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Abstract

COLLABORATIVE MOBILE AD HOC INTRUSION DETECTION SYSTEM

Jeronymo M. A. de Carvalho, PhD

George Mason University, 2017

Dissertation Director: Dr. Paulo C. G. da Costa

A Mobile Ad Hoc Network (MANET) is a type of network that does not require previ-

ously deployed infrastructure to operate. In such networks, every node is mobile and acts

as a router and, as a consequence, MANETs can be quickly configured and ready to work.

This capability suits well to scenarios in which networks only need to operate for a short

period of time, and when initial investment on infrastructure is undesired or not possible.

It also allowed the implementation of many applications that were not originally practical

with regular networks. For instance, law enforcement missions performed by police forces

into areas where the State is not well present are an example. These forces are inherently

mobile and need to exchange data in a uncontrolled area in order to accomplish their mis-

sion. Another example is the use of MANETs supporting natural disaster operations. In

this case, the preexisting communication infrastructure is damaged and field agents resort

to MANETs as the medium for coordinating rescue missions and distribution of supplies.

The military also use MANETs as a platform to perform their duties, and as a key asset

supporting a number of diverse command and control activities. For instance, platoon and

company level missions are very mobile and performed in areas under control of the enemy.

MANETs play a major role in other domains as well, including health care and remote

sensing, making mobile ad hoc networking a growing trend.



In most of the above application domains, a typical MANET implementation requires

quick deployment, dynamic communications, and security assurance. However, these re-

quirements are made di�cult to attain due to MANETs’ wireless nature and its lack of

a fixed structure, which makes the information flow on an unconfined environment and

undesired nodes able to directly interact with the network.

To prevent unauthorized access, substantial e↵ort has been put into the design of strong

encryption algorithms, secure protocols, and intrusion detection methods. Unfortunately,

networks are still vulnerable to diverse factors such as rogue users, poor software design, and

information leakage from social engineering, and even the most reliable network security

technologies available today cannot make them invulnerable. Once a network is compro-

mised, the enemy is able not only to eavesdrop sensitive information but also to mislead

valid users and to harm the operations supported by the network.

This research addresses the security issue of MANETs from a new point of view. Instead

of only trying to deny the network access to the enemy, it seeks to identify the adversary

that already has the credentials to access the network before he can perform rogue actions.

More formally, the hypothesis tested in this work is that the use of the location information

of the tactical nodes enables the ability of detecting a passive intruder before it becomes

active, and diminishes the impact of the adversary on the mission supported by the mobile

network. The research focused on obtaining this ability through the use of a combination

of di↵erent techniques, and resulted in the design of the Collaborative MANET Intrusion

Detection System (CMIDS).

CMIDS is a novel, non-intrusive IDS that uses a secondary network of sensors to monitor

and analyze the behavior of the nodes of the target network. A predictive location algo-

rithm was created and, in combination with multilateration technique and basic mission

knowledge, is able to detect misbehaving nodes.

In order to test the hypothesis and evaluate the CMIDS concept, a military tactical

scenario simulation was developed using three distinct software tools. The results obtained

through the experiments corroborate the Dissertation hypothesis and show that the CMIDS

extends the state of the art of intrusion detection systems for mobile ad hoc networks.



Chapter 1: Introduction

The last century was marked by the emergence and proliferation of computers and data

networks. They evolved over time and acquired mobile capability. A vast number of every-

day activities in our society rely on not only structured mobile networks but also Mobile

Ad Hoc Networks (MANETs). For instance, law enforcement mission performed by police

forces into areas where the State is not well present is one example. The police forces are

mobile and need to exchange data in a uncontrolled area in order to accomplish their mis-

sion. Another example is the use of MANETs supporting natural disaster operations. In

this case, the communication infrastructure is damaged and the field agents use MANETs

to coordinate the rescue missions and the distribution of supplies. The military also use

MANETs as a platform to perform their duties. Platoon and company level missions are

very mobile and they are performed in areas under control of the enemy. The military use

mobile networks to act and to support the command and control activities.

A Mobile Ad Hoc Network (MANET) is a set of mobile devices which can form a tempo-

rary network with the absence of previous infrastructure [1]. Each device acts as a network

router and communicates with the others using its wireless interface. This implies that

MANETs must be resilient and have self-configuration and self-maintenance capabilities.

Since the devices are mobile, the network topology may change quickly and unpredictably

over time. Figure 1.1 illustrates some MANETs.

Due to the nature of its design, MANETs are very susceptible to attacks. The lack

of a fixed structure combined to the wireless transmissions let the information flow on

an unconfined environment and attackers are able to directly interact with the network.

Roughly speaking, these attacks fall into one of two groups: passive or active attacks.

Figure 1.2 presents the most common network layer attacks performed against MANETs
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Figure 1.1: Examples of MANETs.

[2]. But other layers of OSI model are also susceptible to attacks, such as the physical layer

(jamming attacks) and the application layer (data duplicity and repudiation attacks).

Passive attacks are related to the ”Observe” and ”Orient” steps of the OODA Loop as

depicted at Figure 1.3. These attacks are those where the adversary does not disturb the

network but just observes and learns from the collected data [3]. It can lead to valuable in-

formation as network topology, critical nodes, and identity discovery. These attacks usually

precede the active attacks.

Active attacks are related to the ”Act” step of the OODA Loop. These attacks are those

where the adversary plays intrusive activities such as injecting, forging or dropping data to

mislead the network [3]. Although they have the potential to be very harmful, they are not

as hard to be detected as the passive attacks because they modify the regular tra�c of the

network while the passive attacks don’t. A mechanism looking for network anomalies is able

to detect an active attack but not a passive one. But even some active attacks are harder

to be detected than others. A jamming attack consist of extra information injected in the
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Figure 1.2: Classification of network layer attacks in MANETs.

network with the purpose of deny some kind of service. This means the target is unable to

operate and the attack is easily noticed. But a deception attack injects only enough extra

information to mislead the target and prevent him to operate at it should. It is hard to say

if the target is under attack or is just experiencing a legitimate overhead.

A complete attack comprehends five phases [4]:

• Reconnaissance

• Scanning

• Gaining Access

• Maintaining Access

• Covering Tracks

The adversary usually desires to complete all the five phases but it is not always true

on attacks performed on MANETs. Structured networks are used for a long period of time

and it justify the attacker’s e↵ort to maintain the access and cover its tracks to be able to

3



OODA LOOPACT
Implement and 

evaluate solutions

OBSERVE
Look at current 

situation and form 
theories about the 

problem

ORIENT
Gather data and 
information to 
substantiate 

theories

DECIDE
Develop solutions 

to address the 
problem

Figure 1.3: OODA Loop.

return in the future. But a MANET is used for a short period of time and the attackers

usually skip the last two phases because eavesdropping sensitive information, misleading

users and harming the network are the goals and not returning in the future.

Prevention methods such as strong cryptography techniques can significantly reduce the

number of successful attacks in wireless networks, but are not su�cient to protect MANETs,

that are frequently used to support critical operations. Successful attacks to MANETs

may imply serious consequences as government classified information leakage, unauthorized

access to lethal power platforms, and lost of human lives. One of the strategies available

to enhance the security on networks is to use layers of protection. Each layer is responsible

to protect the network against a set of types of attacks. The adversary may still be able to

overcome the layers but more time is spent and higher are the chances to react against the

intruder. This approach is consistent with the defense-in-depth approach adopted at the

Security Requirements Guide (SRG) of the Department of Defense (DoD) [5]. One of the

most e↵ective layers to secure MANETs is the use of Intrusion Detect Systems (IDS) [6].
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1.1 Intrusion Detection System on Mobile Networks

An Intrusion Detection System (IDS) is a set of the tools, methods, and resources used to

identify, assess, and report intrusions [7]. In the data network context, it may be defined as

software and hardware used to monitor the network and detect internal or external cyber

attacks [8].

An IDS is composed of four main components:

• Sensors

• Detector

• Knowledge Base

• Response Component

Sensor components are responsible for collecting data from the monitored system. The

detector component analyses the collected data to detect intrusions and uses the knowledge

base component to support this task. The response component manages the response actions

to the attacks [8].

A basic IDS architecture is illustrated at Figure 1.4

There are di↵erent techniques used to implement an IDS, which are categorized into

three groups: anomaly-based detection, misuse-based detection, and specification-based

detection. The first leverages statistical, knowledge and machine learning techniques to

identify anomalous operations and transmissions at the network. The second group uses

signatures and rules techniques to build the profile of known attacks and avoid them. Taking

a di↵erent approach, the third group uses specification and constraints to describe the

correct operation of the network and identify any di↵erent behavior.

Although all groups employ e↵ective techniques to provide detection at a low false

positive rate, most of them were designed for wired networks (closed environment) and are

not convenient to wireless networks (open environment). The intrusion detection challenge

becomes even harder when considering mobile ad hoc networks, as it introduces new issues,

5
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Figure 1.4: Basic Intrusion Detection System Architecture.

such as lack of concentration points to monitor and audit data, nodes acting as routers,

dynamic and unpredictable topology, and limited computational ability [2].

Security issues caused by the absence of a static infrastructure are also stated in [9].

Cyber attacks usually try to compromise the confidentiality, integrity and availability of

messages, but in the case of mobile wireless network an extra aspect is included to the

triad: energy. Mobile hosts usually have a limited power resource, which can be exploited

by provoking an abnormal use aimed at reducing the battery life so to prevent the mission

from being accomplished.

Due to its intrinsic characteristics, secure mobile ad hoc networks are very hard to

implement [6], and no system is completely secure [10]. Considering that the number of

sophisticated and tailored attacks on computer networks has significantly increased [11], the

defense-in-depth approach is threatened and enhancements to the IDS layer are desired.
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There are some well-known intrusion detection techniques specifically designed for secur-

ing MANETs. The Watchdog scheme [12] works promiscuously listening to the next hop’s

transmissions. Every time a node fails to forward a data package within a pre-established

amount of time, the Watchdog IDS increases its believe that the neighbor is actually an

adversary and an attack has been detected. Although very popular, this scheme fails to

detect adversaries in the presence of collisions and limited transmission power which is the

environment of application of a MANET. The EAACK scheme [13] tries to overcome these

issues through the modification of the routing protocol. Each destination node of a message

is forced to send back an acknowledge data package informing the sender node when the

message was received. This scheme lowers the false positive detection but it requires the

modification of the routing protocol, increases the network tra�c, and it is still vulnerable

to collisions issues. It means that EAACK is not appropriate to legacy MANETs that can

not be modified due to issues with power consumption or recertification of its protocols. It

also means that EAACK increases the number of collision because it requires more mes-

sages. CRADS [14] adopts a di↵erent approach and uses Support Vector Machine (SVM) to

learn the regular behavior of the network and then detect anomalies. Besides been intrusive

as EAACK, CRADS requires extra time spent on the learning phase and does not fit well

scenarios that require fast deployment and operation because it is not available all the time.

IDSX [15] is another IDS scheme designed to work with MANETs. It assumes the mobile

network is divided into clusters which enable the nodes to communicate with each other.

Every node of a cluster collects information and share it with the cluster head but only

the last one is responsible to decide if a suspect node is an attacker. The issue with this

approach is its vulnerability to cluster head failures because no recovery mechanism to elect

a new cluster head is defined. The unavailability of a cluster head can let an entire cluster

without protection of the intrusion detection system.

The implementation of an IDS to work with MANETs is a complex task [16]. The

majority of approaches addresses the detection of active attacks against MANETs and do

not take into consideration passive attacks. These approaches are ine↵ective because they

7
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Figure 1.5: A hypothetical intrusion scenario.

are only capable of act after a certain level of harm is imposed to the mobile network.

In contrast, an IDS capable of detecting passive intruders has the potential to be really

e↵ective because it can identify the adversary before any harm is done to the mobile network.

Such type of IDS, designed to operate on MANETs, could not be found on the related

literature and is explored by this research. Instead of trying to deny the network access to

the enemy, it seeks to identify the adversary that already has the credentials to access the

network as showed at Figure 1.5. In the tactical scenario represented by the illustration,

a MANET is used to support military operations and it is under attack of an adversary

performing passive attacks. Unfortunately, the adversary has not yet been detected.
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Although very powerful, this kind of adversary cannot perfectly mimic the moving pat-

tern of a legitimate node. First, there are the kinetic di↵erences resulting from the use of

distinct platforms to launch the passive attack. Second, even if the adversary uses the same

platform used by a legitimate node to launch the attack, as in the case of a captured node, it

still need to keep some distance from the troops to avoid being seen. This di↵erence on the

mobility pattern could be used to identify intrusions to the mobile network. It is important

to notice that is out of the scope of this dissertation dealing with nodes infected before the

deployment of the MANET. This case would require the adversary to have physical access

to the node during the configuration step of the tactical network.

This powerful adversary has a great potential to harm the network because it has already

overcome the first layers of the defense-in-depth approach. An IDS capable of detecting

passive adversaries would add an extra layer against rogue users, poor software design,

adversaries using stolen credentials or stolen equipment, and information leakage from social

engineering.

In addition to proposing a novel IDS that can be used as an extra layer to the defense-in-

depth approach, this research investigates if an IDS capable of detecting passive adversaries

really performs better than an IDS designed to identify active adversaries. The hypothesis

here is that the ability to identify a passive intruder before it becomes active diminishes the

attack impact of the adversary on the mission supported by the mobile network.

An implementation of the proposed IDS should be built and tested in order to evaluate if

it really diminishes the negative impacts caused by the adversary attacks. This test should

not be only about the operation of the IDS itself but also about the influence it has on the

mission that the mobile network is supporting. The validation of a system usually requires

a field test but this is the last test step, especially when it comes to critical scenarios. The

alternative is to use a virtual simulated scenario.

Computer simulation is a good practice to study the performance of a new IDS and it is

recommended by the DoD at the publications of the Modeling & Simulation Coordination

O�ce [17] [18]. According to [19], computer simulation is advised to be used to model:

9



• systems with many random variables and interacting components with nonlinear re-

lationships;

• interdependence between resources and system elements; and

• systems that need visual animation of the output.

These characteristics are present in several tactical scenarios that uses MANETs to

support their operations. As a consequence, simulation is advised to model them.

Simulation also has some advantages when compared against the real implementation of

the system for evaluation purposes. For instance, simulation studies consumes less time to

produce results, are more cost e↵ective, provide enhanced control of the system variables,

are safer, usually scales better, and can stress the system to scenarios that would not be

possible in the real world [20]. Simulation is useful to study systems with complicated

behavior that does not allow a closed-form representation and at the same time it reduces

research cost.

1.2 Problem Statement

A secure mobile network is a basic requirement to scenarios using wireless communications

in support of tactical missions. Although approaches have been developed to secure Mobile

Ad Hoc Networks (MANETs), these networks still present vulnerabilities that jeopardize

critical missions. To the best of my knowledge, by the time of this writing no Intrusion

Detection System (IDS) has been capable of detecting passive attacks performed against

MANETs. Examples of such attacks include adversaries using stolen credentials, exploring

poor software design, or using credentials obtained through social engineering. After a

successful attack, adversaries can access the MANET while keeping a passive profile, which

enables them to eavesdrop sensitive information, mislead legitimate users, and harm the

tactical mission. In spite of such capabilities, these adversaries cannot perfectly mimic the

kinetic pattern of a legitimate node from the mobile network as it physically moves through

the terrain. Therefore, a key aspect in detecting passive MANET intruders is the use of the

10



location position of the tactical nodes in contrast to what is expected given their role in the

ongoing mission. The present work investigates this aspect comprehensively, with the goal

of designing a novel IDS capable of detecting passive MANET intruders.

In summary, this study addresses the problem of detecting, in a timely fashion, passive

adversaries who successfully obtained access to MANETs. It tests the thesis hypothesis

that it is possible to leverage specific knowledge (location, mission, capability) about the

tactical nodes in order to (i) bring the ability of detecting a passive intruder before it

becomes active and (ii) reduce the impact of the adversary on the mission supported by

the mobile network.

1.3 Methodology

In order to verify the thesis hypothesis, a test methodology was created comprising the

steps described in the follow.

First, a proper way to acquire the geospatial position information of each node of the

mobile network must be defined. The position information will be calculated using multi-

lateration performed by a Wireless Sensor Network (WSN).

This WSN will also be used as the platform to run the novel IDS that will be designed.

Each sensor node will run algorithms to analyze the moving pattern of the tactical nodes.

These algorithms will seek passive adversaries acting as legitimate nodes but forging their

position, moving in a manner incompatible with the capacities of the legitimate nodes, and

moving in disagreement with mission plan.

A test to evaluate this new IDS, so named Collaborative MANET Intrusion Detection

System (CMIDS), will be elaborated. Such test must be able to identify if the new IDS

detects intruders performing passive attacks. It also must provide metrics to compare this

new IDS against other state of the art intrusion detection systems and to access the impact

of the IDS on the mission.

A computer simulation testbed will be created to enable the test requirements. It will

11



be formed by three software packages (MÄK VR-Forces [21], CORE [22], and EMANE [23])

and one software developed during the research to be used as interface between the software

packages.

The MÄK VR-Forces platform will be used to design a tactical scenario that uses

MANET. This software provides an accurate, physics-grounded simulation environment

as well good mobility models for ground troops. CORE and EMANE will be used to sim-

ulate the MANET communication. This two software platforms work together to o↵er a

real-time data network simulator.
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Chapter 2: Background and Related Work

This chapter provides the required background to understand the proposed Intrusion De-

tection System (IDS) designed to work with Mobile Ad Hoc Network (MANET). It also

introduces the main work related to the problem addressed in this Dissertation. First,

Section 2.1 introduces wireless networks focusing on the concepts of MANET and WSN

and why they are distinct from regular wireless networks. Then, Section 2.2 provides an

overview of IDS and its applicability to MANETs. Section 2.3 covers the subject posi-

tion estimation, a key aspect for this research, presenting the existing techniques and how

they are related to MANETs. Finally, Section 2.4, Key Management Protocol, and Section

2.5, Automated Proof of Security Protocols, cover some additional concepts necessary to

evaluate the ideas proposed here.

2.1 Wireless Networks

Wireless Network (WN) is any type of network connected by radio stations [24]. Instead

of cables, it uses radio waves to transmit and receive information. In the case of computer

wireless network, the information is digital and protocols are responsible to control the

access to the environment and to exchange the data.

Unlike wired network that have multiple topologies, wireless networks have only two

types of topology. According to the presence of infrastructure, the WN topology may be

considered Infrastructure or Ad Hoc. Infrastructure topology is the one that uses a central

wireless device to concentrate and organize the communication between the wireless nodes.

Such device is named Wireless Access Point (WAP). In contrast, Ad Hoc topology does

not require a WAP. Every node on the network connects directly to the neighbor node.

Connections between nodes too far apart are made possible because every node acts as a
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router forwarding data.

A special case of ad hoc wireless network is the MANET. In this network, all the nodes

are mobile and the disconnections are very frequently. A second special case is WSN. This

network is used for the specific purpose of monitoring the environment. The following

subsections provide more details about MANET and WSN.

2.1.1 MANET

MANETs have been used for a long time but only in 1997 the Internet Engineering Task

Force (IETF) created a working group dedicated to the subject. It was between the IETF

meetings numbers 38, in Memphis, and 39, in Munich [25]. Since then, a lot of documents,

RFCs, standards and protocols have been published.

IETF defined IEEE 802.11 architecture to be used by MANETs [2]. The distinction for

MANETs is made at the definition of the service set of the protocol. Instead of using the

Basic Service Set (BSS), MANETs use the Independent Basic Service Set (IBSS). It allows

the network to operate without a controlling Access Point (AP) and exchange messages in

a distributed peer-to-peer manner.

A MANET can be defined as a set of mobile wireless devices which can form a temporary

network with the absence of previous infrastructure [1]. Each node (device) acts as a network

router and communicates with the others using its wireless interface.

They are very useful due to its characteristic of fast configuration and easy deployment.

Several applications demanding short period of time operations and high mobility level

take advantage of MANETs while other applications are only possible due to them. For

instance, law enforcement mission performed by police forces into areas where the State is

not well present is one example. The police forces are mobile and need to exchange data

in a uncontrolled area in order to accomplish their mission. Another example is the use of

MANETs supporting natural disaster operations. In this case, the communication infras-

tructure is damaged and the field agents use MANETs to coordinate the rescue missions

and the distribution of supplies. The military also use MANETs as a platform to perform
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their duties. Platoon and company level missions are very mobile and they are performed in

areas under control of the enemy. The military use mobile networks to act and to support

the command and control activities.

But the same design that make MANETs useful to many applications also turns them

very susceptible to attacks. The lack of a fixed structure combined to the wireless trans-

missions let the information flow on an open environment and attackers are able to directly

interact with the network.

There are two sets of attacks against MANETs: passive attacks and active attacks.

Passive attacks are those where the enemy only listens to the transmissions and learns from

the collected data [3]. With this kind of attack the enemy is able to collect valuable data

of the network and, for instance, identify a critical node connecting two distinct clusters of

the same MANET or even identify the role of some node as the troop leader of a MANET

used by military.

Unlike passive attacks, active attacks are those where the enemy interferes with the

network operation. It plays intrusive activities such as injecting, forging and dropping data

to mislead the network [3]. This kind of attack may be very harmful to the network but is

easier to be detected than passive attacks. Because they modify the regular tra�c of the

network, a mechanism looking for network anomalies is able to detect an active attack but

not a passive one.

This research studies how to enhance the security of MANETs against passive attacks

and, as a consequence, lower the adversary power of damaging the network and harming

the mission supported by the MANET.

2.1.2 WSN

Wireless Sensor Networks (WSNs) have been around for quite some time. Their first

recorded usage dates from the World War II, with the purpose of detecting hidden ene-

mies [26]. Sir Winston Churchill, Prime Minister of United Kingdom at that time, used to

call the race for electronic superiority the “Wizard War” [27]. The usual reference of one of
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the first WSN is the Sound Surveillance System (SOSUS) installed by the US Navy during

the cold war to detect soviet submarines [28]. But it was at last years that the importance

of WSNs increased. This emerging technology is used not only by military forces but also

by several di↵erent sectors as industry and healthy care.

A WSN is defined as a network that have many sensing devices that cooperatively collect

and exchange detailed information about physical environment [29] [8]. They may sense

information about temperature, sound, brightness, vibration, motion, and so forth.

Surveillance is an area that make intense use of wireless sensor networks. Depending

on the application and the mission requirements, the WSNs may use static sensors, mobile

sensors, or both. SOSUS is an example of static WSN. The acoustic sensors are deployed

at the bottom of the ocean [28]. Mobile WSNs are composed by nodes that cooperate

in a opportunistic way and may be present at mobile phones [29] or even on vehicles [30].

Hybrid WSNs makes use of both static and mobile sensors to increase information detection

precision and comply with some system requirements. This is the case of the surveillance

system proposed by [31] where ground sensors and air sensors cooperate to decrease the

communication overhead between the nodes. A large number of cheap ground sensors are

deployed to cover wide areas while a few sophisticated air sensors collect the information

requested by the static sensors.

Figure 2.1 presents the compiled WSN taxonomy from [31], [32], [33], and [34] and

covering the possible distinct types of WSN.

WSNs are also used to support some MANET applications. Mobile sensors placed at

Unmanned Aerial Vehicles (UAVs) are able to accomplish missions in wide regions where

the mobility at the ground is unsafe. They are able to collect information to support ground

agents as fire fighter teams spread in an large area with several fire incidents.

This research uses a WSN as a component of the intrusion detection system designed to

MANETs. Each sensor node will collect information about the electromagnetic emissions

at the MANET to provide valuable information about the nodes position. It will also be

used as a platform to run the detection algorithms of the proposed IDS.
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Figure 2.1: Compiled WSN Taxonomy.

2.2 Intrusion Detection Systems

It is not possible to precise when the first Intrusion Detection Systems was initially intro-

duced but these systems started to attract more attention in the digital communication field

in the 70’s. An USAF paper published in 1972 stated that the US Air Force had “become

increasingly aware of computer security problems” [35]. At that time, the Air Force had

begun to use shared resources for both classified and unclassified information, and improper

access of information became a main concern. In the following decades networks got more

sophisticated, while attacks started focusing on unauthorized access. A significant amount

of IDS frameworks and prototypes have been designed as well some taxonomies [2].

The modern concept of Intrusion Detection System understands an IDS as a set of tools,

methods, and resources used to identify, assess, and report intrusions [7]. It is inserted into

the concept of Defence-in-Depth: a defense and surveillance system should be composed by

a sequence of layers that protect di↵erent aspects of the target network.
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Figure 2.2: Anomaly based IDS techniques.

There are several techniques an IDS might use to detect an intrusion and they are

usually categorized according to three groups [7].

The first is the anomaly based detection group and covers statistical, knowledge and

machine learning techniques to identify anomalous operations and transmissions at the

network. These techniques are accurate and work well with new attack patterns but they

require an increased computational e↵ort [36]. This over processing and extra network

tra�c imposes a limit to the adoption of these techniques on MANETs. Figure 2.2 outlines

some of the anomaly based techniques.

The second group is the misuse based technique group. It uses signatures and rules

techniques to build the profile of known attacks. The profiles are used to identify and

avoid the attacks. These techniques are more accurate than those of the first group but

the trade-o↵ is their lower performance on unknown attacks due the absence of the profile

[37]. Techniques in this group are easier to implement in MANETs since the rules tend to

be relatively simple and can be used to detect attacks. Figure 2.3 shows the misuse-based

techniques while Figure 2.4 outlines some of the attacks that can be avoided using misuse

based techniques.

The third group is the specification based technique group. It uses specifications and con-

straints to describe the correct operation of the network and identify any di↵erent behavior.

18



Misuse Based IDS Techniques
Signature based

Rule based

Figure 2.3: Misuse based IDS techniques.

It may be seen as a combination of the advantages of the others two groups but designed

with a di↵erent approach. When compared against the misuse based technique, one key

di↵erence is its use of “signatures” and “rules” to verify whether a given behavior is legal.

This leads to the advantage of the technique being able to identify previously unknown

attacks. When compared against the anomaly based technique, a key di↵erence is its use of

manually developed specifications, which leads to a more accurate and less computational

demanding technique. The downside of the specification based technique is the development

e↵ort of the specifications and constraints. This phase is usually very time-consuming [38].

The specification based technique is the one used by the CMIDS Framework and further

details can be found in Chapter 3.

A lot of distinct IDS have been implemented along the time and the work of [39] lists

more then ninety. Besides the classification of an IDS according to the detection techniques

used, there are other characteristics that can be used to di↵erentiate and compare any two

IDS against each other. The taxonomy presented by [7] and [9] covers the most important

aspects used to classify intrusion detection systems. The joint taxonomy covering the work

of both papers is pictured at Figure 2.5.

Although the classification of the proposed IDS according to the joint taxonomy does

not directly influence on the results of the research, it is important to properly classify it in

order to enable a easier comparison between CMIDS and other intrusion detection systems.

From the several IDS that exist, only a few are designed taking into consideration the

particularities of MANETs as the lack of concentration points to collect and analyze the
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Figure 2.4: Avoided Attacks using Misuse based IDS techniques.

data, the attack opportunities created by the routing role performed by every node, the

dynamic and unpredictable connections and disconnections between nodes, the usual CPU

limitation power of the nodes, and the facilitated access to data tra�c due to the use of an

open medium to transmit the information. [2].

One of the most popular IDS specifically designed for securing MANETs is the Watchdog

[12]. This IDS works promiscuously listening to the next hop’s transmissions. Every time a

node fails to forward a data package within a pre-established amount of time, the Watchdog

IDS decreases its confidence on the node until the point it decides an attack has been

detected. Although very popular, this scheme fails to detect adversaries in the presence of

collisions and limited transmission power.

The EAACK scheme [13] tries to overcome the Watchdog issues through the modification

of the routing protocol. Each destination node of a message is forced to send back an

acknowledge data package informing the sender node when the message was received. This

scheme lowers the false positive detection but it requires the modification of the routing

protocol, increases the network tra�c, and it is still vulnerable to collisions issues.
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CRADS [14] adopts a di↵erent approach and uses Support Vector Machine (SVM) to

learn the regular behavior of the network and then detect anomalies. Besides been intrusive

as EAACK, CRADS requires extra time spent on the learning phase and does not fit well

scenarios that require fast deployment and operation.

IDSX [15] is another IDS scheme designed to work with MANETs. It assumes the

mobile network is divided into clusters which enable the nodes to communicate with each

other. Every node of a cluster collects information and share it with the cluster head but

only the last one is responsible to decide if a suspect node is an attacker. The issue with

this approach is its vulnerability to cluster head failures because no recovery mechanism to

elect a new cluster head is defined. The unavailability of a cluster head can let an entire

cluster without protection of the intrusion detection system.

Unfortunately, the majority of intrusion detection systems try to detect active attacks

against MANETs instead of passive attacks. Watchdog and EAACK seek to detect package

dropping attacks. CRADS seeks to detect routing attacks as sinking, spoofing, and rushing.

IDSX works as a framework and defines an algorithm to share collected information from

the nodes but do not define the IDS mechanism or the attacks it seeks to detect.

This research proposes a novel IDS that considers the characteristics of MANET since

the design phase and seeks to detect passive attacks instead of only active attacks. The

inference here is that an IDS trying to detect passive attacks would enhance the security

on MANETs because the adversary would be detect before damaging the MANET.

2.3 Position Information Estimation

The position information estimation is the key element of the proposed IDS in this dis-

sertation. As mentioned before, this novel IDS seeks to detect passive attacks performed

against MANETs. In order to achieve this capability, the IDS will use the real position of

the nodes as input data to algorithms that will analyze the moving patterns to detect the

adversary. It is necessary to understand how the position information estimation methods

work to elect the one that better complies with MANETs.
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In fact, MANETs already use position information data but never with the purpose of

detecting intrusions. It is used in geographic routing protocols, navigation systems, and

command and control applications [40]. It is also used to safeguard the physical integrity

of mobile nodes at Vehicular Ad Hoc Networks (VANETs) [30].

In all cases where MANETs already use the location information, the data is acquired

using self-position propagation. It means that each node broadcasts its own position. As

noted at [41], the problem with this approach is that any node can forge its position and this

false information has a severe impact regarding both security and performance of mobile ad

hoc networks. Therefore, all position information should be securely verified before being

used.

In consequence, it is necessary to use a position information estimation approach capable

of calculating the position of nodes at the MANET without trusting the position announced

by them. Some methods have been proposed to overcome this problem and some of them

use sensors to estimate the nodes’ positions. These methods are based on traditional tri-

angulation, scene analysis, and/or proximity [42]. There are several techniques related to

these methods and they all use at some point the radio signal emitted by the nodes as

source of information.

Scene analysis algorithms make use of environment features to detect radio waves sig-

natures. The collected signatures are used to estimate the position of new emitters at the

network.

Proximity algorithms uses relative position information provided by a grid of antennas.

It evaluates which antenna is closest to the emitter and stores the known antenna’s position

as the emitter’s one. The method is relatively simple to implement, but has a drawback on

its limited accuracy.

Triangulation algorithms are more popular than the other two methods due to their

robustness and good accuracy. They use geometric properties of triangles to estimate the

emitter position [41]. Figure 2.6 captures the main techniques used by the discussed meth-

ods.
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Figure 2.6: Position Information Acquisition Techniques.

The triangulation is the method more indicated to be used with MANETs. The scene

analysis method requires previous detailed knowledge of the environment to work properly

which is not always available. For instance, after a natural disaster the urban environment

is altered and updated details of it are not yet available at the beginning of the search and

rescue missions. Proximity methods are not indicated because they require fixed infras-

tructure. Besides contradicting the purpose of using MANETs, reliable fixed infrastructure

is not always available at tactical scenarios as natural disaster operations and military

operating in hostile territory.

There are five basic types of triangulation methods. The first one analyzed is the Time

of Arival (TOA). This method estimates the distance between two nodes based on the time

elapsed to receive an emission. This method by itself does not estimates the position of a

node but its principles are used by other methods as TDOA to calculate the position of a

node [43].

The Received Signal Strength (RSS) method uses the measured power received at the

antenna to estimate the distance between two nodes. It uses the fact that radio emissions

strength reduces along with the growing distance of the radio propagation [44]. The position

information is estimated using the distinct measures of distance between one node and
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other sensors. Clock synchronization between the sensors is required in order to calculate

the position of the node. The disadvantage of this method that prevents it to be used with

MANETs is the fact that radio emissions strength measurements tend to fluctuate according

to changes in the environment or multipath fading. As the node moves, di↵erent obstacles

interpose between it and the sensors and let distinct sensors use di↵erent environment

conditions to estimate the position of the same emission. As a consequence, false distance

estimations prevent the position estimation of the node.

The Phase of Arival (POA) method uses the phase di↵erence of the same emission

received by an array of antennas to calculate the position of the emitter [45]. This method

requires line of sight (LoS) between the sender and the receiver node and is not applicable

to MANETs because these networks are used at scenarios where it is not always possible

to keep LoS between the nodes.

The Angle of Arrival (AoA) method is used by a node to determine its own position

and requires at least two fixed emitters which are used as reference points [46]. The node

evaluates the direction of the incoming signals from the fixed emitters and then calculates

its own position using the angles formed between itself and the reference points. Although

it is a position estimation method, AOA does not satisfy the requirement of the proposed

IDS. This study needs a position estimation method to calculate the position of other nodes

instead of itself position.

At last, the Time Di↵erence of Arrival (TDOA) method estimates the position of a node

through the examination of the di↵erences in time of the same emitted signal received at

di↵erent sensors [47]. The conventional TDOA position estimation technique is a problem

of solving a set of hyperbolic equations. A common time reference must be shared by the

sensors and clock synchronization between them is required in order to calculate the position

of the node [43]. Figure 2.7 from [48] shows the example of the two dimensional position

estimation of emitter ”X” performed by sensor 4 using the time di↵erence related to the

sensors 1, 2, and 3. According to [47] [40], the distance based technique TDOA is typically

referred as multilateration and this nomenclature is also adopted in this dissertation.
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Figure 2.7: Example of Position Estimation using Multilateration.

A multilateration system may use a 3D or 2D-solution to estimate the emitter’s position

according to the number of antennas that capture a particular signal. When four distinct

antennas capture the same signal, it is possible to estimate the 3D position of the emitter

(latitude, longitude, and altitude). But if only three antennas capture the same signal, the

3D position cannot be directly estimated. In such cases, one dimensional component must

be formerly know and this approach is called 2D-solution. For instance, the altitude of a

emitter may be acquired using a secondary system and used as input to the multilateration

algorithm.

Multilateration has been successfully used as a navigation technology and surveillance

tool [49]. An important success case is the use of the multilateration method by the Federal

Aviation Administration (FAA) to track aircraft close to airports [50].

The multilateration method also has a great potential to be used as a source of position

information to detect intrusions on MANETs. The closest there exist of an IDS using

position information is the work of [41] but they focused on not using extra sensors to
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evaluate possible cheating nodes. Two problems comes with this approach. The first one

concerns the impossibility of some mobile nodes carrying extra sensors. The second problem

is the over computational processing imposed to existing nodes and error estimation due to

processing delay [40].

Di↵erent from previous attempts of introducing position information to intrusion detec-

tion systems on mobile network, this research addresses the specific problem of MANET

IDS from an novel perspective. It uses a wireless sensor network to estimate the position on

the nodes of the MANET. This non-intrusive approach avoids modifications to the existing

MANET and error estimation due to processing delay on overloaded nodes. This research

also opted to use multilateration. The study of existing methods for position estimation

reveals that this is the most appropriate method to be used with MANETs.

2.4 Key Management Protocol

This dissertation proposes a MANET IDS that uses a WSN to collect, share, and process

location information in order to detect passive attacks. Besides the definition of the com-

munication protocol of the IDS at the application level, it is also necessary to define the

security scheme concerning the key management protocol for data encryption.

A key management protocol is the set of previously established definitions, techniques,

and procedures used to generate, save, distribute, and replace cryptographic keys among

a group of users [51]. It encompasses three main phases according to [52]: establishment,

management, and certification. The key establishment is the set of process whereby a cryp-

tographic key becomes available to the group. The key management is the set of procedures

supporting the establishment and the maintenance of ongoing keying relationships between

the group users. The key certification is the mechanism responsible to ensure the integrity,

confidentiality, and authenticity properties related to the cryptographic keys.

There are di↵erent key management schemes according to the type of cryptography

used. The authors in [53] analyze the advantages and disadvantages of using symmetric

key, public key, hybrid key (symmetric key + asymmetric key), and group key schemes with
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mobile ad hoc networks like WSNs.

The computation cost of symmetric key schemes is lower than public key schemes. Also,

the former is considered a better fit than the latter for resource constrained networks such

as WSNs. Another disadvantage of public key schemes is that they require a greater number

of messages to establish a private communication, which makes it more vulnerable to denial

of service attacks. On the other hand, public key schemes are more secure and provide

one-to-many verifiability, while symmetric key schemes can only support one-to-one.

Group key schemes have low computation cost and require a smaller number of messages

to establish private communication between the network users, but they are not resilient

against inside attackers. Hybrid key schemes are very advisable provided that the use of

public key cryptography is restrict as far as possible [53].

This dissertation opted to use a hybrid key scheme. The initial communication between

two sensor nodes will use a public key scheme to establish the symmetric key that will be

used for the rest of the communication or while it is valid. In such way, the overall scheme

will benefit from the strength of the public key scheme to define the session key while

using it only for a short period of time to limit the message exchange cost and the time

exposed to DoS attacks. But at the same time, the overall scheme will also benefit from

the lower complexity of the symmetric key scheme while using a session key that requires

less computation resources.

2.5 Automated Proof of Security Protocols

The key management protocol that will be suggested at this dissertation will need to be

tested against bad implementation. The use of strong cryptography is no guarantee of

a good key management protocol [54]. The test will be performed using an automated

security protocol proof tool. But before discussing about the available tools it is important

to understand the security notion used by an automated security protocols proof.

There are two notions of security. The first notion considers the issues of complexity

and probability. It provides guaranteed security against all probabilistic polynomial-time

28



Security Protocols Analysis

Symbolic Model

Perfect Cryptography (Dolev-Yao)

Inductive Proofs and Model Checking

Interleaving Trace Models

State-based Models

Computational Model
Probabilistic Cryptography View

Criptographically Faithful Proofs

Turing Machines

Figure 2.8: Some Aspects of Security Protocols Analysis.

attacks. The second notion considers the protocol as a sequence of modules performing some

kind of process and the cryptographic primitives are treated as black boxes. It provides

guaranteed security against all attacks that explore the design of the protocol but not

against the strength of the used cryptographic algorithms.

According to the security notion adopted, two distinct models are used to analyze the

security of a protocol. They are known as computational model and symbolic model [55].

The former model adopts the probabilistic notion of security while the latter model adopts

the second security notion discussed. Figure 2.8 highlights some important aspects of the

two models presented by [56] and also discussed here.

The computational model is sometimes also referred to as cryptographic model. It

captures a stronger notion of security and protects against probabilistic polynomial-time

attacks. Messages are modeled as bit strings and the adversary as a polynomial-time Turing

machine. This is a detailed approach, very close to the real execution of the protocols, and

provides powerful proofing capabilities [57]. However, the problem formalization is a tedious

and meticulous work that is very susceptible to errors.

The symbolic model, also referenced as the Dolev-Yao model [58], uses an abstraction of

the protocol execution and captures the protocol behavior through a derivation of a language

of algebra terms where the exchanged messages are symbolic terms. Since this model deals

with abstractions, the security primitives are assumed to be perfect black boxes [57]. This

makes the symbolic model not as sound as the computational model, but its formalization
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is much less tedious and error prone. The symbolic model also makes it possible to build

automatic verification tools.

The two models have evolved through the years and a considerable amount of e↵ort

was made in developing methodologies that would capture the best of each model. The

first attempt to unite the computational and the symbolic approaches is found at [59]. In

order to combine the two approaches, the authors propose that secrecy properties proved

using a symbolic model are considered as true in the computational model. This way, one

could achieve benefits of the latter by using the model construction advantages of the first.

The result is the possibility of building automatic proofs of protocols in the computational

model [60].

E↵orts attempting to bridge the gap between the two models resulted into the Com-

putational Soundness Approach and the Direct Approach. Computational soundness is the

approach first suggested at [59]. It assumes an adversary with control of the communication

channel and able to capture any message. The main concern is to identify the conditions

where equivalent symbolic messages are also computationally equivalent. In contrast, the

direct approach uses logics with semantics or symbolic calculi to design proof-rules that

are computationally sound [55]. The logics are not complete and the calculi provides just a

high-level cryptography construction but they are powerful enough to prove several security

properties according to the security notions described at the beginning of this section.

Besides the model, security protocol analysis is also evaluated according to the proof

method and the boundedness used [61]. The proof method may be Model Checking or

Theorem Proving. Model Checking is a form of algorithmic verification that seeks for known

flaws at the protocols while Theorem Proving reduces verification to proving theorems

in first-order logics. The boundedness is related to the number of messages used by the

adversary at a replay attack. The proofer is bounded if it is not capable of considering

replay attacks and unbounded otherwise.

Numerous tools have been built implementing di↵erent approaches. Figure 2.9 was

extracted from [61] and provides some examples of tools and the corresponding classification.
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Figure 2.9: Automated Security Protocols Proof Tools.

The use of automated security protocols proof tools to seek for flaws at the design phase

of a protocol is a good practice advised at ISO/IEC 29128:2011 [62]. The choice of the tool,

however, depends on how the protocol was designed and the kind of security notion adopted.

For instance, CryptoVerif is a good choice for protocols that do not require formal proof and

are being designed with new cryptographic algorithms [63]. Although the use of this tool

is tedious and time consuming, the user benefits from a tool that tests the entire protocol,

including the cryptographic algorithms, and provides security guaranties about polynomial-

time attacks. However, if the guaranty is required against any type of attack, a Theorem

Proving tool like Isabelle/HOL is indicated, although much more tedious, meticulous and

time consuming [64]. In both cases, specific programming languages are used to code the

tested protocol according to the environment of tool.

The key management protocol that will be proposed by this dissertation will not use new

cryptographic algorithms. Therefore, it is reasonable to consider this algorithms as black

boxes and, in consequence, it is su�cient to test only the main steps of the protocol. In this

case, a symbolic model checking tool is indicated to verify the protocol. The SCYTHER

tool will be used to test the proposed protocol due to its friendlier interface, larger support
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community, and higher number of publications when compared against the other available

choices [65].
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Chapter 3: CMIDS

This chapter presents the Collaborative MANET Intrusion Detection System (CMIDS) as

a solution for the research problem posed in Section 1.2, which is to detect passive adver-

saries who successfully obtained access to MANETs. The first step towards understanding

the CMIDS is to establish a distinction between its two key interrelated components: (i)

the framework for developing secure MANETs; and (ii) the intrusion detection system that

supports it. The first comprises the architecture designed to fulfill the capabilities and the

requirements that fit the problem scope and enable the improved IDS. The latter lever-

ages the architecture to detect passive intruders by adopting particular technologies in a

synergistic fashion.

The following of this chapter presents the basic premises adopted by CMIDS, the design

characteristics that di↵erentiate CMIDS from other intrusion detection systems, and the

explication of its architecture.

3.1 CMIDS Premises

The proposed CMIDS Framework addresses the problem of how quickly and e�ciently

identify an intrusion into a mobile network. It was developed under two main premises.

First, it assumes an adversary having access to the network. The second premise is that

modifications to the mobile network are not allowed. This means that the solution will not

be able to (1) replace or even modify the routing protocol, (2) increase the CPU processing

at any network node, or (3) incur in any kind of overhead to the network tra�c. These

premises may be seen as very restrictive, but they are truly necessary to make the solution

compatible with the current implementations of tactical networks, especially those used in

military applications.
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The adversary under the first premise is powerful enough to have access to the mobile

network. It may be an authentic node captured by the enemy and turned into an adversary,

it may be a new node using stolen credentials, or it may even be a rogue user. In common,

all these types of adversary need to keep a minimal safety distance from the other network

nodes to perform the attack without being captured. No further distinctions were made

between the adversary types. That is, the only considerations in this work resulting from

the first premise are the fact of an adversary having access to the mobile network and will

keep a safety distance from other network nodes.

The second premise addresses legacy systems. It was meant to ensure the solution is

compatible with existing MANETs, instead of imposing restrictions that could only be

applicable to new ones. This is especially significant when considering that many already

existing MANETs would not be capable of adopting a solution that did not follow the

second premise, such as those for which modifications would be technically or commercially

unfeasible due to certification or technology issues. For instance, some tactical nodes such

as aircraft need to be re-certified before adopting a new equipment or even a new protocol -

a time consuming and expensive process. Other examples include network nodes that could

not a↵ord modifications impacting the time to process messages and the equipment battery

life.

3.2 Design Characteristics of CMIDS

Along the design of CMIDS some decisions about the following aspects were taken:

• Data source

• Detection method

• Processing strategy

• Time of detection

• Environment
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• Architecture

• Adversary type

• Reaction and alert

The data source aspect is related to the information available to CMIDS. The data could

be captured by the node running CMIDS or it could be collected from the network. CMIDS

uses both: data collected by its own and by other nodes. It is also important to notice that

CMIDS uses two type of source data. The first type is the self-position data announced by

each tactical node. The second type are the emissions from the tactical network captured

by each CMIDS node. The emissions’ information are shared between the CMIDS nodes

during the position estimation process of the tactical nodes.

The detection method aspect comprehends the technique used by the engine of CMIDS

to detect an adversary. It could be a misuse-based technique, a specification-based tech-

nique, or an anomaly-based technique. The latter was excluded as an option because is

too computational demanding and not recommended to power restricted nodes of CMIDS.

The misuse technique only detects adversaries actively attacking the MANET and is not

indicated to detect passive attacks. CMIDS uses specification-based technique. Although

it requires extra development e↵ort to specify the correct behavior of the tactical nodes, it

can be used to detect passive attacks and it is not as much CPU demanding.

The processing strategy adopted by CMIDS is distributed. As mentioned before, each

node captures emissions from the tactical network, processes it, and then shares the related

information with other nodes.

The proposed IDS constantly listens the environment seeking for new emission and after

processing and sharing it, CMIDS uses detection algorithms to detect intruders. It means

that CMIDS is capable of detecting on-line adversaries because every time a new data is

captured CMIDS updates its situational awareness and verifies if the MANET is under a

passive attack.

The network protected by CMIDS is a MANET. In consequence, CMIDS must be able
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to operate on a mobile wireless environment without infrastructure. It also implies that

centralized architecture is not appropriate. In a centralized architecture, the detection de-

cision is made on a fixed location, but in a distributed architecture, the detection decision

is made at several locations. Considering the MANETs nature in which the nodes arrange-

ment is constantly changing and the disconnections are frequent, centralized architecture

could cause the isolation of the decision maker and the inability to detect passive attacks.

CMIDS is designed to detect passive attacks performed by an adversary with high level

of advantage according to the first premise. This powerful adversary is an internal intruder

that has already joined the mobile network. It can be a rogue user, an adversary using

stolen credentials, or an adversary using stolen equipment. Although powerful, the one

thing this adversary can not do is to mimic the movements of a tactical node performing

legitimate actions according to the mission. Taking as an example a capture the flag mission

as represented at Figure 3.1, the adversary must keep a safe distance in order to not be

recognized by the tactical nodes and it is prevented from moving directly to the flag location.

CMIDS Node

Tactical Node

Objective

Direction of 
Moviment

A Adversary

C

F

F

FF
C

C

C A

Figure 3.1: Capture the Flag Scenario.
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Although particular to scenarios containing attrition between distinct forces, like the

ones used by law enforcement teams and military, the mission represented at Figure 3.1

contains several common aspects to tactical scenarios that use MANETs. For instance, like

in emergency situations, search and rescue missions, or natural disaster events, the tactical

nodes must move from one location to other, messages are exchanged between them to

coordinate the mission, there are di↵erent possible routes, no infrastructure is available,

and a delimited area of action is imposed.

The type of reaction is another aspect that must be treated by an IDS. An active

reaction means the IDS is able to adopt procedures to block the attack. Therefore, CMIDS

would have to interface with the tactical node which contradicts the second premise. The

alternative is to adopt a passive reaction. When a CMIDS node detects a intruder it emits

an alert to every other CMIDS node but does not block the intruder. Although the alert

does not contains any countermeasures, this alert can be used to trigger a third-party system

responsible to disable the intruder.

All these design decisions define the type of intrusion detection system CMIDS is and a

classification system is needed to position CMIDS in the context of the subject on IDS.

Taxonomies are used to classification purposes and it was observed during the design

of CMIDS the nonexistence of a taxonomy covering all the important aspects related to

the research problem. In order to fulfill this gap, a new IDS Taxonomy is proposed at this

dissertation. It facilitates the understanding of the architecture of CMIDS and how it is

related to other existing intrusion detection systems.

The taxonomy presented in [7] and [9] covers the most important aspects used to di↵er-

entiate intrusion detection systems from each other but they are not complete. The work

of [7] does not capture the reaction and alert features of an IDS while the work of [9] does

not consider how the intruder type a↵ects an IDS.

The joint taxonomy build from the work of these authors is used to classify CMIDS and

is depicted in Figure 3.2. From the taxonomy it can be seen that CMIDS is an on-line,

hybrid, distributed, wireless, specification based IDS without countermeasures detecting
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internal adversaries.
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Alert
With Countermeasure

Without Countermeasure

Figure 3.2: Highlighted Intrusion Detection Taxonomy of CMIDS.

It was observed that the second premise influenced the kind of reaction adopted by

CMIDS. According to the taxonomy, CMIDS is a passive IDS and does not interface with

the MANET. CMIDS is able to receive information from the tactical network but is not

allowed to send information to it. This is referenced in this dissertation as a non-intrusive

behavior.

The non-intrusive behavior is also noticed in the choice of the platform used to run

CMIDS. To adhere to the second premise, CMIDS uses a distinct wireless network. This

secondary network uses sensors to capture the emissions from the MANET turning the

former on a Wireless Sensor Network. The captured data is shared between the sensors

nodes and multilateration is used to estimate the geographic location of the tactical nodes.

The WSN nodes are also used to run the detection algorithms and they are distributed

in the tactical scenario in the same way as the nodes from the tactical network, but not

necessarily at the same positions.
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Although CMIDS supports several types of arrangement of the network nodes, it is

designed focusing on mesh and hybrid topologies, which are very common in tactical sce-

narios. Figure 3.3 shows an example of a possible topology combining the tactical and

the sensor networks. The tactical node is a regular node of the tactical network while the

sensor node is a regular node of the sensor network. The hybrid classification of a node is

not related to the taxonomy used to classify CMIDS. The hybrid node is a tactical node

able to carry a sensor node of the sensor network. In this case, both nodes share a common

mobile platform, such as a vehicle, but work independently from each other, meaning that

no modification is imposed to the tactical network. The use of hybrid nodes are desirable

for two reasons. First, it uses the available room of the platform to hold the sensor and,

as a consequence, the position of the tactical node holding the sensor does not need to be

evaluated using the position estimation feature. Second, the presence of a sensor close to

the tactical nodes avoids the case of having a group of tactical nodes out of the range of

the sensor network.

It is outside the scope of the CMIDS Framework specification to define the exact amount

of sensors that are needed. This would cause unnecessary technical constraints and likely

incur in suboptimal solutions, since there are many scenario dependent variables influencing

this requirement, such as network size, distance between nodes, radio frequencies used,

topology, vegetation, local attenuation, and so forth. Instead, the CMIDS specification

defines five as the minimum number of sensors. Although only four of these are really need

to properly calculate the tactical nodes position, an extra sensor is used (i) as contingency,

(ii) to fulfill casual communication disconnections, and (iii) to prevent the sensor network

from splitting.

As mentioned before, CMIDS is positioned as a specification based IDS. The specifica-

tions and constraints describe the correct network operation. It uses the nodes’ real position

as input to look for misbehaving nodes that are reporting a location that is not consistent

with the multilateration results, are showing mobility patterns not compatible with its ca-

pabilities, or are not acting in accordance with the mission plan. The mobility patterns are
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Sensor Node

Tactical Node

Hybrid Node

Sensor Network

Tactical Network

Figure 3.3: CMIDS Network Topology.

checked using the kinetic envelope built by CMIDS. Basically, the kinetic envelope is a set

of the possible positions a node can reach from its current position in a certain amount of

time. The reached positions must be consistent with the capabilities of the node, terrain

and elapsed time. There are four detection specifications defined by CMIDS:

1. broadcastLocation
nodeID

 |estimatedLocation
nodeID

� ✏|

✏: multilateration error

2. speed
nodeID

 maxSpeed
nodeID

3. speed
nodeID

 maxSpeed
embarkationID

4. estimatedLocation
nodeID

2 designatedV olume
nodeID

Specification 1 declares that the broadcast position of a tactical node must be inside the
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interval defined by the estimated position and the related multilateration error. Specifica-

tion 2 checks if the speed of a tactical node is less or equal to the maximum speed of the

node according to the terrain at the estimated position. Specification 3 performs the same

verification as the former specification but to the case when the tactical node is embarked

in another node. Specification 4 verifies if the tactical node is located at a valid position

according to the mission plan.

The CMIDS Framework uses true position information of each tactical node to detect

intrusions. In order to acquire the true geographic position, the CMIDS implementation

uses the emissions’ time of arrival (TOA) at di↵erent sensors as multilateration input. This

approach is convenient to scenarios that mix ground and airborne nodes, as pointed in

[47]. According to the authors, using a proper amount of sensors and measurements of the

time di↵erence of arrival (TDOA) between su�cient TOA measurements would result in

significant improvements to the estimation accuracy of the tactical nodes position. But the

sensors are usually static which is not the case of CMIDS sensors. They are mobile and

the distance between them change along the time. So, in order to evaluate the position

estimation error of CMIDS, I conducted some simulation experiments using the software

MATLAB. The source code of the program that calculates the CMIDS position estimation

error is at Appendix F and uses part of the work of [66].

A tactical scenario using the simulation tool VR Forces [21] was designed and the po-

sition of the tactical nodes, sensors nodes, and hybrid nodes of a hundred simulation runs

were saved and then loaded into the program coded using MATLAB to calculate the posi-

tion estimation error. The simulation varied the sensor’s TOA measure accuracy from 95%

to 98% with a precision variability normally distributed as N(0,1). The maximum distance

between any two nodes was 7 km and it made use of 3 hybrid (collocated) nodes or none.

Figure 3.4 shows the simulation results of the position estimation error of CMDIS according

to the TOA measures accuracy and the number of hybrid (collocated) nodes used. The 95%

accuracy is conservative when compared to the 99.93% used at the work of [47] but it was

chosen for the sake of caution.
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Figure 3.4: Simulated CMIDS Position Estimation Error.

The results summarized at Figure 3.5 show that the use of hybrid nodes improves the

position estimation by reducing the multilateration error. Furthermore, the error also re-

duces when the TOA accuracy is improved. From the simulation results it is noticed that

the worst position estimation mean error is 8.36 meters and it occurs when a 95% accuracy

and no hybrid nodes are used. The best position estimation mean error is 3.29 meters

and is obtained when a 98% accuracy and three hybrid nodes are used. As a consequence,

CMIDS uses a position estimation error tolerance of 10 meters, which is su�ciently small

to encompass the worst case scenario because just 2% of the position estimation measures

are greater than this threshold.

The proposed taxonomy classifies the CMIDS alert as without countermeasures but it

does not mean the alert messages cannot be used by other IDS. The CMIDS Framework
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Figure 3.5: CMIDS Multilateration Mean Error.

supports other existing intrusion detection systems already deployed at the mobile network

thought the use of a module responsible for translating messages from distinct IDS. From a

System of Systems Engineering (SoSE) standpoint, this newly formed system should avoid

a breach of security at a subsystem level threatening the entire System of Systems (SoS)

[67]. This implies the existence of several networks that must securely exchange messages to

prevent cyber attacks from one to the other. Although the IDS message translation module

is part of the CMIDS framework design, it is left outside the development scope because its

implementation would not a↵ect the hypothesis verification of this research.

Still on the subject about the security of the IDS itself against attacks, advanced ap-

proaches were considered to enhance the security of CMIDS. For instance, it was studied the

use of physical layer schemes that provide identification assurance such as radio equipment

fingerprints identification [68]. This approach uses the fact that channel responses of wire-

less transmissions are location-specific in multipath environments. The channel frequency

responses for di↵erent paths are not correlated if the paths are more than one wavelength

distant. In consequence, it is very hard for the adversary to spoof another node identity.
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Unfortunately, this approach does not work well with mobile nodes because the channel

frequency response for the same pair of nodes changes while the nodes move.

In order to enhance the security level of the IDS, CMIDS uses the same intrusion de-

tection engine on both Tactical Network and Sensor Network. But the second premise does

not apply to the WSN and countermeasures are used to block compromised sensor nodes.

The blocking is performed by a hybrid key management protocol. The advantages of this

type of protocol were discussed in Chapter 2 and includes a good trade-o↵ between the use

of the public key scheme (more secure and CPU demanding) to define the session key and

the symmetric key scheme (less CPU demanding) used during the session. The details of

the designed key management protocol are in the Session 3.3.

3.3 Architecture

The CMIDS architecture is a consequence of the design characteristics discussed at Sec-

tion 3.2. In summary, the architecture must present appropriate components to capture

emissions from the tactical network, to share data between CMIDS nodes, to perform mul-

tilateration, to calculate the kinetic envelope, to detect an intrusion, and to emit alerts.

Figure 3.6 represents the architecture of CMIDS. The wireless sensor network is used

as the platform to run CMIDS. Each sensor node runs the same code and performs the

same activities. Figure 3.7 brings the detailed architecture of CMIDS, while Figure 3.8

represents the high-level pseudo-code of the main routine running on each sensor node. Both

sensor node types (hybrid nodes and sensor nodes) carry the same structure, and therefore

must process the information acquired from the two networks. Each sensor node shares the

wireless emissions information captured from the environment with the Sensor Network and

evaluates its own belief on the tactical nodes’ position. The CMIDS Engine receives the

tactical nodes informed position that propagates through the Tactical Network and checks

it against the real position calculated using multilateration at the Sensor Network. This

procedure identifies obvious discrepancies between the reported and the actual position,

which is an indication of a possible adversary trying to spoof a genuine tactical node.
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Another possible attack uses captured tactical nodes to gain illegal access to the Tactical

Network. These nodes have unusual behavior related to their movements since the adversary

must get out of the range from friend troops. A predictive location algorithm inside the

Engine evaluates if the node movement is in accordance to its physical capabilities, terrain

description, embarkation opportunities, and mission plan. Each sensor node is able to emit

an alert to other sensor nodes.
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Figure 3.6: CMIDS Architecture.

It is important to notice the existence of two di↵erent contexts on Figure 3.7 although it

represents the architecture and the functions performed by the CMIDS nodes. The leftmost

box belongs to the tactical network context and represent the kind of external information

exchange supported by the framework. The remaining boxes represent the functions and

the data handled by the CMIDS nodes. The proper way to better understand it is to read

both Figure 3.8 and Figure 3.7 together. Line 2 of the algorithm represents the listening to

the environment step and it gathers information from di↵erent sources according to boxes
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Figure 3.7: CMIDS Architecture at each Sensor Node.

”Traditional IDS”, ”Tactical Nodes Position System”, ”Wireless Scan”, and ”Status Scan”.

The information serves as input to the algorithm as pictured at the box ”Collaborative IDS

Engine” and it is processed according to its source at lines 4, 9, and 11. If the information

comes from a tactical node, the CMIDS node broadcasts it to all the others sensor nodes

as showed at the box ”Wireless Information” and the lines 5 to 7. But if the position

information comes from a sensor node, it is used but not broadcast as indicated at line 10.

The same behavior is verified at line 12 when the information is an alert emitted by another

CMIDS node. In order to determine the position of tactical nodes, the algorithm performs

multilateration using its own position and the saved information as indicated at lines 3 and

13, and illustrated at ”Node True Position Algorithm”. Lines 14 to 19 are performed by the

ellipse ”Intrusion Detection Algorithm” which in turn uses the other ellipse ”Node Possible
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nodes and sensor nodes) carry the same structure, and therefore
must process the information acquired from the two networks.
Each sensor node shares the wireless emissions information
captured from the environment with the Sensor Network and
evaluates its own belief on the tactical nodes’ position. The
CMIDS Engine receives the tactical nodes informed position
that propagates through the Tactical Network and checks it
against the real position calculated using multilateration at the
Sensor Network. This procedure identifies obvious adversaries
trying to spoof proper tactical nodes. Another possible attack
uses captured tactical nodes to gain illegal access to the Tac-
tical Network. These nodes have unusual behavior related to
their movements since the adversary must get out of the range
of the friend troops. A predictive location algorithm inside
the Engine evaluates if the node movement is in accordance
to its physical capabilities, terrain description, embarkation
opportunities, and mission plan. Each sensor node is able to
emit an alert to other sensor nodes, or even to other intrusion
detection systems.
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Fig. 3. CMIDS Architecture

It is important to notice the existence of two different
contexts on Figure 3 although it represents the architecture
and the functions performed by the CMIDS nodes. The two
leftmost boxes belong to the tactical network context and
represent the kind of external information exchange supported
by the framework. The remaining boxes represent the functions
and the data handled by the CMIDS nodes. The way to
better understand it is to read both Algorithm 1 and Figure
3 together. Line 2 of the algorithm represents the listening to
the environment step and it gathers information from different
sources according to boxes ”Traditional IDS”, ”Tactical Nodes
Position System”, ”Wireless Scan”, and ”Status Scan”. The
information serves as input to the algorithm as pictured at the
box ”Collaborative IDS Engine” and it is processed according
to its source at lines 4, 9, 11, and 13. If the information comes
from a tactical node, the CMIDS node broadcasts it to all the
others sensor nodes as showed at the box ”Wireless Informa-
tion” and the lines 5 to 7. But if the position information comes
from a sensor node, it is used but not broadcast as indicated
at line 10. The same behavior is verified at line 12 when the
information is an alert emitted by another CMIDS node. In
order to determine the position of tactical nodes, the algorithm
performs multilateration using its own position and the saved
information as indicated at lines 3 and 15, and illustrated at

”Node True Position Algorithm”. Lines 16 to 20 are performed
by the ellipse ”Intrusion Detection Algorithm” which in turn
uses the other ellipse ”Node Possible Position Algorithm” at
line 19. Alerts are created every time an intrusion is detected at
lines 18 and 20 and broadcast at the sensor network as pictured
by the single box ”Alerts”.

Algorithm 1: CMIDS Sensor Algorithm
1 while true do
2 capture(ei) //ei is a wireless emission;
3 Li � getSensorCurrentLocation();
4 if comesFromTacticalNetwork(ei) then
5 Ei � extractParameters(ei); // e.g., time,

sender, destination, payload

6 updateTacticalNodesInformation(Ei, Li);
7 broadcastToSensorNetwork(Ei, Li);
8 else if comesFromSensorNetwork(ei) then
9 if isSensorBroadcastedEmission(ei) then

10 (Ei, Li)�extractBroadcastedInformation(ei)
updateTacticalNodesInformation(Ei, Li)

11 else if isAlert(ei) then
12 Ai � extractAlertInformation(ei)

updateTacticalNodesInformation(Ai)
13 performMultilaterationWithSavedInformation();
14 if broadcastedLocationAtTime[t] !=

realLocationAtTime[t] then
15 Ai � createAlert(tacticalNode)

broadcastToSensorNetwork(Ai)
16 else if realLocationAtTime[t] not inside

kinectEnvelope(t � 2, t � 1) then
17 Ai � createAlert(tacticalNode)

broadcastToSensorNetwork(Ai)
18 else if realLocationAtTime[t] not inside

designatedVolumes then
19 Ai � createAlert(tacticalNode)

broadcastToSensorNetwork(Ai)

IV. TEST AND EVALUATION

The test and evaluation of the proposed IDS was conducted
through a simulation of a capture the flag mission, in which
the blue forces must get inside a small building located at
a village under control of the red forces. The simulation was
designed to replicate the action (e.g., movement of the troops),
the data network supporting the action (e.g., communication
between troops), as well as the physical characteristics of that
network (e.g., timing and propagation issues between wireless
nodes). In order to meet the requirements for simulating this
environment within the level of resolution necessary to draw
valid conclusions on the performance of the CMIDS, we opted
for using three distinct simulation tools. First, the tactical
scenario was conceived and implemented using MÄK VR-
Forces platform [17], which provides an accurate, physics-
grounded simulation environment as well as good mobility
models for ground troops. The other two simulation tools,
CORE [18] and EMANE [19], were needed to simulate the
data communications network and to implement the CMIDS.
CORE is a network simulation tool focused on layer 3 of the
Open Systems Interconnection (OSI) model, while EMANE is
a real-time simulator of link and physical layers designed to

Figure 3.8: CMIDS Sensor Algorithm.

Position Algorithm”. Alerts are created every time an intrusion is detected at lines 15, 17,

and 19 and broadcast at the sensor network as pictured by the single box ”Alerts”.

Figure 3.9 shows the simplified activity diagram of CMIDS. It illustrates the functions

performed during an iteration of the main routine loop according to the type of emission

received. The diagram provides further details not covered at the high-level pseudo-code.

For instance, the multilateration is only performed if the su�cient amount of TOA informa-

tion from other sensors is available. Otherwise, the iteration ends (final node of the activity

diagram) and the loop restarts (initial node of the activity diagram). The details about a
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received alert are provided later in this chapter.

Each sensor node shares the wireless emissions information captured from the environ-

ment with the Sensor Network and is able to emit an alert to other sensor nodes. As

reviewed earlier in Chapter 2, the protocols used to exchange messages should be carefully

designed, and automated security protocols proof tools should be used to avoid design flaws

in the exchange protocol as well as vulnerabilities to attacks.

Furthermore, CMIDS also uses a hybrid key management protocol to enhance the se-

curity of the WSN. In reality, CMIDS monitors the tactical and the sensor networks and is

able to issue alerts concerning intruders on both networks. But the WSN is created with

CMIDS and is not subject to the second premise. In consequence, it is possible to create

countermeasures related to an intrusion detection in the WSN. When an alert is issued, all

the sensor nodes save the identity of the intrusion node and no further communication is

done with the compromised sensor node.

The communication blockage is easily and quickly implemented because the messages

in the WSN are encrypted at the application layer using a unique session key for every pair

of sensor nodes. Once a node receives an alert, it saves the intrusion identification, revokes

the current session key (if any), and does not establish new connection in the future.

This approach is feasible because the design of CMIDS results in a relatively small

number of sensors to achieve the intended coverage, therefore reducing the likelihood of

scalability issues. It allows CMIDS to substitute broadcast messages by multiple unicast

messages. The communication between two neighbor nodes is performed through a public

key scheme to establish the symmetric key that is used to exchange information. The key

expiration time is defined at the same opportunity. It is important to notice that the public

and private keys of each sensor node are generated during the initial configuration phase of

the Sensor Network while it is under complete control of a certification authority.

The main objective of using two di↵erent security schemes with the proposed key man-

agement protocol is to implement the blockage mechanism used as a countermeasure fea-

ture of CMIDS and to use a less demanding encryption scheme during the communication

48



C
ap

tu
re

 E
m

is
si

on

Sa
ve

 N
od

e 
Po

si
tio

n 
In

fo
rm

at
io

n 
Br

oa
dc

as
t

Br
oa

dc
as

t I
nf

or
m

at
io

n 
to

 S
en

so
r N

et
w

or
k

Sa
ve

 N
od

e 
Po

si
tio

n 
In

fo
rm

at
io

n 
Br

oa
dc

as
t

[b
ro

ad
ca

st
 fr

om
 th

e
Ta

ct
ic

al
 N

et
w

or
k]

[b
ro

ad
ca

st
 fr

om
 th

e
Se

ns
or

 N
et

w
or

k]

Sa
ve

 N
od

e 
ID

 to
 

Ba
ni

sh
ed

 L
is

t

[a
le

rt 
fro

m
 th

e
Se

ns
or

 N
et

w
or

k]

Es
tim

at
e 

Po
si

tio
n 

us
in

g 
M

ul
til

at
er

at
io

n

[e
no

ug
h 

am
ou

nt
of

 in
fo

rm
at

io
n]

Ve
rif

y 
C

ur
re

nt
 

N
ei

gh
bo

rs
Te

rm
in

at
e 

C
on

ne
xi

on

[n
ei

gh
bo

r
be

lo
ng

s 
to

Ba
ni

sh
ed

 L
is

t]

[a
m

ou
nt

 o
f

al
er

ts
 <

 th
re

sh
ol

d]

[e
ls

e]

[e
ls

e]

A

A

Ve
rif

y 
An

no
un

ce
d 

Po
si

tio
n 

an
d 

Es
tim

at
ed

 P
os

iti
on

Ve
rif

y 
Sp

ee
d 

C
ap

ab
ilit

y 
Ac

co
rd

in
g 

to
 T

er
ra

in

Ve
rif

y 
Em

ba
rk

at
io

n 
C

ap
ab

ilit
y

Ve
rif

y 
D

es
ig

na
te

d 
Ar

ea

[e
qu

al
]

[d
iff

er
en

t]

Br
oa

dc
as

t A
le

rt 
M

es
sa

ge
 to

 S
en

so
r 

N
et

w
or

k

[in
 a

cc
or

da
nc

e]

[n
ot

 in
ac

co
rd

an
ce

]

[e
m

ba
rk

ed
]

[n
ot

 e
m

ba
rk

ed
]

Ve
rif

y 
Pl

at
fo

rm
  

Sp
ee

d 
C

ap
ab

ilit
y 

Ac
co

rd
in

g 
to

 T
er

ra
in

[in
 a

cc
or

da
nc

e]

[n
ot

 in
ac

co
rd

an
ce

]

[in
si

de
]

[o
ut

si
de

]

[e
ls

e]

F
ig

u
re

3.
9:

S
im

p
li
fi
ed

D
et

ec
ti

on
A

ct
iv

it
y

D
ia

gr
am

.

49



Detect New 
Neighbor

Verify Neighbor 
ID

Establish 
Session Key

Verify Neighbors 
Banished List

[not banished]

[banished]

Figure 3.10: Key Establishment Activity Diagram.

between any two nodes of CMIDS. The public key scheme provides the privacy and the nec-

essary authenticity check to verify the identity of the nodes starting a new communication.

If an alert has been issued regarding one of the nodes before the start of the communi-

cation, the other one do not continue the key negotiation and terminates the connection

before establishing a session key. Figure 3.10 shows the activities performed during the key

establishment. But if a node receives an alert regarding other node with whom the com-

munication has been established before, the node increments the number of alerts received

about the neighbor and terminates the connection if the number is greater than the thresh-

old, revokes the current session key, and mark the other node to avoid future connections.

The latter sequence is illustrated at Figure 3.9.

One list and two tables are maintained by each sensor node. The first table contains

information about the public keys of all other nodes of the Sensor Network while the second

table contains the information about the shared keys between the sensor node and its neigh-

bors. The list contains the nodes that have been compromised and labeled as adversaries.

The field numberOfAlerts is used to evaluate the belief that a node is an adversary and to

avoid an attack from an adversary inside the sensor network. The data structure details

50



are as follows:

• Public Key Table - A table with two fields

hnodeId, publicKeyi

• Neighborhood Table - A table with three fields

hnodeID, sharedKey, keyExpirationT imei

• Banished Nodes List - A list of all known adversaries

hnodeID, numberOfAlertsi

During the operation phase of the Sensor Network, every time a node detects a new

neighbor it starts the key establishment protocol. The first step is to verify the nodeID

using asymmetric cryptography and the Public Key Table. Once the identification has been

verified by both sensor nodes, they check against each Banished Node List to verify if the

other node is a known adversary. The next step is to agree on a new shared key. This is

done using a signed variant of the Di�e-Hellman protocol, which has been shown to improve

the security [69]. The new shared key and its expiration time are saved at the Neighborhood

Table. Figure 3.11 illustrates the main steps of the key establishment protocol. Variables

ni, nr and s are nonces1 used to support the handshake and the key establishment. On the

other hand, although the variables a and b are also nonces used to support the protocol,

they are never exchanged between the sensor nodes. Instead, they are used as input to a

function and the output is loaded into the messages. The end result of this approach is that

both sensor nodes are capable of agreeing on a common key without having full knowledge

of a and b.

The proposed protocol may be seen as the concatenation of two security schemes with a

checking procedure in the between. Although secure schemes are used, it is still necessary to

check the new protocol against design flaws. The check must provide guaranties regarding

privacy, authenticity, and integrity. As discussed at Section 2.5, protocols not using new

1nonce is short for ”number used once”. It is an arbitrary freshly created number used only once in a
security protocol.
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Initial Handshake and Banishment Verification

New Symmetric Key Establishment

SensorNode_A SensorNode_B

SensorNode_A SensorNode_B

{ni, Idt_A}pk(B)

{ni, nr, Idt_B}pk(A)

SensorNode_A SensorNode_B

SensorNode_A SensorNode_B

{nr, Idt_A}pk(B)

{s, g^a mod p, Idt_A}pk(B)

Idt_B is confirmed

Idt_A is confirmed

Perform banished node verification

Perform banished node verification

SensorNode_A SensorNode_B{s, g^a mod p, g^b mod p, Idt_B}pk(A)

SensorNode_A SensorNode_B{s, g^b mod p, Idt_A}pk(B)
Calculates new key
K = (g^b mod p)^a
   = g^(ab) mod p

Calculates new key
K = (g^a mod p)^b
   = g^(ab) mod p

Figure 3.11: Key Establishment Protocol.

cryptographic algorithms may benefit from symbolic model checking tools. They provide

security assurance for specific claims and are less tedious, less meticulous and less time

consuming when compared against cryptographic and theorem proving tools.

The SCYTHER protocol verification tool [65] was chosen among existing symbolic model

checking tools due to its extensive documentation, friendly interface, large support com-

munity, and high number of publications. The tool is used to test the proposed key estab-

lishment protocol of CMIDS. SCYTHER proves the security properties of a protocol using

claim events. Each claim is related to a security property like privacy, authenticity, and

integrity. A claim event analyzes if a agent (network node) can be sure about some property

of the global state of the system based on the messages it receives (local view).
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Fours claims defined by SCYTHER are used to check the key establishment protocol of

CMIDS: secret claim, non-injective synchronization claim, non-injective agreement claim,

and session-key reveal claim. The secret claim (Secret) is related to the privacy property and

states that an information is not revealed to an adversary even when an insecure network is

used. The non-injective synchronization claim (Nisynch) is related to authenticity property.

It ensures that the protocol is executed exactly as it is supposed to be executed. The non-

injective agreement claim (Niagree) is related to integrity property. It ensures that the

nodes running the protocol agree on the values of variables. At last, the session-key reveal

claim (SKR) is a variant of the secret claim used to additionally mark a variable of interest

as a session key. It states that the variable of interest is not revealed to an adversary but

the auxiliary variables used to calculate it can be revealed to the adversary.

The source code used to model the protocol using the SCYTHER tool can be found at

Appendix A. It creates two main roles: one regarding the node that starts the communi-

cation, role I at line 30, and one that receives the new communication request, role R at

line 60. The third role created at line 12 does not correspond to a third node participating

on the key establishment protocol. Actually, this third role belongs to the definition of the

exponential function using modular arithmetic starting at line 9. Each role I and R per-

forms three steps: banished node verification step, key establishment step, and claims step.

Taking the role I as example, the code sequence from line 32 to line 39 defines the variables

and the messages used to start the communication and check the identity of the node. The

verification if the node belongs to the Banished Nodes List is performed at line 38. The key

establishment is performed from line 41 to line 49. It corresponds to the implementation

of the messages regarding the signed variant of the Di�e-Hellman protocol. The last step

is the definition of the claims being tested. Line 53 and line 54 test if privacy is achieved

during the banished node verification step while line 55 and line 56 test if authenticity and

integrity are achieved, respectively. Line 57 tests if the established session key is secret.

Similar steps are implemented to the role R.

It is important to observe that the test result of the security claims at roles I and R
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can be di↵erent. The main idea of a claim event is locality. It means that a variable can

be considered secret for a node performing role I but not to the node performing role R

because the nodes have di↵erent local views of the global state of the system. A security

property is only achieved if the claim is verified at both nodes.

Figure 3.12 shows the verification results of the tool for both sensor nodes A and B. Here,

node A played the initiator role I while the node B played the receiver role R. The results

confirm the protocol is immune to attacks. The confirmation of the secret claims for the

support variables ni and nr shows they are kept in secret from the adversary. The following

claims, Niagree and Nisynch, attest the protocol is executed exactly as it was designed and

both sensor nodes agree on the values of the variables. At last, the confirmation of the SKR

claims proves a new secret shared key was established between the parties.

Figure 3.12: Protocol Security Verification at Scyther.
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In this chapter I presented the Collaborative MANET Intrusion Detection System

(CMIDS) as a solution for the research problem. I described the premises shaping the

concept of CMIDS and discussed the design characteristics adopted. I presented alternative

design options and the arguments supporting my choices. I presented the taxonomy I cre-

ated to classify and to position CMIDS in the context of the subject on IDS. I also explained

the architecture I created and implemented to verify the thesis hypothesis. I proposed a new

key management protocol that incorporates a countermeasures mechanism used to block

intruders at the CMIDS network. At last, I used a security verification tool to test the

security of the proposed key management protocol. All these achievements needs to tested

and evaluated in order to verify if they solve the problem of detecting passive adversaries

who successfully obtained access to MANETs. The next chapter uses simulation to test

and evaluate the CMIDS.
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Chapter 4: Test and Evaluation

An IDS designed for MANETs, as mentioned earlier in this work, is a concept for which no

specific implementations exist yet. This novelty poses significant challenges on its evalua-

tion, as well as the fact that an actual implementation of the framework is neither practical

nor part of the scope of this research. Therefore, computer simulations are used to test and

evaluate the CMIDS performance and the contributions claimed by this research. This ap-

proach is consistent to a vast body of literature its use for systems similar to CMIDS. As an

example, [19] advises employing computer simulations to assess models in which one finds:

i) complex systems with many random variables and interacting components with nonlin-

ear relationships; ii) interdependence between resources and system elements; iii) systems

that need visual animation of the output. These are all present in CMIDS. Simulation also

has some advantages when compared against the real implementation of the system during

a first analysis procedure. For instance, simulation studies consume less time to produce

results, are more cost e↵ective, provide enhanced control of the system variables, are safer,

usually scale better, and can stress the system in scenarios that would not be possible to

replicate in the real world [20].

In addition to using simulation as its main approach, the CMIDS evaluation has an im-

portant requirement that is not commonly seen in regular network IDS evaluations. More

specifically, the research hypothesis being tested requires assessing whether the intruder was

capable of performing damaging acts to the network. In order to quantify the intruder’s

inflicted damage, the evaluation must include an assessment on how much his or her ac-

tions were capable of impacting the mission supported by the MANET. As a result of this

requirement, a key aspect of the experimental design adopted in this evaluation was that,

contrary to most data network evaluation experiments, it aimed for assessing not only the

data network characteristics but also their impact on a tactical mission relying on it.
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In summary, the CMIDS evaluation requires a simulation environment capable of sim-

ulating the operational domain and the communication domain. Unfortunately, any open

source simulation tool with this capability was available by the time of this dissertation

and, as a consequence, I developed a testbed to evaluate CMIDS. The testbed uses three

existing simulation tools, MÄK VR-Forces platform [21], CORE [22], and EMANE [23],

and its architecture is depicted at Figure 4.1.

Testbed Environment

Simulation Manager

Operational Domain

MÄK VR Forces

In
te

rfa
ce

Communication & Cyber Domain

Metrics Manager

- Weather
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- Nodes
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AlertsScenario
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Metrics Collector
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Attack
Generator
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Lua Script

Lua Script
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C/C++
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Order
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Excel Worksheets

Third-party
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Figure 4.1: Testbed Developed to Evaluate CMIDS.

The test and evaluation of the proposed IDS was conducted through a simulation of a
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capture the flag mission, in which the Blue forces (allies) must get inside a small building

located at a village under control of the Red forces (adversaries). Although the simulated

scenarios are an illustration of military operations, the characteristics of both civilian and

military missions as mobility, equipment configuration, and weather conditions are tested.

The simulation was designed to replicate the action (e.g., movement of the troops), the

data network supporting the action (e.g., communication between troops), as well as the

physical characteristics of that network (e.g., timing and propagation issues between wireless

nodes). In order to meet the requirements for simulating this environment within the

level of resolution necessary to draw valid conclusions on the performance of the CMIDS,

three distinct simulation tools had to be used. First, the tactical scenario was conceived

and implemented using MÄK VR-Forces platform, which provides an accurate, physics-

grounded simulation environment as well as mobility models for ground troops that are

precise enough for the goals of this evaluation. Figure 4.2 shows some captured screens

from the simulated scenario implemented at VR Forces. The other two simulation tools,

CORE, and EMANE, were needed to simulate the data communications network and to

implement the CMIDS. CORE is a network simulation tool focused on layer 3 of the Open

Systems Interconnection (OSI) model, while EMANE is a real-time simulator of link and

physical layers designed to emulate mobile ad hoc networks. Both tools are supported by

the U.S. Naval Research Laboratory (NRL).

An important aspect of choosing CORE is its capacity of running executable code.

CMIDS is coded using the C language (source code at Appendix D), and CORE works by

running lightweight Linux virtual machines to simulate the network nodes. This setup allows

for running CMIDS without any modifications, which proved to be a key positive aspect

in the experiments. Each simulated node of the WSN is able to run the implementation of

CMIDS without modification of the source code of the proposed IDS. This allows to test

the same implementation of CMIDS that would be used in a real scenario.

Two computers were used at the simulation setup: one was used to run the simulated

scenarios at VR-Forces and the other one was used to run the network simulation tools
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Figure 4.2: Simulated Scenario implemented at VR Forces.

CORE and EMANE, and to run the CMIDS. CORE’s ability to run executable code was

also used to run part of the interface application built to exchange messages between VR-

Forces and EMANE tools. The interface was designed as a modular application, with one

module running along VR-Forces at the primary computer and the other module running

along CORE at the secondary computer. These modules of the same interface system

exchange messages using UDP packages and integrate VR-Forces to CORE and EMANE.

Scripted tasks coded in Lua [70] were developed to allow VR-Forces to interface with the

modules. The modules were coded using C++ language and built using Qt [71] , a cross-

platform software development environment. The use of Qt was required to allow the same

code to be compiled to the Windows machine running VR-Forces and also to the Linux
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virtual machines running CORE. The scripted tasks and the source code of the modules

interface are in Appendix C.

The interface uses two types of message: position location message; and mission order

message. The former is used to send and receive the position information of the nodes.

The latter is used to send and receive orders exchanged between tactical nodes. The UDP

payload size varies according to the message type and usually consumes 34 bytes. The

message fields are described in the following.

• Position Location Message Payload

hNEM, latitude, longitude, altitudei

• Mission Order Message Payload

hNEM, orderType, objectType, objectIDi

The NEM field is the unique identification number of each simulated node. The order-

Type field contains the order name and can be a movement or a disembark order. The

objectType field specifies the type of object handled by the order and can be a wait area,

a way point, or an entity (tactical node). The objectID field contains the name of the

simulated object. A few examples are provided for each message type in the following while

Figure 4.3 shows thu GUI built to monitor the Position Location Messages tra�c.

• Position Location Message Payload

(4, 47.577131636, -122.129702752, 2)

• Mission Order Message Payload

(2, move-to, waitArea, Area 2)

(5, move-to, waypoint, Waipoint 6)

(1, disembark-entity, entity, Soldier 3)

The simulation setup used 12 di↵erent configurations of the scenario. The distinguish

between them is made according to the presence of rain, starting point of the Blue forces,

and equipment radio frequency used. Table 4.1 shows the possible combinations. For all
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Figure 4.3: Position Location Message GUI.

configurations the simulated scenario was limited to a squared area having 7 kilometers of

size.

The purpose of having di↵erent configurations of the same scenario is to capture the

variables that could a↵ect the e�cient of CMIDS and impact the mission. The criteria used

to chose the variables was the influence they have on military and civilian missions. The

objective is to evaluate CMIDS in the most common environments it would be applicable

to.

The rain variable is considered binary in the simulation. A scenario can be sunny or

rainy. For the latter, it was considered a heavy rain rate of 50 mm/h. The reason for

choosing this extreme environment is to be able to capture how sensitive is CMIDS to rainy

weather condition.
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Table 4.1: Scenario configurations.

CONFIGURATION WEATHER RADIO EQUIPMENT
INITIAL

DISTRIBUTION

1 sunny military distribution A

2 sunny military distribution B

3 sunny military distribution C

4 sunny civilian distribution A

5 sunny civilian distribution B

6 sunny civilian distribution C

7 heavy rain military distribution A

8 heavy rain military distribution B

9 heavy rain military distribution C

10 heavy rain civilian distribution A

11 heavy rain civilian distribution B

12 heavy rain civilian distribution C

Three di↵erent starting points for the Blue forces are used during the simulation. Al-

though the routes to reach the objective point of the capture the flag mission are random

and chosen by the simulation engine of VR-Forces, I chose to use di↵erent starting points

to enhance the variability of the simulation. Another configuration used with the same

purpose is to modify the seed number of the pseudo-random algorithm of VR-Forces for

each simulation run.

The simulation setup also used two distinct radio equipment configurations. The objec-

tive is to test the performance of CMIDS in MANETs with di↵erent range and throughput.

A typical military radio equipment configuration was used during the first simulation stage

while a commercial o↵-the-shelf (COTS) radio equipment configuration typical of civilian

use was utilized during the second simulation stage. The main di↵erence between the config-

urations is the used radio band. The former configuration used very high frequencies (VHF)

centered at 108 MHz. The latter configuration used ultra high frequencies (UHF) centered
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at 2.4GHz. As a consequence, the military radio configuration provides much longer com-

munication range between the tactical nodes compared to the COTS radio configuration.

The trade-o↵ is the higher network tra�c throughput acquired with the COTS radios.

The number of simulated Blue forces nodes was chosen according to the typical size of

a tactical team. Using the platoon size for military missions as a reference, the tactical

team size varies approximately from 20 to 50 nodes [72]. Unfortunately, due to limitations

of processing capacity of the hardware used to simulate the scenarios, I simulated 24 Blue

forces nodes and 5 CMIDS nodes, making a total of 29 virtual machines at CORE. This

amount of simulated nodes consumed all the resources available.

The three most common types of attacks to MANETs were performed during the sim-

ulation: eavesdropping, denial of service (DoS), and packet dropping [73]. These attacks

are common to both civilian and military scenarios. The adversary launched attacks at

distinct moments of the simulation from an unmanned aerial vehicle (UAV). During the

eavesdropping phase, the adversary learns the Blue Force target location and informs the

Red troops about the assault. Figure 4.4 shows the activities performed during the eaves-

dropping attack. The adversary captures packages during 35 seconds and the decides to

attack the node receiving the largest amount of packages. Then, one of the remaining two

attacks are launched. During the DoS phase, the adversary tries to delay the Blue forces

by injecting extra tra�c to the network, which allows for more time to the Red troops for

reacting to the assault. The packet dropping phase is more sophisticated. It assumes that

either the adversary was able to capture a tactical node or that it is a rogue node. In both

cases, the adversary pretends to be a reliable tactical node but silently discards packets

instead of forwarding them according to the MANET protocol. To be more realistic, every

attack stops 20 seconds after been detected by an IDS. The reason is that, although the

IDSs used at the simulation do not have countermeasures, in the real world a detection alert

would generate a reaction performed by an external entity.

The packet drop attacks were performed using the blackhole technique, while the DoS

attacks were accomplished using application layer DoS attacks targeted to specific tactical
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Figure 4.4: Eavesdropping Attack Activity Diagram.

nodes. This type of DoS attack was chosen instead of network layer DoS attack because

the former requires less resources than the latter [74].

In order to support the decision about the type of DoS that should be used during

the simulation, I decided to test both types of attacks. Figure 4.5 shows the tra�c at the

attacked node when using the application layer DoS. The dashed line represents the regular

tra�c of the tactical network while the solid line is the DoS attack performed during 10

seconds at 3 distinct moments. The application layer DoS attack launched from one enemy

node was successful and required a packet rate of approximately 1.2 ⇥ 105 packet/s. In

contrast, the network layer DoS attack using ping flooding technique was not successful

when launched from one enemy node. Even a distributed denial of service (DDoS) using

the same ping flooding technique and launched from two enemy nodes was not successful.

Therefore, it is reasonable to assume that at least three enemy nodes would be required to

be successful. But three nodes represents more than 10% of the simulated nodes and no

further investigation was made about using network layer DoS because the hardware used

to simulate the scenarios was already operating at the limit of its capacity. The choice of

using application layer DoS attacks allows a greater number of simulated nodes and, at the

same time, do not interferes with the evaluation of the impact of the attack in the mission

supported by the network.

The background tra�c of the Tactical Network was modeled according to the tra�c

patterns captured during real missions of the Brazilian Army while using the software of

command and control C2 em Combate. The corresponding simulated tra�c was generated
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using the software MGEN [75] and several flows were required to replicate the real tra�c

behavior. The position announcement performed by each tactical node was treated as

separated flows and not included to the general background tra�c. This tra�c contains

the actual position information of the nodes simulated at VR-Forces and are exported to

CORE and used by CMIDS. Two programs were written using C language to capture this

behavior. One was responsible for broadcast the node position while the other one was

responsible for capturing it. The complete source code for the background and position

announcement tra�c are at Appendix E.

emulate mobile ad hoc networks. Both tools are supported by
the Naval Research Laboratory (NRL).

An important aspect of choosing CORE is its capacity of
running executable code. CMIDS is being coded using the
C language, and CORE works by running lightweight Linux
virtual machines to simulate the network nodes. This setup
allows for running CMIDS without any modification, which
proved to be a key positive aspect in our experiments.

Two distinct radio equipment configurations were used
during the simulation. A military radio equipment config-
uration was used during the first simulation stage while a
commercial off-the-shelf (COTS) radio equipment configura-
tion was used during the second simulation stage. The main
difference between the configurations is the used radio band.
The former configuration used very high frequencies (VHF)
centered at 108 MHz. The latter configuration used ultra high
frequencies (UHF) centered at 2.4GHz. As a consequence, the
military radio configuration provides much longer communi-
cation range between the tactical nodes compared to the COTS
radio configuration. The trade-off is the higher network traffic
throughput acquired with the COTS radios.

Three types of attacks were performed during the sim-
ulation: eavesdropping, denial of service (DoS), and packet
dropping. The adversary launched attacks at distinct moments
of the simulation from an unmanned aerial vehicle (UAV).
During the eavesdropping phase, the adversary learns the Blue
Force target location and informs the Red troops about the
assault. Then, one of the remaining two attacks are launched.
During the DoS phase, the adversary tries to delay the Blue
forces by injecting extra traffic to the network, which allows
for more time to the Red troops for reacting to the assault. The
packet dropping phase is more sophisticated. It assumes that
either the adversary was able to capture a tactical node or that
it is a rogue node. In both cases, the adversary pretends to be
a reliable tactical node but silently discards packets instead of
forwarding them according to the MANET protocol.

The packet drop attacks were performed using the black-
hole technique, while the DoS attacks were accomplished
using application layer DoS attacks targeted to specific tactical
nodes. We chose this type of DoS attack instead of network
layer DoS attack because the former requires less resources
than the latter [20]. Figure 4 shows the traffic at the attacked
node. The dashed line represents the regular traffic of the tac-
tical network while the solid line is the DoS attack performed
during 10 seconds. In order to be successful, our DoS attack
required a packet rate of approximately 1.2 ⇥ 105 packet/s.

Besides CMIDS, the experiments included two other IDS,
Watchdog [10] and SNORT [21], which were used to pro-
vide the baseline performance level and associated metrics
against which CMDIS were compared. Providing a fair basic
performance level for comparison that is both representative
of the current state of the art in MANET IDS, as well as
relatively easy to replicate in a simulation, was a major concern
driving our choices. As mentioned in Section 2, just a few
IDS designed for MANETs are available, and the majority
of them use invasive techniques that require modifications to
the network - which is outside the premises we defined for
CMIDS. We chose Watchdog because it is used by the most
important IDS solutions designed to MANETs [14]. It detects
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Fig. 4. Example of traffic captured at sensor node

malicious nodes misbehavior related to package forwarding
procedures of the routing protocol. We coded the watchdog
algorithm to build our own watchdog-based IDS and used it
against the eavesdropping and blackhole attacks. Our watchdog
IDS implementation continuously listens the environment with
the network interface in promiscuous mode and it emits an
alert if a tactical node fails to forward more than 10 packets
in less than one minute. The other chosen IDS, SNORT, was
elected due to its popularity and capacity of running in both
host-based and network-based modes, although it was not
primarily conceived for MANETs. We used SNORT against
eavesdropping and DoS attacks with an additional rule to
detect tactical nodes sending more than 5.0 ⇥ 103 packet/s.

The complete simulation roadmap is as follows. The sce-
nario is loaded to VR-Forces and data is exported using back-
ground scripted tasks written in Lua [22] to CORE+EMANE
running CMIDS and SNORT. Then, the data is processed
and the resulting metrics are used as input to VR-Forces to
conclude the experiment.

Although CMIDS is not an intrusion prevention system
(IPS), in order to have a more realistic simulation it was
assumed the blue forces were equipped with weapons capable
of eliminating threats similar to the UAV used by the adversary
once an alert is issued by an IDS. Further, we assumed that
after 60 seconds the threat would be eliminated, thus no attack
to the data network could be performed after this period.

For the experiments reported in this paper, the key metrics
used to evaluate the CMIDS were False Discovery Rate and
Time to Detect the Attack, although we also looked at the
Killed-In-Action (K.I.A.) rate and the Mission-accomplished
rate. Another relevant metric computed was the Package Deliv-
ered rate, an output from CORE that was input to VR-Forces,
thus impacting how the operation evolves over time. Table I
contains the description of each metric.

The current experiment was designed to run and collect
data from 400 simulation rounds for both radio equipment
configurations.

Figure 4.5: Example of tra�c captured at sensor node.

Besides CMIDS, the experiments included three other IDS, Watchdog [12], SNORT

[76], and SURICATA [77], which were used to provide the baseline performance level and

associated metrics against which CMDIS were compared. Providing a fair basic performance

65



level for comparison that is both representative of the current state of the art in MANET

IDS, as well as relatively easy to replicate in a simulation, was a major concern driving

the experimental design choices. Just a few IDS designed for MANETs are available, and

the majority of them use invasive techniques that require modifications to the network

- which is outside the premises defined for CMIDS. Watchdog was chosen because it is

used by the most important IDS solutions designed to MANETs [16]. It detects malicious

nodes misbehavior related to package forwarding procedures of the routing protocol. In

order to attain a baseline IDS system suitable to the networks used in the experiment, I

used the watchdog algorithm to build a custom, watchdog-based IDS and used it against

the eavesdropping and blackhole attacks. This watchdog IDS implementation continuously

listens to the environment with the network interface in promiscuous mode1 and it emits

an alert if a tactical node fails to forward more than 10 packets in less than one minute.

The other two chosen IDS, SNORT and SURICATA, were selected for this experiment

due to their popularity and capacity of running in both host-based and network-based

modes, although they were not primarily conceived for MANETs. They were used against

eavesdropping and DoS attacks with an additional rule to detect tactical nodes sending

more than 5.0 ⇥ 103 packet/s. This threshold is the minimum safe value to avoid detecting

burst tra�c as a DoS attack.

Although CMIDS is not an intrusion prevention system (IPS), in order to have a more

realistic simulation it was assumed the Blue forces were equipped with weapons capable

of eliminating threats similar to the UAV used by the adversary once an alert is issued by

an IDS. Further, we assumed that after 60 seconds the threat would be eliminated, thus

no attack to the data network could be performed after this period. This assumption was

based on the author’s own experience while working on projects to integrate systems of

command and control, field artillery and close air support.

1Promiscuous mode is a mode of the network interface adapter that disables the link layer filter and
causes all tra�c to be forwarded to the network layer rather then passing only the tra�c it is intended to
receive
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The key metrics used to evaluate the CMIDS are False Discovery Rate and Time to De-

tect the Attack, although the Killed-In-Action (K.I.A.) rate and the Mission-accomplished

rate are also important to understand the impact of the IDS on the mission. Another rel-

evant metric computed is the Package Delivered rate, an output from CORE that is used

at VR-Forces, thus impacting how the operation evolves over time. Table 4.2 contains the

description of each metric.

Table 4.2: Evaluation Metrics Description

Metric Description

False Discovery Rate

It is the ratio between the number of alerts emitted

when the adversary is not performing an attack

and the number of total alerts emitted.

Time to Detect the Attack

It is the amount of time between the beginning

of the attack and the issuing of an alert.

It will be infinity in case the IDS

does not detect the attack.

K.I.A. Rate

It is the ratio between the number

of blue forces soldiers killed during

the simulation and the total number

of blue forces soldiers.

Mission-accomplished Rate

It is the ratio between the number

of successful missions and the total number

of simulated missions.

Package Delivered Rate

It is the ratio between the number

of data packages that do not reach

their final destination and the number

of data packages sent by the sources.

The complete simulation roadmap is as follows. The scenario is loaded to VR-Forces and

the nodes’ position information data is captured using a background scripted task written in

Lua, which calls the interfaces modules written in C++ to export the position information

data to CORE and EMANE simulation tools running CMIDS, Watchdog, SNORT and

SURICATA. Then, each node broadcast its own position to the other nodes inside the

CORE+EMANE environment and the package delivered rate is calculated. Finally, the
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PDR is used by a script at VR-Forces to adjust the progression speed of the nodes towards

its objective (flag position).

The experiment was designed to run and collect data from a total of 2400 simulation

rounds for all the simulated scenarios. The time cost to run all the rounds was approximately

400 hours, or almost 17 contiguous days. The description of the computers used during the

simulation is detailed at Table 4.3.

Table 4.3: Specifications of the Computers Used at the Simulation Setup

SPECIFICATIONS COMPUTER #1 COMPUTER #2

Simulation Tool VR-Forces 4.4 CORE 4.8 + EMANE 0.9.2

Operation System Windows 10 64 bits Ubuntu 14.04.1 64 bits

Processor Intel Core i7-6700HQ 2.6 GHz Intel Core i7-3667U 2.0 GHz

Memory 16 GB DDR4 2133 MHz 8 GB DDR3 1600 MHz

Storage SSD internal HDD 5400 RPM USB 3.0

Graphic Card NVIDIA GeForce GTX 970M Intel HD Graphics 4000

It is worthy to notice that VR-Forces has specific requirements concerning the graphic

card. In order to work, the version 4.4 of VR-Forces requires a NVIDIA graphic card.
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Chapter 5: Discussion

This Chapter presents and discuss the performance results obtained during the simulation

phase of the research. The discussion of the 12 simulated scenarios is organized according

to the type of radio equipment used. As will be presented, this is the variable that has

the greatest impact on the simulation results. Section 5.1 analyzes the simulation results

obtained using a military radio configuration, while Section 5.2 provides a similar analysis

for civilian radio configuration. Section 5.3 provides the attack and detection timeline for

both configurations.

5.1 Military Radio Equipment Configuration

To better understand the core aspects of the experiment, this discussion begins highlighting

the use of a military radio equipment configuration with the chosen scenario, which led to

a network with single-hop behavior. The tactical nodes were directly connected most of

the time and did not make use of intermediate nodes to forward the packages that could

not be sent directly to its final destination. As a consequence, a blackhole attack would be

ine↵ective because the tactical nodes would not be used to forward packages. Therefore,

neither the watchdog IDS nor the blackhole attacks were part of the experiments with this

radio configuration.

The other peculiarity of the setup using military radio configuration is the impact of noise

due to rain attenuation. No relevant impact was noticed on the network performance, even

when submitted to heavy rain. This observed fact is in accordance with the rain attenuation

model proposed by the Radiocommunication Sector of the International Telecommunication

Union (ITU) [78]. The used radio frequencies are not high enough to su↵er from relevant

attenuation when considered the maximum node distances of ten kilometers allowed at the
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scenario.

The simulation results when using military radio configuration are summarized in Table

5.1. The performance of Snort and Suricata are very similar and therefore no distinctions

between them are made during the discussion.

Table 5.1: Summarized Performance Metric (Military Radio Configuration)

METRIC CMIDS SNORT/SURICATA1

FDR 0.8% 0%

TDA 10.1 s 36.3 s

PDR 94.3% 77.4%

MAR 100% 100%

KIA rate 0.0% 8.7%

The first performance metric discussed is the false discovery alert rate and it is de-

picted in Table 5.2. CMIDS was capable of identifying the adversary along all attacks,

while attaining false discovery rate of just 0.81%. In contrast, Snort and Suricata had a

performance that seems much better at first but it is not. The 0.0% of false discovery rate

of Snort and Suricata seams impressive but hidden is the fact that these intrusion detec-

tion systems were only able to detect the adversary while performing the DoS attack. It is

also important to observe that the DoS attack was easily detected because the number of

packages used is much higher than the usual background tra�c. Because of that, the FDR

number of CMIDS provides more value. Nevertheless, although small, the false discovery

rate of CMIDS still has a great impact on the Blue forces. It means that for every 125 alerts

emitted, one would turn a Blue force node into a target. Thus, a secondary confirmation

mechanism is needed to avoid friendly fire.

The main cause of the false discovery rate obtained by CMIDS is related to the maximum

position error adopted during the simulation trials. One of the mechanisms CMDIS uses

1Results for the Snort/Suricata are only related to DoS attacks.
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to detect an adversary is to compare the position announced by each tactical node against

the position calculated using multilateration. If the di↵erence between these two positions

exceeds a predefined threshold then CMIDS emits an alert. The problem is related to

the communication between VR-Forces and CORE. Every node announces the position

provided by VR-Forces at every simulation tick but the multilateration mechanism uses

the emissions provided by CORE. This characteristic of the simulation model prevents the

clocks to perfectly synchronized. Due to the computer process scheduling nature, the clock

synchronization varies along time in an unpredictable way. The adopted 10 meters threshold

is quite fair for ground troops but it is occasionally not enough to validate legitimate nodes.

For instance, a 0.4 second di↵erence between the clocks would lead a 11 meters position

error for a node moving at 100 km/h, which exceeds the threshold. I am confident that

once the synchronization issue between VR-Forces and CORE is solved, the false discovery

rate obtained by CMIDS will drop but future work is still necessary to find out how much

it will.

Table 5.2: False Discovery Rate (Military Radio Configuration)

STATISTICS CMIDS SNORT/SURICATA1

Average 8.1 ⇥ 10�3 0.0

Standard deviation 7.2 ⇥ 10�4 0.0

Variance 5.2 ⇥ 10�7 0.0

The second performance metrics analyzed is also related to the emitted alerts. CMIDS

took 10.11 seconds on average to identify an attack and emit an alert while Snort and

Suricata took 36.31 seconds. This result is even better when we consider the fact that the

system was also capable of identifying passive attacks (e.g. eavesdropping). In contrast,

Snort and Suricata did not identify the adversary during its eavesdropping attacks. That

1Results for the Snort/Suricata are only related to DoS attacks.
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is, although they presented a 0.0% false discovery rate, it let the enemy to learn about the

Blue forces transmissions and, as a consequence, to start the denial of service attack. Table

5.3 shows CMIDS metrics for time to detect an attack.

Table 5.3: Time to Detect an Attack (Military Radio Configuration)

STATISTICS CMIDS SNORT/SURICATA1

Average 1.01 ⇥ 101 3.63 ⇥ 101

Standard deviation 7.0 ⇥ 10�1 6.9 ⇥ 10�1

Variance 5.0 ⇥ 10�1 4.8 ⇥ 10�1

The network disturbance caused by the attacks is now analyzed. Considering the pre-

viously stated assumption on the Blue forces ability to terminate an attacker within 60

seconds after an alert is emitted, CMIDS was able to diminish the impact of the DoS at-

tacks. This happened because an alert was emitted during the passive phase of the attack,

thus allowing the system to provide a timely response. That is, the adversary was still able

to start the active attack, but not with the same e↵ectiveness it would have if the alert was

not issued. More specifically, the package delivery rate in this case was 94% when using

CMIDS. Snort and Suricata presented a worse result because they were not able to identify

the adversary during the passive attack phase, thus allowing for a much more e↵ective DoS

attack by the adversary that resulted in a greater impact on the Blue forces network. The

results showed a 77% of package delivery rate when using these intrusion detection systems.

The communication disturbance at the network when not using CMIDS a↵ected the

situational awareness of the Blue forces, forcing a delay at the execution of some operational

activities. As a result, the Red forces had more time to respond to the Blue forces assault,

which caused an increase on the Blue forces K.I.A. rate but not a decrease on the mission-

accomplished rate. When CMIDS was used, the K.I.A. rate was 0% and the mission-

accomplished rate was 100%. In contrast, using SNORT and SURICATA, the K.I.A. rate

was 8.67% but the mission-accomplished rate remained 100%. At first glance this result

1Results for the Snort/Suricata are only related to DoS attacks.
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may be intriguing because the mission-accomplished rate was not a↵ected by the increase

of the K.I.A. rate. The explanation for this lies in the Blue forces’ arrangement. One of

its groups’ formation has shown to be more susceptible to network disturbance and lost

more nodes, although the mission was still accomplished. These results clearly suggest that

CMIDS provided an increase in the e↵ectiveness of the Blue forces resulting in no loss of

human lives.

5.2 Civilian Radio Equipment Configuration

For the second simulation setup, a typical COTS radio equipment configuration was used,

and it led to a more dynamic multi-hop network. The tactical nodes were not able to be

directly connected to each other in many occasions, so intermediate nodes were used by the

routing protocol.

In contrast to the setup using military radio configuration, in the COTS configura-

tion the impact of noise due to rain attenuation was clearly noticeable. According to the

rain attenuation model proposed by the Radiocommunication Sector of the International

Telecommunication Union (ITU) [78], the specific attenuation � is obtained from the rain

rate R (mm/h) using Equation 5.1. The coe�cients k and ↵ are calculated according to

Equations 5.2 and 5.3, respectively.
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Although very subtle, the rain attenuation of 0.063 dB was imposed to the rainy scenarios

but no significance di↵erence was noticed in the simulation results. The rain attenuation

value was obtained after the evaluation of the above equations considering a rain rate of 50

mm/h and vertical polarization of the antennas. As explained at the introduction of this

Chapter, the results discussed incorporate the sunny and rainy scenarios.

The simulation results when using COTS radio configuration are summarized at Table

5.4. Once again, the performance of Snort and Suricata was very similar and no distinctions

between them were made during the discussion.

Table 5.4: Summarized Performance Metric (COTS Radio Configuration)

METRIC CMIDS SNORT/SURICATA1 WATCHDOG2

FDR 0.3% 0% 47%

TDA 21.1 s 71.7 s 95.5 s

PDR 79.9% 71.6% 68.0%

MAR 100% 84% 68%

KIA rate 8.3% 46.6% 67.3%

CMIDS was capable of identifying the adversary along all three types of attacks launched

against the tactical network, while attaining false discovery rate of just 0.30% as depicted

in Table 5.5. Although this rate is lower than the one from the first simulation setup, a

statistical Paired t-Test was conducted to evaluate if the di↵erence between the metrics is

significant. The test is formulated as follows.

1Results for the Snort/Suricata are only related to DoS attacks.
2Results for the Watchdog are only related to Packet Dropping attacks.
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FDR Paired t-Test:

• The FDR on the military setup and on the COTS setup are independent;

• The di↵erence between these measures are also independent;

• The point estimator � is the sample mean D;

• The null hypothesis is H0 : � = 0;

• The significance level is ↵ = 0.05; and

• The test statistic is t = D�0
SD

/

p
n
.

The test statistic t proved to be greater than the percentage point of t-Distribution

for 199 degrees of freedom with significance level at 0.05. This indicates there exists a

statistically meaningful di↵erence between the two results. In other words:

t = 7.748 > t199,↵ = 1.658

H0 is rejected

The above result clearly suggests that CMIDS shows an improved false discovery rate

when running on a network with COTS radio configuration.

Although the FDR results were improved in this configuration, a secondary confirmation

mechanism is still needed to avoid friendly fire as suggested before for the military radio

setup. Similarly to the rationale used in assessing the impact of FDR for the military radio

configuration, in the COTS configuration results for every 334 alerts emitted by CMIDS,

one would turn a Blue force node into a target.

Concerning the time to detect an attack metrics, CMIDS took 21.1 seconds on average
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Table 5.5: False Discovery Rate (COTS Radio Configuration)

STATISTICS CMIDS SNORT/SURICATA1 WATCHDOG2

Average 3.0 ⇥ 10�3 0.0 4.7 ⇥ 10�1

Standard deviation 5.3 ⇥ 10�4 0.0 1.3 ⇥ 10�2

Variance 2.8 ⇥ 10�7 0.0 1.7 ⇥ 10�4

to identify an attack and emit an alert. This result is not as good as previously obtained

because the multilateration procedure took more time to estimate the tactical nodes loca-

tion. In fact, the tactical nodes transmissions have a shorter range when typical COTS

radio equipment are used instead of military ones. Therefore, each sensor captures less

transmissions from the tactical network, and becomes more dependent of the wireless infor-

mation broadcast by other sensors. Since the necessary emissions information used for the

multilateration procedure takes longer to be available at each sensor, the time to detect an

attacker is also higher. Table 5.6 shows CMIDS metrics for time to detect an attack.

Table 5.6: Time to Detect an Attack (COTS Radio Configuration)

STATISTICS CMIDS SNORT/SURICATA1 WATCHDOG2

Average 2.115 ⇥ 101 7.172 ⇥ 101 9.551 ⇥ 101

Standard deviation 1.637 5.349 2.217

Variance 2.679 2.861 ⇥ 101 4.915

Snort and Suricata did not identify the adversary during its eavesdropping attacks and

let the enemy to launch a more e↵ective denial of service attack. The di↵erence of perfor-

mance between CMIDS and these two IDS in detecting the attacks is reflected at the level

1Results for the Snort/Suricata are only related to DoS attacks.
2Results for the Watchdog are only related to Packet Dropping attacks.
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of network disturbance. More specifically, the package delivery rate when using CMIDS

was 79.9%, while SNORT and SURICATA only achieved a 71.6% rate.

The Watchdog IDS presented the worse performance between the three intrusion detec-

tion systems used at this stage. Its false discovery rate was 47 % and the package delivery

rate was 68%. The high false discovery rate is explained by the limited transmission power

of the tactical nodes when compared against the area they are deployed. This characteristic

has been recognized by other researchers as one of the reasons for failure of the watchdog

scheme [13].

The impact of the tactical network disturbance at the scenario is assessed through the

K.I.A. rate and the mission-accomplished rate. When CMIDS was used, the K.I.A. rate

was 8.3% and the mission-accomplished rate was 100%. In contrast, using SNORT or

SURICATA, the K.I.A. rate was much higher, 46.6%, and the mission-accomplished rate

was 84%. The rate of lost human lives increased to almost half of the troop and around

16% of missions was not successfully completed. Lastly, Watchdog proved to be the less

suitable of the tested intrusion detection systems at this stage. When using it, the K.I.A.

rate was 67.3% and the mission-accomplished rate was barely 68%.

These results clearly suggest that CMIDS provided a substantial increase in the e↵ec-

tiveness of the Blue forces, reducing the number of lives lost in combat roughly by a 5 time

factor when compared to Snort and Suricata. Furthermore, CMIDS also allowed the Blue

Forces to successfully complete all the missions while the other IDS did not.

5.3 Overall Performance

After all simulation runs, CMIDS was able to detect 91.75% of the passive attacks, missing

just 33 attacks for every 400 passive attacks performed. Figure 5.1 represents the timeline

of the attacks. It shows a passive attack been performed and followed by an active attack 35

seconds latter. It also shows the moment that any of the attacks were detected by CMIDS,

Snort or Suricata (according to the mean time to detect an attack), and then prevented

(blocked, according to the realistic assumption of an external entity described at Chapter
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4). The results show that CMIDS prevented all active attacks at scenarios using the military

radio configuration and was able to reduce the duration of these attacks at scenarios using

civilian radio configuration.
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Figure 5.1: Attack Detection Timeline.

In summary, all the metrics and simulation results suggest that CMIDS is a substantially

improved IDS for MANETs capable of (i) detecting passive adversaries, (ii) reducing the

impact of the attack on the network tra�c, (iii) reducing the capability of an adversary to

harm the mission, and (iv) reducing the likelihood of loss of human lives at scenarios with

attrition.
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Chapter 6: Conclusions

This research presented a novel approach for addressing the problem of early identification

of passive attacks against mobile networks. It proposes a new, non-intrusive collaborative

intrusion detection system framework supporting legacy networks as well as existing IDSs.

The framework, an implementation of the system, and its experimental evaluation are

described in detail in the previous chapters of this Dissertation, while the associated source

code is provided in the appendices.

The proposed Collaborative MANET Intrusion Detection System (CMIDS) uses mul-

tilateration and predictive algorithms to identify both passive and active attacks. The

peculiarities of mobile ad hoc networks are considered and built in the CMIDS design.

The CMIDS implementation was coded in C language and may be compiled for several

platforms.

The impact of CMIDS to current operations depending on MANETs is systematically

analyzed in a typical tactical scenario. A key aspect of the experimental design adopted in

this evaluation was that, contrary to most data network evaluation experiments, it aimed for

assessing not only the data network characteristics but also their impact on a tactical mission

relying on it. This approach provided a more meaningful assessment of the advantages of

using the system within the environment it is supposed to operate.

In order to enable such evaluation, a reusable testbed was created to replicate the aspects

of the tactical scenario relevant to the operation of an IDS. The testbed is composed by

three distinct simulation tools integrated through an interface designed and built as part of

the research work.

The developed simulation model is flexible enough to support the evaluation of several

other existing intrusion detection systems, provided they have software versions for Linux

or UNIX operating systems.
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The evaluation results obtained when comparing CMIDS with baseline IDS systems,

suggest a significant improvement in the e↵ectiveness of the forces using it, with a special

emphasis on the reduced loss of life rate during combat. During the experiments conducted

in this research, CMIDS was the only intrusion detection system allowing all missions to be

successfully completed in every simulated scenario.

Although a military scenario was used to evaluate the new intrusion detection system,

CMIDS may be used at civilian scenarios like natural disaster response and epidemic disease

control. In common, these military and civilian scenarios use mobile ad hoc network to

support their operations and CMIDS performs well using both military and commercial

over-the-shelf radio equipment.

In summary, the work presented in this Dissertation extends the state of the art of

intrusion detection systems used to support tactical missions using mobile ad hoc networks

by designing and implementing a new IDS capable of detecting passive attacks, by devel-

oping new detection algorithms, and by testing and evaluating this new IDS and its impact

on the mission it is supposed to support. In the process, I also extended a taxonomy to

classify intrusion detection systems, and created a reusable simulation testbed through the

integration of three distinct simulation tools.

The results of my research enhance the capability of MANETs of being applicable in

many domains in which actions of an intruder can significantly impact the mission. Ex-

amples include various domains of application, such as law enforcement users (e.g. police

forces, specialized teams like SWAT, and others), civil defense agencies in response to natu-

ral disaster or terrorism attack, military units fighting opposing forces, and other use cases

where a regular wireless network would not be feasible to use. In all these cases, the results

of my research support the statement that the CMIDS improves the communication, reduces

the capability of an intruder to impact the mission, and does not impact the performance

of the network. In some of these use cases, the use of CMIDS would reduce the likelihood

of loss of human lives.

Due to the time constraints and the inherently tight focus of a PhD research, some
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important aspects that are directly related to CMIDS had to be left for future work. Among

these aspects, I would like to further investigate and design an improved synchronization

mechanism between the simulation tools used in this work. This would provide further

evidence confirming the substantial improvement in e↵ectiveness of MANETS, which where

observed via the performance metrics of CMIDS attained in the experiments so far. Another

area of great interest for further investigation is the assessment of the impact of CMIDS

in actual missions relying on MANETs. For instance, this can be achieved via carefully

controlled field testing during military training operations, something that requires much

more resources than those available in academia. Finally, I would also like to investigate

alternatives for improving the process of collecting and analyzing performance metrics when

using the simulation testbed. This would greatly benefit the MANET community by making

the IDS evaluation more automated, less tedious and prone to errors.
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Appendix A: Key Establishment Protocol

(Scyther Source Code)

1 /∗

2 ∗ New key es tab l i shment a f t e r

3 ∗ new neighbor d i s cove ry .

4 ∗/

5

6 // Hash func t i on s

7 hash funct ion g1 , g2 ;

8

9 // Simulat ing gˆab = gˆba

10 p ro to co l @exponentiat ion (RA)

11 {

12 r o l e RA

13 {

14 var alpha , beta , T1 ,T2 : Ticket ;

15

16 r e cv ! 1 (RA,RA, g2 ( g1 (T1) ,T2) ) ;

17 send ! 2 (RA,RA, g2 ( g1 (T2) ,T1) ) ;

18 }

19 }

20

21

22 // The p ro to co l d e s c r i p t i o n

23

24 const i d I : Nonce ; // I n i t i a t o r Node ID

25 const idR : Nonce ; // Rece iver Node ID

26 const idB : Ticket ; //Banished Node ID

27
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28 p ro to co l newNeighbor ( I ,R)

29 {

30 r o l e I

31 {

32 // banished node v e r i f i c a t i o n

33

34 f r e s h n i : Nonce ;

35 var nr : Nonce ;

36 send 1 ( I ,R, { I , ni , i d I }pk (R) ) ;

37 r e cv 2 (R, I , {ni , nr ,R, idR}pk ( I ) ) ;

38 not match ( idR , idB ) ;

39 send 3 ( I ,R, {nr , i d I }pk (R) ) ;

40

41 //key es tab l i shment

42

43 f r e s h s : Nonce ;

44 f r e s h x : Nonce ;

45 var beta : Ticket ;

46 c la im ( I , SID , s ) ;

47 send 4 ( I ,R, I , s , g1 ( x ) ) ;

48 r e cv 5 (R, I , R, s , beta , { R, s , beta , g1 (x ) , I } sk (R) ) ;

49 send 6 ( I ,R, I , s , { I , s , g1 ( x ) , beta ,R } sk ( I ) ) ;

50

51 // c la ims

52

53 c l a im i 1 ( I , Secret , n i ) ;

54 c l a im i 2 ( I , Secret , nr ) ;

55 c l a im i 3 ( I , Niagree ) ;

56 c l a im i 4 ( I , Nisynch ) ;

57 c l a im i 5 ( I ,SKR, g2 ( beta , x ) ) ;

58 }
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59

60 r o l e R

61 {

62 // banished node v e r i f i c a t i o n

63

64 var n i : Nonce ;

65 f r e s h nr : Nonce ;

66 r e cv 1 ( I ,R, { I , ni , i d I }pk (R) ) ;

67 send 2 (R, I , {ni , nr ,R, idR}pk ( I ) ) ;

68 r e cv 3 ( I ,R, {nr , i d I }pk (R) ) ;

69 not match ( idI , idB ) ;

70

71 //key es tab l i shment

72

73 f r e s h y : Nonce ;

74 var s : Nonce ;

75 var alpha : Ticket ;

76 r e cv 4 ( I ,R, I , s , alpha ) ;

77 c la im (R, SID , s ) ;

78 send 5 (R, I , R, s , g1 (y ) , { R, s , g1 (y ) , alpha , I } sk (R) ) ;

79 r e cv 6 ( I ,R, I , s , { I , s , alpha , g1 (y ) ,R } sk ( I ) ) ;

80

81 // c la ims

82 c l a im r1 (R, Secret , n i ) ;

83 c l a im r2 (R, Secret , nr ) ;

84 c l a im r3 (R, Niagree ) ;

85 c l a im r4 (R, Nisynch ) ;

86 c l a im r5 (R,SKR, g2 ( alpha , y ) ) ;

87 }

88 }
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Appendix B: MÄK VR-Forces Background Script

The VR-Forces background scripted task is used to collect, send and receive data to and

from CORE application.

File <date.bat>

1 @echo o f f

2 For / f ” tokens=2�4 de l ims=/ ” %%a in ( ’ date /t ’ ) do ( set mydate=%%c�%%a�%%b)

3 For / f ” tokens=1�2 de l ims=/:” %%a in ( ”%TIME%” ) do ( set mytime=%%a%%b)

4 echo %mydate% %mytime% > simRun . txt

File <vrfTask.lua>

1 �� This s c r i p t i s used to i n t e r f a c e VR�Forces and CORE

2

3 require ” v r f u t i l ”

4

5 ioCont ro l = �1

6 tickTime = 0

7 t i ckPe r i od = 5 . 0

8 currentName = th i s : getName ( ) ��the e n t i t y name i s supposed to be i n t e g e r

numbers

9 f i r s tRun = 0

10 simRun = ” o la2 ”

11 se rve r IP = ”172 . 1 6 . 0 . 1 ”

12 se rve rPor t = ”38001”

13

14

15 �� Cal l ed when the t a s k f i r s t s t a r t s . Never c a l l e d aga in .
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16 function i n i t ( )

17 �� Set the t i c k per iod f o r t h i s s c r i p t .

18 v r f : s e tTickPer iod ( t i ckPe r i od )

19

20 end

21

22

23 �� Cal l ed each t i c k wh i l e t h i s t a s k i s a c t i v e .

24 function t i c k ( )

25 i f f i r s tRun == 0 then

26

27 os.execute ( ” . . \\ . . \\ JeroLogs \\ date .ba t > . . \\ . . \\ JeroLogs \\ runSim�”

. . cu r r en tName . . ” . t x t ” )

28

29 ��read date

30 arquivo , msg , cod = io.open ( ” . . \\ . . \\ JeroLogs \\ runSim�” . . cu r r en tName . . ” . t x t ”

, ” r ” )

31 i f arquivo == ni l then

32 print ( ”Log f i l e openning e r r o r : ” . .msg )

33 else

34 simRun = arquivo : read ( ”∗ l i n e ” )

35 arquivo : c l o s e ( )

36 end

37

38 ��c r e t e d i r e c t o r y to save s imu la t i on f i l e s

39 os.execute ( ”mkdir . . \\ . . \\ JeroLogs \\” . .s imRun )

40

41 arquivo , msg , cod = io.open ( ” . . \\ . . \\ JeroLogs \\” . . s imRun . . ”\\Log�”

. . cu r r en tName . . ” . t x t ” , ”w” )

42 i f arquivo == ni l then

43 print ( ”Log f i l e openning e r r o r : ” . .msg )
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44 else

45 arquivo : c l o s e ( )

46 ioCont ro l = 1

47 end

48 f i r s tRun =1

49 end

50 cur rentLocat ion = th i s : getLocation3D ( )

51 currentLat = currentLocat ion : getLat ( )

52 currentLon = currentLocat ion : getLon ( )

53 cur rentAl t = currentLocat ion : getAlt ( )

54 currentLat = ( currentLat ∗ 180) /3 .14159265

55 currentLon = ( currentLon ∗ 180) /3 .14159265

56 tickTime = tickTime + 5

57

58 ��some GUI adjus tments

59 adjustedLat = ( currentLat � 0 .55059889695360 ) / 0 .00000015696123

60 adjustedLon = ( currentLon � 1 .1484430190007 ) / 0 .00000018418111

61 adjustedTime = tickTime

62 i f i oCont ro l > 0 then

63 arquivo , msg , cod = io.open ( ” . . \\ . . \\ JeroLogs \\” . . s imRun . . ”\\Log�”

. . cu r r en tName . . ” . t x t ” , ”a” )

64 i f arquivo == ni l then

65 print ( ”Log f i l e openning e r r o r : ” . .msg )

66 ioCont ro l = 1

67 else

68 os.execute ( ”c :\\ vrfMsg\\ vr fEventLocat ionSender . exe ” . . s e r v e r I P . . ”

” . . s e r v e r P o r t . . ” ” . . cu r r en tName . . ” ” . . c u r r e n t L a t . . ” ”

. . c u r r e n t L o n . . ” ” . . c u r r e n tA l t )

69 arquivo : wr i t e ( currentName. . ”\n” )

70 arquivo : wr i t e ( ad jus tedTime . . ”\n” )

71 arquivo : wr i t e ( ad j u s t edLa t . . ”\n” )
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72 arquivo : wr i t e ( ad ju s t edLon . . ”\n” )

73 arquivo : c l o s e ( )

74 ioCont ro l = 2

75 end

76 else

77 print ( ”Log f i l e i n i t e r r o r ! ” )

78 end

79 end

80

81

82 function saveState ( )

83 end

84

85

86 function l oadState ( )

87 end

88

89

90 function shutdown ( )

91 i f i oCont ro l > 0 then

92 arquivo , msg , cod = io.open ( ” . . \\ . . \\ JeroLogs \\” . . s imRun . . ”\\Log�”

. . cu r r en tName . . ” . t x t ” , ” r ” )

93 i f arquivo == ni l then

94 print ( ”Log f i l e openning e r r o r : ” . .msg )

95 else

96 ��

97 arquivo2 , msg2 , cod2 = io.open ( ” . . \\ . . \\ JeroLogs \\” . . s imRun . . ”\\Mob�”

. . cu r r en tName . . ” . t x t ” , ”w” )

98 i f arquivo2 == ni l then

99 print ( ”Log f i l e openning e r r o r : ” . .msg2 )

100 else
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101 arquivo2 : seek ( ’ s e t ’ )

102 mobName = arquivo : read ( ”∗ l i n e ” )

103

104 mobTimeActual = arquivo : read ( ”∗ l i n e ” )

105 mobLatActual = arquivo : read ( ”∗ l i n e ” )

106 mobLonActual = arquivo : read ( ”∗ l i n e ” )

107

108 mobName = arquivo : read ( ”∗ l i n e ” )

109 mobTimeNext = arquivo : read ( ”∗ l i n e ” )

110 mobLatNext = arquivo : read ( ”∗ l i n e ” )

111 mobLonNext = arquivo : read ( ”∗ l i n e ” )

112

113 mobSpeed = (math.sqrt ( (mobLatNext � mobLatActual ) ∗ (mobLatNext �

mobLatActual ) + (mobLonNext � mobLonActual ) ∗ (mobLonNext �

mobLonActual ) ) ) / t i ckPe r i od

114

115 arquivo2 : wr i t e ( ”$node ( ” ..mobName.. ” ) s e t X ” . .mobLonActua l . . ”\n” )

116 arquivo2 : wr i t e ( ”$node ( ” ..mobName.. ” ) s e t Y ” . .mobLatActua l . . ”\n” )

117 arquivo2 : wr i t e ( ”$node ( ” ..mobName.. ” ) s e t Z 0 .00 \n” )

118 arquivo2 : wr i t e ( ” $ns at ” . .mobTimeActual . . ” \”$node ( ” ..mobName.. ” ) s e t d e s t

” . .mobLonNext. . ” ” . .mobLatNext . . ” ” . .mobSpeed . . ”\”\n” )

119

120 checkEOF = arquivo : read ( ”∗ l i n e ” )

121 while checkEOF do

122 mobTimeActual = mobTimeNext

123 mobLatActual = mobLatNext

124 mobLonActual = mobLonNext

125

126 mobName = checkEOF

127 mobTimeNext = arquivo : read ( ”∗ l i n e ” )

128 mobLatNext = arquivo : read ( ”∗ l i n e ” )
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129 mobLonNext = arquivo : read ( ”∗ l i n e ” )

130 checkEOF = arquivo : read ( ”∗ l i n e ” )

131

132 mobSpeed = (math.sqrt ( (mobLatNext � mobLatActual ) ∗ (mobLatNext �

mobLatActual ) + (mobLonNext � mobLonActual ) ∗ (mobLonNext �

mobLonActual ) ) ) / t i c kPe r i od

133

134 arquivo2 : wr i t e ( ” $ns at ” . .mobTimeActual . . ” \”$node ( ” ..mobName.. ” )

s e t d e s t ” . .mobLonNext. . ” ” . .mobLatNext . . ” ” . .mobSpeed . . ”\”\n” )

135 end

136 arquivo2 : c l o s e ( )

137 end

138 arquivo : c l o s e ( )

139 end

140

141 i f t h i s : i sDes t royed ( ) then

142 os.execute ( ” echo ” . . cu r r en tName . . ” KIA ! > . . \\ . . \\ JeroLogs \\” . . s imRun . . ”\\

KIA�” . . cu r r en tName . . ” . t x t ” )

143 else

144 os.execute ( ” echo ” . . cu r r en tName . . ” Al ive ! > . . \\ . . \\ JeroLogs \\” . . s imRun . . ”

\\Alive�” . . cu r r en tName . . ” . t x t ” )

145 end

146

147 else

148 print ( ”Log f i l e i n i t e r r o r ! ” )

149 end

150 end
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Appendix C: VR-Forces/CORE Interface Source Code

The interface between VR-Forces and CORE is composed by two modules responsible to

send and receive the exchanged data. They were developed using Qt environment and each

module contains four source files.

The Send Data Module is composed by the source files vrfEventLocationSender.pro,

main.cpp, myudpclient.h, and myudpclient.cpp.

The Receive Data Module is composed by the source files vrfEventLocationReceiver.pro,

main.cpp, myudpclient.h, and myudpclient.cpp.

Send Data Module - File <vrfEventLocationSender.pro>

1 QT += core

2 QT �= gui

3 QT += network

4

5 CONFIG += c++11

6

7 TARGET = vrfEventLocat ionSender

8 CONFIG += conso l e

9 CONFIG �= app bundle

10

11 TEMPLATE = app

12

13 SOURCES += main . cpp \

14 myudpclient . cpp

15

16 HEADERS += \

17 myudpclient . h
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Send Data Module - File <main.cpp>

1 #include <QCoreApplication>

2 #include <QStr ingList>

3

4 #include <iostream>

5

6 #include ”myudpclient . h”

7

8 us ing namespace std ;

9

10 int main ( int argc , char ∗argv [ ] )

11 {

12 i f ( argc != 7) {

13 cout << ”Use : d e s t i p port number nem l a t long a l t ” << endl ;

14 e x i t (1 ) ;

15 }

16

17 QCoreApplication a ( argc , argv ) ;

18 a . setApplicationName ( ” Score Sender ” ) ;

19 QStr ingLi s t args = a . arguments ( ) ;

20 QString serverName ( args [ 1 ] ) ;

21 int s e rve rPor t = args [ 2 ] . t o In t ( ) ;

22 QString nem( args [ 3 ] ) ;

23 QString l a t i t u d e ( args [ 4 ] ) ;

24 QString l ong i tude ( args [ 5 ] ) ;

25 QString a l t i t u d e ( args [ 6 ] ) ;

26 QString msg(nem) ;

27 msg . append ( ”\n” ) ;

28 msg . append ( l a t i t u d e ) ;

29 msg . append ( ”\n” ) ;

30 msg . append ( l ong i tude ) ;
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31 msg . append ( ”\n” ) ;

32 msg . append ( a l t i t u d e ) ;

33

34 MyUDP c l i e n t ;

35 // c l i e n t . s t a r t S e r v e r ( serverName , se rverPor t ) ;

36 c l i e n t . sendUDP( serverName , serverPort , msg) ;

37

38 return 0 ; //a . exec ( ) ;

39 }
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Send Data Module - File <myudpclient.h>

1 #ifndef MYUDPCLIENTH

2 #define MYUDPCLIENTH

3

4 #include <QObject>

5 #include <QUdpSocket>

6

7

8 c l a s s MyUDP : pub l i c QObject

9 {

10 Q OBJECT

11 pub l i c :

12 e x p l i c i t MyUDP(QObject ∗parent = 0) ;

13 void sendUDP(QString , int , QString ) ;

14 void s t a r t S e r v e r ( QString , int ) ;

15 void s topServer ( ) ;

16

17 s i g n a l s :

18

19 pub l i c s l o t s :

20 void readyRead ( ) ;

21

22 p r i va t e :

23 QUdpSocket ∗ socke t ;

24

25

26 } ;

27

28 #endif // MYUDPCLIENT H
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Send Data Module - File <myudpclient.cpp>

1 #include ”myudpclient . h”

2

3 MyUDP: :MyUDP(QObject ∗parent ) : QObject ( parent )

4 {

5 socket = new QUdpSocket ( t h i s ) ;

6 }

7

8 void MyUDP: : s t a r t S e r v e r ( QString serverName , int port ) {

9 QHostAddress sender ;

10 // sender . se tAddress ( serverName ) ;

11 sender . setAddress (QHostAddress : : LocalHost ) ;

12 socket�>bind ( sender , port ) ;

13 connect ( socket , SIGNAL( readyRead ( ) ) , th i s , SLOT( readyRead ( ) ) ) ;

14 }

15

16 void MyUDP: : s topServer ( ) {

17 socket�>c l o s e ( ) ;

18 }

19

20

21 void MyUDP: : sendUDP( QString serverName , int port , QString msg)

22 {

23 QByteArray Data ;

24 Data . append (msg) ;

25

26 QHostAddress sender ;

27 sender . setAddress ( serverName ) ;

28

29 socket�>writeDatagram (Data , sender , port ) ;

30 // socke t�>writeDatagram (Data , QHostAddress : : LocalHost , por t ) ;
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31 }

32

33 void MyUDP: : readyRead ( )

34 {

35 QByteArray bu f f e r ;

36 bu f f e r . r e s i z e ( socket�>pendingDatagramSize ( ) ) ;

37

38 QHostAddress sender ;

39 quint16 senderPort ;

40

41 socket�>readDatagram ( bu f f e r . data ( ) , bu f f e r . s i z e ( ) ,

42 &sender , &senderPort ) ;

43

44 qDebug ( ) << ”Message from : ” << sender . t oS t r i ng ( ) ;

45 qDebug ( ) << ”Message port : ” << senderPort ;

46 qDebug ( ) << ”Message : ” << bu f f e r ;

47 }
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Receive Data Module - File <vrfLocRec-proj.pro>

1 QT += core

2 QT �= gui

3 QT += network

4

5 CONFIG += c++11

6

7 TARGET = vrfEventLocat ionSender

8 CONFIG += conso l e

9 CONFIG �= app bundle

10

11 TEMPLATE = app

12

13 SOURCES += main . cpp \

14 myudpclient . cpp

15

16 HEADERS += \

17 myudpclient . h
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Receive Data Module - File <vrfLocRec-main.cpp>

1 #include <QCoreApplication>

2 #include <QStr ingList>

3

4 #include <iostream>

5

6 #include ”myudpclient . h”

7

8 us ing namespace std ;

9

10 int main ( int argc , char ∗argv [ ] )

11 {

12 i f ( argc != 7) {

13 cout << ”Use : d e s t i p port number nem l a t long a l t ” << endl ;

14 e x i t (1 ) ;

15 }

16

17 QCoreApplication a ( argc , argv ) ;

18 a . setApplicationName ( ” Score Sender ” ) ;

19 QStr ingLi s t args = a . arguments ( ) ;

20 QString serverName ( args [ 1 ] ) ;

21 int s e rve rPor t = args [ 2 ] . t o In t ( ) ;

22 QString nem( args [ 3 ] ) ;

23 QString l a t i t u d e ( args [ 4 ] ) ;

24 QString l ong i tude ( args [ 5 ] ) ;

25 QString a l t i t u d e ( args [ 6 ] ) ;

26 QString msg(nem) ;

27 msg . append ( ”\n” ) ;

28 msg . append ( l a t i t u d e ) ;

29 msg . append ( ”\n” ) ;

30 msg . append ( l ong i tude ) ;
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31 msg . append ( ”\n” ) ;

32 msg . append ( a l t i t u d e ) ;

33

34 MyUDP c l i e n t ;

35 // c l i e n t . s t a r t S e r v e r ( serverName , se rverPor t ) ;

36 c l i e n t . sendUDP( serverName , serverPort , msg) ;

37

38 return 0 ; //a . exec ( ) ;

39 }
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Receive Data Module - File <vrfLocRec-myudpclient.h>

1 #ifndef MYUDPCLIENTH

2 #define MYUDPCLIENTH

3

4 #include <QObject>

5 #include <QUdpSocket>

6

7

8 c l a s s MyUDP : pub l i c QObject

9 {

10 Q OBJECT

11 pub l i c :

12 e x p l i c i t MyUDP(QObject ∗parent = 0) ;

13 void sendUDP(QString , int , QString ) ;

14 void s t a r t S e r v e r ( QString , int ) ;

15 void s topServer ( ) ;

16

17 s i g n a l s :

18

19 pub l i c s l o t s :

20 void readyRead ( ) ;

21

22 p r i va t e :

23 QUdpSocket ∗ socke t ;

24

25

26 } ;

27

28 #endif // MYUDPCLIENT H
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Receive Data Module - File <vrfLocRec-myudpclient.cpp>

1 #include ”myudpclient . h”

2

3 MyUDP: :MyUDP(QObject ∗parent ) : QObject ( parent )

4 {

5 socket = new QUdpSocket ( t h i s ) ;

6 }

7

8 void MyUDP: : s t a r t S e r v e r ( QString serverName , int port ) {

9 QHostAddress sender ;

10 // sender . se tAddress ( serverName ) ;

11 sender . setAddress (QHostAddress : : LocalHost ) ;

12 socket�>bind ( sender , port ) ;

13 connect ( socket , SIGNAL( readyRead ( ) ) , th i s , SLOT( readyRead ( ) ) ) ;

14 }

15

16 void MyUDP: : s topServer ( ) {

17 socket�>c l o s e ( ) ;

18 }

19

20

21 void MyUDP: : sendUDP( QString serverName , int port , QString msg)

22 {

23 QByteArray Data ;

24 Data . append (msg) ;

25

26 QHostAddress sender ;

27 sender . setAddress ( serverName ) ;

28

29 socket�>writeDatagram (Data , sender , port ) ;

30 // socke t�>writeDatagram (Data , QHostAddress : : LocalHost , por t ) ;
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31 }

32

33 void MyUDP: : readyRead ( )

34 {

35 QByteArray bu f f e r ;

36 bu f f e r . r e s i z e ( socket�>pendingDatagramSize ( ) ) ;

37

38 QHostAddress sender ;

39 quint16 senderPort ;

40

41 socket�>readDatagram ( bu f f e r . data ( ) , bu f f e r . s i z e ( ) ,

42 &sender , &senderPort ) ;

43

44 qDebug ( ) << ”Message from : ” << sender . t oS t r i ng ( ) ;

45 qDebug ( ) << ”Message port : ” << senderPort ;

46 qDebug ( ) << ”Message : ” << bu f f e r ;

47 }
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Appendix D: CMIDS Source Code

File <cmids.c>

1 /∗ CMIDS ∗/

2 #include <sys / types . h>

3 #include <sys / socke t . h>

4 #include <ne t i n e t / in . h>

5 #include <netdb . h>

6 #include <s t d i o . h>

7 #include <arpa/ i n e t . h>

8 #include <s t d l i b . h>

9 #include <s t r i n g . h>

10 #include <time . h>

11 #include <sys / ipc . h>

12 #include <sys /shm . h>

13 #include <math . h>

14

15 #define TAMAX 80 //Broadcast b u f f e r s i z e

16 #define NOMSG 2000 //# c o l l e c t e d msg

17 #define TICKS 240 //# t i c k s (1 per 5 sec ) in 20 minutes o f s imu la t i on

18 #define NONOD 20 //# of s imu la ted nodes

19 #define TIMEPREC 0.001 // time p r e c i s i on

20 #define LATPREC 1.000000 // l a t i t u t e p r e c i s i on (1 meter )

21 #define LONPREC 1.000000 // l on g i t u d e p r e c i s i on (1 meter )

22 #define CONFIRMED 3 //# of necessary con f i rmat ions to i s s u e an a l e r t

23

24 void e r r o r (char ∗msg) {

25 pe r ro r (msg) ;

26 e x i t (0 ) ;

27 }
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28

29 int main ( int argc , char ∗argv [ ] ) {

30 int sock , length , fromlen , n ;

31 struct sockaddr in s e r v e r ;

32 struct sockaddr in from ;

33 struct hostent ∗hp ;

34 int broadcastEnable = 1 ;

35

36 char buf [TAMAX] ;

37 char msg [TAMAX] ;

38

39 unsigned long pkgSent=0;

40 unsigned long bytesSent=0;

41

42 FILE ∗ f i l e ;

43 FILE ∗ f i l e L o c ;

44 FILE ∗ f i l eNode ;

45 FILE ∗ f i l e A l e r t ;

46 FILE ∗ f i l eM i s s i o n ;

47 FILE ∗ f i l eA l e r tLogN ;

48 FILE ∗ f i l eA l e r tLogT ;

49 char f i leName [ 8 0 ] ;

50 char f i leNameLoc [ 8 0 ] ;

51 char fi leNameNode [ 8 0 ] ;

52 char f i l eNameAlert [ 8 0 ] ;

53 char f i l eNameMiss ion [ 8 0 ] ;

54 char f i leNameAlertLogN [ 8 0 ] ;

55 char f i leNameAlertLogT [ 8 0 ] ;

56 f loat tempoSimulacao ;

57 t ime t i n i c i o , fim , fimReal , p a r c i a l ;

58
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59 char id [ 2 0 ] ;

60 char mStatus [ 2 0 ] ; //1�> o r i g i n a l message ; 2�> copy message

61 char maxSpeed [ 2 0 ] ;

62 char l ineTime [ 2 0 ] ;

63 char l i n eLa t [ 2 0 ] ;

64 char l ineLon [ 2 0 ] ;

65 char hostAddr [ 1 6 ] ;

66 int j =0;

67 int k=0;

68 int l =0;

69 int m=0;

70 int lAux = 0 ;

71 int mAux = 0 ;

72 int f i r s t I n t r u s i o n = 0 ;

73 char cha rPos i t i on ;

74 double lTime , lLat , lLon ;

75 int seqN=1;

76 struct pCo l l e c t ed {

77 int id ;

78 int mStatus ;

79 int seqN ;

80 double lTime ;

81 double lLat ;

82 double lLon ;

83 char hostAddr [ 1 6 ] ;

84 } bCol [NOMSG] ;

85 char type [ 2 0 ] ;

86 char hostAddrAux [ 2 0 ] ;

87 char thisHostAddr [ 2 0 ] ;

88 int currentNode=�1;

89 int pLi s tF lag = 0 ; //1 �> pKnow [ ] ; 2�> pNew [ ]
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90 int nConfirmation = 0 ;

91 int a l e r tCounter = 0 ;

92

93 // shared memory v a r i a b l e s

94 char c ;

95 int shmid ;

96 key t key ;

97 struct pCo l l e c t ed ∗shm , ∗ s ;

98

99 //miss ion knowledge v a r i a b l e s

100 struct mKnowledge{

101 int id ;

102 double maxSpeed ;

103 } ;

104

105 // po s i t i o n knowledge v a r i a b l e s

106 struct pTime{

107 int nConfirmation ; //# of p o s i t i o n con f i rmat ions

108 int a l e r t ;

109 double lTime ;

110 double lLat ;

111 double lLon ;

112 } ;

113 struct pKnowledge{

114 int id ;

115 int type ;

116 char hostAddr [ 1 6 ] ;

117 double maxSpeed ;

118 struct pTime po s i t i o n [TICKS ] ;

119 } ;

120
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121 struct pKnowledge pKnow [NONOD] ;

122 struct pKnowledge pNew [NONOD] ;

123 struct mKnowledge mKnow[NONOD] ;

124

125 struct nNodes {

126 int type ; // 1�> Tac t i c a l ; 2�> Sensor ; 3�> Hybrid

127 int id ;

128 char hostAddr [ 2 0 ] ;

129 } node [NONOD] ;

130

131 //number arguments t e s t

132 i f ( argc < 7) {

133 f p r i n t f ( s tde r r , ”Use posit ionKnowledgeFileName nodesFileName port key nodeID

missionKnowledgeFileName\n” ) ;

134 e x i t (0 ) ;

135 }

136

137

138 s t r cpy ( fi leNameLoc , argv [ 1 ] ) ;

139 s t r cpy ( fileNameNode , argv [ 2 ] ) ;

140 s t r cpy ( f i leNameMiss ion , argv [ 6 ] ) ;

141 key = f tok ( ”/home/ jeronymo/Downloads/ v i r tua lbox l i nux f i l e s / i d s /aa . txt ” , a t o i

( argv [ 4 ] ) ) ;

142 i f (0 > key ) {

143 pe r ro r ( ” f t ok ” ) ;

144 }

145 else {

146 // p r i n t f (” f t o k succe s s : % l l i \n” , ( long long i n t ) key ) ;

147 }

148 s t r cpy ( fi leName , ” saidaIDS�” ) ;

149 s t r c a t ( f i leName , argv [ 4 ] ) ;
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150

151 s t r cpy ( f i l eNameAlert , ” sa idaAle r t�” ) ;

152 s t r c a t ( f i l eNameAlert , argv [ 4 ] ) ;

153

154 s t r cpy ( fi leNameAlertLogN , ” saidaAlertN�” ) ;

155 s t r c a t ( fi leNameAlertLogN , argv [ 4 ] ) ;

156 s t r c a t ( fi leNameAlertLogN , ” . txt ” ) ;

157

158 s t r cpy ( fi leNameAlertLogT , ” saidaAlertT�” ) ;

159 s t r c a t ( fi leNameAlertLogT , argv [ 4 ] ) ;

160 s t r c a t ( fi leNameAlertLogT , ” . txt ” ) ;

161

162 // i n i t i a l i z e s o c k e t

163 sock= socket (AF INET, SOCKDGRAM, 0) ;

164 i f ( sock < 0) e r r o r ( ” socke t ” ) ;

165

166 //Enables broadcas t

167 int r e t = se t sockopt ( sock , SOL SOCKET, SO BROADCAST, &broadcastEnable , s izeof

( broadcastEnable ) ) ;

168

169 s e r v e r . s i n f am i l y = AF INET ;

170

171 // i n i t i a l i z e s node l i s t

172 for ( l =0; l<NONOD; l++){

173 node [ l ] . type = 0 ;

174 node [ l ] . id = 0 ;

175 bzero ( node [ l ] . hostAddr , 2 0 ) ;

176 }

177 bzero ( hostAddrAux , 2 0 ) ;

178 bzero ( thisHostAddr , 2 0 ) ;

179
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180 //Opens node f i l e

181 i f ( ( f i l eNode = fopen ( fileNameNode , ” r ” ) ) == NULL ) {

182 p r i n t f ( ”Problem read ing f i l e : %s \n” , fileNameNode ) ;

183 return 1 ;

184 }

185

186 // reads node f i l e and copy i t s content

187 l =0;

188 f g e t s ( type , 19 , f i l eNode ) ;

189 while ( ( ! f e o f ( f i l eNode ) ) && ( l <NONOD) && ( a t o i ( type ) !=0) ) {

190 m=0;

191 node [ l ] . type = a t o i ( type ) ;

192 f g e t s ( id , 19 , f i l eNode ) ;

193 node [ l ] . id = a t o i ( id ) ;

194 f g e t s ( node [ l ] . hostAddr , 19 , f i l eNode ) ;

195 while ( ( node [ l ] . hostAddr [m] != ’ \n ’ )&&(m<20) ) {

196 m++;

197 }

198 node [ l ] . hostAddr [m�1]= ’ \0 ’ ;

199 i f ( ( a t o i ( argv [ 5 ] ) == node [ l ] . id ) ) {

200 s t r cpy ( thisHostAddr , node [ l ] . hostAddr ) ;

201 }

202 f g e t s ( type , 19 , f i l eNode ) ;

203 l++;

204 }

205 f c l o s e ( f i l eNode ) ;

206

207 // shared memory i n i t i a l i z a t i o n

208 i f ( ( shmid = shmget ( key , NOMSG∗( s izeof ( struct pCo l l e c t ed ) ) , 0666) ) < 0) {

209 pe r ro r ( ”shmget” ) ;

210 p r i n t f ( ” i d s � shmget\n” ) ;
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211 e x i t (1 ) ;

212 }

213 i f ( ( shm = shmat ( shmid , NULL, 0) ) == (char ∗) �1) {

214 pe r ro r ( ”shmat” ) ;

215 e x i t (1 ) ;

216 }

217 s = shm ;

218

219 //opens f i l e wi th l o c a t i o n s

220 i f ( ( f i l e L o c = fopen ( fi leNameLoc , ” rb” ) ) == NULL ) {

221 p r i n t f ( ”Problem read ing f i l e : %s \n” , f i leNameLoc ) ;

222 return 1 ;

223 }

224 rewind ( f i l e L o c ) ;

225

226 // i n i t i a l i z e s p o s i t i o n knowledge l i s t

227 for ( l =0; l<NONOD; l++){

228 pKnow [ l ] . id = 0 ; // a l s o used as loop cond i t i on

229 pKnow [ l ] . type = 0 ;

230 pKnow [ l ] . maxSpeed = 0 . 0 ;

231 bzero (pKnow [ l ] . hostAddr , 1 6 ) ;

232 for (m=0;m<TICKS ;m++){

233 pKnow [ l ] . p o s i t i o n [m] . nConfirmation = �1; // a l s o used as loop cond i t i on

234 pKnow [ l ] . p o s i t i o n [m] . a l e r t = 0 ;

235 pKnow [ l ] . p o s i t i o n [m] . lTime = 0 . 0 ;

236 pKnow [ l ] . p o s i t i o n [m] . lLat = 0 . 0 ;

237 pKnow [ l ] . p o s i t i o n [m] . lLon = 0 . 0 ;

238 }

239 }

240

241 // up loads p o s i t i o n knowledge
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242 while ( ! f e o f ( f i l e L o c ) ) {

243 l =0;

244 m=0;

245 bzero ( id , 20) ;

246 bzero ( l ineTime , 20) ;

247 bzero ( l ineLat , 20) ;

248 bzero ( l ineLon , 20) ;

249 f g e t s ( id , 19 , f i l e L o c ) ;

250 f g e t s ( l ineTime , 19 , f i l e L o c ) ;

251 f g e t s ( l ineLat , 19 , f i l e L o c ) ;

252 f g e t s ( l ineLon , 19 , f i l e L o c ) ;

253

254 while ( (pKnow [ l ] . id != 0) && (pKnow [ l ] . id != a t o i ( id ) ) && ( l<NONOD) ) {

255 l++;

256 }

257

258 i f (pKnow [ l ] . id == ato i ( id ) ) {

259 // loop m and save i n f o

260 while (pKnow [ l ] . p o s i t i o n [m] . nConfirmation != �1){

261 m++;

262 }

263 pKnow [ l ] . p o s i t i o n [m] . nConfirmation = 0 ;

264 pKnow [ l ] . p o s i t i o n [m] . lTime = ato f ( l ineTime ) ;

265 pKnow [ l ] . p o s i t i o n [m] . lLat = a to f ( l i n eLa t ) ;

266 pKnow [ l ] . p o s i t i o n [m] . lLon = ato f ( l ineLon ) ;

267 }

268 else i f (pKnow [ l ] . id == 0) {

269 // save i n f o

270 pKnow [ l ] . id = a t o i ( id ) ;

271 pKnow [ l ] . p o s i t i o n [ 0 ] . nConfirmation = 0 ;

272 pKnow [ l ] . p o s i t i o n [ 0 ] . lTime = ato f ( l ineTime ) ;
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273 pKnow [ l ] . p o s i t i o n [ 0 ] . lLat = a to f ( l i n eLa t ) ;

274 pKnow [ l ] . p o s i t i o n [ 0 ] . lLon = ato f ( l ineLon ) ; //node [ l ] . i d node [ l ] . hostAddr

275 // i d e n t i f i e s the node type at the message

276 lAux = 0 ;

277 while ( ( node [ lAux ] . type != 0) && ( lAux<NONOD) ) {

278 i f ( node [ lAux ] . id == pKnow [ l ] . id ) {

279 s t r cpy (pKnow [ l ] . hostAddr , node [ lAux ] . hostAddr ) ;

280 pKnow [ l ] . type = node [ lAux ] . type ;

281 lAux=NONOD�1;

282 }

283 lAux++;

284 }

285 //

286 }

287

288 }

289

290 f c l o s e ( f i l e L o c ) ;

291

292 //opens f i l e wi th miss ion knowledge

293 i f ( ( f i l eM i s s i o n = fopen ( f i leNameMiss ion , ” rb” ) ) == NULL ) {

294 p r i n t f ( ”Problem read ing f i l e : %s \n” , f i l eNameMiss ion ) ;

295 return 1 ;

296 }

297 rewind ( f i l eM i s s i o n ) ;

298

299 // i n i t i a l i z e s miss ion knowledge l i s t

300 for ( l =0; l<NONOD; l++){

301 mKnow[ l ] . id = 0 ; // a l s o used as loop cond i t i on

302 mKnow[ l ] . maxSpeed = 0 . 0 ;

303 }
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304

305 // up loads miss ion knowledge l i s t

306 while ( ! f e o f ( f i l eM i s s i o n ) ) {

307 l =0;

308 m=0;

309 bzero ( id , 20) ;

310 bzero (maxSpeed , 20) ;

311 f g e t s ( id , 19 , f i l eM i s s i o n ) ;

312 f g e t s (maxSpeed , 19 , f i l eM i s s i o n ) ;

313

314 while ( (mKnow[ l ] . id != 0) && (mKnow[ l ] . id != a t o i ( id ) ) && ( l<NONOD) ) {

315 l++;

316 }

317

318 i f (mKnow[ l ] . id == a to i ( id ) ) {

319 // noth ing to be done

320 }

321 else i f (mKnow[ l ] . id == 0) {

322 // save i n f o

323 mKnow[ l ] . id = a t o i ( id ) ;

324 mKnow[ l ] . maxSpeed = ato f (maxSpeed ) ;

325 }

326

327 }

328

329 f c l o s e ( f i l eM i s s i o n ) ;

330

331 // updates p o s i t i o n knowledge l i s t wi th miss ion knowledge

332 l =0;

333 m=0;

334 while ( (pKnow [ l ] . id != 0) && ( l<NONOD) ) {
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335 while ( (mKnow[m] . id != pKnow [ l ] . id ) && (m<NONOD) ) { // v a r i a b l e m i s used in

a d i f f e r e n t way here

336 m++;

337 }

338 i f (mKnow[m] . id == pKnow [ l ] . id ) {

339 pKnow [ l ] . maxSpeed = mKnow[m] . maxSpeed ;

340 }

341 l++;

342 m=0;

343 }

344

345 // t e s t s read po s i t i o n knowledge l i s t

346 l =0;

347 m=0;

348 while ( (pKnow [ l ] . id != 0) && ( l<NONOD) ) {

349 while ( (pKnow [ l ] . p o s i t i o n [m] . nConfirmation != �1) && (m<TICKS) ) {

350 m++;

351 }

352 l++;

353 m=0;

354 }

355

356 // i n i t i a l i z e s new po s i t i o n l i s t

357 for ( l =0; l<NONOD; l++){

358 pNew [ l ] . id = 0 ; // a l s o used as loop cond i t i on

359 pNew [ l ] . maxSpeed =0.0 ;

360 bzero (pNew [ l ] . hostAddr , 1 6 ) ;

361 for (m=0;m<TICKS ;m++){

362 pNew [ l ] . p o s i t i o n [m] . nConfirmation = �1; // a l s o used as loop cond i t i on

363 pNew [ l ] . p o s i t i o n [m] . a l e r t = 0 ;

364 pNew [ l ] . p o s i t i o n [m] . lTime = 0 . 0 ;
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365 pNew [ l ] . p o s i t i o n [m] . lLat = 0 . 0 ;

366 pNew [ l ] . p o s i t i o n [m] . lLon = 0 . 0 ;

367 }

368 }

369

370 //opens f i l e to save broadcas ted p o s i t i o n s

371 i f ( ( f i l e = fopen ( fi leName , ”wb” ) ) == NULL ) {

372 p r i n t f ( ”Problem wr i t t i n g to f i l e : %s \n” , f i leName ) ;

373 return 1 ;

374 }

375 rewind ( f i l e ) ;

376

377 //opens f i l e to save i n t r u s i on d e t e c t i o n s

378 i f ( ( f i l e A l e r t = fopen ( f i l eNameAlert , ”wb” ) ) == NULL ) {

379 p r i n t f ( ”Problem wr i t t i n g to f i l e : %s \n” , f i l eNameAler t ) ;

380 return 1 ;

381 }

382 rewind ( f i l e A l e r t ) ;

383

384 //opens f i l e to save number o f i n t r u s i on d e t e c t i o n s

385 i f ( ( f i l eA l e r tLogN = fopen ( fi leNameAlertLogN , ”wb” ) ) == NULL ) {

386 p r i n t f ( ”Problem wr i t t i n g to f i l e : %s \n” , f i leNameAlertLogN ) ;

387 return 1 ;

388 }

389 rewind ( f i l eA l e r tLogN ) ;

390

391 //opens f i l e to save time o f f i r s t i n t r u s i on d e t e c t i on

392 i f ( ( f i l eA l e r tLogT = fopen ( fi leNameAlertLogT , ”wb” ) ) == NULL ) {

393 p r i n t f ( ”Problem wr i t t i n g to f i l e : %s\n” , f i leNameAlertLogT ) ;

394 return 1 ;

395 }
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396 rewind ( f i l eA l e r tLogT ) ;

397

398 //main loop to read data from shared memory

399 unsigned long i =1;

400 while ( s [ i ] . seqN != �1) {

401 i f ( i==1){

402 i n i c i o = time (NULL) ;

403 }

404

405 // t e s t s i f t h e r e i s a new broadcas ted p o s i t i o n

406 i f ( s [ i ] . seqN > 0) {

407

408 // wr i t e s data to f i l e

409 bzero ( buf ,TAMAX) ;

410 s p r i n t f ( buf , ”%i \n” , s [ i ] . seqN ) ;

411 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

412 bzero ( buf ,TAMAX) ;

413 s p r i n t f ( buf , ”%i \n” , s [ i ] . id ) ;

414 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

415 bzero ( buf ,TAMAX) ;

416 s p r i n t f ( buf , ”%i \n” , s [ i ] . mStatus ) ;

417 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

418 bzero ( buf ,TAMAX) ;

419 s p r i n t f ( buf , ”%s \n” , s [ i ] . hostAddr ) ;

420 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

421 bzero ( buf ,TAMAX) ;

422 s p r i n t f ( buf , ”%.11 f \n” , s [ i ] . lTime ) ;

423 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

424 bzero ( buf ,TAMAX) ;

425 s p r i n t f ( buf , ”%.11 f \n” , s [ i ] . lLat ) ;

426 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;
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427 bzero ( buf ,TAMAX) ;

428 s p r i n t f ( buf , ”%.11 f \n” , s [ i ] . lLon ) ;

429 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

430

431 // proces s the message

432

433 // i d e n t i f i e s the node type at the message

434 l =0;

435 while ( ( node [ l ] . type != 0) && ( l<NONOD) ) {

436 i f ( node [ l ] . id == s [ i ] . id ) {

437 currentNode = l ;

438 l=NONOD�1;

439 }

440 l++;

441 }

442

443 /∗∗∗∗∗∗∗∗∗∗∗

444 ATTENTION A1

445 i f currentNode == �1 a new node has been i d e n t i f i e d

446 and i t needs to be processed prope r l y

447 ∗∗∗∗∗∗∗∗∗∗∗/

448

449 // l o c a t e s broadcas ted p o s i t i o n at pKnow l i s t

450 l =0;

451 while ( (pKnow [ l ] . id != node [ currentNode ] . id ) && ( l<NONOD) ) {

452 l++;

453 }

454 m=0;

455 while ( (pKnow [ l ] . p o s i t i o n [m] . nConfirmation != �1) && (m<TICKS) ) {

456 i f ( ( s [ i ] . lTime > pKnow [ l ] . p o s i t i o n [m] . lTime � TIMEPREC) &&

457 ( s [ i ] . lTime < pKnow [ l ] . p o s i t i o n [m] . lTime + TIMEPREC) &&
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458 ( s [ i ] . lLat > pKnow [ l ] . p o s i t i o n [m] . lLat � LATPREC) &&

459 ( s [ i ] . lLat < pKnow [ l ] . p o s i t i o n [m] . lLat + LATPREC) &&

460 ( s [ i ] . lLon > pKnow [ l ] . p o s i t i o n [m] . lLon � LONPREC) &&

461 ( s [ i ] . lLon < pKnow [ l ] . p o s i t i o n [m] . lLon + LONPREC) ) {

462 ++pKnow [ l ] . p o s i t i o n [m] . nConfirmation ;

463 m=TICKS ;

464 pLi s tF lag = 1 ;

465 }

466 m++;

467 }

468

469 // i f m == TICKS or pKnow [ l ] . p o s i t i o n [m] . nConfirmation == �1

470 //a new po s i t i o n in time has been i d e n t i f i e d

471 //and i t needs to be found or i n s e r t e d in pNew l i s t

472 i f ( (m==TICKS) | | (pKnow [ l ] . p o s i t i o n [m] . nConfirmation == �1) ) {

473 l =0;

474 while ( (pNew [ l ] . id != 0) && (pNew [ l ] . id != node [ currentNode ] . id ) && ( l<

NONOD) ) {

475 l++;

476 }

477 m=0;

478 while ( (pNew [ l ] . p o s i t i o n [m] . nConfirmation != �1) && (m<TICKS) ) {

479 //warning :

480 // be aware i f PREC i s l a r g e t h e r e may be more con f i rmat ions than sensor

nodes

481 i f ( ( s [ i ] . lTime > pNew [ l ] . p o s i t i o n [m] . lTime � TIMEPREC) &&

482 ( s [ i ] . lTime < pNew [ l ] . p o s i t i o n [m] . lTime + TIMEPREC) &&

483 ( s [ i ] . lLat > pNew [ l ] . p o s i t i o n [m] . lLat � LATPREC) &&

484 ( s [ i ] . lLat < pNew [ l ] . p o s i t i o n [m] . lLat + LATPREC) &&

485 ( s [ i ] . lLon > pNew [ l ] . p o s i t i o n [m] . lLon � LONPREC) &&

486 ( s [ i ] . lLon < pNew [ l ] . p o s i t i o n [m] . lLon + LONPREC) ) {
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487 ++pNew [ l ] . p o s i t i o n [m] . nConfirmation ;

488 m=TICKS ;

489 pLi s tF lag = 2 ;

490 }

491 m++;

492 }

493 i f ( m==TICKS ) {

494 p r i n t f ( ”New po s i t i o n o f bu f f e r over f l ow .\n” ) ;

495 e x i t (1 ) ;

496 }

497 else i f (pNew [ l ] . p o s i t i o n [m] . nConfirmation == �1){

498 pNew [ l ] . id = s [ i ] . id ;

499 s t r cpy (pNew [ l ] . hostAddr , s [ i ] . hostAddr ) ; // hostAddr i s the sender ’ s IP and

not node IP

500 pNew [ l ] . p o s i t i o n [m] . nConfirmation = 1 ;

501 pNew [ l ] . p o s i t i o n [m] . lTime = s [ i ] . lTime ;

502 pNew [ l ] . p o s i t i o n [m] . lLat = s [ i ] . lLat ;

503 pNew [ l ] . p o s i t i o n [m] . lLon = s [ i ] . lLon ;

504 pLi s tF lag = 2 ;

505 }

506 }

507

508 // v e r i f i e s i f i t comes from t a c t i c a l node , i f i t i s o r i g i n a l , and sends i t

to sensor nodes

509 // i f i t comes from sensor or hybr id node the r e i s noth ing l e f t to be done

510 // i f ( ( currentNode > �1) && ( node [ currentNode ] . type != 2) && ( s [ i ] . mStatus

== 1) ){

511 i f ( ( currentNode > �1) && ( node [ currentNode ] . type == 1) && ( s [ i ] . mStatus ==

1) ) {

512 bzero (msg ,TAMAX) ;

513 bzero ( id , 20) ;
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514 bzero (mStatus , 20) ;

515 bzero ( l ineTime , 20) ;

516 bzero ( l ineLat , 20) ;

517 bzero ( l ineLon , 20) ;

518 s p r i n t f ( id , ”%d\n” , s [ i ] . id ) ;

519 s p r i n t f (mStatus , ”2\n” ) ;

520 s p r i n t f ( l ineTime , ”%.11 f \n” , s [ i ] . lTime ) ;

521 s p r i n t f ( l ineLat , ”%.11 f \n” , s [ i ] . lLat ) ;

522 s p r i n t f ( l ineLon , ”%.11 f \n” , s [ i ] . lLon ) ;

523 s t r cpy (msg , id ) ;

524 s t r c a t (msg , mStatus ) ;

525 s t r c a t (msg , l ineTime ) ;

526 s t r c a t (msg , l i n eLa t ) ;

527 s t r c a t (msg , l ineLon ) ;

528 l =0;

529 while ( ( node [ l ] . type != 0) && ( l< NONOD) ) {

530 // i f t e s t avo ids a node to send a message to i t s e l f

531 i f ( ! ( strcmp ( node [ l ] . hostAddr , thisHostAddr )==0) ) {

532 // i f t e s t a l l ow s msg to be sen t to every sensor and hybr id node

533 i f ( node [ l ] . type != 1) {

534 hp = gethostbyname ( node [ l ] . hostAddr ) ;

535 i f (hp==0) e r r o r ( ”Host nao encontrado ” ) ;

536

537 bcopy ( (char ∗)hp�>h addr , (char ∗)&s e r v e r . s in addr , hp�>h l ength ) ;

538 s e r v e r . s i n p o r t = htons ( a t o i ( argv [ 3 ] ) ) ;

539 l ength=s izeof ( struct sockaddr in ) ;

540

541 n=sendto ( sock ,msg , s izeof (msg) ,0 ,& server , l ength ) ;

542 i f (n>0){

543 bytesSent += (unsigned long ) n ;

544 pkgSent += 1 ;
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545 }

546 }

547 }

548 l++;

549 }

550 }

551

552 // In t ru s i on d e t e c t i on v e r i f i c a t i o n s

553 //Check #01

554 // confirmed pNew means i n t r u s i on

555 //∗

556 l =0;

557 while ( (pNew [ l ] . id != 0) && ( l<NONOD) ) {

558 m=0;

559 while ( (pNew [ l ] . p o s i t i o n [m] . nConfirmation != �1) && (m<TICKS) ) {

560 i f (pNew [ l ] . p o s i t i o n [m] . a l e r t == 0) {

561 i f (pNew [ l ] . p o s i t i o n [m] . nConfirmation >= CONFIRMED ) {

562 pNew [ l ] . p o s i t i o n [m] . a l e r t = 1 ;

563 fim = time (NULL) ;

564 ++ale r tCounter ;

565

566 // i s s u e s an a l e r t

567 bzero ( buf ,TAMAX) ;

568 s p r i n t f ( buf , ”Time : \ t%f \n” , d i f f t im e ( fim , i n i c i o ) ) ;

569 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e A l e r t ) ;

570 // saves f i r s t i n t r u s i on time

571 i f ( f i r s t I n t r u s i o n == 0) {

572 bzero ( buf ,TAMAX) ;

573 s p r i n t f ( buf , ”%f \n” , d i f f t im e ( fim , i n i c i o ) ) ;

574 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l eA l e r tLogT ) ;

575 f c l o s e ( f i l eA l e r tLogT ) ;
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576 f i r s t I n t r u s i o n = 1 ;

577 }

578 bzero ( buf ,TAMAX) ;

579 s p r i n t f ( buf , ”ID : \ t%i \n” ,pNew [ l ] . id ) ;

580 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e A l e r t ) ;

581 bzero ( buf ,TAMAX) ;

582 s p r i n t f ( buf , ”Addr : \ t%s \n\n” ,pNew [ l ] . hostAddr ) ;

583 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e A l e r t ) ;

584 }

585 }

586 m++;

587 }

588 l++;

589 }//∗/

590 //end o f Check #01

591

592

593 //Check #02

594 // kne t i c enve lope

595 //∗

596 int mLeft = �1; // not used i f va lue = �1

597 int mRight = �1; // not used i f va lue = �1

598 double speed = 0 . 0 ;

599 double auxSqrt = 0 . 0 ;

600 lAux = 0 ;

601 mAux = 0 ;

602 int mayBeEmbarked = 0 ;

603 f loat minTime = 0 ;

604 l =0;

605 p a r c i a l = time (NULL) ;

606 while ( (pKnow [ l ] . id != 0) && ( l<NONOD) ) {
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607 m=0;

608 while ( (pKnow [ l ] . p o s i t i o n [m] . nConfirmation != �1) && (m<TICKS) ) {

609 minTime = d i f f t im e ( pa r c i a l , i n i c i o ) � pKnow [ l ] . p o s i t i o n [m] . lTime ;

610 i f ( ( ( (pKnow [ l ] . type == 3) && (pKnow [ l ] . p o s i t i o n [m] . nConfirmation >= 1)

) | | (pKnow [ l ] . p o s i t i o n [m] . nConfirmation >= CONFIRMED) )

611 && (pKnow [ l ] . p o s i t i o n [m] . a l e r t == 0) /∗&& (m!=0)∗/ && (minTime >=

6 . 0 ) ) {

612 i f (mLeft == �1){

613 mLeft = m;

614 }

615 else i f (mRight == �1){

616 mRight = m;

617 }

618 i f (mRight != �1){

619 // check kn e t i c enve lope

620 auxSqrt = (

621 ( (pKnow [ l ] . p o s i t i o n [ mLeft ] . lLat

622 � pKnow [ l ] . p o s i t i o n [ mRight ] . lLat ) ∗

623 (pKnow [ l ] . p o s i t i o n [ mLeft ] . lLat

624 � pKnow [ l ] . p o s i t i o n [ mRight ] . lLat ) ) +

625 ( (pKnow [ l ] . p o s i t i o n [ mLeft ] . lLon

626 � pKnow [ l ] . p o s i t i o n [ mRight ] . lLon ) ∗

627 (pKnow [ l ] . p o s i t i o n [ mLeft ] . lLon

628 � pKnow [ l ] . p o s i t i o n [ mRight ] . lLon ) )

629 ) ;

630 speed = sq r t ( auxSqrt ) / abs (pKnow [ l ] . p o s i t i o n [ mRight ] . lTime � pKnow [ l ] .

p o s i t i o n [ mLeft ] . lTime ) ;

631

632 i f ( speed > pKnow [ l ] . maxSpeed ) {

633 //// check i f embarked

634 lAux = 0 ;
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635 mayBeEmbarked = 0 ;

636 while ( (pKnow [ lAux ] . id != 0) && ( lAux<NONOD) ) {

637 mAux=0;

638 while ( (pKnow [ lAux ] . p o s i t i o n [mAux ] . nConfirmation != �1) && (mAux<

TICKS) ) {

639 i f ( ( lAux != l ) && ( (pKnow [ lAux ] . p o s i t i o n [mAux ] . nConfirmation >=

CONFIRMED) | | ( (pKnow [ lAux ] . type == 3) && (pKnow [ lAux ] . p o s i t i o n

[mAux ] . nConfirmation >= 1) ) ) ) {

640 i f ( abs (pKnow [ lAux ] . p o s i t i o n [mAux ] . lTime � pKnow [ l ] . p o s i t i o n [ mLeft

] . lTime ) < 4 . 0 ) {

641 i f ( (pKnow [ lAux ] . p o s i t i o n [mAux ] . lLat > (pKnow [ l ] . p o s i t i o n [ mLeft ] .

lLat � 50 ∗ LATPREC) ) &&

642 (pKnow [ lAux ] . p o s i t i o n [mAux ] . lLat < (pKnow [ l ] . p o s i t i o n [

mLeft ] . lLat + 50 ∗ LATPREC) ) &&

643 (pKnow [ lAux ] . p o s i t i o n [mAux ] . lLon > (pKnow [ l ] . p o s i t i o n [ mLeft ] .

lLon � 50 ∗ LONPREC) ) &&

644 (pKnow [ lAux ] . p o s i t i o n [mAux ] . lLon < (pKnow [ l ] . p o s i t i o n [ mLeft ] .

lLon + 50 ∗ LONPREC) ) ) {

645 i f (pKnow [ lAux ] . maxSpeed >= speed ) {

646 mayBeEmbarked++;

647 }

648 }

649

650 }

651 }

652 mAux++;

653 }

654 lAux++;

655 }

656 i f (mayBeEmbarked == 0) {

657 pKnow [ l ] . p o s i t i o n [ mLeft ] . a l e r t = 2 ;
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658 fim = time (NULL) ;

659 ++ale r tCounter ;

660

661 // i s s u e s an a l e r t

662 bzero ( buf ,TAMAX) ;

663 s p r i n t f ( buf , ”Time : \ t%f \n” , d i f f t im e ( fim , i n i c i o ) ) ;

664 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e A l e r t ) ;

665 bzero ( buf ,TAMAX) ;

666 s p r i n t f ( buf , ”ID : \ t%i \n” ,pKnow [ l ] . id ) ;

667 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e A l e r t ) ;

668 bzero ( buf ,TAMAX) ;

669 s p r i n t f ( buf , ”Addr : \ t%s \n\n” ,pKnow [ l ] . hostAddr ) ;

670 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e A l e r t ) ;

671 }

672 }

673 // update aux v a r i a b l e s

674 mLeft = mRight ;

675 mRight = �1;

676 }

677 }

678 m++;

679 }

680 l++;

681 mLeft = �1;

682 mRight = �1;

683 }

684 //end o f Check #02

685

686 i++;

687 }

688 }
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689

690

691 //Although the r e i s no more broadcas t p o s i t i o n

692 //may the r e e x i s t e x t r a procedures to be done

693 f c l o s e ( f i l e ) ;

694

695 // saves A le r t in format ion on s e v e r a l f i l e s

696

697 // F i l e s a i daA l e r t

698 bzero ( buf ,TAMAX) ;

699 s p r i n t f ( buf , ”Number o f a l e r t s i s s u ed during the s imu la t i on : \ t%i \n\n” ,

a l e r tCounter ) ;

700 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e A l e r t ) ;

701 f c l o s e ( f i l e A l e r t ) ;

702

703 bzero ( buf ,TAMAX) ;

704 s p r i n t f ( buf , ”%i \n\n” , a l e r tCounter ) ;

705 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l eA l e r tLogN ) ;

706 f c l o s e ( f i l eA l e r tLogN ) ;

707

708 // F i l e s a i da I

709 // F i l e name

710 s t r cpy ( fi leName , ” sa ida I�” ) ;

711 s t r c a t ( f i leName , argv [ 5 ] ) ;

712

713 //Opens f i l e

714 i f ( ( f i l e = fopen ( fi leName , ”wb” ) ) == NULL ) {

715 p r i n t f ( ”Problem wr i t t i n g to f i l e : %s \n” , f i leName ) ;

716 return 1 ;

717 }

718
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719 // Saves data to f i l e

720 rewind ( f i l e ) ;

721 bzero ( buf ,TAMAX) ;

722 s p r i n t f ( buf , ”Packages ( sent ) : %lu \n” , pkgSent ) ;

723 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

724 bzero ( buf ,TAMAX) ;

725 s p r i n t f ( buf , ”Bytes ( sent ) : %lu \n” , bytesSent ) ;

726 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

727 f c l o s e ( f i l e ) ;

728

729 // F i l e saidaIN

730 // F i l e name

731 s t r cpy ( fi leName , ” saidaIP�” ) ;

732 s t r c a t ( f i leName , argv [ 5 ] ) ;

733 s t r c a t ( f i leName , ” . txt ” ) ;

734

735 //Opens f i l e

736 i f ( ( f i l e = fopen ( fi leName , ”wb” ) ) == NULL ) {

737 p r i n t f ( ”Problem wr i t i ng f i l e : %s \n” , f i leName ) ;

738 return 1 ;

739 }

740

741 //Saves data to f i l e

742 rewind ( f i l e ) ;

743 bzero ( buf ,TAMAX) ;

744 s p r i n t f ( buf , ”%lu \n” , pkgSent ) ;

745 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

746 f c l o s e ( f i l e ) ;

747

748 return (0 ) ;

749 }
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Appendix E: Background and Position Announcement

Tra�c Generators

The file <mgenSimScript-sample.mgn> is used to generates background flows of just one

node for a sample scenario of eight nodes.

1 ##### f low per i p d s t : pakages o f 300 by t e s @ 2400 bps

2 #0.0 ON 1 UDP DST 10.0 .0 .1/33001 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300] EXP

5 . 0 ]

3 #0.0 ON 2 UDP DST 10.0 .0 .1/33001 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300] EXP

5 . 0 ]

4 0 .0 ON 3 UDP DST 10 . 0 . 0 . 2/33002 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP 5 . 0 ]

5 0 . 0 ON 4 UDP DST 10 . 0 . 0 . 2/33002 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP 5 . 0 ]

6 0 . 0 ON 5 UDP DST 10 . 0 . 0 . 3/33003 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP 5 . 0 ]

7 0 . 0 ON 6 UDP DST 10 . 0 . 0 . 3/33003 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP 5 . 0 ]

8 0 . 0 ON 7 UDP DST 10 . 0 . 0 . 4/33004 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP 5 . 0 ]

9 0 . 0 ON 8 UDP DST 10 . 0 . 0 . 4/33004 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP 5 . 0 ]

10 0 . 0 ON 9 UDP DST 10 . 0 . 0 . 5/33005 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP 5 . 0 ]

11 0 . 0 ON 10 UDP DST 10 . 0 . 0 . 5 /33005 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP

5 . 0 ]

12 0 . 0 ON 11 UDP DST 10 . 0 . 0 . 6 /33006 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP

5 . 0 ]

13 0 . 0 ON 12 UDP DST 10 . 0 . 0 . 6 /33006 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP

5 . 0 ]

14 0 . 0 ON 13 UDP DST 10 . 0 . 0 . 7 /33007 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP

5 . 0 ]

15 0 . 0 ON 14 UDP DST 10 . 0 . 0 . 7 /33007 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP

5 . 0 ]

16 0 . 0 ON 15 UDP DST 10 . 0 . 0 . 8 /33008 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP

5 . 0 ]

128



17 0 .0 ON 16 UDP DST 10 . 0 . 0 . 8 /33008 BURST [RANDOM 10.0 PERIODIC [ 1 . 0 300 ] EXP

5 . 0 ]

18

19 ##### f low per i p d s t : packages o f 1500 by t e s @ 32 Kbps

20 #0.0 ON 17 UDP DST 10.0 .0 .1/33001 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024] EXP

5 . 0 ]

21 #0.0 ON 18 UDP DST 10.0 .0 .1/33001 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024] EXP

5 . 0 ]

22 0 .0 ON 19 UDP DST 10 . 0 . 0 . 2 /33002 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

23 0 . 0 ON 20 UDP DST 10 . 0 . 0 . 2 /33002 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

24 0 . 0 ON 21 UDP DST 10 . 0 . 0 . 3 /33003 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

25 0 . 0 ON 22 UDP DST 10 . 0 . 0 . 3 /33003 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

26 0 . 0 ON 23 UDP DST 10 . 0 . 0 . 4 /33004 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

27 0 . 0 ON 24 UDP DST 10 . 0 . 0 . 4 /33004 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

28 0 . 0 ON 25 UDP DST 10 . 0 . 0 . 5 /33005 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

29 0 . 0 ON 26 UDP DST 10 . 0 . 0 . 5 /33005 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

30 0 . 0 ON 27 UDP DST 10 . 0 . 0 . 6 /33006 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

31 0 . 0 ON 28 UDP DST 10 . 0 . 0 . 6 /33006 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

32 0 . 0 ON 29 UDP DST 10 . 0 . 0 . 7 /33007 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]
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33 0 .0 ON 30 UDP DST 10 . 0 . 0 . 7 /33007 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

34 0 . 0 ON 31 UDP DST 10 . 0 . 0 . 8 /33008 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]

35 0 . 0 ON 32 UDP DST 10 . 0 . 0 . 8 /33008 BURST [RANDOM 20.0 PERIODIC [ 8 . 0 1024 ] EXP

5 . 0 ]
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The file <positionBroadcast.c> is the source code of an application used to generate

position messages.

1 /∗ pos i t i onBroadcas t ∗/

2 #include <sys / types . h>

3 #include <sys / socke t . h>

4 #include <ne t i n e t / in . h>

5 #include <arpa/ i n e t . h>

6 #include <netdb . h>

7 #include <s t d i o . h>

8 #include <s t d l i b . h>

9 #include <s t r i n g . h>

10 #include <time . h>

11

12 #define TAMAX 80 //Broadcast b u f f e r s i z e

13 #define NONOD 20 //# of s imu la ted nodes

14

15 void e r r o r (char ∗) ;

16 void e spe r e ( int ) ;

17

18 int main ( int argc , char ∗argv [ ] ) {

19 int sock , length , n ;

20 struct sockaddr in s e r v e r ;

21 struct hostent ∗hp ;

22

23 char buf [TAMAX] ;

24

25 t ime t startTime , presentTime ;

26 char f i leName [ 8 0 ] ;

27 char id [ 2 0 ] ; //node id

28 char mStatus [ 2 0 ] ; //1�> o r i g i n a l message ; 2�> copy message

29 char l ineTime [ 2 0 ] ;
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30 char l i n eLa t [ 2 0 ] ;

31 char l ineLon [ 2 0 ] ;

32 char msg [TAMAX] ;

33 int t i c k =0;

34 int pt i ck =0;

35 int l =0;

36 int m=0;

37 char type [ 2 0 ] ;

38 char hostAddr [ 2 0 ] ;

39 char thisHostAddr [ 2 0 ] ;

40

41 unsigned long pkgSent=0;

42 unsigned long bytesSent=0;

43

44

45 struct nNodes {

46 int type ; // 1�> Tac t i c a l ; 2�> Sensor ; 3�> Hybrid

47 int id ;

48 char hostAddr [ 2 0 ] ;

49 } node [NONOD] ;

50

51 FILE ∗ f i l e ;

52

53 int broadcastEnable = 1 ;

54

55 startTime = time (NULL) ;

56

57 i f ( argc != 5) {

58 p r i n t f ( ”Usar : f i leName port nodeID logFileName\n” ) ;

59 e x i t (1 ) ;

60 }
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61

62 // i n i t i a l i z e s node l i s t

63 for ( l =0; l<NONOD; l++){

64 node [ l ] . type = 0 ;

65 node [ l ] . id = 0 ;

66 bzero ( node [ l ] . hostAddr , 2 0 ) ;

67 }

68 bzero ( hostAddr , 2 0 ) ;

69 bzero ( thisHostAddr , 2 0 ) ;

70

71 // F i l e name

72 s t r cpy ( fi leName , argv [ 1 ] ) ;

73

74 //Opens node f i l e

75 i f ( ( f i l e = fopen ( fi leName , ” r ” ) ) == NULL ) {

76 p r i n t f ( ”Problem read ing f i l e : %s \n” , f i leName ) ;

77 return 1 ;

78 }

79

80 // reads node f i l e and copy i t s content

81 l =0;

82 f g e t s ( type , 19 , f i l e ) ;

83 while ( ( ! f e o f ( f i l e ) ) && ( l <NONOD) && ( a t o i ( type ) !=0) ) {

84 m=0;

85 node [ l ] . type = a t o i ( type ) ;

86 f g e t s ( id , 19 , f i l e ) ;

87 node [ l ] . id = a t o i ( id ) ;

88 f g e t s ( node [ l ] . hostAddr , 19 , f i l e ) ;

89 while ( ( node [ l ] . hostAddr [m] != ’ \n ’ )&&(m<20) ) {

90 m++;

91 }
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92 node [ l ] . hostAddr [m�1]= ’ \0 ’ ;

93 i f ( ( a t o i ( argv [ 3 ] ) == node [ l ] . id ) ) {

94 s t r cpy ( thisHostAddr , node [ l ] . hostAddr ) ;

95 }

96 f g e t s ( type , 19 , f i l e ) ;

97 l++;

98 }

99 f c l o s e ( f i l e ) ;

100

101 // i n i t i a l i z e s o c k e t

102 sock= socket (AF INET, SOCKDGRAM, 0) ;

103 i f ( sock < 0) e r r o r ( ” socke t ” ) ;

104

105 //Enables broadcas t

106 int r e t = se t sockopt ( sock , SOL SOCKET, SO BROADCAST, &broadcastEnable , s izeof

( broadcastEnable ) ) ;

107

108 s e r v e r . s i n f am i l y = AF INET ;

109

110 //Opens the p o s i t i o n l o g f i l e

111 s t r cpy ( fi leName , argv [ 4 ] ) ;

112 i f ( ( f i l e = fopen ( fi leName , ” r ” ) ) == NULL ) {

113 p r i n t f ( ”Problem read ing f i l e : %s \n” , f i leName ) ;

114 return 1 ;

115 }

116

117 t i c k =1;

118 pt i ck =1;

119

120 // t r a f f i c loop

121 while ( ( ! f e o f ( f i l e ) ) && ( t i c k != 0) ) {
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122 pt i ck = t i c k ;

123 bzero (msg , TAMAX) ;

124 bzero ( id , 20) ;

125 bzero (mStatus , 20) ;

126 bzero ( l ineTime , 20) ;

127 bzero ( l ineLat , 20) ;

128 bzero ( l ineLon , 20) ;

129 f g e t s ( id , 19 , f i l e ) ;

130 f g e t s ( l ineTime , 19 , f i l e ) ;

131 f g e t s ( l ineLat , 19 , f i l e ) ;

132 f g e t s ( l ineLon , 19 , f i l e ) ;

133 s p r i n t f (mStatus , ”1\n” ) ;

134 t i c k = a t o i ( l ineTime ) ;

135 presentTime = time (NULL) ;

136 while ( d i f f t im e ( presentTime , startTime ) < t i c k ) {

137 presentTime = time (NULL) ;

138 }

139 i f ( ( p t i ck != t i c k ) && ( ! f e o f ( f i l e ) ) ) {

140 s t r cpy (msg , id ) ;

141 s t r c a t (msg , mStatus ) ;

142 s t r c a t (msg , l ineTime ) ;

143 s t r c a t (msg , l i n eLa t ) ;

144 s t r c a t (msg , l ineLon ) ;

145 l =0;

146 while ( ( node [ l ] . type != 0) && ( l< NONOD) ) {

147 // i f t e s t avo ids a t a c t i c a l node sends a message to i t s e l f

148 //a sensor node does not run t h i s rou t ine

149 //a hybr id node i s a l l owed to send to i t s e l f ( t a c t i c a l sending to sensor )

150 i f ( ! ( ( node [ l ] . type == 1)&&(strcmp ( node [ l ] . hostAddr , thisHostAddr )==0)) ) {

151 hp = gethostbyname ( node [ l ] . hostAddr ) ;

152 i f (hp==0) e r r o r ( ”Host nao encontrado ” ) ;
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153

154 bcopy ( (char ∗)hp�>h addr , (char ∗)&s e r v e r . s in addr , hp�>h l ength ) ;

155 s e r v e r . s i n p o r t = htons ( a t o i ( argv [ 2 ] ) ) ;

156 l ength=s izeof ( struct sockaddr in ) ;

157

158 n=sendto ( sock ,msg , s izeof (msg) ,0 ,& server , l ength ) ;

159 i f (n>0){

160 bytesSent += (unsigned long ) n ;

161 pkgSent += 1 ;

162 }

163 }

164 l++;

165 }

166 }

167 else t i c k = 0 ;

168 } ;

169 f c l o s e ( f i l e ) ;

170

171

172 // saves A le r t in format ion on s e v e r a l f i l e s

173

174 // F i l e saidaB

175 // F i l e name

176 s t r cpy ( fi leName , ” saidaB�” ) ;

177 s t r c a t ( f i leName , argv [ 3 ] ) ;

178

179 //Opens f i l e

180 i f ( ( f i l e = fopen ( fi leName , ”wb” ) ) == NULL ) {

181 p r i n t f ( ”Problem wr i t t i n g to f i l e : %s \n” , f i leName ) ;

182 return 1 ;

183 }
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184

185 // Saves data to f i l e

186 rewind ( f i l e ) ;

187 bzero ( buf ,TAMAX) ;

188 s p r i n t f ( buf , ”Packages ( sent ) : %lu \n” , pkgSent ) ;

189 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

190 bzero ( buf ,TAMAX) ;

191 s p r i n t f ( buf , ”Bytes ( sent ) : %lu \n” , bytesSent ) ;

192 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

193 f c l o s e ( f i l e ) ;

194

195 // F i l e saidaBP

196 // F i l e name

197 s t r cpy ( fi leName , ”saidaBP�” ) ;

198 s t r c a t ( f i leName , argv [ 3 ] ) ;

199 s t r c a t ( f i leName , ” . txt ” ) ;

200

201 //Opens f i l e

202 i f ( ( f i l e = fopen ( fi leName , ”wb” ) ) == NULL ) {

203 p r i n t f ( ”Problem wr i t t i n g to f i l e : %s \n” , f i leName ) ;

204 return 1 ;

205 }

206

207 //Saves data to f i l e

208 rewind ( f i l e ) ;

209 bzero ( buf ,TAMAX) ;

210 s p r i n t f ( buf , ”%lu \n” , pkgSent ) ;

211 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

212 f c l o s e ( f i l e ) ;

213

214
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215 //Print to s t dou t

216 p r i n t f ( ”Total packages ( sent ) : %lu \n” , pkgSent ) ;

217 p r i n t f ( ”Total bytes ( sent ) : %lu \n” , bytesSent ) ;

218 return 0 ;

219 }

220

221 void e r r o r (char ∗msg) {

222 pe r ro r (msg) ;

223 e x i t (0 ) ;

224 }
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The file <positionCollector.c> is the source code of an application used to collect posi-

tion messages.

1 /∗ p o s i t i o nCo l l e c t o r ∗/

2 #include <sys / types . h>

3 #include <sys / socke t . h>

4 #include <ne t i n e t / in . h>

5 #include <netdb . h>

6 #include <s t d i o . h>

7 #include <arpa/ i n e t . h>

8 #include <s t d l i b . h>

9 #include <s t r i n g . h>

10 #include <time . h>

11 #include <sys / ipc . h>

12 #include <sys /shm . h>

13

14 #define TAMAX 80 //Broadcast b u f f e r s i z e

15 #define NOMSG 2000 //# c o l l e c t e d msg

16

17 void e r r o r (char ∗msg) {

18 pe r ro r (msg) ;

19 e x i t (0 ) ;

20 }

21

22 int main ( int argc , char ∗argv [ ] ) {

23 int sock , length , fromlen , n ;

24 struct sockaddr in s e r v e r ;

25 struct sockaddr in from ;

26 char buf [TAMAX] ;

27

28 FILE ∗ f i l e ;

29 FILE ∗ f i l eCP ;
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30 char f i leName [ 8 0 ] ;

31 char fileNameCP [ 8 0 ] ;

32 f loat tempoSimulacao ;

33 t ime t i n i c i o , fim , f imReal ;

34

35 char f i r s t L i n e [ 2 0 ] ;

36 char mStatus [ 2 0 ] ; //1�> o r i g i n a l message ; 2�> copy message

37 char l ineTime [ 2 0 ] ;

38 char l i n eLa t [ 2 0 ] ;

39 char l ineLon [ 2 0 ] ;

40 char hostAddr [ 1 6 ] ;

41 int j =0;

42 int k=0;

43 char cha rPos i t i on ;

44 double lTime , lLat , lLon ;

45 int seqN=1;

46 struct pCo l l e c t ed {

47 int id ;

48 int mStatus ;

49 int seqN ;

50 double lTime ;

51 double lLat ;

52 double lLon ;

53 char hostAddr [ 1 6 ] ;

54 } bCol [NOMSG] ;

55

56 // shared memory v a r i a b l e s

57 char c ;

58 int shmid ;

59 key t key ;

60 struct pCo l l e c t ed ∗shm , ∗ s ;
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61

62 //number arguments t e s t

63 i f ( argc < 4) {

64 f p r i n t f ( s tde r r , ”Use : port number t o t a l t ime memory id\n” ) ;

65 e x i t (0 ) ;

66 }

67

68 tempoSimulacao = ( f loat ) a t o i ( argv [ 2 ] ) ;

69 key = f tok ( ”/home/ jeronymo/Downloads/ v i r tua lbox l i nux f i l e s / i d s /aa . txt ” , a t o i

( argv [ 3 ] ) ) ;

70 i f (0 > key ) {

71 pe r ro r ( ” f t ok ” ) ;

72 }

73 else {

74 // p r i n t f (” f t o k succe s s : % l l i \n” , ( long long i n t ) key ) ;

75 }

76 s t r cpy ( fi leName , ” saidaC�” ) ;

77 s t r c a t ( f i leName , argv [ 3 ] ) ;

78

79 s t r cpy ( fileNameCP , ”saidaCP�” ) ;

80 s t r c a t ( fileNameCP , argv [ 3 ] ) ;

81 s t r c a t ( fileNameCP , ” . txt ” ) ;

82

83 // shared memory i n i t i a l i z a t i o n

84 i f ( ( shmid = shmget ( key , NOMSG∗( s izeof ( struct pCo l l e c t ed ) ) , IPC CREAT | 0666)

) < 0) {

85 pe r ro r ( ”shmget” ) ;

86 p r i n t f ( ” po s i t i o nCo l e c t o r � shmget\n” ) ;

87 e x i t (1 ) ;

88 }

89 i f ( ( shm = shmat ( shmid , NULL, 0) ) == (char ∗) �1) {
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90 pe r ro r ( ”shmat” ) ;

91 e x i t (1 ) ;

92 }

93 s = shm ;

94

95

96

97 // socke t i n i t i a l i z a t i o n

98 sock=socket (AF INET, SOCKDGRAM, 0) ;

99 i f ( sock < 0) e r r o r ( ”Error openning the socket ” ) ;

100

101 l ength = s izeof ( s e r v e r ) ;

102 bzero(&server , l ength ) ;

103 s e r v e r . s i n f am i l y=AF INET ;

104 s e r v e r . s i n addr . s addr=INADDR ANY;

105 s e r v e r . s i n p o r t=htons ( a t o i ( argv [ 1 ] ) ) ;

106 i f ( bind ( sock , ( struct sockaddr ∗)&server , l ength )<0)

107 e r r o r ( ”ERROR: binding ” ) ;

108 fromlen = s izeof ( struct sockaddr in ) ;

109

110 //opens f i l e

111 i f ( ( f i l e = fopen ( fi leName , ”wb” ) ) == NULL ) {

112 p r i n t f ( ”Problem wr i t t i n g to f i l e : %s \n” , f i leName ) ;

113 return 1 ;

114 }

115

116 //opens f i l e

117 i f ( ( f i l eCP = fopen ( fileNameCP , ”wb” ) ) == NULL ) {

118 p r i n t f ( ”Problem wr i t t i n g to f i l e : %s \n” , fileNameCP ) ;

119 return 1 ;

120 }
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121

122 unsigned long i =0;

123 unsigned long bytesRece ived =0;

124

125 bzero ( hostAddr , 1 6 ) ;

126

127 for ( i =0; i<NOMSG; i++){

128 bCol [ i ] . id = 0 ;

129 bCol [ i ] . mStatus = 0 ;

130 bCol [ i ] . seqN = 0 ;

131 bCol [ i ] . lTime = 0 . 0 ;

132 bCol [ i ] . lLat = 0 . 0 ;

133 bCol [ i ] . lLon = 0 . 0 ;

134 bzero ( bCol [ i ] . hostAddr , 1 6 ) ;

135 s [ i ] . id = 0 ;

136 s [ i ] . mStatus = 0 ;

137 s [ i ] . seqN = 0 ;

138 s [ i ] . lTime = 0 . 0 ;

139 s [ i ] . lLat = 0 . 0 ;

140 s [ i ] . lLon = 0 . 0 ;

141 bzero ( s [ i ] . hostAddr , 1 6 ) ;

142 }

143

144 i =0;

145 i n i c i o = time (NULL) ;

146 fim = i n i c i o ;

147

148 while ( d i f f t im e ( fim , i n i c i o ) < tempoSimulacao ) {

149 n = recvfrom ( sock , buf ,TAMAX, 0 , ( struct sockaddr ∗)&from ,& fromlen ) ;

150

151 i f (n < 0) e r r o r ( ” recvfrom” ) ;
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152

153 i f ( i==0)

154 i n i c i o = time (NULL) ;

155 fim = time (NULL) ;

156 i f ( d i f f t im e ( fim , i n i c i o ) < tempoSimulacao ) {

157 bytesRece ived += n ;

158 i++;

159 fim = time (NULL) ;

160 f imReal = time (NULL) ;

161 bzero ( hostAddr , 16) ;

162 s t r cpy ( hostAddr , i n e t n t oa ( from . s in addr ) ) ;

163 hostAddr [ 1 5 ] = ’ \n ’ ;

164 bzero ( f i r s t L i n e , 20) ;

165 bzero (mStatus , 20) ;

166 bzero ( l ineTime , 20) ;

167 bzero ( l ineLat , 20) ;

168 bzero ( l ineLon , 20) ;

169 j =0;

170 k=0;

171 charPos i t i on = buf [ j ] ;

172

173 while ( cha rPos i t i on != ’ \n ’ ) {

174 f i r s t L i n e [ k ] = buf [ j ] ;

175 j++;

176 k++;

177 charPos i t i on = buf [ j ] ;

178

179 }

180 f i r s t L i n e [ k ] = ’ \n ’ ;

181 j++;

182 k=0;
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183 charPos i t i on = buf [ j ] ;

184 while ( cha rPos i t i on != ’ \n ’ ) {

185 mStatus [ k ] = buf [ j ] ;

186 j++;

187 k++;

188 charPos i t i on = buf [ j ] ;

189

190 }

191 mStatus [ k ] = ’ \n ’ ;

192 j++;

193 k=0;

194 charPos i t i on = buf [ j ] ;

195 while ( cha rPos i t i on != ’ \n ’ ) {

196 l ineTime [ k ] = buf [ j ] ;

197 j++;

198 k++;

199 charPos i t i on = buf [ j ] ;

200

201 }

202 l ineTime [ k ] = ’ \n ’ ;

203 j++;

204 k=0;

205 charPos i t i on = buf [ j ] ;

206 while ( cha rPos i t i on != ’ \n ’ ) {

207 l i n eLa t [ k ] = buf [ j ] ;

208 j++;

209 k++;

210 charPos i t i on = buf [ j ] ;

211

212 }

213 l i n eLa t [ k ] = ’ \n ’ ;
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214 j++;

215 k=0;

216 charPos i t i on = buf [ j ] ;

217 while ( cha rPos i t i on != ’ \n ’ ) {

218 l ineLon [ k ] = buf [ j ] ;

219 j++;

220 k++;

221 charPos i t i on = buf [ j ] ;

222

223 }

224 l ineLon [ k ] = ’ \n ’ ;

225 lTime = ato f ( l ineTime ) ;

226 lLat = a to f ( l i n eLa t ) ;

227 lLon = ato f ( l ineLon ) ;

228

229 bCol [ i ] . id = a t o i ( f i r s t L i n e ) ;

230 bCol [ i ] . mStatus = a t o i (mStatus ) ;

231 bCol [ i ] . seqN = seqN ;

232 bCol [ i ] . lTime = ato f ( l ineTime ) ;

233 bCol [ i ] . lLat = a to f ( l i n eLa t ) ;

234 bCol [ i ] . lLon = ato f ( l ineLon ) ;

235 s t r cpy ( bCol [ i ] . hostAddr , hostAddr ) ;

236

237 s [ i ] . id = a t o i ( f i r s t L i n e ) ;

238 s [ i ] . mStatus = a t o i (mStatus ) ;

239 s [ i ] . seqN = seqN ;

240 s [ i ] . lTime = ato f ( l ineTime ) ;

241 s [ i ] . lLat = a to f ( l i n eLa t ) ;

242 s [ i ] . lLon = ato f ( l ineLon ) ;

243 s t r cpy ( s [ i ] . hostAddr , hostAddr ) ;

244
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245 seqN++;

246 }

247 }

248 s [ i +1] . seqN = �1;

249 rewind ( f i l e ) ;

250 bzero ( buf ,TAMAX) ;

251 s p r i n t f ( buf , ”Packages ( r e c e i v ed ) : %lu \n” , i ) ;

252 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

253 bzero ( buf ,TAMAX) ;

254 s p r i n t f ( buf , ”Bytes ( r e c e i v ed ) : %lu \n” , bytesRece ived ) ;

255 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l e ) ;

256 f c l o s e ( f i l e ) ;

257

258 rewind ( f i l eCP ) ;

259 bzero ( buf ,TAMAX) ;

260 s p r i n t f ( buf , ”%lu \n” , i ) ;

261 fw r i t e ( buf , s t r l e n ( buf ) ,1 , f i l eCP ) ;

262 f c l o s e ( f i l eCP ) ;

263

264 p r i n t f ( ”Total packages ( r e c e i v ed ) : %lu \n” , i ) ;

265 p r i n t f ( ”Total bytes ( r e c e i v ed ) : %lu \n” , bytesRece ived ) ;

266 return 0 ;

267 }

147



Appendix F: CMIDS Multilateration Error Estimation

Source Code

1 % This rou t ine c a l c u l a t e s the mu l t i l a t e r a t i o n error o f CMIDS

2 % I t uses par t o f the work o f Hamid Ramezani .

3

4 % Globa l S e t t i n g

5 N = 5 ; % number o f sensor s

6 M = 10 ; % number o f t a c t i c a l nodes

7 numberOfSamples = 90 ; % number o f samples

8

9 % di s t ance dependent err ( s tandard d e v i a t i on o f the no i se normal ized to

d i s t ance )

10 distMeasurementErrRatio = 0 . 0 5 ; % i t means t ha t the accuracy o f d i s t ance

measurement i s 95%

11 % for in s tance the inaccuracy o f a 1m

measured d i s t ance

12 % i s around .05 meter .

13

14 networkSize = 2000 ;

15

16 clc ; % Clear the command window .

17 workspace ; % Make sure the workspace pane l i s showing .

18 format longg ;

19 format compact ;

20

21 % Define a s t a r t i n g f o l d e r .

22 s t a r t pa th = f u l l f i l e ( ’ . / data/ ’ ) ;

23 topLeve lFo lder = s t a r t pa th ;

24 i f topLeve lFo lder == 0
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25 return ;

26 end

27 % Get l i s t o f a l l s u b f o l d e r s .

28 a l l SubFo lde r s = genpath ( topLeve lFo lder ) ;

29 % Parse in t o a c e l l array .

30 remain = a l lSubFo lde r s ;

31 l i s tOfFolderNames = {} ;

32 while t rue

33 [ s ing leSubFolder , remain ] = strtok ( remain , ’ : ’ ) ;

34 i f isempty ( s ing l eSubFo lder )

35 break ;

36 end

37 l i s tOfFolderNames = [ l i s tOfFolderNames s ing l eSubFo lde r ] ;

38 end

39 numberOfFolders = length ( l i s tOfFolderNames ) ;

40

41 simRounds = numberOfFolders � 1 ; % number o f s imu la t i on rounds

42 mError = zeros ( simRounds , 1 ) ;

43

44 % Process a l l f i l e s in those f o l d e r s .

45 for k = 2 : numberOfFolders

46 % Get t h i s f o l d e r and p r i n t i t out .

47 th i sFo l d e r = l i stOfFolderNames {k } ;

48 fpr intf ( ’ Proce s s ing f o l d e r %s \n ’ , t h i sFo ld e r ) ;

49

50 % sensor N1

51 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ LogS�1. txt ’ ) ;

52 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

53 formatSpec = ’%f ’ ;

54 sN1 = fscanf ( f i l e ID , formatSpec ) ;

55 fc lose ( f i l e ID ) ;
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56 szDim1 = s ize ( sN1 , 1 ) /4 ;

57 sensorN1 = zeros ( szDim1 , 2 ) ;

58

59 for n = 1 : 1 : szDim1

60 sensorN1 (n , 1 ) = sN1 (4∗n�1) ;

61 sensorN1 (n , 2 ) = sN1 (4∗n) ;

62 end

63

64 % sensor N2

65 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ LogS�2. txt ’ ) ;

66 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

67 formatSpec = ’%f ’ ;

68 sN2 = fscanf ( f i l e ID , formatSpec ) ;

69 fc lose ( f i l e ID ) ;

70 szDim2 = s ize ( sN2 , 1 ) /4 ;

71 sensorN2 = zeros ( szDim2 , 2 ) ;

72

73 for n = 1 : 1 : szDim2

74 sensorN2 (n , 1 ) = sN2 (4∗n�1) ;

75 sensorN2 (n , 2 ) = sN2 (4∗n) ;

76 end

77

78 % sensor N3

79 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ LogS�3. txt ’ ) ;

80 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

81 formatSpec = ’%f ’ ;

82 sN3 = fscanf ( f i l e ID , formatSpec ) ;

83 fc lose ( f i l e ID ) ;

84 szDim3 = s ize ( sN3 , 1 ) /4 ;

85 sensorN3 = zeros ( szDim3 , 2 ) ;

86 for n = 1 : 1 : szDim3
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87 sensorN3 (n , 1 ) = sN3 (4∗n�1) ;

88 sensorN3 (n , 2 ) = sN3 (4∗n) ;

89 end

90

91 % sensor N4

92 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ LogS�4. txt ’ ) ;

93 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

94 formatSpec = ’%f ’ ;

95 sN4 = fscanf ( f i l e ID , formatSpec ) ;

96 fc lose ( f i l e ID ) ;

97 szDim4 = s ize ( sN4 , 1 ) /4 ;

98 sensorN4 = zeros ( szDim4 , 2 ) ;

99 for n = 1 : 1 : szDim4

100 sensorN4 (n , 1 ) = sN4 (4∗n�1) ;

101 sensorN4 (n , 2 ) = sN4 (4∗n) ;

102 end

103

104 % sensor N5

105 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ LogS�5. txt ’ ) ;

106 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

107 formatSpec = ’%f ’ ;

108 sN5 = fscanf ( f i l e ID , formatSpec ) ;

109 fc lose ( f i l e ID ) ;

110 szDim5 = s ize ( sN5 , 1 ) /4 ;

111 sensorN5 = zeros ( szDim5 , 2 ) ;

112 for n = 1 : 1 : szDim5

113 sensorN5 (n , 1 ) = sN5 (4∗n�1) ;

114 sensorN5 (n , 2 ) = sN5 (4∗n) ;

115 end

116

117
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118

119 % Tac t i c a l nodes

120

121 % t a c t i c a l node 1

122 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�1. txt ’ ) ;

123 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

124 formatSpec = ’%f ’ ;

125 tN1 = fscanf ( f i l e ID , formatSpec ) ;

126 fc lose ( f i l e ID ) ;

127 szDim = s ize ( tN1 , 1 ) /4 ;

128 ta c t i c a lN1 = zeros ( szDim , 2 ) ;

129 for n = 1 : 1 : szDim

130 ta c t i c a lN1 (n , 1 ) = tN1 (4∗n�1) ;

131 ta c t i c a lN1 (n , 2 ) = tN1 (4∗n) ;

132 end

133

134 % t a c t i c a l node 2

135 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�2. txt ’ ) ;

136 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

137 formatSpec = ’%f ’ ;

138 tN2 = fscanf ( f i l e ID , formatSpec ) ;

139 fc lose ( f i l e ID ) ;

140 szDim = s ize ( tN2 , 1 ) /4 ;

141 ta c t i c a lN2 = zeros ( szDim , 2 ) ;

142 for n = 1 : 1 : szDim

143 ta c t i c a lN2 (n , 1 ) = tN2 (4∗n�1) ;

144 ta c t i c a lN2 (n , 2 ) = tN2 (4∗n) ;

145 end

146

147 % t a c t i c a l node 3

148 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�3. txt ’ ) ;
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149 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

150 formatSpec = ’%f ’ ;

151 tN3 = fscanf ( f i l e ID , formatSpec ) ;

152 fc lose ( f i l e ID ) ;

153 szDim = s ize ( tN3 , 1 ) /4 ;

154 ta c t i c a lN3 = zeros ( szDim , 2 ) ;

155 for n = 1 : 1 : szDim

156 ta c t i c a lN3 (n , 1 ) = tN3 (4∗n�1) ;

157 ta c t i c a lN3 (n , 2 ) = tN3 (4∗n) ;

158 end

159

160 % t a c t i c a l node 4

161 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�4. txt ’ ) ;

162 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

163 formatSpec = ’%f ’ ;

164 tN4 = fscanf ( f i l e ID , formatSpec ) ;

165 fc lose ( f i l e ID ) ;

166 szDim = s ize ( tN4 , 1 ) /4 ;

167 ta c t i c a lN4 = zeros ( szDim , 2 ) ;

168 for n = 1 : 1 : szDim

169 ta c t i c a lN4 (n , 1 ) = tN4 (4∗n�1) ;

170 ta c t i c a lN4 (n , 2 ) = tN4 (4∗n) ;

171 end

172

173 % t a c t i c a l node 5

174 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�5. txt ’ ) ;

175 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

176 formatSpec = ’%f ’ ;

177 tN5 = fscanf ( f i l e ID , formatSpec ) ;

178 fc lose ( f i l e ID ) ;

179 szDim = s ize ( tN5 , 1 ) /4 ;
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180 ta c t i c a lN5 = zeros ( szDim , 2 ) ;

181 for n = 1 : 1 : szDim

182 ta c t i c a lN5 (n , 1 ) = tN5 (4∗n�1) ;

183 ta c t i c a lN5 (n , 2 ) = tN5 (4∗n) ;

184 end

185

186 % t a c t i c a l node 6

187 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�6. txt ’ ) ;

188 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

189 formatSpec = ’%f ’ ;

190 tN6 = fscanf ( f i l e ID , formatSpec ) ;

191 fc lose ( f i l e ID ) ;

192 szDim = s ize ( tN6 , 1 ) /4 ;

193 ta c t i c a lN6 = zeros ( szDim , 2 ) ;

194 for n = 1 : 1 : szDim

195 ta c t i c a lN6 (n , 1 ) = tN6 (4∗n�1) ;

196 ta c t i c a lN6 (n , 2 ) = tN6 (4∗n) ;

197 end

198

199 % t a c t i c a l node 7

200 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�7. txt ’ ) ;

201 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

202 formatSpec = ’%f ’ ;

203 tN7 = fscanf ( f i l e ID , formatSpec ) ;

204 fc lose ( f i l e ID ) ;

205 szDim = s ize ( tN7 , 1 ) /4 ;

206 ta c t i c a lN7 = zeros ( szDim , 2 ) ;

207 for n = 1 : 1 : szDim

208 ta c t i c a lN7 (n , 1 ) = tN7 (4∗n�1) ;

209 ta c t i c a lN7 (n , 2 ) = tN7 (4∗n) ;

210 end
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211

212 % t a c t i c a l node 8

213 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�8. txt ’ ) ;

214 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

215 formatSpec = ’%f ’ ;

216 tN8 = fscanf ( f i l e ID , formatSpec ) ;

217 fc lose ( f i l e ID ) ;

218 szDim = s ize ( tN8 , 1 ) /4 ;

219 ta c t i c a lN8 = zeros ( szDim , 2 ) ;

220 for n = 1 : 1 : szDim

221 ta c t i c a lN8 (n , 1 ) = tN8 (4∗n�1) ;

222 ta c t i c a lN8 (n , 2 ) = tN8 (4∗n) ;

223 end

224

225 % t a c t i c a l node 9

226 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�9. txt ’ ) ;

227 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

228 formatSpec = ’%f ’ ;

229 tN9 = fscanf ( f i l e ID , formatSpec ) ;

230 fc lose ( f i l e ID ) ;

231 szDim = s ize ( tN9 , 1 ) /4 ;

232 ta c t i c a lN9 = zeros ( szDim , 2 ) ;

233 for n = 1 : 1 : szDim

234 ta c t i c a lN9 (n , 1 ) = tN9 (4∗n�1) ;

235 ta c t i c a lN9 (n , 2 ) = tN9 (4∗n) ;

236 end

237

238 % t a c t i c a l node 10

239 c u r r e n t f i l e = f u l l f i l e ( th i sFo lde r , ’ Log�10. txt ’ ) ;

240 f i l e ID = fopen ( c u r r e n t f i l e , ’ r ’ ) ;

241 formatSpec = ’%f ’ ;
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242 tN10 = fscanf ( f i l e ID , formatSpec ) ;

243 fc lose ( f i l e ID ) ;

244 szDim = s ize ( tN10 , 1 ) /4 ;

245 tac t i c a lN10 = zeros ( szDim , 2 ) ;

246 for n = 1 : 1 : szDim

247 tac t i c a lN10 (n , 1 ) = tN10 (4∗n�1) ;

248 ta c t i c a lN10 (n , 2 ) = tN10 (4∗n) ;

249 end

250

251 t o t a lE r r = zeros ( numberOfSamples , 1 ) ;

252

253 % main loop

254 for i t e r = 1 : 1 : numberOfSamples

255

256 % lo c a t i o n o f sensors and t a c t i c a l nodes

257 %i t e r = szDim ;

258 sensorLoc = [ sensorN1 ( i t e r , 1 ) sensorN1 ( i t e r , 2 ) ;

259 sensorN2 ( i t e r , 1 ) sensorN2 ( i t e r , 2 ) ;

260 sensorN3 ( i t e r , 1 ) sensorN3 ( i t e r , 2 ) ;

261 sensorN4 ( i t e r , 1 ) sensorN4 ( i t e r , 2 ) ;

262 sensorN5 ( i t e r , 1 ) sensorN5 ( i t e r , 2 ) ] ;

263

264 mobileLoc = [

265 ta c t i c a lN1 ( i t e r , 1 ) t a c t i c a lN1 ( i t e r , 2 ) ;

266 ta c t i c a lN2 ( i t e r , 1 ) t a c t i c a lN2 ( i t e r , 2 ) ;

267 ta c t i c a lN3 ( i t e r , 1 ) t a c t i c a lN3 ( i t e r , 2 ) ;

268 ta c t i c a lN4 ( i t e r , 1 ) t a c t i c a lN4 ( i t e r , 2 ) ;

269 ta c t i c a lN5 ( i t e r , 1 ) t a c t i c a lN5 ( i t e r , 2 ) ;

270 ta c t i c a lN6 ( i t e r , 1 ) t a c t i c a lN6 ( i t e r , 2 ) ;

271 ta c t i c a lN7 ( i t e r , 1 ) t a c t i c a lN7 ( i t e r , 2 ) ;

272 ta c t i c a lN8 ( i t e r , 1 ) t a c t i c a lN8 ( i t e r , 2 ) ;
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273 ta c t i c a lN9 ( i t e r , 1 ) t a c t i c a lN9 ( i t e r , 2 ) ;

274 tac t i c a lN10 ( i t e r , 1 ) t a c t i c a l 1 0 ( i t e r , 2 ) ;

275 ] ;

276

277

278 % Computing the Euc l i d ian d i s t an c e s

279 d i s t anc e = zeros (N,M) ;

280 for m = 1 : M

281 for n = 1 : N

282 d i s t anc e (n ,m) = sqrt ( ( sensorLoc (n , 1 )�mobileLoc (m, 1 ) ) . ˆ2 + . . .

283 ( sensorLoc (n , 2 )�mobileLoc (m, 2 ) ) . ˆ2

) ;

284 end

285 end

286

287 % noisy measurements

288 d i s tanceNo i sy = d i s t anc e + d i s t anc e .∗ distMeasurementErrRatio . ∗ ( rand (N,M)

�1/2) ;

289

290 % using guss ian newton to s o l v e the problem

291 % ( h t t p :// en . w i k i p ed i a . org / w ik i /Gauss%E2%80%93Newton algori thm )

292

293 numOfIterat ion = 5 ;

294

295 % I n i t i a l guess ( random l o c a t i o n )

296 mobileLocEst = networkSize ∗rand (M, 2 ) ;

297 % repea t a t i on

298 for m = 1 : M

299 for i = 1 : numOfIterat ion

300 % computing the es imated d i s t an c e s
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301 d i s tanceEs t = sqrt (sum( ( sensorLoc � repmat ( mobileLocEst (m, : ) ,N

, 1 ) ) . ˆ2 , 2) ) ;

302 % computing the d e r i v a t i v e s

303 % d0 = s q r t ( ( x�x0 ) ˆ2 + (y�y0 ) ˆ2 )

304 % de r i v a t i v e s �> d ( d0 )/dx = (x�x0 )/d0

305 % de r i v a t i v e s �> d ( d0 )/dy = (y�y0 )/d0

306 distanceDrv = [ ( mobileLocEst (m, 1 )�sensorLoc ( : , 1 ) ) . / d i s tanceEs t

. . . % x�coord ina te

307 ( mobileLocEst (m, 2 )�sensorLoc ( : , 2 ) ) . / d i s tanceEs t ] ;

% y�coord ina te

308 % de l t a

309 de l t a = � ( d istanceDrv . ’∗ distanceDrv )ˆ�1∗distanceDrv . ’ ∗ (

d i s tanceEs t � d i s tanceNo i sy ( : ,m) ) ;

310 % Updating the e s t ima t i on

311 mobileLocEst (m, : ) = mobileLocEst (m, : ) + de l t a . ’ ;

312 end

313 end

314

315 % Compute the Root Mean Squred Error

316 Err = mean( sqrt (sum( ( mobileLocEst�mobileLoc ) . ˆ 2 ) ) ) ;

317

318 t o t a lE r r ( i t e r ) = Err ;

319

320 end

321 mError (k�1) = median( t o t a lE r r ) ;

322 end

323 mError = mError ’ ;

324 mError

325

326 % Plot graph 1

327 f1 = f igure (1 ) ;
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328 c l f

329 round = 1 : 1 : simRounds ;

330 plot (round , mError , ’� ’ ) ;

331 grid on ;

332 hold on ;

333 t i t l e ( [ ’ Mu l t i l a t e r a t i o n Error per S imulat ion Round ’ ] ) ;

334 xlabel ( ’ S imulat ion Round ’ ) ;

335 ylabel ( ’ Mu l t i l a t e r a t i o n Error (m) ’ ) ;

336 dim = [ . 7 . 6 . 3 . 3 ] ;

337 s t r = sprintf ( ’Mean = %8.4 f \nMax = %8.4 f \nMin = %8.4 f ’ ,mean(mError ) ,max(

mError ) ,min(mError ) ) ;

338 annotat ion ( ’ textbox ’ , dim , ’ S t r ing ’ , s t r , ’ FitBoxToText ’ , ’ on ’ ) ;

339 axis ( [ 0 simRounds 0 .9∗min(mError ) 1 .1∗max(mError ) ] ) ;

340

341

342 %Plot graph 2

343 f2 = f igure (2 ) ;

344 c l f

345 round = 1 : 1 : simRounds ;

346 plot (round , mError , ’� ’ ) ;

347 grid on ;

348 hold on ;

349 t i t l e ( [ ’ Mu l t i l a t e r a t i o n Error per S imulat ion Round ’ ] ) ;

350 xlabel ( ’ S imulat ion Round ’ ) ;

351 ylabel ( ’ Mu l t i l a t e r a t i o n Error (m) ’ ) ;

352 dim = [ . 7 . 1 . 3 . 3 ] ;

353 s t r = sprintf ( ’Mean = %8.4 f \nMax = %8.4 f \nMin = %8.4 f ’ ,mean(mError ) ,max(

mError ) ,min(mError ) ) ;

354 annotat ion ( ’ textbox ’ , dim , ’ S t r ing ’ , s t r , ’ FitBoxToText ’ , ’ on ’ ) ;

355 axis ( [ 0 simRounds 0 1 .1∗max(mError ) ] ) ;
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