
Incorporating Human Drivers into SUMO

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Aarti Modani
Bachelor of Technology

GITAM University, 2015

Director: Dr. Duminda Wijesekera, Professor
Department of Computer Science

Spring Semester 2019
George Mason University

Fairfax, VA

Copyright c© 2019 by Aarti Modani
All Rights Reserved

ii

Dedication

I dedicate this thesis to my family and friends.

iii

Acknowledgments

At the outset, I thank my Advisor, Dr.Duminda Wijesekera, for his guidance at each stage of
the research and thesis. He has been very generous to spare time from his pressing schedule
to guide me. I am thankful to my colleagues, Raghavendra Somepalli and Chaitanya Yuvvari
for assisting me in my work. Their support has been invaluable. I wish to express my
gratitude to my family and friends who have been my pillars of strength and a great source
of inspiration. Their constant motivation has been a guiding force in my research. My
friend, Jai Vora for supporting throughout. Finally, I wish to thank my committee for their
encouragement and co-operation.

iv

Table of Contents

Page

List of Tables . vi

List of Figures . vii

Abstract . viii

1 Introduction . 1

2 Related Work . 3

3 SUMO . 4

3.1 Generating a Network Scenario in SUMO 4

3.1.1 Generating a Network using OSMWebWizard 5

3.1.2 Manually Creating a Road Network 5

3.1.3 Generating a Network using OSM 6

4 Communication Between SUMO and Unity using TraCI 10

4.1 IKVM.NET . 11

5 Implementation . 13

5.1 Initialization . 13

5.2 Read and Print Vehicles . 14

5.3 Read and Print Lanes . 14

5.4 Driver Centric Simulation . 16

6 Conclusion and Future Work . 17

References . 18

v

List of Tables

Table Page

3.1 SUMO Applications . 4

vi

List of Figures

Figure Page

3.1 Simulation through OSMWebWizard . 5

3.2 Selection of desired area from OSM . 7

3.3 Latitude and Longitude boundary values to be exported 7

3.4 SUMO configuration file . 9

3.5 SUMO simulation . 9

4.1 TraCI connection establishment between SUMO and client 10

4.2 TraCI connection close between SUMO and client 11

5.1 Simulation in Unity . 15

5.2 Simulation in SUMO started by Unity . 16

vii

Abstract

INCORPORATING HUMAN DRIVERS INTO SUMO

Aarti Modani, M.S.

George Mason University, 2019

Thesis Director: Dr. Duminda Wijesekera

Multiple large-scale traffic simulators have been developed to represent and analyze the con-

sequences of real-life traffic scenarios. These tools can be used to understand the complexity

of urban traffic situations and should be used to evaluate human behavior in driver-centered

simulations. Most driving simulators fail to incorporate both aspects in one model or tool.

The objective of my research is to enable realistic 3-dimensional (3D) driver centric within

large scale realistic traffic simulators. In order to do so, I integrated the Simulation of Ur-

ban Mobility (SUMO) simulator with the Unity 3D game engine to provide a human driver

with simulated realistic traffic on chosen roads. I used the TraCI protocol to communicate

between the SUMO simulator and the Unity gaming engine. The implementation of the

simulation and future lines of work is presented in the thesis.

Chapter 1: Introduction

With increasing numbers of vehicles on the road, traffic congestion has become an ongoing

urbanization hurdle. There is a need for a planning system to increase the efficiency of road

networks and improve driver safety, satisfaction and performance. Many traffic simulators

were developed and implemented as a solution to evaluate traffic management strategies

and their impact in real-life scenarios. These traffic simulators can be categorized based on

the level of detail of analysis. The categories are:

1. Macroscopic models: Simulation of average vehicle dynamics like traffic volume,

speed and density. [1]

2. Microscopic models: Simulation of individual vehicle dynamics in a network.

3. Submicroscopic model: Simulation of internal vehicular GUIs like dashboards to

assess driver behavior.

4. Mesoscopic models: Mixture of both macroscopic and microscopic traffic simulation

models.

In this thesis, I use a microscopic traffic simulator. The capability of microscopic traffic

simulators are to study each vehicle individually and emulate the flow through road network

makes them most powerful and versatile. Over the years, many microscopic simulation tools

like TSS-AIMSUN [2], MOTUS [3], PTV-VISSIM [4] and SUMO [5] have been developed

to provide analysis of higher levels of detail such as vehicle movements, flow, speed, etc. in

a network. While some of them are available as open-source tools, others require a paid

license to use.

1

Due to its open-source availability, multi-modal capabilities (vehicles, pedestrians and

public transport), cross-platform support, and ability to interact with other applications

using its TraCI communication protocol, SUMO traffic simulator has been selected for this

research. SUMO is a microscopic traffic simulator where each vehicle is defined explicitly

by name (an identifier), vehicle’s route, departure and arrival time, allowed lanes, velocity.

SUMO also allows a programmer to define physical properties and appearance of vehicle

within the simulation’s graphical user interface. The TraCI (Traffic Control Interface) allows

retrieval of data about vehicle movement during a simulation run [6].

I integrated SUMO with the 3D graphic engine Unity to create a driver centric simulation

using TraCI. The Unity 3D game engine for chosen due to its powerful runtime engine, easy

of access to the community for support, vast documentation and large number of projects

made with it [7].

2

Chapter 2: Related Work

This area of vehicular simulations have have become popular in recent times due to arising

traffic problems and to re-enigeer traffic patters in otder to cope with increasing traffic.

Some research has been done in the past with different traffic simulators to address the

issue. Some of them are presented in this section.

A driver-centric simulation was developed using DIVERT to simulate traffic interfacing

with a realistic driving simulator in a vehicle to study Virtual Traffic Lights and See-

Through System. The driver may affect other simulated cars as the actions are updated in

the VANET simulation [8].

As an integrated traffic, driving and networking simulator, ITDNS was proposed which

used Paramics [9] to simulate traffic along with NS-2 and a driving simulator. This group

of researchers were able to create a mutual data transfer between Paramics and NS-2 which

allows a vehicle in Paramics to follow the behaviour of a human driver in the driving

simulator. Leveraging this, they were able to study the human perception of autonomous

driving, human-centric data fusion for safety application and echosignal applications [10].

Echosignal applications involves transmitting a potential speed to the vehicles approaching

an intersection which can let the vehicle arrive without stopping and at green.

A HUD (Heads-Up Display) was included in [11] but it made use of offline communication

between SUMO and Unity 3D. SUMO was used to create the vehicular movements that were

used to develop the traffic simulation in Unity3D. These generated vehicular movements

did not create a direct link of communication between SUMO and Unity3D and hence the

human driver could not interact in response to other vehicle’s movements in the simulation

and the respective movements could not be reflected in SUMO either.

3

Chapter 3: SUMO

SUMO the chosen acronym for Simulation of Urban Mobility is an open-source,inter-and

multi-modal, space-continuous and time-discrete traffic flow simulation platform. SUMO

supports (vehicular) network import and (vehicular) demand modelling. SUMO can also

be used to develop traffic light control algorithms. Given the Origin-Destination matrix,

SUMO can simulate and analyze traffic in that network [12]. The sumo package includes

many tools needed to generate a road network. These tools help generate road, vehicles,

routes, trips, traffic lights etc [13]. All the developed SUMO applications can be seen in

Table 3.1.

Table 3.1: SUMO Applications

Application Name Description

SUMO Command Line Interface for simulation, execution and visualization

SUMO-GUI Graphic User Interface for simulation

NETCONVERT Network importer and generator; reads road networks from different
formats and converts them into the SUMO-format

NETEDIT A graphical network editor

NETGENERATE Generates abstract networks for the SUMO simulation

DUAROUTER Computes routes through the network,
importing different types of demand description

POLYCONVERT Imports points of interest and polygons from
different formats and translates them into a

description that may be visualized by SUMO-GUI

3.1 Generating a Network Scenario in SUMO

Sumo generates a road network using a network file that represents the traffic network

and has the file extension .net.xml. The traffic network can be created using OSMWeb-

Wizard [14], manually or from Open Street Map (OSM) data. The OSM is open-source

4

database of all the geographical data of the world [15].

3.1.1 Generating a Network using OSMWebWizard

The OSM Web Wizard is the easiest method to create a traffic network in SUMO. With

a few clicks, one can generate randomized traffic demand on the selected area from open

street map. This can be then visualized in SUMO-GUI tool. By running the python script

osmWebWizard.py , the screen shown in the Figure 3.1 opens up. One can select the area

and click on generate scenario to create .sumocfg file which can be run in SUMO.

Figure 3.1: Simulation through OSMWebWizard.

3.1.2 Manually Creating a Road Network

In SUMO, a road network consists of nodes connected by edges. The roads or lanes are

represented by edges and junctions by nodes. Each node has an (x,y) co-ordinates. In order

to build our network, the following steps have to be followed.

1. The first step is to create a node file and the extension of the node file is .nod.xml.

5

2. The second step is to create an edge file and the extension of the edge file is .edg.xml.

3. The third step is to create an edge type file with the extension .type.xml. The

type file includes the properties of lanes such as speed limit, number of lanes, type of

vehicles allowed, etc.

4. The fourth step is to generate a network from the node, edge and type file. This

network file has an extension .net.xml can be generated using the following command

netconvert --node-files node.nod.xml --edge-files edge.edg.xml -t type.type.xml -o network.net.xml

5. After generating the network, one can define the routes, we can add the .rou.xml

file.

6. Lastly, after getting the network and the route file, one can build the sumo configu-

ration file with inputs from both files.

This method is feasible for smaller networks. As the roads and vehicles increase in the

network, creating all the components can be tedious and this method is not advisable.

3.1.3 Generating a Network using OSM

To simulate larger traffic scenarios, the network file can be created by importing it from

external applications. For my research, I created the traffic network from OSM to get a

more realistic scenarios. The George Mason University, Fairfax, VA area was chosen for

this simulation. The process is described below.

1. First, the map of George Mason University is extracted from the OSM webpage [16].

Select the area manually and click export as shown in Figure 3.2 and 3.3. The map

is stored as an .osm file.

6

Figure 3.2: Selection of desired area from OSM.

Figure 3.3: Latitude and Longitude boundary values to be exported.

7

2. The NETCONVERT tool from the SUMO package is used to generate the correspond-

ing SUMO file. The sumo network file has a .net.xml extension. The NETCON-

VERT tool is not perfect and while converting the .osm file, there might be some

warnings which can be edited using NETEDIT tool.

netconvert --osm-files test.osm -o test.net.xml

3. Once the network file is generated, for the initial phase, traffic through vehicles can

be randomly generated using the randomTrips.py script and the DUAROUTER tool

provided by the SUMO package. The route files have an .rou.xml extension.

py randomTrips.py -n gmu.net.xml -r gmu.rou.xml -e 50 -l

4. The routes file, network file, trips file are all combined to form a sumo configuration

.sumocfg file which can be simulated in the SUMO-GUI shown in Figures 3.4 and

3.5.

8

Figure 3.4: SUMO configuration file.

Figure 3.5: SUMO simulation.

9

Chapter 4: Communication Between SUMO and Unity using

TraCI

The SUMO simulator can interface with multiple clients using the TraCI protocol. TraCI

enables retrieval of data from SUMO and pass it to the client interfacing with SUMO. TraCI

allows the retrieval of vehicular data such as position of vehicles, routes, traffic lights used in

the simulation. The protocol follows a Client-Server architecture. A TCP/IP connection is

established between the SUMO and TraCI client and it follows a request-response pattern.

The TraCI client requests a connection to SUMO which acts as a TraCI server, listening on

a specific port 4.1. Once, it receives the request from the client application, SUMO accepts

the connection and the control of simulation is transferred to the client [17]. The client

can control the simulation and can make modifications to vehicles or retrieve data for the

elements in simulation.

Figure 4.1: TraCI connection establishment between SUMO and client.

10

The client ends the simulation by closing the TCP connection and no longer have control

over the simulation as shown in Figure 4.2.

Figure 4.2: TraCI connection close between SUMO and client.

The TraCI protocol needs a library to be implemented in Unity 3D in order to com-

municate with SUMO. Since there is no existing C# library, TraCI as a Service (TraaS)

library is chosen. It is an open source java library which can be used as a web service to

work with multiple clients from any programming language. To import it to a C# library,

IKVM.NET [18] tool is used.

4.1 IKVM.NET

The IKVM.NET tools is a Java implementation for Microsoft .Net Framework. It generates

.NET libraries (.dll) from .class or .jar files. The ikvmc tool is used to achieve this

which can be used with Unity3D without having to develop C# library from scratch. The

following steps are adopted to convert the TraaS library to C# that can be used in Unity3D

1. Firstly, we need to download the TraaS library (TraaS.jar) from its webpage [19].

2. Second, some classes were not useful and were thus removed to make the .jar file

compatible with IKVM.

11

3. Third, a new .jar file (myDLL.jar) is built after the removal of classes which can be

converted using the IKVM tool.

4. The myDLL.jar is converted into myDLL.dll using the IKVMC of the IKVM tool.

5. Lastly, all the .dll files provided by IKVM along with created myDLL.dll are im-

ported into Assets folder in Unity3D.

12

Chapter 5: Implementation

A microscopic traffic simulator was used with a real-time game engine to carry out the

simulation. A simulation may offer a variety of features with respect to its implementation.

We would be able to make use of different models and specify different parameters for

the various elements that are part of the simulation and analyze the results in each of

those cases. As a part of this, we can test out our assumption in a simulation before we

perform a real life experiment to avert any avoidable dangers which may be discovered

during a simulation. And in this process, we are also reducing expenses since we can easily

change our initial prototype and also because we are using a virtual reproduction for our

experiment. But using a simulation might sometime require a huge amount of computation

power and if we create the simulation on a huge scale, we might encounter delays.

There are three critical aspects to generate a 3D scenario in Unity from the data retrieved

from SUMO through SumoBehavior.cs script.

5.1 Initialization

The SUMO and Unity 3D communicate through TraCI protocol in a Server-Client structure.

To establish the connection, we use the SumoTraciConnection object which enables SUMO

to listen on a specific port and connects to it as TCP client. The runServer() is responsible

for performing the above task by creating a runtime process. Once this connection is

established, data can be retrieved and exchanged between the two applications. In this

process, we also specify paths to the SUMO-GUI executable and the configuration file

.sumocfg for which the simulation is performed. The GameObjects for vehicles and lanes

were initialized during the simulation. The next step is to retrieve information about vehicles

and lanes from SUMO and print in Unity. This is described in the following sections.

13

5.2 Read and Print Vehicles

The information about each vehicle such as its position and speed in the traffic network

in SUMO can be retrieved by using their respective IDs. We can get the vehicles from

Vehicle.getIDList() and store it as a SumoStringList. The list is parsed to get data of each

vehicle is retrieved using the do job get() method from the SumoTraciConnection object

using the parameters Vehicle.getPosition(id) and Vehicle.getSpeed(id) for vehicle’s position

and speed respectively [20].

The position of vehicles in SUMO is represented in the (x-y) co-ordinate system and needs

to be mapped to (x-z) co-ordinate system used by Unity 3D. This can be achieved by using

the Vector3 structure [21]. We need to instantiate the vehicles through its GameObject

first and then assign position and speed retrieved from SUMO through TraCI to it. The

position of the vehicles need to be updated at each simulation step. This can be done using

the UpdateVehicles() method where the position is requested from SUMO and updated in

Unity [22].

5.3 Read and Print Lanes

We need to get information about each lane in the road network along with lane ver-

tices,width and allowed vehicles information.This can be achieved with the readLanes()

method. The list of lanes is created by getting data about each lane through Lane.getIDList()

method. We can get the vertices that determine the shape of the lane from the Lane.getShape(id)

parameter of the do job get() method. We need to determine what kind of data does the

getShape() function returns. We see that this function returns a list of 2D vertices describing

the lane geometry.

We then parse this data from SumoStringList to list of Vector2’s or Vector3’s with y

component as 0. This is done using a Helper method. The data is in the form of ”x,y x,y”

14

Figure 5.1: Simulation in Unity.

format and it can be divided by a space and stored as Vector3 by adding a y component.

Once we have the list of vertices, we can instantiate GameObjects at those locations to see

the layout of lanes and modify them to get the shape of lanes.

15

Figure 5.2: Simulation in SUMO started by Unity [?]
.

5.4 Driver Centric Simulation

The traffic simulation in SUMO can be started by Unity 3D using the above implementa-

tion. The Prefabs for vehicles, lanes are included and another Prefab for creating human

controlled car is loaded into unity. When the play button is clicked, the Unity 3D starts

SUMO and we can control the simulation through the human driven car. This gives us a

better insight of the traffic.

During the simulation, some observations were made. The maps loaded through OSM are

not entirely correct. There are slight errors in the junctions, traffic lights and lanes. This can

be edited using NETEDIT and using parameters like --junction.join in NETCONVERT

command. The maps from OSM also take a little longer to load due to large number of

lanes and elements. We also observed that when the information is retrieved from TraCI

during simulation, a delay is experienced when many vehicles are running through the road

network.

16

Chapter 6: Conclusion and Future Work

In this research, a driver centric simulation was developed which represented realistic traffic

on a real-world road network. This was achieved by integrating a microscopic simulator,

SUMO with a powerful game engine Unity3D through TraCI protocol. The TraCI protocol,

available as a Java library was converted into a .NET C# using IKVM tool in order to

work with Unity3D. There were microscopic simulations which managed to generate a 3D

scenario in Unity through offline traffic data from SUMO simulator. This research extends

the previous works by simulating live traffic movements of vehicles. The current works not

only depicts data generated from SUMO into Unity but also relays back the information

about the human driven vehicle generated in Unity such as location and speed back to

SUMO.

The current work was developed to generate a realistic 3D driver centric simulation for a

single human driven vehicle in Unity. The goal in future could be to extend this simulation

to multiple human driven vehicles. The multiple human driven vehicles generated in Unity

can be controlled by individual people during the simulation. This will give a more realistic

scenario of real-life traffic with multiple human driven vehicles involved.

In addition to this, the pedestrian traffic can be generated and simulated in a 3D scenario

using SUMO and Unity. The incorporation of multiple vehicles along with pedestrians will

generate a simulation experience close to the real experience.

17

References

[1] W. Burghout, “Mesoscopic simulation models for short-term prediction,” PREDIKT
project report CTR2005, vol. 3, 2005.

[2] “Top features for aimsun 8 aimsun.” [Online]. Available:
https://www.aimsun.com/aimsun-next/top-features-for-aimsun-8/.

[3] W. Schakel, B. van Arem, H. van Lint, and G. Tamminga, “A modular approach
for exchangeable driving task models in a microscopic simulation framework,” in 16th
International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).
IEEE, 2013, pp. 565–571.

[4] J. Barceló et al., Fundamentals of traffic simulation. Springer, 2010, vol. 145.

[5] B. Pattberg, “Sumo simulation of urban mobility.” [Online]. Available:
https://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931 read-41000/

[6] “Traci.” [Online]. Available: https://sumo.dlr.de/wiki/TraCI

[7] C. Guindon, “Simulation of urban mobility - sumo.” [Online]. Available:
https://www.eclipse.org/community/eclipse newsletter/2017/august/article2.php

[8] P. Gomes, C. Olaverri-Monreal, M. Ferreira, and L. Damas, “Driver-centric vanet
simulation,” in International Workshop on Communication Technologies for Vehicles.
Springer, 2011, pp. 143–154.

[9] “Paramics microsimulation.” [Online]. Available: https://www.paramics.co.uk/en/

[10] Y. Hou, Y. Zhao, A. Wagh, L. Zhang, C. Qiao, K. F. Hulme, C. Wu, A. W. Sadek,
and X. Liu, “Simulation-based testing and evaluation tools for transportation cyber–
physical systems,” IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp.
1098–1108, 2016.

[11] V. Charissis, S. Papanastasiou, W. Chan, and E. Peytchev, “Evolution of a full-
windshield hud designed for current vanet communication standards,” in 16th Interna-
tional IEEE Conference on Intelligent Transportation Systems (ITSC 2013). IEEE,
2013, pp. 1637–1643.

[12] D. Krajzewicz, L. Bieker, and J. Erdmann, “Sumo-simulation of urban mobility-
an overview.” [Online]. Available: https://www.academia.edu/17294749/Sumo-
simulation of urban mobility-an overview

18

[13] C. Biurrun Quel, “Development of a microscopic driver-centric simulator with unity3d
and sumo,” 2016.

[14] “Tutorials/osmwebwizard.” [Online]. Available: http://sumo.sourceforge.net/userdoc/
Tutorials/OSMWebWizard.html

[15] “Openstreetmap,” Apr 2019. [Online]. Available:
https://en.wikipedia.org/wiki/OpenStreetMap

[16] “Openstreetmap.” [Online]. Available: https://www.openstreetmap.org/

[17] “Traci/traas.” [Online]. Available: https://sumo.dlr.de/wiki/TraCI/TraaS

[18] “Ikvm.net home page.” [Online]. Available: http://www.ikvm.net/

[19] “Traas.” [Online]. Available: https://sourceforge.net/projects/traas/

[20] “Unity user manual (2019.1).” [Online]. Available:
https://docs.unity3d.com/Manual/index.html

[21] U. Technologies, “Vector3.” [Online]. Available:
https://docs.unity3d.com/ScriptReference/Vector3.html

[22] “Welcome to the unity scripting reference!” [Online]. Available:
https://docs.unity3d.com/2017.4/Documentation/ScriptReference/index.html

[23] Avcourt, “avcourt/traci-demo,” Feb 2019. [Online]. Available:
https://github.com/avcourt/traci-demo

19

Curriculum Vitae

Aarti Modani received her Bachelor of Technology degree from GITAM University, India
in 2015. She worked for 2 years as a Systems Engineer for Cisco at the Tata Consultancy
Services.

20

