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ABSTRACT 

METHODOLOGY FOR COLLISION RISK ASSESSMENT OF AIRCRAFT WITH 

DIVERSE COLLISION AVOIDANCE CAPABILITIES 

Seungwon Noh, Ph.D. 

George Mason University, 2020 

Dissertation Director: Dr. John Shortle 

 

This dissertation proposes a general dynamic event tree (DET) framework and evaluation 

methodology to assess collision risk for a variety of aircraft types and collision avoidance 

capabilities. The proposed DET framework consists of three levels – a high-level 

dynamic event tree that models multiple conflict detection and resolution (CD&R) 

systems that operate in a sequence to prevent a collision, a generic sub-tree modelling 

more specific sequences of events within each CD&R phase to resolve a conflict, and 

fault trees which model the component-based failure logic of each CD&R system. A 

solution approach is proposed combining analysis methodologies for dynamic event 

trees, phased-mission systems, and binary decision diagrams. The approach captures 

several different behaviors influencing collision risk such as time-varying conflict 

detection rates, pilot delays, component failures, and conflict geometry. The approach 

allows for ease of creating and modifying a model as well as quick evaluation.  
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To illustrate the methodology, case studies are developed for collision risk between 

various types of aircraft with different collision avoidance capabilities in a hypothetical 

future airspace, e.g., Autonomous Flight Rules (AFR) and the Advanced Airspace 

Concept (AAC). In addition, sensitivity analyses on the model parameters including 

component failure probabilities, detection range of the sensors, and error rates of the 

CD&R systems are conducted.  

Case studies indicate that the reliability of aircraft transponders significantly drives 

collision risk since the CD&R systems and concepts considered highly rely on the 

transponders for surveillance. In addition, integrating unmanned aircraft with a limited 

CD&R system into the airspace would increase collision risk significantly. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Air transportation passenger demand in the U.S. is forecasted to increase by 1.9 

percent annually for the next 20 years [FAA 2018]. In order to accommodate the 

increasing demand and provide safer, more efficient and predictable air transportation 

service, the Federal Aviation Administration (FAA) has been implementing the Next 

Generation Air Transportation System (NextGen), which is the modernization of the air 

transportation system introducing several new technologies through 2025 and beyond 

[FAA 2018]. The system will need to accommodate a large growth in Unmanned Aircraft 

Systems (UAS) as well as commercial spacecraft eager to access the National Airspace 

System (NAS). Wieland [2016] estimated a demand of over 25,000 UAS flights per day 

in the NAS (above 2,000 feet above ground level).  

In addition to the growth in the number of flights, the diversity of aircraft types in 

the NAS will also increase significantly. Various types of Unmanned Aerial Vehicles 

(UAVs) have a wide range of specifications, such as dimension and weight, and 

performance characteristics, such as cruise speed and maximum operating altitude that 

can differ significantly from manned aircraft. They may also have different collision 

avoidance technologies. Since UAVs have no pilot on board, various sensors (e.g., 

optical, thermal, or laser) have been proposed to detect and avoid nearby aircraft. 
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Furthermore, UAVs are intended to conduct completely different missions from 

those of current commercial aircraft. Monitoring air quality, weather data collection, and 

tactical fighting of wildfires are common examples of UAV missions. Some of the 

missions require flying continuously over a certain area so that capacity of that airspace is 

affected critically. 

1.2 Motivation 

The air transportation system currently provides an extremely safe mode of 

transportation. According to Lin [2009], the actual level of safety for fatal mid-air 

collision risk in 47 years (1959-2006) was 2.17 ×10−8 per flight hour. Integrated Safety 

Assessment Model (ISAM) developed by FAA provides a similar rate of mid-air-

collision accidents in an order of 10-8 per flight hour (i.e., one mid-air-collision accident 

in 100 million flights given an assumption of 2-hour flying time on average). Maintaining 

enough separation between aircraft is the key to avoiding mid-air collisions and achieving 

a high level of safety. However, it is also a constraint to increasing throughput of the 

airspace. Intuitively, there is a trade-off between safety and capacity – placing more 

aircraft in a given region of airspace reduces the level of safety within that region.  

The capacity within a sector of the NAS is currently governed by the Monitor 

Alert Parameter (MAP), which specifies a numerical trigger value for the maximum 

number of aircraft that should be in a sector [FAA 2019]. The MAP value is sector-

specific, depending on factors such as the average time for aircraft to traverse the sector 

and the average time required for a controller to manage each aircraft. With increasing 
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demand, the sector capacity may be a significant constraint on the capacity of the 

airspace. 

As the system evolves, new procedures and technologies have the potential to 

increase system capacity, but also to alter the level of safety. For example, Erzberger 

[2001] proposes the Advanced Airspace Concept (AAC), in which a ground-based 

system automatically detects conflicts and provides automated resolutions to properly 

equipped aircraft. AAC eliminates manual separation monitoring and control, which can 

increase airspace capacity, but may also change the level of safety.  

The introduction of UAVs can also impact the safety of the system. For example, 

since there is no pilot on board, the pilot’s see and avoid procedure in 14 CFR Part 91.113 

(right-of-way rules) is not applicable to UAVs, which can significantly impact the level of 

safety. Naturally, such changes must be rigorously evaluated from a safety standpoint 

prior to being implemented. 

A number of analyses have been conducted assessing the collision risk for these 

new procedures and technologies. For example, several papers have examined the 

collision risk associated with AAC using a variety of different analysis methodologies, 

e.g., fault trees [Andrews 2005], Monte Carlo simulation [Blum 2010], and dynamic 

event trees [Shortle 2012]. The free flight concept, in which the flight crew has the 

freedom to select a trajectory and the responsibility to resolve a conflict with other 

aircraft, has been analyzed in Blom [2006]. Collision risk for the flow corridor concept, 

which is a NextGen concept to better accommodate high levels of traffic, is considered in 

Zhang [2015]. A common limitation of these papers is that they consider only current 
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commercial aircraft operating in a system similar to today’s NAS and assume that all 

aircraft have the same level of conflict detection and resolution (CD&R) equipage. 

Similarly, a number of analyses have been conducted to evaluate collision risk for 

UAVs. These have been conducted in terms of technology, concept of operations, 

conflict detection and resolution algorithms, and so forth [Kuchar 2004; Muñoz 2015; 

Ferreira 2018; Jenie 2018]. Most papers focus on evaluating how successfully a UAV’s 

collision avoidance technology can detect a collision with a manned aircraft and how 

reliably it can perform a collision avoidance maneuver. The results of these papers are 

useful for a given technology or aircraft type, but may not readily extend to other aircraft 

or technologies. In particular, if there are n different aircraft types in a region of airspace, 

then there must be n2 separate safety analyses to certify that each pair is able to safely 

operate together. 

Many of these analyses take similar approaches, but they are developed separately 

in a problem-specific manner, so there is an opportunity to generalize some of the 

methods under a common unified framework.  

1.3 Research Objective 

The objective of this research is to propose a general framework and methodology 

to assess collision risk for an airspace with a variety of aircraft types and collision 

avoidance capabilities. The methodology accounts for the inaccuracies of the collision 

avoidance algorithms and trajectory prediction capabilities as well as discrete failures in 

system elements, considering both human and hardware failures. Several case studies 

involving diverse kinds of aircraft and/or future automated conflict detection and 
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resolution systems are given to illustrate the methodology. In addition, sensitivity 

analysis on the model parameters for the case studies is conducted to identify parameters 

that significantly impact collision risk and to provide insights into improving safety. 

Collision risk between aircraft can be divided into two parts (Figure 1): 1) the risk 

that two aircraft are on a collision course, 2) the risk that the collision avoidance systems 

fail to resolve the conflict. The former risk mostly depends on the number of aircraft in a 

region of airspace, while the latter risk depends on aircraft equipage. This research 

focuses only on the second component– namely, the probability that the collision 

avoidance systems fail, given that two aircraft are already on a collision path. Therefore, 

a term of collision risk/probability used in this dissertation is limited to the 

risk/probability that the collision avoidance systems fail, given two aircraft on a collision 

course. 

 

 
Figure 1 Comparison of collision risk models 

 

Major questions that this research would answer are as follows: 

Aircraft on 
collision course

System fails to 
resolve conflict

Collision
yes yes

Airspace density Aircraft equipage
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▪ What existing methods can be applied for evaluating collision risk of an 

airspace? 

▪ Can a systematic approach be developed to evaluate collision risk for an 

airspace with a variety of aircraft types and collision avoidance capabilities? 

▪ How well do methods perform for estimating collision risk in terms of speed 

and accuracy? 

▪ What is the change in collision risk when various aircraft types (with different 

collision avoidance capabilities) are allowed to operate at the same time? 

Given limited general approach for evaluating collision risk between diverse 

aircraft types and/or collision avoidance capabilities, the unique contributions of this 

research are as follows: 

▪  Proposal of a general framework using dynamic event tree (DET) structure to 

model collision risk between various aircraft types and/or collision avoidance 

capabilities. 

▪ Suggestion and comparison of several methods that can be used to evaluate 

the proposed DET framework. 

▪ Development of several case studies using the framework, where collision risk 

between different types of aircraft with different collision avoidance 

capabilities in a hypothetical future NAS operations. 

1.4 Potential Applications of Research 

This research proposes a general approach to evaluate collision risk between 

various types of aircraft with different collision avoidance capabilities. The primary 
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application concept of the approach is to support the Safety Management System (SMS) 

of the FAA, which is a framework to identify, analyze, assess, manage, and monitor 

safety risk of the NAS [FAA 2019]. The approach of this research is particularly able to 

support to analyze risk of any NAS change in terms of operation, procedure, or 

equipment (i.e., hardware and software) in the process of the Safety Risk Management 

(SRM) and Safety Assurance of the SMS (top of Figure 2). More specifically, the method 

supports to define risk by determining likelihood of potential harmful effects of a hazard 

during the risk analysis process. The identified controls are used to model a risk through 

the approach of the this research. For example, Air traffic controller (ATC) and Traffic 

Alert and Collision Avoidance System (TCAS), which are something to prevent mid-air-

collision accident, are used as safety layers to reduce collision risk in the method.  
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Figure 2 SRM / Safety Assurance process flow [FAA 2019] 

  

Another application concept is to use the approach of this research in the 

development stage of the system life-cycle, which defines and realizes a system that 

meets its stakeholder requirements through specifying, analyzing, architecting, and 

designing the system [Walden 2015].  Figure 3 shows a typical Vee model illustrating 
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System Engineering (SE) activities during the development stage and where the method 

of this research fits. System developers can use the approach to design a system, e.g., a 

collision avoidance system, an aircraft, and even the NAS architecture, and to specify 

sub-systems and system elements with given system safety requirements (left side of the 

Vee model in Figure 3). The developer would have a benefit to quickly check if an 

alternative of the system design would be met a set of requirements for safety before 

realization of the system design alternatives. Fidelity is not as good as more specific 

models, but this method allows the analyst to narrow the decision space and to identify 

candidate designs for more detailed analysis.   

 

  
Figure 3 Vee model of development stage [Walden 2015] 

   

Method fits
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CHAPTER 2 LITERATURE REVIEW 

This chapter reviews literature related to evaluating mid-air collision risk in air 

transportation systems. Section 2.1 discusses various collision risk models in the 

literature. Section 2.2 discusses tree-based methods as a risk assessment model and its 

solution methodology. Section 2.3 describes future concepts of operations for the 

National Airspace System (NAS).  

2.1 Collision Risk Analysis 

Much research has been conducted to measure collision risk in the NAS. Table 1 

shows a summary of example studies in which collision risk is evaluated for a specific 

concept of operation and/or region using a given methodology. The list is not exhaustive 

but meant to show some illustrative types of methods.  

 

Table 1 Literature summary on collision risk analysis 

Category Paper Collision risk model Context 

Analytical 

Models 

Reich (1966) Reich model North Atlantic 

Endoh (1982) Gas model 
Random flights flying in 

a straight line 

Event tree / 

Fault tree 

Borener (2012) Event tree / Fault tree NAS 

Andrews (2005) Fault tree Advanced Airspace 

Concept (AAC) 
Dynamic event 

tree (DET) 

Shortle (2012) DET 

Zhang (2015) DET + Simulation Flow corridor concept 
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Simulation 

Blum (2010) 
Discrete Simulation 

(Monte Carlo) 
AAC 

Belle (2012) Continuous Simulation 

(FACET, ACES) 

Chicago ARTCC 

Farley (2007) Cleveland ARTCC 

Blom (2003) 

Hybrid Simulation 

(TOPAZ) 

Converging approaches 

Shortle (2004) Nontowered airports 

Blom (2006) Autonomous free flight 

 

2.1.1 Analytical Models 

One of the well-known analytical collision models is the Reich model [Reich 

1966] which was developed to estimate collision risk for flights over the North Atlantic. 

A collision might occur because of the differences between the true values and intended 

values in three-dimensional speed and position (i.e., along-track, across-tack, and vertical 

direction). Both the probability distributions of the error magnitudes and the probability 

distributions of the rates of change of these errors are considered. The collision risk (per 

time) in a given dimension is the expected rate that two aircraft are within the collision 

distance in that dimension multiplied by the proportions of time that the aircraft are 

within the collision distances in the other two dimensions. The overall collision risk is the 

sum of the collision risk in each dimension.  

Another widely known collision model is the gas model which describes the 

expected collision frequency under several simplifying assumptions – for example, that 

aircraft fly in a straight line with a constant speed and a uniformly distributed heading 

[Endoh 1982]. In addition, the gas model assumes that an aircraft is represented by a 

circular cylinder and that no collision avoidance maneuver is conducted, similar to the 



12 

 

 

Reich model. The gas model, which was originally developed with only two dimensions 

(i.e., on a horizontal plane), estimates the expected rate of collisions using the number of 

aircraft in a region, the area of the region, the expected relative velocity of a pair of 

aircraft, and the size of aircraft. The gas model is useful because it is a simple equation 

and it can provide some other risk metrics like losses of separation (LOS) with a simple 

modification of the aircraft size (reinterpreted as conflict dimension). Endoh [1982] also 

provided some extensions of the gas model including the vertical dimension and 

analyzing special cases like overtaking. 

Analytical models are expressed by simple and clear mathematical equations to 

compute collision risk, and they can provide flexible risk measures such as loss of 

separation (LOS). However, analytical models have serious weaknesses: 1) They rely on 

several critical assumptions such as independent random deviations of aircraft positions 

and speeds (the Reich model) and straight line trajectories with uniformly distributed 

direction (the gas model), 2) they do not consider collision avoidance action by the pilots 

or the controller, and 3) equipment failures are not included. 

2.1.2 Event Trees / Fault Trees 

Event trees and fault trees (EF/FT) are commonly used methods in reliability and 

safety analysis. The methods are used in various industries such as nuclear power plants 

([Vesely 1981]), air transportation, and the chemical industry ([Podofillini 2012]). ET/FT 

have been successfully used not only to evaluate risk, but also to identify scenarios 

representing risk and to suggest means to reduce the risk. The Integrated Safety 

Assessment Model (ISAM) developed by the Federal Aviation Administration (FAA), for 
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example, uses event trees and supporting fault trees to model all possible accident and 

incident scenarios for the current National Airspace System (NAS) [Borener 2012]. 

ISAM contains 35 event trees and hundreds of associated fault trees [Noh 2015], 

including one to model mid-air collisions. The model assesses current (baseline) risk of 

the NAS based on historical data. It can also estimate future risk based on proposed 

operational and procedural changes to the current system with projected traffic trends. 

However, it may be limited to incorporate new concepts/technologies introduced in the 

future since all the elements modeled in the ISAM are based on the current NAS. In 

addition, the model identifies a general sequence of events and associated causes of the 

events that leads to an undesired event, but it is not considering specific time horizon of 

the events that can change the consequence.  

Andrews [2005] use fault trees to evaluate collision risk in a scenario where a 

highly automated separation assurance system is in place in the NAS. Safety functions 

designed in the Advanced Airspace Concept (AAC, [Erzberger 2001]) are assumed as the 

basic architecture for the NAS. Four types of faults (nominal conditions, information 

faults, control faults, and service interruptions) are identified, and a fault tree for each 

type is constructed and analyzed. 

While ET/FT approaches are easy to understand from their graphical 

representations, they have weaknesses in treating the dimension of time, e.g., dynamic 

behaviors of the system and different operator actions as response to the system in time. 

In a collision scenario between aircraft, for example, timing of a conflict detected, when 

pilots are requested to take collision avoidance maneuver, and timing of the conflict 
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detection system failures all affect to the collision risk, and ET/FT approaches are limited 

to model these events appropriately. 

2.1.3 Dynamic Event Tree 

Dynamic Event Trees (DET) were proposed in order to include dynamic 

responses of the system, i.e., branching probabilities that vary as a function in time. For 

example, it is more difficult to correctly detect a conflict 20 minutes prior to a loss of 

separation compared to 3 minutes ahead. The conflict-detection probability is not a static 

number. Dynamic event trees extend standard event trees by including the time 

dimension to deal with dynamic occurrences of events in time without losing the 

capability of analytical evaluation.  

Shortle [2012] use a dynamic event tree combined with reliability block diagrams 

to evaluate mid-air collision risk in the NAS under AAC operation. In this analysis, 

reliability block diagrams are first evaluated to determine whether various subsystems of 

AAC are functional or failed based on combinations of the component states. Then, 

several DETs are defined based on various combination of available functions. The 

generated DETs are evaluated to determine the conditional probability that a collision 

occurs. The collision probability is then computed by the weighted sum of the conditional 

probabilities with functional availabilities as weight, which are obtained by evaluating 

reliability block diagrams.  

Zhang [2015] use a DET with Monte Carlo simulation to estimate the collision 

risk for a flow corridor concept with dedicated flight paths across the U.S. First, a Monte-

Carlo simulation models aircraft movements in the flow corridors (e.g., passing, 



15 

 

 

overtaking, corridor lane changes) and estimates frequencies of potential mid-air 

collisions (i.e., conditions in which aircraft would collide in the absence of any conflict 

avoidance maneuver). DETs with reliability block diagrams are used to evaluate the 

performance of the onboard conflict detection and resolution functions to prevent a 

collision under the Autonomous Flight Management concept (AFM, [Wing 2011]), which 

is one of the automated separation assurance concepts for the future NAS. 

One critical assumption of the DET method is that all components supporting a 

system fail only at the beginning of the time horizon of the analysis. In other words, the 

component failures are decoupled from the analysis of the dynamic event trees. Another 

drawback is that all combinations of component states need to be evaluated, which can be 

computationally expensive. Finally, the methods given in these papers are each 

developed in a somewhat ad-hoc manner for the specific problem being addressed and 

there is no formal description of an overarching framework for the methodology. 

2.1.4 Simulation-based Models 

The simulation-based methodology is one of the most commonly used approaches 

to assess collision risk. Simulation-based models can be divided into three types – 

discrete-time, continuous-time, and hybrid models. Discrete-time Monte Carlo (MC) 

simulation is often used to evaluate collision risk in the NAS where new procedures 

and/or technologies are implemented. Blum [2010], for example, used MC simulation to 

see what happens to two aircraft that are on a collision course under the Advanced 

Airspace Concept (AAC) environment. In each replication, the simulation first 

determines the failure state of each AAC component. From this, the failure states of AAC 



16 

 

 

subsystems are determined through fault-tree logic. Then, the simulation is run until the 

AAC system detects and resolves a conflict within a specified time (e.g., 8 minutes) and 

records whether or not two aircraft experience a near mid-air collision (NMAC) as well 

as the time when the AAC system resolves the conflict. The failure probability of AAC 

(i.e., the probability that two aircraft on a collision course eventually collide) multiplied 

by the rate that aircraft would be on a collision course in the absence of air traffic control 

(obtained from a gas-law model) provides the estimated rate of mid-air collisions in en 

route airspace.  

The continuous simulation approach has been used to provide a base of collision 

risk analysis for the NAS. Several continuous time simulation tools have been developed 

to model the current NAS as well as to evaluate future concepts of operation for the NAS. 

One of the well-known simulation tools to analyze the NAS is the Future Air Traffic 

Management Concepts Evaluation Tool (FACET), which is developed by NASA 

[Bilimoria 2001]. FACET aims to provide a NAS-level simulation environment for 

exploration, development and evaluation of advanced ATM concepts such as distributed 

air traffic management and a decision support tool for controllers. FACET models four-

dimensional (4D) aircraft trajectories using either flight plans or direct (great circle) 

routes considering winds. Another widely used tool for simulation and modeling the NAS 

is the Airspace Concept Evaluation System (ACES) which is intended to evaluate new 

system-level operational concepts of the NAS [Sweet 2002]. En route simulation with 

ACES is mainly based on FACET, and ACES also provides a flexible and extensible 
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simulation framework assembling a variety of models for physical systems, human 

operators, and rules and procedures. 

From a collision risk analysis perspective, Belle [2012] use FACET to simulate 

flights trajectories and estimate rates of four types of proximity incidents (loss of 

separation (LOS), critical loss of separation (CLOS), near mid-air collision (NMAC), and 

mid-air collision (MAC)) under the assumption of no conflict resolution, i.e., without air 

traffic control. The resulting conflict rates, which are interpreted as the rates at which 

aircraft would get within a specified proximity without ATM, are shown as a function of 

flight count so that the rates can be used as the initiating event frequencies of other 

methods for collision risk analysis, e.g., ET/FT, DET or discrete simulation approaches 

(e.g., [Andrews 2005; Borener 2012; Shortle 2012; Blum 2010]).  

Farley [2007] use a continuous simulation (i.e., ACES) more comprehensively to 

evaluate performance of an automated conflict resolution algorithm in several increasing 

traffic demand levels. The conflict resolution algorithm is implemented in the ACES 

environment, and it provides a resolution trajectory for detected aircraft on a collision 

course. Twenty-four hours of traffic are simulated to generate the number of conflicts 

detected and the number of conflicts successfully resolved to evaluate the safety 

performance of the conflict resolution algorithm. 

The hybrid simulation methodology combines discrete failure events and 

continuous systems. An example is the TOPAZ (Traffic Organization and Perturbation 

AnalyZer) methodology, which was developed at the National Aerospace Laboratory 

NLR [Blom 1999]. The methodology aims to provide safety feedback of developing 
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concepts of operation for air traffic management (ATM) during the design stage. First, a 

qualitative safety assessment is conducted by identifying potential hazards and non-

nominal scenarios. Then a quantitative assessment estimates accident risk through 

simulation of a stochastic dynamic system for the situation considered. Dynamically 

Colored Petri Nets (DCPN) are used to model stochastic differential equations of the 

hazardous scenarios selected on a hybrid state space (i.e., a state space where both 

discrete and continuous states exist). Since accident risks in aviation are rare, for a 

numerical evaluation, the methodology decomposes the problem into several conditional 

problems to which an appropriate evaluation method, e.g., MC simulation, is applied.  

The TOPAZ methodology has been applied in several accident risk studies, where 

various ATM concepts of operations were analyzed. For example, Blom [2003] apply the 

TOPAZ approach to evaluate accident risk of simultaneous instrument approaches on 

converging runways at Amsterdam Airport Schiphol, Netherlands. Several operational 

scenarios are identified for missed approaches based on published procedures, operation 

modes and controllers’ actions. Through simulation and mathematical modeling, the most 

critical scenarios are identified. Other examples where the TOPAZ methodology is 

applied include Shortle [2004], in which collision risk of landing airplanes at non-

towered airports is evaluated, and Blom [2006] where the collision risk of the free flight 

concept is estimated. 

Each type of simulation-based approach has unique pros and cons. The discrete 

simulation approach in Blum [2010] can deal with discrete component failures, but 

requires a lot of computing time – about 10 billion replications are needed to achieve 
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statistically meaningful results. The continuous NAS-wide simulation methods have an 

ability to accurately model the whole NAS, but require more than several hours to run a 

replication for one day of flights [Farley 2007]. These NAS-wide models also do not 

consider discrete component failures. Lastly, the hybrid simulation approach can model 

continuous processes (e.g., flight dynamics) combined with discrete event processes (e.g., 

runway occupancy sensor failures). Simulation methods, however, generally take much 

computation time to have statistically reasonable results for rare events via a direct 

simulation. In order to improve efficiency of the method, the hybrid models may need 

several other models such as the Reich model in Shortle [2004] since collision events are 

rare. 

2.1.5 Summary 

Four types of collision-risk methodologies (i.e., analytical models, ET/FT, DET, 

and simulation) have been described in this chapter. Each method has different features in 

terms of model complexity and computation time (see Figure 4). Analytical methods are 

simple and relatively easy to evaluate, but require a number of potentially unrealistic 

assumptions. Simulation-based approaches can model much more detail of the real 

system, but require a lot of computation time due to the rare-event nature of the problem. 

For example, to evaluate an event that occurs with probability 10-9, 109 replications are 

required to observe, on average, one event; many more replications are required to obtain 

a reasonable confidence interval. ET/FT and DET methodologies reside between the 

analytical and simulation approaches, where the DET methodology may model collision 

accidents more accurately than ET/FT. 



20 

 

 

 

   
Figure 4 Comparison of collision risk models 

 

A methodology to evaluate collision risk in this research should meet the 

following requirements: 

▪ Correcting actions by pilots, air traffic controller and/or collision avoidance 

systems should be considered in the model. 

▪ Discrete failures such as component failures in collision avoidance systems 

and mistakes by humans should be considered in the model. 

▪ Time-varying system dynamics, such as trajectory prediction errors and 

encounter geometries, should be considered in the model, at least at an 

approximate level. 

▪ Computation effort to assess collision risk should be reasonable, e.g., 

computation shall be done in minutes.  
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▪ Time to develop the model should be reasonable, e.g., creating a model shall 

be done in hours. 

The goal is not to provide detailed system dynamics modeling, as some 

simulation models do. Rather, the objective is to include a comprehensive set of 

modeling elements as described previously in a manner that is relatively easy to model 

and compute. Therefore, this research focuses on a DET-based framework to assess 

collision risk for an airspace. 

2.2 Tree-based Risk Models 

A large number of systematic methods have been proposed to model and evaluate 

risk in systems, and the two most commonly used techniques for system reliability and 

safety analysis are event trees (ET) and fault trees (FT). Both ET and FT have a dynamic 

version, i.e., dynamic event trees (DET) and dynamic fault trees (DFT), to overcome a 

weakness in treating time element. The rest of this section discusses event tree analysis 

including more general dynamic event tree methods that have been studied in the 

literature (Section 2.2.1),  static and dynamic fault trees (Section 2.2.2), and an existing 

computation method that can be applied to assess a DET in the context of collision 

avoidance (Section 2.2.3). 

2.2.1 Event Tree (Static / Dynamic) 

Because the analysis in this research focuses on event-tree-based methods, a more 

detailed literature review of event trees and their extensions is provided. Event tree 

analysis (ETA) is one of the most commonly used techniques for system reliability and 

safety analysis. According to Siu [1994], ETA can be used to evaluate the sequences of 



22 

 

 

system failures that can lead to undesired consequences. Event trees start with a single 

hazard or initiating event and model the sequence of events through safety layers that 

mitigate risk. An event tree can result in many different outcomes, and the tree provides a 

probability for each outcome. A path from the initiating event to each outcome indicates 

a possible scenario in terms of the occurrence or non-occurrence of various intermediate 

events. The probability of each outcome is calculated as the product of the branching 

probabilities along the path leading to each outcome. In Figure 5, for example, there are 

three different end events. The most severe event, a mid-air collision, occurs when air 

traffic control fails to resolve the conflict and the flight crew fails to resolve the conflict. 

The frequency of a mid-air collision is the product of the frequency of the initiating event 

and the probabilities of the two intermediate events. 

 

  
Figure 5 Example event tree for mid-air collision in ISAM 

 

Conventional ETA, however, has a weakness in treating the dynamic responses of 

the system in time. To account for this, Dynamic Event Trees (DET), which is an 

extension of a static event tree adding the dimension of time, have been proposed. There 

are many DET methods. First introduced in the nuclear industry, these methods deal with 
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complex and dynamic behaviors of hardware, operators and the physics of the system in 

time. Some other DET methods deal with relatively simple dynamic behaviors, such as 

modeling success/failure probabilities that vary in time.  

 

Table 2 Literature summary on dynamic event tree 

Paper Method Branching System State 
Generated 

DET 
Note 

Cojazzi 

(1996) 
DYLAM-3 

Fixed 

points in 

time 

Hardware, operator, 

and process variables 

tracked and simulated 

by 

problem-specific 

model 

One big 

DET 

Allow several 

kinds of 

probabilistic 

behaviors 

Acosta 

(1993) 
DETAM 

Emphasize on 

operator crew 

states 

Devooght 

(1996) 

Probabilistic 

dynamics 
Randomly 

chosen 

points in 

time 

Vector of process 

variables and 

components status 

Analytical 

equations 

Continuous 

random 

transition, 

Analytical 

solution 

Hofer 

(2004) 
MCDET 

Hardware, operator, 

and process variables 

Many big 

DETs 

Treat continuous 

and discrete 

random transition 

Shortle 

(2012) 
DET+RBD Fixed 

points in 

time 

Grouped combinations 

of hardware states 

treated as scenarios 

Several 

small 

DETs 

Appropriate for 

high-level system 

safety analysis 
Zhang 

(2015) 
DET+RBD 

 

Table 2 shows a summary of several studies using dynamic event trees. DYLAM 

(Dynamic Logical Analytical Methodology) is one of the earliest methodologies to assess 

the reliability of systems characterized by dynamic interactions and has evolved to 

version 3 (DYLAM-3) [Cojazzi 1996]. DYLAM is basically a tool that is a simulation 

driver able to generate branching scenarios of the system evolution at user specified time 
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intervals and to coordinate the simulation, which is a numerical model for the physical 

evolution of the system, at every branch. DYLAM-3 offers a framework to take into 

account six different kinds of probabilistic behaviors, 1) constant probabilities, 2) 

stochastic transitions, 3) functional dependent transitions, 4) stochastic and functional 

dependent transitions, 5) conditional probabilities, 6) stochastic transitions with variable 

transition rates. 

Acosta and Siu [1993] propose the Dynamic Event Tree Analysis Method 

(DETAM), which is one of several variants of the DYLAM approach. DETAM allows a 

more general treatment of the integrated response of a nuclear power plant and its 

operators to an initiating event. The approach treats the time-dependent evolution of plant 

hardware states, process variable values, and operator states over the course of a scenario. 

DETAM especially has an emphasis on dynamic behaviors of the operator crew. 

Devooght [1996] provide a mathematical formulation of the probabilistic 

dynamics of the system allowing for continuous random transitions. This approach can 

capture the possible dependencies among failure events due to process/component/human 

interactions in a single integral equation, but the computation effort is impractically large. 

Monte Carlo Dynamic Event Tree (MCDET) [Hofer 2004], a combination of Monte 

Carlo simulation and dynamic event tree analysis, is one approximation method to the 

analytical solution of the probabilistic dynamics. Monte Carlo simulation provides sets of 

random values, like times for components to fail, then MCDET generates samples of the 

dynamic event tree, and evaluates conditional probabilities and outcomes of all paths in 

each tree.  
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Shortle [2012] and Zhang [2015] use a dynamic event tree to evaluate mid-air 

collision risk for the Advanced Airspace Concept (AAC, [Erzberger 2004]) and for the 

flow corridor concept of operation, respectively. Both papers evaluate reliability block 

diagrams at first to determine whether various system functions are working or failed 

based on combinations of components states. Then, they generate several DETs, 

including a baseline DET and variants of the baseline DET, based on the combination of 

available functions. Lastly, they evaluate the DETs to determine the conditional 

probability that a collision occurs given two aircraft are on a collision course. 

Researchers can use a DET to comprehensively model a system with details, 

while it may require a separate system simulation model and it generates a complicated 

and huge event tree which may need a lot of computation effort. Or, a DET can also be 

modeled by simply incorporating time-dependent branching probabilities to take 

advantages of easy implementation and solving a problem quickly, but the results may 

not be as accurately detailed as one from the former. 

2.2.2 Fault Tree (Static / Dynamic) 

Fault trees are generally used to identify all combinations of component failures 

(e.g., Conflict alert system fails) that can lead to system failures (e.g., ATC fails to 

resolve the conflict) [Siu 1994]. An undesired event, e.g., system or subsystem failure, is 

defined as the top event of the fault tree. The causes that can lead for the undesired event 

to occur are articulated and placed under the top event of the fault tree at a certain level 

with a logical relationship gate, e.g., AND gate, OR gate. A fault tree thus represents 
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logical relationships between the undesired event and the causes, i.e., the basic fault 

events, graphically [Xing 2008]. 

Fault trees are logical models of fault combinations that could cause a mitigating 

system to fail to perform. An analysis of fault trees is studying minimal cutset. A cutset is 

defined as a set of basic events whose occurrence ensures that the top event occurs. A 

minimal cutset is a cutset without redundancy, i.e. a cutset is said to be minimal if the set 

cannot be reduced without losing its status as a cutset [Rausand 2004]. Fault trees are also 

used to determine the probability of the undesired event occurrence, given estimated or 

measured occurrence probability of each basic event. Cutset-based methods are 

conventionally used to compute the top event probability, however, they are 

computationally challenging without approximations. Another method to compute the top 

event probability of a fault tree is to use Binary decision diagrams (BDDs). The BDD 

method is a relatively recent method to solve a fault tree model for the system reliability 

analysis [Rauzy 1993]. Introduction of BDD in the reliability analysis has improved 

accuracy and efficiency in fault tree analysis [Sinnamon 1997]. 

Another reasonably used approach to model system reliability/risk is dynamic 

fault trees (DFT), which extends static fault tree to include dynamic system behavior 

[Dugan 1990]. With several dynamic gates DFT appropriately models complex behaviors 

and interactions between components such as sequence dependences, spares, and priority 

of events. Markov model is commonly used to solve DFTs, however Markov model has 

the significant disadvantage that its size grows exponentially as the size of the system 

increases. The modular approach, which is a combination of solutions from combinatorial 
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and Markov model, solves DFT more efficiently [Gulati 1997]. DFTs may be used to 

model the second risk in Figure 1 that system fails to resolve a conflict, but it could be 

complicated to model sequence of both failure events and success events, which occur in 

mid-air collision scenario. Furthermore, Markov model used to solve a dynamic fault tree 

is limited to deal with time-varying failure/success rates. 

2.2.3 Computational Method (Phased-Mission Systems) 

Phased-mission systems (PMSs) are systems in which multiple non-overlapping 

phases of operations (or tasks) are accomplished in sequence for a successful mission 

[Xing 2013]. In these systems, the system configuration, success criteria, and component 

behavior may vary from phase to phase [Zang 1999]. One example of PMS is a flight of 

an aircraft, which consists of taxing, take-off, cruise, approach, and landing phases. In 

each phase, different reliability criteria and behaviors are required. Figure 6 shows a 

simplified example in which a flight “mission” is accomplished if an aircraft successfully 

performs all three phases, i.e., take-off, cruise and landing. Different combinations of 

components are required in different configurations in each phase. 
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Figure 6 Example phased-mission system (Flight) 

 

PMSs have similar operational structure with conflict detection and resolution 

(CD&R) systems (Figure 7). To perform collision avoidance, several CD&R systems 

usually operate in sequence to prevent a collision. For example, there is usually a 

strategic CD&R system that looks several minutes ahead to identify conflicts. There is 

also a tactical system that avoids imminent collisions at the last moment. These systems 

may involve different sets of components, software, and system configurations. Collision 

avoidance fails if every CD&R system in the sequence fails. This is analogous (but 

opposite) to the structure of phased-mission systems, which are successful if every phase 

of the mission is successful. 
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Figure 7 DET and PMS representations for an example CD&R process 

 

There are two commonly used approaches to evaluate PMSs (Table 3): State 

space oriented models ([Kim 1994]) and combinatorial methods ([Zang 1999; Xing 2002; 

Xing 2013]). State space oriented approaches are mainly based on Markov chains. The 

methods are flexible and powerful in modeling complex dependencies in system 

components. One assumption in these approaches, however, is that failure (and repair in 

some research) times of components are exponentially distributed. Another drawback of 

the methods is that the number of states included in the model can easily explode [Xing 

2008].  
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Table 3 Literature summary on Phased-mission systems 

Paper Method Components 
Common Cause 

Failure 
Failure 

Kim (1994) Markov model Repairable - Exponential 

Zang (1999) PMS-BDD Non-repairable - General 

Xing (2002) PMS-BDD Non-repairable Yes General 

Xing (2013) PMS-BDD Non-repairable Yes General 

 

The combinatorial methods include the mini-component technique, which was 

introduced by Esary et al. [1975], to deal with the dependence across the phases using a 

set of independent mini-components to replace the component in each phase. Zang et al. 

[1999] proposed a binary decision diagram (BDD) based algorithm for reliability analysis 

of phased-mission systems (PMS-BDD). PMS-BDD uses phase algebra to deal with the 

dependence across the phases. PMS-BDD has been extended to include any 

combinatorial phase requirement and to incorporate common cause failures [Xing 2002; 

Xing 2013]. One limitation in the combinatorial methods is that they can only deal with 

non-repairable components. 

This research uses PMS-BDD method (or a combination with another method) to 

evaluate a collision risk modeled in a dynamic event tree structure, since 1) non-

repairable components are assumed to support conflict detection and resolution systems; 

2) PMS-BDD is an analytical approach so that computation would be fast.  
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2.3 Future NAS 

The air transportation system is predicted to face significant increase in terms of 

both the demand of flights and the diversity of aircraft. To accommodate the increasing 

demand of various aircraft types and to provide safer air transportation service, 

researchers have studied about the future NAS. This research would be more properly 

applied for the future NAS environment than the present because the approach models a 

collision risk between various types of aircraft with a different level of collision 

avoidance capabilities, which is not available now, but expected to be placed in the 

future. The future NAS has been investigated in terms of new concepts of operations for 

the NAS (e.g., automated NAS, Section 2.3.1), collision avoidance systems (Section 

2.3.2), and even new architecture of the NAS (Section 2.3.3).    

2.3.1 Concept of Operations (Automated NAS) 

Two widely studied concepts of operations for the future NAS are the Advanced 

Airspace Concept (AAC, [Erzberger, 2001]) and Autonomous Flight Management (AFM, 

[Wing 2011]). AAC was proposed to improve the capacity of the NAS by reducing 

controller workload. To do this, AAC has a ground-based central computer that 

automatically monitors aircraft separation and sends trajectories to resolve conflicts 

directly to aircraft via an air-ground data link. Figure 8 shows the system architecture of 

AAC. The central system on the ground has two separate CD&R systems, Autoresolver 

(AR) and Tactical Separation Assured Flight Environment (TSAFE). The two systems 

are designed to detect and resolve conflicts in different ranges of time, 2-20 min prior to 

predicted conflicts for ATS and 0-3 min for TSAFE. While air traffic controllers are able 
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to devote more time to solving strategic control problems under AAC operation, they still 

have separation assurance responsibilities for aircraft improperly equipped or facing 

failure like loss of data link or on-board system failures. 

 

 
Figure 8 Most current system architecture of AAC [Erzberger 2012] 

 

AFM has been developed from the free flight concept of operation, which is 

defined as the operators have the freedom to select their path and speed in real time 

[RTCA 1995]. A key concept of separation assurance for free flight called “self-

separation”, which is the ability to remain in a safe distance to all other aircraft by the 

pilot themselves, was enabled by emerging technologies, and it allows the responsibility 

for separation to be distributed among ground and airborne elements. Wing [2011] 

defines Autonomous Flight Rules (AFR) related to AFM based on the self-separation 

concept. Under AFR operations, aircraft and flight crew can maintain separation from all 

other aircraft, terrain, and obstacles without the ground-based air traffic management 

system.  
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AFR operations are enabled by several technologies, which are emerging and/or 

already in use. Automated Dependent Surveillance Broadcast (ADS-B) is the primary 

resource of the position information (including altitude and velocity) of other aircraft. As 

a backup system to provide surveillance information, the ground-based Traffic 

information Service Broadcast (TIS-B) can be used. An Airborne Separation Assurance 

System (ASAS), i.e., onboard collision detection and avoidance (CD&R) system, is also 

required for an AFR flight to maintain a safe distance from the other aircraft. ASAS 

includes physical components (e.g., a processor) as well as logic that performs conflict 

detection, resolution, and prevention functions. In addition, a data communication link 

between air and ground as well as the Traffic Alert and Collision Avoidance System 

(TCAS) are required to support AFR operations. 

2.3.2 Collision Avoidance Systems (Conflict Detection and Resolution) 

In the current airspace system, maintaining separation between aircraft has 

usually been conducted by humans, i.e., air traffic controllers, so that the capacity of the 

airspace relies on the ability of humans. However, not only air traffic demand, but also 

the diversity of vehicle types in the NAS, are expected to increase substantially in the 

future. In order to accommodate these increases, automated air traffic control systems are 

needed to help air traffic controllers to detect and resolve conflicts between aircraft. 

Much research effort has been placed to develop methodologies for automatic conflict 

detection and resolution (CD&R) [Kuchar 2000]. Most of the CD&R research proposes a 

new method and evaluates its performance, i.e., how well the CD&R method detects and 

resolves conflicts in a certain environment. 
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According to Kuchar [2000], the CD&R process begins with collecting current 

state information of aircraft in the airspace through sensors such as surveillance radar. A 

dynamic trajectory model calculates the states in the future to predict whether a conflict 

will occur. The current and predicted states can then be combined to derive metrics, e.g., 

estimated minimum separation, to make traffic management decisions such as whether 

action by controllers or pilots is needed. When action by a human is required, the conflict 

resolution function determines an appropriate series of actions and informs the controller 

and/or pilots. 

With increasing demand of integration of UAVs into the NAS, a large number of 

studies have been conducted related to collision risk of UAVs. Kuchar [2005] proposes a 

safety analysis framework for UAV collision avoidance systems that may be used for 

certifying such systems. The proposed methodology estimates collision avoidance system 

performance through a combination of airspace encounter modeling, fast-time simulation 

of the collision avoidance system for numerous encounter scenarios, and fault tree 

analysis of system failure. The approach considers various encounter geometries, aircraft 

dynamics, CAS logic failure, and pilot response delays through the simulation, then 

component-based system failures with the simulation results are used to model a fault 

tree for the overall collision risk. 

Weibel [2011] presents an analytical approach to defining a well clear threshold 

to evaluate self-separation performance, which is the ability to remain in a safe distance 

from other aircraft. “Well clear” is framed as a relative state, defined by the time to 

closest point of approach (CPA) and distance, between aircraft for which the risk of 
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collision is acceptable. Through encounter simulation conditional probabilities of 

collision are shown as a function of each relative state variable, i.e., time to CPA and 

distance.  

Ferreira [2018] presents a risk analysis of integration of UAS (specifically, 

Remotely Piloted Aircraft System, RPAS) into non-segregated airspace. Mid-air-collision 

and ground collision risk caused by two new types of hazard (Command and Control link 

failure and jamming attack), which are introduced due to insertion of RPAS, are 

evaluated through the fault tree analysis. All the operational failure events (e.g., ATC 

failure generating conflict) are modeled like a component failure in the fault tree even 

though a simulation is used to compute the probability that a conflict occurs. 

Unlike the researches explained above, collision risk between unmanned aircraft 

is assessed using Monte Carlo simulation [Jenie 2018]. Small UAVs with an onboard 

CD&R system are assumed to fly in a hypothetically dense airspace to compute Near 

Mid-air-collision (NMAC) and Mid-air-collision (MAC) frequencies efficiently. Then, 

the NMAC and MAC frequencies in a realistic (less dense) airspace are derived using the 

gas model. Two types of CD&R procedures, uncoordinated and implicitly coordinated 

(with right-of-way rule) resolution maneuver, as well as a case without CD&R systems 

are analyzed. The simulation takes into account various conflict geometries, aircraft 

dynamics, and CD&R algorithmic failure due to uncertainty of trajectories, while 

component-based system failures and pilot (human or autonomous) delays are not 

considered.  
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Table 4 summarizes literature that perform risk/safety analysis related to UAV. 

Kuchar [2005] considers all factors that affect to the risk using a combination of fault tree 

and simulation, while the others take into account only limited factors as applying a 

single method. Conflict geometries are considered through simulation in most literature, 

however, they are all aggregated to calculate a single risk. In addition, most literature 

analyze a risk between a specific combination of aircraft, e.g., manned and unmanned 

aircraft or unmanned and unmanned aircraft, or unspecified ([Ferreira 2018]). The 

approach of this research takes into consideration all the factors but aircraft dynamics to 

evaluate collision risk between any combination of aircraft. 

 

Table 4 Literature summary on UAS-related risk/safety analysis 

Paper 
Collision risk 

model 
Context Considered Factors 

Kuchar (2005) 
Fault tree  + 

Simulation 

Collision avoidance 

system of UAV  

(to manned aircraft) 

- Conflict geometries 

- Aircraft dynamics 

- Algorithm failure 

- Human behavior 

- Component failure 

Weibel (2011) Simulation 
Establishing risk-based 

separation standard 

- Conflict geometries 

- Aircraft dynamic 

Ferreira (2018) Fault trees 
Collision risk due to  

C2 link failure / jamming 
- Component failure 

Jenie (2018) Simulation 
UAV CD&R system 

(between UAVs) 

- Conflict geometries 

- Aircraft dynamic 

- Algorithm failure 

Zhang (2018) 
Gas model 

(Simulation) 

Collision risk of UAV 

to manned aircraft 

- Airspace density 

- Speed of aircraft 
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2.3.3 New Architecture for NAS (Risk-based Sector Capacity) 

In order to accommodate future increasing demand of both traffic and diversity of 

aircraft for the NAS, a new architecture for the future NAS has recently been proposed by 

Wieland [2017]. The architecture that could be a basis of autonomously controlled 

airspace in the far future has been developed by a ‘clean sheet’ approach, in which the 

architecture may apart from the current NAS system. One of the high level requirements 

considered for the architecture is that all flights including any type of UAVs have the 

same procedure for access to the NAS, i.e., “file and fly” today where a manned aircraft 

files a flight plan and flies in 45 minutes. This requirement may be the most different 

from the current system since all UAV flights need to go through a long Certificate of 

Authorization process to access to the current NAS. 

The architecture can be summarized as dynamic and risk-based sectors. The 

architecture is based on dynamic sectors since the airspace is divided into sectors that are 

not fixed and may divide and merge as traffic densities change throughout the day. 

Traffic density, which causes the sectors divided and combined, is considered as collision 

risk because as the number of aircraft in the sector increases, the number of times that a 

loss of separation occurs as well as collision risk increase. Sectorization in the 

architecture is based on the Required Collision Avoidance Probability (RCAP), which is 

the probability that the entire collision avoidance functions including strategic through 

tactical functions has failed. Whether or not an aircraft is allowed to enter a sector is 

depending on the RCAP of the sector as well as the performance of collision avoidance 

functions equipped by the aircraft.  
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In order to support the new architecture, Shortle [2017] provided a framework to 

evaluate collision risk and thus to issue admittance based on the estimated collision risk. 

Figure 9 illustrates the concept of airspace admittance function, which controls 

admittance into a sector. If an aircraft wishes to enter a sector, the collision risk function 

within the admittance function is evaluated including existing flights in the sector and a 

new flight, and admittance is given when the resulting collision risk in the sector remains 

at or less than a target level of safety (TLS). A key aspect of the proposed framework is 

to consider not only the traffic density but also the collision avoidance capabilities to 

compute collision risk. Therefore, frequently evaluating collision risk between various 

types of aircraft (including different types of collision avoidance equipage) would be a 

main function to support the architecture. 

 

 
Figure 9 Airspace admittance function [Shortle 2017] 

 

Collision risk can be decomposed into two parts, the risk that two aircraft are on a 

collision course and the risk that separation assurance and collision avoidance functions 

fail given two aircraft on a collision course ([Wieland 2017; Shortle 2017]). The first risk 
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depends on traffic density, while the second risk relies on the capability of collision 

avoidance functions on aircraft. Shortle [2017] used an analytical method and a 

simulation method, particularly the gas model and ACES simulation, to evaluate the first 

risk, i.e., the probability that two aircraft are on a collision course given a traffic density. 

Then the admittance function was evaluated for several cases where various 

combinations of relatively different collision avoidance capabilities are assumed, i.e., the 

second risk, which is the probability that collision avoidance functions fail, was not 

evaluated explicitly. 
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CHAPTER 3: METHOD FOR COLLISION RISK ASSESSMENT 

Static event trees model the sequences of failure events that can lead to undesired 

events. Figure 10 shows a static event tree that models collision risk assuming three types 

of conflict detection and resolution (CD&R) systems in operation. A mid-air collision 

occurs when all three CD&R functions fail to perform, starting from an initiating event in 

which two aircraft are positioned on collision course in flight. A basic assumption of 

static event trees is that the event probabilities are fixed regardless of when the events 

occur. In reality, the performance of each CD&R function changes in time, e.g., the 

probability of successfully detecting a conflict increases as the aircraft get closer 

together. The geometry of the conflict also impacts the event probabilities. 

 

  
Figure 10 Example static event tree of mid-air collision 

 

Aircraft positioned
on collision course

Strategic intent-
based CD&R 

resolves conflict?

Mid-air
Collision

Near mid-air
Collision

Loss of
Separation

Tactical intent-
based CD&R 

resolves conflict?

Aircraft
continues flight

Tactical state-
based CD&R 

resolves conflict?

yes

no no no

yes yes



41 

 

 

To account for time dependence, dynamic event trees (DETs) provide an 

extension to static event trees in which the dimension of time is added to include dynamic 

performance of collision avoidance systems [Shortle 2012; Zhang 2015]. This chapter 

presents a general framework for modeling mid-air collision scenarios using dynamic 

event trees (DET) and describes several methods that can be applied to evaluate the 

framework. An example DET is used to illustrate each method.  

3.1 Canonical Form of Collision-Risk Dynamic Event Tree 

The general framework for a collision-risk DET consists of three levels – a high-

level dynamic event tree, a generic sub-tree, and fault trees (Figure 11). The high-level 

tree (Figure 11, left) has multiple phases of conflict detection and resolution (CD&R) that 

operate in sequence to prevent a collision. (The figure shows three CD&R systems, 

though an arbitrary number can be modeled.) The generic sub-tree (Figure 11, middle) 

provides a more detailed template for the sequence of events within each CD&R phase. 

Fault trees (Figure 11, right) model logical relationships between failure of a CD&R 

system and failure of physical components supporting the CD&R system. Figure 11 

shows specific examples, but the structure of these fault trees can be general. 

 



42 

 

 

  
Figure 11 General framework of dynamic event tree for mid-air collision with example conflict detection and 

resolution systems 

 

As an illustrative example, Autonomous Flight Rules (AFR) [Wing 2011], 

proposed by NASA, is a framework for maintaining safe separation without controllers. 

Aircraft flying under AFR are equipped with three CD&R systems. The first system 

manages conflicts in a strategic manner up to twenty minutes ahead using flight plans and 

intent information. The second system manages conflicts up to three minutes ahead and 

uses intent information, but also considers aircraft dynamics (e.g., turn radii) to resolve 

conflicts in a more tactical manner. The final system uses current state information 

(without intent, simply projecting aircraft locations forward based on their current speeds 

and directions) to avoid imminent collisions.  

High-level tree: The high-level event tree (Figure 11, left) captures the following 

logic. The initiating event is a situation in which two aircraft are on a collision course; t is 

defined as the time remaining to a collision. This value is decremented by a small amount 
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∆t in an iterative manner until either a collision occurs or is avoided. Each CD&R system 

attempts to detect and resolve the conflict until either the conflict is resolved or t reaches 

a designated time point Ti, at which point the next CD&R system takes over from the 

previous one. 

The following parameters are required to specify the high-level dynamic event 

tree: 

• Time horizon T 

• Number of phases r 

• Time horizon for each phase, T1, T2, …, Tr (with T > T1 > T2 > … Tr > 0) 

• Time step Dt 

Generic sub-tree: The generic sub-tree (Figure 11, middle) shows a template for 

evaluating a sequence of events within each CD&R phase. In the example, the CD&R 

function requires (a) correct functioning of the physical components, (b) successful 

detection of the conflict via the conflict detection algorithm (e.g., correctly predict 

trajectories under uncertainty), and (c) correct pilot execution of the resulting resolution. 

The sub-tree is structured as a dynamic event tree. Some of the transition probabilities are 

dynamic. For example, the probability of successfully detecting a conflict increases as the 

aircraft get closer together, since there is less uncertainty in the trajectory predictions at 

shorter time horizons. 

The following inputs are required to specify the generic sub-trees: 

• Set of state transitions (k, l) and associated time advancement for each transition 

(TAkl, where TAkl = 0 if transition from state k to l occurs instantly; TAkl = 1 if 
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transition from state k to l takes a time step).  

• Time-dependent conflict-detection rate (t). This function defines the 

infinitesimal rate of detecting a conflict t minutes prior to a mid-air collision. In 

a short time interval [t, t – Dt], the probability of detecting a conflict is 

approximately (t)Dt. 

• Execution rate . The average time for a pilot to execute the resolution is 

exponentially distributed with mean 1 / . 

Fault trees: Fault trees (Figure 11, right) model logical relationships between 

physical components and the functional failures of the CD&R systems. Some 

components may support multiple CD&R systems. For example, a transponder 

broadcasts and receives position information of aircraft and may be used to locate aircraft 

in multiple CD&R systems. 

The following parameters are required to specify the fault-tree portion of the 

model: 

• Number of components m 

• Failure rate i of component i (i = 1, 2, …, m) 

• A fault tree that maps the component states to the working status of each CD&R 

system. Let Xi be the status of component i where Xi = 0 if component i is failed; 

Xi = 1 if component i is working. Let fj(X1, …, Xm) denote the state of CD&R 

system j (0 is failed, 1 is working), where j = 1, 2, …, r.  

In addition to the structure of the dynamic event tree, sub-trees, and fault trees, 

several assumptions are made: All components are statistically independent of each other. 
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All components are unrepairable, so that once a component fails, it remains in a failed 

state for the time horizon of the analysis.  

3.2 Solution Methods 

In order to solve the proposed general form of the DET, several methods from the 

literature are applied. The first method was proposed in Shortle [2012]. We call this the 

conditional dynamic event tree (cDET) method. The second method is based on a binary 

decision diagram approach to analyze phased mission systems (PMS-BDD) that is 

popular in the PMS reliability analysis [Zang 1999]. The third approach is a combination 

of the first two methods. We call this method cDET-PMS. Lastly, a Monte-Carlo 

simulation is applied to provide an approximation of the true solution. The methods have 

different assumptions on the timing of component failures as well as the internal logic of 

the sub-trees. 

The model in Figure 11 is used to illustrate the algorithm of each methodology. 

Three CD&R systems – strategic intent-based, tactical intent-based, and tactical state-

based – are respectively activated at times T1, T2, and T3 and operate in consecutive and 

non-overlapping time periods. Each CD&R phase successfully resolves a conflict when 

all three conditions are met within the given time period: ⅰ) the CD&R system is working 

properly, ⅱ) the CD&R function detects and resolves the conflict, and ⅲ) the flight crew 

executes the resolution in the specified time horizon.  

3.2.1 Solution Method 1: Conditional Dynamic Event Tree (cDET) 

The conditional DET approach is based on ideas in the literature ([Shortle 2012; 

Zhang 2015]). The main assumption is that component failures occur at the start of the 
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analysis time window – i.e., T minutes prior to a potential collision. Each combination of 

component states corresponds to a particular working state of each CD&R system. When 

all components are working (the typical case), then all CD&R systems are working. The 

accident logic is given by a baseline DET where each CD&R system, in succession, 

attempts to detect and resolve the conflict until either the conflict is resolved or a 

collision occurs (DET-1 in Figure 12).  

When some components are failed, then one or more of the CD&R systems may 

fail. A failed CD&R system no longer provides any capability to prevent a collision, so 

the DET logic can be modified by skipping over that phase in the event tree. In a worst-

case scenario, when all CD&R systems are failed, there is nothing to prevent a collision, 

so the initiating event (two aircraft are lined up on a collision course) results in a collision 

with probability 1 (DET-8 in Figure 12). 

With r CD&R phases, there are at most 2r distinct DETs (Figure 12). Each DET 

provides a conditional risk – namely, the probability that a collision occurs given specific 

availability states of the CD&R systems (and conditional on the initiating event that two 

aircraft are lined up on a collision course). The conditional risk for each DET can be 

evaluated using the methods described in Shortle [2012]. The overall collision risk is then 

the weighted average of the conditional risk from each DET, where the weights are the 

probabilities of being in a particular CD&R functional state.  

Figure 12 shows a graphical representation of the algorithm applied to the 

example in Figure 11. For the numerical results, it is assumed that time horizon T = 8 min 

and i = 10-6 / min for each component. 
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Figure 12 cDET method applied to example problem  
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models the sequence of events that could occur when a given combination of the 

CD&R systems are available. For each combination of CD&R states (i = 1, …, 

2r), calculate the conditional probability oi associated with DET i. This is the 

probability a collision occurs given the specified availability of CD&R systems. 

These probabilities can be computed using the method described in Shortle 

[2012]. 

2. For each combination of CD&R states (i = 1, …, 2r), compute the probability qi of 

state i as follows: 

a. For each combination of component states (j = 1, 2, …, 2m), compute the 

probability pj of state combination j.  

b. Sum all of the component-state probabilities pj that result in CD&R state i, 

via the fault-tree logic for each CD&R system. 

3. The overall collision probability is the weighted sum of the conditional collision 

probabilities (Σi qi * oi).  

This formalizes the method used in Shortle [2012]. Note that Step 2 is a brute-

force approach to evaluate all 2m component combinations. A more efficient approach is 

to use binary decision diagrams (BDD) [Rauzy 1993] to evaluate the CD&R state 

probabilities qi. The BDD method groups certain combinations of component states 

together, eliminating the need to enumerate every state combination [Sinnamon 1997].  A 

revised approach for Step 2 is as follows: 

2. For each combination of CD&R states (i = 1, …, 2r), compute the probability qi of 

state i as follows: 
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a. Create a combined fault tree where the top event is state combination i of 

the CD&R systems (e.g., CD&R system 1 is unavailable, system 2 is 

unavailable, and system 3 is available). The combined fault tree is 

composed of the individual CD&R system fault trees and/or success trees, 

depending on the state of each CD&R system (see Figure 13). 

b. Convert the combined fault tree to a BDD. Evaluate the BDD to obtain the 

probability qi. 

 

 
Figure 13 Examples of combining fault trees and/or success trees  
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A limitation of the cDET method is that the physical component failures are 

assumed to occur only at the beginning of the analysis time window. This may over-

estimate collision risk, since cases where component failures occur after the conflict is 

resolved may be counted as collisions when occurring at the start of the time horizon. 

3.2.2 Solution Method 2: Binary Decision Diagram based method for Phased 

Mission Systems (PMS-BDD)  

The proposed form of a dynamic event tree for collision avoidance has a similar 

structure with a phased-mission system (PMS). In a phased-mission system, a mission is 

accomplished through several phases, and the mission is successful if every phase is 

successful. In the collision avoidance problem, each phase corresponds to a distinct 

CD&R system that attempts to prevent a collision. The collision problem is analogous to 

the PMS problem, but with a “negated” structure – namely, while a phased-mission 

system is successful if every phase is successful, collision avoidance is not successful if 

every CD&R phase is not successful. In either problem, each phase can be supported by a 

different set of components which may have different failure rates in different phases. 

Based on the structural similarity, one approach for analyzing the proposed form 

of DET is to apply an existing solution method for the PMS problem. One such method is 

the binary decision diagram methodology for phased-mission systems (PMS-BDD) [Zang 

1999] that is applied to analyze the proposed DET framework. This section consists of 

three sub-sections; Section 3.2.2.1 explains the BDD method to evaluate fault trees, and 

Section 3.2.2.2 describes an extension of the BDD method for PMS, then Section 3.2.2.3 

discusses application of the PMS-BDD to the DET framework. 
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3.2.2.1 Binary Decision Diagram (BDD) Method 

The BDD method is a method to solve a fault tree model for system reliability 

[Rauzy 1993]. The BDD method in the reliability analysis field has improved accuracy 

and efficiency in fault tree analysis [Sinnamon 1997]. According to Rauzy [2008], the 

BDD method changes the analyzing fault trees process significantly: 1) minimal cutsets 

are not necessary to evaluate a fault tree, 2) BDD provides the exact result of the top-

event probability; but it also has a disadvantage that the size of BDD can increase 

exponentially as the worst case. 

A BDD is a directed acyclic graph based on Shannon’s decomposition of a 

Boolean function. A BDD is composed of terminal nodes which indicate system success 

(value 0) or system failure (value 1) and non-terminal nodes corresponding to basic 

events of a fault tree. Each non-terminal node has two out-branches: One is called the 0-

branch representing the non-occurrence of a basic event (working state). The other is 

called the 1-branch representing the occurrence of the basic event (failed state). The BDD 

method converts a fault tree to a binary decision diagram encoding an if-then-else (ite) 

structure [Sinnamon 1997]. ‘ite(x, f1, f2)’ means that if x is true, then consider function 

f1, else consider function f2, where x is a Boolean variable. Figure 14 illustrates a 

procedure to convert a fault tree to a BDD [Sinnamon 1997].  
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Figure 14 Conversion of fault tree to BDD 
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• Top Event = Gate1 <ˑ> Gate2 

= ite(A, 1, ite(B, 1, 0)) <ˑ> ite(A, 1, ite(C, 1, 0)) 

= ite(A, 1, ite(B, ite(C, 1, 0), 0)) 

The final ite structure for the top event represents the BDD of the fault tree 

(Figure 14, right). In a BDD, paths from the top event to a terminal node with a “1” 

represent the conditions for occurrences of the top event. For example, in Figure 14, the 

occurrence of event A will cause the top event to occur. In order to evaluate the 

probability of the top event in a fault tree, all disjoint paths leading to a terminal node 

with a “1” need to be tracked, i.e., {A}, {non A, B, C} in Figure 14. Secondly, the 

probability of each disjoint path is computed by multiplication of the probabilities of the 

basic events failure or success in the path. For example, the probability of the path {non 

A, B, C} is multiplication of the probability of non-occurrence of event A and the 

probability of event B and C. Lastly, the probability of the top event occurrence is 

obtained by summing the probabilities of all disjoint paths in the BDD [Andrews 2000]. 

3.2.2.2 PMS-BDD Method 

PMS is a system that consists of multiple phases to accomplish a mission. One 

unique feature of PMS is phase dependency of components (i.e., a component failed 

during a phase remains at failed state during all later phases). Zang [1999] proposed 

PMS-BDD to accommodate phase dependency in BDD method using the phase algebra, 

which is a set of rules combining component states (‘on’ and ‘off’) across phases. A 

special BDD operation, called phase-dependent operation (PDO), specifically deals with 

the phase algebra. There are two classes of PDO; 1) Forward PDO: The order of variables 
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is the same as the phase order, 2) Backward PDO: The order of variables is the reverse of 

the phase order. In terms of size of the final BDD, backward PDO generates a smaller 

BDD so that backward PDO is computationally more efficient [Zang 1999]. Backward 

PDO is as follows: 

• For phase i < j let component ‘A’ used in both phases i and j,  

and let Ei= ite(Ai, G1, G2) and Ej= ite(Aj, H1, H2);  

then Ei <op> Ej = ite(Aj, Ei <op> H1, G2 <op> H2) 

In addition to PDO, a special evaluation rule needs to be applied for the 1-edge 

linking the variables of the same components because Ai and Aj are phase-dependent. 

Final equation for that is as follows (see [Zang 1999] for detailed derivation): 

• Let G= ite(Aj, G1, G2) and G1= ite(Ai, H1, H2);  

then Pr{G = 1} = Pr{G1 = 1} + (1-Pr{Aj = 1})·(Pr{G2 = 1}-Pr{H2 = 1}) 

3.2.2.3 Application of PMS-BDD to DET  

The basic idea is to convert the DET model for collision avoidance to a PMS fault 

tree, and then solve the PMS fault tree using the PMS-BDD method. This approach is 

relatively simple to apply to solve the proposed DET framework even though the PMS-

BDD implementation itself requires several steps as explained in the two previous 

sections. 

The PMS-BDD algorithm in this research is given by the following logic and is 

illustrated in Figure 15: 

1. Create a fault tree where the top event is a collision event, below which is an 

AND gate combining the failure of each CD&R phase (Figure 15).  
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2. Each CD&R phase fails if either there is a component based failure, as defined by 

the supporting fault trees in the original system description, if the CD&R system 

fails to detect and resolve a conflict (an algorithmic failure), or if the pilot fails to 

execute the resolution in a timely manner. 

3. Apply the standard PMS-BDD method to compute the overall collision 

probability that all CD&R phases fail.  

 

   
Figure 15 PMS-BDD approach applied to example problem 

 

Note that this solution method introduces several structural differences in the 

underlying model assumptions. First, the PMS-BDD approach relaxes the assumption 

that components can only fail at the beginning of the analysis time horizon; now, 

components can fail at the beginning of each CD&R phase. Second, the fault tree in 

Figure 15 implicitly models the operational failures of detecting the conflict (e.g., 

“unsuccessful strategic intent-based CD&R”) and executing the resolution (“unsuccessful 

pilot execution of resolution”) as independent parallel events. In reality, these two events 
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occur in sequence – first, the CD&R system detects the conflict and provides a resolution 

to the pilot, and then the pilot executes the resolution. If the CD&R system is late to 

provide the resolution, there is less time for the pilot to successfully execute the 

resolution. These dynamics are captured in the sub-tree model of Figure 11 and in the 

other solution methods described in the research, but not by the PMS-BDD approach. A 

related limitation is that while the other methods (e.g., the cDET method) can easily 

generalize the dynamic-event tree logic within each sub-tree – for example, by adding 

logic to incorporate a backup air-traffic controller who may override the automated 

CD&R system –the ability to generalize the structure of the fault tree in Figure 15 is more 

limited. 

3.2.3 Solution Method 3: cDET with PMS-BDD (cDET-PMS) 

The cDET-PMS approach is a combination of the two approaches, the conditional 

dynamic event tree and the binary decision diagram methodology for phased-mission 

systems, explained in the previous sections. The basic concept of the cDET-PMS 

approach is to follow the computational logic of the cDET approach, but to use the PMS-

BDD method to relax the assumption that components only fail at the beginning of the 

analysis horizon. Instead, they are assumed to fail at the beginning of each phase. 

Because components may be working in one phase, but may fail in another phase, the 

logic of PMS-BDD must be used. 

The computation steps of the cDET-PMS method are below. The main difference 

between this method and the cDET method is Step 2b, where the BDD approach is 
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extended to PMS systems. The PMS-BDD method correctly accounts for failures of 

components that may occur in different phases of the analysis period.   

1. [Same as cDET method] Create 2r DETs, where r is the number of CD&R 

systems or phases. Calculate the conditional probability oi associated with DET i, 

i = 1, …, 2r. 

2. For each combination of CD&R states (i = 1, …, 2r), compute the probability qi of 

state i as follows: 

a. [Same as cDET method] Create a combined fault tree where the top event 

is state combination i of the CD&R systems. 

b. Convert the combined fault tree to a PMS-BDD. Evaluate the PMS-BDD 

to obtain the probability qi. The PMS-BDD method accounts for the phase 

dependency of components (i.e., a component that fails during one phase 

remains in a failed state during all later phases). The PMS-BDD method 

considers which phase a component accommodates phase dependency 

using the phase algebra, which is a set of rules combining component 

states (‘failed’ and ‘working’) across phases. By the PMS-BDD, the 

assumption on the timing of component failures is relaxed to that 

components can fail at the beginning of each phase in the cDET-PMS 

method compared to that components assume to fail at the beginning of 

the analysis in the cDET approach. 

3. [Same as cDET method] The overall collision probability is the weighted sum of 

the conditional collision probabilities (Σi qi * oi).  
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Table 5 shows the computation steps of the cDET-PMS method as applied to the 

example problem. (Numerical values for the model parameters are given in the next 

section.) The example has three CD&R systems, so 8 (= 23) DETs are constructed (see 

top of Figure 12). For example, DET-8 corresponds to the case in which no CD&R 

systems are available. From Table 5, the associated conditional collision probability is 1. 

That is, if two aircraft are on a collision course, there is nothing to prevent the collision, 

so the conditional collision probability is 1. In contrast, DET-1 corresponds to the case in 

which all CD&R systems are available. This case has the lowest conditional collision 

probability, 2.46E-6. A collision in this case would be due to failures of the CD&R 

systems to detect the conflicts (e.g., due to noise in the trajectory predictions) and/or 

failures of the pilot to respond to resolutions. 

 

Table 5 Example computation of cDET-PMS method 

DET 

(i) 

System Availability 

(0-unavailable, 1-available) 

① 

Conditional 

Collision 

Probability 

(oi) 

② 

Weight 

Probability 

(qi) 

③ 
Collision 

Probability of 

DET 

(qi * oi) 
SICDR TICDR TSCDR 

1 1 1 1 2.46E-06 9.93E-01 2.45E-06 

2 1 1 0 1.76E-04 3.99E-03 7.01E-07 

3 1 0 1 1.06E-04 6.64E-04 7.02E-08 

4 1 0 0 7.55E-03 2.67E-06 2.01E-08 

5 0 1 1 3.26E-04 8.28E-04 2.70E-07 

6 0 1 0 2.33E-02 3.33E-06 7.75E-08 

7 0 0 1 1.40E-02 1.66E-03 2.33E-05 

8 0 0 0 1.00 6.68E-06 6.68E-06 

Overall Collision Probability (Σi qi * oi) 3.357E-05 
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The weight probabilities (column ②) are computed by applying the PMS-BDD 

method to the fault trees associated with each DET. DET-1 has the highest weight 

probability (as expected), since the CD&R systems are available most of the time due to 

the high reliability of the system components. DET-8 usually has the lowest weight 

probability, corresponding to the most component failures. In the example problem, 

however, some other DETs have a lower weight probability than DET-8, because all 

components supporting SICDR system are also supporting TICDR system with an 

additional component so that it is less frequent that SICDR system fails while TICDR 

system is available (DET-6) than both SICDR and TICDR system fail (DET-8).  The 

weight probabilities can sometimes be zero in situations where particular combinations of 

available CD&R systems are not possible. This can occur because components are non-

repairable. As an example, assume that a CD&R system operates different conflict 

detection algorithms in a different time horizon, then the later phase always fails if the 

system is unavailable at the former phase. 

The overall collision probability is the weighted sum of the conditional collision 

probabilities weighted by the probabilities of each DET being used. The last column of 

Table 5 is computed by multiplying conditional collision probability and weight 

probability for each DET, which shows contribution of each DET to the overall collision 

probability. DET-7, where SICDR and TICDR systems are unavailable while tactical 

state-based CD&R (TSCDR) system is working, contributes the most on collision risk, 

which takes more than 65% of the risk. The most contributing DET on collision risk 

varies depending on the assumed numerical values for model parameters.  
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3.2.4 Solution Method 4: Simulation 

The last method to compute the collision probability through the proposed DET 

framework is a simulation, which can be used to approximate the true result. The cases 

where a collision occurs through the DET framework of the example problem are 

described verbally as follows:  

• A collision occurs if all CD&R phases fail. 

• Each CD&R phase fails if each CD&R system is not available due to 

component-based failure before the CD&R system function successfully detects 

and resolves a conflict or two events, that each CD&R system function detects 

and resolves a conflict and that pilots correctly execute a resolution, are not 

completed in a given time period. 

From the verbal descriptions, an analytical equation for collision scenarios of the 

DET framework may be derived for a simple case, where, for example, a single 

component supports all CD&R systems. However, it is almost impossible to see the 

simple case in safety systems. Simulation is one way to approximate the result in the case 

that the analytical equation is extremely difficult to derive. Figure 16 shows a flow 

diagram of simulation to compute the collision probability through the DET framework. 

The simulation follows the verbal descriptions for the collision scenarios. The simulation 

generates a set of all random times such as the time for each CD&R system to detect a 

conflict and provide a resolution, and the time for the pilot to correctly execute a 

resolution in each CD&R phase. Next, it determines whether or not a CD&R phase fails 

to avoid a conflict due to either operation function failure or component-based failure via 
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evaluating fault trees until all CD&R phases fail to resolve a conflict. The method 

provides an approximation of the true result, and may need a lot of computation time to 

achieve a certain level of confidence interval for rare events like mid-air collision. (Note: 

Simulation is conducted with 30 runs, and each of which has from millions to billions 

replications, depending on the assumed numerical values for model parameters, to 

achieve a small coefficient of variation such as 0.05.) 

 

  
Figure 16 Flow diagram of simulation for example problem 

  

3.3 Numerical Results for Example Problem 

This section provides numerical results of the example problem (Figure 11) and 

comparison between the results from different methodologies, cDET, PMS-BDD, cDET-

PMS, and simulation. The different methods use different assumptions, which are 
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summarized in Table 6. A major difference between the methods is the assumption about 

when the components can fail. The cDET assumes that components can only fail at the 

beginning of the analysis. Both the PMS-BDD and the cDET-PMS assume that 

components may fail at the beginning of each CD&R phase, while the PMS-BDD is not 

able to appropriately model a sequence of operational events within each phase (e.g., first 

the system detects a conflict, then the flight crew executes a resolution). The simulation 

allows components to fail at any time, thus to provide an approximation of the true result 

even though it can be computationally challenging for rare events. 

 

Table 6 Assumptions and limitations for each method 

Methodology 
Method specific assumptions 

and limitations 
Common assumptions 

Conditional DET 

 (Section 3.2.1) 

 Components fail at the 

beginning of analysis 

- Components may be used either in 

a single CD&R system or in 

multiple CD&R systems. 

 Components are unrepairable. 

- Each CD&R system and pilot not 

fails but succeeds at a given rate 

or time-varying rate with a 

probability function.  

PMS-BDD 

(Section 3.2.2) 

 Components fail at the 

beginning of each CD&R phase 

- Impossible to model sequence 

of events 

cDET-PMS 

(Section 3.2.3) 

- Components fail at the 

beginning of each CD&R phase 

Simulation 

(Section 3.2.4) 

- Each component fails in a 

random manner according to a 

time-varying rate. 

- Can be computationally 

expensive (Simulation) 

 

Various combinations of numerical values in component failure rates and rates for 

each CD&R system to successfully detect and resolve a conflict are assumed to calculate 
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the collision risk from each approach. Times for each CD&R system to activate are 

respectively assumed 8 min (Strategic intent-based CD&R), 3 min (Tactical intent-based 

CD&R), and 1 min (Tactical state-based CD&R) prior to a conflict. One second (i.e., 1s) 

is used for time step (Δt) for evaluating a dynamic event tree.  

Table 7 summarizes the combinations of assumed numerical values for the 

example problem and associated result collision probabilities from each method. Three 

levels (high, medium and low) of numerical values for each parameter are assumed to see 

how each evaluation approach estimates the resulting collision probability in a different 

combination of various levels of parameters. (Note that the term of ‘collision 

risk/probability’ used in the research is actually a conditional collision risk/probability, 

given that two aircraft are on a collision course.) 

 

Table 7 Collision risk of example problem (Case 1 - without pilot execution event) 

Scenario 

Component 

failure rate 

(/min) 

CD&R  

detection 

rates 

(/min) 

Collision probability 

cDET cDET-PMS  PMS-BDD  Simulation 

1 1.67E-04 [2, 4, 10] 1.08E-05 6.77E-06 6.76E-06 7.23E-07 

2 1.67E-04 [1, 2, 5] 3.19E-05 2.06E-05 1.94E-05 4.77E-06 

3 1.67E-04 [0.5, 1, 2.5] 1.27E-03 1.18E-03 1.11E-03 1.01E-03 

4 1.67E-05 [2, 4, 10]  1.21E-07 7.59E-08 7.45E-08 1.96E-08 

5 1.67E-05 [0.5, 1, 2.5]  1.00E-03 9.94E-04 9.31E-04 9.22E-04 

6 1.67E-03 [2, 4, 10]  1.04E-03 6.57E-04 6.57E-04 5.95E-05 

7 1.67E-03 [0.5, 1, 2.5]  4.77E-03 3.57E-03 3.44E-03 2.02E-03 
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Figure 17 shows the result collision probabilities from each method by the 

scenarios in Table 7. The results from the simulation approach are approximation of the 

true collision risk given a combination of numerical values. Overall, the PMS-BDD 

approach estimates the collision risk better than the other two methods, the cDET and the 

cDET-PMS, even though the differences on the result between the three approaches are 

very little, mostly in a same order of magnitude. Accuracy of the estimated risk from the 

proposed methods varies by scenarios. In scenario 1, 2, 4, and 6, the evaluation methods 

over-estimate the collision risk in a different order of magnitude whereas the estimates in 

scenario 3, 5, and 7 are close to the true risk. A common parameter for the scenario 3, 5, 

and 7 is the low level of rates for each CD&R system to successfully detect and resolve a 

conflict, therefore it can be concluded that the methods estimate the collision risk better 

when CD&R system algorithms more likely fail to detect and resolve a conflict (i.e., poor 

algorithm performance) than when CD&R system algorithms perform detection and 

resolution function very well. 
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Figure 17 Comparison of collision probabilities between methods (Case 1) 

 

Similar to Table 7 and Figure 17, Table 8 and Figure 18 show the result collision 

probabilities from each method given combinations of assumed numerical values. 

Difference between Table 7 (Case 1) and 8 (Case 2) is whether or not the pilot execution 

event exists in each CD&R phase. Rates for pilot to correctly execute a resolution 

provided by each CD&R system are simply assumed to be consistent throughout all the 

CD&R phases to only see how appropriately the proposed approaches model the event.  

Figure 18 looks very similar to Figure 17, i.e., the cDET method and the cDET-

PMS approach estimate the risk better in scenario 3, 5, and 7 than in the other scenarios. 

The result collision risk from the PMS-BDD approach, however, shows a different 

pattern. The estimated collision risk that is lower than the true risk are observed in some 

of the scenarios. This under-estimated collision probability is due to limitation of the 
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PMS-BDD approach to model a sequence of operational events within a CD&R phase 

correctly. The under-estimated result than the true risk is not acceptable from safety 

perspective since safety analysis must be conservative. 

 

Table 8 Collision risk of example problem (Case 2 - with pilot execution event) 

Scenario 

Component 

failure rate 

(/min) 

CD&R  

detection 

rates 

(/min) 

Pilot correct 

execution 

rates 

(/min) 

Collision probability 

cDET 
cDET-

PMS  

PMS-

BDD  

Simula-

tion 

1 1.67E-04 [2, 4, 10] [10, 10, 10] 1.21E-05 7.58E-06 6.83E-06 8.01E-07 

2 1.67E-04 [1, 2, 5] [10, 10, 10] 5.16E-05 3.36E-05 1.95E-05 8.70E-06 

3 1.67E-04 [0.5, 1, 2.5] [10, 10, 10] 1.84E-03 1.73E-03 1.11E-03 1.54E-03 

4 1.67E-05 [2, 4, 10]  [10, 10, 10] 2.51E-07 1.57E-07 8.21E-08 5.35E-08 

5 1.67E-05 [0.5, 1, 2.5]  [10, 10, 10] 1.51E-03 1.50E-03 9.31E-04 1.42E-03 

6 1.67E-03 [2, 4, 10]  [10, 10, 10] 1.06E-03 6.65E-04 6.58E-04 6.23E-05 

7 1.67E-03 [0.5, 1, 2.5]  [10, 10, 10] 6.03E-03 4.58E-03 3.44E-03 2.73E-03 

 

 
Figure 18 Comparison of collision probabilities between methods (Case 2) 
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Figure 19 illustrates performance of each method in different scenarios (scenario 

1 and 3 in Table 8). Performances of each method are shown in two measures. The first 

measure is the computation time shown on y-axis in the figure. Computation of the 

methods except the simulation are quite fast (done in 1 second), and it does not depend 

on the parameter values (i.e., computation times are almost same in different scenarios), 

whereas the simulation takes a couple of hours (Scenario-3) to a few days (Scenario-1) 

depending on the assumed numerical values on the parameters. 

 The second measure of the performance is the relative risk estimate compared to 

the simulation result shown on x-axis, where the simulation result always equals to one. 

If a method has relative risk estimates that are greater than one, the method over-

estimates the risk, so it is erroring on the correct side of safety. In addition, the larger an 

x-axis value of a method is, the more the method over-estimates, i.e., the less accurate the 

estimate is. The relative risk estimates of each method are quite different in different 

scenarios as well as between the methods. Relative risk estimates of all methods for 

Scenario-3 are very close to one, while, for Scenario-1, the relative risk estimates are all 

greater than 10 meaning that the all methods over-estimates the risk by more than a 10-

fold. The methods discussed in this research estimate the collision risk relatively well for 

Scenario-3, where the CD&R algorithms likely fail to detect and resolve a conflict, i.e., 

success probabilities (rates) of the CD&R systems are small. In terms of estimation 

methods, the cDET-PMS approach shows smaller relative risk estimates (i.e., estimates 

the risk better) in both scenarios than the cDET method, while, as stated in Figure 18, the 

PMS-BDD under-estimates the risk, which is not allowed in the safety analysis. 
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Figure 19 Performance comparison between methods  
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CD&R systems detect and resolve a conflict while the second case additionally includes 

an event that pilot correctly execute the resolution. 

Each method has different assumption and limitation on the timing of component-

based system failures and modeling a sequence of events in sub-trees. Table 9 

summarizes computation steps and assumptions/limitations of each method. The PMS-

BDD approach specifically has a significant limitation to model a sequence of events that 

causes under-estimation of the true risk. The proposed evaluating approaches (i.e., cDET 

and cDET-PMS) perform differently in various combinations of numerical values. They 

estimate the collision risk very well in case that the CD&R system algorithmic failures 

very likely occur in the first two conflict detection and resolution (CD&R) phases, while 

they over-estimate the risk in a different order of magnitude for the other case.  

The proposed DET framework and evaluating approaches have benefit of creating 

or modifying a model and of evaluation of the new model. In a typical system design 

phase, for example, adding a redundant component, replacing a better component, or 

even a new architecture needs to be evaluated to choose the best design of a system that 

meets requirements of system reliability/safety. The DET approach proposed in this 

dissertation can be used to evaluate design alternatives of a system readily with a 

reasonable fidelity. 
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Table 9 Summary of the methods 

Method Algorithm Assumption / Limitation 

cDET 

ⅰ) Enumerate all 2m (m = # of 

components) combinations of 

component states and compute the 

probability pi of each state 

combination  

ⅱ) Determine availabilities of CD&R 

systems for each state combination 

and compute the joint probability qj (j 

= 1, …, 2n, n = # of CD&R systems) 

for each combination of available 

CD&R systems 

ⅲ) Generate at most 2n DETs based on 

CD&R system availabilities and 

evaluate the conditional collision 

probability oj given DET-j 

ⅳ) Total collision risk = Σj qj * oj  

- Components assume to fail at the 

beginning of analysis. 

- Enumeration of combinations of 

components state may require a 

lot of computation time. 

PMS-BDD 

ⅰ) Create a fault tree with the top level 

(collision) by combining fault trees 

for failure of each CD&R phase with 

‘AND’ gate  

ⅱ) Modify the supporting fault trees to 

include operational failure events 

ⅲ) Apply PMS-BDD to compute total 

collision risk 

- Components assume to fail at the 

beginning of each CD&R system 

operation. 

- A sequence of operational 

events, such as detection of a 

conflict and correct execution of 

a resolution by pilot, is modeled 

parallelly. 

 cDET-PMS 

ⅰ) Generate 2n DETs based on CD&R 

system availabilities and evaluate the 

DETs for conditional collision 

probabilities (oj) given DET-j 

ⅱ) Create a fault tree for each DET 

combining fault tree and/or success 

tree of each CD&R system 

ⅲ) Apply PMS-BDD to combined fault 

trees to calculate weight probability 

(qj) for each DET being used  

ⅳ) Total collision risk = Σj qj * oj 

- Components assume to fail at the 

beginning of each CD&R system 

operation. 
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CHAPTER 4: CASE STUDIES: MODELING COLLISION RISK BETWEEN 

VARIOUS AIRCRAFT TYPES 

The current NAS is expected to experience difficulty in accommodating 

increasing aircraft demand and diversity of aircraft. In order to resolve the predicted 

problems, additional automated separation assurance systems are needed, but also a new 

system architecture for the NAS may be required. Two comprehensively researched 

concepts of the future NAS operation are Autonomous Flight Management (AFM) [Wing 

2011] and the Advanced Airspace Concept (AAC) [Erzberger 2001]. The major 

difference between AFM and AAC is that AFM distributes responsibility for maintaining 

safe separation to operators in the air, while AAC has a central system on the ground to 

provide separation assurance. Wieland [2017] recently proposed a system architecture 

where the capacity of each sector is determined by the collision risk between aircraft 

within the sector.  

This chapter describes case studies for collision risk between different types of 

aircraft and/or collision avoidance capabilities (e.g., between a manned aircraft and an 

Unmanned Aircraft System (UAS)). The case studies are developed in a future NAS 

environment such as AFM and AAC using the proposed dynamic event tree (DET) 

framework. In addition, sensitivity analysis on the model parameters including 

component failure probabilities, maximum detection range of the sensors, and collision 

geometries are conducted.  
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4.1 Case Study-1: Autonomous Flight Management (AFM) 

4.1.1 Concept of AFM Operations 

The AFM concept is originally from the free flight concept of operation, in which 

operators are free to choose their flight trajectory in real time, which is expected to be the 

most ultimate environment for the future NAS. The “self-separation”, i.e., maintaining a 

safe distance to all other aircraft by the pilot themselves, is a key concept for a safe free 

flight environment as well as a concept to be accomplished under AFM operation to 

prevent a mid-air collision.  

Based on Wing [2011], an aircraft operating in the AFM concept has three safety 

layers that sequentially operate to prevent a mid-air collision. These systems are a 

strategic intent-based (SI) CD&R system, a tactical intent-based (TI) system, and a 

tactical state-based (TS) system. The first two safety layers (SI and TI) are implemented 

via an Airborne Separation Assistance System (ASAS), which is a software automation 

system onboard the aircraft that performs conflict detection, resolution, and prevention 

functions. Both systems use state and intent information of other aircraft to suggest 

resolutions. The final safety layer is the Traffic Alert and Collision Avoidance System 

(TCAS), which uses state information of the two aircraft to avoid an imminent collision. 

The three systems are assumed to operate in the following respective time intervals in this 

case study:  Between 8 min and 3 min prior to a conflict, between 3 min and 1 min prior 

to a conflict, and within 1 min prior to a conflict. Times for each CD&R system to 

activate are chosen to provide an acceptable trade-off between the benefits of alerting as 

early as possible and the costs of false alarms [Erzberger 2012]. All commercial (i.e., 
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manned) aircraft are predicted to be properly equipped to meet the requirements of AFM 

flights in the case study. 

4.1.2 Conflict Detection and Resolution (CD&R) for UAS  

This case study considers the hypothetical introduction of unmanned aircraft 

systems (UAS) into the AFM framework. In the future NAS, various types of UAS may 

have different conflict detection and resolution systems onboard. Unlike manned 

(commercial) aircraft, UAS may not be equipped with all three CD&R systems (i.e., SI, 

TI, and TS CD&R) due to cost, weight, capacity, or power restrictions.  

Table 10 provides a summary of example sensors for UAS in terms of type, 

information that can be obtained, detection range, and weather conditions in which a 

sensor operates [Lacher 2007; Yu 2015; Fasano 2016]. Mode A/C or Mode S 

transponders, TCAS and ADS-B are cooperative sensors because they transmit their 

position information either by interrogation or on their own. The other sensors are non-

cooperative sensors. An aircraft equipped only with a non-cooperative sensor can acquire 

information of other nearby flights, but the other flights do not have position information 

of that aircraft. Radar and LIDAR systems locate nearby aircraft by deploying energy, 

e.g., emitting an electronic pulse, while electro-optical (EO) systems and acoustic 

systems sense aircraft passively (e.g., by listening to sound made by aircraft). Active non-

cooperative sensors require more energy so are typically bigger and heavier. Passive non-

cooperative sensors are smaller and lighter, but they do not provide range information 

directly. 
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Table 10 Summary of example sensor technologies for UAS 

Sensor Type 
Information 

Acquired 

Detection 

Range 

Weather 

Condition 

Mode A/C or S 

Transponder 
Cooperative 

Range, 

Altitude 
160 km VMC / IMC 

ADS-B Cooperative 
Position, Altitude, 

Velocity 
240 km VMC / IMC 

TCAS Cooperative 
Range, 

Altitude 
160 km VMC / IMC 

Radar 
Non-Cooperative 

(Active) 

Range, Bearing  

(Azimuth, Elevation) 
35 km VMC / IMC 

LIDAR 
Non-Cooperative 

(Active) 
Range 3 km VMC / IMC 

Electro-Optical 

(EO) system 

Non-Cooperative 

(Passive) 

Azimuth, 

Elevation 
20 km VMC 

Acoustic 

system 

Non-Cooperative 

(Passive) 

Azimuth, 

Elevation 
10 km VMC 

Note: VMC-Visual Meteorological Conditions, IMC-Instrument Meteorological Conditions 

 

In the case study, the manned aircraft is assumed to be AFM-equipped with three 

safety levels. But the unmanned aircraft is assumed to have only one safety layer, namely 

a non-cooperative tactical state-based CD&R system, with an onboard radar to acquire 

position information of other aircraft. The timings of these safety layers are illustrated in 

Figure 20. The time interval of the UAS safety phase (T4) depends on the sensor range, 

speed of the aircraft, and conflict geometries. The unmanned aircraft is also assumed to 

have a Mode A/C transponder. This is assumed since the CD&R systems on the manned 

aircraft require position information of the unmanned aircraft, which a cooperative sensor 

provides either directly or through ground systems. 
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Figure 20 CD&R phases for the case study  

 

An assumed concept of operation of the CD&R system on the unmanned aircraft 

is as follows: The onboard radar provides relative position information of nearby aircraft. 

An onboard CD&R processor detects potential conflicts using this information and 

determines appropriate resolutions. Resolutions are transmitted to a remote pilot via a 

command and control link. The pilot of the UAS is informed of suggested resolutions 

aurally through a speaker and visually through a display. The pilot chooses a resolution 

and gives a command to the UAS to execute the resolution to avoid the predicted conflict.  

4.1.3 Fault Trees for CD&R Systems  

In order for the CD&R systems to operate, several sub-systems/components must 

be working. A fault tree for each CD&R system is given to show the failure logic 

between components and the CD&R functionality. These fault trees are based on the 

AFM concept in Wing [2010] for the manned aircraft combined with the assumed 

concept of operation for the CD&R system on the unmanned aircraft. The fault trees for a 

pair of manned aircraft in AFM flight would be different. 

T1 0

0

Manned
aircraft

Unmanned
aircraft

Strategic
intent-based

CD&R

Tactical
intent-based

CD&R

Tactical
state-based

CD&R

Tactical state-based CD&R

T2 T3

T4

time 
to conflict

time 
to conflict



76 

 

 

Figure 21 depicts the failure logic of the strategic intent-based (SI) system on the 

manned aircraft. The SI system can fail either due to the failure of components 

supporting the system or due to a surveillance failure. On the left side of the figure, the SI 

system is supported by a processor that runs the conflict detection and resolution 

algorithm and a display that visually provides conflict information and resolution to the 

pilot. The failure considered here is a physical failure of the processor. The system can 

also fail algorithmically (i.e., failure to detect a conflict due to uncertainties in 

surveillance information), and this is considered later in the chapter. 

 

 
Figure 21 Supporting fault tree for strategic intent-based CD&R system (manned aircraft)  

 

On the right side of the figure, a surveillance failure occurs when the manned 

aircraft (shown as AC#1) cannot locate either itself or the other aircraft (i.e., the 
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unmanned aircraft shown as AC#2). The manned aircraft’s own location comes from a 

Global Positioning System (GPS) that is assumed to collect position, velocity, and 

heading information (from the Global Navigation Satellite System, GNSS) and altitude 

information from the altimeter. It passes this information to the CD&R processor.  

According to Wing [2011], Automatic Dependent Surveillance-Broadcast (ADS-

B) is the primary source of surveillance information for the manned aircraft. However, 

since the unmanned aircraft is assumed not to have an ADS-B system, the Traffic 

Information Service Broadcast (TIS-B) system is used to acquire the location of the 

unmanned aircraft. In the AFM concept, TIS-B is a ground-based backup system that 

provides surveillance information of non-ADS-B equipped aircraft. Ground radar locates 

the unmanned aircraft by interrogating the transponder onboard. A transmitter sends the 

surveillance information to the manned aircraft in the form of an ADS-B Out message. 

The ADS-B In system on the manned aircraft receives the message and provides 

surveillance information to the CD&R systems and/or flight crew. The ADS-B In 

function is currently implemented in the TCAS processor on most commercial aircraft 

[Richards 2010].  

The tactical intent-based (TI) system begins to operate 3 minutes prior to a 

potential collision. Figure 22 shows the failure logic of the TI system, which is similar to 

the logic of the SI system. Failures of supporting components or a loss of location of any 

aircraft can lead to failure of the TI system. The TI system uses the same source for 

surveillance information as the SI system does, which is the ground-based TIS-B system. 
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A key difference is that the TI system uses two means to alert the pilot of conflict 

detection and resolution – namely, a display and speaker.  

 

 
Figure 22 Supporting fault tree for tactical intent-based CD&R system (manned) 

 

The tactical state-based (TS) system is the last CD&R system for the manned 

aircraft to avoid a midair collision. This system is assumed to be the Traffic Alert and 

Collision Avoidance System (TCAS). According to FAA [2011], TCAS has a 

requirement to provide reliable surveillance out to 14 nautical miles (nmi). In this case 

study, 1 minute is chosen as the activation time of TCAS, which is enough to account for 

a closing speed up to 840 knots in a head-on collision. Unlike the previous CD&R 

systems, TCAS obtains surveillance information by direct interrogation of the 

transponder on the other aircraft [FAA 2011]. Thus TCAS can fail if the transponder on 
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the target aircraft fails. TCAS can also fail if the transponder on the own aircraft fails, 

since the TCAS processor is connected to the Mode S transponder and is not available if 

the transponder fails [FAA 2011]. In addition, the TCAS display and speaker support 

TCAS to perform its function as depicted in Figure 23.  

 

  
Figure 23 Supporting fault tree for tactical state-based CD&R system (TCAS, manned) 

 

Figure 24 shows the fault tree supporting the CD&R system for the unmanned 

aircraft. Similar to the CD&R systems for the manned aircraft, the CD&R system for the 

unmanned aircraft is assumed to be configured with a processor, means of alerting (visual 

and aural), and sensors that provide state information of the other aircraft. An additional 

component is a command and control link through which the remote pilot receives 

resolutions and can direct the aircraft. 
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Figure 24 Supporting fault tree for tactical state-based CD&R system (unmanned) 

 

Table 11 summarizes components that support the CD&R systems for both 

aircraft and their failure rates. Some of the values are assumed, and others are obtained 

from the literature.  

 

Table 11 Parameters in fault trees for CD&R systems  

Component 
Failure Rate 

(/hr) 
Description 

CD&R 

Processor 

6.25E-5 

[Hemm 2009] 

- Running CD&R logic using information from ADS-

B In, GPS, etc. 

Display 
6.25E-5 

[Hemm 2009] 

- Providing traffic/conflict information and resolution 

trajectory to flight crew 

Speaker 
6.25E-5 

(assumed) 

- Providing aural alert to draw flight crew attention to 

conflicts 

GPS 
5.0E-5 

[Hemm 2001] 

- Providing position/velocity, altitude, heading, and 

air-ground status information 

Transponder 
8.33E-5 

[Hemm 2009] 

- Mode C / Mode S transponder including antennas  

- Providing aircraft state information as response of 

interrogation 

TIS-B transmitter 
1.0E-4 

[Hemm 2001] 
- Providing traffic information from ground to air 

Unmanned aircraft 
state-based

CD&R Unavailable

AC#2
Processor

failure

AC#2 Onboard 
Radar
failure

AC#2
Remote
Speaker
failure

AC#2
Remote
Display
failure

AC#2
Command

/Control link
failure

AC#2
Alerting
failure
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Ground radar 
2.0E-5 

[Hemm 2009] 

- Secondary surveillance radar 

- Gathering traffic information 

TCAS Processor 

/ ADS-B In 

6.25E-5 

[Hemm 2009] 

- Antennas included 

- Transmitting interrogation to / receiving replies from 

other aircraft 

- Running TCAS logic  

- Receiving ADS-B messages from other aircraft or 

ground facilities 

- Providing information to flight crew display and to 

CD&R processor 

TCAS Display 
6.25E-5 

[Hemm 2009] 

- Providing traffic/conflict information and resolution 

trajectory to flight crew 

TCAS Speaker 
6.25E-5 

(assumed) 

- Providing aural alert to draw flight crew attention to 

conflicts 

Onboard radar 
1.0E-4 

(assumed) 
- Gathering traffic information 

Command/ 

Control link 

1.0E-4 

(assumed) 

- Providing ability to communicate between aircraft 

and remote pilot 

- Providing ability for remote pilot to control aircraft 

 

4.1.4 Algorithm Performance 

In order for a conflict to be resolved, three steps need to be completed: 1) an 

algorithm of the CD&R system detects the conflict, 2) an algorithm of the CD&R system 

provides appropriate resolutions for the pilot to avoid a conflict, and 3) the pilot correctly 

executes the provided resolution.  

Various studies have been conducted to develop autonomous CD&R algorithms. 

This research uses an analytic conflict-detection method from Paielli [1997] which gives 

the probability that a loss of separation (≤ 5 nm) occurs when the system predicts a loss 

of separation given an assumption of level flights. Trajectory prediction errors are 

assumed to be normally distributed with a constant root mean square (rms) for the lateral 

position prediction error and a linearly growing rms in time for the longitudinal position 
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prediction error. The resulting probability for an actual loss of separation is a function of 

the time prior to the predicted loss of separation. It is also a function of other parameters 

such as speed of aircraft, size of the conflict zone, and the path-crossing angle. Figure 25 

shows sample loss of separation probabilities for different path-crossing angles based on 

an implementation of the algorithm in Paielli [1997] (using 5 nmi as a conflict radius).  

 

 
Figure 25 Loss of separation probabilities for different path-crossing angles 

 

As a technical note, values in Figure 25 need to be converted to probabilities used 

in the DET model. The values in Figure 25 are cumulative probabilities, whereas the 

model uses probabilities associated with detecting conflicts in the next Dt seconds (see 

level-2 sub-tree in Figure 11). This can be obtained by converting the cumulative 

probability to an associated hazard rate function. For example, for a 90° path-crossing 

angle, at 480 seconds prior to a collision, the probability in Figure 25 is about 0.9. This is 

0.80

0.85

0.90

0.95

1.00

0 60 120 180 240 300 360 420 480

Lo
ss

 o
f S

e
p

ar
at

io
n

 P
ro

b
ab

il
it

y

Time to conflict (sec)

30 deg. 60 deg. 90 deg. 135 deg. 180 deg.



83 

 

 

interpreted as the cumulative probability of detecting the conflict some time prior to a 

collision. The associated hazard rate is -[ln(1 – 0.9)] / 480 ≈ 0.0048 / sec, meaning there 

is roughly a 0.0048 probability of detecting the conflict each second. Over 480 seconds, 

the probability of detecting the conflict yields the desired value of 0.9. Over an interval of 

Dt seconds, the probability of detecting the conflict is 1-exp(–0.0048Dt) which is about 

0.0048Dt, assuming Dt is small.   

This analysis assumes that the values in Figure 25 can be interpreted as the 

probability of detecting a conflict, given that a collision will occur. The model in Paielli 

[1997] gives something slightly different – the probability that a collision will occur 

given a conflict is detected. By Bayes’ theorem, these are approximately the same, so 

long as the probability of detecting a collision is roughly the same as the probability of a 

collision (i.e., the detection algorithm is not biased high or low in terms of identifying 

collisions). 

In order to determine the probabilities for the pilot to correctly execute a 

resolution provided by the CD&R system, results from Consiglio [2010], which assessed 

the performance of commercial pilots in human-in-the-loop simulation experiments, are 

used. In the literature, pilot response delays in a self-separation concept were measured 

when interacting with automated separation assurance tools on board. A CD&R tool was 

set to provide two different alerting levels depending on the time to a predicted conflict. 

One alerting mechanism was a display with a chime sound and the other was a display 

with an aural warning. Average response delays to the two different alerting levels were 

32.4 and 20.6 seconds, which are assumed as the pilot response delays for the SI and TI 



84 

 

 

respectively. Assuming exponential distributions for the response times, these values are 

converted to pilot response rates for the first two CD&R phases, similar to the previous 

discussion of Figure 25.  The pilot execution rate for the last CD&R phase is based on 

FAA [2011], where pilots are expected to respond to a TCAS Resolution Advisory in 5 

seconds. 

Several assumptions for the performance of the CD&R system on the unmanned 

aircraft are also made. It is assumed that the CD&R system on the unmanned aircraft 

successfully detects and resolves a conflict with a probability (or rate) that is 30% that of 

the manned aircraft, This is a time-varying value (e.g., see the conflict detection rate in 

Table 12). The performance of the remote pilot (i.e., the random time to execute a 

resolution) is assumed to be the same as for the first CD&R phase of the manned aircraft.  

The activation time for the CD&R system of the unmanned aircraft is based on 

the detection range of the onboard sensors, the geometry of the conflict, and the speed of 

the two aircraft. Table 12 shows a summary of the parameters for algorithm performance 

at time t prior to a conflict, given a 90° of path-crossing angle. (Note: In this research, it 

is assumed that the CD&R systems always generates an appropriate resolution once the 

conflict is detected.) 

 

Table 12 Parameters of CD&R system function and pilot behavior 

Aircraft 
CD&R 

Phase 

Time to Conflict 

(min) 

Conflict Detection 

Rate (/hr) 

Pilot Execution 

Rate (/hr) 

Manned 
Strategic 

intent-based 

8 17 
111 

7.5 19 
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CD&R 7 22 

6.5 25 

6 28 

5.5 33 

5 38 

4.5 45 

4 54 

3.5 65 

Tactical 

intent-based 

CD&R 

3 80 

175 
2.5 100 

2 130 

1.5 179 

Tactical 

state-based 

CD&R 

1 276 
720 

0.5 560 

Unmanned 

Tactical 

state-based 

CD&R 

2.5 30 

111 

2 39 

1.5 54 

1.0 83 

0.5 168 

 

4.1.5 Result & Sensitivity Analysis 

This section provides numerical results and sensitivity analyses of the case study 

for collision risk between a manned and remotely-piloted unmanned aircraft under an 

assumption of the AFM environment. The activation time for the CD&R system on the 

unmanned aircraft varies depending on speed of the aircraft and path-crossing angles 

between the aircraft (Table 13). All other parameters needed for the DET framework are 

explained in the previous sections. The case study assumes level flight.  
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Table 13 Activation times for CD&R system on unmanned aircraft  

Angle btw flight paths 30˚ 60˚ 90˚ 135˚ 180˚ 

Activation time 

(min to conflict) 
4.25 3.25 2.60 2.12 1.98 

 

The proposed DET framework models collision risk from the perspective of one 

aircraft. But the collision avoidance maneuver can be conducted by either aircraft. Only 

one aircraft needs to execute an avoidance maneuver. If both aircraft are independent in 

terms of physical components supporting the CD&R systems like the case study, it is 

possible to independently apply the framework to each aircraft. Then, the overall 

collision probability is the product of the two collision probabilities from each aircraft 

(i.e., a collision occurs if both aircraft fail to detect and avoid the other). The evaluation 

steps using the cDET-PMS was described in Chapter 3. 

Figure 26 shows the resulting collision probabilities as a function of the path-

crossing angle. These are conditional collision probabilities, under the assumption that 

two aircraft are on a collision course in the first place. As might be expected, the collision 

probability increases for larger path-crossing angles, since the closing speed increases, 

thus decreasing the time available to avoid a collision (180° represents a head-on 

scenario). But the collision risk is not completely monotonic. The collision risk decreases 

slightly at first and then increases. This is because there is a competing effect where the 

conflict detection algorithm in Paielli [1997] is more accurate for path-crossing angles 

between 45° and 90° (at least for the parameters used in this example), so the collision 

risk improves even though the time to avoid a collision decreases.  



87 

 

 

 

   
Figure 26 Collision probabilities of case study 

 

Figure 27 shows contribution of failure modes on manned aircraft to collision risk 

of the case study. ‘Algorithm/Pilot failures’ indicates contribution of cases where all 

CD&R systems are available, but the algorithm fails to detect the conflict or the pilot 

does not respond in time. ‘Component-based failures’ shows the contribution of cases 

where all CD&R systems are unavailable due to component failures. Component-based 

failures are a major cause of collision risk; however, the relative contribution decreases 

for larger path-crossing angles. This is because the detection algorithm is less successful 

for larger path-crossing angles, thus the contribution of algorithm/pilot failures increases. 

For the unmanned aircraft, the algorithm/pilot failure is always the most contributing 

mode of failure (not shown in the figure).  
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Figure 27 Collision probabilities of case study by failure modes 

 

Figure 28 shows a sensitivity analysis of the failure probabilities of the 

components supporting the CD&R systems. Note that the first two elements are measured 

with the scale on the top axis, while the other elements are measured with the scale on the 

bottom axis. The value associated with each component is the relative change 

(improvement) in collision risk given a 10% reduction in the failure probability of the 

given component. For example, the transponder of the unmanned aircraft has a sensitivity 

of 0.044. This means that if the failure rate of the transponder is reduced by 10%, the 

collision risk would improve by 4.4%. The transponder on the unmanned aircraft is the 

most significant component followed by the TCAS processor on the manned aircraft. 

This is because all CD&R systems on the manned aircraft rely on the transponder to 

locate the unmanned aircraft. 
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Figure 28 Sensitivity analysis result for component failure rate 

 

Figure 29 presents a sensitivity analysis of the onboard radar detection range. 

Obviously, a longer detection range provides a better (i.e., reduced) collision risk. The 

values of sensitivity are the relative decrease in collision risk given a 10% increase of the 

onboard radar detection range on the unmanned aircraft. A sensitivity value of 0.09, for 

example, means that the collision risk is decreased by 9% in response to a 10% increase 

of the detection range. The improvement in collision risk varies with the path-crossing 

angle. The improvement gets larger as the path-crossing angle increases to 90°, then it 

becomes less with larger path-crossing angles. The figure also shows sensitivities with a 

10% decrease of the radar detection range. 

It is interesting to observe that the impact of an increased detection range for a 

30° path-crossing angle is smaller than that for a 90° path-crossing angle. Intuitively, 
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with a slower closure rate (i.e., at smaller path-crossing angles), an increased range 

provides more time to avoid a conflict. Conversely, in a head-on case, increasing the 

detection range provides only a little more time. However, the risk reduction also 

depends on the conflict detection rate itself, which varies depending on the path-crossing 

angle. As an example, suppose that 10 seconds and 8 seconds of additional time are 

available to avoid a conflict for the 30° and 90° cases, respectively. Conflict detection 

probabilities per second are assumed about 0.01 and 0.02 for the two cases, respectively. 

Then, the total relative reduction in collision risk for the 30° case is about 9.6% (≈ 1 - (1 - 

0.01)10), while the relative reduction for the 90° case is about 14.9% ((≈ 1 - (1 - 0.02)8)). 

Even though fewer seconds are added in the 90° case, those seconds make more of a 

difference. (Note that the example is made for illustrative purposes.) 

 

  
Figure 29 Sensitivity analysis result for onboard radar detection range 
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Next sensitivity analysis is conducted on the performance of the CD&R 

algorithms, specifically the trajectory prediction errors assumed in the algorithms (Figure 

30). In this analysis, trajectory prediction errors for the unmanned aircraft are adjusted, 

while the uncertainty for the manned aircraft remains fixed. Similar to the previous 

sensitivity results, the value of the sensitivity is a relative change in collision risk given a 

change in trajectory prediction errors (e.g., errors on both along-track and cross-track 

dimensions change by 10%). A sensitivity value of 1, for example, means that the 

collision risk increases by 100% (twice as many collisions), while a value of -0.4 

indicates a 40% reduction in collision risk. The impact of the trajectory prediction 

uncertainty is larger when two aircraft fly with a small path-crossing angle (e.g., less than 

30°) or a large path-crossing angle (e.g., greater than 130°). That is, the conflict detection 

algorithm is more vulnerable to the uncertainty near the two extremes (i.e., 0° and 180°). 

Increasing the uncertainty on trajectory prediction affects the collision risk slightly more 

than decreasing the uncertainty. 
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Figure 30 Sensitivity analysis result for trajectory prediction errors of CD&R algorithms  

 

4.1.6 Discussion on Dependency between CD&R Systems 

In the case study, the manned aircraft and the unmanned aircraft are independent 

in terms of physical components supporting the CD&R systems, thus an independent 

framework to each aircraft is applied. In reality, there can be dependencies between the 

two aircraft, since there may be common elements in the fault trees of CD&R systems on 

both aircraft. As an example, suppose that the UAS also has a TCAS-like system with a 

Mode S transponder (instead of a Mode A/C transponder) in addition to the onboard 

radar. The TCAS-like system on the unmanned aircraft performs the same function of the 

current TCAS system on the manned aircraft (i.e., direct interrogation of the transponder 

on the other aircraft). Similar to the current TCAS system, the assumed TCAS-like 
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components that support the CD&R system of the unmanned aircraft are the same as 

illustrated in Figure 24. Dependency between the two aircraft must be considered in this 

example, since the transponders on both aircraft appear in the fault trees of both aircraft 

(Figures 21-23). 

 

 
Figure 31 Supporting fault tree for tactical state-based CD&R system (unmanned TCAS-like)  
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the first phase for the manned aircraft – then this first phase is divided into two phases for 

the joint DET framework, [T1, T4) and [T4, T2). The combined framework has four phases 

in total. In the first phase, only the strategic intent-based system of the manned aircraft is 

operating. In the remaining three phases, both aircraft have CD&R systems operating in 

some combination. In the example, T4 is assumed to be between T1 and T2. But this is not 

always the case. The number of phases, the time horizons of the phases, and the CD&R 

systems that are operating in each phase depend on the activation times, the detection 

range of sensors, aircraft speeds, and collision geometries. Once the two DET 

frameworks are integrated, the evaluation steps of the combined DET framework are the 

same as explained in Chapter 3. 

 

 
Figure 32 Combining two DET frameworks 
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An example analysis of dependent CD&R systems is conducted for an unmanned 

aircraft equipped with an onboard radar and a TCAS-like system with a Mode S 

transponder (as shown in Figure 31). The TCAS-like system on the unmanned aircraft is 

assumed to perform conflict detection with various levels of accuracy. Successful conflict 

detection probabilities of the system are varied ranging from 30% to 80% that of the 

manned aircraft. The performance level of 30% is the same level considered in the 

original case study. The detection range is assumed to be 35 km, as before. 

Figure 33 illustrates the relative change in collision risk for the different 

combinations of sensors and conflict detection performance levels, compared to the 

original case study. For example, for the case of ‘TCAS-like + Onboard rada (50%)’ at a 

180° path-crossing angle, the value of 0.4 means that the collision risk is improved by 

40% compared to the case study. Obviously, better conflict detection performance yields 

reduced collision risk. In terms of path-crossing angle, the collision risk improves with 

smaller path-crossing angles since more time is available to avoid a collision. With the 

same algorithm performance level (30% scenario), the TCAS-like system can change the 

collision risk by 15%. The effect is small because the components additionally required 

for the TCAS-like system on the unmanned aircraft (i.e., transponders) are common 

elements that already support the CD&R systems on the manned aircraft. Thus, the 

improvement is not as high as might be expected, even though the unmanned aircraft has 

two different sources for surveillance information in parallel. 
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Figure 33 Relative collision risk of various CD&R systems on unmanned aircraft to case study 
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Flight Environment (TSAFE).  The AR is designed to detect and resolve a conflict 

predicted to occur approximately 20 to 2 minutes prior to a potential conflict, while the 

TSAFE provides tactical conflict detection and resolution within 3 minutes to an 

expected conflict. In addition, similar to AFM operations, the TCAS is assumed to be the 

last CD&R system that provides separation assurance within 1 minute to a predicted 

conflict. The central system of AAC on the ground collects surveillance information 

(position and speed) of all aircraft in a particular region of airspace. The system 

automatically detects conflicts, generate conflict free trajectories, and upload the 

trajectories directly into onboard systems of properly equipped aircraft. The voice 

communication link is still used for air traffic controllers to provide separation to 

unequipped aircraft or to equipped aircraft as a backup.  

Note: Time horizons of each CD&R system for the AAC are overlapped slightly, 

so an assumption that the latest CD&R system has a priority to the previous one is made, 

e.g., the TSAFE would take over the AR at 3 min prior to a conflict if the AR fails to 

resolve the conflict until then. In addition, the AR is assumed to activate at 8 min prior to 

a conflict since 8 min provides an acceptable trade-off between the advantage of early 

alerting and the disadvantage of false alarms [Erzberger 2012].  

4.2.2 CD&R Systems 

Unmanned aircraft systems (UAS). UAS assume to be introduced into the future 

NAS. As discussed in Section 4.1, two different types of conflict avoidance capabilities, 

Mode A/C transponder and onboard radar and TCAS-like system and onboard radar, are 

considered for the CD&R system of the unmanned aircraft. All the assumed concept of 
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operations and failure relationships between supporting components and the system are 

hold as described in Section 4.1.2. One additional assumption made is that UAS is not 

controlled by AAC nor human air traffic controller, thus it flies as like the one under 

AFM operation. In other words, UAS is assumed to maintain separation to other aircraft 

by itself.  

Fault trees for the AAC. Fault trees for the two CD&R systems of AAC concept, 

AR and TSAFE, are constructed to illustrate logical relationships between supporting 

components and the system function. These fault trees are based on a series of literature 

([Erzberger 2004; Andrews 2005; Blum 2010]), which studied the AAC in terms of 

concept of operation, design/architecture, and safety, as well as the assumed CD&R 

system on the unmanned aircraft. (Note that the fault trees may be different for a pair of 

aircraft with different equipage.) 

Figure 34 shows the failure logic of the AR. The AR can fail either due to the 

failure of components supporting the system (on the left side of the figure) or due to a 

surveillance failure (on the right side of the figure). The AR is supported by a separate 

processor that receives positional data for all aircraft in a given region of airspace, 

predicts trajectory of aircraft, detects a predicted loss of separation (LOS), and generates 

resolution of the LOS. Then, the AR sends the resolution directly to a display on aircraft 

via a data link. Voice communication link between air traffic controller and pilot is 

available as a backup. 
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Figure 34 Supporting fault tree for Autoresolver (AR)  

 

A surveillance failure occurs when the AR on the ground cannot locate either 
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receiver on the ground collects the ADS-B messages. As a backup surveillance system, a 

ground radar is used to locate aircraft by interrogating the transponder onboard as it is in 
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Autoresolver (AR)
Unavailable

Autoresolver
component-
based failure

Surveillance
failure

AR
processor

failure

AC#1
VDL uplink

failure

AC#1
Voice comm

failureAC#1 
Resolution

reader/display
failure

AC#1
Location 
failure

Ground-based 
surveillance

failure

ADS-B based
surveillance

failure

AC#1 
Transponder

failure

Ground 
Radar
failure

AC#1
GPS

failure

AC#1 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

AC#2
Location 
failure

AC#2 
Transponder

failure

Ground 
Radar
failure

AC#1
Communication 

failure



100 

 

 

The TSAFE, which is also located on the ground, is to detect and resolve potential 

conflicts in tactical time horizon, i.e., within 3 min prior to a predicted conflict. 

Relationship between supporting components failure and failure of the TSAFE is shown 

in Figure 35. Similar to the AR, failures of components supporting the TSAFE or failures 

of tracking location of either aircraft on a collision course cause the TSAFE to fail. The 

TSAFE relies on the same sources for location information as the AR does, which are 

ADS-B and/or ground radar. The TSAFE has its own processor, which is independent to 

the one used for the AR, that runs conflict detection and resolution algorithm. A main 

difference from the AR is that a resolution found by TSAFE is communicated to the 

aircraft by the Mode S data link using the transponder onboard.  

 

 

 
Figure 35 Supporting fault tree for TSAFE (manned aircraft)  
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The last CD&R system that assumes to activate at the last minute prior to a 

potential collision is Traffic Alert and Collision Avoidance System (TCAS). Detailed 

explanation for TCAS is available in Section 4.1, where operational concept, 

requirements, and failure logic are discussed.  

4.2.3 Result & Comparison with Case Study-1 

This section presents numerical results of collision risk between a manned and 

unmanned aircraft, which are equipped with a different level of collision avoidance 

capabilities, in the AAC operation environment. Three CD&R systems, two (AR and 

TSAFE) on the ground and the other (TCAS) onboard, are available for the manned 

aircraft, while a tactical state-based CD&R system utilizing an onboard radar performs 

conflict detection and resolution functions on the unmanned aircraft. The activation times 

for the ground-based CD&R systems and TCAS are pre-set at 8 min, 3 min and 1 min 

prior to a potential conflict respectively,  while the activation time for the CD&R system 

on unmanned aircraft varies (4.25 min ~ 1.98 min to a conflict as reported in Table 13) 

depending on the speed of the aircraft and path-crossing angles between the aircraft. 

Figure 36 shows the resulting collision probabilities of the two case studies as a 

function of the path-crossing angle. As stated in the result section of Case Study-1, these 

probabilities are conditional collision probabilities given that two aircraft are on a 

collision course. The same pattern of the collision probabilities for Case Study-1 (dashed 

line) is observed in the result of Case Study-2 (solid line) throughout the path-crossing 

angles. This is because of the assumption that the CD&R systems under both AFM and 

AAC operations use the same algorithm to detect a potential conflict. Overall, the 
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collision probabilities increase as the path-crossing angle grows since the closing speed 

of aircraft increases, thus time available to avoid a collision decrease. In addition, the 

resulting collision probabilities of AAC operation are higher than the probabilities of 

AFM operation through all the path-crossing angles (i.e., AFM operation is better than 

AAC in terms of system architecture given assumption of the same parameter values and 

CD&R algorithm performance). The CD&R systems of the AAC more likely fail than the 

systems of AFM operation because the AR, TSAFE and TCAS heavily rely on the 

transponders on both aircraft whereas the CD&R systems under AFM operation depend 

on the transponder on the unmanned aircraft only.   

 

    
Figure 36 Collision probabilities of Case Study-1 & 2  
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axis, while the others are read on the bottom axis. The sensitivity is measured as relative 

change (improvement) in the resulting collision probability when the failure rate of each 

component is reduced by 10%. The transponders on both manned and unmanned aircraft 

are the most significant components for the collision risk in AAC environment. The 

sensitivity value of 0.039 for the transponder on manned aircraft (or on unmanned 

aircraft) means that the collision risk can be reduced by 3.9% if the reliability of the 

transponder is increased by 10%. This is because all the CD&R systems operating under 

the AAC concept including TCAS rely on the transponders on both aircraft to locate the 

aircraft on a potential collision course.  

 

   
Figure 37 Sensitivity analysis of components (AAC) 
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Sensitivity analyses on the other model parameters (e.g., sensor detection range, 

trajectory prediction errors used for conflict detection probabilities) are also conducted, 

however, the results are not presented since the results are very similar to the ones 

presented for AFM operation in Section 4.1.5. 

4.3 Case Study-3: Collision Risk Between Manned Aircraft 

4.3.1 Concepts of NAS Operations 

Current NAS (Air Traffic Controller, ATC). Currently unmanned aircraft is not 

allowed to fly with manned aircraft at the same time in the NAS, where air traffic 

services, e.g., air traffic control, flight information, and alerting services, are provided 

primarily by human air traffic controllers. In order to support the controllers to ensure the 

safety and efficient operations of air traffic in the NAS, a number of new procedures and 

technologies have been developed and implemented for decades, especially through the 

Next Generation Air Transportation System (NextGen) project. Even though the NAS has 

been improved a lot compared to that several decades ago, the principal and/or concept of 

the NAS operations are still not changed much, where human pilot operate aircraft, and 

human air traffic controllers mostly provide air traffic service for pilot to safely complete 

flights.  

One of the most important services that the controllers provide is to maintain a 

safe separation between aircraft in the air, to which this research is directly related. 

Figure 38 shows failure logic of providing the separation assurance service in terms of 

physical components. In order for air traffic controllers to maintain a safe separation 

between aircraft, surveillance information of both aircraft that may have potential risk of 
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mid-air collision is firstly required (the right branch of Figure 38). Location of each 

aircraft can be available either ground-based systems (i.e., surveillance radar on ground 

and transponder on aircraft) or ADS-B, of which aircraft must equip ADS-B Out in most 

NAS by 2020. As explained in Section 4.1, the ADS-B Out function is currently 

implemented on the Mode S transponder of most commercial aircraft. The trajectory 

generator and voice communication between controllers and pilots should be both 

available to detect a conflict and inform pilots to execute a resolution maneuver to avoid 

the conflict. 

 

  
Figure 38 Supporting fault tree for air traffic control (ATC) separation assurance 

 

Additional assumptions made to model collision risk between a pair of manned 

aircraft in the current NAS with the proposed DET framework are as follows: 

ATC Separation 
Assurance

Unavailable

ATC
component-
based failure

Surveillance
failure

Trajectory
generator

failure

AC#1
Location 
failure

Ground-based 
surveillance

failure

ADS-B based
surveillance

failure

AC#1 
Transponder

failure

Ground 
Radar
failure

AC#1
GPS

failure

AC#1 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

AC#2
Location 
failure

Ground-based 
surveillance

failure

ADS-B based
surveillance

failure

AC#2 
Transponder

failure

Ground 
Radar
failure

AC#2
GPS

failure

AC#2 ADS-B Out
(Transponder)

failure

Ground
ADS-B receiver

failure

AC#1
Voice comm

failure



106 

 

 

▪ Similar to other concept of the NAS operation, ATC separation assurance 

service is provided in a time horizon between 8 min and 1 min prior to a 

potential conflict. 

▪ Traffic Alert and Collision Avoidance System (TCAS) performs a separation 

assurance function within 1 min to a predicted conflict.  

▪ Probabilities that air traffic controllers detect a conflict and provide a 

resolution are a function of time to a predicted conflict. Probability values are 

assumed as 30% of that for the hypothetical CD&R algorithm described in 

Section 4.1.4 to detect a conflict. 

Future NAS. Two concepts of the future NAS operations, Autonomous Flight 

Management (AFM) and Advanced Airspace Concept (AAC), were discussed in detail in 

the previous Case Studies, where model collision risk between manned and unmanned 

aircraft. The same concepts of operations in the future NAS are used to model collision 

risk between a pair of manned aircraft. Figure 39 illustrates supporting fault trees for 

strategic intent-based CD&R system (top) and tactical intent-based CD&R system 

(bottom) under AFM operation, where relationship between component failures and 

system failure is modeled. A key difference between manned-unmanned pair (Figure 21 

~ 22) and manned-manned pair (Figure 39) is that there is another way for a manned 

aircraft to locate the other aircraft, which is Air-to-Air Surveillance via ADS-B. All other 

parameters such as operation time horizon of each CD&R system and time-varying 

detection probabilities are assumed the same with the Case Study-1 including TCAS 

equipped on both manned aircraft. 
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Figure 39 Supporting fault trees for CD&R systems of manned aircraft (manned-manned pair, AFM)  
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Figure 34 and 35, where fault trees of AR and TSAFE for manned-unmanned aircraft pair 

are illustrated, location information of the second (manned) aircraft is available to the 

CD&R systems through ADS-B Out on manned aircraft. (Note that the fault trees shown 

in Figure 38 ~ 40 are from one aircraft (AC#1) perspective, thus the fault trees with the 

same structures from the other aircraft (AC#2) perspective are also needed to completely 

model the case studies.) 

 

  
 

 
Figure 40 Supporting fault trees for CD&R systems of manned aircraft (manned-manned pair, AAC) 
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4.3.2 Result and Comparisons 

This section provides numerical results and sensitivity analyses of the case studies 

for collision risk between manned and manned aircraft under an assumption of the 

current NAS (i.e., ATC), AFM, or AAC environment. Figure 41 shows the resulting 

collision probabilities between two manned aircraft in each NAS operation environment 

as a function of the path-crossing angle. The collision risk between manned and manned 

aircraft under ATC and AAC operations are similar with a high probability (in the order 

of 10-5) for all path-crossing angles. The reason of this result is that the collision risk of 

ATC and AAC operations heavily rely on components failures, specifically failures of 

transponders on either aircraft. Based on failure logic of the CD&R systems (Figures 38 

and 40) including TCAS (Figure 23) for both ATC and AAC operations, failure of the 

transponder on either aircraft leads to surveillance failure of all CD&R systems on the 

ground and the TCAS on both aircraft, thus no opportunity for either aircraft to avoid a 

collision. (Note again that the collision risk/probability in this dissertation is a conditional 

collision risk/probability given that two aircraft are on a collision course.) 

In order for the result collision probability of the AAC operation in this research 

to be directly compared with the current mid-air-collision accident rate, it must be 

multiplied with the rate that two aircraft are on a potential collision course. Belle [2012] 

provided the rate that two aircraft are on a converging path as a function of the number of 

aircraft in an airspace for both structured air route (i.e., the current NAS) and great circle 
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route (GCR, i.e., free flights). The result rates range from in an order of 10-4 to 10-3 per 

flight hour for structured air route and from in an order of 10-5 to 10-4 per flight hour for 

GCR depending on the number of aircraft in a region of airspace. With the rates for 

structure air route (i.e., 10-4 ~ 10-3 per flight hour) and the probability that the ATC fails 

to resolve a conflict in this research (i.e., 10-5), the total collision risk of the current NAS 

would be at least in an order of 10-8 per flight hour, which is similar to literature (e.g., Lin 

[2009] and ISAM). 

 

  
Figure 41 Collision probabilities for manned-manned aircraft pair (ATC vs. AFM vs. AAC)  

 

The risk under AFM environment is mostly maintained at a probability in the 

order of 10-9 when path-crossing angle is less than 90°, then it decreases, but still at the 

same order of magnitude. The collision risk of AFM operations is much less than the risk 

under ATC and AAC since failure of a single component does not cause all CD&R 

systems on both aircraft down in AFM operation environment. The reason why the 
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collision risk of AFM operations decreases is a combination of two factors: 1) the most 

contributing scenarios to the collision risk are the case where two early CD&R systems 

are available but TCAS is not for one of the two aircraft, while all CD&R systems fail for 

the other aircraft, and 2) for manned-manned aircraft pair, the speed and trajectory 

prediction errors for both aircraft are assumed the same, and the conflict detection for that 

pair with a larger path-crossing angle is estimated as very successful, especially at early 

CD&R phase. 

Sensitivity analyses are conducted on the components supporting the CD&R 

systems of the three concepts of the NAS operation, and the results are summarized in 

Figure 42. As same with the previous sensitivity analyses, the value associated with each 

component is the relative change (improvement) in collision risk given a 10% decrease in 

the failure probability of the component. The components shown in the Figure 42 are 

selected based on a criterion that the sensitivity result of a component is greater than 

0.001. The transponders on both aircraft on a potential collision course are most 

significant for all three NAS operation environments. In addition to the transponders, the 

TCAS processors and the processors of CD&R systems also have recognizable impacts 

on the collision risk under AFM environment, while all other components have negligible 

impact on the collision risk of ATC and AAC operations. 
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Figure 42 Critical components from each concept of operations based on sensitivity analysis 

 

A safety-critical observation shown in Figure 43 is that the collision risk between 

manned and manned aircraft would be worse than the risk between manned and 

unmanned aircraft under AAC environment. This happens, as mentioned earlier, because 

the CD&R systems on manned aircraft, AR, TSAFE and TCAS, all depend on a single 

component (a transponder on either aircraft), while the assumed CD&R system on 

unmanned aircraft has an independent source (onboard radar) of sensing the other 

aircraft, thus does not completely rely on the transponder. This dependency, which is 

very significant to the collision risk, would expect to be reduced by having a redundant 

transponder onboard or equipping a separate ADS-B Out system, which is currently 

implemented on the transponder.  
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Figure 43 Comparison of collision probabilities between manned-manned and manned-unmanned pairs (AAC)  

 

4.4 Summary 

This chapter presented an application of a dynamic event tree framework to 

evaluate collision risk between aircraft equipped with different collision avoidance 

capabilities. Firstly, a case study in detail was developed for collision risk between a 

manned and a remotely-piloted unmanned aircraft, both flying under Autonomous Flight 

Management (AFM). For the manned aircraft, parameters of the conflict detection and 

resolution (CD&R) systems were studied. Fault trees were constructed to model failure 

relationships between physical components of each CD&R system. Time varying 

conflict-detection probabilities were estimated based on an algorithm from Paielli [1997]. 

For unmanned aircraft, various types of sensor technologies were surveyed in terms of 

type, information acquired, and detection range. A combination of a Mode A/C 

transponder and an onboard radar with an assumed CD&R concept of operation for 
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unmanned aircraft was firstly considered. A way to apply the DET framework considering 

dependency between aircraft on a collision course was also discussed with another CD&R 

system (i.e., TCAS-like system with a Mode S transponder and an onboard radar). 

With Advanced Airspace Concept (AAC) for the future NAS operations, collision 

risk between manned and unmanned aircraft with two different CD&R systems are 

modeled. Lastly, case studies for collision risk between manned and manned aircraft 

under various NAS environments, AFM, AAC, and the current NAS (ATC), are 

developed. Table 14 summarizes the case studies discussed in this chapter.  

 

Table 14 Summary of case studies 

Case No. Conflict Case 
NAS 

Operation 

Collision Avoidance 

Equipage 

(Unmanned) 

1 Manned aircraft – Unmanned aircraft AFM 
Onboard radar, 

transponder 

2 Manned aircraft – Unmanned aircraft AFM 
Onboard radar, 

TCAS-like system 

3 Manned aircraft – Unmanned aircraft AAC 
Onboard radar, 

transponder 

4 Manned aircraft – Unmanned aircraft AAC 
Onboard radar, 

TCAS-like system 

5 Manned aircraft – Manned aircraft ATC - 

6 Manned aircraft – Manned aircraft AFM - 

7 Manned aircraft – Manned aircraft AAC - 

 

Under AFM and AAC operation environment, collision risk between a manned 

and an unmanned aircraft increases with greater path-crossing angles, since the closing 
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speed between aircraft increases reducing available time to avoid a collision. Sensitivity 

analysis indicated that the transponder on the unmanned aircraft is the most significant 

component in given AFM operation, while the transponders on both manned and 

unmanned aircraft are most important in AAC environment. The maximum detection 

range of  the onboard radar also affects collision risk, especially when two aircraft are 

approaching with an acute path-crossing angle. The effect of the new CD&R system (i.e., 

TCAS-like system) for the unmanned aircraft to collision risk is very small unless the 

detection performance of the new system is better than the previous system, because the 

components additionally required for the new system on the unmanned aircraft (i.e., 

transponders) are the common elements in the CD&R systems on manned aircraft. 

 The collision risk between manned and manned aircraft under ATC and AAC 

operations are similar with a high probability for all path-crossing angles due to 

dependency on transponders of either aircraft. The collision risk of AFM operations, 

however, is much less than the risk of ATC and AAC environments since failure of a 

single component does not cause all CD&R systems on both aircraft fail. The 

transponders on both manned aircraft flying on a collision course are the most significant 

components to the collision risk for all three NAS operation environments. 

Throughout the case studies and sensitivity analyses, it is observed that the 

CD&R systems/concepts considered in this dissertation depend significantly on the 

aircraft transponders. Based on that, one of the means that can improve the CD&R 

systems thus decrease the risk is to equip an additional redundant transponder as a backup 

on aircraft. The graph on left of Figure 44 shows resulting collision probabilities for the 
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case #1 (solid line) and the case where a redundant transponder assumes to be equipped 

on both aircraft of the case #1 (dashed line). The additional transponder can decrease the 

collision risk by ranging from 30% to 46% depending on path-crossing angles. Similarly, 

the graph on right of the figure shows collision probabilities for the case #7 assuming that 

both manned aircraft have a separate ADS-B Out component instead of the current 

implementation on Mode S transponder. Having a separate ADS-B Out component 

reduces dramatically surveillance failure of aircraft, thus decreases the collision risk by 

several orders of magnitude. (Note that the primary radar system is assumed not in use.) 

 

 
Figure 44 Collision probabilities with redundant transponder (Case #1, left) and separate ADS-B Out (Case #7, 

right) 
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CHAPTER 5: CONCLUSIONS 

5.1 Summary and Results 

This dissertation proposed a general form of a dynamic event tree (DET) to model 

the mid-air collision risk between aircraft. The DET framework consists of three levels, a 

high-level dynamic event tree, a generic sub-tree, and fault trees. A methodology for 

evaluating the DET framework was proposed (cDET-PMS), combining a conditional-

based approach for evaluating event trees with a phased-mission-system approach from 

the reliability literature. Several variants of the approach (cDET and PMS-BDD) were 

considered and applied to evaluate a test DET problem. Each method has different 

assumptions on the timing of component-based system failures and the modeling of event 

sequences in the sub-trees. The PMS-BDD approach has significant limitations in 

modeling possible sequences of events, which causes under-estimation of the true risk. 

The cDET and cDET-PMS method perform differently depending on the numerical 

parameters of the test problem. They estimate collision risk very well in case that 

algorithmic failures of the first two CD&R systems occur very likely, while they may 

over-estimate the risk by a factor of more than 10 in other cases.  

The proposed DET framework and evaluation methods have several benefits: 
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1) The approach captures several different behaviors influencing collision risk, 

which are CD&R systems with time-varying detection rates, pilot delays, component 

failures of the CD&R systems, and conflict geometry. 

2) Computation of the evaluation methods are relatively quick. As an example, 

one of the most complicated case studies, which modeled collision risk between manned 

and manned aircraft under AFM operations, is analyzed in 20 seconds on a personal 

laptop.  

3) The approach takes benefit of creating or modifying a model and of evaluation 

of the new model. In a typical system design phase, for example, adding a redundant 

component, replacing a better component, or even a new architecture needs to be 

evaluated to choose the best design of a system that meets requirement of system 

reliability/safety. The DET approach proposed in this dissertation can be used to evaluate 

design alternatives of a system readily with a reasonable fidelity.  

This dissertation also presented a way to apply the dynamic event tree framework 

to evaluate collision risk between aircraft equipped with different levels of collision 

avoidance capability. Several case studies were developed for collision risk between 

various types of aircraft flying under one of the concepts of current or future NAS 

operation, such as current air traffic control (ATC), Autonomous Flight Management 

(AFM), and Advanced Airspace Concept (AAC). Manned-unmanned aircraft pairs and 

manned-manned aircraft pairs were considered in the case studies. Unmanned aircraft 

were assumed to be equipped either with an onboard radar and a transponder or with an 

onboard radar and TCAS-like system.  
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Parameters of the conflict detection and resolution (CD&R) systems for each 

NAS operation, which may have a different architecture in terms of hardware and 

software, were studied. Fault trees were constructed to model failure relationships 

between physical components of each CD&R system. Time varying probabilities in 

which each CD&R system performs its function successfully were estimated based on 

Paielli [1997]. A way to apply the DET framework considering dependency between 

aircraft on a collision course was also discussed. In addition, sensitivity analyses on the 

model parameters of the case studies were conducted such as supporting components, 

detection range of sensor, and trajectory prediction errors of the algorithm used to 

estimate conflict detection probabilities. 

Collision risk of the case studies for manned and unmanned aircraft pairs increase 

with angles between flight paths since closing speed between aircraft increases, thus the 

time available to avoid a collision decrease. The transponder on the unmanned aircraft is 

the most significant component under AFM and AAC operation, while the transponder 

on the manned aircraft is also important to the collision risk in AAC environment. The 

maximum detection range of onboard radar also affects collision risk significantly, 

especially when two aircraft are approaching with a path-crossing angle of about 90°.  

Through the case study for a manned aircraft pair, the overall collision risk in the 

current NAS is approximately estimated in an order of 10-8 per flight hour or less, which 

is a product of the rate that two aircraft are on a collision course (10-3 ~ 10-4 per flight 

hour estimated in Belle [2012]) and the (conditional) collision probability of this research 

(about 10-5). For ATC and AAC operations, the collision risk between manned and 
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manned aircraft is high because of dependency on the transponders of either aircraft, 

while the collision risk of AFM operations is much less than the risk of the other two 

since failure of a single component does not cause all CD&R systems on both aircraft 

fail.  

Case studies indicate that the reliability of aircraft transponders significantly 

drives collision risk since the CD&R systems and concepts considered in this dissertation 

highly rely on the transponders for surveillance. Due to the dependency on the 

transponders, the AAC concept of operations may not provide sufficient improvement in 

collision risk for manned-manned aircraft pairs compared to the current NAS operation, 

whereas the AFM operation shows much improved (i.e., reduced) collision risk because 

of less dependency on the transponders. Collision risk between manned and unmanned 

aircraft, compared to the risk between manned aircraft pairs, increases significantly under 

the AFM operations, but is not so changed in the AAC environment because the collision 

risk is already high for manned aircraft pair.  

5.2 Future Work 

This research in this dissertation can be extended in several ways. First, the 

methodology can be used in an applied setting to evaluate safety requirements for new 

types of aircraft including collision avoidance systems and separation assurance systems. 

Better system designs can be suggested by answering several “What-if” questions such as 

“what if there is a redundant component” or “what if we replace a component with a 

more reliable one”. Second, more specific algorithms to detect and resolve conflicts can 

be used for better estimations of the model parameters and/or incorporating real data for 
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failure rates of components. While many of the model parameters come from the  

literature, some are simply assumed values in the case studies. Next, aircraft dynamics 

can be considered in the approach to add more fidelity. To do so, aircraft response delay 

(distribution function) to avoid a collision given a conflict geometry and aircraft type 

needs to be researched, then it can be included within a sub-tree in the framework, similar 

to pilot delay. Lastly, the methodology can be improved to relax the assumption that 

component failures occur at the start of each CD&R phase. An improved evaluation 

method could allow components to fail at each time step, hopefully without losing the 

advantage of fast computation. 
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APPENDIX A: DET FRAMEWORK USER GUIDE 

 

This appendix describes steps that users should follow to set up a dynamic event 

tree (DET) for a mid-air-collision proposed in this dissertation. Inputs to define a DET 

framework are presented, and the high-level algorithm flow and corresponding function 

for each step are given.  

A.1 Inputs for DET Framework 

Three types of inputs coded in the main algorithm or as a delimited text file are 

explained with a graphical example. Then, an additional input that is required to apply the 

framework for a pair of aircraft on a collision course is described. 

A.1.1 High-level tree structure 

In order to define the high-level dynamic event tree, the following parameters are 

required:  

• Time horizon for each phase, T1, T2, …, Tr (with T1 > T2 > … Tr > 0) 

• Time step Dt 

Figure A-1 shows an example input statement for high-level tree structure in the 

main algorithm. Variable ‘time-horizon’ defines time (Tr) at which each CD&R phase 

begins prior to a collision, and ‘deltaT’ specifies a computation time step (Dt) used 
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throughout the analysis. (Note that time horizon (T) and number of phases (r) can be 

derived from the above parameters.)  

 
Figure A-1 Example input statement of high-level tree structure 

  

A.1.2 Sub-tree structure 

The sub-tree shows a template for evaluating a sequence of events within each 

CD&R phase. In order to specify the sub-tree, a set of state transitions (k, l) and 

associated time advancement for each transition (TAkl, where TAkl = 0 if transition from 

state k to l occurs instantly; TAkl = 1 if transition from state k to l takes a time step) are 

firstly set. Figure A-2 is an example input file for the sub-tree structure. Each row 

specifies a transition between two states that can occur during conflict detection and 

resolution procedures. States include each CD&R system state (SICDR, TICDR, and 

TSCDR in the figure), a state where a resolution is provided to pilot (PILOT in the 

figure), a mid-air collision state (MAC), and a state in which a conflict is resolved 

(RESOLVED). State transition probabilities at different time (pkl (t)) are generated with 

either pre-determined numerical values (i.e., inputs like the figure) or probabilistic 

distribution functions that can be defined in the main algorithm, e.g., time-dependent 

conflict-detection rate (t) and pilot execution rate . For the latter case (i.e., defined in 

the algorithm), the input file has empty cells after the third column, i.e., it needs to 

specify only a set of state transitions and associated time advancement. 

 

% High-level tree structure 
time_horizon = [480; 180; 60]; 
deltaT = [1]; 
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Figure A-2 Example input file of sub-tree structure 

  

A.1.3 Fault tree structure 

Fault trees model logical relationships between physical components and the 

functional failures of the CD&R systems. It is required to create an input file for the fault 

trees supporting the CD&R systems. Figure A-3 shows an example input file for the fault 

trees. Each row defines a node (i.e., basic event node or gate event node) in fault trees 

with several elements as follows: 

• ID: Order of node in file 

• Aircraft_id: Identify which CD&R system equipped on which aircraft 

• Container_id: Identify which node belongs which CD&R system 

• Probability_value: Failure probability/rate for component. Required only for 

basic event nodes. 

• Type: Specify a type of a node with ‘0’ for AND-gate event, ‘1’ for OR-gate 

event, and ‘3’ for basic event. 

From state
( )

To state
( )

Time advancement
(    ) Time prior to collision

      
MAC
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• Parent_id: Specify a parent node of a node. The column for the parent node is 

empty if the node is a top event of a fault tree. 

• Name: Provide name of component or gate event. 

• Phase_dependency (pd): Specify if a component is phase-dependent or not (1- 

phase-dependent, 0- phase-independent). Required only for basic event nodes. 

(Note: There is another element called ‘uniqueid’, which is not required for the 

analysis, but it is helpful to build the input file for fault trees because it provides 

information of a parent-child pairs that is easy to understand.) 

 

 
Figure A-3 Example input file of fault tree structure 

  

A.1.4 Information for conflict  

Once a DET framework for each aircraft is defined, conflict information between 

two aircraft such as speed, conflict geometry, and onboard sensor range needs to be 

specified (Figure A-4).  

Container_id
Define each node 

belongs to which 
system

Probability_value
Failure probability (rate) 
of node (component)

Type
Define basic 
event / type 
of gate

Parent_id
Define parent node 
of each node

Phase dependency
Define if component 
phase-dependent

Id- Order 
of node

Name
Name of each 
node/component 
in fault trees

Aircraftid
Distinguish 

between 
two aircraft
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Figure A-4 Example input of conflict information 

  

  

%% Conflict information (speed, conflict geometry, sensor range, etc.) 
AC(1).spd = 400;  % knots 
AC(2).spd = 170; 
AC(1).heading = 90;  % degrees 
AC(2).heading = 0; 
AC(1).range = 240;    % onboard sensor range (km) 
AC(2).range = 35; 
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A.2 High-level Algorithm Flow 

 

 
Figure A-5 High-level algorithm flow and associated functions  

 

Determine if aircraft
are dependent

(CheckDependency)

• Update time_horizon of aircraft 
(ComputeActivation)

for each aircraft

• Construct BDD for each CD&R system 
(constructBDD)

for each generated DET

• Create and evaluate fault tree 
(combinePMSBDD, calURpmsbdd)

• Create transition matrix and 
evaluate DET (createTmatrix, calDET)

end

end

• Update time_horizon of aircraft 
(ComputeActivation)

• Construct BDD for each CD&R system 
(constructBDD)

• Combine CD&R phases into one 
(CombineCDRphases)

for each generated DET

• Create and evaluate fault tree 
(CreatePhaseBDD, combinePMSBDD, 
calURpmsbdd)

for each aircraft

• Create transition matrix and 
evaluate DET (createTmatrix, calDET)

end

end

Inputs
• High-level tree structure

• Sub-tree structure

• Fault tree structure 

• Conflict information

Output
• pr{Collision | aircraft on 

collision course}

DependentIndependent
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A.3 Example Input Files 

Sub-tree structure (StateTransition-AC1.csv) 
From,To,t_advancement 

SICDR1,SICDR1,1 

SICDR1,PILOT1,1 

SICDR1,TICDR1,0 

TICDR1,TICDR1,1 

TICDR1,PILOT1,1 

TICDR1,TSCDR1,0 

TSCDR1,TSCDR1,1 

TSCDR1,PILOT1,1 

TSCDR1,NMAC,0 

PILOT1,RESOLVED,1 

PILOT1,PILOT1,1 

PILOT1,TICDR1,0 

PILOT1,TSCDR1,0 

 

Fault tree structure (FaultTree-AC1.csv) 
id,aircraftid,containerid,probabilityvalue,type,uniqueid,parent_id,name

,pd 

1,AC1,SICDR1,,1,si,,SICDR unavailable, 

2,AC1,SICDR1,,1,si.1,1,SICDR comp failure, 

3,AC1,SICDR1,,1,si.2,1,Surveillance failure, 

4,AC1,SICDR1,1.04E-06,3,si.1.1,2,CDRprocessor1,1 

5,AC1,SICDR1,1.04E-06,3,si.1.2,2,Display1,1 

8,AC1,SICDR1,8.33E-07,3,si.2.1.1,3,GPS1,1 

9,AC1,SICDR1,,1,si.2.1.2,3,TIS-B failure, 

10,AC1,SICDR1,1.04E-06,3,si.2.1.3,3,TCASprocessor1,1 

11,AC1,SICDR1,3.33E-07,3,si.2.1.2.1,9,GroundRadar,1 

12,AC1,SICDR1,1.39E-06,3,si.2.1.2.2,9,Transponder2,1 

13,AC1,SICDR1,1.67E-06,3,si.2.1.2.3,9,TISBtransmitter,1 

18,AC1,TICDR1,,1,ti,,TICDR1-1 unavailable, 

19,AC1,TICDR1,,1,ti.1,18,TICDR1-1 comp failure, 

20,AC1,TICDR1,,1,ti.2,18,Surveillance failure, 

22,AC1,TICDR1,1.04E-06,3,ti.1.1,19,CDRprocessor1,1 

23,AC1,TICDR1,,0,ti.1.2,19,Alerting failure, 

24,AC1,TICDR1,1.04E-06,3,ti.1.2.1,23,Display1,1 

25,AC1,TICDR1,1.04E-06,3,ti.1.2.2,23,SPK1,1 

28,AC1,TICDR1,8.33E-07,3,ti.2.1.1,20,GPS1,1 

29,AC1,TICDR1,,1,ti.2.1.2,20,TIS-B failure, 

30,AC1,TICDR1,1.04E-06,3,ti.2.1.3,20,TCASprocessor1,1 

31,AC1,TICDR1,3.33E-07,3,ti.2.1.2.1,29,GroundRadar,1 

32,AC1,TICDR1,1.39E-06,3,ti.2.1.2.2,29,Transponder2,1 

33,AC1,TICDR1,1.67E-06,3,ti.2.1.2.3,29,TISBtransmitter,1 

45,AC1,TSCDR1,,1,ts1,,TSCDR unavailable, 

46,AC1,TSCDR1,1.04E-06,3,ts1.1,45,TCASprocessor1,1 

47,AC1,TSCDR1,,0,ts1.2,45,TCAS Alerting failure, 

48,AC1,TSCDR1,1.39E-06,3,ts1.3,45,Transponder2,1 

49,AC1,TSCDR1,1.04E-06,3,ts1.2.1,47,TCASdisplay1,1 

50,AC1,TSCDR1,1.04E-06,3,ts1.2.2,47,TCASspk1,1 

51,AC1,TSCDR1,1.39E-06,3,ts1.0,45,Transponder1,1 
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A.4 MATLAB Code 

DET_main.m 
clear; 
% Define DET structure for each aircraft 
% create aircraft structure 
AC = struct('time_horizon',''); 

  
% high-level tree 
AC(1).time_horizon = [480 ; 180 ; 60]; 
AC(2).time_horizon = [480];   % calculated and updated depending on 

speed, conflict geometry    
deltaT = 1; 

     
% sub-tree 
AC(1).StateTransition = 

table2cell(readtable('StateTransition_AC1_base.csv')); 
AC(2).StateTransition = 

table2cell(readtable('StateTransition_AC2_base.csv')); 
% some of information for transition prob. 
AC(1).pilotRate = [1.84501845; 2.909796314; 12];  % base pilot 

execution rates (/min) 
AC(2).pilotRate = [1.84501845]; 
AC(1).rate = 1.0;   % performance of detection algorithm  
AC(2).rate = 0.3;   % 30% of performance of detection algorithm 

     
% fault tree 
AC(1).faultTree = loadTable('FaultTree_AC1_base.csv', 'allString', ',', 

1); 
AC(2).faultTree = loadTable('FaultTree_AC2_base_dep.csv', 'allString', 

',', 1); 
for i = 1 : length(AC) 
    for j = 1 : length(AC(i).faultTree) 
        if ~isempty(AC(i).faultTree(j).probabilityvalue) 
            AC(i).faultTree(j).probabilityvalue = 

str2double(AC(i).faultTree(j).probabilityvalue); 
        end 
    end 
end 

     
%% Conflict information (speed, conflict geometry, sensor range, etc.) 
AC(1).spd = 400;  % knots 
AC(2).spd = 170; 
AC(1).heading = 90;  % degrees 
AC(2).heading = 0; 
AC(1).err = [15; 2];  % error level for conflict detection (along-track, 

cross-track)  
AC(2).err = [30; 4]; 
AC(1).range = 240;    % onboard sensor range (km) 
AC(2).range = 35; 

     
%% Compute collision prob. given two aircraft on a collision course 
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% check if aircraft are dependent 
if length(AC) > 1 
    [Dep] = CheckDependency(AC(1).faultTree, AC(2).faultTree);  % 0-

independent, 1-dependent 
else 
    Dep = 0; 
end 

  
% Call main algorithm 
if Dep < 1   
    [CollisionProb] = Independent(AC, deltaT);    % if aircraft are 

independent 
else 
    [CollisionProb] = Dependent(AC, deltaT);      % if aircraft are 

dependent 
end 

  

loadTable.m 
function table = loadTable(fileName, dataTypes, delimiter, 

headerRowNumber) 
% loadTable loads a CSV or other text file into a data structure 
if ~exist('delimiter','var') 
    delimiter = ','; 
end 

  
if ~exist('headerRowNumber','var') 
    headerRowNumber = 1; 
end 

  

if strcmp(dataTypes,'allString') 
    % Count how many columns. 
    fid = fopen(fileName); 
    skipLines(fid, headerRowNumber-1); 
    headerLine = fgetl(fid); 
    fclose(fid); 
    numCols = numel(strfind(headerLine, delimiter))+1; 
    dataTypes = repmat('%s ', 1, numCols); 
end 

  
% Read the data. 
fid = fopen(fileName); 
skipLines(fid, headerRowNumber-1); 
numCols = numel(strfind(dataTypes, '%')); 
headerFormatString = repmat('%s ', 1, numCols); 
headerData = textscan(fid, headerFormatString, 1, 'Delimiter', 

delimiter); 
data = textscan(fid, dataTypes, 'Delimiter', delimiter); 
fclose(fid); 

  
% Put it into the output struct format. 
table = struct; 
for col_idx = 1:size(data,2) 
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    colName = headerData{col_idx}{1}; 
    colName = replaceIllegalFieldNameCharacters(colName); 
    if isempty(colName) 
        % Ignore empty column names (and allow for comma at end of each 

row). 
        continue; 
    end 
    colData = data{col_idx}; 
    if iscell(colData) 
        for row_idx = 1:numel(colData) 
            table(row_idx).(colName) = colData{row_idx}; 
        end 
    else 
        for row_idx = 1:numel(colData) 
            table(row_idx).(colName) = colData(row_idx); 
        end 
    end 
end 

  
end 

  
function skipLines(fid, numLines) 
% Skip lines above the header 
for extraLineNum = 1:numLines 
    fgetl(fid); 
end 
end 

  
function s = replaceIllegalFieldNameCharacters(s) 
s = strrep(s, ' ', '_'); 
s = strrep(s, '(', ''); 
s = strrep(s, ')', ''); 
s = strrep(s, '/', ''); 
s = strrep(s, '-', ''); 
s = strrep(s, '#', 'num_'); 
end 

 

CheckDependency.m 
function [Dep] = CheckDependency(FT_A, FT_B) 
Dep = 0; 
% Find event names in common in both FT_A and FT_B 
indexA = find(strcmp({FT_A.type},'3')); 
indexB = find(strcmp({FT_B.type},'3')); 
basicA = FT_A(indexA); 
basicB = FT_B(indexB); 
for i = 1 : length(basicA) 
    index = find(strcmp({basicB.name},basicA(i).name)); 
    if ~isempty(index) 
        Dep = 1; 
        break; 
    end 
end 
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Independent.m 
function [TotalFailureProb] = Independent(AC, deltaT); 

  
    TotalFailureProb = 1.0; 
    % adjust activation time 
    if length(AC) > 1 
        [AC] = ComputeActivation(AC, deltaT); 
    end 

     
    %% Compute CD&R failure prob. for each aircraft using cDET-PMS 
    for i = 1 : length(AC) 
        % construct BDD and DBDD for each system 
        BE = struct([]); 
        [SystemBDD, BE] = constructBDD(AC(i).faultTree, BE); 
        for j = 1 : size(SystemBDD,2) 
            [SystemBDD(j).dbdd] = DBDD(SystemBDD(j).bdd); 
        end 
        nSystem = size(SystemBDD, 2); 

         
        % phase start time in second 
        PST = [AC(i).time_horizon; 0];    

  
        for j = 1 : nSystem 
            PTD(j) = (PST(j)-PST(j+1))/60;   % phase duraion in min 
        end 

  
        % crete initial phasebdd with phase names 
        phasebdd = struct('name',[],'bdd',[]); 
        for j = 1 : nSystem 
            phasebdd(j).name = SystemBDD(j).name; 
            PhaseConf(2*j-1) = {phasebdd(j).name}; 
            if j < nSystem 
                PhaseConf(2*j) = {'0'}; 
            end 
        end 

  
        % each combination of available phases 
        rowN = 1; 
        for j = 0 : (pow2(nSystem)-1)   
            b = dec2bin(j, nSystem); % [100], [010], ..., [110],[111]            

  
            % create 'phasebdd' 
            for k = 1 : nSystem 
                a = str2num(b(k)); 
                CDRavailability(k) = a; 
                if a < 1 
                    phasebdd(k).bdd = SystemBDD(k).bdd; 
                else 
                    phasebdd(k).bdd = SystemBDD(k).dbdd; 
                end 
            end 
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            % weight prob. of each DET being used 
            [cPMSBDD] = combinePMSBDD(PhaseConf, phasebdd); 
            [UR] = calURpmsbdd(cPMSBDD, BE, PTD, PhaseConf); 
            % save weight probabilities 
            result(rowN,1) = UR;              

  
            % create transition prob. and compute conditional prob. of 

CD&R failures 
            AC(1).rate = 1.0; 
            AC(2).rate = 0.3; 
            [sTransProb] = createTmatrix(AC(i).StateTransition, deltaT, 

AC(i).system, PST, CDRavailability, AC(i).pilotRate, AC, AC(i).rate); 
            [DET, EndState, states] = calDET(sTransProb); 
            result(rowN,2) = EndState{1,3}; 
            rowN = rowN + 1; 
        end 

  
        % CD&R failure prob. 
        FailureAC(1,i) = sum(result(:,1).*result(:,2)); 
        TotalFailureProb = TotalFailureProb * FailureAC(1,i); 
        clear PhaseConf result PTD; 
    end 
end 

 

ComputeActivation.m 
function [AC] = ComputeActivation(AC, deltaT) 

  
    % Extract unique fault trees 
    for i = 1 : length(AC) 
        FTCell = struct2cell(AC(i).faultTree); 
        AC(i).system = unique(FTCell(3,:,:), 'stable'); 
    end 

     
    % change units and calculate relative speed 
    C = 1.852;  % km / nautical mile 
    for i = 1 : length(AC) 
        HD = AC(i).heading * pi() / 180;  % radian 
        SPD = AC(i).spd * C / 60; % km / min 
        V(i,1) = SPD*sin(HD);   
        V(i,2) = SPD*cos(HD); 
    end 

     
    for j = 1 : size(V,2) 
        rV(j) = V(2,j)-V(1,j); 
    end  
    rSPD = sqrt(rV*rV');    % relative speed (km/min) 

  
    % compute activation times 
    for i = 1 : length(AC) 
        TRange(i) = AC(i).range / rSPD * 60;  % sec 
        tempT = fix(TRange(i));   % in secs 
        if tempT < AC(i).time_horizon(1) 
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            m = mod(tempT, deltaT); 
            AC(i).time_horizon(1) = tempT - m; 
        end 
    end 
end 

 

constructBDD.m 
function [SystemBDD, BE] = constructBDD(faultTreeStruct, BE) 
    % Extract unique fault trees 
    FTCell = struct2cell(faultTreeStruct); 
    FTs = unique(FTCell(3,:,:), 'stable'); 

  
    q = CQueue(); 
    s = CStack(); 
    order = size(BE,2) + 1; 
    BE(order).name = ''; 
    %% Convert a fault tree to a BDD 
    for i = 1 : length(FTs) 
        CurrFT = 

faultTreeStruct(strcmp({faultTreeStruct.containerid},{FTs{i}})); 
        SystemBDD(i).name = FTs{i};  
        % find top event 
        [TOP,Topindex] = findTOP(CurrFT);  
        % assign each basic event an order in a manner of top-down and 

left to right,then create ite array 
        [ite, BE, CurrFT, order] = iteArray(CurrFT, TOP, BE, order);  
        % Convert to fault tree that has only binary gates 
        [CurrFT] = modify(CurrFT);  
        % set an order for ite operation 
        [s] = iteOrder(CurrFT, TOP);  
        % ite operation in a manner of bottom-up 
        while ~isempty(s) 
            Cgate = s.pop; 
            Gindex = find(strcmp({CurrFT.id},Cgate.id)); 
            op = Cgate.type; 
            index = find(strcmp({CurrFT.parent_id},Cgate.id)); 
            F = CurrFT(index(1)).value; % row number in ite array 
            G = CurrFT(index(2)).value; 
            [ite, CurrFT] = convertBDD(CurrFT, Gindex, ite, op, F, G); 
        end  
        % Extract lines representing BDD from ite array 
        s.empty(); 
        push(s, CurrFT(Topindex).value);    % row number for top node 

of BDD 
        [BDD] = extract(ite, s);  
        % reduce rows of BDD table 
        [BDD] = reduceTable(BDD); 
        SystemBDD(i).bdd = BDD; 
    end     
    % Add phase and prob. to BE 
    for j = 1 : size(BE,2) 
        tprob = zeros(3,1); 
        for i = 1 : length(FTs) 
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            CurrFT = 

faultTreeStruct(strcmp({faultTreeStruct.containerid},{FTs{i}})); 
            index = find(strcmp({CurrFT.name},{BE(j).name})); 
            if ~isempty(index) 
                tprob(i) = CurrFT(index(1)).probabilityvalue; 
            else 
                tprob(i) = 0; 
            end 
        end 
        idx = find(~tprob); % find index for zero element 
        idx0 = find(tprob); % find index for non-zero element 
        for i = 1 : length(idx) 
            tprob(idx(i)) = tprob(idx0(1)); 
        end 
        BE(j).phase = FTs; 
        BE(j).prob = tprob; 
    end 
end 

 

findTOP.m 
function [top,Topindex] = findTOP(CurrFT) 
    n = 1; 
    while ~isempty(CurrFT(n).parent_id) 
        n = n + 1; 
    end 
    Topindex = n; 
    top = CurrFT(Topindex); 
end 

 

iteArray.m 
function [ite, BE, CurrFT, order] = iteArray(CurrFT, top, BE, order) 

     
    q = CQueue(); 
    push(q,top); 
    nRow = 1; 
    ite = zeros(nRow,4); 
    while ~q.isempty 
        Cnode = q.pop; 
        index = find(strcmp({CurrFT.parent_id},Cnode.id)); 
        for i = 1 : length(index) 
            if CurrFT(index(i)).type == '3' 
                check = find(strcmp({BE.name},CurrFT(index(i)).name)); 
                if isempty(check) 
                    BE(order).name = CurrFT(index(i)).name; 
                    if ~isnumeric(CurrFT(index(i)).pd) 
                        CurrFT(index(i)).pd = 

str2double(CurrFT(index(i)).pd); 
                    end 
                    BE(order).pd = CurrFT(index(i)).pd; 
                    CurrFT(index(i)).value = order; 
                    ite(order,1) = order; 
                    ite(order,2) = order; 
                    ite(order,3) = -1; 
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                    ite(order,4) = 0; 
                    order = order + 1; 
                    nRow = nRow + 1; 
                else 
                    CurrFT(index(i)).value = check(1);                         
                    if ite(:, 2) ~= check(1) 
                        ite(check(1),1) = check(1); 
                        ite(check(1),2) = check(1); 
                        ite(check(1),3) = -1; 
                        ite(check(1),4) = 0; 
                        nRow = nRow + 1; 
                    end 
                end 
            else 
                push(q, CurrFT(index(i))); 
            end 
        end 
        clear index; 
    end   
end 

 

modify.m 
function [CurrFT] = modify(CurrFT) 
% convert a binary fault tree 
q = CQueue(); 
n = 1; 
while ~isempty(CurrFT(n).parent_id) 
    n = n + 1; 
end 
top = CurrFT(n); 
push(q,top); 
l = length(CurrFT) + 1; 
ng = 10001; 
idn = 20001; 

  
while ~isempty(q) 
    Cnode = q.pop; 
    index = find(strcmp({CurrFT.parent_id},Cnode.id)); 
    for i = 1 : length(index) 
        if CurrFT(index(i)).type ~= '3' 
            push(q,CurrFT(index(i))); 
        end 
    end 
    while length(index) > 2 
        CurrFT(l).id = num2str(idn); 
        CurrFT(l).containerid = Cnode.containerid; 
        CurrFT(l).type = Cnode.type; 
        CurrFT(l).parent_id = Cnode.id; 
        CurrFT(l).name = num2str(ng); 
        for i = 2 : length(index) 
            CurrFT(index(i)).parent_id = CurrFT(l).id; 
        end 
        clear index; 
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        index = find(strcmp({CurrFT.parent_id},CurrFT(l).id)); 
        Cnode = CurrFT(l); 
        l = l + 1; 
        ng = ng + 1; 
        idn = idn + 1; 
    end 
end 

 

iteOrder.m 
function [s] = iteOrder(CurrFT, top)  
    q = CQueue(); 
    s = CStack(); 
    push(q,top); 
    push(s,top); 
    while ~q.isempty 
        Cnode = q.pop; 
        index = find(strcmp({CurrFT.parent_id},Cnode.id)); 
        for i = 1 : length(index) 
            if CurrFT(index(i)).type ~= '3' 
                push(s, CurrFT(index(i))); 
                push(q, CurrFT(index(i))); 
            end 
        end 
        clear index; 
    end 
end 

 

convertBDD.m 
function [ite, CurrFT] = convertBDD(CurrFT, Gindex, ite, op, F, G) 
l = length(ite) + 1; 
% Determine which one has priority 
% F and G are row numbers, a and b are variable numbers meaning order 
a = ite(F, 2); 
b = ite(G, 2); 
if a > b    % b has a priority 
    temp = a; 
    a = b; 
    b = temp; 
    temp = F; 
    F = G; 
    G = temp; 
end 
if Gindex(1) ~= 0 
    CurrFT(Gindex(1)).value = l; 
end 

  
ite(l, 1) = l; 
ite(l, 2) = ite(F, 2);             
if op == '0'    % 'AND' gate 
    if a ~= b 
        % compute 'then' value 
        if ite(F, 3) == -1 
            ite(l, 3) = ite(G, 1); 
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        elseif ite(F, 3) == 0 
            ite(l, 3) = 0; 
        else 
            F1 = ite(F, 3); 
            G1 = G; 
            Gindex(1) = 0; 
            ite(l, 3) = length(ite) + 1; 
            [ite, CurrFT] = convertBDD(CurrFT,Gindex,ite,op,F1,G1); 
        end 
        % compute 'else' value 
        if ite(F, 4) == -1   
           ite(l, 4) = ite(G, 1); 
        elseif ite(F, 4) == 0 
            ite(l, 4) = 0; 
        else 
            F2 = ite(F, 4); 
            G2 = G; 
            Gindex(1) = 0; 
            ite(l, 4) = length(ite) + 1; 
            [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F2, G2); 
        end 
    elseif a == b 
        % compute 'then' value 
        if ite(F, 3) == -1 
            ite(l, 3) = ite(G, 3); 
        elseif ite(F, 3) == 0 
            ite(l, 3) = 0; 
        elseif ite(G, 3) == -1 
            ite(l, 3) = ite(F, 3); 
        elseif ite(G, 3) == 0 
            ite(l, 3) = 0; 
        else 
            F1 = ite(F, 3); 
            G1 = ite(G, 3); 
            Gindex(1) = 0; 
            ite(l, 3) = length(ite) + 1; 
            [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F1, G1); 
        end 
        % compute 'else' value 
        if ite(F, 4) == -1 
            ite(l, 4) = ite(G, 4); 
        elseif ite(F, 4) == 0 
            ite(l, 4) = 0; 
        elseif ite(G, 4) == -1 
            ite(l, 4) = ite(F, 4); 
        elseif ite(G, 4) == 0 
            ite(l, 4) = 0; 
        else 
            F2 = ite(F, 4); 
            G2 = ite(G, 4); 
            Gindex(1) = 0; 
            ite(l, 4) = length(ite) + 1; 
            [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F2, G2); 
        end 
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    end 
elseif op == '1'    % 'OR' gate 
    if a ~= b 
        % compute 'then' value 
        if ite(F, 3) == -1 
            ite(l, 3) = -1; 
        elseif ite(F, 3) == 0 
            ite(l, 3) = ite(G, 1); 
        else 
            F1 = ite(F, 3); 
            G1 = G; 
            Gindex(1) = 0; 
            ite(l, 3) = length(ite) + 1; 
            [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F1, G1); 
        end 
        % compute 'else' value 
        if ite(F, 4) == -1   
           ite(l, 4) = -1; 
        elseif ite(F, 4) == 0 
            ite(l, 4) = ite(G, 1); 
        else 
            F2 = ite(F, 4); 
            G2 = G; 
            Gindex(1) = 0; 
            ite(l, 4) = length(ite) + 1; 
            [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F2, G2); 
        end 
    elseif a == b 
        % compute 'then' value 
        if ite(F, 3) == -1 
            ite(l, 3) = -1; 
        elseif ite(F, 3) == 0 
            ite(l, 3) = ite(G, 3); 
        elseif ite(G, 3) == -1 
            ite(l, 3) = -1; 
        elseif ite(G, 3) == 0 
            ite(l, 3) = ite(F, 3); 
        else 
            F1 = ite(F, 3); 
            G1 = ite(G, 3); 
            Gindex(1) = 0; 
            ite(l, 3) = length(ite) + 1; 
            [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F1, G1); 
        end 
        % compute 'else' value 
        if ite(F, 4) == -1 
            ite(l, 4) = -1; 
        elseif ite(F, 4) == 0 
            ite(l, 4) = ite(G, 4); 
        elseif ite(G, 4) == -1 
            ite(l, 4) = -1; 
        elseif ite(G, 4) == 0 
            ite(l, 4) = ite(F, 4); 
        else 
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            F2 = ite(F, 4); 
            G2 = ite(G, 4); 
            Gindex(1) = 0; 
            ite(l, 4) = length(ite) + 1; 
            [ite, CurrFT] = convertBDD(CurrFT,Gindex, ite, op, F2, G2); 
        end 
    end 
end 

 

extract.m 
function [BDD] = extract(ite, s) 
while ~isempty(s) 
    Cindex = s.pop; 
    BDD(Cindex,:) = ite(Cindex,:); 
    if ite(Cindex, 3) > 0 
        push(s, ite(Cindex, 3)); 
    end 
    if ite(Cindex, 4) > 0 
        push(s, ite(Cindex, 4)); 
    end 
end 

 

reduceTable.m 
function [BDD] = reduceTable(BDD) 
pBDD = BDD; 
clear BDD; 
l = length(pBDD); 
r = 1; 
for i = 1 : l 
    if pBDD(i, 1) > 0 
        cNode = pBDD(i, 1); 
        BDD(r, 1) = r; 
        BDD(r, 2) = pBDD(i, 2); 
        BDD(r, 3) = pBDD(i, 3); 
        BDD(r, 4) = pBDD(i, 4); 
        for j = 1 : l 
            if pBDD(j, 3) == cNode 
                pBDD(j, 3) = r; 
            end 
            if pBDD(j, 4) == cNode 
                pBDD(j, 4) = r; 
            end 
        end 
        sz = size(BDD); 
        for j = 1 : sz(1) 
            if BDD(j, 3) == cNode 
                BDD(j, 3) = r; 
            end 
            if BDD(j, 4) == cNode 
                BDD(j, 4) = r; 
            end 
        end 
        r = r + 1; 
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    end 
end 

  
% delete the duplicated row if existing 
for k = size(BDD, 1) : -1 : 1 
    if BDD(k,2) ~= 0 
        index = find(BDD(:, 2)==BDD(k, 2)); 
        if ~isempty(index) 
            for j = 1 : length(index) 
                if index(j) ~= k 
                    if BDD(index(j), 3) == BDD(k, 3) 
                        if BDD(index(j), 4) == BDD(k, 4) 
                            BDD(find(BDD(:, 3)==index(j)),3) = k; 
                            BDD(find(BDD(:, 4)==index(j)),4) = k; 
                            BDD(index(j),:) = [0,0,0,0]; 
                        end 
                    end 
                end 
            end 
        end 
        if BDD(k,3) > 0 
            if BDD(k,3) == BDD(k,4) 
                BDD(find(BDD(1:size(BDD, 1), 3)==k),3) = BDD(k,3); 
                BDD(find(BDD(1:size(BDD, 1), 4)==k),4) = BDD(k,3); 
                BDD(k,:) = [0,0,0,0]; 
            end 
        end 
    end 
end  
index0 = find(BDD(1:size(BDD, 1), 1)==0); 
if ~isempty(index0) 
    [BDD] = reduceTable(BDD); 
end 

 

DBDD.m 
function [DBDD] = DBDD(BDD)  
    szBDD = size(BDD); 
    for b = 1 : szBDD(1) 
        if BDD(b, 1) ~= 0 
            DBDD(b, :) = BDD(b, :); 
            if BDD(b, 3) == -1 
                DBDD(b, 3) = 0; 
            end 
            if BDD(b, 4) == 0 
                DBDD(b, 4) = -1; 
            end 
        end 
    end     
end 

 

combinePMSBDD.m 
function [cBDD] = combinePMSBDD(PhaseConf, Phase) 
s = CStack(); 
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len = size(PhaseConf); 
cBDD = zeros(1,4); 
for p = 1 : (len(2)+1)/2 
    CurrPhase.name = PhaseConf{2*p-1}; 
    tempBDD = Phase(p).bdd; 
    % assign phase order 
    topnode(p) = 1000; 
    for i = 1 : size(tempBDD,1) 
        tempBDD(i, 2) = tempBDD(i, 2) + 100*p; 
        if topnode(p) >= tempBDD(i,2) 
            topnode(p) = tempBDD(i,2); 
        end 
    end 
    % create cBDD to save combined BDD 
    if cBDD(1,1) == 0    
        cBDD = tempBDD; 
    else 
        sz = size(cBDD); 
        rowN = sz(1); 
        for j = 1 : size(tempBDD,1) 
            cBDD(rowN + j, 1) = rowN + j; 
            cBDD(rowN + j, 2) = tempBDD(j, 2); 
            if tempBDD(j, 3) > 0 
                cBDD(rowN + j, 3) = tempBDD(j, 3) + rowN; 
            else 
                cBDD(rowN + j, 3) = tempBDD(j, 3); 
            end 
            if tempBDD(j, 4) > 0 
                cBDD(rowN + j, 4) = tempBDD(j, 4) + rowN; 
            else 
                cBDD(rowN + j, 4) = tempBDD(j, 4); 
            end 
        end 
        F = find(cBDD(1:rowN,2)==topnode(p-1)); 
        G = find(cBDD(rowN+1:rowN+j,2)==topnode(p))+rowN; 
        op = PhaseConf{(p-1)*2}; 
        [cBDD] = operatePDO(cBDD, op, F, G); 

  
        % Extract lines representing combined BDD from cBDD array 
        s.empty(); 
        a = topnode(p-1) - fix(topnode(p-1) / 100)*100; 
        b = topnode(p) - fix(topnode(p) / 100)*100; 
        if a == b 
            if topnode(p-1) > topnode(p) 
                topnode(p) = topnode(p-1); 
            end 
        elseif a < b 
            topnode(p) = topnode(p-1); 
        end 

             
        rowNtop = size(cBDD,1); 
        while cBDD(rowNtop, 2)~=topnode(p) 
            rowNtop = rowNtop - 1; 
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        end 
        push(s, rowNtop);    % row number for top node of BDD 
        [cBDD] = extract(cBDD, s); 

  
        % reduce rows of BDD table 
        [cBDD] = reduceTable(cBDD); 
    end 
end 

 

operatePDO.m 
function [BDD] = operatePDO(BDD, op, F, G) 
l = size(BDD,1) + 1; 
% Determine which one has priority 
% F and G are row numbers, a and b are variable numbers meaning order 
a.p = fix(BDD(F, 2) / 100); % phase 
a.v = BDD(F, 2) - a.p * 100;    % variable 
b.p = fix(BDD(G, 2) / 100); 
b.v = BDD(G, 2) - b.p * 100; 

  
BDD(l, 1) = l; 
BDD(l, 2) = BDD(F, 2); 
if a.v == b.v 
    if a.p > b.p 
        temp1 = a; 
        a = b; 
        b = temp1; 
        temp2 = F; 
        F = G; 
        G = temp2; 
    end 
    BDD(l, 2) = BDD(G, 2); 
elseif a.v > b.v 
    temp1 = a; 
    a = b; 
    b = temp1; 
    temp2 = F; 
    F = G; 
    G = temp2; 
    BDD(l, 2) = BDD(F, 2); 
end 

  
if (a.v == b.v) && (a.p ~= b.p)     % phase dependent operation 
    if op == '0'    % 'AND' gate 
        % compute 'then' value 
        if BDD(G, 3) == -1 
            BDD(l, 3) = BDD(F, 1); 
        elseif BDD(G, 3) == 0 
            BDD(l, 3) = 0; 
        else 
            F1 = BDD(F, 1); 
            G1 = BDD(G, 3); 
            BDD(l, 3) = size(BDD,1) + 1; 
            [BDD] = operatePDO(BDD, op, F1, G1); 
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        end 
        % compute 'else' value 
        if BDD(F, 4) == -1 
            BDD(l, 4) = BDD(G, 4); 
        elseif BDD(F, 4) == 0 
            BDD(l, 4) = 0; 
        elseif BDD(G, 4) == -1 
            BDD(l, 4) = BDD(F, 4); 
        elseif BDD(G, 4) == 0 
            BDD(l, 4) = 0; 
        else 
            F2 = BDD(F, 4); 
            G2 = BDD(G, 4); 
            BDD(l, 4) = size(BDD,1) + 1; 
            [BDD] = operatePDO(BDD, op, F2, G2); 
        end 
    else            % 'OR' gate 
        % compute 'then' value 
        if BDD(G, 3) == -1 
            BDD(l, 3) = -1; 
        elseif BDD(G, 3) == 0 
            BDD(l, 3) = BDD(F, 1); 
        else 
            F1 = BDD(F, 1); 
            G1 = BDD(G, 3); 
            BDD(l, 3) = size(BDD,1) + 1; 
            [BDD] = operatePDO(BDD, op, F1, G1); 
        end 
        % compute 'else' value 
        if BDD(F, 4) == -1 
            BDD(l, 4) = -1; 
        elseif BDD(F, 4) == 0 
            BDD(l, 4) = BDD(G, 4); 
        elseif BDD(G, 4) == -1 
            BDD(l, 4) = -1; 
        elseif BDD(G, 4) == 0 
            BDD(l, 4) = BDD(F, 4); 
        else 
            F2 = BDD(F, 4); 
            G2 = BDD(G, 4); 
            BDD(l, 4) = size(BDD,1) + 1; 
            [BDD] = operatePDO(BDD, op, F2, G2); 
        end 
    end 
else              % conventional BDD operation 
    if op == '0'    % 'AND' gate 
        if a.v ~= b.v 
            % compute 'then' value 
            if BDD(F, 3) == -1 
                BDD(l, 3) = BDD(G, 1); 
            elseif BDD(F, 3) == 0 
                BDD(l, 3) = 0; 
            else 
                F1 = BDD(F, 3); 
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                G1 = G; 
                BDD(l, 3) = size(BDD,1) + 1; 
                [BDD] = operatePDO(BDD, op, F1, G1); 
            end 
            % compute 'else' value 
            if BDD(F, 4) == -1   
               BDD(l, 4) = BDD(G, 1); 
            elseif BDD(F, 4) == 0 
                BDD(l, 4) = 0; 
            else 
                F2 = BDD(F, 4); 
                G2 = G; 
                BDD(l, 4) = size(BDD,1) + 1; 
                [BDD] = operatePDO(BDD, op, F2, G2); 
            end 
        elseif a.v == b.v 
            % compute 'then' value 
            if BDD(F, 3) == -1 
                BDD(l, 3) = BDD(G, 3); 
            elseif BDD(F, 3) == 0 
                BDD(l, 3) = 0; 
            elseif BDD(G, 3) == -1 
                BDD(l, 3) = BDD(F, 3); 
            elseif BDD(G, 3) == 0 
                BDD(l, 3) = 0; 
            else 
                F1 = BDD(F, 3); 
                G1 = BDD(G, 3); 
                BDD(l, 3) = size(BDD,1) + 1; 
                [BDD] = operatePDO(BDD, op, F1, G1); 
            end 
            % compute 'else' value 
            if BDD(F, 4) == -1 
                BDD(l, 4) = BDD(G, 4); 
            elseif BDD(F, 4) == 0 
                BDD(l, 4) = 0; 
            elseif BDD(G, 4) == -1 
                BDD(l, 4) = BDD(F, 4); 
            elseif BDD(G, 4) == 0 
                BDD(l, 4) = 0; 
            else 
                F2 = BDD(F, 4); 
                G2 = BDD(G, 4); 
                BDD(l, 4) = size(BDD,1) + 1; 
                [BDD] = operatePDO(BDD, op, F2, G2); 
            end 
        end 
    else            % 'OR' gate 
        if a.v ~= b.v 
            % compute 'then' value 
            if BDD(F, 3) == -1 
                BDD(l, 3) = -1; 
            elseif BDD(F, 3) == 0 
                BDD(l, 3) = BDD(G, 1); 
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            else 
                F1 = BDD(F, 3); 
                G1 = G; 
                BDD(l, 3) = size(BDD,1) + 1; 
                [BDD] = operatePDO(BDD, op, F1, G1); 
            end 
            % compute 'else' value 
            if BDD(F, 4) == -1   
               BDD(l, 4) = -1; 
            elseif BDD(F, 4) == 0 
                BDD(l, 4) = BDD(G, 1); 
            else 
                F2 = BDD(F, 4); 
                G2 = G; 
                BDD(l, 4) = size(BDD,1) + 1; 
                [BDD] = operatePDO(BDD, op, F2, G2); 
            end 
        elseif a.v == b.v 
            % compute 'then' value 
            if BDD(F, 3) == -1 
                BDD(l, 3) = -1; 
            elseif BDD(F, 3) == 0 
                BDD(l, 3) = BDD(G, 3); 
            elseif BDD(G, 3) == -1 
                BDD(l, 3) = -1; 
            elseif BDD(G, 3) == 0 
                BDD(l, 3) = BDD(F, 3); 
            else 
                F1 = BDD(F, 3); 
                G1 = BDD(G, 3); 
                BDD(l, 3) = size(BDD,1) + 1; 
                [BDD] = operatePDO(BDD, op, F1, G1); 
            end 
            % compute 'else' value 
            if BDD(F, 4) == -1 
                BDD(l, 4) = -1; 
            elseif BDD(F, 4) == 0 
                BDD(l, 4) = BDD(G, 4); 
            elseif BDD(G, 4) == -1 
                BDD(l, 4) = -1; 
            elseif BDD(G, 4) == 0 
                BDD(l, 4) = BDD(F, 4); 
            else 
                F2 = BDD(F, 4); 
                G2 = BDD(G, 4); 
                BDD(l, 4) = size(BDD,1) + 1; 
                [BDD] = operatePDO(BDD, op, F2, G2); 
            end 
        end 
    end 
end 
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calURpmsbdd.m 
function [UR] = calURpmsbdd(BDD, BE, PTD, PhaseConf) 
    % set the order bottom-up to compute probability 
    q = CQueue(); 
    sz = size(BDD); 
    phase = fix(BDD(:,2) / 100); 
    variable = BDD(:,2) - phase * 100; 
    M = max(variable); 
    temp = 0; 
    for i = 2 : size(PTD,2) 
        temp = temp + PTD(i); 
    end 
    PTD(1) = 8 - temp; 
    while M ~= 0 
        V = find(variable==M); 
        m = min(phase(V)); 
        while m ~= 100 
            rown = find(phase(V)==m); 
            for i = 1 : length(rown) 
                q.push(V(rown(i))); 
            end 
            phase(V(rown)) = 100; 
            variable(V(rown)) = 0; 
            m = min(phase(V)); 
        end 
        M = max(variable); 
    end 

     
    % Compute probability of each node 
    BDD(:,5) = -1; 
    for i = 1 : size(BDD,1) 
        if BDD(i, 3) == -1 
            if BDD(i, 4) == 0 
                BDD(i, 5) = 1; 
            end 
        end 
    end 
    while ~isempty(q) 
        G.r = q.pop; 
        G1.r = BDD(G.r,3); 
        G2.r = BDD(G.r,4); 
        G.p = fix(BDD(G.r, 2) / 100); % phase 
        G.v = BDD(G.r, 2) - G.p * 100;    % variable 
        [prob] = PDprob(G, BE, PTD, PhaseConf); 
        if G1.r > 0 
            G1.p = fix(BDD(G1.r, 2) / 100); % phase 
            G1.v = BDD(G1.r, 2) - G1.p * 100;    % variable 
            if G.v == G1.v 
                H2.r = BDD(G1.r,4); 
                if G2.r > 0 
                    if H2.r > 0 
                        BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * 

(BDD(G2.r,5)-BDD(H2.r,5)); 
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                    elseif H2.r < 0 
                        BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * 

(BDD(G2.r,5)-1); 
                    else 
                        BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * 

(BDD(G2.r,5)-0); 
                    end 
                elseif G2.r < 0 
                    if H2.r > 0 
                        BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (1-

BDD(H2.r,5)); 
                    elseif H2.r < 0 
                        BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (1-1); 
                    else 
                        BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (1-0); 
                    end 
                else 
                    if H2.r > 0 
                        BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (0-

BDD(H2.r,5)); 
                    elseif H2.r < 0 
                        BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (0-1); 
                    else 
                        BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * (0-0); 
                    end 
                end 
            else 
                if G2.r > 0 
                    BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * 

(BDD(G2.r,5)-BDD(G1.r,5)); 
                else 
                    BDD(G.r,5) = BDD(G1.r,5) + (1 - prob) * 

(power(G2.r,2)-BDD(G1.r,5)); 
                end 
            end 
        else 
            if G2.r > 0 
                BDD(G.r,5) = power(G1.r,2) + (1 - prob) * (BDD(G2.r,5)-

power(G1.r,2)); 
            else 
                BDD(G.r,5) = power(G1.r,2) + (1 - prob) * 

(power(G2.r,2)-power(G1.r,2)); 
            end 
        end 
    end 
    UR = BDD(G.r,5); 
end 

  
function [prob] = PDprob(G, BE, PTD, PhaseConf) 
    tPhase = BE(G.v).phase; 
    tProb = BE(G.v).prob; 
    variable = G.v; 
    phase = G.p; 
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    phaseName = PhaseConf(G.p*2-1); 
    phaseindex = find(strcmp(tPhase,phaseName)); 
    PhaseDependency = BE(variable).pd; 
    if PhaseDependency < 1 
        lamda = tProb(phaseindex); 
        PhaseDuration = PTD(phase); 
        prob = 1 - exp(-lamda*PhaseDuration); 
        if PhaseDependency < 0 
            prob = 1 - prob; 
        end 
    else 
        temp = 1; 
        if phase > 1 
            for i = 1 : (phase - 1) 
                index = find(strcmp(tPhase,PhaseConf{i*2-1})); 
                lamda = tProb(index); 
                PhaseDuration = PTD(i); 
                temp = temp * exp(-lamda*PhaseDuration); 
            end 
        end 
        lamda = tProb(phaseindex); 
        PhaseDuration = PTD(phase); 
        prob = 1 - temp + temp * (1 - exp(-lamda*PhaseDuration)); 
    end          
end 

 

createTmatrix.m 
%% Create transition matrix 
function [StateTransition] = createTmatrix(StateTransition, dt, Phases, 

PST, cdrRateAC, pilotRate, AC, ratio) 
    CdrRate = zeros(480,1); 
    states = unique(StateTransition(:,1:2),'stable'); 
    % find phase = state 
    for i = 1 : length(Phases) 
        idx = find(strcmp(states(:,1), Phases{i})); 
        if ~isempty(idx) 
            states{idx, 2} = 1; 
        end 
    end     

  
    % find end-states 
    n = 0; 
    for i = 1 : length(states) 
        if isempty (find(strcmp(StateTransition(:,1), states{i}))) 
            n = n + 1; 
            end_states{n,1} = states{i}; 
            states{i,2} = 3; 
        else 
            % intemediate state 
            if isempty(states{i,2}) 
                states{i,2} = 2; 
            end 
        end 
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    end 

     
    for i = 1 : length(states) 
        if states{i,2} == 1 % CD&R state 
            fState = states{i,1}; 
            PhaseNum = find(strcmp(Phases(:,1), fState)); 
            idx = find(strcmp(StateTransition(:,1), fState)); 
            for j = 1 : length(idx) 
                tState = StateTransition{idx(j),2}; 
                if strcmp(fState, tState)   % failure 
                    fidx = idx(j); 
                elseif states{strcmp(states(:,1), tState),2}== 2  
                    sidx = idx(j); 
                else 
                    tidx = idx(j);  % transition between phases 
                end 
            end 
            for j = 1 : size(PhaseNum, 1)                 
                cCol = (PST(1) - PST(PhaseNum(j)))/dt + 4; 
                nCol = (PST(PhaseNum(j)) - PST(PhaseNum(j)+1))/dt; 
                clock = PST(PhaseNum(j)); 
                for k = 1 : nCol 
                    if cdrRateAC(PhaseNum(j)) > 0 
                        [cdrRate] = ConflictDetectionProb(AC, clock); 
                        cdrRate = cdrRate * ratio;                         
                        prob = 1 - exp(-cdrRate*dt/60);    
                    else  
                        prob = 0; 
                    end 
                    StateTransition{fidx, cCol} = 1-prob; 
                    StateTransition{sidx, cCol} = prob; 
                    cCol = cCol + 1;                         
                    clock = clock - dt; 
                end 
            end 
            StateTransition{tidx, cCol} = 1;             
        elseif states{i,2} == 2 % intermediate state (pilot state) 
            fState = states{i,1}; 
            idx = find(strcmp(StateTransition(:,1), fState)); 
            for j = 1 : length(idx) 
                tState = StateTransition{idx(j),2}; 
                if strcmp(fState, tState) 
                    fidx = idx(j); 
                elseif states{strcmp(states(:,1), tState),2} == 3 
                    sidx = idx(j); 
                end 
            end 
            for k = 1 : size(Phases,1) 
                PhaseNum = k; 
                clock = PST(PhaseNum); 
                cCol = (PST(1) - PST(PhaseNum))/dt + 5; 
                pRate = pilotRate(k) / 60;     
                prob = 1 - exp(-pRate*dt);    
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                while clock > PST(PhaseNum+1) 
                    StateTransition{fidx, cCol} = 1-prob; 
                    StateTransition{sidx, cCol} = prob; 
                    cCol = cCol + 1; 
                    clock = clock - dt; 
                end 

  
                if PhaseNum < size(Phases,1) 
                    if ~strcmp(Phases{PhaseNum,1}, Phases{PhaseNum+1,1}) 
                        cCol = (PST(1) - PST(PhaseNum+1))/dt + 4; 
                        StateTransition{fidx, cCol} = []; 
                        StateTransition{sidx, cCol} = []; 
                        tidx = find(strcmp(StateTransition(idx,2), 

Phases{PhaseNum+1,1})); 
                        StateTransition{idx(tidx), cCol} = 1; 
                    end 
                else 
                    cCol = (PST(1) - PST(PhaseNum+1))/dt + 4; 
                    StateTransition{fidx, cCol} = []; 
                    StateTransition{sidx, cCol} = []; 
                end     
                clear tidx; 
            end             
        end         
    end 
end 

 

ConflictDetectionProb.m 
function [cdrRate] = ConflictDetectionProb(AC, clock) 

% Paielli (1996) 
    mps0 = [0; 100/6076.12; 500/6076.12; 1.1; 5]; 
    theta = (AC(1).heading - AC(2).heading) * pi/180;    
    mps = mps0(2)*[cos(theta);sin(theta)];  
    sc = 5;   %separation standard for conflict (nm) 
    Vr = AC(1).spd / 60;    % reference (manned), nm/min 
    Vs = AC(2).spd / 60; % stochastic (unmanned), nm/min 
    R=[cos(theta) -sin(theta);sin(theta) cos(theta)];     
    time = clock / 60; % (min) 
    varRx=(AC(1).err(1) / 60)^2 * time^2; 
    varRy=(AC(1).err(2) / 1.96)^2;% RNP X, 95% of time stay in +/- X nm 
    varSx=(AC(2).err(1) / 60)^2 * time^2; 
    varSy=(AC(2).err(2) / 1.96)^2; 
    Ss=[varSx 0;0 varSy]; 
    Sr=[varRx 0;0 varRy]; 
    Qr=R*Sr*R'; 
    M = Ss + Qr; 
    L11=sqrt(M(1,1)); 
    L21=M(2,1)/L11; 
    L22=sqrt(M(2,2)-L21^2); 
    L=[L11 0;L21 L22];  
    mpsT = inv(L)*mps; 
    dV = [Vs*cos(theta)-Vr; Vs*sin(theta)]; 
    dVt = inv(L)*dV; 
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    R1 = 1/sqrt(power(dVt(1),2)+power(dVt(2),2))*[dVt(1), dVt(2); -

dVt(2), dVt(1)]; 
    T=R1/L;  
    W=inv(T); 
    Wc=W'*W; 
    a=Wc(1,1); 
    b=Wc(1,2); 
    c=Wc(2,2); 
    yc=sc*sqrt(a/(a*c-b^2)); 
    pc=normcdf(-mpsT(2)+yc,0,1)-normcdf(-mpsT(2)-yc,0,1); 

     
    cdrRate = -log(1-pc) / (clock/ 60); % /min 
end 
 

calDET.m 
%% Dynamic Event Tree 
function [DET, end_states, states] = calDET(transition)  
    [nRow,nCol] = size(transition); 
    states = unique(transition(:,1:2),'stable'); 
    transition = sortrows(transition,3); 

  
    % find end-states 
    n = 1; 
    for i = 1 : length(states) 
        if isempty (find(strcmp(transition(:,1), states{i}))) 
            end_states{n,1} = states{i}; 
            end_states{n,2} = i;  % index of end_state in states array 
            end_states{n,3} = 0; 
            n = n + 1; 
        end 
    end 
    numEndStates = n - 1; 

  
    %% Create dynamic event tree 
    DET = cell(length(states), nCol-2); 
    [m,n] = size(DET); 
    for i = 1 : m 
        for j = 1 : n 
            DET{i,j} = 0; 
        end 
    end 
    DET{1,1} = 1;  
    for i = 1 : nCol-3   % time 
        Sindex = find(~cellfun('isempty', transition(:,i+3))); 
        nState = unique(transition(Sindex,1:2),'stable'); 
        while ~isempty(nState) 
            cState = nState{1,1}; 
            nState(1,:) = []; 
            index = find(strcmp(transition(:,1), cState)); 
            Findex = find(strcmp(states, cState)); 
            Eindex = find(strcmp(end_states, cState)); 
            if isempty(Eindex) 
                for j = 1 : length(index) 
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                    PbTrans = transition{index(j),i+3}; 
                    if PbTrans > 0 
                        toState = transition(index(j),2); 
                        Tindex = find(strcmp(states, toState));   
                        tAdv = transition{index(j),3 
                        DET{Tindex(1),i+tAdv} = DET{Tindex(1),i+tAdv} + 

DET{Findex(1),i} * PbTrans; 
                    end 
                end 
            end 
        end 
        DET{end_states{2,2},i+1} = DET{end_states{2,2},i+1} + 

DET{end_states{2,2},i}; 
    end 
    %store end-state probabilities at time 0 
    end_states{2,3} = DET{end_states{2,2},nCol-3};  % resolved 
    end_states{1,3} = 1-DET{end_states{2,2},nCol-3};     
end 
 

Dependent.m 
function [TotalFailureProb] = Dependent(AC, deltaT); 

  
    % adjust activation time 
    if length(AC) > 1 
        [AC] = ComputeActivation(AC, deltaT); 
    end 

     
    % construct BDD and DBDD for each system 
    BE = struct([]); 
    faultTreeStruct = [AC(1).faultTree, AC(2).faultTree]; 
    [SystemBDD, BE] = constructBDD(faultTreeStruct, BE); 
    for j = 1 : size(SystemBDD,2) 
        [SystemBDD(j).dbdd] = DBDD(SystemBDD(j).bdd); 
    end 

     
    % combine CD&R phases into one 
    [Combined] = CombineCDRphases(AC); 

     
    % update phase name with combined one 
    for i = 1 : size(BE,2) 
        BE(i).phase = Combined.Phases; 
    end 

  
    % crete initial phasebdd with phase names 
    phasebdd = struct('name',[],'bdd',[]); 
    for i = 1 : size(Combined.Phases,1) 
        phasebdd(i).name = Combined.Phases{i}; 
    end     

  
    % each combination of available phases 
    rowN = 1; 
    nSystem = Combined.nSystems; 
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    for j = 0 : (pow2(nSystem)-1)   
        b = dec2bin(j, nSystem); % [100], [010], ..., [110],[111]    

         
        % checking if the sequence is possible (1: possible, 0: 

impossible) 
        [Seq] = CheckSequence(b, Combined); 

  
        if Seq > 0   
            % create 'phasebdd' 
            [phasebdd, Combined] = CreatePhaseBDD(phasebdd, b, 

SystemBDD, Combined); 

  
            % weight prob. of each DET being used 
            [cPMSBDD] = combinePMSBDD(Combined.PhaseConf, phasebdd); 
            [UR] = calURpmsbdd(cPMSBDD, BE, Combined.PTD, 

Combined.PhaseConf); 
            % save weight probabilities 
            result(rowN,2) = UR;              

  
            % AC#1: create transition prob. and compute conditional 

prob. of CD&R failures 
            CDRavailabilityAC1 = cell2mat(Combined.systemAC1(:,2)); 
            [sTransProb] = createTmatrix(AC(1).StateTransition, deltaT, 

Combined.systemAC1(:,1), Combined.PST, CDRavailabilityAC1, 

Combined.pilotAC1, AC, AC(1).rate); 
            [DETac1, EndStateAC1, statesAC1] = calDET(sTransProb); 

  
            % AC#2: create transition prob. and compute conditional 

prob. of CD&R failures 
            idx = 1; 
            while isempty(Combined.systemAC2{idx,2}) 
                idx = idx + 1; 
            end 
            CDRavailabilityAC2 = 

cell2mat(Combined.systemAC2(idx:size(Combined.systemAC2,1),2)); 
            SystemAC2 = 

Combined.systemAC2(idx:size(Combined.systemAC2,1),1); 
            PST_AC2 = Combined.PST(idx:size(Combined.PST,1),1); 
            pilotRateAC2= 

Combined.pilotAC2(idx:size(Combined.pilotAC2,1),1); 
            [sTransProb] = createTmatrix(AC(2).StateTransition, deltaT, 

SystemAC2, PST_AC2, CDRavailabilityAC2, pilotRateAC2, AC, AC(2).rate); 
            [DETac2, EndStateAC2, statesAC2] = calDET(sTransProb); 
            Combination(rowN,:) = 

[CDRavailabilityAC1',CDRavailabilityAC2']; 

  
            % Conditional CD&R failure prob. 
            result(rowN,1) = EndStateAC1{1,3}*EndStateAC2{1,3}; 
            rowN = rowN + 1; 
        end 
        clear PST_AC2; 
    end 
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    % exclude cases where system fails during operation 
    [result, Combination1] = ExcludeCombi(Combined.systems, Combination, 

result); 

  
    % CD&R failure prob. 
    TotalFailureProb(1,1) = AC(1).heading - AC(2).heading; 
    TotalFailureProb(1,2) = sum(result(:,1).*result(:,2)); 
end 

 

CombineCDRphases.m 
function [Combined] = CombineCDRphases(pair) 
    System_A = pair(1).system; 
    System_B = pair(2).system; 
    Activation_A = [pair(1).time_horizon; 0]; 
    Activation_B = [pair(2).time_horizon; 0]; 
    Pilot_A = pair(1).pilotRate; 
    Pilot_B = pair(2).pilotRate;  
    tempCombined = cell(1,3); 
    p = 1; 
    i = 1; 
    j = 1; 
    while i <= size(Activation_A,1) 
        if Activation_A(i) > Activation_B(j) 
            tempCombined{p,1} = Activation_A(i); 
            tempCombined(p,2) = System_A(i); 
            if p > 1 
                tempCombined(p,3) = tempCombined(p-1,3); 
                tempCombined{p,5} = tempCombined{p-1,5}; 
            else 
                tempCombined{p,3} = 'n/a'; 
                tempCombined{p,5} = 0; 
            end 
            tempCombined{p,4} = Pilot_A(i);             
            i = i + 1; 
        elseif Activation_A(i) < Activation_B(j) 
            tempCombined{p,1} = Activation_B(j); 
            if p > 1 
                tempCombined(p,2) = tempCombined(p-1,2); 
                tempCombined{p,4} = tempCombined{p-1,4}; 
            else 
                tempCombined{p,2} = 'n/a'; 
            end 
            tempCombined(p,3) = System_B(j); 
            tempCombined{p,5} = Pilot_B(j); 
            j = j + 1; 
        elseif Activation_A(i) == Activation_B(j) 
            if Activation_A(i) > 0 
                tempCombined{p,1} = Activation_A(i); 
                tempCombined(p,2) = System_A(i); 
                tempCombined(p,3) = System_B(j); 
                tempCombined{p,4} = Pilot_A(i); 
                tempCombined{p,5} = Pilot_B(j); 
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            end 
            i = i + 1; 
            j = j + 1; 
        end 
        p = p + 1; 
    end  
    Combined.PST = cell2mat([tempCombined(:,1); 0]); 
    Combined.PST = fix(Combined.PST); 
    for i = 2 : size(Combined.PST,1) 
        Combined.PTD(i-1) = (Combined.PST(i-1)-Combined.PST(i))/60; 
    end 
    % create cell array of systems for combined phase structure 
    Combined.systemAC1 = tempCombined(:,2); 
    Combined.systemAC2 = tempCombined(:,3); 
    Combined.pilotAC1 = cell2mat(tempCombined(:,4)); 
    Combined.pilotAC2 = cell2mat(tempCombined(:,5));     
    Combined.systems=[Combined.systemAC1;Combined.systemAC2]; 
    for i = size(Combined.systems,1):-1:1 
        if strcmp(Combined.systems{i},'n/a') 
            Combined.systems(i)=[]; 
        end 
    end 
    Combined.nSystems = size(Combined.systems,1); 
    n = 1; 
    for i = 1 : size(tempCombined,1) 
        % create cell array of phase names for combined phase structure 
        if ~strcmp(tempCombined{i,3}, 'n/a') 
            Str(1) = string(tempCombined(i,2)); 
            Str(2) = string(tempCombined(i,3)); 
            Combined.Phases{i,1} = convertStringsToChars(join(Str, 

"/")); 
        else 
            Combined.Phases(i,1) = tempCombined(i,2); 
        end 
        if i == 1 
            Combined.PhaseConf = Combined.Phases(i,1); 
            n = n + 1; 
        else 
            Combined.PhaseConf(1,n) = {'0'}; 
            n = n + 1; 
            Combined.PhaseConf(1,n) = Combined.Phases(i,1); 
            n = n + 1; 
        end 
    end 
end 

 

CheckSequence.m 
function [Seq] = CheckSequence(b, Combined) 
    Seq = 1;    % initial value = possible 
    idx = 1;    % tracking phases 
    while idx < Combined.nSystems 
        if strcmp(Combined.systems{idx}, Combined.systems{idx+1}) 
            if b(idx) < b(idx+1) 
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                Seq = 0; 
                break; 
            end 
        end 
        idx = idx + 1; 
    end 
end 

 

CreatePhaseBDD.m 
function [phasebdd, Combined] = CreatePhaseBDD(phasebdd, b, SystemBDD, 

Combined)  
nSys1 = size(Combined.systemAC1, 1); 
nSys2 = size(Combined.systemAC2, 1); 
n = 1; 
for i = 1 : nSys1 
    if ~strcmp(Combined.systemAC1{i,1}, 'n/a') 
        Combined.systemAC1{i,2} = str2num(b(n)); 
        n = n + 1; 
    end 
end 
for i = 1 : nSys2 
    if ~strcmp(Combined.systemAC2{i,1}, 'n/a') 
        Combined.systemAC2{i,2} = str2num(b(n)); 
        n = n + 1; 
    end 
end 
if n > Combined.nSystems + 1 
    disp('error'); 
end 
for i = 1 : size(Combined.Phases, 1) 
    x = Combined.systemAC1{i,1}; 
    y = Combined.systemAC2{i,1}; 
    if strcmp({y}, 'n/a') 
        idx = find(strcmp({SystemBDD.name}, {x})); 
        if Combined.systemAC1{i,2} < 1 
            phasebdd(i).bdd = SystemBDD(idx).bdd; 
        else 
            phasebdd(i).bdd = SystemBDD(idx).dbdd; 
        end 
    else 
        idx0 = find(strcmp({SystemBDD.name}, {x})); 
        idx1 = find(strcmp({SystemBDD.name}, {y})); 
        sysTOph = {x, '0', y}; 
        systembdd(1).name = x; 
        systembdd(2).name = y; 
        if Combined.systemAC1{i,2} < 1 
            systembdd(1).bdd = SystemBDD(idx0).bdd; 
        else 
            systembdd(1).bdd = SystemBDD(idx0).dbdd; 
        end 
        if Combined.systemAC2{i,2} < 1 
            systembdd(2).bdd = SystemBDD(idx1).bdd; 
        else 
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            systembdd(2).bdd = SystemBDD(idx1).dbdd; 
        end 
        [phasebdd(i).bdd] = combineBDD(sysTOph, systembdd); 
    end 
end 

 

combineBDD.m 
function [cBDD] = combineBDD(PhaseConf, Phase) 
s = CStack(); 
len = size(PhaseConf); 
cBDD = zeros(1,4); 
for p = 1 : (len(2)+1)/2  
    CurrPhase.name = PhaseConf{2*p-1}; 
    index = find(strcmp({Phase.name},CurrPhase.name)); 
    tempBDD = Phase(index).bdd; 
    % assign phase order 
    topnode(p) = 1000; 
    for i = 1 : size(tempBDD,1) 
        if topnode(p) >= tempBDD(i,2) 
            topnode(p) = tempBDD(i,2); 
        end 
    end 
    % create cBDD to save combined BDD 
    if cBDD(1,1) == 0    
        cBDD = tempBDD; 
    else 
        sz = size(cBDD); 
        rowN = sz(1); 
        for j = 1 : size(tempBDD,1) 
            cBDD(rowN + j, 1) = rowN + j; 
            cBDD(rowN + j, 2) = tempBDD(j, 2); 
            if tempBDD(j, 3) > 0 
                cBDD(rowN + j, 3) = tempBDD(j, 3) + rowN; 
            else 
                cBDD(rowN + j, 3) = tempBDD(j, 3); 
            end 
            if tempBDD(j, 4) > 0 
                cBDD(rowN + j, 4) = tempBDD(j, 4) + rowN; 
            else 
                cBDD(rowN + j, 4) = tempBDD(j, 4); 
            end 
        end 
        F = find(cBDD(1:rowN,2)==topnode(p-1)); 
        G = find(cBDD(rowN+1:rowN+j,2)==topnode(p))+rowN; 
        op = PhaseConf{(p-1)*2}; 
        [cBDD] = operateBDD(cBDD, op, F, G); 

  
        % Extract lines representing combined BDD from cBDD array 
        s.empty(); 
        a = topnode(p-1); 
        b = topnode(p); 
        if a == b 
            if topnode(p-1) > topnode(p) 
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                topnode(p) = topnode(p-1); 
            end 
        elseif a < b 
            topnode(p) = topnode(p-1); 
        end 

             
        rowNtop = size(cBDD,1); 
        while cBDD(rowNtop, 2)~=topnode(p) 
            rowNtop = rowNtop - 1; 
        end 
        push(s, rowNtop);    % row number for top node of BDD 
        [cBDD] = extract(cBDD, s); 

  
        % reduce rows of BDD table 
        [cBDD] = reduceTable(cBDD); 
    end 
end 

 

operateBDD.m 
function [BDD] = operateBDD(BDD, op, F, G) 
l = size(BDD,1) + 1; 
% Determine which one has priority 
% F and G are row numbers, a and b are variable numbers meaning order 
a.v = BDD(F, 2);    % variable 
b.v = BDD(G, 2);  
BDD(l, 1) = l; 
BDD(l, 2) = BDD(F, 2); 
if a.v > b.v 
    temp1 = a; 
    a = b; 
    b = temp1; 
    temp2 = F; 
    F = G; 
    G = temp2; 
    BDD(l, 2) = BDD(F, 2); 
end 

  
% conventional BDD operation 
if op == '0'    % 'AND' gate 
    if a.v ~= b.v 
        % compute 'then' value 
        if BDD(F, 3) == -1 
            BDD(l, 3) = BDD(G, 1); 
        elseif BDD(F, 3) == 0 
            BDD(l, 3) = 0; 
        else 
            F1 = BDD(F, 3); 
            G1 = G; 
            BDD(l, 3) = size(BDD,1) + 1; 
            [BDD] = operateBDD(BDD, op, F1, G1); 
        end 
        % compute 'else' value 
        if BDD(F, 4) == -1   
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           BDD(l, 4) = BDD(G, 1); 
        elseif BDD(F, 4) == 0 
            BDD(l, 4) = 0; 
        else 
            F2 = BDD(F, 4); 
            G2 = G; 
            BDD(l, 4) = size(BDD,1) + 1; 
            [BDD] = operateBDD(BDD, op, F2, G2); 
        end 
    elseif a.v == b.v 
        % compute 'then' value 
        if BDD(F, 3) == -1 
            BDD(l, 3) = BDD(G, 3); 
        elseif BDD(F, 3) == 0 
            BDD(l, 3) = 0; 
        elseif BDD(G, 3) == -1 
            BDD(l, 3) = BDD(F, 3); 
        elseif BDD(G, 3) == 0 
            BDD(l, 3) = 0; 
        else 
            F1 = BDD(F, 3); 
            G1 = BDD(G, 3); 
            BDD(l, 3) = size(BDD,1) + 1; 
            [BDD] = operateBDD(BDD, op, F1, G1); 
        end 
        % compute 'else' value 
        if BDD(F, 4) == -1 
            BDD(l, 4) = BDD(G, 4); 
        elseif BDD(F, 4) == 0 
            BDD(l, 4) = 0; 
        elseif BDD(G, 4) == -1 
            BDD(l, 4) = BDD(F, 4); 
        elseif BDD(G, 4) == 0 
            BDD(l, 4) = 0; 
        else 
            F2 = BDD(F, 4); 
            G2 = BDD(G, 4); 
            BDD(l, 4) = size(BDD,1) + 1; 
            [BDD] = operateBDD(BDD, op, F2, G2); 
        end 
    end 
else            % 'OR' gate 
    if a.v ~= b.v 
        % compute 'then' value 
        if BDD(F, 3) == -1 
            BDD(l, 3) = -1; 
        elseif BDD(F, 3) == 0 
            BDD(l, 3) = BDD(G, 1); 
        else 
            F1 = BDD(F, 3); 
            G1 = G; 
            BDD(l, 3) = size(BDD,1) + 1; 
            [BDD] = operateBDD(BDD, op, F1, G1); 
        end 
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        % compute 'else' value 
        if BDD(F, 4) == -1   
           BDD(l, 4) = -1; 
        elseif BDD(F, 4) == 0 
            BDD(l, 4) = BDD(G, 1); 
        else 
            F2 = BDD(F, 4); 
            G2 = G; 
            BDD(l, 4) = size(BDD,1) + 1; 
            [BDD] = operateBDD(BDD, op, F2, G2); 
        end 
    elseif a.v == b.v 
        % compute 'then' value 
        if BDD(F, 3) == -1 
            BDD(l, 3) = -1; 
        elseif BDD(F, 3) == 0 
            BDD(l, 3) = BDD(G, 3); 
        elseif BDD(G, 3) == -1 
            BDD(l, 3) = -1; 
        elseif BDD(G, 3) == 0 
            BDD(l, 3) = BDD(F, 3); 
        else 
            F1 = BDD(F, 3); 
            G1 = BDD(G, 3); 
            BDD(l, 3) = size(BDD,1) + 1; 
            [BDD] = operateBDD(BDD, op, F1, G1); 
        end 
        % compute 'else' value 
        if BDD(F, 4) == -1 
            BDD(l, 4) = -1; 
        elseif BDD(F, 4) == 0 
            BDD(l, 4) = BDD(G, 4); 
        elseif BDD(G, 4) == -1 
            BDD(l, 4) = -1; 
        elseif BDD(G, 4) == 0 
            BDD(l, 4) = BDD(F, 4); 
        else 
            F2 = BDD(F, 4); 
            G2 = BDD(G, 4); 
            BDD(l, 4) = size(BDD,1) + 1; 
            [BDD] = operateBDD(BDD, op, F2, G2); 
        end 
    end 
end 

 

ExcludeCombi.m 
function [result, cases] = ExcludeCombi(systems, cases, result)  
n = size(systems,1);  
for i = 1 : n-1 
    if strcmp(systems{i}, systems{i+1}) 
        m = size(cases, 1); 
        j = 1; 
        while j <= m 
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            if cases(j, i) > cases(j, i+1) 
                a = cases(j, :); 
                row = 0; 
                l = i+2; 
                k = j+1; 
                while k <= m 
                    if l <= n 
                        for p = l : n 
                            if cases(j,p) ~= cases(k,p) 
                                break; 
                            end 
                        end 
                        if p == n 
                            break; 
                        end 
                        k = k + 1; 
                    else 
                        if cases(j,1:i) == cases(k,1:i) 
                            break; 
                        else 
                            k = k + 1; 
                        end 
                    end 
                end 
                for l = 2 : size(result,2)  %2% 
                    result(k,l) = result(k,l) + result(j,l); 
                end 
                result(j,:) = []; 
                cases(j,:) = []; 
                m = size(cases, 1); 
            else 
                j = j + 1; 
            end 
        end 
    end 
end 
 

CQueue.m 
classdef CQueue < handle 
% CQueue define a queue data strcuture 
% Copyright: zhang@zhiqiang.org, 2010. 
% url: http://zhiqiang.org/blog/it/matlab-data-structures.html 

  
    properties (Access = private) 
        buffer      % a cell, to maintain the data 
        beg         % the start position of the queue 
        rear        % the end position of the queue 
                    % the actually data is buffer(beg:rear-1) 
    end 

     
    properties (Access = public) 
        capacity    % ???2 
    end 
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    methods 
        function obj = CQueue(c) % ? 
            if nargin >= 1 && iscell(c) 
                obj.buffer = [c(:); cell(numel(c), 1)]; 
                obj.beg = 1; 
                obj.rear = numel(c) + 1; 
                obj.capacity = 2*numel(c); 
            elseif nargin >= 1 
                obj.buffer = cell(100, 1); 
                obj.buffer{1} = c; 
                obj.beg = 1; 
                obj.rear = 2; 
                obj.capacity = 100;                 
            else 
                obj.buffer = cell(1000, 1); 
                obj.capacity = 1000; 
                obj.beg = 1; 
                obj.rear = 1; 
            end 
        end 

         
        function s = size(obj) % ? 
            if obj.rear >= obj.beg 
                s = obj.rear - obj.beg; 
            else 
                s = obj.rear - obj.beg + obj.capacity; 
            end 
        end 

         
        function b = isempty(obj) % return true when the queue is empty 
            b = ~logical(obj.size()); 
        end 

         
        function s = empty(obj) % clear all the data in the queue 
            s = obj.size(); 
            obj.beg = 1; 
            obj.rear = 1; 
        end 

         
        function push(obj, el) % ???? 
            if obj.size >= obj.capacity - 1 
                sz = obj.size(); 
                if obj.rear >= obj.front 
                    obj.buffer(1:sz) = obj.buffer(obj.beg:obj.rear-1);                     
                else 
                    obj.buffer(1:sz) = obj.buffer([obj.beg:obj.capacity 

1:obj.rear-1]); 
                end 
                obj.buffer(sz+1:obj.capacity*2) = cell(obj.capacity*2-

sz, 1); 
                obj.capacity = numel(obj.buffer); 
                obj.beg = 1; 
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                obj.rear = sz+1; 
            end 
            obj.buffer{obj.rear} = el; 
            obj.rear = mod(obj.rear, obj.capacity) + 1; 
        end 

         
        function el = front(obj) % ?? 
            if obj.rear ~= obj.beg 
                el = obj.buffer{obj.beg}; 
            else 
                el = []; 
                warning('CQueue:NO_DATA', 'try to get data from an 

empty queue'); 
            end 
        end 

         
        function el = back(obj) % ???             

             
           if obj.rear == obj.beg 
               el = []; 
               warning('CQueue:NO_DATA', 'try to get data from an empty 

queue'); 
           else 
               if obj.rear == 1 
                   el = obj.buffer{obj.capacity}; 
               else 
                   el = obj.buffer{obj.rear - 1}; 
               end 
            end 

             
        end 

         
        function el = pop(obj) % ? 
            if obj.rear == obj.beg 
                error('CQueue:NO_Data', 'Trying to pop an empty queue'); 
            else 
                el = obj.buffer{obj.beg}; 
                obj.beg = obj.beg + 1; 
                if obj.beg > obj.capacity, obj.beg = 1; end 
            end              
        end 

         
        function remove(obj) % ? 
            obj.beg = 1; 
            obj.rear = 1; 
        end 

         
        function display(obj) % ? 
            if obj.size() 
                if obj.beg <= obj.rear  
                    for i = obj.beg : obj.rear-1 
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                        disp([num2str(i - obj.beg + 1) '-th element of 

the stack:']); 
                        disp(obj.buffer{i}); 
                    end 
                else 
                    for i = obj.beg : obj.capacity 
                        disp([num2str(i - obj.beg + 1) '-th element of 

the stack:']); 
                        disp(obj.buffer{i}); 
                    end      
                    for i = 1 : obj.rear-1 
                        disp([num2str(i + obj.capacity - obj.beg + 1) 

'-th element of the stack:']); 
                        disp(obj.buffer{i}); 
                    end 
                end 
            else 
                disp('The queue is empty'); 
            end 
        end 

         
        function c = content(obj) % ?? 
            if obj.rear >= obj.beg 
                c = obj.buffer(obj.beg:obj.rear-1);                     
            else 
                c = obj.buffer([obj.beg:obj.capacity 1:obj.rear-1]); 
            end 
        end 
    end 
end 

 

CStack.m 
classdef CStack < handle 
% CStack define a stack data strcuture 
% Copyright: zhang@zhiqiang.org, 2010. 
% url: http://zhiqiang.org/blog/it/matlab-data-structures.html 

  
    properties (Access = private) 
        buffer      % ?cell?? 
        cur         % ???, or the length of the stack 
        capacity    % ???2 
    end 

     
    methods 
        function obj = CStack(c) 
            if nargin >= 1 && iscell(c) 
                obj.buffer = c(:); 
                obj.cur = numel(c); 
                obj.capacity = obj.cur; 
            elseif nargin >= 1 
                obj.buffer = cell(100, 1); 
                obj.cur = 1; 
                obj.capacity =100; 
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                obj.buffer{1} = c; 
            else 
                obj.buffer = cell(100, 1); 
                obj.capacity = 100; 
                obj.cur = 0; 
            end 
        end 

         
        function s = size(obj) 
            s = obj.cur; 
        end 

         
        function remove(obj) 
            obj.cur = 0; 
        end 

         
        function b = empty(obj) 
            b = obj.cur; 
            obj.cur = 0; 
        end 

         
        function b = isempty(obj)             
            b = ~logical(obj.cur); 
        end 

  
        function push(obj, el) 
            if obj.cur >= obj.capacity 
                obj.buffer(obj.capacity+1:2*obj.capacity) = 

cell(obj.capacity, 1); 
                obj.capacity = 2*obj.capacity; 
            end 
            obj.cur = obj.cur + 1; 
            obj.buffer{obj.cur} = el; 
        end 

         
        function el = top(obj) 
            if obj.cur == 0 
                el = []; 
                warning('CStack:No_Data', 'trying to get top element of 

an emtpy stack'); 
            else 
                el = obj.buffer{obj.cur}; 
            end 
        end 

         
        function el = pop(obj) 
            if obj.cur == 0 
                el = []; 
                warning('CStack:No_Data', 'trying to pop element of an 

emtpy stack'); 
            else 
                el = obj.buffer{obj.cur}; 
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                obj.cur = obj.cur - 1; 
            end         
        end 

         
        function display(obj) 
            if obj.cur 
                for i = 1:obj.cur 
                    disp([num2str(i) '-th element of the stack:']); 
                    disp(obj.buffer{i}); 
                end 
            else 
                disp('The stack is empty'); 
            end 
        end 

         
        function c = content(obj) 
            c = obj.buffer(1:obj.cur); 
        end 
    end 
end 
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