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Absthact: The determination of pattern recognition rules is
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the recognition problem at hand. The paper formulates the
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1. INTRODUCTION

A pattern recognition rule can be viewed as a rule

DESCRIPTION ::> RECOGNITION CLASS (1)

which assigns @ situation (an object, a process, etc.) to the RECOGNITION
CLASS, when the situation safiSEies the DESCRIPTION. 1In the decision space
approach the DESCRIPTION is in the form of an analytical expression involving
a set of numerieal variables selected a priori. Variables spanning the
decision space are treated uniformly, are usually assumed to be measured on
at least an interval scale, and are desired to be relevant and independent
characterics of the objects. When the variables are strongly interconnected
and the relevant object characteristics are various relations among the
variahles, or among parts or subparts of objects, then the decision space
approach becomes inaquuate. In such situations the-;tructural approach
can be useful. |

In the structural approach, the DESCRIPTION is a formal grammar
{usually a phrase-structure grammar) in which terminals are certain elementary
parts of objects, called 'primitives'. The types of relationships which ean
be expressed "maturally" in terms of a formal gfammar are, however, quite
limited. If the relevant characteristics include, for example, some numerical
measurements in addition teo relations and symbolie concepts, then grammars
involving them are very cumbersome or inadequate.

This is a strong limitation, because in many problems an adequate
class description requires both numerical characterizations of objects and a
specificatiﬁn of wvarious relationships amomng properties of objects, of object
parts, logical conditions on properties, ete.; i.e., involve deseriptors of

mixed arity and measured on different scales. Thus, there is a need for a

method which could handle simultanously all such desciptors.



Both the decision space approach and the syntactic approach tend
to produce descriptions which are not easily comprehensible by humans. This
is so because these descriptions do not directly correspond te the 'matural
language type' descriptions which human experts would develop observing
the same data and which they would normally like to use. Although in some
applications 'human comprehensibility' may not be important, in other ap-
plications (e.g., in expert computer consulting systems) it is a crucial
requirement.

This paper presents results, still early and limited, of an
attempt to develop a uniform conceptual framework and an implementation
method which would satisfy both of the above requirements. In additionm,
an important aspect of this method is that the final descriptions which
it produces may 1ﬁvolve new descriptors (variables or relations) which
were not included in the initial characterization of ubjécts. This is
achieved through the application of '"metarules' which represent the under-
lying knowledge of the problem at hand and of the properties of descriptors
used in formulating the descriptions of exemplary data. Therefore, the
approach taken is in the spirit of research in artificial intelligence. The
method uses logic as the basic formal framework (specifically, a certain
syntactic extension of the first order predicate calculus, called variable;valued
logic system vL21}, and is most closely related to the body of wqu termed
'computer induction'. The ability to develop new descriptors, inladdition
to those given a priuri,-places this work in the category of what we call
'constructive induction'® as opposed te "non-constructive induction', in

ﬁhich the final descriptions relate only descriptors initially provided.

* The author thanks Larry Travis of the University of Wiscomsin for
suggesting this name.



2. RELATED RESEARCH

It would be a very difficult task, requiring more space
than provided, to characterize adequately various important con-
tributions to computer induction. We will make here only a very
limited and certainly not adequate review of some more recent works.

Many results consider inductive tasks within a specific
problem domain. For example, programs collectively called METADENDRAL
[1] use a model-directed heuristic search to determine rules that
describe themolecular structure of an unknown chemigal compound from
mass spectrometry data. In [2] Winston describes a methed for deter-
mining a graph desecription of simple block structures from examples.
4 program developed by Lenat [3] generates concepts (represented as
collections of apriori defined properties) of elementary mathematies,
under the guidance of a large body of heuristic rules. Soloway and
Riseman [4] describe a method for creating multi-level descriptions
of a part of a baseball game, starting with'snapshots' of the game,
and using rules representing general knowledge of the game.

The p;ngramssuch as those mentioned above usually inecorporate
a large body of task-specifiec knowledge and tend to perform gquite well
on tasks they were designed for. Theyrepresent an important achieve-
ment and demonstrate again that high performance requires specialized
solutions. An important problem which they ralse, however, is how
to untangle and systematize the ideas which Ehey contriﬁUte:in order
te extend understanding of inductive processes at large, and to apply in

other problem areas.
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A significant part of research has been concerned with
determining patterns in sequences of symbols (e.g., Simen [5],

Waterman [6]). Simon [5] found that descriptions of such patterns
consistently incorporate onlyafew basic relations: 'some' and "next’
between symbols, itefﬁticns between subpatterns, and hierarchic
phrase structure. Gaines [7] developed a method for generating
finite-state automata, which approximate a given symbol string, and
represent different trade-offs between the complexity and poorness-
of-fit. Shaw, Swartout and Green [8] developed a program for
inferring Lisp code from a set of examples of Lisp statements.

The above works are related to the general subject of
grammatical inference {i.e., inference of a grammar which may have
produced a given set of strings). Early work in this area was con-
cerned with the inference of a phrase structure grammar (e.g., Feldman
et al [9]). More recent work moves into inferring 'multi-dimensional’
. grammars (e.g., wérk by Brayer and Fu [10]).

In the recent years there has been a new trend toward the
development of general methods of induction.

Michalgki and his collaborators (e.g., [11, 12, 13]) have
developed a methodology (using a sentencial calculus with discrete
variables, called wvariable-value logic system le,as a fcrmni basis)
and computer programs for determining generalized and optimhl in some
sense discriminant descriptions of ciasses of objects from examples.
The éxamples are presented as sequences of values of discrete variables
with an associated recognition class. Work in a similar spirit, al-
though more limited in scope,was reported by Stoffel [14] (the elemeﬁtary
statements used there are restricted to the "variable-value' forms, i.e.,

to 'elementary selectors', as described in Section 4).
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Many authors use a restricted form (usually quantifier-
free) of the first-order predicate caleulus (FOPC) or some equiva-

lent notation” as the formal framework for formulating hypotheses. Morgan

[15] describes a formal method of hypothesis generation, called f-
resolution, which stems from deductive resolution principles. Various
theoretical issues of induction in FOPC were considered by Plotkin [16].
Fike, Hart and Nilsson [17] describe an algorithm for generalizing

robot plans. Hayes-Roth and McDermott (e.g., [18]), also Vere [19],
describe methods and computer programs for generating comjunctive
descriptions of least generality (which they call 'maximal abstractions'),
of a set of objects representad by products of n-ary rredientes. The rules
of generalizétion which they use can be characterized as 'dropping a
condition' and 'turning constants into variables' (see section 5.3). Related,.
but different in spirit, is work by Zagorulko [20] on a general method

for 'strengthening hypotheses' by narrowing the uncertainty

‘intervals of values of output variables, and work by Hedrick [21] en

determining production systems using a semantic net of predefined concepts.

This paper presents a theoretical framework for generalizing
and optimizing descriptions of object classes in the form of decision
rules. The decision rules can involve descriptors of three different types
{nominal, linear and structured), employ some new syntactic forms, and use
problem knowledge for gpiding induction and generating mew descriptors.
The formal notation is a modification and extension for FOPC, called
_variahle—valued logic system VLZl. This formalism is claimed to be more
adequate than the traditional FOPC as a conceptual framework for describing the
inductive processes under consideration. The paper is 8n extension

and modification of the report [22], and stresses the conceptual principles



of induction method rather than specific algorithms and implementation

details. Most of the latter are described in [23, 24, 25].

3. PROBLEM STATEMENT

A VL transformation rule is defined as a rule

5 €]

where DESCRIPIIDNl and DESCRIPTION, are expressions in VL,, system (section 4),

> stands for various transformation operators which define the meaning

DESCRIPTION, -C—> DESCRIPTION

of the rule.
A DESCRIPTION may look like:
Exl,x [un-tup(xl,xz]][512e{x1)=3..51[color(x2}=blue,yellnu,red] A
[length(xl} d length(xz)-small]
(For explanation of notation see section 4).
We will consider here the following transformation operators:
(1) ::> the operator defines a decision rule. DESCRIPTION,

specifies a decision (or a sequence of decisions) which is

asslgned to a situation which satisfies DESCRIPTIGNl.

{In the application to pattern recognition, I)ESCRIPTIGH2
defines the recognition class.)

If a situation does not satisfy the BESCRIPTIONI, the rule assigns

to it a WULL decision.
(ii) = the operator defines an inference rule. If a situation

satisfies DESCRIPTION,, the rule assigns the truth-status 'TRUE'

1
to DESCRIPTIDHz, otherwise the truth-status of DESCRIPTIDH2

is '?". (In an inference rule DESCRIPTION. is called the

1
condition and DESCRIPTION, is called the conaequence.



A decision rule can be viewed as a speclal case of an inference
rule, namely, when DESCRIPTION; is a constant, an elementary selector,
or a product of elementary selectors involving decision varlables (see

def. 2), also, when its truth-status is TRUE (in general, it may be not TRUE).

(ii1) k the operator defines a gemeralization rule, which states

that the DESCRIPTION, is more general tham DESCRIPTION,,

2
i.e., the set of situations which satisfy ‘DESCRIPTIUH2
is a superset of the set of situations satisfying DESCRIPTIOHl;
(iv) [ the operator specifies an equivalence preserving trans-

formation rule (when the above mentioned sets are equal).

The rule is a special case of a generalization rule.

The problem considered in this paper is defined as follows:
® (iven is
(a) a set of VL decision rules, called éégg_zglgg, which
specify inifial knawledge,{ﬂij}, about some situations

{(objects, processes, ...) and the recognition class,

Ki’ associated with them:

611 e Kl' Ciz 1> Ki g Cltl 11> Kl
621 i Kz, 622 iz Kz SR Cth Tam KZ
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c 1> K, - 11> K i -:>'}f
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(b) a set of VL inference rules which define a problem
environment, i.e., represent knowledge about the
recognition problem under consideration. This includes
value sets of descriptors used in the data rules, the
properties of descriptors and their iﬁterrelationships
characteristic to the problem at hand.

(c) a preference (or optimality) eriterion, which for any
two 'comparable' sets of decision rules specifies which
one is more preferable, or states that they are equally

preferable.

® The problem is to determine, through an application of generalization
rules ( sec. 5.3), a2 new set of decision rules (called cutput rules or

hypotheses):

O s Ry o sl e 0 i X

11 1 11 1 1rl 1
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which are most preferable among all sets of rules that do net contradict the
problem envirowment rules, and with regard to the input rules a;e conaiatent
and aomplete.

The output rules are eonsisteﬁt with regard to input rules, if for
any sitﬁaticn to which the input rules assign a non-NULL @ecisinn} the output

rules assign to it the same decision, or the NULL decision.
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The output rules are complete with regard to input rules, if for any
Qituatian to which the input rules assign a non-NULL decision, the output
rules also assign to it a non-NULL decision.

It is easy to see that.if the output rules are consistent and
complete with regard to the input rules then they are semantically equivalent
(i.e.,assign the same decision to the same situation) or more general than
the input rules (i.e., they may assign a non-NULL decision to situations to
which the input rules assign a NULL decision).

From a given set of data rules it is usually possible to derive
many different sets of rules which are consistent and complete and which
satisfy the problem environment rules. The role of the preference
eriterion is to se}e:t one (or a few alternative seta‘?f rules) which is
most desirable in the given application. fhe preference criterion
maf refer to the simplicity of the rules (defined in some way), their
generality, the cost of measuring the information needed for rule
evaluation, degree of approximation to the given facts, etec. (section
5.4). In this paper we accept the restriction that the DESCRIPTIONs,

Cij and Céj are disjunctive simple vLEl expressions (section 4). Such
expressions have a very simple interpretation, and seem to be sufficient for

many applications.
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4. VL EXPRESSIONS AS DESCRIPTIONS
4.1 Definition of vLZI
Data rules, hypotheses, problem environment deseriptions,
and generalization rules are all expressed using the same formalism,
that of variable-valued logic calculus VLzl.* szl is an extension
of predicate calculus designed to facilitate a cnmpaét and unifeorm
.
exbresaiun of descriptions of different degrees and different types
of generalization. The formalism also provides a simple linguistic inter-
pretation of descriptions without losing the precision of the con-
ventional predicate célculus. To make the paper self-contained, we
will provide here a brief description of VLZl.'

There are three major differences between VL,, and the first

order predicate calculus:

1" T place of predicaﬁes, it usesﬁselsctars {or relational
gtatemerts) as basic opefands. A selector, in the most
general form, specifies a relationship between one or
more atomic functions and other atomic functions or
constants. A coﬁmcn form of a selector is a test to
ascertain whether the valué of an atomic function is a
specific constant or is a member of a set of constants.

The selectors represent compactly certain types of
logical relationships which can not be directiy represented
in FOPC but which are common in hu%an descriptions. They
are particularly useful for representing changes in the degree
of generality of descriptions and for syntactically uniform

treatment of descriptors of different types.

*szl is a subset of a more complete system ?Lz under development.
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2. Each atomie funetion (a variable, a predicate, a function)
is assigned a value set (domain), from which it draws values,

together with a characterization of the structure of the value set.

This feature facilitates a representation of the semantics

of the problem and the application of generalization rules appropriate

to the type of descriptors.

3. An expression in VL,, can have a truth status: TRUE, FALSE or

1
7 (UNKNOWN) .
The truth-status '?' provides an interpretation

‘of a VLEl description in the situation, when, e.g., outcomes of

some measurements are not Known.

Definition 1: An atomie function is a variable, or a function symbol followed
by a pair of parentheses which enclose a sequence of atomic functions
and/or constants. Atomie functions which have a defined interpretation
in the problem under consideration are called descriptora.

A constant differs from a varilable or a function symbol in that

its value set is empty. If a confusion is possible, a constant is typed
in quotes.

Examples

Constants 2 * red

Atomic forms: xl cblar(red) on-top(pl,p2) ((xl, g[xzjj

Exemplary
value sets: D(xl} = {0, 1,00., 10}
D(color) = {red, blue,...}
D{on-top} = {true, false}
D(f) = {0,1,..., 20} :
Definition 2: A selector is a form
(L # R] (5)
whére L - called referee,is an atomiec function, or a sequence of atomic

functions separated by '.". (The operator '.' is called the internal
eonjunetion.)
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# - is one of the following relational operators:

= > <> <

R - called reference, is a constant or atomic function, or a

sequence of constants or atomic functions separated by operator

*"or '..'. (The operators ',' and '..' are called the

internal disjunction, and the range operator, respectively).

A selector in which the referee L is a simple atomic funetion and
the reference R is a single constant is called an elementary selector. The
selector has truth=status TRUE {or FALSE} with regard to a situation if the
situation satisfies {dves not satiefiy} the selector, i.e., if the referee L
is {is not} related by # to the reference R. The selector has the truth-
status '?"' (and is interpreted as being a gquestion), if there is not sufficient
information about the values of descriptors in L for the given situation. To
simplify the exposition, instead of giving a definition of what it means that

'L is related by # to R', we will simply explain this by examples. (See section

section 5.1 for more details).

(1) [color(boxl) = white] color of boxl is white
(ii) [length(boxl) > 2] length of boxl is greater than or equal to
'(441) [weight(boxl) = 2..5] weight of boxl is between 2 and 5,
(iv) [blood-type (Pl) = 0,A,B]. blood-type of P1 is 0 or A or B
(v) [on-top(boxl, box2) = T] boxl is on top of box2
or simply

[on=top(box1l, box2)]
(vi)  [above(boxl, box2) = 3"] box 1 is 3" above box2
(viii) [weight(boxl) > weight (box3)] the weight of boxl is greater than the

weightof box3
(ix) [length(boxl) . length (box2) = 3] the length of boxl and box2 is 3

(%) [type(p,) . type (P,) = A,B] the type of P,
is either A or B..

and the type of Fz

Note the direct correspondence of the syntactic forms to linguistie
descriptions. WNote also that some selectors can not be expressed in FOPE

in a (pragmatically) equivalent form (e.g., (iv), (ix), (x)).
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A VL21 expression (or, here, simply VL expression) is defined by

the following rules:

(i) A constant TRUE, FALSE or '?' is a VL expression
(11) A selector is a VL expression
(iidi) If v, Vl and V2 are VL expressions then so are:
(v) formula in parentheses
o R inverse
vy A v, or Vlvz conjunction
vy v v, disjunction
v, Vv, exclusive disjunction
Vfw v, _ exception
?1u$>v2 metaimplication

where=y€ {+, =, 11>, =, k, F}
{implication, equivalence, decision assignment,
inference, generalization, semantical equivalence)

Hxl,xz,...,xk(V) existentialiy quantified expression

Vxl,xz,...,xk(V} universally quantified expression

A VL formula can have truth-status TRUE (T), FALSE (F) or UNKNOWN(?T).
The interpretation given to connectives |, A, V, +, is defined in Fig. 1. (This
interpretation is consistent with Kleen-Korner 3-valued logic). An expression
with the uperétor =, k or F is assumed to always have the truth-status TRUE
and with operator ::>, TRUE or 7. Operators®y, EJ and * are interpreted:
Vl\u ?2 is equivalent to “lfTVZ}
Vl v V2 is equivalent (?1 i VZ}\q vlvz
Vl - ?2 is equivalent to (vlﬂvzj(vzavl}
The truth-status of
TRUE {FALSE} if, in a given situation, there exists
{does not exist} a value of x which makes

Hx(V) is the truth-status of V equal TRUE

? if it is not known whether there exists .
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DEFINITION OF CONNECTIVES
T1T.A,V AND —>

IN Viy,

Figure 1

TRUE {FALSE} 'if for every wvalue of x in g given situation,

: the truth-status of V is {is not} TRUE
Yx(V) is

? if it is not known whether for every .
A constant * ('irrelevant') is introduced to substitute for R, in
a selector [L = R], when R is the sequence of all possible values the L can
take.
& VL expression in the form

QFI,QF2,... (Pl v P2 L ?1) (7)

where QFi is a quantifier form Hxl,x2,... or Vkl,zz,... and Pi is a con~
junction of selectors (a term), is called a disjunctive aimple VL expression

{a DVL expression}.
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5. INFERENCE AND GENERALIZATION RULES

5.1 Interpretation of Inference Rules

An inference rule
DESCRIPTION, = DESCRIPTION, _ (8)

is used by applying it to situations. A gituation is, in general, a source
of information about values of variables and atomic funcFinns in DESCRIPTIOHl
(the condition part of the rule). A situation can, e.g., be a data base
storing values of variables and procedures for evaluating atomic functioms,
or it can be an object on which various tests are performed to obtain these
values.

A decision rule is viewed as a special case of an inference rule,
when DESERIFIIDHZ_(the eonsequence or decision part gf the rule) is a con-
stant, an elementary selector,or a producf of glementary selectors involving

decision variables (i.e., the DESCRIPTION, uniquely defines a decision or

2
a sequence of decisions). The truth status of the condition and decision
part of a rule, before apﬁlying it to a situation, is assumed to be UNKNOWN.

Let Q denote the set of all possible ;ituations under consideration.
To characterize situations in Q, one determines a set S, called the deseriptor
get, which consists of variables, predicatesand atomic functions (called,
generally, desariptors% whose specific values can adequately characterize
(for the problem at hand) any specific situation. We will assume here
that thearmuments of atomic functions are single wvariables, rather |
than other atomic functions. A situation is characterized by an event which
is a sequence of assignments (L:=v), where [ is a variable or an atomic function
with specific values of arguments, and v is a value of the variable or atomic

function which characterizes the situation. It is assumed that each descriptor

has defined a value set (domain) which contains all possible values the
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descriptors can take for any situation in Q. Certain descriptors may not

be applicable to some situations and therefore it is assumed that a

deseriptor in such cases takes value NA, which stands for not applicable.

Thus, the domains of all deseriptors always include by default the value

NA. The set of all pnssigle events for the given descriptor set S is called

the event space, and denoted &(S). It should be noted that within a single event
certain variables (variables which are quantified in formulas) may be assigned

a number of different values, i.e., there may be more than one pailr {L:-vi},
where [ is a variable and Vs i=1, 2, ... represent different values.

An event ¢ € &(8) is said to satisfy a selector [f(xl,...,xk} # R]
iff the walue of function f for values of xi, i=1, 2, ..., k, as specified
in the event &, is related to R by #. For example, the event

-e: (...x5:-a1} x6='az‘.f20{?1' a2]\:= B aew)
satisfies the selector:
[fzﬂ(xj,xﬁ} =1, 3, 5]

A satisfied selector is assigned truth-status TRUE. If an event
does not satisfy a selector then the selector is assigned truth-status FALSE;
If an event does not have enough information in order to establish whether a
selector is sétisfied or not then the selector has UNENOWN truth-status
with regard to this event.

Let us assume first thatthecondition part of an inference rule is
a quantifier-free formula. Interpreting the connectives =9, ﬁ, V, as
deseribed in figure 1, one can determine from the truth stafus of selectors
the trﬁth-status of the whole formula. An event is sﬁid to satisfy a rule,
iff an application of the condition part of the rule to the event gives the
formula truth-status TRUE. Otherwise, the event is said to not satisfy

the rule.
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Suppose now that the condition formula is in the form
qx(V)
An application of this formula to an event assigns status TRUE to the formula
iff there exists in e a value assigned to x such that V achieves status TRUE
(x may have a number of different values assigned to it). For example, the
formula
Apart [color (part) = red]
ig satisfied by the event:
e = (... part:=P1l, color (Pl):=blue, part:=P2, color (P2):=yellow,
part:=P3, color (P3):=red...)
If the condition part is a form
Y (V)
then it is assignéd status TRUE if every walue of x in the event applied to
it satisfies V. L
If the condition part assumes truth-status TRUE then the decision
part is assigned status TRUE. When the decision part reaches status TRUE
then variables and functions which occur in it are assumed to have values
which make this formula TRUE. These values may not, in general, be unique.
For example, suppose that V is a decision part with status TRUE:
Vi [p(xp,xy) = 2][::3 = 2:5][x=7]
V is interpreted as a description of a situation in wh%ch p has value 2 (if a
" specification of p{xl,xz} is known, then from it we can_infer whak ;Blugs of
* and X, might be), X, has a value between 2 and 5, inclusively, and g has
value 7. (Note that the formula does not give precise information about the
vaiue of KJ'} After applying a formula to an event, the truth status of the
condition and decision part returns to UNKNOWN. The role of an inference rule
can then be described as follows: the rule is applied to an event, and if the

event satisfies the condition part, then an assignment of wvalues to variables
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and functions is made as defined by the decision part. This assignment
defines a new event (or a set of events which satisfy the decision part).
Another inference rule now can be applied to this event (or set of events),
and if satisfied by it (or by all of them), a new assignment of values to
some variables and functions can be made.
Examples of VL inference rules:
[p(x;.%,) = 31la(x,) = 2,5)[x, ¥ 0] = [d(yy) = 71lp(y ,¥,) = 2]
Hxy([p(x1,%3) = 2..31[alx;,%x4) > 21} V [t(x)) = 1] = [d(y;) = 7]

TRUE = [P(x21x?) £ 2][3‘:—! =2,3,5]

5.2 Specification of the problem environmment in the form of inference rules

Types of descriptors

The process of generalizing a description depends on the type of

descriptors used in the description. The type of a descriptor depends on the
structure of the value set of the deseriptor. We distinguish here among three

different structures of a value set:

1. Unordered

Elements of the domain are considered to be independent
entities, no structure is assumed to relate them. A
variable or function symbol with this domain is called
nominal (e.g., blood=-type). '

2. [Linearly Ordered

The domain is a linearly ordered set. A variable or
function symbol with this domain is called linear
(e.g., military rank, temperature, weight).

3. Tree Ordered

Elements of the domain are ordered into a tree structure.

A predecessor node in the tree represents a concept which
is more general than the concepts represented by the
dependent nodes (e.g., the predecessor of nodes 'triangle,
rectangle, pentagon, etc.' may be a 'polygon'). A variable
or function symbol with such a domain is called structured.
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Each desecripter ( a variable or fuction symbol } 1s assigned
its type in the specification of the problem. In the case of structured

descriptors, the structure of the value set is definéd by inference rules

(e.g., see egs. (13),(14),(15))..

In addition to assigning to each variable and function symbol a domain,
one defines properties of variables and atomic functions characteristiec for the
given problem. They are represented in the form of inference rules. Here are

a few examples of such properties.
1. Restrictions on Variables

Suppose that we want to represent a restriction on the event
space saying that if a value of variable %, 1s 0 ('a person

does not smoke'), then the variable x, is " 'not applicable’

(x, - kind of cigarettes the person smokes). This is repre-
sented by a rule:

[xl = 0] = [x3 = NA]
NA = not applicable
2. Relationships Between Atomic Functions
For example, suppose that for any situation in a
given problem, the atomic function f(x,, x.)} is

always greater than the atomic function g{xl, xz).
We represent this:

T = vxr xy [£0xp, %) > glxy, x%,)]

3. Properties of Predicate Functions

For example, suppose that a predicate function is transitive.
We represent this:

yxl,xz,xaf[left(xl,xz}][1eft{x2,x3)] - [left{xl?x3}]}

Other types of relationships characteristic for the problem
environment can be represented similarly.
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5.3, Generalization rules

In order to transform data rules (3) into hypotheses (4),
generalization rules are applied to data rules. A generalization rule
transforms one or more decision rules associated with the same general-
ization elass (which, in our case, is the same as recognition class),
into a new decision rule, which is equivalent to or more general than
the initial rules. |

& decision rule

Vi X (9)
is equivalent to a set of decision rules
{Vi iRl R e D (10}
1f any event.which satisfies at least one of the Vi, g m Ly Zy smwn
satisfies also V, and conversely. .If the converse 1s not required, the
rule (9) is said to be more general than (10).
The generalization rules are applied to data rules under the
‘condition of preserving consistency and completeness, and achieving
optimality according to the preference criterion. A basic property of a
generalization transformation is that the resﬁlting rule ma# have UENOWN
truth-séatué (is a hypothesis); its truth-status has to be tested on
new data.
Below is a list of a few basic generalization rules (K denotes

a generalization class).

Non-constructive rules:
(1) the extending reference rule

i K

VIL = Ry] ::> K | V[L = R,] :

where L = is an atomic function
Rél Rl' and RI’RE are subsets of the value set, D(L),

of deseriptor L.
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V - an arbitrary description (here a VI expression).
This is a generally applicable rule; the type of descriptor
" L does not matter.
(11) The dropping selector (or dropping condition )} rule
VIL=R] ::> K k V ::> K
This rule is also generally applicable. It is one of
the most commonly used rules for generalizing information.
It can be derived from rule (i), by assuming that Rz in
(i) is equal the value set D(L). In this case the selector
[L = Rzl has always truth-status TRUE, and as such can
be removed.
(ii1) The eloging interval rule
FIL = a] ::> K
V[L = a..b] ::> K
FIL = b] ::> K
This rule is applicable only when L is a linear descriptor.
To illustrate the rule, consider as objects two states of a
machine, and as a recognition eclass, a characterization of the states as
normal. The rule says that if the states differ only in that the machine
has two different temperatures, say, a and b, then the hypothesis is made
that all states in which the temperature is in the interval [a,b] are
also normal.
(iv) The elimbing generalization tree rule
V[L = a] ::* K
one or VL = b] ::> K [L=8]::> ¥
more "

rules Z
VI[L = 1] ::> K
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where L is a structured descriptor
s = represents the predecessor mnode (a concept at the
next 'level of generality') of nodes a,b,...and 1,
the tree domain of L.
The rule is applicable only to selectors inveolving structured
descriptors. This rule has been used, e.g., in [2], [3], [21].
Example:
V[shape(p)=triangle ] ::> K
F Vishape(p)=polygon] ::> X

Y[shapé{p)=rectangle1 1> K

(v) The extension against rule
V.[L=R] ::> K
. . F [L $ Ryl ::> X
Vﬁ[L = RE] 274

where leW R2 =@ |

Vl and V2 - arbitrary descriptions.
This rule is of general appliecability. It is used to take into
consideration "negative examples', or, in general, to maintain

consistency. It is a basic rule for determining discriminant

class descriptions.

(vi) The 'turning constanta into variables' rule

Vip(a,X)] ::> K

one or ¥lp(b,¥)] ::> K i
more Vip(x,¥)] ::> K
rules s

V[P(ilY}] 11 X

where Y stands for one or more arguments of atomic

function p.
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¥ is a variable whose walue set includes &by vagtia
This is a rule of general applicability. It is the basic
rule used in works on induction employing predicate
calculus,

' Constructive Rules:

Constructive rules generate descriptions of the data rules in
terms of certain new descriptors, and, therefore, are a form of generali-
zation rules. They also can be viewed simply as rules which generate new
descriptors ('metadeseriptors'). There can be very many such rules.

We will restrict ourselves here to two examples. Some constructive rules

are encoded as specialized procedures.

(vi)the counting rule

Vtattributel(Pl}mA]...[attributel{Pk]=ﬁ][attributel(Pk+1)%ﬂ]...

.--[attribute (2 )F A] | V{#P-ateribute -A=k] ::> K

where PI’PZ""’Pk""’Pr = are constants denoting, e.g.,
parts of an object
attributel - stands for a certain attribute

of Pi—s, e.g., color, size,
tecture, etc..

#P-ﬂttrihutei-a = denotes a new descriptor inter-
preted as the 'nimber of P.-s (e.g.,
parts) with attribute equal A'.

Example: P -
?[color(Pl}=RED][culnr{P2]=RED][colur{P3}=ELUE]::?X
~ k [#P=color-red=2] ::> g

(The above is a generalization rule, because a set nf nhiect= vwith any

two red parts is a superset of a get of objects with two parts which are
red and one part which is blue)
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(viii) the gemerating chain properties rule
If the arguments of different occurrences of the same
relation (e.g., relation 'above', 'left-of', 'next',
etc.) form a chain, i.e., are linearly ordered by the
relation, the rule generates descriptors relating to specific
ubje;ts in the chain and computes their properties as
potentially relevant characteristics. For example:
LST-object - the 'least object', i.e., the object at the
beginning of the chain (e.g., the bottom

object in the case of relation 'above')

M5T-object - the object at the end of the chain (e.g.,
the top object)

ith-object - the ith object of the chain.

5.4 The preference criterioﬁ
The.preference criterion &efings what is the desired solution
to the problem, i.e., what kind of hypotheses are being sought., The
question of what should be the preference eriterion is a broad subject
beyond the scope of the paper. We will, therefore, discuss here only
the underlying ideas behind the presented approach., First, we disagree
with many authors who seem to be searching for one universal criterion
which shnuld-guide induction. Our position is that there are many di-
mensions, independent and interdependent, on which the hypotheses can
be evaluated. The weight given to each dimension depends on the ultimate
use of the hypotheses. Among these dimensions are various fofms of
simplicity of the hypothesis (e.g., the number of operators in it, the
quantity of infermation required to encede the hypothesis using operators

from an a priori defined set [26], etc.), the scope of the hypothesis,which

relates the events predicted by the hypothesis to the events actually
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-ubserﬁed (e.g., the 'degree of generalization' [12], the 'precision' [26]),
the cost of measuring the descriptors in the hypothesia, ete. Therefore,
instead of defining a specific criterion, we specify only a general form
of the criterion. The form permits a user to define various specific
criteria to the :i.nductive- program, which are appropriate to the application. The ’
form, called a 'lexicographic functional' consists of an ordered list of '
criteria (of dimensions of hypothesis quality) and a list of 'tolerances'
for these criteria [12, 23],

An important and somewhat surprising property of

such an approach is that by properly defining the preference criterion,

the same computer program can produce either the characteristic or dis-
eriminant descriptions of object classes. The characteristic

description specifies the common properties shared by the objects of the

. same class (most work on induction considers only this type of descriptions,
e.g., [2], [5], [18]), while the discriminant deseription specifies only
the properties necessary for distinguishing the given class from all the

other classes (Michalski [12, 27], Larcon [23]).

5.5 Arithmetie descriptors

In addition to initial linear descriptors used in the data rules,
new linear descriptors can be formulated as arithmetic functions of the
original ones. These descriptors are formulated by a human expert as

suggestions to the program.

6. OUTLINE OF ALGORITEM AND OF COMPUTER IMPLEMENTATION"
In this section we outline the top level algorithﬁ for rule
induction and its implementation in the computer program INDUCE-1.1

([23][241[25]). The algorithm is illustrated by an example.
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INDUCE-1.1 is considered to be only an aid to rule inductiom.
Its successful application to practical problems requires a cooperation
between the program and an expert, whose role is to formulate data rules and
the problem environment rules, define ﬁhe preference criterion and other

parameters, evaluate the obtained rules, repeat the process if desired, etc.

6.1 Computer representation of VL decision rules

Decision rules are represented as graphs with labeled nodes and
labeled directed arcs. A label on a node can be:

a) a selector with a descriptor without the argument list,

b) a lugicai operation,

¢} a quantifier form Sx or Yx).
Ares link arguments with selectors or descriptors; and are labeled by 0,1,2,...
to specify the position of an argument in the descriptor indicated at the head
of the arc (0 indicates that the order of arguméhts is not important).

Several different types of fela;inns may be represented by an arc.
The type of relation is determined by the label on the node at each end of
the arc. The :ype§ of relations are: 1) functional dependence, 2) logical
dependence, 3) implicit wvariable dependeace,.ﬁ} scope of variables.

Figure 2 gives a graph representing a szl expression. The two
arcs connected to the logical operation (M) represent the logical dependence
of the value of the formula on the values of the two selectors. The other

arcs in the figure represent the functional dependence of f on x, and x.,

1 2

and g on Xy

[f = 1] [g = 2]

P g \3:2/

1

VL Gr;ph Structurs: qxl xztlf{x1,32? = 1;[g(i2] -'z]]

Figure 2
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6.2, Outline of the Top Level Alporithm

The implementation of the inductive process in the program INDUCE-1
was based on ideas and algorithms adopted from the earlier research on the
generalizatiad‘uf ?Ll expressions (Michalski [12,27] , and some new ideas
and algorithms developed by Larson [23,24].

The top level algorithm (in somewhat simplified form) can be
described as follows:

1. At the first step, the data ruleg (whose condition parts are in the
disjunctive simple forms) are transformed to a new set of rules, in which
condition parts are in the form of c-expressions. A c-expression (a
conjunctive expression) is a product of selectors accompanied by one or

more quantifier forms, i.e., fqrms QFxl,xz'..., where QF denotes a
quantifier. kNote, that due to the use of the internal disjunction and
quéntifiers, a c-expression represents a more general concept than a
conjunction of predicates (used, e.g., in [18][19]). -

2. A decision class is selected, say Ki, and all c-eipressicns assoéianed
with this class are put inte a set Fl, and all remaining c-expressions

are nut into a set FO ( the set Fl represents events to be coverad ,

and set FO represents constraints, i.e., events not to be covered ).

3. By application of inference rules (describing the problem environment),
constructive generalization rules, and rules generating arithmetic
descriptors (sec.5.3), new selectors are generated. The 'most. promising’
selectors (according teo.a certain criterion) are added to the c-expressions
in F1land FO.

4. A c-expression is selected from Fl, and a set of consistent generalizations
(a restricted star) of this expression is obtained. This is done by starting
with single selectors (called 'seeds'), selected-ffum this c-expression

as the 'most promising' ones (according to the preference eriterion). In each
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mbsequent next step,a new selector is added to the c-expression obtained in
the previous step (initially the seeds), until a specified number (parameter
NCONWSIST) of consistent generalizations is determined. - Comsistency is
achieved when a c-expression has NULL intersection with the set FO. This
'rule growing' process is illustrated in fig. 3.

5. The obtained c-expressions, and c-expressions in F0, are transformed

to two sets El and E0, respectively, of VLl events (i.e., sequences of
values of certain discrete variables).

A procedure for generalizing VL, descriptions is then applied

1
to obtain the 'best cover' (according to a user defined criterion) of set
El against E0 (the procedure is a version of AQVAL/1 program [12])}.

During this process, the extension against, the closing
the interval and the elimbing generalization tree rules are applied.

Thé result is tran%fnrmed to a new set of c-expressions
(a restricted star) in which selectors have now appropriately generalizad
references.

-6. The "best' c-expression is selected from the restricted star.

7. If the c-expression completely coversFl, then the process repeats for
another decision class. Otherwise, the set Fl is reduced to contain only the
uncovered c—expressions, and steps 4 to 7 are repeated.

The implementation of the inductive process in IHDUCE-l;l consists
of a large collection of specializeﬁ glgorithms, each accomplishing certain
task . Among the most important tasks are: -

. 1. the implementation of the ‘rule.grnwing process’'

2, testing whether one c-expression is a generalization of

{"covers') another c-expression. Thiﬁ is done by testing for subgraph

isomorphism.
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0 = adisgarded e-rule
® _ an active c-rule
[ a terminal node denoting a consistent c-rule

Each arc represents an operation of adding a new selector to a c-rule

The branching factor is determined by parameter ALTER. The
number of active rules (which are maintained for the next step of the
rule growing process) is specified by parameter MAXSTAR. The number of
terminal nodes (consistent generalizations) which program attemp:a to
generate 1s specified by parameter NCONSIST.

Illustration of the rule growing procéss
(dn applicatioen of the dropping selector rule in the reverse order)

#

Figure 3
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3. generalization of a c-expression by extending the selector
references and forming irredundant c-expressions (includes applicgtig“
of AQVAL/1l procedure).

4. Generation of new deseriptors and new selectors.

Program INDUCE 1.1 has heen implemented in PASCAL (for Cyber

175 and DEC 10); its complete description is giwven in [25].

6.3. Example

We will present now an example illustrating some of the features
of INDUCE-1.1.Suppose given are two sets of trains, Eastbound and Westbound,
as shown in fig. 4. The problem is to determine a concise (logilcally
sufficient) description of each set of trains, which distinguishes one set
from the other (i.e., a discriminant description which contains only necessary
conditions for distinguishing between the twa. sets).

As the first step, an initial set of descriptors is determined

for deseribing the trains. Eleven descriptors are selected in total.

 Among them:
L infrant{car.,carj) - e¢ar, is in front of cafj
= (a Kondual descriptor) -
L length(cari] - the length of car
{a. linear descrip%ar}
. car-shape{cari) - ‘the shape of car

(a structured de%criptor with 12 nodes in the
generalization treej see ags. (13) and (14))

ear, contains load,
(a nominal desctipanr]

- cnnt*lnad(cari,lcadj}

the shape ‘of load
{a structured des%riptnr)
The value set:

L load-shape(luadi}

*circle

»Rexagn olygon
-triang?;:szffﬁ"P 8
« Tectangle
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® nrpts-lead(car,) - the number of parts in the leoad of ecar

1 {a linear descriptor) x

*
] nrwheels(cari) - number of wheels in cari
(a linear descriptor)

The data rules consist of deseriptions of the individual
trains in terms of the selected descriptors, together with the

specification of the train set they belong to. For example, the data

L 4
rule describing the second eastbound train is:
ﬂcarl,carz,carE.carﬁ,loadl,lcadz,...
[infront(carl.carz)][infront(carz,cari]...[length{carlj-lang] A
[car—shape(carlj-engine][ear-shane{car2}=u-ghnped][cont—load(carz,lnadl}]ﬁ

[load—shape{loadl}=triangle]...[nrwheels(caIS]].. t:>[class= Eastbound]
Rules describing the problem environment in this case are only
rules defining structures of structured descriptors (arguments of descriptors
are omitted):
[car-shape=open rctngl,open trapezoid,U-shaped,dbl open rctongl |=
[car-shape=open top]
[car-shape=ellipse,closed rctngl,jagged top,sloping top]®[car-shape=closed top]
[load-shape=hexagon,triangle,rectangle]=[load-shape=polygon]
The eriterionof preference was to minimize the number of rules
(c-expressions) in describing each class, and, with secondary priority,
to minimize the number of selectors in each rule. |
Rules of constructive generalization included in the program are
able to construct, among other descriptors, such descriptors ﬁs the length
of a chain, prupertiés of elements of a chain, number of objects satisfying a
certain relation, etc. For example, from the data rule (12) , the constructive

generalization rules can produce new selectors such as:

At this moment, before proceeding further, the reader is advised to
look at the pictures and to try to selve this problem on his/her own.

(12)

(13)

(14)

(15)
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[nrcars=4] -~ the number of cars in the train is &
(the length of chain defined by relation
infront)

[nrcars-length-long=1] =~ the number of long cars is 1 (the engine)

[nr-pts-load(last=car)=2]- the number of parts in the load of the last
car is 2 ;

[position(cari)wi] - the position of car, is i

Suppose that eastbound trains are considered first. The
set FLl cuntaiﬁs theﬁ 511 c-expressions describing eastbound trains,
and FC,all c-expressions describing westbound trains. The description
g 1s selected from F1 (suppose it is the above description of the second
eastbound train), and supplemented by 'most promising' metadescriptors
generated by problem environment rules and constructive generalization
rules. In this case, the metaselector [shape(last-car)=rectangle] is added
to e. Next, a set G (a restricted star) of certain number (NCONSIST) of
consistent generalizations of ¢ is determined.

This is done by forming a sequence of partial stars (a partial
gtar may include inconsistent generalizations of ). If an element of a
partial star is consistent, it ié placed into the set G. The initial

partial star (Pl} contains the set of all selectors of e This partial

T
star and each subsequent partial star is reduced according to a user

specified preference criterion to the 'best' subset, before a mew partial

star is formed. .The size of the subset is controlled by a parameter called
MAXSTAR. A new partial star Pi+1 is formed from an existing partial star

Pi in the following way: for each c-expression in Pi’ a set of c-expressions
‘is placed into Pi+l’ each new c-expression containing the selectors of the
original c-expression plus one new selector from e, which is not in the original

c-expression. Once a sufficient number of consistent generalizations have been

formed, a version of the AQVAL/1- program (Michalski [12]) is
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applied to extend the references of all selectors in each consistent
generalization. As the result, some selectors may be removed and some
may have more general references.

“In the example, the best subset of selectors of ¢ (i.e., the

reduced partial star (Pl) ) was:

Ecarl[car—shape{car1)=U~shapedl | (16)
Ecarl[car—shape{cnrl)-open trapezoid] (17)
Hcarl[car-shape(cnrl)=tectangle} (18)
[car-shape(last-car}-;ectangle] {19)

The last c-expressiom is consistent (has empty fﬁtersection with
c-expressions in FO0) and, therefore, is placed in G. From the remalning,
a new partial star is determined. This new partial star contains a
cunsisteﬁt generalization:

dear car-shape(carlJ=rEctangle][length(carl)=$hort] (20)

4
which is added to G. Suppose G is restricted to have only two elements
(NCONSIST=2). Now, the program AQVAL/1l is applied to generalize references
-of the selectors in c-expressions of G, 1f it leads to an improvement
(according to the preference eriterionm).

In this case, a generalization of (20) produces a consistent and
completﬁ generalization:
Hcarl[car-shape(carl}=cluaed top][length(carl}ﬁshort] {21)
(the generalization of (19), [car-shape(last-car)spolygon], is not
complete; it does not cover all F1).

In this example, only 2 partial stars were formed, and two
consistent generalizations were created. In general, a set of consistent
generalizations is created through the formation of several partial stars.

The size of each partial star and the number of alternative generalizations

are controlled by user supplied parameters,
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Assuming a larger value of NCONSIST, and applying the above
procedure to both decision classes, the program INDUCE-1.l produced the
following alternative descriptions of each set of trains:

(The selectors or references underlined by a dotted line were

generated by application of constructive generalization rules or problem
environment rules).

FBastboud trains:
Hcarl[length(car1}=shcrt][car-shape(car1)=clused top]::>[class-Eastbuund] (22)
(the same as (21)).It can be interpreted:

If a train contains a car which is short and has a closed top,
then it is an eastbound train.

Hcarl,carz,loadl,luad2 [i“frﬂntfﬂarlnﬁarz}]Icont—load(carl,lcadl}]
A [cunt—lcad(carz,luadz}][load-shape(lnadl)=tr1angle]
A [1°ﬂd‘5hﬂDE{lcﬂﬂ23=221559n] 11> [class=Eastbound] = (23)
It can be interpreted:
Ifi a train contains a car whose load is a triangle, and the load of the
car behind is polygon, then the train is eastbound,

Westbound traina:

[nrcars=3] V Hcarl[car-shape{car1}=jagged-:op] 11> [glass-wegthoundj (24)

Ecarl[nrcara-legg;h*longiil[Eositiun(cafi)-B][ahape(carl}-gggg:ggg,jagﬁed—top]
::> [elass=Westbound] (25)

It is interesting to note that the examplelwas cnnstruéted with

rules (23) and (24) in mind. The rule (22) found b; the program as an

alternative was rather surprising because it .seems to he conceptually

simpler than rule (23). This shows that the combinatorial part of

an induction process gap be Successfully handled by a computer

program, and,therefore, programs like the above have a potential to

serve as an aild to induction processes in various applied sclences.
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7. SUMMARY

We have presented an approach to pattern recognition which
views it as knowledge-guided computer induction. Let us briefly re-
view the main advantages and limitations of this approach. Among the
advantages are the genefality of the method and the simplicity of
interpretation of the pattern recognition rules. More specifically,

the approach:

* takes into consideration three types of descriptors
(nominal, linear and structured) and can use descriptors
of different arity (variables, n~ary relations and
functions)

*+ takes into consideration the properties of the inter-
relationships of descriptors, characteristic to the
recognition problem at hand

* gives thepssibility of defining (within limits) a pre-
ference ;riterion, meaguring the quality of the
rules, that is most suited to the application

* has an ability to generate new descriptors ('metadescriptors')
and blend them smoothly with the initial ones to provide
a basis from which the final description chooses its most
appropriate descriptors

*» provides uniformity of the representation of initial and
final descriptions (i.e., in terms of VL rules) and of
inference and generalization rules

+ permits the person stating the problem to suggest wvarious
arithmetic transformations of the original (linear) wvari-
ables which look promising as relevant characterization of
object classes . ] :

Among major limitations of the presented work is z aquite

limited form of expressing initial and final descriptions (i.e., in the

form of a disjunctive simple VLzl expressions), and a restricted number

of operators the program (implementing the approach) understands and uses
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in inducing deseriptions. Another limitation is that the program does
net differenciate among possible types of linear descriptors (e.g.,
ordinal, interval, ratio and absolute). Also, it does not take into
consideration any probabilistic information, nor it is able to auto-
matically search for appropriate algebraic transformations., These
limitations do not seem, however, to be inherent to the approach.

Also, the questions pertinent to the computational efficiency

of algorithms used have not been investigated.
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