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ABSTRACT 
 
 
 
PARAMETER SELECTION REFINEMENTAND SOFTWARE IMPLEMENTATIONS 
OF SPECTRAL MODULAR EXPONENTIATION  
 
Matthew Allen Estes, MS Computer Engineering 
 
George Mason University, 2010 

Thesis/Dissertation Director: Dr. Kris Gaj 

 

A consistent challenge to the widespread use public key cryptosystems, such as 

RSA, is the computational difficulty of performing arithmetic operations with large 

operands.  There are many branches of mathematics and algorithms devoted to the 

exploration of different aspects of computer arithmetic on large integers.  In this thesis, 

we outline several parameter selection techniques and software implementations that 

apply to a new technique of exponentiation, referred to as spectral modular 

exponentiation, which attempts to address computational efficiency of public key 

cryptosystems, such as RSA and Elliptic Curve Cryptosystems.   

Spectral modular exponentiation (SME) is a method by which numbers are 

converted into spectral representations through a process known as Discrete Fourier 

Transform (DFT), at some initial cost in doing the transformations.  The spectral domain 



 

 

has the advantage of greatly reduced multiplication cost during the most costly portions 

of exponentiation.  This thesis will describe the different algorithms that have been 

proposed independently by two different research groups, compare and contrast these 

algorithms, and describe various parameter selection techniques that apply to them.  It 

will also cover lessons learned and some difficulties encountered in the development of a 

working implementation of spectral modular exponentiation. This thesis will also 

addresses some of the discovered concerns regarding particular approaches to spectral 

modular exponentiation in software implementations. 

These difficulties involve the inherent limitations of the algorithm in software and 

the theoretical potential of performance in hardware.  Variations on implementations 

were attempted to test different environments for the algorithm, but software 

implementations of spectral modular exponentiation were still characterized by 

performance less than that of existing algorithms, even at larger operand sizes.  Included 

in this thesis are the actual calculated and verified results for several of these variations.  

These results include the initial generated parameters, internal interim values, and final 

results that would be necessary to verify the correctness of future algorithms and 

implementations. 

These interim values serve as parameters and interim value references to future 

attempts for working implementations in both hardware and software.  The hardware 

implementations of spectral modular exponentiation still show possibility for better 

comparable performance than traditional algorithms. 



 

 

Also in this thesis are two proofs that demonstrate how to reliably generate 

parameters for a valid DFT and inverse DFT transformation.  These are based on multiple 

previous works on characteristics of Mersenne and Fermat numbers and connecting those 

characteristics to the requirements for a valid DFT. 
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CHAPTER 1:  Introduction 

1.1. Cryptography 
Cryptography involves the application of algorithms to transform  a message into a 

representation of the message that is then referred to as the ciphertext.  This algorithm 

must be able to then take that ciphertext and reverse the transformation to obtain the 

original message.   

In the field of cryptography, symmetric and asymmetric cryptography constitute two 

of the major categories of algorithms.  Symmetric cryptography is defined by encryption 

and decryption with a single identical key and is often much more efficient than the 

alternative method of asymmetric cryptography.  Asymmetric cryptography has the 

characteristic of using two different keys in which one key is used for encryption and one 

key is used for decryption.  This allows one or more parties to encrypt messages with a 

public key, and only the party that possesses the private key to decrypt the messages.  

Asymmetric cryptography enables digital signatures and public-key infrastructures, but is 

generally accepted to be much more computationally difficult.  Although there are 

methods to greatly improve the efficiency of certain types of asymmetric algorithms, 

there is still a large focus to increase the computational efficiency of asymmetric 

cryptography. 
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One very commonly used asymmetric algorithm is called RSA.  RSA  involves the 

choice of two large prime numbers whose product forms the modulus for modular 

operations.  Then two values are derived termed e and d which are multiplicative inverses 

of each other.  These terms e and d are used to compute the encrypted and the decrypted 

message respectively.  The primary operation to achieve these computations is modular 

exponentiation. 

1.2. Exponentiation 
Modular exponentiation, as stated, is a primary operation in RSA public-key 

cryptography.  There are many different algorithms that are known to improve the 

efficiency of the modular exponentiation with varying degrees of complexity and each 

addressing different areas of modular exponentiation, but the basic mathematical 

operation is: 

ܿ ൌ ݉௘ ݉݀݋ ݊ 

To properly compare algorithms, modular exponentiation must be broken down into 

sub-components.  This thesis will evaluate exponentiation by dividing exponentiation 

into three sub-component operations.   

The first component is the algorithm of the exponentiation itself.  This includes how 

multiplications, squarings, table look-ups and possibly other operations will be combined 

to properly achieve exponentiation.  The most basic method of exponentiation is to 
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multiply m by itself e times.  For large values of m and e this method is much too slow to 

be used in practical applications. 

Some popular algorithms that improve upon the efficiency of the naïve method are 

Left-to-Right binary exponentiation, Right-to-Left binary exponentiation, K-nary 

Exponentiation, and Sliding-Window Exponentiation.  All of these algorithms base their 

improvements on the binary representations of values and the manipulation of bits or 

groups of bits in order to improve efficiency.  Multiplication and squaring are major 

operations in all of these algorithms. 

The second component is multiplication.  The multiplication of two numbers, 

including the squaring of a single number, is typically an expensive operation.  Thus, the 

type of multiplication algorithm used is highly influential on the overall efficiency of 

exponentiation.  Some multiplication algorithms used in exponentiation are Karatsuba, 

Toom-3, and FFT.  Montgomery and Spectral are not traditional multiplication 

algorithms in that they are multiplication algorithms that include reduction and operate on 

terms in a different domain. [8].   

For multiplications not including reduction, there is the required additional 

component of reduction. The reduction of varying measures, such as bit sizes of 

intermediate values or the degree of certain polynomial representations, is necessary to 

maintain all interim values at a size that can be efficiently operated on within a fixed 

architecture.  The most basic method is simple modular reduction through division. 
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Sometimes, the use of specific parameters can also allow efficient short-cuts to 

calculating modular reductions. 

1.3. Existing Exponentiation Algorithms 
Left-to-Right Exponentiation Algorithm 

This algorithm is also called the “square and multiply” algorithm and was originally 

conceived in 200BC [1].  This “Left-to-Right” algorithm initializes the output value c to 

1.  It then scans the bits of e from highest to lowest or left to right.  If the bit is one, then 

the algorithm calculates: 

ܿ ൌ ܿ כ  ݊ ݀݋݉ ݉

Then, as it increments to the next bit it calculates the effect of shifting the exponent by 

one bit position, which has the effect of squaring the temporary result: 

ܿ ൌ ܿ כ  ݊ ݀݋݉ ܿ

The entire algorithm is: 

 
Figure 1:  Left-to-Right Exponentiation Algorithm 

 

INPUT:  m, e (where ei is the ith bit of e, and t is the 
size of e in bits) 
OUTPUT: c = me 

1. c ← 1 
2. For i from t-1 down to 0, do the following: 

2.1 c ← c 2 
2.2 if ei=1 then c ← c · m 

3. Return c 



5 

 

The “Right-to-Left” algorithm uses the same principal as the Left-to-Right algorithm, but 

runs in reverse. 

The entire algorithm is: 

 
Figure 2:  Right-to-Left Exponentiation Algorithm 

 

K-ary Window Algorithm 

The K-ary Window algorithm is an adaptation of the “Right to Left” algorithm except 

that it improves upon this algorithm by evaluating bits of the exponent in k-bit 

“windows” instead of in single bits [1].  The algorithm is defined as follows: 

INPUT:  m, e  
OUTPUT: c = me 

4. c ← 1, S ← m 
5. While e ≠ 0, do the following: 

5.1 if e is odd then  c ← c·S 
5.2 e ← e/2 
5.3 S ← S · S 

6. Return c 
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Figure 3:  K-ary Window Algorithm 

 

Sliding Window Algorithm 

This algorithm is an adaptation of the K-ary algorithm except that it improves upon the 

algorithm by evaluating bits of the exponent e using dynamic optimized “windows” 

instead of k-bit static windows [1].  The algorithm has several derivations, but the sliding 

window algorithm is as follows: 

INPUT:  m, e where ei is the ith digit of k bits, and t 
is the size of e in  digits 
OUTPUT: c = me 

1. Precomputation 
1.1 g0 ← 1 
1.2 For i from 0  to (2k-1), do: 

gi ← gi-1 · g  (thus gi = gi) 
2. c ← 1 
3. For i from t-1 down to 0, do the following: 

c ← (c 2)k 
c ← c · gei 

4. Return (c) 
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Figure 4:  Sliding Window Algorithm 

1.4. Existing Modular Multiplication Algorithms 
Multiplication and reduction are sometimes independent steps, such as when reduction is 

used with Karatsuba multiplication.  However, multiplication and reduction are combined 

in Spectral Modular Multiplication as well as Montgomery Multiplication.  This section 

will cover some combinations of reduction and multiplication, including those that are 

tested in the thesis. 

 All exponentiation algorithms discussed so far in this thesis can be used for both 

infinite and finite field operations, and thus have not yet included the modular reduction 

steps specific to finite fields.  Reduction can be added to the implementation of the 

multiplication and squaring operations to modify exponentiation operations for use within 

INPUT:  m, e where ei is the ith bit, and t is the size of 
e in bits  
OUTPUT: c = me 

1. Precomputation (odd g’s only) 
g1 ← g , g2 ← g2 
For i from 1  to (2k-1-1), do: 
g2i+1 ← g2i-1*g2 

2. c ← 1, i ← t-1 
3. while i ≥0, do the following: 
3.1 If ei = 0 then do c ← c2, i ← i – 1 

Otherwise, find longest bit string  
eiei-1…es+1es, such that: 
 i-s + 1  ≤ k and es=1 and do the following: 

c ← (c 2)i-s+1 · g(ei ei-1…es)2…, i ← s – 1 
4. Return c 
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finite fields.  Because some modular multiplication operations embed reduction and 

cannot be discussed apart from each other, the following sections will discuss the various 

combinations of multiplication and reduction algorithms used during testing. 

 There are several alternative algorithms to reduction that can be used with 

classical multiplication.  Within the scope of this thesis, only one type of reduction 

algorithm was tested. 

Karatsuba Multiplication and Reduction by Division 

Karatsuba is a popular algorithm for efficient multiplication [18].  It involves the 

recursive splitting of input numbers into smaller numbers.  This split allows one large 

multiplication to be accomplished by 3 smaller multiplications and a few additions as 

shown below in Figure 5.    

The split is based on the boundary Bm where B is the base for a single digit and m 

is the number of digits in lower half of the split.  In binary 32-bit computing 

environments, B is sometimes chosen to be 231 so as to allow additions of two 231 sized 

numbers to take place without requiring a carry bit.  A third value n represents the 

number of digits in the input values such that each digit is less than B.   

Because Karatsuba is an algorithm that splits values into smaller values, it can be 

run recursively until n is small enough that the multiplications can be computed directly.  

The most efficient m is usually n/2 so that each iteration splits the values in half.  A 

recursive version of the Karatsuba algorithm is shown below [18].   
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Figure 5:  Karatsuba Multiplication Step 

 Since Karatsuba does not include reduction, the reduction algorithm that will be 

combined with Karatsuba Multiplication is that of simple arithmetic division to determine 

the modular reduction. 

Montgomery Multiplication  

Montgomery multiplication is a technique that combines multiplication and reduction 

into a single operation.  It achieves this by converting values into images within the 

Montgomery domain, computing the product of those images, and then converting back 

from the Montgomery domain.  An image in the Montgomery domain is defined as x’ = 

x·R mod m.  The basic required operation in Montgomery Multiplication is that of 

Montgomery Product.   

Montgomery Product, which, given n, x, y in number system b each with k digits 

and R = bk where 0 ≤ x; y ≤ n and gcd(n, b) = 1 returns xyR-1 mod n.   

INPUT:  x, y  
OUTPUT: x·y 

 
KARATSUBA[x,y] is: 

1. if n < 2 then Return x·y 
2. Split x and y into x1,x0 and y1,y0 using Bm such that: 

x = x1Bm + x0 
y = y1Bm + y0  

(where x0 and y0 are less than Bm) 
3.     z2 = KARATSUBA[x1, y1] 

    z0 = KARATSUBA[x0, y0] 
    z1 = (x1 + x0)(y1 + y0) − z2 − z0 
    xy = z2 B2m + z1 Bm + z0 

4. Return xy 
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 MontgomeryProduct(x,y) = xyR-1 mod n 

Conversion of x to the Montgomery image x’: 

 x’ = MontgomeryProduct(x,R2 mod n)   

because x·R2·R-1 mod n  = x·R mod n = x’ 

Conversion of the Montgomery image x’ to x: 

 x = MontgomeryProduct(x’,1)   

because x’·1·R-1 mod n = x·R·1·R-1 mod n = x  

 
Figure 6:  Left-to-right exponentiation algorithm with multiplications replaced by 

Montgomery Product 

Montgomery multiplication gains efficiency from the ability to choose an integer 

ring in which the residual math will take place.  If chosen properly, reductions can be 

achieved with shifts and additions, greatly improving the overall efficiency of 

exponentiation especially for larger operands. 

Using Montgomery Multiplication for smaller operands of m and e generally suffer 

as compared to other algorithms. This is because the time necessary to convert between 

INPUT:  m, e, n (where ei is the ith bit of e), and t is 
the size of e in bits  
OUTPUT: c = me mod n 

1. c’ ← MontgomeryProduct(1, R2 mod n) 
2. m’  ← MontgomeryProduct(m, R2 mod n) 
3. While i from t-1 down to 0, do the following: 

3.1 c’ ← MontgomeryProduct(c’,c’) 
3.2 if ei=1 then c’ ← MontgomeryProduct(c’, 

m’) 
4. c ←  MontgomeryProduct(c’, 1) 
5. Return c 
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numbers and residual representations at the beginning and end of exponentiation 

outweighs the efficiencies gained during the square-and-multiply operations. 

1.5. Spectral Math Overview 
Spectral math offers a different way of representing values, much like Montgomery 

Multiplication.  Spectral techniques involve the conversion of time-domain 

representations of numbers into the spectral domain.  This is frequently used in the field 

of signal processing where time-domain sequences are samples from a sensor and are 

transformed into spectral representations that represent the spectral, or frequency, content 

of the time domain sequence.  Sequences of time values have different mathematical 

properties once transformed to the spectral domain.  These properties allow certain 

operations to be performed differently than they would have been accomplished in the 

time domain representation.   

Because spectral techniques are often used in signal processing for very different 

applications, the algorithms and terminology will vary widely than those in this thesis [5].  

For example, in some signal processing there is an allowance for small deviations in 

values and the final values are only approximations, whereas in most implementations of 

finite field encryption techniques, there is no allowance for any such variation in results. 

While in signal processing a spectral transform is often applied to a “sequence” or 

array of “sample” values, in the SME it is often referred to as an “evaluation polynomial” 

and the different terms are treated as the coefficients of a polynomial representation of 
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the time or spectral values.  This different representation also serves to visibly 

differentiate signal processing techniques from techniques used in discrete math.  In 

signal processing, the transform to the spectral domain is called the Discrete Fourier 

Transform (DFT), while when a DFT is applied within a finite field for an evaluation 

polynomial, it is called a Number Theoretical Transform (NTT), although the term DFT 

is still used. [1] 

1.6. Spectral Modular Multiplication Overview 
In the spectral domain, complex multiplication operations become d-element 

component-wise multiplications.  The parameters used for NTTs can be chosen in such a 

way as to choose a spectral domain that allows for efficient modular reductions and 

efficient conversion to and from the spectral domain.  The proposals made by Baktir, 

Saldamli, and Koç also show how multiplications and reductions can be made in the 

spectral domain with selection of specific parameters in order to ensure the spectral 

multiplications can take place successively without the need to convert intermediate 

results back into the time-domain representation for reductions, all the while avoiding 

potential overflows [3], [5]. 

This allows the application of spectral math to achieve faster spectral modular 

multiplications while not suffering the penalty of DFT/IDFT conversions between 

multiplication operations.  This has direct application to modular exponentiation and the 

works by Baktir, Saldamli, and Koç emphasize this benefit [3], [5].   
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Spectral Modular Multiplication does not necessarily address the actual method of 

exponentiation, such as Sliding Window or Left to Right.  It only addresses the 

initialization, the conversion to and from the spectral domain, multiplication, and 

reduction operations.  In many ways, it operates similar to Montgomery Multiplication in 

that each multiplication, when given n, x, y in number system b each with k digits and R 

= bk where 0 ≤ x; y ≤ n and gcd(n, b) = 1, returns xyR-1 mod n.   

 SpectralModularProduct(x,y) = xyR-1 mod n 

Evaluation Polynomials 

The first step in using spectral arithmetic is to evaluate a single large value provided as 

input, which will be referred to as m, into a series of values suitable for use in a NTT, 

which will be referred to as m(t).  One method to divide the number is to split it on fixed 

bit boundaries such that a certain number of bits per word, u, and a certain number of 

terms s, will together form a series of value representing u*s total bits.  This method is 

referred to as an evaluation polynomial and takes the form of: 

Theorem 1:  Evaluation Polynomial 

m(t) = m0 + m1b + m2b2 + m3b3 + m(s-1)b(s-1) 

where b = 2u 
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Figure 7:  Evaluations Polynomial Example 

Be aware that the evaluation polynomial shown is known as the base evaluation 

polynomial since each value mi is bounded by:   

0 ≤  mi < b 

It is possible to generate an evaluation polynomial with different terms that represent the 

same value by not using the base evaluation polynomial, but simply an evaluation 

polynomial.  The following evaluation polynomial represents the same value as the 

previous example in Figure 7. 

m(t) = 9b4 + 13b3 + 9b2 + 5b + 28 

Notice that a value was “borrowed” from one term to add to another.  This concept of 

borrowing and likewise carrying is important to the reduction of terms in the Spectral 

Modular reduction technique. 

m = 645484 

1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 

Evaluation with b=16 (u=4) 

 

1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0
 

m(t) = 9b4 + 13b3 + 9b2 + 6b + 12 

m = 9(164)  + 13(163) + 9(162) + 6 (16)  + 12 = 645484 
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Number Theoretical Transform 

The conversion from time domain values to frequency domain values is accomplished by 

the Number Theoretical Transform, which is a special implementation of the Discrete 

Fourier Transform: 

Definition 1:  Number Theoretical Transform 

௝ܣ ൌ ෍ ܽ௜ݓ௜௝ ݉ݍ ݀݋
ௗିଵ

௜ୀ଴

 , 0 ൑ ݆ ൑ ݀ െ 1 

Definition 2:  Inverse Number Theoretical Transform 

௝ܽ ൌ ݀ିଵ ෍ ݍ ݀݋݉ ௜௝ିݓ௜ܣ
ௗିଵ

௜ୀ଴

 , 0 ൑ ݆ ൑ ݀ െ 1 

Definition 1 defines a matrix that achieves the DFT by matrix multiplication with the 

time-series polynomial.  An example matrix is shown for a DFT of size 5 in Table 1:  

DFT Transform Matrix. 

 

 1 1 1 1 1  

 1 w w2 w3 w4  

 1 w2 w4 w6 w8  

 1 w3 w6 w9 w12  

 1 w4 w8 w12 w16  

Table 1:  DFT Transform Matrix 
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The value w is called the generator or principal dth root of unity of the DFT while d is 

the size or length of the DFT.  Thus, w and d are related in that wd = 1 mod q.  For a 

certain integer ring of Zq, w, d, and q are constrained when attempting to create a valid 

and invertible NTT that allows Definition 2 to exist.  The requirements for existence of 

the invertible matrix are discussed in Chapter 3. 

Spectral Modular Multiplication 

The last major operation within the application of Spectral Modular Exponentiation is the 

Spectral Modular Multiplication.  In the spectral domain, the product of two spectral 

numbers is accomplished by a component-wise multiplication of each term in the spectral 

evaluation polynomial, sometimes called the Spectral Modular Product.  Once the 

product is calculated, however, the algorithm must ensure that the time series 

representation is reduced to remain properly bounded by a well constructed reduction 

algorithm.  This algorithm must be computationally efficient and avoid overflows in 

terms of the time series representation while doing calculations in the spectral domain. 

 To perform this algorithm, several parameters are required and can be 

precomputed.  These values include N(t), Γ(t), d-1, and λ(t).  The calculation of these 

parameters is explained during the iterim value calculations later in this thesis.  
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CHAPTER 2:  ANALYSIS OF EXISTING WORKS 

2.1. SME Algorithm Descriptions 
Spectral math as a performance enhancement to cryptography is covered in several 

works.  The application of  NTT to multiplication dates back to 1971 with Schönhage and 

Strassen [17].  Kalach further discusses multiplication efficiency in hardware, but again 

does not cover exponentiation [2].  Baktir [3] discusses the application of spectral math to 

modular multiplication as well as Elliptic Curve Cryptography.  However, Baktir covers 

the exploration of modular multiplication as a subset of the larger effort towards spectral 

applications to ECC operations, and not exponentiation.  Koç and Saldamli [5] explore 

specifically SME as it benefits exponentiation and offer several resources in the 

understanding of this algorithm. 

Schönhage-Strassen and Kalach 

The Schönhage-Strassen multiplication algorithm is an early example of a spectral 

multiplication algorithm.  It is asymptotic in complexity and has been shown to 

outperform the traditional multiplication algorithm of Karatsuba for numbers 

approximately larger than 215 bits [17].  This algorithm is based on spectral techniques. 
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Kalach [2], in his exploration of spectral math, addresses improvements to the 

efficiency of the DFT operations.  This includes the application of Fast Fourier 

Transforms (FFT).  Both recursive and iterative algorithms for FFT are outlined to apply 

to spectral modular multiplications.   

Baktir Spectral Multiplications 

Baktir was the first Spectral Modular Exponentiation algorithm to be evaluated in the 

preparation for this thesis.  Baktir discusses the use of the properties of Mersenne 

Number Theoretical transforms (MNT), Fermat Number Theoretical Transforms (FNT), 

pseudo-Mersenne Transforms (PMT), and pseudo-Fermat Transforms (PFT).   

Baktir describes the use of the Pseudo Fermat Transform with q= 22^n+1/p (where p 

is a prime factor) to enable efficient Fast Fourier Transform methods as opposed to the 

general Discrete Fourier Transform.   

In a PMT, arithmetic is achieved modulo q=(2n -1 )/t , an integer sub-multiple of a 

Mersenne Number.  However, the intermediate reductions are computed modulo the 

original Mersenne number, 2n -1, and only the final result needs to be reduced modulo 

Mn/t.  The use of PMT increases the number of available transform lengths since each 

integer sub-multiple has a different length. But, the downside is increased word size for 

intermediary transform operations (n vs. n-log2t) 

Baktir also outlines efficient parameter selection for ECC.  Most of this constitutes 

the selection of operand sizes relevant to ECC parameters.  Baktir describes that a fully 
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recursive FFT can only be used for highly composite numbers (2n or other powers of 

small primes).  The allowable sequence length is either a prime number d for w=2 or 2 

times a prime number 2d for w=-2.    

Overall, this work focused mainly on field operations used in ECC, such as 

multiplications, additions, and inversions.  Spectral Modular Exponentiation was not 

discussed by Baktir.  

Koç and Saldamli SME 

In much the same way as Baktir, Koç and Saldamli also cover DFT Improvements 

through the use of Mersenne and Fermat Theoretical Transforms.  Although some papers 

were only written by either Koç or Saldamli, their names will be used interchangeably 

since they were both involved in the development of the algorithm.  Parameter 

calculations were described using MNT with positive (w=2,4) and negative (w=-2) 

principal roots of unity.  These papers review MNT, FNT, PMT, and PFT variations on 

parameters.  In these works, much more time was spent addressing the parameters to 

achieve operations safely in the spectral domain without creating overflows of values in 

the time domain that would alter the represented value. 

Koç also covered SME improvements through the application of a prior work in 

evaluating multiplication/reduction algorithms in which the CIOS Algorithm – Coarsely 

Integrated Operand Sum – was selected.   



20 

 

Chinese Remainder Theorem was outlined as a method for achieving efficient 

operations in larger modulus size by using CRT to remain in a smaller ring modulus. 

This algorithm from the very beginning was specified as one that would be efficient in 

hardware.  It was not specifically limited to hardware, but significantly parallel 

operations were the core mechanism for efficiency.  Parallel hardware architectures were 

outlined. 

2.2. Building Blocks of Existing SME Algorithms 
While there are potentially numerous methods by which spectral modular operations 

could be adopted to achieve modular exponentiation, Baktir and Koç both suggest very 

similar algorithms that closely resemble Montgomery multiplication.  These methods 

calculate multiplications of residual values with an embedded reduction following the 

form  xyR-1 mod n, where R is a power of two.   

The algorithms require the following operations: 

1. Addition and subtraction - in one example, addition or subtraction of 

multiples of the modulus in order to zero out the least significant term 

2. Right-shift of terms - for reductions 

3. Left-shifts of terms - to calculate residuals 

4. Product of two numbers 

5. Obtaining the first time-series value – used by reduction operations 

Also necessary for the success of these operations are several constants: 
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1. Γ(t) – a number that, when multiplied by another number, causes that 

number to shift u bits to the left. 

2. One – a number that is the multiplicative identity. 

3. N(t) -  a number that is the spectral representation of k·n  (i.e. a multiple of 

the modulus) and also has the feature of having it’s least significant term 

set to 1.  This facilitates an algorithm to manipulate the least significant 

term through addition without affecting the overall value, such as just 

before a right-shift operation during reductions. 

4. λ(t) – a pre-computed value that is used by multiplication to compute the 

residual of a value in time series representation. 
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CHAPTER 3:  Parameter Selection 

3.1. SME Parameters 
All spectral exponentiation techniques have a unique set of parameters that must be 

established prior to beginning operations.   

d “size” of the DFT, i.e. number of terms of the evaluation 
polynomial 

s maximum number of input words (approx. d/2, see below) 

q Number Theoretic Transforms such as MNT will take place 
within the integer ring Zq 

u number of bits in each DFT term 

b 2u  

w principal dth root of unity, on which DFT transform is based 
 

p,n In MNT, q is of the form 2p-1 and in FNT q is of the form 22^n+1.  
These exponents are parameters. 

bits supported bit size for operands, u·s 

Table 2:  List of Spectral Parameters 

The parameters are interdependent, but bit size is one of the final parameters to be 

determined and depends on multiple other parameters.  Therefore, an efficient approach 
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to parameter selection involves pre-calculating a table of parameters and selecting the 

most efficient set of parameters that meet certain criteria.  

3.2. Parameter Variations 
Mersenne Number Transform (MNT) Parameters 

One very simple manner of calculations of parameters involves using the characteristics 

of Mersenne Number Transform (MNT) [15].  Mersenne numbers are defined as numbers 

of the form q= 2p – 1, where p is oftentimes required by a definition to be a prime.  

MNT’s support DFT’s that use values for w of both 2 and -2 and the corresponding d 

parameters are trivially determined as p and 2p respectively.   

Theorem 2:  The length of the DFT matrix d is p for w=2, and also d is 2p for w=-2 for 

DFTs over the field Zq where q is a Mersenne Number of the form 2p-1. 

PROOF: 

For w = 2:   

1. Assume d=p.   

2. 1 = wd mod q  by definition of principal roots of unity (Chapter 1) 

3. 1 = 2p mod q by substitution 

4. 1 = 2p mod 2p -1 which is true  

For w = -2:   

1. Assume d=2p.   

2. 1 = wd mod q  by definition of principal roots of unity (Chapter 1) 
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3. 1 = (-2)2p mod q   by substitution 

4. 1 = 22p mod 2p -1  

5. 1 = 22p - 1 + 1 mod 2p -1  

6. 1 = (2p – 1) (2p + 1) + 1 mod 2p -1 

7. 1 =  (0)·(2p + 1) + 1 mod 2p -1 which is true, thus the assumption is true 

 

Fermat Number Transform (FNT) Parameters 

The Fermat Number Transform (FNT) uses Fermat numbers of the form:  ݍ ൌ 2ଶ೙ ൅  1 

[14].  It is also possible to use Fermat numbers of the form 2n + 1, but this could 

potentially end up with complex roots and additionally would lose the performance 

benefits from having word aligned calculations. Additionally, this would necessarily need 

to perform additional checks on the validity of the DFT transform.  Math operations are 

carried out with optimized Fermat arithmetic operations. 

Pseudo Number Transform Parameters 

In the ring Zq, for some prime factors p that divide q, the field Zq/p can be useful or 

necessary.  q itself does not have to be a prime for a valid transform and thus may have 

multiple small factors.  However, for certain q, these small factors cause the resulting 

transform size for the DFT to be too short for the necessary length required by MNTs or 
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FNTs.  Refer to Theorem 7.7 in [5] for further explanation of how small factors cause 

small transform sizes.   

This length can be increased by dividing out certain small prime factors p.  These 

resulting fields are called Pseudo Mersenne Transforms (PMT) or Pseudo Fermat 

Transforms (PFT).  Another reason for pseudo transforms is to create new combinations 

of parameters that meet certain bit lengths or DFT lengths d.   

3.3. Parameters for a Valid DFT 
For a single generator in Zq, the generator must have a multiplicative inverse in q.  

However, in NTTs every element generated in the DFT matrix generated by the Theorem 

1 must itself have a multiplicative inverse in Zq by Blahut [10].  This is because 

concerning the matix of the DFT transform and inverse-DFT transform, there only exists 

a valid inverse if and only if the determinant is non-zero [12].  Additionally, by Massey 

[10], the determinant must also be a unit in the field Zq.  Massey defines “unit” as an 

element in Zq having a multiplicative inverse.   

One example of an invalid DFT matrix is the matrix defined for a DFT of size d=4, 

in the ring Zq where q=24-1.  This matrix is shown in Figure 8. 

 

Figure 8:  Invalid DFT Matrix for d=4, q=24-1 
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The determinate of this matrix is 3.  Because 3-1 mod 15 does not exist, the 

determinant has no multiplicative inverse in Z15 .  Therefore, this matrix is not suitable for 

NTTs.   

Another requirement for a valid matrix that is derived from the above determinant 

requirement is that the size of the matrix d must evenly divide pi-1 for any prime factor of 

the Mersenne Number.  This will be referred to as the division test.  The tests required for 

a valid and invertible transform are outlined in the table below. 

1. Basic Invertibility – The determinant of the DFT matrix must be non-zero. 

2. Invertible in Ring – The determinant of the DFT matrix must be a unit in 

the ring, i.e. an element having a multiplicative inverse. 

3. All Elements Invertible - Every element of the DFT matrix must be a unit.  

This results from the definition of the IDFT matrix that contains elements 

of the form w-ij, which are the multiplicative inverses of the DFT elements. 

4. Divisibility Test - The length of the DFT matrix d must divide pi-1 for each 

prime factor pi of q, given the field Zq used for spectal domain operations.  

Table 3: Tests for Invertible DFT Matrix (NTT) 

The final test is an additional test derived from the tests 1-3 for NTTs that are 

attempted where the field characteristic q is composite.  If test 4 passes, then it can be 

assumed that tests 1-3 also pass. 
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3.4. Reliable Mersenne Parameter Production 
For Mersenne Numbers of the form q=2p − 1 in which p is prime, for which w=2, and for 

which the size of the matrix d is either p or 2p, it can be shown that all invertibility tests 

for a valid matrix pass, including the division test. 

For the first three tests, it can be shown that all tests pass.  This is due to the 

requirement that elements of the DFT are produced by powers of 2, thus 2 is the only 

prime factor.  Since q is always odd, q and 2 are always relatively prime, thus 2-ij mod q = 

((2-1) mod q)ij mod q is always well defined.  For the division test, the proof is slightly 

more involved: 

 

Theorem 3:  The length of the DFT matrix d divides r-1 for each prime factor r of q for 

DFTs over the field Zq where q is a Mersenne Number of the form 2p-1 where p is prime 

and where w=2 or w=-2. 

PROOF: If p is an odd prime, then any prime r that divides q = 2p-1 (a Mersenne 

Number), must be of the form: r = k 2p +1.  Or, otherwise stated, both p and 2p divides 

r-1 for any factor r.  This holds even when q = 2p − 1 is prime. [15] 

From Theorem 2, if w = 2, then d = p or if w = -2 then d = 2p. 

If any prime factor r divides 2p − 1 then 2p ≡ 1 (mod r). By Fermat's Little Theorem, 

2(r − 1) ≡ 1 (mod r).  

1. It is easier to attack the contra-positive, so assume p and r − 1 are relatively prime and 

once again apply Fermat's Little Theorem to derive (r − 1)(p − 1) ≡ 1 (mod p).  
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2. If we factor out one term of (r-1), we can show that there is a number x ≡ (r − 1)(p − 2) 

for which (r − 1)·x ≡ 1 (mod p) 

3. Removing the modulus, there is a number k for which (r − 1)·x − 1 = k p.  And 

rearranging terms: (r − 1)x − kp = 1 

4. From step 1, 2(r − 1) ≡ 1 (mod r), and raising both sides of the congruence to the power 

x gives:  2(r − 1)x ≡ 1 mod r, and since 2p ≡ 1 (mod r), raising both sides of the 

congruence to the power k gives 2kp ≡ 1.  

5. Since both congruencies equal 1, dividing one by the other will also be congruent to 

1, thus 2(r − 1)x / 2kp = 2(r − 1)x − kp ≡ 1 (mod r). Substituting the earlier equality: (r − 1)x 

− kp = 1, obtains that 21 ≡ 1 (mod r); which is false.  If this false statement is pursued 

further, 2-1 ≡ 1 ≡ k r, thus that r divides 1, which is also false. 

6. From this, it is apparent that the initial assumption that p and r − 1 are relatively 

prime is untenable. Therefore, p and r – 1 share a common factor, but since p is prime 

r − 1 must be a multiple of p. 

7. Therefore, since p and 2p divide r-1 for any factor r of the Mersenne Number, if the 

length of the Mersenne Transform is either p or 2p, then the length of the transform 

divides r-1.  This length is used when MNT are used when either w=2 or w=-2, 

respectively.  Additionally, because w=2 or w=-2, then w always has an inverse in 

modulo q since q is always odd. 

3.5. Reliable Fermat Parameter Production 
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For Fermat Numbers only of the form:  ݍ ൌ 2ଶ೙ ൅  1 for which w is 2, and for 

which the size of the matrix is d=2n+1 , it can be shown that all invertibility tests for a 

valid matrix pass, including the division test. Thus, the DFT always has a valid inverse 

DFT matrix. 

It can be shown that the first three tests pass, like in case of MNT.  Since q is 

always odd, q and 2 are always relatively prime, thus 2-ij mod q = ((2-1) mod q)ij mod q is 

always well defined.  However, the division test requires more examination. 

 

Theorem 4:  The length of the DFT matrix d divides r-1 for each prime factor r of q for 

DFTs over the field Zq where q is a Fermat Number of the form ݍ ൌ 2ଶ೙ ൅  1. 

PROOF: If a DFT is constructed over the Fermat Number ݍ ൌ 2ଶ೙ ൅  1, then the 

size of the DFT matrix, which is d, must divide 1 less than each prime factor r that 

divides the Fermat Number ݍ ൌ 2ଶ೙ ൅  1. This holds even when q is prime.    

1. If any factor r divides ݍ ൌ 2ଶ೙ ൅  1 then 2ଶ೙ ൌ  െ1 ሺ݉ݎ ݀݋ሻ and thus: 

 2ଶ೙శభ ൌ  1 ሺ݉ݎ ݀݋ሻ 

It can be seen that the order or DFT length d of this with a w = 2 is 2n+1. 

2. From Édouard Lucas improving upon Euler, any prime divisor r of Fn = ݍ ൌ 2ଶ೙ ൅  1 

is of the form k2n + 2 + 1 whenever n is greater than one.  

3. Since d must divide r-1 for each prime factor r, and substituting: 

d = 2n+1   and  
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r = k2n + 2 + 1 

It is shown that: 

 d | r-1 

2n+1 | k2n + 2  

Which is true. 

4. Therefore, since d divides r-1 for any factor r of the Fermat Number, then the 

division test passes.  This length is used when FNT is used with w=2.   

 

3.6. Parameters for Overflow Boundaries 
An overflow is when any element of the sequence exceeds the boundaries of the field.  

This applies to both elements in the spectral domain and to elements in the time domain.  

When overflows occur during calculations in the spectral domain, it alters the time 

domain representation of the value.  To prevent overflows from occurring during spectral 

modular exponentiation, the numbers of terms in the DFT (or degree) must remain 

bounded within the size of the DFT d.   The number of terms in both of the input values 

is defined as s.  Since a sequence of size s has terms of degree 0..s-1, the maximum 

degree of the resulting sequence from multiplication is (s-1)+(s-1).  Therefore, the degree 

(d-1)  of the maximum supported size of the DFT is must be large enough to support to 

resulting sequence as follows: 

d – 1 ≥ s-1 + s-1 = 2s - 2 
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 d  ≥ 2s – 1 

ௗାଵ
ଶ

൒   ݏ

Given an odd d , such as 7, it is seen that s is 4.  With d=8, s is also 4.  For integers, 

s can be evaluated as: 

ݏ ൌ  ඄
݀
2ඈ 

Also, not only must the number of terms be within bounds, but each coefficient in 

the polynomial representation must be within the field as well, unless the algorithm 

includes a check to try and detect overflows.  In the Saldamli algorithm [6], the largest 

possible coefficient value is 2b2s.  This is based on the multiplication of 2 coefficients of 

max b size and s number of coefficients added together.  The constant 2 term comes from 

the possible large remainder value of alpha that could potentially double the final value. 

This limit is highly dependent on the spectral modular exponentiation algorithm 

used and additional parameters.  Each algorithm implements different numbers and types 

of operations and the evaluation of these operations determines the boundaries.   It is not 

a theoretical restriction on NTT or DFT, but of the particular implementation used by 

Saldamli that does not attempt to detect overflows during exponentiation for performance 

reasons. 

The Koç algorithm includes a formula for boundary testing.  It was based on the 

boundaries necessary for multiplications to follow multiplications indefinitely.  This 
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algorithm was defined by Theorem 7.6 in [5].  However, independent calculations have 

shown the actual value for B(s) to be: 

 

Further, the entire inequality can be shown below after substituting r and B into the 

final equation specified in Theorem 7.6 in [5].   

(b2 + b)2B(s) + b2s < q 

It is possible to compute the resulting equation from these substitutions, but it is 

much simpler to calculate the value for r first after substitution, then substitute into B, 

and finally substitute B into the final inequality.  Solving for any particular value in this 

inequality is computationally infeasible.   The simplest method to solve this inequality is 

to iteratively test values for feasibility and determine the b that satisfies the inequality 

given s and q. 

3.7. Mersenne Parameters 
Mersenne Number Theoretical (MNT) transforms are transforms into domains of Ζq 

where q is a Mersenne Number and has the form: 

ݍ ൌ 2௣ െ 1 

Mersenne Numbers are not necessarily prime and their definition does not 

necessarily assume that p is prime. However, in this thesis we will assume that p is 
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always  prime.  Mersenne numbers have several properties that make them suitable for 

modular operations.  First, observe that for any Mersenne number q=2p-1:  

2௣݉ݍ ݀݋ ൌ 1 

This provides a principal root of unity of w=2 such that this root produces a 

sequence of degree p.    Since Koç tells us that spectral transforms require a “primitive 

root of unity”, we can meet this requirement by using an MNT with a primitive root of 

unity, w=2,  and a size d=p.   

From this first parameter of spectral math, d, the degree of the transform with a base 

w of 2, we can also derive s from the earlier discussion about the relationship of s to d. 

ݏ ൌ  ۀ2/݀ڿ

Remember the bits is simply u*s and the value “nttwords” is the number of words 

required to store a single term of the DFT in a 32-bit architecture.  The space required to 

store a single term is dependent on the size of q, since each term undergoes spectral 

operations modulo q.  In MNT, q is 2p-1, and therefore can be stored in p bits resulting in 

p/32 words. 

 

p d w u w bits nttwords 
17 17 2 2 9 18 1 
19 19 2 2 10 20 1 
23 23 2 3 12 36 1 
29 29 2 4 15 60 1 
31 31 2 5 16 80 1 
37 37 2 6 19 114 2 
41 41 2 7 21 147 2 
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43 43 2 7 22 154 2 
47 47 2 8 24 192 2 
53 53 2 10 27 270 2 
59 59 2 11 30 330 2 
61 61 2 11 31 341 2 
67 67 2 13 34 442 3 
71 71 2 14 36 504 3 
73 73 2 14 37 518 3 
79 79 2 16 40 640 3 
83 83 2 17 42 714 3 
89 89 2 18 45 810 3 
97 97 2 20 49 980 4 
101 101 2 21 51 1071 4 
103 103 2 21 52 1092 4 
107 107 2 22 54 1188 4 
109 109 2 23 55 1265 4 
113 113 2 24 57 1368 4 
127 127 2 27 64 1728 4 
131 131 2 28 66 1848 5 
137 137 2 30 69 2070 5 
139 139 2 30 70 2100 5 
149 149 2 33 75 2475 5 
151 151 2 33 76 2508 5 
157 157 2 34 79 2686 5 
163 163 2 36 82 2952 6 
167 167 2 37 84 3108 6 
173 173 2 38 87 3306 6 
179 179 2 40 90 3600 6 
181 181 2 40 91 3640 6 
191 191 2 43 96 4128 6 
193 193 2 43 97 4171 7 
197 197 2 44 99 4356 7 
199 199 2 45 100 4500 7 
211 211 2 48 106 5088 7 
223 223 2 51 112 5712 7 
227 227 2 52 114 5928 8 
229 229 2 52 115 5980 8 
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233 233 2 53 117 6201 8 
239 239 2 55 120 6600 8 
241 241 2 55 121 6655 8 
251 251 2 57 126 7182 8 
257 257 2 59 129 7611 9 
263 263 2 60 132 7920 9 
269 269 2 62 135 8370 9 
271 271 2 62 136 8432 9 
277 277 2 64 139 8896 9 
281 281 2 65 141 9165 9 
283 283 2 65 142 9230 9 
293 293 2 68 147 9996 10 
307 307 2 71 154 10934 10 
311 311 2 72 156 11232 10 
313 313 2 73 157 11461 10 
317 317 2 74 159 11766 10 
331 331 2 77 166 12782 11 
337 337 2 79 169 13351 11 
347 347 2 81 174 14094 11 
349 349 2 82 175 14350 11 
353 353 2 83 177 14691 12 
359 359 2 84 180 15120 12 
367 367 2 86 184 15824 12 
373 373 2 88 187 16456 12 
379 379 2 89 190 16910 12 
383 383 2 90 192 17280 12 
389 389 2 92 195 17940 13 
397 397 2 93 199 18507 13 
401 401 2 94 201 18894 13 
409 409 2 96 205 19680 13 
419 419 2 99 210 20790 14 

Table 4:  Mersenne NTT Parameters up to 20000 bits 

3.8. Mersenne Negative W Parameters 
With a negative w: 



36 

 

p d w u w bits nttwords 
17 34 -2 1 17 17 1 
19 38 -2 1 19 19 1 
23 46 -2 2 23 46 1 
29 58 -2 4 29 116 1 
31 62 -2 4 31 124 1 
37 74 -2 5 37 185 2 
41 82 -2 6 41 246 2 
43 86 -2 7 43 301 2 
47 94 -2 8 47 376 2 
53 106 -2 9 53 477 2 
59 118 -2 10 59 590 2 
61 122 -2 11 61 671 2 
67 134 -2 12 67 804 3 
71 142 -2 13 71 923 3 
73 146 -2 14 73 1022 3 
79 158 -2 15 79 1185 3 
83 166 -2 16 83 1328 3 
89 178 -2 17 89 1513 3 
97 194 -2 19 97 1843 4 
101 202 -2 20 101 2020 4 
103 206 -2 21 103 2163 4 
107 214 -2 22 107 2354 4 
109 218 -2 22 109 2398 4 
113 226 -2 23 113 2599 4 
127 254 -2 26 127 3302 4 
131 262 -2 27 131 3537 5 
137 274 -2 29 137 3973 5 
139 278 -2 29 139 4031 5 
149 298 -2 32 149 4768 5 
151 302 -2 32 151 4832 5 
157 314 -2 34 157 5338 5 
163 326 -2 35 163 5705 6 
167 334 -2 36 167 6012 6 
173 346 -2 38 173 6574 6 
179 358 -2 39 179 6981 6 
181 362 -2 40 181 7240 6 
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191 382 -2 42 191 8022 6 
193 386 -2 43 193 8299 7 
197 394 -2 43 197 8471 7 
199 398 -2 44 199 8756 7 
211 422 -2 47 211 9917 7 
223 446 -2 50 223 11150 7 
227 454 -2 51 227 11577 8 
229 458 -2 51 229 11679 8 
233 466 -2 52 233 12116 8 
239 478 -2 54 239 12906 8 
241 482 -2 54 241 13014 8 
251 502 -2 57 251 14307 8 
257 514 -2 58 257 14906 9 
263 526 -2 60 263 15780 9 
269 538 -2 61 269 16409 9 
271 542 -2 62 271 16802 9 
277 554 -2 63 277 17451 9 
281 562 -2 64 281 17984 9 
283 566 -2 65 283 18395 9 
293 586 -2 67 293 19631 10 
307 614 -2 71 307 21797 10 

Table 5:  Mersenne NTT Parameters with a negative w up to 20000 bits 

 

3.9. Fermat Parameters 
Fermat Number Theoretical (FNT) transforms are transforms into domains of Ζq where q 

is a Fermat Number and has the form: 

ݍ ൌ 2ଶ୬ ൅ 1 
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Fermat Numbers are not necessarily prime.  Fermat numbers have several 

properties that make them suitable for modular operations.  First, observe that for any 

Fermat number:  

2ଶ୬݉ݍ ݀݋ ൌ െ1 

thus: 

൫2ଶ୬൯
ଶ

ݍ ݀݋݉ ൌ 1 

 

Said another way, with an FNT we know that 2 raised to a power will eventually result in 

unity.  So, FNT also produces a primitive root of unity with a base of 2. 

2n  d  w  u  s  bits  nttwords 
16  32  2  1  16  16  1 
32  64  2  4  32  128  1 
64  128  2  11  64  704  2 
128  256  2  27  128  3456  4 
256  512  2  58  256  14848  8 
512  1024  2  121  512  61952  16 
Table 6:  Fermat NTT Parameters with a negative w up to 60000 bits 
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CHAPTER 4:  Algorithm Compare and Critique 

In comparing algorithms, the term “spectral” is used in one particular series of papers and 

books about the subject.  But, other authors have used the term “Fast-Fourier-Transform 

Modular Multiplication” and “Discrete-Fourier-Transform Improvements to Montgomery 

Multiplication”.  Likewise, some authors have used the term “spectral”, but not leveraged 

it for anything close to exponentiation. 

4.1. Comparison between Koç and Baktir SMM 
Koç and Baktir use very similar algorithms for Spectral Modular Multiplication.  Baktir 

does not address exponentiation and calculates arithmetic in GF(pm).  The primary 

difference between the SMM algorithms is that Koç uses addition to achieve a modular 

zero result before shifting, then sets the first term to 0, and lastly carries the term to the 

next term in order to achieve the result of setting the least significant term to zero.  Baktir 

subtracts to set the term to zero without having to consider the carry. 

 

N(t) spectral equivalent of a multiple of the modulus, n, used during 
modular exponentiation such that the first term is 1. 

z0 or z0 the first term of the time polynomial z(t) 

β beta = –z0 mod b 
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Γ(t) A special polynomial consisting of the negative powers of w 
such that: 

 
When Γ(t) is component-wise multiplied against a polynomial in 
the spectral domain, it computes the one term left circular shift 
of the polynomial equivalent in the time domain. 

m (Baktir only) the equivalent of s, number of terms in input values 

A(t) The DFT(α(t)) where α(t) is the evaluation polynomial of the integer α  
α is the integer time domain value of the carry value used internal by 
the Koç algorithm.  

X (Baktir only) x is the value of a single word that right shifts terms 
when multiplied, also called b by Koç.  X-1 is the spectral equivalent 
of a left shift of a single term… same as Γ(t) 

F’ (Baktir only) same as N(t) described above 

Table 7:  Spectral Values used in Algorithms 

Table 7 is a reference for the various values used during the exponentiation algorithms 

discussed in this thesis. 

 

 

Figure 9: Koç Spectral Modular Multiplication 

1: Z(t) := X(t) * Y (t) 
2: α := 0 
3: for i = 0 to d − 1 
4: z0 := d−1 ・ (Z0 + Z1 + . . . + Zd−1) mod q 
5: β := −(z0 + α) mod b 
6: α := (z0 + α + β)/b 
7: Z(t) := Z(t) + β ・ N(t) mod q 
8: Z(t) := Z(t) − (z0 + β)(t) mod q 
9: Z(t) := Z(t) * Γ(t) mod q 
10: end for 
11: Z(t) := Z(t) + A(t) 
12: return Z(t) 
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Please refer to Table 7 for an explanation of the terms in these algorithms 

 

Figure 10: Baktir Spectral Modular Multiplication 

 

Figure 11: Koç vs. Baktir Rewritten SMM 

Baktir 
for i = 0 to d - 1  
 Zi = Xi * Yi 
end for 
 
for j = 0 to m - 2 
 z0 := d−1 (Z0 + Z1 + . . . + Zd−1) 

mod q 
 β  = -  z0  
 
  Z(t) = Z(t) + β・ N(t) mod q 
 
  Z(t) = Z(t) * Γ(t) mod q 
end for 
  
return Z(t) 

Koc 
for i = 0 to d - 1  
  Zi = Xi * Yi 
end for 
α := 0 
for i = 0 to d − 1 
z0 = d−1 (Z0 + Z1 + . . . + Zd−1)  

mod q 
β = −(z0 + α) mod b 
α = (z0 + α + β)/b 
Z(t) = Z(t) + β ・ N(t) mod q 
Z(t) = Z(t) − (z0 + β)(t) mod q 
Z(t) = Z(t) * Γ(t) mod q 
end for 
Z(t) := Z(t) + A(t) 
return Z(t) 

1: for i = 0 to d - 1  
2:  Ci = Ai * Bi 
3: end for 
4: for j = 0 to m - 2 
5:  S = 0 
6:  for i = 0 to d - 1 
7:   S = S + Ci 
8:  end for 
9:  S = -S/d 
10:  for i = 0 to d - 1  
11:   Ci = (Ci + F’i * S) * Xi

-1 
12:  end for 
13: end for 
14: return (C) 
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In this comparison Figure, the expressions in Baktir that have almost identical meaning as 

the SMM algorithm by Koç were converted to use the same expressions.  This includes 

the Baktir expressions of A, B, C, S, F, and X that were changed to their counterparts of 

X, Y, Z, β, N(t), and Γ(t) respectively.  This allows the much easier side-by-side contrast 

and comparison of the two algorithms.  Major differences are underlined in the figure. 

 

4.2. Clarifications of Saldamli and Koç Works 
The primary issue in the Illustrative Example in [5] is that there is an error early on in the 

sample calculations in step 5 where b is set to 16 and not 8.  Unfortunately, due to this 

early error, all remaining calculations are not suitable as reference.   

Another area that caused difficulty is in the addition of α(t) carry during the final 

step of Spectral Modular Multiplication.  It is absolutely necessary to calculate the DFT 

of the base evaluation polynomial of α(t).  The base evaluation polynomial is defined as 

one in which each term xi is 0 ≤ xi < b [5].  If α ≥ b, then it must be broken into the base 

evaluation polynomial by breaking α into multiple terms each term less than b.   

There are several references to more efficient methods for handling this carry, 

such as pp. 144 in [5].  Combined with Notation 2 on pp. 132 of [5], this appears to be a 

component-wise addition, which is functionally correct and very efficient.  But, it was 

determined through testing that by not calculating the DFT of the base evaluation 

polynomial, the algorithm results in overflows because the carry value will cause iterative 
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increases in the size of the first time series term, and eventual overflow.  However, these 

overflows occur much less frequently with smaller field sizes and thus will only manifest 

regularly during tests of larger field sizes.  Because it manifests as an overflow of time 

series values while in the frequency domain, it can be difficult to detect unless the testing 

includes careful monitoring of time series values. 

 This concern with α(t) was noted in pp. 142 of [5], but in other sections it is not 

described, including in the Illustrative Example.  Unfortunately, this note was during the 

early description of just the reduction step, and later sections describing the larger 

algorithm used different terminology. 
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CHAPTER 5:  Testing and Results 

5.1. Sample Result and Interim Values 
The following section outlines the output values produced by a functional 

implementation of spectral modular exponentiation as outlined by Saldamli and Koç [5]. 

Assume that the following input values are provided: 

RSA Values: m=48644, e=5581, n=136163 

The sample results start with determining the following parameters.  Parameter 

generation is covered in Chapter 3 on parameters.  The input values require 18 bits of 

storage.  An appropriate field to support the NTT must be calculated based on the 18 bit 

requirement.  A Mersenne Number Theoretical Transform will be selected with a positive 

base for this example.  By parameter generation derived from the calculation of the 

inequality described by Koç, the following parameters as suitable for this NTT. 

q=217-1, d=17, w=2, u=2, s=9, bits=18 

The first step in initialization is to calculate the inverse of d mod q in order to 

compute the inverse DFT matrix. 

d-1 = 17-1 mod 131071 = 123361 

Then is the initialization of two values that will be used later in computations.  The 

value of the Γ sequence is computed by:  
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Γi = w-i mod q   where 0 ≤ i ≤ d-1 

Γ = (1, 65536, 32768, 16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2) 

ONE = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 

Then it is necessary to evaluate derived parameters from the RSA input values 

provided:  

m=48644 e=5581 n=136163 

First, compute the evaluation polynomials for the input values: 

n(t)= (3, 0, 2, 3, 3, 0, 1, 0, 2) 

m(t) = (0, 1, 0, 0, 2, 3, 3, 2, 0) 

Then, derive an appropriate multiple of n such that the first term for this multiple is 

1 when expressed as an evaluation polynomial.  This is accomplished by examining the 

evaluation polynomial for n(t) and extracting the first term n0.  The multiple required can 

be calculated by determining the modular inverse of n0 with respect to b. 

δ = n0
-1 mod b 

δ =3 

This multiple is used to create a new value, n(t) by the following calculation. 

n =136163*3 = 408489 

n(t) = (1, 2, 2, 2, 3, 2, 3, 0, 2, 1, 0, 0, 0, 0, 0, 0) 

As verification, the first value of n(t) is indeed 1 and thus will be effective in later 

reduction steps. 
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The next initialization is not necessarily required, it depends on the implementation 

of DFT that is chosen.  Since DFT in MNT or FNT can take advantage of characteristics 

of those transforms such that the transform can be accomplished by only shifts and 

additions, it is possible to accomplish the transform more simply than a matrix 

multiplication.  However, for possible reference value the DFT matrix with these 

parameters is computed as the following: 

1  1  1  1 1 1 1 1  1
1  2  4  8 16 32 64 128  256
1  4  16  64 256 1024 4096 16384  65536
1  8  64  512 4096 32768 2 16  128
1  16  256  4096 65536 8 128 2048  32768
1  32  1024  32768 8 256 8192 2  64
1  64  4096  2 128 8192 4 256  16384
1  128  16384  16 2048 2 256 32768  32
1  256  65536  128 32768 64 16384 32  8192
1  512  2  1024 4 2048 8 4096  16
1  1024  8  8192 64 65536 512 4  4096
1  2048  32  65536 1024 16 32768 512  8
1  4096  128  4 16384 512 16 65536  2048
1  8192  512  32 2 16384 1024 64  4
1  16384  2048  256 32 4 65536 8192  1024
1  32768  8192  2048 512 128 32 8  2
1  65536  32768  16384 8192 4096 2048 1024  512

Table 8:  Sample DFT Matrix (first 9 columns) 

 

1  1  1 1 1 1 1  1
512  1024  2048 4096 8192 16384 32768  65536

2  8  32 128 512 2048 8192  32768
1024  8192  65536 4 32 256 2048  16384

4  64  1024 16384 2 32 512  8192
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2048  65536  16 512 16384 4 128  4096
8  512  32768 16 1024 65536 32  2048

4096  4  512 65536 64 8192 8  1024
16  4096  8 2048 4 1024 2  512

8192  32  16384 64 32768 128 65536  256
32  32768  256 2 2048 16 16384  128

16384  256  4 8192 128 2 4096  64
64  2  8192 256 8 32768 1024  32

32768  2048  128 8 65536 4096 256  16
128  16  2 32768 4096 512 64  8

65536  16384  4096 1024 256 64 16  4
256  128  64 32 16 8 4  2

Table 9:  Sample DFT Matrix (last 8 columns) 

And, then compute the inverse DFT matrix, which includes the scalar multiple of 

the pre-computed value for the inverse of d, which was 123361. 

123361  123361  123361 123361 123361 123361 123361  123361
123361  127216  63608 31804 15902 7951 69511  100291
123361  63608  15902 69511 115681 61688 15422  69391
123361  31804  69511 123376 15422 100231 127216  15902
123361  15902  115681 15422 115651 31804 100291  30844
123361  7951  61688 100231 31804 115681 7711  127216
123361  69511  15422 127216 100291 7711 63608  115681
123361  100291  69391 15902 30844 127216 115681  100231
123361  115681  115651 100291 100231 69511 69391  7951
123361  123376  127216 61688 63608 30844 31804  15422
123361  61688  31804 7711 69511 115651 123376  63608
123361  30844  7951 115651 61688 15902 100231  123376
123361  15422  100291 63608 69391 123376 15902  115651
123361  7711  123376 7951 127216 69391 61688  69511
123361  69391  30844 115681 7951 63608 115651  7711
123361  100231  7711 30844 123376 100291 7951  31804
123361  115651  100231 69391 7711 15422 30844  61688

Table 10:  Sample Inverse DFT Matrix (first 8 columns) 

123361  123361  123361  123361 123361 123361 123361 123361  123361
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115681  123376  61688  30844 15422 7711 69391 100231  115651
115651  127216  31804  7951 100291 123376 30844 7711  100231
100291  61688  7711  115651 63608 7951 115681 30844  69391
100231  63608  69511  61688 69391 127216 7951 123376  7711
69511  30844  115651  15902 123376 69391 63608 100291  15422
69391  31804  123376  100231 15902 61688 115651 7951  30844
7951  15422  63608  123376 115651 69511 7711 31804  61688
7711  15902  15422  31804 30844 63608 61688 127216  123376

15902  7711  7951  69391 69511 100231 100291 115651  115681
15422  7951  100231  115681 127216 30844 15902 69391  100291
31804  69391  115681  63608 7711 100291 127216 15422  69511
30844  69511  127216  7711 115681 31804 100231 61688  7951
63608  100231  30844  100291 31804 115651 15422 115681  15902
61688  100291  15902  127216 100231 15422 123376 69511  31804
127216  115651  69391  15422 61688 115681 69511 15902  63608
123376  115681  100291  69511 7951 15902 31804 63608  127216

Table 11:  Sample Inverse DFT Matrix (last 9 columns) 

Now with the DFT pre-computations and the value for n(t), calculate the spectral 

equivalent for this value, since it will be used in the spectral domain.  Note that capital 

names will generally be used for spectral equivalents of values. 

N(t) = DFT(n(t)) = (18, 1357, 15276, 80279, 9143, 94937, 57881, 44133, 33683, 

15433, 28402, 121970, 62841, 86095, 105194, 22374, 7427) 

Now, a special spectral polynomial is required to convert each input value to the 

residual.  This is effectively multiplying a number by a special power of 2 that can be 

later reduced out of the number by using right shifts.  In this case, the shifts will be whole 

terms of the evaluation polynomial which are u bits in length.  The Koç algorithm 

requires shifts of d terms, i.e. the size of the polynomial, thus the initial residual must 

calculate the residual of 2d*u mod n.  However, to reuse the code for spectral modular 
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multiplication, and yet make this slightly more difficult to understand, the value used to 

calculate the residual will be twice the shift as necessary… 22d*u mod n.  This is because 

the code for spectral modular multiplication includes a reduction and thus we must 

compensate for the reduction in the value we use for generating residuals… if we want to 

reuse this code: 

SMM(a,a) = a*b*2-d*u 

The final value to calculate residuals is: 

λ = 22d*u mod n 

λ = 22*17*2 mod 408489 

λ =83327 

λ(t) = (3, 3, 3, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 

DFT(λ(t)) = Λ(t) = (14, 461, 83327, 37739, 105275, 36269, 37445, 84405, 107492, 8733, 

80991, 73339, 97159, 42601, 64807, 125581, 62981) 

With the values in place to complete the exponentiation, the one remaining value 

that can be pre-computed is the residual of one in the spectral domain, as this value is a 

starting value for c when using the Left-to-Right Exponentiation algorithm.  This is 

computed by calculating the Spectral Modular Multiplication of ONE(t) and Λ(t): 

Residual of ONE(t) = (14, 461, 83327, 37739, 105275, 36269, 37445, 84405, 107492, 

8733, 80991, 73339, 97159, 42601, 64807, 125581, 62981) 

The following values are calculated during the exponentiation itself. 

m(t) = (0, 1, 0, 0, 2, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
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M(t) = (11, 578, 48644, 106542, 4521, 25396, 25420, 70534, 115200,  

14880, 68233, 103472, 38449, 60548, 98381, 34288, 102400) 

Now calculate the residual of m(t) in the spectral domain, 

M (t) = SMM ( M(t), Λ(t) ): 

M(t)=  (49, 869, 105421, 60270, 55992, 11906, 100117, 111736, 76691,  

26697, 111079, 23975, 5919, 21790, 39138, 93857, 72212) 

With M(t) calculated, the loop of the Left-to-Right exponentiation algorithm is run.  Each 

loop involves the calculation of SMM(C(t),C(t)) and if the ith bit of e is set, then it also 

calculates SMM(C(t),M(t)). 

0  1  2  3 4 5 6 7  8
0  106  1065  47311  5951 11623 93817 129809 68283  123781
1  49  869  105421  60270 55992 11906 100117 111736  76691
2  82  1095  64381  36438 127588 97968 92803 51307  72410
3  175  3772  12499  130566 100915 41625 43898 129863  119443
4  115  1386  82144  40385 59276 45637 8331 53590  170957
5  97  1230  79156  92940 122006 33897 77702 129612  7492
6  130  2064  55581  102683 4748 114011 17251 18074  2187
7  112  2094  60855  26552 118228 117444 12633 62807  17154
8  118  1621  94183  36565 128202 91772 24724 117868  40779
9  142  2269  111006  40078 91301 119659 99158 84383  108181

10  103  2193  126354  28627 70264 83536 24900 79418  56100
11  178  3534  385  2712 27450 91878 19572 33318  119450
12  115  1690  26673  103021 38620 120063 8713 84393  115177
13  136  2769  75845  84958 61209 106657 104076 73787  1550

Table 12:  Sample Interim C Values (first 9 terms) 
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9  10  11 12 13 14 15  16 
0  48769  102507  26805 26417 71819 129564 211529  80942 
1  26697  111079  23975 5919 21790 39138 93857  72212 
2  39545  129611  47641 65447 104000 97798 112870  38944 
3  114974  67622  124599 18592 40920 73965 156183  572 
4  40642  50434  61875 25644 110685 34094 154234  109615 
5  37532  52197  62511 113319 88659 44226 127862  109609 
6  66758  12892  107808 23909 68126 90871 223149  138802 
7  64694  107438  130200 106206 66452 79545 173254  34345 
8  50885  61603  64883 19023 61563 58910 189113  7215 
9  74955  119495  39439 37666 16846 66614 185400  114747 

10  61611  70637  119424 34322 143708 118489 91730  68648 
11  105756  52346  64188 41342 121759 110338 102878  152130 
12  53934  82055  69340 93208 39168 93205 94533  156207 
13  84687  56674  8577 84621 21586 123027 113316  45620 

Table 13:  Sample Interim C Values (last 8 terms) 

 

The final value after all iterations of the loop is: 

Final: C(t)=  (136, 2769, 75845, 84958, 61209, 106657, 104076,  

73787, 1550, 84687, 56674, 8577, 84621, 21586, 123027, 113316, 45620) 

Now, the value of Λ(t) must be divided out of the final value of C(t) to get C(t), 

which is the similar to the step in Montgomery Multiplication where the final result is 

converted from the Montgomery domain to the integer domain.  This step is not done for 

every iteration of the exponentiation loop, only the final value.  Because the algorithm for 

Spectral Modular Multiplication includes the reduction, the operation SMM(C(t), 

ONE(t)) will accomplish the reduction: 

Final: C(t)= (148, 2212, 58671, 53306, 1748, 85985, 50727,  



52 

 

92180, 2964, 71396, 8067, 52678, 103271, 127500, 148101, 92341, 97851) 

The spectral domain evaluation polynomial must now be converted back to the time-

series representation by using the inverse DFT operation. 

IDFT( C(t) )= c(t) = (34, 31, 25, 20, 18, 7, 7, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0) 

The time series polynomial can’t simply be pasted back together as consecutive 

bits, since some of the terms are now larger than the original 2 bits.   Therefore, the 

evaluation is accomplished by the following algorithm: 

 
Figure 12:  Paste Words Algorithm 

The final result from the evaluation of c(t): 

c = 53579 

5.2. Functional Tests 
Functional testing was added during the algorithm development to detect potential 

problems in the calculations as the various changes and variations on implementations 

were tested.  Some changes in code, such as restructuring loops or the reorganization of 

calculations, had unintended consequences.  Also, the lack of prior work having a valid 

example with correct interim values made initial implementation and debugging very 

INPUT:  u, n, a(t) where ai is the ith word of a(t) 
OUTPUT: a = a(b) mod n , where b=2u 

1. a = 0 
2. For i from d-1 down to 0, do: 

a = a * 2u mod n 
a = a + ai mod n 

3. Return(a) 
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difficult.  Therefore, a battery of sanity checks was developed to verify the correctness of 

different aspects of the spectral math required in both Koç and Baktir versions of 

algorithms.  These tests were executed prior to performance testing during each test to 

verify the correctness of the algorithm. 

These tests shown following were using the following parameters, should they 

need to be duplicated: (MNT) q=2^19-1, d=19, w=2, u=2, s=10, bits=20, b=2u=4.  These 

tests were also done using sample values of an exponentiation in the time domain of:  

c = me mod n  where e=53 n=3141 

Testing Evaluation Polynomials 

Sanity Test #1 covers the conversion of an integer to an evaluation polynomial and back.  

The value used is 2922 and it is using u=2, which means 2-bit words and each term will 

be in the range from 0-3.  “a_t” is the debugging terminology for a(t), which is the 

evaluation polynomial of a.  The correct output will be the original value submitted. 

 

Figure 13:  Sanity Check #1: break/paste evaluations polynomials 

 
a=2922 

         a_t=  [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0 
  [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 [15]:0 [16]:0 
         a=2922 

 



54 

 

Testing DFT and IDFT Conversions 

The next test implemented verifies the ability of performing the spectral transformation to 

frequency domain and back.  It shows the interim DFT results of the transformation of 

a_t as A_t and the inverse DFT transform, along with the evaluation of the polynomial to 

the original value. 

 

Figure 14:  Sanity Check #2: DFT/IDFT 

Testing Addition of Evaluation Zeros 

Test 3 verifies the ability to add multiples of the spectral evaluation of the value n, which 

is the modulus of the modular exponentiation in the time domain, to another evaluation 

polynomial without altering the value of the number.  In this case, the value is even more 

specific.  It is a multiple of n such that the first term is 1 in the time domain.  This 

property of having the first term equal 1 in the time domain is used in the spectral domain 

during reductions for Koç and this polynomial is referred to as N(t) [5].  In this example, 

the value is denoted as n_base_t and the changing values of a(t) are shown as a_t. 

 
a=2922 
a_t=  [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0 
 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 [15]:0 [16]:0 
A_t= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092  [8]:99075 

[9]:6162 [10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [7]:39190  
[15]:85762 [16]:114691 

a_t=  [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0  
[9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 [15]:0 [16]:0 

a=2922 
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Figure 15:  Sanity Check #3: Adding Evaluations of Zero 

Testing Addition of Spectral Zeros 

Test 4 verifies the ability to add multiples of the spectral evaluation polynomial of the 

modulus n, which is the modulus of the modular exponentiation in the time domain, to 

another spectral polynomial without altering the time domain value of the number.  In 

this case, the value is even more specific.  It is a multiple of n such that the first term is 1.  

In this output, the value is denoted  n_base_t.  This property is used during reductions for 

Koç [5].  Also, Test 4 verifies the ability to add the correct multiples of n_base_t  to set 

the first term to 0: (modulo b, which is 4 in this case).   

n_base_t= [0]:1 [1]:1 [2]:0 [3]:1 [4]:0 [5]:3 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0 
        a=2922 
 Now compute a(t) = IDFT( DFT(a_t) + N(t) ) 
        a_t= [0]:3 [1]:3 [2]:2 [3]:2 [4]:3 [5]:5 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0   
 Now evaluate a = a(t) and test if a is unchanged  
        a=2922 
DFT/IDFT+N_base_t  test: PASS 
 Now again compute a(t) = IDFT( DFT(a_t) + N(t) ) 
        a_t= [0]:4 [1]:4 [2]:2 [3]:3 [4]:3 [5]:8 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0 
 Now evaluate a = a(t) and test if a is unchanged 
        a=2922 
DFT/IDFT+N_base_t  test: PASS 
 Now again compute a(t) = IDFT( DFT(a_t) + N(t) ) 
        a_t= [0]:5 [1]:5 [2]:2 [3]:4 [4]:3 [5]:11 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0 
 Now evaluate a = a(t) and test if a is unchanged 
        a=2922 
 DFT/IDFT+N_base_t  test: PASS 
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 a0 = 0 mod b = 0 mod 4   

The correct number of multiples is called “beta” in the output. [5] This value is calculated 

by evaluation of: 

beta = –a0 mod b where a0 is the first term in a_t 

 
Figure 16:  Sanity Check #4: Zeroing out 0th term of time domain polynomial by addition in 

spectral domain 

Testing Left Shift in Spectral Domain 

Test 5 verifies the ability to shift left of the terms of the evaluation polynomial in the time 

domain by using operations in the frequency domain.  This is done by the multiplication 

of  Γ(t) as specified by [5].  Γ(t) is a special polynomial consisting of the negative powers 

of w such that: 

 

a=2922 
a_t= [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 [15]:0 
[16]:0 
a0=2 
beta=2 
n_base_t= [0]:1 [1]:1 [2]:0 [3]:1 [4]:0 [5]:3 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 
[15]:0 [16]:0 
N_base_t= [0]:6 [1]:107 [2]:3141 [3]:98825 [4]:4137 [5]:33569 [6]:24643 [7]:151 [8]:577 [9]:7681 
[10]:74754 [11]:67633 [12]:5637 [13]:57377 [14]:16653 [15]:35201 [16]:94209 
A_t= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092 [7]:39190 [8]:99075 [9]:6162 
[10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [15]:85762 [16]:114691 
A_t+beta*N_base_t= [0]:24 [1]:348 [2]:9204 [3]:13990 [4]:78469 [5]:102556 [6]:74378 [7]:39492 
[8]:100229 [9]:21524 [10]:28888 [11]:76997 [12]:69904 [13]:33899 [14]:70532 [15]:25093 
[16]:40967 
a_t (1st is 0)= [0]:4 [1]:4 [2]:2 [3]:3 [4]:3 [5]:8 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 
[15]:0 [16]:0   a0 is 0 mod 4 
a=2922 
DFT/IDFT+a0*N_base_t test: PASS 
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When Γ(t) is component-wise multiplied against a polynomial in the spectral domain, it 

computes the one term left circular shift of the polynomial equivalent in the time domain. 

 
Figure 17:  Sanity Check #5: Left shift of one term of time domain polynomial by 

operations in spectral domain 

Testing Multiplications in Spectral Domain 

Test 6 verifies that we can actually do multiplications in the frequency domain with 

smaller values. This is modulo arithmetic, so actual answers will be computed modulo n. 

 
Figure 18:  Sanity Check #6: Linearity of multiplication in DFT domain 

a=2922 

        a_t START= [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 
[14]:0 [15]:0 [16]:0 

        A_t DFT= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092 [7]:39190 [8]:99075 
[9]:6162 [10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [15]:85762 [16]:114691 

        A_t*A_t = [0]:144 [1]:17956 [2]:18469 [3]:4821 [4]:116993 [5]:85254 [6]:74451 [7]:97193 
[8]:79506 [9]:90725 [10]:41258 [11]:13177 [12]:8854 [13]:102758 [14]:92464 [15]:71479 [16]:2063 

        a_t FINAL= [0]:4 [1]:8 [2]:12 [3]:12 [4]:20 [5]:24 [6]:21 [7]:14 [8]:13 [9]:12 [10]:4 [11]:0 [12]:0 
[13]:0 [14]:0 [15]:0 [16]:0 

        a=846  ( = 29222 mod 3141 ) 

a_t START= [0]:4 [1]:4 [2]:2 [3]:3 [4]:3 [5]:8 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 
[15]:0 [16]:0 

Multiply Γ(t) against A_t in the spectral domain to left-shift a_t, then show a_t = IDFT( Γ(t) * A_t ) 

a_t FINAL1= [0]:4 [1]:2 [2]:3 [3]:3 [4]:8 [5]:0 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 
[15]:0 [16]:0 

Multiply Γ(t) against A_t in the spectral domain to left-shift a_t, then show a_t = IDFT( Γ(t) * A_t ) 

a_t FINAL2= [0]:2 [1]:3 [2]:3 [3]:8 [4]:0 [5]:0 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 [14]:0 
[15]:0 [16]:0 
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Testing Additions in Spectral Domain 

Test 7 verifies that we can actually do additions in the frequency domain with smaller 

values. This is modulo arithmetic, so actual answers will be computed modulo n. 

 
Figure 19:  Sanity Check #7: Linearity of addition in DFT domain 

Testing Spectral Modular Product 

Lastly, we check SMP.  If SMP works, then SME is the only piece left and it is tested by 

the actual SME itself and comparisons against the reference algorithms.  Because SMP 

computes, in this case, SMP(a)=a·a·R-1, we first multiply a by R to create a value called 

a_p.  

 a_p = a·R 

Given this value, we can compute: 

SMP(a,a_p) = a·a·R-1R = a2 mod n  

This value is much easier to verify by computing 29222 mod 3141. 

        a=2922 

        a_t START= [0]:2 [1]:2 [2]:2 [3]:1 [4]:3 [5]:2 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 
[14]:0 [15]:0 [16]:0 

        A_t DFT= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092 [7]:39190 [8]:99075 
[9]:6162 [10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [15]:85762 [16]:114691 

        A_t+A_t = [0]:24 [1]:268 [2]:5844 [3]:25893 [4]:9319 [5]:70836 [6]:50184 [7]:78380 [8]:67079 
[9]:12324 [10]:20902 [11]:14533 [12]:117260 [13]:100432 [14]:74452 [15]:40453 [16]:98311 

        a_t FINAL= [0]:4 [1]:4 [2]:4 [3]:2 [4]:6 [5]:4 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 [12]:0 [13]:0 
[14]:0 [15]:0 [16]:0 

        a=2703  ( = 2922+2922 mod 3141 ) 



59 

 

 
Figure 20:  Sanity Check #8: Spectral Modular Product 

 

5.3. Functional Results  
Functional tests were run for 3 sample numbers across MNT, MNT negative w, and FNT 

parameter selection.  Starting at 20 bits and ending at 4000 bits, all functional tests 

passed.  Since the original implementation and testing, these tests have been tested 

against numerous other random input numbers during the course of performance tuning. 

Functional Issues 

 There were many barriers along the way to resolve before the functional tests worked, 

especially for larger parameters.  At first, for performance reasons, the multi-precision 

arithmetic was implemented inline by custom functions and structures.  However, since 

the first algorithm chosen was the Baktir algorithm and this algorithm was not suitable 

for RSA exponentiation, it became impossible to test and verify the multi-precision 

operations because the algorithm itself would not produce the expected output.  In the 

        a=2922 

        a_p=375 

        A_t= [0]:12 [1]:134 [2]:2922 [3]:78482 [4]:70195 [5]:35418 [6]:25092 [7]:39190 [8]:99075 
[9]:6162 [10]:10451 [11]:72802 [12]:58630 [13]:50216 [14]:37226 [15]:85762 [16]:114691 

        A_p_t= [0]:9 [1]:41 [2]:375 [3]:4811 [4]:70419 [5]:35883 [6]:12485 [7]:51347 [8]:98692 
[9]:1549 [10]:9307 [11]:68707 [12]:20871 [13]:9765 [14]:22819 [15]:59907 [16]:57348 

        SMP_test Return A_t^2= [0]:21 [1]:78 [2]:846 [3]:12558 [4]:66575 [5]:4134 [6]:16782 [7]:71694 
[8]:98320 [9]:34 [10]:238 [11]:3214 [12]:49678 [13]:2068 [14]:8302 [15]:34318 [16]:24591 

        SMP_test IDFT(a_t^2)== [0]:14 [1]:0 [2]:4 [3]:0 [4]:3 [5]:0 [6]:0 [7]:0 [8]:0 [9]:0 [10]:0 [11]:0 
[12]:0 [13]:0 [14]:0 [15]:0 [16]:0 

        SMP(a,a_p)=846  (2922*2922 mod 3141 = 846) 
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course of understand the specifics of Baktir, a well-tested and accepted multi-precision 

library (GMP) was adopted to resolve any possible issues that might be resulting from the 

custom multi-precision arithmetic. 

When this did not resolve the issues, the implementation of Sanity Tests ensued to 

diagnose the algorithm issues.  What resulted was the full battery of tests described in the 

Chapter 5.1 on functional testing.  This battery of tests revealed that during subtraction of 

the spectral equivalent of the modulus n, the value of the time-domain equivalent 

changed.  This was accomplished by computing the inverse DFT on the interim value and 

displaying the result.  The Koç method was tested, which relied on addition instead of 

subtraction.  This method worked correctly and thus the Koç method become the primary 

candidate. 

During the ongoing functional testing, the implementation of multi-precision logic 

for larger and larger portions of code was necessary as bit sizes grew.  Not only did each 

and every time series and spectral term require multi-precision operations, several 

unexpected values required multi-precision as well: 

1. b – a value required for the computation of left and right shift operations of 

whole terms.  b exceeds 32-bits at a Mersenne NTT that supports 2475-bits. 

2. bit masks – most bit masks require multi-precision values, such as during the 

evaluation of values into time-series polynomials and also during custom 

modular operations designed to take advantage of MNT or FNT reduction 

techniques. 
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3. α (carry value) -  the carry value in Koç is almost always a smaller number 

as it is not the size of the modulus q but rather the same size as b.  But, b 

exceeds 32-bits at a Mersenne NTT that supports 2475-bits.  

5.4. Performance Testing 
Overview 

One of the difficulties in performance testing was to develop a fair system to measure 

performance of algorithms that originated in different libraries and that had different 

implementations.  Some of the questions encountered and resolved during the testing 

were: 

1. How do we measure performance in a way that scores different algorithms 

accurately?   Application of the high-resolution timer that measures CPU time only 

2. Do we measure initialization code?  No, initialization is not relevant to these 

performance measurements. 

3. How much initialization do we measure?  Only that which must be calculated as a 

result of the input value to be operated on (in our case, m).  We also calculate 

initialization time that is included in operations that are tightly integrated into 

exponentiation operations and cannot be measured separately.  

4. Do we use specifically chosen input parameters or randomly selected ones?  Both, but 

only those specific or random parameters that would be likely found in RSA 

operations.   
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a. Randomized m will be used. 

b. Random e or fixed e=17,65537 (typical parameters in RSA, but it is not 

necessary to test the fixed values of e used during encryption because these 

small values are almost always too small to benefit from the overhead of 

converting to the spectral domain) 

5. What spectral parameters are chosen?  Optimally chosen spectral parameters are 

chosen to match the input value bit sizes and provide the greatest performance for 

those given bit sizes. 

Measurement Procedures 

Measurements are accomplished by the application of the high-resolution timer that 

measures CPU time only.  Floating point measurements where eventually implemented to 

record potentially large values in CPU time for inefficient configurations.  The following 

code sample shows the types of functions used to measure time: 

timespec diff(timespec start, timespec end) 

…. 

clock_getres(CLOCK_PROCESS_CPUTIME_ID, &time1); 

…. 

 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1); 

SME(&FD); 

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2); 
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time_diff=diff(time1,time2); 

USeconds = time_diff.tv_sec*1000000000+time_diff.tv_nsec; 

printf("Time_SME,%d,%lu ns\n",test_bits, USeconds); 
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CHAPTER 6:  Performance Measurements and Enhancements 

6.1. Algorithm Profiling Analysis 
There were several iterations of algorithm analysis as the algorithm evolved over time.  

As seen in this first profile analysis, the DFT calculation time accounts for a very small 

percentage of total execution time (2.69%) in this release of the code.  This code includes 

the shift improvements, but not the planned improvements to the Koç SMP algorithm.  It 

was fairly consistent for all implementations in software that SMP was the most costly 

operation. 

 

6.2. Performance Modifications #1 

% self  self  
time seconds calls ms/call short name 
83.92 1.25 448 2.79 SMP_koc 
12.08 0.18 28 6.43 init_DFT 
2.69 0.04 168 0.24 DFT 
1.34 0.02 28 0.71 IDFT 
0 0 546 0 find_max_u 
0 0 140 0 break_words 
0 0 56 0 init_SME 
0 0 28 0 init_GAMMA 
0 0 28 0 init_sme_math 
0 0 28 0 init_d_inverse 
0 0 28 0 SME 
0 0 28 0 init_ONE 
0 0 28 0 init_RSA 
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1. Removing targeted modulus operations 

2. Convert divisions during SMP by numbers in the form 2k to shifts by k positions. 

 

Figure 21:  Timing Comparison Performance Modifications #1 

This chart shows the execution time (y-axis) of these various modifications at 

various bit sizes of operands (x-axis).  There was not a noticeable change in performance 

in any of these performance enhancements.  These modifications are listed below: 

• Perflib/Matrix – Performance Monitoring and Matrix DFT Multiplications 

• Perflib/Shift – Performance Monitoring and DFT Multiplications 

computed by only shifts and additions. 
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• NoPerf/Matrix – No Performance Monitoring and Matrix DFT 

Multiplications 

• NoPerf/Shift – No Performance Monitoring and DFT Multiplications 

computed by only shifts and additions. 

• RemoveInnerMod – Removing certain modulus operations to measure 

performance improvements. 

 

6.3. Performance Modifications #2 
 

1. Moving multiple term calculations to the same major loop 

2. Moving summation for z0 calculation to final loop for future calculations. 

3. Convert Gamma multiplication to modular shift. 

4. Take advantage of the properties of MNT and FNT arithmetic. 
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Figure 22:  Timing Comparison Performance Modifications #2 

It can be seen that this modification “Perf Mods #2” had a significant improvement in 

the overall performance in software by the SME algorithm.  This chart shows the 

execution time (y-axis) of this modification at various bit sizes of operands (x-axis).  

Because the reference algorithm was implemented in a different library, a series of 

alternatives to the reference algorithms were implemented.  These enhancements are 

discussed further in the next section. 

• Perf Mods #2 – These modifications were extensive rewrites of the ordering 

of operations to improve efficiency.  These changes are described in the 

following section. 
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6.4. Performance Enhancement #2 Details 
Minor Algorithm Adjustments 

One potential performance improvement was the attempt to add in α directly into the 

spectral representation.  This turned out to violate the overflow controls because α is a 

carry value that can sometimes grow very large.  Thus, the only safe way to incorporate it 

is to evaluate the single term across the entire time-domain representation and then take 

the DFT to add it into the spectral domain.  This adds an additional DFT computation that 

is required for every Spectral Modular Product operation as seen by the Koç text “A(t) is 

the DFT pair of the base polynomial of α” [5]. 

 

Koç SMM Algorithm Component [5], Division Improvement 



69 

 

 

Koç SMM Algorithm Component [5], Left-Shift Improvement 

Loop Operation Adjustments 

The Koç pseudo-code is not suitable for fixed architectures when an “a+b” operation is 

actually adding large multi-word numbers with many reads and writes. [5] 

Instead of doing a single operation across all terms, and having to fetch/save every 

word,  

• Complete all operations on a single word before moving on. 

• Cumulative operations (such as summation of all terms) can also be interwoven 

into loops.  

Some advantages in using multi-precision libraries: 

• Do not need to worry about allocation/reallocation of memory during operations. 

• Do not need to worry about special values in operations (like divide by 0 or 

multiply by 2). 
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• Do not need to worry about choosing between algorithms based on parameters 

(like Karatsuba multiplication). 

Some notable disadvantages: 

• Some operations have significant overhead 

• Cannot take advantage of holistic algorithm knowledge , such as efficient 

modulus operation with Mersenne or Fermat numbers. 

Take advantage of Fermat and Mersenne Arithmetic 

Mersenne and Fermat rings have certain characteristics that make modular reductions 

much more efficient.  In MNT, q = 2p – 1.  The number being reduced, a, can be broken 

into higher and lower portions along the 2p boundary such that: 

 a = ah·2p + al  but, because 2p = 1 mod 2p -1, 

 a = ah + al so reduction can be accomplished with shifts and addition 

Similarly for FNT: 

 a = ah·2p + al  but, because 2p = -1 mod 2p +1, 

 a = -ah + al so reduction can be accomplished with shifts and subtraction 

These are very good opportunities for performance increases, as the division to 

accomplish modular reduction is very expensive.  However, p is prime in our testing, and 

therefore will never be word-aligned.  In our software testing, this results in several 

additional checks and shifts in order to accomplish this reduction. 

 These characteristics were also combined into efficient additions and subtractions. 
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6.5. Performance of MNT with Negative w 
It is possible to create appropriate parameters for an MNT with w=-2.  This immediately 

increases the number of terms or “size” of the DFT by a factor of two.  However, when 

comparing like-sized DFT in regards to overall bit size, the results are slightly 

unexpected.   

Take the following two example sets of parameters, the first is positive w, the 

second is negative w. 

q=2^101-1: w=2   u=21    s=51    d=101   bits=1071 

q=2^73-1: w=-2   u=14    s=73    d=146   bits=1022 

The negative w results in more bits with a smaller field element bit length (u) and 

a smaller field modulus.  These are generally positive benefits.  But, in software, this is at 

the cost of more DFT elements, d.  Since software cannot parallelize d- way operations, 

this results in more calculations overall as seen in the following chart of comparison 

timings.  Be aware that negative and positive w do not produce the same field sizes in the 

charted measurements. 
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Figure 23:  Timing Comparison of Positive vs. Negative W (usec) 

This chart shows the execution time of the exponentiation on the y-axis vs. the bit 

size of the operands that is supported by the parameters on the x-axis.  It shows that for 

w=-2 (negative), the execution time is generally higher than for positive w=2.   

The one situation where this set of parameters will be beneficial is when making 

calculations in a fixed architecture where if the bit size exceeds the architecture 

capabilities it will cause a significant increase in computation time.  For example, in a 32-

bit architecture, if using only positive w=2 with MNT and limiting the word size to 32 

bits, SME can achieve a maximum bit length of 2100 bits (u=30).  With w=-2, SME can 

support 4832 bits (u=32). 

6.6. Final Reference Timing Comparisons 
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In software, many iterations of field sizes and implementations were tested to find 

potential areas where SME performance in software would exceed that of more 

traditional algorithms.   

Reference Algorithms 

The following chart shows Spectral Modular Exponentiation timings versus the following 

reference implementations, all of which were tested under identical conditions.  All 

implementations used random values for e, m, and n during a single exponentiation and 

measurements are in seconds. 

1. Sliding Window – This uses the Sliding Window exponentiation algorithm along 

with multiplication by Karatsuba/Toom-3 and reduction using arithmetic division 

[8]. 

2. Left-to-Right - This uses the Left-to-Right or “square-and-multiply” 

exponentiation algorithm along with multiplication by Karatsuba/Toom-3 and 

reduction using arithmetic division  [8]. 

3. Montgomery - This uses the Left-to-Right or “square-and-multiply” 

exponentiation algorithm along with multiplication and reduction achieved by 

Montgomery Multiplication. 



74 

 

 

Figure 24:  Spectral Timings vs. Reference Implementations (sec) 

These timings in logarithmic scale demonstrate the superiority of the reference 

algorithms over the basic implementation of Spectral Modular Exponentiation at all bit 

sizes tested. 
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Left-to-Right Montgomery vs. Parallel Simulation Reference Timings 

 
Figure 25:  Theoretical Spectral Parallelized Timings vs. Reference Implementations (sec) 

These timings in logarithmic scale demonstrate the superiority of the reference 

algorithms over the basic implementation of a theoretical timing of Spectral Modular 

Exponentiation with parallel operations at all bit sizes tested.  The parallel operations 

were applied to the following segments of the SME algorithm: 

7: Z(t) := Z(t) + β ・ N(t) mod q 
8: Z(t) := Z(t) − (z0 + β)(t) mod q 
9: Z(t) := Z(t) * Γ(t) mod q 
 
Steps 7-9 are all operations that occur independently across d terms, and thus are 

easy candidates for parallel testing.  Because d is sometimes very large, it was not 
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possible to provide actual values for all sizes of d, but the values provided are 

approximations of parallel calculation performance for steps 7-9. 
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CHAPTER 7:  Performance Limitations 

7.1. Complexity of SME in Software 
There are performance limitations with the software implementation of the Spectral 

Modular Exponentiation algorithm that was proposed by Koç [5].  These limitations were 

discovered during the performance testing described in Chapter 6.  In profiling the code 

during testing, it was discovered that some operations in SMM were executed much more 

often than expected. 

To explore these concerns, the following complexity calculations were derived 

from the parameters generated of d, s, q, u, and bit size of a single spectral term and how 

these parameters affect the quantity of operations in SME.  The complex relationship 

between u, d, and q as determined by the overflow inequality make it difficult in solving 

for efficiency values directly, so efficiency was modeled based on the tabulated 

parameters that resulted from the iterative solving of the inequality. 

With the output of parameter generation combined with the analysis of the loops 

and multi-word operations in the implementations of SME, the following estimates were 

determined for the number of operations required to compute critical steps of spectral 

modular exponentiation at various operand sizes.  These critical steps were called 

InnerLoop operations on the charts. 
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Figure 26:  Calculated SME Inner-Loop Operations 
This chart shows the calculated count for InnerLoop operations for SME over a variety of 

operand bit sizes (x-axis).  It appears from the chart that the number of operations has a 

quadratic relationship for this model based on software calculations. 
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Figure 27:  Calculated Parallelized SME Inner-Loop Operations 
 

By examining these charts, it is seen that the modeled equation for the number of 

Inner Loop (IL) operations shows that in software the number of operations in the SMP 

increase as O(n2).  This efficiency takes it characteristics from the fact that as bit sizes 

increase, so does the bit size of the terms, the number of terms, and the number of 

reductions steps that must be computed.  Parallelization would only resolve this 

efficiency issue if it were possible to calculate d parallel operations simultaneously 

(where d varies between 29 and 419 in our test parameters).  
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With sufficient resources, the computations can be done in parallel for several of 

the internal loop operations of SMP and the computational efficiency is modeled at 

approximately O(n1.5). 
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Chapter 8:  Conclusions and Future Work 

This thesis provides significant additional information for the implementation of 

algorithms that apply spectral modular exponentiation.  Specifically, this covers some 

beneficial characteristics determined concerning parameter generation for both Mersenne 

and Fermat primes that allow the reliable generation of parameters. 

 The performance of software implementations was not an improvement over the 

reference algorithms.  The lack of efficient operations to support spectral math in 

software and the absolute necessity for hundreds of simultaneous parallel operations 

made competitive performance difficult in software.  In hardware, these issues might be 

resolved. 

 The production of verified intermediate values and the corresponding parameters 

for these successful operations will be beneficial for future implementations and assist in 

future attempts at hardware implementations. 
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