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ABSTRACT 

UAV-BASED POTHOLE IDENTIFICATION: A PHOTOGRAMMETRIC 
APPROACH 

Jin Kyu Lee, M.S. 

George Mason University, 2019 

Thesis Director: Dr. Sven Fuhrmann 

 

Roads and highways are the backbone of the US transportation system, allowing 

Americans to travel more than two trillion miles annually. But the conditions of the roads 

are deteriorating, as the need for transportation improvements far outpaces the amount of 

state and federal backlogs of road maintenance and repairs. In addition, it is becoming 

more expensive to maintain high-quality driving conditions because many of the 

roadways in the US were constructed in the 1950s and 1960s. Conducting routine 

maintenance and repairs of roads, such as fixing potholes and repaving roads are one of 

the most important task and priority for transportation authorities. In order to do so, road 

condition data is vital in transportation management. Over the last decades, significant 

advancements have been made and new methods and knowledge have been shared for 

efficient collection of road pavement data. This thesis investigates the utilization of small 

unmanned aerial vehicles (UAVs) like a Mavic 2 Pro for surveying and inspecting road 

surface conditions. The objective of this research is to identify potholes from UAV 
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captured images and create GIS datasets containing key information such as dimensions, 

severity level, and location of potholes. This paper will introduce five main methods for 

data collection, UAV image processing, dataset generation, 3D reconstruction, and 

feature detection. To test the feasibility of these methods, pilot studies are conducted in 

two different test sites located in Fairfax County, Virginia. Different flight parameters 

and environmental settings are examined to minimize technical errors and to build an 

optimal workflow that will provide the most accurate results. By using photogrammetry, 

GIS, 3D modeling, and image processing software, this workflow can be utilized by local 

transportation authorities to conduct quick surveys and evaluation of the roads while 

requiring minimal training and funding. 
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction 

Americans rely almost exclusive on motor vehicles for mobility. Americans are 

driving more miles than ever before and the US Department of Transportation Beyond 

Traffic 2045 report issued in 2015 forecasts driving per capita remaining stable and 

overall driving increasing by 23 to 27 percent over the next 30 years, due to a rising 

population and more urban sprawl [1]. The U.S. road network connects Americans from 

across the country and safe, high-functioning roadways support freedom of movement 

and enable access to goods, services, and markets that are essential to the way of life of 

all Americans. Furthermore, roads make a crucial contribution to economic development 

and growth.  

The highway system in the United States contains thousands of kilometers of 

pavements. These highways are typically made up of concrete, asphalt or other composite 

pavements ranging in condition, age and durability. In recent years, many road network 

maintenance programs were established in order to monitor and maintain the 

performance and condition of the road network, to predict future pavement conditions, 

and assess long term requirements and policies [2], [3].  Many programs established by 

the United States Department of Transportation are concerned with pavement data 

collection, performance database storage, pavement data analysis, data dissemination and 
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technology development for the road networks [4]. Pavement condition assessment is one 

of the key components in these programs. Pavement condition assessments requires 

reliable and accurate measurements on pavement surface distresses such as cracks, 

potholes, faulting, rutting, and etc. [5].   

There are many factors that influence the quality and performance of a pavement. 

Traffic, moisture, subgrade, construction quality, and maintenance are the main factors of 

pavement deterioration [6]. Traffic is one of the most important factors influencing 

pavement deterioration, mostly caused by the number of load repetitions by heavy 

vehicles such as tractor trailers. Figure 1 shows an example of load distribution of asphalt 

and concrete pavement. The left graphic illustrates a rigid pavement – made up of 

concrete and the right graphic illustrates a flexible pavement – made up of asphalt. 

 

 
Figure 1. Structure of Concrete and Asphalt Pavement , American Concrete Pavement Association 

 

Moisture can weaken the support strength of natural gravel materials. During the 

process of moisture ingress, sediments and particles beneath the pavement surface are 

lubricated. Therefore, losing the interlock structure, and subsequent particle displacement 
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resulting in pavement failure. Combination of traffic and moisture factors can be seen in 

Figure 2. 

 

 
Figure 2. Different Stages of Pothole Development and Formation 

 

The most common form of surface distress on concrete and asphalt pavements are 

potholes – bowl-shaped depression in the road surfaces. From a structural perspective, the 

development of a pothole starts when the small fragments of the road surface are 

dislodged and knocked out of the pavement layer. This distress will eventually progress 

downward into the lower layers of the pavement, eventually increasing in size. 

Additionally, potholes are caused by the expansion and contraction of ground water after 

the water has entered the cracks in old or weakened pavement. The water will soak up the 

mixture of rock, gravel, and sand and when the water freezes, the pavement expands, 

taking up more space under the pavement. This process causes the pavement to bend, 

break, and eventually erode parts of the pavement and develop potholes after many 

vehicles pass over the road. Potholes’ minimum plan dimension is 150 mm and there are 

three different types of potholes: low-severity pothole (<25 mm deep), moderate-severity 

pothole (25 – 50 mm deep), and high-severity pothole (>50 mm deep) [7].  These three 
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different types of potholes can be seen in Table 1. In addition, potholes are important 

clues indicating structural distress of the road surfaces, and accurately identifying and 

detecting potholes is one of important tasks for determining appropriate maintenance and 

repair plans. 

 

Table 1. Common Pothole Severity Levels 

Pothole Severity Levels 
Low Moderate High 

   
Most likely will not cause damage May cause tire or rim damage Will significantly damage to tires, 

rims, suspensions or axels 

 

Most potholes would not occur if the root cause was repaired before the 

development of the potholes. Potholes are typically repaired by excavating and 

rebuilding, or patching. Timely repairing potholes is critical in ensuring the quality of the 

road, safety, and long-term cost of maintenance. Many research efforts have been made 

for developing a technology that can automatically detect and identify potholes [8]–[10], 

and these efforts contribute to improvement of survey efficiency and pavement quality, as 

well as the safety of drivers. In current practice, pavement image and video data collected 

by digital sensors are reviewed by experienced surveyors to manually detect and assess 

pavement defects. However, current manual detecting and evaluating methods are not 

only time-consuming but also limited by survey operating costs. To overcome these 
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limitations, several research efforts towards automating pavement distress detection have 

been undertaken. Existing research in pothole detection can be divided into three 

methods: vibration-based [11]–[13] , 3D reconstruction-based [14]–[16], 2D vision-based 

[7], [9], [15]–[18]. 

Although these newer methods are advantageous over manual detection and 

evaluation methods, the new methods require more sophisticated equipment. As a result, 

these new pothole detection methods have proven to be computational heavy and 

expensive. This research will present a simpler and cost-efficient approach for automated 

pothole detection based on unmanned aerial vehicle (UAV) captured road surface images. 

These images are collected using a low-cost, consumer-grade drone, Mavic 2 Pro, and 

captured with mounted RGB color sensors. An example of these images is shown in 

Figure 3. 
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Figure 3. UAV Captured Image 

 

One primary reason for using UAVs to collect road pavement data is that the 

operating cost of UAVs is cheaper than using experienced survey teams for manual 

collection. In addition, UAVs capture larger area than traditional vehicle sensors, and 

have higher spatial resolution than satellite images. Depending on the type and 

configuration of UAV, the acquisition cost might vary, however in the long-run having 

remotely sensed road pavement data is more cost-effective, time-efficient and safe as 

well. 

1.2 Thesis Objectives 

The aim of this project is to research the applications of UAVs in collecting road 

surface condition data and to investigate how high-resolution UAV images can be 

utilized to improve and simplify current existing methods for evaluating and detecting 

potholes on pavements at a reasonable accuracy. Manual identification of potholes can be 
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done with UAV images. This can be seen in Figure 4. However, the goal of this research 

is to develop an automated detection system that can be implemented in different areas 

and at a larger scale. 

 

 
Figure 4. Manually Identified Pothole 

 

In addition, the subobjective of this research is to examines different settings for 

flight operations such as altitude, sensor angle, and time to improve quality of the aerial 

image data. Different flight operations would yield different results in the later processing 

steps; therefore, it is critical to determine the optimal flight environment. 

Essentially, the aim of this thesis is to investigate the feasibility of detecting 

potholes and the measurement accuracy of the potholes. Because 2D image processing 

technique would have difficulties finding the z-dimension (height) measurement of the 
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pothole, 3D reconstruction modeling techniques will be used in the research. The central 

objective and contribution of this study is to examine the feasibility of the proposed 

methodology and offer a simple tool for detecting and identifying potholes on road 

pavement and improve the efficiency of road maintenance practices. 

Experiment results will demonstrate that the system will be reliable and practical 

for road pavement surveying and distress/anomaly detection that provides accurate results 

that can be used to improve pavement management systems and in the decision-making 

process. 

1.3 Thesis Organization 

This paper is organized as follows. After this introduction section, Chapter 2 will 

introduce a general overview of pavement condition assessment system and a review of 

different pothole detection systems and sensors. Chapter 3 will introduce a proposed 

method and a pilot study which will include an overview and the workflow of the small 

experiment. Next, collected information from pilot study experiments will be used to 

refine data collection and processing steps. Finally, a 3D-based detection methodology 

will be proposed. Chapter 4 will provide a sample result from the initial pilot study with a 

detailed quality summary. Chapter 4 will also include a report on key findings as well as 

limitations of first proposed approach. 
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CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW 

The first section of this chapter will include background information on different 

pavement composition and structure, different types of distresses, and process of 

pavement condition assessment. Next section will briefly explain existing methods for 

pavement distress detection. Last section of this chapter will include some information on 

UAVs and related fields such as remote sensing and photogrammetry. 

2.1 Pavement Condition Assessment 

There are three components for the process of pavement condition assessment: 

data collection, distress identification and defect assessment [4]. In current practice, these 

processes are to a large extent manually conducted. The first process typically uses digital 

inspection vehicles to collect pavement data, using several sensors such as optical sensors 

for surface imaging, laser sensors for measuring depth and height, accelerometers for 

roughness measurements, and laser scanners for longitudinal and transverse scanning [9]. 

Pavement distresses are defects visible on the pavement surface and they are signs 

of deterioration such as cracks and potholes [5], [21]. Traditionally, the optical sensor 

captured data such as video and image data are evaluated by technical experts who 

manually detect and visually assess pavement defects on their computer screens. Their 

judgement is based on their knowledge and experiences. In addition, a standard distress 

manual is used to define different levels of severity, required action and extent for each 
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categories of distress [2], [7]. Typically, manual pavement inspections are conducted 

without any digital sensors using a van or minivan at a speed of 8 to 15 mph in addition 

to using data collection software [22]. Many of the transportation agencies use 

commercial data collection software and these do not support the automated detection of 

distresses like potholes and patching. An example of Pavement Condition Assessment 

software by ARRB Group Inc. is shown in Figure 5. 

 

 
Figure 5. Pavement Condition Assessment Platform 

 

The overall goal of pavement condition assessment is to collect pavement data, 

identify pavement distresses and assess the health of pavement layer. One of the most 

common pavement distress is a pothole. Potholes are bowl-shaped depressions of various 

sizes in the pavement surface [7], [22]. Their visual characteristics can also be defined as 

almost circular and elliptical shaped regions in the pavement surface. Additionally, 

potholes are partially surrounded by a dark shadow due to depression and depth and have 

granular and course textural appearance due to deterioration and fragmentation in the 



11 
 

pavement surface. Based on these visual characteristics, manually identifying and 

assessing the potholes using image and video data is tedious and time-consuming for 

transportation agencies; This is the main reason why many transportation agencies only 

conduct pavement condition assessment annually [2].  

These limitations raise a need for automation and improvement of pavement 

condition assessment processes. Therefore, this research will explore existing pavement 

condition assessment methods and develop a new pavement distress detection system 

which can automate the process of pavement surface data collection, pothole detection, 

identification and classification, and create accurate locational/positional information on 

the potholes using geographic information systems. 

2.2 Existing Pothole Detection Methods 

Vibration-based 

Vibration-based approaches use accelerometers and mobile phone sensors to 

detect potholes [11]–[13], [23]. Yu and Yu proposed a vibration-based approach using 

accelerometer to evaluate pavement conditions [11]. This vibration-based system “feels” 

the surface condition based on mechanical response of the testing vehicle, shown in 

Figure 6. 
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Figure 6. Vibration-based System Schematics 

 

In addition, the recorded interactions of the surface and vehicle can estimate or 

“detect” the distresses of pavement including cracks and surface rutting, based on impact 

forces on the driving vehicle. Using this testing system and data was collected to validate 

the measurement and recorded signals enable the estimation of road condition. Graphical 

example of vertical acceleration records indicating vibration is shown in Figure 7. The 

acceleration records indicate (a) small vibration: idle of the engine; (b) medium vibration: 

good road condition; (c) high vibration: poor road condition 
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Figure 7. Acceleration Records 

 

Unlike other following methods, a vibration-based system has the advantage of 

small storage requirement, cost-effective and amenable for automatic real-time data 

processing [11]. It is important to note that limitation of this method is that it does not 

provide the complete visual details of distress characteristics as by image and video-

based system. Image and video-based systems however require large storage space and 

extensive computation power for image processing.  

2D Vision-based 

 2D vision-based approach is based on image or video data. The image approaches 

are mainly focused on pothole detection using image processing techniques, such as 
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image segmentation, shape extraction, identification and extraction, and etc. [8], [19], 

[24]–[27].  Most common steps of 2D vision-based methods are divided into three steps: 

1) image segmentation – shape and texture extraction 2) candidate region extraction, and 

3) decision – pothole detection (Figure 8). 

 

 
Figure 8. 2D-based Detection Method Workflow 

 

Akagic et al. developed an efficient unsupervised 2D vision-based method for 

pothole detection without the process of training and filtering. The method starts with 

extracting asphalt pavements by analyzing RGB color space and using image 

segmentation. This determines the road pavement – region of interest, the area on which 

potholes can be found. Once the asphalt in the region of interest is accurately detected, 

the asphalt pavement images are used with Otsu thresholding and spectral clustering for 

eliminating all linear and image boundary shape and resulting in the detection of 

nonlinear shapes, i.e. pothole. The advantages of 2D-vision based approach are detection 
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and evaluation of pavement distress is less expensive and time-consuming than manual 

detection and evaluation methods. In addition, two-dimensional images can accurately 

detect a pothole, while manual detection is prone to human error. 2D-vision based 

methods are limited to a single frame. Other 2D-vision based method such as video-based 

approach can overcome the single frame limitations. Video-based approaches are used to 

not only identify and recognize potholes but also calculate the total number of potholes 

over a sequence of frames and video clips [28], [29].  

3D Reconstruction-based 

Typical 3D reconstruction-based detection methods rely on 3D point clouds, 

provided by laser scanners or by stereo-vision algorithms using a pair of digital sensors 

[15], [30], [31]. In addition, 3D reconstruction methods can be further classified into 3D 

laser scanning methods [14], [32], [33] and visualization using hybrid systems such as 

Microsoft Kinect sensors that uses digital cameras to capture consecutive images of lines 

projected by infrared lasers [34], [35]. Zhang et al. developed an automatic pavement 

defect detection system using 3D laser scanners installed on a vehicle. The 3D pavement 

data collection and measurement system can be shown in Figure 9.  

Above automatic method used 3D laser scanning pavement data and detected 

pavement cracks and pavement deformation defect information. Experimental tests were 

conducted using a sparse processing algorithm, which was designed to obtain 3D 

pavement profiles and extract crack candidate and deformation points. The results 

showed that 3D laser profile detection method can effectively detect most cracks under 

different environment and surface conditions. The accuracy of detection was above 98%. 
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Furthermore, the method was also able to accurately detect different categories of 

deformation defects such as potholes, shoving, and rutting. Below figure illustrates 3D 

installed collection sensor (right) and measurement system (left) [14] 

 

 
Figure 9. 3D-based Collection Measurement System 

 

2.3 Unmanned Aerial Vehicle Systems 

This section discusses the definition and background of the UAVs in this 

research, the evolution and state-of-the-art of the use of UAVs in the field of remote 

sensing and photogrammetry from different communities. In addition, this section 

provides information on the utilization of UAVs in remote sensing methods and other 

related techniques such as photogrammetry for geographical data processing and 

analysis. Most of the UAVs used as remote sensing and photogrammetric platforms are 

equipped with highly accurate hardware such as a global navigation satellite system 

(GNSS) such as GPS for tracking flown paths and recording x, y, z data during image 

captures, an electronic compass, barometric pressure sensors for altitude and an inertial 

measurement unit (IMU) to estimate the UAV orientation within 1-2 meters in position 
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and 1-2° orientation accuracy [36]. The applications of UAVs have grown considerably 

over the last decade with rising number of researches in UAV-based remote sensing and 

photogrammetry.  

UAV Overview 

 In this research unmanned aerial vehicle systems will be referred as UAV(s) and 

drones since “UAV” and “drones” are the most popular terms in both literature and in 

practice. The earliest recorded use of a UAV dates back to 1849 when the Austrians 

attacked the Italian city of Venice using unmanned balloons that were loaded with 

explosives [37], [38]. Although this balloon “UAV” is not considered as a UAV 

nowadays, its aerial technology and unmanned nature is similar to the currently existing 

UAVs. 

 Recently, the use of UAVs has become mainstream in many applications/fields 

and easily accessible to everyone. As a result, the safety concern appeared and 

regulations were put in place to limit the flight operations of UAVs by civilians, mostly. 

Many civil aviation authorities from many countries implemented rules and regulations to 

reduce the number of accidents at both air and ground space level. Most of these 

authorities provide certification exams to help improve technical and situational skills of 

UAV operators. Common rules of UAV use, around the world, are as follows: 

• Restricted to flights within line-of-sight (LOS) of an operator and an observer(s). 

• UAVs cannot be flown in restricted airspaces, such as airports and military 

airspace. 

• UAVs cannot be flown above certain altitude (different for every country). 
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In addition, a few common UAV categories/classification are described in Table 

below. Table 2 includes the main characteristics of small and micro UAVs and different 

specifications for each UAV category/class [39]. Below are the examples of commonly 

used UAS for remote sensing.  

 

Table 2. Common UAS for Remote Sensing 

 
 

Above UAVs are commonly used for different remote sensing applications. 

Furthermore, some common drone models available for average consumers are listed and 

shown in Figure 10 below: 

a) 3DR Solo 

b) Parrot ANAFI 

c) DJI Phantom and Mavic 

d) Microdrones MD4-200 

e) Sensefly eBee X 
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Figure 10. Consumer-grade UAVs: Left to Right (a) – (e) 

 

Lastly, the main components of UAVs include: body (form factor), power supply 

(batteries), system hardware (flight controller), sensors (payload), actuators (motors and 

propellers) and flight stack (firmware, middleware, operating system and software). 

UAV Remote Sensing 

 The emergence of UAV remote sensing has proved a cost-effective and efficient 

alternative to traditional remote sensing techniques and this technology has been 
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researched, and applied successfully in many different applications such as land 

surveying and mining, ecological and environmental [40], infrastructure inspection, 

forestry and agriculture [41], archaeology and cultural heritage, traffic monitoring, and 

3D reconstruction modeling [42]. UAV-based remote sensing has become a powerful tool 

that can be used remotely sense relatively small spatial extent. In addition, UAV-based 

remote sensing has the capability to provide data at high temporal and spatial resolution. 

These remote sensing platforms and equipment play a key role in how data is collected. 

For example, based on this research theme, the most commonly used platforms for 

pavement data collection are land-based surveying vehicles. However, the limitations of 

land-based surveying vehicles have small coverage and can only capture a small portion 

of the scene at a time. In order to capture larger pavement roads, UAVs can be and has 

been introduced in this field. Although many transportation agencies still use land-based 

vehicles, flexible UAV platforms are being developed more in the pavement management 

field. Furthermore, UAVs can have different sensor configurations and mount different 

types of sensors such as LiDAR, multispectral, RADAR, optical, and others to collect 

many forms of remote sensing data. 

 

  

UAV Photogrammetry 

Traditional method of pothole detection uses digital images and videos with 

single band or RGB data to automatically detect pavement damages. In addition, image 

processing and machine learning methods are most commonly used and are often 
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combined to extract features of pavement defects [43], [44]. Although these methods are 

commonly used to process aerial image data, other remote sensing related technique can 

be used to improve the analysis of UAV image data. Since UAV image data offers high 

spatial resolution, photogrammetric methods can be used to reconstruct the scene of the 

UAV image data in 3D and acquire more accurate data, which is represented in points in 

this method. Typically, photogrammetric data processing generates geo-referenced 3D 

point clouds from unsorted, overlapping, and aerial image of the ground surface. There 

are different algorithms such as Structure from Motion (SfM) and Scale Invariant Feature 

Transform (SIFT). 

Uses of UAV photogrammetry method for surveying and collecting point cloud 

data can be seen in many past researches. Typically, UAV-based photogrammetry uses a 

LiDAR sensor, mounted on an UAV, to map the overflown environment in point clouds. 

One research was using UAV for mapping and textural analysis of agricultural fields. The 

LiDAR point clouds were collected and recorded, mapped, and analyzed using the Robot 

Operating System (ROS) and the Point Cloud Library (PCL) [45]. This thesis research 

will also similar methods and equipment for road surveying application and measure 

height estimates of the identified potholes.  In this aspect, the use of UAV-based 

photogrammetry with the support of remote sensing and computer technologies is clear 

and beneficial to survey efforts and could also be applied to road surveying application as 

well.  

Past researches show that many forms of remotely sensed data and 3D point cloud 

generation algorithms have been developed in many different fields [46]–[52]. In this 
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aspect, Light detection and ranging (LiDAR) sensors are used to acquire the elevation 

data of the pavements to measure the differences in height to identify deteriorated 

surfaces such as potholes. In addition, other sensors such as radar can be used to detect 

voids, cracks and material properties by penetrating the ground of the pavements [53]. 
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CHAPTER THREE: DATA AND METHOD 

This chapter elaborates the equipment, data, method, and process for each step of 

the thesis workflow. Each section of this chapter systematically details every action 

performed during the pilot study and experiments. The main method employed in this 

study to develop and evaluate the feasibility of the three research objectives: identifying 

potholes, generating pothole data, and evaluating the flight settings for UAV road 

surveying. This main method is divided into four major steps. The chapter is organized as 

follows: Section 3.1 Overview presents a general overview of the equipment, tools and 

software, field experiments, and workflow steps; Section 3.2 Equipment and Tools details 

the equipment, software, and other tools used to conduct pilot study and process 

experiment data; Section 3.3 Pilot Study specifies the procedures used for UAV survey 

flight operations; Section 3.4 Data Processing explains different steps of preprocessing 

and cleaning up the data that will be used in the following sections. The last three 

sections: 3.5 GIS Development, 3.6 3D Reconstruction, and 3.7 Image Processing 

Detection details the input and output data, and workflow procedures to accomplish each 

objectives.  

3.1 Overview 

The methods employed in this study to develop and evaluate the feasibility of the 

three objectives were constructed and refined through iterative processes and pilot 
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studies. The accessibility of consumer-level UAVs such as DJI Mavic 2 and Phantom 4 

are advantageous to nearly all other industry- and commercial-level UAVs due to their 

const. Mavic 2 costs $1,499 USD and have the capability to operate up to 31-minute 

flight time, 11-mile (18 km) flight distance with no wind and at a consistent 15.5 mph (25 

km/h) speed in regular flight mode. Detailed technical specifications such as aircraft 

diagram, flight modes, transmission links, and sensor camera information of Mavic 2 are 

listed in Section 3.2 Equipment and Tools.  

For processing the surveyed UAV images, commercial- and professional-level 

software such as Pix4D’s Pix4Dmapper, ESRI’s ArcGIS 10.6.1, and Autodesk’s Civil 3D 

were used. Alternatively, a few opensource software such as CloudCompare, Point Cloud 

Library (PCL), MeshLab, QGIS, and VisualSFM were also evaluated to compare the 

output and result quality, user-friendliness and usability as well.  

Pilot study and research experiments were conducted in four different locations. 

These locations were all located in Fairfax County, Virginia. The locations were 

determined as optimal spots or roads for surveying due to the relatively low traffic flow 

and tall obstacles which made it easier to survey the road and potholes, measure ground 

truth data, and operate UAV for aerial image collection.  

After the pilot study and field work, captured aerial images needed to be 

processed, cleaned, and exported in different file format types. First Pix4Dmapper, a 

photogrammetry software was used to process the images from different survey sites into 

new data types such as .geotiff raster, .las point cloud, and .fbx texture mesh data. Raster 

data were used then used as inputs in ArcMap for creating GIS datasets of potholes with 
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attributes containing critical information about each pothole. Point cloud data were used 

to construct 3D models of the potholes and to obtain height/depth information of the 

pothole. Clipped images of the roads were then used as inputs in MATLAB to test an 

image processing method called Marker-Controlled Watershed Segmentation to separate 

potential pothole objects from other objects in the images. 

3.2 Equipment and Tools 

The equipment, software and tools used for the data capture, photogrammetry 

processing, GIS development, and 3D modeling portion of the thesis encompass three 

items: UAV – DJI Mavic 2 Pro, Pix4D – Pix4Dmapper, Autodesk – Civil 3D, 

MathWorks – MATLAB, and a personal workstation. The main aerial vehicle used in this 

research: Mavic 2 Pro is illustrated in Figure 11 diagram. 

 

 
Figure 11. Mavic 2 Pro Aircraft Diagram 

 

1) Forward Vision System: one of the Vision Systems that provided 

omnidirectional obstacle sensing and create a real-time map of its flight route as it flies 

which can be used for Failsafe Return to Home function, 2) Propellers: used four low-

noise propellers 3) Motors: attached and removed propellers, 4) Front LEDs: used for 
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safety, showing the orientation of the aircraft, 5) Antennas: transmitted signal between 

the aircraft and the remote controller, 6) Gimbal and Camera: used Hasselblad L1D-20c 

camera. More detailed specifications can be seen in Table 3. The decision of using Mavic 

2 Pro was made based on its high maneuverability characteristic and omnidirectional 

obstacle avoidance ability. These factors made Mavic 2 Pro more versatile and reliable 

than other drones which are typically bigger than Mavic 2 Pro in size. 

 

Table 3. Detailed Mavic 2 Pro Specifications 
Aircraft Specifications 

Dimensions Folded: 
214×91×84 mm (length×width×height) 
Unfolded: 
322×242×84 mm (length×width×height) 

Max Speed (no wind) 72 kph (Sport-mode) 
Max Flight Time (no wind) 31 minutes (at a consistent 25 kph) 
Max Flight Distance (no wind) 18 km (at a consistent 50 kph) 
Max Wind Speed Resistance 29–38 kph 
Operating Temperature Range -10°C to 40°C 
Operating Frequency 2.400 - 2.483 GHz 

5.725 - 5.850 GHz 
Takeoff Weight 907 g 
Internal Storage 8 GB 
External Storage Micro SD™  

Supporting Micro SD with capacity up to 128 GB and R/W speed 
up to UHS-I Speed Grade 3 

Global Navigation Satellite System GPS+GLONASS 
Obstacle Sensing Systems 

Forward Vision System Precision Measurement Range: 0.5 - 20 m 
Detectable Range: 20 - 40 m 
Effective Sensing Speed: ≤ 14m/s 
FOV: Horizontal: 40°, Vertical: 70° 

Backward Vision System Precision Measurement Range: 0.5 - 16 m 
Detectable Range: 16 - 32 m 
Effective Sensing Speed: ≤ 12m/s 
FOV: Horizontal: 60°, Vertical: 77° 

Upward Vision System Precision Measurement Range: 0.1 - 8 m 
Downward Vision System Precision Measurement Range: 0.5 - 11 m 

Detectable Range: 11 - 22 m 
Side(s) Vision System Precision Measurement Range: 0.5 - 10 m 

Effective Sensing Speed: ≤ 8m/s 
FOV: Horizontal: 80°, Vertical: 65° 
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Camera 
Sensor 1” CMOS 

Effective Pixels: 20 million 
Lens FOV: about 77° 

35 mm Format Equivalent: 28 mm 
Aperture: f/2.8–f/11 
Shooting Range: 1 m to ∞ 

ISO range Video: 
100-6400 
Photo:  
100-3200 (auto) 
100-12800 (manual) 

Shutter Speed Electronic Shutter: 8–1/8000s 
Image Resolution 5472×3648 
Video Resolution 4K: 3840×2160 24/25/30p 

2.7K: 2688x1512 24/25/30/48/50/60p 
FHD: 1920×1080 24/25/30/48/50/60/120p 

 

During the initial stages of this research and experiments, many software and 

tools were tested to see which ones would be most suitable for photogrammetry 

processing (point cloud, raster, orthomosaic generation), GIS development (spatial 

dataset generation), 3D modeling (textured mesh generation), and image processing 

(pothole detection) steps. The first step of this research was to process the collected drone 

images. In order to so, the best photogrammetry software needed to be used. Out of many 

other photogrammetry tools and software, Pix4D was picked. Pix4D is one of the most 

widely known company in the photogrammetry, industry-grade level survey, and 3D 

mapping field. In addition, Pix4D’s solution can be used on desktop, cloud, and mobile 

platforms, making it easier for consumers to access mission planning, data processing and 

sharing tools in online and offline environments. Pix4Dmapper software used 

photogrammetry and computer vision algorithms to transform RGB, thermal infrared 

(TIR), multispectral (MSS) band images [54]. In addition, Pix4Dcapture, a phone 
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application, can be used to plan flight missions for drone surveying and it is a free 

application that can be used with nearly all DJI drones and Parrot drones. Pix4Dmapper 

software and Pix4Dcapture application’s main screen can be seen in Figure 12 

 

 
Figure 12. Pix4Dmapper and Pix4capture Screen 
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For the GIS development stage, ESRI’s ArcMap 10.6.1 was used to process the 

orthomosaic image. ArcMap’s alternative QGIS could be used for the GIS development 

as well. However, due to the wide-usage of ArcMap by local government authorities, 

ArcMap was chosen as the main GIS software that will be used in this research. 

Orthomosaic image loaded in ArcMap along with Fairfax County GIS data can be seen in 

Figure 13.  

 

 
Figure 13. ArcMap 10.6.1 with Main Data 

 

Next, to construct 3D models using point cloud data and to create TIN surface 

models to measure the elevation of the potholes, CloudCompare v2.11 alpha, Autodesk’s 

ReCap Pro and Autocad Civil 3D was used. CloudCompare is a 3D point cloud and 

triangular mesh editing and processing software. CloudCompare’s graphical user 
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interface is depicted in Figure 14. The main entities in CloudCompare are divided into 

three different groups: Point Cloud, Mesh, and Polyline. Point Cloud group is typically a 

set of 3D points (x, y, z) and can be associated with RGB colors. Mesh group is a set of 

triangles, which are represented by triplets of integer indexes. These integer indexes are 

relative to an associated cloud, or the mesh vertices, meaning a mesh inherits of all the 

features associated to a point cloud. In CloudCompare, a polyline is a set of points 

connected by contiguous segments and internally, a polyline is a set of indexes. These 

indexes, similar to the mesh indexes, are associated with a point cloud. These indexes or 

vertices are also stored as a point cloud, and they are generally a child of the mesh object 

in the database tree. Polylines are recognized as 3D objects, but they can also be 2D 

entities as well. 

 

 
Figure 14. CloudCompare Graphical User Interface 
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For the other 3D reconstruction steps such as 3D point cloud conversion process 

and TIN surface model creation process, Autodesk ReCap Pro and Civil 3D was used. 

ReCap Pro was used to convert noise filtered and segmented point cloud data (.las 

format) from CloudCompare to Autodesk Civil 3D readable point cloud data (.rcs 

format). More details on the usage of ReCap Pro and Civil 3D can be found in 3.6 3D 

Reconstruction section. For the image processing step, MATLAB was used to test 

existing feature detection algorithms such as edge detection and segmentation method to 

test the feasibility of image processing methods in detecting potholes from aerial images. 

The workstation used in this research project is a custom-built desktop, which 

contains an Intel Core i7 7700K CPU @ 4.8 GHz, 32 GB DDR4-2132 RAM, NVIDIA 

GeForce GTX 1080 Ti GPU, 1 TB SSD, and Windows 10 Pro Operating System. 

3.3 Pilot Study 

To test the feasibility of the proposed method, pilot studies were conducted in two 

different locations. The locations of test sites were Colony View Drive and Tapestry 

Drive in Fairfax, Virginia (depicted in Figure 15). 

 



32 
 

  
Figure 15. Pilot Study Test Sites 

 

The objective of the pilot study was to test different settings for flight operation, 

such as altitude, sensor angle, operation time, image overlap percentage, and flight path. 

Test studies were performed in a near-optimal, accessible, safe environment. Although 

the test sites were all located on local roads, this research should be applicable to all 

classes of roads. An overview of the pilot study process is depicted in Figure 16. This 

workflow illustrates the collection of ground truth data and flight planning process. 
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Figure 16. Pilot Study Process 

 

One of the most important tasks in surveying using drones was flight planning 

and logging, and refining flight settings. During the pilot study process, UAV surveying 

on the test site roads required certain flight settings and environmental conditions to be 

met. Before starting the survey mission, the drone’s flight setting such as altitude, 

overlap, camera angle, and capture speed needed to be optimal for each test site. 

Naturally, the three pilot study sites had different environmental factors, obstacles, land 

characteristics; therefore, it was critical to change the flight settings at each location. 

Before aerial surveying took place, the height of the surrounding obstacles such as tall 

trees, light poles, and utility poles needed to be examined. By evaluating nearby obstacles 

and height information, the optimal altitude for flying on pilot study sites was 

determined. This allowed safer in-flight operations and reduced the risk of crashing the 

drone. Capture speed was set to medium by default because there were many other 

overlapping images that would compensate for the slightly blurred aerial images. Capture 
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speed factor was not much of a significant factor in flight planning because the only 

major impact it had on the flight operation was either increased flight time or reduced 

flight time. Next, two image-overlap settings were adjusted. The front overlap which sets 

the frontal overlap between consecutive images along a flight line was set to 80%. The 

side overlap which sets the side overlap between images from adjacent flight lines was 

set to 80% as well. The reason behind selecting 80% overlap was 60-70% of image 

overlaps produced significantly lesser quality point cloud data during photogrammetric 

processing step than 80%. In addition, going over 80% was not necessary because setting 

80-90% image-overlap increased the time of photogrammetric processing and computing 

time. The results of 80-90% image-overlap aerial images did not necessarily improve the 

quality of the output point cloud data because the consecutively captured images were 

almost identical with each other. The initial photogrammetric image calibration and 

keypoint matching process took longer and the quality did not improve significantly due 

to the images being too identical, which goes against the theory and mathematical 

concept of photogrammetry, where you have two different side images with some 

overlapping parts in the two images. As mentioned earlier, the percentage of image-

overlap settings also affected the total time of the flight operation. Flight operation time 

was longer when the image-overlap percentage was higher, and flight time was shorter 

when the image-overlap percentage was lower. These two factors were inversely related. 

Flight time was also affected by route designs, based on different patterns such as grid, 

double grid, waypoints, and orientation of the flight path. 
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Different route design patterns and paths were tested during the pilot studies. 

Route designing was also an important factor to flight planning because the path and 

patterns determined how long the aerial survey was going to take, and at what angle the 

camera needed to be set up. First, route design patterns affected the decision making of 

camera angle values. For example, when the flight path was a straight-path pattern and 

parallel to the road, the camera angle was set to 35°-45°. This technique helped acquiring 

higher resolution point cloud data, making potholes more distinguishable due to the 

shadow of the slope and elevation difference between regular road and potholes. When 

the flight path was a grid-path pattern, the camera direction was mostly perpendicular to 

the road and took images from the side of the roads. Grid-path pattern also collected 

similar images to the straight-path pattern. 

This comparative experiment showed that the quality of output data such as point 

cloud data is ultimately dependent on the number of captured images. Grid-path pattern 

flight captured more images and thus provided higher spatial resolution. Higher spatial 

resolution data was directly related to having higher point density (points per unit area) 

output, and by having higher quality point cloud dataset, grid-path pattern flights 

produced higher quality 3D textured mesh during the 3D reconstruction step as well. 

Overall, it was difficult to distinguish whether a straight-path pattern or a grid-path 

pattern provided higher quality images since the main differences between the two was 

the number of images captured and the number of point clouds. Although the latter 

pattern provided higher resolution and more point cloud data, the flight time increased as 

well. Flight time had to be considered and therefore choosing the right or “optimal” 
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pattern was one of the most difficult tasks while conducting pilot studies. Pilot studies at 

two different locations were conducted and these experiments concluded that flight 

planning settings and route designs always changed and were different because of 

surrounding environmental conditions and factors. 

Next important task in the pilot study was to collect ground truth data 

measurement of potholes. This ground truth data included length, width, and height 

information. This information was measured and recorded using laser distance measurer 

along with measuring tape and rulers. Although these tools were not industrial-grade 

measurement tools, combining the three tools and taking the average value of each 

length, width, and height size provided more accurate and consistent ground truth 

measurement data. An example of ground truth measurement can be seen in Figure 17. 

 

  
Figure 17. Example of Ground Truth Measurement Tools 

 

Once the potholes were sampled and recorded, potholes were annotated in QGIS 

to create basic map layers with pothole sample labels. The map layers with sample labels 
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were then exported as just an image, which was used as reference maps of pothole 

locations (Figure 18). These reference maps with pothole ground truth data were tested 

against the accuracy of the final processed data such as orthomosaic image, point cloud. 

 

 
Figure 18. Pothole Samples with Ground Truth Data 
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3.4 Data Processing 

Once aerial images were captured and transferred to the main workstation, the 

images were compiled. First, drone captured images were uploaded to Pix4Dmapper 

photogrammetry software. Pix4Dmapper automatically detected the datum and 

coordinate system, geolocation and orientation of the images based on the captured 

images’ EXIF data which was comprised of a range of settings such as ISO speed, shutter 

speed, camera model, image captured time, date and time, lens type, and GPS 

coordinates. The setting factors and parameters for this data preprocessing step are 

divided into three sections: 1) Keypoints Image Settings: Scaling → Matching → 

Calibration, 2) Point Cloud and Mesh Settings: Point Cloud Densification → 3D Texture 

Mesh Generation, 3) DSM/DTM and Orthomosaic Settings: Raster DTM, Raster DSM 

Filter and Generation, Orthomosaic Generation → Output File Format Selection. The 

processing options can be seen in Figure 19. 

 

 
Figure 19. Pix4D Processing Options 
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Keypoints Image Scaling is the first processing option which allows the user to 

define the image size used to extract keypoints. For Keypoint Image Scaling there are 

three options: Full, Rapid, Custom. Full Scaling option set full Image Scale for more 

precise results and Rapid Scaling option set a lower Image Scale for less precise results 

and for faster results. Custom Scaling options includes double, half, quarter, eighth image 

scaling options and these options could be picked based on the users’ needs. Next, 

Matching Image Pairs options can be used to select which pairs of images are matched. 

These options allow the users to optimize the image pairing process based on how the 

aerial images were captured. Based on how aerial images were captured, Aerial Grid or 

Corridor flight option and Free flight or Terrestrial options can be selected. Lastly, Image 

Calibration settings can be selected to set the number of keypoints extracted, how the 

camera internal and external parameters are optimized (using the Automatic Aerial 

Triangulation, Bundle Block Adjustment processes), to rematch image pairs for 

improving the quality of the reconstruction. 

Point Cloud and Mesh Settings allow the users to change the scale of images that 

will be used to compute point cloud densification and additional 3D points. Point Cloud 

Classification settings can be selected to enable the generation of point cloud 

classification which generates Point Groups that are assigned with different classes such 

as Ground, Road Surface, High Vegetation, Building, and Human Made Object. Lastly, 

densified point cloud data can be exported in different output formats (.las, .laz, .ply, and  

.xyz) based on the user’s selection. In the Mesh Settings, users can change the resolution 

and output quality of 3D textured mesh by selecting different resolution level parameters 
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(High, Medium, Low, Custom). 3D textured mesh can be exported as .ply, .fbx, .dxf, .obj, 

and u3d formats.  

DSM/DTM and Orthomosaic Settings allow the users to set the spatial resolution 

of DSM and Orthomosaic files using automatic or custom ground sampling distance 

(GSD) value. In addition, DSM Filter options can be used to define parameters for noise 

filtering and surface smoothing the points of the point cloud data which are used to obtain 

the DSM. Raster DSM options can be used to set the method for the raster DSM 

generation. Inverse distance weighting algorithm (interpolate between points) and 

triangulation algorithm (Delauney triangulation) methods are available to users for 

selection. Former method is more suitable for buildings and latter method is more 

suitable for flat areas such as agriculture fields. Lastly, Orthomosaic Settings can be used 

to customize the output file format for the orthomosaic generation. Orthomosaic setting is 

set to save the orthomosaic image as a geotiff file by default. 

Initially, Pix4D processing options were set to default and processed to generate 

digital surface model, digital terrain model, orthomosaic, point cloud, and 3D textured 

mesh. After the first data processing step, different processing option settings were 

selected. The second output data were compared with previous initial output data to 

examine the differences in quality of the data. data was preprocessed to reduce the overall 

processing time during photogrammetry processing and image processing steps. The 

main reason for preprocessing the data was to reduce noise and unnecessary objects in the 

images.  
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3.5 GIS Development 

First, an orthomosaic raster image of the test site was imported into ArcMap. The 

imported orthomosaic image included non-road features such as trees, sidewalks, and 

buildings. To clean non-road features from the orthomosaic image, raster clip operation 

was used. Roadways polygon shapefile obtained from Fairfax County GIS website was 

used to clip only road features on the orthomosaic image. This road orthomosaic clipping 

process before and after image can be seen in Figure 20. 

 

 
Figure 20. Orthomosaic of Test Site Before and After Clip 

 

Next, roadways polygon shapefile was spatially joined with centerlines polygon 

shapefile to create road polygon shapefile with more attributes and feature identifiers 
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such as jurisdiction, postal code, road name and class, census feature class codes (CFCC). 

Roadways polygon and centerlines polygon data and attributes are displayed in Figure 21 

below. 

 

 
Figure 21. Roadways and Centerlines Data 

 

For storing pothole data, a point feature class was created for input of known 

pothole metrics. i.e. x and y coordinates, pothole class type, length, width field. The 

points were manually added using the Editor Tool Pothole Class Type, Length, Width 

fields were manually added into the potholes attribute table. Class Type field was created 

using Short Integer datatype with Precision 0. Length, Width and Height fields were 

created using Double datatype with Precision: 9 and Scale5. The length and width sizes 

of potholes were then measured using the Measure tool in ArcMap and inserted in the 
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table. Based on the measured length and width sizes, potholes were then classified into 

three classes of severity: 1 – low severity, 2 – medium severity, 3 – high severity. The X 

and Y coordinates were automatically created in the attribute table using Add XY 

Coordinates tool from Data Management Toolbox. Next, Potholes shapefile was spatial 

joined with road polygon shapefile to produce more details and attributes in the pothole 

point shapefile. The final shapefile result of potholes data can be seen in Figure 22. 

Lastly, clipped road raster file was exported as tiff format with Rendered and Force RGB 

settings selected. This clipped road raster file was later used as an input image during the 

image processing step. 
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Figure 22. Example of Pothole Shapefile Data 

 

Manually inputting length/width sizes and identifying potholes may not be a time-

efficient method to use for creating large georeferenced datasets of potholes. However, 

for most local transportation authorities, pothole patching repairs are done at a small 

segmented road-scale level. Therefore, it would be more time efficient and safer for road 

repair crews to conduct quick in situ surveys using UAVs and collect potential pothole 

data rather than driving traditional road vehicles and being constrained to the traffic flow 
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and speed. Although manual input of pothole data is time-consuming, municipal road 

repair crews can expand upon the pothole data record which will provide not only 

backlogs of unrepaired potholes, but also determine which potholes need to be repaired 

first based on the level of severity. This method and the output pothole data produced 

much higher quality and locational accuracy of both known and unknown potholes on the 

roads than existing pothole data from Washington D.C. GIS dataset, which only had 

about 45% location accuracy of the potholes. 

3.6 3D Reconstruction  

3D reconstruction step used previously processed .las point cloud data from 

Pix4Dmapper. During 3D reconstruction step, CloudCompare, an open source 3D point 

cloud and mesh processing software, Autodesk Recap Pro, and Civil 3D was used. 

Initially, CloudCompare was used to import .las point cloud data file. After importing the 

point cloud data, potential pothole areas were segmented using Segment Tool and by 

drawing ROI around the potential potholes. This process can be seen in Figure 23. 
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Figure 23. Importing, Segmenting and Clipping Point Cloud 

 

Potential pothole area(s) was segmented out of other point cloud data. After the 

segmentation process, the SOR (Statistical Outlier Removal) tool was used to compute 

the first average distance of each point to its neighbors – considering k nearest neighbors 

for each – k is the first parameter. This removes points that are farther than the average 

distance plus a number of times the standard deviation which is the second parameter of 

this tool (Figure 24). 
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Figure 24. Before and After Noise Removal of Point Cloud Data 
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Once the segmented point cloud data were cleaned up, Compute 2.5D Volume 

Tool was used to validate relative elevation/height difference that helped determine if 

there was a pothole in the segmented point cloud area (Figure 25). After validating the 

pothole in the point cloud data, the segmented point cloud data was exported as a .las 

format file. 

 

 
Figure 25. 2.5D Volume Measurement and Point Cloud 
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After using CloudCompare to segment, filter, and validate pothole point cloud 

data, the output .las file was imported in Recap Pro. Recap Pro was only used to convert 

.las file to .rcs format which can be used in Autodesk’s AutoCAD software. Imported .rcs 

format point cloud data in AutoCAD Civil 3D can be seen in Figure 26.  

 

 
Figure 26. AutoCAD Civil 3D Point Cloud Display and TIN Surface 
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After the conversion process, Civil 3D was used to calculate/estimate the pothole 

volume from .rcs point cloud data. Since the point cloud data was not georeferenced, 

when the .rcs file was imported a coordinate system had to be added to the workspace 

(Figure 27). 

 

 
Figure 27. Georeferencing Point Cloud in Civil 3D 

 

Next, a TIN surface was generated using the point cloud data with Kriging 

Interpolation filter method setting enabled. Kriging interpolation filter method was used 
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to interpolate data points to build more curves. Using this TIN surface, a borderline of the 

TIN surface layer was extracted (Figure 28). 

 

 
Figure 28. Borderline - Base 3D Surface Model 
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The extracted borderline generated a flat, base TIN surface layer. Two TIN 

surface layers: pothole TIN surface layer and base TIN surface layer was used to generate 

a TIN volume surface. Finally, pothole TIN surface layer and base TIN surface layer was 

used to calculate the elevation (Z-value) of the TIN volume surface layer. This calculated 

Z-value was used as an estimate of elevation of the pothole depth. This the output of this 

process is depicted in Figure 29. After acquiring the Z-values of the pothole point cloud 

data, Z-values were compared to the ground truth height measurement to test the 

accuracy of this 3D reconstruction method.  
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Figure 29. Z-value Estimation Surface Height - Pothole Depth 

 

3.7 Image Processing Detection 

To test the feasibility of image processing detection of potholes, Marker-

Controlled Watershed Segmentation method was used. This method was used to separate 

touching objects in the aerial image. Previously clipped road raster file was used as input 

image file in MATLAB. MATLAB is used for image processing detection steps because 

MATLAB offers a wide variety of tools that can perform image segmentation, filtering 
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and enhancement, and object detection and analysis out of the box. First, the input image 

was converted to grayscale image. Grayscale image was used to compute the gradient 

magnitude which indicated the borders of the objects. This gradient magnitude was used 

as a segmentation function (Figure 30). To compute the gradient magnitude, Sobel 

gradient operator method was used by default. 

 

 
Figure 30. Grayscale Converted and Computed Gradient Magnitude 
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After computing this segmentation function, foreground objected had to be 

marked. To mark the foreground objects morphological techniques: erosion and dilation 

was used for reconstruction-based opening-closing process. Next, background markers 

were computed by using a thresholding operation and separated the background pixels 

which were not part of any object. The gradient magnitude was modified to have regional 

minima only in certain desired locations so that the gradient magnitude image, which is 

the segmentation function, its regional minima occur at the foreground and background 

marker pixels. Finally, watershed-based segmentation was performed. The result is 

depicted in Figure 31.  

 

 
Figure 31. Watershed-based Segmentation Sample Result 
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CHAPTER FOUR: RESULTS 

This chapter of thesis summarizes the results from the project working 

demonstration performed at different pilot study test sites outlined in 3.3 Pilot Study 

section. Each following section reviews the input and results from each stage of the 

workflow. 

4.1 Pilot Study 1 

The first pilot study site was Tapestry Drive, Fairfax, Virginia (Figure 32).  

 

 
Figure 32. Pilot Study Site 1: Tapestry Drive 
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The first aerial survey was conducted at 20m altitude. However, due to the height 

of surrounding trees, the altitude had to be adjusted to 25m to ensure the safety of the 

drone and the flight mission. During this first pilot study, 110 images were captured. For 

this pilot study, the first flight captured images at 80% overlap and in nadir view. The 

second flight captured images at 45° obtain higher height spatial resolution of the roads. 

The grid pattern was used for this pilot study’s route design. The camera angles and 

overlaps in Figure 33. 
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Figure 33. Tapestry Drive: Point Cloud and Camera Setup – Top and Side View 

 

The ground truth measurement of the potholes can be found in Table 4 below. In 

addition, the reference map with pothole sample number labels can be seen in Figure 34. 

 

Table 4. Pilot Study 1 Ground Truth Measurement 
Sample # Length Width Height 

1 36.4 inches 15.5 inches 2.7 inches 
2 19.8 inches 12.5 inches 1.4 inches 
3 12.6 inches 3.1 inches 1.3 inches 
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 The ground truth measurement data were used to test the accuracy during the GIS 

development step process and can be found in Table 5. 

 

 
Figure 34. Tapestry Drive: Annotated Potholes 

 

Once images have been collected, these images were then transferred and 

uploaded to Pix4Dmapper. Based on Pix4Dmapper calculations, the average ground 

sampling distance was 0.64 cm and 1.7657 acres of land were covered. The median 

number of keypoints per image was 33,659 keypoints. All of 110 images that were 

captured were calibrated. The median number of matched keypoints was 14,987 matches 

per calibrated image. An orthomosaic and the corresponding sparse digital surface model 

can be seen below. 
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Figure 35. Tapestry Drive: Orthomosaic and DSM 

 

In addition, the overlap images can be seen in Figure 36. This figure depicts the 

number of overlapping images that were computed for each pixel of the orthomosaic. Red 

to Yellow areas indicated low overlap which resulted in poor results and green areas 

included overlap of over five images for every pixel.  
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Figure 36. Tapestry Drive: Overlapping Images for the Orthomosaic 

 

Time for point cloud densification was approximately 10 minutes, time for point 

cloud classification was approximately 21 seconds. Time for 3D textured mesh 

generation was 3 minutes 12 seconds. The number of 3D densified points was 8,132,336 

points and the average density per cubic meter was 7,751.94 points. The digital surface 

model and orthomosaic resolution was 0.637 cm/pixel. Time for DSM generation was 7 

minutes 11 seconds and time for orthomosaic generation was 13 minutes 51 seconds. 

Overall, processing point cloud densification, classification, textured mesh generation, to 

DSM and orthomosaic generation took approximately 35 minutes. The Pix4D point cloud 

output can be seen in Figure 33.  

The result of GIS development was a file geodatabase that contains a pothole 

shapefile with x, y, z coordinates of the potential potholes, length, width, height, and 

other attributes such as road names, jurisdiction, postal code, and road class. This 
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geodatabase also included an orthomosaic road clipped image. The attribute table of the 

potholes and the clipped road image can be seen in Figure 37 below. 

 

 
Figure 37. Tapestry Drive: Clipped Road and Pothole Data 

 

After potential potholes have been manually identified during GIS development, 

the point cloud data was imported into CloudCompare, a photogrammetry processing 

software (Figure 38).  
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Figure 38. Tapestry Drive: Point Cloud 

 

Total of three potential potholes have been extracted. Three potential potholes 

have been clipped, extracted and segmented from the rest of the point cloud (Figure 39). 

 

   
Figure 39. Clipped Point Cloud: Sample 1, 2, 3 

 

Each sample have been applied with the Statistical Outlier Removal (SOR) filter. 

The first, second, and third sample (side-view) before and after filter can be seen in 

Figure 40, respectively. Sample 1 contained 3,343 points before the filter was applied and 

had 2,889 points after the filter. Sample 2 contained 1,439 points before the filter was 
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applied and had 1,346 points after the filter. Sample 3 contained 605 points and had 534 

points after the filter. These filtered sample point clouds were exported as .las files and 

used as input in Autodesk ReCap Pro for conversion. 

 

 
Figure 40. Sample 1, 2, 3 Side View Before and After Filter 
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Once the .las data was converted to .rcs data, .rcs was loaded into Autocad Civil 

3D for measuring the depth of the potholes. Figure 41 depicts the loaded point cloud in 

Autocad Civil 3D software. Pothole height was calculated using z-value differences 

between the flat surface and the potholes. 

 

 
Figure 41. Sample 1 Point Cloud in Civil 3D 

 

TIN surface was created using the Sample 1 point cloud and Kriging interpolation 

method. Kriging interpolation was used to filter out non-ground points and to build 

smoother TIN surface. Figure 42 depicts the Sample 1 TIN surface layer.  
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Figure 42. Sample 1 TIN Surface Layer 

 

Using the TIN surface, a surface layer was created using the boundary of the 

Sample 1 TIN surface layer. This flat base surface layer was used to calculate the height 

difference between the bottom of the pothole TIN surface layer and the top height of the 

base surface layer. The flat base surface layer, pothole TIN surface layer and the 

calculated Z-value can be seen in Figure 43. 
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Figure 43. Sample 1 Base Surface and Pothole Surface Z-values 

 



69 
 

Sample 2 and Sample 3 results are depicted in Figure 44.The z-values of each 

pothole for Pilot Study 1 are listed in Table 5 below. 

 

 
Figure 44. Sample 2 and 3 Z-values 

 

After collecting the height information from 3D reconstruction step, Z-value or 

height value can be included in the aforementioned GIS pothole dataset. The size 

accuracy of the potholes can be calculated using the ground truth measurement data and 

the GIS and 3D reconstruction measured data. 
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Table 5. Pilot Study 1 Identified Measurement 
Sample # Length Width Height 

1 36.8 inches 15.3 inches 2.5 inches 
2 20.8 inches 12.8 inches 1.4 inches 
3 12.35 inches 3.1 inches 0.9 inches 

 

Based on the ground truth measurement data and the identified measured data of 

Sample 1, absolute accuracy values of the identified measurement are depicted in Table 

6. 

 

Table 6. Pilot Study 1 Identified Measurement Accuracy 
Sample # Length Width Height 

1 +0.4  inches -0.2 inches -0.2 inches 
2 +1.0 inches +0.3 inches 0 inches 
3 -0.25 inches 0 inches -0.4 inches 

 

Length measurement: +0.4 inches, width measurement: -0.2 inches, and height 

measurement: -0.2 inches. Sample 2 length measurement: +1.0 inches, width: +0.3 

inches, and height: 0 inches. Sample 3 length measurement: -0.25 inches, width: 0 inches, 

and height: -0.4 inches. The results of Pilot Study 1 were promising since the identified 

measurement value had an absolute accuracy of +/- 1.0 inch. 

4.2 Pilot Study 2 

The second pilot study was conducted on Colony View Drive, Fairfax, Virginia 

(Figure 45). 
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Figure 45. Pilot Study Site 2: Colony View Drive 

 

The altitude during the aerial survey was at 25 m to ensure the safety of the drone 

and the flight mission. Similar to the first pilot study site, this area was surrounded by tall 

trees that were approximately 20 – 25 m in height. Total of 98 images were captured and 

the image overlap percentage was 80% and in nadir view. A straight-path pattern was 

used for this pilot study’s route design. Collected point cloud data, path, and camera 

setup can be seen in Figure 46.  

 



72 
 

 
Figure 46. Colony View Drive: Point Cloud and Camera Setup - Top and Side View 

 

At this site, there were four sample potholes that were measured. The collected 

ground truth data can be found in Table 7 below.  

 

Table 7. Pilot Study 2 Ground Truth Measurement 
Sample # Length Width Height 

1 15.6 inches 11.5 inches 1.8 inches 
2 14.2 inches 11.2 inches 1.6 inches 
3 16.2 inches 7.5 inches 1.8 inches 
4 17.8 inches 16.9 inches 2.1 inches 
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In addition, the reference map with the pothole sample number labels can be seen 

in Figure 47. Colony View Drive: Annotated Potholes. These ground truth data were used 

to test the accuracy of measurements that were collected using GIS and 3D 

reconstruction. 

 

 
Figure 47. Colony View Drive: Annotated Potholes 

 

After the aerial survey was over, these images were then transferred and uploaded 

to Pix4Dmapper. Based on Pix4Dmapper calculations, the average ground sampling 

distance was 0.55 cm and 0.5618 acres of land were covered. The median number of 

keypoints per image was 44,288 keypoints per image. Compared to the first pilot study 
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site, there were 10,629 more points because this survey area was significantly smaller 

than the previous pilot study site. All of 98 images were calibrated and the median 

number of matched keypoints was 22,040 matches per calibrated image. An orthomosaic 

and the corresponding sparse digital surface model can be seen below. 

 

 
Figure 48. Colony View Drive: Orthomosaic and DSM 

 

Time for point cloud densification was approximately 12 minutes 40 seconds, 

time for point cloud classification was approximately 10 seconds. Time for 3D textured 

mesh generation was 3 minutes 5 seconds. The number of 3D densified point was 

6,976,749 points, 1,155,587 points less than the first pilot study 3D densified points. The 

average density per cubic meter was 19,014.2 points, and the digital surface model and 
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orthomosaic resolution was 0.549 cm/pixel. Time for DSM generation was 6 minutes 16 

seconds and time for orthomosaic generation was 10 minutes 24 seconds. Overall, the 

entire data processing time took 32 minutes. 

The result of GIS was a file geodatabase that contained an orthomosaic road 

clipped image, a pothole shapefile with x, y, z coordinates of the potential potholes, 

length, width, height, and other attributes such as road names, jurisdiction, postal code, 

and road class. The clipped road image of Colony View Drive and the attribute table of 

the potholes can be seen in Figure 49. 

 

 
Figure 49. Colony View Drive: Clipped Road and Pothole Data 
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After potential potholes have been manually identified in the GIS, the point cloud 

was imported into CloudCompare to extract those potholes and surrounding point cloud 

data. For this pilot study, four potential potholes have been extracted. Point cloud data 

surrounding these four potholes have been clipped, segmented, and filtered. These four 

point cloud samples can be seen in Figure 50. 

 

 
Figure 50. Colony View Drive: Clipped Point Cloud Samples 1, 2, 3, 4 

 

The first three samples were not filtered due to low noise. Only Sample 4 was 

filtered because of high noise and many outliers. Sample 4 side view before and after 

filter can be seen in Figure 51. Sample 1 contained 2,701 points, Sample 2 contained 

1,923 points, Sample 3 contained 1,003 points, and Sample 4 contained 1,789 points 

(1,360 points after filter). These sample point cloud data were exported as .las file and 

transferred to Autodesk ReCap Pro for conversion. After the conversion process, the .rcs 

point cloud files were loaded into Civil 3D for measuring the depth of the potholes using 
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two TIN surfaces. The TIN surfaces were generated using the boundary, base surface of 

the point cloud and the TIN surface model of the pothole point cloud. 

 

 
Figure 51. Colony View Drive: Sample 4 Side View Filtered 

 

TIN surface was created using the sample 1, 2, 3, 4 point cloud data and Kriging 

interpolation method. Figure 52 depicts the Sample 1 TIN surface layer. 
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Figure 52. Colony View Drive: Sample 1 Point Cloud in Civil 3D 

 

Following the method as pilot study 1, a surface layers were created using the 

boundary polyline of the point cloud data. The flat base surface layers were used to 

subtract z-value from the base to the pothole TIN surface layers. The calculated Z-value 

for Sample 1 can be seen in Figure 53. 
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Figure 53. Colony View Drive: Sample 1 Z-value 

 

The z-values of each pothole are listed in Table 8 below. After collecting the 

height information from 3D reconstruction step, Z-value or height value was included in 
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the Pilot Study 2: Colony View Drive geodatabase. The size accuracy of the potholes was 

calculated using the ground truth measurement data and the GIS and 3D reconstruction 

measured data. 

 

Table 8. Pilot Study 2 Identified Measurement 
Sample # Length Width Height 

1 15.8 inches 11.5 inches 2.0 inches 
2 13.9 inches 11.8 inches 1.5 inches 
3 18.2 inches 7.7 inches 1.6 inches 
4 17.3 inches 16.3 inches 2.3 inches 

 

Based on the ground truth measurement data and identified measurement data of 

Sample 2, absolute accuracy values of the identified measurement are depicted in Table 

9. 

 

Table 9. Pilot Study 2 Identified Measurement Accuracy 
Sample # Length Width Height 

1 +0.2 inches 0 inches +0.2 inches 
2 -0.3 inches +0.6 inches -0.1 inches 
3 +2.0 inches +0.2 inches -0.2 inches 
4 -0.5 inches -0.6 inches +0.2 inches 

 

Length measurement: +0.2 inches, width measurement: 0 inch, and height 

measurement: +0.2 inches. Sample 2 length measurement: -0.3 inches, width: +0.6 

inches, and height: -0.1 inches. Sample 3 length measurement: +2.0 inches, width: +0.2 

inches, and height: -0.2 inches. Sample 4 length measurement: -0.5 inches, width: -0.6 
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inches, and height: +0.2 inches. The results of Pilot Study 2 were promising since the 

identified measurement value had an absolute accuracy of +/- 2.0 inch. 
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CHAPTER FIVE: CONCLUSIONS 

The process and applications of this thesis research present exciting opportunities 

for using widely accessible drone platforms to create 3D geospatial dataset that contains 

dimension information, severity level, x and y coordinates, and other critical information 

that will help local transportation authorities with assessing and prioritizing repair areas. 

The relative ease of using simple UAVs, photogrammetry processing, GIS and 3D 

modeling software suggest the thesis pipeline as a viable method for obtaining pothole 

information from aerial images. Reviewing the current literature and research journals 

reveals that the 2D vision-based and 3D reconstruction-based workflow is a highly 

desired method, and is pursued within the fields of computer vision, topographic survey, 

infrastructure inspection, and environmental monitoring. Utilizing this thesis workflow 

can greatly contribute to research applications searching for accessible, accurate, and 

straight-forward methods for collecting aerial images for road inspections, generating 3D 

geospatial dataset containing critical information, and detecting potential potholes from 

imagery, especially from consumer grade aerial platforms. Three main methods were 

developed that provide solutions to identifying, measuring, validating, and identifying 

potholes from aerial images. Pilot studies were conducted at different test sites and these 

experiments helped examine what environmental factors had significant impacts on the 

quality of output results. Different flight settings were tested. Based on the surrounding 
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environmental conditions from different pilot study sites, the best altitude for aerial 

surveying of the roads was found to be at 20-25 m. During aerial surveying, there are 

features that present difficulties for aerial imagery capture, photogrammetric processing, 

and 3D modeling. For aerial imagery capture step, it is necessary to use the optimal flight 

environment settings for collecting high quality aerial image data which will be used in 

the photogrammetric processing step. During photogrammetric processing step, it is 

important to tweak and use different setting combinations such as limiting the number of 

keypoint matches and points in the point cloud data. Due to texturing and surface 

modeling, 3D modeling process requires very high-quality point cloud data. Before 

reconstructing 3D models, it is necessary to filter and remove noise on the point cloud 

data to obtain accurate 3D pothole models. Software used in this project (Pix4D, 

Autodesk Civil 3D, ReCap Pro, ESRI ArcMap 10.6.1, MATLAB, CloudCompare) were 

chosen due to their broad, long-term support and reliability. Although the primary 

software used were commercial software, many other open source software can be used 

to replicate the process and achieve similar results. 

5.1 Future Research 

The method and workflow executed in this research proved a working 

demonstration of creating 3D geospatial data from aerial imagery using photogrammetric, 

mapping, and 3D modeling processes. Future research regarding this thesis project will 

focus around using more open source software, replicating the steps, and producing 

similar results. In addition, alternative equipment and options can be researched to 

improve the overall pothole identification method. 
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