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Abstract

ROLE OF NONLOCAL OPERATORS IN INVERSE AND DEEP LEARNING PROB-
LEMS

Ratna Khatri, PhD

George Mason University, 2020

Dissertation Director: Dr. Harbir Antil

In this work, we will discuss several areas in which we harness the power of nonlocal

operators. In the first part, we discuss an inverse problem from the imaging science do-

main. Here, we propose to use the fractional Laplacian as a regularizer to improve the

reconstruction quality. In addition, inspired by residual neural networks, we develop a

bilevel optimization neural network (BONNet) to learn the optimal regularization param-

eters, like the strength of regularization and the exponent of fractional Laplacian. As our

model problem, we consider tomographic reconstruction and show an improvement in the

reconstruction quality, especially for limited data, via fractional Laplacian regularization.

In the second part, we propose a mathematical framework for a fractional deep neural net-

work (fractional-DNN) for classification problems in supervised machine learning. First we

formulate the deep learning problem as an ordinary differential equation (ODE) constrained

optimization problem, and then we introduce a fractional time derivative based dynamical

system (Neural Network) for the state equation. This architecture allows us to incorporate

history (or memory) into the network by ensuring each layer is connected to the subsequent

layers. The key benefits are a significant improvement to the vanishing gradient issue due

to the memory effect,and better handling of nonsmooth data due to the network’s ability



to approximate non-smooth functions. We test our network on several datasets for classifi-

cation problems. In the third part, we introduce a new class of inverse problems for external

control/source identification problems with fractional partial differential equation (PDE) as

constraints. Our motivation to introduce this new class of inverse problems stems from the

fact that the classical PDE models only allow the source/control to be placed on the bound-

ary or inside the observation domain where the PDE is fulfilled. Our new approach allows

us to place the source/control outside and away from the observation domain.



Chapter 1: Introduction

This work aims to introduce novel, mathematically rigorous, and computationally efficient

nonlocal models for inverse problems arising in various scientific domains as well as classi-

fication problems in deep learning.

An inverse problem deals with using observed data to determine the factors that led it.

In other words, it aims to find the cause from the effect. Such problems appear in numerous

scientific domains like geophysics, compressed sensing, medical imaging etc. where the goal

is to use the measurement data to reconstruct or recover the source of the data. These

problems are often ill-posed because either the quantity of data is not enough, or it is

noise-filled. This makes it quite challenging to uniquely solve these problems.

The other class of problems we have considered in this work are the classification prob-

lems which are now being increasingly handled using supervised machine learning. The goal

in these types of problems is to first learn some parameters, of a prescribed model, that

can classify a given set of data points. Next, the model with the learnt parameters is used

to classify new data. Some examples of these problems are identification of handwritten

texts, recognition and translation of spoken words, anomaly detection etc. Deep learning

models are a subset of machine learning algorithms which are particularly gaining a lot of

attention for such problems. The idea of deep learning is to break the learning (parameter

estimation) into a number of steps. Their success, however, is mostly attributed to empir-

ical evidence. They largely lack rigorous mathematical models which makes it challenging

to fully understand and improve the learning model.

In this work, we have studied nonlocal operators stemming from Partial Differential

Equations (PDE) constrained optimization problems and used them to propose improve-

ments to the existing models of two classes of inverse problems and another class of deep

learning problems.

1



At first, we study an inverse problem from the domain of imaging science. We consider

a generalized bilevel optimization framework for solving inverse problems. To address this

challenge, we introduce a novel fractional Laplacian regularization to improve the solution

quality. This allows for a control on the level of smoothness in the solution. We compare

our proposed regularization with the commonly used total variation regularization. We

emphasize that the key advantage of using fractional Laplacian operator as a regularizer

is that it leads to a linear Euler-Lagrange equation, as opposed to the total variation reg-

ularization which results in a nonlinear and possibly degenerate Euler-Lagrange equation.

Next, with a regularized inverse problem model, comes the challenge of finding the optimal

regularization strength. Inspired by residual neural networks, to learn the optimal strength

of regularization and the exponent of fractional Laplacian, we develop a dedicated bilevel

optimization neural network with a variable depth for a generic regularized inverse problem.

We illustrate how to incorporate various regularizer choices into the proposed network. As

an example, we consider tomographic reconstruction and show an improvement in the re-

construction quality, especially for limited data, via fractional Laplacian regularization. We

successfully learn the regularization strength and the fractional exponent via our proposed

bilevel optimization neural network. We show that the fractional Laplacian regularization

outperforms total variation regularization. This is specially encouraging, and important,

in the case of limited and noisy data. This study is briefly motivated in Section 1.1, and

discussed at length in Chapter 2.

Next, we study supervised learning classification problems in deep learning. We intro-

duce a novel algorithmic framework for a deep neural network (DNN), which in a mathe-

matically rigorous manner, allows us to incorporate history (or memory) into the network

– it ensures all layers are connected to one another. This DNN, called fractional-DNN,

can be viewed as a time-discretization of a fractional in time nonlinear ordinary differential

equation (ODE). The learning problem then is a minimization problem subject to that frac-

tional ODE as constraints. We emphasize that an analogy between the existing DNN and

ODEs, with standard time derivative, is well-known by now. The focus of our work is the

2



fractional-DNN. Using the Lagrangian approach, we provide a derivation of the backward

propagation and the design equations. We test our network on several datasets for classifi-

cation problems. Fractional-DNN offers various advantages over the existing DNN. The key

benefits are a significant improvement to the vanishing gradient issue due to the memory

effect, and better handling of nonsmooth data due to the network’s ability to approximate

non-smooth functions. This study is briefly motivated in Section 1.2, and discussed at

length in Chapter 3.

Lastly, we introduce and study a new class of inverse problems in which the control is

located external to and disjoint from the observation domain. This is motivated by the

article [147] which shows that for nonlocal PDEs associated with the fractional Laplacian,

the classical notion of controllability from the boundary does not make sense and therefore

it must be replaced by a control that is localized outside the open set where the PDE

is solved. Having learned from the above mentioned result, in this work we introduce a

new class of source identification and optimal control problems where the source/control is

located outside the observation domain where the PDE is satisfied. The classical diffusion

models lack this flexibility as they assume that the source/control is located either inside or

on the boundary. This is essentially due to the locality property of the underlying operators.

We use the nonlocality of the fractional operator to create a framework that now allows

placing a source/control outside the observation domain. We consider the Dirichlet, Robin

and Neumann source identification or optimal control problems. These problems require

dealing with the nonlocal normal derivative (that we shall call interaction operator). We

create a functional analytic framework and show well-posedness and derive the first order

optimality conditions for these problems. We introduce a new approach to approximate,

with convergence rate, the Dirichlet problem with nonzero exterior condition. The numerical

examples confirm our theoretical findings and illustrate the practicality of our approach.

This study is briefly motivated in Section 1.3, and discussed at length in Chapter 4.

In the sections below, we give a brief formal introduction to the three models discussed

above. We remark that the notations in the following sections and their corresponding
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chapters are self-contained.

1.1 Fractional Laplacian Regularization and Parameter Es-

timation

Inverse problems such as

min
u
J(u), with J(u) :=

1

2
‖Ku− f‖2,

where K is the forward map, f is the measurement data, and u is the sample feature (e.g.

pixel intensity of an image) that we need to recover, are typically ill-posed. This is due to

limited data and imperfection of experiments (thus noisy data). One process of making this

problem better posed is to enforce some prior knowledge of the solution (e.g. smoothness

or sparsity features) in the form of a regularization, which is an addition of a term to

the objective functional J(u). The challenges associated with solving a regularized inverse

problem, then, are the choice of regularization and the regularization strength.

Recently, in [8] we have introduced a new form of regularization for inverse problems,

i.e., fractional Laplacian (−∆)s with 0 < s < 1, see [6]. The regularized problem is

min
u

J(u) +R(u, µ),

with

R(u, µ) :=
1

2
‖
√
λ(−∆)

s
2u‖2,

where µ = (λ, s). The strength of regularization is given by λ and the order of smoothness

is dictated by s.

We remark that such a regularization enforces a reduced smoothness than, for instance,

H1-regularization, and yields linear equation as the optimality condition. The latter is in
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contrast to the state-of-the-art regularization such as total-variation which leads to nonlin-

ear/degenerate optimality condition [122]. Our numerical results for fractional Laplacian

in [8] illustrate far better results than TV, see [6] for a mathematical justification.

To find µ, we have created a novel Bilevel Optimization Neural Network which shares

some similarity with a deep Residual Neural Network (RNN) [83], but is mathematically

rigorous. BONNet has a supervised learning (training) phase in which it uses existing data

to learn µ. This µ is then used in the inference (testing) phase to reconstruct/recover

solution of the inverse problem for new (previously unseen) data. An added feature of

BONNet is that, within an optimization framework, it easily allows imposing inequality

constrains [139] which is difficult for a standard RNN [107].

1.2 Deep Neural Networks with Memory

Recently, in machine learning DNNs have gained a lot of attention due to their superior

performance in various domains like healthcare, autonomous vehicles etc. DNNs are ma-

chine learning architectures whose overarching goal is to approximate F , an input (Y0) to

output (YN ) map:

Yj = F(Yj−1), j = 1, · · · , N ; N > 1.

In the case of supervised learning problems, the model is approximated using data with a

known classification. The approximated model is then used to make classification prediction

of new data points. A popular example of a DNN from imaging science is the ResNet [83]

which is an RNN. An RNN helps approximate the map F by inducing an identity map

between the layers.

The articles [68,76] show that an RNN is equivalent to a time-discretization of a contin-

uous ODE. Thus in the continuous setting, the learning problem becomes minimizing the
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loss function J at the final time T subject to the ODE constraints:

min
θ=(K,b)

J (θ, (Y (T ), C))

s.t. dtY (t) = σ(K(t)Y (t) + b(t)), t ∈ (0, T ),

Y (0) = Y0.

(1.2.1)

where (Y0, C) pair is the training data and (Ki, bi) pair denotes the unknown weight and

bias. DNNs, including RNNs, suffer from various challenges such as vanishing gradients

[30, 142], inability to approximate non-smooth functions, long training time, etc. A dense

neural network (DenseNet) has been introduced to overcome the first issue, however, it is

only an adhoc method [88]. Rigorous approaches to approximate non-smooth functions,

e.g., absolute value |x| are scarce [89].

In this work, we shall consider a fractional-in-time derivative based ODE constraint for

this setup. We propose to use Caputo fractional time derivative [12],

dγt u =
1

Γ(1− γ)

d

dt

ˆ t

0

u(r)− u(0)

(t− r)γ
dr.

The resulting neural network will be called fractional-DNN ; whose key advantage is the

fact that fractional time derivative allows memory, which in turn allows connectivity of all

network layers. This in turn helps overcome the vanishing gradient issue and it can be

applied to non-smooth functions such as absolute value. In our numerical experiments, we

consider various datasets and show the performance of our proposed network.

1.3 External Optimal Control

There are many real life applications which require that the control element be placed out-

side and away from the effective domain. This is in contrast to what the typical classical
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models permit. Consider the classical diffusion models which only allow the control or

source placement either inside the effective domain Ω or on its boundary ∂Ω. This can be

prohibitive for high consequence applications such as magnetic drug targeting where the

control (magnets) are away from the boundary [13]. Motivated by this fact, in [10], we have

introduced a new class of optimal control problems that allows control/source placement

outside and away from the boundary. We achieve this via the nonlocality of fractional

Laplacian operator, (−∆)s with s ∈ (0, 1). Recall that in Section 1.1, the fractional Lapla-

cian was used as a regularizer which allows control on the smoothness. In this case, the

full force of nonlocality of this operator is used to facilitate exterior control in an optimal

control problem subject to a fractional elliptic equation as constraint.

For illustration, let us consider a simplified geometry in Figure 1.1, in which we have a

source/control (small square) located outside the observation domain Ω (large square) where

the fractional PDE is satisfied. The class of inverse problems that we have introduced is a

X

Y

Z

Figure 1.1: Schematic of Ω where PDE is fulfilled (large square) and control domain (small
square).
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minimization problem subject to a fractional elliptic equation, given by

min
z∈Zad

1

2
‖u− ud‖2L2(Ω) +

ξ

2
‖z‖2L2(RN\Ω)

s.t.


(−∆)su = 0 in Ω

u = z on RN \ Ω,

Here, ud is the data from the observation domain. The state u satisfies the fractional

Poisson equation inside the observation domain, and it is equal to the control z outside the

observation domain. Then, given data/measurements ud ∈ L2(Ω) and 0 < s < 1, our goal

is to invert for the source z located outside Ω.

For this problem, we study the notions of weak and very weak solutions and show

how to approximate them. We discuss several examples, including the schematic shown in

Section 1.3. In particular, we establish that for small values of the fractional exponent s,

we are better able to achieve our aim of locating the external source.
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Chapter 2: Bilevel Optimization, Deep Learning and

Fractional Laplacian Regularization with Applications in

Tomography 1

2.1 Introduction

Inverse problems appear in numerous scientific domains, such as medicine, geophysics, as-

tronomy, computer vision, and imaging etc. However, they are typically ill-posed, due to

the limited data and imperfection of experiments, and require some form of regularization

[66, 77, 87, 99, 113]. Two key challenges are associated with solving a regularized inverse

problem. The first is the choice of regularization. Among the most popular choices, the

total variation regularization [122, 130] is of edge-preserving nature. However, its non-

differentiability makes its usage numerically challenging. Another choice is the Tikhonov

regularization [138], which has a smoothing property. Each choice, however, comes with

its own challenges such as nonlinearity, non-smoothness, over-smoothing etc. The second

associated challenge is to choose the strength of the regularization, usually dictated by the

parameter µ, for which there is no consensus.

Recently, deep learning approaches such as Convolution Neural Networks (CNN) and

Residual Neural Networks have shown remarkable potential in image classification and

reconstruction where, often, the goal is to learn the whole regularizer [78, 153, 154]. These

approaches, however, may not be robust in general [106,109]. Firstly, learning problems are

usually nonconvex, and the local minima may be sensitive to the initialization of parameters

and the choice of optimization method. Secondly, these approaches often do not incorporate

the domain-specific knowledge of the system (e.g., the known solution features) directly

1This work has been published in [8].
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into the network, for instance. In addition, they often lack a mathematical justification

[61,67,117,124,150]. The main contributions of this work are two-folds:

(a) Extend the fractional Laplacian introduced in [6] as a regularizer to the general setting

of a linear inverse problem.

(b) Instead of learning the entire regularizer, we consider a bilevel optimization scheme

to learn the strength of the regularization and the fractional exponent based on the

prior knowledge of the system. More specifically, we set up a bilevel optimization

neural network (BONNet). In this network, the upper level objective measures an

expectation of the reconstruction error over the training data while the lower level

problem measures the regularized data misfit.

There are several existing attempts to take advantage of machine learning to improve the

solution quality. The most common way is to explore neural network as a post-processing

step to refine the solution obtained by base-line methods (e.g., iterative method or filtered

back projection [92]), see also [91,129].

Our approach is closely related to the methodology introduced in [78]. In fact, ours

can be thought as a special case in the case of total variation regularization, where the

authors consider a variational model for reconstruction of MRI data. The authors focus on

a generalized total variation model (Fields of Experts model) and also learn the underlying

parameters. For completeness we also refer to [45] for a discussion on bilevel optimization.

We emphasize that the main novelty in our work is the use of fractional Laplacian [6,42,135]

as a regularizer and learning the fractional exponent with an application to tomographic

reconstruction. The fractional Laplacian introduces nonlocality and tunable regularity.

Another type of parameter search strategy has been proposed in [50] where the authors

consider Tikhonov-based regularizations, and propose a machine learning based strategy to

learn the strength of regularization. Their scheme is based on the generalized singular value

decomposition (GSVD), or its approximation, of the forward operator and the regularization

operator pair. However, computing GSVD can be computationally challenging [79]. Our

approach differs from the existing works as we propose to use the fractional Laplacian as
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a regularizer, which is cheaper to evaluate, and allows us to enforce the prior knowledge of

the sample features, including smoothness and sparsity. The fractional Laplacian has been

successfully applied in image denoising [6, 18], geophysics [149], diffusion maps [7], biology

[41], novel exterior optimal control [10, 19], etc. We also emphasize that our proposed

framework is flexible, for it can easily incorporate inequality constraints (on the optimization

variables), which can be solved by a large number of existing solvers, and directly generalizes

to other types of regularizations such as the p-Laplacian [38,102]. Therefore, our proposed

framework brings machine learning closer to the traditional optimization. Notice that the

machine learning algorithms are still in their infancy when it comes to handling constraints,

see, for instance, [107] and the references therein.

The numerical examples presented in this work are strongly motivated by tomographic

reconstruction, see Subsection 2.2.3. Further realistic application of interest to us is the

MRI reconstruction, considered in [78]. It is also of interest to implement our approach in

open source Python packages such as TensorFlow and PyTorch. These would be considered

as a part of the future work.

The rest of the Chapter is organized as follows. In Section 2.2, we introduce the mathe-

matical formulation of the standard linear inverse problem with regularizers. In particular,

we consider the fractional Laplacian as a regularizer for inverse problems. We show a

comparison of fractional Laplacian and total variation as regularizers for a tomographic

reconstruction problem. Section 2.3 is devoted to our proposed algorithmic framework,

BONNet, to learn the optimal regularization strength, as well as the order of the frac-

tional Laplacian. In Section 2.4, we provide further numerical experiments illustrating the

application of BONNet to the tomographic reconstruction problem.
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2.2 Regularization in Inverse Problems

The regression model for data misfit in inverse problems is given by

min
u
J(u) :=

1

2
‖Ku− f‖2L2(Ω), (2.2.1)

where f : Ω 7→ R is a given function and Ω ⊂ Rn with n ≥ 1 is a bounded domain. Here

K is the forward map, which we assume is a bounded linear operator on L2(Ω) where the

latter denotes the square integrable functions. Moreover, u is the sample feature that we

want to recover, or reconstruct. The ill-posed nature of (2.2.1) makes it almost necessary

to consider regularization in the wake of often noise-filled data; owing to the imperfections

in the data gathering process. Therefore, we consider a regularized regression model to

improve the solution quality. In a more general sense, let Ω ⊂ Rn with n ≥ 1 be a bounded

Lipschitz domain with boundary ∂Ω, f : Ω → R be an L2(Ω) function (given datum),

K : L2(Ω) → L2(Ω) be a bounded linear operator, and X be a Banach space. Then a

standard regularized variational model is given by

min
u∈Xad⊆X

J(u) :=
1

2
‖Ku− f‖2L2(Ω) +R(u, µ), (2.2.2)

where Xad is a closed, convex, nonempty admissible set which is contained in the solution

space X, and u is the solution that we want to reconstruct or recover. Some examples of

the operator K for inverse problems in imaging science are the identity operator (image

denoising problem) [122], convolution operator (image deblurring problem) [85,86], and the

Fourier or wavelet transforms [134]. Therefore, in (2.2.2), the first term prevents the forward

simulation from departing “too far” away from f , thus it helps maintain the fidelity to f .

In the absence of the second term (R(u, µ)), (2.2.2) may be ill-posed [80]. The regularizer

R(u, µ) incorporates prior knowledge of the sample (like smoothness, sparsity, etc.), where

µ balances the data misfit and the penalty enforced by the regularizer. Various choices of
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R(u, µ) have been proposed in the literature. In this work, we focus on the tomographic

reconstruction problem, regularized with the fractional Laplacian, and compare it against

the total variation regularization.

2.2.1 Total Variation Regularization

The penalty term for total variation (TV) regularization is given by

R(u, µ) = λTV(u), (2.2.3)

where µ = λ is a scalar. Here, TV(u) denotes the total variation semi-norm on Ω and

X = BV (Ω) ∩ L2(Ω), where BV (Ω) denotes the set of functions of bounded variations [4].

Formally speaking, TV(u) :=
´

Ω |∇u| and as a result the corresponding Euler-Lagrange

equation for (2.2.2) is: Find u ∈ Xad ⊂ X such that

〈
−λ div

(
∇u
|∇u|

)
+K∗(Ku− f), û− u

〉
X′,X

≥ 0, ∀ û ∈ Xad (2.2.4)

i.e., a nonlinear and possibly degenerate (due to 1/|∇u|) variational inequality which is

challenging to solve. We remark that X ′ is the dual of X and K∗ is the adjoint of K.

Designing solvers for (2.2.4) is still an active area of research [27]. The success of TV(u)

can be attributed to the fact that it prefers to fit shorter curves over the longer ones, thus

avoids fitting noise and enforces sparsity. Additionally, it enforces much weaker regularity

than the H1-regularization, i.e., when R(u, µ) = λ
2

´
Ω |∇u|

2, with µ = λ, and as a result it

is possible to capture desirable sharp transitions in the reconstruction [122].
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2.2.2 Fractional Laplacian Regularization

The fractional Laplacian as a regularization for (2.2.2) is given by,

R(u, µ) =
1

2
‖
√
λ(−∆)

s
2u‖2L2(Ω), (2.2.5)

where µ = (λ, s) is a vector. Moreover, with 0 < s < 1, and (−∆)s denoting the fractional

power of the classical Laplacian defined, for instance, in a spectral sense [6, 135]. We

remark that such a regularization enforces a reduced smoothness than H1-regularization.

The extent of the smoothness is dictated by the fractional power ‘s’. The key advantage of

using this regularization is that the resulting Euler-Lagrange equation for (2.2.5) is: Find

u ∈ Xad 〈
λ (−∆)su+K∗(Ku− f), û− u

〉
≥ 0, ∀ û ∈ Xad (2.2.6)

i.e., a variational equation with a linear operator. Such a problem has a unique solution in

the fractional order Sobolev space X = Hs(Ω) [95]. This regularization has been applied

successfully in image denoising [6] (with K = I, but with u ∈ X, instead of Xad, as a result

the variational inequality (2.2.6) becomes an equality).

2.2.3 Tomographic Reconstruction

Tomographic reconstruction is a noninvasive imaging technique with the goal of recovering

the internal characteristic of a 3D object using a penetrating wave. It has shown revolu-

tionary impact on various fields including physics, chemistry, biology, and astronomy. In a

tomographic scan, a beam of light (e.g., X-ray) is projected onto the object to generate a

2D representation of the internal information along the beam path. By rotating the object,

a series of such 2D projections are collected from different angles of view, collectively known

as a sinogram (measurement data f), which can then be used to recover the internal char-

acteristics (e.g., the attenuation coefficient) of the object [55] (see Figure 2.1). However,

the limited data, due to the discrete nature of the physical experiment and dosage limits,
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Figure 2.1: Geometric sketch of X-ray tomography (middle) which maps the sample (left)
from the (x, y) space to the sinogram (right) on the (τ, θ) space.

makes the reconstruction problem ill-posed, i.e., many local minima exist for the objective

function which is used to describe the discrepancy between the forward model and the mea-

surement data. For illustration purpose, we confine ourselves to reconstruct 2D objects.

The mathematical foundation of tomography is the Radon transform [118], for which K is

defined as,

Ku(τ, θ) :=

ˆ ∞
−∞

ˆ ∞
−∞

u(x, y)δ(τ − x cos θ − y sin θ) dx dy, (2.2.7)

where u : R2 7→ R is compactly supported on a bounded domain Ω ⊂ R2 and δ is the Dirac

mass, τ ∈ [0,∞) and θ ∈ [0, 2π) define the line of the beam path in a restricted domain. In

practice, we can not recover the object at all points in space. Instead, we discretize Ω as

N × N uniform pixels. Given Nθ number of angles and Nτ number of discrete beamlets,

our goal is to recover the piecewise constant approximation (on each pixel) u ∈ RN2
.

Correspondingly, the discrete form of operator K is the matrix K = (ki,j)
NθNτ ,N

2

i,j=1 where

the entries ki,j denote the contribution of jth pixel of u to the ith component of the generated
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data.

2.2.4 Comparison of Fractional Laplacian with TV for Tomographic Re-

construction

To show the benefit of fractional Laplacian, we compare its performance against TV reg-

ularizer on a model problem. For now, we use a well-known, but not necessarily efficient,

criterion to choose λ and a fixed fractional exponent ‘s’ for this preliminary comparison.

The rigorous computation of optimal (λ, s) will be part of a forthcoming discussion.

We choose our test problem as the tomographic reconstruction. First we syntheti-

cally generate the tomographic measurements of the sample u by taking its discrete Radon

transform, which gives us the data f . The sample u and its corresponding sinogram f are

illustrated in Figure 2.1. To get the noisy data, we add 0.1% Gaussian noise to f . More

details on tomographic reconstruction is provided in Section 2.4. Next we show the recon-

structions based on the two regularizers, namely the fractional Laplacian (2.2.5) and the

total variation (2.2.3), in Figure 2.2. The left panel corresponds to reconstructions based

on sinogram f without noise, and the right panel corresponds to reconstructions based on

noisy f . Rows 1 and 2 pertain to total variation and fractional Laplacian regularization,

respectively.

In the absence of noise, the reconstructions based on both regularizers are comparable.

However, noiseless data does not depict a realistic situation [53]. In reality, the actual ex-

perimental data is always noisy due to the imperfections in the data acquisition process.

We note that for noisy data, particularly for the fewer projection case with Nθ = 10 an-

gles, fractional Laplacian regularization gives better reconstructions than the total variation

regularization. This can be specifically seen in Figure 2.2 (right panel, row 2 ) where finer

features are better recovered e.g. the small circle at the bottom. However, to fully explore

the potential of regularization technique, the well-known challenge is to find the appropriate

regularization strength λ to optimally balance the trade-off between data misfit and prior

knowledge enforcement. In the case of fractional Laplacian regularization, the exponent ‘s’
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Figure 2.2: Tomographic reconstructions based on the total variation regularization (row
1 ) and fractional Laplacian (with s = 0.4, row 2 ) for data without noise (left) and with
0.1% noise (right). The fractional Laplacian outperforms the total variation regularization
in recovering finer features as well as in retaining high intensity regions, specially when the
data is noisy and highly under-sampled.

only complicates the parameter choice further.

For the reconstructions in Figure 2.2, given a wide range of values for λ ∈ [1×10−18, 10],

we fix s = 0.4 (motivated by the first author’s prior experience in [6]), and solve the mini-

mization problem (2.2.2) using an inexact truncated-Newton method for bound-constrained

problems [111]. The optimal value of λ is then chosen using a combination of L-curve cri-

terion [81] and the lowest `2-norm of the reconstruction error compared to the ground of

truth. When L-curve criterion fails, we solely rely on the lowest `2-norm. In our experience,

this behavior is true for both TV and fractional Laplacian. As a result, the optimal values

of λ for these tests is found to be in the range [1× 10−10, 1]. This procedure of finding an

optimal λ is labor-intensive, and requires access to the true solution, which is not available

in practice. We remark that, to our experience, L-curve is efficient (not necessarily opti-

mal) only in the case of strongly convex regularization which is definitely not the case with

fractional Laplacian when ‘s’ is also considered as a regularization parameter (non-convex
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with respect to ‘s’). L-curve criterion requires many different trial values of λ, along with

a good guess of the interval to locate the corner of the L-curve. This requires a lot of

human-intervention and fine-tuning. Furthermore, the regularized solution obtained by the

λ predicted by L-curve sometimes fails to converge to the true solution [144].

The next section addresses the issue of finding the optimal regularization parameters by

proposing a deep bilevel optimization neural network.

2.3 Parameter Learning via Bilevel Optimization Neural Net-

work

Parameter search lies at the core of optimization. In particular, we seek parameters corre-

sponding to the strength of regularization, which is a persistent challenge in the scientific

community. To this end, we introduce a learning based approach as adverted in Section 2.1.

We first state a generic bilevel optimization problem,

min
µ∈Mad

φ(µ)

s.t. min
u∈Xad

J(u, µ) :=
1

2
‖Ku− f‖2L2(Ω) +R(u, µ),

(2.3.1)

where Mad is a closed convex and nonempty admissible set for µ.

In Subsection 2.3.1, motivated by [78], we present a machine-learning based approach to

learn the regularization strength for a generic choice of regularizer. One of the key novelty

of this work is to use fractional Laplacian as the regularizer. Notice that the lower level

problem (2.2.2) in (2.3.1) can be solved using the existing techniques.

2.3.1 Bilevel Optimization Neural Network (BONNet)

Recently, deep residual learning has received a tremendous amount of attention in machine

learning for its immense potential to overcome the challenges faced by the traditional deep
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learning architectures, such as training complexity and vanishing gradients. These are

resolved by adding skip connections, which transfer information between the layers [83].

Deep residual learning has enabled remarkable progress in imaging science [83, 91, 152],

biomedical applications [48, 78, 100], satellite imagery, remote sensing [35, 137, 155], etc. In

our work, we use the potential of deep learning to learn the regularization parameter µ

which, for instance, contains the strength λ and the fractional exponent ‘s’. We propose a

dedicated deep bilevel optimization neural network to learn the regularization parameters.

Our goal is to solve (2.3.1) for which we seek our modeling inspiration from [78], and define

φ(µ) as the average mean squared error over m distinct samples, i.e.,

φ(µ) :=
1

2m

m∑
i=1

‖u(i)(µ)− u(i)
true‖2L2(Ω),

where u(µ) solves the lower level problem in (2.3.1), and corresponds to the sample char-

acteristic that we wish to recover or reconstruct. Moreover, utrue, as the name suggests, is

the known true solution.

We emphasize a few novelties of this work: first, our proposed network works directly

on the data space, as opposed to the image space as a post-processing step as in [91, 129].

Second, it generalizes to any bounded linear operator K (the forward map; which defines the

physics of the underlying system) and any R(u, µ) (the regularization term; which allows

us to incorporate the domain-specific knowledge of the solution). Third, we propose the use

of fractional Laplacian as a regularizer with tunable regularity/smoothness. We also show

how to integrate this choice of regularization into the BONNet architecture. We remark

that fractional Laplacian introduces nonlocality in BONNet, which is challenging from both

analytical and computational point of view.

We first define the notion of a generalized regularizer and the projection map that we

will be using to define the BONNet architecture.

• Generalized Regularizer. Let u(µ) be the solution of the inner problem in (2.3.1)
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which depends on µ. Notice that the inner problem in (2.3.1) is same as (2.2.2). Let

T := T (µ, u(µ)) be the action of some linear or nonlinear operator acting on u(µ),

and σ := σ(T ) be a function. Then, we define a generalized regularizer as,

R(u, µ) := R(σ(T )) =
1

2
‖σ(T (µ, u(µ)))‖2L2(Ω). (2.3.2)

Then, for m distinct samples, we can write our inner minimization problem (2.2.2)

with a generalized regularizer as an average over m samples, and µ ∈Mad,

min
u∈Xad

J(u, µ) :=
1

2m

m∑
i=1

[
‖Ku(i) − f (i)‖2L2(Ω) + ‖σ‖2L2(Ω)

]
. (2.3.3)

To solve this inverse problem, we will employ derivative based methods such as pro-

jected gradient descent. The directional derivative of J in a direction h in (2.3.3)

w.r.t. u in its variational form is; for each sample, i = 1, ...,m,

DJ(u(i), µ)[h] =
1

m

[
(K∗(Ku(i) − f (i)), h)L2(Ω) +

(
(∂u(i)T

)∗
(∂Tσ)σ, h)L2(Ω)

]
.

(2.3.4)

• Solver: Projected Gradient Descent Method The choices of Xad and Mad

are problem dependent, for example, for tomographic reconstruction model, we let

Xad := {u ∈ X | u ≥ 0}. Moreover, we set Mad := Λad for total variation and

Mad := Λad × Sad where Λad := {λ ∈ R | λ ≥ ε1 > 0} and Sad := {s ∈ R | 0 < ε2 ≤

s ≤ 1−ε2} for the fractional Laplacian. See Subsection 2.4.1.2 for more details on this

application. In order to satisfy these constraints, we use the projected gradient descent

method with line search [93] to solve our inner and outer minimization problems in

(2.3.1). Then, the projected gradient descent scheme for solving (2.3.3), for a fixed µ,

n iterations (depth of the network), α as the line search parameter (i.e. the learning
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rate), u0 as the initial guess, for the network layers (optimization iteration) j = 1, ..., n,

is given by

u
(i)
j = PXad

(
u

(i)
j−1 − α∇u(i)

j−1

J(u
(i)
j−1, µ)

)
. (2.3.5)

where PXad(·) denotes the projection on the admissible set Xad, see Subsection 2.4.1.2

for more details on the tomographic reconstruction application. Note that, (2.3.5) is

also known as the forward propagation. We are using ∇ to denote the gradient and

D to denote the directional derivative (cf. (2.3.4)). Now substitute the gradient from

(2.3.4) in (2.3.5) to arrive at,

u
(i)
j = PXad

(
u

(i)
j−1 −

α

m

[
K∗(Ku

(i)
j−1 − f

(i)) + (∂
u

(i)
j−1

T )∗(∂Tσ)σ
])
. (2.3.6)

To compute the learning rate α, we use line search for projected gradient descent as

described in [93, pg. 91].

Putting it all together, we now describe our proposed BONNet architecture. Suppose we

have m distinct samples, and n layers in our network. Let u
(i)
true and f (i) be the known

true solution and its corresponding experimental data for the ith sample, with i = 1, ...,m.

Then, we formulate our bilevel supervised learning problem as; for j = 1, ..., n,

min
µ∈Mad

φ(µ) =
1

2m

m∑
i=1

‖u(i)
n (µ)− u(i)

true‖2L2(Ω)

s.t. u
(i)
j = PXad

(
u

(i)
j−1 −

α

m
[K∗(Ku

(i)
j−1 − f

(i)) + (∂
u

(i)
j−1

T )∗(∂Tσ)σ]

)
.

(2.3.7)

Remark 2.3.1 (Relation to Existing Neural Networks). Notice the resemblance be-

tween the inner level problem in (2.3.7) and a residual neural network [37, 83], see also for
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other related works [71,82,84]. Indeed, after rewriting we obtain that

u
(i)
j = PXad

(
Lu(i)

j−1 + b− α

m
(∂
u

(i)
j−1

T )∗(∂Tσ)σ

)

where L :=
(
I − α

mK
∗K
)
, b := α

mK
∗f (i). The first two terms Lu(i)

j−1 and b are available in

a typical neural network. The last term − α
m(∂

u
(i)
j−1

T )∗(∂Tσ), which is not always affine in

u
(i)
j−1, can be thought as an action of an activation function. We further emphasize that the

projection PXad is another ReLU type activation function.

To solve the outer level problem for µ ∈Mad we again use the projected gradient descent

method, as described above, with learning rate β and q iterations,

µl+1 = PMad

(
µl − β∇µlφ(µl)

)
, l = 0, ..., q − 1, (2.3.8)

where PMad
(·) is the projection onto the admissible set. It then remains to evaluate

∇µlφ(µl). For the remainder of the discussion, we shall assume that u
(i)
n is sufficiently

smooth with respect to µ. After applying the chain rule, we obtain that

∇µlφ(µl) =
1

m

m∑
i=1

ˆ
Ω

(u(i)
n − u

(i)
true)

du
(i)
n

dµ

∣∣∣∣∣∣
µ=µl

dΩ. (2.3.9)

As noted earlier, the most challenging part of this network is the computation of sensitivity

of u w.r.t. µ, because at each network layer, u depends on the previous iterate, as well

as µ, as can be seen in the lower level problem in (2.3.7). We evaluate du
(i)
n
dµ

∣∣∣∣
µ=µl

in (2.3.9)

by implicit differentiation. This results in an iterative system of equations that we need to
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solve. For each sample index ‘i’, it is explicitly derived as follows, for j = 1, ..., n

duj
dµ

∣∣∣∣
µ=µl

=
∂uj
∂uj−1

· duj−1

dµ

∣∣∣∣∣
µ=µl

+
∂uj
∂µ
· dµ
dµ

∣∣∣∣
µ=µl

, (2.3.10)

where,

∂uj
∂uj−1

= I − α

m

[
K∗K +

∂

∂uj−1

( ∂T

∂uj−1

)∗( ∂σ
∂T

)∗
σ +

( ∂T

∂uj−1

)∗ ∂

∂uj−1

( ∂σ
∂T

)∗
σ +

( ∂T

∂uj−1

)∗( ∂σ
∂T

)∗( ∂σ
∂T
· ∂T

∂uj−1

)]
,

(2.3.11)

and,

∂uj
∂µ

= − α
m

[( ∂
∂µ

( ∂T

∂uj−1

)∗)( ∂σ
∂T

)∗
σ +

( ∂T

∂uj−1

)∗( ∂
∂µ

( ∂σ
∂T

)∗)
· σ +

( ∂T

∂uj−1

)∗( ∂σ
∂T

)∗
· ∂σ
∂T

∂T

∂µ

]
.

(2.3.12)

Substituting (2.3.11) and (2.3.12) in (2.3.10) yields the sensitivity of u w.r.t. µ. Now that we

have the key architecture of the deep BONNet, we divide our network into a training phase

and a testing phase, as is common in a standard machine learning framework. During the

training phase, we solve the bilevel optimization problem (2.3.7) to learn the regularization

parameters, and during the testing phase we only solve the inner problem in (2.3.7) using

the regularization parameters learned from the training phase. The training phase can be

carried out offline (i.e. in advance), and testing phase can be carried out online (i.e. as the

experimental data becomes available).
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2.3.1.1 General Framework of BONNet

We summarize the training and testing phases of our deep BONNet architecture as follows:

• Training Phase (Algorithm 1). In this phase, we pass in m training samples{
u

(i)
true, f

(i)
}m
i=1

to learn the optimal µ which we denote by µ∗. The depth of the deep

BONNet at the training phase is ‘q sets of n layers’. This phase can be carried out

offline.

Algorithm 1 Training Phase of BONNet

Input:
{
u

(i)
true, f

(i)
}m
i=1

, m training samples

Output: µ∗

1: Initialize u0, du0
dµ and µ0

2: for for l = 0 to q − 1 do
3: for for j = 1 to n do

4: Compute u(i) and du
(i)
n
dµ for all i = 1, ...,m:

u
(i)
j = PXad

(
u

(i)
j−1 −

α

m

[
K∗(Ku

(i)
j−1 − f

(i)) + (∂
u

(i)
j−1

T )∗(∂Tσ)σ
])
.

{Compute α using line search as discussed in Subsection 2.3.1}

du
(i)
j

dµ

∣∣∣∣∣∣
µ=µl

=
∂u

(i)
j

∂u
(i)
j−1

·
du

(i)
j−1

dµ

∣∣∣∣∣∣
µ=µl

+
∂u

(i)
j

∂µ
· dµ
dµ

∣∣∣∣∣∣
µ=µl

{See (2.3.11), (2.3.12) for explicit expressions}
5: end for
6: Compute the gradient of φ(µ):

∇µlφ(µl) =
1

m

m∑
i=1

ˆ
Ω

(u(i)
n − u

(i)
true)

du
(i)
n

dµ

∣∣∣∣∣∣
µ=µl

dΩ,

7: Update µ:
µl+1 = PMad

(
µl − β∇µlφ(µl)

)
.

{Compute β using line search as discussed in Subsection 2.3.1}
8: end for

• Testing Phase (Algorithm 2). In this phase, we use the µ∗ learned from the
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training phase and testing data
{
f

(i)
test

}mtest
i=1

in Algorithm 2. The depth of the network

at the testing phase is ntest layers. This phase can be carried out online, once the

experimental data ftest becomes available.

Algorithm 2 Testing Phase of BONNet

Input: µ∗,
{
f

(i)
test

}mtest
i=1

, mtest testing samples

Output: u
1: Initialize u0

2: for for j = 1 to ntest do
3: Compute u for all i = 1, ...,mtest:

u
(i)
j = PXad

(
u

(i)
j−1 −

α

m

[
K∗(Ku

(i)
j−1 − f

(i)
test) + (∂

u
(i)
j−1

T )∗(∂Tσ)σ
])
.

{Compute α using line search as discussed in Subsection 2.3.1}
4: end for

Remark 2.3.2 (Fixed vs. Variable Depth of BONNet). We remark that instead of

specifying the number of layers when solving (2.3.8) or (2.3.6), one could also, in addition,

specify a stopping criterion appropriate for the solver being used, which is what we have

done in our numerical examples. This is more in the spirit of solving an optimization

problem which converges to a solution. The benefit of doing so is to prevent unnecessary

computations, if the solver stopping criterion is reached earlier. This implies that the layers

of the deep BONNet, in this case, will be variable. In our numerical experiments, we have

used the stopping criterion for projected gradient descent method as mentioned in [93, pg.

91] for both µ and u. Also note that for (2.3.6), the number of layers in the testing phase

(ntest) does not have to be equal to the number of layers in the training phase (n). In

fact, n << ntest prevents the network from overfitting of parameters to the training data,

and helps the model generalize to unseen data [131]. Furthermore, reconstruction at the

testing phase can be progressively improved for structural fidelity, if needed, by using a

larger ntest (or a stricter stopping criterion). This allows for a trade-off between the quality

of reconstruction and computational time.
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2.3.1.2 BONNet Framework for Fractional Laplacian and Total Variation Reg-

ularization

In the general framework of our proposed deep BONNet, for any bounded linear operator

K, any choice of regularizer can be incorporated, as long as it is cast into the generalized

regularizer framework (2.3.2). In Section 2.2, we have proposed the use of fractional Lapla-

cian as a regularizer, and have compared it with total variation regularization. We now

show how to incorporate these regularizers into the deep BONNet, for a general K:

(a) Fractional Laplacian Regularization. Recall the fractional Laplacian regulariza-

tion from (2.2.5),

R(u, µ) =
1

2
‖
√
λ(−∆)

s
2u‖2L2(Ω),

where µ = (λ, s) and s ∈ (0, 1). Then, to define the corresponding generalized regu-

larizer (2.3.2), let T (µ, u(µ)) :=
√
λ(−∆)

s
2u, and the activation function σ(T ) := T .

We omit the superscript ‘i’ to improve readability. Then, after some simplifications,

(2.3.7), (2.3.11), and (2.3.12) become, for j = 1, ..., n,

uj = PXad

(
uj−1 −

α

m

[
K∗(Kuj−1 − f) + λ(−∆)suj−1

])
,

∂uj
∂uj−1

= I − α

m
K∗K − αλ

m
(−∆)s,

and

∂uj
∂λ

= − α
m

(−∆)suj−1, and
∂uj
∂s

= −αλ
m

∂

∂s
((−∆)suj−1) (2.3.13)

which together give us the sensitivity of u w.r.t. µ in (2.3.10). Notice that the second

equation in (2.3.13) requires the sensitivity of fractional Laplacian (−∆)s with respect

to ‘s’. This is a highly delicate object to handle. We shall reserve further details on

this topic until the next section.
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(b) Total Variation Regularization. Recall the total variation regularization

R(u, µ) = λTVξ(u),

where µ = λ, and we are using the “regularized” total variation semi-norm,

TVξ(u) =

ˆ
Ω

√
|∇u|2

`2(Ω)
+ ξ2 ∂Ω. (2.3.14)

with 0 < ξ � 1. We will omit the subscript ξ from TVξ for brevity. Then, to define

the corresponding generalized regularizer (2.3.2), let T (µ, u(µ)) := 2|Ω|−1λTV(u),

and the activation function σ(T ) :=
√
T . Then, after some simplifications, (2.3.7),

(2.3.11), and (2.3.12) become, for j = 1, ..., n,

uj = PXad

(
uj−1 −

α

m

[
K∗(Kuj−1 − f) +

λ
(
− div

( ∇uj−1√
|∇uj−1|2`2(Ω)

+ ξ2

))])
,

∂uj
∂uj−1

= I − α

m
K∗K +

αλ

2m
div

( ∂

∂uj−1

( ∇uj−1√
|∇uj−1|2`2(Ω)

+ ξ2

))

= I − α

m
K∗K +

αλ

2m
div

( ∇√
|∇uj−1|2`2(Ω)

+ ξ2

)

+
αλ

2m
div

(
∇uj−1

∂

∂uj−1

( 1√
|∇uj−1|2`2(Ω)

+ ξ2

))
,

(2.3.15)

and

∂uj
∂λ

= − α

2m

(
− div

( ∇uj−1√
|∇uj−1|2`2(Ω)

+ ξ2

))∗
,
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which together give us the sensitivity of u w.r.t. µ in (2.3.10). Again, we have omitted

the superscript ‘i’ to improve readability.

2.4 Numerical Experiments of Tomographic Reconstruction

In this section, we present several numerical experiments where we apply our proposed

BONNet to a tomographic reconstruction problem. We have introduced tomographic recon-

struction in Subsection 2.2.3. We demonstrate the results of BONNet with two regularizers,

namely, the total variation and the proposed fractional Laplacian.

All the computations are carried out using MATLAB R2015b on a Laptop with Intel

Core i7-8550U Processor, with NVIDIA GeForce MX150 with 2 GB RAM. In view of

Theorem 2.3.2, we run the proposed algorithm until a desired tolerance (tol) is met. At the

testing phase we set tol = 1× 10−5 and at the training phase we set tol = 1× 10−3. Notice

that the former is stricter than latter to avoid overfitting.

For all the total variation experiments we set the regularization parameter ξ in (2.3.14)

as ξ = 1× 10−5. In our numerical examples, we have noticed that the last term in (2.3.15)

and the factor
√

(·) in the second last term does not play a significant role.

The remainder of the section is organized as follows. First in Subsection 2.4.1 we discuss

the implementation details of fractional Laplacian and the admissible sets Xad and Mad.

This is followed by two experiments in Subsection 2.4.2.

2.4.1 Preliminaries

Before we discuss the actual results, we state some preliminary material. As mentioned

in the paragraph following (2.2.7), we discretize Ω as N × N uniform pixels. Then given

Nθ number of angles and Nτ number of discrete beamlets, our goal is to recover u ∈

RN2
. We also recall that the discrete form of operator K is the matrix K = (ki,j)

NθNτ ,N
2

i,j=1 .

All the integrals are computed using uniform quadrature and the differential operators

are discretized using finite differences. We shall discuss the approximation of fractional
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Laplacian next.

2.4.1.1 Numerical Approximation of Fractional Laplacian

In order to approximate the fractional Laplacian, we first discretize the Laplacian (−∆) on

a uniform stencil. We denote the resulting discrete matrix by A. If the eigen-decomposition

of A is

A = VDV−1,

where D = (di,j)
N2,N2

i,j=1 with di,j = 0 if i 6= j, and di,i = ζi denotes the eigenvalues with

columns of V containing the corresponding eigenvectors. Then the fractional power of A is

given by,

As = VG(s)V−1,

where G(s) = (gi,j(s))
N2,N2

i,j=1 is the diagonal matrix with gi,j(s) = 0 if i 6= j and gi,i(s) = ζsi .

From (2.3.13) we also recall that we need to approximate the variation of As with respect

to ‘s’. A straightforward calculation gives

d

ds
As = VH(s)V−1

where H(s) = (hi,j(s))
N2,N2

i,j=1 is the diagonal matrix with hi,j(s) = 0 if i 6= j and hi,i(s) =

ζsi ln(ζi).

We remark that the scalability of numerical approximations of the fractional Laplacian

can be handled using the approaches described in [16] and the references therein.

2.4.1.2 Admissible Sets and Projection

For tomographic reconstruction we let Xad := {u ∈ X | u ≥ 0}. Moreover, we set Mad :=

Λad for total variation and Mad := Λad × Sad where Λad := {λ ∈ R | λ ≥ ε1 > 0} and

Sad := {s ∈ R | 0 < ε2 ≤ s ≤ 1− ε2}. We let ε1 = ε2 = 10−15.
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Furthermore, the projection in (2.3.6) onto the admissible set Xad is given by, for z ∈ X,

PXad(z) := max {0, z} =


z if z ≥ 0,

0 if z < 0.

(2.4.1)

Formally, the “derivative” of this map is given by

d

dt

(
PXad(z)

)
:=


dz

dt
if z ≥ 0,

0 if z < 0.

For a rigorous definition of the generalized derivative of the max function, see [52]. Similar

projection formulas are applicable for projection onto the set Mad.

2.4.1.3 Major Computational Costs

In Algorithm 1, two projected gradient descent schemes are being used to solve the outer

and the inner level optimization problems. For each outer iteration, we solve the inner

optimization problem, until convergence, using the projected gradient descent scheme. The

convergence rate for the projected gradient descent method is well-known, see [93]. We

elaborate on Step 4 of the algorithm. The two expensive components to compute u
(i)
j

are: (i) Evaluation of K∗(Ku
(i)
j−1 − f (i)), which at the discrete level requires 2 matrix

vector multiplications and 1 subtraction; (ii) Evaluation of (∂
u

(i)
j−1

T )∗(∂Tσ)σ. Recall that

for fractional Laplacian regularization, T (µ, u(µ)) :=
√
λ(−∆)

s
2u and σ(T ) = T . Once A

s
2

(similarly As) has been pre-computed (see Subsection 2.4.1.1), the major computational cost

associated with evaluation of (∂
u

(i)
j−1

T )∗(∂Tσ)σ is one matrix vector multiplication Asu.

The remainder of the cost in Step 4 is to evaluate the derivative of u
(i)
j with respect to
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µ. This can be done in an iterative fashion as described in the algorithm.

2.4.2 Experiments

We begin by generating the synthetic data. We create 30 distinct 64×64 samples (i.e. N =

64), which are variations of the Shepp-Logan Phantom (see Figure 2.3 for two representative

samples). We use a convention of choosing Nτ ≥
√

2N beamlets. This choice ensures the

maximum length of the 2D sample (i.e. its diagonal) is fully covered by the beamlets. Thus,

for our experiments, we used Nτ = 93. Then, for a given Nθ we simulate the corresponding

sinogram f based on standard discrete Radon transform [26]. Next we add 0.1% Gaussian

noise to each sinogram, respectively. This gives us our synthetic data, which we divide into

m = 20 training samples and mtest = 10 testing samples.

Figure 2.3: Representative samples of Phantom (utrue) used (left) to generate the synthetic
data (noisy sinogram f) (right) for training (Row 1 ) and testing (Row 2 ).

We remark that in tomography, the number of projection angles, Nθ, has a significance,
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since it determines the amount of X-ray the sample is exposed to. We emphasize that

the most challenging, yet common, cases in tomographic reconstruction are the ones with

smaller Nθ, due to the limits on X-ray exposure. We conduct numerical experiments for

tomographic scans obtained for various Nθ. For each choice, the selected number of angles

are uniformly distributed in the range [0, 180]. Note that, for each choice of Nθ, a separate

set of projection data is generated (for a batch of 30 samples), on which the learning and

reconstructions are performed using our deep BONNet as discussed in Algorithm 1 and

Algorithm 2.

We have undertaken two sets of experiments. In the first experiment, we fix s = 0.4 and

learn λ. In the second experiment, we learn µ = (λ, s).

2.4.2.1 Results of Experiment I: Learning λ, fixed s = 0.4

We now discuss the results of our experiments. In Figure 2.4, we compare the reconstruc-

tions obtained from BONNet with the true solution shown in Figure 2.3. The reconstruc-

tions are based on ‘no regularization’, total variation regularization, and the fractional

Laplacian regularization for data with 0.1% noise. The columns correspond to the number

of projections angles used. We remark again that each choice of Nθ for a batch of training

and testing data, corresponds to a distinct separate problem that we solve, as the dimension-

ality of K depends on Nθ. The left panel corresponds to the reconstruction of the training

data at the nth iterate. Recall that at the training phase, {(u(i)
true, f

(i)
train)}m=20

i=1 are passed

to the deep BONNet Algorithm 1. The λ values mentioned under each reconstruction are

the corresponding optimal λ∗none, λ
∗
TV , and λ∗fracLap that we learn during the training stage.

Notice that λ∗none = 0 corresponds to ‘no regularization’. The right panel corresponds to

the reconstructions at the ntestth layer of the testing phase. Recall that {(λ∗, f (i)
test)}

mtest=10
i=1

are passed to the deep BONNet at this stage in Algorithm 2.

From the reconstructions in Figure 2.4, we observe that for the tomographic reconstruc-

tion problem, first of all, regularization is improving the quality of reconstructions. In the

absence of regularization, the high intensity regions are preserved, but we lose information
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Figure 2.4: Comparison of reconstructions based on various regularizers (rows) and various
number of tomographic projection angles (columns) for data with 0.1% Gaussian noise. The
left and right panels correspond to the solution at the last layer for two of the many distinct
samples used during training and testing phases, respectively. The λ values mentioned are
the optimal values obtained from the deep BONNet training, which are then used for the
reconstructions during the corresponding testing phase.

from regions of low intensity. On the other hand, TV and fractional Laplacian regular-

izations preserve the sample characteristics in the lower intensity regions of the sample.

Fractional Laplacian gives reconstructions which are either better, or comparable to TV

regularization. In addition, it does better at smoothing out the noise, and also in regaining

comparatively more information in regions of low intensity, such as the dim circle on the

lower side of the Phantom, e.g. for Nθ = 10. This is especially important when we have

limited data to reconstruct from. We also recall that the Euler-Lagrange equation corre-

sponding to the fractional Laplacian regularization is linear, and that of TV is non-linear.

We also observe that for any given regularizer choice, the optimal λ∗ obtained for
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Nθ = 10 is similar to the one obtained for a larger Nθ. Thus, to learn the regularization

strength, even limited tomographic scan data suffices, and the same λ∗ could be used for

reconstruction at the testing phase for any amount of available data, which can significantly

save the offline training time.

For the experimental cases mentioned above, we measure the quality of reconstructions

using metrics such as the mean-squared error (MSE) Figure 2.5, Peak signal-to-noise ratio

(PSNR) Figure 2.6, and structural similarity index (SSIM) Figure 2.7, averaged over all the

samples. For MSE, smaller values correspond to better results, and for PSNR and SSIM,

larger values are better. Notice that for each metric, fractional Laplacian regularization

outperforms the total variation regularization.

We remark that the λ values that we learn via deep BONNet are similar to those obtained

by using a combination of the lowest error norm and L-curve; however, the parameter search

via BONNet is automated. The reconstructions obtained via Projected Gradient Descent

are also similar to the ones obtained earlier Figure 2.2 using the inexact truncated-Newton

method for bound-constrained problem [111]. We emphasize that one may use a different

solver during the testing stage once λ∗ is obtained via BONNet training.

2.4.2.2 Results of Experiment II: Learning λ and Fractional Exponent ‘s’

We now train BONNet to learn both the fractional exponent ‘s’ of the fractional Laplacian

and the strength λ. We use the BONNet architecture using fractional Laplacian discussed

in Subsection 2.3.1.2 and use the same training and testing data as described in the previous

example. In Table 2.1 we show comparisons of MSE, SSIM and PSNR for Nθ = {10, 20}

projection angles, respectively, for the reconstructions of the testing data. We compare the

results with the fractional Laplacian case discussed in Subsection 2.4.2.1. In the case of

Nθ = 10, we obtain (λ∗fracLap, s
∗) = (5.04417e-6, 0.5413) and in the case of Nθ = 20, we

obtain (λ∗fracLap, s
∗) = (8.53717e-6, 0.3799). The reconstructions of u with (λ∗fracLap, s

∗)

are visually comparable to the case of fractional Lapalcian in Figure 2.4 and therefore they

have been omitted. We observe that all the error metrics returned by BONNet are either
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Figure 2.5: We compare the mean-squared errors (MSE) for the solution, averaged over 20
training (respectively, 10 testing) samples (left(respectively, right)), against various number
of projection angles for the tomographic reconstruction problem. The solid black, blue and
red lines corresponds to ‘no regularization’, total variation regularization, and fractional
Laplacian regularization, respectively. For each experiment, the λ∗ learned from BONNet
at the training phase is mentioned, which is in turn used for the reconstruction during
training (left) and testing (right) phases. Smaller values of MSE correspond to better
results, and fractional Laplacian outperforms the others. Note that 0.1% Gaussian noise
was added to the data ‘f ’, and s = 0.4 for fractional Laplacian.

comparable, or slightly better, than the ones obtained by BONNet for a fixed ‘s’, discussed

in Subsection 2.4.2.1. The advantage now is that we no longer need to tune the parameters

manually.

2.5 Discussion

In this work, we consider a general regularized regression model for inverse problems. This

model can incorporate the underlying physics (defined by the operator K), in addition to

the prior knowledge of the solution in the regularization term. However, to fully explore

the potential of this generalized model, an optimal choice of the type of regularizer, as well

as the regularization strength, is inevitable.
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Figure 2.6: We compare the peak signal-to-noise ratio (PSNR) for the solution, averaged
over 20 training (respectively, 10 testing) samples (left(respectively, right)), against various
number of projection angles for the tomographic reconstruction problem. The solid black,
blue and red lines corresponds to ‘no regularization’, total variation regularization, and
fractional Laplacian regularization, respectively. For each experiment, the λ∗ learned from
BONNet at the training phase is mentioned, which is in turn used for the reconstruction
during training (left) and testing (right) phases. Larger values of PSNR correspond to
better results, and fractional Laplacian outperforms the others. Note that 0.1% Gaussian
noise was added to the data ‘f ’, and s = 0.4 for fractional Laplacian.

Table 2.1: Comparison of average MSE, SSIM and PSNR for tomographic reconstructions
obtained via BONNet using the fractional Laplacian regularization for two distinct number
of projection angles. In Experiment I, we fix s = 0.4 and learn λ∗ via BONNet, and in
Experiment II we learn the (λ∗, s∗) pair. The results shown are for the testing dataset.
Notice that the search for µ∗ = (λ∗, s∗) in Experiment II is now fully automated and the
results are better or comparable to Experiment I.

Data Testing
Nθ 10 20

Type Experiment I Experiment II Experiment I Experiment II
(λ, s) (9.00678e− 6, 0.4) (5.04417e− 6, 0.5413) (1.65330e− 5, 0.4) (8.53717e− 6, 0.3799)
MSE 9.8099 9.7743 8.9872 8.6961
SSIM 0.7675 0.7738 0.7888 0.7950
PSNR 34.3513 34.3831 35.1123 35.3973
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Figure 2.7: We compare the peak structural similarity (SSIM) for the solution, averaged
over 20 training (respectively, 10 testing) samples (left(respectively, right)), against various
number of projection angles for the tomographic reconstruction problem. The solid black,
blue and red lines corresponds to ‘no regularization’, total variation regularization, and
fractional Laplacian regularization, respectively. For each experiment, the λ∗ learned from
BONNet at the training phase is mentioned, which is in turn used for the reconstruction
during training (left) and testing (right) phases. Larger values of SSIM correspond to better
results, and fractional Laplacian outperforms the others. Note that 0.1% Gaussian noise
was added to the data ‘f ’, and s = 0.4 for fractional Laplacian.

We have used fractional Laplacian as a regularizer on tomographic reconstruction prob-

lems. Previously, this has been used in image denoising. The key benefit of using this

regularization is that the corresponding Euler-Lagrange equation is linear, as opposed to

the nonlinear and possibly degenerate Euler-Lagrange equation for the popular total vari-

ation regularization.

To address the challenge of finding the optimal regularization strength, we introduce a

dedicated deep BONNet architecture to learn the regularization parameters for any choice

of regularizer. We show an analogy of the regularization function to the activation function

in a standard neural network, which provides a theoretical guidance in terms of choosing

an optimal activation function. In addition to the regularization strength λ, BONNet can

also learn the exponent ‘s’ for the fractional Laplacian regularization.
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Next, we demonstrate the benefit of our proposed deep BONNet on the tomographic

reconstruction problem. We first conduct experiments to learn only λ with a fixed ‘s’.

We have observed that fractional Laplacian regularization gives comparable or better re-

constructions compared to the total variation regularization. Especially for the noisy and

limited data (Nθ = 10), fractional Laplacian regularization outperforms the total variation

regularization. In contrast to the standard machine learning architectures with fixed num-

ber of layers, our network favors a variable number of layers (depth) which is dictated by

the convergence to the solution of the optimization problem. Thus, the number of layers

in the network can be different for different samples and different regularizers. We also

demonstrate the capability of our proposed BONNet in terms of learning the optimum

(λ∗fracLap, s
∗) pair for the fractional Laplacian regularizer, and this indicates the flexibility

of our proposed network to learn non-standard parameters.
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Chapter 3: Fractional Deep Neural Network via Constrained

Optimization 1

3.1 Introduction

Deep learning has emerged as a potent area of research and has enabled a remarkable

progress in recent years spanning domains like imaging science [8, 83, 91, 152], biomedical

applications [48, 78, 100], satellite imagery, remote sensing [35, 137, 155], etc. However,

the mathematical foundations of many machine learning architectures are largely lacking

[61, 67, 117,124,150]. The current trend of success is largely due to the empirical evidence.

Due to the lack of mathematical foundation, it becomes challenging to understand the

detailed workings of networks [70,108].

The overarching goal of machine learning algorithms is to learn a function using some

known data. Deep Neural Networks, like Residual Neural Networks, are a popular family

of deep learning architectures which have turned out to be groundbreaking in imaging

science. An introductory example of RNN is the ResNet [83] which has been successful for

classification problems in imaging science. Compared to the classical DNNs, the innovation

of the RNN architecture comes from a simple addition of an identity map between each layer

of the network. This ensures a continued flow of information from one layer to another.

Despite their success, DNNs are prone to various challenges such as vanishing gradients

[30,67,142], difficulty in approximating non-smooth functions, long training time [47], etc.

We remark that recently in [88] the authors have introduced a DenseNet, which is a new

approach to prevent the gradient “wash out” by considering dense blocks, in which each layer

takes into account all the previous layers (or the memory). They proceed by concatenating

1This work is under review [9].
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the outputs of each dense block which is then fed as an input to the next dense block. Clearly

as the number of layers grow, it can become prohibitively expensive for information to

propagate through the network. DenseNet can potentially overcome the vanishing gradient

issue, but it is only an adhoc method [88, 156]. Some other networks that have attempted

to induce multilayer connections are Highway Net [133], AdaNet [54], ResNetPlus [49], etc.

All these models, however, largely lack rigorous mathematical frameworks. Furthermore,

rigorous approaches to learn nonsmooth functions such as the absolute value function |x|

are scarce [89].

There has been a recent push in the scientific community to develop rigorous mathe-

matical models and understanding of the DNNs [61]. One way of doing so is to look at their

architecture as dynamical systems. The articles [31, 76, 104, 124, 127] have established that

a DNN can be regarded as an optimization problem subject to a discrete ordinary differ-

ential equation as constraints. The limiting problem in the continuous setting is an ODE

constrained optimization problem [124,127]. Notice that designing the solution algorithms

at the continuous level can lead to architecture independence, i.e., the number of iterations

remains the same even if the number of layers is increased.

The purpose of this work is to present a novel fractional deep neural network which allows

the network to access historic information of input and gradients across all subsequent layers.

This is facilitated via our proposed use of fractional derivative based ODE as constraints. We

derive the optimality conditions for this network using the Lagrangian approach. Next, we

consider a discretization for this fractional ODE and the resulting DNN is called Fractional-

DNN. We provide the algorithm and show numerical examples on some standard datasets.

For completeness, we also mention the Fractional Physics Informed Neural Networks

(fPINNs) [115] where the authors aim to solve Partial Differential Equations (PDEs), in

particular fractional PDEs. This is an extension of authors’ previous works in [75,119]. The

idea is to minimize the PDE residual in a least-squares formulation and learn the unknown

parameters using a standard feedforward NN. This is completely different than what we are

proposing in this paper. Our goal is to introduce a new NN with memory using the fractional
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derivatives. We formulate the NN problem as an ODE constrained optimal control problem

and use Lagrangian formulation to derive the optimality conditions. We apply our NN to

classification problems but notice that it can also be applied to the problems discussed in

[115,119].

Owing to the fact that fractional time derivatives allow memory effects, in the Fractional-

DNN all the layers are connected to one another, with an appropriate scaling. In addition,

fractional time derivatives can be applied to nonsmooth functions [12]. Thus, we aim to keep

the benefits of standard DNN and the ideology of DenseNet, but remove the bottlenecks.

The learning rate in a neural network is an important hyper-parameter which influences

training [29]. In our numerical experiments, we have observed an improvement in the

learning rate via Fractional-DNN, which enhances the training capability of the network.

Our numerical examples illustrate that, Fractional-DNN can potentially solve the vanishing

gradient issue (due to memory), and handle nonsmooth data.

This Chapter is organized as follows. In Section 3.2 we introduce notations and def-

initions. We introduce our proposed Fractional-DNN in Section 3.3. This is followed by

Section 3.4 where we discuss its numerical approximation. In Section 3.5, we state our al-

gorithm. The numerical examples given in Section 3.6 show the working and improvements

due to the proposed ideas on three different datasets.

3.2 Preliminaries

The purpose of this section is to introduce some notations and definitions that we will use

throughout this Chapter. We begin with Table 3.1 where we state the standard notations.

In Subsection 3.2.1 we describe the well-known softmax loss function. Subsection 3.2.2 is

dedicated to the Caputo fractional time derivative.
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Table 3.1: Table of Notations.

Symbol Description

n ∈ N Number of distinct samples
nf ∈ N Number of sample features
nc ∈ N Number of classes
N ∈ N Number of network layers (i.e. network depth)

Y ∈ Rnf×n Y = {y(i)}ni=1 is the collective feature set of n samples.

Cobs ∈ Rnc×n Cobs = {c(i)}ni=1 are the true class labels of the input data
W ∈ Rnc×nf Weights
K ∈ Rnf × nf Linear operator (distinct for each layer)

b ∈ R Bias (distinct for each layer)
P ∈ Rnf×n Lagrange multiplier
enc ∈ Rnc A vector of ones
τ ∈ R Time step-length
σ(·) Activation function, acting pointwise
γ Order of fractional time derivative

(·)′ Derivative w.r.t. the argument
tr(·) Trace operator
(·)ᵀ Matrix transpose
� Point-wise multiplication
m1 Max count for randomly selecting a mini-batch in training
m2 Max iteration count for gradient-based optimization solver

αtrain, αtest Percentage of training and testing data correctly identified

3.2.1 Cross Entropy with Softmax Function

Given collective feature matrix Y with true labels Cobs and the unknown weights W , the

cross entropy loss function given by

E(W,Y,Cobs) = − 1

n
tr(Cᵀ

obs log(S(W,Y ))) (3.2.1)

measures the discrepancy between the true labels Cobs and the predicted labels log(S(W,Y )).

Here,

S(W,Y ) := exp(WY ) diag

(
1

eᵀnc exp(WY )

)
(3.2.2)

42



is the softmax classifier function, which gives normalized probabilities of samples belonging

to the classes.

3.2.2 Caputo Fractional Derivative

In this section, we define the notion of Caputo fractional derivative and refer [12] and

references therein for the following definitions.

Definition 3.2.1 (Left Caputo Fractional Derivative). For a fixed real number 0 < γ < 1,

and an absolutely continuous function u : [0, T ] → R, the left Caputo fractional derivative

is defined by:

dγt u(t) =
1

Γ(1− γ)

d

dt

ˆ t

0

u(r)− u(0)

(t− r)γ
dr, (3.2.3)

where Γ(·) is the Euler-Gamma function.

Definition 3.2.2 (Right Caputo Fractional Derivative). For a fixed real number 0 < γ < 1,

and an absolutely continuous function u : [0, T ]→ R, the right Caputo fractional derivative

is defined by:

dγT−tu(t) =
−1

Γ(1− γ)

d

dt

ˆ T

t

u(r)− u(T )

(r − t)γ
dr. (3.2.4)

Notice that, dγt u(t) and dγT−tu(t) in definitions (3.2.3) and (3.2.4) exist almost every-

where on [0, T ], [94, Theorem 2.1], and are represented, respectively, by

dγt u(t) =
1

Γ(1− γ)

ˆ t

0

u′(r)

(t− r)γ
dr, and dγT−tu(t) =

−1

Γ(1− γ)

ˆ T

t

u′(r)

(r − t)γ
dr.

Moreover, if γ = 1 and u ∈ C1([0, T ]), then one can show that dγt u(t) = u′(t) = dγT−tu(t).

We note that the fractional derivatives in (3.2.3) and (3.2.4) are nonlocal operators. Indeed,

the derivative of u at a point t depends on all the past and future events, respectively. This

behavior is different than the classical case of γ = 1.
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The left and right Caputo fractional derivatives are linked by the fractional integration

by parts formula, [15, Lemma 3], which will be stated next. For γ ∈ (0, 1), let

Lγ :=
{
f ∈ C([0, T ]) : dγt f ∈ L2(0, T )

}
, Rγ :=

{
f ∈ C([0, T ]) : dγT−tf ∈ L

2(0, T )
}
.

Lemma 3.2.3 (Fractional Integration-by-Parts). For f ∈ Lγ and g ∈ Rγ , the following

integration-by-parts formula holds:

ˆ T

0
dγt f(t)g(t) dt =

ˆ T

0
f(t)dγT−tg(t) dt+ g(T )(I1−γ

t f)(T )− f(0)(I1−γ
T−tg)(0), (3.2.5)

where I1−γ
t w(t) and I1−γ

T−tw(t) are the left and right Riemann-Liouville fractional integrals

of order γ and are given by

I1−γ
t w(t) :=

1

Γ(1− γ)

ˆ t

0

w(r)

(t− r)γ
dr and I1−γ

T−tw(t) :=
1

Γ(1− γ)

ˆ T

t

w(r)

(r − t)γ
dr.

3.3 Continuous Fractional Deep Neural Network

After the above preparations, in this section, we shall introduce the Fractional-DNN. First

we briefly describe the classical RNN, and then extend it to develop the Fractional-DNN.

We formulate our problem as a constrained optimization problem. Subsequently, we shall

use the Lagrangian approach to derive the optimality conditions.

3.3.1 Classical RNN

Our goal is to approximate a map F . A classical RNN helps approximate F , for a known

set of inputs and outputs. To construct an RNN, for each layer j, we first consider a

linear-transformation of Yj−1 as,

Gj−1(Yj−1) = Kj−1Yj−1 + bj−1,
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where the pair (Kj , bj) denotes an unknown linear operator and bias at the jth layer. When

N > 1 then the network is considered “deep”. Next we introduce non linearity using a

nonlinear activation function σ (e.g. ReLU or tanh). The resulting RNN is,

Yj = Yj−1 + τ(σ ◦ Gj−1)(Yj−1), j = 1, · · · , N ; N > 1, (3.3.1)

where τ > 0 is the time-step. Finally, the RNN approximation of F is given by,

Fθ(·) =
((
I + τ(σ ◦ GN−1)

)
◦
(
I + τ(σ ◦ GN−2)

)
◦ · · · ◦

(
I + τ(σ ◦ G0)

))
(·),

with θ = (Kj , bj) as the unknown parameters. In other words, the problem of approximating

F using classical RNN, intrinsically, is a problem of learning (Kj , bj).

Hence, for given datum (Y0, C), the learning problem then reduces to minimizing a loss

function J (θ, (YN , C)), subject to constraint (3.3.1), i.e.,

min
θ
J (θ, (YN , C))

s.t. Yj = Yj−1 + τ(σ ◦ Gj−1)(Yj−1), j = 1, . . . , N.

(3.3.2)

Notice that the system (3.3.1) is the forward-Euler discretization of the following continuous

in time ODE, see [68,83,124],

dtY (t) = σ(K(t)Y (t) + b(t)), t ∈ (0, T ),

Y (0) = Y0.

(3.3.3)

The continuous learning problem then requires minimizing the loss function J at the final
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time T subject to the ODE constraints (3.3.3):

min
θ=(K,b)

J (θ, (Y (T ), C))

s.t. (3.3.3)

(3.3.4)

Notice that designing algorithms for the continuous in time problem (3.3.4) instead of

the discrete in time problem (3.3.2) has several key advantages. In particular, it will lead

to algorithms which are independent of the neural network architecture, i.e., independent

of the number of layers. In addition, the approach of (3.3.4) can help us determine the

stability of the neural network (3.3.2), see [31,76]. Moreover, for the neural network (3.3.2),

it has been noted that as the information about the input or gradient passes through many

layers, it can vanish and “wash out”, or grow and “explode” exponentially [30]. There

have been adhoc attempts to address these concerns, see for instance [54, 88, 133], but a

satisfactory mathematical explanation and model does not currently exist. One of the main

goals of this work is to introduce such a model.

Notice that (3.3.3), and its discrete version (3.3.1), incorporates many algorithmic pro-

cesses such as linear solvers, preconditioners, nonlinear solvers, optimization solvers, etc.

Furthermore, there are well-established numerical algorithms that re-use information from

previous iterations to accelerate convergence, e.g. the BFGS method [114], Anderson accel-

eration [5], and variance reduction methods [121]. These methods account for the history

Yj , Yj−1, Yj−2, . . . , Y0, while choosing Yj+1. Motivated by these observations we introduce

versions of (3.3.1) and (3.3.3) that can account for history (or memory) effects in a rigorous

mathematical fashion.

3.3.2 Continuous Fractional-DNN

The fractional time derivative in (3.2.3) has a distinct ability to allow a memory effect,

for instance in materials with hereditary properties [40]. Fractional time derivative can
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be derived by using the anomalous random walks where the walker experiences delays

between jumps [110]. In contrast, the standard time derivative naturally arises in the

case of classical random walks. We use the idea of fractional time derivative to enrich

the constraint optimization problem (3.3.4), and subsequently (3.3.2), by replacing the

standard time derivative dt by the fractional time derivative dγt of order γ ∈ (0, 1). Recall

that for γ = 1, we obtain the classical derivative dt. Our new continuous in time model,

the Fractional-DNN, is then given by (cf. (3.3.3)),

dγt Y (t) = Fθ(Y (t), t, θ(t)), t ∈ (0, T ),

Y (0) = Y0

(3.3.5)

where dγt is the Caputo fractional derivative as defined in (3.2.3). The discrete formulation

of Fractional-DNN will be discussed in the subsequent section.

The main reason for using the Caputo fractional time derivative over its other coun-

terparts such as the Riemann Liouville fractional derivative is the fact that the Caputo

derivative of a constant function is zero and one can impose the initial conditions Y (0) = Y0

in a classical manner [125]. Note that dγt is a nonlocal operator in a sense that in order to

evaluate the fractional derivative of Y at a point t, we need the cumulative information of

Y over the entire sub-interval [0, t). This is how the Fractional-DNN enables connectivity

across all antecedent layers (hence the memory effect). As we shall illustrate with the help

of a numerical example in Section 3.6, this feature can help overcome the vanishing gradient

issue, as the cumulative effect of the gradient of the precedent layers is less likely to be zero.

Remark 3.3.1 (Caputo Derivative of Nonsmooth Functions). The Caputo fractional deriva-

tive (3.2.3) can be applied to non-smooth functions. Consider, e.g. Y (t) := |t|. Notice that

Y (t) is not differentiable at t = 0. However, (3.2.3) yields, dγt Y (t) = 1
Γ(2−γ) t

1−γ . Since

γ ∈ (0, 1), therefore dγt Y (t) at t = 0 is zero.

47



Owing to Theorem 3.3.1 we can better account for features, Y , which are non-smooth,

as a result of which the smoothness requirement on the unknown parameters θ can be

weakened. This, in essence, can help with the exploding gradient issue in DNNs.

The generic learning problem with Fractional-DNN as constraints can be expressed as,

min
θ=(K,b)

J (θ, (Y (T ), C))

s.t. (3.3.5)

(3.3.6)

Note that the choice of J depends on the type of learning problem. We will next consider

a specific structure of J given by the cross entropy loss functional, defined in (3.2.1).

3.3.3 Continuous Fractional-DNN and Cross Entropy Loss Functional

Supervised learning problems are a broad class of machine learning problems which use

labeled data. These problems are further divided into two types, namely regression prob-

lems and classification problems. The specific type of the problem dictates the choice of

J in (3.3.6). Regression problems often occur in physics informed models, e.g. sample re-

construction inverse problems [8, 78]. On the other hand, classification problems occur, for

instance, in computer vision [51, 126]. In both the cases, a neural network is used to learn

the unknown parameters. In the discussion below we shall focus on classification problems,

however, the entire discussion directly applies to regression type problems.

Recall that the cross entropy loss functional E, defined in (3.2.1), measures the discrep-

ancy between the actual and the predicated classes. Replacing, J in (3.3.6) by E together
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with a regularization term R(W,K(t), b(t)), we arrive at

min
W,K,b

E(W,Y (T ), Cobs) +R(W,K(t), b(t))

s.t.


dγt Y (t) = σ(K(t)Y (t) + b(t)), t ∈ (0, T ),

Y (0) = Y0 .

(3.3.7)

Note that, in this case, the unknown parameter θ := (W,K, b), where K and b are, respec-

tively, the linear operator and bias for each layer, and the weights W are a feature-to-class

map. Furthermore, σ is a nonlinear activation function and (Y0, Cobs) is the given data,

with Cobs as the true labels of Y0.

To solve (3.3.7), we rewrite this problem as an unconstrained optimization problem via

the Lagrangian functional and derive the optimality conditions. Let P denote the Lagrange

multiplier, then the Lagrangian functional is given by,

L(Y,W,K, b;P ) := E(W,Y (T ), Cobs)+R(W,K(t), b(t))+〈dγt Y (t)−σ(K(t)Y (t)+b(t)), P (t)〉,

where, 〈·, ·〉 :=
´ T

0 〈·, ·〉F dt is the L2-inner product, and 〈·, ·〉F is the Frobenius inner product.

Using the fractional integration-by-parts from (3.2.5), we obtain

L(Y,W,K, b;P ) = E(W,Y (T ), Cobs) +R(W,K(t), b(t))− 〈σ(K(t)Y (t) + b(t)), P (t)〉

+ 〈Y (t), dγT−tP (t)〉+ 〈(I1−γ
t Y )(T ), P (T )〉F − 〈Y0, (I

1−γ
T−tP )(0)〉F .

(3.3.8)

Let (Y ,W,K, b;P ) denote a stationary point, then the first order necessary optimality

conditions are given by the following set of state, adjoint and design equations:

(A) State Equation. The gradient of L with respect to P at (Y ,W,K, b;P ) yields the
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state equation ∇PL(Y ,W,K, b;P ) = 0, equivalently,

dγt Y (t) = σ(K(t)Y (t) + b(t)), t ∈ (0, T ),

Y (0) = Y0

(3.3.9)

where dγt denotes the left Caputo fractional derivative (3.2.3). In (3.3.9), for the

state variable Y , we solve forward in time, therefore we call (3.3.9) as the forward

propagation.

(B) Adjoint Equation. Next, the gradient of L with respect to Y at (Y ,W,K, b;P )

yields the adjoint equation ∇Y L(Y ,W,K, b;P ) = 0, equivalently,

dγT−tP (t) = (σ′(K(t)Y (t) + b(t)) K(t))ᵀ P (t)

= K(t)ᵀ
(
P (t)� σ′

(
K(t)Y (t) + b(t)

))
, t ∈ (0, T ),

P (T ) = − 1

n
W

ᵀ
(−Cobs + S(W,Y (T )))

(3.3.10)

where dγT−t denotes the right Caputo fractional derivative (3.2.4) and S is the soft-

max function defined in (3.2.2). Notice that the adjoint variable P in (3.3.10), with

its terminal condition, is obtained by marching backward in time. As a result, the

equation (3.3.10) is called backward propagation.

(C) Design Equations. Finally, equating ∇WL(Y ,W,K, b;P ), ∇KL(Y ,W,K, b;P ),

and ∇bL(Y ,W,K, b;P ) to zero, respectively, yields the design equations (with

(W,K, b) as the design variables),
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∇WL(Y ,W,K, b;P ) =
1

n

(
− Cobs + S(W,Y (T ))

) (
Y (T )

)ᵀ
+∇WR(W,K(T ), b(T )) = 0,

∇KL(Y ,W,K, b;P ) =− Y (t)
(
P (t)� σ′(K(t)Y (t) + b(t))

)ᵀ
(3.3.11)

+∇KR(W,K(t), b(t)) = 0,

∇bL(Y ,W,K, b;P ) =− 〈σ′(K(t)Y (t) + b(t)), P (t)〉F

+∇bR(W,K(t), b(t)) = 0,

for almost every t ∈ (0, T ).

In view of (A)-(C), we can use a gradient based solver to find a stationary point to

(3.3.7).

Remark 3.3.2. (Parametric Kernel K(ψ(t))). Throughout our discussion, we have as-

sumed K(t) to be some unknown linear operator. We remark that a structure could also

be prescribed to K(t), parameterized by a stencil ψ. Then, the kernel is K(ψ(t)), and

the design variables now are θ = (W,ψ, b). Consequently, K(ψ(t)) can be thought of as a

differential operator on the feature space, e.g. discrete Laplacian with a five point stencil.

It then remains to compute the sensitivity of the Lagrangian functional w.r.t. ψ to get the

design equation. Note that this approach can further reduce the number of unknowns.

Notice that so far the entire discussion has been at the continuous level and it has been

independent of the number of network layers. Thus, it is expected that if we discretize (in

time) the above optimality system, then the resulting gradient based solver is independent

of the number of layers. We shall discretize the above optimality system in the next section.
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3.4 Discrete Fractional Deep Neural Network

We shall adopt the optimize-then-discretize approach. Recall that the first order stationarity

conditions for the continuous problem (3.3.7) are given in (3.3.9), (3.3.10), and (3.3.11). In

order to discretize this system of equations, we shall first discuss the approximation of

Caputo fractional derivative.

3.4.1 Approximation of Caputo Derivative

There exist various approaches to discretize the fractional Caputo derivative. We will use

the L1-scheme [15, 136] to discretize the left and right Caputo fractional derivative dγt u(t)

and dγT−tu(t) given in (3.2.3) and (3.2.4), respectively. Exploration of other discretizations

would be part of our future work.

Consider the following fractional differential equation involving the left Caputo frac-

tional derivative, for 0 < γ < 1,

dγt u(t) = f(u(t)), u(0) = u0. (3.4.1)

We begin by discretizing the time interval [0, T ] uniformly with step size τ ,

0 = t0 < t1 < t2 < · · · < tj+1 < · · · < tN = T, where tj = jτ.

Then using the L1-scheme, the discretization of (3.4.1) is given by

u(tj+1) = u(tj)−
j−1∑
k=0

aj−k
(
u(tk+1)− u(tk)

)
+ τγΓ(2− γ)f(u(tj)). j = 0, ..., N − 1 ,

(3.4.2)

where coefficients ak are given by,

aj−k = (j + 1− k)1−γ − (j − k)1−γ . (3.4.3)
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Next, let us consider the discretization of the fractional differential equation involving

the right Caputo fractional operator, for 0 < γ < 1,

dγT−tu(t) = f(u(t)), u(T ) = uT . (3.4.4)

Again using L1-scheme we get the following discretization of (3.4.4):

u(tj−1) = u(tj) +
N−1∑
k=j

ak−j
(
u(tk+1)− u(tk)

)
− τγΓ(2− γ)f(u(tj)). j = N, ..., 1. (3.4.5)

The example below illustrates a numerical implementation of the L1-scheme (3.4.2).

Example 3.4.1. Consider the linear differential equation

d 0.5
t u(t) = −4u(t), u(0) = 0.5. (3.4.6)

Then, the solution to (3.4.6) is given by, see [125, Section 42], also [116, Section 1.2]

u(t) = 0.5 E0.5(−4t0.5), (3.4.7)

where Eα, with α > 0, is the Mittag Leffler function defined by

Eα(z) = Eα,1(z) =
∞∑
k=0

zk

Γ(αk + 1)
.

Figure 3.1 depicts the true solution and the numerical solutions using discretization (3.4.2)

for the above example with uniform step size τ = 0.005 and final time, T = 1.

3.4.2 Discrete Optimality Conditions

Next, we shall discretize the optimality conditions given in (3.3.9) – (3.3.11). Notice that,

each time-step corresponds to one layer of the neural network. It is necessary to do one
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Figure 3.1: Comparison of the exact solution of (3.4.6) (blue) with an L1 scheme approxi-
mation (red).

forward propagation (state solve) and one backward propagation (adjoint solve) to derive

an expression of the gradient with respect to the design variables.

(A) Discrete State Equation. We use the L1 scheme discussed in (3.4.2) to discretize

the state equation (3.3.9) and arrive at

Y (tj) = Y (tj−1)−
j−1∑
k=1

aj−k
(
Y (tk)− Y (tk−1)

)
+ τγΓ(2− γ)σ(K(tj−1)Y (tj−1) + b(tj−1)), j = 1, ..., N

Y (t0) = Y0

(3.4.8)

(B) Discrete Adjoint Equation. We use the L1 scheme discussed in (3.4.5) to discretize
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the adjoint equation (3.3.10) and arrive at

P (tj) = P (tj+1) +

N−1∑
k=j+1

ak−j−1

(
P (tk+1)− P (tk)

)
− j = N − 1, ..., 0

τγΓ(2− γ)

[
−K(tj)

ᵀ
(
P (tj+1)� σ′

(
K(tj)Y (tj+1) + b(tj)

))]
,

P (tN ) = − 1

n
W

ᵀ
(−Cobs + S(W,Y (tN )))

(3.4.9)

(C) Discrete Gradient w.r.t. Design Variables. For j = 0, . . . , N − 1, the approxi-

mation of the gradient (3.3.11) with respect to the design variables is given by,

∇WL(Y ,W,K, b;P ) =
1

n

(
− Cobs + S(W,Y (tN ))

) (
Y (tN )

)ᵀ
+∇WR(W,K(tN ), b(tN ))

∇KL(Y ,W,K, b;P ) =− Y (tj)
(
P (tj+1)� σ′(K(tj)Y (tj) + b(tj))

)ᵀ
+∇KR(W,K(tj), b(tj))

∇bL(Y ,W,K, b;P ) =− 〈σ′(K(tj)Y (tj) + b(tj)), P (tj+1)〉F

+∇bR(W,K(tj), b(tj)) .

(3.4.10)

Whence, we shall create a gradient based method to solve the optimality condition

(3.4.8)-(3.4.10). We reiterate that each computation of the gradient in (3.4.10), requires

one state and one adjoint solve.
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3.5 Fractional-DNN Algorithm

Fractional-DNN is a supervised learning architecture, i.e. it comprises of a training phase

and a testing phase. During the training phase, labeled data is passed into the network and

the unknown parameters are learnt. Those parameters then define the trained Fractional-

DNN model for that type of data. Next, a testing dataset, which comprises of data previ-

ously unseen by the network, is passed to the trained net, and a prediction of classification

is obtained. This stage is known as the testing phase. Here the true classification is not

shown to the network when a prediction is being made, but can later be used to compare

the network efficiency, as we have done in our numerics. The three important components

of the algorithmic structure are forward propagation, backward propagation, and gradient

update. The forward and backward propagation structures are given in Algorithms 3 and 4.

The gradient update is accomplished in the training phase, discussed in Subsection 3.5.1.

Lastly, the testing phase of the algorithm is discussed in Subsection 3.5.2.

Algorithm 3 Forward Propagation in Factional-DNN (L1-scheme)

Input: (Y0, Cobs) ,W, {Kj , bj}N−1
j=0 , N, τ, γ

Output: {Yj}Nj=1, PN ,

1: Let z0 = 0.
2: for j = 1, · · · , N do
3: for k = 1, · · · , j − 1 do
4: Compute aj−k: {Use (3.4.3)}
5: Update zk: zk = zk−1 + aj−k (Yk − Yk−1)
6: end for
7: Update Yj : Yj = Yj−1 − zj−1 + (τ)γ Γ(2− γ) σ(Kj−1Yj−1 + bj−1)
8: end for
9: Compute PN : PN = −(n)−1 W ᵀ(−Cobs + S(W,YN ))

3.5.1 Training Phase

The training phase of Fractional-DNN is shown in Algorithm 5.

3.5.2 Testing Phase

The testing phase of Fractional-DNN is shown in Algorithm 6.
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Algorithm 4 Backward Propagation in Factional-DNN (L1-scheme)

Input: {Yj}Nj=1, PN , {Kj , bj}N−1
j=0 , N, τ, γ

Output: {Pj}N−1
j=0

1: Let x0 = 0.
2: for j = N − 1, · · · , 0 do
3: for k = j + 1, · · · , N − 1 do
4: Compute ak−j−1: {Use (3.4.3)}
5: Compute xk: xk = xk−1 + ak−j−1 (Pk+1 − Pk)
6: end for
7: Update Pj : Pj = Pj+1 + xN−1 − (τ)γ Γ(2− γ) [−Kᵀ

j (Pj+1 � σ′(KjYj+1 + bj))]

8: end for

Algorithm 5 Training Phase of Factional-DNN

Input: (Y0, Cobs) , N, τ, γ, m1,m2

Output: W, {Kj , bj}N−1
j=0 , Ctrain, αtrain,

1: Initialize W, {Kj , bj}N−1
j=0

2: for i = 1, · · · ,m1 do

3: Let (Ŷ0, Ĉobs) ⊂ (Y0, Cobs) {Randomly select a mini-batch and apply BN using (3.6.1)}

4: FORWARD PROPAGATION {Use Algorithm 3 to get {Ŷj}Nj=1, PN}.
5: BACKWARD PROPAGATION {Use Algorithm 4 to get {Pj}N−1

j=0 }.
6: GRADIENT COMPUTATION
7: Compute ∇WL, {∇KL}, {∇bL}

∇WL = (n)−1
(
−Cobs + S(W, ŶN )

)
(ŶN )ᵀ +∇WR(W,Kj , bj)

∇KL = − Ŷj
(
Pj+1 � σ′(Kj Ŷj + bj)

)ᵀ
+∇KR(W,Kj , bj)

∇bL = − tr
(
σ′(Kj Ŷj + bj) Pj+1

)
+∇bR(W,Kj , bj)

8: Pass ∇WL, ∇KL, ∇bL to gradient based solver with m2 max iterations to update

W, {Kj , bj}N−1
j=0 .

9: Compute Ĉtrain = S(W, ŶN )

10: Compare Ĉtrain to Ĉobs to compute αtrain
11: end for
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Algorithm 6 Testing Phase of Fractional-DNN

Input:
(
Y test

0 , Cobs,test
)
, W, {Kj , bj}N−1

j=0 , N, τ, γ

Output: Ctest, αtest
1: Let Y0 = Y test

0 {Apply BN using (3.6.1)}
2: FORWARD PROPAGATION {Use Algorithm 3 to get {Yj}Nj=1}.
3: Compute Ctest = S(W,YN )
4: Compare Ctest to Cobs,test to compute αtest

3.6 Numerical Experiments

In this section, we present several numerical experiments where we use our proposed

Fractional-DNN algorithm from Section 3.5 to solve classification problems for two dif-

ferent datasets. We recall that the goal of classification problems, as the name suggests,

is to classify objects into pre-defined class labels. First we prepare a training dataset and

along-with its classification, pass it to the training phase of Fractional-DNN (Algorithm 5).

This phase yields the optimal set of parameters learned from the training dataset. They

are then used to classify new data points from the testing dataset during the testing phase

of Factional-DNN (Algorithm 6). We compare the results of our Fractional-DNN with the

classical RNN (3.3.4).

The rest of this section is organized as follows: First, we discuss some data preprocessing

and implementation details. Then we describe the datasets being used, and finally we

present the experimental results.

3.6.1 Implementation Details

(i) Batch Normalization. During the training phase, we use the batch normalization

(BN) technique [90]. At each iteration we randomly select a mini-batch, which com-

prises of 50% of the training data. We then normalize the mini-batch Ŷ0 ⊂ Y0, to

have a zero mean and a standard deviation of one, i.e.

Ŷ0 =
Ŷ0 − µ(Ŷ0)

s(Ŷ0)
, (3.6.1)
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where µ is the mean and s is the standard deviation of the mini-batch. The normalized

mini-batch is then used to train the network in that iteration. At the next iteration,

a new mini-batch is randomly selected. This process is repeated m2 times. Batch

normalization prevents gradient blow-up, helps speed up the learning and reduces the

variation in parameters being learned.

Since the design variables are learnt on training data processed with BN, we also

process the testing data with BN, in which case the mini-batch is the whole testing

data.

(ii) Activation Function. For the experiments we have performed, we have used the

hyperbolic tangent function as the activation function, for which,

σ(x) = tanh(x), and σ′(x) = 1− tanh2(x).

(iii) Regularization. In our experiments, we have used the following regularization:

R(W,K, b) :=
ξW
2
‖W‖2F +

ξK
2N
‖(−∆)hK(t)‖2F +

ξb
2N
‖b(t)‖22

where (−∆)h is the discrete Laplacian, and ξW , ξK , ξb are the scalar regularization

strengths, and ‖ · ‖F is the Frobenius norm.

Notice that with the above regularization, we are enforcing Laplacian-smoothing on

K. For a more controlled smoothness, one could also use the fractional Laplacian

regularization introduced in [6], see also [18] and [8].

(iv) Order of Fractional Time Derivative. In our computations, we have chosen γ

heuristically. We remark that this fractional exponent on time derivative can be learnt

in a similar manner as the fractional exponent on Laplacian was learnt in [8], or as

the authors did in [115].

(v) Optimization Solver and Xavier Initialization. The optimization algorithm we
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have used is the BFGS method with Armijo line search [93]. The stopping tolerance

for the BFGS algorithm is set to 1e−6 or maximum number of optimization iterations

m2, whichever is achieved first. However, in our experiments, the latter is achieved

first in most cases. The design variables are initialized using Xavier initialization [67],

according to which, the biases b are initialized as 0, and the entries of W , and Kj

are drawn from the uniform distribution U [−a, a]. We consider a =
√

3
nf

for the

activation function σ(·) = tanh(·), and a = 1√
nf

for other activation functions.

(vi) Network Layers vs. the Final Time. For our experiments, we heuristically choose

the number of layers N , and the discretization step-length for forward and backward

propagation as τ = 0.2. Thus our final time is given by, T = tN = Nτ .

(vii) Classification Accuracy. We remark that when we calculate Ctrain = S(W,YN ), we

obtain a probability distribution of the samples belonging to the classes. We consider

the class with the highest probability as the predicted class. Then, we use a very

standard procedure to compare Ctrain with Cobs.

ncor,train := No. of correctly identified labels = n− 1

2
‖Cobs − Ctrain‖2F .

training error = 1− ncor,train

n
, and αtrain =

ncor,train

n
× 100.

The same procedure is used to compute Ctest and αtest.

(viii) Gradient Test. To verify the gradients in (3.4.10), we perform a gradient test by

comparing them to a finite difference gradient approximation of (3.3.7). In Figure 3.2

we show that the two conform and we obtain the expected order of convergence for

all the design variables.

(ix) Computational Platform. All the computations have been carried out in MATLAB

R2015b on a laptop with an Intel Core i7-8550U processor.
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Figure 3.2: Comparison between derivative with respect to the design variables and finite
difference approximation. The expected rate of convergence is obtained.

3.6.2 Experimental Datasets

We describe the datasets we have used to validate our proposed Fractional-DNN algorithm

below.

• Dataset 1: Coordinate to Level Set (CLS). This data comprises of a set of

2D coordinates, i.e. Y0 := {(xi, yi) | i = 1, · · · , n; (xi, yi) ∈ R2([0, 1])}. Next, we

consider the following piecewise function,

v(x, y) =


1 ∀ x ≤ y

0 ∀ x > y

∀ x, y ∈ [0, 1]. (3.6.2)

The coordinates are the features in this case, hence nf = 2. Further, we have nc = 2

classes, which are the two level sets of v(x, y). Thus, for the ith sample Y
(i)

0 , C
(i)
obs ∈

Rnc is a standard basis vector which represents the probability that Y
(i)

0 belongs to

the class label {1, 2}.

• Dataset 2: Perfume Data (PD) [60, 62]. This dataset comprises of odors of 20

different perfumes measured via a handheld meter (OMX-GR sensor) every second,
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for 28 seconds. For this data, Y0 := {(xi, yi) | i = 1, · · · , n; xi, yi ∈ Z+}, thus

nf = 2. The classes, nc = 20, pertain to 20 different perfumes. we construct Cobs in

the same manner as we did for Dataset 1.

3.6.3 Forward Propagation as a Dynamical System

In the introduction we mentioned the idea of representing a DNN as an optimization problem

constrained by a dynamical system. This has turned out to be a strong tool in studying

the underlying mathematics of DNNs. In Figure 3.3 we numerically demonstrate how this

viewpoint enables a more efficient strategy for distinguishing between the classes. First

we consider the perfume data, which has two features, namely the (x, y) coordinates, and

let it flow, i.e. forward propagate. When this evolved data is presented to the classifier

functional (e.g. softmax function in our case), a spatially well-separated data is easier to

classify. We plot the input data Y0, represented as squares, as well as the evolved data YN

after it has passed through N layers. The 20 different colors correspond to the 20 different

classes for the data, which help us visually track the evolution from Y0 to YN . The evolution

under standard RNN is shown in the left plot, and that of Fractional-DNN is shown in the

right plot. The configuration for these plots is the same as discussed in Subsection 3.6.5

below and pertains to the trained models. Notice that at the bottom right corner of the

RNN evolution plot, the purple, pink and red data points are overlapping which poses a

challenge for the classifier to distinguish between the classes. In contrast, Fractional-DNN

has separated out those points quite well.

We remark that this separation also gives a hint as to the number of layers needed in a

network. We need enough number of layers which would let the data evolve enough to be

easily separable. However, the visualization can get restricted to nf ≤ 3, therefore for data

with nf > 3, it may be challenging to get a sense of number of layers needed to make the

data separable-enough.
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Figure 3.3: Forward propagation of perfume data from Y0 (squares) to YN (dots) via
standard RNN (left) and Fractional-DNN (right). Note that data is more linearly separable
for Fractional-DNN. Different colors represent different classes
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Figure 3.4: Demonstration of the gradient norm of θ = (K, b) at the first layer(dotted line)
and last layer (solid line) of the network for various algorithms, namely standard DNN

(magenta), RNN (black), and Fractional-DNN with L1 scheme approximation (red). The
figure on the right is the zoomed in version of figure on the left. Note the improvement
in relative gradient propagation across layers for Fractional-DNN which leads to better
learning ability and improves the vanishing gradient issue.
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3.6.4 Vanishing Gradient Issue

In earlier sections, we remarked that Fractional-DNN handles the vanishing gradient issue

in a better way. The vanishing gradient issue arises when the gradient of the design vari-

ables vanishes across the layers as the network undergoes backpropagation, see [69] and

references therein. As a consequence, feature extraction in the initial layers gets severely

affected, which in turn affects the learning ability of the whole network. We illustrate this

phenomenon for the networks under discussion in Figure 3.4. In the left plot of Figure 3.4,

we compare the ‖ · ‖2 of the gradient of design variables θ = (K, b) against optimization

solver (steepest descent in this case) iterations for standard DNN (which does not have

any skip connection) in magenta, classical RNN (3.3.4) in black, and Fractional-DNN with

L1-scheme approximation from Algorithm 5 in red. In the right plot of Figure 3.4 we have

omitted the standard DNN plot to take a closer look at the other two. Observe that as

gradient information propagates backward, i.e. from layer N − 1 to 0, its magnitude re-

duces by one order in the case of standard RNN. This implies that enough information is

not being passed to initial layers relative to the last layer. In contrast, the Fractional-DNN

is carrying significant information back to the initial layers while maintaining a relative

magnitude. This improves the overall health of the network and improves learning. This

test has been performed on Perfume Data (Dataset 2) with 70 layers and regularization

turned off.

3.6.5 Experimental Results

We now solve the classification problem (3.3.7) for the datasets described in Subsection 3.6.2

via our proposed Fractional-DNN algorithm, presented in Section 3.5. We then compare it

with the standard RNN architecture (3.3.4). The details and results of our experiments are

given in Table 3.2.

Note that the results obtained via Fractional-DNN are either comparable to (e.g. for

CLS data) or significantly better than (e.g. for PD) the standard RNN architecture.

We remark that while CLS data (Dataset 1) is a relatively simpler problem to solve
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Table 3.2: Comparison of classification accuracy for various datasets using the standard
RNN (3.3.4) with our proposed Fractional-DNN (3.3.6) with L1 scheme approximation.
Note the improvement in results due to Fractional-DNN.

Dataset CLS CLS PD PD

Time Derivative Standard Frac-L1 Standard Frac-L1

γ – 0.1 – 0.9

ntrain 10000 10000 560 560

ntest 10000 10000 532 532

N 5 5 35 35

m1 6 6 567 567

m2 30 30 15 15

ξW 1e− 1 1e− 1 1e− 8 1e− 8

ξK 1e+ 2 1e+ 2 0 0

ξb 1e− 2 1e− 2 0 0

αtrain 99.76% 99.82% 52.86% 70.36%

αtest 99.79% 99.79% 45.49% 84.21%

(two features and two classes), the Perfume Data (Dataset 2) is not. In the latter case, each

dataset comprises of only two features, and there are 20 different classes. Furthermore, the

number of available samples for training is small. In this sense, classification of this dataset

is a challenging problem. There have been some results on classification of perfume data

using only the training dataset (divided between training and testing) [62], but to the best

of our knowledge, classification on the complete dataset using both the training and testing

sets [60] is not available.

In our experiments, we have also observed that Fractional-DNN algorithm needs lesser

number of Armijo line-search iterations than the standard RNN. This directly reflects an

improvement in the learning rate via Fractional-DNN. We remark that in theory, Fractional-

DNN should use memory more efficiently than other networks, as it encourages feature reuse

in the network.
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3.7 Discussion

There is a growing body of research which indicates that deep learning algorithms, e.g.

a residual neural network, can be cast as optimization problems constrained by ODEs or

PDEs. In addition, thinking of continuous optimization problems can make the approaches

machine/architecture independent. This opens a plethora of tools from constrained op-

timization theory which can be used to study, analyze, and enhance the deep learning

algorithms. Currently, the mathematical foundations of many machine learning models are

largely lacking. Their success is mostly attributed to empirical evidence. Hence, due to

the lack of mathematical foundation, it becomes challenging to fix issues, like network in-

stability, vanishing and exploding gradients, long training times, inability to approximate

non-smooth functions, etc., when a network breaks down.

In this work we have developed a novel continuous model and stable discretization of

deep neural networks that incorporate history. In particular, we have developed a fractional

deep neural network (Fractional-DNN) which allows the network to admit memory across all

the subsequent layers. We have established this via an optimal control problem formulation

of a deep neural network bestowed with a fractional time Caputo derivative. We have then

derived the optimality conditions using the Lagrangian formulation. We have also discussed

discretization of the fractional time Caputo derivative using L1-scheme and presented the

algorithmic framework for the discretization.

We expect that by keeping track of history in this manner improves the vanishing gradi-

ent problem and can potentially strengthen feature propagation, encourage feature reuse and

reduce the number of unknown parameters. We have numerically illustrated the improve-

ment in the vanishing gradient issue via our proposed Fractional-DNN. We have shown that

Fractional-DNN is better capable of passing information across the network layers which

maintains the relative gradient magnitude across the layers, compared to the standard DNN

and standard RNN. This allows for a more meaningful feature extraction to happen at each

layer.

We have shown successful application of Fractional-DNN for classification problems
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using various datasets, namely the Coordinate to Level Set and Perfume Data. We have

compared the results against the standard-RNN and have shown that the Fractional-DNN

algorithm yields improved results.

We emphasis that our proposed Fractional-DNN architecture has a memory effect due

to the fact that it allows propagation of features in a cumulative manner, i.e. at each

layer all the precedent layers are visible. Reusing the network features in this manner

reduces the number of parameters that the network needs to learns in each subsequent

layer. Fractional-DNN has a rigorous mathematical foundation and algorithmic framework

which establishes a deeper understanding of deep neural networks with memory. This

enhances their applicability to scientific and engineering applications.

We remark that code optimization is part of our forthcoming work. This would involve

efficient Graphic Processing Unit usage and parallel computing capabilities. We intend to

develop a python version of this code and incorporate it into popular deep learning libraries

like TensorFlow, PyTorch etc. We are also interested in expanding the efficiency of this

algorithm to large-scale problems suitable for High Performance Computing.
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Chapter 4: External Optimal Control of Nonlocal PDEs 1

4.1 Introduction and Motivation

In many real life applications a source or a control is placed outside (disjoint from) the

observation domain Ω where the PDE is satisfied. Some examples of inverse and optimal

control problems where this situation may arise are: (i) Acoustic testing, when the loud-

speakers are placed far from the aerospace structures [98]; (ii) Magnetotellurics (MT), which

is a technique to infer earth’s subsurface electrical conductivity from surface measurements

[140,149]; (iii) Magnetic drug targeting (MDT), where drugs with ferromagnetic particles in

suspension are injected into the body and the external magnetic field is then used to steer

the drug to relevant areas, for example, solid tumors [13,14,105]; (iv) Electroencephalogra-

phy (EEG) is used to record electrical activities in brain [112,151], in case one accounts for

the neurons disjoint from the brain, one will obtain an external source problem.

This is different from the traditional approaches where the source/control is placed

either inside the domain Ω or on the boundary ∂Ω of Ω. This is not surprising since in

many cases we do not have a direct access to ∂Ω. See for instance, the setup in Figure 4.1.

In such applications the existing models can be ineffective due to their strict requirements.

Indeed think of the source identification problem for the most basic Poisson equation:

−∆u = f in Ω, u = z on ∂Ω, (4.1.1)

where the source is either f (force or load) or z (boundary control) see [11, 101, 139]. In

(4.1.1) there is no provision to place the source in Ω̂ ⊂ RN \Ω, i.e., a domain that is disjoint

from Ω, see Figure 4.1 for two examples of Ω and Ω̂. The issue is that the operator ∆

1This work has been published in [10].
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A. B.

Figure 4.1: Let a diffusion process occurs inside a domain Ω which is the sphere in Case. A
(left) and the letter M in Case. B (right). We are interested in the source identification or

controlling this diffusion process by placing the source/control in a set Ω̂ which is disjoint

from Ω. Case A: Ω̂ is the triangular pipe. Case B: Ω̂ is the structure on the top of the letter
M.

has “lesser reach”, in other words, it is a local operator. On the other hand the fractional

Laplacian (−∆)s with 0 < s < 1 (that we shall define below) is a nonlocal operator. This

difference in behavior can be easily seen in our numerical examples in Subsection 4.7.2

where we observe that we cannot see the external source as s approaches 1.

Recently, nonlocal diffusion operators such as the fractional Laplacian (−∆)s have

emerged as an excellent alternative to model diffusion. Under a probabilistic framework

this operator can be derived as the limit of the so-called long jump random walk [141].

Recall that ∆ is the limit of the classical random walk or the Brownian motion. More

applications of these models appear in (but not limited to) image denoising and phase field

modeling [6,18]; fractional diffusion maps (data analysis) [7]; magnetotellurics (geophysics)

[149].

Coming back to the question of source/control placement, we next state the exterior

value problem corresponding to (−∆)s. Find u in an appropriate function space satisfying

(−∆)su = f in Ω, u = z on RN \ Ω. (4.1.2)

As in the case of (4.1.1), besides f being the source/control in Ω, we can also place the
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source/control z in the exterior domain RN \ Ω. However, the action of z in (4.1.2) is

significantly different from (4.1.1). Indeed, the source/control in (4.1.1) is placed on the

boundary ∂Ω, but the source/control z in (4.1.2) is placed in RN \ Ω which is what we

wanted to achieve in Figure 4.1. For completeness, we refer to [21] for the optimal control

problem, with f being the source/control and [20,22] for another inverse problem to identify

the coefficients in the fractional p-Laplacian.

The purpose of this work is to introduce and study a new class of the Dirichlet, Robin

and Neumann source identification problems or the optimal control problems. We shall use

these terms interchangeably but we will make a distinction in our numerical experiments.

We emphasize that yet another class of identification where the unknown is the fractional

exponent s for the spectral fractional Laplacian (which is different from the operator under

consideration) was recently considered in [132]. We refer to [18] for the case when s is a

function of x ∈ Ω.

Now we describe our problems.

Let Ω ⊂ RN , N ≥ 1, be a bounded open set with boundary ∂Ω. Let (ZD, UD) and

(ZR, UR), where the subscripts D and R indicate Dirichlet and Robin, be Banach spaces.

The goal of this work is to consider the following two external control or source identifi-

cation problems. The source/control in our case is denoted by z. Our objective function

consists of two parts and we shall denote by J the part that depends on the state u. The

precise assumptions on J will be given in Section 4.4.

• Fractional Dirichlet Exterior Control Problem. Given ξ ≥ 0 a constant penalty

parameter, we consider the minimization problem:

min
(u,z)∈(UD,ZD)

J(u) +
ξ

2
‖z‖2ZD , (4.1.3a)
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subject to the fractional Dirichlet exterior value problem. Find u ∈ UD solving


(−∆)su = 0 in Ω,

u = z in RN \ Ω,

(4.1.3b)

and the control constraints

z ∈ Zad,D, (4.1.3c)

with Zad,D ⊂ ZD being a closed and convex subset.

• Fractional Robin Exterior Control Problem. Given ξ ≥ 0 a constant penalty

parameter, we consider the minimization problem:

min
(u,z)∈(UR,ZR)

J(u) +
ξ

2
‖z‖2ZR , (4.1.4a)

subject to the fractional Robin exterior value problem: Find u ∈ UR solving


(−∆)su = 0 in Ω,

Nsu+ κu = κz in RN \ Ω,

(4.1.4b)

and the control constraints

z ∈ Zad,R, (4.1.4c)

with Zad,R ⊂ ZR being a closed and convex subset. In (4.1.4b), Nsu is the nonlocal

normal derivative of u that will be defined in Section 4.2, κ ∈ L1(RN \Ω)∩L∞(RN \Ω)

and is non-negative. We notice that the latter assumption is not a restriction since

otherwise we can replace κ throughout by |κ|.
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The precise conditions on Ω and the Banach spaces involved will be given in the subse-

quent sections. Notice that both exterior value problems (4.1.3b) and (4.1.4b) are ill-posed

if the conditions are enforced on ∂Ω. The main difficulties in (4.1.3) and (4.1.4) stem from

the following facts.

• Nonlocal Diffusion Operator. The fractional Laplacian (−∆)s is a nonlocal oper-

ator. This can be easily seen from its definition.

• Nonlocal Normal Derivative. The first order optimality conditions for (4.1.3),

the very-weak solution to the Dirichlet problem (4.1.3b) and the Robin exterior value

problem (4.1.4b) require to study Nsu which is the so-called nonlocal-normal deriva-

tive of u. Thus we not only have the nonlocal operator (−∆)s in the domain but also

in the exterior RN \Ω, i.e., a double nonlocality. An approximation of Nsu, especially

numerically, is extremely challenging.

• Exterior Conditions in RN \ Ω and Not Boundary Conditions on ∂Ω. The

conditions in (4.1.3b) and (4.1.4b) need to be specified in RN \ Ω instead on ∂Ω as

otherwise the problems (4.1.3) and (4.1.4) are ill-posed as we have already mentioned

above.

• Very-Weak Solutions of Nonlocal Exterior Value Problems. A typical choice

for ZD is L2(RN \ Ω). As a result, the Dirichlet exterior value problem (4.1.3b) can

only have very-weak solutions (cf. [23, 24, 32] for the case s = 1). To the best of our

knowledge this is the first work that considers the notion of very-weak solutions for

nonlocal (fractional) exterior value problems associated with the fractional Laplace

operator.

• Regularity of the Optimization Variables. The standard shift-theorem which

holds for local operators such as ∆ does not always hold for nonlocal operators such

as (−∆)s (see for example [73]).

In view of all these aforementioned challenges it is clear that the standard techniques which

are now well established for local problems do not directly extend to the nonlocal problems
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investigated in this work.

The purpose of this work is to discuss our approach to deal with these nontrivial issues.

We emphasize that to the best of our knowledge this is the first work that considers the

optimal control problems (source identification problems) (4.1.3b) and (4.1.4b) where the

control/source is applied from the outside. Let us also mention that this notion of controlla-

bility of PDEs from the exterior has been introduced by M. Warma in [147] for the nonlocal

heat equation associated with the fractional Laplacian and in [103] for the wave type equa-

tion with the fractional Laplace operator to study their controllability properties. The case

of the strong damping wave equation is included in [148] where some controllability results

have been obtained. In case of problems with the spectral fractional Laplacian the boundary

control has been established in [17]. For completeness, we also mention some interesting

works on fractional Calderón type inverse problems [64, 97, 123]. Notice that fractional

operators further provide flexibility to approximate arbitrary functions [46,58,73,96].

We mention that we can also deal with the fractional Neumann exterior control

problem. That is, given ξ ≥ 0 a constant penalty parameter,

min
(u,z)∈(UN ,ZN )

J(u) +
ξ

2
‖z‖2ZN ,

subject to the fractional Neumann exterior value problem: Find u ∈ UN solving


(−∆)su+ u = 0 in Ω,

Nsu = z in RN \ Ω,

(4.1.5)

and the control constraints

z ∈ Zad,N .

The term u is added in (4.1.5) just to ensure the uniqueness of solutions. The proofs follow
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similarly as the two cases we consider in this work with very minor changes. Since this

Chapter is already long, we shall not give any details on this case.

Below we mention the novelties of this work.

(i) Weak and Very-Weak Solutions. For the first time, we introduce and study the

notion of very-weak solutions to the Dirichlet exterior value problem (4.1.3b) which

is suitable for optimal control problems. We also study weak solutions of the Robin

exterior value problem (4.1.4b).

(ii) Approximation of the Dirichlet Weak and Very-Weak Solutions by the

Robin Weak Solutions. We approximate the weak and very-weak solutions of the

nonhomogeneous Dirichlet exterior value problem by using a suitable Robin exte-

rior value problem. This allows us to circumvent approximating the nonlocal normal

derivative and it is one of the key contribution of this work. Recall that for the

very-weak solution of the Dirichlet problem we need to evaluate the nonlocal normal

derivative of the test functions (see Theorem 4.3.3) and for the Dirichlet control prob-

lem we need to evaluate the nonlocal normal derivative of the adjoint variable (see

Theorem 4.4.3). This is a new approach to impose non-zero exterior conditions for the

fractional Dirichlet exterior value problem. We refer to an alternative approach [3]

where the authors use the Lagrange multipliers to impose nonzero Dirichlet exterior

conditions.

(iii) We study both Dirichlet and Robin exterior control problems.

(iv) We approximate (with rate) the Dirichlet exterior control problem by a suitable Robin

exterior control problem.

The rest of the Chapter is organized as follows. We begin with Section 4.2 where we

introduce the relevant notations and the function spaces needed. The material in this

section is well-known. Our main work starts from Section 4.3 where we study first the weak

and very-weak solutions for the Dirichlet exterior value problem in Subsection 4.3.1. This

is followed by the well-posedness of the Robin exterior value problem in Subsection 4.3.2.

The Dirichlet exterior control problem is considered in Section 4.4 and Robin in Section 4.5.
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We show how to approximate the weak solutions to the Dirichlet problem and the solutions

to the Dirichlet exterior control problem in Section 4.6. Subsection 4.7.1 is devoted to the

experimental rate of convergence to approximate the Dirichlet exterior value problem using

the Robin problem. In Subsection 4.7.2 we consider a source identification problem in the

classical sense, however our source is located outside the observation domain where the

PDE is satisfied. Subsection 4.7.3 is devoted to two optimal control problems.

Remark 4.1.1 (Practical Aspects). From a practical point of view, having the source/control

over the entire RN \Ω can be very expensive. But this can be easily fixed by appropriately

describing Zad. Indeed in case of Figure 4.1 we can set the support of functions in Zad to

be in Ω̂.

4.2 Notations and Preliminaries

Unless otherwise stated, Ω ⊂ RN (N ≥ 1) is a bounded open set and 0 < s < 1. We let

W s,2(Ω) :=

{
u ∈ L2(Ω) :

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy <∞

}
,

and we endow it with the norm defined by

‖u‖W s,2(Ω) :=

(ˆ
Ω
|u|2 dx+

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

.

In order to study (4.1.3b) we also need to define

W s,2
0 (Ω) :=

{
u ∈W s,2(RN ) : u = 0 in RN \ Ω

}
.
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Then

‖u‖
W s,2

0 (Ω)
:=

(ˆ
RN

ˆ
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

defines an equivalent norm on W s,2
0 (Ω).

We shall use W−s,2(RN ) and W−s,2(Ω) to denote the dual spaces of W s,2(RN ) and

W s,2
0 (Ω), respectively, and 〈·, ·〉 to denote their duality pairing whenever it is clear from the

context.

We also define the local fractional order Sobolev space

W s,2
loc (RN \ Ω) :=

{
u ∈ L2(RN \ Ω) : uϕ ∈W s,2(RN \ Ω), ∀ ϕ ∈ D(RN \ Ω)

}
. (4.2.1)

To introduce the fractional Laplace operator, we set

L1
s(RN ) :=

{
u : RN → R measurable,

ˆ
RN

|u(x)|
(1 + |x|)N+2s

dx <∞
}
.

For u ∈ L1
s(RN ) and ε > 0, we let

(−∆)sεu(x) = CN,s

ˆ
{y∈RN ,|y−x|>ε}

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN ,

where the normalized constant CN,s is given by

CN,s :=
s22sΓ

(
2s+N

2

)
π
N
2 Γ(1− s)

, (4.2.2)

and Γ is the usual Euler Gamma function (see, e.g. [36,42–44,56,145,146]). The fractional

Laplacian (−∆)s is defined for u ∈ L1
s(RN ) by the formula
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(−∆)su(x) = CN,sP.V.

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy = lim

ε↓0
(−∆)sεu(x), x ∈ RN , (4.2.3)

provided that the limit exists. It has been shown in [39, Proposition 2.2] that for u ∈ D(Ω),

we have

lim
s↑1−

ˆ
RN

u(−∆)su dx =

ˆ
RN
|∇u|2dx = −

ˆ
RN

u∆u dx = −
ˆ

Ω
u∆u dx,

that is where the constant CN,s plays a crucial role.

Next, for u ∈W s,2(RN ) we define the nonlocal normal derivative Ns as:

Nsu(x) := CN,s

ˆ
Ω

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN \ Ω. (4.2.4)

We shall call Ns the interaction operator. Notice that the term “interaction” has also been

used by Du. et. al in [59]. Clearly Ns is a nonlocal operator and it is well defined on

W s,2(RN ) as we discuss next.

Lemma 4.2.1. The interaction operator Ns maps continuously W s,2(RN ) into W s,2
loc (RN \

Ω). As a result, if u ∈W s,2(RN ), then Nsu ∈ L2(RN \ Ω).

Proof. We refer to [65, Lemma 3.2] for the proof of the first part. The second part is a

direct consequence of (4.2.1).

Despite the fact that Ns is defined on RN \Ω, it is still known as the “normal” derivative.

This is due to its similarity with the classical normal derivative as we discuss next.

Proposition 4.2.2. Let Ω ⊂ RN be a bounded open set with a Lipschitz continuous

boundary. Then the following assertions hold.

(a) The Divergence Theorem for (−∆)s. Let u ∈ C2
0 (RN ), i.e., C2 functions on RN
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that vanish at ±∞. Then

ˆ
Ω

(−∆)su dx = −
ˆ
RN\Ω

Nsu dx.

(b) The Integration by Parts Formula for (−∆)s. Let u ∈ W s,2(RN ) be such that

(−∆)su ∈ L2(Ω). Then for every v ∈W s,2(RN ) we have that

ˆ
Ω
v(−∆)su dx =

CN,s
2

ˆ ˆ
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

−
ˆ
RN\Ω

vNsu dx, (4.2.5)

where R2N \ (RN \ Ω)2 := (Ω× Ω) ∪ (Ω× (RN \ Ω)) ∪ ((RN \ Ω)× Ω).

(c) The limit as s ↑ 1−. Let u, v ∈ C2
0 (RN ). Then

lim
s↑1−

ˆ
RN\Ω

vNsu dx =

ˆ
∂Ω
v
∂u

∂ν
dσ.

Remark 4.2.3. Comparing the properties (a)-(c) in Theorem 4.2.2 with the classical prop-

erties of the standard Laplacian ∆ we can immediately infer that Ns plays the same role

for (−∆)s that the classical normal derivative does for ∆. For this reason, we call Ns the

nonlocal normal derivative.

Proof of Theorem 4.2.2. The proofs of Parts (a) and (c) are contained in [57, Lemma

3.2] and [57, Proposition 5.1], respectively. The proof of Part (b) for smooth functions

can be found in [57, Lemma 3.3]. The version given here is obtained by using a density

argument (cf. [147, Proposition 3.7]).
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4.3 The State Equations

Before analyzing the optimal control problems (4.1.3) and (4.1.4) for a given function z, we

shall focus on the Dirichlet (4.1.3b) and Robin (4.1.4b) exterior value problems. We shall

assume that Ω is a bounded domain with a Lipschitz continuous boundary.

4.3.1 The Dirichlet Problem for the Fractional Laplacian

We begin by rewriting the system (4.1.3b) in a more general form. That is,


(−∆)su = f in Ω,

u = z in RN \ Ω.

(4.3.1)

Here is our notion of weak solution.

Definition 4.3.1 (Weak solution to the Dirichlet problem). Let f ∈ W−s,2(Ω),

z ∈W s,2(RN \Ω) and z̃ ∈W s,2(RN ) be such that z̃|RN\Ω = z. A function u ∈W s,2(RN ) is

said to be a weak solution to (4.3.1) if u− z̃ ∈W s,2
0 (Ω) and

CN,s
2

ˆ
RN

ˆ
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy = 〈f, v〉,

for every v ∈W s,2
0 (Ω).

Firstly, we notice that since Ω is assumed to have a Lipschitz continuous boundary, we

have that, for z ∈W s,2(RN \Ω), there exists z̃ ∈W s,2(RN ) such that z̃|RN\Ω = z. Secondly,

the existence and uniqueness of a weak solution u to (4.3.1) and the continuous dependence

of u on the data f and z have been considered in [73] (see also [65,143]). More precisely we

have the following result.
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Proposition 4.3.2. Let f ∈W−s,2(Ω) and z ∈W s,2(RN \ Ω). Then there exists a unique

weak solution u to (4.3.1) in the sense of Theorem 4.3.1. In addition there is a constant

C > 0 such that

‖u‖W s,2(RN ) ≤ C
(
‖f‖W−s,2(Ω) + ‖z‖W s,2(RN\Ω)

)
. (4.3.2)

Even though such a result is typically sufficient in most situations, nevertheless it is

not directly useful in the current context of optimal control problem (4.1.3) since we are

interested in taking the space ZD = L2(RN \ Ω). Thus we need existence of solutions (in

some sense) to the fractional Dirichlet problem (4.3.1) when z ∈ L2(RN \ Ω). In order to

tackle this situation we introduce our notion of very-weak solution for (4.3.1).

Definition 4.3.3 (Very-Weak Solution to the Dirichlet Problem). Let z ∈ L2(RN \

Ω) and f ∈W−s,2(Ω). A function u ∈ L2(RN ) is said to be a very-weak solution to (4.3.1)

if the identity

ˆ
Ω
u(−∆)sv dx = 〈f, v〉 −

ˆ
RN\Ω

zNsv dx, (4.3.3)

holds for every v ∈ V := {v ∈W s,2
0 (Ω) : (−∆)sv ∈ L2(Ω)}.

Remark 4.3.4. We mention the following facts.

(i) We have shown in Theorem 4.3.2 that if z ∈W s,2(RN \Ω), then the Dirichlet problem

(4.3.1) has a unique weak solution u ∈W s,2(RN ). In [63], letting

V(Ω) :=

{
v : RN → R, v ∈ L2(Ω) and

ˆ
Ω

ˆ
RN

|v(x)− v(y)|2

|x− y|N+2s
dxdy <∞

}
,

the authors have shown that if z ∈ V(Ω) and f ∈ V(Ω)∗, then the Dirichlet problem

(4.3.1) has a unique weak solution u ∈ V(Ω). Notice that W s,2(RN ) ↪→ V(Ω) ↪→

W s,2(Ω). The difference between the two notions is only the space where the exterior
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data and the solutions belong.

(ii) For the very-weak solution, we have just assumed that z ∈ L2(RN \Ω) (no additional

regularity) and this has not been studied in [63] or elsewhere.

Next we prove the existence and uniqueness of a very-weak solution to (4.3.1).

Theorem 4.3.5. Let f ∈ W−s,2(Ω) and z ∈ L2(RN \ Ω). Then there exists a unique

very-weak solution u to (4.3.1) according to Theorem 4.3.1 that fulfills

‖u‖L2(Ω) ≤ C
(
‖f‖W−s,2(Ω) + ‖z‖L2(RN\Ω)

)
, (4.3.4)

for a constant C > 0. In addition, if z ∈W s,2(RN \ Ω), then the following assertions hold.

(a) Every weak solution of (4.3.1) is also a very-weak solution.

(b) Every very-weak solution of (4.3.1) that belongs to W s,2(RN ) is also a weak solution.

Proof. In order to show the existence of a very-weak solution we shall apply the Babuška-

Lax-Milgram theorem.

Firstly, let (−∆)sD be the realization of (−∆)s in L2(Ω) with the zero Dirichlet exterior

condition u = 0 in RN \ Ω. More precisely,

D((−∆)sD) = V and (−∆)sDu = (−∆)su in Ω.

Then a norm on V is given by ‖v‖V = ‖(−∆)sDv‖L2(Ω) which follows from the fact that the

operator (−∆)sD is invertible (since by [128] (−∆)sD has a compact resolvent and its first

eigenvalue is strictly positive). Secondly, let F be the bilinear form defined on L2(Ω) × V

by

F(u, v) :=

ˆ
Ω
u(−∆)sv dx.

Then F is clearly bounded on L2(Ω) × V . More precisely there is a constant C > 0 such
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that

∣∣F(u, v)
∣∣ ≤ ‖u‖L2(Ω)‖(−∆)sv‖L2(Ω ≤ C‖u‖L2(Ω)‖v‖V , ∀ (u, v) ∈ L2(Ω)× V.

Thirdly, we show the inf-sup conditions. From the definition of V , we have that

v ∈W s,2
0 (Ω) and (−∆)sv ∈ L2(Ω) ⇐⇒ v ∈ V.

Letting u :=
(−∆)sDv

‖(−∆)sDv‖L2(Ω)
∈ L2(Ω), we obtain that

sup
u∈L2(Ω),‖u‖L2(Ω)=1

|(u, (−∆)sDv)L2(Ω)| ≥
|((−∆)sDv, (−∆)sDv)L2(Ω)|

‖(−∆)sDv‖L2(Ω)

≥ ‖(−∆)sDv‖L2(Ω) = ‖v‖V .

Next we choose v ∈ V as the unique weak solution of the Dirichlet problem

(−∆)sDv =
u

‖u‖L2(Ω)
in Ω,

for some 0 6= u ∈ L2(Ω). Then we readily obtain that

sup
v∈V,‖v‖V =1

|(u, (−∆)sv)L2(Ω)| ≥
|(u, u)L2(Ω)|
‖u‖L2(Ω)

= ‖u‖L2(Ω) > 0,

for all 0 6= u ∈ L2(Ω). Finally, we have to show that the right-hand-side in (4.3.3) defines

a linear continuous functional on V . Indeed, applying the Hölder inequality in conjunction

with Theorem 4.2.1 we obtain that there is a constant C > 0 such that∣∣∣∣∣
ˆ
RN\Ω

zNsv dx

∣∣∣∣∣ ≤ ‖z‖L2(RN\Ω)‖Nsv‖L2(RN\Ω) ≤ C‖z‖L2(RN\Ω)‖v‖W s,2
0 (Ω)

, (4.3.5)

82



where in the last step we have used the fact that ‖v‖
W s,2

0 (Ω)
= ‖v‖W s,2(RN ) for v ∈W s,2

0 (Ω).

Moreover

|〈f, v〉| ≤ ‖f‖W−s,2(Ω)‖v‖W s,2
0 (Ω)

.

In view of the last two estimates, the right-hand-side in (4.3.3) defines a linear continuous

functional on V . Therefore all the requirements of the Babuška-Lax-Milgram theorem hold.

Thus, there exists a unique u ∈ L2(Ω) satisfying (4.3.3). Let u = z in RN \ Ω. Then

u ∈ L2(RN ) and satisfies (4.3.3). We have shown the existence and uniqueness of a very-

weak solution.

Next we show the estimate (4.3.4). Let u ∈ L2(RN ) be a very-weak solution. Let v ∈ V

be a weak solution of (−∆)sDv = u in Ω. Taking this v as a test function in (4.3.3) and

using (4.3.5), we get that there is a constant C > 0 such that

‖u‖2L2(Ω) ≤‖f‖W−s,2(Ω)‖v‖W s,2
0 (Ω)

+ ‖z‖L2(RN\Ω)‖Nsv‖L2(RN\Ω)

≤C
(
‖f‖W−s,2(Ω) + ‖z‖L2(RN\Ω)

)
‖v‖

W s,2
0 (Ω)

≤C
(
‖f‖W−s,2(Ω) + ‖z‖L2(RN\Ω)

)
‖(−∆)sDv‖L2(Ω)

≤C
(
‖f‖W−s,2(Ω) + ‖z‖L2(RN\Ω)

)
‖u‖L2(Ω).

We have shown (4.3.4) and this completes the proof of the first part.

Next we prove the last two assertions of the theorem. Assume that z ∈W s,2(RN \ Ω).

(a) Let u ∈ W s,2(RN ) ↪→ L2(RN ) be a weak solution of (4.3.1). It follows from the

definition that u = z in RN \ Ω and

CN,s
2

ˆ
RN

ˆ
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy = 〈f, v〉, (4.3.6)
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for every v ∈ V . Since v = 0 in RN \ Ω, we have that

ˆ
RN

ˆ
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

=

ˆ ˆ
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy. (4.3.7)

Using (4.3.6), (4.3.7), the integration by parts formula (4.2.5) together with the fact that

u = z in RN \ Ω, we get that

CN,s
2

ˆ
RN

ˆ
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

= 〈f, v〉

=

ˆ
Ω
u(−∆)sv dx+

ˆ
RN\Ω

uNsv dx

=

ˆ
Ω
u(−∆)sv dx+

ˆ
RN\Ω

zNsv dx.

Thus u is a very-weak solution of (4.3.1).

(b) Finally let u be a very-weak solution of (4.3.1) and assume that u ∈ W s,2(RN ).

Since u = z in RN \ Ω, we have that z ∈ W s,2(RN \ Ω) and if z̃ ∈ W s,2(RN ) satisfies

z̃|RN\Ω = z, then clearly (u− z̃) ∈W s,2
0 (Ω). Since u is a very-weak solution of (4.3.1), then

by definition, for every v ∈ V = D((−∆)sD), we have

ˆ
Ω
u(−∆)sv dx = 〈f, v〉 −

ˆ
RN\Ω

zNsv dx. (4.3.8)
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Since u ∈W s,2(RN ) and v = 0 in RN \ Ω, then using (4.2.5) again we get that

ˆ
RN

ˆ
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

=

ˆ ˆ
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

=

ˆ
Ω
u(−∆)sv dx+

ˆ
RN\Ω

uNsv dx

=

ˆ
Ω
u(−∆)sv dx+

ˆ
RN\Ω

zNsv dx. (4.3.9)

It follows from (4.3.8) and (4.3.9) that for every v ∈ V , we have

ˆ
RN

ˆ
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy = 〈f, v〉. (4.3.10)

Since V is dense in W s,2
0 (Ω), we have that (4.3.10) remains true for every v ∈W s,2

0 (Ω). We

have shown that u is a weak solution of (4.3.1) and the proof is finished.

4.3.2 The Robin Problem for the Fractional Laplacian

In order to study the Robin problem (4.1.4b) we consider the Sobolev space introduced in

[57]. For g ∈ L1(RN \ Ω) fixed, we let

W s,2
Ω,g :=

{
u : RN → R measurable, ‖u‖

W s,2
Ω,g

<∞
}
,
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where

‖u‖
W s,2

Ω,g
:=

(
‖u‖2L2(Ω) + ‖ |g|

1
2u‖2L2(RN\Ω) +

ˆ ˆ
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

.

(4.3.11)

Let µ be the measure on RN \Ω given by dµ = |g|dx. With this setting, the norm in (4.3.11)

can be rewritten as

‖u‖
W s,2

Ω,g
:=

(
‖u‖2L2(Ω) + ‖u‖2L2(RN\Ω,µ) +

ˆ ˆ
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

. (4.3.12)

If g = 0, we shall let W s,2
Ω,0 = W s,2

Ω . The following result has been proved in [57,

Proposition 3.1].

Proposition 4.3.6. Let g ∈ L1(RN \ Ω). Then W s,2
Ω,g is a Hilbert space.

Throughout the remainder of the article, for g ∈ L1(RN \Ω), we shall denote by (W s,2
Ω,g)

?

the dual of W s,2
Ω,g.

Remark 4.3.7. We mention the following facts.

(a) Recall that

R2N \ (RN \ Ω)2 = (Ω× Ω) ∪ (Ω× (RN \ Ω)) ∪ ((RN \ Ω)× Ω),

so that

ˆ ˆ
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x− y|N+2s
dxdy =

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy

+

ˆ
Ω

ˆ
RN\Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy +

ˆ
RN\Ω

ˆ
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

(4.3.13)
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(b) If g ∈ L1(RN \ Ω) and u ∈W s,2
Ω,g, then using the Hölder inequality we get that

∣∣∣∣∣
ˆ
RN\Ω

gu dx

∣∣∣∣∣ ≤
ˆ
RN\Ω

|g|
1
2 ||g

1
2 |u| dx ≤

(ˆ
RN\Ω

|g| dx

) 1
2
(ˆ

RN\Ω
|gu2| dx

) 1
2

≤‖g‖
1
2

L1(RN\Ω)
‖u‖L2(RN\Ω,µ) ≤ ‖g‖

1
2

L1(RN\Ω)
‖u‖

W s,2
Ω,g
. (4.3.14)

It follows from (4.3.14) that in particular, L1(RN \ Ω, µ) ↪→ (W s,2
Ω,g)

?.

(c) By definition (using also (4.3.13)), W s,2
Ω,g ↪→ W s,2

Ω ↪→ W s,2(Ω), so that we have the

following continuous embeddings:

W s,2
Ω,g ↪→W s,2

Ω ↪→ L
2N
N−2s (Ω). (4.3.15)

It follows from (4.3.15) that the embeddings W s,2
Ω,g ↪→ L2(Ω) and W s,2

Ω ↪→ L2(Ω) are

compact.

We consider a generalized version of the system (4.1.4b) with nonzero right-hand-side

f . That is, the problem:


(−∆)su = f in Ω,

Nsu+ κu = κz in RN \ Ω.

(4.3.16)

Throughout the following sections, the measure µ is defined with g replaced by κ. That is,

dµ = κdx (recall that κ is assumed to be non-negative). Here is our notion of weak solution.

Definition 4.3.8. Let z ∈ L2(RN \Ω, µ) and f ∈ (W s,2
Ω,κ)?. A function u ∈W s,2

Ω,κ is said to
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be a weak solution of (4.3.16) if the identity

ˆ ˆ
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

ˆ
RN\Ω

κuv dx

= 〈f, v〉
(W s,2

Ω,κ)?,W s,2
Ω,κ

+

ˆ
RN\Ω

κzv dx, (4.3.17)

holds for every v ∈W s,2
Ω,κ.

We have the following existence result.

Proposition 4.3.9. Let κ ∈ L1(RN \Ω) ∩ L∞(RN \Ω). Then for every z ∈ L2(RN \Ω, µ)

and f ∈ (W s,2
Ω,κ)?, there exists a weak solution u ∈W s,2

Ω,κ of (4.3.16).

Proof. Let D(E) = W s,2
Ω,κ and E : D(E)×D(E)→ R be given by

E(u, v) :=

ˆ ˆ
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

ˆ
RN\Ω

κuv dx. (4.3.18)

Then E is a bilinear, symmetric, continuous and closed form on L2(Ω). Hence, for every

z ∈ L2(RN \ Ω, µ) ⊂ (W s,2
Ω,κ)? and f ∈ (W s,2

Ω,κ)?, there is a function u ∈W s,2
Ω,κ such that

E(u, v) =〈f, v〉
(W s,2

Ω,κ)?,W s,2
Ω,κ

+ 〈z, v〉
(W s,2

Ω,κ)?,W s,2
Ω,κ

=〈f, v〉
(W s,2

Ω,κ)?,W s,2
Ω,κ

+

ˆ
RN\Ω

κzv dx,

for every v ∈W s,2
Ω,κ. That is, u satisfies (4.3.17). Thus u is a weak solution of (4.3.16). The

proof is finished.

Remark 4.3.10. Notice that similarly to the classical Neumann problem when κ ≡ 0,

Theorem 4.3.9 only guarantees uniqueness of solutions to (4.1.4b) up to a constant. In case

we assume κ to be strictly positive, uniqueness can be guaranteed under Theorem 4.6.1
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below. In that case we can also show that there is a constant C > 0 such that

‖u‖
W s,2

Ω,κ
≤ C

(
‖f‖

(W s,2
Ω,κ)?

+ ‖z‖L2(RN\Ω,µ)

)
. (4.3.19)

4.4 Fractional Dirichlet Exterior Control Problem

We begin by introducing the appropriate function spaces needed to study (4.1.3). We let

ZD := L2(RN \ Ω), UD := L2(Ω).

In view of Theorem 4.3.5 the following (solution-map) control-to-state map

S : ZD → UD, z 7→ Sz = u,

is well-defined, linear and continuous. We also notice that for z ∈ ZD, we have that

u := Sz ∈ L2(RN ). As a result we can write the reduced fractional Dirichlet exterior control

problem as follows:

min
z∈Zad,D

J (z) := J(Sz) +
ξ

2
‖z‖2ZD , (4.4.1)

where ξ ≥ 0. The precise conditions on J depend on the result we would like to obtain. For

this reason they will be given in the statements of our results.

We then have the following well-posedness result for (4.4.1) and equivalently (4.1.3).

Theorem 4.4.1. Let Zad,D be a closed and convex subset of ZD. Let either ξ > 0 or Zad,D

bounded and let J : UD → R be weakly lower-semicontinuous. Then there exists a solution

z̄ to (4.4.1) and equivalently to (4.1.3). If either J is convex and ξ > 0 or J is strictly

convex and ξ ≥ 0, then z̄ is unique.

Proof. The proof uses the so-called direct-method or the Weierstrass theorem [25, Theo-

rem 3.2.1]. We notice that for J : Zad,D → R, we can construct a minimizing sequence
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{zn}n∈N (cf. [25, Theorem 3.2.1] for a construction) such that

inf
z∈Zad,D

J (z) = lim
n→∞

J (zn).

If ξ > 0 or Zad,D ⊂ ZD is bounded, then {zn}n∈N is a bounded sequence in ZD which is a

Hilbert space. Due to the reflexivity of ZD, we have that (up to a subsequence if necessary)

zn ⇀ z̄ (weak convergence) in ZD as n → ∞. Since Zad,D is closed and convex, hence is

weakly closed, we have that z̄ ∈ Zad,D.

Since S : Zad,D → UD is linear and continuous, we have that it is weakly continuous.

This implies that Szn ⇀ Sz̄ in UD as n → ∞. We have to show that (Sz̄, z̄) fulfills the

state equation according to Theorem 4.3.3. In particular we need to study the identity

ˆ
Ω
un(−∆)sv dx = −

ˆ
RN\Ω

znNsv dx, ∀ v ∈ V, (4.4.2)

as n → ∞, where un := Szn. Since un ⇀ Sz̄ =: ū in UD as n → ∞ and zn ⇀ z̄ in ZD as

n→∞, we can immediately take the limit in (4.4.2) to obtain that

ˆ
Ω
ū(−∆)sv dx = −

ˆ
RN\Ω

z̄Nsv dx, ∀ v ∈ V.

Thus (ū, z̄) ∈ UD × Zad,D fulfills the state equation in the sense of Theorem 4.3.3.

It then remains to show that z̄ is the minimizer of (4.4.1). This is a consequence

of the fact that J is weakly lower semicontinuous. Indeed, J is the sum of two weakly

lower semicontinuous functions (‖ · ‖2ZD is continuous and convex therefore weakly lower

semicontinuous).

Finally, if ξ > 0 and J is convex, then J is strictly convex (sum of a strictly convex and

convex functions). On the other hand, if J is strictly convex, then J is strictly convex. In

either case we have that J is strictly convex and thus the uniqueness of z̄ follows.
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We next derive the first order necessary optimality conditions for (4.4.1). We begin by

identifying the structure of the adjoint operator S∗.

Lemma 4.4.2. For the state equation (4.1.3b) the adjoint operator S∗ : UD → ZD is given

by

S∗w = −Nsp ∈ ZD,

where w ∈ UD and p ∈W s,2
0 (Ω) is the weak solution to the problem


(−∆)sp = w in Ω,

p = 0 in RN \ Ω.

(4.4.3)

Proof. According to the definition of S∗, we have that for every w ∈ UD and z ∈ ZD,

(w, Sz)L2(Ω) = (S∗w, z)L2(RN\Ω).

Next, testing the adjoint equation (4.4.3) with Sz and using the fact that Sz is a very-weak

solution of (4.3.1) with f = 0, we arrive at

(w, Sz)L2(Ω) = (Sz, (−∆)sp)L2(Ω) = −(z,Nsp)L2(RN\Ω) = (z, S∗w)L2(RN\Ω).

This yields the asserted result.

For the remainder of this section we will assume that ξ > 0.

Theorem 4.4.3. Let the assumptions of Theorem 4.4.1 hold. Let Z be an open set in

ZD such that Zad,D ⊂ Z. Let u 7→ J(u) : UD → R be continuously Fréchet differentiable

with J ′(u) ∈ UD. If z̄ is a minimizer of (4.4.1) over Zad,D, then the first order necessary

optimality conditions are given by

(−Nsp̄+ ξz̄, z − z̄)L2(RN\Ω) ≥ 0, ∀z ∈ Zad,D, (4.4.4)
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where p̄ ∈W s,2
0 (Ω) solves the adjoint equation


(−∆)sp̄ = J ′(ū) in Ω,

p̄ = 0 in RN \ Ω.

(4.4.5)

Equivalently we can write (4.4.4) as

z̄ = PZad,D
(

1

ξ
Nsp̄

)
, (4.4.6)

where PZad,D is the projection onto the set Zad,D. If J is convex, then (4.4.4) is a sufficient

condition.

Proof. The proof is a straightforward application of the differentiability properties of J and

the chain rule in conjunction with Theorem 4.4.2. Indeed, for a given direction h ∈ Zad,D,

the directional derivative of J is given by

J ′(z̄)h =(J ′(Sz̄), Sh)L2(Ω) + ξ(z̄, h)L2(RN\Ω)

=(S∗J ′(Sz̄), h)L2(Ω) + ξ(z̄, h)L2(RN\Ω),

where in the first step we have used that J ′(Sz̄) ∈ L(L2(Ω),R) = L2(Ω) and in the second

step we have used that S is linear and bounded, therefore S∗ is well-defined. Then using

Theorem 4.4.2 we arrive at the asserted result. From Theorem 4.2.1 we recall that Nsp̄ ∈

L2(RN \ Ω). Therefore the equivalence between (4.4.4) and (4.4.6) follows by using [25,

Theorem 3.3.5]. The proof is finished.

Remark 4.4.4 (Regularity for the Optimization Variables). We recall a rather sur-

prising result for the adjoint equation (4.4.3). The standard maximal elliptic regularity that

is known to hold for the classical Laplacian on smooth open sets does not hold in the case of
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the fractional Laplacian i.e., p does not always belong to W 2s,2(Ω). Notice that w ∈ L2(Ω)

and p = [(−∆)sD]−1w. More precisely assume that Ω is a smooth bounded open set. If

0 < s < 1
2 , then by [73, Formula (7.4)] we have that D((−∆)sD) = W 2s,2

0 (Ω) and hence,

p ∈ W 2s,2(Ω) in that case. But if 1
2 ≤ s < 1, an example has been given in [120, Remark

7.2] where D((−∆)sD) 6⊂W 2s,2(Ω), thus in that case p does not always belong to W 2s,2(Ω).

It has been shown in [33, 34] that only a local maximal elliptic regularity can be achieved.

As a result, the best known result for Nsp is as given in Theorem 4.2.1. Since PZad,D is a

contraction (Lipschitz) we can conclude that z̄ has the same regularity as Nsp̄, i.e., they

are in L2(RN \ Ω) globally and in W s,2
loc (RN \ Ω) locally. As it is well-known, in case of

the classical Laplacian, one can use a boot-strap argument to improve the regularity of

Sz̄ = ū globally. However this is not the case for the fractional exterior value problems.

We also notice that always for the case 1
2 < s < 1, Grubb [72, Section 2] (see also [73])

has introduced some fractional order Sobolev spaces where a maximal elliptic regularity is

obtained on these spaces. Of course these fractional order Sobolev spaces do not coincide

with W 2s,2(Ω). She has also proved some maximal elliptic regularity on some certain spaces

of Hölder continuous functions. We recall that our operator (−∆)sD is different from the

spectral Dirichlet fractional Laplacian (the fractional powers of the Laplace operator with

the Dirichlet boundary condition). For the latter operator, Grubb [74] has shown that a

maximal elliptic regularity can be achieved in some classical fractional order Sobolev spaces.

4.5 Fractional Robin Exterior Control Problem

In this section we study the fractional Robin exterior control problem (4.1.4b). We begin

by setting the functional analytic framework. We let

ZR := L2(RN \ Ω, µ), UR := W s,2
Ω,κ.
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Notice that dµ = κdx. In addition we assume that κ ∈ L1(RN \Ω)∩L∞(RN \Ω) and κ > 0

a.e. in RN \Ω. In view of Theorem 4.3.9 the following (solution-map) control-to-state map

S : ZR → UR, z 7→ u,

is well-defined. Moreover S is linear and continuous (by (4.3.19)). Since UR ↪→ L2(Ω) with

the embedding being continuous we can instead define

S : ZR → L2(Ω).

We can then write the so-called reduced fractional Robin exterior control problem as follows:

min
z∈Zad,R

J (z) := J(Sz) +
ξ

2
‖z‖2L2(RN\Ω,µ), (4.5.1)

where ξ ≥ 0. Here also, the precise conditions on J will be given in the statements of the

results. We have the following well-posedness result.

Theorem 4.5.1. Let Zad,R be a closed and convex subset of ZR. Let either ξ > 0 or

Zad,R ⊂ ZR bounded. Moreover, let J : L2(Ω)→ R be weakly lower-semicontinuous. Then

there exists a solution z̄ to (4.5.1) and equivalently to (4.1.4). If either J is convex and

ξ > 0 or J is strictly convex and ξ ≥ 0 then z̄ is unique.

Proof. We proceed as in the proof of Theorem 4.4.1. Let {zn}n∈N ⊂ Zad,R be a minimizing

sequence such that

inf
z∈Zad,R

J (z) = lim
n→∞

J (zn).

If ξ > 0 or Zad,R ⊂ ZR is bounded, then after a subsequence, if necessary, we have that

zn ⇀ z̄ in L2(RN \ Ω, µ) as n→∞. Now since Zad,R is a convex and closed subset of ZR,

it follows that z̄ ∈ Zad,R.
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Next we show that the pair (Sz̄, z̄) satisfies the state equation. Notice that un := Szn is

the weak solution of (4.1.4b) with boundary value zn. Thus, by definition, un ∈ W s,2
Ω,κ and

the identity

E(un, v) =

ˆ
RN\Ω

znv dµ, (4.5.2)

holds for every v ∈ W s,2
Ω,κ where we recall that E is given in (4.3.18). We also notice that

the mapping S is also bounded from ZR into W s,2
Ω,κ (by (4.3.19)). This shows that the

sequence {un}n∈N is bounded in W s,2
Ω,κ. Thus, after a subsequence, if necessary, we have

that Szn = un ⇀ Sz̄ = ū in W s,2
Ω,κ as n→∞. This implies that

lim
n→∞

(ˆ ˆ
R2N\(RN\Ω)2

(un(x)− un(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

ˆ
RN\Ω

unv dµ

)

=

ˆ ˆ
R2N\(RN\Ω)2

(ū(x)− ū(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

ˆ
RN\Ω

ūv dµ,

for every v ∈W s,2
Ω,κ. Since zn ⇀ z̄ in L2(RN \ Ω, µ) as n→∞, it follows that

lim
n→∞

ˆ
RN\Ω

znv dµ =

ˆ
RN\Ω

z̄v dµ,

for every v ∈W s,2
Ω,κ. Therefore we can pass to the limit in (4.5.2) as n→∞ to obtain that

E(ū, v) =

ˆ
RN\Ω

z̄v dx, ∀ v ∈W s,2
Ω,κ.

Thus, (Sz̄, z̄) = (ū, z̄) satisfies the state equation (4.1.4b). The rest of the steps are similar

to the proof of Theorem 4.4.1 and we omit them for brevity.
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As in the case of the fractional Dirichlet exterior control problem (4.4.1) we identify

next the adjoint of the control-to-state map S.

Lemma 4.5.2. For the state equation (4.1.4b) the adjoint operator S∗ : L2(Ω) → ZR is

given by

(S∗w, z)ZR =

ˆ
RN\Ω

pz dµ ∀z ∈ ZR,

where w ∈ L2(Ω) and p ∈W s,2
Ω,κ is the weak solution to


(−∆)sp = w in Ω,

Nsp+ κp = 0 in RN \ Ω.

(4.5.3)

Proof. Let w ∈ L2(Ω) and z ∈ ZR. Then Sz ∈ W s,2
Ω,κ ↪→ L2(Ω) with the embedding being

continuous. Then we can write

(w, Sz)L2(Ω) = (S∗w, z)ZR .

Next we test (4.5.3) with Sz to arrive at

(w, Sz)L2(Ω) =
CN,s

2

ˆ ˆ
R2N\(RN\Ω)2

(u(x)− u(y))(p(x)− p(y))

|x− y|N+2s
dxdy +

ˆ
RN\Ω

up dµ

=

ˆ
RN\Ω

zp dµ = (S∗w, z)ZR ,

where we have used the fact that u solves the state equation according to Theorem 4.3.8.

The proof is finished.

For the remainder of this section we will assume that ξ > 0. The proof of the next result

is similar to the proof of Theorem 4.4.3 and is omitted for brevity.
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Theorem 4.5.3. Let the assumptions of Theorem 4.5.1 hold. Let Z be an open set in ZR

such that Zad,R ⊂ Z. Let u 7→ J(u) : L2(Ω)→ R be continuously Fréchet differentiable with

J ′(u) ∈ L2(Ω). If z̄ is a minimizer of (4.5.1) over Zad,R, then the first necessary optimality

conditions are given by

ˆ
RN\Ω

(p̄+ ξz̄)(z − z̄) dµ ≥ 0, z ∈ Zad,R, (4.5.4)

where p̄ ∈W s,2
Ω,κ solves the adjoint equation


(−∆)sp̄ = J ′(ū) in Ω,

Nsp̄+ κp̄ = 0 in RN \ Ω.

(4.5.5)

Equivalently we can write (4.5.4) as

z̄ = PZad,R
(
− p̄
ξ

)
, (4.5.6)

where PZad,R is the projection onto the set Zad,R. If J is convex, then (4.5.4) is a sufficient

condition.

Remark 4.5.4 (Regularity of the Optimization Variables). As pointed out in The-

orem 4.4.4 (Dirichlet case) the regularity for the integral fractional Laplacian is a delicate

issue. In fact for the Robin problem, in RN \Ω we can only guarantee that p̄ ∈ L2(RN \Ω, µ).

We further emphasize that the regularity for the fractional Robin problem is still open.

Therefore due to the lack of such regularity results, we cannot use the classical boot-strap

argument to further improve the regularity of the control z̄.
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4.6 Approximation of Dirichlet Exterior Value and Control

Problems

We recall that the Dirichlet exterior value problem (4.1.2) in our case is only understood in

the very-weak sense (cf. Theorem 4.3.5). Moreover a numerical approximation of solutions

to this problem will require a direct approximation of the interaction operator Ns which is

challenging. Similar situations arise in the first order optimality conditions for the Dirichlet

control problem (4.4.4).

The purpose of this section is to not only introduce a new approach to approximate weak

and very-weak solutions to the nonhomogeneous Dirichlet exterior value problem (recall that

if z is regular enough then a very-weak solution is a weak solution, and every weak solution

is a very-weak solution, cf. Theorem 4.3.5) but also to consider a regularized fractional

Dirichlet exterior control problem. We begin by stating the regularized Dirichlet exterior

value problem. Let n ∈ N. Find un ∈W s,2
Ω,κ solving the elliptic problem


(−∆)sun = 0 in Ω,

Nsun + nκun = nκz in RN \ Ω.

(4.6.1)

Notice that the fractional regularized Dirichlet exterior problem (4.6.1) is nothing but the

fractional Robin exterior value problem (4.1.4b). We proceed by showing that the solution

un to (4.6.1) converges to a function u, as n→∞, that solves the state equation (4.1.2) in

the very weak sense (4.3.3). This is our new method to solve the non-homogeneous Dirichlet

exterior value problem. Recall that the weak formulation of (4.6.1) does not require access

to Ns (cf. Definition Theorem 4.3.8) and it is straightforward to implement.

In this section we are interested in solutions un to (4.6.1) that belong toW s,2
Ω,κ∩L2(RN\Ω)
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which is endowed with the norm

‖u‖
W s,2

Ω,κ∩L2(RN\Ω)
:=

(
‖u‖2

W s,2
Ω,κ

+ ‖u‖2L2(RN\Ω)

) 1
2

. (4.6.2)

In addition, in our application we shall take κ such that its support supp[κ] ⊂ RN \ Ω has

a positive Lebesgue measure. For this reason we shall assume the following.

Assumption 4.6.1. We assume that κ ∈ L1(RN \ Ω) ∩ L∞(RN \ Ω) and satisfies κ > 0

almost everywhere in K := supp[κ] ⊂ RN \ Ω, where the Lebesgue measure |K| > 0.

It follows from Theorem 4.6.1 that

ˆ
RN\Ω

κ dx > 0.

To show the existence of weak solutions to the system (4.6.1) that belong to W s,2
Ω,κ ∩

L2(RN \ Ω), we need some preparation.

Lemma 4.6.2. Assume that Theorem 4.6.1 holds. Then

‖u‖W :=

(ˆ ˆ
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x− y|N+2s
dxdy +

ˆ
RN\Ω

|u|2 dx

) 1
2

(4.6.3)

defines an equivalent norm on W s,2
Ω,κ ∩ L2(RN \ Ω).

Proof. Firstly, it is readily seen that there is a constant C > 0 such that

‖u‖W ≤ C‖u‖W s,2
Ω,κ∩L2(RN\Ω)

for all u ∈W s,2
Ω,κ ∩ L

2(RN \ Ω). (4.6.4)

Secondly, we claim that there is a constant C > 0 such that

‖u‖
W s,2

Ω,κ∩L2(RN\Ω)
≤ C‖u‖W for all u ∈W s,2

Ω,κ ∩ L
2(RN \ Ω). (4.6.5)
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It is clear that

ˆ
RN\Ω

|u|2 dµ ≤ ‖κ‖L∞(RN\Ω)

ˆ
RN\Ω

|u|2 dx. (4.6.6)

It suffices to show that there is a constant C > 0 such that for every u ∈W s,2
Ω,κ∩L2(RN \Ω),

ˆ
Ω
|u|2 dx ≤ C

(ˆ ˆ
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x− y|N+2s
dxdy +

ˆ
RN\Ω

|u|2 dx

)
. (4.6.7)

We prove (4.6.7) by contradiction. Assume to the contrary that for every n ∈ N, there

exists a sequence {un}n∈N ⊂W s,2
Ω,κ ∩ L2(RN \ Ω) such that

ˆ
Ω
|un|2 dx > n

(ˆ ˆ
R2N\(RN\Ω)2

|un(x)− un(y)|2

|x− y|N+2s
dxdy +

ˆ
RN\Ω

|un|2 dx

)
. (4.6.8)

By possibly dividing (4.6.8) by ‖un‖2L2(Ω) we may assume that ‖un‖2L2(Ω) = 1 for every

n ∈ N. Hence, by (4.6.8), there is a constant C > 0 (independent of n) such that for every

n ∈ N,

ˆ ˆ
R2N\(RN\Ω)2

|un(x)− un(y)|2

|x− y|N+2s
dxdy +

ˆ
RN\Ω

|un|2 dx ≤ C. (4.6.9)

Since κ ∈ L∞(RN \ Ω), (4.6.9) and (4.6.6) imply that for every n ∈ N,

ˆ
RN\Ω

|un|2 dµ ≤ C. (4.6.10)

Now (4.6.9), (4.6.10) together with ‖un‖2L2(Ω) = 1 imply that {un}n∈N is a bounded sequence

in the space W s,2
Ω,κ ∩L2(RN \Ω). Therefore, after passing to a subsequence, if necessary, we

may assume that un converges weakly to some u ∈W s,2
Ω,κ ∩L2(RN \Ω) and strongly to u in
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L2(Ω), as n → ∞ (as the embedding W s,2
Ω,κ ↪→ L2(Ω) is compact by Theorem 4.3.7(c)). It

follows from (4.6.8) and the fact that ‖un‖2L2(Ω) = 1 that

lim
n→∞

ˆ ˆ
R2N\(RN\Ω)2

|un(x)− un(y)|2

|x− y|N+2s
dxdy = 0 and lim

n→∞

ˆ
RN\Ω

|un|2 dx = 0.

These identities imply that un|RN\Ω converges strongly to zero in L2(RN \ Ω) as n → ∞,

and after passing to a subsequence, if necessary, we have that

lim
n→∞

|un(x)− un(y)| = 0 for a.e. (x, y) ∈ R2N \ (RN \ Ω)2, (4.6.11)

and

un → 0 a.e. in RN \ Ω as n→∞. (4.6.12)

More precisely, (4.6.11) implies that



limn→∞ |un(x)− un(y)| = 0 for a.e. (x, y) ∈ Ω× Ω,

limn→∞ |un(x)− un(y)| = 0 for a.e. (x, y) ∈ Ω× (RN \ Ω),

limn→∞ |un(x)− un(y)| = 0 for a.e. (x, y) ∈ (RN \ Ω)× Ω.

(4.6.13)

Using (4.6.13), we get that un converges a.e. to some constant function c in RN as n→∞.

From (4.6.12) and the uniqueness of the limit, we have that c = 0 a.e. in RN . Since

(after passing to a subsequence, if necessary) un converges a.e. to u in Ω as n → ∞,

the uniqueness of the limit also implies that c = u = 0 a.e. on Ω. On the other hand,

‖u‖2L2(Ω) = limn→∞ ‖un‖2L2(Ω) = 1, and this is a contradiction. Hence, (4.6.8) is not possible

and we have shown (4.6.7). Finally the lemma follows from (4.6.4) and (4.6.5). The proof

is finished.
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The following theorem is the main result of this section.

Theorem 4.6.3 (Approximation of Solutions to the Dirichlet Problem). Assume

that Theorem 4.6.1 holds. Then the following assertions hold.

(a) Let z ∈ W s,2(RN \ Ω) and un ∈ W s,2
Ω,κ ∩ L2(RN \ Ω) be the weak solution of (4.6.1).

Let u ∈W s,2(RN ) be the weak solution to the state equation (4.1.3b). Then there is

a constant C > 0 (independent of n) such that

‖u− un‖L2(RN ) ≤
C

n
‖u‖W s,2(RN ). (4.6.14)

In particular un converges strongly to u in L2(RN ) as n→∞.

(b) Let z ∈ L2(RN \Ω) and un ∈W s,2
Ω,κ∩L2(RN \Ω) be the weak solution of (4.6.1). Then

there exist a subsequence that we still denote by {un}n∈N and a function ũ ∈ L2(RN )

such that un ⇀ ũ in L2(RN ) as n→∞, and ũ satisfies

ˆ
Ω
ũ(−∆)sv dx = −

ˆ
RN\Ω

ũNsv dx, (4.6.15)

for all v ∈ V .

Remark 4.6.4 (Convergence to a Very-Weak Solution). Notice that Part (a) of

Theorem 4.6.3 implies strong convergence to a weak solution (with rate). On the other

hand, Part (b) “almost” implies weak convergence to a very-weak solution (we still do not

know if ũ|RN\Ω = z). We emphasize that such an approximation of very-weak solutions

using the Robin problem, to the best of our knowledge, is open even for the classical case

s = 1 when the boundary function just belongs to L2(∂Ω).

Proof of Theorem 4.6.3. (a) Let z ∈ W s,2(RN \ Ω). Firstly, recall that under our as-

sumption W s,2(RN \ Ω) ↪→ L2(RN \ Ω) ↪→ L2(RN \ Ω, µ). Secondly, consider the system

102



(4.6.1). A weak solution is a function un ∈W s,2
Ω,κ ∩ L2(RN \ Ω) such that the identity

CN,s
2

ˆ ˆ
R2N\(RN\Ω)2

(un(x)− un(y))(v(x)− v(y))

|x− y|N+2s
dxdy

+ n

ˆ
RN\Ω

unv dµ = n

ˆ
RN\Ω

zv dµ, (4.6.16)

holds for every v ∈W s,2
Ω,κ ∩L2(RN \Ω). Proceeding as in the proof of Theorem 4.3.9 we can

easily deduce that for every n ∈ N, there is a unique un ∈ W s,2
Ω,κ ∩ L2(RN \ Ω) satisfying

(4.6.16).

For v, w ∈W s,2
Ω,κ ∩ L2(RN \ Ω) we let

En(v, w) :=
CN,s

2

ˆ ˆ
R2N\(RN\Ω)2

(v(x)− v(y))(w(x)− w(y))

|x− y|N+2s
dxdy + n

ˆ
RN\Ω

vw dµ.

We notice that proceeding as in the proof of Theorem 4.6.2 we can deduce that there is a

constant C > 0 such that

CN,s
2

ˆ ˆ
R2N\(RN\Ω)2

|un(x)− un(y)|2

|x− y|N+2s
dxdy + n

ˆ
RN\Ω

|un|2 dx ≤ CEn(un, un). (4.6.17)

Next, let u ∈ W s,2(RN ) be the weak solution of (4.3.1) and v ∈ W s,2
Ω,κ ∩ L2(RN \ Ω).
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Using the integration by parts formula (4.2.5) we get that

En(u− un, v) =

ˆ
Ω
v(−∆)s(u− un) dx+

ˆ
RN\Ω

vNs(u− un) dx

+ n

ˆ
RN\Ω

v (u− un) dµ

=

ˆ
Ω
v(−∆)s(u− un) dx+

ˆ
RN\Ω

vNsu dx

−
ˆ
RN\Ω

v
(
Nsun + nκ(un − z)

)
dx

=

ˆ
RN\Ω

vNsu dx. (4.6.18)

Taking v = u − un as a test function in (4.6.18) and using (4.6.17), we get that there is a

constant C > 0 (independent of n) such that

n‖u− un‖2L2(RN\Ω) ≤ En(u− un, u− un) =

ˆ
RN\Ω

(u− un)Nsu dx

≤ ‖u− un‖L2(RN\Ω)‖Nsu‖L2(RN\Ω)

≤ C‖u− un‖L2(RN\Ω)‖u‖W s,2(RN ).

We have shown that there is a constant C > 0 (independent of n) such that

‖u− un‖L2(RN\Ω) ≤
C

n
‖u‖W s,2(RN ). (4.6.19)

Next, observe that

‖u− un‖L2(Ω) = sup
η∈L2(Ω)

∣∣∣´Ω(u− un)η dx
∣∣∣

‖η‖L2(Ω)
. (4.6.20)
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For any η ∈ L2(Ω), let w ∈W s,2
0 (Ω) be the weak solution of the Dirichlet problem

(−∆)sw = η in Ω, w = 0 in RN \ Ω. (4.6.21)

It follows from Theorem 4.3.2 that there is a constant C > 0 such that

‖w‖W s,2(RN ) ≤ C‖η‖L2(Ω). (4.6.22)

Since w ∈W s,2
0 (Ω), then using (4.6.18) we get that

ˆ
Ω

(u− un)(−∆)sw dx

=
CN,s

2

ˆ ˆ
R2N\(RN\Ω)2

((u− un)(x)− (u− un)(y))(w(x)− w(y))

|x− y|N+2s
dxdy

−
ˆ
RN\Ω

(u− un)Nsw dx

=En(u− un, w)−
ˆ
RN\Ω

(u− un)Nsw dx

=

ˆ
RN\Ω

wNsu dx−
ˆ
RN\Ω

(u− un)Nsw dx

=−
ˆ
RN\Ω

(u− un)Nsw dx.

It follows from the preceding identity, (4.6.19) and (4.6.22) that there is a constant C > 0
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such that

∣∣∣∣ˆ
Ω

(u− un)(−∆)sw dx

∣∣∣∣ =

∣∣∣∣∣
ˆ
RN\Ω

(u− un)Nsw dx

∣∣∣∣∣
≤‖u− un‖L2(RN\Ω)‖Nsw‖L2(RN\Ω)

≤C
n
‖u‖W s,2(RN )‖w‖W s,2(RN )

≤C
n
‖u‖W s,2(RN )‖η‖L2(Ω). (4.6.23)

Using (4.6.20) and (4.6.23) we get that

‖u− un‖L2(Ω) ≤
C

n
‖u‖W s,2(RN ). (4.6.24)

Now the estimate (4.6.14) follows from (4.6.19) and (4.6.24). Observe that it follows from

(4.6.14) that un → u in L2(RN ) as n→∞ and this completes the proof of Part (a).

(b) Now let z ∈ L2(RN \ Ω) ↪→ L2(RN \ Ω, µ). Notice that {un}n∈N satisfies (4.6.16).

Proceeding as in the proof of Theorem 4.6.2 we can deduce that there is a constant C > 0

(independent of n) such that

n‖un‖2L2(RN\Ω) ≤ CEn(un, un) ≤ nC‖κ‖L∞(RN\Ω)‖z‖L2(RN\Ω)‖un‖L2(RN\Ω),

and this implies that

‖un‖L2(RN\Ω) ≤ C‖z‖L2(RN\Ω). (4.6.25)
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Now we proceed as in the proof of (4.6.24). As in (4.6.20) we have that

‖un‖L2(Ω) = sup
η∈L2(Ω)

∣∣∣´Ω unη dx∣∣∣
‖η‖L2(Ω)

. (4.6.26)

Let η ∈ L2(Ω) and w ∈ W s,2
0 (Ω) the weak solution of (4.6.21). Since w ∈ W s,2

0 (Ω), then

using (4.6.18) we have that

ˆ
Ω
un(−∆)sw dx

=
CN,s

2

ˆ ˆ
R2N\(RN\Ω)2

(un(x)− un(y))(w(x)− w(y))

|x− y|N+2s
dxdy −

ˆ
RN\Ω

unNsw dx

=−
ˆ
RN\Ω

unNsw dx.

It follows from the preceding identity, (4.6.25) and (4.6.22) that there is a constant C > 0

such that

∣∣∣∣ˆ
Ω
un(−∆)sw dx

∣∣∣∣ =

∣∣∣∣∣
ˆ
RN\Ω

unNsw dx

∣∣∣∣∣ ≤ ‖un‖L2(RN\Ω)‖Nsw‖L2(RN\Ω)

≤C‖z‖L2(RN\Ω)‖w‖W s,2(RN ). (4.6.27)

Using (4.6.25), (4.6.27) and (4.6.22) we get that there is a constant C > 0 (independent of

n) such that

‖un‖L2(Ω) ≤ C‖z‖L2(RN\Ω). (4.6.28)

Combining (4.6.25) and (4.6.28) we get that

‖un‖L2(RN ) ≤ C‖z‖L2(RN\Ω). (4.6.29)
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Hence, the sequence {un}n∈N is bounded in L2(RN ). Thus, after a subsequence, if necessary,

we have that un converges weakly to some ũ in L2(RN ) as n→∞.

Using (4.6.16) we get that for every v ∈ V := {v ∈W s,2
0 (Ω) : (−∆)sv ∈ L2(Ω)},

CN,s
2

ˆ ˆ
R2N\(RN\Ω)2

(un(x)− un(y))(v(x)− v(y))

|x− y|N+2s
dxdy = 0. (4.6.30)

Using the integration by parts formula (4.2.5) we can deduce that

CN,s
2

ˆ ˆ
R2N\(RN\Ω)2

(un(x)− un(y))(v(x)− v(y))

|x− y|N+2s
dxdy

=

ˆ
Ω
un(−∆)sv dx+

ˆ
RN\Ω

unNsv dx, (4.6.31)

for every v ∈ V . Combining (4.6.30) and (4.6.31) we get that the identity

ˆ
Ω
un(−∆)sv dx+

ˆ
RN\Ω

unNsv dx = 0, (4.6.32)

holds for every v ∈ V . Passing to the limit in (4.6.32) as n→∞, we obtain that

ˆ
Ω
ũ(−∆)sv dx+

ˆ
RN\Ω

ũNsv dx = 0,

for every v ∈ V . We have shown (4.6.15) and the proof is finished.

Toward this end, for ξ ≥ 0 we introduce the regularized fractional Dirichlet control

problem:

min
u∈UR,z∈ZR

J(u) +
ξ

2
‖z‖2L2(RN\Ω), (4.6.33a)
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subject to the regularized exterior value problem (Robin problem): Find un ∈ UR solving


(−∆)su = 0 in Ω

Nsu+ nκu = nκz in RN \ Ω,

(4.6.33b)

and the control constraints

z ∈ Zad,R. (4.6.33c)

Here ZR := L2(RN \ Ω), Zad,R is a closed and convex subset of ZR and UR := W s,2
Ω,κ ∩

L2(RN \ Ω). We again remark that (4.6.33) is nothing but the fractional Robin exterior

control problem.

Theorem 4.6.5 (Approximation of the Dirichlet Control Problem). The regularized

control problem (4.6.33) admits a minimizer (zn, u(zn)) ∈ Zad,R × (W s,2
Ω,κ ∩ L2(RN \ Ω)).

Let ZR = W s,2(RN \ Ω) and Zad,R ⊂ ZR be bounded. Then for any sequence {n`}∞`=1

with n` → ∞, there exists a subsequence still denoted by {n`}∞`=1 such that zn` ⇀ z̃ in

W s,2(RN \ Ω), u(zn`) → ũ in L2(RN ) as n` → ∞ and (z̃, ũ) solves the Dirichlet control

problem (4.1.3) with Zad,D replaced by Zad,R.

Proof. Since the regularized control problem (4.6.33) is nothing but the Robin control

problem therefore the existence of minimizers follows by directly using Theorem 4.5.1.

Following the proof of Theorem 4.5.1 and using the fact that Zad,R is a bounded subset

of the reflexive Banach space W s,2(RN \Ω), after a subsequence, if necessary, we have that

zn` ⇀ z̃ in W s,2(RN \ Ω) as n` → ∞. Now since Zad,R is closed and convex, then it is

weakly closed. Thus z̃ ∈ Zad,R.

Following the proof of Theorem 4.6.3(a) we can deduce that there exists a subsequence

{un`} such that un` → ũ in L2(RN ) as n` → ∞ and ũ ∈ W s,2(RN ). Combining this

convergence with the aforementioned convergence of zn` we can conclude that (z̃, ũ) ∈
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Zad,R ×W s,2(RN ) solves the Dirichlet exterior value problem (4.1.3b).

It then remains to show that (z̃, ũ) is a minimizer of (4.1.3). Let (z′, u′) be any minimizer

of (4.1.3). Let us consider the regularized state equation (4.6.33b) but with boundary datum

z′. We denote the solution of the resulting state equation by u′n` . By using the same limiting

argument as above we can select a subsequence such that u′n` → u′ in L2(RN ) as n` →∞.

Letting j(z, u) := J(u) + ξ
2‖z‖

2
L2(RN\Ω)

, it then follows that

j(z′, u′) ≤ j(z̃, ũ) ≤ lim inf
n`→∞

j(zn` , un`) ≤ lim inf
n`→∞

j(z′, u′n`) = j(z′, u′),

where the second inequality is due to the weak-lower semicontinuity of J . The third in-

equality is due to the fact that {(zn` , un`)} is a sequence of minimizers for (4.6.33). The

proof is finished.

We conclude this section by writing the stationarity system corresponding to (4.6.33):

Find (z, u, p) ∈ Zad,R × (W s,2
Ω,κ ∩ L2(RN \ Ω))× (W s,2

Ω,κ ∩ L2(RN \ Ω)) such that



E(u, v) =

ˆ
RN\Ω

nκzv dx,

E(w, p) =

ˆ
Ω
J ′(u)w dx,

ˆ
RN\Ω

(nκp+ ξz)(z̃ − z) dx ≥ 0,

(4.6.34)

for all (z̃, v, w) ∈ Zad,R × (W s,2
Ω,κ ∩ L2(RN \ Ω))× (W s,2

Ω,κ ∩ L2(RN \ Ω)).

4.7 Numerical Approximations

The purpose of this section is to introduce numerical approximations of the problems we

have considered so far. We emphasize that the fractional PDEs are intrinsically expensive,

since the underlying coefficient matrices require approximation of integrals with singular
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kernels and the resulting coefficient matrices are dense. In addition, the fractional control

problems can be prohibitively expensive since they not only require solving the nonlocal

state equation but also the nonlocal adjoint equation and in case of Dirichlet control problem

one needs to approximate the nonlocal normal derivative for the adjoint variable to evaluate

the control variable (4.4.6). The presented approach is a first of its kind to numerically

solve the fractional Robin problem and to approximate the Dirichlet problem by the Robin

problem. Further details on the numerical analysis of the underlying PDEs, the control

problem and solvers for the fractional PDEs will be part of forthcoming work.

The rest of the section is organized as follows: In Subsection 4.7.1 we begin with a finite

element approximation of the Robin problem (4.6.1) which is the same as the regularized

Dirichlet problem. We approximate the Dirichlet problem using the Robin problem. In Sub-

section 4.7.2 we introduce an external source identification problem where we clearly see the

difference between the nonlocal case and the classical case (s ∼ 1). Finally, Subsection 4.7.3

is devoted to the optimal control problems.

4.7.1 Approximation of a Nonhomogeneous Dirichlet Problem via a Robin

Problem

In view of Theorem 4.6.3 we can approximate the Dirichlet problem with the help of the

Robin (regularized Dirichlet) problem (4.6.1). Therefore we begin by introducing a discrete

scheme for the Robin problem. Let Ω̃ be a bounded open set that contains Ω, the support of

the control/source z and the support of κ. We consider a conforming simplicial triangulation

of Ω and Ω̃ \ Ω such that the resulting partition remains admissible. We shall assume that

the support of z and κ is contained in Ω̃ \ Ω. We let our finite element space Vh (on Ω̃)

to be a set of continuous piecewise linear functions. Then the discrete (weak) version of
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(4.6.33b) with nonzero right-hand-side is given as follows: Find uh ∈ Vh such that

ˆ ˆ
R2N\(RN\Ω)2

(uh(x)− uh(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

ˆ
Ω̃\Ω

nκuhv dx

= 〈f, v〉
(W s,2

Ω,κ∩L2(RN\Ω))?,W s,2
Ω,κ∩L2(RN\Ω)

+

ˆ
Ω̃\Ω

nκzv dx ∀v ∈ Vh.

(4.7.1)

We approximate the double integral over R2N \ (RN \ Ω)2 by using the approach from

[1,2]. The remaining integrals are computed using numerical quadrature which is accurate

for polynomials of degree less than and equal to 4. All implementations are carried out

in Matlab and the discrete system of equations corresponding to the state and adjoint

equations are solved using direct solvers. Note that iterative solvers for the fractional

Robin problem are part of our future work.

We next consider an example that has been taken from [3]. Let Ω = B0(1/2) ⊂ R2. Our

goal is to find u solving


(−∆)su = 2 in Ω,

u(·) = 2−2s

Γ(1+s)2

(
1− | · |2

)s
+

in RN \ Ω.

The exact solution in this case is given by

u(x) = u1(x) + u2(x) =
2−2s

Γ(1 + s)2

((
1− |x|2

)s
+

+

(
1

4
− |x|2

)s
+

)
,

where u1 and u2 solve the problems


(−∆)su1 = 1 in Ω,

u1 = 2−2s

Γ(1+s)2

(
1− | · |2

)s
+

in RN \ Ω,


(−∆)su2 = 1 in Ω,

u2 = 0 in RN \ Ω.

(4.7.2)
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We let Ω̃ = B0(3/2). We next approximate (4.7.2) using (4.7.1) and we set κ = 1 on its

support. At first we fix s = 0.5 and the Degrees of Freedom (DoFs) to be DoFs = 2920. For

this configuration, we study the L2(Ω) error ‖u− uh‖L2(Ω) with respect to n in Figure 4.2

(left). As expected, from Theorem 4.6.3(a) we observe an approximation rate of 1/n.

Next for a fixed s = 0.5, we check the stability of our scheme with respect to n as we

refine the mesh. We have plotted the L2-error as we refine the mesh (equivalently increase

DOFs) for n = 1e2, 1e3, 1e4, 1e5. We notice that the error remains stable with respect to

n and we observe the following convergence rate with respect to the DoFs:

‖u− uh‖L2(Ω) ≈ (DoFs)−
1
2 .

In the right panel we have shown the L2-error for a fixed n = 1e5 but for various s = 0.2,

0.4, 0.6, 0.8. When 0 < s < 1
2 we have observed a rate of (DoFs)−

1
2(s+ 1

2) and for 1
2 ≤ s < 1

we observe a convergence rate of (DoFs)−
1
2 .

4.7.2 External Source Identification Problem

We next consider an inverse problem to identify a source that is located outside the observa-

tion domain Ω. The optimality system is as given in (4.6.34) where we have approximated

the Dirichlet problem by the Robin problem. We use the continuous piecewise linear finite

element discretization for all the optimization variables: state (u), control (z) and adjoint

(p). We choose our objective function as

j(u, z) = J(u) +
ξ

2
‖z‖2L2(RN\Ω), with J(u) :=

1

2
‖u− ud‖2L2(Ω),

and we let Zad,R := {z ∈ L2(RN \ Ω) : z ≥ 0, a.e. in Ω̂} where Ω̂ is the support set

of the control z that is contained in Ω̃ \ Ω. Moreover ud : L2(Ω) → R is the given data

(observations). All the optimization problems below are solved using the projected-BFGS
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Figure 4.2: Left panel: Let s = 0.5 and DoFs = 2920 be fixed. We let κ = 1 and consider
the L2-error between the actual solution u to the Dirichlet problem and its approximation
uh which solves the Robin problem. We have plotted the error with respect to n. The
solid line denotes a reference line and the actual error. We observe a rate of 1/n which
confirms our theoretical result (4.6.14). Middle panel: Let s = 0.5 be fixed. For each

n = 1e2, 1e3, 1e4, 1e5 we have plotted the L2-error with respect to the degrees of freedom
(DOFs) as we refine the mesh. Notice that the error is stable with respect to n. Moreover,

the observed rate of convergence is (DoFs)−
1
2 and is independent of n. Right panel: Let

n = 1e5 be fixed. We plot the L2-error with respect to the DOFs for various values of s.

The observed convergence rate is (DoFs)−
1
2(s+ 1

2) for 0 < s < 1
2 and the observed rate is

(DoFs)−
1
2 for 1

2 ≤ s < 1.

method with Armijo line search.

Our computational setup is shown in Figure 4.3. The centered square region is Ω =

[−0.4, 0.4]2 and the region inside the outermost ring is Ω̃ = B0(3/2). The smaller square

inside Ω̃ \ Ω is Ω̂ which is the support of the source/control. The right panel in Figure 4.3

shows a finite element mesh with DoFs = 6103.

We define ud as follows. For z = 1, we first solve the state equation for ũ (first equation

in (4.6.34)). We then add a normally distributed random noise with mean zero and standard

deviation 0.02 to ũ. We call the resulting expression as ud. Furthermore, we set κ = 1, and

n = 1e5.

Our goal is then to identify the source z̄h. In Figure 4.4, we first show the behavior of

optimal z̄h for different values of the regularization parameter ξ = 1e − 1 (4), 1e − 2 (4),

1e − 4 (4), 1e − 8 (2), 1e − 10 (2). The numbers in the bracket denote the total number

of iterations that the BFGS has taken to achieve a stopping tolerance (for the projected
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Figure 4.3: Left: computational domain where the inner square is Ω, the region inside

the outer circle is Ω̃ and the outer square inside Ω̃ \ Ω is Ω̂ which is the region where the
source/control is supported. Right: A finite element mesh.

gradient) of 1e−7. Notice that the Armijo line search has remained inactive in these cases.

As expected the larger is the value of ξ, the smaller is the magnitude of z̄h, and this behavior

saturates at ξ = 1e− 8.

Figure 4.4: External source identification problem. The panels show the behavior of z̄h with
respect to the regularization parameter ξ: top row from left to right ξ = 1e−1, 1e−2, 1e−4;
bottom row from left to right: ξ = 1e− 8, 1e− 10. As it is expected, larger is ξ, smaller is
the magnitude of z̄h, but this behavior saturates at ξ = 1e− 8.
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Next, for a fixed ξ = 1e − 8, Figure 4.5 shows the optimal z̄h for s = 0.1 (4), 0.6 (2),

0.7 (2), 0.8 (2), 0.9 (2). The numbers in the bracket again denote the total number of

iterations that the BFGS has taken to achieve a stopping tolerance (for the projected

gradient) of 1e−7. Notice that the Armijo line search has remained inactive in these cases.

We notice that for large s, z̄h ≡ 0. This is expected as larger the s is, the more close we

are to the classical Poisson problem case and we know that we cannot impose the external

condition in that case.

Figure 4.5: The panels show the behavior of z̄h as we vary the exponent s. Top row from
left to right: s = 0.1, 0.6, 0.7. Bottom row from left to right: s = 0.8, 0.9. For smaller
values of s, the recovery of z̄h is quite remarkable. However, for larger values of s, z̄h ≡ 0
as expected, the behavior of ūh for large s is close to the classical Poisson problem which
does not allow external sources.

4.7.3 Dirichlet Control Problem

We next consider two Dirichlet control problems. The setup is similar to Subsection 4.7.2

except now we set ud ≡ 1.

Example 4.7.1. The computational setup for the first example is shown in Figure 4.6. Let
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Ω = B0(1/2) (the region insider the innermost ring) and the region inside the outermost

ring is Ω̃ = B0(3/2). The annulus inside Ω̃\Ω is Ω̂ which is the support of the control. The

right panel in Figure 4.6 shows a finite element mesh with DoFs = 6069.

In Figures 4.7 and 4.8 we have shown the optimization results for s = 0.2 (14) and

s = 0.8 (4), respectively. Here again, the numbers in the bracket denote the total number

of iterations that the BFGS has taken to achieve a stopping tolerance (for the projected

gradient) of 1e−7. Notice that the Armijo line search has remained inactive in these cases.

The top row shows the desired state ud (left) and the optimal state ūh (right). The bottom

row shows the optimal control z̄h (left) and the optimal adjoint variable p̄h (right). We

notice that in both cases we can approximate the desired state to a high accuracy but the

approximation is slightly better for smaller s, especially close to the boundary. This is

to be expected as for large values of s the regularity of the adjoint variable deteriorates

significantly (cf. Theorem 4.4.4).
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Figure 4.6: Left: computational domain where the inner circle is Ω, the region inside the

outer circle is Ω̃, and the annulus inside Ω̃ \Ω is Ω̂ which is the region where the control is
supported. Right: A finite element mesh.

Example 4.7.2. The computational setup for our final example is shown in Figure 4.9.

The M-shape region is Ω and the region inside the outermost ring is Ω̃ = B0(0.6). The

smaller region inside Ω̃ \ Ω is Ω̂ which is the support of the control. The right panel in

Figure 4.6 shows a finite element mesh with DoFs = 4462.

In Figure 4.10 we have shown the optimization results for s = 0.8 (370). Again, the
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Figure 4.7: Example 1, s = 0.2: Top row: Left - Desired state ud; Right - Optimal state
ūh. Bottom row: Left - Optimal control z̄h, Right - Optimal adjoint p̄h.

number in the bracket denotes the total number of iterations that the BFGS has taken

to achieve a stopping tolerance (for the projected gradient) of 1e − 7. Notice for this

example, during most of the iterations, the Armijo line search has remained inactive but it

got activated during a few number of iterations and has remained active for up to 10 steps.

The top row shows the desired state ud (left) and the optimal state ūh (right). The bottom

row shows the optimal control z̄h (left) and the optimal adjoint variable p̄h (right). Even

though the control is applied in an extremely small region we can still match the desired

state in certain parts of Ω.

4.8 Discussion

There are many phenomenon in nature which can be modeled using optimization problems

constrained by PDEs. These models allow identification of source, or an enforcement of

control using the experimental data. Classical models allow placement of the control or
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Figure 4.8: Example 1, s = 0.8: Top row: Left - Desired state ud; Right - Optimal state
ūh. Bottom row: Left - Optimal control z̄h, Right - Optimal adjoint p̄h.
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Figure 4.9: Left: computational domain where the M-shaped region is Ω, the region inside

the outer circle is Ω̃ and the region inside Ω̃ \ Ω is Ω̂ which is the region where control is
supported. Right: A finite element mesh.

source only on the boundary or inside the observation domain. The question that is of

particular interest to us is the placement of source/control outside and away from the

observation domain. Classical models cannot be used for this purpose as they stand as

they involve local operators, which have a limited reach. In the current work, we have
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Figure 4.10: Example 3, s = 0.8: Top row: Left - Desired state ud; Right - Optimal state
ūh. Bottom row: Left - Optimal control z̄h, Right - Optimal adjoint p̄h.

introduced a new model of inverse problems constrained by elliptic fractional PDEs, which

involve nonlocal operators. This gives us the flexibility to incorporate a source/control which

is external (and disjoint) to the observation domain. In this context, we have introduced

the Dirichlet, Robin and Neumann exterior control problems. In particular, we have studied

the Dirichlet and Robin exterior control problems. The case of Neumann exterior control

problem follows very similarly. The fractional elliptic equation that we have considered is

the fractional Poisson equation, which involves the fractional Laplacian operator.

For this class of inverse problems we have introduced the notion of very-weak solutions

to the Dirichlet exterior problem and weak solutions of the Robin exterior problem. These

notions can be used for the optimal control problem. Furthermore, approximating the weak

solution of the Dirichlet exterior value problem requires approximation of the nonlocal

normal derivative, which is quite challenging. We have introduced a way around this by

considering a suitable Robin exterior control problem to approximate the weak solutions

of nonhomogeneous Dirichlet exterior value problem. Consequently, we have approximated
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the solution to the Dirichlet exterior control problem by a Robin exterior control problem,

along with an experimental rate of convergence.

We have shown several numerical experiments where we have discussed both external

source identification as well as external control problems. In particular, we have established

that for smaller values of the fractional exponent, we are better able to locate the external

source. Similarly, a smaller exponent also allows for a better exterior control. The examples

that we have considered in this work have been synthetically generated. Application of this

work to real life applications with actual experimental data would be part of our future

work.
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Chapter 5: Conclusions and Discussion

In this study, we have motivated the use of nonlocal operators in the context of 3 different

problems connected by nonlocal operators. The two nonlocal operators we have considered

are the fractional Laplacian and the Caputo fractional time derivative.

At first, in Chapter 2 we have considered an inverse problem from imaging science,

where we have proposed the use of fractional Laplacian as a regularizer to improve the

reconstruction quality. We have compared this regularization with the state of the art total

variation regularization. The inevitable question that follows with the use of regularization

is finding the strength of regularization, for which there is no state of the art method. To

address this challenge, we have developed a deep learning based algorithmic framework

of a Bilevel Optimization Neural Network, BONNet, to learn the optimal regularization

strength. We have considered tomographic reconstruction as our model problem, and shown

an improvement in the reconstruction quality, specially due to the fractional Laplacian

regularization, where the optimal regularization strength is determined via BONNet. The

fractional Laplacian regularization, along with the regularization strength finding BONNet

algorithm, has turned out to be highly efficient in reconstructing internal features of the

sample, specially for limited and noise-filled data. We also remark that this is the first

instance where a neural network has been used to determine the fractional exponent of the

fractional Laplacian, which contributes to the strength of this regularization. The details

of study can be found in Chapter 2, as well as [8].

Next, in Chapter 3 we have further explored the avenue of enriching deep neural net-

works via nonlocal operators. We have developed a novel continuous model and stable

discretization of DNNs that incorporate history. We have accomplished this via an optimal

control formulation of a DNN bestowed with Caputo fractional time derivative. We have

presented the algorithmic framework of this network, which we call fractional-DNN. We
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expect keeping track of history in this manner can alleviate the vanishing gradient problem,

strengthen feature propagation, encourage feature reuse and reduce the number of unknown

parameters. We have considered various datasets and shown an improvement in the classi-

fication accuracy via fractional-DNN compared to the standard Residual Neural Network.

We have also numerically demonstrated the improvement in the vanishing gradient prob-

lem, as well as flow of features as a dynamical system. The benefit of fractional-DNN is

that it has a rigorous mathematical foundation and framework which establishes a deeper

understanding of DNNs with memory. This enhances their applicability to scientific and

engineering applications. The details of study can be found in Chapter 3, as well as [9].

Lastly, in Chapter 4 we have presented a new class of inverse problems in which the

control/source is located external to the observation domain. In contrast, classical diffusion

models only allow control or source placement either inside the observation domain or

on its boundary ∂Ω. This can be prohibitive for high consequence applications such as

magnetic drug targeting where the control (magnets) are away from the boundary [13,14].

We achieve this feat via the nonlocality of the fractional Laplacian operator. We have shown

via numerical examples that a smaller exponent of the fractional Laplacian leads to a better

detection of the external source, as well as a better external control. In contrast, we also

observe that larger values of the fractional exponent, which approach the classical models,

cannot facilitate the external location of the control and source. The details of study can

be found in Chapter 4, as well as [10].

Thus forth the purpose of this study has been to introduce novel ideas of using nonlocal

operators in inverse problems as well as deep learning. We have presented two algorithmic

frameworks, namely BONNet and fractional-DNN, as well a mathematically rigorous model

of handling external control or source. We remark that our work has already been adapted

for further scientific pursuits and investigations. Consider, e.g. our work on the fractional

Laplacian regularization. One particular case of our work, dealing with image denoising in a

bilevel optimization framework, has been expanded in [28], where the authors assume access

to the true solution (i.e. the denoised image). In contrast, only the training phase of our
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algorithm needs access to the true solution, which, in fact, can be synthetically generated

in the absence of true solution. Our BONNet architecture can thus be used for image

reconstruction/denoising even in the absence of true solution. Another direct adaptation

of our work can be seen in [19], where the authors have considered the external optimal

control model where the constraint equation is a parabolic fractional PDE instead of an

elliptic fractional PDE.

Moving forward, there are a number of paths for this research to expand further. First

and foremost is the optimization of the algorithmic frameworks for large scale applications.

Next, to enhance further applicability of these algorithmic frameworks, they need to be

adapted to open access platforms by incorporating them into libraries for open source

languages, e.g. Python, to facilitate a ready usage of the codes. Furthermore, for the

fractional-DNN architecture we have primarily considered classification problems which fall

under the category of supervised machine learning. We would be interested in expanding

the current work to adapt to the semi-supervised as well as unsupervised learning. This

will open doors to study a much wider class of important and challenging problems in

scientific and technological applications which can be enriched via nonlocal operators, e.g.

adversarial learning. Lastly, our work on the external optimal control can be expanded via

applications to real-world problems, e.g. those stemming from Geophysical Electromagnetic

experiments.
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[21] H. Antil and M. Warma. Optimal control of fractional semilinear PDEs. To appear:
Control, Optimisation and Calculus of Variations (ESAIM: COCV), 2019.

[22] H. Antil and M. Warma. Optimal control of the coefficient for regional fractional
p-Laplace equations: Approximation and convergence. Math. Control Relat. Fields.,
9(1):1–38, 2019.

[23] T. Apel, S. Nicaise, and J. Pfefferer. Discretization of the Poisson equation with non-
smooth data and emphasis on non-convex domains. Numerical Methods for Partial
Differential Equations, 32(5):1433–1454, 2016.

[24] T. Apel, S. Nicaise, and J. Pfefferer. Adapted numerical methods for the Poisson

equation with L2 boundary data in nonconvex domains. SIAM Journal on Numerical
Analysis, 55(4):1937–1957, 2017.

[25] H. Attouch, G. Buttazzo, and G. Michaille. Variational analysis in Sobolev and BV
spaces, volume 17 of MOS-SIAM Series on Optimization. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society,
Philadelphia, PA, second edition, 2014. Applications to PDEs and optimization.

[26] A. P. Austin, Z. Di, S. Leyffer, and S. M. Wild. Simultaneous sensing error recovery
and tomographic inversion using an optimization-based approach. SIAM Journal on
Scientific Computing, 41(3):B497–B521, 2019.

127



[27] S. Bartels and M. Milicevic. Alternating direction method of multipliers with variable
step sizes. arXiv preprint arXiv:1704.06069, 2017.

[28] S. Bartels and N. Weber. Parameter learning and fractional differential oper-
ators: application in image regularization and decomposition. arXiv preprint
arXiv:2001.03394, 2020.

[29] Y. Bengio. Practical Recommendations for Gradient-Based Training of Deep Archi-
tectures, pages 437–478. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[30] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157,166, 1994-03.

[31] M. Benning, E. Celledoni, M. Ehrhardt, B. Owren, and C.-B. Schnlieb. Deep learning
as optimal control problems: Models and numerical methods. Journal of Computa-
tional Dynamics, 6:171–198, 01 2019.

[32] M. Berggren. Approximations of very weak solutions to boundary-value problems.
SIAM J. Numer. Anal., 42(2):860–877 (electronic), 2004.

[33] U. Biccari, M. Warma, and E. Zuazua. Addendum: Local elliptic regularity for the
Dirichlet fractional Laplacian. Adv. Nonlinear Stud., 17(4):837–839, 2017.

[34] U. Biccari, M. Warma, and E. Zuazua. Local elliptic regularity for the Dirichlet
fractional Laplacian. Adv. Nonlinear Stud., 17(2):387–409, 2017.

[35] B. Bischke, P. Bhardwaj, A. Gautam, P. Helber, D. Borth, and A. Dengel. Detection
of flooding events in social multimedia and satellite imagery using deep neural net-
works. In Working Notes Proceedings of the MediaEval 2017. MediaEval Benchmark,
September 13-15, Dublin, Ireland. MediaEval, 2017.

[36] C. Bjorland, L. Caffarelli, and A. Figalli. Nonlocal tug-of-war and the infinity frac-
tional Laplacian. Comm. Pure Appl. Math., 65(3):337–380, 2012.

[37] L. Bottou, F.E. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Rev., 60(2):223–311, 2018.

[38] S. Bougleux, A. Elmoataz, and M. Melkemi. Local and nonlocal discrete regularization
on weighted graphs for image and mesh processing. International Journal of Computer
Vision, 84(2):220–236, Aug 2009.

[39] L. Brasco, E. Parini, and M. Squassina. Stability of variational eigenvalues for the
fractional p-Laplacian. Discrete Contin. Dyn. Syst., 36(4):1813–1845, 2016.

[40] T. Brown, S. Du, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave
propagation. arXiv preprint arXiv:1802.00825, 2018.

[41] A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, and K. Burrage. Fractional diffusion
models of cardiac electrical propagation: role of structural heterogeneity in dispersion
of repolarization. Journal of the Royal Society, Interface, 11(97):20140352, 2014.

128



[42] L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian.
Comm. Partial Differential Equations, 32(7-9):1245–1260, 2007.

[43] L.A. Caffarelli, J.-M. Roquejoffre, and Y. Sire. Variational problems for free bound-
aries for the fractional Laplacian. J. Eur. Math. Soc. (JEMS), 12(5):1151–1179, 2010.

[44] L.A. Caffarelli, S. Salsa, and L. Silvestre. Regularity estimates for the solution and
the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math.,
171(2):425–461, 2008.

[45] L. Calatroni, C. Cao, J. C. De Los Reyes, C.-B. Schönlieb, and T. Valkonen. 8. Bilevel
approaches for learning of variational imaging models, pages 252 – 290. De Gruyter,
Berlin, Boston, 2016.

[46] A. Carbotti, S. Dipierro, and E. Valdinoci. Local density of solutions of time and
space fractional equations. arXiv preprint arXiv:1810.08448, 2018.

[47] B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert. Multi-level residual networks
from dynamical systems view. arXiv preprint arXiv:1710.10348, 2017.

[48] H. Chen, Q. Dou, L. Yu, J. Qin, and P-A. Heng. Voxresnet: Deep voxelwise residual
networks for brain segmentation from 3d mr images. NeuroImage, 170:446–455, 2018.

[49] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, and J. He. Short-term load forecasting
with deep residual networks. IEEE Transactions on Smart Grid, 10(4):3943–3952,
July 2019.
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