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Abstract

THREE ESSAYS ON MARKET INSTITUTIONS

Weiwei Zheng, PhD

George Mason University, 2020

Dissertation Director: César Martinelli

This dissertation focuses on the equilibrium and efficiency of market institutions, a major deter-

minant of market outcomes. The three chapters of the dissertation study market institutions in the

presence of classic challenges: incomplete contracts, few traders, and incomplete information.

Chapter 1 compares two mechanisms, posted-offer and posted-bid, in a procurement setting

with incomplete contracts. Reciprocity has been identified in recent literature as a behavioral trait

that mitigates moral hazard problems in the presence of incomplete contracts, along with repeated

interactions and reputation concerns. This study builds a model of reciprocity based on inequality

aversion, and takes it to the lab. In the laboratory experiment, the posted-offer mechanism induces

higher level of inequality aversion on sellers, resulting in higher efficiency than the posted-bid mech-

anism.

Chapter 2 studies minimal conditions for competitive behavior with few agents, adapting price-

quantity strategic market games to an indivisible good environment, and taking it to the lab. In

the proposed mechanism, all Nash equilibrium outcomes with active trading are competitive if and

only if there are at least two buyers and two sellers willing to trade at every competitive price. In

the laboratory experiment, this condition is enough to induce competitive results. Moreover, the

performance of a sealed-bid auction following the rules of the strategic market game approaches

that of its dynamic counterpart, the double auction, over time.



Chapter 3 surveys the theoretical and experimental literature on the k-double auction. A k-

double auction is a multi-unit sealed-bid call market in which the price is determined giving weight

k ∈ [0,1] to the upper bound of market-clearing prices and (1−k) to the lower bound. When agents’

values of a commodity are private information, this institution features convergence to efficient

outcomes in equilibria as the size of the market grows, supporting the use of Walrasian model as

an asymptote of market outcomes in the absence of complete information. This chapter includes a

history of the development of the theory, a summary of methods and results, the use in experimental

economics, and the relation to other mechanisms.



Chapter 1: Suggested versus Offered Gifts: How Alternative Market

Institutions Mitigate Moral Hazard

1.1 Introduction

Almost all procurement contracts fail to specify standards for all possible supplier performance

dimensions, making moral hazard a ubiquitous presence in supply chain relationships. To explain

the widespread use of such incompletely specified contracts and accompanying lack of supplier

malfeasance, standard theory relies upon models of repeated strategic interactions and reputational

equilibrium. We show that the market institution, via its effects on the buyer-supplier relationship,

can be an alternative force that supports this phenomenon.

We consider a setting in which the buyer wishes to acquire a single object from a set of pos-

sible suppliers. The buyer’s valuation of the object depends on its quality, such as promptness of

delivering the product, the amount of labor put into production, etc. The buyer can form a contract

with one of the suppliers, and the price of the object is specified in the contract. After signing a

contract, the supplier determines the quality level of the object during production. In our setting, a

higher quality object is more valuable for the buyer, but more costly to produce. Hence the supplier,

without any contractual restriction or reputation concern, has an incentive to supply an object of the

lowest quality.

Besides the use of incentive contract, repeated game, and reputation system, behavioral economists

have identified gift exchange and reciprocity as a remedy for moral hazard problem and an explana-

tion for the existence of efficiency wage (Falk et al., 1999; Fehr et al., 1993, 1998). In this paper, we

show that the extent of gift-exchange is subject to the trading institution used. We compare results

of two commonly used auctions in procurement: the posted-bid mechanism for labor market as in

Fehr et al. (1993, 1998), and the posted-offer mechanism for commodity market as in (Fugger et al.,

2019). In our controlled laboratory experiments, we found posted-offer mechanism leads to higher

1



extent of gift-exchange, shown as higher price and quality, and higher efficiency. We explain it as a

result of the higher level of other-regarding in the supplier’s preference induced by the posted-offer

mechanism.

In controlled laboratory experiments with designs that rule out the possibility of dynamic re-

lationships and reputation building, suppliers choose higher quality when the contracted price is

higher in both labor market settings (Fehr et al. (1993, 1998), hereafter FKR) and commodity mar-

ket settings (Fugger et al., 2019). These studies found it Pareto-improving to allow the buyer to offer

a price higher than minimum (FKR), or to allow the buyer to accept a price other than the lowest

offer from sellers (Fugger et al., 2019). The results in these studies are explained by the other-

regarding preference the contracted supplier has: when the supplier is awarded a contract that has

a price higher than the minimum, she acquires sentiment for the buyer’s payoff, and thus chooses a

quality level higher than minimum requirement (Akerlof, 1982).

As Fehr and Schmidt (1999) pointed out, "the economic environment determines the preference

type that is decisive for the prevailing behavior in equilibrium" (p. 819). A supplier’s willingness

to reciprocate may also depend on her perceived kindness of the buyer (Cox et al., 2007; Rabin,

1993). The two institutions we investigate here are symmetric: one side of the market propose a

price, the other side chooses whether to trade or not. The buyer is not required to accept/propose the

minimum price in either mechanism. However, in the posted-offer mechanism, suppliers propose

prices to the buyer, hence the size of the gift is demanded; in the posted-bid mechanism, the buyer

extends the gift to the suppliers by offering a price to them. We show that if whether a gift is

demanded or offered has no effect on the supplier’s sentiment for the buyer, the two mechanisms

shall generate the same price and quality in the Nash equilibrium. In the experiment, we observe

higher price and quality in markets under the posted-offer mechanism, together with higher payoffs

for both the buyer and the supplier. In other words, when the supplier demands a gift, the size of the

gift is larger, so is the size of reciprocation. This implies that the two mechanisms induce different

preferences for the supplier.

We also test the robustness of our results in thicker markets. Studies of procurement auction

for commodities focus on the monopsonist scenario, where one buyer faces multiple suppliers. In

2



labor market experiments such as in FKR, there are more than one buyers in the market, which may

drive the outcome more competitive. We keep the buyer-seller ratio the same in our experiment, and

compare the performance of the mechanisms in monopsonist markets and the competitive markets

with six buyers. When the posted-offer mechanism is used, a thicker market does not have an effect

on average price, quality or payoffs. When the posted-bid mechanism is used, a thicker market has

no effect on average price and the supplier’s payoff, but reduces the average quality and the buyer’s

payoff.

In the procurement auction literature, the posted-offer mechanism we use here is a buyer-

determined auction. It is investigated in the monopsony setting. When the object is not homo-

geneous an quality matters in the procurement, the buyer-determined auction outperforms the first

price auction, regardless of the existence of the reputation system (Brosig-Koch and Heinrich, 2014;

Fugger et al., 2019).

A closely related study is Charness et al. (2012). The experiment in Charness et al. (2012) shows

that delegating the wage choice to the supplier is Pareto improving when the buyer is matched with

a supplier before the wage determination process. Since there is no competition on the suppliers’

side, the findings in Charness et al. (2012) can be explained by the different equilibrium outcomes

under different mechanisms, without a change in the supplier’s preference. Our design rules out

this possibility. Having suppliers competing against each other in our settings, the Nash equilibrium

outcomes are identical under the two mechanisms as long as the extent of the supplier’s altruism

does not change. Hence we can reach to the conclusion that the different results from our experiment

is due to the change in the supplier’s preference.

The rest of the paper is organized as follows. Section 1.2 gives a formal model of the pro-

curement. Section 1.3 describes the experimental design and hypotheses. Section 1.4 presents the

results. Section 1.5 concludes.
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1.2 Model

1.2.1 Setup

We model a procurement scenario in which a buyer attempts to form a contract with one of multiple

potential suppliers to produce a single object. The quality of the object, denoted by q, is determined

by the amount of costly effort exerted by the supplier and can’t be verified by a third party. Further,

the contract terms can’t be conditioned on the quality. The contract is characterized by the naming

of a supplier and the price of the object, p, prior to production. After the awarding of the contract,

the named supplier chooses the quality of the object.

We use the payoff structure of the classic studies of FKR. The quality of the object is between 1

and 10. Suppliers’ cost for producing the object, c(q)≈ aq2+bq+d, where a= 0.1061, b= 0.8333

and d = 28.933, is an increasing function of quality in the range.

A supplier’s payoff if sells is

ΠS = p− c(q).

If a supplier does not sell, her payoff equals 0.

The buyer’s payoff if she buys is

ΠB = (126− p)× q
10

.

Also, we have p ∈ [30,126] to guarantee non-negative payoffs for buyers involved in trades.

We consider two mechanisms to award the contract: a posted-bid mechanism, and a posted-

offer mechanism. The posted-bid mechanism is the one-sided double auction used in FKR (FKR

hereafter), where the buyer makes a price offer to all suppliers, and contract with one of the suppliers

who are willing to accept the offer. The posted-offer mechanism is called buyer-determined auction

(BDA hereafter) in the literature, where each supplier makes a price offer and the buyer picks one

of them to trade with.

Table 1.1 illustrates the procedure used in the two mechanisms. Both the buyer and the suppliers

take part in deciding the transaction price in both mechanisms: one of the parties proposes a price,

4



the other party approves. The posted-bid mechanism works as follows. In the first stage, the buyer

sends a bid to all potential suppliers, who in the second stage choose whether to accept the price.

One of the suppliers who accept the price is awarded the contract. In the third stage, the contracted

supplier chooses a quality level. The posted-offer mechanism differs in the first two stages: in the

first stage, each supplier sends a sealed offer to the buyer, who in the second stage decides which

supplier to contract with. The third stage is identical in both mechanisms.

Table 1.1: Procedure

Posted-bid (FKR) Posted-offer (BDA)
Stage 1: Proposal The buyer proposes a

price to all suppliers.
Each supplier proposes a
price to the buyer.

Stage 2: Contract One of the suppliers who
accept the proposal forms
a contract with the buyer.
The buyer pays the price
she proposed to the sup-
plier.

The buyer picks one of the
suppliers to form the con-
tract with. The buyer pays
the price the contracted
supplier asked.

Stage 3: Production The contracted supplier
chooses the quality level
of the product.

The contracted supplier
chooses the quality level
of the product.

1.2.2 Nash equilibrium

Here we look for subgame-perfect Nash equilibrium. We assume all suppliers are identical. Know-

ing the supplier’s best response in the last stage, we can find the buyer’s globally preferred price and

the minimum price the seller is willing to trade at. It can be shown that the optimal price the buyer

can get, denoted by p∗, is the maximum of the two.

The Nash equilibrium of the posted-bid mechanism is where the buyer offers p∗ to suppliers,

and forms the contract with a random one of them; The suppliers accept the proposal from the buyer,

5



and the contracted one offers the quality that maximizes her utility. The buyer would not be better

off at a different price, and suppliers prefer trading than not.

In the Nash equilibrium of the posted-offer mechanism, all suppliers offer p∗, the buyer contracts

with a random one of them, and the contracted supplier chooses the quality level that maximizes

her utility given p∗. If the suppliers offer different prices, a supplier with an unchosen offer can be

better off deviating to the chosen price. If suppliers all offer a price different from p∗, a supplier can

make a small deviation towards p∗, and increases the probability of trade to 1.

Without any shift in the preference, p∗ and the corresponding optimal quality for suppliers are

the same under the two mechanisms. Thus the outcomes of Nash equilibrium are the same under

both mechanisms: the price equals p∗, and the quality equals the supplier’s optimal quality at p∗. 1

The rest of this section explores the equilibrium outcomes under alternative assumptions on

agents’ preference.

Profit-maximizing agents

Suppose all agents maximize their own payoffs. In the last stage of the game, the supplier chooses

q = 1. Knowing this, the buyer obtains the highest profit at price p∗ = 30.

The Nash equilibrium outcome is p∗ = 30 and q = 1 under both mechanisms.

Agents with other regarding preference

Suppose the buyer and the supplier involved in the contract care about the payoff for the other party,

and the preference can be represented by the utility function from Fehr and Schmidt (1999).

Denote by B and S the buyer and the supplier involved in the transaction. The utility for a buyer

who buys is

UB = ΠB−αB max{ΠS−ΠB,0}−βB max{ΠB−ΠS,0}.
1This is different from the equilibrium in Charness et al. (2012). In Charness et al. (2012), when the supplier sets the

price, she sets it at her preferred price. The supplier’s preferred price is higher than the buyer’s unless they value equality
in payoffs highly.
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The utility for a supplier who sells is

US = ΠS−αS max{ΠB−ΠS,0}−βS max{ΠS−ΠB,0}.

The αs and βs in the functions represent the levels of aversion an agent has towards unequal

payoffs. Following Fehr and Schmidt (1999), we assume that βS,βB ∈ [0,1), βB ≤ αB and βS ≤ αS.

Different values of αs and βs may be induced by the institutions.

Without loss of generality, we further assume that the utility for a supplier who sells is always

higher than the utility if she does not sell, and the utility for a buyer who buys is always higher than

if she does not buy. Hence p∗ equals to the buyer’s globally preferred price. 2

Supplier’s choice of quality

With the other-regarding preference described in this section, the quality the supplier chooses

could be higher than 1.

When ΠS < ΠB, the supplier has disutility from obtaining lower payoff than the buyer. Given a

price, decreasing the quality increases supplier’s utility in two ways: it decreases the disutility from

unequal payoffs, and it increases the supplier’s payoff. Therefore, if ΠS < ΠB, the supplier would

want to lower quality as much as possible. The value of αS does not affect the supplier’s choice of

quality as long as it’s positive.

When ΠS > ΠB, the supplier has disutility from obtaining higher payoff than the buyer. Given

a price, increasing the quality decreases the distutility from unequal payoff, but decreases the sup-

plier’s payoff as well. The supplier weighs these two factors, and chooses the quality according to

how much she values equality.

Hence, we have the following proposition.

Proposition 1. The supplier chooses q = 1 at all prices if βS < 0.11. At each price, the supplier’s

choice of quality is increasing in βS.

2Alternatively, we can assume U0=0. Then the minimum price a seller is willing to trade at depends on α. The
equivalence of Nash equilibrium outcomes in the two institutions still holds if preferences are the same across institutions.
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The proof of the proposition is in the appendix. Figure 1.1 depicts the optimal quality choices

at each price. Different colors indicate different values of βS. The shade indicates that ΠS < ΠB in

the area. At the boundary of the shaded area, the payoffs are equal for both buyer and seller.

If βS is smaller than 0.11, as shown by the yellow line, the supplier chooses q = 1 at all price

levels.

When βS is larger than 0.11, the supplier may choose a quality higher than 1 at some prices.

As shown in figure 1.1, when the price is low, the quality chosen by the supplier equals 1; As the

price goes higher, the optimal quality starts to increase, and then decreases after the price reaches

a certain level. The the highest quality choice on the equal-payoff curve is the point that the sup-

plier’s marginal utility from increasing own payoff equals the marginal utility from decreasing the

inequality. The same goes to the points on the decreasing segments of the quality. Even though

the supplier values equality, the quality level is decreasing in price in these segments. This feature

comes from the structure of the payoff functions. As the price goes higher, the marginal effect of

quality on buyer’s payoff drops, while its effect on supplier’s payoff is constant. Therefore, high

quality is not necessarily efficient in our settings. When price goes high enough, by lowering the

quality, the increase in the supplier’s own payoff exceeds the increase in the disutility from inequal-

ity. The higher βS is, the higher the price and quality are at the turning point. When βS > 0.43, the

preferred quality level is bounded by 10 in certain price ranges.

Buyer’s preferred price

Denote by P1 the price at which the buyer and the supplier have equal payoffs when q = 1. Given

the supplier’s quality choice, denote by P̂(βS) the highest price at which the buyer and the supplier

have equal payoff. From proposition 1, P̂(·) is a non-decreasing function.

We have the following proposition.

Proposition 2. A buyer’s globally preferred price is 30 if βB < 0.09 and βS < 0.11. Otherwise the

preferred price is P̂(βS). A buyer’s globally preferred price is increasing in βS.

The proof is in the appendix. Intuitively, when the price exceeds P̂(βS), the quality chosen by

the supplier is not increasing in p, and the buyer has lower payoff than the supplier. Therefore,
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Figure 1.1: Quality choice by the supplier

the buyer prefers P̂(βS) to all prices higher than it. In the price range between p1 and P̂(βS), the

buyer prefers P̂(βS) because it gives the highest payoff, while there is no disutility from inequality

in the range. In the range of price between 30 and p1, the buyer prefers p1 if he has strong enough

preference for equality, i.e. βB > 0.09, and prefers 30 if βB < 0.09. Hence, if βS is high so that P̂(βS)

generates higher utility than when p = 30, or if βB > 0.09, the buyer’s globally preferred price is

P̂(βS).

In figure 1.2, the asterisks indicate the Nash equilibrium outcomes at different levels of βS. Lines

in colors are the best responses by suppliers of different βSs, same as the ones in figure 1.1. In a

subgame-perfect Nash equilibrium, the buyer chooses a point on the supplier’s best response curve

that yields the highest utility. The black lines in the background are the buyer’s indifference curves.
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In panel (a), βB ≤ 0.09. The buyer’s utility increases in the direction of northwest. Depending on

the slope of indifference curves, when βS is low, i.e. βS ≤ 0.11, the Nash equilibrium price can be

between 30 and 39.59. When βS > 0.11, as shown in proposition 2, the Nash equilibrium price is

P̂(βS), which is non-decreasing in βS. In panel (b), βB > 0.09, the buyer obtains highest utility at

the highest kink of the indifference curves. The Nash equilibrium price is P̂(βS).

Overall, at any level of βB, the Nash equilibrium price and quality are non-decreasing in βS.

When βS ∈ [0.11,0.43], the Nash equilibrium outcome is strictly increasing in βS regardless of βB.

If the two institutions induce different values of βS, the resulted Nash equilibrium price and

quality may be different. As discussed in Charness et al. (2012), when a supplier offers the price,

the supplier may feel more responsible for the outcome and care more about the inequality, thus

offer a higher quality. If this is true, the price and quality could be higher under the posted offer

mechanism.

1.3 Experimental design and hypotheses

The experiment compares gift-exchange behavior under posted-offer and posted-bid mechanisms.

We study both a monopsonist environment (1 buyer versus 2 suppliers, 1:2 hereafter) and a thick

market environment (6 buyers versus 12 suppliers, 6:12 hereafter). The two environments have

the same buyer-supplier ratio. In the standard theory with homogeneous good, a thicker market

reduces the market power possessed by the monopsonist, and generates higher efficiency. Here we

test whether the proposition holds in an incomplete contract environment.

In every period, each buyer can form an incomplete contract to buy one unit of product from

one of the suppliers. A supplier can produce no more than one unit in a period. The product is made

upon request: no cost is incurred if the supplier doesn’t make a transaction.

A period begins with an auction to award the contract and determine the transaction price(s).

One side of the market offer price(s) and the other side choose whether or which to accept. Once

an offer is accepted, an incomplete contract is formed, and the corresponding two participants trade

one unit of product at the price they agree on. After a contract is awarded, the supplier who gets

10
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(b) βB > 0.09

Figure 1.2: Nash equilibrium with reciprocity
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the contract chooses the quality of the product. Supplier’s choice on quality is revealed only to

the corresponding buyer in that transaction. The quality choices a supplier made is not revealed

to any other subject in any other part of the experiment. All levels of quality are feasible options

for the supplier. The cost scheme of quality levels is common knowledge for all participants. All

transactions and bids are anonymous. Bids are only revealed to participants in the same market after

the bidding stage.

Under posted-offer mechanism, suppliers submit sealed offers in the bidding stage. In the 1:2

market, each supplier submits an offer anonymously, the buyer in the same group chooses one of the

offers and trade with the corresponding supplier at that price. In the 6:12 market, after each supplier

submits an offer, buyers see all the offers, and take turns in a random order to form contracts.

The posted-bid mechanism replicates the settings in Fehr et al. (1993, 1998). When the market

is open, each buyer submits a bid, and sellers in the group choose whether to accept it. If multiple

sellers accept the same bid, the one who accepts it first gets the contract. An unaccepted bid can be

revised by raising the price.

The experiment was conducted at the Finance and Economics Experimental Laboratory in Xi-

amen University. Subjects were undergraduate or master students in the university, recruited via

ORSEE (Greiner et al. (2004)). Four sessions were conducted for each treatment. Each session

lasted for no more than 90 minutes.

There were 18 participants in every session. Participant were assigned the role of a buyer or a

seller, which remained the same throughout the session. There were 30 periods in each session. In

the monopsonist environment, subjects were randomly assigned into groups of 1 buyer and 2 sellers,

and were randomly rematched after each period.

The experiment was programmed in z-Tree (Fischbacher (2007)). Subjects were seated at com-

puter terminals separated by partitions upon arrival. Instruction was read out loud to guarantee the

public information known to all subjects, and the experiment began after every subject indicated

understanding of the instruction and got familiar with the payoffs under different prices.

The exchange rate was private information for subjects. To give similar payoffs to both roles,

the exchange rate was 16 experimental dollars=1 CNY for buyers and 8 experimental dollars = 1

12



CNY for sellers. Average payoff was 63.2 CNY (around 7 dollars) including show-up fee of 10

CNY.

1.3.1 Parameters

For simplicity of choices, we use discrete schemes in the experiment. Prices (p) are integers from

30 to 126. Qualities (q) are integers from 1 to 10.

The cost scheme for suppliers is listed in Table 1.2.

Table 1.2: Sellers’ cost scheme

Quality q 1 2 3 4 5 6 7 8 9 10
Cost c(q) 30 31 32 34 36 38 40 42 45 48

If a contract is formed, the payoffs for the two parties are,

Buyer’s payoff ΠB = (126− p)×q/10,

and seller’s payoff ΠS = p− c(q).

For buyers and sellers who does not trade, Π0 = 0.

1.3.2 Hypotheses

Our first hypothesis relates to the existence of gift-exchange behavior. When sellers have high

enough other regarding preference, the equilibrium price and quality are above the minimum level,

as was observed in FKR and others studies. We expect to observe the same in our experiment.

Hypothesis 1. The price and quality are above the minimum levels.

Whether a gift is suggested or extended may have an effect on how reciprocal the seller is, but

there is no clear evidence on how the difference would be under the two institutions. Without having

an effect on the seller’s preference, the different institutions yield the same equilibrium outcome.
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Hypothesis 2. Price and quality are the same in posted-bid and posted-offer mechanisms.

The third hypothesis corresponds to the effect of the thickness of the market. It is possible that

intensifying competition in the market on both sides improves the efficiency.

Hypothesis 3. Efficiency is higher in thicker markets.

1.4 Results

1.4.1 Overview

Figure 1.3 shows the average price and quality in each period in the four treatments. The blue

lines are for the posted-offer mechanism, and the red lines are for the posted-bid mechanism. Three

inferences can be drawn. Firstly, in favor of hypothesis 1, the price and quality are higher than the

minimum levels. The average price and quality in each treatment are listed in table 1.3. Average

prices in the four treatments range from 58.35 to 79.09, and are significantly higher than 30 (t-test

p-value < 0.001 for each treatment). Average qualities are higher than 1 (t-test p-value < 0.001 for

each treatment). Secondly, contrasting hypothesis 2, in both 1:2 and 6:12 markets, price and quality

are higher in the posted-offer mechanism (t-test p− value < 0.001 for both 1:2 market and 6:12

market). Thirdly, the thickness of market does not have an obvious effect on the price or quality.

In fact, under both mechanisms, the two-sided t-tests on the effect of market thickness show no

significant effect on price (p− values > 0.1), and only under posted-bid mechanism the quality

is different when the market thickness changes (two-sided t-test p− value > 0.1 for posted-offer

treatments, and p− value = 0.006 for posted-bid treatments).

Consistent with previous literature, behavior of subjects in our experiment is closer to the pre-

dictions made with other-regarding preference. Both price and quality deviate from the profit-

maximizing Nash equilibrium of (p,q) = (30,1). Correlations between quality and price are posi-

tive and significant through all treatments (Spearman’s rank correlations > 0 and p-values < 0.01).
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Figure 1.3: Average price and quality over time
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Table 1.3: Mean values of variables

Mechanism Posted Offer Posted Bid

Number of Buyer(s): Number of Sellers 1:2 6:12 1:2 6:12

Number of trades a 720 720 710 716

Price
78.46 79.09 58.35 58.55

(13.03) (13.99) (20.53) (21.1)

Quality
4.21 4.47 2.23 1.96

(3.37) (3.44) (1.89) (1.82)

Spearman’s rank correlation (p,q) 0.33 0.37 0.52 0.48

Note: standard deviations in parentheses.

a There are 720 potential trades in each treatment, which were all achieved in posted-offer treatments. In posted-

bid treatments, several trades were not made because no seller accepted the bid or the buyer didn’t bid during

the auction. One trade was deleted in posted-bid 6:12 treatment due to a error in the program that allowed price

to be zero. Both subjects involved in this trade noticed the problem and informed the experimenter. Due to

simultaneous clicks by sellers in posted-bid 6:12, two sellers were accidentally involved in two transactions. The

analysis provided in this paper excludes the extra sellers. No distinguishable change happens if they are included.

1.4.2 Effect of institution

Price and quality distribution

Figure 1.4 demonstrates the joint distribution of price and quality in each treatment. The redder

the color, the more trades happen at that price-quality combination. Two inferences could be drawn

from the graph. Firstly, the range of prices and qualities are similar for all treatments, except that

only in the posted-bid treatments do trades happen at the lowest price range. Secondly, in the

posted-bid treatments, trades happen most often at the lowest price range with the lowest quality; in

the posted-offer treatment, trades happen most often at the price range of 80 – 90, with the quality
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ranging from 1 – 10 in this range. Overall, the trades in the posted-offer treatments cluster more on

the upper-right part of the graphs than the trades in the posted-bid treatments.
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Figure 1.4: Price and quality distribution

Quality

We run several Tobit regressions to test whether the difference in institutions affects the seller’s

choice of quality. Results are shown in table 1.4.
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From regression (1), consistent with previous results, quality is increasing in price. The seller

chooses a lower quality when a given price is offered by the buyer, but the market thickness does not

have a significant effect. Shown in regression (2), if we look at the effect of mechanism and market

thickness on the coefficient of the price, only the mechanism has a significant effect: when the bid

is offered by the buyer, increasing the price has a lower effect on quality. However, if we consider

both level effect and slope effect of the mechanism together, as in regression (3) and (4), neither

the level effect nor the slope effect is significant. This could due to the high correlation between

the treatment variable and its interaction term with price. We test whether variables containing

mechanism and market thickness have an effect on the quality jointly in the regressions. Results

from F tests for regression (1) to (4), in which the effects of the mechanism are included, indicate

that there is a treatment effect in each of the regressions. In regression (5), which only contains the

effect of market thickness, the F-test cannot reject the null hypothesis that the treatment variables

do not have an effect on quality. Therefore, we reach to the conclusion that the mechanism has an

effect on the level of reciprocity, although the level effect and slope effect cannot be disentangled.
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Table 1.4: Tobit regression: treatment effect on quality

Dependent Variable: Quality

(1) (2) (3) (4) (5)

Constant −9.37 ∗∗∗ −10.35 ∗∗∗ −10.03 ∗∗∗ −9.44 ∗∗∗ −12.16 ∗∗∗

(1.18) (1.01) (2.23) (1.91) (1.61)

Price 0.16∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.16∗∗∗ 0.19∗∗∗

(0.01) (0.01) (0.03) (0.03) (0.02)

Posted-bid −1.71 ∗∗∗ −1.42 −1.37

(0.63) (1.93) (1.93)

Thin market 0.26 1.24 1.05

(0.63) (1.70) (1.75)

Price × Posted-bid −0.02 ∗∗ 0.00 0.00

(0.01) (0.03) (0.03)

Price × Thin market 0.00 −0.01 −0.01

(0.01) (0.03) (0.03)

F-statistic for treatment variables 3.70∗∗ 3.31∗∗ 2.30∗ 4.05∗∗ 0.33

Number of observations 2868 2868 2868 2868 2868

Pseudo R2 0.10 0.10 0.10 0.10 0.09

Note: Robust standard errors in parentheses. Standard errors clustered by seller. Significance at 1%, 5% and 10% are denoted by

***, **, * respectively.

Payoffs

As depicted in figure 1.5, in the procurement, the average payoffs for both the buyer and the seller

are higher in the posted-offer treatments (one-sided t tests p-values < 0.001 for both 1:2 and 6:12

markets).

Table 1.5 contains the average social surplus and payoffs in transactions. The average social

surpluses are around 60 in the treatments that sellers offer bids, and around 40 in the treatments that
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Figure 1.5: Buyer’s and seller’s payoff over time

buyers offer bids. At the same thickness of the market, using the mechanism in which sellers offer

bids generates a significantly higher social surplus (one-sided t test p-value< 0.001 for both 1:2 and

6:12 markets).

Contradicting hypothesis 3, the thickness of market does not have an effect on the social sur-

plus (two-sided t test p-value = 0.29 for posted-offer treatments, 0.36 for posted-bid treatments)

or seller’s payoff (two-sided t test p-value = 0.84 for posted-offer treatments, 0.58 for posted-bid

treatments). When the mechanism in which sellers offer bids is used, the thickness of the market

does not have an effect on the buyer’s payoff (two-sided t test p-value = 0.33). Only when the buyer

submits bid, a thicker market reduces the payoffs for the buyers (one-sided t test p-value < 0.001).
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Table 1.5: Mean values of variables

Treatment
Posted Offer Posted Bid

1:2 6:12 1:2 6:12

Social surplus in a period
61.25 62.07 39.72 38.66

(14.95) (14.67) (21.85) (21.60)

Buyer’s payoff in a period
18.36 19.04 13.12 11.50

(13.32) (13.38) (8.51) (7.94)

Seller’s payoff in a period
42.90 43.03 26.60 27.17

(12.15) (12.67) (19.24) (20.03)
Note: The values are in experimental dollars. Standard deviations are in the

parentheses. Only data in transactions are included.

1.4.3 Price and quality dynamics

From figure 1.3 we can see, the average price in the posted-offer treatments increase gradually as

participants gain experience in the experiment. Although the prices in the posted-bid treatments

have reached the same levels as the posted-offer treatments begin with, they don’t exhibit the same

increasing trend afterwards. This can be explained by the results in the previous sections: the price-

quality relationship is stronger under the posted-offer mechanism, driving the equilibrium price and

quality higher than the posted-bid mechanism.

A possible explanation that suppliers collude and offer high prices in posted-offer treatments

is not plausible here. A collusion breaks down if the buyer always accepts the lowest offer. On

average, the probability a buyer chooses an offer higher than average is 49.72% in the thin market,

and 42.64% in the thick market.

In the posted-offer treatments, the buyer learns from previous experience, and chooses whether

to accept a offer higher than average accordingly. Table 1.6 contains the results of Logit regressions

for factors that may affect whether the buyer chooses the higher bid. Regression (1) checks whether

the distribution of the bids has any effect on the choice, and neither the mean or the standard devia-

tions of offers has a significant effect on the choice. We add other factors to regression (2) and (3).
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Table 1.6: Logit regression for offer selection

Dependent Variable: Whether chooses a high offer price
(1) (2) (3)

Constant −0.07 −0.11 0.11
(0.57) (0.58) (0.58)

Average of offers 0.00 −0.01 −0.01
(0.01) (0.01) (0.01)

Standard deviation of offers −0.01 0.00 0.00
(0.01) (0.01) (0.01)

Whether selected a high offer in previous round 1.08∗∗∗ −0.02
(0.13) (0.21)

Quality level in periods round −0.09 ∗∗∗

(0.03)
Quality level in periods round×Whether selected a 0.25∗∗∗

high offer in previous round (0.04)
Number of Observations 1440 1392 1392

Notes: Logit regression on panel data of buyers’ choices over time. Only posted offer treatments are
included. Standard errors in parentheses. Significance at 1%, 5% and 10% are denoted by *** , **,*
respectively. The Im-Pesaran-Shin for unit root tests for all variables reject the null hypotheses that the
panels contain unit roots.

From these regressions, a buyer who accepted a high offer in the previous round is more likely to

have the same choice in the current round. Suggested by regression (3), if the buyer selected a high

offer in the previous round and the quality was high, it’s more likely that the buyer keeps choosing

a high offer in the current round, and if the quality was high without choosing the high offer in the

previous round, the buyer is more likely to accept a lower offer in the current round.

Since the seller is more altruistic in the posted-offer treatments, the market moves towards the

high-price-high-quality equilibrium gradually as the buyer learns from previous experience.

Table 1.7 further illustrates how sellers adjust their offers in the posted offer treatments. Sell-

ers adjust their offers towards the accepted offer in the previous period, although the groups are

randomly reformed in every period. This is verified by the significant negative coefficient for

(Offeri,t−1−Average accepted offert−1) in the regressions: if the offer was higher than the average
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Table 1.7: Sellers’ offer adjustment in posted offer treatments

Dependent Variable: Offeri,t-Offeri,t−1
(1) (2)

Posted Offer 1:2 Posted Offer 6:12
Constant 9.12∗∗∗ 8.65∗∗∗

(2.48) (2.90)
Offert−1 −0.12 ∗∗∗ −0.09 ∗∗

(0.03) (0.04)
Offeri,t−1−Average accepted offert−1 −0.66 ∗∗∗ −0.58 ∗∗∗

(0.04) (0.06)
Offer acceptedi,t−1 1.11∗∗ 0.00

(0.48) (0.53)
Number of Observations 1392 1392

Note: GLS regression with random effects. Robust standard errors in parentheses. Stan-
dard errors clustered by individual. Significance at 1%, 5% and 10% are denoted by ***
, **,* respectively. The Im-Pesaran-Shin for unit root tests for all variables reject the null
hypotheses that the panels contain unit roots.

accepted offer, sellers lowers their offer in the next period.

In the posted offer 1:2 treatment, when the offer was not accepted in the previous period, the

seller adjusts her offer towards the previous accepted offer; when the offer was accepted, the seller

increases the offer in the current period. The adjustment does not depend on whether the offer was

accepted or not in the thick market.

Analogously, in posted bid treatments, buyers adjust their bids according to the information and

results in the previous period. When the quality from previous period was high, the buyer increases

the bid. In the thick market, buyers adjust their bids towards the average bids on the market in

the previous period, without knowing the resulted quality of each price. Next section provides a

possible explanation for this behavior.
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Table 1.8: Buyers’ bid adjustment in posted bid treatments

Dependent Variable: Bidi,t-Bidi,t−1
(1) (2)

Posted Bid 1:2 Posted Bid 6:12
Constant 26.32∗∗∗ 28.67∗∗∗

(3.49) (4.50)
Bidi,t−1 −0.54 ∗∗∗ −0.60 ∗∗∗

(0.06) (0.08)
Qualityi,t−1 2.40∗∗∗ 3.37∗∗∗

(0.29) (0.43)
Bidi,t−1−Average bidt−1 −0.32 ∗∗∗

(0.10)
Number of Observations 1386 695

Note: GLS regression with random effects. Robust standard errors in parenthe-
ses. Standard errors clustered by individual. Significance at 1%, 5% and 10% are
denoted by *** , **,* respectively. The Im-Pesaran-Shin for unit root tests for all
variables reject the null hypotheses that the panels contain unit roots. Regression
(2),(3) include only data in the thick markets.

1.4.4 Reference points

Information in the market may affect sellers’ perception of the kindness, and hence how much they

care about inequality. Regression results in table 1.9 shows that available offers in the market serve

as reference points for sellers in posted offer treatments. Price is positively correlated with whether

it is higher than average offer. The buyer’s payoff increases when the price is higher, as shown in

regression (1). Hence, the quality increases with price as shown in table 1.3, and the increase is in a

large enough scale to bring the buyer higher payoff. Regression (2) shows that this benefit of a high

price comes from the sellers’ comparison with the average offer on the market: the payoff is higher

if the chosen offer is higher than average. The buyer’s forgoing of low prices is reciprocated. Other

factors such as market thickness in regression (3) does not have a statistically significant effect.

Shown in table 1.10, the same result holds in the thick posted-bid markets, as the information

of other bids are available. This result provides a possible explanation for bid adjustment in table
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1.8: although the resulted qualities were not revealed to buyers, they understand that sellers would

compare bids on the market, thus adjust their bids towards the average if they are too low.

Table 1.9: OLS regression: Buyer’s payoff in posted offer treatments

Dependent Variable: Buyer’s payoff
(1) (2) (3)

Constant 8.58∗∗ 11.16∗∗∗ 11.72∗∗∗

(3.66) (3.80) (4.18)
Price 0.13∗∗ 0.08 0.07

(0.05) (0.05) (0.05)
Whether offer is higher than average 3.24∗∗ 3.33∗∗

(1.36) (1.31)
Whether buyer:seller=1:2 −0.87

(2.27)
Adjusted R2 0.02 0.03 0.03
Number of observations 1.440 1.440 1.440

Note: Data include only posted offer treatments. Robust standard errors in parentheses.
Standard errors clustered by seller. Significance at 1%, 5% and 10% are denoted by ***
, **,* respectively.
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Table 1.10: OLS regression: Buyer’s payoff in posted bid 6:12

Dependent Variable: Buyer’s payoff

(1) (2)

Constant 8.53∗∗∗ 9.61∗∗∗

(0.60) (0.66)

Price 0.05∗∗∗ 0.01

(0.01) (0.02)

Whether offer is higher than average 2.43∗∗

(0.92)

Adjusted R2 0.02 0.03

Number of observations 716 716

Note: Data include only posted bid 6:12 treatment. Robust standard errors

in parentheses. Standard errors clustered by seller. Significance at 1%, 5%

and 10% are denoted by *** , **,* respectively.

1.5 Conclusion

In this paper, we provide a comparison of two commonly used institutions in procurement – the

posted-bid mechanism and the posted-offer mechanism – in an incomplete contract environment.

While the moral hazard problem is hindered by sellers’ reciprocity, the institution plays a role in

the level of reciprocity sellers demonstrate. We interpret this difference as a result of the different

preferences induced by the institutions. Taken as a gift, the contract is suggested by the seller in

the posted-offer mechanism, and extended to the seller in the posted-bid mechanism. If stemmed

from the same preference, the two mechanisms yield the same outcomes in Nash equilibrium. In

26



our laboratory experiment, the posted-offer mechanism leads to a higher level of reciprocity, shown

as higher levels of price and quality, together with a higher correlation between the two. This is

consistent with the effect of a higher level of other-regarding in the preference.

A few possible explanations can be applied. One is from the conjecture in Charness et al. (2012):

in posted-offer treatments, when a seller’s proposal is accepted, the seller feels more responsible for

the outcome than if the proposal is made by the buyer, thus cares more about equality. Another

explanation is a reference-point story: sellers use other prices on the market as reference points,

and become more other-regarding if the buyer lets go of lower offers to accept theirs in the posted

offer treatments. Since buyers choose offers higher than average over 40% of the time in posted-

offer treatments, the sellers exhibit higher aversion to inequity. The second explanation is not as

plausible because the effect of reference points also exists in the thick markets under posted-bid

mechanism, but does not result in higher prices and qualities.

Buyers and sellers in our experiment adjust their choices given the information they observed

previously. In line with the first explanation, since sellers has a higher inequality aversion under the

posted-offer mechanism, the market reaches the equilibrium of higher price and higher quality after

learning. The overall surplus is also higher under the posted-offer mechanism.

An alternative way of modelling the scenario is to incorporate incomplete information and het-

erogeneity on preferences. When the quality each seller can offer is determined exogenously, the

offers can be indicators of the pre-determined qualities (Janssen and Roy, 2010). Our setting is more

complicated as the qualities are endogenous as functions of prices, but there may be a separating

equilibrium in which offers are signals of sellers’ types under the posted offer mechanism, hence

the efficiency is enhanced by the reduction of information asymmetry.

We are aware that the results from our experiment can be driven by specific features of the

parameters and payoff structures used in this study. Future research using various payoff structures

can provide a more thorough understanding of our results.
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Chapter 2: Competition with Indivisibility and Few Traders

2.1 Introduction

Ever since the classic contributions of Cournot (1838) and Bertrand (1883), the question of whether

a market with a small number of traders can achieve competitive outcomes has been a matter of

debate. The literature on strategic market games, pioneered by Dubey and Shubik (1980), revisits

this topic in an environment in which buyers and sellers submit price-quantity pairs to a clearing

house, which acts as a profit-maximizing middleman, and allocates trades accordingly. In line with

Bertrand’s argument, Dubey (1982), Simon (1984) and Benassy (1986) prove that having two active

sellers and two active buyers in a Nash equilibrium is sufficient to make the outcome competitive. In

this paper, we propose a strategic market game applicable to markets with indivisible commodities,

we derive conditions for the equivalence between Nash and competitive equilibrium, and we test

the equivalence in the lab.

We provide a necessary and sufficient condition for equivalence between Nash equilibrium and

competitive equilibrium outcomes with indivisible commodities. Essentially, our condition requires

that on each side of the market there are two inframarginal traders, in the sense that they are willing

to trade at every competitive price.1 Unlike previous work, our condition relies on the characteristics

of the set of competitive equilibria, and place no requirement on Nash equilibria other than the

occurrence of trade. Notably, our equivalence result includes contestable markets, in which a single

active seller sells in the market at the competitive price.2

To test our results in the lab, we conduct market experiments with two buyers and two sellers—

the minimal size allowing for the equivalence of Nash equilibrium and competitive equilibrium

outcomes, and thus adequate for a stringent test. We consider two market environments: one in

1Our exact condition, spelled precisely in the statement of theorem 3, is slightly weaker.
2To prove our equivalence result, we first extend results from previous literature to our indivisible commodity setting

in theorems 1 and 2. The proof of theorem 3 builds on those results and handles the additional contestable market case.
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which the two buyers and the two sellers are inframarginal, so that all Nash equilibrium outcomes

are competitive, and one in which the two buyers but only one of the sellers are inframarginal (i.e.

there is monopoly power) so that some Nash equilibrium outcomes are non-competitive. In each

environment, we consider two market institutions: a sealed-bid auction and a double-oral auction

(following the rules of Smith (1962)), which are static/dynamic versions of each other.

In our laboratory experiments, as in other market experiments, traders are informed about their

own valuations but not about the valuations of other traders. Thus, in using a strategic market game

to explain behavior in the lab, we are following what Friedman and Ostroy (1995) call the “as-if

Nash equilibrium complete information approach,” the underlying idea of which is that “although

traders’ information in the experiments is far from complete, it is possible for them to learn to

use the relevant ‘complete information’ strategies” (p. 23). The double-oral auction institution is

known to facilitate learning of the relevant information for traders when compared to call markets,

with as few as eight traders (see e.g. Smith, 1982; Smith et al., 1982), and hence provides a useful

benchmark for assessing the equivalence result.

In the absence of monopoly power, the results from our experiment confirm the double auction

institution’s convergence to competitive outcomes, though we have fewer traders than previous ex-

periments.3 Efficiency under the sealed-bid institution remains below efficiency under the double-

oral auction, but seemingly converges over time, in line with the results obtained by Smith et al.

(1982) and Friedman and Ostroy (1995) for larger numbers of traders. Under both institutions, trad-

ing prices lay mostly in the competitive range in the absence of monopoly power, consistent with

equilibrium predictions.

When monopoly power exists, higher trading price, lower trading volume and an efficiency loss

can be observed under the double-oral auction compared to the environment without monopoly, as

expected. Under the sealed-bid institution, trading volume is lower compared to the environment

without monopoly, but the efficiency loss is not significant, and prices seem to converge to com-

petitive levels over time. This surprising result may be either a consequence of the inability of the

monopolist to gather enough information about the other side of the market to exploit monopoly

3See figure 2.7 for a comparison between efficiency in our experiment and others in the literature.
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power under the sealed-bid institution, or a consequence of coordination on a low-price outcome,

which remains a Nash equilibrium outcome under monopolistic conditions. It is an interesting and

open question whether the convergence to competitive outcomes for the sealed-bid institution even

in the presence of monopoly power is robust to learning with a longer horizon and to variations in

the parameters describing the economy.

In previous experimental work on market games, Duffy et al. (2011) explore a quantity strate-

gic market game with divisible commodities, where traders retain market power. They compare

outcomes with two and with ten traders per side, and obtain higher efficiency and more coherence

to competitive behavior if there are more traders. Dufwenberg and Gneezy (2000) also obtain—

somewhat surprisingly—a beneficial effect of the number of traders in an experiment on Bertrand

competition, comparing outcomes with two, three, and four traders per side. We differ from both in

that we explore the boundary between competitive and noncompetitive environments.

The rest of the paper is organized as follows. Section 2.2 gives a formal description of the

economy. Section 2.3 gives a detailed explanation of the strategic market mechanism. Section 2.4

contains the theorems of coincidence of Nash equilibrium and competitive equilibrium. Section

2.5 presents the experimental design and hypotheses. Section 2.6 describes the results. Section 2.7

concludes. Proofs for the main results are collected in the appendix, and additional proofs, graphs,

and experimental instructions and quizzes are collected in the online appendix.

2.2 The economy

We describe a general equilibrium model related to laboratory experiments. Our notation follows

Friedman and Ostroy (1995). There are two goods, a divisible ‘money’ and a traded good that can

only be traded in indivisible units. Let I = B∪S be the set of individuals, classified as either buyers

(B) or sellers (S). Each i ∈ I is defined by a vector (ri1, . . . ,rik), where ri j indicates the reservation

value for the jth unit of the traded good. The parameter k ≥ 1 indicates the maximum number of

units of the traded good that an individual can buy or sell. For each i∈B, reservation values decrease

with the quantity demanded: ri1 ≥ ·· · ≥ rik ≥ 0. For each i ∈ S, reservation values increase with the

quantity supplied 0≤ ri1 ≤ ·· · ≤ rik.
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Each trader’s utility is given by

ui(qi,mi) =

 δi ∑
|qi|
j=1 ri j +mi if qi 6= 0

mi if qi = 0
, with δi =

 1 if i ∈ B

−1 if i ∈ S
,

where qi ∈Qi is the quantity of the good traded by i and mi ∈ℜ are the money holdings of i. We let

Qi = {0,1, . . . ,k} if i ∈ B and Qi = {0,−1, . . . ,−k} if i ∈ S, so that supply is described as negative

demand. We assume that initial endowment of money of each individual is equal to 0; note that

individuals are allowed negative money holdings.

Keeping fixed the sets of buyers and sellers and k, an economy r ∈ℜ
k|I|
+ is described by a set of

vectors of reservation values that are weakly decreasing for each buyer and weakly increasing for

each seller, as described above. Given an economy r, an allocation (of the indivisible good) is a

vector q = (qi) ∈ ×i∈IQi and an outcome is a vector (q,m) where q is an allocation and m ∈ℜ|I|.

Denote by ξ(r) the set of competitive equilibria for an economy r. A competitive equilibrium

(p,q) ∈ ξ(r) is a price p ∈ℜ+ and an allocation q such that

1. (utility maximization) for each i, ui(qi,−pqi)≥ ui(q′i,−pq′i) for all q′i ∈ Qi.

2. (market clearance) ∑i∈I qi = 0.

By utility maximization, if (p,q) is a competitive equilibrium for economy r, then

• for every i ∈ B, either qi = 0 and ri1 ≤ p, or 0 < qi < k and riqi ≥ p ≥ ri,qi+1, or qi = k and

rik ≥ p.

• for every i ∈ S, either qi = 0 and ri1 ≥ p, or −k < qi < 0 and ri|qi| ≤ p ≤ ri,|qi|+1, or qi = −k

and rik ≤ p.

Note that (p,q) induces the outcome (q,m) = (q,(−pqi)).

It is easy to prove that for any economy r, there is a competitive equilibrium. We can order

the units that sellers can supply in ascending order according to their reservation values, and the
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units that buyers can demand in descending order according to their reservation values, to obtain

the familiar supply and demand curves. Equilibrium prices and allocations can be obtained by the

crossing of the supply and demand curves. As it is well-known for economies with quasi-linear

preferences, the set of competitive allocations is the set of solutions to the problem of maximizing

social surplus, that is

max
q∈Q

∑
i∈I

∑
0≤ j≤|qi|

δiri j,

where Q = {q : qi ∈ Qi,∑i qi = 0} is the set of feasible allocations.

Trade is positive in every competitive equilibrium if and only if

min
i∈S

ri1 < max
i∈B

ri1. (A)

As we will see, an important condition for the equivalence between competitive equilibrium out-

comes and the outcomes of a strategic game is that there are at least two trading individuals on each

side of the market.

Related work on price-quantity strategic market games feature divisible commodities under the

usual assumptions of continuous, increasing marginal costs for each seller, and continuous, de-

creasing marginal utility of consumption for each buyer. Note that in economies with divisible units

active traders compete “at the margin,” in the sense that in a competitive equilibrium the marginal

utility of consumption and the marginal cost of production for the last unit are equated to the price

for all active traders. Our results illustrate that competition at the margin is unnecessary for the

equivalence between competitive and strategic outcomes.

2.3 The strategic market game

Each individual submits a price-quantity offer (p̃i, q̃i) to the clearing-house, where p̃i ≥ 0 and q̃i ∈

Qi. Intuitively, each individual offers to trade up to |q̃i| units of the traded good at the price p̃i.
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Denote the set of feasible offers for individual i by

Wi = {(p̃i, q̃i) : p̃i ≥ 0; q̃i ∈ Qi}.

Given an offer profile w ∈W = ×i∈IWi, the set of feasible allocation vectors for the clearing

house is

Y (w) = {(y1, ...yn): 0≤ yi ≤ q̃i, if i ∈ B; (2.1)

0≥ yi ≥ q̃i, if i ∈ S; (2.2)

∑i yi = 0; (2.3)

yi ∈ Z}. (2.4)

Note that Y (w) is a finite set. Conditions (2.1) and (2.2) guarantee that trade is voluntary, i.e.

individuals do not end up trading more than what they offered. Condition (2.3) ensures that the

market clears and the clearing house keeps no inventory. Condition (2.4) conveys the assumption

that the good is indivisible.

After the clearing house chooses an allocation y = (y1, . . . ,yn) ∈ Y (w), individual i receives yi

units of the traded good and earns an amount of money equal to −p̃iyi. We assume that the clearing

house allocates trade to maximize the arbitrage profit, ∑i∈I yi p̃i, as if the clearing house buys units

from the sellers and sells them to buyers at the agents’ proposed prices. Thus, given an offer profile

w, the resulting allocation y must satisfy

y ∈Π(w) = {y ∈ Y (w) : ∑
i∈I

yi p̃i ≥∑
i∈I

y′i p̃i for all y′ ∈ Y (w)}.

Intuitively, as in Dubey (1982), buying offers are ranked in a descending order by price while

the quantities offered are accumulated to form the demand curve, and selling offers are ranked in

an ascending order by price while the quantities offered are accumulated to form the supply curve.
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The clearing house extracts the surplus between the supply and demand, as Figure 2.1 illustrates.

That is, the clearing house chooses a competitive equilibrium allocation for a fictitious economy r̃

given by

r̃i j =


p̃i if 1≤ j ≤ |q̃i|

0 if |q̃i|< j ≤ k and i ∈ B

+∞ if |q̃i|< j ≤ k and i ∈ S

,

and appropriates the social surplus.

In scenario (a) of Figure 2.1, Π(w) is a singleton set. To maximize the arbitrage profit, the

clearing house would fulfill all demand and supply to the left of the dashed line. The dotted area

is the profit for the clearing house, and the profit is positive in this case. In scenario (b), Π(w)

contains two allocations if units A and B are offered by different sellers, depending on which of the

two sellers is allowed to sell the last unit. In scenario (c), the clearing house gets the same profit

allocating q1 or q2 > q1 units. Similarly, in scenario (d), buying and selling q units gives the same

profit for the clearing house as making no trade.

To make trade happen whenever possible, following Simon (1984), we assume that the clearing

house chooses an allocation from the set

F(w) = {y ∈Π(w) : there is no φ ∈Π(w)

such that φ 6= y and |φi| ≥ |yi| for all i ∈ I}.

That is, the clearing house does not choose allocations that are ray-dominated. Then in scenario

(c), q2 units will be bought and sold, and in scenario (d), q units will be traded. We still have two

allocations in F(w) in scenario (b) if units A and B are offered by different sellers. We assume

that the clearing house chooses randomly according to the distribution µw that gives probability

µw(y) > 0 to each allocation y ∈ F(w) and probability µw(y) = 0 to every other allocation in Y (w)
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Figure 2.1: Arbitrage profit for the clearing house

such that ∑y∈F(w) µw(y) = 1. Propositions 3–8 in the Appendix provide a characterization on F(w).

Given this market mechanism, define an active trader given offer profile w as a trader that has

positive probability to trade. In other words, agent i is an active trader given offer profile w if there

exists y ∈ F(w) such that yi 6= 0. Furthermore, denote by AS(w) the set of active sellers, and AB(w)

the set of active buyers given offer profile w.
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2.4 Nash equilibrium and competitive outcomes

Note that each offer profile w ∈W induces a lottery over outcomes. Each outcome (y,(−p̃iyi)) is

realized with probability µw(y)> 0 if y ∈ F(w), and µw(y) = 0 if not. Given an offer profile w ∈W ,

the expected utility for each trader is,

Eui(w) = ∑
y∈F(w)

µw(y)ui(yi,−p̃iyi).

A (pure strategy) Nash equilibrium for an economy r is an offer profile w∗ ∈W such that for every

i ∈ I,

Eui(w∗i ,w
∗
−i)≥ Eui(w′i,w

∗
−i) for all w′i ∈Wi.

As in other price-quantity strategic market games, every competitive equilibrium outcome can

be reached by with probability one by at least one Nash equilibrium offer profile, and all the positive

probability outcomes of a Nash equilibrium are competitive as long as in the Nash equilibrium there

are at least two active traders on each side of the market.

Theorem 1. For every competitive equilibrium, there is a Nash equilibrium that induces the same

outcome with probability one.

To prove the theorem, we consider an offer profile such that each agent offers the trading price

and quantity she obtains in the competitive equilibrium, and show that such offer profile is a Nash

equilibrium and yields exactly the same outcome as in the competitive equilibrium. Agents have

no incentive to deviate from the proposed offer profile: since the quantity offered in the profile is

utility-maximizing given the competitive price, obtaining a different quantity at the same price does

not increase the payoff for the individual; given other agents are offering the same price, increasing

offer price as a seller or decreasing offer price as a buyer, regardless of the quantity offered, reduce

the chance of trade to 0, and thus cannot be payoff-improving; decreasing offer price as a seller or

increasing offer price as a buyer reduces the payoff for sure as the new price is less preferred to the

competitive price, even at its corresponding utility-maximizing quantity.
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As long as condition (A) is satisfied (which is, of course, the case of interest), there are Nash

equilibria that induce noncompetitive allocations. For instance, any offer profile such that q̃i = 0

for all i, or such that mini∈S p̃i > maxh∈B rh1 and maxi∈B p̃i < minh∈S rh1, is a Nash equilibrium.

Those Nash equilibria result in no trade. We restrict our attention on Nash equilibria such that trade

happens with positive probability, so that AS(w) and AB(w) are nonempty. We have

Theorem 2. In every Nash equilibrium with at least two active traders on each side, every positive

probability outcome is competitive.

To prove theorem 2, we first show that in any given Nash equilibrium, all active traders offer

the same price. Then we show that in every allocation induced by a Nash profile, the quantity that

an active trader is allocated is utility-maximizing given the Nash price. The intuition is that if an

active buyer/seller does not get the utility-maximizing quantity at the Nash price, the buyer/seller

can always obtain a more preferable quantity by offering a slightly higher/lower price.

Note that there is a gap between the statement of theorem 2 and the no-trade examples preceding

the statement of the theorem. Theorem 2 leaves open the possibility that there are Nash equilibria

with active trading but with noncompetitive outcomes and in which there is only one active trader

in at least one of the two sides of the market. In the proof of the theorem, we rely on two or more

active sellers in order to show that there is no Nash equilibrium in which one seller produces less

than the competitive allocation requires. Intuitively, these situations would correspond to the single

active seller behaving as a monopolist and charging a price above the competitive level. Similarly,

there could be situations in which there is a single active buyer behaving as a monopsonist and

charging a price below the competitive level. Finally, there could be situations in which there is a

single active buyer and a single active seller, and competitive outcomes are not reached even if the

price is competitive because of a coordination failure: both the buyer and the seller offer suboptimal

quantities.

In what follows, we provide necessary and sufficient conditions for all the outcomes of every
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Nash equilibrium with trade to be competitive. Define the buyers’ marginal value, vb, as the maxi-

mum of the lowest reservation value for buyers’ units traded in competitive equilibria, that is,

vb = max
(p,q)∈ξ(r)

min
qi>0

ri,qi .

Similarly, define the sellers’ marginal value, vs, as the minimum of the highest reservation value for

sellers’ units traded in competitive equilibria, that is,

vs = min
(p,q)∈ξ(r)

max
qi<0

ri,|qi|.

In economies such that (A) is satisfied, vb and vs are well-defined, since in every competitive

equilibrium at least some i′ ∈ S with the minimum cost (i.e. ri′1 = mini∈S ri1) must have qi′ < 0, and

at least some i′′ ∈ B with the maximum reservation value (i.e. ri′′1 = maxi∈B ri1) must have qi′′ > 0.

As shown in the Appendix, vb and vs are equal, respectively, to the lowest reservation value of

buyers’ traded unit(s) and the highest reservation value of sellers’ traded unit(s) in any competitive

equilibrium with the smallest number of transactions. Moreover, if (A) is satisfied, we must have

vb > vs, because if there is a competitive equilibrium such that both the marginal buyer and the

marginal seller are indifferent (i.e. minqi>0 ri,qi = p = maxqi<0 ri,|qi|), there is another competitive

equilibrium in which one fewer unit is traded.

Denote by p and p the highest and lowest competitive price respectively. It is easy to check that

vs ≤ p≤ p≤ vb.

The first and third inequalities above follow from the fact that for every equilibrium (p,q) ∈ ξ(r)

we must have maxqi<0 ri,|qi| ≤ p≤minqi>0 ri,qi .

We say that i ∈ B is an inframarginal buyer if ri1 ≥ vb. Similarly, we say that i ∈ S is an

inframarginal seller if ri1 ≤ vs. Intuitively, an inframarginal trader is someone who is willing to

trade at every competitive equilibrium price. Note that in economies satisfying (A), there is at least
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one inframarginal trader on each side of the market, since every seller with the minimum cost and

every buyer with the maximum reservation value is inframarginal.

We say that i ∈ B is a weakly inframarginal buyer if ri1 > vs and ri1 ≥ p. Similarly, we say that

i ∈ S is a weakly inframarginal seller if ri1 < vb and ri1 ≤ p. Intuitively, a weakly inframarginal

trader is someone who would generate positive social surplus if matched in pairwise trade with an

inframarginal trader on the other side of the market. Using vb > vs and vs ≤ p ≤ p ≤ vb, it is easy

to check that, in economies satisfying (A), all inframarginal traders are also weakly inframarginal

(justifying our nomenclature).

If an economy has competitive equilibria in which only one unit is traded, then all outcomes

of every Nash equilibrium profile with trade are efficient.4 From here on, we focus on economies

such that all competitive equilibria involve trading two or more units, which is a more demanding

condition than (A).

We have

Theorem 3. In economies such that all competitive equilibria involve trading two or more units,

every positive probability outcome from every Nash equilibrium with active trade is competitive if

and only if there are at least two inframarginal traders on one side of the market, and at least two

weakly inframarginal traders on the other side.

Intuitively, rivalry between two traders on the same side of the market who can exploit mutu-

ally advantageous trades with at least two traders on the other side of the market both eliminates

monopoly and monopsony power and precludes coordination failures. In the coordination failure

example proposed above, we have vs = 1, vb = 3, and all traders are weakly inframarginal but only

one seller and one buyer are inframarginal.

The condition ri1 ≥ p for i ∈ B and ri1 ≤ p for i ∈ S to be a weakly inframarginal trader ensures

that the trader has a value “close enough” to the competitive range, so that the trader weakly prefers

to trade in the competitive equilibrium. Without this condition, there may be noncompetitive Nash
4The reason is that if one unit is traded in a given outcome induced by an equilibrium profile, both the active buyer

and the active seller must be offering the same price. If any buyer has a reservation price higher than the Nash price and
is not trading, the buyer can offer a price that is slightly higher and grab the trade, so that in equilibrium the buyer who
trades must be the one with the highest reservation price. A similar argument applies on the supply side. (However, the
trading price may not be competitive in the Nash equilibrium.)
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equilibrium outcomes. Consider the economy S = {1,2}, B = {3,4}, k = 3, and r11 = r21 = 1,

r12 = r13 = r22 = r23 = 4, r31 = r32 = r33 = 3, r41 = r42 = r43 = 1. Seller 1, seller 2, and buyer 3 are

inframarginal traders, while buyer 4 satisfies one of the conditions to be weakly inframarginal but

not ri1 ≥ p. Here buyer 4 strictly prefers not to trade in the competitive equilibrium, and the range

for Nash equilibrium prices is [2,3], including prices that are not competitive.

It is worth noticing that theorem 3 includes the contestable market scenario (Baumol et al.,

1982), in which there is only one active seller but all outcomes from Nash equilibria are competitive.

An example is the economy S = {1,2}, B = {3,4}, k = 2, and r11 = r12 = r21 = r22 = 2, r31 = 4,

r41 = 3, r32 = r42 = 1. The competitive equilibrium price is 2 in this economy, and two units are

traded in every competitive equilibrium. We have vb = 3 and vs = 2 for this economy, so all traders

are inframarginal and the condition in theorem 3 holds. One of the Nash equilibria in this economy

is w = ((2,−2),(2,0),(2,1),(2,1)), in which seller 1 is the only active seller, but the outcome is

competitive. The presence of seller 2, a non-active seller in the Nash equilibrium, brings enough

competition to the market to make the outcome competitive.

2.5 Experimental design and hypotheses

2.5.1 Experimental design

We test the predictive ability of our market game model in laboratory experiments. We consider two

markets with indivisible commodities. Each market has two buyers B = {B1,B2} and two sellers

S = {S1,S2}, and each trader can either buy or sell two units. We assign the first and third highest

demand reservation values to one buyer, and the second and fourth to the other buyer. By assigning

the units to sellers in different ways, we create a market that satisfies the condition in theorem 3,

and a market that does not. This design is similar to one implemented by Davis and Holt (1994).

In our competitive market, the two supply units that can be traded in competitive equilibrium

are assigned each to each one of the two sellers. Thus, as shown in the left part of figure 2.2, there

are two inframarginal traders on each side of the market. By theorem 3, Nash equilibrium outcomes

with trading of the strategic market mechanism coincide with competitive equilibrium outcomes.
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That is, both units with lowers costs should be traded, and the price should be in the competitive

price range, $15–$19. Correspondingly, efficiency (as percentage of the maximum possible surplus)

should be 100%.

In our monopoly market, instead, the two low cost units are assigned to the same seller, as shown

in the right part of figure 2.2. The set of Nash equilibrium outcomes with trade includes the set of

competitive equilibria just described, as well as monopolistic market equilibria in which only the

unit with the lowest cost is traded, and the price is between $19 and $30. Efficiency of monopolistic

equilibria is (32−2)/(32−2+19−15), that is approximately 88%.
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Figure 2.2: Competitive and monopolistic markets

In the experiment, we compare the performance of our strategic market mechanism (Clearing

House, or CH hereafter) with the continuous time double auction (Double Auction, or DA hereafter),

in the two markets.

In the clearing house institution, each trader submits a price-quantity pair to the clearing house.

The clearing house then decides trade by the rules described in section 2.3, and reports the trader’s

own transaction price and quantity, together with the price and quantity traded in the market. We

let µw(y) = 1/|F(w)| for all y ∈ F(w) in the experiment; that is, the clearing house assigns equal
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probability to all arbitrage-maximizing allocations. When making decisions, traders are given their

own values, but not other traders’ values or offers.

In the double auction institution, the traders buy/sell the good unit by unit. Each trader can

submit limit offers for one unit, and each limit offer has to reduce the bid-ask spread to be valid.

Valid offers are listed on the screen as public information for all traders in the market, with bids

ranked from high to low and asks ranked from low to high. A transaction happens automatically if

a valid bid is no lower than a valid ask. In each transaction, a bid will always be matched with the

highest-ranked ask, and an ask will be traded with the highest-ranked valid bid. The trading price

will be the price in the pair that was submitted later. After a trader has the first unit traded, he/she

can submit limit offers for the second unit. All valid offers and transactions are shown in real time

to all traders in the market.

The experiment was conducted in the Interdisciplinary Center for Economic Science (ICES) lab

in George Mason University. In total, 240 subjects participated in the 18 sessions, and each session

lasted for no more than 100 minutes.5 Each subject participated in only one treatment, playing the

same role (B1, B2, S1 or S2) in the same market for 20 rounds. The final payoffs ranged from $5 to

$36. The average payoff is $11.25 including a $5 show-up fee.

The experiment was computerized, and programmed in oTree (Chen et al., 2016). At the be-

ginning of the session, the participants were seated at partitioned computer stations and allowed 10

minutes to read the instructions on their own. Then an experimenter read the instructions out loud to

all participants. Afterward, a quiz was handed out, and the experiment began after each participant

gave correct answers to all the questions in the quiz.6 Then the role a participant had in the exper-

iment was revealed to him/her, and the participants were given a practice round before the formal

rounds began. There were 20 formal rounds, one of which was randomly chosen for payment. After

the 20 formal rounds, each participant was informed of the round chosen for payment and his/her

own payoff. The payment was made privately.

5For the CH competitive treatment, there were three sessions with 16 and one session with 20 participants; for the
CH monopoly treatment, there were four sessions with 16 participants; for the DA competitive treatment, there was one
session with 8 and three sessions with 16 participants; and for the DA monopoly treatment, there were five sessions with
8 and one session with 12 participants.

6Instructions and quizzes for each treatment are provided in the online supplementary material.
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2.5.2 Hypotheses

Our first set of empirical hypotheses correspond to treatment effects. Because the set of equilibria

under monopolistic conditions includes inefficient outcomes with prices above competitive levels,

we expect treatments with competitive markets to exhibit lower prices and higher efficiency, to-

gether with higher trading volume, higher surplus for buyers and lower surplus for sellers. And

given the advantage for learning of the double auction institution over the clearing-house, we ex-

pect treatments under the double auction institution to exhibit higher efficiency.

(H1) Under the double auction institution, prices and sellers’ total surplus are lower, and efficiency,

trading volume and buyers’ total surplus are higher, in competitive markets than in monopo-

listic markets.

(H2) Under the clearing-house institution, prices and sellers’ total surplus are lower, and efficiency,

trading volume and buyers’ total surplus are higher, in competitive markets than in monopo-

listic markets.

(H3) In competitive markets, efficiency under the double auction institution is higher than under

the clearing-house institution.

(H4) In monopolistic markets, efficiency under the double auction institution is higher than under

the clearing-house institution.

Our second set of empirical hypotheses correspond to the convergence to competitive prices in

the long run if the market has a competitive structure under both institutions.

(H5) Under the double auction institution, prices converge to the competitive range in competitive

markets.

(H6) Under the clearing house institution, prices converge to the competitive range in competitive

markets.

Our next set of empirical hypotheses correspond to predictive success of equilibrium notions.

Because the set of equilibria under monopolistic conditions is a strict superset of the set of equilibria
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under competitive conditions, we expect competitive predictions to perform better in the latter case.

And given the advantage for learning of the double-oral auction over the clearing-house, we expect

Nash predictions to perform better in in the former case.

(H7) Competitive predictions perform better in competitive markets than in monopolistic market

under the double-oral auction.

(H8) Competitive predictions perform better in competitive markets than in monopolistic markets

under the clearing-house auction.

(H9) Competitive predictions perform better under the double-oral auction than under the clearing-

house in competitive markets.

(H10) Nash predictions perform better under the double-oral auction than under the clearing-house

in monopolistic markets.

2.6 Results

2.6.1 Treatment effects

Overview

Table 2.1 presents treatment effects using the last ten rounds. Efficiency is defined as the percentage

of the maximum social surplus realized. Trading volume is defined as the number of units traded

divided by two (the number of inframarginal units), in percentage. Buyers’ and sellers’ surplus are

defined as percentage of the maximum possible social surplus. In agreement with H1, under the

double auction institution, trading prices are lower, and efficiency, trading volume, and buyers’ are

significantly higher in competitive markets than in monopolistic markets. Average sellers’ surplus is

higher in monopolistic markets but the difference is not significant. In agreement with H2, under the

clearing-house institution, trading volume and buyer’s surplus are significantly higher in competitive

markets than in monopolistic markets. Differences in trading prices, efficiency, and sellers’ surplus

are not significant. In agreement with H3, in competitive markets, efficiency, trading volume, buy-

ers’ surplus, and sellers’ surplus are higher under the double auction than under the clearing house
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institution. In agreement with H4, in monopolistic markets, efficiency, trading volume, and sellers’

surplus are higher under the double auction than under the clearing house institution. Average buy-

ers’ surplus is higher under the double auction but the difference is not significant. Summing up,

there is significant evidence in favor of H1 and H3, and some evidence in favor of H2 and H4.

Prices

Figure 2.3 shows average trading prices in each round in the four treatments. Two inferences can

be drawn from figure 2.3. First, average prices adjust over time and stay in the competitive price

range in the second half of the experiment in all treatments (average trading prices range from

$15.73 to $18.18). The learning process takes longer under the clearing-house institution: the

average price starts low, and reaches the competitive range over time. The upward sloping trend

is not as strong under the double auction institution: the average trading price starts within the

competitive range. Second, compared to competitive markets, monopolistic markets bring forth

a higher average trading price under the double auction institution, but not so clearly under the

clearing-house institution.

Efficiency

Figure 2.4 plots the average efficiency in each round in the four treatments. Efficiency is defined as

the percentage of the maximum social surplus realized. Similar to what is shown in figure 2.3, learn-

ing takes longer under the clearing-house institution; hence, average efficiency under the clearing-

house institution presents a stronger upward trend over time. Under the clearing-house institution,

the average efficiencies start at levels lower than under the double auction institution, and remain

statistically lower in the second half of the experiment. Nevertheless, we can observe from figure

2.3 that the upward trend of the efficiencies in clearing-house treatments persist over time, and at

the end of the experiment, the efficiency levels from the two institutions are close.
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Figure 2.3: Average trading price

Trading volume

In our setting, supramarginal trade occurs if a seller sells a unit with a cost of 30, or if a buyer

buys a unit with a valuation of 4. In our experiment, in the last ten rounds, supramarginal trade

occurred in 3 out of 199 trades in the CH Competitive treatment and in 4 out of 149 trades in

the DA Monopoly treatment, and did not occur in other treatments. Thus, trading volume reflects

inframarginal trading. Figure 2.5 and table 2.1 illustrate that in the second half of the experiment,

under both institutions, there are fewer trades in the monopolistic markets than in the competitive

markets. Under the double auction, lower trading in monopolistic markets explains the advantage

of competitive markets in terms of social efficiency and corroborates our hypotheses H1 and H2.

As figure 2.5 and table 2.1 show, the clearing-house institution results in less trade than the double
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Figure 2.4: Average efficiency

auction institution, corroborating our hypotheses H3 and H4.

2.6.2 Convergence to competitive prices

Following Noussair et al. (1995), we estimate

pit = α1D1
1
t
+ . . .+αiDi

1
t
+ . . .+β

t−1
t

+ εit

for each treatment, where pit is the average price in market i at round t, Di is an indicator for

a specific market, which equals 1 if the market is i and 0 otherwise, β is the asymptote for the

average price in the treatment, and εit is an error term. In using this statistical model, we assume
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Figure 2.5: Average trading volume

that although each market has its own pattern of convergence, there is a common asymptote by

treatment.

Table 2.2 lists the estimated β for each treatment. For competitive markets, the 95% confidence

interval for long run prices is contained in the competitive price range under both the double auction

and the clearing-house institution, providing corroborating support for H5 and H6. For monopolistic

markets, the 95% confidence interval for long run prices is contained in the competitive price range

for the clearing-house institution but not for the double auction. In fact, the confidence intervals are

nested under the clearing-house institution but are disjoint under the double auction.

Figure 2.6 shows the distribution of trading prices in the last 10 rounds in different treatments.

The DA Monopoly treatment has a heavy right tail outside of the competitive price range but within
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Table 2.2: Average price asymptote

Treatment p̂∗ 95% Confidence interval
CH Competitive 16.12 [15.68,16.57]
CH Monopoly 16.02 [15.90,16.14]
DA Competitive 16.98 [16.65,17.32]
DA Monopoly 19.20 [18.51,19.90]

Feasible generalized LS estimation with AR(1) correction.

CH Competitive CH Monopoly DA Competitive DA Monopoly

10 15 19 30 10 15 19 30 10 15 19 30 10 15 19 30

0.0

0.1

0.2

0.3

Trading Prices, Last 10 Rounds

D
en

si
ty

Figure 2.6: Distribution of trading prices

the Nash equilibrium range for that environment. In the CH Monopoly treatment, instead, most of

the trading price within the Nash equilibrium range is also in the competitive price range. In both

competitive treatments, trading prices cluster in the competitive price range.
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Table 2.3: Predictive success index

Predicted price range

Competitive
Competitive +
Monopolistic

($15–$19) ($15–$30)
CH Competitive 63.81% 28.89%
DA Competitive 75.11% 42.44%
CH Monopoly 52.54% 26.35%
DA Monopoly 26.27% 26.51%

Except for the DA Competitive treatment, all treatments have a heavy left tail. The heavy left

tail may be due to slow learning, due to (i) lack of within-round feedback under the clearing-house

institution, and (ii) less experimentation about possible prices when there is only one rather than two

inframarginal sellers. Prices below the competitive equilibrium level were also observed by Smith

and Williams (1990) in two monopolistic markets, perhaps for a similar reason.

2.6.3 Predictive success

To explore whether Nash equilibrium is a good predictor for the experimental results, we use Selten

(1991) predictive success index. Selten’s index is defined as the difference between the ‘hit rate’

(the percentage of data that is coherent with the prediction of the model) and the ‘area’ (the percent-

age of all possible outcomes that is coherent with the prediction of the model). Nash equilibrium

predicts the range of competitive prices ($15–$19) for the competitive environment, and the range

including both competitive prices and monopolistic prices ($15-$30) for the monopolistic environ-

ment. Given that participants cannot submit a price that may cause a loss, the possible price range

in our experiment is $2–$32. Thus, the area equals 13.33% for the competitive range, and 50% for

the combination of competitive and monopolistic price ranges.

Tables 2.3 summarizes the predictive success index of the two price ranges. The indices for Nash
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equilibrium are in bold. In agreement with our hypotheses H7 and H8, the competitive price range

is a better prediction for competitive markets than in monopolistic markets, under both institutions

and regardless of the index. In agreement with hypothesis H9, the competitive price range is a

better prediction for competitive markets under the double auction than under the clearing-house

institution. Opposite to hypothesis H10, Nash predictions perform similarly in monopolistic markets

under both institutions. In fact, under the clearing-house institution, the competitive price range

predicts better than the Nash range for monopolistic markets. Overall, predictive success indices

indicate that learning to play equilibrium happens more easily in competitive markets, especially

under the dynamic institution.

2.7 Conclusions

In this paper, we aim to fill a gap in the theoretical and experimental literature about markets with

few participants and indivisible commodities. First, we provide a necessary and sufficient condition

for the equivalence of Nash equilibria of price-quantity strategic market games and competitive

equilibrium outcomes. Second, we conduct market experiments in a competitive environment and

in a monopolistic environment. We consider two market institutions, a sealed-bid auction (call

market), following closely the rules of the market game, and a double-oral auction, which has been

known to be successful in inducing competitive outcomes and prices in the lab.

Our lab experiments involve the minimum number of traders using the double auction that we

know of. Figure 2.7 compares the efficiency level in our double auction markets with a few double

auction markets in previous studies (Friedman and Ostroy, 1995; Kachelmeier and Shehata, 1992;

Kimbrough and Smyth, 2018; Smith, 1982; Smith and Williams, 1990; Smith et al., 1982). Double

auction markets conducted in previous studies are mostly used for testing the robustness of the

mechanism, so disturbances may have been introduced during the session, and different settings

have been used in these studies. Efficiency in thicker markets is higher than in our four-trader

market, although the difference is not large when markets are competitive.

Under the call market institution, efficiency is below that under the double auction in our exper-

imental competitive markets. We interpret the advantage of the double auction as a result of better
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Figure 2.7: Efficiency and number of traders in the double-oral auction literature. All the points are
average efficiency using all rounds.

opportunities for learning. Nevertheless, the efficiency of the call market increases over time and

gets closer to the double auction institution as traders in the market gradually learn. The approxima-

tion to competitive equilibrium outcomes is obtained without traders’ knowledge of others’ values

under both institutions. Our results provide supportive evidence for the Hayek hypothesis (Hayek,

1945; Smith, 1982) in a limit setting with few traders: using appropriate institutions, markets can

work with very limited information. Under the call market institution, transaction prices are the

only information revealed to each trader other than their own value. This information appears to be

sufficient for achieving equilibrium outcomes, although it may take a few trials.

In our experimental monopolistic markets, buyers’ surplus and trading volume remains below
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that in our experimental competitive markets under both the double auction and the call market.

The loss of total surplus in monopolistic markets is significant under the double auction although

not under the call market. Tantalizingly, under the call market, prices are not in average higher in

monopolistic than in competitive markets. Whether these observations about long-run prices can

be generalized is left as an open question. Generally, Nash predictions from our strategic model

do much worse in monopolistic markets. Learning enough to behave as if possessing complete

information is seemingly much harder in monopolistic than in competitive markets.
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Chapter 3: A Survey on k-double Auctions

3.1 Introduction

The k-double auction is a trading mechanism applicable to markets of any size. In the simplest

setting, each trader has one unit of demand or supply over an indivisible commodity, the value

of which is private information. In a k-double auction, traders submit limit orders to the clearing

house privately, who then determines a single trading price that clears the market, using a convex

combination of the marginal bid(s) and/or ask(s), and executes the orders. Studies on k-double

auction began with the one buyer and one seller setting, in which k is the weight of the buyer’s bid

in the trading price. Later studies on multilateral scenario inherited this notion, and used k to denote

the weight the upper bound of market-clearing prices has in the trading price.

A k-double auction is a sealed-bid uniform price call market—orders are executed at the des-

ignated time according to a price that maximizes reported social surplus at that moment, and no

feedback of the order flow is provided before the market is called. While the continuous double

auction is prevalently used in stock exchanges where a large number of traders are presented, the

k-double auction is widely used to organize thin markets. Examples include trading quotas for

agricultural goods, and wholesale electricity markets. When there are few traders in the market,

executing orders frequently results in very few orders at each call. The k-double auction induces

a thicker market than the continuous double auction by accumulating orders over a period of time

before executing them.

The multiplicity of equilibria from a k-double auction with k ∈ (0,1) mirrors the indeterminacy

of outcomes in multilateral bargaining games. In an incomplete information setting, as the mar-

ket size increases, equilibrium strategies in a k-double auction converge to truth-telling, verifying

Edgeworth’s insight that increasing the number of traders resolves the indeterminacy of bargaining

(Rustichini et al., 1994).
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In an incomplete information setting, equilibrium outcomes in the k-double auction can range

from zero efficiency to full efficiency. As a result of convergence to truth-telling strategy, the mecha-

nism features diminishing expected inefficiency as the market grows. The k-double auction provides

a model for price formation, and addresses how the competitive equilibrium can be reached without

the price-taking assumption. The asymptotic result of this non-tatonnement process provides a sup-

port to the use of Walrasian model as an asymptote of market outcomes in the absence of complete

information (Wilson, 1985).

In terms of the speed of convergence to efficient outcome as the market grows, the k-double

auction has the same order as the optimal mechanism in Gresik and Satterthwaite (1989). Evaluated

in their least favorable trading environments for each possible size of the market, among plausible

mechanisms, the k-double auction is shown to force the worst-case inefficiency to zero at the fastest

possible rate (Satterthwaite and Williams, 2002).

The rest of the paper is organized as follows. Section 3.2 provides a brief history of the k-double

auction. Section 3.3 and 3.4 describe the classic environment and a few methods to find Bayesian

Nash equilibria. Section 3.5 discuss the efficiency of the mechanism under the settings in section

3.3. Section 3.6 contains applications of k-double auction in experimental economics. Section 3.7

lists alternative settings in the literature and related mechanisms. Section 3.8 concludes.

3.2 A brief history of the k-double auction

Harsanyi and Selten (1972) first studied the two person bargaining problem under incomplete in-

formation, applying the concept of Bayesian Nash equilibrium to a bargaining situation with fixed

threats. Following a suggestion by Howard Raiffa, Chatterjee and Samuelson (1983) first proposed

the k-double auction as a mechanism for bilateral bargaining under incomplete information. Chat-

terjee and Samuelson (1983) characterized a class of equilibria, and identified a set of equilibria

for uniformly distributed independent redemption values, in which strategies are linear functions

of redemption values. When the values are independently uniformly distributed between 0 and 1,

the k = 0.5 double auction has a linear equilibrium described by Chatterjee and Samuelson (1983)

that obtains the highest expected gains from trade among all mechanisms that satisfy individual
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rationality (Myerson and Satterthwaite, 1983).

Satterthwaite and Williams (1989a) further studied bilateral k-double auction. They focused

on differentiable equilibrium strategies, which include but are not limited to the linear case. In

particular, they used a set of differential equations to show both existence of equilibrium and a

numerical way to construct it. Leininger et al. (1989) demonstrated the existence of two types of

equilibria with k = 0.5 in the bilateral setting with uniformly distributed independent values: the

ones in which strategies are differentiable functions of values, and ones in which strategies are step

functions. As pointed out in Leininger et al. (1989), “the equilibria in the uniform distribution case

range from second best to worthless, so that equilibrium theory provides no basis for recommending

the sealed-bid mechanism in practice.” Results from laboratory experiment in Radner and Schotter

(1989) alleviate this concern by showing that in such settings, subjects tend to apply linear strategies.

The mechanism was later on adapted to markets with multiple buyers and multiple sellers. Wil-

son (1985), in particular, proved that the k-double auction is interim incentive efficient when the

market is sufficiently large. For redemption values drawn from the unit interval, Rustichini et al.

(1994) characterized equilibria with positive trading opportunity and non-dominated strategies for

market with equal numbers of buyers and sellers. They provided a characterization of equilibrium

strategies using first order conditions, as well as a convergence rate to truth-telling and efficient

outcome. Satterthwaite and Williams (2002) show that k-double auction is worst case asymptotic

optimal among all interim individually rational and ex ante budget balanced mechanisms.

Kadan (2007) provided sufficient conditions for the existence of an increasing equilibrium in the

bilateral setting when private values are affiliated, and Fudenberg et al. (2007) proved the existence

of a pure strategy, symmetric, increasing equilibrium with correlated, conditionally independent

private values in large markets. Proofs for existence of equilibrium in more general settings can be

found in Cripps and Swinkels (2006); Jackson and Swinkels (2005); Reny and Perry (2006).

The mechanism is called buyer’s bid double auction (BBDA) when k = 1, since the price is

determined by the buyer in the bilateral case. In the multilateral setting, the price may be determined

by an ask as well. With truth-telling being the dominant strategy, this mechanism eliminates the

strategic behavior on the seller side in the equilibrium, hence simplifies the analysis. Satterthwaite
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and Williams (1989b) studies the rate of convergence to efficient outcome as the market grows.

Williams (1991) extended it to the market of unequal number of buyers and sellers, and proved the

existence of equilibria. Zacharias and Williams (2001) further showed that when the number of

buyers is arbitrarily larger than the number of sellers, the order of expected inefficiency of BBDA is

consistent with the results from Rustichini et al. (1994). Satterthwaite et al. (2018) and Satterthwaite

et al. (2019) extended the analysis to interdependent redemption values settings.

Satterthwaite and Williams (2018) surveys the theory on k-double auction until 1991, and dis-

cusses possible contributions experimental economists can make in this area. A handout for litera-

ture on k-double auction can be found at Williams (2016).

3.3 Basics

There are two goods in the economy, the divisible money an indivisible commodity. There are

(m+n) traders, each assigned a redemption value for one unit an indivisible commodity. m of the

traders are buyers (B), and the rest are sellers (S). Each trader i ∈ S is endowed with one unit of

the commodity. Traders i ∈ B are not endowed with the commodity. Denote by G(v) and F(c)

the cumulative distribution function for a buyer’s redemption value vi, which is called a “value”,

and a seller’s redemption value ci, which is called a “cost”. For now we focus on the scenario in

which redemption values are independent. Extensions to interdependent values and multiple units

per trader are discussed in section 3.7. Redemption values are private information. A buyer’s payoff

is zero if the buyer does not make a purchase, and is vi− p if the buyer buys a unit at the market

price p. Analogously, a seller who does not sell has zero payoff, and the payoff is p−ci if the seller

sells one unit at the market price p.

A clearing house solicits a bid from each buyer and an ask from each seller, and determines a

unit price p for the market after receiving bids and asks. A bid indicates the highest price a buyer

is willing to pay for the unit; an ask indicates the lowest price a seller is willing to sell the unit at.

Rank the bids and asks from low to high, and denote by e( j) the jth lowest order price. In a k-double

auction where k ∈ [0,1], the clearing house sets the uniform price at p = (1− k)e(m) + ke(m+1).
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Buyers who bid higher than p and sellers who ask lower than p trade with probability one. If tied

bids or asks at the price p cannot be fulfilled, the clearing house uses a lottery to determine the

allocation of transaction on the long side.

The interval [e(m),e(m+1)] is the range of market clearing price given the indicated supply and

demand. Thus for any k, p = (1− k)e(m)+ ke(m+1) is a market clearing price. To see this, suppose

there are t asks in {e(1), . . . ,e(m)}, then in {e(m+1), . . . ,e(m+n)}, there are exactly t bids, all of which

are no lower than the asks in the first set. These t asks and t bids are the tradable ones. In the rest of

the orders, the bids are no higher than the asks.

Alternatively, the allocation rule of k-double can be written as follows. Each trader i submits

a price ei. Denote by x = (x1, . . . ,xm+n) the allocation of the commodity. We have xi ∈ {0,1} for

i ∈ B, and xi ∈ {0,−1} for i ∈ S, in which xi = 0 if the trader doesn’t trade. Given the order profile

w = (e1, . . . ,em+n), the feasible set of allocation for the clearing house is

X(w) = arg max
(x1,...,xm+n)

∑
i∈B∪S

xiei, such that ∑
i∈B∪S

xi = 0,

xi ∈ {0,−1},∀i ∈ S,

and xi ∈ {0,1},∀i ∈ B.

The clearing house chooses allocation x ∈ X(w) such that ∑i∈B xi ≥ ∑i∈B x′i,∀x′i ∈ X(w); that is,

the allocation that maximizes trade among feasible allocations.

3.4 Bayesian Nash equilibria

The k-double auction has multiple Bayesian Nash equilibria, some of which involve no trade. Stud-

ies focus on the non-trivial ones—the Bayesian Nash equilibria in which trade happens with positive

probability. Existing literature provide various methods to find Bayesian Nash equilibria with trade.
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The analysis is different for the bilateral and multilateral case, so we discuss them separately here.

In this section, we consider symmetric equilibria where each buyer i bids B(vi) and seller j asks

S(c j). Cripps and Swinkels (2006) relaxes the symmetry assumption. For the rest of this section,

for simplicity, we restrict our attention to redemption values drawn from the unit interval.

3.4.1 Bilateral case

Chatterjee and Samuelson (1983), Leininger et al. (1989) and Satterthwaite and Williams (1989a)

provide a few methods to look for Bayesian Nash equilibria in the bilateral case (m = n = 1) when

k ∈ [0,1]. Both Chatterjee and Samuelson (1983) and Satterthwaite and Williams (1989a) focus

on differentiable equilibrium strategies. Leininger et al. (1989) show the existence of equilibrium

strategies that are step functions.

When k = 1, the price equals the buyer’s bid. The seller’s dominant strategy is to ask his

redemption value, and the buyer has a unique best response. For k = 0, the buyer has a dominant

strategy to bid his redemption value, and the seller has a unique best response.

Chatterjee and Samuelson (1983) shows that in nontrivial equilibria, bids and asks are increasing

in the redemption values. For the class of equilibria with strictly increasing differentiable strategies

that are bounded above and below, the ask given cost c, denoted by S(c), and the bid given value v,

denoted by B(v), satisfy the following conditions.

B−1(S(c)) = S(c)+ kS′(c)
F(c)
f (c)

(3.1)

S−1(B(v)) = B(v)− (1− k)B′(v)
1−G(v)

g(v)
(3.2)

Equations 3.1, 3.2 are first order conditions from maximizing the expected utilities of the buyer’s

and the seller’s.

Denote by πB(v,λ) the expected payoff if a buyer with value v bids λ, and by πS(c,λ) the

expected payoff for a seller who has a cost c and bids λ.
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The buyer’s best response

B(v) = argmax
λ

πB(v,λ) = argmax
λ

∫ S−1(λ)

0
[v− kλ− (1− k)S(c)] f (c)dc,

where S(c) is the seller’s best response, i.e.,

S(c) = argmax
λ

πS(c,λ) = argmax
λ

∫ 1

B−1(λ)
[kB(v)+(1− k)λ− c]g(v)dv.

Satterthwaite and Williams (1989a) shows that for admissible distributions (F,G), equations

3.1,3.2 are also sufficient conditions for regular equilibria. A equilibrium is regular if the strategies

are continuous and strictly increasing, undominated, differentiable in the tradable range and truth-

telling outside of it. Further more, let ċ ≡ dS−1(λ)
dλ

= 1
S′(c) and v̇ ≡ dB−1(λ)

dλ
= 1

B′(v) , the first order

conditions ∂πB(v,λ)
∂λ

= 0 and ∂πS(c,λ)
∂λ

= 0 lead to

ċ =
k

v−λ

F(c)
f (c)

(3.3)

v̇ =−1− k
c−λ

1−G(v)
g(v)

(3.4)

Equations 3.3, 3.4 and λ̇ ≡ dλ

dλ
= 1 together create a vector field in a part of (c,v,λ) space.

Take an interior point within the tetrahedron that 0 ≤ c ≤ λ ≤ v ≤ 1, and trace out the path in

both directions following the vector field, the collection of points defines an equilibrium. Different

equilibria can be found this way by starting at different interior points.

As shown by Satterthwaite and Williams (1989a), the regular equilibrium exists for admissible

pairs of redemption value distributions. It is unique for k ∈ {0,1}. For k ∈ (0,1), the regular

equilibria in the k-double auction form a two-parameter family.

An example of differentiable equilibria is the linear equilibrium provided in Chatterjee and
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Samuelson (1983) for uniformly distributed redemption values, which is ex ante incentive efficient

when k = 0.5 (Myerson and Satterthwaite, 1983).

Linhart et al. (1989) summarizes a few other bilateral bargaining models.

3.4.2 Multilateral case

Rustichini et al. (1994) characterizes Bayesian Nash equilibria for c,v ∈ [0,1] with m ≥ 2 buyers

and n ≥ 2 sellers. For any equilibria in which strategies are undominated and induce trade with

positive probability, there exist thresholds of cost and value, denoted by c and v respectively, such

that: a seller has positive probability to trade if and only if the cost is lower than c, a buyer has

positive probability to trade if and only if the value is higher than v; S(·) and B(·) are increasing for

costs lower than c and values higher than v; c and v are also the upper bound of buyers’ bids and

lower bound of sellers’ asks respectively; seller’s ask and buyer’s bid converge to truth-telling when

the cost goes to c and the value goes to v respectively. These propositions rule out possibilities of

ties in the tradable range, hence simplifies the analysis.

Consider differentiable and strictly increasing strategies for k ∈ [0,1]. We have

πB(v,λ) =
∫

λ

0

∫ 1

x
[v− (1− k)x− k min{λ,y}]e(x,y)dydx,

where x = ζ(m), y = ζ(m+1) are the mth and (m+1)th lowest orders from other (m+n−1) traders,

and e(x,y) is the probability density function for the joint distribution of x and y.

The first order condition is

0 =
∂πb(v,λ)

∂λ

= (v−λ)
∫ 1

λ

e(λ,y)dy− k
∫

λ

0

∫ 1

λ

e(x,y)dydx

= (v−λ) fx(λ)− kPr(x < λ < y).

Here fx(·) is the pdf of x. Let c = S−1(λ). From Rustichini et al. (1994),
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fx(λ) = nKn,m(λ)
f (c)
S′(c)

+(m−1)Ln,m
g(v)
B′(v)

,

where

Kn,m(λ) = ∑
i+ j=m−1
0≤i≤m−1
0≤ j≤n−1

(
m−1

i

)(
n−1

j

)
G(v)iF(c) j(1−G(v))m−1−i(1−F(c))n−1− j,

Ln,m(λ) = ∑
i+ j=m−1
0≤i≤m−2

0≤ j≤n

(
m−2

i

)(
n
j

)
G(v)iF(c) j(1−G(v))m−2−i(1−F(c))n− j.

Let Mn,m(λ)≡ Pr(x < λ < y), then

Mn,m(λ) = ∑
i+ j=m

0≤i≤m−1
0≤ j≤n

(
m−1

i

)(
n
j

)
G(v)iF(c) j(1−G(v))m−1−i(1−F(c))n− j.

Let ċ≡ dS−1(λ)
dλ

= 1
S′(c) and v̇≡ dB−1(λ)

dλ
= 1

B′(v) , the first order condition can be written as

0 = (v−λ) [nKn,m(λ) f (c)ċ+(m−1)Ln,m(λ)g(v)v̇]− kMn,m(λ). (3.5)

The intuition is as follows. Suppose a buyer with a value v ∈ [v,1] bids λ. If he increases the bid

by ∆λ, the payoff can be affected in two ways: (a) If λ is too low to trade, but ∆λ is tradable, then the

payoff increases by v−λ−∆λ. The probability of this event is fx(λ). fx(λ) consists of two parts:

the probability λ+∆λ surpasses a bid, and the probability it surpasses an ask. (b) The buyer trades

at λ, and increasing the bid increases the price the buyer pays. This happens only if λ = s(m+1) and

λ+∆ ≤ s(m+2). In this case, the price is increased by k∆λ. The probability is Pr(x < λ < y). If

< S,B > is an equilibrium, we have ∂πb(v,λ)
∂λ

= (v−λ) fx(λ)− kPr(x < λ < y) = 0.

Analogously, the first order condition for the seller is
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0 =
∂πS(c,λ)

∂λ

=−(λ− c) [(n−1)Jn,m(λ) f (c)ċ+mKn,m(λ)g(v)v̇]+ (1− k)Nn,m(λ), (3.6)

where

Jn,m(λ) = ∑
i+ j=m−1

0≤i≤m
0≤ j≤n−2

(
m
i

)(
n−2

j

)
G(v)iF(c) j(1−G(v))m−i(1−F(c))n−2− j,

Nn,m(λ) = ∑
i+ j=m−1

0≤i≤m
0≤ j≤n−1

(
m
i

)(
n−1

j

)
G(v)iF(c) j(1−G(v))m−i(1−F(c))n−1− j.

Equations 3.5, 3.6 and λ̇≡ dλ

dλ
= 1 defines a system of ordinary differentiable equations, which

can be used numerically to obtain Bayesian Nash equilibria. The procedure is the same as m= n= 1.

For k = 1, it can be verified from the equations that the dominant strategy for a seller is λ = c,

and the equilibrium is unique (Rustichini et al., 1994; Satterthwaite and Williams, 2018). The case

k = 0 is analogous.

3.5 Efficiency

A market is ex post efficient if given the realized redemption values, the maximal social surplus

is achieved. In a Bayesian Nash equilibrium, a trader who holds private information of his own

redemption value “may have an incentive to misrepresent his preferences in order to influence the

market price in his favour.” (Williams, 1991) Consequently, in a Bayesian Nash equilibrium some

trades inefficiently fail to occur. As the size of the market grows, the influence a trader has on

the market price becomes smaller. Hence “he has little incentive to misrepresent and the market is

therefore almost fully efficient” (Williams, 1991).
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As shown by Myerson and Satterthwaite (1983), in a bilateral trade under incomplete infor-

mation setting, the ex post efficiency cannot be achieved by any mechanism satisfying incentive

compatibility, individual rationality, and an ex post budget constraint. This result is extended to

multilateral setting by Williams (1999). Using the definition of efficiency from Holmström and

Myerson (1983), in the bilateral case, the k-double auction is ex ante incentive inefficient with

generic distribution when k ∈ (0,1) (Satterthwaite and Williams, 1989a), and is ex ante incentive

efficient for some class of distribution when k ∈ {0,1} (Myerson, 1981; Williams, 1987).

Wilson (1985) shows that in a class of environment, k-double auction is interim incentive effi-

cient (Holmström and Myerson, 1983) when the market is large enough, in the sense that there is

no other trading rule surely preferred by each agent.

Gresik and Satterthwaite (1989) first studies how market size affect the inefficiency caused by

strategic behavior. The maximal expected inefficiency from an optimal mechanism is O((lnτ/τ2)),

where τ is an index for number of traders. Satterthwaite and Williams (1989b) shows the relative

inefficiencies in BBDA is of the same order as the optimal mechanism in Gresik and Satterthwaite

(1989): in Bayesian Nash equilibria for a BBDA with m buyers and m sellers, the maximal amount

a trader misrepresent his value is O( 1
m), regardless of distributions of the redemption values. For

BBDA markets with unequal numbers of buyers and sellers, Williams (1991) shows that the buyers’

misrepresentation is O(1/τ). Zacharias and Williams (2001) further relaxes it to the market with

arbitrarily more buyers than sellers, i.e. m ≥ βn for a constant β > 1 the misrepresentation of

buyer’s value is O(1/m), and the resulting expected inefficiency is O(n/m2). Note that this rate

is consistent with the one from Rustichini et al. (1994), which is for general k-double auction and

requires relatively balanced market such that 1/β≤ n/m≤ β.

Rustichini et al. (1994) establishes that in any equilibrium, the maximal amount by which a

trader misreport is O(1/m), where m is the number of buyers, and the expected inefficiency is

O(1/m2). Moreover, for a sample of redemption values, the difference between the price deter-

mined by k-double auction and a competitive price is O(q(n,m)), which is equivalent to O(1/n) and

O(1/m) if n/m is bounded above and away from zero. This is coincidentally of the same order as

the maximal distance between a core allocation and its nearest Walrasian allocation when a regular
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Arrow-Debrew economy is replicated m times, as well as the difference between a competitive price

and a Nash equilibrium price in a Cournot competition with a homogeneous good.

Satterthwaite and Williams (2002) use a maxmin approach to evaluate mechanisms by their rates

of convergence to efficiency, in a setting of m buyers and m sellers. Mechanisms that are interim

individual rational and ex ante budget balanced for each m and each environment are compared.

The k-double auction is worst-case asymptotic optimal such that its worst-case error over a set of

environments converges to zero at the fastest possible rate among all plausible mechanisms.

3.6 Experiments

Experimental studies can shed light on the equilibrium selection in the k double auction. In the

bilateral setting, subjects, sellers in particular, tend to adopt the linear equilibrium strategy. Non-

linear equilibrium strategies, such as the step-function strategy provided in Leininger et al. (1989),

are observed with experienced subjects. Although the ex post efficiency ranges from zero to 100%

in the prediction of Bayesian Nash equilibrium for the bilateral case, when tested in laboratory

experiment, on average 85% to 92% of the available surplus is obtained Radner and Schotter (1989).

Bayesian Nash equilibria predict convergence to truth-telling strategies as the market grows.

Kagel (2004) test the performance of the BBDA mechanism and continuous double auction in mar-

kets of two buyers and two sellers, and markets of eight buyers and eight sellers. Redemption values

are drawn from publicly known distribution each round. Both thicker market and the dynamic in-

stitution induce higher efficiency in the markets. The performance of the markets are closer to the

prediction of Bayesian Nash equilibrium than the zero-intelligent traders. Unlike markets with sta-

tionary demand and supply, convergence to the competitive equilibrium price across rounds is not

observed.

Kagel and Vogt (2018) tests the performance of BBDA and a modified BBDA (MBBDA) in

markets with m = n = 2 and m = n = 8. A dual-market technique is employed, in which a subject

bids in both m = 2 and m = 8 markets with the same redemption value, and a random one of the

two markets pays off. In BBDA, the average achieved efficiency is lower than the prediction of the

Bayesian Nash equilibrium, but higher than the prediction from zero-intelligent traders. Majority
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of the seller deviate from the dominant strategy, and for m = 2, buyers on average over bid. In

MBBDA, the market price is set to the lowest tradable bid, which may not be market-clearing.

While sellers in a MBBDA could benefit from asking less than the costs, subjects tend to ask more

than their costs in the experiment.

Cason and Friedman (1997) studies the predictive power of Bayesian Nash equilibrium for k-

double auction, with k = 0,0.5,1 in markets of four buyers and four sellers. The authors take into

account the experience level of subjects, and use programmed traders to reduce the complication

of opponents’ strategy. Subjects’ behavior is closer to the prediction of Bayesian Nash equilibrium

than competitive equilibrium, or zero-intelligence traders. Overall, experienced subjects tend to be

more truth-revealing, and the Bayesian Nash equilibrium has the best prediction when the subject

plays against robots that adopt linear Bayesian Nash equilibrium strategies.

Eliciting belief about others’ strategies is helpful for understanding the bidding behavior. (Neri,

2015) provides a method to elicit probabilistic beliefs of continuous choices, and tests it in a 0.5-

double auction with four, six and eight traders. Besides submitting bids and asks, subjects also

indicate the probability they think another buyer’s bid falls into each of the price intervals, and the

probability they think another seller’s ask falls into each of the price intervals. A parametric distri-

bution is then fitted over the data to approximate each subject’s belief of others’ orders. This elicited

subjective beliefs help explain observed bidding choices better than Bayesian Nash equilibrium be-

liefs and empirical beliefs in the experiment.

3.7 Extensions

3.7.1 Interdependent values

Jackson and Swinkels (2005) and Cripps and Swinkels (2006) allows for multiple units per trader

and interdependent values. Jackson and Swinkels (2005) provides the first general existence result

for k-double auctions. They prove the existence of equilibrium in distributional strategies in a large

class of private value auctions, and the existence of nontrivial equilibrium k-double auction. Cripps

and Swinkels (2006) relaxes the independence assumption to z-independence, and further proves
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that all nontrivial equilibria of auctions are asymptotically efficient.

Reny and Perry (2006) establishes the existence of a pure and nondecreasing equilibrium for

sufficiently large markets with sufficiently fine discrete set of prices. The setting in Reny and Perry

(2006) is general: redemption values can be interdependent, and information can be affiliated. The

unique fully revealing rational expectations equilibrium of a market with continuum of traders and

continuous price can be approximated by an equilibrium from the discrete case.

Kadan (2007) studies the bilateral case with dependent private values. The sufficient conditions

is given for existence of regular equilibrium. The FGM copula, a class of distributions that a single

parameter determines the dependency without affecting marginal distributions, is used as an ex-

ample to show how dependency of distribution affects bids in BBDA, and the existence of regular

equilibria for k ∈ (0,1). Equilibria of the independent value setting can be obtained as the limit of a

sequence of equilibria with affiliated values.

For large markets with correlated, conditionally independent private values, Fudenberg et al.

(2007) proves the existence of pure strategy equilibria that are symmetric and increasing. The

maximal misrepresentation in equilibria is O(1/N), where N = n+m.

Satterthwaite et al. (2018) and Satterthwaite et al. (2019) applies BBDA to correlated and in-

terdependent values setting. Satterthwaite et al. (2018) shows that in finite market, the strategic

behavior generated by private information has only marginal effect on allocational efficiency and

information aggregation. With a less general environment than Reny and Perry (2006), Satterth-

waite et al. (2018) uses a numerical result to show the existence of equilibrium and the rate of

convergence to efficiency. Satterthwaite et al. (2019) identifies the asymptotic limits of distributions

in the first order conditions for optimal bidding/asking.

3.7.2 Alternative decision rules

The following studies explore the situations when traders are not expected payoff maximizers.

Agastya (2004) applies the mechanism to a complete information setting, allowing for unneutral

risk preferences. Stochastical stability, as a criterion for equilibrium selection, is applied to look for

price distributions that are likely to prevail in the longrun as errors goes away. Under this criterion,
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the price is decreasing in k, and the equilibria approximate an asymmetric Nash bargaining solution.

Rasch et al. (2012) investigates the bilateral trade scenario of Myerson and Satterthwaite (1983)

with inequity averse traders. A incentive compatible direct mechanism acquiring ex post efficiency

exists when traders exhibiting strong enough inequity aversion a la Fehr and Schmidt (1999). Truth-

telling, hence full efficiency, can be implemented by a k-double auction with k = 0.5 in this case.

Shafer (2015, 2016) study the mechanism under Knightian uncertainty (Knight, 1921), assum-

ing traders are regret-minimizing. Unlike expected utility maximizers, minimax regret traders do

not react to the increase of market size. The strategy of these traders does not approximate price-

taking in large markets, nor does the strategy of traders minimizing their expected maximum regret.

Convergence to truth-telling is possible with Γ-minimax regret (Stoye, 2011) traders, who minimize

their maximum expected regret, under certain prior Γ. The third chapter in Shafer (2015) offers

preliminary results under a common value setting.

Ahmad (2020) presents a linear equilibrium in the bilateral case when both the buyer and the

seller have reference-dependent preferences, i.e. the difference between the realized terms of trade

and their reference points is of concern, and their values are independently drawn from a uniform

distribution over [0,1]. The ex post efficiency of this equilibrium decreases in the level of agents’

reference dependency as their reference points differ.

3.7.3 Related mechanisms

The k-double auction is also a strategic market game with one trading post, in the sense that each

trader submits an sealed order to the centralized market place to determine the terms of trade. Differ-

ent from the strategic market game from Shapley and Shubik (1977), orders are not always fulfilled

in a k-double auction, and each trader has to specify a price for only one unit. Despite the com-

pleteness of information, with finite number of traders, the Nash equilibrium of the strategic market

game a la Shapley and Shubik (1977) is generically inefficient under certain conditions (Dubey,

1980). This inefficiency can be overcome by having a continuum of traders (Dubey et al., 1980).

A main feature of BBDA is its simplification of analysis compared to general k-double auction.

McAfee (1992) provides another sealed-bid double auction in which truth-revealing is a dominant
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strategy for both buyers and sellers. The mechanism forgoes the trade of the least socially profitable

unit, and charges buyers and sellers prices of the lowest tradable bid and the highest tradable ask.

A clearing house obtains the arbitrage profit. Counting only the profit of traders, the expected

inefficiency is O(1/m).

For interdependent values and multiple units setting, Kojima and Yamashita (2017) proposes

a asymptotically efficient double auction that satisfies ex post incentive compatibility, individual

rationality, feasibility, nonwastefulness, and no budget deficit. In the mechanism, a market is divided

into submarkets. The price in each submarket is determined by the orders from other submarkets.

EPA designed an institution for trading allowances to emit sulfur dioxide, which resembles

k-double auction but uses a discriminatory pricing rule. Bids and asks are ranked and trades are

allocated as k-double auction does; the buyer and the seller of the same ranking trade at the bid the

buyer submits. Cason and Plott (1996) compares the performance of this institution with a k-double

auction where k = 0.5 in a laboratory experiment. Subjects have constant redemption values that are

private informations in some sessions, while in other sessions the values are independently drawn

from a uniform distribution over [0,250] in earlier rounds and [0,300] in later rounds. They observe

higher efficiency and less misrepresentation of value under the uniform pricing rule, together with

more rapid discovery of equilibrium price. Cramton and Stoft (2007) provides a discussion on why

it is a good choice to adopt the uniform-priced k-double auction instead of other mechanisms with

a discriminatory pricing rule in the spot market for whole sale electricity.

Transactions in electric market happen through power networks, thus can be limited to the ca-

pacity of the transmission line, and subject to fees line owners charge. Singer (2002) investigates

outcomes from a revised k-double auction in this scenario. When the transmission capacity is bind-

ing, the revised mechanism gives priority to higher bids and lower asks as the standard k-double

auction does, but charge buyers the marginal bid and pay sellers the marginal ask. The difference

of the two prices is extracted by the line owner. The mechanism results in higher misrepresentation

of values than the standard k-double auction in equilibria, but the asymptotic price-taking behavior

persists.

When each trader is allowed to bid/ask for multiple units, the k-double auction is equivalent to
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the uniform price auction in experimental economics literature. The rest of this section includes

some studies of the sealed-bid uniform price auction. Typically, k is set to 0.5 in them.

Quotas have been imposed on selling dairy and farming laying hens in Canada, as part of the

country’s supply management for a few agricultural products. The k-double auction is used to

trade dairy quota in Québec since the market is relatively thin. Doyon et al. (2008) uses laboratory

experiments to check whether two modifications, taxing unsold asks and excluding the highest bid

and the lowest ask, can help pushing the quota price down. Neither of these interventions has a

significant effect on driving price low, nor if they are implemented together. Both of them reduce

efficiency in the market. Doyon et al. (2010) proposes a truncated k-double auction (T-kDA) for

the laying hen permit market to restrain market power of oligopolies, and tests its performance

in a laboratory experiment. In this experiment, k = 0.5, and subjects have private information of

their own values without knowledge of the value distribution. The truncated k-double auction(T-

kDA) results in lower prices with a moderate loss of efficiency, compared to the standard k double

auction. The T-kDA allocates trades on the seller side in the same way as the standard k-double

auction; the trading price is also a weighted sum of the highest tradable ask and the lowest tradable

bid. Differently, T-kDA fulfills bids from low to high, starting from the first one that exceeds or

equals to the highest tradable ask, which may not be allocated in a standard k-double auction. This

priority on lower bid reduces buyers’ incentive to submit high prices. In both Doyon et al. (2008)

and Doyon et al. (2010), a trader may submit a unit price and a quantity if he wishes to trade multiple

units.

The k-double auction is a static version of the continuous double auction (Smith, 1962). At-

tempts at game theoretic models for the continuous double auction include Friedman (1984), Wilson

(1987), and Friedman (1991). In the absence of complete information, the results from a continuous

double auction in laboratory experiments can still be well-approximated by a complete information

model due to adequate information revelation (Friedman and Ostroy, 1995). Comparisons have

been made in laboratory experiments under the environment that each trader has demand/supply

over multiple units. When traders have private signals on their own redemption values, the contin-

uous double auction achieves higher efficiency than the k-double auction (k = 0.5) on average, and
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the k-double auction that allows each agent to submit different prices for the units performs better

than the one in which each trader submits one price for all his units (Smith et al., 1982). The con-

tinuous double auction also yields higher efficiency when the value of the commodity is uncertain,

i.e. the commodity is an asset that pays dividends depending on the state (Friedman, 1993). An

interesting result from the asset market setting is that providing order flow information enhances

efficiency in the continuous double auction, but has an opposite effect on the k-double auction.

The k-double auction and the continuous double auction differ in both the allowance of informa-

tion flow and the number of times a market is called. A mechanism that falls in between these two

is the single call market with feedbacks, which is prevalently used for setting the opening prices in

stock exchanges. The mechanism resembles the tâtonnement procedure: feedbacks on the clearing

price and supply-demand imbalance are provided, and traders can adjust their orders till the market

calls. Variations of this mechanism are compared in Friedman (1993), McCabe et al. (1992), Bronf-

man et al. (1996) and McCabe et al. (2018). Another mechanism that links the k-double auction

and the continuous double auction is a multiple-call market, where trades happen in multiple stages,

each consists of a single call market. Comparisons of this mechanism with the the k-double auction

and the continuous double auction in the laboratory experiment can be found in Van Boening (1991)

and Cason and Friedman (1999). Frequent uniform price call markets has been considered a good

alternative for financial exchanges to mitigate high-frequency trading arms race caused by the con-

tinuous double auction (Aldrich and Vargas, 2018; Budish et al., 2014, 2015). Plott and Pogorelskiy

(2017) uses two sequential call markets to understand the price formation process.

3.8 Conclusion

The k-double auction is a plausible mechanism for thin markets due to it simplicity to implement

and fast convergence to efficient outcome. When adopting the mechanism to real markets, beware

that small revisions can lead to drastic change in the results. An example is the MBBDA treatment

in Kagel and Vogt (2018), which is also discussed by Satterthwaite and Williams (2018).

Given the complication of Bayesian Nash equilibrium in the k-double auction, experimental

economics can help understanding whether it is a reasonable approximation for traders’ behavior in
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the market. Suggested by Satterthwaite and Williams (2018), we can learn from experiments about

how long it takes for subjects to learn to play an equilibrium strategy, and how to make learning

process easier.
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Appendix A: Appendix

A.1 Proofs for Chapter 1

Proof of Proposition 1

Proof. Given price p, the seller’s optimization problem is

max
q

ΠS(p,q)−αS max{ΠB(p,q)−ΠS(p,q),0}−βS max{ΠS(p,q)−ΠB(p,q),0}

For each βS, denote by P̂ the highest price at which the seller’s optimal quality equalizes buyer’s

and seller’s profits. We can show that P̂∈ [P1,P2], where P1 = 38.61, P2 = 86.94, and P̂ is a function

of βS.

The blue lines in figure A.1 are examples of the quality choices at different βSs.

1. If ΠS ≤ΠB, we have

US(p,q) = ΠS(p,q)−αS(ΠB(p,q)−ΠS(p,q)).

In this range, ∂US
∂q < 0, the seller obtains the highest utility at the lowest quality level that

satisfies ΠS ≤ΠB and q≥ 1.

When the price is lower than P1, the optimal quality level for a seller is 1 regardless of the

value of βS.

2. If ΠS ≥ΠB, we have

US(p,q) = ΠS(p,q)−βS(ΠS(p,q)−ΠB(p,q)).

In this range, ∂US
∂q =−(1−βS)(2aq+b)+βS(126− p)/10.
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If βS ≤ 0.11, ∂US
∂q < 0 when ΠS ≥ΠB. The optimal quality is 1 for all p ∈ [30,126].

As shown in panel (c) and (d) of figure A.1, if βS > 0.11, there can be several segments for

the optimal quality.

When price is smaller than P̂, ∂US
∂q > 0 for (p,q) if ΠS ≥ΠB, the optimal quality is the highest

quality in the range of ΠS ≥ΠB, which is the quality that makes ΠS = ΠB.

Denote by P3 the price at which ∂US
∂q |q=1 = 0, thus P3 = 126−10.455× 1−βS

βS
. When p∈ [P̂,P3],

we have ∂US
∂q = 0 and ΠS ≥ ΠB for the optimal quality, as depicted by the downward sloping

segment in panel (c) and (d) in figure A.1.

When price is higher than P3, we have ∂US
∂q < 0 for q ∈ [1,10], the optimal quality equals 1.

Furthermore, if βS > 0.43, as in panel (d) of figure A.1, the constraint of q ≤ 10 is binding

for some quality choices. When price is between P2 and P4 = 126−29.553× 1−βS
βS

, we have

∂US
∂q > 0 for q ∈ [1,10], the optimal quality in this range is 10.

Therefore, denote the quality choice by q(p), we have

• βS ∈ [0,0.11]

q(p) = 1 for p ∈ [30,126]

• βS ∈ (0.11,0.43]

q(p) =



1 p ∈ [30,P1]∪ [P3,126]

qe(p) p ∈ [P1, P̂]

q0(p) p ∈ [P̂,P3]

1 p ∈ [P3,126]

• βS ∈ (0.43,1]
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q(p) =



1 p ∈ [30,P1]∪ [P3,126]

qe(p) p ∈ [P1,P2]

10 p ∈ [P2,P4]

q0(p) p ∈ [P4,P3]

1 p ∈ [P3,126]

Here qe(p) is the quality level such that ΠS = ΠB given price p, which is increasing in p when

p ∈ [30,126], and is not a function of βS. Also, q0(p) = 0.4713× βS
1−βS

(126− p)− 3.9270 is the

quality level such that ∂US
∂q |ΠS≥ΠB = 0, which is decreasing in p and increasing in βS.
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Figure A.1: Optimal quality and prices

Note that P̂, P3 and P4 are non-decreasing functions of βS.
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The following shows that q(p;βS) is increasing in βS. Take β1,β2 ∈ (0,1], and suppose β1 ≤ β2.

a) If β1 ≤ 0.11, we have 1 = q(p;β1)≤ q(p;β2) for all prices.

b) If β1,β2 ∈ (0.11,0.43],

i) For p ∈ [30,P1], the quality is 1 for any βS, q(p;β1) = q(p;β2).

ii) For p ∈ [P1, P̂(β2)], we have q(p;β2) = qe(p), and q(p;β1) = min{qe(p;β1),q0(p;β1)}.

Hence, q(p;β1)≤ qe(p;β1)≤ qe(p;β2) = q(p;β2).

iii) For p ∈ [P̂(β2),P3(β2)], we have q(p;β2) = q0(p;β2), and q(p;β1) = max{q0(p;β1),1}.

Therefore, q(p;β1)≤ q0(p;β1)≤ q(p;β2).

iv) For p ∈ [P3(β2),126], we have q(p;β1) = q(p;β2) = 1.

Therefore, q(p;β1)≤ q(p;β2) if β1,β2 ∈ (0.11,0.43].

c) If β1 ∈ (0.11,0.43], and β2 ∈ [0.43,1],

i) For p ∈ [30,P1], the quality is 1 for any βS, q(p;β1) = q(p;β2).

ii) For p ∈ [P1,P2], same as when β1,β2 ∈ (0.11,0.43], q(p;β1)≤ qe(p;β2) = q(p;β2).

iii) For p ∈ [P2,P4(β2)], q(p;β2) = 10≥ q(p;β1).

iv) For p∈ [P4(β2),P3(β2)], same as when β1,β2 ∈ (0.11,0.43], we have q(p;β1)≤ q0(p;β1)≤

q0(p;β2) = q(p;β2).

v) For p ∈ [P3(β2),126], q(p;β1) = q(p;β2) = 1.

Therefore, q(p;β1)≤ q(p;β2) in this price range.

d) If β1 > 0.46, we have q(p;β1)= q(p;β2) for p∈ [30,P4(β1)]. For p∈ [P4(β1),P4(β2)], q(p;β2)=

10 ≥ q(p;β1). For p ∈ [P4(β2),P3(β2)], we have q(p;β2) = q0(p;β2) > max{q0(p;β1),1} =

q(p;β1). For p ∈ [P3(β2),126], we have q(p;β1) = q(p;β2) = 1.

Therefore, q(p;β1)≤ q(p;β2) in this price range.

Hence, we have q(p;β1)≤ q(p;β2), q(p;βS) is increasing in βS.
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Proof of Proposition 2

Proof. Given the seller’s quality choice in the last stage, we can find the price that maximizes the

buyer’s utility.

• If p≤ P1, we have ΠS ≤ΠB and q(p) = 1. In this range, the buyer’s utility

UB(p,q(p)) = (1−βB)(126− p)×0.1+βB(p− c(1)).

Therefore a buyer with βB < 0.09 prefers p = 30 in this range, and a buyer with β > 0.09

prefers p = P1 in this range.

• If p ∈ [P1,P∗], where P∗ = min{P̂(βS),P2}, the seller chooses qe(p) that equalizes ΠS and

ΠB. In this range, UB = ΠB = ΠS. Since q(p) is a bijective function in this range, we can

write p as a function of q, such that p(q) = q−1(q). From ΠB = ΠS we have,

p′(q) =−−c′(q)− (126− p)/10
1+q/10

.

Therefore,

dUB

dq
=p′(q)− c′(q)

=
1

1+q/10
· [c′(q)+(126− p)/10− c′(q)(1+q/10)]

=
1

10+q
· [−c′(q) ·q+(126− p)].

We have dUB
dq > 0 when p ∈ [P1,P2] and q ∈ [1,10]. In this range, the buyer prefers the highest

price, min{P̂(βS),P2}, which leads to the highest quality. Note that P̂(βS) ≤ P2 when βS ≤

0.43, and P̂(βS)> P2 otherwise. Hence the buyer’s preferred price is increasing in βS.
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• If p ∈ [P∗,126], we have ΠS > ΠB, thus UB = ΠB−α(ΠS−ΠB). In this range, q(p) is a

decreasing function of p, thus dUB
d p < 0, and the buyer prefers P∗.

Therefore, the buyer prefers P∗ = min{P̂(βS),P2} to any other price in the range of [P1,126],

and if the buyer has β≥ 0.09, P∗ is the buyer’s globally preferred price.

If the buyer has βB < 0.09, and the seller has βS < 0.11, we have UB(q(30),30)>UB(q(P̂(βS)), P̂(βS)),

the buyer’s globally preferred price is 30. If βS ≥ 0.11, then UB(q(30),30) < UB(q(P∗),P∗), the

buyer prefers P∗.

The preferred prices are marked by asterisks in figure A.1.

In summary, the globally preferred price is 30 if βB < 0.09 and βS < 0.11, and P∗ otherwise.

Since P∗ is increasing in βS, and P∗ > 30, the buyer’s globally preferred price is increasing in βS.

A.2 Proofs for Chapter 2

Characteristics of F(w)

The following propositions characterize the set of allocations chosen by the clearing house with

positive probability after the offer profile w, and are used in later proofs.

Proposition 3. For any y ∈ F(w), if yb > 0 and ys < 0 for a buyer b and a seller s, then p̃b ≥ p̃s.

Proof. Suppose p̃b < p̃s. Consider an alternative allocation y′ such that y′i = yi if i 6= b,s and y′b =

yb−1, y′s = ys +1. Since y ∈ F(w)⊆ Y (w), we have y′ ∈ Y (w), and

∑
i∈I

y′i p̃i = ∑
i∈I

yi p̃i +(p̃s− p̃b)> ∑
i∈I

yi p̃i.

Then y /∈ F(w), contradicting the assumption.
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Proposition 4. Given an offer profile w and a buyer b and a seller s such that p̃b ≥ p̃s, there cannot

be an allocation y ∈ F(w) such that yb < q̃b and ys > q̃s.

Proof. For a given offer profile w such that there is a buyer b and a seller s that p̃b ≥ p̃s, suppose

there is an allocation vector y ∈ Y (w) such that yb < q̃b and ys > q̃s. We can show that y /∈ F(w).

Take an alternative allocation vector y′, let y′i = yi if i 6= b,s, and y′b = yb +1, y′s = ys−1. We have

y′ ∈ Y (w). The arbitrage profit for the clearinghouse by allocating y′ is

∑
i∈I

y′i p̃i = ∑
i∈I

yi p̃i +(p̃b− p̃s)≥∑
i∈I

yi p̃i,

where the last term is the clearing house’s profit if it allocates y. Therefore, if p̃b > p̃s, then

∑i∈I yi p̃i < ∑i∈I y′i p̃i and y /∈Π(w); and if p̃b = p̃s, then ∑i∈I yi p̃i = ∑i∈I y′i p̃i but y is ray dominated

by y′. Either way we have y /∈ F(w).

Proposition 5. If, for a given offer profile w, seller a and seller b offer p̃a < p̃b, and seller b is an

active trader, then for all y ∈ F(w) we have ya = q̃a. Symmetrically, if in a given offer profile w,

buyer a and buyer b offer p̃a > p̃b, and buyer b is an active trader, then for all y ∈ F(w) we have

ya = q̃a.

Proof. We will show the proof for the sellers’ case, since the buyers’ case is symmetric. By defi-

nition, if seller b is an active trader, there exists an allocation y∗ ∈ F(w) such that y∗b < 0. First we

show that y∗a = q̃a.

Suppose y∗a > q̃a. Take an alternative allocation vector y′ given by y′a = y∗a−1, y′b = y∗b +1, and

y′i = y∗i for i 6= a,b. It is easy to see that y′ ∈Y (w). The profit for the clearing house by allocating y′

equals

∑
i∈I

y′i p̃i = ∑
i∈I

y∗i p̃i +(p̃b− p̃a)> ∑
i∈I

y∗i p̃i.

The last term is the profit of the clearing house if y∗ is allocated. Hence y∗ /∈ Π(w), so y∗ /∈ F(w).
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Therefore, if y∗b < 0 and y∗ ∈ F(w), we must have y∗a = q̃a. By the same argument, we must have

ya = q̃a for every allocation y ∈ F(w) such that yb < 0.

Now suppose there is an allocation ŷ ∈ F(w) such that ŷb = 0 and ŷa > q̃a. According to the

result in the first part of the proof, for any seller h that offers p̃h > p̃a, ŷh = 0, otherwise ŷ /∈ F(w).

Hence

∑
{h∈S: p̃h>p̃a}

ŷh = 0 > y∗b ≥ ∑
{h∈S: p̃h>p̃a}

y∗h.

According to the first part of the proof, y∗i = q̃i for i ∈ S if p̃i < p̃b. Since p̃b > p̃a, we have

∑
{h∈S:p̃h≤p̃a}

ŷh ≥ ∑
{h∈S: p̃h≤p̃a}

q̃h = ∑
{h∈S:p̃h≤p̃a}

y∗h.

Therefore,

∑
i∈B

y∗i =−∑
i∈S

y∗i >−∑
i∈S

ŷi = ∑
i∈B

ŷi.

Since ∑i∈B ŷi < ∑i∈B y∗i , there exists at least one buyer, say buyer e, such that 0≤ ŷe < y∗e ≤ q̃e.

Since y∗e > 0 and y∗a < 0, from proposition 1 we have p̃e ≥ p̃a. Therefore p̃e ≥ pa, ŷa > q̃a, and

ŷe < q̃e, violating proposition 2.

Proposition 6. Given an offer profile w, if buyer b ∈ AB(w) and seller s ∈ AS(w), then p̃b ≥ p̃s.

Proof. Since b∈ AB(w) and s∈ AS(w), there must be some y,y′ ∈ F(w) such that yb > 0 and y′s < 0.

If y = y′, the desired result follows from Proposition 1. Suppose y 6= y′. Since y,y′ ∈Π(w), we have

∑
i∈AB(w)

yi p̃i + ∑
i∈AS(w)

yi p̃i = ∑
i∈AB(w)

y′i p̃i + ∑
i∈AS(w)

y′i p̃i.

Suppose p̃b < p̃s. From Proposition 1, we have ys = 0 and y′b = 0. From proposition 3, then,

there is no active seller submitting a price higher than ps, and no active buyer submitting a price

lower than pb. Denote by AB the set of active buyers that offer pb, and AS the set of active sellers
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that offer ps. From proposition 3, for i ∈ AB(w)\AB and i ∈ AS(w)\AS,

y′i = yi = q̃i.

Thus,

∑
i∈AB

yi pb + ∑
i∈AS

yi ps = ∑
i∈AB

y′i pb + ∑
i∈AS

y′i ps,

which is equivalent to

pb ·

(
∑

i∈AB

yi− ∑
i∈AB

y′i

)
= ps ·

(
∑

i∈AS
y′i− ∑

i∈AS
yi

)
.

Given p̃b < p̃s, the equation above implies either

∑
i∈AB

yi− ∑
i∈AB

y′i = ∑
i∈AS

y′i− ∑
i∈AS

yi = 0

or

∑
i∈AB

yi− ∑
i∈AB

y′i > ∑
i∈AS

y′i− ∑
i∈AS

yi.

Since yb > 0, in the first case there must be some buyer c such that y′c > 0 and p̃c = p̃b < p̃s.

But since y′s < 0, proposition 1 implies p̃c ≥ p̃s, a contradiction.

In the second case we have

∑
i∈AB

yi + ∑
i∈AS

yi > ∑
i∈AS

y′i + ∑
i∈AB

y′i,

which implies

∑
i∈I

yi > ∑
i∈I

y′i.
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But since y,y′ ∈ F(w)⊆ Y (w), we have ∑i∈I yi = ∑i∈I y′i = 0, a contradiction.

Proposition 7. If y ∈ F(w), then either yi = q̃i for all i ∈ AS(w) or yi = q̃i for all i ∈ AB(w).

Furthermore, if there is y∗ ∈ F(w) such that y∗i = q̃i for all i ∈ AS(w), then yi = q̃i for all y ∈ F(w)

for all i ∈ AS(w). Symmetrically, if there is y∗ ∈ F(w) such that y∗i = q̃i for all i ∈ AB(w), then

yi = q̃i for all y ∈ F(w) for all i ∈ AB(w).

Proof. For the first part, from proposition 4, if buyer b and seller s are active, we have pb ≥ ps.

Thus, from proposition 2, there is no y ∈ F(w) such that ys > q̃s and yb < q̃b. Therefore, for every

y ∈ F(w), either yi = q̃i for all i ∈ AS(w), or yi = q̃i for all i ∈ AB(w).

For the second part, we show the proof for the active sellers’ case, since the buyers’ case is

symmetric. Suppose there is y∗ ∈ F(w) such that y∗i = q̃i for all i ∈ AS(w), and y′ ∈ F(w) such that

y′a > q̃a for some a ∈ AS(w). Then

∑
i∈B

y∗i =−∑
i∈S

y∗i >−∑
i∈S

y′i = ∑
i∈B

y′i.

Therefore there must be an active buyer, say b, such that y′b < y∗b ≤ q̃b. From proposition 4, we have

p̃b ≥ p̃a. But, from proposition 2, y′a > q̃q and y′b < q̃b imply p̃b < p̃a, a contradiction.

Proposition 8. If seller a offers (p, q̃a) in offer profile w and a ∈ AS(w), then seller b who offers

(p, q̃b) where q̃b < 0 is also an active seller. Symmetrically, if buyer a offers (p, q̃a) in strategy

profile w and a ∈ AB(w), then buyer b who offers (p, q̃b) where q̃b > 0 is also an active buyer.

Proof. We show the proof for the sellers’ case, since the buyers’ case is symmetric. Suppose yb = 0

for all F(w). Provided seller a is an active seller, there exists y ∈ F(w) such that ya > 0. Consider

an allocation vector y′ that y′i = yi for i 6= a,b and y′a = ya−1, y′b = 1. It’s easy to see that y′ ∈Y (w).

The profit for the clearing house if y′ is allocated is equal to

∑
i∈I

y′i p̃i = ∑
i∈I

yi p̃i + p− p = ∑
i∈I

yi p̃i,
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so that y′ ∈ Π(w). Thus, either y′ ∈ F(w) or there is y′′ ∈ F(w) such that y′′ 6= y′ and |y′′i | ≥ |y′i| for

all i, so that in either case b is an active trader, contradicting the assumption. Therefore, as long as

seller a is an active seller, so is seller b.

Proof of Theorem 1

Suppose (p,q) is a competitive equilibrium. First we claim that the offer profile w = ((p,qi))

induces the same outcome with probability one. To see this, since p̃i = p for all i, the arbitrage

profit for the clearing house is 0 for each y ∈ Y (w), so that Π(w) = Y (w). Clearly q ∈ Y (w) since

by definition of a competitive equilibrium qi ∈ Qi and ∑i qi = 0. Moreover, by definition of Y (w),

for every y ∈ Y (w) we have |yi| ≤ |qi|. Hence q ray-dominates any other allocation in Π(w) and is

the unique element of F(w). Thus, w induces the outcome (q,(−pqi)) with probability one. This is

precisely the outcome induced by the competitive equilibrium.

Next, we show that no individual i has an incentive to deviate from the offer profile w= ((p,qi)).

We consider deviations for buyers, since the proof for sellers is symmetric. We classify possible

individual deviations for i∈ B from w into three categories, and show that none of them is profitable.

(i) Consider w′i = (p,q′i) such that Qi 3 q′i 6= qi. In any outcome with positive probability after

that deviation, the utility for i is ui(y,−py) for some y∈Qi. Since qi ∈ argmaxq∈Qi ui(q,−pq),

we have that the expected utility after the deviation cannot be larger.

(ii) Consider w′i = (p′i,q
′
i) such that q′i ∈ Qi and p′i < p. Since every seller s ∈ S is asking p̃s = p,

by proposition 3 we must have that in any outcome with positive probability after that deviation

yi = 0. But then the expected utility after the deviation is 0, and since qi ∈ argmaxq∈Qi ui(q,−pq),

we have ui(qi,−pqi)≥ ui(0,−p×0) = 0.

(iii) Consider w′i = (p′i,q
′
i) such that q′i ∈ Qi and p′i > p. Denote by w′ the new offer profile. For

any y′ ∈ F(w′), buyer i gets a payoff of ui(y′i,−p′iy
′
i). Note that ui(y′i,−p′iy

′
i)< ui(y′i,−py′i)≤

ui(qi,−pqi), where the first inequality follows from p′i > p and the fact that ui(q,−pq) is
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decreasing in p, and the second from qi ∈ argmaxq∈Qi ui(q,−pq). It follows that Eui(w′) <

Eui(w).

Proof of Theorem 2

The proof comes in several steps. Note that the ‘thick market’ condition (at least two active traders

in the Nash equilibrium) is invoked only in the last step.

Lemma 1. In each Nash equilibrium, all active sellers offer the same price, and all active buyers

offer the same price.

Proof. We prove the result for the sellers; the proof for the buyers is analogous. Take any offer

profile w∗ such that two active sellers offer different prices p and p, with p > p. We can claim that

the seller, say trader l, who offers (p, q̃l) would be better off submitting (p′, q̃l) such that p < p′ < p.

To see this, from proposition 5, since there is another active seller offering the price p, seller l

sells |q̃l| units when she offers w∗l = (p, q̃l). We can show that seller l sells |q̃l| units as well when

she offers w′ = (p′, q̃l). Suppose there is y′ ∈ F(w′) such that y′l > q̃l . As in the last step of the proof

of proposition 5, for any y ∈ F(w∗) we have

∑
i∈B

yi =−∑
i∈S

yi >−∑
i∈S

y′i = ∑
i∈B

y′i.

Therefore there must be an active buyer at w∗, say b, such that y′b < yb ≤ q̃b. From proposition

6, we have p̃b ≥ p. But, from proposition 4, at profile w′ we have y′l > q̃l and y′b < q̃b implying

p̃b < p′ < p, a contradiction.

Thus, by offering (p′, q̃l), seller l gets

ul(q̃l,−p′q̃l) =−p′q̃l−
|q̃l |

∑
j=1

rl j >−pq̃l−
|q̃l |

∑
j=1

rl j,

where the last term is the payoff seller l gets by offering (p, q̃l). Hence the seller gets better off by
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offering (p′, q̃l), so that w∗ cannot be a Nash equilibrium.

Lemma 2. In each Nash equilibrium, all active traders offer the same price.

Proof. Consider an offer profile w∗ such that there is trade and such that all active buyers offer the

same price, say pb, and all active sellers offer the same price, say ps. From lemma 1, we know

that only such profiles, or some profiles such that there is no trade, can be Nash equilibria. By

proposition 6, we have ps ≤ pb. We will show that if ps < pb, at least one active trader has an

incentive to deviate, so that w∗ cannot be a Nash equilibrium.

If ps < pb, following proposition 7, we have that either yi = q̃i for all y ∈ F(w∗) for all i ∈

AS(w∗), or yi = q̃i for all y ∈ F(w∗) for all i ∈ AB(w∗). Suppose yi = q̃i for all y ∈ F(w∗) for all

i ∈ AS(w∗) (the argument for the other case is analogous). Note that if there are inactive sellers in

w∗, for any such seller h we have p̃h > ps or q̃h = 0. If p̃h < ps, then following proposition 5 we

have yh = q̃h for all y ∈ F(w∗), so the seller can be inactive only if q̃h = 0. If p̃h = ps, according to

proposition 8 there must be some y ∈ F(w∗) that yh < 0 unless q̃h = 0. Denote by p¬s the lowest

price offered with a non-zero quantity by inactive sellers, if there is any, and note that in that case

p¬s > ps.

We claim that if ps < pb, an active seller, say a, would have an incentive to deviate from w∗a =

(ps, q̃a) to w′a = (p′, q̃a), where p′ ∈ (ps,min{pb, p¬s}) if there are non-zero quantity inactive sellers,

and p′ ∈ (ps, pb) otherwise.

To prove the claim, we argue first that for any y′ ∈ F(w′) we have y′a = q̃a. Suppose there is a

y′ ∈ F(w′) such that y′a > q̃a. Then, from proposition 5, inactive sellers at w∗ remain so at w′ since

p¬s > p′. Therefore ∑i∈S y′i > ∑i∈S yi for every y ∈ F(w∗). Thus, for any y ∈ F(w∗),

∑
i∈B

y′i =−∑
i∈S

y′i <−∑
i∈S

yi = ∑
i∈B

yi.

Therefore there must be an active buyer at w∗, say h, who offers pb and gets y′h < yh ≤ q̃h. But, from

proposition 4, at profile w′ we have y′a > q̃a and y′h < q̃h implying pb < p′, a contradiction.

From the previous argument, by offering w′ instead of w∗, seller a is allocated q̃a, and gets a
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utility of

ua(q̃a,−p′q̃a) =−p′q̃a−
|q̃a|

∑
j=1

ra j >−psq̃a−
|q̃a|

∑
j=1

ra j = ua(q̃a,−psq̃a).

Hence seller a gets better off by offering w′, so that w∗ cannot be a Nash equilibrium.

Lemma 3. In each Nash equilibrium, every trader is indifferent between all outcomes that occur

with positive probability.

Proof. Consider an offer profile w∗ such that all active traders, if there is any, offer the same price,

say p. From lemma 2, we know that only such profiles can be Nash equilibria if trades happen with

positive probability. Take trader a, a seller, for example. If seller a is inactive, then her utility is 0

for any positive probability outcome. Suppose a is active, and moreover there are y,y′′ ∈ F(w∗) that

ua(ya,−pya)> ui(y′′a,−py′′a). We can show that in this case, w cannot be a Nash equilibrium.

Since F(w∗) is finite, there is some y∗ ∈ F(w∗) such that ua(y∗a,−py∗a)≥ ua(ya,−pya) for all y∈

F(w∗) and moreover ua(y∗a,−py∗a)> ua(y′′a,−py′′a). Since y′′ has positive probability, ua(y∗a,−py∗a)>

Eua(w). By continuity, there is some p′ < p such that ua(y∗a,−py∗a)> ua(y∗a,−p′y∗a)> Eua(w).

We claim that if seller a offers w′a = (y∗a, p′), then y′a = y∗a for every y′ ∈ F(w′), so that the seller

obtains ua(y∗a,−p′y∗a) which is a profitable deviation from w∗ by the inequality above. The claim

implies that w∗ cannot be a Nash equilibrium. To verify the claim, suppose first that there is another

seller h that is active at w′; since seller h offers the price p > p′, the claim follows from proposition

5. Suppose that no other seller is active at w′, then if y′a > y∗a we get for any y′ ∈ F(w′),

∑
i∈B

y′i =−∑
i∈S

y′i <−∑
i∈S

y∗i = ∑
i∈B

y∗i .

Then there must be some buyer, say b, such that y′b < y∗b ≤ q̃b. Since there is also a seller, seller a,

such that y′a > y∗a and moreover this seller offers a price p′ below the price offered by the buyer, we

get a contradiction with proposition 4.
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Lemma 4. In every positive probability outcome of a Nash equilibrium with active trading, given

the price offered by all active traders, all non-active traders are allocated utility-maximizing quan-

tities.

Proof. In the proof of this and the following lemmas, let w∗ be a Nash equilibrium with active

trading, and (invoking lemma 2) let p∗ be the price offered by all active traders. We focus on sellers;

the proof for the buyers is analogous.

As shown in the second paragraph of lemma 2, non-active sellers offer p̃i > p∗ or q̃i = 0. There-

fore, they get yi = 0 for all y ∈ F(w∗), and thus obtain Eui(w∗) = 0. We claim that for inactive

sellers, yi = 0 is utility-maximizing given price p∗. Equivalently, we claim that ri1 ≥ p∗.

To see this, suppose trader i is an inactive seller and ri1 < p∗. Consider a deviation for i to

w′i = (p∗,−1). By proposition 8, if seller i is inactive under the offer profile w′, so is every seller

in AS(w∗) under the offer profile w′, and by proposition 5 so is every seller. But this would violate

proposition 4, since there are trades in each side of the market active under w∗ and thus offering p∗

should induce positive probability to trade. Hence, there exists y′ ∈ F(w′) such that y′i =−1. Since

ui(y′i,−p∗y′i) = p∗− ri1 > 0, by deviating to offer (p∗,−1), agent i would have Eui(w′)> 0, so that

w∗ would not be a Nash equilibrium.

Lemma 5. In every positive probability outcome of a Nash equilibrium with active trading, given

the price offered by all active traders, all active traders are allocated quantities that are either

utility-maximizing or involve less in absolute value than the utility-maximizing trade.

Proof. For a given active seller, say s, let δs and δs be the minimal and the maximal element, respec-

tively, of the set argmaxqs∈Qs us(qs,−p∗qs), so that−k≤ δs≤ δs≤ 0. From the utility maximization

problem, it follows that every x ∈ Qs such that δs ≤ x≤ δs is also a utility maximizer.

We claim that for every y∈ F(w∗) we have ys≥ δs so that either the seller is allocated an optimal

trade or a smaller (in absolute value) than optimal trade. For suppose there is y ∈ F(w∗) such that

ys < δs so that us(ys,−p∗y) < us(δs,−p∗δs). If δs = 0 or p∗ = 0, it follows that us(ys,−p∗y) < 0,
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and by lemma 3, Eus(w∗) < 0. But then trader s can deviate to (p∗,0) and guarantee an expected

utility of zero, so that w∗ cannot be a Nash equilibrium. Suppose instead that δs < 0 and p∗ > 0. By

continuity, there is some p′ < p∗ such that

us(ys,−p∗y)< us(δs,−p′δs)< us(δs,−p∗δs).

Now consider a deviation by s to w′s = (p′,δs). We show that such deviation guarantees y′s = δs for

all y′ ∈ F(w′), so that by Lemma 3, Eus(w′) = us(δs,−p′δs)> Eus(w∗). To see this, suppose there

is some y′ ∈ F(w′) such that y′s > δs. Since p′ < p∗, and all other sellers offer a price equal or larger

than p∗ or a quantity equal to zero, it follows from proposition 5 that for all other i ∈ S we have

y′i = 0. Therefore

∑
i∈B

yi =−∑
i∈S

yi ≥−ys >−δs =−∑
i∈S

y′i = ∑
i∈B

y′i.

But then there must be a buyer, say a, such that y′a < ya ≤ q̃a offering price p∗ > p′, contradicting

proposition 4.

Lemma 6. In every positive probability outcome of a Nash equilibrium with active trading, given

the price offered by all active traders, if there are two or more active traders on the same side of the

market, then all traders on this side of the market are allocated utility-maximizing quantities.

Proof. We claim that if there are at least two active sellers, then every y ∈ F(w∗) satisfies δs ≤ ys ≤

δs and is therefore a utility maximizer.

In lemma 5 we have shown in every positive probability allocation y, active sellers are allocated

quantities that are either utility-maximizing given the price or involve less trade (δs ≤ ys ≤ 0) so we

need only focus on active sellers.

Now suppose there are two active sellers, say s and h. If ys < δs for any y ∈ F(w∗), we have

that w∗ cannot be a Nash equilibrium by the previous step. If δs ≤ ys ≤ δs, the claim follows from

lemma 3. In the last part of this proof, we show that if there is a y ∈ F(w∗) such that ys > δs, w∗
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cannot be a Nash equilibrium.

Since |ys| < |δs|, from the utility maximization problem we must have r|ys|+1 < p∗. Hence

us(ys−1,−p∗(ys−1))−us(ys,−p∗ys) = p∗− r|ys|+1 > 0. By continuity, there is some p′ < p∗ such

that

us(ys,−p∗y)< us(ys−1,−p′(ys−1))< us(ys−1,−p∗(ys−1))).

Also, for any y,y′′ ∈ F(w∗), we have ys = y′′s . Suppose there exists y,y′′ ∈ F(w∗) such that

ys < y′′s , then

us(y′′s ,−p∗y′′s )−us(ys,−p∗ys) =−p∗(y′′s − ys)+
|ys|

∑
j=|y′′s |+1

rs j < 0,

contradicting lemma 3.

Now consider a deviation by s to w′s = (p′,ys− 1). We show that such deviation guarantees

y′s = ys−1 for all y′ ∈ F(w′), so that by Lemma 3, Eus(w′) = us(ys−1,−p′(ys−1))> Eus(w∗). To

see this, suppose there is some y′ ∈ F(w′) such that y′s > ys−1. Since p′ < p∗, and all other sellers

offer a price equal or larger than p∗ or a quantity equal to zero, it follows from proposition 5 that

for all other i ∈ S we have y′i = 0. Therefore, take any y′′ ∈ F(w∗) such that y′′h < 0,

∑
i∈B

y′′i =−∑
i∈S

y′′i ≥−ys− y′′h ≥−ys +1 >−y′s =−∑
i∈S

y′i = ∑
i∈B

y′i

But then there must be a buyer, say a, such that y′a < y′′a ≤ q̃a offering price p∗> p′, contradicting

proposition 4.

Since the market clearing condition in the equilibrium definition is satisfied by any allocation

induced by any offer profile, theorem 2 follows from lemma 6.
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Properties of vb and vs

Lemma 7. In every competitive equilibrium (p,q) ∈ ξ(r) that contains the smallest number of

transactions, the lowest reservation value of buyers’ traded unit(s) is equal to vb, and the highest

reservation value of sellers’ traded unit(s) is equal to vs.

Proof. We show the proof for vb; the proof for vs is analogous. By definition of vb, there is a

competitive equilibrium (p̂, q̂) such that every unit bought has a buyer’s valuation greater than or

equal to vb. Suppose there is a competitive equilibrium (p̃, q̃) such that a buyer, say i ∈ B, buys a

unit with valuation strictly below vb. Then it must be the case that p̃ < vb. But then we have that

q̃i > q̂i and for every j ∈ B \ {i}, q̃ j ≥ q̂ j, so that strictly more units are traded in (p̃, q̃) than in

(p̂, q̂).

Proof of Theorem 3

First we prove the condition in the statement of the theorem is sufficient. Suppose w∗ is a Nash

equilibrium with active trading, and suppose there are at least two inframarginal sellers and at least

two weakly inframarginal buyers. (The other case is analogous.) From lemma 1 and lemma 2, all

active traders offer the same price, say p∗. Denote δi and δi the minimal and maximal element,

respectively, of the set argmaxqi∈Qi ui(qi,−p∗qi). From lemma 5, for any y ∈ F(w∗), we have

δi ≤ yi ≤ 0 for every active seller i, and 0 ≤ yi ≤ δi for every active buyer i, and moreover from

lemma 4, non-active traders acquire utility-maximizing quantities given p∗. That is, no one trades

in excess of their utility-maximizing quantity.

Consider first the case p∗ > vs. We claim that every inframarginal seller must be active. For

suppose an inframarginal seller i is not active; then the seller is making a payoff equal to zero in

every allocation y ∈ F(w∗). But by deviating unilaterally to w′i(p,1) for any vs < p < p∗, the seller

can guarantee herself a positive payoff ui(−1, p) = −ri1 + p > −vs + p∗ > 0 in every allocation

with positive probability given the new offer profile. Hence, two or more sellers are active in w∗. If

two or more buyers are active in w∗, then applying theorem 2, p∗ is a competitive price and all the

outcomes from the Nash equilibrium are competitive.
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If only one buyer is active in w∗, say buyer a, we must have that at least one weakly inframarginal

buyer, say buyer c, who is not active in w∗. Since c is not active in w∗, we must have p∗ ≥ rc1;

otherwise c has a profitable deviation. Therefore p∗ ≥ rc1 ≥ p. If p∗ > p, then for every y ∈ F(w∗),

∑
i∈B

yi ≤∑
i∈B

δi <−∑
i∈S

δi ≤−∑
i∈S

yi,

violating the allocation rule of the clearing house. The first and the last inequality comes from

lemma 6 which implies that for all the active sellers yi ∈ [δi,δi] since there are at least two of them,

and from lemma 5 which implies that for any active buyer yi ≤ δi. The strict inequality in the middle

is a result of the price being higher than any competitive price. Hence p ≤ p∗ ≤ p so that p∗ is a

competitive price.

Now suppose that there is an allocation y ∈ F(w∗) such that ya < δa. Since p∗ is competitive,

in any competitive equilibrium allocation (qi), we have −∑i∈S qi ≥ δa. Thus in every competitive

equilibrium at price p∗, there exists at least one seller s that has qs < ys. Since ys,qs ∈ [δs,δs], we

have rs,|qs| = p∗. Hence for any competitive equilibrium at p∗, there is at least a traded unit with

reservation value p∗ for a seller. By definition of vs this implies p∗ ≤ vs, a contradiction to the

assumption. Therefore for the only active buyer a, ya ∈ [δa,δa] for every y ∈ F(w∗). Hence, all

traders obtain utility-maximizing quantities given p∗, and every outcome y ∈ F(w∗) is competitive.

Consider the remaining case p∗ ≤ vs. Since p∗ < r1i for every weakly inframarginal buyer,

it follows that there are at least two active buyers in Nash equilibrium and moreover every buyer

chooses utility-maximizing quantities given p∗. As in the previous proof, if there are two or more

active sellers, then, from theorem 2, all outcomes in F(w∗) are competitive. Similarly, if there is a

unique active seller a and ya ∈ [δa,δa] for every y∈F(w∗), then all traders obtain utility-maximizing

quantities given p∗, and every outcome y ∈ F(w∗) is competitive. The remaining case is that there

is a unique active seller a and δa < ya < 0, so that ∑i∈B yi =−ys <−δs.
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Suppose p∗ = vs = p. Since p∗ is a competitive price, in every competitive equilibrium allo-

cation (qi), we have ∑i∈B qi ≥ −δs; i.e. aggregate demand should be able to meet an individual

seller’s supply. Thus in every competitive equilibrium at p∗, there exists at least one buyer b that

has qb > yb. Since yb,qb ∈ [δb,δb], we have rb,qb = p∗. Hence in every competitive equilibrium at

p∗, there is at least one traded unit with reservation value p∗ for a buyer. By definition of vb, this

implies p∗ ≥ vb. Using vb > vs we get a contradiction to the assumption p∗ = vs.

Finally, suppose p∗ = vs < p or p∗ < vs. In either case, p∗ < p, and

−∑
i∈S

yi ≤−∑
i∈S

δi < ∑
i∈B

δi ≤∑
i∈B

yi,

violating the allocation rule of the clearing house. The first and the last inequality comes from

lemma 5 which implies that for any active seller yi ≥ δi and from lemma 6 which implies that for all

the active buyers yi ∈ [δi,δi] since there are at least two of them. The strict inequality in the middle

is a result of the price being lower than any competitive price.

This finishes the proof of sufficiency. We now prove that the condition is necessary. Since at

least two units are traded in every competitive equilibrium, there is at least one inframarginal trader

on each side of the market. Possible violations of the condition in the theorem are that, among the

remainder of traders, either (a) there is no additional weakly inframarginal trader on one side of the

market, or (b) there is no additional inframarginal trader in either side.

Consider case (a), and suppose without loss of generality that trader 1 is the unique weakly

inframarginal seller, so that every seller i ∈ S \ {1} is such that either ri1 ≥ vb or ri1 > p; recall

that each of these conditions imply ri1 > vs. Take a competitive equilibrium that has the smallest

number of units traded, and denote the allocation by q̂ = (q̂i). From lemma 7, q̂i = 0 for every seller

i ∈ S \ {1}. From lemma 7 as well, a unit of value vb is bought by at least one buyer, say without

loss of generality buyer 2, and moreover for every buyer j such that q j > 0 we must have r j,q̂ j ≥ vb.

Recall that the highest equilibrium price p satisfies p ≤ vb, and moreover (p, q̂) is a competitive
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equilibrium.1 Suppose first that p = vb. Consider the offer profile w such that w1 = (vb, q̂1 + 1)

(seller 1 sells one fewer unit than in the competitive equilibrium), w2 = (vb, q̂2− 1) (buyer 2 buys

one fewer unit), and wi = (vb, q̂i) for every i 6= 1,2. It is easy to check that no trader has a profitable

deviation; buyer 2 in particular is indifferent between buying one more unit or not.

Now suppose that p < vb. Define

p̃ =

 min
{

mini∈S\{1} ri1,vb
}

if S\{1} 6= /0

vb if S\{1}= /0

,

and consider the offer profile w̃ such that w̃i = (p̃, q̂i) for all i ∈ S∪B. It is easy to check that no

trader has a profitable deviation. But the induced outcome is not competitive since p̃ > p.

Consider case (b), and suppose without loss of generality that trader 1 is the unique infra-

marginal seller and that trader 2 is the unique inframarginal buyer, so that for every seller i ∈ S\{1}

and buyer j ∈ B\{2}, ri1 > vs and r j1 < vb. Take a competitive equilibrium (p̂, q̂) that has the small-

est number of units traded. Since vs ≤ p̂≤ vb, traders 1 and 2 are the only traders who are trading in

q̂. Consider the offer profile w1 = (p̂,−1), w2 = (p̂,1), and wk = (p̂,0) for every k ∈ S∪B\{1,2}.

No trader has a profitable deviation, but this offer profile induces an allocation which is not compet-

itive under the assumption that at least two units are traded in competitive equilibrium.

A.3 Instructions and Quizes for Chapter 2

A.3.1 Instructions for CH treatments

Instructions

Welcome to today’s experiment! You have earned $5 for showing up on time. The following

instructions will explain how you can make decisions and earn more money, so please read

them carefully. During the experiment, please keep your cell phone turned off, and refrain
1In quasilinear economies, the set of competitive equilibria is the product of the set of competitive allocations and the

set of competitive equilibrium prices.
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from talking to other participants. If at some point you have a question, please raise your

hand, and we will address it with you privately.

In the experiment, you will be grouped anonymously with three other participants, whose iden-

tities will not be revealed. Two of the participants in your group will be buyers, and the other two

will be sellers. Your group and your role will remain the same throughout the experiment. Your role

will be revealed to you at the beginning of the experiment.

There will be 20 formal rounds. In each round, each of the two buyers has the opportunity to

buy up to 2 units of the good from the two sellers in the same group, and each of the two sellers has

the opportunity to sell up to 2 units of the good to the two buyers in the same group.

Obtaining each unit of the good generates a value for the buyer, and selling each unit of the good

incurs a cost to the seller. The values to a buyer and the costs to a seller may vary by unit. Values

may vary between buyers and costs may vary between sellers.

Your own values (if you are a buyer) or costs (if you are a seller) will be revealed to you at the

beginning of the experiment. Your values/costs remain constant throughout the experiment. The

values/costs of other participants will NOT be revealed to you.

Payoffs

The values and costs are in US Dollars. A buyer’s payoff in one round equals the value she

obtains from the unit(s) she buys minus the total price she pays for her purchase. A seller’s payoff

in one round equals the revenue she gets from the sale minus the cost incurred for the unit(s) she

sells.

Buyer’s payoff = value obtained from purchase – payment for purchase

Seller’s payoff = revenue from sale – cost incurred for sale

For example, suppose Buyer A generates a value of $4 from buying the first unit, and $3 from

buying the second. If Buyer A obtains 2 units at the unit price of $2, then

Buyer A’s payoff = ($4+$3)︸ ︷︷ ︸
Values

−($2+$2)︸ ︷︷ ︸
Payment

= $3
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Suppose Seller A sells 1 unit at the price of $5.6, and her cost is $1 for selling the first unit and

$3 for selling the second. Then

Seller A’s payoff = $5.6︸︷︷︸
Revenue

− $1︸︷︷︸
Cost(s)

= $4.6

Since Seller A does not sell the second unit, only the cost of the first unit incurs.

If a participant does not trade in a round, her payoff from that round is $0.

The payoffs from different rounds do not accrue. At the end of the experiment, one of the 20

formal rounds will be randomly chosen. Your total earnings in this experiment will be your payoff

from the chosen round, plus the $5 show-up bonus.

How to trade

Each group trades in its own market. In each round, the market opens for 2 minutes, during

which each participant can submit an offer. In a buying offer, a buyer submits a unit price, together

with how many units (1 or 2) she would like to buy for that price. In a selling offer, a seller submits

a unit price, and how many units (1 or 2) she would like to sell for that price. The offer you submit

will NOT be shown to any other participant.

Please note that you can submit only ONE offer in each round, and you cannot revise your offer

once you submit it.

After two minutes, or once every participant has submitted a unit price and quantity, transactions

will be determined under the rules below, as demonstrated in the following example.

Example

Suppose the submitted offers are as follows.

Buyer A: buying offer for 1 unit, at the unit price of $3

Buyer B: buying offer for 2 units, at the unit price of $1

Seller A: selling offer for 1 unit, at the unit price of $4

Seller B: selling offer for 1 unit, at the unit price of $2.
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Please note that this example is only for demonstration of the procedure, the submitted offers

will NOT be shown to any participant in the experiment.

• Sort Orders Firstly, buying offers and selling offers will be sorted separately. If an offer

contains two units (eg. Buyer B’s offer), it will be split into TWO IDENTICAL offers, each

containing one unit. Buying offers for each unit will be queued in descending order, and

selling offers for each unit will be queued in ascending order, as the following table shows.

Buying offers for one unit (high to low) Selling offers for one unit (low to high)
$3 (from Buyer A) $2 (from Seller B)
$1 (from Buyer B) $4 (from Seller A)
$1 (from Buyer B)

In case of tied buying offers or tied selling offers, the order of them will be randomly deter-

mined.

• Trade Units After the orders are sorted, each buying offer and selling offer at the same

position in the queues will be compared. As long as the buying price is no lower than the

selling price, the corresponding buyer and seller make a trade.

The first buying offer in the queue ($3 from Buyer A) and the first selling offer ($2 from

Seller B) make a trade since 3>2. The second buying offer and selling offer cannot trade

since the buying price ($1 from Buyer B) is lower than the selling price ($4 from Seller A).

The third buying offer cannot be fulfilled since there is not a selling offer corresponding to it.

By this procedure, the buying offer with higher price is more likely to be fulfilled, and so is

the selling offer with lower price.

• Prices When a trade happens, the buyer will pay the price she offered and get one unit of

the good, and the seller will receive the price she asked for and sell one unit of the good. In

this example, one unit of the good is traded. Buyer A pays $3 for the unit she bought, as she

offered to. Seller B gets $2 for the unit she sells, as she asked for.

In each round, a participant who does not submit any offer will not make any trade. To prevent

losing money, a buyer/seller cannot submit an offer that could cause a loss for her.
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Summary of Each Round

The market for each group opens at the beginning of each round. After each participant in your

group submits an offer or when the market closes, you will be informed of how many units you

trade, and your payoff in the current round. Also, the price(s) for each traded unit in your market

will be revealed anonymously to all participants in your group. You will NOT be informed of the

buying/selling offers that do not result in trade.

This is the end of the instructions. We now proceed to a quiz to ensure everyone understands

the instructions. The experiment will begin after everyone gives a correct answer to each

question. Before the formal rounds begin, there will be a practice round, which does not count

towards payment.

Again, if you have any question at any point of the experiment, please raise your hand and an

experimenter will assist you.

A.3.2 Quiz for CH treatments

Quiz

1. True or False. Circle your answers.

Your role (buyer or seller) will remain the same in all of the rounds. T F
Your group does not change throughout the experiment. T F
In each round, you can revise your offer after you submit it. T F
Your costs or values will not change between rounds. T F
Your offer in each round will not be shown to other participants. T F

2. Suppose the offers submitted are as follows.

Buyer A: buying offer for 2 units, at the unit price of $3

Buyer B: buying offer for 1 unit, at the unit price of $5

Seller A: selling offer for 2 units, at the unit price of $1

Seller B: selling offer for 1 unit, at the unit price of $2.
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(a) Use the procedure demonstrated in the instructions, fill out the buying and selling offers

in the table.

Buying offers for one unit (high to low) Selling offers for one unit (low to high)
$5 (from Buyer B) $1 (from Seller A)

$ (from Buyer ) $1 (from Seller A)
$3 (from Buyer A) $ (from Seller )

(b) How many units does Buyer A buy? unit(s)

(c) How much does Buyer A pay for the unit(s) she buys in total ? $

(d) Suppose the first unit Buyer A obtains will generate a value of $5 to her, and the second

unit she obtains will generate $4. What is Buyer A’s payoff here?

Buyer A’s payoff = $︸ ︷︷ ︸
Value(s)

−$︸ ︷︷ ︸
Payment

= $

(e) Suppose the first unit Seller B sells will cost her $0.5, and the second unit she sells will

cost $2.5. What is Seller B’s payoff here?

Seller B’s payoff = $︸ ︷︷ ︸
Revenue

−$︸ ︷︷ ︸
Cost(s)

= $

A.3.3 Instructions for DA treatments

Instructions

Welcome to today’s experiment! You have earned $5 for showing up on time. The following

instructions will explain how you can make decisions and earn more money, so please read

them carefully. During the experiment, please keep your cell phone turned off, and refrain

from talking to other participants. If at some point you have a question, please raise your

hand, and we will address it with you privately.

In the experiment, you will be grouped anonymously with three other participants, whose iden-

tities will not be revealed. Two of the participants in your group will be buyers, and the other two
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will be sellers. Your group and your role will remain the same throughout the experiment. Your role

will be revealed to you at the beginning of the experiment.

There will be 20 formal rounds. In each round, each of the two buyers has the opportunity to

buy up to 2 units of the good from the two sellers in the same group, and each of the two sellers has

the opportunity to sell up to 2 units of the good to the two buyers in the same group.

Obtaining each unit of the good generates a value for the buyer, and selling each unit of the good

incurs a cost to the seller. The values to a buyer and the costs to a seller may vary by unit. Values

may vary between buyers and costs may vary between sellers.

Your own values (if you are a buyer) or costs (if you are a seller) will be revealed to you at the

beginning of the experiment. Your values/costs remain constant throughout the experiment. The

values/costs of other participants will NOT be revealed to you.

Payoffs

The values and costs are in US Dollars. A buyer’s payoff in one round equals the value she

obtains from the unit(s) she buys minus the total price she pays for her purchase. A seller’s payoff

in one round equals the revenue she gets from the sale minus the cost incurred for the unit(s) she

sells.

Buyer’s payoff = value obtained from purchase – payment for purchase

Seller’s payoff = revenue from sale – cost incurred for sale

For example, suppose Buyer A generates a value of $4 from buying the first unit, and $3 from

buying the second. If Buyer A obtains the first unit at the price of $2 and the second unit at the price

of $1, then

Buyer A’s payoff = ($4+$3)︸ ︷︷ ︸
Values

−($2+$1)︸ ︷︷ ︸
Payment

= $4

Suppose Seller A sells 1 unit at the price of $5.6, and her cost is $1 for selling the first unit and

$3 for selling the second. Then

Seller A’s payoff = $5.6︸︷︷︸
Revenue

− $1︸︷︷︸
Cost(s)

= $4.6
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Since Seller A does not sell the second unit, only the cost of the first unit incurs.

If a participant does not trade in a round, her payoff from that round is $0.

The payoffs from different rounds do not accrue. At the end of the experiment, one of the 20

formal rounds will be randomly chosen. Your total earnings in this experiment will be your payoff

from the chosen round, plus the $5 show-up bonus.

How to trade

Each group trades in its own market. In each round, the market opens for a maximum of two

minutes, during which each participant can submit offers. In a buying offer, a buyer submits a price

she is willing to buy a unit at. In a selling offer, a seller submits a price she is willing to sell a unit

at. For each participant, only after her first unit is traded can she trade her second unit.

The timer on the screen counts down the time remaining for the current round. The timer starts

from two minutes at the beginning of each round, then jumps to 20 seconds once a participant

attempts to submit an offer, and restarts from 20 seconds every time a participant attempts to submit

an offer. The round finishes if two minutes elapse, or if no new attempt occurs within 20 seconds of

the last attempt, whichever occurs first.

The attached pages are screen shots of the interface for a seller and a buyer in the same market.

Screen shot 1 is for the seller. Screen shot 2 is for the buyer.

From left to right in the upper part of the interface are the Submit Your Offer section, where you

can enter the price for each of your offers; the section for general information, where you can see

the number of rounds, your role, time remaining in the current round, and your real-time payoff in

the current round; Your Values/Costs section, where you can see the values or costs for your units

and whether they are traded or not.

On the lower part of the interface, from left to right are the Selling Offers section, which lists

the selling offers from low to high; the Buying Offers section, which lists the buying offers from

high to low; the Transactions section, which displays all transactions in your market in the current

round. Your own offers and transactions will be highlighted on the lists.

• How to Sell
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– Offer to Sell

You can offer to sell one unit by submitting a price in the Submit Your Offer section.

When you make an offer, the price has to be lower than the lowest selling offer at the

time, which is the top one on the Selling Offers list. If you make a new offer, it will

replace your previous offer.

As shown in the screen shots, the lowest selling offer is $3, so if any of the sellers wants

to make a new offer, she has to offer a price lower than $3.

To prevent losing money, you cannot submit an offer that could cause a loss for you.

– Accept A Buying Offer

You can sell one unit by submitting a price equal to the highest buying offer, which is

the top one on the Buying Offers list. By doing so, you sell the unit to the buyer and

incur the cost, the buyer pays you the price you submitted. (If you submit a price lower

than the highest buying offer, you sell the unit at the price you submit.) In the example

from the screen shots, the highest buying offer is $2, if a seller submits an offer of $2,

she sells the unit to the buyer, and the buyer pays her $2.

– Transactions

There are two ways you sell one unit. Your selling offer is accepted by a buyer, or you

accept a buying offer. When you sell one unit, your offer for that unit will be removed

from the list, the transaction will be recorded, and your payoff will be updated. Then

you may offer to sell your second unit or accept another buying offer on the list. The

rules are the same as for the first unit.

• How to Buy

– Offer to Buy

You can offer to buy one unit by submitting a price in the Submit Your Offer section.

When you make an offer, the price has to be higher than the highest buying offer at the
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time, which is the top one on the Buying Offers list. If you make a new offer, it will

replace your previous offer.

As shown in the screen shots, the highest buying offer is $2, so if any of the buyers

wants to make a new offer, she has to offer a price higher than $2.

To prevent losing money, you cannot submit an offer that could cause a loss for you.

– Accept A Selling Offer

You can buy one unit by submitting a price equal to the lowest selling offer, which is

the top one on the Selling Offers list. By doing so, you buy the unit from the seller

and obtain the value, and pay the seller the price you submitted. (If you submit a price

higher than the lowest selling offer, you buy the unit at the price you submit.) In the

example from the screen shots, the lowest selling offer is $3, if a buyer submits an offer

of $3, she buys the unit from the seller, and pays the seller $3.

– Transactions

There are two ways you buy one unit. Your buying offer is accepted by a seller, or you

accept a selling offer. When you buy one unit, your offer for that unit will be removed

from the list, the transaction will be recorded, and your payoff will be updated. Then

you may offer to buy your second unit or accept another selling offer on the list. The

rules are the same as for the first unit.

Summary of Each Round

The market for each group opens at the beginning of each round. A seller can make selling

offers, or accept buying offers, by submitting prices on the interface. A buyer can make buying

offers, or accept selling offers, by submitting prices on the interface. When an offer is accepted, a

transaction happens. Offers, transactions and your payoff in the current round will be displayed on

your screen.

This is the end of the instructions. We now proceed to a quiz to ensure everyone understands

the instructions. The experiment will begin after everyone gives a correct answer to each

question. Before the formal rounds begin, there will be one practice round, which does not
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count towards payment.

Again, if you have any question at any point of the experiment, please raise your hand and an

experimenter will assist you.

A.3.4 Quiz for DA treatments

Quiz

1. True or False. Circle your answers.

Your role (buyer or seller) will remain the same in all of the rounds. T F
Your group does not change throughout the experiment. T F
Your costs or values will not change between rounds. T F
You can submit offers for both of your units at the same time. T F

2. Suppose you are a buyer, and the lists of offers are as follows. Your offer is highlighted.

Selling Offers

$4

$5

Buying Offers

$3

$1

(a) Which of the following prices can you submit as a new offer? Circle your answer.

A. 2 B. 0.5 C. 3.7 D. 1.5

(b) Which of the following prices can you submit to accept the selling offer of $4? Circle

you answer.

A. 4 B. 2.5 C. 1.2 D. 3

(c) If you accept the lowest selling offer on the list, and your values for the first and second

unit are $7 and $6 respectively, what is your payoff?

Your payoff = $︸ ︷︷ ︸
Value(s)

−$︸ ︷︷ ︸
Payment

= $
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3. Suppose you are a seller, and the lists of offers are as follows. Your offer is highlighted.

Selling Offers

$4

$5

Buying Offers

$3

$1

(a) Which of the following prices can you submit as a new offer? Circle your answer.

A. 6 B. 2.1 C. 4 D. 5

(b) Which of the following prices can you submit to accept the buying offer of $3? Circle

you answer.

A. 3.5 B. 4.1 C. 5 D. 3

(c) Suppose the first and second unit you sell will cost $0.1 and $0.4 respectively, and you

accept both buying offers on the list. What is your payoff?

Your payoff = $︸ ︷︷ ︸
Revenue

−$︸ ︷︷ ︸
Cost(s)

= $
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