

Parameter Selection Refinement and Software Implementations of Spectral Modular

Exponentiation

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at George Mason University

By

Matthew Allen Estes
MS Computer Engineering

George Mason University, 2010

Director: Dr. Kris Gaj, Associate Professor
The Volgenau School of Information Technology and Engineering

Summer Semester 2010
George Mason University

Fairfax, VA

ii

Copyright © 2010 Matthew Allen Estes
All Rights Reserved

iii

DEDICATION

This is dedicated to my wife and constant supporter, Kathleen. Her patience and support
during these years in making up all the hours lost to my studies was critical to my
success. To my parents Donald and Joan, who gave me the character and education that
has enabled me to get this far. To my children Dalton, Ryan, and Kaitlyn and their
frequent diversions from my work that always kept things in perspective.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Gaj for his consistent willingness to direct and advise me during
my research. I would also like to thank Dr. Kaps, Dr. Nelson, and Dr. Fernandez for their
valuable suggestions and support. Special thanks to Marcin Rogawski and all of the other
GMU CERG team members that supported, advised, and listened to my talks and
presentations over the years.

v

TABLE OF CONTENTS

 Page

LIST OF TABLES .. IX

LIST OF FIGURES ... X

ABSTRACT .. I

CHAPTER 1: INTRODUCTION ... 1

1.1. CRYPTOGRAPHY ... 1

1.2. EXPONENTIATION ... 2

1.3. EXISTING EXPONENTIATION ALGORITHMS ... 4

Left-to-Right Exponentiation Algorithm ... 4

K-ary Window Algorithm ... 5

Sliding Window Algorithm ... 6

1.4. EXISTING MODULAR MULTIPLICATION ALGORITHMS .. 7

Karatsuba Multiplication and Reduction by Division .. 8

Montgomery Multiplication .. 9

1.5. SPECTRAL MATH OVERVIEW .. 11

1.6. SPECTRAL MODULAR MULTIPLICATION OVERVIEW ... 12

Evaluation Polynomials ... 13

vi

Number Theoretical Transform .. 15

Spectral Modular Multiplication .. 16

CHAPTER 2: ANALYSIS OF EXISTING WORKS ... 17

2.1. SME ALGORITHM DESCRIPTIONS ... 17

Schönhage-Strassen and Kalach .. 17

Baktir Spectral Multiplications .. 18

Koç and Saldamli SME .. 19

2.2. BUILDING BLOCKS OF EXISTING SME ALGORITHMS .. 20

CHAPTER 3: PARAMETER SELECTION... 22

3.1. SME PARAMETERS ... 22

3.2. PARAMETER VARIATIONS ... 23

Mersenne Number Transform (MNT) Parameters ... 23

Fermat Number Transform (FNT) Parameters .. 24

Pseudo Number Transform Parameters ... 24

3.3. PARAMETERS FOR A VALID DFT .. 25

3.4. RELIABLE MERSENNE PARAMETER PRODUCTION ... 27

3.5. RELIABLE FERMAT PARAMETER PRODUCTION ... 28

3.6. PARAMETERS FOR OVERFLOW BOUNDARIES .. 30

3.7. MERSENNE PARAMETERS ... 32

3.8. MERSENNE NEGATIVE W PARAMETERS ... 35

vii

3.9. FERMAT PARAMETERS .. 37

CHAPTER 4: ALGORITHM COMPARE AND CRITIQUE 39

4.1. COMPARISON BETWEEN KOÇ AND BAKTIR SMM ... 39

4.2. CLARIFICATIONS OF SALDAMLI AND KOÇ WORKS ... 42

CHAPTER 5: TESTING AND RESULTS .. 44

5.1. SAMPLE RESULT AND INTERIM VALUES ... 44

5.2. FUNCTIONAL TESTS .. 52

Testing Evaluation Polynomials ... 53

Testing DFT and IDFT Conversions .. 54

Testing Addition of Evaluation Zeros... 54

Testing Addition of Spectral Zeros ... 55

Testing Left Shift in Spectral Domain .. 56

Testing Multiplications in Spectral Domain .. 57

Testing Additions in Spectral Domain ... 58

Testing Spectral Modular Product ... 58

5.3. FUNCTIONAL RESULTS ... 59

Functional Issues .. 59

5.4. PERFORMANCE TESTING ... 61

Overview ... 61

Measurement Procedures ... 62

viii

CHAPTER 6: PERFORMANCE MEASUREMENTS AND ENHANCEMENTS . 64

6.1. ALGORITHM PROFILING ANALYSIS ... 64

6.2. PERFORMANCE MODIFICATIONS #1 .. 64

6.3. PERFORMANCE MODIFICATIONS #2 .. 66

6.4. PERFORMANCE ENHANCEMENT #2 DETAILS ... 68

Minor Algorithm Adjustments .. 68

Loop Operation Adjustments .. 69

Take advantage of Fermat and Mersenne Arithmetic .. 70

6.5. PERFORMANCE OF MNT WITH NEGATIVE W ... 71

6.6. FINAL REFERENCE TIMING COMPARISONS ... 72

Reference Algorithms ... 73

Left-to-Right Montgomery vs. Parallel Simulation Reference Timings 75

CHAPTER 7: PERFORMANCE LIMITATIONS... 77

7.1. COMPLEXITY OF SME IN SOFTWARE .. 77

CHAPTER 8: CONCLUSIONS AND FUTURE WORK .. 81

REFERENCES .. 82

ix

LIST OF TABLES

Table Page

Table 1: DFT Transform Matrix .. 15

Table 2: List of Spectral Parameters .. 22

Table 3: Tests for Invertible DFT Matrix (NTT) .. 26

Table 4: Mersenne NTT Parameters up to 20000 bits ... 35

Table 5: Mersenne NTT Parameters with a negative w up to 20000 bits 37

Table 6: Fermat NTT Parameters with a negative w up to 60000 bits 38

Table 7: Spectral Values used in Algorithms .. 40

Table 8: Sample DFT Matrix (first 9 columns) ... 46

Table 9: Sample DFT Matrix (last 8 columns) .. 47

Table 10: Sample Inverse DFT Matrix (first 8 columns) .. 47

Table 11: Sample Inverse DFT Matrix (last 9 columns) ... 48

Table 12: Sample Interim C Values (first 9 terms) .. 50

Table 13: Sample Interim C Values (last 8 terms) ... 51

x

LIST OF FIGURES

Figure Page

Figure 1: Left-to-Right Exponentiation Algorithm.. 4

Figure 2: Right-to-Left Exponentiation Algorithm.. 5

Figure 3: K-ary Window Algorithm .. 6

Figure 4: Sliding Window Algorithm .. 7

Figure 5: Karatsuba Multiplication Step .. 9

Figure 6: Left-to-right exponentiation algorithm with multiplications replaced by

Montgomery Product .. 10

Figure 7: Evaluations Polynomial Example .. 14

Figure 8: Invalid DFT Matrix for d=4, q=24-1 .. 25

Figure 9: Koç Spectral Modular Multiplication .. 40

Figure 10: Baktir Spectral Modular Multiplication .. 41

Figure 11: Koç vs. Baktir Rewritten SMM ... 41

Figure 12: Paste Words Algorithm .. 52

Figure 13: Sanity Check #1: break/paste evaluations polynomials 53

Figure 14: Sanity Check #2: DFT/IDFT .. 54

Figure 15: Sanity Check #3: Adding Evaluations of Zero ... 55

xi

Figure 16: Sanity Check #4: Zeroing out 0th term of time domain polynomial by addition

in spectral domain ... 56

Figure 17: Sanity Check #5: Left shift of one term of time domain polynomial by

operations in spectral domain ... 57

Figure 18: Sanity Check #6: Linearity of multiplication in DFT domain 57

Figure 19: Sanity Check #7: Linearity of addition in DFT domain 58

Figure 20: Sanity Check #8: Spectral Modular Product .. 59

Figure 21: Timing Comparison Performance Modifications #1 65

Figure 22: Timing Comparison Performance Modifications #2 67

Figure 23: Timing Comparison of Positive vs. Negative W (usec) 72

Figure 24: Spectral Timings vs. Reference Implementations (sec) 74

Figure 25: Theoretical Spectral Parallelized Timings vs. Reference Implementations

(sec) ... 75

Figure 26: Calculated SME Inner-Loop Operations .. 78

Figure 27: Calculated Parallelized SME Inner-Loop Operations 79

ABSTRACT

PARAMETER SELECTION REFINEMENTAND SOFTWARE IMPLEMENTATIONS
OF SPECTRAL MODULAR EXPONENTIATION

Matthew Allen Estes, MS Computer Engineering

George Mason University, 2010

Thesis/Dissertation Director: Dr. Kris Gaj

A consistent challenge to the widespread use public key cryptosystems, such as

RSA, is the computational difficulty of performing arithmetic operations with large

operands. There are many branches of mathematics and algorithms devoted to the

exploration of different aspects of computer arithmetic on large integers. In this thesis,

we outline several parameter selection techniques and software implementations that

apply to a new technique of exponentiation, referred to as spectral modular

exponentiation, which attempts to address computational efficiency of public key

cryptosystems, such as RSA and Elliptic Curve Cryptosystems.

Spectral modular exponentiation (SME) is a method by which numbers are

converted into spectral representations through a process known as Discrete Fourier

Transform (DFT), at some initial cost in doing the transformations. The spectral domain

has the advantage of greatly reduced multiplication cost during the most costly portions

of exponentiation. This thesis will describe the different algorithms that have been

proposed independently by two different research groups, compare and contrast these

algorithms, and describe various parameter selection techniques that apply to them. It

will also cover lessons learned and some difficulties encountered in the development of a

working implementation of spectral modular exponentiation. This thesis will also

addresses some of the discovered concerns regarding particular approaches to spectral

modular exponentiation in software implementations.

These difficulties involve the inherent limitations of the algorithm in software and

the theoretical potential of performance in hardware. Variations on implementations

were attempted to test different environments for the algorithm, but software

implementations of spectral modular exponentiation were still characterized by

performance less than that of existing algorithms, even at larger operand sizes. Included

in this thesis are the actual calculated and verified results for several of these variations.

These results include the initial generated parameters, internal interim values, and final

results that would be necessary to verify the correctness of future algorithms and

implementations.

These interim values serve as parameters and interim value references to future

attempts for working implementations in both hardware and software. The hardware

implementations of spectral modular exponentiation still show possibility for better

comparable performance than traditional algorithms.

Also in this thesis are two proofs that demonstrate how to reliably generate

parameters for a valid DFT and inverse DFT transformation. These are based on multiple

previous works on characteristics of Mersenne and Fermat numbers and connecting those

characteristics to the requirements for a valid DFT.

1

CHAPTER 1: Introduction

1.1. Cryptography
Cryptography involves the application of algorithms to transform a message into a

representation of the message that is then referred to as the ciphertext. This algorithm

must be able to then take that ciphertext and reverse the transformation to obtain the

original message.

In the field of cryptography, symmetric and asymmetric cryptography constitute two

of the major categories of algorithms. Symmetric cryptography is defined by encryption

and decryption with a single identical key and is often much more efficient than the

alternative method of asymmetric cryptography. Asymmetric cryptography has the

characteristic of using two different keys in which one key is used for encryption and one

key is used for decryption. This allows one or more parties to encrypt messages with a

public key, and only the party that possesses the private key to decrypt the messages.

Asymmetric cryptography enables digital signatures and public-key infrastructures, but is

generally accepted to be much more computationally difficult. Although there are

methods to greatly improve the efficiency of certain types of asymmetric algorithms,

there is still a large focus to increase the computational efficiency of asymmetric

cryptography.

2

One very commonly used asymmetric algorithm is called RSA. RSA involves the

choice of two large prime numbers whose product forms the modulus for modular

operations. Then two values are derived termed e and d which are multiplicative inverses

of each other. These terms e and d are used to compute the encrypted and the decrypted

message respectively. The primary operation to achieve these computations is modular

exponentiation.

1.2. Exponentiation
Modular exponentiation, as stated, is a primary operation in RSA public-key

cryptography. There are many different algorithms that are known to improve the

efficiency of the modular exponentiation with varying degrees of complexity and each

addressing different areas of modular exponentiation, but the basic mathematical

operation is:

ܿ ൌ ݉௘ ݉݀݋ ݊

To properly compare algorithms, modular exponentiation must be broken down into

sub-components. This thesis will evaluate exponentiation by dividing exponentiation

into three sub-component operations.

The first component is the algorithm of the exponentiation itself. This includes how

multiplications, squarings, table look-ups and possibly other operations will be combined

to properly achieve exponentiation. The most basic method of exponentiation is to

3

multiply m by itself e times. For large values of m and e this method is much too slow to

be used in practical applications.

Some popular algorithms that improve upon the efficiency of the naïve method are

Left-to-Right binary exponentiation, Right-to-Left binary exponentiation, K-nary

Exponentiation, and Sliding-Window Exponentiation. All of these algorithms base their

improvements on the binary representations of values and the manipulation of bits or

groups of bits in order to improve efficiency. Multiplication and squaring are major

operations in all of these algorithms.

The second component is multiplication. The multiplication of two numbers,

including the squaring of a single number, is typically an expensive operation. Thus, the

type of multiplication algorithm used is highly influential on the overall efficiency of

exponentiation. Some multiplication algorithms used in exponentiation are Karatsuba,

Toom-3, and FFT. Montgomery and Spectral are not traditional multiplication

algorithms in that they are multiplication algorithms that include reduction and operate on

terms in a different domain. [8].

For multiplications not including reduction, there is the required additional

component of reduction. The reduction of varying measures, such as bit sizes of

intermediate values or the degree of certain polynomial representations, is necessary to

maintain all interim values at a size that can be efficiently operated on within a fixed

architecture. The most basic method is simple modular reduction through division.

4

Sometimes, the use of specific parameters can also allow efficient short-cuts to

calculating modular reductions.

1.3. Existing Exponentiation Algorithms
Left-to-Right Exponentiation Algorithm

This algorithm is also called the “square and multiply” algorithm and was originally

conceived in 200BC [1]. This “Left-to-Right” algorithm initializes the output value c to

1. It then scans the bits of e from highest to lowest or left to right. If the bit is one, then

the algorithm calculates:

ܿ ൌ ܿ כ ݊ ݀݋݉ ݉

Then, as it increments to the next bit it calculates the effect of shifting the exponent by

one bit position, which has the effect of squaring the temporary result:

ܿ ൌ ܿ כ ݊ ݀݋݉ ܿ

The entire algorithm is:

Figure 1: Left-to-Right Exponentiation Algorithm

INPUT: m, e (where ei is the ith bit of e, and t is the
size of e in bits)
OUTPUT: c = me

1. c ← 1
2. For i from t-1 down to 0, do the following:

2.1 c ← c 2
2.2 if ei=1 then c ← c · m

3. Return c

5

The “Right-to-Left” algorithm uses the same principal as the Left-to-Right algorithm, but

runs in reverse.

The entire algorithm is:

Figure 2: Right-to-Left Exponentiation Algorithm

K-ary Window Algorithm

The K-ary Window algorithm is an adaptation of the “Right to Left” algorithm except

that it improves upon this algorithm by evaluating bits of the exponent in k-bit

“windows” instead of in single bits [1]. The algorithm is defined as follows:

INPUT: m, e
OUTPUT: c = me

4. c ← 1, S ← m
5. While e ≠ 0, do the following:

5.1 if e is odd then c ← c·S
5.2 e ← e/2
5.3 S ← S · S

6. Return c

6

Figure 3: K-ary Window Algorithm

Sliding Window Algorithm

This algorithm is an adaptation of the K-ary algorithm except that it improves upon the

algorithm by evaluating bits of the exponent e using dynamic optimized “windows”

instead of k-bit static windows [1]. The algorithm has several derivations, but the sliding

window algorithm is as follows:

INPUT: m, e where ei is the ith digit of k bits, and t
is the size of e in digits
OUTPUT: c = me

1. Precomputation
1.1 g0 ← 1
1.2 For i from 0 to (2k-1), do:

gi ← gi-1 · g (thus gi = gi)
2. c ← 1
3. For i from t-1 down to 0, do the following:

c ← (c 2)k
c ← c · gei

4. Return (c)

7

Figure 4: Sliding Window Algorithm

1.4. Existing Modular Multiplication Algorithms
Multiplication and reduction are sometimes independent steps, such as when reduction is

used with Karatsuba multiplication. However, multiplication and reduction are combined

in Spectral Modular Multiplication as well as Montgomery Multiplication. This section

will cover some combinations of reduction and multiplication, including those that are

tested in the thesis.

 All exponentiation algorithms discussed so far in this thesis can be used for both

infinite and finite field operations, and thus have not yet included the modular reduction

steps specific to finite fields. Reduction can be added to the implementation of the

multiplication and squaring operations to modify exponentiation operations for use within

INPUT: m, e where ei is the ith bit, and t is the size of
e in bits
OUTPUT: c = me

1. Precomputation (odd g’s only)
g1 ← g , g2 ← g2
For i from 1 to (2k-1-1), do:
g2i+1 ← g2i-1*g2

2. c ← 1, i ← t-1
3. while i ≥0, do the following:
3.1 If ei = 0 then do c ← c2, i ← i – 1

Otherwise, find longest bit string
eiei-1…es+1es, such that:
 i-s + 1 ≤ k and es=1 and do the following:

c ← (c 2)i-s+1 · g(ei ei-1…es)2…, i ← s – 1
4. Return c

8

finite fields. Because some modular multiplication operations embed reduction and

cannot be discussed apart from each other, the following sections will discuss the various

combinations of multiplication and reduction algorithms used during testing.

 There are several alternative algorithms to reduction that can be used with

classical multiplication. Within the scope of this thesis, only one type of reduction

algorithm was tested.

Karatsuba Multiplication and Reduction by Division

Karatsuba is a popular algorithm for efficient multiplication [18]. It involves the

recursive splitting of input numbers into smaller numbers. This split allows one large

multiplication to be accomplished by 3 smaller multiplications and a few additions as

shown below in Figure 5.

The split is based on the boundary Bm where B is the base for a single digit and m

is the number of digits in lower half of the split. In binary 32-bit computing

environments, B is sometimes chosen to be 231 so as to allow additions of two 231 sized

numbers to take place without requiring a carry bit. A third value n represents the

number of digits in the input values such that each digit is less than B.

Because Karatsuba is an algorithm that splits values into smaller values, it can be

run recursively until n is small enough that the multiplications can be computed directly.

The most efficient m is usually n/2 so that each iteration splits the values in half. A

recursive version of the Karatsuba algorithm is shown below [18].

9

Figure 5: Karatsuba Multiplication Step

 Since Karatsuba does not include reduction, the reduction algorithm that will be

combined with Karatsuba Multiplication is that of simple arithmetic division to determine

the modular reduction.

Montgomery Multiplication

Montgomery multiplication is a technique that combines multiplication and reduction

into a single operation. It achieves this by converting values into images within the

Montgomery domain, computing the product of those images, and then converting back

from the Montgomery domain. An image in the Montgomery domain is defined as x’ =

x·R mod m. The basic required operation in Montgomery Multiplication is that of

Montgomery Product.

Montgomery Product, which, given n, x, y in number system b each with k digits

and R = bk where 0 ≤ x; y ≤ n and gcd(n, b) = 1 returns xyR-1 mod n.

INPUT: x, y
OUTPUT: x·y

KARATSUBA[x,y] is:

1. if n < 2 then Return x·y
2. Split x and y into x1,x0 and y1,y0 using Bm such that:

x = x1Bm + x0
y = y1Bm + y0

(where x0 and y0 are less than Bm)
3. z2 = KARATSUBA[x1, y1]

 z0 = KARATSUBA[x0, y0]
 z1 = (x1 + x0)(y1 + y0) − z2 − z0
 xy = z2 B2m + z1 Bm + z0

4. Return xy

10

 MontgomeryProduct(x,y) = xyR-1 mod n

Conversion of x to the Montgomery image x’:

 x’ = MontgomeryProduct(x,R2 mod n)

because x·R2·R-1 mod n = x·R mod n = x’

Conversion of the Montgomery image x’ to x:

 x = MontgomeryProduct(x’,1)

because x’·1·R-1 mod n = x·R·1·R-1 mod n = x

Figure 6: Left-to-right exponentiation algorithm with multiplications replaced by

Montgomery Product

Montgomery multiplication gains efficiency from the ability to choose an integer

ring in which the residual math will take place. If chosen properly, reductions can be

achieved with shifts and additions, greatly improving the overall efficiency of

exponentiation especially for larger operands.

Using Montgomery Multiplication for smaller operands of m and e generally suffer

as compared to other algorithms. This is because the time necessary to convert between

INPUT: m, e, n (where ei is the ith bit of e), and t is
the size of e in bits
OUTPUT: c = me mod n

1. c’ ← MontgomeryProduct(1, R2 mod n)
2. m’ ← MontgomeryProduct(m, R2 mod n)
3. While i from t-1 down to 0, do the following:

3.1 c’ ← MontgomeryProduct(c’,c’)
3.2 if ei=1 then c’ ← MontgomeryProduct(c’,

m’)
4. c ← MontgomeryProduct(c’, 1)
5. Return c

11

numbers and residual representations at the beginning and end of exponentiation

outweighs the efficiencies gained during the square-and-multiply operations.

1.5. Spectral Math Overview
Spectral math offers a different way of representing values, much like Montgomery

Multiplication. Spectral techniques involve the conversion of time-domain

representations of numbers into the spectral domain. This is frequently used in the field

of signal processing where time-domain sequences are samples from a sensor and are

transformed into spectral representations that represent the spectral, or frequency, content

of the time domain sequence. Sequences of time values have different mathematical

properties once transformed to the spectral domain. These properties allow certain

operations to be performed differently than they would have been accomplished in the

time domain representation.

Because spectral techniques are often used in signal processing for very different

applications, the algorithms and terminology will vary widely than those in this thesis [5].

For example, in some signal processing there is an allowance for small deviations in

values and the final values are only approximations, whereas in most implementations of

finite field encryption techniques, there is no allowance for any such variation in results.

While in signal processing a spectral transform is often applied to a “sequence” or

array of “sample” values, in the SME it is often referred to as an “evaluation polynomial”

and the different terms are treated as the coefficients of a polynomial representation of

12

the time or spectral values. This different representation also serves to visibly

differentiate signal processing techniques from techniques used in discrete math. In

signal processing, the transform to the spectral domain is called the Discrete Fourier

Transform (DFT), while when a DFT is applied within a finite field for an evaluation

polynomial, it is called a Number Theoretical Transform (NTT), although the term DFT

is still used. [1]

1.6. Spectral Modular Multiplication Overview
In the spectral domain, complex multiplication operations become d-element

component-wise multiplications. The parameters used for NTTs can be chosen in such a

way as to choose a spectral domain that allows for efficient modular reductions and

efficient conversion to and from the spectral domain. The proposals made by Baktir,

Saldamli, and Koç also show how multiplications and reductions can be made in the

spectral domain with selection of specific parameters in order to ensure the spectral

multiplications can take place successively without the need to convert intermediate

results back into the time-domain representation for reductions, all the while avoiding

potential overflows [3], [5].

This allows the application of spectral math to achieve faster spectral modular

multiplications while not suffering the penalty of DFT/IDFT conversions between

multiplication operations. This has direct application to modular exponentiation and the

works by Baktir, Saldamli, and Koç emphasize this benefit [3], [5].

13

Spectral Modular Multiplication does not necessarily address the actual method of

exponentiation, such as Sliding Window or Left to Right. It only addresses the

initialization, the conversion to and from the spectral domain, multiplication, and

reduction operations. In many ways, it operates similar to Montgomery Multiplication in

that each multiplication, when given n, x, y in number system b each with k digits and R

= bk where 0 ≤ x; y ≤ n and gcd(n, b) = 1, returns xyR-1 mod n.

 SpectralModularProduct(x,y) = xyR-1 mod n

Evaluation Polynomials

The first step in using spectral arithmetic is to evaluate a single large value provided as

input, which will be referred to as m, into a series of values suitable for use in a NTT,

which will be referred to as m(t). One method to divide the number is to split it on fixed

bit boundaries such that a certain number of bits per word, u, and a certain number of

terms s, will together form a series of value representing u*s total bits. This method is

referred to as an evaluation polynomial and takes the form of:

Theorem 1: Evaluation Polynomial

m(t) = m0 + m1b + m2b2 + m3b3 + m(s-1)b(s-1)

where b = 2u

14

Figure 7: Evaluations Polynomial Example

Be aware that the evaluation polynomial shown is known as the base evaluation

polynomial since each value mi is bounded by:

0 ≤ mi < b

It is possible to generate an evaluation polynomial with different terms that represent the

same value by not using the base evaluation polynomial, but simply an evaluation

polynomial. The following evaluation polynomial represents the same value as the

previous example in Figure 7.

m(t) = 9b4 + 13b3 + 9b2 + 5b + 28

Notice that a value was “borrowed” from one term to add to another. This concept of

borrowing and likewise carrying is important to the reduction of terms in the Spectral

Modular reduction technique.

m = 645484

1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0

Evaluation with b=16 (u=4)

1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0

m(t) = 9b4 + 13b3 + 9b2 + 6b + 12

m = 9(164) + 13(163) + 9(162) + 6 (16) + 12 = 645484

15

Number Theoretical Transform

The conversion from time domain values to frequency domain values is accomplished by

the Number Theoretical Transform, which is a special implementation of the Discrete

Fourier Transform:

Definition 1: Number Theoretical Transform

௝ܣ ൌ ෍ ܽ௜ݓ௜௝ ݉ݍ ݀݋
ௗିଵ

௜ୀ଴

 , 0 ൑ ݆ ൑ ݀ െ 1

Definition 2: Inverse Number Theoretical Transform

௝ܽ ൌ ݀ିଵ ෍ ݍ ݀݋݉ ௜௝ିݓ௜ܣ
ௗିଵ

௜ୀ଴

 , 0 ൑ ݆ ൑ ݀ െ 1

Definition 1 defines a matrix that achieves the DFT by matrix multiplication with the

time-series polynomial. An example matrix is shown for a DFT of size 5 in Table 1:

DFT Transform Matrix.

 1 1 1 1 1

 1 w w2 w3 w4

 1 w2 w4 w6 w8

 1 w3 w6 w9 w12

 1 w4 w8 w12 w16

Table 1: DFT Transform Matrix

16

The value w is called the generator or principal dth root of unity of the DFT while d is

the size or length of the DFT. Thus, w and d are related in that wd = 1 mod q. For a

certain integer ring of Zq, w, d, and q are constrained when attempting to create a valid

and invertible NTT that allows Definition 2 to exist. The requirements for existence of

the invertible matrix are discussed in Chapter 3.

Spectral Modular Multiplication

The last major operation within the application of Spectral Modular Exponentiation is the

Spectral Modular Multiplication. In the spectral domain, the product of two spectral

numbers is accomplished by a component-wise multiplication of each term in the spectral

evaluation polynomial, sometimes called the Spectral Modular Product. Once the

product is calculated, however, the algorithm must ensure that the time series

representation is reduced to remain properly bounded by a well constructed reduction

algorithm. This algorithm must be computationally efficient and avoid overflows in

terms of the time series representation while doing calculations in the spectral domain.

 To perform this algorithm, several parameters are required and can be

precomputed. These values include N(t), Γ(t), d-1, and λ(t). The calculation of these

parameters is explained during the iterim value calculations later in this thesis.

17

CHAPTER 2: ANALYSIS OF EXISTING WORKS

2.1. SME Algorithm Descriptions
Spectral math as a performance enhancement to cryptography is covered in several

works. The application of NTT to multiplication dates back to 1971 with Schönhage and

Strassen [17]. Kalach further discusses multiplication efficiency in hardware, but again

does not cover exponentiation [2]. Baktir [3] discusses the application of spectral math to

modular multiplication as well as Elliptic Curve Cryptography. However, Baktir covers

the exploration of modular multiplication as a subset of the larger effort towards spectral

applications to ECC operations, and not exponentiation. Koç and Saldamli [5] explore

specifically SME as it benefits exponentiation and offer several resources in the

understanding of this algorithm.

Schönhage-Strassen and Kalach

The Schönhage-Strassen multiplication algorithm is an early example of a spectral

multiplication algorithm. It is asymptotic in complexity and has been shown to

outperform the traditional multiplication algorithm of Karatsuba for numbers

approximately larger than 215 bits [17]. This algorithm is based on spectral techniques.

18

Kalach [2], in his exploration of spectral math, addresses improvements to the

efficiency of the DFT operations. This includes the application of Fast Fourier

Transforms (FFT). Both recursive and iterative algorithms for FFT are outlined to apply

to spectral modular multiplications.

Baktir Spectral Multiplications

Baktir was the first Spectral Modular Exponentiation algorithm to be evaluated in the

preparation for this thesis. Baktir discusses the use of the properties of Mersenne

Number Theoretical transforms (MNT), Fermat Number Theoretical Transforms (FNT),

pseudo-Mersenne Transforms (PMT), and pseudo-Fermat Transforms (PFT).

Baktir describes the use of the Pseudo Fermat Transform with q= 22^n+1/p (where p

is a prime factor) to enable efficient Fast Fourier Transform methods as opposed to the

general Discrete Fourier Transform.

In a PMT, arithmetic is achieved modulo q=(2n -1)/t , an integer sub-multiple of a

Mersenne Number. However, the intermediate reductions are computed modulo the

original Mersenne number, 2n -1, and only the final result needs to be reduced modulo

Mn/t. The use of PMT increases the number of available transform lengths since each

integer sub-multiple has a different length. But, the downside is increased word size for

intermediary transform operations (n vs. n-log2t)

Baktir also outlines efficient parameter selection for ECC. Most of this constitutes

the selection of operand sizes relevant to ECC parameters. Baktir describes that a fully

19

recursive FFT can only be used for highly composite numbers (2n or other powers of

small primes). The allowable sequence length is either a prime number d for w=2 or 2

times a prime number 2d for w=-2.

Overall, this work focused mainly on field operations used in ECC, such as

multiplications, additions, and inversions. Spectral Modular Exponentiation was not

discussed by Baktir.

Koç and Saldamli SME

In much the same way as Baktir, Koç and Saldamli also cover DFT Improvements

through the use of Mersenne and Fermat Theoretical Transforms. Although some papers

were only written by either Koç or Saldamli, their names will be used interchangeably

since they were both involved in the development of the algorithm. Parameter

calculations were described using MNT with positive (w=2,4) and negative (w=-2)

principal roots of unity. These papers review MNT, FNT, PMT, and PFT variations on

parameters. In these works, much more time was spent addressing the parameters to

achieve operations safely in the spectral domain without creating overflows of values in

the time domain that would alter the represented value.

Koç also covered SME improvements through the application of a prior work in

evaluating multiplication/reduction algorithms in which the CIOS Algorithm – Coarsely

Integrated Operand Sum – was selected.

20

Chinese Remainder Theorem was outlined as a method for achieving efficient

operations in larger modulus size by using CRT to remain in a smaller ring modulus.

This algorithm from the very beginning was specified as one that would be efficient in

hardware. It was not specifically limited to hardware, but significantly parallel

operations were the core mechanism for efficiency. Parallel hardware architectures were

outlined.

2.2. Building Blocks of Existing SME Algorithms
While there are potentially numerous methods by which spectral modular operations

could be adopted to achieve modular exponentiation, Baktir and Koç both suggest very

similar algorithms that closely resemble Montgomery multiplication. These methods

calculate multiplications of residual values with an embedded reduction following the

form xyR-1 mod n, where R is a power of two.

The algorithms require the following operations:

1. Addition and subtraction - in one example, addition or subtraction of

multiples of the modulus in order to zero out the least significant term

2. Right-shift of terms - for reductions

3. Left-shifts of terms - to calculate residuals

4. Product of two numbers

5. Obtaining the first time-series value – used by reduction operations

Also necessary for the success of these operations are several constants:

21

1. Γ(t) – a number that, when multiplied by another number, causes that

number to shift u bits to the left.

2. One – a number that is the multiplicative identity.

3. N(t) - a number that is the spectral representation of k·n (i.e. a multiple of

the modulus) and also has the feature of having it’s least significant term

set to 1. This facilitates an algorithm to manipulate the least significant

term through addition without affecting the overall value, such as just

before a right-shift operation during reductions.

4. λ(t) – a pre-computed value that is used by multiplication to compute the

residual of a value in time series representation.

22

CHAPTER 3: Parameter Selection

3.1. SME Parameters
All spectral exponentiation techniques have a unique set of parameters that must be

established prior to beginning operations.

d “size” of the DFT, i.e. number of terms of the evaluation
polynomial

s maximum number of input words (approx. d/2, see below)

q Number Theoretic Transforms such as MNT will take place
within the integer ring Zq

u number of bits in each DFT term

b 2u

w principal dth root of unity, on which DFT transform is based

p,n In MNT, q is of the form 2p-1 and in FNT q is of the form 22^n+1.
These exponents are parameters.

bits supported bit size for operands, u·s

Table 2: List of Spectral Parameters

The parameters are interdependent, but bit size is one of the final parameters to be

determined and depends on multiple other parameters. Therefore, an efficient approach

23

to parameter selection involves pre-calculating a table of parameters and selecting the

most efficient set of parameters that meet certain criteria.

3.2. Parameter Variations
Mersenne Number Transform (MNT) Parameters

One very simple manner of calculations of parameters involves using the characteristics

of Mersenne Number Transform (MNT) [15]. Mersenne numbers are defined as numbers

of the form q= 2p – 1, where p is oftentimes required by a definition to be a prime.

MNT’s support DFT’s that use values for w of both 2 and -2 and the corresponding d

parameters are trivially determined as p and 2p respectively.

Theorem 2: The length of the DFT matrix d is p for w=2, and also d is 2p for w=-2 for

DFTs over the field Zq where q is a Mersenne Number of the form 2p-1.

PROOF:

For w = 2:

1. Assume d=p.

2. 1 = wd mod q by definition of principal roots of unity (Chapter 1)

3. 1 = 2p mod q by substitution

4. 1 = 2p mod 2p -1 which is true

For w = -2:

1. Assume d=2p.

2. 1 = wd mod q by definition of principal roots of unity (Chapter 1)

24

3. 1 = (-2)2p mod q by substitution

4. 1 = 22p mod 2p -1

5. 1 = 22p - 1 + 1 mod 2p -1

6. 1 = (2p – 1) (2p + 1) + 1 mod 2p -1

7. 1 = (0)·(2p + 1) + 1 mod 2p -1 which is true, thus the assumption is true

Fermat Number Transform (FNT) Parameters

The Fermat Number Transform (FNT) uses Fermat numbers of the form: ݍ ൌ 2ଶ೙ ൅ 1

[14]. It is also possible to use Fermat numbers of the form 2n + 1, but this could

potentially end up with complex roots and additionally would lose the performance

benefits from having word aligned calculations. Additionally, this would necessarily need

to perform additional checks on the validity of the DFT transform. Math operations are

carried out with optimized Fermat arithmetic operations.

Pseudo Number Transform Parameters

In the ring Zq, for some prime factors p that divide q, the field Zq/p can be useful or

necessary. q itself does not have to be a prime for a valid transform and thus may have

multiple small factors. However, for certain q, these small factors cause the resulting

transform size for the DFT to be too short for the necessary length required by MNTs or

25

FNTs. Refer to Theorem 7.7 in [5] for further explanation of how small factors cause

small transform sizes.

This length can be increased by dividing out certain small prime factors p. These

resulting fields are called Pseudo Mersenne Transforms (PMT) or Pseudo Fermat

Transforms (PFT). Another reason for pseudo transforms is to create new combinations

of parameters that meet certain bit lengths or DFT lengths d.

3.3. Parameters for a Valid DFT
For a single generator in Zq, the generator must have a multiplicative inverse in q.

However, in NTTs every element generated in the DFT matrix generated by the Theorem

1 must itself have a multiplicative inverse in Zq by Blahut [10]. This is because

concerning the matix of the DFT transform and inverse-DFT transform, there only exists

a valid inverse if and only if the determinant is non-zero [12]. Additionally, by Massey

[10], the determinant must also be a unit in the field Zq. Massey defines “unit” as an

element in Zq having a multiplicative inverse.

One example of an invalid DFT matrix is the matrix defined for a DFT of size d=4,

in the ring Zq where q=24-1. This matrix is shown in Figure 8.

Figure 8: Invalid DFT Matrix for d=4, q=24-1

26

The determinate of this matrix is 3. Because 3-1 mod 15 does not exist, the

determinant has no multiplicative inverse in Z15 . Therefore, this matrix is not suitable for

NTTs.

Another requirement for a valid matrix that is derived from the above determinant

requirement is that the size of the matrix d must evenly divide pi-1 for any prime factor of

the Mersenne Number. This will be referred to as the division test. The tests required for

a valid and invertible transform are outlined in the table below.

1. Basic Invertibility – The determinant of the DFT matrix must be non-zero.

2. Invertible in Ring – The determinant of the DFT matrix must be a unit in

the ring, i.e. an element having a multiplicative inverse.

3. All Elements Invertible - Every element of the DFT matrix must be a unit.

This results from the definition of the IDFT matrix that contains elements

of the form w-ij, which are the multiplicative inverses of the DFT elements.

4. Divisibility Test - The length of the DFT matrix d must divide pi-1 for each

prime factor pi of q, given the field Zq used for spectal domain operations.

Table 3: Tests for Invertible DFT Matrix (NTT)

The final test is an additional test derived from the tests 1-3 for NTTs that are

attempted where the field characteristic q is composite. If test 4 passes, then it can be

assumed that tests 1-3 also pass.

27

3.4. Reliable Mersenne Parameter Production
For Mersenne Numbers of the form q=2p − 1 in which p is prime, for which w=2, and for

which the size of the matrix d is either p or 2p, it can be shown that all invertibility tests

for a valid matrix pass, including the division test.

For the first three tests, it can be shown that all tests pass. This is due to the

requirement that elements of the DFT are produced by powers of 2, thus 2 is the only

prime factor. Since q is always odd, q and 2 are always relatively prime, thus 2-ij mod q =

((2-1) mod q)ij mod q is always well defined. For the division test, the proof is slightly

more involved:

Theorem 3: The length of the DFT matrix d divides r-1 for each prime factor r of q for

DFTs over the field Zq where q is a Mersenne Number of the form 2p-1 where p is prime

and where w=2 or w=-2.

PROOF: If p is an odd prime, then any prime r that divides q = 2p-1 (a Mersenne

Number), must be of the form: r = k 2p +1. Or, otherwise stated, both p and 2p divides

r-1 for any factor r. This holds even when q = 2p − 1 is prime. [15]

From Theorem 2, if w = 2, then d = p or if w = -2 then d = 2p.

If any prime factor r divides 2p − 1 then 2p ≡ 1 (mod r). By Fermat's Little Theorem,

2(r − 1) ≡ 1 (mod r).

1. It is easier to attack the contra-positive, so assume p and r − 1 are relatively prime and

once again apply Fermat's Little Theorem to derive (r − 1)(p − 1) ≡ 1 (mod p).

28

2. If we factor out one term of (r-1), we can show that there is a number x ≡ (r − 1)(p − 2)

for which (r − 1)·x ≡ 1 (mod p)

3. Removing the modulus, there is a number k for which (r − 1)·x − 1 = k p. And

rearranging terms: (r − 1)x − kp = 1

4. From step 1, 2(r − 1) ≡ 1 (mod r), and raising both sides of the congruence to the power

x gives: 2(r − 1)x ≡ 1 mod r, and since 2p ≡ 1 (mod r), raising both sides of the

congruence to the power k gives 2kp ≡ 1.

5. Since both congruencies equal 1, dividing one by the other will also be congruent to

1, thus 2(r − 1)x / 2kp = 2(r − 1)x − kp ≡ 1 (mod r). Substituting the earlier equality: (r − 1)x

− kp = 1, obtains that 21 ≡ 1 (mod r); which is false. If this false statement is pursued

further, 2-1 ≡ 1 ≡ k r, thus that r divides 1, which is also false.

6. From this, it is apparent that the initial assumption that p and r − 1 are relatively

prime is untenable. Therefore, p and r – 1 share a common factor, but since p is prime

r − 1 must be a multiple of p.

7. Therefore, since p and 2p divide r-1 for any factor r of the Mersenne Number, if the

length of the Mersenne Transform is either p or 2p, then the length of the transform

divides r-1. This length is used when MNT are used when either w=2 or w=-2,

respectively. Additionally, because w=2 or w=-2, then w always has an inverse in

modulo q since q is always odd.

3.5. Reliable Fermat Parameter Production

29

For Fermat Numbers only of the form: ݍ ൌ 2ଶ೙ ൅ 1 for which w is 2, and for

which the size of the matrix is d=2n+1 , it can be shown that all invertibility tests for a

valid matrix pass, including the division test. Thus, the DFT always has a valid inverse

DFT matrix.

It can be shown that the first three tests pass, like in case of MNT. Since q is

always odd, q and 2 are always relatively prime, thus 2-ij mod q = ((2-1) mod q)ij mod q is

always well defined. However, the division test requires more examination.

Theorem 4: The length of the DFT matrix d divides r-1 for each prime factor r of q for

DFTs over the field Zq where q is a Fermat Number of the form ݍ ൌ 2ଶ೙ ൅ 1.

PROOF: If a DFT is constructed over the Fermat Number ݍ ൌ 2ଶ೙ ൅ 1, then the

size of the DFT matrix, which is d, must divide 1 less than each prime factor r that

divides the Fermat Number ݍ ൌ 2ଶ೙ ൅ 1. This holds even when q is prime.

1. If any factor r divides ݍ ൌ 2ଶ೙ ൅ 1 then 2ଶ೙ ൌ െ1 ሺ݉ݎ ݀݋ሻ and thus:

 2ଶ೙శభ ൌ 1 ሺ݉ݎ ݀݋ሻ

It can be seen that the order or DFT length d of this with a w = 2 is 2n+1.

2. From Édouard Lucas improving upon Euler, any prime divisor r of Fn = ݍ ൌ 2ଶ೙ ൅ 1

is of the form k2n + 2 + 1 whenever n is greater than one.

3. Since d must divide r-1 for each prime factor r, and substituting:

d = 2n+1 and

30

r = k2n + 2 + 1

It is shown that:

 d | r-1

2n+1 | k2n + 2

Which is true.

4. Therefore, since d divides r-1 for any factor r of the Fermat Number, then the

division test passes. This length is used when FNT is used with w=2.

3.6. Parameters for Overflow Boundaries
An overflow is when any element of the sequence exceeds the boundaries of the field.

This applies to both elements in the spectral domain and to elements in the time domain.

When overflows occur during calculations in the spectral domain, it alters the time

domain representation of the value. To prevent overflows from occurring during spectral

modular exponentiation, the numbers of terms in the DFT (or degree) must remain

bounded within the size of the DFT d. The number of terms in both of the input values

is defined as s. Since a sequence of size s has terms of degree 0..s-1, the maximum

degree of the resulting sequence from multiplication is (s-1)+(s-1). Therefore, the degree

(d-1) of the maximum supported size of the DFT is must be large enough to support to

resulting sequence as follows:

d – 1 ≥ s-1 + s-1 = 2s - 2

31

 d ≥ 2s – 1

ௗାଵ
ଶ

൒ ݏ

Given an odd d , such as 7, it is seen that s is 4. With d=8, s is also 4. For integers,

s can be evaluated as:

ݏ ൌ ඄
݀
2ඈ

Also, not only must the number of terms be within bounds, but each coefficient in

the polynomial representation must be within the field as well, unless the algorithm

includes a check to try and detect overflows. In the Saldamli algorithm [6], the largest

possible coefficient value is 2b2s. This is based on the multiplication of 2 coefficients of

max b size and s number of coefficients added together. The constant 2 term comes from

the possible large remainder value of alpha that could potentially double the final value.

This limit is highly dependent on the spectral modular exponentiation algorithm

used and additional parameters. Each algorithm implements different numbers and types

of operations and the evaluation of these operations determines the boundaries. It is not

a theoretical restriction on NTT or DFT, but of the particular implementation used by

Saldamli that does not attempt to detect overflows during exponentiation for performance

reasons.

The Koç algorithm includes a formula for boundary testing. It was based on the

boundaries necessary for multiplications to follow multiplications indefinitely. This

32

algorithm was defined by Theorem 7.6 in [5]. However, independent calculations have

shown the actual value for B(s) to be:

Further, the entire inequality can be shown below after substituting r and B into the

final equation specified in Theorem 7.6 in [5].

(b2 + b)2B(s) + b2s < q

It is possible to compute the resulting equation from these substitutions, but it is

much simpler to calculate the value for r first after substitution, then substitute into B,

and finally substitute B into the final inequality. Solving for any particular value in this

inequality is computationally infeasible. The simplest method to solve this inequality is

to iteratively test values for feasibility and determine the b that satisfies the inequality

given s and q.

3.7. Mersenne Parameters
Mersenne Number Theoretical (MNT) transforms are transforms into domains of Ζq

where q is a Mersenne Number and has the form:

ݍ ൌ 2௣ െ 1

Mersenne Numbers are not necessarily prime and their definition does not

necessarily assume that p is prime. However, in this thesis we will assume that p is

33

always prime. Mersenne numbers have several properties that make them suitable for

modular operations. First, observe that for any Mersenne number q=2p-1:

2௣݉ݍ ݀݋ ൌ 1

This provides a principal root of unity of w=2 such that this root produces a

sequence of degree p. Since Koç tells us that spectral transforms require a “primitive

root of unity”, we can meet this requirement by using an MNT with a primitive root of

unity, w=2, and a size d=p.

From this first parameter of spectral math, d, the degree of the transform with a base

w of 2, we can also derive s from the earlier discussion about the relationship of s to d.

ݏ ൌ ۀ2/݀ڿ

Remember the bits is simply u*s and the value “nttwords” is the number of words

required to store a single term of the DFT in a 32-bit architecture. The space required to

store a single term is dependent on the size of q, since each term undergoes spectral

operations modulo q. In MNT, q is 2p-1, and therefore can be stored in p bits resulting in

p/32 words.

p d w u w bits nttwords
17 17 2 2 9 18 1
19 19 2 2 10 20 1
23 23 2 3 12 36 1
29 29 2 4 15 60 1
31 31 2 5 16 80 1
37 37 2 6 19 114 2
41 41 2 7 21 147 2

34

43 43 2 7 22 154 2
47 47 2 8 24 192 2
53 53 2 10 27 270 2
59 59 2 11 30 330 2
61 61 2 11 31 341 2
67 67 2 13 34 442 3
71 71 2 14 36 504 3
73 73 2 14 37 518 3
79 79 2 16 40 640 3
83 83 2 17 42 714 3
89 89 2 18 45 810 3
97 97 2 20 49 980 4
101 101 2 21 51 1071 4
103 103 2 21 52 1092 4
107 107 2 22 54 1188 4
109 109 2 23 55 1265 4
113 113 2 24 57 1368 4
127 127 2 27 64 1728 4
131 131 2 28 66 1848 5
137 137 2 30 69 2070 5
139 139 2 30 70 2100 5
149 149 2 33 75 2475 5
151 151 2 33 76 2508 5
157 157 2 34 79 2686 5
163 163 2 36 82 2952 6
167 167 2 37 84 3108 6
173 173 2 38 87 3306 6
179 179 2 40 90 3600 6
181 181 2 40 91 3640 6
191 191 2 43 96 4128 6
193 193 2 43 97 4171 7
197 197 2 44 99 4356 7
199 199 2 45 100 4500 7
211 211 2 48 106 5088 7
223 223 2 51 112 5712 7
227 227 2 52 114 5928 8
229 229 2 52 115 5980 8

35

233 233 2 53 117 6201 8
239 239 2 55 120 6600 8
241 241 2 55 121 6655 8
251 251 2 57 126 7182 8
257 257 2 59 129 7611 9
263 263 2 60 132 7920 9
269 269 2 62 135 8370 9
271 271 2 62 136 8432 9
277 277 2 64 139 8896 9
281 281 2 65 141 9165 9
283 283 2 65 142 9230 9
293 293 2 68 147 9996 10
307 307 2 71 154 10934 10
311 311 2 72 156 11232 10
313 313 2 73 157 11461 10
317 317 2 74 159 11766 10
331 331 2 77 166 12782 11
337 337 2 79 169 13351 11
347 347 2 81 174 14094 11
349 349 2 82 175 14350 11
353 353 2 83 177 14691 12
359 359 2 84 180 15120 12
367 367 2 86 184 15824 12
373 373 2 88 187 16456 12
379 379 2 89 190 16910 12
383 383 2 90 192 17280 12
389 389 2 92 195 17940 13
397 397 2 93 199 18507 13
401 401 2 94 201 18894 13
409 409 2 96 205 19680 13
419 419 2 99 210 20790 14

Table 4: Mersenne NTT Parameters up to 20000 bits

3.8. Mersenne Negative W Parameters
With a negative w:

36

p d w u w bits nttwords
17 34 -2 1 17 17 1
19 38 -2 1 19 19 1
23 46 -2 2 23 46 1
29 58 -2 4 29 116 1
31 62 -2 4 31 124 1
37 74 -2 5 37 185 2
41 82 -2 6 41 246 2
43 86 -2 7 43 301 2
47 94 -2 8 47 376 2
53 106 -2 9 53 477 2
59 118 -2 10 59 590 2
61 122 -2 11 61 671 2
67 134 -2 12 67 804 3
71 142 -2 13 71 923 3
73 146 -2 14 73 1022 3
79 158 -2 15 79 1185 3
83 166 -2 16 83 1328 3
89 178 -2 17 89 1513 3
97 194 -2 19 97 1843 4
101 202 -2 20 101 2020 4
103 206 -2 21 103 2163 4
107 214 -2 22 107 2354 4
109 218 -2 22 109 2398 4
113 226 -2 23 113 2599 4
127 254 -2 26 127 3302 4
131 262 -2 27 131 3537 5
137 274 -2 29 137 3973 5
139 278 -2 29 139 4031 5
149 298 -2 32 149 4768 5
151 302 -2 32 151 4832 5
157 314 -2 34 157 5338 5
163 326 -2 35 163 5705 6
167 334 -2 36 167 6012 6
173 346 -2 38 173 6574 6
179 358 -2 39 179 6981 6
181 362 -2 40 181 7240 6

37

191 382 -2 42 191 8022 6
193 386 -2 43 193 8299 7
197 394 -2 43 197 8471 7
199 398 -2 44 199 8756 7
211 422 -2 47 211 9917 7
223 446 -2 50 223 11150 7
227 454 -2 51 227 11577 8
229 458 -2 51 229 11679 8
233 466 -2 52 233 12116 8
239 478 -2 54 239 12906 8
241 482 -2 54 241 13014 8
251 502 -2 57 251 14307 8
257 514 -2 58 257 14906 9
263 526 -2 60 263 15780 9
269 538 -2 61 269 16409 9
271 542 -2 62 271 16802 9
277 554 -2 63 277 17451 9
281 562 -2 64 281 17984 9
283 566 -2 65 283 18395 9
293 586 -2 67 293 19631 10
307 614 -2 71 307 21797 10

Table 5: Mersenne NTT Parameters with a negative w up to 20000 bits

3.9. Fermat Parameters
Fermat Number Theoretical (FNT) transforms are transforms into domains of Ζq where q

is a Fermat Number and has the form:

ݍ ൌ 2ଶ୬ ൅ 1

38

Fermat Numbers are not necessarily prime. Fermat numbers have several

properties that make them suitable for modular operations. First, observe that for any

Fermat number:

2ଶ୬݉ݍ ݀݋ ൌ െ1

thus:

൫2ଶ୬൯
ଶ

ݍ ݀݋݉ ൌ 1

Said another way, with an FNT we know that 2 raised to a power will eventually result in

unity. So, FNT also produces a primitive root of unity with a base of 2.

2n d w u s bits nttwords
16 32 2 1 16 16 1
32 64 2 4 32 128 1
64 128 2 11 64 704 2
128 256 2 27 128 3456 4
256 512 2 58 256 14848 8
512 1024 2 121 512 61952 16
Table 6: Fermat NTT Parameters with a negative w up to 60000 bits

39

CHAPTER 4: Algorithm Compare and Critique

In comparing algorithms, the term “spectral” is used in one particular series of papers and

books about the subject. But, other authors have used the term “Fast-Fourier-Transform

Modular Multiplication” and “Discrete-Fourier-Transform Improvements to Montgomery

Multiplication”. Likewise, some authors have used the term “spectral”, but not leveraged

it for anything close to exponentiation.

4.1. Comparison between Koç and Baktir SMM
Koç and Baktir use very similar algorithms for Spectral Modular Multiplication. Baktir

does not address exponentiation and calculates arithmetic in GF(pm). The primary

difference between the SMM algorithms is that Koç uses addition to achieve a modular

zero result before shifting, then sets the first term to 0, and lastly carries the term to the

next term in order to achieve the result of setting the least significant term to zero. Baktir

subtracts to set the term to zero without having to consider the carry.

N(t) spectral equivalent of a multiple of the modulus, n, used during
modular exponentiation such that the first term is 1.

z0 or z0 the first term of the time polynomial z(t)

β beta = –z0 mod b

40

Γ(t) A special polynomial consisting of the negative powers of w
such that:

When Γ(t) is component-wise multiplied against a polynomial in
the spectral domain, it computes the one term left circular shift
of the polynomial equivalent in the time domain.

m (Baktir only) the equivalent of s, number of terms in input values

A(t) The DFT(α(t)) where α(t) is the evaluation polynomial of the integer α
α is the integer time domain value of the carry value used internal by
the Koç algorithm.

X (Baktir only) x is the value of a single word that right shifts terms
when multiplied, also called b by Koç. X-1 is the spectral equivalent
of a left shift of a single term… same as Γ(t)

F’ (Baktir only) same as N(t) described above

Table 7: Spectral Values used in Algorithms

Table 7 is a reference for the various values used during the exponentiation algorithms

discussed in this thesis.

Figure 9: Koç Spectral Modular Multiplication

1: Z(t) := X(t) * Y (t)
2: α := 0
3: for i = 0 to d − 1
4: z0 := d−1 ・ (Z0 + Z1 + . . . + Zd−1) mod q
5: β := −(z0 + α) mod b
6: α := (z0 + α + β)/b
7: Z(t) := Z(t) + β ・ N(t) mod q
8: Z(t) := Z(t) − (z0 + β)(t) mod q
9: Z(t) := Z(t) * Γ(t) mod q
10: end for
11: Z(t) := Z(t) + A(t)
12: return Z(t)

41

Please refer to Table 7 for an explanation of the terms in these algorithms

Figure 10: Baktir Spectral Modular Multiplication

Figure 11: Koç vs. Baktir Rewritten SMM

Baktir
for i = 0 to d - 1
 Zi = Xi * Yi
end for

for j = 0 to m - 2
 z0 := d−1 (Z0 + Z1 + . . . + Zd−1)

mod q
 β = - z0

 Z(t) = Z(t) + β・ N(t) mod q

 Z(t) = Z(t) * Γ(t) mod q
end for

return Z(t)

Koc
for i = 0 to d - 1
 Zi = Xi * Yi
end for
α := 0
for i = 0 to d − 1
z0 = d−1 (Z0 + Z1 + . . . + Zd−1)

mod q
β = −(z0 + α) mod b
α = (z0 + α + β)/b
Z(t) = Z(t) + β ・ N(t) mod q
Z(t) = Z(t) − (z0 + β)(t) mod q
Z(t) = Z(t) * Γ(t) mod q
end for
Z(t) := Z(t) + A(t)
return Z(t)

1: for i = 0 to d - 1
2: Ci = Ai * Bi
3: end for
4: for j = 0 to m - 2
5: S = 0
6: for i = 0 to d - 1
7: S = S + Ci
8: end for
9: S = -S/d
10: for i = 0 to d - 1
11: Ci = (Ci + F’i * S) * Xi

-1
12: end for
13: end for
14: return (C)

42

In this comparison Figure, the expressions in Baktir that have almost identical meaning as

the SMM algorithm by Koç were converted to use the same expressions. This includes

the Baktir expressions of A, B, C, S, F, and X that were changed to their counterparts of

X, Y, Z, β, N(t), and Γ(t) respectively. This allows the much easier side-by-side contrast

and comparison of the two algorithms. Major differences are underlined in the figure.

4.2. Clarifications of Saldamli and Koç Works
The primary issue in the Illustrative Example in [5] is that there is an error early on in the

sample calculations in step 5 where b is set to 16 and not 8. Unfortunately, due to this

early error, all remaining calculations are not suitable as reference.

Another area that caused difficulty is in the addition of α(t) carry during the final

step of Spectral Modular Multiplication. It is absolutely necessary to calculate the DFT

of the base evaluation polynomial of α(t). The base evaluation polynomial is defined as

one in which each term xi is 0 ≤ xi < b [5]. If α ≥ b, then it must be broken into the base

evaluation polynomial by breaking α into multiple terms each term less than b.

There are several references to more efficient methods for handling this carry,

such as pp. 144 in [5]. Combined with Notation 2 on pp. 132 of [5], this appears to be a

component-wise addition, which is functionally correct and very efficient. But, it was

determined through testing that by not calculating the DFT of the base evaluation

polynomial, the algorithm results in overflows because the carry value will cause iterative

43

increases in the size of the first time series term, and eventual overflow. However, these

overflows occur much less frequently with smaller field sizes and thus will only manifest

regularly during tests of larger field sizes. Because it manifests as an overflow of time

series values while in the frequency domain, it can be difficult to detect unless the testing

includes careful monitoring of time series values.

 This concern with α(t) was noted in pp. 142 of [5], but in other sections it is not

described, including in the Illustrative Example. Unfortunately, this note was during the

early description of just the reduction step, and later sections describing the larger

algorithm used different terminology.

44

CHAPTER 5: Testing and Results

5.1. Sample Result and Interim Values
The following section outlines the output values produced by a functional

implementation of spectral modular exponentiation as outlined by Saldamli and Koç [5].

Assume that the following input values are provided:

RSA Values: m=48644, e=5581, n=136163

The sample results start with determining the following parameters. Parameter

generation is covered in Chapter 3 on parameters. The input values require 18 bits of

storage. An appropriate field to support the NTT must be calculated based on the 18 bit

requirement. A Mersenne Number Theoretical Transform will be selected with a positive

base for this example. By parameter generation derived from the calculation of the

inequality described by Koç, the following parameters as suitable for this NTT.

q=217-1, d=17, w=2, u=2, s=9, bits=18

The first step in initialization is to calculate the inverse of d mod q in order to

compute the inverse DFT matrix.

d-1 = 17-1 mod 131071 = 123361

Then is the initialization of two values that will be used later in computations. The

value of the Γ sequence is computed by:

45

Γi = w-i mod q where 0 ≤ i ≤ d-1

Γ = (1, 65536, 32768, 16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2)

ONE = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Then it is necessary to evaluate derived parameters from the RSA input values

provided:

m=48644 e=5581 n=136163

First, compute the evaluation polynomials for the input values:

n(t)= (3, 0, 2, 3, 3, 0, 1, 0, 2)

m(t) = (0, 1, 0, 0, 2, 3, 3, 2, 0)

Then, derive an appropriate multiple of n such that the first term for this multiple is

1 when expressed as an evaluation polynomial. This is accomplished by examining the

evaluation polynomial for n(t) and extracting the first term n0. The multiple required can

be calculated by determining the modular inverse of n0 with respect to b.

δ = n0
-1 mod b

δ =3

This multiple is used to create a new value, n(t) by the following calculation.

n =136163*3 = 408489

n(t) = (1, 2, 2, 2, 3, 2, 3, 0, 2, 1, 0, 0, 0, 0, 0, 0)

As verification, the first value of n(t) is indeed 1 and thus will be effective in later

reduction steps.

46

The next initialization is not necessarily required, it depends on the implementation

of DFT that is chosen. Since DFT in MNT or FNT can take advantage of characteristics

of those transforms such that the transform can be accomplished by only shifts and

additions, it is possible to accomplish the transform more simply than a matrix

multiplication. However, for possible reference value the DFT matrix with these

parameters is computed as the following:

1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256
1 4 16 64 256 1024 4096 16384 65536
1 8 64 512 4096 32768 2 16 128
1 16 256 4096 65536 8 128 2048 32768
1 32 1024 32768 8 256 8192 2 64
1 64 4096 2 128 8192 4 256 16384
1 128 16384 16 2048 2 256 32768 32
1 256 65536 128 32768 64 16384 32 8192
1 512 2 1024 4 2048 8 4096 16
1 1024 8 8192 64 65536 512 4 4096
1 2048 32 65536 1024 16 32768 512 8
1 4096 128 4 16384 512 16 65536 2048
1 8192 512 32 2 16384 1024 64 4
1 16384 2048 256 32 4 65536 8192 1024
1 32768 8192 2048 512 128 32 8 2
1 65536 32768 16384 8192 4096 2048 1024 512

Table 8: Sample DFT Matrix (first 9 columns)

1 1 1 1 1 1 1 1
512 1024 2048 4096 8192 16384 32768 65536

2 8 32 128 512 2048 8192 32768
1024 8192 65536 4 32 256 2048 16384

4 64 1024 16384 2 32 512 8192

47

2048 65536 16 512 16384 4 128 4096
8 512 32768 16 1024 65536 32 2048

4096 4 512 65536 64 8192 8 1024
16 4096 8 2048 4 1024 2 512

8192 32 16384 64 32768 128 65536 256
32 32768 256 2 2048 16 16384 128

16384 256 4 8192 128 2 4096 64
64 2 8192 256 8 32768 1024 32

32768 2048 128 8 65536 4096 256 16
128 16 2 32768 4096 512 64 8

65536 16384 4096 1024 256 64 16 4
256 128 64 32 16 8 4 2

Table 9: Sample DFT Matrix (last 8 columns)

And, then compute the inverse DFT matrix, which includes the scalar multiple of

the pre-computed value for the inverse of d, which was 123361.

123361 123361 123361 123361 123361 123361 123361 123361
123361 127216 63608 31804 15902 7951 69511 100291
123361 63608 15902 69511 115681 61688 15422 69391
123361 31804 69511 123376 15422 100231 127216 15902
123361 15902 115681 15422 115651 31804 100291 30844
123361 7951 61688 100231 31804 115681 7711 127216
123361 69511 15422 127216 100291 7711 63608 115681
123361 100291 69391 15902 30844 127216 115681 100231
123361 115681 115651 100291 100231 69511 69391 7951
123361 123376 127216 61688 63608 30844 31804 15422
123361 61688 31804 7711 69511 115651 123376 63608
123361 30844 7951 115651 61688 15902 100231 123376
123361 15422 100291 63608 69391 123376 15902 115651
123361 7711 123376 7951 127216 69391 61688 69511
123361 69391 30844 115681 7951 63608 115651 7711
123361 100231 7711 30844 123376 100291 7951 31804
123361 115651 100231 69391 7711 15422 30844 61688

Table 10: Sample Inverse DFT Matrix (first 8 columns)

123361 123361 123361 123361 123361 123361 123361 123361 123361

48

115681 123376 61688 30844 15422 7711 69391 100231 115651
115651 127216 31804 7951 100291 123376 30844 7711 100231
100291 61688 7711 115651 63608 7951 115681 30844 69391
100231 63608 69511 61688 69391 127216 7951 123376 7711
69511 30844 115651 15902 123376 69391 63608 100291 15422
69391 31804 123376 100231 15902 61688 115651 7951 30844
7951 15422 63608 123376 115651 69511 7711 31804 61688
7711 15902 15422 31804 30844 63608 61688 127216 123376

15902 7711 7951 69391 69511 100231 100291 115651 115681
15422 7951 100231 115681 127216 30844 15902 69391 100291
31804 69391 115681 63608 7711 100291 127216 15422 69511
30844 69511 127216 7711 115681 31804 100231 61688 7951
63608 100231 30844 100291 31804 115651 15422 115681 15902
61688 100291 15902 127216 100231 15422 123376 69511 31804
127216 115651 69391 15422 61688 115681 69511 15902 63608
123376 115681 100291 69511 7951 15902 31804 63608 127216

Table 11: Sample Inverse DFT Matrix (last 9 columns)

Now with the DFT pre-computations and the value for n(t), calculate the spectral

equivalent for this value, since it will be used in the spectral domain. Note that capital

names will generally be used for spectral equivalents of values.

N(t) = DFT(n(t)) = (18, 1357, 15276, 80279, 9143, 94937, 57881, 44133, 33683,

15433, 28402, 121970, 62841, 86095, 105194, 22374, 7427)

Now, a special spectral polynomial is required to convert each input value to the

residual. This is effectively multiplying a number by a special power of 2 that can be

later reduced out of the number by using right shifts. In this case, the shifts will be whole

terms of the evaluation polynomial which are u bits in length. The Koç algorithm

requires shifts of d terms, i.e. the size of the polynomial, thus the initial residual must

calculate the residual of 2d*u mod n. However, to reuse the code for spectral modular

49

multiplication, and yet make this slightly more difficult to understand, the value used to

calculate the residual will be twice the shift as necessary… 22d*u mod n. This is because

the code for spectral modular multiplication includes a reduction and thus we must

compensate for the reduction in the value we use for generating residuals… if we want to

reuse this code:

SMM(a,a) = a*b*2-d*u

The final value to calculate residuals is:

λ = 22d*u mod n

λ = 22*17*2 mod 408489

λ =83327

λ(t) = (3, 3, 3, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

DFT(λ(t)) = Λ(t) = (14, 461, 83327, 37739, 105275, 36269, 37445, 84405, 107492, 8733,

80991, 73339, 97159, 42601, 64807, 125581, 62981)

With the values in place to complete the exponentiation, the one remaining value

that can be pre-computed is the residual of one in the spectral domain, as this value is a

starting value for c when using the Left-to-Right Exponentiation algorithm. This is

computed by calculating the Spectral Modular Multiplication of ONE(t) and Λ(t):

Residual of ONE(t) = (14, 461, 83327, 37739, 105275, 36269, 37445, 84405, 107492,

8733, 80991, 73339, 97159, 42601, 64807, 125581, 62981)

The following values are calculated during the exponentiation itself.

m(t) = (0, 1, 0, 0, 2, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0)

50

M(t) = (11, 578, 48644, 106542, 4521, 25396, 25420, 70534, 115200,

14880, 68233, 103472, 38449, 60548, 98381, 34288, 102400)

Now calculate the residual of m(t) in the spectral domain,

M (t) = SMM (M(t), Λ(t)):

M(t)= (49, 869, 105421, 60270, 55992, 11906, 100117, 111736, 76691,

26697, 111079, 23975, 5919, 21790, 39138, 93857, 72212)

With M(t) calculated, the loop of the Left-to-Right exponentiation algorithm is run. Each

loop involves the calculation of SMM(C(t),C(t)) and if the ith bit of e is set, then it also

calculates SMM(C(t),M(t)).

0 1 2 3 4 5 6 7 8
0 106 1065 47311 5951 11623 93817 129809 68283 123781
1 49 869 105421 60270 55992 11906 100117 111736 76691
2 82 1095 64381 36438 127588 97968 92803 51307 72410
3 175 3772 12499 130566 100915 41625 43898 129863 119443
4 115 1386 82144 40385 59276 45637 8331 53590 170957
5 97 1230 79156 92940 122006 33897 77702 129612 7492
6 130 2064 55581 102683 4748 114011 17251 18074 2187
7 112 2094 60855 26552 118228 117444 12633 62807 17154
8 118 1621 94183 36565 128202 91772 24724 117868 40779
9 142 2269 111006 40078 91301 119659 99158 84383 108181

10 103 2193 126354 28627 70264 83536 24900 79418 56100
11 178 3534 385 2712 27450 91878 19572 33318 119450
12 115 1690 26673 103021 38620 120063 8713 84393 115177
13 136 2769 75845 84958 61209 106657 104076 73787 1550

Table 12: Sample Interim C Values (first 9 terms)

51

9 10 11 12 13 14 15 16
0 48769 102507 26805 26417 71819 129564 211529 80942
1 26697 111079 23975 5919 21790 39138 93857 72212
2 39545 129611 47641 65447 104000 97798 112870 38944
3 114974 67622 124599 18592 40920 73965 156183 572
4 40642 50434 61875 25644 110685 34094 154234 109615
5 37532 52197 62511 113319 88659 44226 127862 109609
6 66758 12892 107808 23909 68126 90871 223149 138802
7 64694 107438 130200 106206 66452 79545 173254 34345
8 50885 61603 64883 19023 61563 58910 189113 7215
9 74955 119495 39439 37666 16846 66614 185400 114747

10 61611 70637 119424 34322 143708 118489 91730 68648
11 105756 52346 64188 41342 121759 110338 102878 152130
12 53934 82055 69340 93208 39168 93205 94533 156207
13 84687 56674 8577 84621 21586 123027 113316 45620

Table 13: Sample Interim C Values (last 8 terms)

The final value after all iterations of the loop is:

Final: C(t)= (136, 2769, 75845, 84958, 61209, 106657, 104076,

73787, 1550, 84687, 56674, 8577, 84621, 21586, 123027, 113316, 45620)

Now, the value of Λ(t) must be divided out of the final value of C(t) to get C(t),

which is the similar to the step in Montgomery Multiplication where the final result is

converted from the Montgomery domain to the integer domain. This step is not done for

every iteration of the exponentiation loop, only the final value. Because the algorithm for

Spectral Modular Multiplication includes the reduction, the operation SMM(C(t),

ONE(t)) will accomplish the reduction:

Final: C(t)= (148, 2212, 58671, 53306, 1748, 85985, 50727,

52

92180, 2964, 71396, 8067, 52678, 103271, 127500, 148101, 92341, 97851)

The spectral domain evaluation polynomial must now be converted back to the time-

series representation by using the inverse DFT operation.

IDFT(C(t))= c(t) = (34, 31, 25, 20, 18, 7, 7, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0)

The time series polynomial can’t simply be pasted back together as consecutive

bits, since some of the terms are now larger than the original 2 bits. Therefore, the

evaluation is accomplished by the following algorithm:

Figure 12: Paste Words Algorithm

The final result from the evaluation of c(t):

c = 53579

5.2. Functional Tests
Functional testing was added during the algorithm development to detect potential

problems in the calculations as the various changes and variations on implementations

were tested. Some changes in code, such as restructuring loops or the reorganization of

calculations, had unintended consequences. Also, the lack of prior work having a valid

example with correct interim values made initial implementation and debugging very

INPUT: u, n, a(t) where ai is the ith word of a(t)
OUTPUT: a = a(b) mod n , where b=2u

1. a = 0
2. For i from d-1 down to 0, do:

a = a * 2u mod n
a = a + ai mod n

3. Return(a)

53

difficult. Therefore, a battery of sanity checks was developed to verify the correctness of

different aspects of the spectral math required in both Koç and Baktir versions of

algorithms. These tests were executed prior to performance testing during each test to

verify the correctness of the algorithm.

These tests shown following were using the following parameters, should they

need to be duplicated: (MNT) q=2^19-1, d=19, w=2, u=2, s=10, bits=20, b=2u=4. These

tests were also done using sample values of an exponentiation in the time domain of:

c = me mod n where e=53 n=3141

Testing Evaluation Polynomials

Sanity Test #1 covers the conversion of an integer to an evaluation polynomial and back.

The value used is 2922 and it is using u=2, which means 2-bit words and each term will

be in the range from 0-3. “a_t” is the debugging terminology for a(t), which is the

evaluation polynomial of a. The correct output will be the original value submitted.

Figure 13: Sanity Check #1: break/paste evaluations polynomials

a=2922

 a_t= [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0
 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 [15]:0 [16]:0
 a=2922

54

Testing DFT and IDFT Conversions

The next test implemented verifies the ability of performing the spectral transformation to

frequency domain and back. It shows the interim DFT results of the transformation of

a_t as A_t and the inverse DFT transform, along with the evaluation of the polynomial to

the original value.

Figure 14: Sanity Check #2: DFT/IDFT

Testing Addition of Evaluation Zeros

Test 3 verifies the ability to add multiples of the spectral evaluation of the value n, which

is the modulus of the modular exponentiation in the time domain, to another evaluation

polynomial without altering the value of the number. In this case, the value is even more

specific. It is a multiple of n such that the first term is 1 in the time domain. This

property of having the first term equal 1 in the time domain is used in the spectral domain

during reductions for Koç and this polynomial is referred to as N(t) [5]. In this example,

the value is denoted as n_base_t and the changing values of a(t) are shown as a_t.

a=2922
a_t= [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0
 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 [15]:0 [16]:0
A_t= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092 [8]:99075

[9]:6162 [10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [7]:39190
[15]:85762 [16]:114691

a_t= [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0
[9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 [15]:0 [16]:0

a=2922

55

Figure 15: Sanity Check #3: Adding Evaluations of Zero

Testing Addition of Spectral Zeros

Test 4 verifies the ability to add multiples of the spectral evaluation polynomial of the

modulus n, which is the modulus of the modular exponentiation in the time domain, to

another spectral polynomial without altering the time domain value of the number. In

this case, the value is even more specific. It is a multiple of n such that the first term is 1.

In this output, the value is denoted n_base_t. This property is used during reductions for

Koç [5]. Also, Test 4 verifies the ability to add the correct multiples of n_base_t to set

the first term to 0: (modulo b, which is 4 in this case).

n_base_t= [0]:1 [1]:1 [2]:0 [3]:1 [4]:0 [5]:3 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0
 a=2922
 Now compute a(t) = IDFT(DFT(a_t) + N(t))
 a_t= [0]:3 [1]:3 [2]:2 [3]:2 [4]:3 [5]:5 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0
 Now evaluate a = a(t) and test if a is unchanged
 a=2922
DFT/IDFT+N_base_t test: PASS
 Now again compute a(t) = IDFT(DFT(a_t) + N(t))
 a_t= [0]:4 [1]:4 [2]:2 [3]:3 [4]:3 [5]:8 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0
 Now evaluate a = a(t) and test if a is unchanged
 a=2922
DFT/IDFT+N_base_t test: PASS
 Now again compute a(t) = IDFT(DFT(a_t) + N(t))
 a_t= [0]:5 [1]:5 [2]:2 [3]:4 [4]:3 [5]:11 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0
 Now evaluate a = a(t) and test if a is unchanged
 a=2922
 DFT/IDFT+N_base_t test: PASS

56

 a0 = 0 mod b = 0 mod 4

The correct number of multiples is called “beta” in the output. [5] This value is calculated

by evaluation of:

beta = –a0 mod b where a0 is the first term in a_t

Figure 16: Sanity Check #4: Zeroing out 0th term of time domain polynomial by addition in

spectral domain

Testing Left Shift in Spectral Domain

Test 5 verifies the ability to shift left of the terms of the evaluation polynomial in the time

domain by using operations in the frequency domain. This is done by the multiplication

of Γ(t) as specified by [5]. Γ(t) is a special polynomial consisting of the negative powers

of w such that:

a=2922
a_t= [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 [15]:0
[16]:0
a0=2
beta=2
n_base_t= [0]:1 [1]:1 [2]:0 [3]:1 [4]:0 [5]:3 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0
[15]:0 [16]:0
N_base_t= [0]:6 [1]:107 [2]:3141 [3]:98825 [4]:4137 [5]:33569 [6]:24643 [7]:151 [8]:577 [9]:7681
[10]:74754 [11]:67633 [12]:5637 [13]:57377 [14]:16653 [15]:35201 [16]:94209
A_t= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092 [7]:39190 [8]:99075 [9]:6162
[10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [15]:85762 [16]:114691
A_t+beta*N_base_t= [0]:24 [1]:348 [2]:9204 [3]:13990 [4]:78469 [5]:102556 [6]:74378 [7]:39492
[8]:100229 [9]:21524 [10]:28888 [11]:76997 [12]:69904 [13]:33899 [14]:70532 [15]:25093
[16]:40967
a_t (1st is 0)= [0]:4 [1]:4 [2]:2 [3]:3 [4]:3 [5]:8 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0
[15]:0 [16]:0 a0 is 0 mod 4
a=2922
DFT/IDFT+a0*N_base_t test: PASS

57

When Γ(t) is component-wise multiplied against a polynomial in the spectral domain, it

computes the one term left circular shift of the polynomial equivalent in the time domain.

Figure 17: Sanity Check #5: Left shift of one term of time domain polynomial by

operations in spectral domain

Testing Multiplications in Spectral Domain

Test 6 verifies that we can actually do multiplications in the frequency domain with

smaller values. This is modulo arithmetic, so actual answers will be computed modulo n.

Figure 18: Sanity Check #6: Linearity of multiplication in DFT domain

a=2922

 a_t START= [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0
[14]:0 [15]:0 [16]:0

 A_t DFT= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092 [7]:39190 [8]:99075
[9]:6162 [10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [15]:85762 [16]:114691

 A_t*A_t = [0]:144 [1]:17956 [2]:18469 [3]:4821 [4]:116993 [5]:85254 [6]:74451 [7]:97193
[8]:79506 [9]:90725 [10]:41258 [11]:13177 [12]:8854 [13]:102758 [14]:92464 [15]:71479 [16]:2063

 a_t FINAL= [0]:4 [1]:8 [2]:12 [3]:12 [4]:20 [5]:24 [6]:21 [7]:14 [8]:13 [9]:12 [10]:4 [11]:0 [12]:0
[13]:0 [14]:0 [15]:0 [16]:0

 a=846 (= 29222 mod 3141)

a_t START= [0]:4 [1]:4 [2]:2 [3]:3 [4]:3 [5]:8 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0
[15]:0 [16]:0

Multiply Γ(t) against A_t in the spectral domain to left-shift a_t, then show a_t = IDFT(Γ(t) * A_t)

a_t FINAL1= [0]:4 [1]:2 [2]:3 [3]:3 [4]:8 [5]:0 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0
[15]:0 [16]:0

Multiply Γ(t) against A_t in the spectral domain to left-shift a_t, then show a_t = IDFT(Γ(t) * A_t)

a_t FINAL2= [0]:2 [1]:3 [2]:3 [3]:8 [4]:0 [5]:0 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0
[15]:0 [16]:0

58

Testing Additions in Spectral Domain

Test 7 verifies that we can actually do additions in the frequency domain with smaller

values. This is modulo arithmetic, so actual answers will be computed modulo n.

Figure 19: Sanity Check #7: Linearity of addition in DFT domain

Testing Spectral Modular Product

Lastly, we check SMP. If SMP works, then SME is the only piece left and it is tested by

the actual SME itself and comparisons against the reference algorithms. Because SMP

computes, in this case, SMP(a)=a·a·R-1, we first multiply a by R to create a value called

a_p.

 a_p = a·R

Given this value, we can compute:

SMP(a,a_p) = a·a·R-1R = a2 mod n

This value is much easier to verify by computing 29222 mod 3141.

 a=2922

 a_t START= [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0
[14]:0 [15]:0 [16]:0

 A_t DFT= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092 [7]:39190 [8]:99075
[9]:6162 [10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [15]:85762 [16]:114691

 A_t+A_t = [0]:24 [1]:268 [2]:5844 [3]:25893 [4]:9319 [5]:70836 [6]:50184 [7]:78380 [8]:67079
[9]:12324 [10]:20902 [11]:14533 [12]:117260 [13]:100432 [14]:74452 [15]:40453 [16]:98311

 a_t FINAL= [0]:4 [1]:4 [2]:4 [3]:2 [4]:6 [5]:4 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0
[14]:0 [15]:0 [16]:0

 a=2703 (= 2922+2922 mod 3141)

59

Figure 20: Sanity Check #8: Spectral Modular Product

5.3. Functional Results
Functional tests were run for 3 sample numbers across MNT, MNT negative w, and FNT

parameter selection. Starting at 20 bits and ending at 4000 bits, all functional tests

passed. Since the original implementation and testing, these tests have been tested

against numerous other random input numbers during the course of performance tuning.

Functional Issues

 There were many barriers along the way to resolve before the functional tests worked,

especially for larger parameters. At first, for performance reasons, the multi-precision

arithmetic was implemented inline by custom functions and structures. However, since

the first algorithm chosen was the Baktir algorithm and this algorithm was not suitable

for RSA exponentiation, it became impossible to test and verify the multi-precision

operations because the algorithm itself would not produce the expected output. In the

 a=2922

 a_p=375

 A_t= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092 [7]:39190 [8]:99075
[9]:6162 [10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [15]:85762 [16]:114691

 A_p_t= [0]:9 [1]:41 [2]:375 [3]:4811 [4]:70419 [5]:35883 [6]:12485 [7]:51347 [8]:98692
[9]:1549 [10]:9307 [11]:68707 [12]:20871 [13]:9765 [14]:22819 [15]:59907 [16]:57348

 SMP_test Return A_t^2= [0]:21 [1]:78 [2]:846 [3]:12558 [4]:66575 [5]:4134 [6]:16782 [7]:71694
[8]:98320 [9]:34 [10]:238 [11]:3214 [12]:49678 [13]:2068 [14]:8302 [15]:34318 [16]:24591

 SMP_test IDFT(a_t^2)== [0]:14 [1]:0 [2]:4 [3]:0 [4]:3 [5]:0 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0

 SMP(a,a_p)=846 (2922*2922 mod 3141 = 846)

60

course of understand the specifics of Baktir, a well-tested and accepted multi-precision

library (GMP) was adopted to resolve any possible issues that might be resulting from the

custom multi-precision arithmetic.

When this did not resolve the issues, the implementation of Sanity Tests ensued to

diagnose the algorithm issues. What resulted was the full battery of tests described in the

Chapter 5.1 on functional testing. This battery of tests revealed that during subtraction of

the spectral equivalent of the modulus n, the value of the time-domain equivalent

changed. This was accomplished by computing the inverse DFT on the interim value and

displaying the result. The Koç method was tested, which relied on addition instead of

subtraction. This method worked correctly and thus the Koç method become the primary

candidate.

During the ongoing functional testing, the implementation of multi-precision logic

for larger and larger portions of code was necessary as bit sizes grew. Not only did each

and every time series and spectral term require multi-precision operations, several

unexpected values required multi-precision as well:

1. b – a value required for the computation of left and right shift operations of

whole terms. b exceeds 32-bits at a Mersenne NTT that supports 2475-bits.

2. bit masks – most bit masks require multi-precision values, such as during the

evaluation of values into time-series polynomials and also during custom

modular operations designed to take advantage of MNT or FNT reduction

techniques.

61

3. α (carry value) - the carry value in Koç is almost always a smaller number

as it is not the size of the modulus q but rather the same size as b. But, b

exceeds 32-bits at a Mersenne NTT that supports 2475-bits.

5.4. Performance Testing
Overview

One of the difficulties in performance testing was to develop a fair system to measure

performance of algorithms that originated in different libraries and that had different

implementations. Some of the questions encountered and resolved during the testing

were:

1. How do we measure performance in a way that scores different algorithms

accurately? Application of the high-resolution timer that measures CPU time only

2. Do we measure initialization code? No, initialization is not relevant to these

performance measurements.

3. How much initialization do we measure? Only that which must be calculated as a

result of the input value to be operated on (in our case, m). We also calculate

initialization time that is included in operations that are tightly integrated into

exponentiation operations and cannot be measured separately.

4. Do we use specifically chosen input parameters or randomly selected ones? Both, but

only those specific or random parameters that would be likely found in RSA

operations.

62

a. Randomized m will be used.

b. Random e or fixed e=17,65537 (typical parameters in RSA, but it is not

necessary to test the fixed values of e used during encryption because these

small values are almost always too small to benefit from the overhead of

converting to the spectral domain)

5. What spectral parameters are chosen? Optimally chosen spectral parameters are

chosen to match the input value bit sizes and provide the greatest performance for

those given bit sizes.

Measurement Procedures

Measurements are accomplished by the application of the high-resolution timer that

measures CPU time only. Floating point measurements where eventually implemented to

record potentially large values in CPU time for inefficient configurations. The following

code sample shows the types of functions used to measure time:

timespec diff(timespec start, timespec end)

….

clock_getres(CLOCK_PROCESS_CPUTIME_ID, &time1);

….

 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1);

SME(&FD);

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2);

63

time_diff=diff(time1,time2);

USeconds = time_diff.tv_sec*1000000000+time_diff.tv_nsec;

printf("Time_SME,%d,%lu ns\n",test_bits, USeconds);

64

CHAPTER 6: Performance Measurements and Enhancements

6.1. Algorithm Profiling Analysis
There were several iterations of algorithm analysis as the algorithm evolved over time.

As seen in this first profile analysis, the DFT calculation time accounts for a very small

percentage of total execution time (2.69%) in this release of the code. This code includes

the shift improvements, but not the planned improvements to the Koç SMP algorithm. It

was fairly consistent for all implementations in software that SMP was the most costly

operation.

6.2. Performance Modifications #1

% self self
time seconds calls ms/call short name
83.92 1.25 448 2.79 SMP_koc
12.08 0.18 28 6.43 init_DFT
2.69 0.04 168 0.24 DFT
1.34 0.02 28 0.71 IDFT
0 0 546 0 find_max_u
0 0 140 0 break_words
0 0 56 0 init_SME
0 0 28 0 init_GAMMA
0 0 28 0 init_sme_math
0 0 28 0 init_d_inverse
0 0 28 0 SME
0 0 28 0 init_ONE
0 0 28 0 init_RSA

65

1. Removing targeted modulus operations

2. Convert divisions during SMP by numbers in the form 2k to shifts by k positions.

Figure 21: Timing Comparison Performance Modifications #1

This chart shows the execution time (y-axis) of these various modifications at

various bit sizes of operands (x-axis). There was not a noticeable change in performance

in any of these performance enhancements. These modifications are listed below:

• Perflib/Matrix – Performance Monitoring and Matrix DFT Multiplications

• Perflib/Shift – Performance Monitoring and DFT Multiplications

computed by only shifts and additions.

66

• NoPerf/Matrix – No Performance Monitoring and Matrix DFT

Multiplications

• NoPerf/Shift – No Performance Monitoring and DFT Multiplications

computed by only shifts and additions.

• RemoveInnerMod – Removing certain modulus operations to measure

performance improvements.

6.3. Performance Modifications #2

1. Moving multiple term calculations to the same major loop

2. Moving summation for z0 calculation to final loop for future calculations.

3. Convert Gamma multiplication to modular shift.

4. Take advantage of the properties of MNT and FNT arithmetic.

67

Figure 22: Timing Comparison Performance Modifications #2

It can be seen that this modification “Perf Mods #2” had a significant improvement in

the overall performance in software by the SME algorithm. This chart shows the

execution time (y-axis) of this modification at various bit sizes of operands (x-axis).

Because the reference algorithm was implemented in a different library, a series of

alternatives to the reference algorithms were implemented. These enhancements are

discussed further in the next section.

• Perf Mods #2 – These modifications were extensive rewrites of the ordering

of operations to improve efficiency. These changes are described in the

following section.

0

200000000

400000000

600000000

800000000

1E+09

1.2E+09

1.4E+09

1.6E+09

0 500 1000 1500 2000 2500 3000

PerfLib/Matrix

PerfLib/Shift

NoPerf/Shift

NoPerf/Matrix

RemoveInnerMod

Perf Mods #2

68

6.4. Performance Enhancement #2 Details
Minor Algorithm Adjustments

One potential performance improvement was the attempt to add in α directly into the

spectral representation. This turned out to violate the overflow controls because α is a

carry value that can sometimes grow very large. Thus, the only safe way to incorporate it

is to evaluate the single term across the entire time-domain representation and then take

the DFT to add it into the spectral domain. This adds an additional DFT computation that

is required for every Spectral Modular Product operation as seen by the Koç text “A(t) is

the DFT pair of the base polynomial of α” [5].

Koç SMM Algorithm Component [5], Division Improvement

69

Koç SMM Algorithm Component [5], Left-Shift Improvement

Loop Operation Adjustments

The Koç pseudo-code is not suitable for fixed architectures when an “a+b” operation is

actually adding large multi-word numbers with many reads and writes. [5]

Instead of doing a single operation across all terms, and having to fetch/save every

word,

• Complete all operations on a single word before moving on.

• Cumulative operations (such as summation of all terms) can also be interwoven

into loops.

Some advantages in using multi-precision libraries:

• Do not need to worry about allocation/reallocation of memory during operations.

• Do not need to worry about special values in operations (like divide by 0 or

multiply by 2).

70

• Do not need to worry about choosing between algorithms based on parameters

(like Karatsuba multiplication).

Some notable disadvantages:

• Some operations have significant overhead

• Cannot take advantage of holistic algorithm knowledge , such as efficient

modulus operation with Mersenne or Fermat numbers.

Take advantage of Fermat and Mersenne Arithmetic

Mersenne and Fermat rings have certain characteristics that make modular reductions

much more efficient. In MNT, q = 2p – 1. The number being reduced, a, can be broken

into higher and lower portions along the 2p boundary such that:

 a = ah·2p + al but, because 2p = 1 mod 2p -1,

 a = ah + al so reduction can be accomplished with shifts and addition

Similarly for FNT:

 a = ah·2p + al but, because 2p = -1 mod 2p +1,

 a = -ah + al so reduction can be accomplished with shifts and subtraction

These are very good opportunities for performance increases, as the division to

accomplish modular reduction is very expensive. However, p is prime in our testing, and

therefore will never be word-aligned. In our software testing, this results in several

additional checks and shifts in order to accomplish this reduction.

 These characteristics were also combined into efficient additions and subtractions.

71

6.5. Performance of MNT with Negative w
It is possible to create appropriate parameters for an MNT with w=-2. This immediately

increases the number of terms or “size” of the DFT by a factor of two. However, when

comparing like-sized DFT in regards to overall bit size, the results are slightly

unexpected.

Take the following two example sets of parameters, the first is positive w, the

second is negative w.

q=2^101-1: w=2 u=21 s=51 d=101 bits=1071

q=2^73-1: w=-2 u=14 s=73 d=146 bits=1022

The negative w results in more bits with a smaller field element bit length (u) and

a smaller field modulus. These are generally positive benefits. But, in software, this is at

the cost of more DFT elements, d. Since software cannot parallelize d- way operations,

this results in more calculations overall as seen in the following chart of comparison

timings. Be aware that negative and positive w do not produce the same field sizes in the

charted measurements.

72

Figure 23: Timing Comparison of Positive vs. Negative W (usec)

This chart shows the execution time of the exponentiation on the y-axis vs. the bit

size of the operands that is supported by the parameters on the x-axis. It shows that for

w=-2 (negative), the execution time is generally higher than for positive w=2.

The one situation where this set of parameters will be beneficial is when making

calculations in a fixed architecture where if the bit size exceeds the architecture

capabilities it will cause a significant increase in computation time. For example, in a 32-

bit architecture, if using only positive w=2 with MNT and limiting the word size to 32

bits, SME can achieve a maximum bit length of 2100 bits (u=30). With w=-2, SME can

support 4832 bits (u=32).

6.6. Final Reference Timing Comparisons

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

0 200 400 600 800 1000 1200

e=17 w=+2

e=17, w=‐2

73

In software, many iterations of field sizes and implementations were tested to find

potential areas where SME performance in software would exceed that of more

traditional algorithms.

Reference Algorithms

The following chart shows Spectral Modular Exponentiation timings versus the following

reference implementations, all of which were tested under identical conditions. All

implementations used random values for e, m, and n during a single exponentiation and

measurements are in seconds.

1. Sliding Window – This uses the Sliding Window exponentiation algorithm along

with multiplication by Karatsuba/Toom-3 and reduction using arithmetic division

[8].

2. Left-to-Right - This uses the Left-to-Right or “square-and-multiply”

exponentiation algorithm along with multiplication by Karatsuba/Toom-3 and

reduction using arithmetic division [8].

3. Montgomery - This uses the Left-to-Right or “square-and-multiply”

exponentiation algorithm along with multiplication and reduction achieved by

Montgomery Multiplication.

74

Figure 24: Spectral Timings vs. Reference Implementations (sec)

These timings in logarithmic scale demonstrate the superiority of the reference

algorithms over the basic implementation of Spectral Modular Exponentiation at all bit

sizes tested.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000 3500

SME

SlidingWindow

Left2Right

Montgomery

75

Left-to-Right Montgomery vs. Parallel Simulation Reference Timings

Figure 25: Theoretical Spectral Parallelized Timings vs. Reference Implementations (sec)

These timings in logarithmic scale demonstrate the superiority of the reference

algorithms over the basic implementation of a theoretical timing of Spectral Modular

Exponentiation with parallel operations at all bit sizes tested. The parallel operations

were applied to the following segments of the SME algorithm:

7: Z(t) := Z(t) + β ・ N(t) mod q
8: Z(t) := Z(t) − (z0 + β)(t) mod q
9: Z(t) := Z(t) * Γ(t) mod q

Steps 7-9 are all operations that occur independently across d terms, and thus are

easy candidates for parallel testing. Because d is sometimes very large, it was not

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000 3500
SME

SlidingWindow

Left2Right

Montgomery

Parallel

76

possible to provide actual values for all sizes of d, but the values provided are

approximations of parallel calculation performance for steps 7-9.

77

CHAPTER 7: Performance Limitations

7.1. Complexity of SME in Software
There are performance limitations with the software implementation of the Spectral

Modular Exponentiation algorithm that was proposed by Koç [5]. These limitations were

discovered during the performance testing described in Chapter 6. In profiling the code

during testing, it was discovered that some operations in SMM were executed much more

often than expected.

To explore these concerns, the following complexity calculations were derived

from the parameters generated of d, s, q, u, and bit size of a single spectral term and how

these parameters affect the quantity of operations in SME. The complex relationship

between u, d, and q as determined by the overflow inequality make it difficult in solving

for efficiency values directly, so efficiency was modeled based on the tabulated

parameters that resulted from the iterative solving of the inequality.

With the output of parameter generation combined with the analysis of the loops

and multi-word operations in the implementations of SME, the following estimates were

determined for the number of operations required to compute critical steps of spectral

modular exponentiation at various operand sizes. These critical steps were called

InnerLoop operations on the charts.

78

Figure 26: Calculated SME Inner-Loop Operations
This chart shows the calculated count for InnerLoop operations for SME over a variety of

operand bit sizes (x-axis). It appears from the chart that the number of operations has a

quadratic relationship for this model based on software calculations.

y = 15.355x1.9364

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

0 5000 10000 15000 20000 25000

Software SME Ops vs. Bits

SMP IL Ops

Power (SMP IL Ops)

79

Figure 27: Calculated Parallelized SME Inner-Loop Operations

By examining these charts, it is seen that the modeled equation for the number of

Inner Loop (IL) operations shows that in software the number of operations in the SMP

increase as O(n2). This efficiency takes it characteristics from the fact that as bit sizes

increase, so does the bit size of the terms, the number of terms, and the number of

reductions steps that must be computed. Parallelization would only resolve this

efficiency issue if it were possible to calculate d parallel operations simultaneously

(where d varies between 29 and 419 in our test parameters).

y = 3.9185x1.4682

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 5000 10000 15000 20000 25000

Parallel SME Ops vs. Bits

SMP IL Ops

Power (SMP IL Ops)

80

With sufficient resources, the computations can be done in parallel for several of

the internal loop operations of SMP and the computational efficiency is modeled at

approximately O(n1.5).

81

Chapter 8: Conclusions and Future Work

This thesis provides significant additional information for the implementation of

algorithms that apply spectral modular exponentiation. Specifically, this covers some

beneficial characteristics determined concerning parameter generation for both Mersenne

and Fermat primes that allow the reliable generation of parameters.

 The performance of software implementations was not an improvement over the

reference algorithms. The lack of efficient operations to support spectral math in

software and the absolute necessity for hundreds of simultaneous parallel operations

made competitive performance difficult in software. In hardware, these issues might be

resolved.

 The production of verified intermediate values and the corresponding parameters

for these successful operations will be beneficial for future implementations and assist in

future attempts at hardware implementations.

82

REFERENCES

83

REFERENCES

[1] M. B. Tandrup, M. H. Jensen, R. N. Andersen, T. F. Hansen, “Fast Exponentiation In
practice,” Dec 2004.

[2] K. Kalach, J. P. David, “Hardware implementation of large number multiplication by FFT with
modular arithmetic,” IEEE-NEWCAS Conference, 2005. The 3rd International Volume, June
2005, pp. 267-270.

[3] S. Baktır., B. Sunar, “Achieving Efficient Polynomial Multiplication in Fermat Fields Using the
Fast Fourier Transform,” ACM SE’06 March 1012, 2006, Melbourne, Florida, March 2006

[4] C. D. Walter, “Logarithmic Speed Modular Multiplication,” Department of Computation,
UMIST.

[5] G. Saldamlı and C. K. Koç, Chapter 7, Spectral Modular Arithmetic for Cryptography, pp.
125-169.

[6] G. Saldamlı, Spectral Modular Arithmetic, Ph.D. thesis, Department of Electrical and
Computer Engineering, Oregon State University, May 2005.

[7] G. Saldamlı, Spectral Modular Arithmetic, M.S. thesis, Department of Electrical and
Computer Engineering, Oregon State University, May 2003.

[8] “Algorithms,” GMP Documentation, http://www.cims.nyu.edu/cgi-
systems/info2html?%28gmp%29Algorithms

[9] S. Baktir, et al. “A State-of-the-art Elliptic Curve Cryptographic Processor Operating in the
Frequency Domain”, Mobile Networks and Applications, vol. 12, August 2007, pp. 259-270.

[10] J. L. Massey, “The Discrete Fourier Transform in Coding and Cryptography,” San Diego ,
ITW, 1998.

[11] J. M. Pollard, “The Fast Fourier Transform in a Finite Field,” Mathematics of Computation, pp.
365-374, 1971.

[12] “Determinant,” http://en.wikipedia.org/wiki/Determinant, June 2010.

[13] H. J. Nussbaumer, “Fast Fourier Transform and Convolution Algorithms,” Berlin: Springer,
1982.

[14] Fermat Number. http://en.wikipedia.org/wiki/Fermat_number

[15] Mersenne Prime. http://en.wikipedia.org/wiki/Mersenne_Prime

84

[16] Fermat Number . http://mathworld.wolfram.com/FermatNumber.html

[17] A. Schönhage and V. Strassen, "Schnelle Multiplikation großer Zahlen", Computing 7 (1971),
pp. 281–292.
http://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm

[18] Karatsuba. http://en.wikipedia.org/wiki/Karatsuba

[19] A. J. Menezes, P. C. van Oorschot, Scott A. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996, Chapter 14 - Efficient Implementation.

85

CURRICULUM VITAE

Matthew Estes received his Bachelor of Science in Computer Engineering in 1998 from
Rose-Hulman Institute of Technology. He currently works as a Lead Information
Systems Engineer for the MITRE Corporation. He began his graduate degree at George
Mason for Computer Engineering in 2005 and is currently a member of the
Cryptographic Engineering Research Group (CERG) and the Spectral Modular
Arithmetic Group (SMAG) at George Mason University.

