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ABSTRACT

ULTRA-FAST, HIGH-TEMPERATURE MICROWAVE PROCESSING OF SILICON
CARBIDE AND GALLIUM NITRIDE

Siddarth G. Sundaresan, Ph.D.
George Mason University, 2007

Dissertation Director: Prof. Mulpuri V. Rao

A novel solid-state microwave annealing technique is developed in this work for
post-implantation annealing of SiC and GaN, and for the controlled growth of SiC
nanowires. This technique is capable of heating SiC samples to temperatures in excess of
2100 °C, at ultra-fast temperature ramping rates > 600 °C/s.

Microwave annealing of ion-implantation doped (both p-type and n-type)
hexagonal SiC was performed in an uncontrolled (air) ambient, as well as a controlled
100% atmosphere of nitrogen, with or without a protective graphite cap. Microwave
annealing was performed in the temperature range of 1500 °C — 2120 °C, for durations of
5 s — 60 s. Uncontrolled ambient microwave annealing of SiC at temperatures > 1700 °C
resulted in a significant oxidation of the SiC surface, leading to a loss of the implanted
layer. Annealing in a 100% nitrogen atmosphere eliminated the oxidation problem. For

microwave annealing at temperatures > 1800 °C, significant SiC sublimation was



observed, even for 15 s annealing. Microwave annealing with a photoresist-converted
graphite cap solved this surface sublimation problem for annealing temperatures up to
2100 °C. For the P" and Al -implanted SiC, sheet resistances as low as 14 Q/ and 1.9
kQ/ and majority carrier mobilities as high as 100 cm?*/Vs and 8.3 cm?/Vs, respectively,
were obtained. For the Al" -implanted SiC, sheet resistances as low as 1.9 k€/ and hole
mobilties as high as 8.3 cm’/Vs were obtained. These values constitute the best ever
reported electrical characteristics for ion-implanted SiC. Microwave annealing at
temperatures > 1800 °C not only removed the implantation-induced lattice damage but
also the defects introduced during crystal growth.

Microwave annealing of in-situ as well as ion-implantation acceptor doped GaN
was performed in the temperature range of 1200 °C — 1600 °C, for a duration of 5 s, using
different protective caps (AIN, MgO, graphite) for protecting GaN surfaces during
annealing. Pulsed-laser deposited AIN was found to protect the GaN surface effectively,
for microwave annealing at temperatures as high as 1500 °C. The RMS surface
roughness (0.6 nm) of the GaN sample annealed at 1500 °C with an AIN cap is similar to
the value (0.3 nm) measured on the as-grown sample with a decrease in the compensating
deep donor concentration.

Cubic 3C-SiC nanowires were grown by a novel Fe, Ni, Pd, and Pt metal catalyst-
assisted sublimation-sandwich (SS) method. The nanowire growth was performed in a
nitrogen atmosphere, in the temperature range of 1650 °C to 1750 °C for 40 s durations.
The nanowires grow by the vapor-liquid-solid (VLS) mechanism facilitated by metal

catalyst islands. The nanowires are 10 pm to 30 pm long with about 52% of them having



diameters in the range of 15 nm — 150 nm, whereas 14% of the nanowires had diameters

in excess of 300 nm.



1. INTRODUCTION

1.1 Why silicon carbide (SiC) and gallium nitride (GaN)?

A comparison of material properties of several semiconductors, Si, GaAs, SiC and
GaN isprovided in Table l. The SiC and GaN belong to a class of semiconductors known
as wide band-gap semiconductors. Silicon carbide is a wide band gap semiconductor that
possesses high thermal conductivity, high breakdown electric field and also chemical and
mechanical stability. As aconsequence, SiC devices can perform under high-temperature,
high-power, and/or high-radiation conditions in which conventional (i.e. narrow band
gap) semiconductors cannot adequately perform™?. Silicon carbide's ability to function
under extreme conditions is expected to enable significant improvements to a far ranging
variety of applications and systems. SIC power devices have improved high-voltage
switching characteristics compared with conventional semiconductors like Si and GaAs.
Applications of high-power SiC devices range from public electric power distribution and
electric vehicles to more powerful solid state microwave sources for radar and
communications to sensors and controls for cleaner-burning, more fuel-efficient, jet

aircraft and automobile engines™?.

Gallium nitride (GaN) is another important direct, wide-bandgap semiconductor

for high-power solid-state devices, especialy for those intended for microwave frequency



Table I: A comparison of material properties for Si, GaAs, SIC, and GaN [Ref:

http://www.nitronex.com/education/ganHEM T .pdf]

Attribute Si GaAs 4H- SiC GaN
Energy Gap (eV) 1.11 1.43 3.2 3.4
Breakdown E-Field (V/cm) 6.0x10° 6.5x10° 3.5x10° 3.5x10°
Saturation Velocity (cm/s) 1.0x107 2.0x107 2.0x107 2.5x107
Electron Mobility (cm2/V-s) 1350 6000 800 1600*
Thermal Conductivity (W/cmK) 1.5 0.46 3.5 1.7
Heterostructures SiGe/Si AlGaAs/GaAs None AlGaN/GaN
InGaP/GaAs InGaMN/GaN
AlGaAs/InGaAs

* Typical two-dimensional electron gas mobility for AlGaN/GaN heterostructures.




range and also for optoelectronics applications on account of its direct bandgap®. The
GaN based high electron mobility transistors (HEMTSs) have defined state-of-the-art for
output power density and have the potential to replace GaAs based transistors for a
number of high-power applications®. The advantages of GaN over other semiconductors
include: a high breakdown field (3 MV/cm, which is ten times larger than that of GaAs);
a high saturation electron velocity (2.5 x 10’ cm/s), and the capacity of the Il1-nitride
material system to support heterostructure device technology with a high two-
dimensional electron gas (popularly known as 2-DEG) density and high carrier
mobility®°. Another attractive feature of all I1l-nitride semiconductors is the possible
polarization-induced bulk three-dimensional doping without physically introducing
shallow donors®”. The strong piezoelectric effect and a large spontaneous polarization in
the I11-nitride system allows for the incorporation of a large electric field (> 10° V/cm)
and a high sheet charge density (> 10" cm™) without doping. This helps to realize a

variety of high-performance and high-power microwave devices.

1.2 Why is a high processing temperature required for fabricating SIC and GaN
devices?

lon-implantation is an indispensable technique for selective area doping of SIC
and GaN, for fabricating high-power electronic and opto-electronic devices. Other doping
methods such as thermal diffusion are impractical for SIC and GaN technol ogies because
the diffusion co-effecients of the technologically relevant dopantsin SiC and GaN is very

small, even at temperatures in excess of 1800 °C ®’. However, ion-implantation being a



highly energetic process causes damage to the semiconductor crystal lattice; also the as-
implanted dopants do not reside in electrically active substitutional sites in the
semiconductor lattice. Therefore, ion-implantation always needs to be followed by a
high-temperature annealing step for aleviating the implantation-induced lattice damage
and for activating the implanted dopants (i.e. moving them from interstitial to electrically
active substitutional lattice sites).

For SIC, the implanted n-type dopants (nitrogen and phosphorus) require
annealing temperatures in the range of 1500 — 1700 °C, whereas implanted p-type
dopants (aluminum and boron) require temperatures in excess of 1800 °C . The higher
annealing temperatures required for p-type dopants is a result of the higher activation
energy for forming the substitutional Alg species compared to the Ps and N¢ species.
Also, the lattice damage introduced by Al implantation requires higher annealing
temperatures to be removed as opposed to the lattice damage introduced by the P and N
implantation®. For implanted n-type dopants (e.g. Si) in GaN, annealing temperatures in
the range of 1200 °C are required, whereas implanted p-type dopants (Mg and Be) in
GaN require annealing temperatures in excess of 1300 °C for satisfactorily removing
implantation-induced lattice damage, for activating the implanted dopants, and for
recovering the luminescence properties (which are severely degraded by the ion-
implantation)®>°. The higher temperature requirement for activating p-type implants
compared to n-type implants in GaN is primarily due to the much larger formation energy

of the substitutional Mgg, Species compared to the Sig, Species.



1.3 Disadvantages of conventional annealing techniques

Traditionally, post-implantation annealing of SIC is performed in either resistively
or inductively heated, high-temperature ceramic furnaces, since ultra-high temperatures >
1600 °C are required. The furnaces used for annealing SIC have modest ( few °C/s)
heating and cooling rates, which makes annealing SIC a temperatures > 1500 °C
impractical because of an excessive SIC sublimation that one encounters at such high
temperatures when exposed for long durations. The problem has been aleviated
somewhat by capping the SIC surface with a layer of graphite prior to annealing, but still
the maximum annealing temperatures are limited to 1800 °C. Even higher temperatures
are required, especially for activating implanted p-type dopantsin SiC and for healing the
implantation-induced lattice damage.

As for GaN, temperatures > 1300 °C are required for completely activating in-situ
as well asion-implanted p-type dopants. However, when annealed at temperatures > 800
°C, GaN decomposes into Ga droplets due to the nitrogen leaving the surface. Annealing
of GaN is performed in halogen lamp-based RTA systems, due the rapid heating/cooling
rates accorded by these RTA systems. However, due to their quartz hardware, these
halogen lamp based RTA systems are limited to a maximum temperature of 1200 °C,

which is not sufficient to effectively anneal p-type GaN.

1.4 Ultra-fast solid-state microwave annealing
Solid-state microwave heating is advantageous for high-temperature processing of

wide-bandgap semiconductors such as SIC and GaN. The microwave heating system has



a capability to reach sample 