

METHODOLOGY FOR COLLISION RISK ASSESSMENT OF AIRCRAFT WITH

DIVERSE COLLISION AVOIDANCE CAPABILITIES

by

Seungwon Noh

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Systems Engineering and Operations Research

Committee:

_________________________________ Dr. John Shortle, Dissertation Director

_________________________________ Dr. George Donohue, Committee Member

_________________________________ Dr. Lance Sherry, Committee Member

_________________________________ Dr. Duminda Wijesekera, Committee Member

_________________________________ Dr. John Shortle, Department Chair

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date:_____________________________ Summer Semester 2020

 George Mason University

 Fairfax, VA

Methodology for Collision Risk Assessment of Aircraft with Diverse Collision

Avoidance Capabilities

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Seungwon Noh

Master of Science

George Mason University, 2013

Bachelor of Science

Korea Aerospace University, 2005

Director: John Shortle, Professor

Department of Systems Engineering and Operations Research

Summer Semester 2020

George Mason University

Fairfax, VA

ii

Copyright 2020 Seungwon Noh

All Rights Reserved

iii

DEDICATION

This is dedicated to my parents, my wife and my children.

iv

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks to my advisor, Dr. John Shortle, for

all the guidance, encouragement and persistent help he provided during my study at

George Mason University. This dissertation would not have been possible without his

support.

I would like to thank my committee members, Dr. Lance Sherry, Dr. George Donohue

and Dr. Duminda Wijesekera, for their invaluable advices and suggestions to enhance my

research and for all the support at Center for Air Transportation Systems Research.

I would like to thank all my colleagues, Zhenming, Azin, Sasha and Chaitanya, at Center

for Air Transportation Systems Research. I would also like to thank all my friends,

Jungho, James, Cheolyoung, Wook and Byunghwa at GMU and Kyeongsu, Taeho,

Hyeonmi and Woon from KAU.

Finally and most importantly, I want to thank my family for their endless and

unconditional support and encouragement during my graduate study.

v

TABLE OF CONTENTS

Page

List of Tables .. vii

List of Figures .. viii

Abstract ... x

Chapter 1: Introduction ... 1

1.1 Background ... 1

1.2 Motivation ... 2

1.3 Research Objective .. 4

1.4 Potential Applications of Research ... 6

Chapter 2 Literature Review ... 10

2.1 Collision Risk Analysis ... 10

2.1.1 Analytical Models... 11

2.1.2 Event Trees / Fault Trees .. 12

2.1.3 Dynamic Event Tree ... 14

2.1.4 Simulation-based Models ... 15

2.1.5 Summary ... 19

2.2 Tree-based Risk Models .. 21

2.2.1 Event Tree (Static / Dynamic) .. 21

2.2.2 Fault Tree (Static / Dynamic) ... 25

2.2.3 Computational Method (Phased-Mission Systems) ... 27

2.3 Future NAS ... 31

2.3.1 Concept of Operations (Automated NAS) .. 31

2.3.2 Collision Avoidance Systems (Conflict Detection and Resolution) 33

2.3.3 New Architecture for NAS (Risk-based Sector Capacity) 37

Chapter 3: Method for Collision Risk Assessment ... 40

3.1 Canonical Form of Collision-Risk Dynamic Event Tree .. 41

3.2 Solution Methods .. 45

vi

3.2.1 Solution Method 1: Conditional Dynamic Event Tree (cDET) 45

3.2.2 Solution Method 2: Binary Decision Diagram based method for Phased

Mission Systems (PMS-BDD)... 50

3.2.3 Solution Method 3: cDET with PMS-BDD (cDET-PMS) 56

3.2.4 Solution Method 4: Simulation... 60

3.3 Numerical Results for Example Problem .. 61

3.4 Summary ... 68

Chapter 4: Case Studies: Modeling Collision Risk between Various Aircraft Types 71

4.1 Case Study-1: Autonomous Flight Management (AFM) .. 72

4.1.1 Concept of AFM Operations .. 72

4.1.2 Conflict Detection and Resolution (CD&R) for UAS 73

4.1.3 Fault Trees for CD&R Systems .. 75

4.1.4 Algorithm Performance .. 81

4.1.5 Result & Sensitivity Analysis ... 85

4.1.6 Discussion on Dependency between CD&R Systems 92

4.2 Case Study-2: Advanced Airspace Concept (AAC) ... 96

4.2.1 Concept of AAC Operations... 96

4.2.2 CD&R Systems... 97

4.2.3 Result & Comparison with Case Study-1 ... 101

4.3 Case Study-3: Collision Risk Between Manned Aircraft...................................... 104

4.3.1 Concepts of NAS Operations ... 104

4.3.2 Result and Comparisons ... 109

4.4 Summary ... 113

Chapter 5: Conclusions ... 117

5.1 Summary and Results .. 117

5.2 Future Work .. 120

Appendix A: DET Framework User Guide .. 122

A.1 Inputs for DET Framework .. 122

A.2 High-level Algorithm Flow .. 127

A.3 Example Input Files.. 128

A.4 MATLAB Code .. 129

References ... 168

vii

LIST OF TABLES

Table Page

Table 1 Literature summary on collision risk analysis ... 10
Table 2 Literature summary on dynamic event tree ... 23
Table 3 Literature summary on Phased-mission systems ... 30

Table 4 Literature summary on UAS-related risk/safety analysis 36
Table 5 Example computation of cDET-PMS method ... 58
Table 6 Assumptions and limitations for each method ... 62
Table 7 Collision risk of example problem (Case 1 - without pilot execution event) 63

Table 8 Collision risk of example problem (Case 2 - with pilot execution event) 66
Table 9 Summary of the methods ... 70

Table 10 Summary of example sensor technologies for UAS .. 74
Table 11 Parameters in fault trees for CD&R systems ... 80
Table 12 Parameters of CD&R system function and pilot behavior 84

Table 13 Activation times for CD&R system on unmanned aircraft................................ 86
Table 14 Summary of case studies.. 114

viii

LIST OF FIGURES

Figure Page

Figure 1 Comparison of collision risk models .. 5
Figure 2 SRM / Safety Assurance process flow [FAA 2019] ... 8
Figure 3 Vee model of development stage [Walden 2015] .. 9
Figure 4 Comparison of collision risk models .. 20
Figure 5 Example event tree for mid-air collision in ISAM ... 22

Figure 6 Example phased-mission system (Flight) ... 28
Figure 7 DET and PMS representations for an example CD&R process 29

Figure 8 Most current system architecture of AAC [Erzberger 2012] 32
Figure 9 Airspace admittance function [Shortle 2017] ... 38

Figure 10 Example static event tree of mid-air collision .. 40
Figure 11 General framework of dynamic event tree for mid-air collision with example

conflict detection and resolution systems ... 42

Figure 12 cDET method applied to example problem .. 47
Figure 13 Examples of combining fault trees and/or success trees 49

Figure 14 Conversion of fault tree to BDD .. 52
Figure 15 PMS-BDD approach applied to example problem ... 55
Figure 16 Flow diagram of simulation for example problem ... 61

Figure 17 Comparison of collision probabilities between methods (Case 1) 65

Figure 18 Comparison of collision probabilities between methods (Case 2) 66
Figure 19 Performance comparison between methods ... 68
Figure 20 CD&R phases for the case study .. 75

Figure 21 Supporting fault tree for strategic intent-based CD&R system (manned aircraft)

... 76

Figure 22 Supporting fault tree for tactical intent-based CD&R system (manned) 78

Figure 23 Supporting fault tree for tactical state-based CD&R system (TCAS, manned) 79
Figure 24 Supporting fault tree for tactical state-based CD&R system (unmanned) 80

Figure 25 Loss of separation probabilities for different path-crossing angles.................. 82
Figure 26 Collision probabilities of case study... 87
Figure 27 Collision probabilities of case study by failure modes 88

Figure 28 Sensitivity analysis result for component failure rate 89

Figure 29 Sensitivity analysis result for onboard radar detection range 90

Figure 30 Sensitivity analysis result for trajectory prediction errors of CD&R algorithms

... 92
Figure 31 Supporting fault tree for tactical state-based CD&R system (unmanned TCAS-

like) ... 93
Figure 32 Combining two DET frameworks .. 94

Figure 33 Relative collision risk of various CD&R systems on unmanned aircraft to case

study .. 96

ix

Figure 34 Supporting fault tree for Autoresolver (AR) .. 99
Figure 35 Supporting fault tree for TSAFE (manned aircraft) 100

Figure 36 Collision probabilities of Case Study-1 & 2... 102
Figure 37 Sensitivity analysis of components (AAC) .. 103
Figure 38 Supporting fault tree for air traffic control (ATC) separation assurance 105
Figure 39 Supporting fault trees for CD&R systems of manned aircraft (manned-manned

pair, AFM) .. 107

Figure 40 Supporting fault trees for CD&R systems of manned aircraft (manned-manned

pair, AAC)... 108
Figure 41 Collision probabilities for manned-manned aircraft pair (ATC vs. AFM vs.

AAC) ... 110
Figure 42 Critical components from each concept of operations based on sensitivity

analysis .. 112
Figure 43 Comparison of collision probabilities between manned-manned and manned-

unmanned pairs (AAC) ... 113
Figure 44 Collision probabilities with redundant transponder (Case #1, left) and separate

ADS-B Out (Case #7, right).. 116
Figure A-1 Example input statement of high-level tree structure................................... 123
Figure A-2 Example input file of sub-tree structure ... 124

Figure A-3 Example input file of fault tree structure ... 125
Figure A-4 Example input of conflict information ... 126

Figure A-5 High-level algorithm flow and associated functions 127

x

ABSTRACT

METHODOLOGY FOR COLLISION RISK ASSESSMENT OF AIRCRAFT WITH

DIVERSE COLLISION AVOIDANCE CAPABILITIES

Seungwon Noh, Ph.D.

George Mason University, 2020

Dissertation Director: Dr. John Shortle

This dissertation proposes a general dynamic event tree (DET) framework and evaluation

methodology to assess collision risk for a variety of aircraft types and collision avoidance

capabilities. The proposed DET framework consists of three levels – a high-level

dynamic event tree that models multiple conflict detection and resolution (CD&R)

systems that operate in a sequence to prevent a collision, a generic sub-tree modelling

more specific sequences of events within each CD&R phase to resolve a conflict, and

fault trees which model the component-based failure logic of each CD&R system. A

solution approach is proposed combining analysis methodologies for dynamic event

trees, phased-mission systems, and binary decision diagrams. The approach captures

several different behaviors influencing collision risk such as time-varying conflict

detection rates, pilot delays, component failures, and conflict geometry. The approach

allows for ease of creating and modifying a model as well as quick evaluation.

xi

To illustrate the methodology, case studies are developed for collision risk between

various types of aircraft with different collision avoidance capabilities in a hypothetical

future airspace, e.g., Autonomous Flight Rules (AFR) and the Advanced Airspace

Concept (AAC). In addition, sensitivity analyses on the model parameters including

component failure probabilities, detection range of the sensors, and error rates of the

CD&R systems are conducted.

Case studies indicate that the reliability of aircraft transponders significantly drives

collision risk since the CD&R systems and concepts considered highly rely on the

transponders for surveillance. In addition, integrating unmanned aircraft with a limited

CD&R system into the airspace would increase collision risk significantly.

1

CHAPTER 1: INTRODUCTION

1.1 Background

Air transportation passenger demand in the U.S. is forecasted to increase by 1.9

percent annually for the next 20 years [FAA 2018]. In order to accommodate the

increasing demand and provide safer, more efficient and predictable air transportation

service, the Federal Aviation Administration (FAA) has been implementing the Next

Generation Air Transportation System (NextGen), which is the modernization of the air

transportation system introducing several new technologies through 2025 and beyond

[FAA 2018]. The system will need to accommodate a large growth in Unmanned Aircraft

Systems (UAS) as well as commercial spacecraft eager to access the National Airspace

System (NAS). Wieland [2016] estimated a demand of over 25,000 UAS flights per day

in the NAS (above 2,000 feet above ground level).

In addition to the growth in the number of flights, the diversity of aircraft types in

the NAS will also increase significantly. Various types of Unmanned Aerial Vehicles

(UAVs) have a wide range of specifications, such as dimension and weight, and

performance characteristics, such as cruise speed and maximum operating altitude that

can differ significantly from manned aircraft. They may also have different collision

avoidance technologies. Since UAVs have no pilot on board, various sensors (e.g.,

optical, thermal, or laser) have been proposed to detect and avoid nearby aircraft.

2

Furthermore, UAVs are intended to conduct completely different missions from

those of current commercial aircraft. Monitoring air quality, weather data collection, and

tactical fighting of wildfires are common examples of UAV missions. Some of the

missions require flying continuously over a certain area so that capacity of that airspace is

affected critically.

1.2 Motivation

The air transportation system currently provides an extremely safe mode of

transportation. According to Lin [2009], the actual level of safety for fatal mid-air

collision risk in 47 years (1959-2006) was 2.17 ×10−8 per flight hour. Integrated Safety

Assessment Model (ISAM) developed by FAA provides a similar rate of mid-air-

collision accidents in an order of 10-8 per flight hour (i.e., one mid-air-collision accident

in 100 million flights given an assumption of 2-hour flying time on average). Maintaining

enough separation between aircraft is the key to avoiding mid-air collisions and achieving

a high level of safety. However, it is also a constraint to increasing throughput of the

airspace. Intuitively, there is a trade-off between safety and capacity – placing more

aircraft in a given region of airspace reduces the level of safety within that region.

The capacity within a sector of the NAS is currently governed by the Monitor

Alert Parameter (MAP), which specifies a numerical trigger value for the maximum

number of aircraft that should be in a sector [FAA 2019]. The MAP value is sector-

specific, depending on factors such as the average time for aircraft to traverse the sector

and the average time required for a controller to manage each aircraft. With increasing

3

demand, the sector capacity may be a significant constraint on the capacity of the

airspace.

As the system evolves, new procedures and technologies have the potential to

increase system capacity, but also to alter the level of safety. For example, Erzberger

[2001] proposes the Advanced Airspace Concept (AAC), in which a ground-based

system automatically detects conflicts and provides automated resolutions to properly

equipped aircraft. AAC eliminates manual separation monitoring and control, which can

increase airspace capacity, but may also change the level of safety.

The introduction of UAVs can also impact the safety of the system. For example,

since there is no pilot on board, the pilot’s see and avoid procedure in 14 CFR Part 91.113

(right-of-way rules) is not applicable to UAVs, which can significantly impact the level of

safety. Naturally, such changes must be rigorously evaluated from a safety standpoint

prior to being implemented.

A number of analyses have been conducted assessing the collision risk for these

new procedures and technologies. For example, several papers have examined the

collision risk associated with AAC using a variety of different analysis methodologies,

e.g., fault trees [Andrews 2005], Monte Carlo simulation [Blum 2010], and dynamic

event trees [Shortle 2012]. The free flight concept, in which the flight crew has the

freedom to select a trajectory and the responsibility to resolve a conflict with other

aircraft, has been analyzed in Blom [2006]. Collision risk for the flow corridor concept,

which is a NextGen concept to better accommodate high levels of traffic, is considered in

Zhang [2015]. A common limitation of these papers is that they consider only current

4

commercial aircraft operating in a system similar to today’s NAS and assume that all

aircraft have the same level of conflict detection and resolution (CD&R) equipage.

Similarly, a number of analyses have been conducted to evaluate collision risk for

UAVs. These have been conducted in terms of technology, concept of operations,

conflict detection and resolution algorithms, and so forth [Kuchar 2004; Muñoz 2015;

Ferreira 2018; Jenie 2018]. Most papers focus on evaluating how successfully a UAV’s

collision avoidance technology can detect a collision with a manned aircraft and how

reliably it can perform a collision avoidance maneuver. The results of these papers are

useful for a given technology or aircraft type, but may not readily extend to other aircraft

or technologies. In particular, if there are n different aircraft types in a region of airspace,

then there must be n2 separate safety analyses to certify that each pair is able to safely

operate together.

Many of these analyses take similar approaches, but they are developed separately

in a problem-specific manner, so there is an opportunity to generalize some of the

methods under a common unified framework.

1.3 Research Objective

The objective of this research is to propose a general framework and methodology

to assess collision risk for an airspace with a variety of aircraft types and collision

avoidance capabilities. The methodology accounts for the inaccuracies of the collision

avoidance algorithms and trajectory prediction capabilities as well as discrete failures in

system elements, considering both human and hardware failures. Several case studies

involving diverse kinds of aircraft and/or future automated conflict detection and

5

resolution systems are given to illustrate the methodology. In addition, sensitivity

analysis on the model parameters for the case studies is conducted to identify parameters

that significantly impact collision risk and to provide insights into improving safety.

Collision risk between aircraft can be divided into two parts (Figure 1): 1) the risk

that two aircraft are on a collision course, 2) the risk that the collision avoidance systems

fail to resolve the conflict. The former risk mostly depends on the number of aircraft in a

region of airspace, while the latter risk depends on aircraft equipage. This research

focuses only on the second component– namely, the probability that the collision

avoidance systems fail, given that two aircraft are already on a collision path. Therefore,

a term of collision risk/probability used in this dissertation is limited to the

risk/probability that the collision avoidance systems fail, given two aircraft on a collision

course.

Figure 1 Comparison of collision risk models

Major questions that this research would answer are as follows:

Aircraft on
collision course

System fails to
resolve conflict

Collision
yes yes

Airspace density Aircraft equipage

6

▪ What existing methods can be applied for evaluating collision risk of an

airspace?

▪ Can a systematic approach be developed to evaluate collision risk for an

airspace with a variety of aircraft types and collision avoidance capabilities?

▪ How well do methods perform for estimating collision risk in terms of speed

and accuracy?

▪ What is the change in collision risk when various aircraft types (with different

collision avoidance capabilities) are allowed to operate at the same time?

Given limited general approach for evaluating collision risk between diverse

aircraft types and/or collision avoidance capabilities, the unique contributions of this

research are as follows:

▪ Proposal of a general framework using dynamic event tree (DET) structure to

model collision risk between various aircraft types and/or collision avoidance

capabilities.

▪ Suggestion and comparison of several methods that can be used to evaluate

the proposed DET framework.

▪ Development of several case studies using the framework, where collision risk

between different types of aircraft with different collision avoidance

capabilities in a hypothetical future NAS operations.

1.4 Potential Applications of Research

This research proposes a general approach to evaluate collision risk between

various types of aircraft with different collision avoidance capabilities. The primary

7

application concept of the approach is to support the Safety Management System (SMS)

of the FAA, which is a framework to identify, analyze, assess, manage, and monitor

safety risk of the NAS [FAA 2019]. The approach of this research is particularly able to

support to analyze risk of any NAS change in terms of operation, procedure, or

equipment (i.e., hardware and software) in the process of the Safety Risk Management

(SRM) and Safety Assurance of the SMS (top of Figure 2). More specifically, the method

supports to define risk by determining likelihood of potential harmful effects of a hazard

during the risk analysis process. The identified controls are used to model a risk through

the approach of the this research. For example, Air traffic controller (ATC) and Traffic

Alert and Collision Avoidance System (TCAS), which are something to prevent mid-air-

collision accident, are used as safety layers to reduce collision risk in the method.

8

Figure 2 SRM / Safety Assurance process flow [FAA 2019]

Another application concept is to use the approach of this research in the

development stage of the system life-cycle, which defines and realizes a system that

meets its stakeholder requirements through specifying, analyzing, architecting, and

designing the system [Walden 2015]. Figure 3 shows a typical Vee model illustrating

System
Description

Analysis

Problem
Resolution

Information
Management

Assessment

Describe
System

Identify
Hazards

Analyze
Risk

Assess
Risk

Treat
Risk

System
Operation

Data
Acquisition

Analysis

Implement
Safety

Requirements

SRM Safety Assurance

Meeting
Operational/Safety

Performance
Targets?

YesNo

Method fits

Analyze Risk

Identify Control

- Anything reducing hazard’s
cause/effect

- e.g., policies, procedures,
hardware, software

Determine Hazard Effect

- Expected harmful
outcomes of hazard

- Multiple effects possible
for single hazard

Define Risk

- Determine severity and
likelihood of potential
effects of hazard

Method supports to determine likelihood of risk

9

System Engineering (SE) activities during the development stage and where the method

of this research fits. System developers can use the approach to design a system, e.g., a

collision avoidance system, an aircraft, and even the NAS architecture, and to specify

sub-systems and system elements with given system safety requirements (left side of the

Vee model in Figure 3). The developer would have a benefit to quickly check if an

alternative of the system design would be met a set of requirements for safety before

realization of the system design alternatives. Fidelity is not as good as more specific

models, but this method allows the analyst to narrow the decision space and to identify

candidate designs for more detailed analysis.

Figure 3 Vee model of development stage [Walden 2015]

Method fits

10

CHAPTER 2 LITERATURE REVIEW

This chapter reviews literature related to evaluating mid-air collision risk in air

transportation systems. Section 2.1 discusses various collision risk models in the

literature. Section 2.2 discusses tree-based methods as a risk assessment model and its

solution methodology. Section 2.3 describes future concepts of operations for the

National Airspace System (NAS).

2.1 Collision Risk Analysis

Much research has been conducted to measure collision risk in the NAS. Table 1

shows a summary of example studies in which collision risk is evaluated for a specific

concept of operation and/or region using a given methodology. The list is not exhaustive

but meant to show some illustrative types of methods.

Table 1 Literature summary on collision risk analysis

Category Paper Collision risk model Context

Analytical

Models

Reich (1966) Reich model North Atlantic

Endoh (1982) Gas model
Random flights flying in

a straight line

Event tree /

Fault tree

Borener (2012) Event tree / Fault tree NAS

Andrews (2005) Fault tree Advanced Airspace

Concept (AAC)
Dynamic event

tree (DET)

Shortle (2012) DET

Zhang (2015) DET + Simulation Flow corridor concept

11

Simulation

Blum (2010)
Discrete Simulation

(Monte Carlo)
AAC

Belle (2012) Continuous Simulation

(FACET, ACES)

Chicago ARTCC

Farley (2007) Cleveland ARTCC

Blom (2003)

Hybrid Simulation

(TOPAZ)

Converging approaches

Shortle (2004) Nontowered airports

Blom (2006) Autonomous free flight

2.1.1 Analytical Models

One of the well-known analytical collision models is the Reich model [Reich

1966] which was developed to estimate collision risk for flights over the North Atlantic.

A collision might occur because of the differences between the true values and intended

values in three-dimensional speed and position (i.e., along-track, across-tack, and vertical

direction). Both the probability distributions of the error magnitudes and the probability

distributions of the rates of change of these errors are considered. The collision risk (per

time) in a given dimension is the expected rate that two aircraft are within the collision

distance in that dimension multiplied by the proportions of time that the aircraft are

within the collision distances in the other two dimensions. The overall collision risk is the

sum of the collision risk in each dimension.

Another widely known collision model is the gas model which describes the

expected collision frequency under several simplifying assumptions – for example, that

aircraft fly in a straight line with a constant speed and a uniformly distributed heading

[Endoh 1982]. In addition, the gas model assumes that an aircraft is represented by a

circular cylinder and that no collision avoidance maneuver is conducted, similar to the

12

Reich model. The gas model, which was originally developed with only two dimensions

(i.e., on a horizontal plane), estimates the expected rate of collisions using the number of

aircraft in a region, the area of the region, the expected relative velocity of a pair of

aircraft, and the size of aircraft. The gas model is useful because it is a simple equation

and it can provide some other risk metrics like losses of separation (LOS) with a simple

modification of the aircraft size (reinterpreted as conflict dimension). Endoh [1982] also

provided some extensions of the gas model including the vertical dimension and

analyzing special cases like overtaking.

Analytical models are expressed by simple and clear mathematical equations to

compute collision risk, and they can provide flexible risk measures such as loss of

separation (LOS). However, analytical models have serious weaknesses: 1) They rely on

several critical assumptions such as independent random deviations of aircraft positions

and speeds (the Reich model) and straight line trajectories with uniformly distributed

direction (the gas model), 2) they do not consider collision avoidance action by the pilots

or the controller, and 3) equipment failures are not included.

2.1.2 Event Trees / Fault Trees

Event trees and fault trees (EF/FT) are commonly used methods in reliability and

safety analysis. The methods are used in various industries such as nuclear power plants

([Vesely 1981]), air transportation, and the chemical industry ([Podofillini 2012]). ET/FT

have been successfully used not only to evaluate risk, but also to identify scenarios

representing risk and to suggest means to reduce the risk. The Integrated Safety

Assessment Model (ISAM) developed by the Federal Aviation Administration (FAA), for

13

example, uses event trees and supporting fault trees to model all possible accident and

incident scenarios for the current National Airspace System (NAS) [Borener 2012].

ISAM contains 35 event trees and hundreds of associated fault trees [Noh 2015],

including one to model mid-air collisions. The model assesses current (baseline) risk of

the NAS based on historical data. It can also estimate future risk based on proposed

operational and procedural changes to the current system with projected traffic trends.

However, it may be limited to incorporate new concepts/technologies introduced in the

future since all the elements modeled in the ISAM are based on the current NAS. In

addition, the model identifies a general sequence of events and associated causes of the

events that leads to an undesired event, but it is not considering specific time horizon of

the events that can change the consequence.

Andrews [2005] use fault trees to evaluate collision risk in a scenario where a

highly automated separation assurance system is in place in the NAS. Safety functions

designed in the Advanced Airspace Concept (AAC, [Erzberger 2001]) are assumed as the

basic architecture for the NAS. Four types of faults (nominal conditions, information

faults, control faults, and service interruptions) are identified, and a fault tree for each

type is constructed and analyzed.

While ET/FT approaches are easy to understand from their graphical

representations, they have weaknesses in treating the dimension of time, e.g., dynamic

behaviors of the system and different operator actions as response to the system in time.

In a collision scenario between aircraft, for example, timing of a conflict detected, when

pilots are requested to take collision avoidance maneuver, and timing of the conflict

14

detection system failures all affect to the collision risk, and ET/FT approaches are limited

to model these events appropriately.

2.1.3 Dynamic Event Tree

Dynamic Event Trees (DET) were proposed in order to include dynamic

responses of the system, i.e., branching probabilities that vary as a function in time. For

example, it is more difficult to correctly detect a conflict 20 minutes prior to a loss of

separation compared to 3 minutes ahead. The conflict-detection probability is not a static

number. Dynamic event trees extend standard event trees by including the time

dimension to deal with dynamic occurrences of events in time without losing the

capability of analytical evaluation.

Shortle [2012] use a dynamic event tree combined with reliability block diagrams

to evaluate mid-air collision risk in the NAS under AAC operation. In this analysis,

reliability block diagrams are first evaluated to determine whether various subsystems of

AAC are functional or failed based on combinations of the component states. Then,

several DETs are defined based on various combination of available functions. The

generated DETs are evaluated to determine the conditional probability that a collision

occurs. The collision probability is then computed by the weighted sum of the conditional

probabilities with functional availabilities as weight, which are obtained by evaluating

reliability block diagrams.

Zhang [2015] use a DET with Monte Carlo simulation to estimate the collision

risk for a flow corridor concept with dedicated flight paths across the U.S. First, a Monte-

Carlo simulation models aircraft movements in the flow corridors (e.g., passing,

15

overtaking, corridor lane changes) and estimates frequencies of potential mid-air

collisions (i.e., conditions in which aircraft would collide in the absence of any conflict

avoidance maneuver). DETs with reliability block diagrams are used to evaluate the

performance of the onboard conflict detection and resolution functions to prevent a

collision under the Autonomous Flight Management concept (AFM, [Wing 2011]), which

is one of the automated separation assurance concepts for the future NAS.

One critical assumption of the DET method is that all components supporting a

system fail only at the beginning of the time horizon of the analysis. In other words, the

component failures are decoupled from the analysis of the dynamic event trees. Another

drawback is that all combinations of component states need to be evaluated, which can be

computationally expensive. Finally, the methods given in these papers are each

developed in a somewhat ad-hoc manner for the specific problem being addressed and

there is no formal description of an overarching framework for the methodology.

2.1.4 Simulation-based Models

The simulation-based methodology is one of the most commonly used approaches

to assess collision risk. Simulation-based models can be divided into three types –

discrete-time, continuous-time, and hybrid models. Discrete-time Monte Carlo (MC)

simulation is often used to evaluate collision risk in the NAS where new procedures

and/or technologies are implemented. Blum [2010], for example, used MC simulation to

see what happens to two aircraft that are on a collision course under the Advanced

Airspace Concept (AAC) environment. In each replication, the simulation first

determines the failure state of each AAC component. From this, the failure states of AAC

16

subsystems are determined through fault-tree logic. Then, the simulation is run until the

AAC system detects and resolves a conflict within a specified time (e.g., 8 minutes) and

records whether or not two aircraft experience a near mid-air collision (NMAC) as well

as the time when the AAC system resolves the conflict. The failure probability of AAC

(i.e., the probability that two aircraft on a collision course eventually collide) multiplied

by the rate that aircraft would be on a collision course in the absence of air traffic control

(obtained from a gas-law model) provides the estimated rate of mid-air collisions in en

route airspace.

The continuous simulation approach has been used to provide a base of collision

risk analysis for the NAS. Several continuous time simulation tools have been developed

to model the current NAS as well as to evaluate future concepts of operation for the NAS.

One of the well-known simulation tools to analyze the NAS is the Future Air Traffic

Management Concepts Evaluation Tool (FACET), which is developed by NASA

[Bilimoria 2001]. FACET aims to provide a NAS-level simulation environment for

exploration, development and evaluation of advanced ATM concepts such as distributed

air traffic management and a decision support tool for controllers. FACET models four-

dimensional (4D) aircraft trajectories using either flight plans or direct (great circle)

routes considering winds. Another widely used tool for simulation and modeling the NAS

is the Airspace Concept Evaluation System (ACES) which is intended to evaluate new

system-level operational concepts of the NAS [Sweet 2002]. En route simulation with

ACES is mainly based on FACET, and ACES also provides a flexible and extensible

17

simulation framework assembling a variety of models for physical systems, human

operators, and rules and procedures.

From a collision risk analysis perspective, Belle [2012] use FACET to simulate

flights trajectories and estimate rates of four types of proximity incidents (loss of

separation (LOS), critical loss of separation (CLOS), near mid-air collision (NMAC), and

mid-air collision (MAC)) under the assumption of no conflict resolution, i.e., without air

traffic control. The resulting conflict rates, which are interpreted as the rates at which

aircraft would get within a specified proximity without ATM, are shown as a function of

flight count so that the rates can be used as the initiating event frequencies of other

methods for collision risk analysis, e.g., ET/FT, DET or discrete simulation approaches

(e.g., [Andrews 2005; Borener 2012; Shortle 2012; Blum 2010]).

Farley [2007] use a continuous simulation (i.e., ACES) more comprehensively to

evaluate performance of an automated conflict resolution algorithm in several increasing

traffic demand levels. The conflict resolution algorithm is implemented in the ACES

environment, and it provides a resolution trajectory for detected aircraft on a collision

course. Twenty-four hours of traffic are simulated to generate the number of conflicts

detected and the number of conflicts successfully resolved to evaluate the safety

performance of the conflict resolution algorithm.

The hybrid simulation methodology combines discrete failure events and

continuous systems. An example is the TOPAZ (Traffic Organization and Perturbation

AnalyZer) methodology, which was developed at the National Aerospace Laboratory

NLR [Blom 1999]. The methodology aims to provide safety feedback of developing

18

concepts of operation for air traffic management (ATM) during the design stage. First, a

qualitative safety assessment is conducted by identifying potential hazards and non-

nominal scenarios. Then a quantitative assessment estimates accident risk through

simulation of a stochastic dynamic system for the situation considered. Dynamically

Colored Petri Nets (DCPN) are used to model stochastic differential equations of the

hazardous scenarios selected on a hybrid state space (i.e., a state space where both

discrete and continuous states exist). Since accident risks in aviation are rare, for a

numerical evaluation, the methodology decomposes the problem into several conditional

problems to which an appropriate evaluation method, e.g., MC simulation, is applied.

The TOPAZ methodology has been applied in several accident risk studies, where

various ATM concepts of operations were analyzed. For example, Blom [2003] apply the

TOPAZ approach to evaluate accident risk of simultaneous instrument approaches on

converging runways at Amsterdam Airport Schiphol, Netherlands. Several operational

scenarios are identified for missed approaches based on published procedures, operation

modes and controllers’ actions. Through simulation and mathematical modeling, the most

critical scenarios are identified. Other examples where the TOPAZ methodology is

applied include Shortle [2004], in which collision risk of landing airplanes at non-

towered airports is evaluated, and Blom [2006] where the collision risk of the free flight

concept is estimated.

Each type of simulation-based approach has unique pros and cons. The discrete

simulation approach in Blum [2010] can deal with discrete component failures, but

requires a lot of computing time – about 10 billion replications are needed to achieve

19

statistically meaningful results. The continuous NAS-wide simulation methods have an

ability to accurately model the whole NAS, but require more than several hours to run a

replication for one day of flights [Farley 2007]. These NAS-wide models also do not

consider discrete component failures. Lastly, the hybrid simulation approach can model

continuous processes (e.g., flight dynamics) combined with discrete event processes (e.g.,

runway occupancy sensor failures). Simulation methods, however, generally take much

computation time to have statistically reasonable results for rare events via a direct

simulation. In order to improve efficiency of the method, the hybrid models may need

several other models such as the Reich model in Shortle [2004] since collision events are

rare.

2.1.5 Summary

Four types of collision-risk methodologies (i.e., analytical models, ET/FT, DET,

and simulation) have been described in this chapter. Each method has different features in

terms of model complexity and computation time (see Figure 4). Analytical methods are

simple and relatively easy to evaluate, but require a number of potentially unrealistic

assumptions. Simulation-based approaches can model much more detail of the real

system, but require a lot of computation time due to the rare-event nature of the problem.

For example, to evaluate an event that occurs with probability 10-9, 109 replications are

required to observe, on average, one event; many more replications are required to obtain

a reasonable confidence interval. ET/FT and DET methodologies reside between the

analytical and simulation approaches, where the DET methodology may model collision

accidents more accurately than ET/FT.

20

Figure 4 Comparison of collision risk models

A methodology to evaluate collision risk in this research should meet the

following requirements:

▪ Correcting actions by pilots, air traffic controller and/or collision avoidance

systems should be considered in the model.

▪ Discrete failures such as component failures in collision avoidance systems

and mistakes by humans should be considered in the model.

▪ Time-varying system dynamics, such as trajectory prediction errors and

encounter geometries, should be considered in the model, at least at an

approximate level.

▪ Computation effort to assess collision risk should be reasonable, e.g.,

computation shall be done in minutes.

Model Fidelity

C
o

m
p

u
ta

ti
o

n
 T

im
e

Analytical

ET/FT

DET

Simulation

21

▪ Time to develop the model should be reasonable, e.g., creating a model shall

be done in hours.

The goal is not to provide detailed system dynamics modeling, as some

simulation models do. Rather, the objective is to include a comprehensive set of

modeling elements as described previously in a manner that is relatively easy to model

and compute. Therefore, this research focuses on a DET-based framework to assess

collision risk for an airspace.

2.2 Tree-based Risk Models

A large number of systematic methods have been proposed to model and evaluate

risk in systems, and the two most commonly used techniques for system reliability and

safety analysis are event trees (ET) and fault trees (FT). Both ET and FT have a dynamic

version, i.e., dynamic event trees (DET) and dynamic fault trees (DFT), to overcome a

weakness in treating time element. The rest of this section discusses event tree analysis

including more general dynamic event tree methods that have been studied in the

literature (Section 2.2.1), static and dynamic fault trees (Section 2.2.2), and an existing

computation method that can be applied to assess a DET in the context of collision

avoidance (Section 2.2.3).

2.2.1 Event Tree (Static / Dynamic)

Because the analysis in this research focuses on event-tree-based methods, a more

detailed literature review of event trees and their extensions is provided. Event tree

analysis (ETA) is one of the most commonly used techniques for system reliability and

safety analysis. According to Siu [1994], ETA can be used to evaluate the sequences of

22

system failures that can lead to undesired consequences. Event trees start with a single

hazard or initiating event and model the sequence of events through safety layers that

mitigate risk. An event tree can result in many different outcomes, and the tree provides a

probability for each outcome. A path from the initiating event to each outcome indicates

a possible scenario in terms of the occurrence or non-occurrence of various intermediate

events. The probability of each outcome is calculated as the product of the branching

probabilities along the path leading to each outcome. In Figure 5, for example, there are

three different end events. The most severe event, a mid-air collision, occurs when air

traffic control fails to resolve the conflict and the flight crew fails to resolve the conflict.

The frequency of a mid-air collision is the product of the frequency of the initiating event

and the probabilities of the two intermediate events.

Figure 5 Example event tree for mid-air collision in ISAM

Conventional ETA, however, has a weakness in treating the dynamic responses of

the system in time. To account for this, Dynamic Event Trees (DET), which is an

extension of a static event tree adding the dimension of time, have been proposed. There

are many DET methods. First introduced in the nuclear industry, these methods deal with

Aircraft are positioned
on collision course

in flight

ATC does not resolve
the conflict

Collision in mid-airFlight crew does not
resolve the conflict

Aircraft continues
Flight

Aircraft continues
Flight

yes

no

yes yes

no

23

complex and dynamic behaviors of hardware, operators and the physics of the system in

time. Some other DET methods deal with relatively simple dynamic behaviors, such as

modeling success/failure probabilities that vary in time.

Table 2 Literature summary on dynamic event tree

Paper Method Branching System State
Generated

DET
Note

Cojazzi

(1996)
DYLAM-3

Fixed

points in

time

Hardware, operator,

and process variables

tracked and simulated

by

problem-specific

model

One big

DET

Allow several

kinds of

probabilistic

behaviors

Acosta

(1993)
DETAM

Emphasize on

operator crew

states

Devooght

(1996)

Probabilistic

dynamics
Randomly

chosen

points in

time

Vector of process

variables and

components status

Analytical

equations

Continuous

random

transition,

Analytical

solution

Hofer

(2004)
MCDET

Hardware, operator,

and process variables

Many big

DETs

Treat continuous

and discrete

random transition

Shortle

(2012)
DET+RBD Fixed

points in

time

Grouped combinations

of hardware states

treated as scenarios

Several

small

DETs

Appropriate for

high-level system

safety analysis
Zhang

(2015)
DET+RBD

Table 2 shows a summary of several studies using dynamic event trees. DYLAM

(Dynamic Logical Analytical Methodology) is one of the earliest methodologies to assess

the reliability of systems characterized by dynamic interactions and has evolved to

version 3 (DYLAM-3) [Cojazzi 1996]. DYLAM is basically a tool that is a simulation

driver able to generate branching scenarios of the system evolution at user specified time

24

intervals and to coordinate the simulation, which is a numerical model for the physical

evolution of the system, at every branch. DYLAM-3 offers a framework to take into

account six different kinds of probabilistic behaviors, 1) constant probabilities, 2)

stochastic transitions, 3) functional dependent transitions, 4) stochastic and functional

dependent transitions, 5) conditional probabilities, 6) stochastic transitions with variable

transition rates.

Acosta and Siu [1993] propose the Dynamic Event Tree Analysis Method

(DETAM), which is one of several variants of the DYLAM approach. DETAM allows a

more general treatment of the integrated response of a nuclear power plant and its

operators to an initiating event. The approach treats the time-dependent evolution of plant

hardware states, process variable values, and operator states over the course of a scenario.

DETAM especially has an emphasis on dynamic behaviors of the operator crew.

Devooght [1996] provide a mathematical formulation of the probabilistic

dynamics of the system allowing for continuous random transitions. This approach can

capture the possible dependencies among failure events due to process/component/human

interactions in a single integral equation, but the computation effort is impractically large.

Monte Carlo Dynamic Event Tree (MCDET) [Hofer 2004], a combination of Monte

Carlo simulation and dynamic event tree analysis, is one approximation method to the

analytical solution of the probabilistic dynamics. Monte Carlo simulation provides sets of

random values, like times for components to fail, then MCDET generates samples of the

dynamic event tree, and evaluates conditional probabilities and outcomes of all paths in

each tree.

25

Shortle [2012] and Zhang [2015] use a dynamic event tree to evaluate mid-air

collision risk for the Advanced Airspace Concept (AAC, [Erzberger 2004]) and for the

flow corridor concept of operation, respectively. Both papers evaluate reliability block

diagrams at first to determine whether various system functions are working or failed

based on combinations of components states. Then, they generate several DETs,

including a baseline DET and variants of the baseline DET, based on the combination of

available functions. Lastly, they evaluate the DETs to determine the conditional

probability that a collision occurs given two aircraft are on a collision course.

Researchers can use a DET to comprehensively model a system with details,

while it may require a separate system simulation model and it generates a complicated

and huge event tree which may need a lot of computation effort. Or, a DET can also be

modeled by simply incorporating time-dependent branching probabilities to take

advantages of easy implementation and solving a problem quickly, but the results may

not be as accurately detailed as one from the former.

2.2.2 Fault Tree (Static / Dynamic)

Fault trees are generally used to identify all combinations of component failures

(e.g., Conflict alert system fails) that can lead to system failures (e.g., ATC fails to

resolve the conflict) [Siu 1994]. An undesired event, e.g., system or subsystem failure, is

defined as the top event of the fault tree. The causes that can lead for the undesired event

to occur are articulated and placed under the top event of the fault tree at a certain level

with a logical relationship gate, e.g., AND gate, OR gate. A fault tree thus represents

26

logical relationships between the undesired event and the causes, i.e., the basic fault

events, graphically [Xing 2008].

Fault trees are logical models of fault combinations that could cause a mitigating

system to fail to perform. An analysis of fault trees is studying minimal cutset. A cutset is

defined as a set of basic events whose occurrence ensures that the top event occurs. A

minimal cutset is a cutset without redundancy, i.e. a cutset is said to be minimal if the set

cannot be reduced without losing its status as a cutset [Rausand 2004]. Fault trees are also

used to determine the probability of the undesired event occurrence, given estimated or

measured occurrence probability of each basic event. Cutset-based methods are

conventionally used to compute the top event probability, however, they are

computationally challenging without approximations. Another method to compute the top

event probability of a fault tree is to use Binary decision diagrams (BDDs). The BDD

method is a relatively recent method to solve a fault tree model for the system reliability

analysis [Rauzy 1993]. Introduction of BDD in the reliability analysis has improved

accuracy and efficiency in fault tree analysis [Sinnamon 1997].

Another reasonably used approach to model system reliability/risk is dynamic

fault trees (DFT), which extends static fault tree to include dynamic system behavior

[Dugan 1990]. With several dynamic gates DFT appropriately models complex behaviors

and interactions between components such as sequence dependences, spares, and priority

of events. Markov model is commonly used to solve DFTs, however Markov model has

the significant disadvantage that its size grows exponentially as the size of the system

increases. The modular approach, which is a combination of solutions from combinatorial

27

and Markov model, solves DFT more efficiently [Gulati 1997]. DFTs may be used to

model the second risk in Figure 1 that system fails to resolve a conflict, but it could be

complicated to model sequence of both failure events and success events, which occur in

mid-air collision scenario. Furthermore, Markov model used to solve a dynamic fault tree

is limited to deal with time-varying failure/success rates.

2.2.3 Computational Method (Phased-Mission Systems)

Phased-mission systems (PMSs) are systems in which multiple non-overlapping

phases of operations (or tasks) are accomplished in sequence for a successful mission

[Xing 2013]. In these systems, the system configuration, success criteria, and component

behavior may vary from phase to phase [Zang 1999]. One example of PMS is a flight of

an aircraft, which consists of taxing, take-off, cruise, approach, and landing phases. In

each phase, different reliability criteria and behaviors are required. Figure 6 shows a

simplified example in which a flight “mission” is accomplished if an aircraft successfully

performs all three phases, i.e., take-off, cruise and landing. Different combinations of

components are required in different configurations in each phase.

28

Figure 6 Example phased-mission system (Flight)

PMSs have similar operational structure with conflict detection and resolution

(CD&R) systems (Figure 7). To perform collision avoidance, several CD&R systems

usually operate in sequence to prevent a collision. For example, there is usually a

strategic CD&R system that looks several minutes ahead to identify conflicts. There is

also a tactical system that avoids imminent collisions at the last moment. These systems

may involve different sets of components, software, and system configurations. Collision

avoidance fails if every CD&R system in the sequence fails. This is analogous (but

opposite) to the structure of phased-mission systems, which are successful if every phase

of the mission is successful.

Mission Failure
(Flight)

Phase 1
(Take-off)

Phase 2
(Cruise)

Phase 3
(Landing)

A C

C

A

D B C

DB

29

Figure 7 DET and PMS representations for an example CD&R process

There are two commonly used approaches to evaluate PMSs (Table 3): State

space oriented models ([Kim 1994]) and combinatorial methods ([Zang 1999; Xing 2002;

Xing 2013]). State space oriented approaches are mainly based on Markov chains. The

methods are flexible and powerful in modeling complex dependencies in system

components. One assumption in these approaches, however, is that failure (and repair in

some research) times of components are exponentially distributed. Another drawback of

the methods is that the number of states included in the model can easily explode [Xing

2008].

Failure of Strategic
intent-based
Safety Layer

Failure of Tactical
intent-based
Safety Layer

Failure of Tactical
state-based
Safety Layer

No Accident / NMAC

M
id

-a
ir

 C
o

lli
si

o
n

yes

yes

yes

no

no

t = t + Dt

t = t + Dt

t = t + Dt

t + Dt > T1

t + Dt > T2

t + Dt > T3

no

Failure of Strategic
intent-based
Safety Layer

Component
Failure

(e.g., GPS failure)

Operational
Function Failure
(e.g., failure to
detect conflict)

Failure of Tactical
intent-based
Safety Layer

Component
Failure

(e.g., GPS failure)

Operational
Function Failure
(e.g., failure to
detect conflict)

Failure of Tactical
state-based
Safety Layer

Component
Failure

(e.g., TRN failure)

Operational
Function Failure
(e.g., failure to

resolve conflict)

Mid-air Collision

DET

PMS

30

Table 3 Literature summary on Phased-mission systems

Paper Method Components
Common Cause

Failure
Failure

Kim (1994) Markov model Repairable - Exponential

Zang (1999) PMS-BDD Non-repairable - General

Xing (2002) PMS-BDD Non-repairable Yes General

Xing (2013) PMS-BDD Non-repairable Yes General

The combinatorial methods include the mini-component technique, which was

introduced by Esary et al. [1975], to deal with the dependence across the phases using a

set of independent mini-components to replace the component in each phase. Zang et al.

[1999] proposed a binary decision diagram (BDD) based algorithm for reliability analysis

of phased-mission systems (PMS-BDD). PMS-BDD uses phase algebra to deal with the

dependence across the phases. PMS-BDD has been extended to include any

combinatorial phase requirement and to incorporate common cause failures [Xing 2002;

Xing 2013]. One limitation in the combinatorial methods is that they can only deal with

non-repairable components.

This research uses PMS-BDD method (or a combination with another method) to

evaluate a collision risk modeled in a dynamic event tree structure, since 1) non-

repairable components are assumed to support conflict detection and resolution systems;

2) PMS-BDD is an analytical approach so that computation would be fast.

31

2.3 Future NAS

The air transportation system is predicted to face significant increase in terms of

both the demand of flights and the diversity of aircraft. To accommodate the increasing

demand of various aircraft types and to provide safer air transportation service,

researchers have studied about the future NAS. This research would be more properly

applied for the future NAS environment than the present because the approach models a

collision risk between various types of aircraft with a different level of collision

avoidance capabilities, which is not available now, but expected to be placed in the

future. The future NAS has been investigated in terms of new concepts of operations for

the NAS (e.g., automated NAS, Section 2.3.1), collision avoidance systems (Section

2.3.2), and even new architecture of the NAS (Section 2.3.3).

2.3.1 Concept of Operations (Automated NAS)

Two widely studied concepts of operations for the future NAS are the Advanced

Airspace Concept (AAC, [Erzberger, 2001]) and Autonomous Flight Management (AFM,

[Wing 2011]). AAC was proposed to improve the capacity of the NAS by reducing

controller workload. To do this, AAC has a ground-based central computer that

automatically monitors aircraft separation and sends trajectories to resolve conflicts

directly to aircraft via an air-ground data link. Figure 8 shows the system architecture of

AAC. The central system on the ground has two separate CD&R systems, Autoresolver

(AR) and Tactical Separation Assured Flight Environment (TSAFE). The two systems

are designed to detect and resolve conflicts in different ranges of time, 2-20 min prior to

predicted conflicts for ATS and 0-3 min for TSAFE. While air traffic controllers are able

32

to devote more time to solving strategic control problems under AAC operation, they still

have separation assurance responsibilities for aircraft improperly equipped or facing

failure like loss of data link or on-board system failures.

Figure 8 Most current system architecture of AAC [Erzberger 2012]

AFM has been developed from the free flight concept of operation, which is

defined as the operators have the freedom to select their path and speed in real time

[RTCA 1995]. A key concept of separation assurance for free flight called “self-

separation”, which is the ability to remain in a safe distance to all other aircraft by the

pilot themselves, was enabled by emerging technologies, and it allows the responsibility

for separation to be distributed among ground and airborne elements. Wing [2011]

defines Autonomous Flight Rules (AFR) related to AFM based on the self-separation

concept. Under AFR operations, aircraft and flight crew can maintain separation from all

other aircraft, terrain, and obstacles without the ground-based air traffic management

system.

33

AFR operations are enabled by several technologies, which are emerging and/or

already in use. Automated Dependent Surveillance Broadcast (ADS-B) is the primary

resource of the position information (including altitude and velocity) of other aircraft. As

a backup system to provide surveillance information, the ground-based Traffic

information Service Broadcast (TIS-B) can be used. An Airborne Separation Assurance

System (ASAS), i.e., onboard collision detection and avoidance (CD&R) system, is also

required for an AFR flight to maintain a safe distance from the other aircraft. ASAS

includes physical components (e.g., a processor) as well as logic that performs conflict

detection, resolution, and prevention functions. In addition, a data communication link

between air and ground as well as the Traffic Alert and Collision Avoidance System

(TCAS) are required to support AFR operations.

2.3.2 Collision Avoidance Systems (Conflict Detection and Resolution)

In the current airspace system, maintaining separation between aircraft has

usually been conducted by humans, i.e., air traffic controllers, so that the capacity of the

airspace relies on the ability of humans. However, not only air traffic demand, but also

the diversity of vehicle types in the NAS, are expected to increase substantially in the

future. In order to accommodate these increases, automated air traffic control systems are

needed to help air traffic controllers to detect and resolve conflicts between aircraft.

Much research effort has been placed to develop methodologies for automatic conflict

detection and resolution (CD&R) [Kuchar 2000]. Most of the CD&R research proposes a

new method and evaluates its performance, i.e., how well the CD&R method detects and

resolves conflicts in a certain environment.

34

According to Kuchar [2000], the CD&R process begins with collecting current

state information of aircraft in the airspace through sensors such as surveillance radar. A

dynamic trajectory model calculates the states in the future to predict whether a conflict

will occur. The current and predicted states can then be combined to derive metrics, e.g.,

estimated minimum separation, to make traffic management decisions such as whether

action by controllers or pilots is needed. When action by a human is required, the conflict

resolution function determines an appropriate series of actions and informs the controller

and/or pilots.

With increasing demand of integration of UAVs into the NAS, a large number of

studies have been conducted related to collision risk of UAVs. Kuchar [2005] proposes a

safety analysis framework for UAV collision avoidance systems that may be used for

certifying such systems. The proposed methodology estimates collision avoidance system

performance through a combination of airspace encounter modeling, fast-time simulation

of the collision avoidance system for numerous encounter scenarios, and fault tree

analysis of system failure. The approach considers various encounter geometries, aircraft

dynamics, CAS logic failure, and pilot response delays through the simulation, then

component-based system failures with the simulation results are used to model a fault

tree for the overall collision risk.

Weibel [2011] presents an analytical approach to defining a well clear threshold

to evaluate self-separation performance, which is the ability to remain in a safe distance

from other aircraft. “Well clear” is framed as a relative state, defined by the time to

closest point of approach (CPA) and distance, between aircraft for which the risk of

35

collision is acceptable. Through encounter simulation conditional probabilities of

collision are shown as a function of each relative state variable, i.e., time to CPA and

distance.

Ferreira [2018] presents a risk analysis of integration of UAS (specifically,

Remotely Piloted Aircraft System, RPAS) into non-segregated airspace. Mid-air-collision

and ground collision risk caused by two new types of hazard (Command and Control link

failure and jamming attack), which are introduced due to insertion of RPAS, are

evaluated through the fault tree analysis. All the operational failure events (e.g., ATC

failure generating conflict) are modeled like a component failure in the fault tree even

though a simulation is used to compute the probability that a conflict occurs.

Unlike the researches explained above, collision risk between unmanned aircraft

is assessed using Monte Carlo simulation [Jenie 2018]. Small UAVs with an onboard

CD&R system are assumed to fly in a hypothetically dense airspace to compute Near

Mid-air-collision (NMAC) and Mid-air-collision (MAC) frequencies efficiently. Then,

the NMAC and MAC frequencies in a realistic (less dense) airspace are derived using the

gas model. Two types of CD&R procedures, uncoordinated and implicitly coordinated

(with right-of-way rule) resolution maneuver, as well as a case without CD&R systems

are analyzed. The simulation takes into account various conflict geometries, aircraft

dynamics, and CD&R algorithmic failure due to uncertainty of trajectories, while

component-based system failures and pilot (human or autonomous) delays are not

considered.

36

Table 4 summarizes literature that perform risk/safety analysis related to UAV.

Kuchar [2005] considers all factors that affect to the risk using a combination of fault tree

and simulation, while the others take into account only limited factors as applying a

single method. Conflict geometries are considered through simulation in most literature,

however, they are all aggregated to calculate a single risk. In addition, most literature

analyze a risk between a specific combination of aircraft, e.g., manned and unmanned

aircraft or unmanned and unmanned aircraft, or unspecified ([Ferreira 2018]). The

approach of this research takes into consideration all the factors but aircraft dynamics to

evaluate collision risk between any combination of aircraft.

Table 4 Literature summary on UAS-related risk/safety analysis

Paper
Collision risk

model
Context Considered Factors

Kuchar (2005)
Fault tree +

Simulation

Collision avoidance

system of UAV

(to manned aircraft)

- Conflict geometries

- Aircraft dynamics

- Algorithm failure

- Human behavior

- Component failure

Weibel (2011) Simulation
Establishing risk-based

separation standard

- Conflict geometries

- Aircraft dynamic

Ferreira (2018) Fault trees
Collision risk due to

C2 link failure / jamming
- Component failure

Jenie (2018) Simulation
UAV CD&R system

(between UAVs)

- Conflict geometries

- Aircraft dynamic

- Algorithm failure

Zhang (2018)
Gas model

(Simulation)

Collision risk of UAV

to manned aircraft

- Airspace density

- Speed of aircraft

37

2.3.3 New Architecture for NAS (Risk-based Sector Capacity)

In order to accommodate future increasing demand of both traffic and diversity of

aircraft for the NAS, a new architecture for the future NAS has recently been proposed by

Wieland [2017]. The architecture that could be a basis of autonomously controlled

airspace in the far future has been developed by a ‘clean sheet’ approach, in which the

architecture may apart from the current NAS system. One of the high level requirements

considered for the architecture is that all flights including any type of UAVs have the

same procedure for access to the NAS, i.e., “file and fly” today where a manned aircraft

files a flight plan and flies in 45 minutes. This requirement may be the most different

from the current system since all UAV flights need to go through a long Certificate of

Authorization process to access to the current NAS.

The architecture can be summarized as dynamic and risk-based sectors. The

architecture is based on dynamic sectors since the airspace is divided into sectors that are

not fixed and may divide and merge as traffic densities change throughout the day.

Traffic density, which causes the sectors divided and combined, is considered as collision

risk because as the number of aircraft in the sector increases, the number of times that a

loss of separation occurs as well as collision risk increase. Sectorization in the

architecture is based on the Required Collision Avoidance Probability (RCAP), which is

the probability that the entire collision avoidance functions including strategic through

tactical functions has failed. Whether or not an aircraft is allowed to enter a sector is

depending on the RCAP of the sector as well as the performance of collision avoidance

functions equipped by the aircraft.

38

In order to support the new architecture, Shortle [2017] provided a framework to

evaluate collision risk and thus to issue admittance based on the estimated collision risk.

Figure 9 illustrates the concept of airspace admittance function, which controls

admittance into a sector. If an aircraft wishes to enter a sector, the collision risk function

within the admittance function is evaluated including existing flights in the sector and a

new flight, and admittance is given when the resulting collision risk in the sector remains

at or less than a target level of safety (TLS). A key aspect of the proposed framework is

to consider not only the traffic density but also the collision avoidance capabilities to

compute collision risk. Therefore, frequently evaluating collision risk between various

types of aircraft (including different types of collision avoidance equipage) would be a

main function to support the architecture.

Figure 9 Airspace admittance function [Shortle 2017]

Collision risk can be decomposed into two parts, the risk that two aircraft are on a

collision course and the risk that separation assurance and collision avoidance functions

fail given two aircraft on a collision course ([Wieland 2017; Shortle 2017]). The first risk

Collision risk

function

Admit flight? (y/n)

Existing flights

in airspace

New flight that

wishes to enter

airspace

Airspace admittance function

Collision risk

for each

flight

39

depends on traffic density, while the second risk relies on the capability of collision

avoidance functions on aircraft. Shortle [2017] used an analytical method and a

simulation method, particularly the gas model and ACES simulation, to evaluate the first

risk, i.e., the probability that two aircraft are on a collision course given a traffic density.

Then the admittance function was evaluated for several cases where various

combinations of relatively different collision avoidance capabilities are assumed, i.e., the

second risk, which is the probability that collision avoidance functions fail, was not

evaluated explicitly.

40

CHAPTER 3: METHOD FOR COLLISION RISK ASSESSMENT

Static event trees model the sequences of failure events that can lead to undesired

events. Figure 10 shows a static event tree that models collision risk assuming three types

of conflict detection and resolution (CD&R) systems in operation. A mid-air collision

occurs when all three CD&R functions fail to perform, starting from an initiating event in

which two aircraft are positioned on collision course in flight. A basic assumption of

static event trees is that the event probabilities are fixed regardless of when the events

occur. In reality, the performance of each CD&R function changes in time, e.g., the

probability of successfully detecting a conflict increases as the aircraft get closer

together. The geometry of the conflict also impacts the event probabilities.

Figure 10 Example static event tree of mid-air collision

Aircraft positioned
on collision course

Strategic intent-
based CD&R

resolves conflict?

Mid-air
Collision

Near mid-air
Collision

Loss of
Separation

Tactical intent-
based CD&R

resolves conflict?

Aircraft
continues flight

Tactical state-
based CD&R

resolves conflict?

yes

no no no

yes yes

41

To account for time dependence, dynamic event trees (DETs) provide an

extension to static event trees in which the dimension of time is added to include dynamic

performance of collision avoidance systems [Shortle 2012; Zhang 2015]. This chapter

presents a general framework for modeling mid-air collision scenarios using dynamic

event trees (DET) and describes several methods that can be applied to evaluate the

framework. An example DET is used to illustrate each method.

3.1 Canonical Form of Collision-Risk Dynamic Event Tree

The general framework for a collision-risk DET consists of three levels – a high-

level dynamic event tree, a generic sub-tree, and fault trees (Figure 11). The high-level

tree (Figure 11, left) has multiple phases of conflict detection and resolution (CD&R) that

operate in sequence to prevent a collision. (The figure shows three CD&R systems,

though an arbitrary number can be modeled.) The generic sub-tree (Figure 11, middle)

provides a more detailed template for the sequence of events within each CD&R phase.

Fault trees (Figure 11, right) model logical relationships between failure of a CD&R

system and failure of physical components supporting the CD&R system. Figure 11

shows specific examples, but the structure of these fault trees can be general.

42

Figure 11 General framework of dynamic event tree for mid-air collision with example conflict detection and

resolution systems

As an illustrative example, Autonomous Flight Rules (AFR) [Wing 2011],

proposed by NASA, is a framework for maintaining safe separation without controllers.

Aircraft flying under AFR are equipped with three CD&R systems. The first system

manages conflicts in a strategic manner up to twenty minutes ahead using flight plans and

intent information. The second system manages conflicts up to three minutes ahead and

uses intent information, but also considers aircraft dynamics (e.g., turn radii) to resolve

conflicts in a more tactical manner. The final system uses current state information

(without intent, simply projecting aircraft locations forward based on their current speeds

and directions) to avoid imminent collisions.

High-level tree: The high-level event tree (Figure 11, left) captures the following

logic. The initiating event is a situation in which two aircraft are on a collision course; t is

defined as the time remaining to a collision. This value is decremented by a small amount

Component-based
system failure in next Dt?

CD&R resolves
conflict in next Dt?

t ≤ Ti

Conflict
resolved

t = t - Dt

no

no

t > Ti+1

t ≤ Ti+1

Strategic intent-based
CD&R resolves

conflict in next Dt?

yes

no

Collision

Aircraft positioned
on collision course

Tactical intent-based
CD&R resolves

conflict in next Dt?

Tactical state-based
CD&R resolves

conflict in next Dt?

t ≤ T1?

t = t - Dt

T3 < t ≤ T2?

0 < t ≤ T3?

yes

yes

t ≤ T2

t > T2

not = t - Dt

t ≤ T3

t > T3

no
t = t - Dt

t > 0

t ≤ 0 Next CD&R

Conflict
resolved

Pilot executes
resolution in next Dt?

t > Ti+1

t = t - Dt

yes

yes

yes

no

t = t - Dt

Strategic intent-
based CD&R
Unavailable

Processor DisplayTransponder

Tactical intent-
based CD&R
Unavailable

Transponder

Display Speaker

Processor

Tactical state-
based CD&R
Unavailable

Transponder
(TCAS)

Processor
(TCAS)

Display
(TCAS)

Level 1: High-level tree Level 2: Sub-tree Level 3: Fault tree

43

∆t in an iterative manner until either a collision occurs or is avoided. Each CD&R system

attempts to detect and resolve the conflict until either the conflict is resolved or t reaches

a designated time point Ti, at which point the next CD&R system takes over from the

previous one.

The following parameters are required to specify the high-level dynamic event

tree:

• Time horizon T

• Number of phases r

• Time horizon for each phase, T1, T2, …, Tr (with T > T1 > T2 > … Tr > 0)

• Time step Dt

Generic sub-tree: The generic sub-tree (Figure 11, middle) shows a template for

evaluating a sequence of events within each CD&R phase. In the example, the CD&R

function requires (a) correct functioning of the physical components, (b) successful

detection of the conflict via the conflict detection algorithm (e.g., correctly predict

trajectories under uncertainty), and (c) correct pilot execution of the resulting resolution.

The sub-tree is structured as a dynamic event tree. Some of the transition probabilities are

dynamic. For example, the probability of successfully detecting a conflict increases as the

aircraft get closer together, since there is less uncertainty in the trajectory predictions at

shorter time horizons.

The following inputs are required to specify the generic sub-trees:

• Set of state transitions (k, l) and associated time advancement for each transition

(TAkl, where TAkl = 0 if transition from state k to l occurs instantly; TAkl = 1 if

44

transition from state k to l takes a time step).

• Time-dependent conflict-detection rate (t). This function defines the

infinitesimal rate of detecting a conflict t minutes prior to a mid-air collision. In

a short time interval [t, t – Dt], the probability of detecting a conflict is

approximately (t)Dt.

• Execution rate . The average time for a pilot to execute the resolution is

exponentially distributed with mean 1 / .

Fault trees: Fault trees (Figure 11, right) model logical relationships between

physical components and the functional failures of the CD&R systems. Some

components may support multiple CD&R systems. For example, a transponder

broadcasts and receives position information of aircraft and may be used to locate aircraft

in multiple CD&R systems.

The following parameters are required to specify the fault-tree portion of the

model:

• Number of components m

• Failure rate i of component i (i = 1, 2, …, m)

• A fault tree that maps the component states to the working status of each CD&R

system. Let Xi be the status of component i where Xi = 0 if component i is failed;

Xi = 1 if component i is working. Let fj(X1, …, Xm) denote the state of CD&R

system j (0 is failed, 1 is working), where j = 1, 2, …, r.

In addition to the structure of the dynamic event tree, sub-trees, and fault trees,

several assumptions are made: All components are statistically independent of each other.

45

All components are unrepairable, so that once a component fails, it remains in a failed

state for the time horizon of the analysis.

3.2 Solution Methods

In order to solve the proposed general form of the DET, several methods from the

literature are applied. The first method was proposed in Shortle [2012]. We call this the

conditional dynamic event tree (cDET) method. The second method is based on a binary

decision diagram approach to analyze phased mission systems (PMS-BDD) that is

popular in the PMS reliability analysis [Zang 1999]. The third approach is a combination

of the first two methods. We call this method cDET-PMS. Lastly, a Monte-Carlo

simulation is applied to provide an approximation of the true solution. The methods have

different assumptions on the timing of component failures as well as the internal logic of

the sub-trees.

The model in Figure 11 is used to illustrate the algorithm of each methodology.

Three CD&R systems – strategic intent-based, tactical intent-based, and tactical state-

based – are respectively activated at times T1, T2, and T3 and operate in consecutive and

non-overlapping time periods. Each CD&R phase successfully resolves a conflict when

all three conditions are met within the given time period: ⅰ) the CD&R system is working

properly, ⅱ) the CD&R function detects and resolves the conflict, and ⅲ) the flight crew

executes the resolution in the specified time horizon.

3.2.1 Solution Method 1: Conditional Dynamic Event Tree (cDET)

The conditional DET approach is based on ideas in the literature ([Shortle 2012;

Zhang 2015]). The main assumption is that component failures occur at the start of the

46

analysis time window – i.e., T minutes prior to a potential collision. Each combination of

component states corresponds to a particular working state of each CD&R system. When

all components are working (the typical case), then all CD&R systems are working. The

accident logic is given by a baseline DET where each CD&R system, in succession,

attempts to detect and resolve the conflict until either the conflict is resolved or a

collision occurs (DET-1 in Figure 12).

When some components are failed, then one or more of the CD&R systems may

fail. A failed CD&R system no longer provides any capability to prevent a collision, so

the DET logic can be modified by skipping over that phase in the event tree. In a worst-

case scenario, when all CD&R systems are failed, there is nothing to prevent a collision,

so the initiating event (two aircraft are lined up on a collision course) results in a collision

with probability 1 (DET-8 in Figure 12).

With r CD&R phases, there are at most 2r distinct DETs (Figure 12). Each DET

provides a conditional risk – namely, the probability that a collision occurs given specific

availability states of the CD&R systems (and conditional on the initiating event that two

aircraft are lined up on a collision course). The conditional risk for each DET can be

evaluated using the methods described in Shortle [2012]. The overall collision risk is then

the weighted average of the conditional risk from each DET, where the weights are the

probabilities of being in a particular CD&R functional state.

Figure 12 shows a graphical representation of the algorithm applied to the

example in Figure 11. For the numerical results, it is assumed that time horizon T = 8 min

and i = 10-6 / min for each component.

47

Figure 12 cDET method applied to example problem

The cDET algorithm is given by the following logic:

1. Create 2r DETs, where r is the number of CD&R systems or phases. Each DET

Case
(j)

Component States
(0-failed, 1-working)

Pr{case j
occurs}

(pj)

System Availability
(0-unavailable, 1-available)

DET
(i)

Pr{DET i
occurs}

(qi)trn pro dis spk TRN PRO DIS SICDR TICDR TSCDR

1 1 1 1 1 1 1 1 0.9999 1 1 1
1 0.99995

2 1 1 1 0 1 1 1 8.00E-06 1 1 1

3 1 1 1 1 1 1 0 8.00E-06 1 1 0
2 2.40E-5

4 1 1 1 1 1 0 1 8.00E-06 1 1 0

⁞
127 0 0 0 0 0 0 1 2.62E-31 0 0 0

8 3.84E-10
128 0 0 0 0 0 0 0 2.10E-36 0 0 0

Strategic intent-based
CD&R resolves

conflict in next Dt?

yes

no

Collision

Aircraft positioned
on collision course

Tactical intent-based
CD&R resolves

conflict in next Dt?

Tactical state-based
CD&R resolves

conflict in next Dt?

t ≤ T1?

t = t - Dt

Conflict
resolved

T3 < t ≤ T2?

0 < t ≤ T3?

yes

yes

t < T2

t > T2

not = t - Dt

t ≤ T3

t > T3

no
t = t - Dt

t > 0

t ≤ 0

t = T3

Strategic intent-based
CD&R resolves

conflict in next Dt?

yes

no

Collision

Aircraft positioned
on collision course

Tactical intent-based
CD&R resolves

conflict in next Dt?

Tactical state-based
CD&R resolves

conflict in next Dt?

t ≤ T1?

t = t - Dt

Conflict
resolved

T3 < t ≤ T2?

0 < t ≤ T3?

yes

yes

t < T2

t > T2

not = t - Dt

t ≤ T3

t > T3

no
t = t - Dt

t > 0

t ≤ 0

t = 0

Strategic intent-based
CD&R resolves

conflict in next Dt?

yes

no

Collision

Aircraft positioned
on collision course

Tactical intent-based
CD&R resolves

conflict in next Dt?

Tactical state-based
CD&R resolves

conflict in next Dt?

t ≤ T1?

t = t - Dt

Conflict
resolved

T3 < t ≤ T2?

0 < t ≤ T3?

yes

yes

t < T2

t > T2

not = t - Dt

t ≤ T3

t > T3

no
t = t - Dt

t > 0

t ≤ 0

t = T2

Strategic intent-based
CD&R resolves

conflict in next Dt?

yes

no

Collision

Aircraft positioned
on collision course

Tactical intent-based
CD&R resolves

conflict in next Dt?

Tactical state-based
CD&R resolves

conflict in next Dt?

t ≤ T1?

t = t - Dt

Conflict
resolved

T3 < t ≤ T2?

0 < t ≤ T3?

yes

yes

t < T2

t > T2

not = t - Dt

t ≤ T3

t > T3

no
t = t - Dt

t > 0

t ≤ 0

DET-1 DET-2 DET-4

DET-8

DET-3

DET-5 DET-6 DET-7

Strategic intent-based
CD&R resolves

conflict in next Dt?

yes

no

Collision

Aircraft positioned
on collision course

Tactical intent-based
CD&R resolves

conflict in next Dt?

Tactical state-based
CD&R resolves

conflict in next Dt?

t ≤ T1?

t = t - Dt

Conflict
resolved

T3 < t ≤ T2?

0 < t ≤ T3?

yes

yes

t < T2

t > T2

not = t - Dt

t ≤ T3

t > T3

no
t = t - Dt

t > 0

t ≤ 0

t = T2

Strategic intent-based
CD&R resolves

conflict in next Dt?

yes

no

Collision

Aircraft positioned
on collision course

Tactical intent-based
CD&R resolves

conflict in next Dt?

Tactical state-based
CD&R resolves

conflict in next Dt?

t ≤ T1?

t = t - Dt

Conflict
resolved

T3 < t ≤ T2?

0 < t ≤ T3?

yes

yes

t < T2

t > T2

not = t - Dt

t ≤ T3

t > T3

no
t = t - Dt

t > 0

t ≤ 0

Strategic intent-based
CD&R resolves

conflict in next Dt?

yes

no

Collision

Aircraft positioned
on collision course

Tactical intent-based
CD&R resolves

conflict in next Dt?

Tactical state-based
CD&R resolves

conflict in next Dt?

t ≤ T1?

t = t - Dt

Conflict
resolved

T3 < t ≤ T2?

0 < t ≤ T3?

yes

yes

t < T2

t > T2

not = t - Dt

t ≤ T3

t > T3

no
t = t - Dt

t > 0

t ≤ 0

t = T3

Strategic intent-based
CD&R resolves

conflict in next Dt?

yes

no

Collision

Aircraft positioned
on collision course

Tactical intent-based
CD&R resolves

conflict in next Dt?

Tactical state-based
CD&R resolves

conflict in next Dt?

t ≤ T1?

t = t - Dt

Conflict
resolved

T3 < t ≤ T2?

0 < t ≤ T3?

yes

yes

t < T2

t > T2

not = t - Dt

t ≤ T3

t > T3

no
t = t - Dt

t > 0

t ≤ 0

 Pr{collision | DET i}
(oi)

48

models the sequence of events that could occur when a given combination of the

CD&R systems are available. For each combination of CD&R states (i = 1, …,

2r), calculate the conditional probability oi associated with DET i. This is the

probability a collision occurs given the specified availability of CD&R systems.

These probabilities can be computed using the method described in Shortle

[2012].

2. For each combination of CD&R states (i = 1, …, 2r), compute the probability qi of

state i as follows:

a. For each combination of component states (j = 1, 2, …, 2m), compute the

probability pj of state combination j.

b. Sum all of the component-state probabilities pj that result in CD&R state i,

via the fault-tree logic for each CD&R system.

3. The overall collision probability is the weighted sum of the conditional collision

probabilities (Σi qi * oi).

This formalizes the method used in Shortle [2012]. Note that Step 2 is a brute-

force approach to evaluate all 2m component combinations. A more efficient approach is

to use binary decision diagrams (BDD) [Rauzy 1993] to evaluate the CD&R state

probabilities qi. The BDD method groups certain combinations of component states

together, eliminating the need to enumerate every state combination [Sinnamon 1997]. A

revised approach for Step 2 is as follows:

2. For each combination of CD&R states (i = 1, …, 2r), compute the probability qi of

state i as follows:

49

a. Create a combined fault tree where the top event is state combination i of

the CD&R systems (e.g., CD&R system 1 is unavailable, system 2 is

unavailable, and system 3 is available). The combined fault tree is

composed of the individual CD&R system fault trees and/or success trees,

depending on the state of each CD&R system (see Figure 13).

b. Convert the combined fault tree to a BDD. Evaluate the BDD to obtain the

probability qi.

Figure 13 Examples of combining fault trees and/or success trees

Often, fewer than 2r DETs need to be specified, since some combinations of

function states may not be possible. For example, in Figure 11, there are eight possible

DETs, but only six are needed, since it is impossible for the strategic intent-based CD&R

(SICDR) system to be working/available while the tactical intent-based CD&R (TICDR)

system is unavailable, based on the logic of fault trees.

Strategic intent-
based CD&R

Unavailable

Processor DisplayTransponder

Tactical intent-
based CD&R

Unavailable

Transponder

Display Speaker

Processor

Tactical state-
based CD&R

Available

Transponder
(TCAS)

Processor
(TCAS)

Display
(TCAS)

DET-7

Fault tree Success tree

50

A limitation of the cDET method is that the physical component failures are

assumed to occur only at the beginning of the analysis time window. This may over-

estimate collision risk, since cases where component failures occur after the conflict is

resolved may be counted as collisions when occurring at the start of the time horizon.

3.2.2 Solution Method 2: Binary Decision Diagram based method for Phased

Mission Systems (PMS-BDD)

The proposed form of a dynamic event tree for collision avoidance has a similar

structure with a phased-mission system (PMS). In a phased-mission system, a mission is

accomplished through several phases, and the mission is successful if every phase is

successful. In the collision avoidance problem, each phase corresponds to a distinct

CD&R system that attempts to prevent a collision. The collision problem is analogous to

the PMS problem, but with a “negated” structure – namely, while a phased-mission

system is successful if every phase is successful, collision avoidance is not successful if

every CD&R phase is not successful. In either problem, each phase can be supported by a

different set of components which may have different failure rates in different phases.

Based on the structural similarity, one approach for analyzing the proposed form

of DET is to apply an existing solution method for the PMS problem. One such method is

the binary decision diagram methodology for phased-mission systems (PMS-BDD) [Zang

1999] that is applied to analyze the proposed DET framework. This section consists of

three sub-sections; Section 3.2.2.1 explains the BDD method to evaluate fault trees, and

Section 3.2.2.2 describes an extension of the BDD method for PMS, then Section 3.2.2.3

discusses application of the PMS-BDD to the DET framework.

51

3.2.2.1 Binary Decision Diagram (BDD) Method

The BDD method is a method to solve a fault tree model for system reliability

[Rauzy 1993]. The BDD method in the reliability analysis field has improved accuracy

and efficiency in fault tree analysis [Sinnamon 1997]. According to Rauzy [2008], the

BDD method changes the analyzing fault trees process significantly: 1) minimal cutsets

are not necessary to evaluate a fault tree, 2) BDD provides the exact result of the top-

event probability; but it also has a disadvantage that the size of BDD can increase

exponentially as the worst case.

A BDD is a directed acyclic graph based on Shannon’s decomposition of a

Boolean function. A BDD is composed of terminal nodes which indicate system success

(value 0) or system failure (value 1) and non-terminal nodes corresponding to basic

events of a fault tree. Each non-terminal node has two out-branches: One is called the 0-

branch representing the non-occurrence of a basic event (working state). The other is

called the 1-branch representing the occurrence of the basic event (failed state). The BDD

method converts a fault tree to a binary decision diagram encoding an if-then-else (ite)

structure [Sinnamon 1997]. ‘ite(x, f1, f2)’ means that if x is true, then consider function

f1, else consider function f2, where x is a Boolean variable. Figure 14 illustrates a

procedure to convert a fault tree to a BDD [Sinnamon 1997].

52

Figure 14 Conversion of fault tree to BDD

The first step of the conversion procedure is to assign each basic event in the fault

tree the ite structure, ite(basic event name, 1, 0), which means that if the basic event

occurs, then the system fails, else the system works. These structures are then combined

in a bottom-up manner via the following operation rules (where an OR operation is

denoted by <+> and an AND operation is denoted by <∙>):

• For event A > B let J= ite(A, S1, S2) and H= ite(B, U1, U2);

then J <op> H = ite(A, S1 <op> H, S2 <op> H)

• If A=B, i.e., let J= ite(A, S1, S2) and H= ite(A, U1, U2);

then J <op> H = ite(A, S1 <op> U1, S2 <op> U2)

• 1 <∙> H = H, 0 <∙> H = 0, 1 <+> H = 1, 0 <+> H = H

Examples of the operation rules applied in Figure 14 are as follows:

• Gate1 = F1<+>F2 = ite(A, 1, 0) <+> ite(B, 1, 0) = ite(A, 1, ite(B, 1, 0))

• Gate2 = F3<+>F4 = ite(A, 1, 0) <+> ite(C, 1, 0) = ite(A, 1, ite(C, 1, 0))

F1=ite(A, 1, 0) F3=ite(A, 1, 0)

Gate1 = F1 <+> F2 Gate2 = F3 <+> F4

TOP = Gate1 <∙> Gate2

<op> : Boolean operation
<+> : ‘OR’ gate
<∙> : ‘AND’ gate System

Failure

Gate1 Gate2

A B A C

F2=ite(B, 1, 0) F4=ite(C, 1, 0) 1

1
0

0

1

1

0

0

Convert

Fault Tree BDD

A

B

C

System Failure = ite(A, 1, ite(B, ite(C, 1, 0), 0))

53

• Top Event = Gate1 <ˑ> Gate2

= ite(A, 1, ite(B, 1, 0)) <ˑ> ite(A, 1, ite(C, 1, 0))

= ite(A, 1, ite(B, ite(C, 1, 0), 0))

The final ite structure for the top event represents the BDD of the fault tree

(Figure 14, right). In a BDD, paths from the top event to a terminal node with a “1”

represent the conditions for occurrences of the top event. For example, in Figure 14, the

occurrence of event A will cause the top event to occur. In order to evaluate the

probability of the top event in a fault tree, all disjoint paths leading to a terminal node

with a “1” need to be tracked, i.e., {A}, {non A, B, C} in Figure 14. Secondly, the

probability of each disjoint path is computed by multiplication of the probabilities of the

basic events failure or success in the path. For example, the probability of the path {non

A, B, C} is multiplication of the probability of non-occurrence of event A and the

probability of event B and C. Lastly, the probability of the top event occurrence is

obtained by summing the probabilities of all disjoint paths in the BDD [Andrews 2000].

3.2.2.2 PMS-BDD Method

PMS is a system that consists of multiple phases to accomplish a mission. One

unique feature of PMS is phase dependency of components (i.e., a component failed

during a phase remains at failed state during all later phases). Zang [1999] proposed

PMS-BDD to accommodate phase dependency in BDD method using the phase algebra,

which is a set of rules combining component states (‘on’ and ‘off’) across phases. A

special BDD operation, called phase-dependent operation (PDO), specifically deals with

the phase algebra. There are two classes of PDO; 1) Forward PDO: The order of variables

54

is the same as the phase order, 2) Backward PDO: The order of variables is the reverse of

the phase order. In terms of size of the final BDD, backward PDO generates a smaller

BDD so that backward PDO is computationally more efficient [Zang 1999]. Backward

PDO is as follows:

• For phase i < j let component ‘A’ used in both phases i and j,

and let Ei= ite(Ai, G1, G2) and Ej= ite(Aj, H1, H2);

then Ei <op> Ej = ite(Aj, Ei <op> H1, G2 <op> H2)

In addition to PDO, a special evaluation rule needs to be applied for the 1-edge

linking the variables of the same components because Ai and Aj are phase-dependent.

Final equation for that is as follows (see [Zang 1999] for detailed derivation):

• Let G= ite(Aj, G1, G2) and G1= ite(Ai, H1, H2);

then Pr{G = 1} = Pr{G1 = 1} + (1-Pr{Aj = 1})·(Pr{G2 = 1}-Pr{H2 = 1})

3.2.2.3 Application of PMS-BDD to DET

The basic idea is to convert the DET model for collision avoidance to a PMS fault

tree, and then solve the PMS fault tree using the PMS-BDD method. This approach is

relatively simple to apply to solve the proposed DET framework even though the PMS-

BDD implementation itself requires several steps as explained in the two previous

sections.

The PMS-BDD algorithm in this research is given by the following logic and is

illustrated in Figure 15:

1. Create a fault tree where the top event is a collision event, below which is an

AND gate combining the failure of each CD&R phase (Figure 15).

55

2. Each CD&R phase fails if either there is a component based failure, as defined by

the supporting fault trees in the original system description, if the CD&R system

fails to detect and resolve a conflict (an algorithmic failure), or if the pilot fails to

execute the resolution in a timely manner.

3. Apply the standard PMS-BDD method to compute the overall collision

probability that all CD&R phases fail.

Figure 15 PMS-BDD approach applied to example problem

Note that this solution method introduces several structural differences in the

underlying model assumptions. First, the PMS-BDD approach relaxes the assumption

that components can only fail at the beginning of the analysis time horizon; now,

components can fail at the beginning of each CD&R phase. Second, the fault tree in

Figure 15 implicitly models the operational failures of detecting the conflict (e.g.,

“unsuccessful strategic intent-based CD&R”) and executing the resolution (“unsuccessful

pilot execution of resolution”) as independent parallel events. In reality, these two events

Strategic intent-
based CD&R fails to

resolve conflict

Component
based failure

Unsuccessful
pilot

execution of
resolution

Aircraft positioned
on collision course

Tactical intent-
based CD&R fails to

resolve conflict

Tactical state-
based CD&R fails to

resolve conflict

Collision

Unsuccessful
strategic

intent-based
CD&R

Component
based failure

Unsuccessful
pilot

execution of
resolution

Unsuccessful
tactical

intent-based
CD&R

Component
based failure

Unsuccessful
pilot

execution of
resolution

Unsuccessful
tactical

state-based
CD&R

Transponder

Display Speaker

ProcessorProcessor DisplayTransponder Transponder
(TCAS)

Processor
(TCAS)

Display
(TCAS)

56

occur in sequence – first, the CD&R system detects the conflict and provides a resolution

to the pilot, and then the pilot executes the resolution. If the CD&R system is late to

provide the resolution, there is less time for the pilot to successfully execute the

resolution. These dynamics are captured in the sub-tree model of Figure 11 and in the

other solution methods described in the research, but not by the PMS-BDD approach. A

related limitation is that while the other methods (e.g., the cDET method) can easily

generalize the dynamic-event tree logic within each sub-tree – for example, by adding

logic to incorporate a backup air-traffic controller who may override the automated

CD&R system –the ability to generalize the structure of the fault tree in Figure 15 is more

limited.

3.2.3 Solution Method 3: cDET with PMS-BDD (cDET-PMS)

The cDET-PMS approach is a combination of the two approaches, the conditional

dynamic event tree and the binary decision diagram methodology for phased-mission

systems, explained in the previous sections. The basic concept of the cDET-PMS

approach is to follow the computational logic of the cDET approach, but to use the PMS-

BDD method to relax the assumption that components only fail at the beginning of the

analysis horizon. Instead, they are assumed to fail at the beginning of each phase.

Because components may be working in one phase, but may fail in another phase, the

logic of PMS-BDD must be used.

The computation steps of the cDET-PMS method are below. The main difference

between this method and the cDET method is Step 2b, where the BDD approach is

57

extended to PMS systems. The PMS-BDD method correctly accounts for failures of

components that may occur in different phases of the analysis period.

1. [Same as cDET method] Create 2r DETs, where r is the number of CD&R

systems or phases. Calculate the conditional probability oi associated with DET i,

i = 1, …, 2r.

2. For each combination of CD&R states (i = 1, …, 2r), compute the probability qi of

state i as follows:

a. [Same as cDET method] Create a combined fault tree where the top event

is state combination i of the CD&R systems.

b. Convert the combined fault tree to a PMS-BDD. Evaluate the PMS-BDD

to obtain the probability qi. The PMS-BDD method accounts for the phase

dependency of components (i.e., a component that fails during one phase

remains in a failed state during all later phases). The PMS-BDD method

considers which phase a component accommodates phase dependency

using the phase algebra, which is a set of rules combining component

states (‘failed’ and ‘working’) across phases. By the PMS-BDD, the

assumption on the timing of component failures is relaxed to that

components can fail at the beginning of each phase in the cDET-PMS

method compared to that components assume to fail at the beginning of

the analysis in the cDET approach.

3. [Same as cDET method] The overall collision probability is the weighted sum of

the conditional collision probabilities (Σi qi * oi).

58

Table 5 shows the computation steps of the cDET-PMS method as applied to the

example problem. (Numerical values for the model parameters are given in the next

section.) The example has three CD&R systems, so 8 (= 23) DETs are constructed (see

top of Figure 12). For example, DET-8 corresponds to the case in which no CD&R

systems are available. From Table 5, the associated conditional collision probability is 1.

That is, if two aircraft are on a collision course, there is nothing to prevent the collision,

so the conditional collision probability is 1. In contrast, DET-1 corresponds to the case in

which all CD&R systems are available. This case has the lowest conditional collision

probability, 2.46E-6. A collision in this case would be due to failures of the CD&R

systems to detect the conflicts (e.g., due to noise in the trajectory predictions) and/or

failures of the pilot to respond to resolutions.

Table 5 Example computation of cDET-PMS method

DET

(i)

System Availability

(0-unavailable, 1-available)

①

Conditional

Collision

Probability

(oi)

②

Weight

Probability

(qi)

③
Collision

Probability of

DET

(qi * oi)
SICDR TICDR TSCDR

1 1 1 1 2.46E-06 9.93E-01 2.45E-06

2 1 1 0 1.76E-04 3.99E-03 7.01E-07

3 1 0 1 1.06E-04 6.64E-04 7.02E-08

4 1 0 0 7.55E-03 2.67E-06 2.01E-08

5 0 1 1 3.26E-04 8.28E-04 2.70E-07

6 0 1 0 2.33E-02 3.33E-06 7.75E-08

7 0 0 1 1.40E-02 1.66E-03 2.33E-05

8 0 0 0 1.00 6.68E-06 6.68E-06

Overall Collision Probability (Σi qi * oi) 3.357E-05

59

The weight probabilities (column ②) are computed by applying the PMS-BDD

method to the fault trees associated with each DET. DET-1 has the highest weight

probability (as expected), since the CD&R systems are available most of the time due to

the high reliability of the system components. DET-8 usually has the lowest weight

probability, corresponding to the most component failures. In the example problem,

however, some other DETs have a lower weight probability than DET-8, because all

components supporting SICDR system are also supporting TICDR system with an

additional component so that it is less frequent that SICDR system fails while TICDR

system is available (DET-6) than both SICDR and TICDR system fail (DET-8). The

weight probabilities can sometimes be zero in situations where particular combinations of

available CD&R systems are not possible. This can occur because components are non-

repairable. As an example, assume that a CD&R system operates different conflict

detection algorithms in a different time horizon, then the later phase always fails if the

system is unavailable at the former phase.

The overall collision probability is the weighted sum of the conditional collision

probabilities weighted by the probabilities of each DET being used. The last column of

Table 5 is computed by multiplying conditional collision probability and weight

probability for each DET, which shows contribution of each DET to the overall collision

probability. DET-7, where SICDR and TICDR systems are unavailable while tactical

state-based CD&R (TSCDR) system is working, contributes the most on collision risk,

which takes more than 65% of the risk. The most contributing DET on collision risk

varies depending on the assumed numerical values for model parameters.

60

3.2.4 Solution Method 4: Simulation

The last method to compute the collision probability through the proposed DET

framework is a simulation, which can be used to approximate the true result. The cases

where a collision occurs through the DET framework of the example problem are

described verbally as follows:

• A collision occurs if all CD&R phases fail.

• Each CD&R phase fails if each CD&R system is not available due to

component-based failure before the CD&R system function successfully detects

and resolves a conflict or two events, that each CD&R system function detects

and resolves a conflict and that pilots correctly execute a resolution, are not

completed in a given time period.

From the verbal descriptions, an analytical equation for collision scenarios of the

DET framework may be derived for a simple case, where, for example, a single

component supports all CD&R systems. However, it is almost impossible to see the

simple case in safety systems. Simulation is one way to approximate the result in the case

that the analytical equation is extremely difficult to derive. Figure 16 shows a flow

diagram of simulation to compute the collision probability through the DET framework.

The simulation follows the verbal descriptions for the collision scenarios. The simulation

generates a set of all random times such as the time for each CD&R system to detect a

conflict and provide a resolution, and the time for the pilot to correctly execute a

resolution in each CD&R phase. Next, it determines whether or not a CD&R phase fails

to avoid a conflict due to either operation function failure or component-based failure via

61

evaluating fault trees until all CD&R phases fail to resolve a conflict. The method

provides an approximation of the true result, and may need a lot of computation time to

achieve a certain level of confidence interval for rare events like mid-air collision. (Note:

Simulation is conducted with 30 runs, and each of which has from millions to billions

replications, depending on the assumed numerical values for model parameters, to

achieve a small coefficient of variation such as 0.05.)

Figure 16 Flow diagram of simulation for example problem

3.3 Numerical Results for Example Problem

This section provides numerical results of the example problem (Figure 11) and

comparison between the results from different methodologies, cDET, PMS-BDD, cDET-

PMS, and simulation. The different methods use different assumptions, which are

Generate random times
(CFTj, CDRi, Pi)

CFTj - time for each component to fail

CDRi - time for CD&R system to detect conflict and provide resolution

Pi - time for pilot to correctly execute resolution

i - phases (1, 2, and 3)

CDRi + Pi > ti

Is there next
CD&R?

Evaluate fault tree
for phase i at CDRi

Is CD&R phase i
unavailable?

Conflict Resolved

yes

no

yes

no

yes

Collision
no

i = i + 1

62

summarized in Table 6. A major difference between the methods is the assumption about

when the components can fail. The cDET assumes that components can only fail at the

beginning of the analysis. Both the PMS-BDD and the cDET-PMS assume that

components may fail at the beginning of each CD&R phase, while the PMS-BDD is not

able to appropriately model a sequence of operational events within each phase (e.g., first

the system detects a conflict, then the flight crew executes a resolution). The simulation

allows components to fail at any time, thus to provide an approximation of the true result

even though it can be computationally challenging for rare events.

Table 6 Assumptions and limitations for each method

Methodology
Method specific assumptions

and limitations
Common assumptions

Conditional DET

 (Section 3.2.1)

 Components fail at the

beginning of analysis

- Components may be used either in

a single CD&R system or in

multiple CD&R systems.

 Components are unrepairable.

- Each CD&R system and pilot not

fails but succeeds at a given rate

or time-varying rate with a

probability function.

PMS-BDD

(Section 3.2.2)

 Components fail at the

beginning of each CD&R phase

- Impossible to model sequence

of events

cDET-PMS

(Section 3.2.3)

- Components fail at the

beginning of each CD&R phase

Simulation

(Section 3.2.4)

- Each component fails in a

random manner according to a

time-varying rate.

- Can be computationally

expensive (Simulation)

Various combinations of numerical values in component failure rates and rates for

each CD&R system to successfully detect and resolve a conflict are assumed to calculate

63

the collision risk from each approach. Times for each CD&R system to activate are

respectively assumed 8 min (Strategic intent-based CD&R), 3 min (Tactical intent-based

CD&R), and 1 min (Tactical state-based CD&R) prior to a conflict. One second (i.e., 1s)

is used for time step (Δt) for evaluating a dynamic event tree.

Table 7 summarizes the combinations of assumed numerical values for the

example problem and associated result collision probabilities from each method. Three

levels (high, medium and low) of numerical values for each parameter are assumed to see

how each evaluation approach estimates the resulting collision probability in a different

combination of various levels of parameters. (Note that the term of ‘collision

risk/probability’ used in the research is actually a conditional collision risk/probability,

given that two aircraft are on a collision course.)

Table 7 Collision risk of example problem (Case 1 - without pilot execution event)

Scenario

Component

failure rate

(/min)

CD&R

detection

rates

(/min)

Collision probability

cDET cDET-PMS PMS-BDD Simulation

1 1.67E-04 [2, 4, 10] 1.08E-05 6.77E-06 6.76E-06 7.23E-07

2 1.67E-04 [1, 2, 5] 3.19E-05 2.06E-05 1.94E-05 4.77E-06

3 1.67E-04 [0.5, 1, 2.5] 1.27E-03 1.18E-03 1.11E-03 1.01E-03

4 1.67E-05 [2, 4, 10] 1.21E-07 7.59E-08 7.45E-08 1.96E-08

5 1.67E-05 [0.5, 1, 2.5] 1.00E-03 9.94E-04 9.31E-04 9.22E-04

6 1.67E-03 [2, 4, 10] 1.04E-03 6.57E-04 6.57E-04 5.95E-05

7 1.67E-03 [0.5, 1, 2.5] 4.77E-03 3.57E-03 3.44E-03 2.02E-03

64

Figure 17 shows the result collision probabilities from each method by the

scenarios in Table 7. The results from the simulation approach are approximation of the

true collision risk given a combination of numerical values. Overall, the PMS-BDD

approach estimates the collision risk better than the other two methods, the cDET and the

cDET-PMS, even though the differences on the result between the three approaches are

very little, mostly in a same order of magnitude. Accuracy of the estimated risk from the

proposed methods varies by scenarios. In scenario 1, 2, 4, and 6, the evaluation methods

over-estimate the collision risk in a different order of magnitude whereas the estimates in

scenario 3, 5, and 7 are close to the true risk. A common parameter for the scenario 3, 5,

and 7 is the low level of rates for each CD&R system to successfully detect and resolve a

conflict, therefore it can be concluded that the methods estimate the collision risk better

when CD&R system algorithms more likely fail to detect and resolve a conflict (i.e., poor

algorithm performance) than when CD&R system algorithms perform detection and

resolution function very well.

65

Figure 17 Comparison of collision probabilities between methods (Case 1)

Similar to Table 7 and Figure 17, Table 8 and Figure 18 show the result collision

probabilities from each method given combinations of assumed numerical values.

Difference between Table 7 (Case 1) and 8 (Case 2) is whether or not the pilot execution

event exists in each CD&R phase. Rates for pilot to correctly execute a resolution

provided by each CD&R system are simply assumed to be consistent throughout all the

CD&R phases to only see how appropriately the proposed approaches model the event.

Figure 18 looks very similar to Figure 17, i.e., the cDET method and the cDET-

PMS approach estimate the risk better in scenario 3, 5, and 7 than in the other scenarios.

The result collision risk from the PMS-BDD approach, however, shows a different

pattern. The estimated collision risk that is lower than the true risk are observed in some

of the scenarios. This under-estimated collision probability is due to limitation of the

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00
1 2 3 4 5 6 7

C
o

ll
is

io
n

 P
ro

b
ab

ili
ty

Conditional DET cDET-PMS PMS-BDD Simulation

66

PMS-BDD approach to model a sequence of operational events within a CD&R phase

correctly. The under-estimated result than the true risk is not acceptable from safety

perspective since safety analysis must be conservative.

Table 8 Collision risk of example problem (Case 2 - with pilot execution event)

Scenario

Component

failure rate

(/min)

CD&R

detection

rates

(/min)

Pilot correct

execution

rates

(/min)

Collision probability

cDET
cDET-

PMS

PMS-

BDD

Simula-

tion

1 1.67E-04 [2, 4, 10] [10, 10, 10] 1.21E-05 7.58E-06 6.83E-06 8.01E-07

2 1.67E-04 [1, 2, 5] [10, 10, 10] 5.16E-05 3.36E-05 1.95E-05 8.70E-06

3 1.67E-04 [0.5, 1, 2.5] [10, 10, 10] 1.84E-03 1.73E-03 1.11E-03 1.54E-03

4 1.67E-05 [2, 4, 10] [10, 10, 10] 2.51E-07 1.57E-07 8.21E-08 5.35E-08

5 1.67E-05 [0.5, 1, 2.5] [10, 10, 10] 1.51E-03 1.50E-03 9.31E-04 1.42E-03

6 1.67E-03 [2, 4, 10] [10, 10, 10] 1.06E-03 6.65E-04 6.58E-04 6.23E-05

7 1.67E-03 [0.5, 1, 2.5] [10, 10, 10] 6.03E-03 4.58E-03 3.44E-03 2.73E-03

Figure 18 Comparison of collision probabilities between methods (Case 2)

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00
1 2 3 4 5 6 7

C
D

&
R

 F
ai

lu
re

 P
ro

b
ab

il
it

y

Conditional DET cDET-PMS PMS-BDD Simulation

67

Figure 19 illustrates performance of each method in different scenarios (scenario

1 and 3 in Table 8). Performances of each method are shown in two measures. The first

measure is the computation time shown on y-axis in the figure. Computation of the

methods except the simulation are quite fast (done in 1 second), and it does not depend

on the parameter values (i.e., computation times are almost same in different scenarios),

whereas the simulation takes a couple of hours (Scenario-3) to a few days (Scenario-1)

depending on the assumed numerical values on the parameters.

 The second measure of the performance is the relative risk estimate compared to

the simulation result shown on x-axis, where the simulation result always equals to one.

If a method has relative risk estimates that are greater than one, the method over-

estimates the risk, so it is erroring on the correct side of safety. In addition, the larger an

x-axis value of a method is, the more the method over-estimates, i.e., the less accurate the

estimate is. The relative risk estimates of each method are quite different in different

scenarios as well as between the methods. Relative risk estimates of all methods for

Scenario-3 are very close to one, while, for Scenario-1, the relative risk estimates are all

greater than 10 meaning that the all methods over-estimates the risk by more than a 10-

fold. The methods discussed in this research estimate the collision risk relatively well for

Scenario-3, where the CD&R algorithms likely fail to detect and resolve a conflict, i.e.,

success probabilities (rates) of the CD&R systems are small. In terms of estimation

methods, the cDET-PMS approach shows smaller relative risk estimates (i.e., estimates

the risk better) in both scenarios than the cDET method, while, as stated in Figure 18, the

PMS-BDD under-estimates the risk, which is not allowed in the safety analysis.

68

Figure 19 Performance comparison between methods

3.4 Summary

This chapter presented a generic form of dynamic event tree (DET) that consists

of three levels, a high-level dynamic event tree, a generic sub-tree, and fault trees, to

model the aircraft mid-air collision scenarios. Several approaches, which are existing

methods and a combination of them, are applied to evaluate an example problem of the

DET framework. The example problem consists of three phases of CD&R systems to

detect and resolve a conflict, each of which performs its function in a specified time

horizon. A set of components with a specific configuration supports each CD&R system

in the example problem. The problem models each CD&R phase in two cases, with one

successive event and with two successive events. The first case models an event that

Scenario-3 Scenario-1

Estimated risk HIGHER than simulation

Under-estimated

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

0 1 10 100

C
om

pu
ta

ti
on

 t
im

e
(s

ec
)

Relative risk estimate (Simulation = 1)

cDET cDET-PMS

PMS-BDD Simulation

69

CD&R systems detect and resolve a conflict while the second case additionally includes

an event that pilot correctly execute the resolution.

Each method has different assumption and limitation on the timing of component-

based system failures and modeling a sequence of events in sub-trees. Table 9

summarizes computation steps and assumptions/limitations of each method. The PMS-

BDD approach specifically has a significant limitation to model a sequence of events that

causes under-estimation of the true risk. The proposed evaluating approaches (i.e., cDET

and cDET-PMS) perform differently in various combinations of numerical values. They

estimate the collision risk very well in case that the CD&R system algorithmic failures

very likely occur in the first two conflict detection and resolution (CD&R) phases, while

they over-estimate the risk in a different order of magnitude for the other case.

The proposed DET framework and evaluating approaches have benefit of creating

or modifying a model and of evaluation of the new model. In a typical system design

phase, for example, adding a redundant component, replacing a better component, or

even a new architecture needs to be evaluated to choose the best design of a system that

meets requirements of system reliability/safety. The DET approach proposed in this

dissertation can be used to evaluate design alternatives of a system readily with a

reasonable fidelity.

70

Table 9 Summary of the methods

Method Algorithm Assumption / Limitation

cDET

ⅰ) Enumerate all 2m (m = # of

components) combinations of

component states and compute the

probability pi of each state

combination

ⅱ) Determine availabilities of CD&R

systems for each state combination

and compute the joint probability qj (j

= 1, …, 2n, n = # of CD&R systems)

for each combination of available

CD&R systems

ⅲ) Generate at most 2n DETs based on

CD&R system availabilities and

evaluate the conditional collision

probability oj given DET-j

ⅳ) Total collision risk = Σj qj * oj

- Components assume to fail at the

beginning of analysis.

- Enumeration of combinations of

components state may require a

lot of computation time.

PMS-BDD

ⅰ) Create a fault tree with the top level

(collision) by combining fault trees

for failure of each CD&R phase with

‘AND’ gate

ⅱ) Modify the supporting fault trees to

include operational failure events

ⅲ) Apply PMS-BDD to compute total

collision risk

- Components assume to fail at the

beginning of each CD&R system

operation.

- A sequence of operational

events, such as detection of a

conflict and correct execution of

a resolution by pilot, is modeled

parallelly.

 cDET-PMS

ⅰ) Generate 2n DETs based on CD&R

system availabilities and evaluate the

DETs for conditional collision

probabilities (oj) given DET-j

ⅱ) Create a fault tree for each DET

combining fault tree and/or success

tree of each CD&R system

ⅲ) Apply PMS-BDD to combined fault

trees to calculate weight probability

(qj) for each DET being used

ⅳ) Total collision risk = Σj qj * oj

- Components assume to fail at the

beginning of each CD&R system

operation.

71

CHAPTER 4: CASE STUDIES: MODELING COLLISION RISK BETWEEN

VARIOUS AIRCRAFT TYPES

The current NAS is expected to experience difficulty in accommodating

increasing aircraft demand and diversity of aircraft. In order to resolve the predicted

problems, additional automated separation assurance systems are needed, but also a new

system architecture for the NAS may be required. Two comprehensively researched

concepts of the future NAS operation are Autonomous Flight Management (AFM) [Wing

2011] and the Advanced Airspace Concept (AAC) [Erzberger 2001]. The major

difference between AFM and AAC is that AFM distributes responsibility for maintaining

safe separation to operators in the air, while AAC has a central system on the ground to

provide separation assurance. Wieland [2017] recently proposed a system architecture

where the capacity of each sector is determined by the collision risk between aircraft

within the sector.

This chapter describes case studies for collision risk between different types of

aircraft and/or collision avoidance capabilities (e.g., between a manned aircraft and an

Unmanned Aircraft System (UAS)). The case studies are developed in a future NAS

environment such as AFM and AAC using the proposed dynamic event tree (DET)

framework. In addition, sensitivity analysis on the model parameters including

component failure probabilities, maximum detection range of the sensors, and collision

geometries are conducted.

72

4.1 Case Study-1: Autonomous Flight Management (AFM)

4.1.1 Concept of AFM Operations

The AFM concept is originally from the free flight concept of operation, in which

operators are free to choose their flight trajectory in real time, which is expected to be the

most ultimate environment for the future NAS. The “self-separation”, i.e., maintaining a

safe distance to all other aircraft by the pilot themselves, is a key concept for a safe free

flight environment as well as a concept to be accomplished under AFM operation to

prevent a mid-air collision.

Based on Wing [2011], an aircraft operating in the AFM concept has three safety

layers that sequentially operate to prevent a mid-air collision. These systems are a

strategic intent-based (SI) CD&R system, a tactical intent-based (TI) system, and a

tactical state-based (TS) system. The first two safety layers (SI and TI) are implemented

via an Airborne Separation Assistance System (ASAS), which is a software automation

system onboard the aircraft that performs conflict detection, resolution, and prevention

functions. Both systems use state and intent information of other aircraft to suggest

resolutions. The final safety layer is the Traffic Alert and Collision Avoidance System

(TCAS), which uses state information of the two aircraft to avoid an imminent collision.

The three systems are assumed to operate in the following respective time intervals in this

case study: Between 8 min and 3 min prior to a conflict, between 3 min and 1 min prior

to a conflict, and within 1 min prior to a conflict. Times for each CD&R system to

activate are chosen to provide an acceptable trade-off between the benefits of alerting as

early as possible and the costs of false alarms [Erzberger 2012]. All commercial (i.e.,

73

manned) aircraft are predicted to be properly equipped to meet the requirements of AFM

flights in the case study.

4.1.2 Conflict Detection and Resolution (CD&R) for UAS

This case study considers the hypothetical introduction of unmanned aircraft

systems (UAS) into the AFM framework. In the future NAS, various types of UAS may

have different conflict detection and resolution systems onboard. Unlike manned

(commercial) aircraft, UAS may not be equipped with all three CD&R systems (i.e., SI,

TI, and TS CD&R) due to cost, weight, capacity, or power restrictions.

Table 10 provides a summary of example sensors for UAS in terms of type,

information that can be obtained, detection range, and weather conditions in which a

sensor operates [Lacher 2007; Yu 2015; Fasano 2016]. Mode A/C or Mode S

transponders, TCAS and ADS-B are cooperative sensors because they transmit their

position information either by interrogation or on their own. The other sensors are non-

cooperative sensors. An aircraft equipped only with a non-cooperative sensor can acquire

information of other nearby flights, but the other flights do not have position information

of that aircraft. Radar and LIDAR systems locate nearby aircraft by deploying energy,

e.g., emitting an electronic pulse, while electro-optical (EO) systems and acoustic

systems sense aircraft passively (e.g., by listening to sound made by aircraft). Active non-

cooperative sensors require more energy so are typically bigger and heavier. Passive non-

cooperative sensors are smaller and lighter, but they do not provide range information

directly.

74

Table 10 Summary of example sensor technologies for UAS

Sensor Type
Information

Acquired

Detection

Range

Weather

Condition

Mode A/C or S

Transponder
Cooperative

Range,

Altitude
160 km VMC / IMC

ADS-B Cooperative
Position, Altitude,

Velocity
240 km VMC / IMC

TCAS Cooperative
Range,

Altitude
160 km VMC / IMC

Radar
Non-Cooperative

(Active)

Range, Bearing

(Azimuth, Elevation)
35 km VMC / IMC

LIDAR
Non-Cooperative

(Active)
Range 3 km VMC / IMC

Electro-Optical

(EO) system

Non-Cooperative

(Passive)

Azimuth,

Elevation
20 km VMC

Acoustic

system

Non-Cooperative

(Passive)

Azimuth,

Elevation
10 km VMC

Note: VMC-Visual Meteorological Conditions, IMC-Instrument Meteorological Conditions

In the case study, the manned aircraft is assumed to be AFM-equipped with three

safety levels. But the unmanned aircraft is assumed to have only one safety layer, namely

a non-cooperative tactical state-based CD&R system, with an onboard radar to acquire

position information of other aircraft. The timings of these safety layers are illustrated in

Figure 20. The time interval of the UAS safety phase (T4) depends on the sensor range,

speed of the aircraft, and conflict geometries. The unmanned aircraft is also assumed to

have a Mode A/C transponder. This is assumed since the CD&R systems on the manned

aircraft require position information of the unmanned aircraft, which a cooperative sensor

provides either directly or through ground systems.

75

Figure 20 CD&R phases for the case study

An assumed concept of operation of the CD&R system on the unmanned aircraft

is as follows: The onboard radar provides relative position information of nearby aircraft.

An onboard CD&R processor detects potential conflicts using this information and

determines appropriate resolutions. Resolutions are transmitted to a remote pilot via a

command and control link. The pilot of the UAS is informed of suggested resolutions

aurally through a speaker and visually through a display. The pilot chooses a resolution

and gives a command to the UAS to execute the resolution to avoid the predicted conflict.

4.1.3 Fault Trees for CD&R Systems

In order for the CD&R systems to operate, several sub-systems/components must

be working. A fault tree for each CD&R system is given to show the failure logic

between components and the CD&R functionality. These fault trees are based on the

AFM concept in Wing [2010] for the manned aircraft combined with the assumed

concept of operation for the CD&R system on the unmanned aircraft. The fault trees for a

pair of manned aircraft in AFM flight would be different.

T1 0

0

Manned
aircraft

Unmanned
aircraft

Strategic
intent-based

CD&R

Tactical
intent-based

CD&R

Tactical
state-based

CD&R

Tactical state-based CD&R

T2 T3

T4

time
to conflict

time
to conflict

76

Figure 21 depicts the failure logic of the strategic intent-based (SI) system on the

manned aircraft. The SI system can fail either due to the failure of components

supporting the system or due to a surveillance failure. On the left side of the figure, the SI

system is supported by a processor that runs the conflict detection and resolution

algorithm and a display that visually provides conflict information and resolution to the

pilot. The failure considered here is a physical failure of the processor. The system can

also fail algorithmically (i.e., failure to detect a conflict due to uncertainties in

surveillance information), and this is considered later in the chapter.

Figure 21 Supporting fault tree for strategic intent-based CD&R system (manned aircraft)

On the right side of the figure, a surveillance failure occurs when the manned

aircraft (shown as AC#1) cannot locate either itself or the other aircraft (i.e., the

Strategic intent-
based CD&R
Unavailable

Strategic intent-
based CD&R
component-
based failure

Surveillance
failure

AC#1 CD&R
Processor

failure

AC#1
Display
failure

TIS-B
failure

AC#1 ADS-B In
(TCAS Processor)

failure

AC#2
Transponder

failure

Ground
Radar
failure

TIS-B
Transmitter

failure

AC#1
GPS

failure

77

unmanned aircraft shown as AC#2). The manned aircraft’s own location comes from a

Global Positioning System (GPS) that is assumed to collect position, velocity, and

heading information (from the Global Navigation Satellite System, GNSS) and altitude

information from the altimeter. It passes this information to the CD&R processor.

According to Wing [2011], Automatic Dependent Surveillance-Broadcast (ADS-

B) is the primary source of surveillance information for the manned aircraft. However,

since the unmanned aircraft is assumed not to have an ADS-B system, the Traffic

Information Service Broadcast (TIS-B) system is used to acquire the location of the

unmanned aircraft. In the AFM concept, TIS-B is a ground-based backup system that

provides surveillance information of non-ADS-B equipped aircraft. Ground radar locates

the unmanned aircraft by interrogating the transponder onboard. A transmitter sends the

surveillance information to the manned aircraft in the form of an ADS-B Out message.

The ADS-B In system on the manned aircraft receives the message and provides

surveillance information to the CD&R systems and/or flight crew. The ADS-B In

function is currently implemented in the TCAS processor on most commercial aircraft

[Richards 2010].

The tactical intent-based (TI) system begins to operate 3 minutes prior to a

potential collision. Figure 22 shows the failure logic of the TI system, which is similar to

the logic of the SI system. Failures of supporting components or a loss of location of any

aircraft can lead to failure of the TI system. The TI system uses the same source for

surveillance information as the SI system does, which is the ground-based TIS-B system.

78

A key difference is that the TI system uses two means to alert the pilot of conflict

detection and resolution – namely, a display and speaker.

Figure 22 Supporting fault tree for tactical intent-based CD&R system (manned)

The tactical state-based (TS) system is the last CD&R system for the manned

aircraft to avoid a midair collision. This system is assumed to be the Traffic Alert and

Collision Avoidance System (TCAS). According to FAA [2011], TCAS has a

requirement to provide reliable surveillance out to 14 nautical miles (nmi). In this case

study, 1 minute is chosen as the activation time of TCAS, which is enough to account for

a closing speed up to 840 knots in a head-on collision. Unlike the previous CD&R

systems, TCAS obtains surveillance information by direct interrogation of the

transponder on the other aircraft [FAA 2011]. Thus TCAS can fail if the transponder on

Tactical intent-
based CD&R
Unavailable

Tactical intent-
based CD&R
component-
based failure

Surveillance
failure

AC#1 CD&R
Processor

failure

AC#1
Alerting
failure

TIS-B
failure

AC#1 ADS-B In
(TCAS Processor)

failure

AC#2
Transponder

failure

Ground
Radar
failure

TIS-B
Transmitter

failure

AC#1
GPS

failure

AC#1
Speaker
failure

AC#1
Display
failure

79

the target aircraft fails. TCAS can also fail if the transponder on the own aircraft fails,

since the TCAS processor is connected to the Mode S transponder and is not available if

the transponder fails [FAA 2011]. In addition, the TCAS display and speaker support

TCAS to perform its function as depicted in Figure 23.

Figure 23 Supporting fault tree for tactical state-based CD&R system (TCAS, manned)

Figure 24 shows the fault tree supporting the CD&R system for the unmanned

aircraft. Similar to the CD&R systems for the manned aircraft, the CD&R system for the

unmanned aircraft is assumed to be configured with a processor, means of alerting (visual

and aural), and sensors that provide state information of the other aircraft. An additional

component is a command and control link through which the remote pilot receives

resolutions and can direct the aircraft.

Tactical state-based
CD&R (TCAS)
Unavailable

AC#1 TCAS
Processor

failure

AC#2
Transponder

failure

AC#1 TCAS
Alerting
failure

AC#1 TCAS
Speaker
failure

AC#1 TCAS
Display
failure

AC#1
Transponder

failure

80

Figure 24 Supporting fault tree for tactical state-based CD&R system (unmanned)

Table 11 summarizes components that support the CD&R systems for both

aircraft and their failure rates. Some of the values are assumed, and others are obtained

from the literature.

Table 11 Parameters in fault trees for CD&R systems

Component
Failure Rate

(/hr)
Description

CD&R

Processor

6.25E-5

[Hemm 2009]

- Running CD&R logic using information from ADS-

B In, GPS, etc.

Display
6.25E-5

[Hemm 2009]

- Providing traffic/conflict information and resolution

trajectory to flight crew

Speaker
6.25E-5

(assumed)

- Providing aural alert to draw flight crew attention to

conflicts

GPS
5.0E-5

[Hemm 2001]

- Providing position/velocity, altitude, heading, and

air-ground status information

Transponder
8.33E-5

[Hemm 2009]

- Mode C / Mode S transponder including antennas

- Providing aircraft state information as response of

interrogation

TIS-B transmitter
1.0E-4

[Hemm 2001]
- Providing traffic information from ground to air

Unmanned aircraft
state-based

CD&R Unavailable

AC#2
Processor

failure

AC#2 Onboard
Radar
failure

AC#2
Remote
Speaker
failure

AC#2
Remote
Display
failure

AC#2
Command

/Control link
failure

AC#2
Alerting
failure

81

Ground radar
2.0E-5

[Hemm 2009]

- Secondary surveillance radar

- Gathering traffic information

TCAS Processor

/ ADS-B In

6.25E-5

[Hemm 2009]

- Antennas included

- Transmitting interrogation to / receiving replies from

other aircraft

- Running TCAS logic

- Receiving ADS-B messages from other aircraft or

ground facilities

- Providing information to flight crew display and to

CD&R processor

TCAS Display
6.25E-5

[Hemm 2009]

- Providing traffic/conflict information and resolution

trajectory to flight crew

TCAS Speaker
6.25E-5

(assumed)

- Providing aural alert to draw flight crew attention to

conflicts

Onboard radar
1.0E-4

(assumed)
- Gathering traffic information

Command/

Control link

1.0E-4

(assumed)

- Providing ability to communicate between aircraft

and remote pilot

- Providing ability for remote pilot to control aircraft

4.1.4 Algorithm Performance

In order for a conflict to be resolved, three steps need to be completed: 1) an

algorithm of the CD&R system detects the conflict, 2) an algorithm of the CD&R system

provides appropriate resolutions for the pilot to avoid a conflict, and 3) the pilot correctly

executes the provided resolution.

Various studies have been conducted to develop autonomous CD&R algorithms.

This research uses an analytic conflict-detection method from Paielli [1997] which gives

the probability that a loss of separation (≤ 5 nm) occurs when the system predicts a loss

of separation given an assumption of level flights. Trajectory prediction errors are

assumed to be normally distributed with a constant root mean square (rms) for the lateral

position prediction error and a linearly growing rms in time for the longitudinal position

82

prediction error. The resulting probability for an actual loss of separation is a function of

the time prior to the predicted loss of separation. It is also a function of other parameters

such as speed of aircraft, size of the conflict zone, and the path-crossing angle. Figure 25

shows sample loss of separation probabilities for different path-crossing angles based on

an implementation of the algorithm in Paielli [1997] (using 5 nmi as a conflict radius).

Figure 25 Loss of separation probabilities for different path-crossing angles

As a technical note, values in Figure 25 need to be converted to probabilities used

in the DET model. The values in Figure 25 are cumulative probabilities, whereas the

model uses probabilities associated with detecting conflicts in the next Dt seconds (see

level-2 sub-tree in Figure 11). This can be obtained by converting the cumulative

probability to an associated hazard rate function. For example, for a 90° path-crossing

angle, at 480 seconds prior to a collision, the probability in Figure 25 is about 0.9. This is

0.80

0.85

0.90

0.95

1.00

0 60 120 180 240 300 360 420 480

Lo
ss

 o
f S

e
p

ar
at

io
n

 P
ro

b
ab

il
it

y

Time to conflict (sec)

30 deg. 60 deg. 90 deg. 135 deg. 180 deg.

83

interpreted as the cumulative probability of detecting the conflict some time prior to a

collision. The associated hazard rate is -[ln(1 – 0.9)] / 480 ≈ 0.0048 / sec, meaning there

is roughly a 0.0048 probability of detecting the conflict each second. Over 480 seconds,

the probability of detecting the conflict yields the desired value of 0.9. Over an interval of

Dt seconds, the probability of detecting the conflict is 1-exp(–0.0048Dt) which is about

0.0048Dt, assuming Dt is small.

This analysis assumes that the values in Figure 25 can be interpreted as the

probability of detecting a conflict, given that a collision will occur. The model in Paielli

[1997] gives something slightly different – the probability that a collision will occur

given a conflict is detected. By Bayes’ theorem, these are approximately the same, so

long as the probability of detecting a collision is roughly the same as the probability of a

collision (i.e., the detection algorithm is not biased high or low in terms of identifying

collisions).

In order to determine the probabilities for the pilot to correctly execute a

resolution provided by the CD&R system, results from Consiglio [2010], which assessed

the performance of commercial pilots in human-in-the-loop simulation experiments, are

used. In the literature, pilot response delays in a self-separation concept were measured

when interacting with automated separation assurance tools on board. A CD&R tool was

set to provide two different alerting levels depending on the time to a predicted conflict.

One alerting mechanism was a display with a chime sound and the other was a display

with an aural warning. Average response delays to the two different alerting levels were

32.4 and 20.6 seconds, which are assumed as the pilot response delays for the SI and TI

84

respectively. Assuming exponential distributions for the response times, these values are

converted to pilot response rates for the first two CD&R phases, similar to the previous

discussion of Figure 25. The pilot execution rate for the last CD&R phase is based on

FAA [2011], where pilots are expected to respond to a TCAS Resolution Advisory in 5

seconds.

Several assumptions for the performance of the CD&R system on the unmanned

aircraft are also made. It is assumed that the CD&R system on the unmanned aircraft

successfully detects and resolves a conflict with a probability (or rate) that is 30% that of

the manned aircraft, This is a time-varying value (e.g., see the conflict detection rate in

Table 12). The performance of the remote pilot (i.e., the random time to execute a

resolution) is assumed to be the same as for the first CD&R phase of the manned aircraft.

The activation time for the CD&R system of the unmanned aircraft is based on

the detection range of the onboard sensors, the geometry of the conflict, and the speed of

the two aircraft. Table 12 shows a summary of the parameters for algorithm performance

at time t prior to a conflict, given a 90° of path-crossing angle. (Note: In this research, it

is assumed that the CD&R systems always generates an appropriate resolution once the

conflict is detected.)

Table 12 Parameters of CD&R system function and pilot behavior

Aircraft
CD&R

Phase

Time to Conflict

(min)

Conflict Detection

Rate (/hr)

Pilot Execution

Rate (/hr)

Manned
Strategic

intent-based

8 17
111

7.5 19

85

CD&R 7 22

6.5 25

6 28

5.5 33

5 38

4.5 45

4 54

3.5 65

Tactical

intent-based

CD&R

3 80

175
2.5 100

2 130

1.5 179

Tactical

state-based

CD&R

1 276
720

0.5 560

Unmanned

Tactical

state-based

CD&R

2.5 30

111

2 39

1.5 54

1.0 83

0.5 168

4.1.5 Result & Sensitivity Analysis

This section provides numerical results and sensitivity analyses of the case study

for collision risk between a manned and remotely-piloted unmanned aircraft under an

assumption of the AFM environment. The activation time for the CD&R system on the

unmanned aircraft varies depending on speed of the aircraft and path-crossing angles

between the aircraft (Table 13). All other parameters needed for the DET framework are

explained in the previous sections. The case study assumes level flight.

86

Table 13 Activation times for CD&R system on unmanned aircraft

Angle btw flight paths 30˚ 60˚ 90˚ 135˚ 180˚

Activation time

(min to conflict)
4.25 3.25 2.60 2.12 1.98

The proposed DET framework models collision risk from the perspective of one

aircraft. But the collision avoidance maneuver can be conducted by either aircraft. Only

one aircraft needs to execute an avoidance maneuver. If both aircraft are independent in

terms of physical components supporting the CD&R systems like the case study, it is

possible to independently apply the framework to each aircraft. Then, the overall

collision probability is the product of the two collision probabilities from each aircraft

(i.e., a collision occurs if both aircraft fail to detect and avoid the other). The evaluation

steps using the cDET-PMS was described in Chapter 3.

Figure 26 shows the resulting collision probabilities as a function of the path-

crossing angle. These are conditional collision probabilities, under the assumption that

two aircraft are on a collision course in the first place. As might be expected, the collision

probability increases for larger path-crossing angles, since the closing speed increases,

thus decreasing the time available to avoid a collision (180° represents a head-on

scenario). But the collision risk is not completely monotonic. The collision risk decreases

slightly at first and then increases. This is because there is a competing effect where the

conflict detection algorithm in Paielli [1997] is more accurate for path-crossing angles

between 45° and 90° (at least for the parameters used in this example), so the collision

risk improves even though the time to avoid a collision decreases.

87

Figure 26 Collision probabilities of case study

Figure 27 shows contribution of failure modes on manned aircraft to collision risk

of the case study. ‘Algorithm/Pilot failures’ indicates contribution of cases where all

CD&R systems are available, but the algorithm fails to detect the conflict or the pilot

does not respond in time. ‘Component-based failures’ shows the contribution of cases

where all CD&R systems are unavailable due to component failures. Component-based

failures are a major cause of collision risk; however, the relative contribution decreases

for larger path-crossing angles. This is because the detection algorithm is less successful

for larger path-crossing angles, thus the contribution of algorithm/pilot failures increases.

For the unmanned aircraft, the algorithm/pilot failure is always the most contributing

mode of failure (not shown in the figure).

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

0 30 60 90 120 150 180

C
o

ll
is

io
n

 P
ro

b
ab

ili
ty

Path-crossing Anlgle (deg.)

88

Figure 27 Collision probabilities of case study by failure modes

Figure 28 shows a sensitivity analysis of the failure probabilities of the

components supporting the CD&R systems. Note that the first two elements are measured

with the scale on the top axis, while the other elements are measured with the scale on the

bottom axis. The value associated with each component is the relative change

(improvement) in collision risk given a 10% reduction in the failure probability of the

given component. For example, the transponder of the unmanned aircraft has a sensitivity

of 0.044. This means that if the failure rate of the transponder is reduced by 10%, the

collision risk would improve by 4.4%. The transponder on the unmanned aircraft is the

most significant component followed by the TCAS processor on the manned aircraft.

This is because all CD&R systems on the manned aircraft rely on the transponder to

locate the unmanned aircraft.

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

30 deg. 60 deg. 90 deg. 135 deg. 180 deg.

Algorithm/Pilot Failures Component-based failure Combined

89

Figure 28 Sensitivity analysis result for component failure rate

Figure 29 presents a sensitivity analysis of the onboard radar detection range.

Obviously, a longer detection range provides a better (i.e., reduced) collision risk. The

values of sensitivity are the relative decrease in collision risk given a 10% increase of the

onboard radar detection range on the unmanned aircraft. A sensitivity value of 0.09, for

example, means that the collision risk is decreased by 9% in response to a 10% increase

of the detection range. The improvement in collision risk varies with the path-crossing

angle. The improvement gets larger as the path-crossing angle increases to 90°, then it

becomes less with larger path-crossing angles. The figure also shows sensitivities with a

10% decrease of the radar detection range.

It is interesting to observe that the impact of an increased detection range for a

30° path-crossing angle is smaller than that for a 90° path-crossing angle. Intuitively,

0 0.01 0.02 0.03 0.04 0.05

0.0E+00 2.0E-04 4.0E-04 6.0E-04 8.0E-04 1.0E-03

Display (unmanned acft)
Speaker (unmanned acft)

Speaker (manned acft)
TCAS Display (manned acft)

TCAS Speaker (manned acft)
Display (manned acft)

CDR Processor (unmanned acft)
Onboard Radar (unmanned)

C2 Link (unmanned)
Ground Radar

GPS (manned acft)
CDR Processor (manned acft)

TIS-B Transmitter
Transponder (manned acft)

TCAS Processor (manned acft)
Transponder (unmanned acft)

90

with a slower closure rate (i.e., at smaller path-crossing angles), an increased range

provides more time to avoid a conflict. Conversely, in a head-on case, increasing the

detection range provides only a little more time. However, the risk reduction also

depends on the conflict detection rate itself, which varies depending on the path-crossing

angle. As an example, suppose that 10 seconds and 8 seconds of additional time are

available to avoid a conflict for the 30° and 90° cases, respectively. Conflict detection

probabilities per second are assumed about 0.01 and 0.02 for the two cases, respectively.

Then, the total relative reduction in collision risk for the 30° case is about 9.6% (≈ 1 - (1 -

0.01)10), while the relative reduction for the 90° case is about 14.9% ((≈ 1 - (1 - 0.02)8)).

Even though fewer seconds are added in the 90° case, those seconds make more of a

difference. (Note that the example is made for illustrative purposes.)

Figure 29 Sensitivity analysis result for onboard radar detection range

-0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16

30

60

90

135

180

P
at

h
-c

ro
ss

in
g

an
gl

e
 (d

e
g.

)

Decrease Increase

91

Next sensitivity analysis is conducted on the performance of the CD&R

algorithms, specifically the trajectory prediction errors assumed in the algorithms (Figure

30). In this analysis, trajectory prediction errors for the unmanned aircraft are adjusted,

while the uncertainty for the manned aircraft remains fixed. Similar to the previous

sensitivity results, the value of the sensitivity is a relative change in collision risk given a

change in trajectory prediction errors (e.g., errors on both along-track and cross-track

dimensions change by 10%). A sensitivity value of 1, for example, means that the

collision risk increases by 100% (twice as many collisions), while a value of -0.4

indicates a 40% reduction in collision risk. The impact of the trajectory prediction

uncertainty is larger when two aircraft fly with a small path-crossing angle (e.g., less than

30°) or a large path-crossing angle (e.g., greater than 130°). That is, the conflict detection

algorithm is more vulnerable to the uncertainty near the two extremes (i.e., 0° and 180°).

Increasing the uncertainty on trajectory prediction affects the collision risk slightly more

than decreasing the uncertainty.

92

Figure 30 Sensitivity analysis result for trajectory prediction errors of CD&R algorithms

4.1.6 Discussion on Dependency between CD&R Systems

In the case study, the manned aircraft and the unmanned aircraft are independent

in terms of physical components supporting the CD&R systems, thus an independent

framework to each aircraft is applied. In reality, there can be dependencies between the

two aircraft, since there may be common elements in the fault trees of CD&R systems on

both aircraft. As an example, suppose that the UAS also has a TCAS-like system with a

Mode S transponder (instead of a Mode A/C transponder) in addition to the onboard

radar. The TCAS-like system on the unmanned aircraft performs the same function of the

current TCAS system on the manned aircraft (i.e., direct interrogation of the transponder

on the other aircraft). Similar to the current TCAS system, the assumed TCAS-like

system for the unmanned aircraft requires working transponders on both aircraft, while

the onboard radar is available as a backup surveillance (Figure 31). The other

-1

-0.5

0

0.5

1

1.5

30 60 90 135 180

Path-crossing angle

Decrease Increase

93

components that support the CD&R system of the unmanned aircraft are the same as

illustrated in Figure 24. Dependency between the two aircraft must be considered in this

example, since the transponders on both aircraft appear in the fault trees of both aircraft

(Figures 21-23).

Figure 31 Supporting fault tree for tactical state-based CD&R system (unmanned TCAS-like)

In order to consider dependencies between CD&R systems on both aircraft, it is

necessary to combine the two DET frameworks from each aircraft’s perspective. Figure

32 illustrates the combination of two DET frameworks into one DET framework in terms

of phase-time durations. As shown in the figure, the manned aircraft has three CD&R

phases, each of which operates in [T1, T2), [T2, T3), [T3, 0] respectively, and the unmanned

aircraft has one CD&R phase that starts at time T4 prior to the predicted conflict. If T4 is

between T1 and T2 – i.e., the CD&R system of the unmanned aircraft is activated during

Unmanned aircraft
state-based

CD&R Unavailable

AC#2
Processor

failure

Surveillance
for AC#1
failure

AC#2
Remote
Speaker
failure

AC#2
Remote
Display
failure

AC#2
Command

/Control link
failure

AC#2
Alerting
failure

AC#1
Transponder

failure

AC#2
Onboard

Radar
failure

AC#2
Transponder

failure

94

the first phase for the manned aircraft – then this first phase is divided into two phases for

the joint DET framework, [T1, T4) and [T4, T2). The combined framework has four phases

in total. In the first phase, only the strategic intent-based system of the manned aircraft is

operating. In the remaining three phases, both aircraft have CD&R systems operating in

some combination. In the example, T4 is assumed to be between T1 and T2. But this is not

always the case. The number of phases, the time horizons of the phases, and the CD&R

systems that are operating in each phase depend on the activation times, the detection

range of sensors, aircraft speeds, and collision geometries. Once the two DET

frameworks are integrated, the evaluation steps of the combined DET framework are the

same as explained in Chapter 3.

Figure 32 Combining two DET frameworks

SICDR / n.a. SICDR / TSCDR TICDR / TSCDR TSCDR / TSCDR

T1 0

0

Manned
aircraft

Unmanned
aircraft

Strategic
intent-based

CD&R

Tactical
intent-based

CD&R

Tactical
state-based

CD&R

Tactical state-based CD&R

Manned
+

Unmanned

T2 T3

T4

T1 0T2 T3T4

time
to conflict

time
to conflict

time
to conflict

95

An example analysis of dependent CD&R systems is conducted for an unmanned

aircraft equipped with an onboard radar and a TCAS-like system with a Mode S

transponder (as shown in Figure 31). The TCAS-like system on the unmanned aircraft is

assumed to perform conflict detection with various levels of accuracy. Successful conflict

detection probabilities of the system are varied ranging from 30% to 80% that of the

manned aircraft. The performance level of 30% is the same level considered in the

original case study. The detection range is assumed to be 35 km, as before.

Figure 33 illustrates the relative change in collision risk for the different

combinations of sensors and conflict detection performance levels, compared to the

original case study. For example, for the case of ‘TCAS-like + Onboard rada (50%)’ at a

180° path-crossing angle, the value of 0.4 means that the collision risk is improved by

40% compared to the case study. Obviously, better conflict detection performance yields

reduced collision risk. In terms of path-crossing angle, the collision risk improves with

smaller path-crossing angles since more time is available to avoid a collision. With the

same algorithm performance level (30% scenario), the TCAS-like system can change the

collision risk by 15%. The effect is small because the components additionally required

for the TCAS-like system on the unmanned aircraft (i.e., transponders) are common

elements that already support the CD&R systems on the manned aircraft. Thus, the

improvement is not as high as might be expected, even though the unmanned aircraft has

two different sources for surveillance information in parallel.

96

Figure 33 Relative collision risk of various CD&R systems on unmanned aircraft to case study

4.2 Case Study-2: Advanced Airspace Concept (AAC)

4.2.1 Concept of AAC Operations

The Advanced Airspace Concept (AAC) was firstly proposed by Erzberger

[2001]. The AAC has evolved and has been evaluated through several researches in terms

of system architecture, algorithm, and safety [Erzberger 2004; Andrews 2005; Blum

2010; Erzberger 2012]. The AAC is a ground-based centralized concept, in which an

automated system detects potential conflicts between aircraft and provides resolutions to

the aircraft via air-ground data link. The automated separation assurance system replaces

many of the roles of air traffic controllers in the current NAS, while controllers remain in

the system as a backup and monitoring purpose.

According to Erzberger [2001, 2004, 2012], the ground-based separation

assurance system consists of two independent sub-systems operating conflict detection

and resolution autonomously, the Autoresolver (AR) and the Tactical Separation Assured

0.00 0.20 0.40 0.60 0.80 1.00

30

60

90

135

180
P

at
h

-c
ro

ss
in

g
an

gl
e

 (d
e

g.
)

TCAS-like + Onboard rada (30%) TCAS-like + Onboard rada (50%)
TCAS-like + Onboard rada (80%)

97

Flight Environment (TSAFE). The AR is designed to detect and resolve a conflict

predicted to occur approximately 20 to 2 minutes prior to a potential conflict, while the

TSAFE provides tactical conflict detection and resolution within 3 minutes to an

expected conflict. In addition, similar to AFM operations, the TCAS is assumed to be the

last CD&R system that provides separation assurance within 1 minute to a predicted

conflict. The central system of AAC on the ground collects surveillance information

(position and speed) of all aircraft in a particular region of airspace. The system

automatically detects conflicts, generate conflict free trajectories, and upload the

trajectories directly into onboard systems of properly equipped aircraft. The voice

communication link is still used for air traffic controllers to provide separation to

unequipped aircraft or to equipped aircraft as a backup.

Note: Time horizons of each CD&R system for the AAC are overlapped slightly,

so an assumption that the latest CD&R system has a priority to the previous one is made,

e.g., the TSAFE would take over the AR at 3 min prior to a conflict if the AR fails to

resolve the conflict until then. In addition, the AR is assumed to activate at 8 min prior to

a conflict since 8 min provides an acceptable trade-off between the advantage of early

alerting and the disadvantage of false alarms [Erzberger 2012].

4.2.2 CD&R Systems

Unmanned aircraft systems (UAS). UAS assume to be introduced into the future

NAS. As discussed in Section 4.1, two different types of conflict avoidance capabilities,

Mode A/C transponder and onboard radar and TCAS-like system and onboard radar, are

considered for the CD&R system of the unmanned aircraft. All the assumed concept of

98

operations and failure relationships between supporting components and the system are

hold as described in Section 4.1.2. One additional assumption made is that UAS is not

controlled by AAC nor human air traffic controller, thus it flies as like the one under

AFM operation. In other words, UAS is assumed to maintain separation to other aircraft

by itself.

Fault trees for the AAC. Fault trees for the two CD&R systems of AAC concept,

AR and TSAFE, are constructed to illustrate logical relationships between supporting

components and the system function. These fault trees are based on a series of literature

([Erzberger 2004; Andrews 2005; Blum 2010]), which studied the AAC in terms of

concept of operation, design/architecture, and safety, as well as the assumed CD&R

system on the unmanned aircraft. (Note that the fault trees may be different for a pair of

aircraft with different equipage.)

Figure 34 shows the failure logic of the AR. The AR can fail either due to the

failure of components supporting the system (on the left side of the figure) or due to a

surveillance failure (on the right side of the figure). The AR is supported by a separate

processor that receives positional data for all aircraft in a given region of airspace,

predicts trajectory of aircraft, detects a predicted loss of separation (LOS), and generates

resolution of the LOS. Then, the AR sends the resolution directly to a display on aircraft

via a data link. Voice communication link between air traffic controller and pilot is

available as a backup.

99

Figure 34 Supporting fault tree for Autoresolver (AR)

A surveillance failure occurs when the AR on the ground cannot locate either

aircraft flying on a potential collision course. Location information of manned aircraft

can be obtained primarily by Automatic Dependent Surveillance-Broadcast (ADS-B),

which is equipped on most manned aircraft, as well as by a radar on the ground. GPS on

aircraft is assumed to collect its own state information, i.e., position, velocity, heading,

and altitude, and it passes this information to ADS-B Out, which is implemented on

Mode S transponder. ADS-B Out creates ADS-B messages and broadcasts, then a

receiver on the ground collects the ADS-B messages. As a backup surveillance system, a

ground radar is used to locate aircraft by interrogating the transponder onboard as it is in

the current NAS. The ground radar is the only source of locating unmanned aircraft since

UAS assumes not to be equipped with ADS-B.

Autoresolver (AR)
Unavailable

Autoresolver
component-
based failure

Surveillance
failure

AR
processor

failure

AC#1
VDL uplink

failure

AC#1
Voice comm

failureAC#1
Resolution

reader/display
failure

AC#1
Location
failure

Ground-based
surveillance

failure

ADS-B based
surveillance

failure

AC#1
Transponder

failure

Ground
Radar
failure

AC#1
GPS

failure

AC#1 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

AC#2
Location
failure

AC#2
Transponder

failure

Ground
Radar
failure

AC#1
Communication

failure

100

The TSAFE, which is also located on the ground, is to detect and resolve potential

conflicts in tactical time horizon, i.e., within 3 min prior to a predicted conflict.

Relationship between supporting components failure and failure of the TSAFE is shown

in Figure 35. Similar to the AR, failures of components supporting the TSAFE or failures

of tracking location of either aircraft on a collision course cause the TSAFE to fail. The

TSAFE relies on the same sources for location information as the AR does, which are

ADS-B and/or ground radar. The TSAFE has its own processor, which is independent to

the one used for the AR, that runs conflict detection and resolution algorithm. A main

difference from the AR is that a resolution found by TSAFE is communicated to the

aircraft by the Mode S data link using the transponder onboard.

Figure 35 Supporting fault tree for TSAFE (manned aircraft)

TSAFE
Unavailable

TSAFE
component-
based failure

Surveillance
failure

TSAFE
processor

failure

AC#1
Location
failure

Ground-based
surveillance

failure

ADS-B based
surveillance

failure

AC#1
Transponder

failure

Ground
Radar
failure

AC#1
GPS

failure

AC#1 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

AC#2
Location
failure

AC#2
Transponder

failure

Ground
Radar
failureAC#1

Transponder
failure

AC#1
Voice comm

failureAC#1
Resolution

reader/display
failure

AC#1
Communication

failure

101

The last CD&R system that assumes to activate at the last minute prior to a

potential collision is Traffic Alert and Collision Avoidance System (TCAS). Detailed

explanation for TCAS is available in Section 4.1, where operational concept,

requirements, and failure logic are discussed.

4.2.3 Result & Comparison with Case Study-1

This section presents numerical results of collision risk between a manned and

unmanned aircraft, which are equipped with a different level of collision avoidance

capabilities, in the AAC operation environment. Three CD&R systems, two (AR and

TSAFE) on the ground and the other (TCAS) onboard, are available for the manned

aircraft, while a tactical state-based CD&R system utilizing an onboard radar performs

conflict detection and resolution functions on the unmanned aircraft. The activation times

for the ground-based CD&R systems and TCAS are pre-set at 8 min, 3 min and 1 min

prior to a potential conflict respectively, while the activation time for the CD&R system

on unmanned aircraft varies (4.25 min ~ 1.98 min to a conflict as reported in Table 13)

depending on the speed of the aircraft and path-crossing angles between the aircraft.

Figure 36 shows the resulting collision probabilities of the two case studies as a

function of the path-crossing angle. As stated in the result section of Case Study-1, these

probabilities are conditional collision probabilities given that two aircraft are on a

collision course. The same pattern of the collision probabilities for Case Study-1 (dashed

line) is observed in the result of Case Study-2 (solid line) throughout the path-crossing

angles. This is because of the assumption that the CD&R systems under both AFM and

AAC operations use the same algorithm to detect a potential conflict. Overall, the

102

collision probabilities increase as the path-crossing angle grows since the closing speed

of aircraft increases, thus time available to avoid a collision decrease. In addition, the

resulting collision probabilities of AAC operation are higher than the probabilities of

AFM operation through all the path-crossing angles (i.e., AFM operation is better than

AAC in terms of system architecture given assumption of the same parameter values and

CD&R algorithm performance). The CD&R systems of the AAC more likely fail than the

systems of AFM operation because the AR, TSAFE and TCAS heavily rely on the

transponders on both aircraft whereas the CD&R systems under AFM operation depend

on the transponder on the unmanned aircraft only.

Figure 36 Collision probabilities of Case Study-1 & 2

A result of sensitivity analysis on components supporting the CD&R system

under AAC operation is shown in Figure 37, where the top two bars correspond to the top

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

0 30 60 90 120 150 180

C
o

ll
is

io
n

 P
ro

b
ab

ili
ty

Path-crossing Anlgle (deg.)

Onboard Radar (AAC)

Onboard Radar (AFM)

103

axis, while the others are read on the bottom axis. The sensitivity is measured as relative

change (improvement) in the resulting collision probability when the failure rate of each

component is reduced by 10%. The transponders on both manned and unmanned aircraft

are the most significant components for the collision risk in AAC environment. The

sensitivity value of 0.039 for the transponder on manned aircraft (or on unmanned

aircraft) means that the collision risk can be reduced by 3.9% if the reliability of the

transponder is increased by 10%. This is because all the CD&R systems operating under

the AAC concept including TCAS rely on the transponders on both aircraft to locate the

aircraft on a potential collision course.

Figure 37 Sensitivity analysis of components (AAC)

0 0.01 0.02 0.03 0.04 0.05

0.0E+00 1.0E-03 2.0E-03 3.0E-03 4.0E-03 5.0E-03

GPS (manned acft)
ADS-B Receiver (Ground)

VDL (manned acft)
Display (unmanned acft)

Speaker (unmanned acft)
Display (manned acft)

Voice Comm (manned acft)
AR Processor (manned acft)

TSAFE Processor (manned acft)
C2 Link (unmanned)

Radar (Ground)
CDR Processor (unmanned acft)

Onboard Radar (unmanned)
TCAS Processor (manned acft)

TCAS Display (manned acft)
TCAS Speaker (manned acft)

Transponder (manned acft)
Transponder (unmanned acft)

104

Sensitivity analyses on the other model parameters (e.g., sensor detection range,

trajectory prediction errors used for conflict detection probabilities) are also conducted,

however, the results are not presented since the results are very similar to the ones

presented for AFM operation in Section 4.1.5.

4.3 Case Study-3: Collision Risk Between Manned Aircraft

4.3.1 Concepts of NAS Operations

Current NAS (Air Traffic Controller, ATC). Currently unmanned aircraft is not

allowed to fly with manned aircraft at the same time in the NAS, where air traffic

services, e.g., air traffic control, flight information, and alerting services, are provided

primarily by human air traffic controllers. In order to support the controllers to ensure the

safety and efficient operations of air traffic in the NAS, a number of new procedures and

technologies have been developed and implemented for decades, especially through the

Next Generation Air Transportation System (NextGen) project. Even though the NAS has

been improved a lot compared to that several decades ago, the principal and/or concept of

the NAS operations are still not changed much, where human pilot operate aircraft, and

human air traffic controllers mostly provide air traffic service for pilot to safely complete

flights.

One of the most important services that the controllers provide is to maintain a

safe separation between aircraft in the air, to which this research is directly related.

Figure 38 shows failure logic of providing the separation assurance service in terms of

physical components. In order for air traffic controllers to maintain a safe separation

between aircraft, surveillance information of both aircraft that may have potential risk of

105

mid-air collision is firstly required (the right branch of Figure 38). Location of each

aircraft can be available either ground-based systems (i.e., surveillance radar on ground

and transponder on aircraft) or ADS-B, of which aircraft must equip ADS-B Out in most

NAS by 2020. As explained in Section 4.1, the ADS-B Out function is currently

implemented on the Mode S transponder of most commercial aircraft. The trajectory

generator and voice communication between controllers and pilots should be both

available to detect a conflict and inform pilots to execute a resolution maneuver to avoid

the conflict.

Figure 38 Supporting fault tree for air traffic control (ATC) separation assurance

Additional assumptions made to model collision risk between a pair of manned

aircraft in the current NAS with the proposed DET framework are as follows:

ATC Separation
Assurance

Unavailable

ATC
component-
based failure

Surveillance
failure

Trajectory
generator

failure

AC#1
Location
failure

Ground-based
surveillance

failure

ADS-B based
surveillance

failure

AC#1
Transponder

failure

Ground
Radar
failure

AC#1
GPS

failure

AC#1 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

AC#2
Location
failure

Ground-based
surveillance

failure

ADS-B based
surveillance

failure

AC#2
Transponder

failure

Ground
Radar
failure

AC#2
GPS

failure

AC#2 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

AC#1
Voice comm

failure

106

▪ Similar to other concept of the NAS operation, ATC separation assurance

service is provided in a time horizon between 8 min and 1 min prior to a

potential conflict.

▪ Traffic Alert and Collision Avoidance System (TCAS) performs a separation

assurance function within 1 min to a predicted conflict.

▪ Probabilities that air traffic controllers detect a conflict and provide a

resolution are a function of time to a predicted conflict. Probability values are

assumed as 30% of that for the hypothetical CD&R algorithm described in

Section 4.1.4 to detect a conflict.

Future NAS. Two concepts of the future NAS operations, Autonomous Flight

Management (AFM) and Advanced Airspace Concept (AAC), were discussed in detail in

the previous Case Studies, where model collision risk between manned and unmanned

aircraft. The same concepts of operations in the future NAS are used to model collision

risk between a pair of manned aircraft. Figure 39 illustrates supporting fault trees for

strategic intent-based CD&R system (top) and tactical intent-based CD&R system

(bottom) under AFM operation, where relationship between component failures and

system failure is modeled. A key difference between manned-unmanned pair (Figure 21

~ 22) and manned-manned pair (Figure 39) is that there is another way for a manned

aircraft to locate the other aircraft, which is Air-to-Air Surveillance via ADS-B. All other

parameters such as operation time horizon of each CD&R system and time-varying

detection probabilities are assumed the same with the Case Study-1 including TCAS

equipped on both manned aircraft.

107

Figure 39 Supporting fault trees for CD&R systems of manned aircraft (manned-manned pair, AFM)

Similarly, supporting fault trees of the AAC CD&R systems (i.e., Autoresolver

(AR) and TSAFE) for a pair of manned aircraft are modeled in Figure 40. Compared to

Strategic intent-
based CD&R
Unavailable

Strategic intent-
based CD&R
component-
based failure

Surveillance
failure

Ground-based
surveillance

failure

Air-to-air
surveillance

failure

AC#1 CD&R
Processor

failure

AC#1
Display
failure

TIS-B
failure

AC#1 ADS-B In
(TCAS Processor)

failure

AC#2
Transponder

failure

Ground
Radar
failure

TIS-B
Transmitter

failure

AC#2
GPS

failure

AC#1
GPS

failure

AC#2 ADS-B Out
(Transponder)

failure

AC#1
GPS

failure

AC#1 ADS-B In
(TCAS Processor)

failure

Tactical intent-
based CD&R
Unavailable

Surveillance
failure

Tactical intent-
based CD&R
component-
based failure

AC#1 CD&R
Processor

failure

AC#1
Alerting
failure

AC#1
Speaker
failure

AC#1
Display
failure

Ground-based
surveillance

failure

Air-to-air
surveillance

failure

TIS-B
failure

AC#1 ADS-B In
(TCAS Processor)

failure

AC#2
Transponder

failure

Ground
Radar
failure

TIS-B
Transmitter

failure

AC#2
GPS

failure

AC#1
GPS

failure

AC#2 ADS-B Out
(Transponder)

failure

AC#1
GPS

failure

AC#1 ADS-B In
(TCAS Processor)

failure

108

Figure 34 and 35, where fault trees of AR and TSAFE for manned-unmanned aircraft pair

are illustrated, location information of the second (manned) aircraft is available to the

CD&R systems through ADS-B Out on manned aircraft. (Note that the fault trees shown

in Figure 38 ~ 40 are from one aircraft (AC#1) perspective, thus the fault trees with the

same structures from the other aircraft (AC#2) perspective are also needed to completely

model the case studies.)

Figure 40 Supporting fault trees for CD&R systems of manned aircraft (manned-manned pair, AAC)

Autoresolver (AR)
Unavailable

Autoresolver
component-
based failure

Surveillance
failure

AR
processor

failure

AC#1
VDL uplink

failure

AC#1
Voice comm

failureAC#1
Resolution

reader/display
failure

AC#1
Location
failure

Ground-based
surveillance

failure

ADS-B based
surveillance

failure

AC#1
Transponder

failure

Ground
Radar
failure

AC#1
GPS

failure

AC#1 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

AC#2
Location
failure

AC#1
Communication

failure

Ground-based
surveillance

failure

ADS-B based
surveillance

failure

AC#2
Transponder

failure

Ground
Radar
failure

AC#2
GPS

failure

AC#2 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

TSAFE
Unavailable

TSAFE
component-
based failure

Surveillance
failure

TSAFE
processor

failure

AC#1
Transponder

failure

AC#1
Voice comm

failureAC#1
Resolution

reader/display
failure

AC#1
Location
failure

Ground-based
surveillance

failure

ADS-B based
surveillance

failure

AC#1
Transponder

failure

Ground
Radar
failure

AC#1
GPS

failure

AC#1 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

AC#2
Location
failure

AC#1
Communication

failure

Ground-based
surveillance

failure

ADS-B based
surveillance

failure

AC#2
Transponder

failure

Ground
Radar
failure

AC#2
GPS

failure

AC#2 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

109

4.3.2 Result and Comparisons

This section provides numerical results and sensitivity analyses of the case studies

for collision risk between manned and manned aircraft under an assumption of the

current NAS (i.e., ATC), AFM, or AAC environment. Figure 41 shows the resulting

collision probabilities between two manned aircraft in each NAS operation environment

as a function of the path-crossing angle. The collision risk between manned and manned

aircraft under ATC and AAC operations are similar with a high probability (in the order

of 10-5) for all path-crossing angles. The reason of this result is that the collision risk of

ATC and AAC operations heavily rely on components failures, specifically failures of

transponders on either aircraft. Based on failure logic of the CD&R systems (Figures 38

and 40) including TCAS (Figure 23) for both ATC and AAC operations, failure of the

transponder on either aircraft leads to surveillance failure of all CD&R systems on the

ground and the TCAS on both aircraft, thus no opportunity for either aircraft to avoid a

collision. (Note again that the collision risk/probability in this dissertation is a conditional

collision risk/probability given that two aircraft are on a collision course.)

In order for the result collision probability of the AAC operation in this research

to be directly compared with the current mid-air-collision accident rate, it must be

multiplied with the rate that two aircraft are on a potential collision course. Belle [2012]

provided the rate that two aircraft are on a converging path as a function of the number of

aircraft in an airspace for both structured air route (i.e., the current NAS) and great circle

110

route (GCR, i.e., free flights). The result rates range from in an order of 10-4 to 10-3 per

flight hour for structured air route and from in an order of 10-5 to 10-4 per flight hour for

GCR depending on the number of aircraft in a region of airspace. With the rates for

structure air route (i.e., 10-4 ~ 10-3 per flight hour) and the probability that the ATC fails

to resolve a conflict in this research (i.e., 10-5), the total collision risk of the current NAS

would be at least in an order of 10-8 per flight hour, which is similar to literature (e.g., Lin

[2009] and ISAM).

Figure 41 Collision probabilities for manned-manned aircraft pair (ATC vs. AFM vs. AAC)

The risk under AFM environment is mostly maintained at a probability in the

order of 10-9 when path-crossing angle is less than 90°, then it decreases, but still at the

same order of magnitude. The collision risk of AFM operations is much less than the risk

under ATC and AAC since failure of a single component does not cause all CD&R

systems on both aircraft down in AFM operation environment. The reason why the

1.0E-09

1.0E-07

1.0E-05

1.0E-03

0 30 60 90 120 150 180

C
o

ll
is

io
n

 P
ro

b
ab

ili
ty

Path-crossing Anlgle (deg.)

manned-manned pair (AAC) manned-manned pair (ATC)

manned-manned pair (AFM)

111

collision risk of AFM operations decreases is a combination of two factors: 1) the most

contributing scenarios to the collision risk are the case where two early CD&R systems

are available but TCAS is not for one of the two aircraft, while all CD&R systems fail for

the other aircraft, and 2) for manned-manned aircraft pair, the speed and trajectory

prediction errors for both aircraft are assumed the same, and the conflict detection for that

pair with a larger path-crossing angle is estimated as very successful, especially at early

CD&R phase.

Sensitivity analyses are conducted on the components supporting the CD&R

systems of the three concepts of the NAS operation, and the results are summarized in

Figure 42. As same with the previous sensitivity analyses, the value associated with each

component is the relative change (improvement) in collision risk given a 10% decrease in

the failure probability of the component. The components shown in the Figure 42 are

selected based on a criterion that the sensitivity result of a component is greater than

0.001. The transponders on both aircraft on a potential collision course are most

significant for all three NAS operation environments. In addition to the transponders, the

TCAS processors and the processors of CD&R systems also have recognizable impacts

on the collision risk under AFM environment, while all other components have negligible

impact on the collision risk of ATC and AAC operations.

112

Figure 42 Critical components from each concept of operations based on sensitivity analysis

A safety-critical observation shown in Figure 43 is that the collision risk between

manned and manned aircraft would be worse than the risk between manned and

unmanned aircraft under AAC environment. This happens, as mentioned earlier, because

the CD&R systems on manned aircraft, AR, TSAFE and TCAS, all depend on a single

component (a transponder on either aircraft), while the assumed CD&R system on

unmanned aircraft has an independent source (onboard radar) of sensing the other

aircraft, thus does not completely rely on the transponder. This dependency, which is

very significant to the collision risk, would expect to be reduced by having a redundant

transponder onboard or equipping a separate ADS-B Out system, which is currently

implemented on the transponder.

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Transponder (unmanned acft)

Transponder (manned acft)

GPS (unmanned acft)

GPS (manned acft)

CDR processor (unmanned acft)

CDR processor (manned acft)

TCAS processor (unmanned acft)

TCAS processor (manned acft)

Transponder (unmanned acft)

Transponder (manned acft)

Transponder (unmanned acft)

Transponder (manned acft)

ATC AFM AAC

113

Figure 43 Comparison of collision probabilities between manned-manned and manned-unmanned pairs (AAC)

4.4 Summary

This chapter presented an application of a dynamic event tree framework to

evaluate collision risk between aircraft equipped with different collision avoidance

capabilities. Firstly, a case study in detail was developed for collision risk between a

manned and a remotely-piloted unmanned aircraft, both flying under Autonomous Flight

Management (AFM). For the manned aircraft, parameters of the conflict detection and

resolution (CD&R) systems were studied. Fault trees were constructed to model failure

relationships between physical components of each CD&R system. Time varying

conflict-detection probabilities were estimated based on an algorithm from Paielli [1997].

For unmanned aircraft, various types of sensor technologies were surveyed in terms of

type, information acquired, and detection range. A combination of a Mode A/C

transponder and an onboard radar with an assumed CD&R concept of operation for

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

1.6E-05

0 30 60 90 120 150 180

C
o

ll
is

io
n

 P
ro

b
ab

ili
ty

Path-crossing Anlgle (deg.)

Onboard Radar (AAC) TCAS-like + Onboard rada (AAC)

manned-manned pair (AAC)

114

unmanned aircraft was firstly considered. A way to apply the DET framework considering

dependency between aircraft on a collision course was also discussed with another CD&R

system (i.e., TCAS-like system with a Mode S transponder and an onboard radar).

With Advanced Airspace Concept (AAC) for the future NAS operations, collision

risk between manned and unmanned aircraft with two different CD&R systems are

modeled. Lastly, case studies for collision risk between manned and manned aircraft

under various NAS environments, AFM, AAC, and the current NAS (ATC), are

developed. Table 14 summarizes the case studies discussed in this chapter.

Table 14 Summary of case studies

Case No. Conflict Case
NAS

Operation

Collision Avoidance

Equipage

(Unmanned)

1 Manned aircraft – Unmanned aircraft AFM
Onboard radar,

transponder

2 Manned aircraft – Unmanned aircraft AFM
Onboard radar,

TCAS-like system

3 Manned aircraft – Unmanned aircraft AAC
Onboard radar,

transponder

4 Manned aircraft – Unmanned aircraft AAC
Onboard radar,

TCAS-like system

5 Manned aircraft – Manned aircraft ATC -

6 Manned aircraft – Manned aircraft AFM -

7 Manned aircraft – Manned aircraft AAC -

Under AFM and AAC operation environment, collision risk between a manned

and an unmanned aircraft increases with greater path-crossing angles, since the closing

115

speed between aircraft increases reducing available time to avoid a collision. Sensitivity

analysis indicated that the transponder on the unmanned aircraft is the most significant

component in given AFM operation, while the transponders on both manned and

unmanned aircraft are most important in AAC environment. The maximum detection

range of the onboard radar also affects collision risk, especially when two aircraft are

approaching with an acute path-crossing angle. The effect of the new CD&R system (i.e.,

TCAS-like system) for the unmanned aircraft to collision risk is very small unless the

detection performance of the new system is better than the previous system, because the

components additionally required for the new system on the unmanned aircraft (i.e.,

transponders) are the common elements in the CD&R systems on manned aircraft.

 The collision risk between manned and manned aircraft under ATC and AAC

operations are similar with a high probability for all path-crossing angles due to

dependency on transponders of either aircraft. The collision risk of AFM operations,

however, is much less than the risk of ATC and AAC environments since failure of a

single component does not cause all CD&R systems on both aircraft fail. The

transponders on both manned aircraft flying on a collision course are the most significant

components to the collision risk for all three NAS operation environments.

Throughout the case studies and sensitivity analyses, it is observed that the

CD&R systems/concepts considered in this dissertation depend significantly on the

aircraft transponders. Based on that, one of the means that can improve the CD&R

systems thus decrease the risk is to equip an additional redundant transponder as a backup

on aircraft. The graph on left of Figure 44 shows resulting collision probabilities for the

116

case #1 (solid line) and the case where a redundant transponder assumes to be equipped

on both aircraft of the case #1 (dashed line). The additional transponder can decrease the

collision risk by ranging from 30% to 46% depending on path-crossing angles. Similarly,

the graph on right of the figure shows collision probabilities for the case #7 assuming that

both manned aircraft have a separate ADS-B Out component instead of the current

implementation on Mode S transponder. Having a separate ADS-B Out component

reduces dramatically surveillance failure of aircraft, thus decreases the collision risk by

several orders of magnitude. (Note that the primary radar system is assumed not in use.)

Figure 44 Collision probabilities with redundant transponder (Case #1, left) and separate ADS-B Out (Case #7,

right)

0E+00

2E-06

4E-06

6E-06

8E-06

1E-05

0 30 60 90 120 150 180

C
o

ll
is

io
n

 P
ro

b
ab

ili
ty

Path-crossing Anlgle (deg.)

Case # 1

Case # 1 w. Redundant Transponder

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 30 60 90 120 150 180

C
o

ll
is

io
n

 P
ro

b
ab

ili
ty

Path-crossing Anlgle (deg.)

Case # 7

Case # 7 w. Separate ADSB out

117

CHAPTER 5: CONCLUSIONS

5.1 Summary and Results

This dissertation proposed a general form of a dynamic event tree (DET) to model

the mid-air collision risk between aircraft. The DET framework consists of three levels, a

high-level dynamic event tree, a generic sub-tree, and fault trees. A methodology for

evaluating the DET framework was proposed (cDET-PMS), combining a conditional-

based approach for evaluating event trees with a phased-mission-system approach from

the reliability literature. Several variants of the approach (cDET and PMS-BDD) were

considered and applied to evaluate a test DET problem. Each method has different

assumptions on the timing of component-based system failures and the modeling of event

sequences in the sub-trees. The PMS-BDD approach has significant limitations in

modeling possible sequences of events, which causes under-estimation of the true risk.

The cDET and cDET-PMS method perform differently depending on the numerical

parameters of the test problem. They estimate collision risk very well in case that

algorithmic failures of the first two CD&R systems occur very likely, while they may

over-estimate the risk by a factor of more than 10 in other cases.

The proposed DET framework and evaluation methods have several benefits:

118

1) The approach captures several different behaviors influencing collision risk,

which are CD&R systems with time-varying detection rates, pilot delays, component

failures of the CD&R systems, and conflict geometry.

2) Computation of the evaluation methods are relatively quick. As an example,

one of the most complicated case studies, which modeled collision risk between manned

and manned aircraft under AFM operations, is analyzed in 20 seconds on a personal

laptop.

3) The approach takes benefit of creating or modifying a model and of evaluation

of the new model. In a typical system design phase, for example, adding a redundant

component, replacing a better component, or even a new architecture needs to be

evaluated to choose the best design of a system that meets requirement of system

reliability/safety. The DET approach proposed in this dissertation can be used to evaluate

design alternatives of a system readily with a reasonable fidelity.

This dissertation also presented a way to apply the dynamic event tree framework

to evaluate collision risk between aircraft equipped with different levels of collision

avoidance capability. Several case studies were developed for collision risk between

various types of aircraft flying under one of the concepts of current or future NAS

operation, such as current air traffic control (ATC), Autonomous Flight Management

(AFM), and Advanced Airspace Concept (AAC). Manned-unmanned aircraft pairs and

manned-manned aircraft pairs were considered in the case studies. Unmanned aircraft

were assumed to be equipped either with an onboard radar and a transponder or with an

onboard radar and TCAS-like system.

119

Parameters of the conflict detection and resolution (CD&R) systems for each

NAS operation, which may have a different architecture in terms of hardware and

software, were studied. Fault trees were constructed to model failure relationships

between physical components of each CD&R system. Time varying probabilities in

which each CD&R system performs its function successfully were estimated based on

Paielli [1997]. A way to apply the DET framework considering dependency between

aircraft on a collision course was also discussed. In addition, sensitivity analyses on the

model parameters of the case studies were conducted such as supporting components,

detection range of sensor, and trajectory prediction errors of the algorithm used to

estimate conflict detection probabilities.

Collision risk of the case studies for manned and unmanned aircraft pairs increase

with angles between flight paths since closing speed between aircraft increases, thus the

time available to avoid a collision decrease. The transponder on the unmanned aircraft is

the most significant component under AFM and AAC operation, while the transponder

on the manned aircraft is also important to the collision risk in AAC environment. The

maximum detection range of onboard radar also affects collision risk significantly,

especially when two aircraft are approaching with a path-crossing angle of about 90°.

Through the case study for a manned aircraft pair, the overall collision risk in the

current NAS is approximately estimated in an order of 10-8 per flight hour or less, which

is a product of the rate that two aircraft are on a collision course (10-3 ~ 10-4 per flight

hour estimated in Belle [2012]) and the (conditional) collision probability of this research

(about 10-5). For ATC and AAC operations, the collision risk between manned and

120

manned aircraft is high because of dependency on the transponders of either aircraft,

while the collision risk of AFM operations is much less than the risk of the other two

since failure of a single component does not cause all CD&R systems on both aircraft

fail.

Case studies indicate that the reliability of aircraft transponders significantly

drives collision risk since the CD&R systems and concepts considered in this dissertation

highly rely on the transponders for surveillance. Due to the dependency on the

transponders, the AAC concept of operations may not provide sufficient improvement in

collision risk for manned-manned aircraft pairs compared to the current NAS operation,

whereas the AFM operation shows much improved (i.e., reduced) collision risk because

of less dependency on the transponders. Collision risk between manned and unmanned

aircraft, compared to the risk between manned aircraft pairs, increases significantly under

the AFM operations, but is not so changed in the AAC environment because the collision

risk is already high for manned aircraft pair.

5.2 Future Work

This research in this dissertation can be extended in several ways. First, the

methodology can be used in an applied setting to evaluate safety requirements for new

types of aircraft including collision avoidance systems and separation assurance systems.

Better system designs can be suggested by answering several “What-if” questions such as

“what if there is a redundant component” or “what if we replace a component with a

more reliable one”. Second, more specific algorithms to detect and resolve conflicts can

be used for better estimations of the model parameters and/or incorporating real data for

121

failure rates of components. While many of the model parameters come from the

literature, some are simply assumed values in the case studies. Next, aircraft dynamics

can be considered in the approach to add more fidelity. To do so, aircraft response delay

(distribution function) to avoid a collision given a conflict geometry and aircraft type

needs to be researched, then it can be included within a sub-tree in the framework, similar

to pilot delay. Lastly, the methodology can be improved to relax the assumption that

component failures occur at the start of each CD&R phase. An improved evaluation

method could allow components to fail at each time step, hopefully without losing the

advantage of fast computation.

122

APPENDIX A: DET FRAMEWORK USER GUIDE

This appendix describes steps that users should follow to set up a dynamic event

tree (DET) for a mid-air-collision proposed in this dissertation. Inputs to define a DET

framework are presented, and the high-level algorithm flow and corresponding function

for each step are given.

A.1 Inputs for DET Framework

Three types of inputs coded in the main algorithm or as a delimited text file are

explained with a graphical example. Then, an additional input that is required to apply the

framework for a pair of aircraft on a collision course is described.

A.1.1 High-level tree structure

In order to define the high-level dynamic event tree, the following parameters are

required:

• Time horizon for each phase, T1, T2, …, Tr (with T1 > T2 > … Tr > 0)

• Time step Dt

Figure A-1 shows an example input statement for high-level tree structure in the

main algorithm. Variable ‘time-horizon’ defines time (Tr) at which each CD&R phase

begins prior to a collision, and ‘deltaT’ specifies a computation time step (Dt) used

123

throughout the analysis. (Note that time horizon (T) and number of phases (r) can be

derived from the above parameters.)

Figure A-1 Example input statement of high-level tree structure

A.1.2 Sub-tree structure

The sub-tree shows a template for evaluating a sequence of events within each

CD&R phase. In order to specify the sub-tree, a set of state transitions (k, l) and

associated time advancement for each transition (TAkl, where TAkl = 0 if transition from

state k to l occurs instantly; TAkl = 1 if transition from state k to l takes a time step) are

firstly set. Figure A-2 is an example input file for the sub-tree structure. Each row

specifies a transition between two states that can occur during conflict detection and

resolution procedures. States include each CD&R system state (SICDR, TICDR, and

TSCDR in the figure), a state where a resolution is provided to pilot (PILOT in the

figure), a mid-air collision state (MAC), and a state in which a conflict is resolved

(RESOLVED). State transition probabilities at different time (pkl (t)) are generated with

either pre-determined numerical values (i.e., inputs like the figure) or probabilistic

distribution functions that can be defined in the main algorithm, e.g., time-dependent

conflict-detection rate (t) and pilot execution rate . For the latter case (i.e., defined in

the algorithm), the input file has empty cells after the third column, i.e., it needs to

specify only a set of state transitions and associated time advancement.

% High-level tree structure
time_horizon = [480; 180; 60];
deltaT = [1];

124

Figure A-2 Example input file of sub-tree structure

A.1.3 Fault tree structure

Fault trees model logical relationships between physical components and the

functional failures of the CD&R systems. It is required to create an input file for the fault

trees supporting the CD&R systems. Figure A-3 shows an example input file for the fault

trees. Each row defines a node (i.e., basic event node or gate event node) in fault trees

with several elements as follows:

• ID: Order of node in file

• Aircraft_id: Identify which CD&R system equipped on which aircraft

• Container_id: Identify which node belongs which CD&R system

• Probability_value: Failure probability/rate for component. Required only for

basic event nodes.

• Type: Specify a type of a node with ‘0’ for AND-gate event, ‘1’ for OR-gate

event, and ‘3’ for basic event.

From state
()

To state
()

Time advancement
() Time prior to collision

MAC

125

• Parent_id: Specify a parent node of a node. The column for the parent node is

empty if the node is a top event of a fault tree.

• Name: Provide name of component or gate event.

• Phase_dependency (pd): Specify if a component is phase-dependent or not (1-

phase-dependent, 0- phase-independent). Required only for basic event nodes.

(Note: There is another element called ‘uniqueid’, which is not required for the

analysis, but it is helpful to build the input file for fault trees because it provides

information of a parent-child pairs that is easy to understand.)

Figure A-3 Example input file of fault tree structure

A.1.4 Information for conflict

Once a DET framework for each aircraft is defined, conflict information between

two aircraft such as speed, conflict geometry, and onboard sensor range needs to be

specified (Figure A-4).

Container_id
Define each node

belongs to which
system

Probability_value
Failure probability (rate)
of node (component)

Type
Define basic
event / type
of gate

Parent_id
Define parent node
of each node

Phase dependency
Define if component
phase-dependent

Id- Order
of node

Name
Name of each
node/component
in fault trees

Aircraftid
Distinguish

between
two aircraft

126

Figure A-4 Example input of conflict information

%% Conflict information (speed, conflict geometry, sensor range, etc.)
AC(1).spd = 400; % knots
AC(2).spd = 170;
AC(1).heading = 90; % degrees
AC(2).heading = 0;
AC(1).range = 240; % onboard sensor range (km)
AC(2).range = 35;

127

A.2 High-level Algorithm Flow

Figure A-5 High-level algorithm flow and associated functions

Determine if aircraft
are dependent

(CheckDependency)

• Update time_horizon of aircraft
(ComputeActivation)

for each aircraft

• Construct BDD for each CD&R system
(constructBDD)

for each generated DET

• Create and evaluate fault tree
(combinePMSBDD, calURpmsbdd)

• Create transition matrix and
evaluate DET (createTmatrix, calDET)

end

end

• Update time_horizon of aircraft
(ComputeActivation)

• Construct BDD for each CD&R system
(constructBDD)

• Combine CD&R phases into one
(CombineCDRphases)

for each generated DET

• Create and evaluate fault tree
(CreatePhaseBDD, combinePMSBDD,
calURpmsbdd)

for each aircraft

• Create transition matrix and
evaluate DET (createTmatrix, calDET)

end

end

Inputs
• High-level tree structure

• Sub-tree structure

• Fault tree structure

• Conflict information

Output
• pr{Collision | aircraft on

collision course}

DependentIndependent

128

A.3 Example Input Files

Sub-tree structure (StateTransition-AC1.csv)
From,To,t_advancement

SICDR1,SICDR1,1

SICDR1,PILOT1,1

SICDR1,TICDR1,0

TICDR1,TICDR1,1

TICDR1,PILOT1,1

TICDR1,TSCDR1,0

TSCDR1,TSCDR1,1

TSCDR1,PILOT1,1

TSCDR1,NMAC,0

PILOT1,RESOLVED,1

PILOT1,PILOT1,1

PILOT1,TICDR1,0

PILOT1,TSCDR1,0

Fault tree structure (FaultTree-AC1.csv)
id,aircraftid,containerid,probabilityvalue,type,uniqueid,parent_id,name

,pd

1,AC1,SICDR1,,1,si,,SICDR unavailable,

2,AC1,SICDR1,,1,si.1,1,SICDR comp failure,

3,AC1,SICDR1,,1,si.2,1,Surveillance failure,

4,AC1,SICDR1,1.04E-06,3,si.1.1,2,CDRprocessor1,1

5,AC1,SICDR1,1.04E-06,3,si.1.2,2,Display1,1

8,AC1,SICDR1,8.33E-07,3,si.2.1.1,3,GPS1,1

9,AC1,SICDR1,,1,si.2.1.2,3,TIS-B failure,

10,AC1,SICDR1,1.04E-06,3,si.2.1.3,3,TCASprocessor1,1

11,AC1,SICDR1,3.33E-07,3,si.2.1.2.1,9,GroundRadar,1

12,AC1,SICDR1,1.39E-06,3,si.2.1.2.2,9,Transponder2,1

13,AC1,SICDR1,1.67E-06,3,si.2.1.2.3,9,TISBtransmitter,1

18,AC1,TICDR1,,1,ti,,TICDR1-1 unavailable,

19,AC1,TICDR1,,1,ti.1,18,TICDR1-1 comp failure,

20,AC1,TICDR1,,1,ti.2,18,Surveillance failure,

22,AC1,TICDR1,1.04E-06,3,ti.1.1,19,CDRprocessor1,1

23,AC1,TICDR1,,0,ti.1.2,19,Alerting failure,

24,AC1,TICDR1,1.04E-06,3,ti.1.2.1,23,Display1,1

25,AC1,TICDR1,1.04E-06,3,ti.1.2.2,23,SPK1,1

28,AC1,TICDR1,8.33E-07,3,ti.2.1.1,20,GPS1,1

29,AC1,TICDR1,,1,ti.2.1.2,20,TIS-B failure,

30,AC1,TICDR1,1.04E-06,3,ti.2.1.3,20,TCASprocessor1,1

31,AC1,TICDR1,3.33E-07,3,ti.2.1.2.1,29,GroundRadar,1

32,AC1,TICDR1,1.39E-06,3,ti.2.1.2.2,29,Transponder2,1

33,AC1,TICDR1,1.67E-06,3,ti.2.1.2.3,29,TISBtransmitter,1

45,AC1,TSCDR1,,1,ts1,,TSCDR unavailable,

46,AC1,TSCDR1,1.04E-06,3,ts1.1,45,TCASprocessor1,1

47,AC1,TSCDR1,,0,ts1.2,45,TCAS Alerting failure,

48,AC1,TSCDR1,1.39E-06,3,ts1.3,45,Transponder2,1

49,AC1,TSCDR1,1.04E-06,3,ts1.2.1,47,TCASdisplay1,1

50,AC1,TSCDR1,1.04E-06,3,ts1.2.2,47,TCASspk1,1

51,AC1,TSCDR1,1.39E-06,3,ts1.0,45,Transponder1,1

129

A.4 MATLAB Code

DET_main.m
clear;
% Define DET structure for each aircraft
% create aircraft structure
AC = struct('time_horizon','');

% high-level tree
AC(1).time_horizon = [480 ; 180 ; 60];
AC(2).time_horizon = [480]; % calculated and updated depending on

speed, conflict geometry
deltaT = 1;

% sub-tree
AC(1).StateTransition =

table2cell(readtable('StateTransition_AC1_base.csv'));
AC(2).StateTransition =

table2cell(readtable('StateTransition_AC2_base.csv'));
% some of information for transition prob.
AC(1).pilotRate = [1.84501845; 2.909796314; 12]; % base pilot

execution rates (/min)
AC(2).pilotRate = [1.84501845];
AC(1).rate = 1.0; % performance of detection algorithm
AC(2).rate = 0.3; % 30% of performance of detection algorithm

% fault tree
AC(1).faultTree = loadTable('FaultTree_AC1_base.csv', 'allString', ',',

1);
AC(2).faultTree = loadTable('FaultTree_AC2_base_dep.csv', 'allString',

',', 1);
for i = 1 : length(AC)
 for j = 1 : length(AC(i).faultTree)
 if ~isempty(AC(i).faultTree(j).probabilityvalue)
 AC(i).faultTree(j).probabilityvalue =

str2double(AC(i).faultTree(j).probabilityvalue);
 end
 end
end

%% Conflict information (speed, conflict geometry, sensor range, etc.)
AC(1).spd = 400; % knots
AC(2).spd = 170;
AC(1).heading = 90; % degrees
AC(2).heading = 0;
AC(1).err = [15; 2]; % error level for conflict detection (along-track,

cross-track)
AC(2).err = [30; 4];
AC(1).range = 240; % onboard sensor range (km)
AC(2).range = 35;

%% Compute collision prob. given two aircraft on a collision course

130

% check if aircraft are dependent
if length(AC) > 1
 [Dep] = CheckDependency(AC(1).faultTree, AC(2).faultTree); % 0-

independent, 1-dependent
else
 Dep = 0;
end

% Call main algorithm
if Dep < 1
 [CollisionProb] = Independent(AC, deltaT); % if aircraft are

independent
else
 [CollisionProb] = Dependent(AC, deltaT); % if aircraft are

dependent
end

loadTable.m
function table = loadTable(fileName, dataTypes, delimiter,

headerRowNumber)
% loadTable loads a CSV or other text file into a data structure
if ~exist('delimiter','var')
 delimiter = ',';
end

if ~exist('headerRowNumber','var')
 headerRowNumber = 1;
end

if strcmp(dataTypes,'allString')
 % Count how many columns.
 fid = fopen(fileName);
 skipLines(fid, headerRowNumber-1);
 headerLine = fgetl(fid);
 fclose(fid);
 numCols = numel(strfind(headerLine, delimiter))+1;
 dataTypes = repmat('%s ', 1, numCols);
end

% Read the data.
fid = fopen(fileName);
skipLines(fid, headerRowNumber-1);
numCols = numel(strfind(dataTypes, '%'));
headerFormatString = repmat('%s ', 1, numCols);
headerData = textscan(fid, headerFormatString, 1, 'Delimiter',

delimiter);
data = textscan(fid, dataTypes, 'Delimiter', delimiter);
fclose(fid);

% Put it into the output struct format.
table = struct;
for col_idx = 1:size(data,2)

131

 colName = headerData{col_idx}{1};
 colName = replaceIllegalFieldNameCharacters(colName);
 if isempty(colName)
 % Ignore empty column names (and allow for comma at end of each

row).
 continue;
 end
 colData = data{col_idx};
 if iscell(colData)
 for row_idx = 1:numel(colData)
 table(row_idx).(colName) = colData{row_idx};
 end
 else
 for row_idx = 1:numel(colData)
 table(row_idx).(colName) = colData(row_idx);
 end
 end
end

end

function skipLines(fid, numLines)
% Skip lines above the header
for extraLineNum = 1:numLines
 fgetl(fid);
end
end

function s = replaceIllegalFieldNameCharacters(s)
s = strrep(s, ' ', '_');
s = strrep(s, '(', '');
s = strrep(s, ')', '');
s = strrep(s, '/', '');
s = strrep(s, '-', '');
s = strrep(s, '#', 'num_');
end

CheckDependency.m
function [Dep] = CheckDependency(FT_A, FT_B)
Dep = 0;
% Find event names in common in both FT_A and FT_B
indexA = find(strcmp({FT_A.type},'3'));
indexB = find(strcmp({FT_B.type},'3'));
basicA = FT_A(indexA);
basicB = FT_B(indexB);
for i = 1 : length(basicA)
 index = find(strcmp({basicB.name},basicA(i).name));
 if ~isempty(index)
 Dep = 1;
 break;
 end
end

132

Independent.m
function [TotalFailureProb] = Independent(AC, deltaT);

 TotalFailureProb = 1.0;
 % adjust activation time
 if length(AC) > 1
 [AC] = ComputeActivation(AC, deltaT);
 end

 %% Compute CD&R failure prob. for each aircraft using cDET-PMS
 for i = 1 : length(AC)
 % construct BDD and DBDD for each system
 BE = struct([]);
 [SystemBDD, BE] = constructBDD(AC(i).faultTree, BE);
 for j = 1 : size(SystemBDD,2)
 [SystemBDD(j).dbdd] = DBDD(SystemBDD(j).bdd);
 end
 nSystem = size(SystemBDD, 2);

 % phase start time in second
 PST = [AC(i).time_horizon; 0];

 for j = 1 : nSystem
 PTD(j) = (PST(j)-PST(j+1))/60; % phase duraion in min
 end

 % crete initial phasebdd with phase names
 phasebdd = struct('name',[],'bdd',[]);
 for j = 1 : nSystem
 phasebdd(j).name = SystemBDD(j).name;
 PhaseConf(2*j-1) = {phasebdd(j).name};
 if j < nSystem
 PhaseConf(2*j) = {'0'};
 end
 end

 % each combination of available phases
 rowN = 1;
 for j = 0 : (pow2(nSystem)-1)
 b = dec2bin(j, nSystem); % [100], [010], ..., [110],[111]

 % create 'phasebdd'
 for k = 1 : nSystem
 a = str2num(b(k));
 CDRavailability(k) = a;
 if a < 1
 phasebdd(k).bdd = SystemBDD(k).bdd;
 else
 phasebdd(k).bdd = SystemBDD(k).dbdd;
 end
 end

133

 % weight prob. of each DET being used
 [cPMSBDD] = combinePMSBDD(PhaseConf, phasebdd);
 [UR] = calURpmsbdd(cPMSBDD, BE, PTD, PhaseConf);
 % save weight probabilities
 result(rowN,1) = UR;

 % create transition prob. and compute conditional prob. of

CD&R failures
 AC(1).rate = 1.0;
 AC(2).rate = 0.3;
 [sTransProb] = createTmatrix(AC(i).StateTransition, deltaT,

AC(i).system, PST, CDRavailability, AC(i).pilotRate, AC, AC(i).rate);
 [DET, EndState, states] = calDET(sTransProb);
 result(rowN,2) = EndState{1,3};
 rowN = rowN + 1;
 end

 % CD&R failure prob.
 FailureAC(1,i) = sum(result(:,1).*result(:,2));
 TotalFailureProb = TotalFailureProb * FailureAC(1,i);
 clear PhaseConf result PTD;
 end
end

ComputeActivation.m
function [AC] = ComputeActivation(AC, deltaT)

 % Extract unique fault trees
 for i = 1 : length(AC)
 FTCell = struct2cell(AC(i).faultTree);
 AC(i).system = unique(FTCell(3,:,:), 'stable');
 end

 % change units and calculate relative speed
 C = 1.852; % km / nautical mile
 for i = 1 : length(AC)
 HD = AC(i).heading * pi() / 180; % radian
 SPD = AC(i).spd * C / 60; % km / min
 V(i,1) = SPD*sin(HD);
 V(i,2) = SPD*cos(HD);
 end

 for j = 1 : size(V,2)
 rV(j) = V(2,j)-V(1,j);
 end
 rSPD = sqrt(rV*rV'); % relative speed (km/min)

 % compute activation times
 for i = 1 : length(AC)
 TRange(i) = AC(i).range / rSPD * 60; % sec
 tempT = fix(TRange(i)); % in secs
 if tempT < AC(i).time_horizon(1)

134

 m = mod(tempT, deltaT);
 AC(i).time_horizon(1) = tempT - m;
 end
 end
end

constructBDD.m
function [SystemBDD, BE] = constructBDD(faultTreeStruct, BE)
 % Extract unique fault trees
 FTCell = struct2cell(faultTreeStruct);
 FTs = unique(FTCell(3,:,:), 'stable');

 q = CQueue();
 s = CStack();
 order = size(BE,2) + 1;
 BE(order).name = '';
 %% Convert a fault tree to a BDD
 for i = 1 : length(FTs)
 CurrFT =

faultTreeStruct(strcmp({faultTreeStruct.containerid},{FTs{i}}));
 SystemBDD(i).name = FTs{i};
 % find top event
 [TOP,Topindex] = findTOP(CurrFT);
 % assign each basic event an order in a manner of top-down and

left to right,then create ite array
 [ite, BE, CurrFT, order] = iteArray(CurrFT, TOP, BE, order);
 % Convert to fault tree that has only binary gates
 [CurrFT] = modify(CurrFT);
 % set an order for ite operation
 [s] = iteOrder(CurrFT, TOP);
 % ite operation in a manner of bottom-up
 while ~isempty(s)
 Cgate = s.pop;
 Gindex = find(strcmp({CurrFT.id},Cgate.id));
 op = Cgate.type;
 index = find(strcmp({CurrFT.parent_id},Cgate.id));
 F = CurrFT(index(1)).value; % row number in ite array
 G = CurrFT(index(2)).value;
 [ite, CurrFT] = convertBDD(CurrFT, Gindex, ite, op, F, G);
 end
 % Extract lines representing BDD from ite array
 s.empty();
 push(s, CurrFT(Topindex).value); % row number for top node

of BDD
 [BDD] = extract(ite, s);
 % reduce rows of BDD table
 [BDD] = reduceTable(BDD);
 SystemBDD(i).bdd = BDD;
 end
 % Add phase and prob. to BE
 for j = 1 : size(BE,2)
 tprob = zeros(3,1);
 for i = 1 : length(FTs)

135

 CurrFT =

faultTreeStruct(strcmp({faultTreeStruct.containerid},{FTs{i}}));
 index = find(strcmp({CurrFT.name},{BE(j).name}));
 if ~isempty(index)
 tprob(i) = CurrFT(index(1)).probabilityvalue;
 else
 tprob(i) = 0;
 end
 end
 idx = find(~tprob); % find index for zero element
 idx0 = find(tprob); % find index for non-zero element
 for i = 1 : length(idx)
 tprob(idx(i)) = tprob(idx0(1));
 end
 BE(j).phase = FTs;
 BE(j).prob = tprob;
 end
end

findTOP.m
function [top,Topindex] = findTOP(CurrFT)
 n = 1;
 while ~isempty(CurrFT(n).parent_id)
 n = n + 1;
 end
 Topindex = n;
 top = CurrFT(Topindex);
end

iteArray.m
function [ite, BE, CurrFT, order] = iteArray(CurrFT, top, BE, order)

 q = CQueue();
 push(q,top);
 nRow = 1;
 ite = zeros(nRow,4);
 while ~q.isempty
 Cnode = q.pop;
 index = find(strcmp({CurrFT.parent_id},Cnode.id));
 for i = 1 : length(index)
 if CurrFT(index(i)).type == '3'
 check = find(strcmp({BE.name},CurrFT(index(i)).name));
 if isempty(check)
 BE(order).name = CurrFT(index(i)).name;
 if ~isnumeric(CurrFT(index(i)).pd)
 CurrFT(index(i)).pd =

str2double(CurrFT(index(i)).pd);
 end
 BE(order).pd = CurrFT(index(i)).pd;
 CurrFT(index(i)).value = order;
 ite(order,1) = order;
 ite(order,2) = order;
 ite(order,3) = -1;

136

 ite(order,4) = 0;
 order = order + 1;
 nRow = nRow + 1;
 else
 CurrFT(index(i)).value = check(1);
 if ite(:, 2) ~= check(1)
 ite(check(1),1) = check(1);
 ite(check(1),2) = check(1);
 ite(check(1),3) = -1;
 ite(check(1),4) = 0;
 nRow = nRow + 1;
 end
 end
 else
 push(q, CurrFT(index(i)));
 end
 end
 clear index;
 end
end

modify.m
function [CurrFT] = modify(CurrFT)
% convert a binary fault tree
q = CQueue();
n = 1;
while ~isempty(CurrFT(n).parent_id)
 n = n + 1;
end
top = CurrFT(n);
push(q,top);
l = length(CurrFT) + 1;
ng = 10001;
idn = 20001;

while ~isempty(q)
 Cnode = q.pop;
 index = find(strcmp({CurrFT.parent_id},Cnode.id));
 for i = 1 : length(index)
 if CurrFT(index(i)).type ~= '3'
 push(q,CurrFT(index(i)));
 end
 end
 while length(index) > 2
 CurrFT(l).id = num2str(idn);
 CurrFT(l).containerid = Cnode.containerid;
 CurrFT(l).type = Cnode.type;
 CurrFT(l).parent_id = Cnode.id;
 CurrFT(l).name = num2str(ng);
 for i = 2 : length(index)
 CurrFT(index(i)).parent_id = CurrFT(l).id;
 end
 clear index;

137

 index = find(strcmp({CurrFT.parent_id},CurrFT(l).id));
 Cnode = CurrFT(l);
 l = l + 1;
 ng = ng + 1;
 idn = idn + 1;
 end
end

iteOrder.m
function [s] = iteOrder(CurrFT, top)
 q = CQueue();
 s = CStack();
 push(q,top);
 push(s,top);
 while ~q.isempty
 Cnode = q.pop;
 index = find(strcmp({CurrFT.parent_id},Cnode.id));
 for i = 1 : length(index)
 if CurrFT(index(i)).type ~= '3'
 push(s, CurrFT(index(i)));
 push(q, CurrFT(index(i)));
 end
 end
 clear index;
 end
end

convertBDD.m
function [ite, CurrFT] = convertBDD(CurrFT, Gindex, ite, op, F, G)
l = length(ite) + 1;
% Determine which one has priority
% F and G are row numbers, a and b are variable numbers meaning order
a = ite(F, 2);
b = ite(G, 2);
if a > b % b has a priority
 temp = a;
 a = b;
 b = temp;
 temp = F;
 F = G;
 G = temp;
end
if Gindex(1) ~= 0
 CurrFT(Gindex(1)).value = l;
end

ite(l, 1) = l;
ite(l, 2) = ite(F, 2);
if op == '0' % 'AND' gate
 if a ~= b
 % compute 'then' value
 if ite(F, 3) == -1
 ite(l, 3) = ite(G, 1);

138

 elseif ite(F, 3) == 0
 ite(l, 3) = 0;
 else
 F1 = ite(F, 3);
 G1 = G;
 Gindex(1) = 0;
 ite(l, 3) = length(ite) + 1;
 [ite, CurrFT] = convertBDD(CurrFT,Gindex,ite,op,F1,G1);
 end
 % compute 'else' value
 if ite(F, 4) == -1
 ite(l, 4) = ite(G, 1);
 elseif ite(F, 4) == 0
 ite(l, 4) = 0;
 else
 F2 = ite(F, 4);
 G2 = G;
 Gindex(1) = 0;
 ite(l, 4) = length(ite) + 1;
 [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F2, G2);
 end
 elseif a == b
 % compute 'then' value
 if ite(F, 3) == -1
 ite(l, 3) = ite(G, 3);
 elseif ite(F, 3) == 0
 ite(l, 3) = 0;
 elseif ite(G, 3) == -1
 ite(l, 3) = ite(F, 3);
 elseif ite(G, 3) == 0
 ite(l, 3) = 0;
 else
 F1 = ite(F, 3);
 G1 = ite(G, 3);
 Gindex(1) = 0;
 ite(l, 3) = length(ite) + 1;
 [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F1, G1);
 end
 % compute 'else' value
 if ite(F, 4) == -1
 ite(l, 4) = ite(G, 4);
 elseif ite(F, 4) == 0
 ite(l, 4) = 0;
 elseif ite(G, 4) == -1
 ite(l, 4) = ite(F, 4);
 elseif ite(G, 4) == 0
 ite(l, 4) = 0;
 else
 F2 = ite(F, 4);
 G2 = ite(G, 4);
 Gindex(1) = 0;
 ite(l, 4) = length(ite) + 1;
 [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F2, G2);
 end

139

 end
elseif op == '1' % 'OR' gate
 if a ~= b
 % compute 'then' value
 if ite(F, 3) == -1
 ite(l, 3) = -1;
 elseif ite(F, 3) == 0
 ite(l, 3) = ite(G, 1);
 else
 F1 = ite(F, 3);
 G1 = G;
 Gindex(1) = 0;
 ite(l, 3) = length(ite) + 1;
 [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F1, G1);
 end
 % compute 'else' value
 if ite(F, 4) == -1
 ite(l, 4) = -1;
 elseif ite(F, 4) == 0
 ite(l, 4) = ite(G, 1);
 else
 F2 = ite(F, 4);
 G2 = G;
 Gindex(1) = 0;
 ite(l, 4) = length(ite) + 1;
 [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F2, G2);
 end
 elseif a == b
 % compute 'then' value
 if ite(F, 3) == -1
 ite(l, 3) = -1;
 elseif ite(F, 3) == 0
 ite(l, 3) = ite(G, 3);
 elseif ite(G, 3) == -1
 ite(l, 3) = -1;
 elseif ite(G, 3) == 0
 ite(l, 3) = ite(F, 3);
 else
 F1 = ite(F, 3);
 G1 = ite(G, 3);
 Gindex(1) = 0;
 ite(l, 3) = length(ite) + 1;
 [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F1, G1);
 end
 % compute 'else' value
 if ite(F, 4) == -1
 ite(l, 4) = -1;
 elseif ite(F, 4) == 0
 ite(l, 4) = ite(G, 4);
 elseif ite(G, 4) == -1
 ite(l, 4) = -1;
 elseif ite(G, 4) == 0
 ite(l, 4) = ite(F, 4);
 else

140

 F2 = ite(F, 4);
 G2 = ite(G, 4);
 Gindex(1) = 0;
 ite(l, 4) = length(ite) + 1;
 [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F2, G2);
 end
 end
end

extract.m
function [BDD] = extract(ite, s)
while ~isempty(s)
 Cindex = s.pop;
 BDD(Cindex,:) = ite(Cindex,:);
 if ite(Cindex, 3) > 0
 push(s, ite(Cindex, 3));
 end
 if ite(Cindex, 4) > 0
 push(s, ite(Cindex, 4));
 end
end

reduceTable.m
function [BDD] = reduceTable(BDD)
pBDD = BDD;
clear BDD;
l = length(pBDD);
r = 1;
for i = 1 : l
 if pBDD(i, 1) > 0
 cNode = pBDD(i, 1);
 BDD(r, 1) = r;
 BDD(r, 2) = pBDD(i, 2);
 BDD(r, 3) = pBDD(i, 3);
 BDD(r, 4) = pBDD(i, 4);
 for j = 1 : l
 if pBDD(j, 3) == cNode
 pBDD(j, 3) = r;
 end
 if pBDD(j, 4) == cNode
 pBDD(j, 4) = r;
 end
 end
 sz = size(BDD);
 for j = 1 : sz(1)
 if BDD(j, 3) == cNode
 BDD(j, 3) = r;
 end
 if BDD(j, 4) == cNode
 BDD(j, 4) = r;
 end
 end
 r = r + 1;

141

 end
end

% delete the duplicated row if existing
for k = size(BDD, 1) : -1 : 1
 if BDD(k,2) ~= 0
 index = find(BDD(:, 2)==BDD(k, 2));
 if ~isempty(index)
 for j = 1 : length(index)
 if index(j) ~= k
 if BDD(index(j), 3) == BDD(k, 3)
 if BDD(index(j), 4) == BDD(k, 4)
 BDD(find(BDD(:, 3)==index(j)),3) = k;
 BDD(find(BDD(:, 4)==index(j)),4) = k;
 BDD(index(j),:) = [0,0,0,0];
 end
 end
 end
 end
 end
 if BDD(k,3) > 0
 if BDD(k,3) == BDD(k,4)
 BDD(find(BDD(1:size(BDD, 1), 3)==k),3) = BDD(k,3);
 BDD(find(BDD(1:size(BDD, 1), 4)==k),4) = BDD(k,3);
 BDD(k,:) = [0,0,0,0];
 end
 end
 end
end
index0 = find(BDD(1:size(BDD, 1), 1)==0);
if ~isempty(index0)
 [BDD] = reduceTable(BDD);
end

DBDD.m
function [DBDD] = DBDD(BDD)
 szBDD = size(BDD);
 for b = 1 : szBDD(1)
 if BDD(b, 1) ~= 0
 DBDD(b, :) = BDD(b, :);
 if BDD(b, 3) == -1
 DBDD(b, 3) = 0;
 end
 if BDD(b, 4) == 0
 DBDD(b, 4) = -1;
 end
 end
 end
end

combinePMSBDD.m
function [cBDD] = combinePMSBDD(PhaseConf, Phase)
s = CStack();

142

len = size(PhaseConf);
cBDD = zeros(1,4);
for p = 1 : (len(2)+1)/2
 CurrPhase.name = PhaseConf{2*p-1};
 tempBDD = Phase(p).bdd;
 % assign phase order
 topnode(p) = 1000;
 for i = 1 : size(tempBDD,1)
 tempBDD(i, 2) = tempBDD(i, 2) + 100*p;
 if topnode(p) >= tempBDD(i,2)
 topnode(p) = tempBDD(i,2);
 end
 end
 % create cBDD to save combined BDD
 if cBDD(1,1) == 0
 cBDD = tempBDD;
 else
 sz = size(cBDD);
 rowN = sz(1);
 for j = 1 : size(tempBDD,1)
 cBDD(rowN + j, 1) = rowN + j;
 cBDD(rowN + j, 2) = tempBDD(j, 2);
 if tempBDD(j, 3) > 0
 cBDD(rowN + j, 3) = tempBDD(j, 3) + rowN;
 else
 cBDD(rowN + j, 3) = tempBDD(j, 3);
 end
 if tempBDD(j, 4) > 0
 cBDD(rowN + j, 4) = tempBDD(j, 4) + rowN;
 else
 cBDD(rowN + j, 4) = tempBDD(j, 4);
 end
 end
 F = find(cBDD(1:rowN,2)==topnode(p-1));
 G = find(cBDD(rowN+1:rowN+j,2)==topnode(p))+rowN;
 op = PhaseConf{(p-1)*2};
 [cBDD] = operatePDO(cBDD, op, F, G);

 % Extract lines representing combined BDD from cBDD array
 s.empty();
 a = topnode(p-1) - fix(topnode(p-1) / 100)*100;
 b = topnode(p) - fix(topnode(p) / 100)*100;
 if a == b
 if topnode(p-1) > topnode(p)
 topnode(p) = topnode(p-1);
 end
 elseif a < b
 topnode(p) = topnode(p-1);
 end

 rowNtop = size(cBDD,1);
 while cBDD(rowNtop, 2)~=topnode(p)
 rowNtop = rowNtop - 1;

143

 end
 push(s, rowNtop); % row number for top node of BDD
 [cBDD] = extract(cBDD, s);

 % reduce rows of BDD table
 [cBDD] = reduceTable(cBDD);
 end
end

operatePDO.m
function [BDD] = operatePDO(BDD, op, F, G)
l = size(BDD,1) + 1;
% Determine which one has priority
% F and G are row numbers, a and b are variable numbers meaning order
a.p = fix(BDD(F, 2) / 100); % phase
a.v = BDD(F, 2) - a.p * 100; % variable
b.p = fix(BDD(G, 2) / 100);
b.v = BDD(G, 2) - b.p * 100;

BDD(l, 1) = l;
BDD(l, 2) = BDD(F, 2);
if a.v == b.v
 if a.p > b.p
 temp1 = a;
 a = b;
 b = temp1;
 temp2 = F;
 F = G;
 G = temp2;
 end
 BDD(l, 2) = BDD(G, 2);
elseif a.v > b.v
 temp1 = a;
 a = b;
 b = temp1;
 temp2 = F;
 F = G;
 G = temp2;
 BDD(l, 2) = BDD(F, 2);
end

if (a.v == b.v) && (a.p ~= b.p) % phase dependent operation
 if op == '0' % 'AND' gate
 % compute 'then' value
 if BDD(G, 3) == -1
 BDD(l, 3) = BDD(F, 1);
 elseif BDD(G, 3) == 0
 BDD(l, 3) = 0;
 else
 F1 = BDD(F, 1);
 G1 = BDD(G, 3);
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F1, G1);

144

 end
 % compute 'else' value
 if BDD(F, 4) == -1
 BDD(l, 4) = BDD(G, 4);
 elseif BDD(F, 4) == 0
 BDD(l, 4) = 0;
 elseif BDD(G, 4) == -1
 BDD(l, 4) = BDD(F, 4);
 elseif BDD(G, 4) == 0
 BDD(l, 4) = 0;
 else
 F2 = BDD(F, 4);
 G2 = BDD(G, 4);
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F2, G2);
 end
 else % 'OR' gate
 % compute 'then' value
 if BDD(G, 3) == -1
 BDD(l, 3) = -1;
 elseif BDD(G, 3) == 0
 BDD(l, 3) = BDD(F, 1);
 else
 F1 = BDD(F, 1);
 G1 = BDD(G, 3);
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F1, G1);
 end
 % compute 'else' value
 if BDD(F, 4) == -1
 BDD(l, 4) = -1;
 elseif BDD(F, 4) == 0
 BDD(l, 4) = BDD(G, 4);
 elseif BDD(G, 4) == -1
 BDD(l, 4) = -1;
 elseif BDD(G, 4) == 0
 BDD(l, 4) = BDD(F, 4);
 else
 F2 = BDD(F, 4);
 G2 = BDD(G, 4);
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F2, G2);
 end
 end
else % conventional BDD operation
 if op == '0' % 'AND' gate
 if a.v ~= b.v
 % compute 'then' value
 if BDD(F, 3) == -1
 BDD(l, 3) = BDD(G, 1);
 elseif BDD(F, 3) == 0
 BDD(l, 3) = 0;
 else
 F1 = BDD(F, 3);

145

 G1 = G;
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F1, G1);
 end
 % compute 'else' value
 if BDD(F, 4) == -1
 BDD(l, 4) = BDD(G, 1);
 elseif BDD(F, 4) == 0
 BDD(l, 4) = 0;
 else
 F2 = BDD(F, 4);
 G2 = G;
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F2, G2);
 end
 elseif a.v == b.v
 % compute 'then' value
 if BDD(F, 3) == -1
 BDD(l, 3) = BDD(G, 3);
 elseif BDD(F, 3) == 0
 BDD(l, 3) = 0;
 elseif BDD(G, 3) == -1
 BDD(l, 3) = BDD(F, 3);
 elseif BDD(G, 3) == 0
 BDD(l, 3) = 0;
 else
 F1 = BDD(F, 3);
 G1 = BDD(G, 3);
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F1, G1);
 end
 % compute 'else' value
 if BDD(F, 4) == -1
 BDD(l, 4) = BDD(G, 4);
 elseif BDD(F, 4) == 0
 BDD(l, 4) = 0;
 elseif BDD(G, 4) == -1
 BDD(l, 4) = BDD(F, 4);
 elseif BDD(G, 4) == 0
 BDD(l, 4) = 0;
 else
 F2 = BDD(F, 4);
 G2 = BDD(G, 4);
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F2, G2);
 end
 end
 else % 'OR' gate
 if a.v ~= b.v
 % compute 'then' value
 if BDD(F, 3) == -1
 BDD(l, 3) = -1;
 elseif BDD(F, 3) == 0
 BDD(l, 3) = BDD(G, 1);

146

 else
 F1 = BDD(F, 3);
 G1 = G;
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F1, G1);
 end
 % compute 'else' value
 if BDD(F, 4) == -1
 BDD(l, 4) = -1;
 elseif BDD(F, 4) == 0
 BDD(l, 4) = BDD(G, 1);
 else
 F2 = BDD(F, 4);
 G2 = G;
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F2, G2);
 end
 elseif a.v == b.v
 % compute 'then' value
 if BDD(F, 3) == -1
 BDD(l, 3) = -1;
 elseif BDD(F, 3) == 0
 BDD(l, 3) = BDD(G, 3);
 elseif BDD(G, 3) == -1
 BDD(l, 3) = -1;
 elseif BDD(G, 3) == 0
 BDD(l, 3) = BDD(F, 3);
 else
 F1 = BDD(F, 3);
 G1 = BDD(G, 3);
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F1, G1);
 end
 % compute 'else' value
 if BDD(F, 4) == -1
 BDD(l, 4) = -1;
 elseif BDD(F, 4) == 0
 BDD(l, 4) = BDD(G, 4);
 elseif BDD(G, 4) == -1
 BDD(l, 4) = -1;
 elseif BDD(G, 4) == 0
 BDD(l, 4) = BDD(F, 4);
 else
 F2 = BDD(F, 4);
 G2 = BDD(G, 4);
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operatePDO(BDD, op, F2, G2);
 end
 end
 end
end

147

calURpmsbdd.m
function [UR] = calURpmsbdd(BDD, BE, PTD, PhaseConf)
 % set the order bottom-up to compute probability
 q = CQueue();
 sz = size(BDD);
 phase = fix(BDD(:,2) / 100);
 variable = BDD(:,2) - phase * 100;
 M = max(variable);
 temp = 0;
 for i = 2 : size(PTD,2)
 temp = temp + PTD(i);
 end
 PTD(1) = 8 - temp;
 while M ~= 0
 V = find(variable==M);
 m = min(phase(V));
 while m ~= 100
 rown = find(phase(V)==m);
 for i = 1 : length(rown)
 q.push(V(rown(i)));
 end
 phase(V(rown)) = 100;
 variable(V(rown)) = 0;
 m = min(phase(V));
 end
 M = max(variable);
 end

 % Compute probability of each node
 BDD(:,5) = -1;
 for i = 1 : size(BDD,1)
 if BDD(i, 3) == -1
 if BDD(i, 4) == 0
 BDD(i, 5) = 1;
 end
 end
 end
 while ~isempty(q)
 G.r = q.pop;
 G1.r = BDD(G.r,3);
 G2.r = BDD(G.r,4);
 G.p = fix(BDD(G.r, 2) / 100); % phase
 G.v = BDD(G.r, 2) - G.p * 100; % variable
 [prob] = PDprob(G, BE, PTD, PhaseConf);
 if G1.r > 0
 G1.p = fix(BDD(G1.r, 2) / 100); % phase
 G1.v = BDD(G1.r, 2) - G1.p * 100; % variable
 if G.v == G1.v
 H2.r = BDD(G1.r,4);
 if G2.r > 0
 if H2.r > 0
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) *

(BDD(G2.r,5)-BDD(H2.r,5));

148

 elseif H2.r < 0
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) *

(BDD(G2.r,5)-1);
 else
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) *

(BDD(G2.r,5)-0);
 end
 elseif G2.r < 0
 if H2.r > 0
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (1-

BDD(H2.r,5));
 elseif H2.r < 0
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (1-1);
 else
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (1-0);
 end
 else
 if H2.r > 0
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (0-

BDD(H2.r,5));
 elseif H2.r < 0
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (0-1);
 else
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (0-0);
 end
 end
 else
 if G2.r > 0
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) *

(BDD(G2.r,5)-BDD(G1.r,5));
 else
 BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) *

(power(G2.r,2)-BDD(G1.r,5));
 end
 end
 else
 if G2.r > 0
 BDD(G.r,5) = power(G1.r,2) + (1 - prob) * (BDD(G2.r,5)-

power(G1.r,2));
 else
 BDD(G.r,5) = power(G1.r,2) + (1 - prob) *

(power(G2.r,2)-power(G1.r,2));
 end
 end
 end
 UR = BDD(G.r,5);
end

function [prob] = PDprob(G, BE, PTD, PhaseConf)
 tPhase = BE(G.v).phase;
 tProb = BE(G.v).prob;
 variable = G.v;
 phase = G.p;

149

 phaseName = PhaseConf(G.p*2-1);
 phaseindex = find(strcmp(tPhase,phaseName));
 PhaseDependency = BE(variable).pd;
 if PhaseDependency < 1
 lamda = tProb(phaseindex);
 PhaseDuration = PTD(phase);
 prob = 1 - exp(-lamda*PhaseDuration);
 if PhaseDependency < 0
 prob = 1 - prob;
 end
 else
 temp = 1;
 if phase > 1
 for i = 1 : (phase - 1)
 index = find(strcmp(tPhase,PhaseConf{i*2-1}));
 lamda = tProb(index);
 PhaseDuration = PTD(i);
 temp = temp * exp(-lamda*PhaseDuration);
 end
 end
 lamda = tProb(phaseindex);
 PhaseDuration = PTD(phase);
 prob = 1 - temp + temp * (1 - exp(-lamda*PhaseDuration));
 end
end

createTmatrix.m
%% Create transition matrix
function [StateTransition] = createTmatrix(StateTransition, dt, Phases,

PST, cdrRateAC, pilotRate, AC, ratio)
 CdrRate = zeros(480,1);
 states = unique(StateTransition(:,1:2),'stable');
 % find phase = state
 for i = 1 : length(Phases)
 idx = find(strcmp(states(:,1), Phases{i}));
 if ~isempty(idx)
 states{idx, 2} = 1;
 end
 end

 % find end-states
 n = 0;
 for i = 1 : length(states)
 if isempty (find(strcmp(StateTransition(:,1), states{i})))
 n = n + 1;
 end_states{n,1} = states{i};
 states{i,2} = 3;
 else
 % intemediate state
 if isempty(states{i,2})
 states{i,2} = 2;
 end
 end

150

 end

 for i = 1 : length(states)
 if states{i,2} == 1 % CD&R state
 fState = states{i,1};
 PhaseNum = find(strcmp(Phases(:,1), fState));
 idx = find(strcmp(StateTransition(:,1), fState));
 for j = 1 : length(idx)
 tState = StateTransition{idx(j),2};
 if strcmp(fState, tState) % failure
 fidx = idx(j);
 elseif states{strcmp(states(:,1), tState),2}== 2
 sidx = idx(j);
 else
 tidx = idx(j); % transition between phases
 end
 end
 for j = 1 : size(PhaseNum, 1)
 cCol = (PST(1) - PST(PhaseNum(j)))/dt + 4;
 nCol = (PST(PhaseNum(j)) - PST(PhaseNum(j)+1))/dt;
 clock = PST(PhaseNum(j));
 for k = 1 : nCol
 if cdrRateAC(PhaseNum(j)) > 0
 [cdrRate] = ConflictDetectionProb(AC, clock);
 cdrRate = cdrRate * ratio;
 prob = 1 - exp(-cdrRate*dt/60);
 else
 prob = 0;
 end
 StateTransition{fidx, cCol} = 1-prob;
 StateTransition{sidx, cCol} = prob;
 cCol = cCol + 1;
 clock = clock - dt;
 end
 end
 StateTransition{tidx, cCol} = 1;
 elseif states{i,2} == 2 % intermediate state (pilot state)
 fState = states{i,1};
 idx = find(strcmp(StateTransition(:,1), fState));
 for j = 1 : length(idx)
 tState = StateTransition{idx(j),2};
 if strcmp(fState, tState)
 fidx = idx(j);
 elseif states{strcmp(states(:,1), tState),2} == 3
 sidx = idx(j);
 end
 end
 for k = 1 : size(Phases,1)
 PhaseNum = k;
 clock = PST(PhaseNum);
 cCol = (PST(1) - PST(PhaseNum))/dt + 5;
 pRate = pilotRate(k) / 60;
 prob = 1 - exp(-pRate*dt);

151

 while clock > PST(PhaseNum+1)
 StateTransition{fidx, cCol} = 1-prob;
 StateTransition{sidx, cCol} = prob;
 cCol = cCol + 1;
 clock = clock - dt;
 end

 if PhaseNum < size(Phases,1)
 if ~strcmp(Phases{PhaseNum,1}, Phases{PhaseNum+1,1})
 cCol = (PST(1) - PST(PhaseNum+1))/dt + 4;
 StateTransition{fidx, cCol} = [];
 StateTransition{sidx, cCol} = [];
 tidx = find(strcmp(StateTransition(idx,2),

Phases{PhaseNum+1,1}));
 StateTransition{idx(tidx), cCol} = 1;
 end
 else
 cCol = (PST(1) - PST(PhaseNum+1))/dt + 4;
 StateTransition{fidx, cCol} = [];
 StateTransition{sidx, cCol} = [];
 end
 clear tidx;
 end
 end
 end
end

ConflictDetectionProb.m
function [cdrRate] = ConflictDetectionProb(AC, clock)

% Paielli (1996)
 mps0 = [0; 100/6076.12; 500/6076.12; 1.1; 5];
 theta = (AC(1).heading - AC(2).heading) * pi/180;
 mps = mps0(2)*[cos(theta);sin(theta)];
 sc = 5; %separation standard for conflict (nm)
 Vr = AC(1).spd / 60; % reference (manned), nm/min
 Vs = AC(2).spd / 60; % stochastic (unmanned), nm/min
 R=[cos(theta) -sin(theta);sin(theta) cos(theta)];
 time = clock / 60; % (min)
 varRx=(AC(1).err(1) / 60)^2 * time^2;
 varRy=(AC(1).err(2) / 1.96)^2;% RNP X, 95% of time stay in +/- X nm
 varSx=(AC(2).err(1) / 60)^2 * time^2;
 varSy=(AC(2).err(2) / 1.96)^2;
 Ss=[varSx 0;0 varSy];
 Sr=[varRx 0;0 varRy];
 Qr=R*Sr*R';
 M = Ss + Qr;
 L11=sqrt(M(1,1));
 L21=M(2,1)/L11;
 L22=sqrt(M(2,2)-L21^2);
 L=[L11 0;L21 L22];
 mpsT = inv(L)*mps;
 dV = [Vs*cos(theta)-Vr; Vs*sin(theta)];
 dVt = inv(L)*dV;

152

 R1 = 1/sqrt(power(dVt(1),2)+power(dVt(2),2))*[dVt(1), dVt(2); -

dVt(2), dVt(1)];
 T=R1/L;
 W=inv(T);
 Wc=W'*W;
 a=Wc(1,1);
 b=Wc(1,2);
 c=Wc(2,2);
 yc=sc*sqrt(a/(a*c-b^2));
 pc=normcdf(-mpsT(2)+yc,0,1)-normcdf(-mpsT(2)-yc,0,1);

 cdrRate = -log(1-pc) / (clock/ 60); % /min
end

calDET.m
%% Dynamic Event Tree
function [DET, end_states, states] = calDET(transition)
 [nRow,nCol] = size(transition);
 states = unique(transition(:,1:2),'stable');
 transition = sortrows(transition,3);

 % find end-states
 n = 1;
 for i = 1 : length(states)
 if isempty (find(strcmp(transition(:,1), states{i})))
 end_states{n,1} = states{i};
 end_states{n,2} = i; % index of end_state in states array
 end_states{n,3} = 0;
 n = n + 1;
 end
 end
 numEndStates = n - 1;

 %% Create dynamic event tree
 DET = cell(length(states), nCol-2);
 [m,n] = size(DET);
 for i = 1 : m
 for j = 1 : n
 DET{i,j} = 0;
 end
 end
 DET{1,1} = 1;
 for i = 1 : nCol-3 % time
 Sindex = find(~cellfun('isempty', transition(:,i+3)));
 nState = unique(transition(Sindex,1:2),'stable');
 while ~isempty(nState)
 cState = nState{1,1};
 nState(1,:) = [];
 index = find(strcmp(transition(:,1), cState));
 Findex = find(strcmp(states, cState));
 Eindex = find(strcmp(end_states, cState));
 if isempty(Eindex)
 for j = 1 : length(index)

153

 PbTrans = transition{index(j),i+3};
 if PbTrans > 0
 toState = transition(index(j),2);
 Tindex = find(strcmp(states, toState));
 tAdv = transition{index(j),3
 DET{Tindex(1),i+tAdv} = DET{Tindex(1),i+tAdv} +

DET{Findex(1),i} * PbTrans;
 end
 end
 end
 end
 DET{end_states{2,2},i+1} = DET{end_states{2,2},i+1} +

DET{end_states{2,2},i};
 end
 %store end-state probabilities at time 0
 end_states{2,3} = DET{end_states{2,2},nCol-3}; % resolved
 end_states{1,3} = 1-DET{end_states{2,2},nCol-3};
end

Dependent.m
function [TotalFailureProb] = Dependent(AC, deltaT);

 % adjust activation time
 if length(AC) > 1
 [AC] = ComputeActivation(AC, deltaT);
 end

 % construct BDD and DBDD for each system
 BE = struct([]);
 faultTreeStruct = [AC(1).faultTree, AC(2).faultTree];
 [SystemBDD, BE] = constructBDD(faultTreeStruct, BE);
 for j = 1 : size(SystemBDD,2)
 [SystemBDD(j).dbdd] = DBDD(SystemBDD(j).bdd);
 end

 % combine CD&R phases into one
 [Combined] = CombineCDRphases(AC);

 % update phase name with combined one
 for i = 1 : size(BE,2)
 BE(i).phase = Combined.Phases;
 end

 % crete initial phasebdd with phase names
 phasebdd = struct('name',[],'bdd',[]);
 for i = 1 : size(Combined.Phases,1)
 phasebdd(i).name = Combined.Phases{i};
 end

 % each combination of available phases
 rowN = 1;
 nSystem = Combined.nSystems;

154

 for j = 0 : (pow2(nSystem)-1)
 b = dec2bin(j, nSystem); % [100], [010], ..., [110],[111]

 % checking if the sequence is possible (1: possible, 0:

impossible)
 [Seq] = CheckSequence(b, Combined);

 if Seq > 0
 % create 'phasebdd'
 [phasebdd, Combined] = CreatePhaseBDD(phasebdd, b,

SystemBDD, Combined);

 % weight prob. of each DET being used
 [cPMSBDD] = combinePMSBDD(Combined.PhaseConf, phasebdd);
 [UR] = calURpmsbdd(cPMSBDD, BE, Combined.PTD,

Combined.PhaseConf);
 % save weight probabilities
 result(rowN,2) = UR;

 % AC#1: create transition prob. and compute conditional

prob. of CD&R failures
 CDRavailabilityAC1 = cell2mat(Combined.systemAC1(:,2));
 [sTransProb] = createTmatrix(AC(1).StateTransition, deltaT,

Combined.systemAC1(:,1), Combined.PST, CDRavailabilityAC1,

Combined.pilotAC1, AC, AC(1).rate);
 [DETac1, EndStateAC1, statesAC1] = calDET(sTransProb);

 % AC#2: create transition prob. and compute conditional

prob. of CD&R failures
 idx = 1;
 while isempty(Combined.systemAC2{idx,2})
 idx = idx + 1;
 end
 CDRavailabilityAC2 =

cell2mat(Combined.systemAC2(idx:size(Combined.systemAC2,1),2));
 SystemAC2 =

Combined.systemAC2(idx:size(Combined.systemAC2,1),1);
 PST_AC2 = Combined.PST(idx:size(Combined.PST,1),1);
 pilotRateAC2=

Combined.pilotAC2(idx:size(Combined.pilotAC2,1),1);
 [sTransProb] = createTmatrix(AC(2).StateTransition, deltaT,

SystemAC2, PST_AC2, CDRavailabilityAC2, pilotRateAC2, AC, AC(2).rate);
 [DETac2, EndStateAC2, statesAC2] = calDET(sTransProb);
 Combination(rowN,:) =

[CDRavailabilityAC1',CDRavailabilityAC2'];

 % Conditional CD&R failure prob.
 result(rowN,1) = EndStateAC1{1,3}*EndStateAC2{1,3};
 rowN = rowN + 1;
 end
 clear PST_AC2;
 end

155

 % exclude cases where system fails during operation
 [result, Combination1] = ExcludeCombi(Combined.systems, Combination,

result);

 % CD&R failure prob.
 TotalFailureProb(1,1) = AC(1).heading - AC(2).heading;
 TotalFailureProb(1,2) = sum(result(:,1).*result(:,2));
end

CombineCDRphases.m
function [Combined] = CombineCDRphases(pair)
 System_A = pair(1).system;
 System_B = pair(2).system;
 Activation_A = [pair(1).time_horizon; 0];
 Activation_B = [pair(2).time_horizon; 0];
 Pilot_A = pair(1).pilotRate;
 Pilot_B = pair(2).pilotRate;
 tempCombined = cell(1,3);
 p = 1;
 i = 1;
 j = 1;
 while i <= size(Activation_A,1)
 if Activation_A(i) > Activation_B(j)
 tempCombined{p,1} = Activation_A(i);
 tempCombined(p,2) = System_A(i);
 if p > 1
 tempCombined(p,3) = tempCombined(p-1,3);
 tempCombined{p,5} = tempCombined{p-1,5};
 else
 tempCombined{p,3} = 'n/a';
 tempCombined{p,5} = 0;
 end
 tempCombined{p,4} = Pilot_A(i);
 i = i + 1;
 elseif Activation_A(i) < Activation_B(j)
 tempCombined{p,1} = Activation_B(j);
 if p > 1
 tempCombined(p,2) = tempCombined(p-1,2);
 tempCombined{p,4} = tempCombined{p-1,4};
 else
 tempCombined{p,2} = 'n/a';
 end
 tempCombined(p,3) = System_B(j);
 tempCombined{p,5} = Pilot_B(j);
 j = j + 1;
 elseif Activation_A(i) == Activation_B(j)
 if Activation_A(i) > 0
 tempCombined{p,1} = Activation_A(i);
 tempCombined(p,2) = System_A(i);
 tempCombined(p,3) = System_B(j);
 tempCombined{p,4} = Pilot_A(i);
 tempCombined{p,5} = Pilot_B(j);

156

 end
 i = i + 1;
 j = j + 1;
 end
 p = p + 1;
 end
 Combined.PST = cell2mat([tempCombined(:,1); 0]);
 Combined.PST = fix(Combined.PST);
 for i = 2 : size(Combined.PST,1)
 Combined.PTD(i-1) = (Combined.PST(i-1)-Combined.PST(i))/60;
 end
 % create cell array of systems for combined phase structure
 Combined.systemAC1 = tempCombined(:,2);
 Combined.systemAC2 = tempCombined(:,3);
 Combined.pilotAC1 = cell2mat(tempCombined(:,4));
 Combined.pilotAC2 = cell2mat(tempCombined(:,5));
 Combined.systems=[Combined.systemAC1;Combined.systemAC2];
 for i = size(Combined.systems,1):-1:1
 if strcmp(Combined.systems{i},'n/a')
 Combined.systems(i)=[];
 end
 end
 Combined.nSystems = size(Combined.systems,1);
 n = 1;
 for i = 1 : size(tempCombined,1)
 % create cell array of phase names for combined phase structure
 if ~strcmp(tempCombined{i,3}, 'n/a')
 Str(1) = string(tempCombined(i,2));
 Str(2) = string(tempCombined(i,3));
 Combined.Phases{i,1} = convertStringsToChars(join(Str,

"/"));
 else
 Combined.Phases(i,1) = tempCombined(i,2);
 end
 if i == 1
 Combined.PhaseConf = Combined.Phases(i,1);
 n = n + 1;
 else
 Combined.PhaseConf(1,n) = {'0'};
 n = n + 1;
 Combined.PhaseConf(1,n) = Combined.Phases(i,1);
 n = n + 1;
 end
 end
end

CheckSequence.m
function [Seq] = CheckSequence(b, Combined)
 Seq = 1; % initial value = possible
 idx = 1; % tracking phases
 while idx < Combined.nSystems
 if strcmp(Combined.systems{idx}, Combined.systems{idx+1})
 if b(idx) < b(idx+1)

157

 Seq = 0;
 break;
 end
 end
 idx = idx + 1;
 end
end

CreatePhaseBDD.m
function [phasebdd, Combined] = CreatePhaseBDD(phasebdd, b, SystemBDD,

Combined)
nSys1 = size(Combined.systemAC1, 1);
nSys2 = size(Combined.systemAC2, 1);
n = 1;
for i = 1 : nSys1
 if ~strcmp(Combined.systemAC1{i,1}, 'n/a')
 Combined.systemAC1{i,2} = str2num(b(n));
 n = n + 1;
 end
end
for i = 1 : nSys2
 if ~strcmp(Combined.systemAC2{i,1}, 'n/a')
 Combined.systemAC2{i,2} = str2num(b(n));
 n = n + 1;
 end
end
if n > Combined.nSystems + 1
 disp('error');
end
for i = 1 : size(Combined.Phases, 1)
 x = Combined.systemAC1{i,1};
 y = Combined.systemAC2{i,1};
 if strcmp({y}, 'n/a')
 idx = find(strcmp({SystemBDD.name}, {x}));
 if Combined.systemAC1{i,2} < 1
 phasebdd(i).bdd = SystemBDD(idx).bdd;
 else
 phasebdd(i).bdd = SystemBDD(idx).dbdd;
 end
 else
 idx0 = find(strcmp({SystemBDD.name}, {x}));
 idx1 = find(strcmp({SystemBDD.name}, {y}));
 sysTOph = {x, '0', y};
 systembdd(1).name = x;
 systembdd(2).name = y;
 if Combined.systemAC1{i,2} < 1
 systembdd(1).bdd = SystemBDD(idx0).bdd;
 else
 systembdd(1).bdd = SystemBDD(idx0).dbdd;
 end
 if Combined.systemAC2{i,2} < 1
 systembdd(2).bdd = SystemBDD(idx1).bdd;
 else

158

 systembdd(2).bdd = SystemBDD(idx1).dbdd;
 end
 [phasebdd(i).bdd] = combineBDD(sysTOph, systembdd);
 end
end

combineBDD.m
function [cBDD] = combineBDD(PhaseConf, Phase)
s = CStack();
len = size(PhaseConf);
cBDD = zeros(1,4);
for p = 1 : (len(2)+1)/2
 CurrPhase.name = PhaseConf{2*p-1};
 index = find(strcmp({Phase.name},CurrPhase.name));
 tempBDD = Phase(index).bdd;
 % assign phase order
 topnode(p) = 1000;
 for i = 1 : size(tempBDD,1)
 if topnode(p) >= tempBDD(i,2)
 topnode(p) = tempBDD(i,2);
 end
 end
 % create cBDD to save combined BDD
 if cBDD(1,1) == 0
 cBDD = tempBDD;
 else
 sz = size(cBDD);
 rowN = sz(1);
 for j = 1 : size(tempBDD,1)
 cBDD(rowN + j, 1) = rowN + j;
 cBDD(rowN + j, 2) = tempBDD(j, 2);
 if tempBDD(j, 3) > 0
 cBDD(rowN + j, 3) = tempBDD(j, 3) + rowN;
 else
 cBDD(rowN + j, 3) = tempBDD(j, 3);
 end
 if tempBDD(j, 4) > 0
 cBDD(rowN + j, 4) = tempBDD(j, 4) + rowN;
 else
 cBDD(rowN + j, 4) = tempBDD(j, 4);
 end
 end
 F = find(cBDD(1:rowN,2)==topnode(p-1));
 G = find(cBDD(rowN+1:rowN+j,2)==topnode(p))+rowN;
 op = PhaseConf{(p-1)*2};
 [cBDD] = operateBDD(cBDD, op, F, G);

 % Extract lines representing combined BDD from cBDD array
 s.empty();
 a = topnode(p-1);
 b = topnode(p);
 if a == b
 if topnode(p-1) > topnode(p)

159

 topnode(p) = topnode(p-1);
 end
 elseif a < b
 topnode(p) = topnode(p-1);
 end

 rowNtop = size(cBDD,1);
 while cBDD(rowNtop, 2)~=topnode(p)
 rowNtop = rowNtop - 1;
 end
 push(s, rowNtop); % row number for top node of BDD
 [cBDD] = extract(cBDD, s);

 % reduce rows of BDD table
 [cBDD] = reduceTable(cBDD);
 end
end

operateBDD.m
function [BDD] = operateBDD(BDD, op, F, G)
l = size(BDD,1) + 1;
% Determine which one has priority
% F and G are row numbers, a and b are variable numbers meaning order
a.v = BDD(F, 2); % variable
b.v = BDD(G, 2);
BDD(l, 1) = l;
BDD(l, 2) = BDD(F, 2);
if a.v > b.v
 temp1 = a;
 a = b;
 b = temp1;
 temp2 = F;
 F = G;
 G = temp2;
 BDD(l, 2) = BDD(F, 2);
end

% conventional BDD operation
if op == '0' % 'AND' gate
 if a.v ~= b.v
 % compute 'then' value
 if BDD(F, 3) == -1
 BDD(l, 3) = BDD(G, 1);
 elseif BDD(F, 3) == 0
 BDD(l, 3) = 0;
 else
 F1 = BDD(F, 3);
 G1 = G;
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operateBDD(BDD, op, F1, G1);
 end
 % compute 'else' value
 if BDD(F, 4) == -1

160

 BDD(l, 4) = BDD(G, 1);
 elseif BDD(F, 4) == 0
 BDD(l, 4) = 0;
 else
 F2 = BDD(F, 4);
 G2 = G;
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operateBDD(BDD, op, F2, G2);
 end
 elseif a.v == b.v
 % compute 'then' value
 if BDD(F, 3) == -1
 BDD(l, 3) = BDD(G, 3);
 elseif BDD(F, 3) == 0
 BDD(l, 3) = 0;
 elseif BDD(G, 3) == -1
 BDD(l, 3) = BDD(F, 3);
 elseif BDD(G, 3) == 0
 BDD(l, 3) = 0;
 else
 F1 = BDD(F, 3);
 G1 = BDD(G, 3);
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operateBDD(BDD, op, F1, G1);
 end
 % compute 'else' value
 if BDD(F, 4) == -1
 BDD(l, 4) = BDD(G, 4);
 elseif BDD(F, 4) == 0
 BDD(l, 4) = 0;
 elseif BDD(G, 4) == -1
 BDD(l, 4) = BDD(F, 4);
 elseif BDD(G, 4) == 0
 BDD(l, 4) = 0;
 else
 F2 = BDD(F, 4);
 G2 = BDD(G, 4);
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operateBDD(BDD, op, F2, G2);
 end
 end
else % 'OR' gate
 if a.v ~= b.v
 % compute 'then' value
 if BDD(F, 3) == -1
 BDD(l, 3) = -1;
 elseif BDD(F, 3) == 0
 BDD(l, 3) = BDD(G, 1);
 else
 F1 = BDD(F, 3);
 G1 = G;
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operateBDD(BDD, op, F1, G1);
 end

161

 % compute 'else' value
 if BDD(F, 4) == -1
 BDD(l, 4) = -1;
 elseif BDD(F, 4) == 0
 BDD(l, 4) = BDD(G, 1);
 else
 F2 = BDD(F, 4);
 G2 = G;
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operateBDD(BDD, op, F2, G2);
 end
 elseif a.v == b.v
 % compute 'then' value
 if BDD(F, 3) == -1
 BDD(l, 3) = -1;
 elseif BDD(F, 3) == 0
 BDD(l, 3) = BDD(G, 3);
 elseif BDD(G, 3) == -1
 BDD(l, 3) = -1;
 elseif BDD(G, 3) == 0
 BDD(l, 3) = BDD(F, 3);
 else
 F1 = BDD(F, 3);
 G1 = BDD(G, 3);
 BDD(l, 3) = size(BDD,1) + 1;
 [BDD] = operateBDD(BDD, op, F1, G1);
 end
 % compute 'else' value
 if BDD(F, 4) == -1
 BDD(l, 4) = -1;
 elseif BDD(F, 4) == 0
 BDD(l, 4) = BDD(G, 4);
 elseif BDD(G, 4) == -1
 BDD(l, 4) = -1;
 elseif BDD(G, 4) == 0
 BDD(l, 4) = BDD(F, 4);
 else
 F2 = BDD(F, 4);
 G2 = BDD(G, 4);
 BDD(l, 4) = size(BDD,1) + 1;
 [BDD] = operateBDD(BDD, op, F2, G2);
 end
 end
end

ExcludeCombi.m
function [result, cases] = ExcludeCombi(systems, cases, result)
n = size(systems,1);
for i = 1 : n-1
 if strcmp(systems{i}, systems{i+1})
 m = size(cases, 1);
 j = 1;
 while j <= m

162

 if cases(j, i) > cases(j, i+1)
 a = cases(j, :);
 row = 0;
 l = i+2;
 k = j+1;
 while k <= m
 if l <= n
 for p = l : n
 if cases(j,p) ~= cases(k,p)
 break;
 end
 end
 if p == n
 break;
 end
 k = k + 1;
 else
 if cases(j,1:i) == cases(k,1:i)
 break;
 else
 k = k + 1;
 end
 end
 end
 for l = 2 : size(result,2) %2%
 result(k,l) = result(k,l) + result(j,l);
 end
 result(j,:) = [];
 cases(j,:) = [];
 m = size(cases, 1);
 else
 j = j + 1;
 end
 end
 end
end

CQueue.m
classdef CQueue < handle
% CQueue define a queue data strcuture
% Copyright: zhang@zhiqiang.org, 2010.
% url: http://zhiqiang.org/blog/it/matlab-data-structures.html

 properties (Access = private)
 buffer % a cell, to maintain the data
 beg % the start position of the queue
 rear % the end position of the queue
 % the actually data is buffer(beg:rear-1)
 end

 properties (Access = public)
 capacity % ???2
 end

163

 methods
 function obj = CQueue(c) % ?
 if nargin >= 1 && iscell(c)
 obj.buffer = [c(:); cell(numel(c), 1)];
 obj.beg = 1;
 obj.rear = numel(c) + 1;
 obj.capacity = 2*numel(c);
 elseif nargin >= 1
 obj.buffer = cell(100, 1);
 obj.buffer{1} = c;
 obj.beg = 1;
 obj.rear = 2;
 obj.capacity = 100;
 else
 obj.buffer = cell(1000, 1);
 obj.capacity = 1000;
 obj.beg = 1;
 obj.rear = 1;
 end
 end

 function s = size(obj) % ?
 if obj.rear >= obj.beg
 s = obj.rear - obj.beg;
 else
 s = obj.rear - obj.beg + obj.capacity;
 end
 end

 function b = isempty(obj) % return true when the queue is empty
 b = ~logical(obj.size());
 end

 function s = empty(obj) % clear all the data in the queue
 s = obj.size();
 obj.beg = 1;
 obj.rear = 1;
 end

 function push(obj, el) % ????
 if obj.size >= obj.capacity - 1
 sz = obj.size();
 if obj.rear >= obj.front
 obj.buffer(1:sz) = obj.buffer(obj.beg:obj.rear-1);
 else
 obj.buffer(1:sz) = obj.buffer([obj.beg:obj.capacity

1:obj.rear-1]);
 end
 obj.buffer(sz+1:obj.capacity*2) = cell(obj.capacity*2-

sz, 1);
 obj.capacity = numel(obj.buffer);
 obj.beg = 1;

164

 obj.rear = sz+1;
 end
 obj.buffer{obj.rear} = el;
 obj.rear = mod(obj.rear, obj.capacity) + 1;
 end

 function el = front(obj) % ??
 if obj.rear ~= obj.beg
 el = obj.buffer{obj.beg};
 else
 el = [];
 warning('CQueue:NO_DATA', 'try to get data from an

empty queue');
 end
 end

 function el = back(obj) % ???

 if obj.rear == obj.beg
 el = [];
 warning('CQueue:NO_DATA', 'try to get data from an empty

queue');
 else
 if obj.rear == 1
 el = obj.buffer{obj.capacity};
 else
 el = obj.buffer{obj.rear - 1};
 end
 end

 end

 function el = pop(obj) % ?
 if obj.rear == obj.beg
 error('CQueue:NO_Data', 'Trying to pop an empty queue');
 else
 el = obj.buffer{obj.beg};
 obj.beg = obj.beg + 1;
 if obj.beg > obj.capacity, obj.beg = 1; end
 end
 end

 function remove(obj) % ?
 obj.beg = 1;
 obj.rear = 1;
 end

 function display(obj) % ?
 if obj.size()
 if obj.beg <= obj.rear
 for i = obj.beg : obj.rear-1

165

 disp([num2str(i - obj.beg + 1) '-th element of

the stack:']);
 disp(obj.buffer{i});
 end
 else
 for i = obj.beg : obj.capacity
 disp([num2str(i - obj.beg + 1) '-th element of

the stack:']);
 disp(obj.buffer{i});
 end
 for i = 1 : obj.rear-1
 disp([num2str(i + obj.capacity - obj.beg + 1)

'-th element of the stack:']);
 disp(obj.buffer{i});
 end
 end
 else
 disp('The queue is empty');
 end
 end

 function c = content(obj) % ??
 if obj.rear >= obj.beg
 c = obj.buffer(obj.beg:obj.rear-1);
 else
 c = obj.buffer([obj.beg:obj.capacity 1:obj.rear-1]);
 end
 end
 end
end

CStack.m
classdef CStack < handle
% CStack define a stack data strcuture
% Copyright: zhang@zhiqiang.org, 2010.
% url: http://zhiqiang.org/blog/it/matlab-data-structures.html

 properties (Access = private)
 buffer % ?cell??
 cur % ???, or the length of the stack
 capacity % ???2
 end

 methods
 function obj = CStack(c)
 if nargin >= 1 && iscell(c)
 obj.buffer = c(:);
 obj.cur = numel(c);
 obj.capacity = obj.cur;
 elseif nargin >= 1
 obj.buffer = cell(100, 1);
 obj.cur = 1;
 obj.capacity =100;

166

 obj.buffer{1} = c;
 else
 obj.buffer = cell(100, 1);
 obj.capacity = 100;
 obj.cur = 0;
 end
 end

 function s = size(obj)
 s = obj.cur;
 end

 function remove(obj)
 obj.cur = 0;
 end

 function b = empty(obj)
 b = obj.cur;
 obj.cur = 0;
 end

 function b = isempty(obj)
 b = ~logical(obj.cur);
 end

 function push(obj, el)
 if obj.cur >= obj.capacity
 obj.buffer(obj.capacity+1:2*obj.capacity) =

cell(obj.capacity, 1);
 obj.capacity = 2*obj.capacity;
 end
 obj.cur = obj.cur + 1;
 obj.buffer{obj.cur} = el;
 end

 function el = top(obj)
 if obj.cur == 0
 el = [];
 warning('CStack:No_Data', 'trying to get top element of

an emtpy stack');
 else
 el = obj.buffer{obj.cur};
 end
 end

 function el = pop(obj)
 if obj.cur == 0
 el = [];
 warning('CStack:No_Data', 'trying to pop element of an

emtpy stack');
 else
 el = obj.buffer{obj.cur};

167

 obj.cur = obj.cur - 1;
 end
 end

 function display(obj)
 if obj.cur
 for i = 1:obj.cur
 disp([num2str(i) '-th element of the stack:']);
 disp(obj.buffer{i});
 end
 else
 disp('The stack is empty');
 end
 end

 function c = content(obj)
 c = obj.buffer(1:obj.cur);
 end
 end
end

168

REFERENCES

Acosta, C. and N. Siu. (1993). Dynamic event trees in accident sequence analysis:

application to steam generator tube rupture. Reliability Engineering and System

Safety, 41, pp. 135-154

Aldemir, T. (2013). A survey of dynamic methodologies for probabilistic safety

assessment of nuclear power plants. Annals of Nuclear Energy, 52, pp. 113-124

Andrews, J. and S. Dunnett. (2000). Event-tree analysis using binary decision diagrams.

IEEE Transactions on Reliability, 49, pp. 230-238

Andrews, J., J. Welch, and H. Erzberger. (2005). Safety analysis for advanced separation

concepts. Proceedings of 6th USA/Europe ATM R&D Seminar, Baltimore, MD.

Arino, T., K. Carpenter, S. Chabert, H. Hutchinson, T. Miquel, B. Raynaud, K. Rigotti,

and E. Vallauri. (2002). ACAS analysis programme ACASA project; Work

Package 1: Final report on studies on the safety of ACAS Ⅱ in Europe.

ACASA/WP-1.8/210D.

Belle, A., J. Shortle, and A. Yousefi (2012). Estimation of potential conflict rates as a

function of sector loading. Proceedings of International Conference on Research

in Air Transportation (ICRAT), Berkeley, CA.

Bilimoria, K., B. Sridhar, G. Chatterji, K. Sheth, and S. Grabbe (2000). FACET: Future

ATM concepts evaluation tool. Proceedings of 3rd USA/Europe ATM R&D

Seminar, Napoli, Italy.

Blom, H.A.P., G.J. Bakker, P.J.G. Blanker, J. Daams, M.H.C. Everdij and M.B.

Klompstra (1999). Accident risk assessment for advanced ATM. NLR-TP-99015

Blom, H.A.P., M.B. Klompstra, and G.J. Bakker (2003). Accident risk assessment of

simultaneous converging instrument approaches. NLR-TP-2003-557

Blom, H.A.P., G.J. Bakker, B.K. Obbink, and M.B. Klompstra (2006). Free flight safety

risk modeling and simulation. NLR-TP-2006-290

169

Blum, D.M., D. Thipphavong, T.L. Rentas, Y. He, X. Wang, and E. Pate-Cornell (2010).

Safety analysis of the advanced airspace concept using Monte Carlo simulation.

AIAA Guidance, Navigation, and Control Conference, Toronto, Canada.

Borener, S., S. Trajkov, and P. Balakrishna. (2012). Design and development of an

Integrated Safety Assessment Model for NextGen. International Annual

Conference of the American Society for Engineering Management.

Cojazzi, G. (1996). The DYLAM approach for the dynamic reliability analysis of systems.

Reliability Engineering and System Safety, 52, pp. 279-296

Devooght, J. and C. Smidts. (1996). Probabilistic dynamics as a tool for dynamic PSA.

Reliability Engineering and System Safety, 52, pp. 185-196

Dugan, J.B., S.J. Bavuso and M.A. Boyd. (1990). Fault trees and sequence

dependencies. Annual Proceedings on Reliability and Maintainability

Symposium, Los Angeles, CA, USA.

Endoh, S. (1982). Aircraft collision models. Flight Transportation Laboratory,

Massachusetts Institute of Technology, R82-2.

Erzberger, H. (2001). The automated airspace concept. Proceedings of the 4th

USA/Europe ATM R&D Seminar, Santa Fe, NM.

Erzberger, H. (2004). Transforming the NAS: The Next Generation Air Traffic Control

System. NASA Ames Research Center, NASA/TP–2004-212801.

Erzberger, H., T.A. Lauderdale, and Y-C. Chu (2012). Automated conflict resolution,

arrival management, and weather avoidance for air traffic management. Journal

of Airspace Engineering, 226, pp. 930-949.

Esary, J.D., and H. Ziehms. (1975). Reliability analysis of phased missions. Technical

Report (NPS55Ey75021), Naval Postgraduate School.

FAA. (2011). Introduction to TCAS Ⅱ (Version 7.1)

FAA. (2018). FAA aerospace forecasts fiscal years 2018 – 2038

FAA. (2018). https://www.faa.gov/nextgen/

FAA. (2019). Safety management system manual. Air

Farley, T., M. Kupfer, and H. Erzberger. (2007). Automated conflict resolution: A

simulation evaluation under high demand including merging arrivals.

https://www.faa.gov/nextgen/

170

Proceedings of AIAA Aviation Technology, Integration and Operations

Conference (ATIO), Belfast, Northern Ireland.

Fasano, G., D. Accado, A. Moccia, and D. Moroney. (2016). Sense and avoid for

unmanned aircraft systems. IEEE Aerospace and Electronic Systems Magazine,

31(11), pp. 82-110.

Ferreira, R.B., D.M. Baum, E.C.P. Neto, M.R. Martins, J.R. Almeida Jr., P.S.Cugnasca,

and J.B. Camargo Jr. (2018). A risk analysis of unmanned aircraft systems (UAS)

integration into non-segregate airspace. 2018 International Conference on

Unmanned Aircraft Systems (ICUAS), Dallas, TX, pp. 42-51.

Gulati, R. and J.B. Dugan. (1997). A modular approach for analyzing static and dynamic

fault trees," Annual Reliability and Maintainability Symposium, Philadelphia,

PA, USA.

Hofer, E., M. Kloos, B. Krzykacz-Hausmann, J. Peschke, and M. Sonnenkalb. (2004).

Dynamic Event Trees for Probabilistic Safety Analysis. GRS, Garsching,

Germany.

Jenie, Y.I., E. van Kampen, J. Ellerbroek, and J.M. Hoekstra (2018), Safety assessment of

a UAV CD&R system in high density airspace using Monte Carlo simulations.

IEEE Transactions on Intelligent Transportation Systems, 19(8), pp. 2686-2695.

Kim, K. and K.S. Park. (1994). Phased-mission system reliability under Markov

environment. IEEE Transactions on Reliability, 43(2), pp. 301-309.

Kuchar, J.K., and L.C. Yang (2000), A review of conflict detection and resolution

modeling methods. IEEE Transactions on Intelligent Transportation Systems,

1(4), pp. 179-189.

Kuchar, J., J. Andrews, A. Drumm, T. Hall, V. Heinz, S. Thompson, and J. Welch.

(2004). A Safety analysis process for the traffic alert and collision avoidance

system (TCAS) and see-and-avoid systems on remotely piloted vehicles. AIAA 3rd

"Unmanned Unlimited" Technical Conference, Workshop and Exhibit. Chicago,

IL.

Kuchar, J.K. (2005). Safety analysis methodology for unmanned aerial vehicles (UAV)

collision avoidance systems. Proceedings of 6th USA/Europe ATM R&D Seminar,

Baltimore, MD.

Lacher, A.R., D.R. Maroney, and A.D. Zeitlin. (2007). Unmanned aircraft collision

avoidance technology assessment and evaluation methods. Proceedings of 7th

USA/Europe ATM R&D Seminar, Barcelona, Spain.

171

Lin X., N.L. Fulton, and M. Westcott. (2009). Target level of safety measures in air

transportation - Review, validation and recommendations. Proceedings of the

IASTED International Congress on Advances in Management Science and Risk

Assessment (AMSRA 2009), Beijing, China. pp. 222–662

Muñoz, C., A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, and M. Consiglio. (2015).

DAIDALUS: Detect and avoid alerting logic for unmanned systems. 2015

IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), Prague, Czech

Republic.

Noh, S., and J. Shortle. (2015). Sensitivity analysis of event sequence diagrams for

aircraft accident scenarios. 2015 IEEE/AIAA 34th Digital Avionics Systems

Conference (DASC), Prague, Czech Republic.

Podofillini, L. and V.N. Dang. (2012). Conventional and dynamic safety analysis:

Comparison on a chemical batch reactor. Reliability Engineering and System

Safety, 106, pp. 146-159

Rausand, M. and A. Hoyland. (2004). System reliability theory; models and statistical

methods. Wiley, New York.

Rauzy, A. (1993). New alorithms for fault trees analysis. Reliability Engineering and

System Safety, 40, pp. 203-211

Rauzy, A. (2008). Binary decision diagrams for reliability studies. In Handbook of

Performability Engineering, K. Misra (ed.), Springer

Reich, P.G. (1966). Analysis of long-range air traffic systems: Separation standards‒Ⅰ.

Journal of Navigation, 19(1), pp. 88-98

Shortle, J., Y. Xie, C.H. Chen, and G.L. Donohue (2004). Simulating collision

probabilities of landing airplanes at nontowered airports. Simulation, 80(1), pp.

21-31.

Shortle, J., L. Sherry, A. Yousefi, and R. Xie. (2012). Safety and sensitivity analysis of

the advanced airspace concept for NextGen. Proceedings of the Integrated

Communication, Navigation, and Surveillance Conference (ICNS), Herndon, VA.

Shortle, J., S. Noh, and L. Sherry. (2017). Collision risk analysis for alternate airspace

architecture. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference

(DASC), St. Petersburg, FL.

172

Sinnamon, R. and J. Andrews. (1997). Improved accuracy in quantitative fault tree

analysis. Quality and Reliability Engineering International, 13, pp. 285-292

Sinnamon, R. and J. Andrews. (1997). Improved efficiency in qualitative fault tree

analysis. Quality and Reliability Engineering International, 13, pp. 293-298

Siu, N. (1994). Risk assessment for dynamic systems: An overview. Reliability

Engineering and System Safety, 43, pp. 43-73

Sweet, D.N., V. Manikonda, J.S. Aronson, K. Roth, and M. Blake (2002). Fast-time

simulation system for analysis of advanced air transportation concepts.

Proceedings of AIAA Modeling and Simulation Technologies Conference and

Exhibit, Monterey, CA

Vesely, W.E., F.F. Goldberg, N.H. Robers, and D.F. Haasl (1981). Fault tree handbook.

U.S. Nuclear Regulatory Commision/NUREG-0492

Walden, D.D., G.J. Roedler, K. Gorsberg, R.D. Hamelin, and T.M. Shortell. (2015).

System engineering handbook: a guide for system life cycle processes and

activities. Fourth edition, John Wiley & Sons, New Jersey.

Wieland, F. (2016). The drones are coming: Is the National Airspace System prepared?

Journal of Air Traffic Control, 58(2), pp. 24-30

Wieland, F. and Y. Ryabov (2017). Future architectures for autonomous National

Airspace System control: Concept of operation and evaluation. 2017 IEEE/AIAA

36th Digital Avionics Systems Conference (DASC), St. Petersburg, FL.

Wing, D.J. and W.B. Cotton (2011). Autonomous flight rules: A concept for self-

separation in U.S. domestic airspace. NASA/TP–2011-217174

Xing, L. and J.B. Dugan. (2002). Analysis of generalized phased-mission system

reliability, performance, and sensitivity. IEEE Transactions on Reliability, 51(2),

pp. 199-211

Xing, L. and S. Amari. (2008). Fault tree analysis. In Handbook of Performability

Engineering, K. Misra (ed.), Springer

Xing, L. and S. Amari. (2008). Reliability of phased-mission systems. In Handbook of

Performability Engineering, K. Misra (ed.), Springer

Xing, L. and G. Levitin. (2013). BDD-based reliability evaluation of phased-mission

systems with internal/external common-cause failures. Reliability Engineering

and System Safety, 112, pp. 145-153.

173

Yu, X. and Y. Zhang. (2015). Sense and avoid technologies with applications to

unmanned aircraft systems: Review and prospects. Progress in Aerospace

Sciences, 74, pp. 152-166.

Zang, X., H. Sun, and K. Trivedi. (1999). A BDD-based algorithm for reliability analysis

of phased-mission systems. IEEE Transactions on Reliability, 48(1), pp. 50-60.

Zhang, Y., J. Shortle, and L. Sherry. (2015). Methodology for collision risk assessment of

an airspace flow corridor concept. Reliability Engineering and System Safety,

142, pp. 444-455.

Zhang, X., Y. Liu, Y. Zhang, X. Guan, D. Delahaye, and L. Tang. (2018). Safety

assessment and risk estimation for unmanned aerial vehicles operating in

national airspace system. Journal of Advanced Transportation.

https://doi.org/10.1155/2018/4731585

https://doi.org/10.1155/2018/4731585

174

BIOGRAPHY

Seungwon Noh received Bachelor of Science in Air Transportation from Korea

Aerospace University, Korea, in 2005. He received Master of City Planning in

Environmental Planning from Seoul National University, Korea, in 2007 and Master of

Science in Operations Research from George Mason University, Virginia, in 2013.

