s gave either a standard vocabulary instructional treatment lecture or a standard

mathematics instructional treatment lecture, depending upon treatment group. Partici-

pants were thanked for their participation and were fully debriefed. All study procedures

were reviewed and approved by the GMU Human Subjects Review Board.

2.3.1 Research Assistants

I trained and supervised two female research assistants (RA’s) to administer the study

protocol. Training and supervision focused on study logistics and session presentation,

including overall clarity, pronunciation, vocal pace and volume. Fidelity was not assessed

using formal measurements, though presentation style reminders were given periodically in

order to limit the amount of test score variance attributable to the RA. Eleven total sessions

were conducted, with RA’s alternating between the different treatments.
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2.3.2 Experimental Rooms

The study was carried out in computer laboratory rooms on the university campus. Ses-

sions took place in several rooms between 12 and 4pm over multiple weeks. All computer

laboratory rooms contained desks with individual computer stations. Each station had a

computer tower, a 15” LCD monitor, a keyboard and mouse. All computers had access to

the Internet. All rooms included an overhead projector, a pull down screen, a desk and

a computer for the instructor. The RA used the instructor’s station to guide participants

to the testing website, presented the instructional lecture slides, and observed participant

progress throughout each session. Participants’ computer use was restricted during the

treatment presentation to minimize distraction. All rooms were equivalently lit and were

maintained at similar temperatures. No auditory or visual distractions interrupted any of

the experimental sessions.

2.4 Measures

During pretest (i.e., observation points 1, 3, 5, and 7 as depicted in Figure 2.2) RA’s ad-

ministered demographic, vocabulary (Vocabulary General-II, Vocabulary Performance) and

math (Reasoning General-I, Mathematics Performance Revised) related measures. Vocab-

ulary (Vocabulary General-II) and math (Reasoning General-I) measures created by the

Educational Testing Services assessed knowledge for their respective knowledge domains

and used in this study as an indicator for the assignment differentiation based on math

ability. Two measures (Vocabulary Performance and Mathematics Performance Revised)

used in this study were created for assessing the treatments and knowledge conveyed within

those treatments. As in the Shadish et al. (2008) study, a randomly selected subset of the

items from the Vocabulary Performance (15 of 30) and Math Performance Revised (10 of

20) measures were provided during the first administration. All participants received the

same items during the first administration. After the treatment lecture (i.e., observation
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points 2, 4, 6, and 8 as depicted in Figure 2.2), participants were administered the com-

plete untimed posttests (Vocabulary Performance and Math Performance Revised) with the

items being re-ordered.

Demographics: I collected standard demographic data on all participants including math

and verbal SAT scores, gender, and participant treatment preference. These variables were

partly useful in understanding the effects but may be useful in subsequent modeling proce-

dures outside the scope of the current study.

Vocabulary General-II: The Educational Testing Services (ETS) created the Vocab-

ulary General-II (VG-II) as a general vocabulary ability measure for students in grades

7-121. Although typically administered via pencil and paper, this measure was adapted for

computer administration, and implemented during pretest only as an additional indicator

of vocabulary in the present study. The VG-II consists of 30 multiple-choice items, each

with 5 response options. Participants were given eight minutes to complete this test. ETS

validated their measure on a national sample of 9th grade students and reported a mean

score of 15.5 (SD = 5.5) (Ekstrom, French, Harman, & Dermen, 1976).

Reasoning General-I: ETS created Reasoning General-I (RG-I) as a mathematics ap-

titude test measuring arithmetic or very simple algebraic concepts for students in grades

11-162. The measure was administered, via computer, during pretest only as an additional

indicator of mathematics knowledge. The RG-I consists of 15 multiple-choice items, each

with 5 response options. Participants were given ten minutes to complete this test. ETS

published a mean score of 4.6 (SD = 3.6) for those items (Ekstrom et al., 1976).

Vocabulary Performance: The Vocabulary Performance (VP) is an untimed 30 item

multiple-choice measure (See Appendix B) developed specifically to assess the vocabulary
1The VG-II - one part of the Manual for Kit of Factor-Referenced Cognitive Tests - is available to license

from ETS Research & Development.
2The RG-I - one part of the Manual for Kit of Factor-Referenced Cognitive Tests - is available to license

from ETS Research & Development.
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treatment in Shadish et al. (2008)’s study. As described above it was administered at

pre and posttest as a measure of the vocabulary treatment (see Figure 2.1). Each item

required participants to select the definition of a single word from 5 options. Participants

were instructed to select the correct definition.

Mathematics Performance Revised: The Mathematics Performance Revised (MPR)

is an untimed 20 multiple-choice item measure (See Appendix C) developed by Shadish to

assess their mathematics treatment. As described above it was administered at pre and

posttest as a measure of the mathematics treatment (see Figure 2.1). Each item presents

a basic exponential problem (e.g., (xa)(xb) =) with 5 possible solutions; the participant

selected the most correct solution.

The original 20 item Mathematics Performance (MP) test was revised (hence, the

acronym MPR) for this study because several of the original items had multiple correct

answers or were unrelated to the exponent content. To revise the measure, pilot data was

collected at the site of the current study. The measure was piloted with 71 individuals who

did not participate in the full study. The pilot study differed from the full study in two

ways: 1) participants were included without reference to their math SAT scores, and 2)

rather than randomly assigning participants to receive a treatment, sessions were randomly

assigned such that on a given day, all participants in the pilot session received the same

treatment. Two pilot sessions were conducted. Responsive items were identified using the

pre-post change in their Rasch item difficulty. Winsteps version 3.68.2 was used for the

item analysis (Linacre, 2011). Six items that decreased in difficulty from pretest to posttest

were retained because they showed a treatment effect. All six of the treatment responsive

items focused on the treatment content. Uninformative items required outside knowledge

that was not included in the treatment (e.g., What is the volume of a cylinder?). Fourteen

additional items were written and added to the protocol, creating a total of 20 items. New

items matched the retained items by focusing on treatment related information.
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2.4.1 Measuring Effects

Both aforementioned aims required effect size computations. I began with Cohen’s (1992)

formula for calculating effects using d. That formula is based upon the z-score where the

difference between two means (e.g., treatment and control) gets divided by the pooled

standard deviation (see equation 2.1).

d =
mean(x)−mean(y)√

var(x)+var(y)
2

(2.1)

Aim 1 focuses on estimating the bias effects for both direct (math) and indirect (gen-

der) selection variables. As a result, it is possible to calculate 2 effect sizes measuring

selection bias from different domains. The experimental design (see Figures 2.2 and 2.3)

has a clear demarcations for 2 levels (i.e. high and low math, male and female) for each

selection variable. Thus, each selection variable can have a maximum effect via partici-

pants in the High-Math group compared to the Low-Vocab group and ought to produce the

largest selection bias effect for the direct selection variable. In contrast, the minimum effect

comes from participants in the Low-Math group compared to the High-Vocab group and

that comparison ought to produce the smallest selection bias effect for the direct selection

variable.

Each effect size of interest was calculated using Cohen’s d using the formula listed above.

For example, the maximum selection bias effect for the direct (i.e., Math SAT) selection

variable was computed by subtracting the mean MPR scores at posttest (O2) of the partic-

ipants with the high math ability that received the math treatment from the mean MPR

scores at posttest (O8) of the low math ability participants that received the vocabulary

treatment. That mean difference then was divided by the pooled average differences of both

of those groups. The resulting number is a measured effect for a selection variable.
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2.5 Analysis

Preliminary analyses checked the manipulation of differences between the direct and indirect

selection variable groups’ SAT scores and the treatment effect on those groups. Analyses

produced 8 selection bias effects for Aim 1 and a resampling procedure on those calculated

selection bias effects creating selection bias effects distributions and attempted to predict

selection bias magnitudes based upon selection variables for Aim 2. All analyses were

conducted using the statistical program R version 2.11.1 (R Development Core Team, 2011).

Computations were also completed in R using the R programming language. Specifically,

the effect size estimation used a simple function to calculate Cohen’s d and the bootstrap

(i.e., resampling) estimates used a separate function that called the effect size function. All

R code used in the present study appears in the Appendix D.

2.5.1 Treatment Effectiveness

The focus of this study is on measuring selection bias. Despite that focus, I chose to include

an effect size estimate for the math treatment so that the effects estimated for both aims

could be compared to the observed treatment effects manipulated in this study. To estimate

these effects, all participants that received the math treatment were combined into a single

group and all the participants that received the vocab treatment were combined into a

separate single group. The Cohens d was calculated for the math treatment effectiveness

measured using the MPR by comparing those that received the math treatment to those

that received the vocab treatment.

Tx ES = Math Treatment Groups−Vocab Treatment Groups (2.2)

2.5.2 Aim 1: Estimating Selection Bias Effects

I calculated effect sizes to meet my first aim of estimating the magnitude of selection bias

effects for direct and indirect variables. Because there are 2 different observation periods

(pretest and posttest) for each experimental group and 2 different selection variables (direct
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(i.e. math) and indirect (i.e. gender)) and 2 levels for each selection variable (i.e. high and

low math ability, male and female gender) this results in a total of 8 unique effect sizes for

the first.

Pretest and Posttest Effects

A maximum difference for the direct selection variable groups was calculated using the

difference of MPR scores between High-Math compared to the Low-Vocab group for both

pretest and posttest effects. Comparing the scores from the participants with the high

math ability receiving the math treatment to the low math ability participants receiving

the vocabulary treatment should produce the greatest or maximum difference scores or the

maximum direct selection bias, after the treatment effect’s removal (see Equation 2.3). The

smallest selection bias effects were calculated to derive from the difference in MPR scores

between Low-Math and High-Vocab groups for both pretest and posttest effects. Comparing

the scores from the participants with the low math ability receiving the math treatment

to the high math ability participants receiving the vocabulary treatment should produce

the smallest or minimum difference scores or the minimum direct selection bias, after the

treatment effect’s removal (see Equation 2.4).

Indirect selection variable based comparison groups used the difference between Male-

Math and Female-Vocab groups as the maximum for both pretest and posttest effects

with Male-Vocab and Female-Math groups as the minimum for both pretest and posttest

effect(see Equations 2.5 and 2.6). These calculations mimicked the respective direct and

indirect selection bias equations with gender category male substituting for high ability.

All posttest Effect Sizes (ES’s) reflect that the treatment ES was subtracted out. Thus,

the posttest effects represent the biased effects rather than a combination of treatment

and biased effects. Previous studies used raw difference scores to calculate selection bias

point estimates - thus, making it difficult to compare effects across studies. As mentioned

previously, all ES presented in the current study used Cohen’s d formula (see Equation

2.1)(Cohen, 1988).
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Maximum Direct Selection Bias = (High-Math - Low-Vocab) - Tx ES (2.3)

Minimum Direct Selection Bias = (Low-Math - High-Vocab) - Tx ES (2.4)

Maximum Indirect Selection Bias = (Male-Math - Female-Vocab) - Tx ES (2.5)

Minimum Indirect Selection Bias = (Male-Vocab - Female-Math) - Tx ES (2.6)

2.5.3 Aim 2: Estimating Distributions of Selection Bias Effects

The second aim focused on producing a distribution around the effects estimated in Aim 1.

I provide more details about the precise procedures below.

Distributions of Selection Bias Effects

I created pretest and posttest selection variable distributions by resampling the observed

selection bias magnitude point estimates. Outcome variable (MPR) scores from the high

and low math ability groups represent the extremes from the observed sample. The above

selection bias point estimates were re-calculated using the newly created resampled data

with the resampling allowing for filling in the sample distribution between the observed

extreme scores. The selection bias magnitude distributions were calculated to establish the

variability around the observed point estimates. If the resampled distributions fit known

distribution properties (e.g., Gaussian, Poisson, Gamma, etc.), then the probability of each

selection bias magnitude can be reliably estimated. The minimum and maximum magnitude

point estimates were used as starting points for creating a distribution.

A bootstrapping or resampling procedure (random selection with replacement) was used
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to fill in the observed point estimates to create the overall distribution. Each of the four

selection bias effect sizes (Maximum Direct Selection Bias, Minimum Direct Selection Bias,

Maximum Indirect Selection Bias, Minimum Indirect Selection Bias), for both pretest and

posttest, received the following resampling procedure. For example, the maximum direct

selection bias point estimate was the difference between the High-Math and the Low-Vocab

groups, the resampling code started at 10% of the High-Math group scores being replaced

with the Low-Math group scores. This process continued increasing replacement by 10%

until the final replacement level in which 90% of the High-Math group scores were replaced

with Low-Math group scores. The resampling occurred at 10% intervals from 10 - 90%

replicated 1,000 times for a total sample of 9,000 resampled effect sizes per selection bias

effect size (See Appendix D). The entire replacement process occurred again for the mini-

mum direct selection bias pretest estimate. Following this, both distributions (direct and

indirect) were aggregated to create a total of two selection bias distributions, one for pretest

and one for posttest.

Ancillary Analyses: Predicting Effect Sizes via a Regression Model

An additional bootstrap method was employed to assess the predictive validity of the selec-

tion mechanism and the selection bias effect size. This step served as both 1) a check on the

hypothesis that direct and indirect selection variables can impact outcome results (see Fig-

ure 2.1), and 2) a technique for a practical guide for researchers. The regression model was

computed to see if there were a simple calibration between selection mechanism correlation

and selection bias. Consider two extreme examples to clarify the use of this method. A

selection mechanism that is truly random (rselectionmechanismvariable,pretestscores = 0) ought

to produce no selection bias (i.e., no differences between groups at pretest). In contrast, a

selection mechanism directly and perfectly related to the pretest scores and the treatment

(rselectionmechanismvariable,pretestscores = 1) ought to produce the maximum effect. We might

infer the regression slope by just joining those two extremes with a line and assume no

error. Instead, we might fit a line of best fit between those extremes to see if there exists
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a calibration curve representative of the predictive validity of selection mechanisms and se-

lection bias. The advantage of this procedure is that it provides a heuristic for future work

but it also empirically assesses the relationship between selection mechanism and selection

bias.

If there is a distinction between direct and indirect selection variables then the outcome

scores should be predictable. The direct selection variable has a .5 larger correlation to the

outcome measure than the indirect variable (see Table 2.1) and difference should produce

distinct utilities for researchers aiming to predict the amount of potential bias. A bivariate

linear regression using the correlation between selection variable (i.e., math ability and

gender) and MPR pretest scores predicted selection bias magnitudes.

The data for the regression came from a resampling procedure whereby all high math

ability participants were randomly replaced by low math ability participants. In essence,

the composition of the sample changed with each bootstrap but the composition changed

according to a gradient of correlation ranging from an expected low correlation (r = 0,

perhaps) to a high correlation (r ≈ 1). The more high math ability participants included

in the sample, the more direct the selection mechanism and, presumably the stronger the

selection bias. I used the same resampling procedure for gender to ensure that there was a

wide range of correlations between the selection mechanism and the pretest scores. For both

resampling procedures, there were 9 levels of selection. Level 1 contained a sample comprised

of 10% of the high math ability participants and 90% of the low math ability participants

assigned to the math treatment and the opposite composition for the vocabulary treatment.

If the selection mechanism favored the vocabulary group with respect to the most direct

bias in the study, I expected the effect to be suppressed. In contrast, as the levels increased,

I expected the greater shift of high math ability participants toward the math treatment

would favorably bias the treatment effect.
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Chapter 3: Results

All preliminary and primary data analyses were from fully observed data from all partic-

ipants (N = 115). No participants withdrew from the study, and no missing data were

observed in the study.

3.1 Treatment Effectiveness

3.1.1 Ability as a Direct Selection Variable

Math performance was equivalent for the two treatment groups within the different ability

categories at pretest. Posttest scores show divergent performances based upon received

treatment and ability (see Table 3.1). Figure 3.1 shows a plot of the percentage of correct

MPR items by ability comparison group. Regardless of ability group, those that received the

math treatment performed better overall at posttest than those that received the vocabulary

treatment. Those in the math treatment had greater pre-post increases than vocabulary

treatment participants. The treatment effect was d = 1.08 using Equation 2.2.

Table 3.1: Direct Selection Group MPR Descriptives

Pretest Postest

Ability-Tx M SD SE M SD SE

High-Math 7.0 1.9 0.39 16.4 2.6 0.52

High-Vocab 6.4 2.5 0.53 12.8 5.2 1.12

Low-Math 3.9 2.1 0.35 11.7 3.5 0.58

Low-Vocab 3.2 1.9 0.34 6.1 2.1 0.37
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Figure 3.1: MPR for the direct selection variable

3.1.2 Gender as an Indirect Selection Variable

Math performance was equivalent for the two treatment groups within the different gender

categories at pretest. Posttest scores show divergent performances based upon received

treatment and gender (see Table 3.2). Figure 3.2 shows a plot of the percentage of correct

MPR items by gender comparison group. Regardless of gender group, participants that

received the math treatment performed better overall at posttest than those that received

the vocabulary treatment.
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Table 3.2: Indirect Selection Group MPR Descriptives

Pretest Postest

Gender-Tx M SD SE M SD SE

Male-Math 5.5 2.6 0.47 14.1 3.9 0.71

Male-Vocab 4.7 2.9 0.57 9.9 5.6 1.08

Female-Math 4.9 2.5 0.44 13.2 3.9 0.70

Female-Vocab 4.3 2.4 0.46 7.8 4.1 0.78
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Figure 3.2: MPR for the indirect selection variable

3.2 Aim 1: Estimating Selection Bias Effects

3.2.1 Pretest Effects

Minimum pretest effects were larger for the direct than the indirect selection variable (see

Table 3.3). In fact, the minimum effect for direct selection variable was greater than the

guideline for a large ES established by Cohen (1992). The range between the minimum

(1.08) and maximum (1.97) selection bias ES’s was nearly an entire Cohen’s d standardized
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unit for the group assigned by their math ability. The indirect selection variable group had

pretest ES’s ranging from small (-.06) to moderate (.51) by Cohen’s standardized effects.

The maximize ES from the indirect selection variable group was half the magnitude of the

minimum ES from the group assigned by direct selection variable.

Table 3.3: ES for Pretest Effects

Minimum Maximum

Direct 1.08 1.97

Indirect -0.06 0.51

3.2.2 Posttest Effects

All reported posttest effects are after the removal of the treatment effect. The minimum

(-.84) posttest effect for the direct selection variable decreased from the pretest effect while

the maximum (3.27) posttest effects increased from pretest (see Table 3.4). Direct selection

variable groups had mostly larger effect sizes than the indirect selection variable based

groups for the posttest effects. The minimum (-.84) posttest effect for direct selection

variable was smaller than the minimum (1.08) direct selection variable pretest effect. This

smaller effect seems to be related to the treatments effectiveness, since those that received

the math treatment improved their MPR scores. While the effect size for the direct selection

variable group increased its range due to changes at both the minimum and maximum effects

the same is not what happened for the indirect selection variable.

The indirect selection variable posttest effects did not change as dramatically as the di-

rect selection variable posttest effects. In fact the maximum (.51) indirect selection variable

effect remained the same as it was at pretest but the minimum decreased from -0.6 to -1.77.

Note the negative effects. I originally hypothesized that females would out perform males

on the mathematics test but the results suggested exactly the opposite. Since I expected
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females to outperform females, I created a binary coding for males = 1 and females = 0

and computed effect sizes assuming females would be higher. Nevertheless, my intent was

not to test gender effects but rather to assess absolute magnitudes of selection bias effects.

This difference in the indirect selection variable effect was likely due to the effectiveness of

the treatment and demonstrates that gender, an indirect variable was not as influential on

results as a direct selection bias variable (as well as the data coding - male scores subtracted

from female scores). The relatively small maximum indirect selection variable posttest ES

was still a medium sized effect by the standards established by Cohen (1992).

Table 3.4: ES for Posttest Effects

Minimum Maximum

Direct Selection Variable -.84 3.27

Indirect Selection Variable -1.77 .51

3.3 Aim 2: Estimating Distributions of Selection Bias Effects

3.3.1 Distributions of Selection Bias Effects at Pretest

Distributions for the direct and indirect selection variables at pretest are the result of resam-

pling from within the observed effect sizes (see Figures 3.3a and 3.3b). Neither distribution

(direct or indirect) conformed to Gaussian or Gamma or Poisson distributions according to

Kolmogorov-Smirnov tests. The distributions do show relatively similar means and medians

between the direct and indirect selection variable (see Table 3.5). While the distribution

averages lean towards the small effect size according to Cohen their standard deviations

bring selection bias effects well past the medium classification (Cohen, 1992). However, the

extremes and the ranges between the two continue to be quite different (see Figures 3.3a

and 3.3b). The direct selection bias mechanism ability has a standard deviation about two
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and half times the range of the indirect selection bias mechanism gender. These wide ranges

for both selection mechanisms mean the minimum and maximum effects go well beyond the

observed point estimates.

Table 3.5: Resampled Pretest Effects Descriptive Statistics

% Resampled ESM ESMdn ESSD ESSE

Ability .30 .27 .75 .01

Gender .29 0.28 0.30 .00

Ability Pretest Effect

Effect Size

F
re

qu
en

cy

−2 −1 0 1 2 3

0
10

00
20

00

Gender Pretest Effect

Effect Size

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0 1.5

0
10

00
25

00

Figure 3.3: Pretest effect size distributions: The two vertical lines are the observed mini-
mum and maximum ES point estimates.

3.3.2 Estimating Area Under the Curve (AUC) for probability

As I mentioned in the introduction, estimating the area under the curve (AUC) is an

important step to realizing the benefits of the estimate and subtract (or E & S) method. The

following figure (Figure 3.4) shows the combined distributions from all resampled statistics.

Additionally, the area highlighted under the curve represents the probability of an effect to

be greater than 0 - assuming that there is a directional assumption of selection bias - but

less that 1. If the resampling method produced a normal distribution then I could easily

estimate that area by standard functions built into almost every contemporary statistical
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software package. As I noted previously, my results did not produce any known distribution;

thus, I need an alternative solution to standard lookup functions. One alternative to these

standard functions is a numerical method of approximation - usually by a Reimann sum

or Euler method other estimation. Both Reimann sums and the Euler method produce

reasonable estimates, however, they fail to produce a generalizable result that I aimed for

in this study. I discuss these implications later in the discussion.

Figure 3.4: Combined Distributions AUC

3.3.3 Distributions of Selection Bias Effects at Posttest

Distributions for the direct and indirect selection variables at posttest are the result of

resampling from within the observed effect sizes (see Figures 3.5a and 3.5b). Neither distri-

bution (direct or indirect) conformed to Gaussian or Gamma or Poisson distributions ac-

cording to Kolmogorov-Smirnov tests. While there is a greater difference between the two

posttest distributions the overall observed selection bias effects are reduced from pretest

(see Table 3.6). This is likely due to the effectiveness of the treatment (d = 1.08). And

while the averages are negligible the ranges for both the direct (6.01) and indirect (3.17)

at posttest are greater than their corresponding direct (4.96) and indirect (2.56) pretest

ranges, respectively (see Figures 3.5a and 3.5b).
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Table 3.6: Resampled Posttest Effects Descriptive Statistics

% Resampled ESM ESMdn ESSD ESSE

Ability .18 .01 .98 .01

Gender .06 .02 .41 .00
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Figure 3.5: Posttest effect distributions: The two vertical lines are the observed minimum
and maximum ES point estimates.

3.3.4 Predicting Selection Bias via Selection Mechanism

Creating distributions for obtaining selection bias effect size probabilities was in part an

attempt at a predicting the magnitudes for the observed effects. Given that none of the re-

sampled distributions fit known distributional properties a secondary method of predicting

the selection bias magnitudes was implemented. This prediction method does combine the

direct and indirect selection mechanisms assuming that they are not orthogonal classifica-

tions but lie along a continuum. Figure 3.6 shows the relationship between the observed

correlation for selection (i.e., the correlation between the selection variable and MPR pretest

score - a measure of the observable and available selection bias indicator) and the resampled

ES distributions. As can be seen in by the difference between the blue cross-hair points and
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the empty red points the distributions between the two selection mechanisms had substan-

tial variation in the effect sizes (as represented on the y-axis). Examining the plot and the

regression lines it is possible to visualize the impact of the selection mechanism and pretest

correlation as impacting the observed selection bias effect. Using a quadratic regression

the correlation between selection variable and MPR pretest score significantly predicted

resampled ES, b1 = −.6, b2 = 1.6, R2 = .05, F (2, 17997) = 459, p < .001.

Assuming the minimum selection bias ought to be 0 (i.e., the regression passes through

the origin), the maximum selection bias effect ought to be 1.0 - not quite as high as I

estimated in Aim 1 (d=3.27; see above).

Posttest Effect Size = −0.6 + 1.6− .00 ∗ (selection variable-pretest correlation) (3.1)

This model suggests researchers may use simple correlations to estimate the posttest

bias but with somewhat poor precision (R2
adj = .05).
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Figure 3.6: The black line is the slope for the combined direct and indirect groups. Direct
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Figure 3.7: Regression diagnostics plot

While this regression may be useful, the regression diagnostics indicate that multiple

assumptions were not met. Specifically, the plot and regression diagnostics clearly show

heteroskedastic errors along with non-normally distributed errors. These two assumption

violations limit the utility of the prediction model; I addressed these limitations later in the

discussion.
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Chapter 4: Discussion

The two aims of this study were to 1) estimate selection bias and 2) to estimate the prob-

ability distributions around those estimates. Overall, both aims were met. I address each

one in turn below along with their implications.

4.1 Aim 1: Estimating Selection Bias Effects

Selection variables created bias across conditions at both pretest and posttest. Recall that

I created selection bias according to a direct, ability-based selection mechanism (i.e., SAT

scores) and an indirect, proxy-based or pseudo selection mechanism (i.e., gender). The

purpose of these two selection mechanisms was to deliberately produce greater variability

in the selection bias estimates.

4.1.1 Direct Selection Mechanism

Selection based on ability resulted in large bias magnitudes at both pretest and posttest -

indicating that non-equivalent group designs (i.e., selection bias as a threat to internal va-

lidity) produces both differences before treatments as well as afterwards. The pre-treatment

effects are precisely what defines selection bias whereas the post-treatment effects are what

define the treatment by selection interactions. All calculated bias magnitudes represent

large effects (minimum d = .8; maximum d = 3) in the ability-based selection condition.

Again, these effects were observed at pretest and at posttest. Although direct selection vari-

able groups produced similar absolute minimum magnitudes at both pretest and posttest,

maximum magnitudes increased (from 1.97 to 3.27) from pretest to posttest indicating that

the treatment by selection interaction added unique variance to the post-test results. What
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can be surmised by these results is that directly relevant differences - that is, differences be-

tween groups that are relevant to the treatment and the treatment outcome - may produce

an additional standard deviation difference in selection biases and selection by treatment

biases.

The effects observed by this direct selection mechanism were large. According to Cohen’s

rough, qualitative criteria (Cohen, 1992), these effects represent large to extremely large

effects. To put these selection bias effects into perspective, the estimated treatment effect

was d=1.08. If selection bias - via a direct mechanism - were present then the observed

effect at posttest might be as large as d=4.35 provided that these effects were perfectly

additive. Thus, the selection bias effects ranged between roughly 78% to 303% of the

treatment effects. These percentages were calculated as a function of the selection bias

estimate divided by the treatment effect. Taking these estimates into consideration and not

generalizing to all treatments, I might consider selection bias to be roughly 1 to 2 times

the observed treatment effect. These rough estimates pertain solely to the direct selection

mechanism. Now let us consider the indirect effects.

4.1.2 Indirect Selection Mechanism

The results for the indirect selection mechanism paralleled the direct mechanism results

but the effects were generally smaller. The indirect selection mechanism based on gender

resulted in small to medium magnitudes at pretest and small to large magnitudes at posttest.

Gender groups produced vastly different minimum magnitudes at pretest (range: d = -.06

to -1.77), while maximum magnitudes decreased remained a medium magnitude at pretest

and at posttest. The effects observed for this weaker, indirect selection mechanism resulted

in precisely what I did expect - weaker selection bias effects. Females assigned to the

mathematics treatment outperformed males assigned to the vocabulary treatment on the

MPR measures, which resulted in negative bias magnitudes.

The estimated selection bias effects were roughly half of the effects observed by the direct

selection mechanism. Recall that the point-biserial correlation between gender (male = 1,
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female = 0) and ability was relatively low (rpb = .20); the 50% drop-off in effect size was

not entirely expected. I expected the effects would be substantially lower since only about

5% of the variance is shared between the direct and indirect mechanism (CV = r2
pb = 0.05).

The fact that the effects were only reduced by one-half indicates that selection bias may

have complex effects that are not adequately captured in these single-variable mechanisms.

As it was shown here and in previous research the indirect selection variables either produce

or explain far less selection bias than direct selection variables (Cook & Steiner, 2010). The

production of selection bias may relate to how an indirect selection mechanism interacts

with other variables affecting selection bias magnitudes. This relationship between the

indirect selection variable and other potential variables is still unknown. Ideally the selection

mechanism and how it relates to the outcome variable is clear and understood but when

the indirect selection variable has no simple casual pathway to the outcome variable its

influence is less well understood and less predictable. The comparison I made between

selection bias effects and treatment effects may be applied to these indirect effects as well.

If I consider only the absolute magnitude of effects instead of the directional effects, I

estimate the relative magnitude of selection bias to treatment effects would be roughly 6%

to 160%. Note that these ratios are not precisely one-half of the observed direct selection

effects but rather a wider range between the minimum and maximum values - a point we

shall return to when comparing the distributions.

4.2 Aim 2: Distributional Properties of Selection Bias Ef-

fects

The second aim of this study focused on estimating the distributions around the effects just

mentioned. To refresh the reader, I conducted a resampling procedure via bootstrapping to

estimate a sample of selection bias effects from the observed data. Those sampling distri-

butions provided not just the range of effects - as discussed above - but also a reasonable

shape around a measure of central tendency (e.g., mean) and the general dispersion about
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that single value. The distributions produced by the direct and indirect selection mech-

anisms in Figures 3.3a, 3.3b, 3.5a, 3.5b appear similar but the x-axis suggests otherwise.

Direct selection mechanism samples produced a much wider distribution - compared to the

indirect selection mechanism sample distribution - indicating less certainty about any single

expected parameter. While the effects were largest for the direct mechanism, those effects

are less stable.

An implicit goal of the second aim was to help social scientists make more empirically

informed decisions for prioritizing threats to validity. Being unable to mimic known dis-

tributions impacts the utility of the classic Expected Value (EV) computation that would

assist researchers in prioritizing validity threats (Neumann & Morgenstern, 1944). A re-

searcher, using EV, might consider the resources necessary to treat a threat as well as the

impact that the specific threat may have and judge which threat deserves their attention

and resources. In order to calculate the EV, the effect and its probability are required

(EV = P * ES). After summing the products of the effect distribution the resulting num-

ber is an effect size estimate that may be used to compare against other threats. Usually

the larger and more positive the EV, the stronger the impetus to act. Comparing different

threats is a straightforward approach to weighing decisions and their potential ramifications.

Despite my efforts to characterize the distributional properties of the selection bias

mechanism, I was not able to ascertain the mathematical function that explained the sam-

pling distributions. Most bootstrapped estimates conform to a normal distribution (Efron

& Tibshirani, 1993) and the distributions produced by the resampling procedure appeared

normal but failed to comply with the expected distributional properties tested via stan-

dard tools (e.g., Kolmogorov-Smirnov test (Chakravarti & Roy, 1967)). Fitting a specific

function to these distributions would be helpful for future work so that the probability of

any point estimate may be incorporated into any treatment design. Consider the following

scenario as an application of this logic. A researcher wishes to conduct a study where the

expected effect of a treatment is large (d > 1.0). If selection bias were relevant (i.e., random

assignment might not be possible due to logistics) but small due to the indirect nature of
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the pre-treatment differences, then the researcher might be able to ascertain the expected

value of a small effect using a known distribution. Based upon my results (see Figure 3.3a),

a selection bias effect greater than d = .5 or greater only occurred roughly 3000 times out of

the 9,000 samples or 1/3rd of the time. My estimate of 3000 comes from adding the heights

of the bars that include .5 and above in Figure 3.5a. Thus, the probability of a .5 selection

bias effect was .1 and the expected value is .5 × .33 or .17. If I were that researcher, I might

focus on other threats than the weak, potential impact of selection bias with an expected

effect of .17. The distributions observed in this study allow for rough estimates but if I were

able to produce a distribution with certain mathematical properties, then we may apply

more robust estimates of area under the distribution curve (i.e., the probability) for more

generalizable estimates that can be readily computed for any sample.

My failure to produce a known distribution only weakens the potential impact of the

E & S method. I say weakens because there are countless methods for estimating area

under the curves (AUC) for known and unknown distributions. For one, numerical inte-

gration methods like Reimann sums and the Euler method (among many others) represent

a more brute force method for estimating AUC. An alternative is a Bayesian procedure

(i.e., MCMC, Metropolis Hastings, Gibbs sampler, etc.) that enables the analyst to esti-

mate these probability density functions without any specific known properties. While the

numerical and Bayesian methods are readily available, they both require sufficient mathe-

matical, statistical, and programming knowledge that weaken their appeal to most social

scientists. My aim to produce a known distribution was to enable all social scientists to

estimate the magnitude and probability of selection bias threats. Failing to produce that

known distribution does not eliminate my contribution but it does detract from my aim to

simplify a procedure and allow the E&S to gain further ground in social science.

4.3 Relating Selection Mechanism and Selection Bias

As previously theorized and empirically supported, different selection variables showed

vastly varying selection bias magnitudes. The ability selection variable was directly related
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to both the treatment and to the outcome measure, while the gender selection variable was

indirectly related to treatment and outcome, as evidenced by the larger correlation observed

between math ability and pretest MPR scores relative to the correlations observed between

gender and pretest MPR scores (see Table 2.1). Additionally, the ability selection variable

(SAT scores) significantly predicted the posttest bias magnitudes. Taken together, this find-

ing lends support to the importance of treatment and outcome related selection variables

as contributors to bias in NR study results (Cook et al., 2009; Steiner et al., 2010).

When trying to predict selection bias by the relevance (i.e., correlation) of the selection

mechanism, however, I was unable to produce a strong prediction model. The prediction

model produced significant results but the overall predictive validity remained low (Radj =

.05). As indicated by the diagnostic plots, the residuals were heteroskedastic and non-

normal. Heteroskedasticity limits the prediction model because the utility of the results

depends upon the level of the predictor. As the correlation between the selection variable

and the pretest scores increased, the residuals increase - indicating lower predictive validity.

We assume that a prediction model works equally for all levels of our predictors but, in

the case of predicting selection bias effects, my resampling results indicate the opposite.

Furthermore, normally distributed residuals are essential for hypothesis testing. Given the

large sample size from the boostrap procedure, neither power nor hypothesis testing were

relevant. What remained relevant, however, was the fact that the parameters may be

adversely affected by the non-normally distributed observations. The Residual/Leverage

plot provides some evidence that the non-normally distributed residuals had little impact

(see Figure 3.7). In sum, the predictive validity of these available correlations leads to

rather poor prediction of selection bias effects.

4.4 Limitations

As mentioned previously, the current study focused on two aims and achieved the first with

some success with the second. Despite these successes, there are some limitations worth
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noting. The present research represents an improvement over current knowledge regarding

selection bias estimates (Aim 1) and their associated probabilities (Aim 2), but the study

has some generalizability limitations due, in part, to six potential areas worthy of further

consideration and study.

4.4.1 Measurement

Selection bias magnitudes and treatment effect sizes calculated in the current study were

quite large compared to those typically observed in NR studies. Moreover, the treatment

effect observed in the present study was considerably larger than that observed in the

Shadish et al. (2008); this finding may have been due to fact that the outcome measure

was much better than typical outcome measures. The treatment and the outcome measure

were extremely focused. Shadish et al. (2008) allowed for more extraneous error variance

in their outcomes and their effects might have been lower due solely to these measurement

differences.

4.4.2 Treatment Fidelity

Further, the present study had a low participant demand - lasting for fewer than 2 hours.

Although typical in laboratory studies, such low participant demand may be less common

in field and NR studies limiting any external validity claims. Thus, the selection bias effect

estimates may be inflated due to both measurement and treatment fidelity.

4.4.3 Treatment Content

The treatment content, math achievement, may limit the generalizability of the point esti-

mates and distributions obtained (Shadish & Ragsdale, 1996). The current study represents

only one attempt to estimate selection bias effects, and those effects may be limited to math

education or cognitive skills more broadly. Additional information regarding the magnitude

of selection bias effects is warranted. Future studies may estimate selection bias for dif-

ferent content areas (e.g. criminal intervention programs), which could provide important
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information regarding general or content-specific selection bias variability.

4.4.4 Non-Generalizable Posterior Distributions

Establishing probabilities for selection bias magnitudes (Aim 2) was a primary goal of the

present study, however, these probability density functions could not be determined because

the resampled distribution did not conform to a known distribution. This study’s reliance on

extreme groups (i.e., high vs low ability) may have created the distorted distribution. While

it is possible that selection bias distributions may not fit any known distribution properties,

future research should not be dependent solely on resampling procedures but obtain data

from an entire range of a selection variables. Furthermore, more sophisticated resampling

procedures including Markov Chain Monte Carlo Methods and even simple resampling

procedures such as Jackknifing might create more readily understandable distributions.

4.4.5 Potential Range Restriction in the Direct Mechanism

The maximum ES point estimate may not truly be the maximum possible given the low

ability participants had a restricted lower limit. Participant sampling, therefore, might af-

fect both the maximum and minimum estimates. In the future a sample more representative

from the general population might produce both a better, more well-behaved distribution

as well as values that generalize to other samples and populations.

Due to the university student sample, the low ability group may not be very low in

actual math ability - according to the population. The low ability group was only a standard

deviation away from the high ability group with the means of the two groups separated by

about two standard deviations. Selection difference should still be and are evident but the

range restriction may limit the generalizability to real non-student samples.

Design Considerations

The current estimates only pertain to the between-subjects effects and may be entirely

different with more sophisticated designs. Sometimes, researchers use split-plot or mixed
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designs whereby effects between and within subjects get estimated. Thus, future researchers

ought to consider designs with repeated measures, multiple groups, or even combinations

of the two that might address the adequacy of these estimates for other designs.

4.5 Implications

The present study has three major implications for future research: 1) Selection bias mag-

nitudes may be large enough to account for any observed treatment effect, 2) different

selection variables create differing bias magnitudes, and 3) Researchers now have experi-

mentally derived a-priori selection bias magnitudes for the E&S procedure.

First, previous selection bias magnitude findings range from very small (d = .05) to large

(d = 1.38) (Donley & Ashcraft, 1992; Lipsey & Wilson, 1993; Shadish et al., 2008; Pohl

et al., 2009). Those previous effects fall at the low end of the ability posttest magnitudes

or high end of the gender posttest magnitudes results (see Table 3.4). Taken together

it is evident that selection bias magnitudes can be quite large, possibly much larger than

treatment effects and thus provide additional evidence to the concerns about causal inference

in poorly designed and implemented NR studies.

Second, placing the previous findings in context with this study indicates that categoriz-

ing selection bias in the traditional terms of self, or administrative, or geographic might not

be as useful for estimating or predicting bias magnitudes, but in fact, as Cook et al. (2009)

and Steiner et al. (2010) stated, and as I applied, the direct or indirect relationship between

the selection variable to the treatment and outcome is a better classification method.

Third, adjusting NR psychology results may be better done by Estimate & Subtract

(E&S) than other statistical procedures because of its implementation ease and the trivial

burden on researcher resources. Still, a significant limitation to using E&S was the lack of

an estimate of selection bias. This study provides a specific selection bias estimate for two

types of selection variables, one relevant to the outcome and treatment and one irrelevant,

at both pretest and posttest.
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Estimating bias from a single experiment along with resampling statistical results offers

preliminary findings worth expanding upon. Berelson and Steiner (1964) attempted to pro-

duce an inventory of scientific findings that other researchers might find suitable for future

research. These findings - they argued - might serve as initial estimates; presumably their

utility would be suitable for the purposes of judging current research efforts in light of ear-

lier findings. Unfortunately, their efforts never gained traction with other researchers unlike

more general compendiums and inventories including the Guinness Book of World Records

(Records, 2013). The present study’s findings ought to serve the research community as an

initial estimate of selection bias magnitudes - not as a definitive value or static distribution.

Further, these results should be considered to be an initial foray into this line of work to

be improved upon by further research rather than as a final destination.

Given researchers focus on selection bias as a primary threat to validity, the present

study represents an important initial step in providing estimates that can be used to rectify

the influence of selection bias. Still, in light of the myriad other threats to validity (i.e.

maturation, instrumentality, etc.), future studies may expand the investigation of bias effects

for other relevant threats to validity to aid researchers in accounting for conditions that

impede the integrity of scientific results.

Researchers and reviewers often assume that selection bias invalidates NR studies. Us-

ing these results, researchers may address the impact of selection bias while maintaining NR

studies as viable and useful methodological designs. The present findings provide the be-

ginnings for a tool to help address selection bias in a time when empirically-based decisions

dominate modern research and policy. We have evidence-based practice (e.g., Cognitive be-

havioral therapy), empirically supported social policy (e.g., No Child Left Behind), and even

scientifically supported social programs (e.g., Race to the Top). Without properly address-

ing the effects of bias in scientific research, the mechanisms for providing empirical support

do not exist to make good decisions. Using estimates obtained in the present study, social

scientists may begin to better design and evaluate their and others work, thereby producing

more tenable and reliable findings.
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Chapter A: Literature Review

A.1 Appendix: Literature Review

The following literature review documents relevant studies and summaries pertaining to

selection bias. Included in this review are 1) a specific example of selection bias, 2) a clear

definition of the term, 3) a justification for my focus on this bias instead of other potential

biases, and 4) a review of the methods used to treat selection bias effects. Finally, I end my

review with a justification for my dissertation study. I address each of these points below

in clearly demarcated sections. The sections follow the aforementioned outline - beginning

with the specific example so I could refer to it throughout the review.

A.2 An example of selection bias

The Minneapolis Spouse Abuse Experiment (Sherman & Berk, 1984) serves as a great

example of selection bias. Researchers designed a field experiment to test two competing

domestic violence prevention/abatement strategies. They recruited police officers assigned

them to implement one of three interventions for domestic violence incidents - either arrest

the perpetrator, or mediate between the couple, or temporary separate the couple during

the incident call. The researchers determined that the random assignment did not take

place in all domestic violence cases. Police officers implemented their preferred intervention

strategy, forgot their assigned strategy, or used professional judgement to deviate from the

assigned group. Failure to properly administer random assignment left the researchers to

resort to post hoc statistical adjustment to their studies to enhance causal inference (Berk,

Smyth, & Sherman, 1988; Berk & Sherman, 1988; Sherman & Berk, 1984). Despite their

attempts to remediate the problem, no firm conclusions could be drawn from the study -
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largely due to selection bias threats.

A.3 A Clear Definition of Selection Bias

Selection bias stems from initial differences in comparison groups - a situation that comes

as a result from either the failure to randomly assign experimental units or the breakdown

of the random assignment process. That definition is predominate in psychology it comes

from two of its most influential methodologists in Donald Campbell and Julian Stanley.

However, definitions for selection bias may differ by researcher and by field (Cronbach,

1982; Rosenbaum, 2002, 2010). Definitional differences include both the active assignment

of experimental units and the sampling of experimental units in observational designs - both

also differ with respect to the implications selection bias’ impact. For the purposes of this

review and for the supporting empirical study, I adopt Campbell and Stanley’s definition -

not for convenience but rather because that is the predominant perspective in areas relevant

to my focus.

Campbell (1957, p.5) first described selection bias as “biases resulting in differential se-

lection of respondents for the comparison groups”. Their selection bias definition pertained

to the main “treatment” effect inherent in non-equivalent groups at pretest and attributable

to the systematic difference between groups. Those pretest differences, they argue, affect

the posttest scores. For example, if either the responding police officer or reporting person

from the Minneapolis Spouse Abuse Experiment choose the treatment, the selection mech-

anism would be unknown and the individual reasons and motivation for selecting arrest or

mediation or separation may uncontrollable effect the results. That bias, while present at

pretest, becomes relevant at posttest largely due to pretest differences.

Selection bias may be problematic when researchers rely on a counterfactual for causal

inference. Researchers construct comparison groups to establish the counterfactual and

failure to establish a reasonable counterfactual limits causal inference. Consider the spouse

abuse experiment summarized above. The study aimed to compare three treatments -

arrests, mediation, and separation - because the best or even better practical policy action
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was unclear. A conceptual view of the counterfactual is “what would have happened” if a

treatment had not occurred? More formally the counterfactual is observing experimental

unit that went through a treatment as opposed to a similar experimental unit that did not go

through a treatment on a dependent variable. Historically, the counterfactual has long been

a part of science - even its statistical formulation is a recent addition that does not change

the theoretical importance or position in science (Holland, 1986; Rubin, 1974; Winship

& Morgan, 1999). Continuing and furthering the Minneapolis Spouse Abuse Experiment

example, researchers were interested in the counterfactual where mediation was compared

to usual treatment (arresting or separating the couple).

Experimental designs help us infer cause and the counterfactual merely strengthens

that causal inference - point I address further below. Strong causal inferences are depen-

dent upon ruling out or eliminating alternative rival hypotheses. Since the counterfactual

(aka comparison groups) serves as an alternative to the focal treatment, results from these

studies are said to maintain strong causal inference. Using the counterfactual for testing

arrest and separation against mediation strengthens the causal inferences if and only if the

counterfactual is effectively constructed.

The counterfactual is meant to offer effects comparisons for equivalent groups. That

is, the comparison via the counterfactual only holds when the groups assigned to different

treatments are equivalent. That group equivalence only holds for between-subject designs

but counterfactual comparisons are equally relevant in within-subject designs. The focus of

this paper is on the former while the later demonstrates there are multiple methods for cre-

ating a counterfactual and maintaining high internal validity. Thus, if no experimental unit

can experience two or more treatments at the same time, the counterfactual requires these

units to be randomly assigned and equivalent - on all relevant variables - prior to treatment.

Initial group equivalence, therefore, is a necessary aspect of all counterfactual comparisons

and, in turn, responsible in large part for strong causal inference in experimental designs.

Researchers in social science establish counterfactual comparisons via random assign-

ment. That is, they create equivalent groups by making them probabilistically similar.
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Contrast this similarity to a process whereby groups are non-equivalent - the essence of

selection bias. Randomly assigning (RA) experimental units to comparison groups removes

any pre-treatment differences that might account for the observed effects. Unknown or un-

controlled systematic assignment means units with certain characteristics - relevant to the

treatment and/or outcome variable - may bias one group and, in turn, bias the observed

effect. Thus, non-random assignment (NR) may adversely affect the initial group equiva-

lence, reduce the effectiveness of the counterfactual, and weaken causal inference. RA can

work as a methodological preventive action for not only selection bias but other threats to

validity.

A.3.1 Randomization

Randomization - via random assignment - is essential for preventing selection bias. Ran-

domized controlled designs consist of randomly assigned participants (or experimental units)

to two or more groups. These groups often consist of a focal treatment group and either

a comparison treatment or no treatment. The basis for comparison remains the counter-

factual whereby the investigators wish to infer changes attributable to the focal treatment

that would not be observed by any other treatment or no treatment. Again, this descrip-

tion is nothing more than counterfactual reasoning as described above. In the case of the

Minneapolis Spouse Abuse Experiment, the investigators compared three equally plausible

alternative treatments and the randomization process was implemented to obtain group

equivalence and to protect against selection bias. Since chance dictates group assignment,

all relevant individual differences that may enhance, inhibit, or interact with the treatment

are likely to get balanced between groups (Fisher, 1935). Group equivalence at assignment

allows experimenters to make assumptions about the unbiased results. Thus, random as-

signment produces group equivalence and counters the potential for selection bias. Random

assignment, however, is a process so common to social science and yet often misunderstood.

Thus, I will explain the rudimentary details of the process as well as the expected outcomes

further.
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A.3.2 Randomization - The process

Random assignment is a methodological process. Assignment to comparison groups is done

by a random process - uncontrolled by experimenter, participants or context but by chance

alone (Fisher, 1935; Shadish et al., 2002). In its most basic application, random assignment

can be done by flipping a coin assigning an experimental unit to one of two comparison

groups is dependent upon only on which side of the coin lands up. In a simple between

groups with two comparison groups, if there were enough experimental units, any unique

characteristics of the experimental unit will be approximately equivalent across groups.

Differences that do exist are due simply to random error and not a predictable process

(Shadish et al., 2002). That random process of assigning participants to one of two groups

may be best characterized by the simple equation:

P(Assignment | Experimenter, Participant, Context) = 0.5

(A.1)

Any deviation from that probabilistic statement, prior to the study, leads to the inference

that either experimenter, participant, or context influenced assignment and may bias the

observed effects. Those deviations then lead to an ability to predict assignment, a violation

of the randomization concept.

A.3.3 Randomization - The outcome

The process alone, however, is not what researchers aim to produce. Instead, they aim to

produce equivalent groups - the outcome that comes as a result of the randomization process.

Unfortunately, as can be seen with the Minneapolis Spouse Abuse Experiment conducting

random assignment does not mean it will be effective at establishing equivalence between

comparison groups. Failure of random assignment can naturally occur at initial assignment

56



pre-treatment stage but if the researchers or assistants forget their assignment sheets than

the assignment process failed due to real world pragmatic reasons and assignment was

done by something other than random (Berk et al., 1988). Failures of random assignment

leave alternative systematic reasons for assignment and thus create rival hypotheses for the

causal explanations other than the one(s) being explicitly tested and this reduces internal

validity and weakens any causal inferences leading to a need to post hoc statistical correction

methods to increase internal validity and strengthen any causal inference.

If the process of randomization fails or is never implemented then internal validity and

weak causal inferences arise. Thus, randomization equates experimental units by group on

all characteristics - regardless of whether they are measured or even relevant to the causal

inferences. The process of randomization does not ensure the initial group equivalence (i.e.,

the outcome of the process) however, implementing the process increases the likelihood of

equivalence but often depends upon the sampling, sample size, and effect size in the study.

I elaborate on each point below.

A.3.4 Sampling or sample characteristics

Homogeneity of the original sample leads to a greater probability of initial group equiva-

lence. Greater sample diversity means potentially a greater number of relevant variables

that need to be balanced between groups. If there are only two experimental units (e.g.,

people) for two separate experimental conditions and those units or people are replicates of

one another then generating equivalent groups will be simple since the process of randomiza-

tion ensures equivalent groups in that case. That is, if the experimental units are equivalent

by nature so it does not matter which experimental unit gets assigned to either condition.

However, as the units increase in variability - or differentiate from each other with respect

to their inherent characteristics - the probability decreases that randomization as a process

will lead to initial group equivalence. The probability for group equivalence with highly het-

erogeneous groups is dependent upon an appropriately implemented randomization process

and sufficient sample size.
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A.3.5 Sample Size

As I mentioned previously, sample size ought to be considered with respect to initial group

equivalence. Without sufficient sample size or randomization, non-equivalence or selection

bias threats increase. If the Minneapolis Spouse Abuse Experiment only included a total

sample size of 9 (i.e., 3 per group), then even proper implementation of a randomization

process would lead to likely initial non-equivalence - attributable to the violation of the

law of large numbers which according to probability theory requires a large number of

observations to obtain a probable and stable value. If however, the total sample size was

increased to 90 with 30 per group then the probability of obtaining group equivalence

through random assignment increases. The true problem is that researchers do not know

how large a sample size must be in order to counter these selection bias threats. Generally,

the law of large numbers provides some guidance but how large is large enough remains a

long-standing question in social science.

A.3.6 Effect size

Sample size influence might remain unclear, but the influence of effect size is even less clear.

We simply do not know how large of an observed effect will be safe from the threat of

selection bias. If the randomization process failed - perhaps due to sampling variability,

inadequate sample size, or failure to adequately implement the process - and we are faced

with initial non-equivalent groups, the results may not be completely biased. Consider a

study that produced an observed effect of 3 standard deviation units (i.e., Cohen’s d=3.0)

between the treatment and comparison groups. If there were initial group differences, could

this large effect size be explained completely by selection bias or a selection by treatment

interaction? The answer to that question is simple : we do not know. I suspect that most

people might consider that effect so large that selection bias alone might not be sufficient to

account for its magnitude. Similarly, small observed effects may be the result of a large true

treatment effect offset by a negative selection bias effect. The possibility for these effects to

add to or subtract from the true treatment effect exist. Directional effects of these threats
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also remains elusive but most researchers can ascertain the direction simply by making some

inferences about the differences between the groups and how those differences may directly

affect the outcome measures or interact with the treatment. The following equation might

help elucidate this point :

ESO = ESTX + ESSB + ESTXxSB + ESOtherBiases + ESerror (A.2)

Equation A.3.6 makes explicit the proposition I introduced above. An observed effect

(ESO) comes from a simple additive model where the true treatment effect (ESTX) combine

with other potential effects - one of which is selection bias (ESSB) and the other is error

(ESerror). A third effect comes from the interaction between the treatment and selection

bias (ESTXxSB). The focus of my point here is to determine whether ESO can be sufficiently

large enough to rule out ESTX and ESTXxSB, thereby attributing the entire effect to ESSB.

As I mentioned previously, there are some instances where selection bias might counteract

the treatment effects and produce an underestimate of the observed effect size. I suspect,

however, that researchers know enough about their treatment population and treatment

characteristics to gauge the direction of these effects. Nevertheless, A.3.6 represents the

logic of this point effect sizes remain relevant to the discussion of selection bias and any

threat to validity.

Some studies with extremely large effect sizes may overcome initial non-equivalent

groups simply by producing an effect that could never be generated by those initial dif-

ferences. Hence, treatment effects may trump selection bias effects. To what extent can

this happen? Researchers (and I) do not know. Selection bias effect sizes remain unclear

at best. Meta-analytic studies comparing random assignment to non-random assignment

show variable effect size differences between those designs (Lipsey & Wilson, 1993; Shadish
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& Ragsdale, 1996; Shapiro & Shapiro, 1983; M. Smith, Glass, & Miller, 1980). Effect sizes

for selection bias effects vary widely across social science disciplines (range: d = .05 to d

= 1.38) (Donley & Ashcraft, 1992; Lipsey & Wilson, 1993). That range might be a good

start, however, there are no studies that explicitly and deliberately produced effects to see

how large they may be under any circumstances.

All observed effects include some error (ESerror). Selection bias effects theoretically

exacerbate the inaccuracy of the observed effects reflecting the true treatment effects. Ab-

sent knowledge of selection bias effects, researchers are left to infer any deviation from the

true treatment effect may be attributable to random measurement error, treatment fidelity

problems, or other problems that directly impact ESerror. Despite the absence of specific

direct data about selection bias effect sizes, there are data regarding treatment effects and

how treatment effects are impacted through designs that likely have selection bias effects.

Effect size estimates for selection bias vary widely across social science disciplines (range:

d = .05 to d = 1.38) (Donley & Ashcraft, 1992; Lipsey & Wilson, 1993). That is, these

effects that are directly and singularly attributable to selection bias alone remain unclear

due to the variability in their estimates. These effects may be large enough to counter se-

lection bias effects but they may be trivial. If we knew the magnitude or range of values for

selection bias effects (i.e., ESSB), then we might be able to appreciate the limits selection

bias influence. Presumably, selection bias may threaten studies with small effects more so

than studies with large or extremely large effects. The basis for my empirical study is to

estimate these selection bias effects. Before providing details of my study, I justify why I

chose selection bias and then review the extant literature to show what we already know

about selection bias.

A.4 Justifying a focus on selection bias

Selection bias is one of many validity threats but tends to get priority over other threats

- both in the literature and in practice. More theoretical and empirical attention is paid
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to selection bias because of its perceived effects and probable presence in many studies.

Selection bias impacts the outcome when initial differences between groups either directly

relate to differences in outcome measures or when initial differences interact with treatment

effects to produce differences in the outcomes (i.e., a moderated effect). Thus, when se-

lection bias is present, any posttest effect will be subject to not only the influence due to

treatment but also the initial differences between the groups. Posttest effects influenced by

initial differences are biased effects. We researchers worry that these biased results either 1)

underestimate our true treatment effects or 2) overestimate other researchers true treat-

ment effects (“shifting standards of evidence depending upon whose ox is being gored.”)

(Meehl, 1973, p.231). In short, selection bias creates posttest results that are a function

of the treatment effects, initial differences between groups, and the interaction between the

two.

Biased posttest results come from many other factors as well - not just selection bias.

Selection bias potentially interacts with numerous other threats (ESOtherBiases), further

reducing the clarity of the true treatment effects (Campbell & Stanley, 1963; Shadish et

al., 2002). The entire foundation of experimental research design focuses on eliminating

plausible rival hypotheses and thus, on isolating a specific causal relationship and observing

the true treatment effects. When selection bias is present either by limitation in design or

failures in the randomization process, the study’s effects are biased and any intentions of

sound scientific practices are jeopardized.

As documented above, any design or methodological weakness that threatens causal

inference is a threat to internal validity. Selection bias, as with any other threat to validity,

is a possible alternative explanation for observed effects in a study. Any threat to validity

undermines researchers attempt at understanding the true effect. That true effect may be

for what constitutes a concept or construct, or the causal relationship between constructs,

or even how construct causal relationships vary by settings or persons. There are many

threats but I focus on one - selection bias. From this point forward, I will address selection

bias as the primary threat to validity and use the term threat and bias interchangeably.
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So why selection bias and not another potential threat to validity? Simple. Selection

bias is the single threat that dominates all areas of causal inference. As I discussed above,

the counterfactual is the central, logical tenet of causal inference. Anything that threatens

the counterfactual affects the inferential gains (i.e., utility) of a research project. So the first

primary reason for focusing on selection bias is that it relates to a primary and essential

ingredient in research - the counterfactual. But that reason alone is not sufficient. Instead,

I focused my attention on selection bias because researchers pay more attention to selection

bias in the empirical literature than any other bias. Consider the two research programs

outlined below and what they aim to contribute to science I elaborate on each for two

reasons - to demonstrate a working knowledge and to delineate a rationale for my focus.

A.5 Methods to Treat Selection Bias

In this section, I document the most widely used statistical and methodological approaches

to improve causal inference in non-equivalent group designs. I provided both a historical

basis as well as a methodological basis for grouping these approaches. By doing so, I hoped

to clearly articulate why my study would contribute to the extant research methodology

literature.

Let me begin by introducing the key people in the field - Don Rubin and Don Campbell.

Both are (were) luminaries in the field of research methodology and most of their relevant

and derivative work get the bulk of attention from the research community (Shadish, 2010).

Consider a few metrics just to highlight the attention these researchers garnered over the

past few decades. Rubin, for example, has over 15,000 citations to his work on selection

bias alone. That work, as documented below, focused on propensity scores, instrumental

variables, and causal inference from non- or quasi-experimental studies. Campbell, similarly,

has over 20,000 citations to his work on quasi-experimentation, regression discontinuity, and

patched-up designs. These works - and their derivations - lead to most, if not all the work

I document here and pursue in this study. I begin with Rubin’s work - not because it

preceded Campbell’s contributions but because it provides some clarity to my overall aims.
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Following Rubin’s contributions, I then detail Campbell’s.

A.5.1 Don Rubin

Don Rubin published a seminal paper on causal inference from non-randomized controlled

designs in (1974). That paper lead to a series of papers on what is now referred to as

“Rubin’s Causal Model” or RCM. The RCM established the first formalized, statistical,

and comprehensive approach to establishing causal inferences based upon counterfactual

thinking. Other theorists and statisticians had similar ideas (Bacon, 2005; Hume, 1740;

Neyman & Pearson, 1933) but none of them offered the same comprehensive approach that

Rubin began with in his modeling approach. Rubin boldly held that design trumps analysis

for causal inference as reflected in his statement “this [causal inference] enterprise requires

careful thought and execution, and not simply running mindless regression programs and

looking at coefficients” (2008, p.837). If design trumps analysis and the counterfactual

remains central to causal inference then selection bias becomes one, if not the most impor-

tant features of scientific inquiry. Rubin never directly states this position but it becomes

apparent from his work on both design and analysis - the counterfactual remains central to

all causal inferences. Based upon my prior review and discussion of counterfactual reason-

ing and the role of selection bias in undermining counterfactual reasoning, I contend that

the RCM requires equivalent group designs and minimal selection bias for strong causal

inference.

My contention aside, Rubin expended tremendous effort in trying to wring out rea-

sonable inferences from quasi-experimental and non-experimental designs via statistical

procedures. He developed a rationale for propensity scores - based upon the logic of instru-

mental variables (Wright, 1928) - that enabled observational researchers (e.g., economists,

psychologists, sociologists, etc.) to draw stronger inferences from weaker non-equivalent

group designs. Initially, Rubin (1977) showed that group assignment via a covariate could

be modeled sufficiently to account for initial non-equivalence. His logic lead to a simple

justification whereby researchers could retrospectively analyze quasi-experimental designs

63



via an aggregate variable - much like the use of instrumental variables that predated his

work. Rosenbaum and Rubin (1983) provided the rationale and empirical justification

for group matching based upon a simple logistic regression model they called propensity

scores. A propensity score represents the probability that an individual would be assigned

to a treatment group. When two individuals - study participants in this case - have an

equal probability of being assigned to the treatment but were assigned to different groups,

we can consider them to be “matched” and equivalent. Holding that logic across all partic-

ipants creates a logical framework whereby a data analyst may construct an entire study -

retrospectively - as if the individuals were randomly assigned.

Rubin’s work on propensity scores lead to a host of research programs focused on the

same issue - minimizing selection bias. These efforts were largely empirical tests that showed

the importance of comparison group selection in quasi-experimental designs (Campbell,

1969; Rubin, 1974; Heinsman & Shadish, 1996; Steiner et al., 2010). That work showed

that covariates can be useful in retrospectively constructing comparison groups because

they enable researchers to create group equivalence. Prior to these efforts, there existed

only one way to reduce selection bias - randomization. Now, raw significant difference be-

tween non-randomized and randomized effect sizes can be reduced by statistical adjustments

(covariates in linear regression), careful selection of comparison groups, and eliminating self-

selection (Shadish & Ragsdale, 1996).

The first two reduction strategies - statistical adjustment and careful selection - require

researchers to design studies to protect against selection bias. Selecting comparison groups

requires foresight selecting alternative comparisons at the conclusion of the study does not

require foresight but allows other threats to validity to creep in and weaken the causal

inference (e.g., maturation, history, etc.). The latter of the three strategies - eliminating

self-selection - requires researchers to guard against this confound by carefully monitoring

the treatment assignment and treatment fidelity. Monitoring both of these study aspects

need to be carried out during the study and, as a result, require researchers to plan ahead.

Thus, only one of the three approaches can be carried out retrospectively or in reaction to
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the threat of selection bias. I devote the majority of this section from this point forward

on retrospectively adjusting effects because these adjustments directly relate to my current

study and come from Rubin’s work.

Unlike random assignment, equivalence created post-hoc is not hypothetically probable

but rather empirically probable based upon the data. In other words, randomization as a

process may not deliver the outcome we desire but matching subjects via covariates ensures

that between group comparisons maintain reasonable equivalence according to the coun-

terfactual logic I outlined previously (see Figure A.3). Thus, retrospectively constructing

comparable groups appears sufficient to deliver unbiased effects. Even approximate match-

ing on covariates leads to acceptable and effective NR designs (Cook et al., 2009; Steiner et

al., 2010). The question remains about the approximation of matching required to create a

sufficiently strong counterfactual.

ESO = ESTX + ESSB + ESCV + ESerror

ESCV = ESCV 1 + ESerror

ESCV = ESCV 2 + ESerror

(A.3)

Comparison groups are more effective - as counterfactuals - when individuals in both

groups are equivalent across many potentially relevant domains (Cook et al., 2009; De-

hejia & Wahba, 1999; Glazerman et al., 2003; Shadish & Ragsdale, 1996; Steiner et al.,

2010). As individuals differ across the domains, causal inference suffers. Recent research by

Shadish et al. (2008) and subsequent reanalysis by Steiner et al. (2010) suggests an even

clearer message the greater the relationship between a covariate (or covariates), the greater

the utility in adjusting quasi-experimental effects to reflect reasonable experimental effects

(Cook et al., 2009). Re-analysis of meta-analytic data indicated that stable experimental

effects may be estimated from quasi- or non-experimental studies via careful selection of
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comparison groups (placebo vs. wait-list) thus minimizing pretest differences and avoiding

self-selection (Heinsman & Shadish, 1996). These results showed that researchers improved

comparison groups through matching attrition levels and sample characteristics. Together,

Heinsman and Shadish determined that non-randomized designs with comparisons groups

matched for important sample characteristics (i.e. any variable relevant to the treatment

or outcome measure) produced reliable and valid effects (Heinsman & Shadish, 1996).

If statistical adjustment can “fix” weak studies, then why don’t researchers simply use

these methods instead of stringently adhering to randomized designs? Simply put, statistical

adjustments require data that are not always available. Specifically, all covariates relevant

to assignment must be available and included in the model (Heckman, 1979; Heckman et

al., 1987; Rubin, 1974; Steiner et al., 2010). A clear example of these relevant variables

comes from Heckman’s (1987) re-analysis of Lalonde’s (1986) study. Lalonde’s contention

was that non-randomized designs produce poor causal inferences (i.e., unreliable or invalid

effects). Heckman countered that claim by reanalyzing the results and demonstrating that

reasonable causal inferences could be gained from non-randomized designs provided relevant

variables could be used to form logical matches between treated and untreated participants.

Dehejia and Wahba (1999) confirmed Heckman’s approach by producing similar effects as

Heckman but instead of matching by variable, they matched cases by propensity scores. In

both cases, reanalysis of the Lalonde data adjustments approximated the effects observed

in randomized designs - albeit at times these estimates were slight underestimates but still

reasonable according to the authors. None of these adjustments, however, were possible

without the inclusion of relevant covariates. Omission of these variables eliminates the

opportunity to adjust and few other options exist after a study has been carried out.

Not only do researchers need access to these relevant variables but also they need to

have sufficiently large sample sizes to make reasonable adjustments. Sample size directly

affects the reliability of adjustment (e.g., propensity score requirements (Wilde & Hollister,

2007)). Small sample sizes reduce the utility of most adjustment procedures. To expand

upon the relevance of both the need for all relevant variables and sample size requirements,
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I describe the most popular adjustment procedures - propensity scores, instrumental vari-

ables, Heckman selection model, and estimate and subtract - below and then summarize

the strengths and weaknesses of each method.

Propensity Scores

To begin, propensity scores - as Rubin originally envisioned - offer researchers a way to

create a counterfactual when the counterfactual does not exist. Specifically, if a study

failed to actually randomly assign participants or never implemented random assignment

then the use of propensity scores may be a viable statistical adjustment tool to enhance

internal validity and draw reasonable valid causal inferences.

Propensity scores are the combination of multiple demographic or otherwise descrip-

tor variables that match or divide observed experimental units into “as-if” counterfactual

comparison groups. The creation and application of propensity scores is as follows: 1)

select a set of variables relevant to group assignment, 2) use those variables as predictors

in (binomial or multinomial if more than two groups) logistic regression to predict group

assignment, 3) save probability of assignment - as estimated from logistic regression - as

propensity scores (i.e., the propensity to be assigned to a group), 4a) use propensity scores

as covariates in statistical analysis or 4b) use propensity scores to create matched pairs from

the observed sample and analyze these matched pairs as if they were randomly assigned.

These four basic steps serve as the standard procedure for propensity score analysis.

The last two options require a bit more elaboration. Once the researcher computes the

propensity scores, she may incorporate those scores directly into a multivariate analysis

as covariates (4a above) or use the scores to match participants between groups (4b). As

a covariate, the propensity score “adjusts” the partial correlation coefficients by taking

into consideration the relevance of assignment. The adjustment does not correct but rather

attenuates the potential effects by residualizing out any shared variance between assignment

(i.e., selection bias) and the predictor variables. Using propensity scores as covariates

improves causal inference, however, an alternative approach tends to be more widely used
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- participant matching via propensity score.

As a matching procedure, propensity scores allow the researcher to identify participant

pairs to match and analyze as if the pairs were randomized to different groups. The paired

participants were indeed assigned or participated in different groups but the matching al-

gorithm simply finds people who might be suitable comparisons by group because they

have similar probabilities of assignment. A person assigned to a treatment group, for ex-

ample, would be matched with a person assigned to the comparison group if both had

similar propensities for being assigned to the treatment group. This matching process is

similar to what I mentioned earlier about the relevance of constructing useful comparisons.

Propensity scores, in short, act as a retrospective method for creating a sound design. After

all the study participants are matched, the analyst conducts statistical analyses on these

newly formed treatment and control groups “as-if” the participants were randomly assigned

to the groups. Propensity score matching has a number of requirements and restrictions

including some details I do not intend to address here (e.g., how to create and determine

what constitutes a “match” and sample size requirements for complex logistic regression).

Despite the limitations of matching, propensity scores used in this manner produce robust

and dependable parameter estimates and hypothesis tests - similar to randomized controlled

trials (Cook et al., 2008). A few more considerations are necessary to fully appreciate the

utility of propensity scores.

First, propensity scores are themselves conditional probabilities P(Assignment | Covariates) =

0.5 for any observed participants’ likelihood of being assigned to a treatment or control con-

dition (Rubin, 1974). These conditional probabilities are the result of a logistic regression

utilizing numerous observed covariates. In short, propensity scores are conditioned on co-

variates and ought to be considered estimates of assignment probability.

Second, the quality of those estimates relies heavily on the relationship between the

covariates and the assignment mechanism (see subsection under selection bias above). Not

all covariates used in these logistic regression models are equal in terms of deriving use-

ful propensity scores. Rubin recommends using only covariates related to the assignment

68



mechanism and unrelated to the outcome variable. Often, quality propensity score compu-

tation requires numerous covariates - partly because the assignment mechanism is unknown.

When the assignment mechanism is unknown, researchers might find it difficult to discern

the utility of potential covariates to include in the logistic regression. Thus, researchers

often resort to including many covariates - perhaps more than necessary - to estimate these

propensity scores.

In summary, propensity scores are estimated probabilities from multiple pre-treatment

observed covariates (Guo & Fraser, 2010). Those estimated probabilities can then be used

as a covariate or as a variable to match participants to form better comparisons. If used as

covariates, propensity scores serve as adjustments to the multivariate parameter estimates

and, in turn, hypothesis tests. If matching via propensity scores renders sufficient compar-

isons, then the results ought to come close to the results obtained from randomized trials.

The operative word in the previous sentence is “if” because there are limitations including

data availability and sample size that affect this conditional statement. Propensity scores

require an exhaustive array of relevant variables and large sample sizes to draw strong, valid

causal inferences - regardless of the approach. Any deviations from those conditions limit

the propensity score approach and fail to “fix” non-randomized designs (Guo & Fraser,

2010; Rubin, 2010).

Instrumental Variable

An alternative to propensity scores are instrumental variables. As I mentioned previ-

ously, propensity scores allow researchers to select a large group of covariates for a logistic

regression that selection process does not demand that the researcher know the assignment

mechanism. In contrast, instrumental variables are similar to propensity scores - by appli-

cation - but differ with respect to knowledge of the assignment mechanism. The researcher

must have a good rationale for selecting an instrumental variable because that variable must

be related to the assignment mechanism. In short, what separates instrumental variables

from propensity scores is the knowledge of the assignment mechanism.
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Instrumental variables are useful in non-randomized designs, particularly observational

designs, because an instrumental variable creates a counterfactual within the observed

data by differentiating the statistical model predictor variables - conceptually similar to

propensity scores but procedurally different. Instrumental variables are created and ap-

plied through the following steps : 1) select a single (instrumental) variable that explains

the dependent variable but only as an indirect effect through one or more predictor variables,

2) include the single variable in the statistical model along with the independent variables.

A conceptual example is predicting the effect of military service on civilian health and

earnings. Using the military draft lottery, as the instrumental variable, and using military

service as a predictor of civilian health and earnings. While there is a relationship between

being drafted and service there should not necessarily be a connection between a lottery

variable and the civilian health outcome variable. Including the instrumental variable in

the statistical model is distinct from the propensity score method conceptually as the in-

strumental variable is theoretically and empirically causing the other independent variables

while not directly related to the dependent variable while propensity scores are not con-

ceptually nor empirically causally related to the other predictors in their statistical models.

Instrumental variables seem pragmatically less resource intensive than propensity scores

but maintain more stringent theoretical and practical restrictions. Those restrictions arise

from the how predictor variables are dealt with in a regression model.

An instrumental variable is essentially a predictor that is fully mediated by another

predictor. Consider a simple model where the researcher identifies two predictors (A and

B) and one outcome (C). If both predictors were related to the outcome then we would

not have a suitable instrumental variable among A and B. If, however, A were relevant

to C but only as a predictor of B (i.e., A and B are collinear) then A might serve as a

good instrumental variable. The utility of instrumental variables is often depicted in the

following way:

E(C) = E(B | A) + E(Error | A) (A.4)
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In standard form, E stands for the expected value of a variable and the pipe (“|”) is a

conditional statement. Thus, the expected value of C is dependent upon the expected value

of B given A along with the expected value of the residual or error given A. The logic of

instrumental variables lies in the first term (E(B|A)) where the effect of B on the outcome

C is dependent upon A. Some may argue that this effect is no different than a moderation

and, in some cases, that makes sense, however, if the effect were a moderation and not a

mediation then the residual term would be contingent upon A and, as a result, reduce the

utility of our instrumental variable. A moderation effect would look like this

E(C) = E(A) + E(B) + E(Error | AandB) (A.5)

Econometricians view the problem from the equation A.5 I showed previously. The logic

seems similar to psychologists statistical definition of moderation but there are important

distinctions. First, instrumental variables are not direct effects (i.e., E(A) is zero by that

definition). Second, the effect of B (E(B)) can only be reasonably estimated by considering

the contingencies of A (E(B|A)). Finally, the error term (E(Error)) must be independent of

either A or B - a point I shall return to shortly.

The general use and formulation of instrumental variables tends to be more consistent as

a mediation process rather than a moderation process. The causal model below represents

the logic of instrumental variables :

A → B → C (A.6)

Another important aspect of instrumental variables lies in the second term in the equa-

tion A.6 above (E(Error |A)). Ideally, we expect errors to be independent and not contingent

upon A - our instrumental variable. When the error term relates to A or any other predic-

tor, we have a problem that econometricians call endogeneity (Heckman, 1979). Specifically,

endogeneity results from the correlation between the predictor variable and the error term.

Non-randomized designs - especially observational designs - are probabilistically prone to
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selection bias that, in turn, probabilistically creates a relationship between predictor vari-

ables and the dependent variable’s error term. There are other causes of endogeneity (e.g.

omission of relevant variables, simultaneity, etc.) but here I focus on the impacts of selection

bias.

In order to resolve the endogeneity problem, a data analyst uses a statistical solution

whereby an exogenous variable gets included in the regression equation. This exogenous

variable must be correlated with the predictor variable (B) and the dependent variable (C)

while not being correlated to the error term. The exogenous variable (A), when it satisfies

these conditions, serves as an instrumental variable.

Instrumental variables can be used as covariates to “adjust” the parameter estimates of

the primary predictor in the same way that any collinear predictor adjusts the parameters

of other predictors - via partial regression coefficients. As multicollinearity increases among

predictors, partial regression coefficients decrease. Not only do the regression parameters

change but so do the standard errors via the variance inflation factor (VIF). Thus, instru-

mental variables affect not only the parameter estimates for the primary predictors but also

the hypothesis tests.

Despite the potential utility of instrumental variables and their relative advantages

compared to propensity scores, there are several noteworthy limitations. First, instrumental

variables are difficult to find. Identifying them from existing data sources - assuming the

instrumental variable process takes place after data collection - can be a challenge. Second,

even if a potential instrumental variable were identified, the researcher must be able to

reason that the variable is related to the assignment mechanism. Assignment mechanisms

are not always readily identifiable let alone knowable either a priori or post hoc. Third,

the utility of instrumental variables tends to be related to sample size - the same limitation

stated for propensity scores. Small sample sizes produce adjustments via instrumental

variables that do not accurately characterize the selection bias effect. Fourth, instrumental

variables place a large burden on the variable selection process and, as a result, potentially

fail to capture all potentially relevant exogenous variables useful in adjusting the observed
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effect. This reliance on a single variable stands as the primary weakness of instrumental

variables when compared to propensity scores. Finally, instrumental variables tend to be

limited to only situations where the treatment groups are homogeneous (Guo & Fraser, 2010;

Winship & Morgan, 1999). When treatment groups have differential fidelity, the adjustment

via instrumental variables assumes a fixed effect and may not adequately capture the relative

within-group variability. In sum, instrumental variables are statistically and procedurally

simpler than propensity scores but their theoretical and empirical requirements often make

their application far more difficult.

Heckman Selection Model

Similar to the two previous methods of addressing selection bias, economist James Heckman

devised an alternative statistical adjustment tool that allows researchers to make causal

statements using data from non-randomized designs. Heckman’s tool is generally referred

to as the sample selection model and it can be effective at reducing bias when data is

collected through observational and quasi-experimental methods. The sample selection

model tends to be a fairly complex, nuanced statistical model that can be summarized

simply by comparing the model to propensity scores and instrumental variables. Rather

than provide exhaustive details of these complex statistical nuances, I focus most of my

attention on the advantages Heckmans model offers in comparison to the other models.

As a simplification, Heckman’s sample selection model is a two-step procedure. The

first step focuses on modeling the selection mechanism the second step focuses on applying

the results from step 1 to a standard prediction model where the parameters are adjusted

to accommodate selection (Heckman, 1979). In step 1, the analyst models selection by a

least squares equation that results in assignment probability estimates. These probability

estimates can be viewed in the same way as propensity scores, however, Heckman does

not explicitly state the comparison. The logic between Heckman’s method and propensity

scores - at least according to my reading and interpretation - appear remarkably similar.

Once modeled, the analyst uses that probability of assignment in a second linear model
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to predict the outcome variable. Again, this application appears similar to propensity

score and instrumental variable applications. Where Heckman’s model differs from either

propensity scores or instrumental variables is how the selection equation estimates the

selection bias. Heckman models the bias as a hazard function or Mills ratio. Use of this

hazard function allows for appropriately analyzing a dependent variable that has a truncated

normal distribution resulting from the non-randomized design. Including the modelled

selection conditional probability produces outcome variables estimates that are reliably

comparable to a randomized study design result (Guo & Fraser, 2010).

Heckman’s method offers some advantages to the two previously discussed methods

in that the method accounts for distributional anomalies that may be inherent in non-

randomized designs. The method, however, does have some noteworthy disadvantages.

First, Heckman’s method requires the inclusion of all possible, relevant covariates in step

1. Failure to include relevant covariates greatly affects bias reduction in Heckman’s model

(Guo & Fraser, 2010). Second, Heckmans model requires the same large sample sizes as

required by propensity score and instrumental variables. The requirements for large sample

sizes makes this method less useful for most social scientists - at least those outside the areas

where studies rely on large (N > 1,000) sample sizes (Winship & Morgan, 1999). Third,

the residuals from both steps must be normally distributed - just as in all ordinary least

squares models. Recent derivations of Heckman’s model do not solely rely on OLS, however,

the original and most widely used application tends to be restricted to OLS procedures.

Propensity scores and instrumental variables are not limited to OLS applications. Finally,

the residuals from both steps must be independent (hence, residuals as described from the

previous limitation and this limitation require iid - independent and identically (Gaussian

normal) distributions. Again, iid is a limitation for most OLS procedures and may be

overcome by more modern statistical algorithms.
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A.5.2 Donald T. Campbell

While Rubin’s work focused on statistical adjustments for NR and observational designs to

approximate RA design effects, Donald T. Campbell worked just as effectively on method-

ological adaptations to failed RA designs or methodological alternatives to RA designs.

Campbell devoted his efforts to either strengthening the counterfactual in NR designs

through Regression Discontinuity, numerous comparison group designs, or patch-up designs.

Yet, Campbell’s most significant contribution may be from categorizing and describing the

myriad of threats to validity present for numerous designs (Shadish, 2010).

Campbell, in collaboration with several colleagues (e.g., Julian Stanley, Tom Cook,

and Will Shadish), constructed the foundation for social science methodology. Specifically,

they acknowledged the limitations of all research designs from RA to NR to observational -

leaving none immune to scrutiny and made a concerted effort to pinpoint specific limitations

to causal inferences (Campbell & Stanley, 1963). Identifying specific threats to various

designs was part of Campbell’s approach to explicitly and directly dealing with potentially

impaired causal inferences.

The focus on threats to validity soon established selection bias as the primary concern

for most social and behavioral scientists. I say “primary” because it attracted the most

attention from the long list of validity threats. As support for this contention, I searched

the literature for other threats to validity and found few others that gained any attention

- not just a modicum but any attention at all. Measurement bias (e.g., reactivity, testing

effects, etc.) garnered the second most citations and, ironically, most of those citations came

from Don Campbell’s direct contribution of unobtrusive measures. Other work that may

focus on alternative threats to validity are difficult to find - perhaps because the research

is nested within a content domain or because the work is less prevalent than the work

focusing on selection bias. In either case, my choice of selection bias stemmed mainly from

its prominent attention in the literature. A second reason for focusing on selection bias

stems from its potential influence on our inferences from empirical studies. I document that

reasoning by the following research program.
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Campbell’s perspective might be best characterized by the following statement: failure

to randomize and prevent selection bias leaves researchers with no alternative than to treat

the problem. Even randomization does not ensure initial group equivalence so investigators

may need to treat selection bias regardless of the design “...statistical procedures should

be used ... [for] any faulty random assignment” (Berk et al., 1988, p.62). Thus, while

randomization is necessary for methodological initial group equivalence, it might not always

be sufficient. We must treat any situation where selection bias remains probable. Another

reason for treatment options stems from the fact that random assignment is not always

possible (Shadish et al., 2002). Some studies - non-randomized or NR studies - often begin

with non-equivalent groups by design due to feasibility issues. These NR studies are common

in many social scientific domains where researchers focus on uncontrollable outcomes (e.g.,

natural disasters, criminal activity, developmental processes, etc.). The methods I detail

below tend to be more consistent with Campbell’s notions of causal inference.

Campbell’s approach inspired many procedures one in particular was the regression

discontinuity design that clearly demonstrated Campbell’s contribution to this problem.

Another approach more germane to my dissertation was the Estimate & Subtract (Reichardt

& Gollob, 1989) technique. I address each of these below.

Regression Discontinuity

Perhaps the single contribution for estimating causal effects from NR designs consistent

with Don Campbell’s work comes from the concept of regression discontinuity. This design

does not rely on random assignment but maintains high internal validity through a unique

assignment mechanism and an a priori selected counterfactual. Similar to the above statis-

tical procedures, regression discontinuity only works if the assignment mechanism is known.

That mechanism must be taken into consideration by design. Instead of random assignment,

the researcher controls group assignment via a pre-specified variable. Basically, regression

discontinuity is a pretest-posttest design (see A.5.2) but the comparison or counterfactual

is based solely on a cut-score (C) for the assignment method.
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Figure A.1: Regression Discontinuity Design

The cut-score is a bisecting point on a continuous measure; all participants (or experi-

mental units) on one side of the cut-score are assigned to the same experimental group while

the remaining participants on the other side of the cut-score are assigned to the other ex-

perimental group. For example, if the Minneapolis Spouse Abuse Experiment implemented

a regression discontinuity design and a cut-score measure for only imprisonment and sepa-

ration, then all persons below a threshold on some selected measure would be assigned to

imprisonment while all those above the threshold would be in the separation comparison

group. The requirements of the cut-score measure are that it be : 1) continuous, and 2)

variability on either side of the cut-score (Shadish et al., 2002). Shadish also recommended

that the cut-score be the mean from the measure. For causal inferences to be effectively

drawn from this design, researchers need to strictly adhere to the assignment based upon the

cut-score. After assignment and treatment (X) is complete the participants are measured

on the outcome of interest (O).

After participants are assigned to their comparison groups they are observed at posttest

(O). There are only two observation points in the basic regression discontinuity design. The

first is used to assign participants to a comparison group and the second is to measure the

treatment outcome. And upon completion of data collection the analytic process is con-

ducted. As stated through the designs title, determining the effectiveness of the treatment

is done using regression. Regression lines are computed for both comparison groups. Any

treatment effect is calculated from the difference between regression lines. When plotted,

with the assignment measure (C) on a horizontal axis and the outcome variable (O) on a

vertical axis, the treatment effect is visually confirmed by the split between regression lines,

this split is the discontinuity referenced in the methods title.

Regression discontinuity is a relatively simple design but difficult to implement because

it requires assigning participants on a predetermined basis that is often not feasible for
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the same reasons that random assignment may not be possible or feasible. However, the

advantage of regression discontinuity is that treatments can be targeted to those in need

while still maintaining high causal inferences and avoiding or reducing most threats to

validity (Campbell & Stanley, 1963; Shadish et al., 2002).

Estimate & Subtract

Estimate and Subtract (E&S; Reichardt & Gollob, 1989) is one alternative to those afore-

mentioned complicated and resource intensive statistical matching procedures. E&S aims

to improve causal inferences from NR studies by subtracting the estimated bias from the

observed effect. For example, if selection bias were known to produce a modest effect (e.g,

d=0.3) for a particular population and an NR study published a large effect (e.g., d=0.9),

then the E&S method would estimate the “true” effect of the treatment to be a more mod-

erate effect (i.e., d=0.6 = 0.9 - 0.3). Effect size bias estimates may come from any study,

rarely, however, do we have them readily available. E&S seems simple and useful to counter

selection bias. Unfortunately, this procedure has not enjoyed the overall popularity as the

more complicated statistical matching procedures mentioned above. One of the potential

reasons for E&S’s lack of popularity might stem from lack of readily available bias estimates.

Furthermore, all published E&S reports use a specialized methodological design (e.g., in-

terrupted time series) (Reichardt & Gollob, 1989; Reichardt, 2000, 2006, 2011). Current

E&S implementations limit researchers to a few types of designs - many are not applicable

to a typical two-group comparison study. Readily available bias estimates, however, may

increase the viability of the E&S procedure to psychological research. In fact, unlike the

statistical matching procedures, E&S implementations with using robust bias estimates for

self-selection would be well suited for a majority of psychological NR studies due to its lack

of resource demands and computational ease. E&S using pre-existing information treats

biased results by subtracting a biased estimate from the observed results. If, for example a

NR study had an observed Cohen’s d of 1.5, the analyst would simply subtract the expected

selection bias from available sources (e.g., .24 a value based on Shadish’s (2008) study) from
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the observed 1.5 to obtain the adjusted or unbiased 1.26 Cohen’s d. As potentially useful as

E&S may be for adjusting psychology NR study results its use is restricted by the absence

of selection bias estimates.

All NR studies are generally considered flawed when compared to RA studies. This

consideration has been observed in various studies comparing results from NR and RA

designs. Because NR studies do not replicate exact directional and magnitudes of RA study

results several adjustment tools have been developed. These adjustment tools usually adjust

for selection bias. Their effectiveness is dependent on numerous factors but can be effective

given the right circumstances and data. Despite theoretical and empirical knowledge on

causality, threats to validity, and adjustment tools theres is no solid understanding or any

empirical evidence for selection bias magnitudes themselves. Theoretical selection bias

differences are modeled via simulation and comparison group differences were observed in

separate instances but no independent estimates of selection bias magnitudes currently

exist. Knowing what the bias magnitude is likely to be can be quite useful to researchers

when deciding if it is necessary to conduct an RA study or fatally flawed to implement a

NR study without an adjustment tool or a real requirement for an adjustment to that NR

study result.

A.5.3 A brief history of estimating selection bias

A reasonable justification for the current study may come from its historical roots - one

that I provide below. Selection bias, as mentioned previously, became a relevant concern

in the early to mid 1960’s with the publication of Donald T. Campbell and Julian Stanleys

monograph on Experimental and Quasi-Experimental Designs for Research (1963). There

were other events that preceded that publication - ones that I document in Table A.2 -

but contemporary social scientists largely attribute selection bias to Campbell and Stanley.

Since their publication, social scientists slowly progressed toward estimating selection bias

effects some efforts were subtle while others were explicit. I present these events in tabular

form to allow the reader to appreciate the brief but productive history of selection bias. The
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re
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pr
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events portrayed in the following table do not represent a census of all events but rather a

comprehensive list that I use to establish the research programs associated with my research

questions.

81



T
ab

le
A

.2
:

T
ab

le
of

ke
ys

to
ne

se
le

ct
io

n
bi

as
re

la
te

d
co

nt
ri

bu
ti

on
s

Y
ea

r
C

on
tr

ib
ut

io
n

R
el

ev
an

ce
Im

pa
ct

19
40

P
ra

tt
an

d
R

hi
ne

pu
bl

is
he

d

a
bo

ok
co

nt
ai

ni
ng

th
e

fir
st

ag
gr

eg
at

io
n

of
in

de
pe

nd
en

t

st
ud

y
re

su
lt

s.

F
ir

st
pu

bl
ic

at
io

n
of

si
m

ila
r

st
ud

ie
s

-
co

nc
ep

tu
al

ly
id

en
ti

-

ca
lly

bu
t
m

et
ho

do
lo

gi
ca

lly
di

s-

ti
nc

t.

P
sy

ch
ol

og
ys

fir
st

co
m

pi
la

ti
on

an
d

re
vi

ew
of

si
m

ila
r

co
ns

tr
uc

ts
br

ok
e

gr
ou

nd
fo

r
fu

tu
re

ps
yc

ho
lo

gi
ca

l
m

et
a-

an
al

ys
es

.

19
63

C
am

pb
el

l
an

d
St

an
le

y
pu

b-

lis
he

d
th

ei
r

M
on

og
ra

ph
.

O
rg

an
iz

ed
th

re
at

s
to

va
lid

it
y

fo
r

al
l

so
ci

al
an

d
be

ha
vi

or
al

sc
ie

nt
is

ts
.

St
ar

ti
ng

po
in

t
fo

r
m

os
t

m
od

er
n

re
vi

ew
s

an
d

th
e

hi
st

or
ic

al
st

ar
ti

ng
po

in
t

w
he

re
th

e
th

re
at

la
be

lf
or

no
n-

eq
ui

va
le

nt
gr

ou
p

de
si

gn
s
ge

ts
as

-

si
gn

ed
“s

el
ec

ti
on

bi
as

.”

19
60

’s
So

ci
al

pr
og

ra
m

s
be

ca
m

e
m

or
e

sc
ru

ti
ni

ze
d

by
U

S
C

on
gr

es
s.

C
on

gr
es

s’
de

m
an

ds
m

ad
e

qu
as

i-
ex

pe
ri

m
en

ta
l

de
si

gn
s

m
or

e
po

pu
la

r
an

d
th

an

ex
pe

ri
m

en
ta

l
de

si
gn

s.

C
re

at
ed

de
m

an
d

fo
r

re
se

ar
ch

an
d,

in
pa

rt
ic

u-

la
r

fo
r

N
R

de
si

gn
s

du
e

to
co

nv
en

ie
nc

e.
T

he
se

de
m

an
ds

al
so

pr
ov

id
ed

th
e

op
po

rt
un

it
y

to

qu
es

ti
on

th
e

va
lid

it
y

of
in

fe
re

nc
es

fr
om

th
es

e

w
ea

ke
r

de
si

gn
s.

82



T
ab

le
A

.2
–

co
nt

in
ue

d
fr
om

pr
ev

io
us

pa
ge

Y
ea

r
C

on
tr

ib
ut

io
n

R
el

ev
an

ce
Im

pa
ct

19
74

R
ub

in
pu

bl
is

he
d

hi
s

ca
us

al

m
od

el
.

E
st

ab
lis

he
d

a
st

at
is

ti
ca

l

fr
am

ew
or

k
fo

r
ex

am
in

in
g

ca
us

e.

M
er

ge
d

m
ul

ti
pl

e
fie

ld
s

an
d

en
co

ur
ag

ed
ca

us
al

in
fe

re
nc

e
fr

om
bo

th
de

si
gn

an
d

st
at

is
ti

ca
lp

er
-

sp
ec

ti
ve

s.

19
77

Sm
it

h
an

d
G

la
ss

pu
bl

is
he

d
th

e

fir
st

ap
pl

ie
d

m
et

a-
an

al
ys

is
in

an
ar

ea
ho

tl
y

de
ba

te
d

by
m

ul
-

ti
pl

e
st

ak
eh

ol
de

r
gr

ou
ps

.

F
ir

st
ap

pl
ic

at
io

n
of

m
et

a-

an
al

ys
is

w
he

re
so

ci
al

sc
ie

nt
is

ts

an
d

th
e

pu
bl

ic
ca

re
d

ab
ou

t
th

e

ou
tc

om
e.

In
sp

ir
ed

an
d

m
ot

iv
at

ed
re

se
ar

ch
er

s
w

it
hi

n

cl
in

ic
al

ps
yc

ho
lo

gy
an

d
be

yo
nd

to
ex

am
in

e

m
et

a-
an

al
yt

ic
pr

oc
ed

ur
es

in
gr

ea
te

r
de

ta
il.

19
81

G
la

ss
,

M
cG

ra
w

,
an

d
Sm

it
h

pu
bl

is
he

r
th

ei
r

m
et

a-
an

al
ys

is

bo
ok

.

T
hi

s
is

th
e

fir
st

in
st

ru
ct

iv
e

an
d

co
m

pl
et

e
te

xt
on

m
et

a-

an
al

ys
is

19
82

H
un

te
r
an

d
Sc

hm
id

t
pu

bl
is

he
d

th
ei

r
bo

ok
on

m
et

a-
an

al
ys

is
.

T
he

pu
bl

ic
at

io
n

ex
pa

nd
ed

m
et

a-
an

al
ys

is
an

d
m

ad
e

it
av

ai
la

bl
e

fo
r

a
br

oa
de

r

au
di

en
ce

.

Fu
lly

ar
ti

cu
la

te
d

m
et

a-
an

al
ys

is
fo

r
so

ci
al

sc
i-

en
ti

st
s

-
pa

rt
ic

ul
ar

ly
in

in
du

st
ri

al
an

d
or

ga
ni

-

za
ti

on
al

ps
yc

ho
lo

gy
.

83



T
ab

le
A

.2
–

co
nt

in
ue

d
fr
om

pr
ev

io
us

pa
ge

Y
ea

r
C

on
tr

ib
ut

io
n

R
el

ev
an

ce
Im

pa
ct

19
83

Sh
ap

ir
o

an
d

Sh
ap

ir
o

re
-

ex
am

in
ed

Sm
it

h
an

d
G

la
ss

’

m
et

a-
an

al
ys

is
an

d
in

cl
ud

ed

m
or

e
st

ud
ie

s.

In
co

rp
or

at
ed

st
ud

y
de

si
gn

in
to

th
ei

r
m

et
a-

an
al

ys
is

an
d

fo
un

d

th
at

it
ha

d
m

in
im

al
im

pa
ct

.

D
re

w
th

e
at

te
nt

io
n

of
m

et
ho

do
lo

gi
st

s
an

d

ot
he

r
st

ak
eh

ol
de

rs
w

ho
re

m
ai

ne
d

st
ea

df
as

t
in

th
ei

r
co

nv
ic

ti
on

th
at

re
se

ar
ch

de
si

gn
aff

ec
te

d

th
e

qu
al

it
y

an
d

m
ag

ni
tu

de
of

th
e

re
se

ar
ch

fin
di

ng
s.

19
86

M
aj

or
ev

al
ua

ti
on

co
m

pa
re

d
w

or
k

pr
og

ra
m

s
(L

aL
on

de
,

19
86

).

Si
ng

le
st

ud
y

th
at

pr
ov

id
ed

th
e

fir
st

di
re

ct
co

m
pa

ri
so

n
of

R
A

an
d

N
R

de
si

gn
s

-
th

ey
co

n-

cl
ud

ed
th

at
N

R
de

si
gn

s
pr

o-

du
ce

d
un

re
lia

bl
e

an
d

po
te

n-

ti
al

ly
in

va
lid

ca
us

al
in

fe
re

nc
es

.

M
ad

e
so

ci
al

sc
ie

nt
is

ts
w

ar
y

of
no

n-

ra
nd

om
iz

ed
de

si
gn

s.

84



T
ab

le
A

.2
–

co
nt

in
ue

d
fr
om

pr
ev

io
us

pa
ge

Y
ea

r
C

on
tr

ib
ut

io
n

R
el

ev
an

ce
Im

pa
ct

19
87

Fr
ak

er
an

d
M

ay
na

rd
re

-
ex

am
in

ed
L
al

on
de

’s
(1

98
6)

w
or

k
pr

og
ra

m
s

co
m

pa
ri

so
n.

R
ep

lic
at

ed
L
al

on
de

’s
w

or
k

bu
t

us
ed

a
di

ffe
re

nt
sa

m
pl

in
g

pr
o-

ce
du

re
an

d
co

m
pa

ri
so

n
gr

ou
p

se
le

ct
io

n
bu

t
fo

un
d

si
m

ila
r

re
su

lt
s

as
L
al

on
de

-
no

n-

ra
nd

om
iz

ed
de

si
gn

s
pr

od
uc

ed

in
fe

ri
or

ca
us

al
in

fe
re

nc
es

.

Sh
ow

ed
th

at
ev

en
di

ffe
re

nt
an

al
yt

ic
ap

-

pr
oa

ch
es

pr
od

uc
ed

si
m

ila
r

re
su

lt
s

w
he

n
co

m
-

pa
ri

ng
R

A
an

d
N

R
de

si
gn

s.

19
87

H
ec

km
an

et
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m
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R
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Table A.2 provided me with several key markers to move forward with my research.

Social programs produced through the Great Society initiative created the demand for

evaluating hypotheses in field settings (Shadish & Cook, 1991). That demand facilitated

the increased attention and consideration for threats to validity (Shadish et al., 2002).

Specifically, multiple stakeholders - those for and against certain programs - started to pay

attention to the “evidence” and carefully monitored what might affect the evidentiary basis

of any program - particularly programs that were expensive or less aligned with their individ-

ual preferences. Social programs shifted research design from laboratory based experimental

procedures (i.e., randomized designs) to field, observational, or quasi-experimental designs.

These designs demanded methods to strengthen causal inference - something lacking from

“weak” designs (Fraker & Maynard, 1987; Glazerman et al., 2003; LaLonde, 1986) - and the

eventually lead the first popular statistical adjustment tools (Heckman et al., 1987). Then,

meta-analysis became more prominent and almost mandated that researchers, program

evaluators, and other stakeholders examine the relative comparability of research designs.

Comparing these designs or even combining them to form the basis for policy became an

essential step in almost all areas of research (e.g., medicine, psychology, economics, pol-

icy analysis, political science, and even physics). These comparisons lead researchers to

focus on either solving or estimating the magnitude of the comparability problem. The

aforementioned research programs focused on the solving the problem while my research

program focuses on the latter - estimating the magnitude. Starting with Lipsey and Wilson

(1993), researchers began to offer reasonable estimates of selection bias - just one marker

of the comparability problem I refer to here. Despite these early contributions, I remained

convinced that more refined estimates needed to be published to ensure adequate coverage

of selection bias. Consider the following historical basis for my convictions.

Quantitative, Meta-Analytic Reviews

Many reviews exist across a variety of the social sciences that provide a complicated overview

of our understanding for NR effectiveness and selection bias effect sizes. Before enumerating
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the many influential primary studies that brought about the current understanding of NR

and RA differences and similarities along with specific experimental work, I first detail

several quantitative systematic reviews.

A quantitative review or meta-analysis works as a method for aggregating effects across

different studies. Smith and Glass (1977) began with a controversial meta-analysis that was

followed up by no fewer than 10 re-analyses of the same data. Later, in (1982) Hunter and

Schmidt and (1985) Hedges and Olkin brought meta-analysis to the forefront of multiple

social science disciplines by publishing seminal books on meta-analysis. These books influ-

enced the field greatly - often time polarizing sub-disciplines by placing values on research

quality and scientific contribution.

Prior to meta-analysis, research summaries relied heavily on authors’ discretion and

implicit weighting schemes. Meta-analysis, however, required authors to explicitly state

their selection criteria but, more importantly, allowed researchers to estimate the influence

of design quality on observed experimental effects. Lipsey and Wilson (1993) provided

a meta-meta-analysis that broke down research design effect sizes from meta-analyses of

psychological treatment effectiveness outcomes. They concluded that “mean effect sizes

for studies rated high and low for methodological quality found little difference” and, as a

result, pushed all social scientists to question the relevance of research design to individual

or aggregated effects (Lipsey & Wilson, 1993, p.1193).

The use of aggregated results to assess methodological quality or assignment mechanism

is not restricted to economics or psychology. In medical research, NR studies and specifically

observational studies, were considered inferior to RA studies and that observational methods

inflated the observed effects. Benson and Hartz (2000) conducted a systematic review to

assess those commonly held beliefs. To differentiate this review from other medical reviews,

Benson and Hartz included studies from a variety of topics and included better sample

aggregation through modern quantitative techniques (i.e., meta-analysis). They reported

that observational studies did not produce effects dramatically higher than RA studies and

that observational designs often meet the standards of classical experimental designs. Those
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conclusions were similar to conclusions drawn from other systematic reviews in other fields

including the economics.

Glazerman, Levy, and Myers (2003) provided a systematic review of several published

economic studies. Those economic studies focused on whether NR studies can replicate

RA study results. Unlike other reviews of these NR versus RA comparisons, Glazerman

et. al.’s review included only primary studies with randomly assigned groups and some

form of created non-randomly assigned comparison group. These primary studies included

the Lalonde (1986) and Fraker and Maynard (1987) studies along with several subsequent

studies that focused on job training programs. Their summary provided mixed results. NR

studies under- and over-estimated the effects on individual earnings after people participated

in an employment training program. Since Glazerman et al. (2003) relied upon actual dollar

earnings instead of a metricless measure (e.g., probability of employment), the parameter

ranges from the NR studies were difficult to estimate beyond rough and large yearly earnings.

They were able to draw some tentative conclusions that NR studies do not accurately

replicate RA studies. Furthermore, they concluded that a majority of the NR studies

underestimated the RA results. They also offered some recommendations about how to

create an NR study that closely replicated RA results. Those recommendations included

larger sample sizes, statistical adjustment tools, and careful selection of comparison groups.

Interestingly - simply due to the fact that Glazerman et. al. (2003) were economists -

the statistical tools they recommended did not include the traditional economic tools; they

found those traditional tools to be the least effective at reducing selection bias. According

to their report, propensity scores and even basic regression with covariates did an adequate

job of reducing selection bias.

Updating the work of Glazerman et al. (2003) and asking more focused questions Cook,

Shadish, and Wong (2008) conducted a systematic review on a dozen published studies

examining the differences between NR and RA results. Specific attention was paid to

methodological or statistical tools that could be used to replicate results from RA studies

and that comparison groups characteristics were beneficial to NR designs. They found that
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Regression Discontinuity designs approximated RA design results while statistical adjust-

ments (including propensity scores, heckman sample modeling, etc) were only effective if the

selection process is known and accounted for in the data. Regarding NR design comparison

group selection, Cook et al. (2008) echoed what many researchers previously stated: the

comparison group ought to match the treatment for greater internal validity. Specifically,

the authors argued that “off-the-shelf” variables for comparison group selection were nei-

ther beneficial nor effective in reducing selection bias. Comparison groups, according to

Cook et al. (2008), need to created on variables relevant to the selection assignment (e.g.

motivation, outcome pretest scores).

More relevant to psychology, Ferriter and Huband (2005) conducted a systematic review

as a pilot study for examining the results of NR and RA Schizophrenia treatment outcome

studies. In their review, they used the Cochrane Collaboration Database for compiling the

primary treatment studies. Ferriter and Huband distinguished their review by categorizing

the quality of the primary studies beyond the assignment mechanism. They reported that

NR approximated the RA results. Additionally, they argued that the study quality - re-

gardless of assignment - may influence the treatment effect magnitude. Specifically, higher

quality studies resulted in lower treatment effects. Ferriter and Huband qualified their find-

ings by acknowledging that since the Cochrane Database excludes most NR studies, their

findings might not generalize to other NR studies (Ferriter & Huband, 2005).

The aforementioned studies were published after 2000 but other evidence existed prior to

that time. Lipsey and Wilson (1993) gathered treatment outcome studies across behavioral,

educational, and psychological fields. Instead of the traditional approach to meta-analysis

where analysts combine primary empirical studies, Lipsey and Wilson conducted a meta-

meta-analysis whereby they analyzed previously published meta-analyses. That is, prior

published meta-analyses were the primary sources. Lipsey and Wilson (1993) analyzed

the direction and magnitude of treatment effects along with the methodologically relevant

predictors of those parameters. Their results showed the mean NR study design slightly

underestimated the RA results - a conclusion that stood across treatment types and research
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fields. Moreover, NR designs produced more variability in effect size estimates compared

to RA designs.

With the intent to significantly increase the number of primary studies included in a

meta-analysis from previous NR and RA comparison meta-analyses, Heinsman and Shadish

(1996) focused on four distinct content areas (Scholastic Aptitude Test coaching, juvenile

drug use prevention, psychosocial interventions for post surgery outcomes, intellectual abil-

ity groups). Across these content areas in this meta-analysis, the NR design mean effect

size (d = .03) was significantly different from the RA mean effect size (d = .28). This dif-

ference, however, did not generalize across content areas. The juvenile drug use prevention

and intellectual ability groups had substantially different mean results - based on assign-

ment mechanism - but the Scholastic Aptitude Test coaching and psychosocial intervention

research areas produced NR and RA mean results that were near replicates of one another.

There were some qualifications to this finding. Regardless of the content area, if attrition

levels or control group type were controlled for then NR results were increasingly similar to

RA results. Using various breakdowns of the meta-analysis data, the authors concluded that

NR effect sizes approximated RA effect sizes with careful selection of comparison groups

(placebo vs. wait-list), with minimizing pretest differences and with avoiding self-selection.

With the same intent, Shadish and Ragsdale (1996) collected 100 primary studies that

focused on psychotherapy outcomes. The meta-analysis was conducted in parallel with

Heinsman and Shadish (1996) but contained a different content area and a more specific

goal of reducing error by incorporating methodological quality indices. They found similar

differences between NR and RA effect sizes as Heinsman and Shadish (1996). The absolute

effect sizes differed slightly from the previous study but the conclusion remained the same;

NR designs produced a significantly lower mean effect size (d = .08) compared to the meant

effects produced by RA designs (d = .60). Again, they concluded that the raw significant

difference between NR and RA effect sizes could be reduced by statistical adjustments

(covariates in linear regression), careful selection of comparison groups, and when possible

the elimination of self-selection according to the authors.
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Direct Comparisons between NR and RA Study Results

What lead to those quantitative reviews began with researchers asking two questions : 1)

Do NR studies approximate RA studies and if not 2) How much difference is there between

NR and RA results. Those questions were first addressed by economic researchers almost

three decades ago using federal work program samples.

Lalonde’s (1986) study started in program evaluation with an expected finding that NR

and RA studies did not produce equivalent effects nor were they equivalent with respect to

causal inference. They examined separate employment and job training programs, National

Supported Work Program (NSWD - an RA design), Manpower Development and Training

Act, Comprehensive Employment and Training Act, and Job Training Partnership Act.

One program used RA (NSWD) while the others did not. Their comparison of the four

programs showed that each program produced somewhat different financial earnings out-

comes - differences that may be potentially attributable to the assignment of individuals to

their respective treatment programs. Individuals were either placed in a program based on

pre-existing qualifications or they self-selected a treatment. The outcomes were significantly

affected by selection method that Lalonde concluded that program evaluations could not

rely upon NR studies to produce reliable and valid outcomes.

Similarly, Fraker and Maynard (1987) empirically examined the adequacy of comparison

group designs for program evaluations. They utilized published field study data on employ-

ment and training programs - the same programs used by Lalonde. Fraker and Maynard

(1987) created another comparison group from the separate but similar dataset CPS. The

CPS comparison group were not randomly assigned participants and as such serve as the

NR comparison group. The employment salaries from the NSWD data vary significantly

from the salaries of the CPS participants in the comparisons. Similar to Lalonde, Fraker

and Maynard (1987) concluded that NR designs cannot be relied on to estimate program

effectiveness and any field studies using NR comparison group designs should be done so

with great caution if at all. In short, the evidence was starting to accumulate in favor of

RA designs and undermine the utility of NR designs.
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Heckman, Hotz, and Dabos (1987) took issue with Lalonde (1986) and Fraker and May-

nards (1987) conclusions. Heckman et al. (1987) pointed out the sample in the National

Supported Work Demonstration (NSWD), Current Population Survey (CPS) and other

government sponsored work programs identified as appropriate for field studies have se-

lection bias concerns. While the absence of RA lead to the idea that selection bias was

inherent in the comparison groups used in the NSWD and CPS samples, Heckman et al.

(1987) pointed out that selection bias was not considered in the estimate of the outcome

variable or participant earnings post training program. Heckman et al. contended that

these relevant variables were excluded and the NR results were inappropriately described as

“unreliable.” With that concern, Heckman and his colleagues re-analyzed the samples and

groups used by Lalonde (1986) and Fraker and Maynard (1987) but incorporated selection

bias into the statistical models as well as examining the reliability of earnings estimates

(i.e., the outcome of interest). Heckman concluded that the unreliability was largely due

to the selection bias concerns in subsets of the comparison groups and that when selection

bias was modelled the NR studies, the results approximated the RA study results. The

authors recommended that those prior and their current analyses be used as examples of

the important role selection bias plays in NR study results. Furthermore, they concluded

that NR studies could be used to approximate classical experimental results in field studies.

While those economic field studies focused on comparing readily available samples that

included self-selection groups and randomly assigned groups an experiment by psychological

researchers sought better control of the assignment mechanism to obtain to understand the

differences between NR and RA results. Shadish et al. (2008) implemented a strategy

they termed as “Doubly Randomized Preference Trial” or DRPT. Researchers randomly

assigned participants to either a Randomized Control Trial (RCT) or quasi-experimental

study. Participants assigned to the RCT were either randomly assigned to a math or

vocabulary treatment condition. Participants assigned to the quasi-experimental study

choose either a math or vocabulary treatment based on their own preference. Participants

received the same measures pre and post their assigned treatment. Quasi-experimental
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results were adjusted by either basic linear regression, and various propensity score methods.

These adjusted results were compared to the RCT determining which adjustment methods

best approximated RCT results. Their intention was to determine if statistical tools can

adjust NR study results to approximate experimental results not estimating selection bias.

They found differences between NR and RA results but any of the statistical adjustment

method could and did remove the selection bias effects from NR designs.

The majority of these studies focused on determining if there was a difference between

NR and RA studies. While they concluded that there were selection bias differences between

the two design types, they also concluded that adjustment techniques did an acceptable job

of removing the biases and that the selection bias magnitudes themselves may not be as great

as previously thought. For more detail on how much of a difference there is between NR

and RA designs I will now turn my focus from these reviews and experimental conclusions

above to the specific effect sizes reported in those studies.

Selection Bias Effects

Estimating selection bias effects can be quite tricky. Early attempts that resulted in these

estimates were not directed solely at this goal. Instead, researchers compared NR designs

to RA designs almost as an after-thought rather than as a planned comparison via meta-

analysis. Specifically, the meta-analysis by Shapiro and Shapiro (1983) provided a perfect

springboard to this comparison because they included the assignment design as a moder-

ator in their analysis. Their results indicated that NR studies produced lower effect sizes

(d=.76) but within the range of RA effect sizes (d=.96). While these effect sizes differ-

ences may be indicative of an overall effect for study quality, Lipsey and Wilsons (1993)

larger meta-meta-analysis suggested less striking results they stated that “the mean effect

size for non-randomized control or comparison group designs [d=.41] is actually slightly

smaller than that for randomized designs [d=.46]” (p.1193). Other researchers found mean

differences by design that were much more striking. The .20 difference, for example, ob-

served by Shapiro and Shapiro (1983) was similar to the aggregate .25 difference found
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by Heinsman and Shadish (1996). A point worth noting is that Heinsman and Shadishs

(1996) study was similar to Lipsey and Wilson (1993) with respect to content - a point I

shall return to shortly. Even more striking, Shadish and Ragsdale (1996) found a dramatic

difference (d=.52) between NR (d=.08) and RA (d=.60) designs their study also relied on

content similar to Shapiro and Shapiro (1983). Thus, several researchers estimated selection

bias effects by way of comparing effects via meta-analysis using different scientific content

(psychotherapy, educational, medicine and other social science outcomes).

Focusing more on education with specifically designed studies, Donley and Ashcraft

(1992) estimated selection bias effects ranging between d =.91, and d=.53. Their NR

study examined these effects on a series of university physics test items. Participants self-

selected into one of several comparison groups. They estimated selection bias effects item

by item and reported that many items had no significant group difference the items that

were different, however, produced medium to large effects (d > .90). Unfortunately, Donley

and Ashcraft’s (1992) study did not contain true RA results so the comparison might not

be directly relevant to my interests but at least these results suggest a broad range of

selection bias effects. Shadish, Clark and Steiner (2008), however, directly compared RA

and NR designs using a similar educational outcomes in math and reading. Participants

were randomly assigned to either a RA study or a NR study with both receiving the same

procedures, experimental manipulation, and measures. The only difference between the

groups was the assignment mechanism. Shadish et al., 2008 estimated a modest selection

bias effect size (d = .24) that was similar to medium effect sizes estimated in prior meta-

analyses (Shadish et al., 2008; Steiner et al., 2010). A subsequent replication (Pohl et al.,

2009) of Shadish et. al’s study produced a much smaller effect (d = .06). Taken together,

these findings suggest that educational outcomes produce a wide array of selection bias

effects that may be difficult to generalize across content domains.

The same conclusion drawn from the educationally-focused studies can be extended

to the broader domain of estimating selection bias effects. There is no clear pattern or

magnitude apparent in the corpus of studies focused on estimating selection bias effects (see
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Table A.5.3). Selection bias effects appear to be quite variable between content domains and

even within content domains this general conclusion may suggest that estimating selection

bias effects may be so content-specific and perhaps even study-specific that an effort to

estimate a single point-prediction or even a distribution of potential effects might appear to

be a fools errand. Nevertheless, point estimates are relevant to all disciplines and must begin

even when contingencies or conditional statements such as these are known a priori. In fact,

the lack of reliable selection bias estimates is the basis for my research focus. Estimating

selection bias effects across disciplines in carefully controlled trials will ensure that a broad

array of researchers may be able to form expectations about selection bias and plan their

studies accordingly.

Table A.3: Table of selection bias effect sizes

Selection bias Effect Size

(Cohen’s d)

Study Type Author & Year

1.38 self-selection experiment Donley 1992

.73 self-selection experiment Donley 1992

.52 meta-analysis Shadish 1996

.25 meta-analysis Heinsman 1996

.24 Doubly Randomized Prefer-
ence Trial (DRPT)

Shadish 2008

.20 meta-analysis Shapiro 1983

.06 DRPT replication Pohl 2009

.05 meta-analysis Lipsey 1993
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A.6 Conclusion

The literature review above provides a clear rationale for the importance of establishing

a reasonable counterfactual for causal inference. The counterfactual comes from randomly

assigning individuals to contrasting groups failure to do so leads to potential biases - referred

to as selection biases - that are not clearly estimated in the literature. Many different

approaches exist for treating selection bias but most require large sample sizes not readily

available in social and behavioral sciences. Thus, I propose to follow a much simpler route

- estimate the effect and subtract it from the observed effect. What remains unknown is

a reasonable selection bias effect and I endeavor to estimate these effects. A single study

will not produce the definitive effect but rather a series of studies - each improving and

expanding upon the previous - will enable us to gain better insights into this effect. Just

as researchers studying a specific content area progress in their research, I intend to follow

suit. My first attempt in this research program is to estimate the effect - a replication

of prior work with some refinements. Later, I hope to expand these efforts to estimate

the stability across different disciplines. The end goal is to create a series of selection

bias estimates that allow researchers across a wide array of content domains to apply a

simple method of subtraction whereby they simply subtract out any potential bias from an

observed effect. My first study in this research program begins with the documented study

in this dissertation.
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Chapter B: Vocabulary Performance

1. UNDULATORY

1 - secretive

2 - motion characterized by successive rise and fall, like waves

3 - an underground, government base

4 - a process in which a political official is forcibly removed from office

5 - vulgar or offensive gestures

2. SNOFF

1 - powdery substance snorted through the nose

2 - an unruly child

3 - to ignore

4 - a long wicked candle used to light dynamite fuses

5 - to put oneself above others

3. GLEET

1 - a large woody hedge

2 - a small sheep

3 - a malfunction in a computers hard drive

4 - to impersonate another person or create a second identity

5 - a microscopic organism

4. GHERKIN

1 - a mans formal vest

2 - a literary term for shifting from one scene to another throughout a story
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3 - a breed of horse trained specifically for racing

4 - a cucumber

5 - to speak in manner with the intention of confusing the listener

5. HARRIDAN

1 - a prostitute

2 - to run frantically

3 - a well made piece of furniture

4 - an antique

5 - a haggard, old woman

6. ONEIROCRITIC

1 - a medical procedure in which the liver is extracted

2 - someone who interprets dreams

3 - someone who suffers from hallucinations

4 - having great bearing upon a situation

5 - repeating the same series of behavior over and over

7. EPHEMERIS

1 - upper most layer of skin

2 - a compilation of household socioeconomic statuses taken from the U. S. census

3 - the atmospheric layer closest to Earth

4 - a table showing the predicted positions of heavenly bodies

5 - using a poetic way to express oneself

8. DENTILS

1 - small, tasteless beans

2 - tools used by dentists
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3 - highway dividers

4 - political campaign volunteers

5 - an architectural style resembling teeth

9. FILIBEG

1 - a musical instrument developed in Iceland

2 - a large suitcase

3 - a tartan kilt

4 - to speak in a manner with the intention of confusing the listener

5 - a homeless person who begs for money

10. MOPOKE

1 - a treacherous ski slope

2 - a small cap worn in religious ceremonies

3 - a long, walking stick

4 - a thick blanket made out of woven animal hair

5 - an Australian bird whose call sounds like “mopoke, mopoke”

11. BESMIRCH

1 - to soil with smoke, soot or mud

2 - to be smug or sarcastic

3 - a tropical fish most often found off shores in the Eastern Caribbean

4 - the crank that was used to start the early Model T Ford

5 - the highest point of a mountain peak

12. THOB

1 - to hit forcefully with a blunt object

2 - to explain your beliefs and opinions
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3 - a large portion of gelatinous material

4 - a clothing accessory worn about the neck

5 - to walk sluggishly

13. UNDERWRITER

1 - an employer who does not maintain a stable staff, but pays workers on a daily basis

2 - one accused of tax fraud

3 - someone who writes using a false name or as “Anonymous”

4 - one who does editing for advertising executives

5 - a subscriber or shareholder in a mercantile venture

14. FOOLSCAP

1 - a cap flamboyantly decorated

2 - the tip of a probing instrument

3 - the limit that a person can drink, determined by a bartender

4 - a group of unruly teenagers

5 - a medieval dance

15. NARGILE

1 - a reptile, usually three feet long, that is found in South American jungles

2 - silt found a the bottom of a river

3 - an elaborate hookah pipe

4 - a long fur piece worn around the shoulders

material that is made to resemble leather

16. RONDEAU

1 - a French prostitute

2 - procedures for vacating a rental home
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3 - a small boat

4 - a short poem that uses refrains

5 - legal precedence protecting persons from slander

17. VERSIFY

1 - to write poetry

2 - to sing without musical accompaniment

3 - to talk continuously without making sense

4 - to express individuality

- to harm with intent

18. JEJUNE

1 - a small brown insect

2 - an automobile design to travel across rugged terrain

3 - to hit with great force

4 - a slang expression for being beautiful

5 - to go without food

19. CHITON

1 - the leader of a tribe

2 - an ancient Greek tunic

3 - a British toilet

4 - a short sword with a wide, curved blade

5 - marital rituals of Eastern India

20. WASSAILER

1 - a plant eating mammal that inhabits the southern Atlantic

2 - a narrow sailboat
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3 - one who invests in stocks and bonds

4 - a violent sea storm

5 - one who takes part in riotous festivities

21. LOVELORN

1 - saddened or distressed by love

2 - a small bird

3 - one who is engaged to be married

4 - a gardening tool similar to a shovel

5 - lawn decorations

22. QUINSY

1 - to run very fast

2 - feeling of dizziness and nausea

3 - a place for sick people to be held until they recover

4 - inflammation of the throat

5 - an unsuccessful television show

23. IDEOLOGY

1 - the study of religions

2 - the study of infectious diseases

3 - the study of ideas

4 - the study of aesthetic placement

5 - the study of micro organisms

24. MUZHIK

1 a stringed musical instrument

2 a Russian peasant
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3 a variation of popular tunes that is often played in elevators

4 a Middle Eastern rice dish

5 a traditional dance performed at pagan wedding ceremonies

25. BYSSUS

1 - an Egyptian monument

2 - reckless or wildly

3 - a financial transaction made between foreign countries

4 - a fine linen fabric

5 - an expensive French wine

26. SOBRIQUET

1 - a heavy wine sauce

2 - a small couch or settee

3 - a type of jewelry setting

4 - a ballet movement

5 - a nickname

27. ZITHER

1 - a stringed musical instrument

2 - a brothel

3 - ladies undergarment worn in the 18th century

4 - to exaggerate

5 - having no substance

28. ORYX

1 - a semi-precious gem

2 - an insect that is commonly found in Africa
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3 - a chemical element found in iron that is often used as a black dye

4 - a type of antelope or gazelle

5 - a physical change that heavenly bodies undergo

29. VITUPERATION

1 a dangerous frenzy overtaking male elephants and camels

2 to be sarcastic

3 - using violent or abusive language

4 to vomit

5 a medical process that elements waste from the body

30. CHINQUAPIN

1 a vaccine used to treat blood disorders

2 - a nut tree found in Virginia and North Carolina

3 emphasizing unimportant characteristics

4 grossly distorted

5 a small island in the Eastern Pacific
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Chapter C: Mathematics Performance Revised

1. (xa)(xb) =

1.)xab

2.)2xab

3.)xa+b

4.)2xa+b

5.)x2ab

2. (xa)ab =

1)(x)ba2

2)xa+b

3)xab

4)2abx

5)x2a+b

3. (xa)(a+b) =

1)x(2a+b)

2)xa∗(a+b)

3)x3a+b

4)xa+ab

5)(x2a)b
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4. (xa)(ya) =

1)(xy)2a

2)(xy)a

3)xy2

4)xy/a

5)xya

5. (x2c)(y2c) =

1)(xy)4c

2)x4c + y4c

3)(xy)2c

4)xy2c

5)(2xy)c

6. (x−c)(y−c) =

1)xy2c

2)1/xcyc

3)xyc

4)1/(xy)c

5)− xyc

7. (xa)(xb)(xc)(xd) =

1)xabcd

2)x(ab+cd)

3)xab + xcd

4)(xab)(xcd)

5)xa+b+c+d
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8. xa/xb =

1)xab

2)x(a−b)

3)xa/b

4)2x(a+b)

5)x(a+b)

9. (xa)(xb)(xc)(xa) =

1)x2a+b+c

2)xa+b+c

3)x2a+bc

4)xabc

5)x2a(bc)

10. (x)a(y)a(z)a =

1)xayaza

2)(xyz)a

3)xyz3a

4)xa + ya + za

5)(xyz)a+a+a

11. (2xa)(ya)(3xa) =

1)5xaya

2)6xya

3)6x2aya

4)5xya
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5)− x2aya

12. (xa)bc =

1)xa+bc

2)xa+b+c

3)1/xabc

4)xabc

5)1/xa+b+c

13. (xa)a =

1)xa

2)1/xa

3)1/xa+a

4)x/a

5)xa2

14. (xa)/(xa) =

1)x0

2)2ax

3)1/xa

4)x1

5)1/xa

15. (x−a)(x−a) =

1)x−a

2)1/x2a

3)2xa
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4)− 2xa

5)1/x

16. (xa)−b =

1)xab

2)xa− b

3)axb

4)1/xab

5)− xa+b

17. 1/(xa) =

1)x2a

2)− x

3)(x2a)(x−3a)

4)x− (xa)

5)(1/x)(1/x)

18. (45)−3 =

1)− 48

2)42

3)1/42

4)(4)(15)

5)1/415

19. xa/xa =

1)x2a

2)x(a+a)
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3)− 1

4)x(a−a)

5)1/x2a

20. (33)(35)/(37) =

1)1/915

2)3

3)98/37

4)315 − 37

5)38/7
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Chapter D: R Code

## Validity Study 1: selection bias pilot data from 12-3-10 and 12-10-10

## NOTES: subjects with ID’s between 1000-1800 are from my November pilot data collection

## subjects with ID’s between 1900-1999 are from my training session for the ura’s in March;

## all received math tx

## subjects with ID’s between 2000-2999 are from ura’s in March

#######random assignment

?randomize()

id <- 2000:3000

scores <- c(350:500,650:800,by=10)

adf

ra_grps <- randomize(,group= c("MATH","VOCAB"), match=scores, complete=TRUE)

ra <- sample(0:1, 40, TRUE)

## [1] 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1

## [39] 1 1

library(foreign)

library(plotrix)

library(psych)

library(psychometric)

library(experiment)

lirabrary(car)
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library(boot)

library(MASS)

library(xtable)

## Dissertation Data

dissd <- read.csv("~/vs_4.29.csv",T)

head(dissd)

str(dissd)

names(dissd)

## DATA CLEANING

dissd$id_1

## remove my test run of cases: ids in 1900s and id 0

dissd <- dissd[-c(1:5,15),]

## remove study procedural variables: stop_n, id(limesurvey’’s), start_n,

dissd <- dissd[,-c(1,2,3,5,6,55,92,108)]

## recode case for id_1

dissd[12,1] <- 2507 ## 2705 to 2507

dissd[17,1] <- 2512 ## 102512 to 2512

dissd[18,1] <- 2511 ## 102511 to 2511

dissd[19,1] <- 2510 ## 102510 to 2510

dissd[27,1] <- 2011 ## 10 to 2011

dissd[29,1] <- 2016 ## 102016 to 2016

dissd[38,1] <- 2521 ## 102521 to 2521

dissd[43,1] <- 2019 ## 102019 to 2019

dissd[85,1] <- 2043 ## 20403 to 2043

## recode sat score

dissd[87,35] <- 520 ## 526 to 520

dissd[97,35] <- 330 ## 303 to 330
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dissd[53,36] <- 550 ## 5503 to 550

## remove cases with SAT’s btwn 530-630

dissd <- dissd[-c(11,15,16,105,117),]

####math intervention cases (1:38) #cleaned rows

####vocab intervention cases (39:70) #cleaned rows

####cases 71 #after cleaning is me for my testing the scoring keys

########export cleaned file

## write.csv(pilot, "/Users/itwasi/coursework/dissertation/data/pilot_clean.csv", sep=",")

## Scoring the test

## Vocabulary Pre-test: V1_1-15

v1.key <- c(3,5,5,1,3,5,3,2,5,4,4,1,4,4,1)

## V2 Part 1 and 2 Scoring key ##in ets order

v2.key <- c(4,5,2,4,3,2,3,3,1,3,3,2,4,3,3,4,1,1,2,5,5,5,4,1,3,4,2,3,5,5,2,2,5,2,4,1)

## Vocabulary Post-test: V1_1.1-30 is the original Shadish order

## "V1_7.1" "V1_8.1" "V1_14.1" "V1_16" "V1_11.1" "V1_3.1" "V1_4.1"

## "V1_17" "V1_18" "V1_19" "V1_5.1" "V1_2.1" "V1_20"

## "V1_9.1" "V1_15.1" "V1_21" "V1_22" "V1_23" "V1_24"

## "V1_6.1" "V1_12.1" "V1_13.1" "V1_25" "V1_26" "V1_27"

## "V1_28" "V1_29" "V1_10.1" "V1_1.1" "V1_30"

v3.key <-c(3,2,4,1,4,5,1,2,4,5,3,5,2,5,1,4,1,5,2,5,1,4,3,2,4,5,1,4,3,2)

## precentage correct
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# score.multiple.choice(v1.key, dissd[,c(2:16)], score=TRUE, totals=FALSE, missing=FALSE, short=FALSE)

# score.multiple.choice(v2.key, dissd[,c(50:85)], score=TRUE, totals=FALSE, missing=FALSE, short=FALSE)

# score.multiple.choice(v3.key, dissd[,c(102:131)], score=TRUE, totals=FALSE, missing=FALSE, short=FALSE)

v1 <- score.multiple.choice(v1.key, dissd[,c(2:16)], score=TRUE, totals=TRUE, missing=FALSE, short=FALSE)

v2 <- score.multiple.choice(v2.key, dissd[,c(50:85)], score=TRUE, totals=TRUE, missing=FALSE, short=FALSE)

v3 <- score.multiple.choice(v3.key, dissd[,c(102:131)], score=TRUE, totals=TRUE, missing=FALSE, short=FALSE)

##math intervention

# mean(v3$scores[1:38,])

# mean(v1$scores[1:38,])

# str(dissd$id_1)

# ##vocab inervention

# mean(v3$scores[39:70,])

# mean(v1$scores[39:70,])

## Math Pre-test: A1_1-10

# a1.key <- c(3,2,1,2,3,3,3,1,4,4)

a1r.key <- c(3,2,4,1,1,5,1,2,4,3)

## RG1 Part 1 Scoring key ##in ets order

rg1.key <- c(2,5,1,4,3,2,3,4,4,1,2,3,5,2,1)

## Math Post-test: A1_1.1-20 is the orginal Shadish order

## "A1_1.1" "A1_11" "A1_12" "A1_2.1" "A1_13" "A1_3.1" "A1_14"

## "A1_4.1" "A1_5.1" "A1_15" "A1_16" "A1_17" "A1_6.1"

## "A1_7.1" "A1_8.1" "A1_9.1" "A1_10.1" "A1_18" "A1_19" "A1_20"

# a3.key <- c(3,4,3,2,2,1,2,2,3,3,5,1,3,3,1,4,4,5,3,2)

a3r.key <- c(3,1,2,2,3,4,5,1,1,2,3,4,5,1,2,4,3,5,4,2)

## percentage correct

# score.multiple.choice(a1r.key, dissd[,c(17:26)], score=TRUE, totals=FALSE, missing=FALSE, short=FALSE)

# score.multiple.choice(rg1.key, dissd[,c(86:100)], score=TRUE, totals=FALSE, missing=FALSE, short=FALSE)

# score.multiple.choice(a3r.key, dissd[,c(132:151)], score=TRUE, totals=FALSE, missing=FALSE, short=FALSE)
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m1 <- score.multiple.choice(a1r.key, dissd[,c(17:26)], score=TRUE, totals=TRUE, missing=FALSE, short=FALSE)

m2 <- score.multiple.choice(rg1.key, dissd[,c(86:100)], score=TRUE, totals=TRUE, missing=FALSE, short=FALSE)

m3 <- score.multiple.choice(a3r.key, dissd[,c(132:151)], score=TRUE, totals=TRUE, missing=FALSE, short=FALSE)

##math intervention

# mean(m3$scores[1:38,])

# mean(m1$scores[1:38,])

#

# ##vocab inervention

# mean(m3$scores[39:70,])

# mean(m1$scores[39:70,])

#######combine scored results to data

dissd$v1sc <- v1$scores

dissd$v2sc <- v2$scores

dissd$v3sc <- v3$scores

dissd$m1sc <- m1$scores

dissd$m2sc <- m2$scores

dissd$m3sc <- m3$scores

############################## CORRELATIONS

## math SAT & math pretest

## math SAT & math pretest

# cor(dissd$D_9[ which(dissd$D_9 >= ’610’ | dissd$D_9 <= ’530’)],

# dissd$m1sc[ which(dissd$D_9 >= ’610’ | dissd$D_9 <= ’530’)])

#### ets & math pretest
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m2.m1.r <- cor(dissd$m2sc, dissd$m1sc)

#### math SAT & math pretest

d9.m1.r <- cor(dissd$D_9, dissd$m1sc)

#### math SAT & math posttest

d9.m3.r <- cor(dissd$D_9, dissd$m3sc)

#### vocab SAT & math pretest

d10.m1.r <- cor(dissd$D_10, dissd$m1sc)

#### gender & math pretest

d2.m1.r <- cor(as.numeric(dissd$D_2), dissd$m1sc)

#### ets & math SAT

d9.m2.r <- cor(dissd$m2sc, dissd$D_9)

#### perference & pretest (math == 1, vocab == 2)

d14.m1.r <- cor(as.numeric(dissd$D_14), dissd$m1sc, use="complete.obs")

#####gender & math SAT

d2.d9.r <- cor(as.numeric(dissd$D_2), dissd$D_9,)

#####gender & preference

cor(as.numeric(dissd$D_2), as.numeric(dissd$D_14), use="complete.obs")

corr <- data.frame(d9.m1.r, m2.m1.r, d10.m1.r, d2.m1.r, d14.m1.r)

str(corr)
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xtable(corr, caption="Pretest and Math Performance Correlations", label="corr")

#################Descriptives

## Looking at differences pre and post math scores

str(m1)

mean(m3$score)

## summary(dissd[1:38,35])

## summary(dissd[39:70,35])

## Math Performance Scores

# one sd is 100pt difference, then 2 sd-480 & 680

# demo graphics of gmu students

str(o1m)

o1m <- dissd$m1sc[ which(dissd$D_9 >= "610" & dissd$id_1 < "2100") ]

o2m <- dissd$m3sc[ which(dissd$D_9 >= ’610’ & dissd$id_1 < 2100) ]

o3m <- dissd$m1sc[ which(dissd$D_9 >= ’610’ & dissd$id_1 > 2100) ]

o4m <- dissd$m3sc[ which(dissd$D_9 >= ’610’ & dissd$id_1 > 2100) ]

o5m <- dissd$m1sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 < 2100) ]

o6m <- dissd$m3sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 < 2100) ]

o7m <- dissd$m1sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 > 2100) ]

o8m <- dissd$m3sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 > 2100) ]

## Vocabulary Performance Scores

o1v <- dissd$v1sc[ which(dissd$D_9 >= ’610’ & dissd$id_1 < 2100) ]

o2v <- dissd$v3sc[ which(dissd$D_9 >= ’610’ & dissd$id_1 < 2100) ]

o3v <- dissd$v1sc[ which(dissd$D_9 >= ’610’ & dissd$id_1 > 2100) ]

o4v <- dissd$v3sc[ which(dissd$D_9 >= ’610’ & dissd$id_1 > 2100) ]

o5v <- dissd$v1sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 < 2100) ]

o6v <- dissd$v3sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 < 2100) ]

o7v <- dissd$v1sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 > 2100) ]
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o8v <- dissd$v3sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 > 2100) ]

###### EXPERIMENTAL GROUPINGS

dissd$grp1[dissd$D_9 >= ’610’ & dissd$id_1 < ’2100’] <- "hi.m"

dissd$grp1[dissd$D_9 >= ’610’ & dissd$id_1 > ’2100’] <- "hi.v"

dissd$grp1[dissd$D_9 <= ’530’ & dissd$id_1 < ’2100’] <- "lo.m"

dissd$grp1[dissd$D_9 <= ’530’ & dissd$id_1 > ’2100’] <- "lo.v"

dissd$grp2[dissd$D_2 == ’M’ & dissd$id_1 < ’2100’] <- "male.m"

dissd$grp2[dissd$D_2 == ’M’ & dissd$id_1 > ’2100’] <- "male.v"

dissd$grp2[dissd$D_2 == ’F’ & dissd$id_1 < ’2100’] <- "female.m"

dissd$grp2[dissd$D_2 == ’F’ & dissd$id_1 > ’2100’] <- "female.v"

table(dissd$grp2)

# om <- cbind(o1m, o2m, o3m, o4m, o5m, o6m, o7m, o8m)

######################### ABILITY

#group 1

# summary(dissd$D_9[ which(dissd$D_9 >= "610" & dissd$id_1 < "2100") ])

# sd(dissd$D_9[ which(dissd$grp1 == ’hi.m’) ]) ###this code works

# sd(dissd$D_10[ which(dissd$D_9 >= "610" & dissd$id_1 < "2100") ])

# ## ETS MATH

# mean(dissd$m2sc[ which(dissd$D_9 >= "610" & dissd$id_1 < "2100") ])

# ## ETS VOCAB

# mean(dissd$v2sc[ which(dissd$D_9 >= "610" & dissd$id_1 < "2100") ])

# #group 2
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# sd(dissd$D_9[ which(dissd$D_9 >= ’610’ & dissd$id_1 > 2100) ])

# summary(dissd$D_10[ which(dissd$D_9 >= ’610’ & dissd$id_1 > 2100) ])

# ## ETS MATH

# mean(dissd$m2sc[ which(dissd$D_9 >= ’610’ & dissd$id_1 > 2100) ])

# ## ETS VOCAB

# mean(dissd$v2sc[ which(dissd$D_9 >= ’610’ & dissd$id_1 > 2100) ])

#

# # group 3

# summary(dissd$D_9[ which(dissd$D_9 <= ’530’ & dissd$id_1 < 2100) ])

# > summary(dissd$D_10[ which(dissd$D_9 <= ’530’ & dissd$id_1 < 2100) ])

# ## ETS MATH

# mean(dissd$m2sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 < 2100) ])

# ## ETS VOCAB

# mean(dissd$v2sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 < 2100) ])

#

# # group 4

# summary(dissd$D_9[ which(dissd$D_9 <= ’530’ & dissd$id_1 > 2100) ])

# > summary(dissd$D_10[ which(dissd$D_9 <= ’530’ & dissd$id_1 > 2100) ])

# ## ETS MATH

# mean(dissd$m2sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 > 2100) ])

# ## ETS VOCAB

# mean(dissd$v2sc[ which(dissd$D_9 <= ’530’ & dissd$id_1 > 2100) ])

hi.m.desc.d9 <- describe(dissd$D_9[ which(dissd$grp1 == ’hi.m’) ], skew=FALSE, ranges=FALSE)

hi.v.desc.d9 <- describe(dissd$D_9[ which(dissd$grp1 == ’hi.v’) ], skew=FALSE, ranges=FALSE)

lo.m.desc.d9 <- describe(dissd$D_9[ which(dissd$grp1 == ’lo.m’) ], skew=FALSE, ranges=FALSE)

lo.v.desc.d9 <- describe(dissd$D_9[ which(dissd$grp1 == ’lo.v’) ], skew=FALSE, ranges=FALSE)

desc.d9 <- rbind(hi.m.desc.d9,hi.v.desc.d9,lo.m.desc.d9,lo.v.desc.d9)

hi.m.desc.d10 <- describe(dissd$D_10[ which(dissd$grp1 == ’hi.m’) ], skew=FALSE, ranges=FALSE)

hi.v.desc.d10 <- describe(dissd$D_10[ which(dissd$grp1 == ’hi.v’) ], skew=FALSE, ranges=FALSE)

lo.m.desc.d10 <- describe(dissd$D_10[ which(dissd$grp1 == ’lo.m’) ], skew=FALSE, ranges=FALSE)
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lo.v.desc.d10 <- describe(dissd$D_10[ which(dissd$grp1 == ’lo.v’) ], skew=FALSE, ranges=FALSE)

desc.d10 <- rbind(hi.m.desc.d10,hi.v.desc.d10,lo.m.desc.d10,lo.v.desc.d10)

hi.m.desc.m2 <- describe(dissd$m2sc[ which(dissd$grp1 == ’hi.m’) ], skew=FALSE, ranges=FALSE)

hi.v.desc.m2 <- describe(dissd$m2sc[ which(dissd$grp1 == ’hi.v’) ], skew=FALSE, ranges=FALSE)

lo.m.desc.m2 <- describe(dissd$m2sc[ which(dissd$grp1 == ’lo.m’) ], skew=FALSE, ranges=FALSE)

lo.v.desc.m2 <- describe(dissd$m2sc[ which(dissd$grp1 == ’lo.v’) ], skew=FALSE, ranges=FALSE)

desc.m2 <- rbind(hi.m.desc.m2,hi.v.desc.m2,lo.m.desc.m2,lo.v.desc.m2)

hi.m.desc.v2 <- describe(dissd$v2sc[ which(dissd$grp1 == ’hi.m’) ], skew=FALSE, ranges=FALSE)

hi.v.desc.v2 <- describe(dissd$v2sc[ which(dissd$grp1 == ’hi.v’) ], skew=FALSE, ranges=FALSE)

lo.m.desc.v2 <- describe(dissd$v2sc[ which(dissd$grp1 == ’lo.m’) ], skew=FALSE, ranges=FALSE)

lo.v.desc.v2 <- describe(dissd$v2sc[ which(dissd$grp1 == ’lo.v’) ], skew=FALSE, ranges=FALSE)

desc.v2 <- rbind(hi.m.desc.v2,hi.v.desc.v2,lo.m.desc.v2,lo.v.desc.v2)

gp1.desc <- cbind(desc.d9[,-c(1)], desc.d10[,-c(1,2)])

xtable(gp1.desc, caption="Ability Selection Group Descriptives", label="satability")

str(gp1.desc)

gp1.desc.ets <- cbind(desc.m2[,-c(1)], desc.v2[,-c(1,2)])

xtable(gp1.desc.ets, caption="Ability Selection Group Descriptives", label="etsability")

#####MPR pre and post test descriptives for ABILITY

hi.m.desc.m1 <- describe(dissd$m1sc[ which(dissd$grp1 == ’hi.m’) ], skew=FALSE, ranges=FALSE)

hi.v.desc.m1 <- describe(dissd$m1sc[ which(dissd$grp1 == ’hi.v’) ], skew=FALSE, ranges=FALSE)

lo.m.desc.m1 <- describe(dissd$m1sc[ which(dissd$grp1 == ’lo.m’) ], skew=FALSE, ranges=FALSE)

lo.v.desc.m1 <- describe(dissd$m1sc[ which(dissd$grp1 == ’lo.v’) ], skew=FALSE, ranges=FALSE)

desc.m1 <- rbind(hi.m.desc.m1,hi.v.desc.m1,lo.m.desc.m1,lo.v.desc.m1)
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hi.m.desc.m3 <- describe(dissd$m3sc[ which(dissd$grp1 == ’hi.m’) ], skew=FALSE, ranges=FALSE)

hi.v.desc.m3 <- describe(dissd$m3sc[ which(dissd$grp1 == ’hi.v’) ], skew=FALSE, ranges=FALSE)

lo.m.desc.m3 <- describe(dissd$m3sc[ which(dissd$grp1 == ’lo.m’) ], skew=FALSE, ranges=FALSE)

lo.v.desc.m3 <- describe(dissd$m3sc[ which(dissd$grp1 == ’lo.v’) ], skew=FALSE, ranges=FALSE)

desc.m3 <- rbind(hi.m.desc.m3, hi.v.desc.m3, lo.m.desc.m3, lo.v.desc.m3)

m1m3.desc <- cbind(desc.m1[,-c(1,2)], desc.m3[,-c(1,2)])

xtable(m1m3.desc, caption="Ability Selection Group MPR Descriptives", label="mprability")

################### GENDER

# #group 1

# summary(dissd$D_9[ which(dissd$D_2 == ’M’ & dissd$id_1 < "2100") ])

# > summary(dissd$D_10[ which(dissd$D_2 == ’M’ & dissd$id_1 < "2100") ])

# ## math pretest

# describe(o1mg)

# ## math posttest

# describe(o2mg)

# ## ETS MATH

# mean(dissd$m2sc[ which(dissd$D_2 == ’M’ & dissd$id_1 < "2100") ])

# ## ETS VOCAB

# mean(dissd$v2sc[ which(dissd$D_2 == ’M’ & dissd$id_1 < "2100") ])

#

# # group 2

# summary(dissd$D_9[ which(dissd$D_2 == ’M’ & dissd$id_1 > 2100) ])

# summary(dissd$D_10[ which(dissd$D_2 == ’M’ & dissd$id_1 > 2100) ])

# ## math pretest

# describe(o3mg)

# ## math posttest

# describe(o4mg)
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# ## ETS MATH

# mean(dissd$m2sc[ which(dissd$D_2 == ’M’ & dissd$id_1 > 2100) ])

# ## ETS VOCAB

# mean(dissd$v2sc[ which(dissd$D_2 == ’M’ & dissd$id_1 > 2100) ])

#

# # group 3

# summary(dissd$D_9[ which(dissd$D_2 == ’F’ & dissd$id_1 < 2100) ])

# summary(dissd$D_10[ which(dissd$D_2 == ’F’ & dissd$id_1 < 2100) ])

# ## math pretest

# describe(o5mg)

# ## math posttest

# describe(o6mg)

# ## ETS MATH

# mean(dissd$m2sc[ which(dissd$D_2 == ’F’ & dissd$id_1 < 2100) ])

# ## ETS VOCAB

# mean(dissd$v2sc[ which(dissd$D_2 == ’F’ & dissd$id_1 < 2100) ])

#

# #group 4

# summary(dissd$D_9[ which(dissd$D_2 == ’F’ & dissd$id_1 > 2100) ])

# summary(dissd$D_10[ which(dissd$D_2 == ’F’ & dissd$id_1 > 2100) ])

# ## math pretest

# describe(o7mg)

# ## math posttest

# describe(o8mg)

# ## ETS MATH

# mean(dissd$m2sc[ which(dissd$D_2 == ’F’ & dissd$id_1 > 2100) ])

# ## ETS VOCAB

# mean(dissd$v2sc[ which(dissd$D_2 == ’F’ & dissd$id_1 > 2100) ])

male.m.desc.d9 <- describe(dissd$D_9[ which(dissd$grp2 == ’male.m’) ], skew=FALSE, ranges=FALSE)

male.v.desc.d9 <- describe(dissd$D_9[ which(dissd$grp2 == ’male.v’) ], skew=FALSE, ranges=FALSE)

female.m.desc.d9 <- describe(dissd$D_9[ which(dissd$grp2 == ’female.m’) ], skew=FALSE, ranges=FALSE)

female.v.desc.d9 <- describe(dissd$D_9[ which(dissd$grp2 == ’female.v’) ], skew=FALSE, ranges=FALSE)
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desc.d9.gen <- rbind(male.m.desc.d9, male.v.desc.d9, female.m.desc.d9, female.v.desc.d9)

male.m.desc.d10 <- describe(dissd$D_10[ which(dissd$grp2 == ’male.m’) ], skew=FALSE, ranges=FALSE)

male.v.desc.d10 <- describe(dissd$D_10[ which(dissd$grp2 == ’male.v’) ], skew=FALSE, ranges=FALSE)

female.m.desc.d10 <- describe(dissd$D_10[ which(dissd$grp2 == ’female.m’) ], skew=FALSE, ranges=FALSE)

female.v.desc.d10 <- describe(dissd$D_10[ which(dissd$grp2 == ’female.v’) ], skew=FALSE, ranges=FALSE)

desc.d10.gen <- rbind(male.m.desc.d10, male.v.desc.d10, female.m.desc.d10, female.v.desc.d10)

male.m.desc.m2 <- describe(dissd$m2sc[ which(dissd$grp2 == ’male.m’) ], skew=FALSE, ranges=FALSE)

male.v.desc.m2 <- describe(dissd$m2sc[ which(dissd$grp2 == ’male.v’) ], skew=FALSE, ranges=FALSE)

female.m.desc.m2 <- describe(dissd$m2sc[ which(dissd$grp2 == ’female.m’) ], skew=FALSE, ranges=FALSE)

female.v.desc.m2 <- describe(dissd$m2sc[ which(dissd$grp2 == ’female.v’) ], skew=FALSE, ranges=FALSE)

desc.m2.gen <- rbind(male.m.desc.m2, male.v.desc.m2, female.m.desc.m2, female.v.desc.m2)

male.m.desc.v2 <- describe(dissd$v2sc[ which(dissd$grp2 == ’male.m’) ], skew=FALSE, ranges=FALSE)

male.v.desc.v2 <- describe(dissd$v2sc[ which(dissd$grp2 == ’male.v’) ], skew=FALSE, ranges=FALSE)

female.m.desc.v2 <- describe(dissd$v2sc[ which(dissd$grp2 == ’female.m’) ], skew=FALSE, ranges=FALSE)

female.v.desc.v2 <- describe(dissd$v2sc[ which(dissd$grp2 == ’female.v’) ], skew=FALSE, ranges=FALSE)

desc.v2.gen <- rbind(male.m.desc.v2, male.v.desc.v2, female.m.desc.v2, female.v.desc.v2)

gp2.desc <- cbind(desc.d9.gen[,-c(1)], desc.d10.gen[,-c(1,2)])

xtable(gp2.desc, caption="Gender Selection Group SAT Descriptives", label="satgender")

gp2.desc.ets <- cbind(desc.m2[,-c(1)], desc.v2[,-c(1,2)])

xtable(gp2.desc.ets, caption="Gender Selection Group ETS Descriptives", label="etsgender")

#####MPR pre and post test descriptives for GENDER

male.m.desc.m1 <- describe(dissd$m1sc[ which(dissd$grp2 == ’male.m’) ], skew=FALSE, ranges=FALSE)

male.v.desc.m1 <- describe(dissd$m1sc[ which(dissd$grp2 == ’male.v’) ], skew=FALSE, ranges=FALSE)
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female.m.desc.m1 <- describe(dissd$m1sc[ which(dissd$grp2 == ’female.m’) ], skew=FALSE, ranges=FALSE)

female.v.desc.m1 <- describe(dissd$m1sc[ which(dissd$grp2 == ’female.v’) ], skew=FALSE, ranges=FALSE)

desc.m1.gen <- rbind(male.m.desc.m1, male.v.desc.m1, female.m.desc.m1, female.v.desc.m1)

male.m.desc.m3 <- describe(dissd$m3sc[ which(dissd$grp2 == ’male.m’) ], skew=FALSE, ranges=FALSE)

male.v.desc.m3 <- describe(dissd$m3sc[ which(dissd$grp2 == ’male.v’) ], skew=FALSE, ranges=FALSE)

female.m.desc.m3 <- describe(dissd$m3sc[ which(dissd$grp2 == ’female.m’) ], skew=FALSE, ranges=FALSE)

female.v.desc.m3 <- describe(dissd$m3sc[ which(dissd$grp2 == ’female.v’) ], skew=FALSE, ranges=FALSE)

desc.m3.gen <- rbind(male.m.desc.m3, male.v.desc.m3, female.m.desc.m3, female.v.desc.m3)

m1m3.desc.gen <- cbind(desc.m1.gen[,-c(1,2)], desc.m3.gen[,-c(1,2)])

xtable(m1m3.desc.gen, caption="Gender Selection Group MPR Descriptives", label="mprgender")

############# set up the percentage plots

grp1.ab <- c(70,82)

grp2.ab <- c(64,64)

grp3.ab <- c(39,59)

grp4.ab <- c(32,31)

plot(grp1.ab, type="o", col="dark red", ylim=c(30,100), axes=FALSE, ann=FALSE)

axis(1, at=1:2, lab=c("Pre","Post"))

axis(2, las=1, at=c(30,35,40,45,50,55,60,65,70,75,80,85,90,95,100))

box()

lines(grp2.ab, type="o", pch=22, lty=2, col="red")

lines(grp3.ab, type="o", pch=24, lty=1, col="blue")

lines(grp4.ab, type="o", pch=25, lty=2, col="dark blue")
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title(main="Math Performance-Revised Test: Ability Assignment", font.main=4)

title(ylab="Percent Correct")

legend(1, 95, c("High-Math","High-Vocab", "Low-Math", "Low-Vocab"), cex=0.9,

col=c("dark red","red", "blue", "dark blue"), pch=c(21,22,24,25), lty=c(1,2,5,6))

grp1.gen <- c(55,71)

grp2.gen <- c(47,50)

grp3.gen <- c(49,66)

grp4.gen <- c(43,39)

plot(grp1.gen, type="o", col="dark red", ylim=c(30,100), axes=FALSE, ann=FALSE)

axis(1, at=1:2, lab=c("Pre","Post"))

axis(2, las=1, at=c(30,35,40,45,50,55,60,65,70,75,80,85,90,95,100))

box()

lines(grp2.gen, type="o", pch=22, lty=2, col="red")

lines(grp3.gen, type="o", pch=24, lty=1, col="blue")

lines(grp4.gen, type="o", pch=25, lty=2, col="dark blue")

title(main="Math Performance-Revised Test: Gender Assignment", font.main=4)

title(ylab="Percent Correct")

legend(1, 95, c("Male-Math","Male-Vocab", "Female-Math", "Female-Vocab"), cex=0.9,

col=c("dark red","red", "blue", "dark blue"), pch=c(21,22,24,25), lty=c(1,2,5,6))

### Test RE-test for Math Performance test

cor(o1m,o2m)

cor(o3m,o4m)

cor(o5m,o6m)

cor(o7m,o8m)

######################## EFFECT SIZES FOR ABILITY
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##from r help listserv

cohens.d <- function (x, y) {(mean(x)-mean(y))/sqrt((var(x)+var(y))/2) }

########## EFFECT SIZES

############## INITIAL DIFFERENCES

###math tx

cohens.d(o1m, o5m)

###MIN es

ab.min.mn <-cohens.d(o3m, o5m)

###MAX es

ab.max.mn <-cohens.d(o1m, o7m)

############## SELECTION BIAS INTERACTION

###math tx

##MIN es

ab.min.int <-cohens.d(o4m, o6m)

###MAX es

ab.max.int <- cohens.d(dissd$m3sc[ which(dissd$grp1 == ’hi.m’) ],

dissd$m3sc[ which(dissd$grp1 == ’lo.v’) ]) ##this works

cohens.d(o2m, o8m)

### Expected Treatment Effect Size

ExpESTx <- (cohens.d(o2m,o4m) + cohens.d(o6m,o8m))/2

# cohens.d(o2m,o4m)

# cohens.d(o6m,o8m)

#####MIN. bias ES posttest

min.ES.post <- ab.min.int - ExpESTx
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#####MAX. bias ES posttest

max.ES.post <- ab.max.int - ExpESTx

######################## Simple Bar Plot

counts <- table(mtcars$gear)

barplot(counts, main="SBI ES Distribution",

xlab="Resampling Percentage", ylab="Effect Size")

################ RESAMPLING AND EFFECT SIZE DISTRIUBTIONS

##resample 10% low in hi group, 20%lo in hi group to 80% etc...

###creating groups for resampling

o1m.d <- as.data.frame(o1m)

o2m.d <- as.data.frame(o2m)

o3m.d <- as.data.frame(o3m)

o4m.d <- as.data.frame(o4m)

o5m.d <- as.data.frame(o5m)

o6m.d <- as.data.frame(o6m)

o7m.d <- as.data.frame(o7m)

o8m.d <- as.data.frame(o8m)

# #### MINimum effect size groups

# o3o5m <- cbind(o3m.d, o5m.d)

# o4o6m <- cbind(o4m.d, o6m.d)

# #### MAXimum effect size group

# o1o7m <- cbind(o1m.d, o7m.d)

# o2o8m <- cbind(o2m.d, o8m.d)
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######resampling functions and loop

###resample function

my.resample <- function (x, y, percent) {c(x[sample(1:nrow(x),

nrow(x)*(1 - percent), replace=TRUE),], y[sample(1:nrow(y), nrow(y)*percent, replace=TRUE),])}

########## RESAMPLING

dissd$female <- recode(dissd$D_2,"’F’=0;’M’=1",F)

iter <- 1

i <- 1

j <- 2

x <- dissd

jn.resample <- function(x,iter=10,TxES=1.4){ ##see ExpESTx above - needed to take out Tx ES

out <- rep(NA,6)

for (j in 1:9){

for (i in 1:iter){

HImath <- x[x$grp1==’hi.m’ | x$grp1==’hi.v’,]

LOmath <- x[x$grp1==’lo.m’ | x$grp1==’lo.v’,]

male <- x[dissd$D_2=="M",]

female <- x[dissd$D_2=="F",]

datM <- rbind(HImath[sample(1:nrow(HImath),nrow(HImath)*(j/10)),],

LOmath[sample(1:nrow(LOmath),nrow(LOmath)*(1-(j/10))),])

datS <- rbind(male[sample(1:nrow(male),nrow(male)*(j/10)),],

female[sample(1:nrow(female),nrow(female)*(1-(j/10))),])
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out <- rbind(out,c(i,j/10,cor(datM$D_9,datM$m1sc,use="complete.obs"),

cor(datS$female,datS$m1sc,use="complete.obs"),

cohens.d(datM$m3sc[datM$grp1==’hi.m’ | datM$grp1==’hi.v’],

datM$m3sc[datM$grp1==’lo.m’ | datM$grp1==’lo.v’])-TxES,

cohens.d(datS$m3sc[datS$D_2=="M"],datS$m3sc[datS$D_2=="F"])-TxES))

## the output dataset should have the following parts:

# i, and j, along with rMath, rSex, ESmath, ESsex

}

}

out <- as.data.frame(out)[-1,]

names(out) <- c("iter","prop","rMath","rSex","ESmath","ESsex")

return(out)

}

testing <- jn.resample(dissd,1000)

str(testing)

summary(testing)

plot(testing$ESmath~testing$rMath,)

abline(lm(testing$ESmath~I(testing$rMath^2),data=testing), col = "red")

points(.11, 1.59,pch=21, bg=20)

points(.62, 4.35,pch=21, bg=20)

summary(lm(abs(testing$ESmath)~abs(testing$rMath), data=testing))

plot(testing$ESsex~testing$rSex,) # ylim=c(0,4.5), xlim=c(0,.65)

abline(lm(abs(testing$ESsex)~abs(testing$rSex), data=testing), col = "red")

points(.11, 1.59, pch=21,bg=20)

points(.62, 4.35,pch=21, bg=20)

summary(lm(testing$ESsex~testing$rSex, data=testing))
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####COMBINE so a single plot is available

es.df <- c(testing$ESmath, testing$ESsex)

r.df <- c(testing$rMath, testing$rSex)

head(es.df)

str(r.df)

plot(es.df~r.df, ylim=c(-3,3), ylab="Effect Size",

xlab= expression(paste("r" ["selection variable, pretest"])))

# abline(lm(es.df~ I(r.df^2)), col="red")

abline(lm(es.df~ abs(r.df)), lwd =3)

abline(lm(testing$ESmath~testing$rMath, data=testing), lwd=2, col="red" )

abline(lm(testing$ESsex~testing$rSex, data=testing), lwd=2, col="blue" )

points(r.df[c(1:9000)], es.df[c(1:9000)], col="red") ##ability red

points(r.df[c(9001:18000)], es.df[c(9001:18000)], col="blue") ##gender blue

points(.11, min.ES.post.mg, pch=4,col="blue")

points(.11, max.ES.post.mg, pch=4,col="blue")

points(.62, max.ES.post,pch=4, col="red")

points(.62, min.ES.post,pch=4, col="red")

summary(lm(es.df~ abs(r.df)))

summary(lm(es.df~ r.df))

summary(lm(es.df~ I(r.df^2)), col="red")

summary(lm(abs(es.df)~ abs(r.df)))

summary(lm(es.df~ abs(r.df)))
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#################### MINIMUM E.S. ABILITY INITIAL DIFFERENCES

o3o5.m.0 <- cohens.d(my.resample(o3m.d, o5m.d,0),o5m.d)

for (i in 1:999){

o3o5.m.0 <- c(o3o5.m.0,cohens.d(my.resample(o3m.d, o5m.d,0),o5m.d))

}

o3o5.m.10 <- cohens.d(my.resample(o3m.d, o5m.d, .10),o5m.d)

for (i in 1:999){

o3o5.m.10 <- c(o3o5.m.10,cohens.d(my.resample(o3m.d, o5m.d, .10),o5m.d))

}

o3o5.m.20 <- cohens.d(my.resample(o3m.d, o5m.d, .20),o5m.d)

for (i in 1:999){

o3o5.m.20 <- c(o3o5.m.20,cohens.d(my.resample(o3m.d, o5m.d, .20),o5m.d))

}

o3o5.m.30 <- cohens.d(my.resample(o3m.d, o5m.d, .30),o5m.d)

for (i in 1:999){

o3o5.m.30 <- c(o3o5.m.30,cohens.d(my.resample(o3m.d, o5m.d, .30),o5m.d))

}

o3o5.m.40 <- cohens.d(my.resample(o3m.d, o5m.d, .40),o5m.d)

for (i in 1:999){

o3o5.m.40 <- c(o3o5.m.40,cohens.d(my.resample(o3m.d, o5m.d, .40),o5m.d))

}

o3o5.m.50 <- cohens.d(my.resample(o3m.d, o5m.d, .50),o5m.d)

for (i in 1:999){

o3o5.m.50 <- c(o3o5.m.50,cohens.d(my.resample(o3m.d, o5m.d, .50),o5m.d))

}

o3o5.m.60 <- cohens.d(my.resample(o3m.d, o5m.d, .60),o5m.d)
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for (i in 1:999){

o3o5.m.60 <- c(o3o5.m.60,cohens.d(my.resample(o3m.d, o5m.d, .60),o5m.d))

}

o3o5.m.70 <- cohens.d(my.resample(o3m.d, o5m.d, .70),o5m.d)

for (i in 1:999){

o3o5.m.70 <- c(o3o5.m.70,cohens.d(my.resample(o3m.d, o5m.d, .70),o5m.d))

}

o3o5.m.80 <- cohens.d(my.resample(o3m.d, o5m.d, .80),o5m.d)

for (i in 1:999){

o3o5.m.80 <- c(o3o5.m.80,cohens.d(my.resample(o3m.d, o5m.d, .80),o5m.d))

}

o3o5.m.90 <- cohens.d(my.resample(o3m.d, o5m.d, .90),o5m.d)

for (i in 1:999){

o3o5.m.90 <- c(o3o5.m.90,cohens.d(my.resample(o3m.d, o5m.d, .90),o5m.d))

}

o3o5.m.100 <- cohens.d(my.resample(o3m.d, o5m.d, 1.0),o5m.d)

for (i in 1:999){

o3o5.m.100 <- c(o3o5.m.100,cohens.d(my.resample(o3m.d, o5m.d, 1.0),o5m.d))

}

o3o5.m <- c(o3o5.m.0, o3o5.m.10, o3o5.m.20, o3o5.m.30, o3o5.m.40, o3o5.m.50,

o3o5.m.60, o3o5.m.70, o3o5.m.80, o3o5.m.90, o3o5.m.100)

hist(o3o5.m, main = "Minimum Ability Initial Difference", xlab = "Effect Size")

summary(o3o5.m)

describe(o3o5.m)

o3o5.df <- data.frame(o3o5.m.0, o3o5.m.10, o3o5.m.20, o3o5.m.30, o3o5.m.40, o3o5.m.50,

o3o5.m.60, o3o5.m.70, o3o5.m.80, o3o5.m.90, o3o5.m.100)

str(o3o5.df)

o3o5.desc <- describe(o3o5.df, skew=FALSE, ranges=FALSE)
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xtable(o3o5.desc,

caption="Resampled Minimum Main Effects Descriptive Statistics",

label="o3o5.m")

#################### MAXIMUM E.S. ABILITY INITIAL DIFFERENCES

o1o7.m.0 <- cohens.d(my.resample(o1m.d, o7m.d,0),o7m.d)

for (i in 1:999){

o1o7.m.0 <- c(o1o7.m.0,cohens.d(my.resample(o1m.d, o7m.d,0),o7m.d))

}

o1o7.m.10 <- cohens.d(my.resample(o1m.d, o7m.d, .10),o7m.d)

for (i in 1:999){

o1o7.m.10 <- c(o1o7.m.10,cohens.d(my.resample(o1m.d, o7m.d, .10),o7m.d))

}

o1o7.m.20 <- cohens.d(my.resample(o1m.d, o7m.d, .20),o7m.d)

for (i in 1:999){

o1o7.m.20 <- c(o1o7.m.20,cohens.d(my.resample(o1m.d, o7m.d, .20),o7m.d))

}

o1o7.m.30 <- cohens.d(my.resample(o1m.d, o7m.d, .30),o7m.d)

for (i in 1:999){

o1o7.m.30 <- c(o1o7.m.30,cohens.d(my.resample(o1m.d, o7m.d, .30),o7m.d))

}

o1o7.m.40 <- cohens.d(my.resample(o1m.d, o7m.d, .40),o7m.d)

for (i in 1:999){

o1o7.m.40 <- c(o1o7.m.40,cohens.d(my.resample(o1m.d, o7m.d, .40),o7m.d))

}

o1o7.m.50 <- cohens.d(my.resample(o1m.d, o7m.d, .50),o1m.d)

for (i in 1:999){
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o1o7.m.50 <- c(o1o7.m.50,cohens.d(my.resample(o1m.d, o7m.d, .50),o7m.d))

}

o1o7.m.60 <- cohens.d(my.resample(o1m.d, o7m.d, .60),o7m.d)

for (i in 1:999){

o1o7.m.60 <- c(o1o7.m.60,cohens.d(my.resample(o1m.d, o7m.d, .60),o7m.d))

}

o1o7.m.70 <- cohens.d(my.resample(o1m.d, o7m.d, .70),o7m.d)

for (i in 1:999){

o1o7.m.70 <- c(o1o7.m.70,cohens.d(my.resample(o1m.d, o7m.d, .70),o7m.d))

}

o1o7.m.80 <- cohens.d(my.resample(o1m.d, o7m.d, .80),o7m.d)

for (i in 1:999){

o1o7.m.80 <- c(o1o7.m.80,cohens.d(my.resample(o1m.d, o7m.d, .80),o7m.d))

}

o1o7.m.90 <- cohens.d(my.resample(o1m.d, o7m.d, .90),o7m.d)

for (i in 1:999){

o1o7.m.90 <- c(o1o7.m.90,cohens.d(my.resample(o1m.d, o7m.d, .90),o7m.d))

}

o1o7.m.100 <- cohens.d(my.resample(o1m.d, o7m.d, 1.0),o7m.d)

for (i in 1:999){

o1o7.m.100 <- c(o1o7.m.100,cohens.d(my.resample(o1m.d, o7m.d, 1.0),o7m.d))

}

o1o7.m <- c(o1o7.m.0, o1o7.m.10, o1o7.m.20, o1o7.m.30, o1o7.m.40,

o1o7.m.50, o1o7.m.60, o1o7.m.70, o1o7.m.80, o1o7.m.90, o1o7.m.100)

hist(o1o7.m, main = "Maximum Ability Initial Difference", xlab = "Effect Size")

summary(o1o7.m)

describe(o1o7.m)
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o1o7.df <- data.frame(o1o7.m.0, o1o7.m.10, o1o7.m.20, o1o7.m.30,

o1o7.m.40, o1o7.m.50, o1o7.m.60, o1o7.m.70, o1o7.m.80, o1o7.m.90, o1o7.m.100)

str(o1o7.df)

o1o7.desc <- describe(o1o7.df, skew=FALSE, ranges=FALSE)

xtable(o1o7.desc,

caption="Resampled Maximum Main Effects Descriptive Statistics",

label="o1o7.m")

###Ability Initial Difference COMBINED

ability.id <- c(o3o5.m, o1o7.m)

id.df <- cbind(o3o5.desc, o1o7.desc, o3o5.mg.desc, o1o7.mg.desc)

xtable(id.df[,c(3,4,8,9,13,14,18,19)],

caption="Resampled Main Effects Descriptive Statistics",label="ability.id")

names(id.df)

hist(ability.id, main = "Ability Pretest Effect", xlab = "Effect Size")

lines(1.05, 3000, type="h", col="blue")

lines(1.97, 3000, type="h", col="blue")

describe(ability.id)

ks.test(ability.id, "pnorm", mean=mean(ability.id), sd=sd(ability.id))

ks.test(ability.id, "pgamma", 1000, 5)

fitdistr(ability.id, "logistic")

ab.id <- xtable(describe(as.data.frame(ability.id)))

# print(ab.id)
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#################### MINimum E.S. ABILITY SELECTION BIAS INTERACTIONS

o4o6.m.0 <- cohens.d(my.resample(o4m.d, o6m.d,0),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.0 <- c(o4o6.m.0,cohens.d(my.resample(o4m.d, o6m.d,0),o6m.d)-ExpESTx)

}

o4o6.m.10 <- cohens.d(my.resample(o4m.d, o6m.d, .10),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.10 <- c(o4o6.m.10,cohens.d(my.resample(o4m.d, o6m.d, .10),o6m.d)-ExpESTx)

}

o4o6.m.20 <- cohens.d(my.resample(o4m.d, o6m.d, .20),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.20 <- c(o4o6.m.20,cohens.d(my.resample(o4m.d, o6m.d, .20),o6m.d)-ExpESTx)

}

o4o6.m.30 <- cohens.d(my.resample(o4m.d, o6m.d, .30),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.30 <- c(o4o6.m.30,cohens.d(my.resample(o4m.d, o6m.d, .30),o6m.d)-ExpESTx)

}

o4o6.m.40 <- cohens.d(my.resample(o4m.d, o6m.d, .40),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.40 <- c(o4o6.m.40,cohens.d(my.resample(o4m.d, o6m.d, .40),o6m.d)-ExpESTx)

}

o4o6.m.50 <- cohens.d(my.resample(o4m.d, o6m.d, .50),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.50 <- c(o4o6.m.50,cohens.d(my.resample(o4m.d, o6m.d, .50),o6m.d)-ExpESTx)

}
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o4o6.m.60 <- cohens.d(my.resample(o4m.d, o6m.d, .60),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.60 <- c(o4o6.m.60,cohens.d(my.resample(o4m.d, o6m.d, .60),o6m.d)-ExpESTx)

}

o4o6.m.70 <- cohens.d(my.resample(o4m.d, o6m.d, .70),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.70 <- c(o4o6.m.70,cohens.d(my.resample(o4m.d, o6m.d, .70),o6m.d)-ExpESTx)

}

o4o6.m.80 <- cohens.d(my.resample(o4m.d, o6m.d, .80),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.80 <- c(o4o6.m.80,cohens.d(my.resample(o4m.d, o6m.d, .80),o6m.d)-ExpESTx)

}

o4o6.m.90 <- cohens.d(my.resample(o4m.d, o6m.d, .90),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.90 <- c(o4o6.m.90,cohens.d(my.resample(o4m.d, o6m.d, .90),o6m.d)-ExpESTx)

}

o4o6.m.100 <- cohens.d(my.resample(o4m.d, o6m.d, 1.0),o6m.d)-ExpESTx

for (i in 1:999){

o4o6.m.100 <- c(o4o6.m.100,cohens.d(my.resample(o4m.d, o6m.d, 1.0),o6m.d)-ExpESTx)

}

o4o6.m <- c(o4o6.m.0, o4o6.m.10, o4o6.m.20, o4o6.m.30, o4o6.m.40,

o4o6.m.50, o4o6.m.60, o4o6.m.70, o4o6.m.80, o4o6.m.90, o4o6.m.100)

hist(o4o6.m, main = "Minimum Ability Selection Bias Interaction", xlab = "Effect Size")

summary(o4o6.m)

describe(o4o6.m)

o4o6.df <- data.frame(o4o6.m.0, o4o6.m.10, o4o6.m.20, o4o6.m.30,
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o4o6.m.40, o4o6.m.50, o4o6.m.60, o4o6.m.70, o4o6.m.80, o4o6.m.90, o4o6.m.100)

str(o4o6.df)

o4o6.desc <- describe(o4o6.df, skew=FALSE, ranges=FALSE)

xtable(o4o6.desc,

caption="Resampled Minimum Posttest Effects Descriptive Statistics",

label="o4o6.m")

#################### MAXimum E.S. ABILITY SELECTION BIAS INTERACTIONS

o2o8.m.0 <- cohens.d(my.resample(o2m.d, o8m.d,0),o8m.d)-ExpESTx

for (i in 1:999){

o2o8.m.0 <- c(o2o8.m.0,cohens.d(my.resample(o2m.d, o8m.d,0),o8m.d)-ExpESTx)

}

o2o8.m.10 <- cohens.d(my.resample(o2m.d, o8m.d, .10),o8m.d)-ExpESTx

for (i in 1:999){

o2o8.m.10 <- c(o2o8.m.10,cohens.d(my.resample(o2m.d, o8m.d, .10),o8m.d)-ExpESTx)

}

o2o8.m.20 <- cohens.d(my.resample(o2m.d, o8m.d, .20),o8m.d)-ExpESTx

for (i in 1:999){

o2o8.m.20 <- c(o2o8.m.20,cohens.d(my.resample(o2m.d, o8m.d, .20),o8m.d)-ExpESTx)

}

o2o8.m.30 <- cohens.d(my.resample(o2m.d, o8m.d, .30),o8m.d)-ExpESTx

for (i in 1:999){

o2o8.m.30 <- c(o2o8.m.30,cohens.d(my.resample(o2m.d, o8m.d, .30),o8m.d)-ExpESTx)

}

o2o8.m.40 <- cohens.d(my.resample(o2m.d, o8m.d, .40),o8m.d)-ExpESTx
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for (i in 1:999){

o2o8.m.40 <- c(o2o8.m.40,cohens.d(my.resample(o2m.d, o8m.d, .40),o8m.d)-ExpESTx)

}

o2o8.m.50 <- cohens.d(my.resample(o2m.d, o8m.d, .50),o2m.d)-ExpESTx

for (i in 1:999){

o2o8.m.50 <- c(o2o8.m.50,cohens.d(my.resample(o2m.d, o8m.d, .50),o8m.d)-ExpESTx)

}

o2o8.m.60 <- cohens.d(my.resample(o2m.d, o8m.d, .60),o8m.d)-ExpESTx

for (i in 1:999){

o2o8.m.60 <- c(o2o8.m.60,cohens.d(my.resample(o2m.d, o8m.d, .60),o8m.d)-ExpESTx)

}

o2o8.m.70 <- cohens.d(my.resample(o2m.d, o8m.d, .70),o8m.d)-ExpESTx

for (i in 1:999){

o2o8.m.70 <- c(o2o8.m.70,cohens.d(my.resample(o2m.d, o8m.d, .70),o8m.d)-ExpESTx)

}

o2o8.m.80 <- cohens.d(my.resample(o2m.d, o8m.d, .80),o8m.d)-ExpESTx

for (i in 1:999){

o2o8.m.80 <- c(o2o8.m.80,cohens.d(my.resample(o2m.d, o8m.d, .80),o8m.d)-ExpESTx)

}

o2o8.m.90 <- cohens.d(my.resample(o2m.d, o8m.d, .90),o8m.d)-ExpESTx

for (i in 1:999){

o2o8.m.90 <- c(o2o8.m.90,cohens.d(my.resample(o2m.d, o8m.d, .90),o8m.d)-ExpESTx)

}

o2o8.m.100 <- cohens.d(my.resample(o2m.d, o8m.d, 1.0),o8m.d)-ExpESTx

for (i in 1:999){

o2o8.m.100 <- c(o2o8.m.100,cohens.d(my.resample(o2m.d, o8m.d, 1.0),o8m.d)-ExpESTx)

}
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o2o8.m <- c(o2o8.m.0, o2o8.m.10, o2o8.m.20, o2o8.m.30, o2o8.m.40,

o2o8.m.50, o2o8.m.60, o2o8.m.70, o2o8.m.80, o2o8.m.90, o2o8.m.100)

hist(o2o8.m, main = "Maximum Ability Selection Bias Interaction", xlab = "Effect Size")

describe(o2o8.m)

o2o8.df <- data.frame(o2o8.m.0, o2o8.m.10, o2o8.m.20, o2o8.m.30, o2o8.m.40,

o2o8.m.50, o2o8.m.60, o2o8.m.70, o2o8.m.80, o2o8.m.90, o2o8.m.100)

str(o2o8.df)

o2o8.desc <- describe(o2o8.df, skew=FALSE, ranges=FALSE)

xtable(o2o8.desc,

caption="Resampled Maximum Selection by Treatment Effects Descriptive Statistics",

label="o2o8.m")

###Ability SBI COMBINED

ability.sbi <- c(o4o6.m, o2o8.m)

hist(ability.sbi, main = "Ability Posttest Effect", xlab = "Effect Size")

lines(min.ES.post, 6000, type="h", col="blue")

lines(max.ES.post, 6000, type="h", col="blue")

describe(ability.sbi)

########Descriptives for ability and gender posttest ES resamples

sbi.df <- cbind(o4o6.desc, o2o8.desc, o4o6.mg.desc, o2o8.mg.desc)

xtable(sbi.df[,c(3,4,8,9,13,14,18,19)],

caption="Resampled Posttest Effects Descriptive Statistics",

label="sbti.df")
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ks.test(ability.sbi, "pnorm", mean=mean(ability.sbi), sd=sd(ability.sbi))

######################## Gender differences

## Math Performance Scores

# o1m <- dissd$m1sc[which(dissd$D_9 >= 610 & dissd$id_1 < 2100). ]

str(o7mg)

o1mg <- dissd$m1sc[ which(dissd$D_2 == ’M’ & dissd$id_1 < 2100) ]

o2mg <- dissd$m3sc[ which(dissd$D_2 == ’M’ & dissd$id_1 < 2100) ]

o3mg <- dissd$m1sc[ which(dissd$D_2 == ’M’ & dissd$id_1 > 2100) ]

o4mg <- dissd$m3sc[ which(dissd$D_2 == ’M’ & dissd$id_1 > 2100) ]

o5mg <- dissd$m1sc[ which(dissd$D_2 == ’F’ & dissd$id_1 < 2100) ]

o6mg <- dissd$m3sc[ which(dissd$D_2 == ’F’ & dissd$id_1 < 2100) ]

o7mg <- dissd$m1sc[ which(dissd$D_2 == ’F’ & dissd$id_1 > 2100) ]

o8mg <- dissd$m3sc[ which(dissd$D_2 == ’F’ & dissd$id_1 > 2100) ]

## Vocabulary Performance Scores

o1vg <- dissd$v1sc[ which(dissd$D_2 == ’M’ & dissd$id_1 < 2100) ]

o2vg <- dissd$v3sc[ which(dissd$D_2 == ’M’ & dissd$id_1 < 2100) ]

o3vg <- dissd$v1sc[ which(dissd$D_2 == ’M’ & dissd$id_1 > 2100) ]

o4vg <- dissd$v3sc[ which(dissd$D_2 == ’M’ & dissd$id_1 > 2100) ]

o5vg <- dissd$v1sc[ which(dissd$D_2 == ’F’ & dissd$id_1 < 2100) ]

o6vg <- dissd$v3sc[ which(dissd$D_2 == ’F’ & dissd$id_1 < 2100) ]

o7vg <- dissd$v1sc[ which(dissd$D_2 == ’F’ & dissd$id_1 > 2100) ]

o8vg <- dissd$v3sc[ which(dissd$D_2 == ’F’ & dissd$id_1 > 2100) ]

########## EFFECT SIZES

############## INITIAL DIFFERENCES

###math tx

cohens.d(o1mg, o5mg)

###MIN es

gen.min.mn <-cohens.d(o3mg, o5mg)
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###MAX es

gen.max.mn <-cohens.d(o1mg, o7mg)

## within male differences

cohens.d(o1mg, o3mg)

##within female differences

cohens.d(o5mg, o7mg)

############## SELECTION BIAS INTERACTION

###math tx

##MIN es

gen.min.int <- cohens.d(o4mg, o6mg)

###MAX es

gen.max.int <- cohens.d(dissd$m3sc[ which(dissd$grp2 == ’male.m’) ],

dissd$m3sc[ which(dissd$grp2 == ’female.v’) ]) ##this works

gen.max.int <- cohens.d(o2mg, o8mg)

cohens.d(o2mg, o8mg)

#####Biased ES posttest gender

min.ES.post.mg <- gen.min.int - ExpESTx

max.ES.post.mg <- gen.max.int - ExpESTx

## within male differences

cohens.d(o2mg, o4mg)

##within female differences

cohens.d(o6mg, o8mg)

######ES MAINS

ab.es.mn <- cbind(ab.min.mn, ab.max.mn)

gen.es.mn <- cbind(gen.min.mn, gen.max.mn)

mn.es <- rbind(ab.es.mn, gen.es.mn)

xtable(mn.es, caption="ES for Main Effects", label="mpres1")
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######ES INTERACTIONS

ab.es.int <- cbind(ab.min.int, ab.max.int)

gen.es.int <- cbind(gen.min.int, gen.max.int)

int.es <- rbind(ab.es.int, gen.es.int)

xtable(int.es, caption="ES for Interaction Effects", label="mpres2")

######################## Simple Bar Plot

counts <- table(mtcars$gear)

barplot(counts, main="SBI ES Distribution",

xlab="Resampling Percentage", ylab="Effect Size")

###vocab tx

## biased treatment effect

## unbiased treatment effect

################ RESAMPLING AND EFFECT SIZE DISTRIUBTIONS

##resample 10% low in hi group, 20%lo in hi group to 80% etc...

###creating groups for resampling

o1mg.d <- as.data.frame(o1mg)

o2mg.d <- as.data.frame(o2mg)

o3mg.d <- as.data.frame(o3mg)

o4mg.d <- as.data.frame(o4mg)

o5mg.d <- as.data.frame(o5mg)

o6mg.d <- as.data.frame(o6mg)

o7mg.d <- as.data.frame(o7mg)

o8mg.d <- as.data.frame(o8mg)
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# #### MINimum effect size groups

# o3o5mg <- cbind(o3mg.d, o5mg.d)

# o4o6mg <- cbind(o4mg.d, o6mg.d)

# #### MAXimum effect size group

# o1o7mg <- cbind(o1mg.d, o7mg.d)

########## RESAMPLING

## MINimum E.S. GENDER INITIAL DIFFERENCES

o3o5.mg.0 <- cohens.d(my.resample(o3mg.d, o5mg.d,0),o5mg.d)

for (i in 1:999){

o3o5.mg.0 <- c(o3o5.mg.0,cohens.d(my.resample(o3mg.d, o5mg.d,0),o5mg.d))

}

o3o5.mg.10 <- cohens.d(my.resample(o3mg.d, o5mg.d, .10),o5mg.d)

for (i in 1:999){

o3o5.mg.10 <- c(o3o5.mg.10,cohens.d(my.resample(o3mg.d, o5mg.d, .10),o5mg.d))

}

o3o5.mg.20 <- cohens.d(my.resample(o3mg.d, o5mg.d, .20),o5mg.d)

for (i in 1:999){

o3o5.mg.20 <- c(o3o5.mg.20,cohens.d(my.resample(o3mg.d, o5mg.d, .20),o5mg.d))

}

o3o5.mg.30 <- cohens.d(my.resample(o3mg.d, o5mg.d, .30),o5mg.d)

for (i in 1:999){

o3o5.mg.30 <- c(o3o5.mg.30,cohens.d(my.resample(o3mg.d, o5mg.d, .30),o5mg.d))

}

o3o5.mg.40 <- cohens.d(my.resample(o3mg.d, o5mg.d, .40),o5mg.d)

for (i in 1:999){
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o3o5.mg.40 <- c(o3o5.mg.40,cohens.d(my.resample(o3mg.d, o5mg.d, .40),o5mg.d))

}

o3o5.mg.50 <- cohens.d(my.resample(o3mg.d, o5mg.d, .50),o5mg.d)

for (i in 1:999){

o3o5.mg.50 <- c(o3o5.mg.50,cohens.d(my.resample(o3mg.d, o5mg.d, .50),o5mg.d))

}

o3o5.mg.60 <- cohens.d(my.resample(o3mg.d, o5mg.d, .60),o5mg.d)

for (i in 1:999){

o3o5.mg.60 <- c(o3o5.mg.60,cohens.d(my.resample(o3mg.d, o5mg.d, .60),o5mg.d))

}

o3o5.mg.70 <- cohens.d(my.resample(o3mg.d, o5mg.d, .70),o5mg.d)

for (i in 1:999){

o3o5.mg.70 <- c(o3o5.mg.70,cohens.d(my.resample(o3mg.d, o5mg.d, .70),o5mg.d))

}

o3o5.mg.80 <- cohens.d(my.resample(o3mg.d, o5mg.d, .80),o5mg.d)

for (i in 1:999){

o3o5.mg.80 <- c(o3o5.mg.80,cohens.d(my.resample(o3mg.d, o5mg.d, .80),o5mg.d))

}

o3o5.mg.90 <- cohens.d(my.resample(o3mg.d, o5mg.d, .90),o5mg.d)

for (i in 1:999){

o3o5.mg.90 <- c(o3o5.mg.90,cohens.d(my.resample(o3mg.d, o5mg.d, .90),o5mg.d))

}

o3o5.mg.100 <- cohens.d(my.resample(o3mg.d, o5mg.d, 1.0),o5mg.d)

for (i in 1:999){

o3o5.mg.100 <- c(o3o5.mg.100,cohens.d(my.resample(o3mg.d, o5mg.d, 1.0),o5mg.d))

}

o3o5.mg <- c(o3o5.mg.0, o3o5.mg.10, o3o5.mg.20, o3o5.mg.30, o3o5.mg.40,
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o3o5.mg.50, o3o5.mg.60, o3o5.mg.70, o3o5.mg.80, o3o5.mg.90, o3o5.mg.100)

hist(o3o5.mg, main = "Minimum Gender Initial Difference", xlab = "Effect Size")

summary(o3o5.mg)

describe(o3o5.mg)

o3o5.mg.df <- data.frame(o3o5.mg.0, o3o5.mg.10, o3o5.mg.20, o3o5.mg.30, o3o5.mg.40,

o3o5.mg.50, o3o5.mg.60, o3o5.mg.70, o3o5.mg.80, o3o5.mg.90, o3o5.mg.100)

str(o3o5.mg.df)

o3o5.mg.desc <- describe(o3o5.mg.df, skew=FALSE, ranges=FALSE)

xtable(o3o5.mg.desc,

caption="Resampled Minimum Main Effects Descriptive Statistics",

label="o3o5.mg")

## MAXimum E.S. GENDER INITIAL DIFFERENCES

o1o7.mg.0 <- cohens.d(my.resample(o1mg.d, o7mg.d,0),o7mg.d)

for (i in 1:999){

o1o7.mg.0 <- c(o1o7.mg.0,cohens.d(my.resample(o1mg.d, o7mg.d,0),o7mg.d))

}

o1o7.mg.10 <- cohens.d(my.resample(o1mg.d, o7mg.d, .10),o7mg.d)

for (i in 1:999){

o1o7.mg.10 <- c(o1o7.mg.10,cohens.d(my.resample(o1mg.d, o7mg.d, .10),o7mg.d))

}

o1o7.mg.20 <- cohens.d(my.resample(o1mg.d, o7mg.d, .20),o7mg.d)

for (i in 1:999){

o1o7.mg.20 <- c(o1o7.mg.20,cohens.d(my.resample(o1mg.d, o7mg.d, .20),o7mg.d))

}

o1o7.mg.30 <- cohens.d(my.resample(o1mg.d, o7mg.d, .30),o7mg.d)
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for (i in 1:999){

o1o7.mg.30 <- c(o1o7.mg.30,cohens.d(my.resample(o1mg.d, o7mg.d, .30),o7mg.d))

}

o1o7.mg.40 <- cohens.d(my.resample(o1mg.d, o7mg.d, .40),o7mg.d)

for (i in 1:999){

o1o7.mg.40 <- c(o1o7.mg.40,cohens.d(my.resample(o1mg.d, o7mg.d, .40),o7mg.d))

}

o1o7.mg.50 <- cohens.d(my.resample(o1mg.d, o7mg.d, .50),o1mg.d)

for (i in 1:999){

o1o7.mg.50 <- c(o1o7.mg.50,cohens.d(my.resample(o1mg.d, o7mg.d, .50),o7mg.d))

}

o1o7.mg.60 <- cohens.d(my.resample(o1mg.d, o7mg.d, .60),o7mg.d)

for (i in 1:999){

o1o7.mg.60 <- c(o1o7.mg.60,cohens.d(my.resample(o1mg.d, o7mg.d, .60),o7mg.d))

}

o1o7.mg.70 <- cohens.d(my.resample(o1mg.d, o7mg.d, .70),o7mg.d)

for (i in 1:999){

o1o7.mg.70 <- c(o1o7.mg.70,cohens.d(my.resample(o1mg.d, o7mg.d, .70),o7mg.d))

}

o1o7.mg.80 <- cohens.d(my.resample(o1mg.d, o7mg.d, .80),o7mg.d)

for (i in 1:999){

o1o7.mg.80 <- c(o1o7.mg.80,cohens.d(my.resample(o1mg.d, o7mg.d, .80),o7mg.d))

}

o1o7.mg.90 <- cohens.d(my.resample(o1mg.d, o7mg.d, .90),o7mg.d)

for (i in 1:999){

o1o7.mg.90 <- c(o1o7.mg.90,cohens.d(my.resample(o1mg.d, o7mg.d, .90),o7mg.d))

}
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o1o7.mg.100 <- cohens.d(my.resample(o1mg.d, o7mg.d, 1.0),o7mg.d)

for (i in 1:999){

o1o7.mg.100 <- c(o1o7.mg.100,cohens.d(my.resample(o1mg.d, o7mg.d, 1.0),o7mg.d))

}

o1o7.mg <- c(o1o7.mg.0, o1o7.mg.10, o1o7.mg.20, o1o7.mg.30, o1o7.mg.40,

o1o7.mg.50, o1o7.mg.60, o1o7.mg.70, o1o7.mg.80, o1o7.mg.90, o1o7.mg.100)

hist(o1o7.mg, main = "Maximum Gender Initial Difference", xlab = "Effect Size")

summary(o1o7.mg)

describe(o1o7.mg)

o1o7.mg.df <- data.frame(o1o7.mg.0, o1o7.mg.10, o1o7.mg.20, o1o7.mg.30,

o1o7.mg.40, o1o7.mg.50, o1o7.mg.60, o1o7.mg.70, o1o7.mg.80, o1o7.mg.90, o1o7.mg.100)

str(o1o7.mg.df)

o1o7.mg.desc <- describe(o1o7.mg.df, skew=FALSE, ranges=FALSE)

xtable(o1o7.mg.desc,

caption="Resampled Maximum Main Effects Descriptive Statistics",label="o1o7.mg")

####Gender sbi effect COMBINED

gender.id <- c(o3o5.mg ,o1o7.mg)

hist(gender.id, main ="Gender Pretest Effect", xlab = "Effect Size")

lines(-.06, 2500, type="h", col="blue")

lines(.51, 2500, type="h", col="blue")

describe(gender.id)

ks.test(gender.id, "pnorm", mean=mean(gender.id), sd=sd(gender.id))
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## MINimum E.S. GENDER SELECTION BIAS INTERACTIONS

o4o6.mg.0 <- cohens.d(my.resample(o4mg.d, o6mg.d,0),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.0 <- c(o4o6.mg.0,cohens.d(my.resample(o4mg.d, o6mg.d,0),o6mg.d)-ExpESTx)

}

o4o6.mg.10 <- cohens.d(my.resample(o4mg.d, o6mg.d, .10),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.10 <- c(o4o6.mg.10,cohens.d(my.resample(o4mg.d, o6mg.d, .10),o6mg.d)-ExpESTx)

}

o4o6.mg.20 <- cohens.d(my.resample(o4mg.d, o6mg.d, .20),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.20 <- c(o4o6.mg.20,cohens.d(my.resample(o4mg.d, o6mg.d, .20),o6mg.d)-ExpESTx)

}

o4o6.mg.30 <- cohens.d(my.resample(o4mg.d, o6mg.d, .30),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.30 <- c(o4o6.mg.30,cohens.d(my.resample(o4mg.d, o6mg.d, .30),o6mg.d)-ExpESTx)

}

o4o6.mg.40 <- cohens.d(my.resample(o4mg.d, o6mg.d, .40),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.40 <- c(o4o6.mg.40,cohens.d(my.resample(o4mg.d, o6mg.d, .40),o6mg.d)-ExpESTx)

}

o4o6.mg.50 <- cohens.d(my.resample(o4mg.d, o6mg.d, .50),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.50 <- c(o4o6.mg.50,cohens.d(my.resample(o4mg.d, o6mg.d, .50),o6mg.d)-ExpESTx)

}

o4o6.mg.60 <- cohens.d(my.resample(o4mg.d, o6mg.d, .60),o6mg.d)-ExpESTx
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for (i in 1:999){

o4o6.mg.60 <- c(o4o6.mg.60,cohens.d(my.resample(o4mg.d, o6mg.d, .60),o6mg.d)-ExpESTx)

}

o4o6.mg.70 <- cohens.d(my.resample(o4mg.d, o6mg.d, .70),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.70 <- c(o4o6.mg.70,cohens.d(my.resample(o4mg.d, o6mg.d, .70),o6mg.d)-ExpESTx)

}

o4o6.mg.80 <- cohens.d(my.resample(o4mg.d, o6mg.d, .80),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.80 <- c(o4o6.mg.80,cohens.d(my.resample(o4mg.d, o6mg.d, .80),o6mg.d)-ExpESTx)

}

o4o6.mg.90 <- cohens.d(my.resample(o4mg.d, o6mg.d, .90),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.90 <- c(o4o6.mg.90,cohens.d(my.resample(o4mg.d, o6mg.d, .90),o6mg.d)-ExpESTx)

}

o4o6.mg.100 <- cohens.d(my.resample(o4mg.d, o6mg.d, 1.0),o6mg.d)-ExpESTx

for (i in 1:999){

o4o6.mg.100 <- c(o4o6.mg.100,cohens.d(my.resample(o4mg.d, o6mg.d, 1.0),o6mg.d)-ExpESTx)

}

o4o6.mg <- c(o4o6.mg.0, o4o6.mg.10, o4o6.mg.20, o4o6.mg.30, o4o6.mg.40,

o4o6.mg.50, o4o6.mg.60, o4o6.mg.70, o4o6.mg.80, o4o6.mg.90, o4o6.mg.100)

hist(o4o6.mg, main = "Minimum Gender Posttest", xlab = "Effect Size")

summary(o4o6.mg)

describe(o4o6.mg)

o4o6.mg.df <- data.frame(o4o6.mg.0, o4o6.mg.10, o4o6.mg.20, o4o6.mg.30, o4o6.mg.40,

o4o6.mg.50, o4o6.mg.60, o4o6.mg.70, o4o6.mg.80, o4o6.mg.90, o4o6.mg.100)
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str(o4o6.mg.df)

o4o6.mg.desc <- describe(o4o6.mg.df, skew=FALSE, ranges=FALSE)

xtable(o4o6.mg.desc,

caption="Resampled Minimum Selection by Treatment Effects Descriptive Statistics",

label="o4o6.mg")

## MAXimum E.S. GENDER SELECTION BIAS INTERACTIONS

o2o8.mg.0 <- cohens.d(my.resample(o2mg.d, o8mg.d,0),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.0 <- c(o2o8.mg.0,cohens.d(my.resample(o2mg.d, o8mg.d,0),o8mg.d)-ExpESTx)

}

o2o8.mg.10 <- cohens.d(my.resample(o2mg.d, o8mg.d, .10),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.10 <- c(o2o8.mg.10,cohens.d(my.resample(o2mg.d, o8mg.d, .10),o8mg.d)-ExpESTx)

}

o2o8.mg.20 <- cohens.d(my.resample(o2mg.d, o8mg.d, .20),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.20 <- c(o2o8.mg.20,cohens.d(my.resample(o2mg.d, o8mg.d, .20),o8mg.d)-ExpESTx)

}

o2o8.mg.30 <- cohens.d(my.resample(o2mg.d, o8mg.d, .30),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.30 <- c(o2o8.mg.30,cohens.d(my.resample(o2mg.d, o8mg.d, .30),o8mg.d)-ExpESTx)

}

o2o8.mg.40 <- cohens.d(my.resample(o2mg.d, o8mg.d, .40),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.40 <- c(o2o8.mg.40,cohens.d(my.resample(o2mg.d, o8mg.d, .40),o8mg.d)-ExpESTx)

156



}

o2o8.mg.50 <- cohens.d(my.resample(o2mg.d, o8mg.d, .50),o2mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.50 <- c(o2o8.mg.50,cohens.d(my.resample(o2mg.d, o8mg.d, .50),o8mg.d)-ExpESTx)

}

o2o8.mg.60 <- cohens.d(my.resample(o2mg.d, o8mg.d, .60),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.60 <- c(o2o8.mg.60,cohens.d(my.resample(o2mg.d, o8mg.d, .60),o8mg.d)-ExpESTx)

}

o2o8.mg.70 <- cohens.d(my.resample(o2mg.d, o8mg.d, .70),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.70 <- c(o2o8.mg.70,cohens.d(my.resample(o2mg.d, o8mg.d, .70),o8mg.d)-ExpESTx)

}

o2o8.mg.80 <- cohens.d(my.resample(o2mg.d, o8mg.d, .80),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.80 <- c(o2o8.mg.80,cohens.d(my.resample(o2mg.d, o8mg.d, .80),o8mg.d)-ExpESTx)

}

o2o8.mg.90 <- cohens.d(my.resample(o2mg.d, o8mg.d, .90),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.90 <- c(o2o8.mg.90,cohens.d(my.resample(o2mg.d, o8mg.d, .90),o8mg.d)-ExpESTx)

}

o2o8.mg.100 <- cohens.d(my.resample(o2mg.d, o8mg.d, 1.0),o8mg.d)-ExpESTx

for (i in 1:999){

o2o8.mg.100 <- c(o2o8.mg.100,cohens.d(my.resample(o2mg.d, o8mg.d, 1.0),o8mg.d)-ExpESTx)

}

o2o8.mg <- c(o2o8.mg.0, o2o8.mg.10, o2o8.mg.20, o2o8.mg.30, o2o8.mg.40,

157



o2o8.mg.50, o2o8.mg.60, o2o8.mg.70, o2o8.mg.80, o2o8.mg.90, o2o8.mg.100)

hist(o2o8.mg, main = "Maximum Gender Selection Bias Interaction", xlab = "Effect Size")

describe(o2o8.mg)

o2o8.mg.df <- data.frame(o2o8.mg.0, o2o8.mg.10, o2o8.mg.20, o2o8.mg.30, o2o8.mg.40,

o2o8.mg.50, o2o8.mg.60, o2o8.mg.70, o2o8.mg.80, o2o8.mg.90, o2o8.mg.100)

str(o2o8.mg.df)

o2o8.mg.desc <- describe(o2o8.mg.df, skew=FALSE, ranges=FALSE)

xtable(o2o8.mg.desc,

caption="Resampled Maximum Posttest Effects Descriptive Statistics",

label="o2o8.mg")

####Gender Interaction effect (SBI) COMBINED

gender.es.sbi <- c(o4o6.mg, o2o8.mg)

hist(gender.es.sbi, main = "Gender Posttest Effect", xlab = "Effect Size")

lines(min.ES.post.mg, 2000, type="h", col="blue")

lines(max.ES.post.mg, 2000, type="h", col="blue")

describe(gender.es.sbi)

gender.sbi <- rbind(o4o6.mg.df, o2o8.mg.df)

str(gender.sbi)

gender.sbi.desc <- describe(gender.sbi, skew=FALSE, ranges=FALSE)

xtable(gender.sbi.desc,

caption="Resampled Selection by Treatment Effects Descriptive Statistics",

label="gender.sbi")
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ks.test(gender.es.sbi, "pnorm", mean=mean(gender.es.sbi), sd=sd(gender.es.sbi))
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