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Global Climate Models (GCMs) are essential tools to simulate future climate 

indicators and are widely used in global climate change studies. The outputs of GCMs are 

one of the largest sources of multidimensional gridded climate data. Data repositories are 

pervasive components for storing such a large amount of climate data in a big data 

fashion for climate studies. However, efficiently managing and querying 

multidimensional gridded climate data are still beyond the capabilities of most databases. 

The mismatch between the array data model and relational data model limited the 

performance to query multidimensional data from a traditional database when data 

volume hits a cap. Even a trivial data retrieval on large amount of multidimensional 

datasets in a relational database is time-consuming and requires enormous storage space. 

Given the scientific interests and application demands on time-sensitive spatiotemporal 

data query and analysis, there is an urgent need for efficient data storage and fast data 
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retrieval solutions on large multidimensional climate datasets. To address this challenge, 

I introduce a method for multidimensional data storing and accessing, which includes a 

new hash function algorithm, a unified data storage structure, and memory-mapping 

technology. A prototype database engine, LotDB, was developed as an implementation of 

the method, which shows promising results on multidimensional gridded climate data 

queries compared with SciDB, MongoDB, and PostgreSQL.  

Meanwhile, climate and weather indicators such as precipitation derived from 

GCMs and satellite observations are important for the global and local hydrological 

assessment. However, most popular precipitation products (with spatial resolutions 

greater than 10km) are too coarse for local impact studies and require “downscaling” to 

obtain higher resolution. Traditional precipitation downscaling methods such as statistical 

and dynamic downscaling require an input of additional meteorological variables and 

very few are applicable for downscaling hourly precipitation for higher spatial resolution. 

To address this challenge, I utilized dynamic dictionary learning to propose a new 

downscaling method, PreciPatch, by producing spatially distributed higher resolution 

precipitation fields with only precipitation input from GCMs at hourly temporal 

resolution and large geographical scope. The second part of my dissertation details 

downscaling case studies conducted to evaluate the performance of the proposed 

downscaling method (PreciPatch) with bicubic interpolation, RainFARM – a stochastic 

downscaling method, and DeepSD – a super-resolution convolutional neural network 

(SRCNN) based downscaling method. PreciPatch demonstrates better performance than 

other methods for simulating short-duration precipitation events in both aggregated 
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IMERG data downscaling study case and MERRA-2 precipitation downscaling study 

case.  
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CHAPTER 1. INTRODUCTION 

Gridded climate data are fundamental to many scientific applications and 

services, such as meteorology, oceanography, hydrology, agriculture, water supply, and 

drought. These data sets range from uniformly spaced grid points along one dimension to 

multidimensional grids with different variables (Barrodale Computing Services Ltd. 

2002). For example, if ocean temperature were recorded every hour at every ten meters 

in-depth and every degree in both longitude and latitude, this would result in a 4D grid 

with three spatial dimensions and one temporal dimension. In the geoscience community, 

regularly gridded climate data is one of the most important data sources for climate 

analyses and has been used extensively for many years (Haylock et al. 2008; Ledesma 

and Futter 2017). In the past decade, both the volume and variety of the gridded climate 

Earth data have been further expanded. The rise of “Big Data” has brought unprecedented 

challenges for conventional data processing techniques and methods (Qi and Xuelong 

2019). The Earth Observation data is one of the main gridded data sources in climate 

community, according to Earth Observing System Data and Information System 

(EOSDIS)’s metrics of 2014, EOSDIS manages over 9 PB of data and adds 6.4 TB of 

data to its archives every day (Blumenfeld 2015). In 2019, the ingest rate of data into the 

EOSDIS archive is projected to be 32 PB and will grow to 47.7 PB by 2022 according to 

the estimation from Earth Science Data Systems (ESDS) Program (NASA 
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EARTHDATA 2019). Such a significant increase in gridded data that occurred in the past 

decade marked a change in the workflow of researchers and developers (Baumann et al. 

2019).  

1.1 Gridded Climate Data Storing and Manipulating  

In the past, gridded climate data were typically stored in simple files and then 

been manipulated by software programs that perform operations or analysis on these files 

(Barrodale Computing Services Ltd. 2002). Different standards and formats have been 

defined for grid data storage because of the extensive use of grids in climate modeling 

and analysis. Some popular formats are CDF (Common Data Format), GRIB (GRIdded 

Binary), HDF (Hierarchical Data Format), NetCDF (Network Common Data Form), and 

SDTS (Spatial Data Transfer Standard). Early approaches to handle gridded data include 

manual filtering and extracting after retrieving several flat files from FTP servers. Data 

manipulating would be either running a batch of computation processes locally or 

developing software running on computer clusters for single-use-cases (Baumann et al. 

2018). Furthermore, these approaches are often limited to some specific data products 

and file formats. Changing data products in such approaches usually results in a re-write 

of the software or schema. Meanwhile, data volumes are exploding, and early approaches 

are not feasible anymore when dealing with Petabytes of data that need to be stored, 

filtered and processed beforehand (Baumann et al. 2018). 

There is an increasing recognition that storing gridded data in modern databases 

and allowing users to query against them are beneficial (Barrodale Computing Services 

Ltd. 2002; Appel et al. 2018; Baumann et al. 2019). The major advantages of storing 
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grids in databases include: 1) the ability to ensure data integrity and consistency over 

time, 2) providing diverse users with independent and effective access to the data across 

applications and systems (Barrodale Computing Services Ltd. 2002), 3) flexible data 

retrieval or manipulation ability across a large number of datasets, 4) the ability to be 

rapidly searchable and selectable (Lim et al. 2009), 5) the scalability and support for big 

data (Madden 2012), and 6) the ability for simplifying application development and 

eliminating the need for users to know about how data is stored (Cudré-Mauroux et al. 

2009), etc.  

Grid-based data sets, raster structured data sets, array-based data sets, or data 

cubes are all referring to the same concept of a data structure – the array. A regular 

multidimensional grid with measurements is a multidimensional (n-D) array with values 

in the computer science context. The mainstream database technologies for 

multidimensional array management are relational databases, NoSQL databases, and 

array database technologies (Tan and Yue 2016). For DBMSs, a well-developed 

relational database management system (RDBMS) is based on the relational data model, 

and the database storage structures on lower storage levels are often trees (B+ trees). 

Historically, since traditional databases are not designed with the climate Earth domain in 

mind, nor are they built to store array data sets, RDBMS does not directly support the 

array data model to the same extent as sets and tables. Mapping attempts have been made 

to utilize the mature relational model as the backend to support array datasets, like in van 

Ballegooij’s work (2004), and theories have been developed to support array query 

(Libkin, Machlin, and Wong 1996; Marathe and Salem 1997); however, with the growth 
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in data volume, storing, accessing, and analyzing multidimensional arrays in RDBMS 

became problematic and not scalable. 

Meanwhile, NoSQL databases have been developed to meet the demand to store 

and query the increasing amount of data from various sources, in which, array data could 

also be mapped to different data models, like using key-value pairs to store cells of the 

array (Ameri et al. 2014). However, the data model mapping brings longer data pre-

processing time and larger data storage volume. At the same time, as the data volume and 

complexity increase, there is no promising performance increase from the corresponding 

increase in unit computer resource consumption. Recently, the array database is drawing 

increasing attention because of its array data model’s support on the database level, 

which provides a more native solution for array data storage (Brown 2010; Appel et al. 

2016; Baumann et al. 2018). Tree data structures, which are usually used in relational 

databases’ storage level on disks, have lower computational complexities for value search 

when comparing with an array data structure. In contrast, the array data structure offers 

the lowest computational complexity for data access, perfect for static data retrieval if 

indexes could be presented as integers. Popular array databases like Rasdaman and 

SciDB are widely used in many practical projects (Baumann et al. 1998; Stonebraker et 

al. 2013), showing promising performance gain compared to traditional methods. 

However, existing array databases are still suffering from the problems include: 1) low 

performance on non-cluster environment: the standalone version of array databases 

usually have limited performance comparing to their clustered setup (Hu et al. 2018), 2) 

long data pre-processing time: current array databases do not provide direct support for 
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multidimensional climate gridded data, data pre-processing is therefore necessary and 

cannot be avoided (Clune et al. 2015), and 3) high data expansion rate compared to raw 

data: due to the data pre-processing and data chunking inside databases, data volume 

could be expanded multiple times compared to the raw data.  

Climate data management is essential and fundamental for many data related 

studies and applications; however, it can easily be ignored by many researchers because 

they usually do not have many choices for data management. Even climate data have 

been expanded in volume, velocity, variety, veracity, and value (Yang et al. 2017) year-

by-year, the data processing and manipulating workflow have not changed much during 

the past decade (Baumann et al. 2019), which marked a delay in climate data 

management studies. Although there are many types of research utilizing distributed 

storage systems like HDFS and frameworks like Spark to offer solutions for big climate 

data storage and query, they are often focusing on implementing customized solutions 

and such solutions are beyond the reach of normal researches and students. Past studies 

on array databases have shown values and advantages in using the array data model to 

handle multidimensional arrays, the importance of providing database level management 

of gridded climate data have been increasingly recognized by climate scientists and end-

users (Barrodale Computing Services Ltd. 2002; Appel et al. 2018; Baumann et al. 2019). 

Part of this dissertation research is inspired by such challenge and aims to provide a more 

cost-effective and high-performance solution for gridded climate data management and 

query.  
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1.2 Gridded Precipitation Downscaling 

Broadly speaking, gridded data arises in two main areas of application: 1) 

modeling applications, and 2) data analytical applications (Barrodale Computing Services 

Ltd. 2002). The modeling applications are often involving solving a series of 

mathematical equations, like differential equations. Global Climate models, also known 

as general circulation models or GCMs (Climate.gov n.d.), are typical examples of 

modeling applications that produce large amounts of gridded climate data. They are fully 

coupled, computer-based models of the physics, chemistry, and biology of the 

components of Earth system (e.g. atmosphere, oceans, land surface, etc.) and their 

interactions with each other (Karl and Trenberth 2003). Near-surface climate variables 

like temperature, wind velocity, or precipitation have high impact potential on human 

activities (Friederichs and Hence 2007). GCMs help us obtain important scientific 

insights into the climate system changes (Dixon, Harris, and Knutson n.d.), and the 

outputs (gridded climate datasets) from GCMs played a key role in assessing the impact 

of large-scale climate variation and human activities. Simultaneously, such gridded data 

products are also feeding data analysis applications and models as further inputs for 

regional climate predictions and simulations. For example, the MERRA reanalysis 

dataset could be used as the initial and boundary forcing conditions for the WRF model 

in wind simulation and wind energy estimation (Carvalho et al. 2014).  

The resolution of the gridded datasets, or the grid resolution, is a critical property 

for gridded data. Instead of calculating the climate variable traits over the whole surface 

of the Earth, which is beyond the reach of even the most powerful supercomputers, the 
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climate models use grids of "cells" to establish the locations of the "virtual weather 

stations" (Scied.ucar.edu. 2011). A GCM usually have grid cells with a size of about 100 

km to 200 km (1° to 2.5°) on both spatial sides (Walton et al. 2015), and the "virtual 

weather stations" are located at the corners of the grid cells (Scied.ucar.edu. 2011; 

Sobhani et al. 2019). Low-resolution products or coarse-resolution datasets are often 

enough for understanding the changes in global patterns of climate variables like 

temperature; yet, assessing regional and local impacts would require higher resolution or 

finer resolution products (Chaney et al. 2014). However, GCM’s resolutions are often too 

coarse to resolve important topographical features, and not sufficient to estimate and 

predict mesoscale processes that govern local climate changes (Giorgi and Mearns 1991; 

Arritt and Rummukainen 2011; Walton et al. 2015). Hence, higher-resolution scenarios 

of the most relevant meteorological variables are required for reliably assessing the 

hydrological impacts of climate change (Maraun et al. 2010). Obtaining higher resolution 

gridded climate data will result in better prediction of local climate change and be 

beneficial in regional climate estimation and analysis (Nashwan, Shahid, and Chung 

2019).  

Downscaling techniques were developed primarily to infer high-resolution 

information from low-resolution variables (Wilby et al. 1998). Downscaling is an ill-

posed problem. Operationally speaking, it is a disaggregation problem, in which any 

number of small-scale weather sequences can be associated with a given set of large-

scale values (Wilks 2010). In remote sensing, downscaling involves a process of 

decreasing pixel size of input imagery (Atkinson 2013). However, increasing resolution 
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without considering the spatial variations and local patterns of a climate variable often 

results in a highly biased and failed attempt. Spatial interpolations could be treated as 

straightforward methods to increase the resolution of a dataset, which uses “neighboring” 

points to predict values between known points. By implementing grids as pixels, they 

could be applied to downscale gridded data. However, climate events like precipitation 

are not continuous in space. Common interpolation methods include: 1) vector-based 

methods: IDW, Kriging, Spline, Nearest Neighbor, and 2) raster-based methods: Nearest, 

Bicubic, etc. They are not working in precipitation downscaling and often not applicable 

to gridded datasets.  

The main technologies of climate downscaling include dynamical downscaling 

and statistical downscaling (also referred to as “empirical-statistical downscaling”), in 

which dynamical downscaling requires global climate models to support local conditions, 

and statistical downscaling requires local observations. Dynamical downscaling is often 

referred to as the process of nesting Regional Climate Models (RCMs) or direct 

configuration of GCMs to produce higher resolution outputs (could be highly biased). For 

example, the Regional Climate Model system (RegCM) was constructed at NCAR 

(National Center for Atmospheric Research). It has undergone continuous updates to 

improve its performance since first appeared in 1989 (Benestad 2016). Dynamical 

downscaling approaches could produce finer resolution gridded products and therefore 

provide much more detailed information; however, they take much more computing time 

to run. Generally, about ten times of the computing power will be needed if the resolution 

of a model is increasing by a factor of two, or the model will take ten times longer to run 
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under the same hardware (Scied.ucar.edu. 2011). Furthermore, RCMs are usually only 

available for a few areas and apply to the climate variables that are well simulated (e.g. 

temperature). However, precipitation is not well simulated and difficult to model (Vandal 

2018). Dynamical downscaling is expensive considering its consumption in time and 

computer resources, so, statistical downscaling methods have been developed as 

alternatives. Statistical downscaling methods try to make use of the information we have 

on the dependency between large and local scales and then correlated with observation 

data (Benestad 2016). Widely used methods include: 1) Perfect Prognosis (PP) (Klein, 

Lewis, and Enger 1959), 2) Model Output Statistics (MOS) (Klein 1974; Bermowitz 

1975), and 3) weather generator (Wilby and Wigley 1997).  

For hydrological impact studies, precipitation and temperature are the most 

relevant meteorological variables (Maraun 2010; Xu 1999; Bronstert 2007). Long-term 

precipitation prediction is significant for planning flood responses, as well as strategic 

planning for agriculture, water resources, and other water-related hazards. Meanwhile, 

shorter-term predictions have more immediate applications, such as hydrological extreme 

prediction and management (Rau et al. 2019), and crop yields prediction for a specific 

area (Maraun 2010). For precipitation, it is considerably more difficult to model than 

temperature mostly because it is not continuous spatiotemporally. Specifically, 

precipitation downscaling is challenging from the following aspects: 

1) The basic assumption of statistical downscaling methods is not verifiable. 

Specifically, it assumes the statistical relationships developed for the present day 

climate also held under the different forcing conditions of possible future climates 
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(IPCC n.d.). It is an issue not only for precipitation but also for all climate 

variables. 

2) The data used in the statistical downscaling method may not be readily 

available in every region, higher resolution observation data with promising 

qualities are often limited to certain areas (Jarosch, Anslow, and Clarke 2012).  

3) Precipitation events are not well simulated because of the high spatial and 

temporal variability and its nonlinear nature (Kundzewicz et al. 2007; Maraun 

2010; Vrac and Naveau 2007; Vandal 2018). Precipitation products vary in spatial 

distribution patterns and no ground truth could be easily obtained. Our best 

approach is to use rain gauge, which is an indirect measurement of precipitation 

and could be highly biased.    

4) Empirically based techniques cannot account for possible systematic changes 

in regional forcing conditions (Vrac and Naveau 2007) 

5) A systematic assessment of the uncertainty of downscaling methods and 

comparison with other techniques is difficult and may need to be carried out on a 

case-by-case basis (IPCC n.d.).  

6) In principle, downscaling can provide three types of output: point scale, areal 

average, or spatially distributed precipitation fields. To provide a local-scale 

spatially distributed precipitation field with the high temporal resolution is a 

challenging task (Maraun 2010). Major downscaling approaches only focus on 

extreme weather conditions or temporally coarse-resolution products, mostly 
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daily averaged precipitation on a single site (i.e. point scale) (Wilby 2004). Very 

few studies are generated upon hourly precipitation products. 

Predictions of future precipitation changes are highly uncertain and our ability to 

model the local precipitation ranging from large-scale to microscale is limited (Lenderink 

and Van Meijgaard 2008). High temporal resolution precipitation products can provide 

more information than daily averages. For example, changes in hourly precipitation 

extremes under greenhouse warming has been found to increase twice as fast with rising 

temperatures compared with daily values when daily temperature mean exceeded 12 

degrees Celsius, and this relationship often comes with short-duration extreme events, 

which can have serious impact, such as local flooding, erosion and water damage 

(Lenderink and Van Meijgaard 2008). However, current studies in precipitation 

downscaling can hardly provde a method to simulate short-duration precipitation events 

at the local-scale. Meanwhile, extreme precipitation events like heavy rainfall and 

rainstorm can cause significant societal impacts, including flash flooding, crop 

destruction, loss of life and infrastructure damage. To mitigate potential consequences, an 

understanding is needed of how rainfall will impact a region, not just a point location. 

Modeling of precipitation field is required in such studies (Saunders et al. 2017). Offering 

precipitation fields as downscaled results has been considered as a challenging test 

(Maraun 2010) due to many reasons, e.g. precipitation is not well simulated by either 

large-scale GCMs or small-scale RCMs. The precipitation downscaling part of this 

dissertation research was motivated by such challenges, the studies that conducted in this 
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dissertation aim to provide a solution for downscaling short-duration future precipitation 

events as precipitation fields.  

1.3 Objectives and Contributions 

Using new technologies to enhance big Earth data discovery, storage, and 

retrieval is attractive and demanded not only in the climate Earth community but also in 

all science domains and data-related industries (Yang et al. 2017). Meanwhile, utilizing 

modern technologies like machine learning to aid climate studies such as precipitation 

downscaling is growing in popularity.  

1.3.1 Objectives  

There are two main research focuses of this dissertation research: 1) investigate 

multidimensional gridded climate data store and query in databases, and 2) investigate 

gridded precipitation downscaling methods. Specifically, the research objectives are: 

1) Assessing current databases for handling gridded climate datasets and 

proposing new methods or algorithms to accelerate multidimensional array-based 

climate data queries in databases. Popular databases will be tested and evaluated 

regarding query performance and data storage volume.  

2) Investigating precipitation downscaling methods and proposing precipitation 

downscaling methods that could meet end user’s needs for downscaling 

precipitation products, for example, MERRA-2 precipitation variable. As an 

operational request, the downscaling algorithm should be able to derive the small-

scale statistical properties of rainfall from a precipitation field defined on larger 
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scales (Rebora et al. 2006). The method should be data independent when 

producing downscaled results from the input dataset  

The first part of this dissertation is motivated by the challenge of finding cost-

efficient and high-performance solutions for handling large multidimensional gridded 

datasets. While the second part is motivated by the challenge of offering high quality 

downscaled results for gridded precipitation products. The primary goal of this combined 

research is to develop methods and algorithms that could assist researchers to manipulate 

gridded climate datasets efficiently and provide new solutions for downscaling gridded 

climate datasets (e.g. gridded precipitation).  

1.3.2 Contributions 

The main contributions of this dissertation include: 

1) An N-Dimensional hash function for a fast query on array-based climate data 

and a database engine as a quick implementation. The method could improve the 

general performance of data analysis by reducing the data storage cost and access 

latency. Since a large portion of climate data is gridded data, this research 

provides additional options for seeking cost-efficient and high-performance 

solutions for handling gridded data.  

2) A precipitation downscaling method and associated algorithms that could 

simulate precipitation fields at a local scale and at the same time be consistent 

with large-scale information. The method does not require additional data as 

predictors to produce downscaled results, and it could be used for downscaling 

future estimations from GCMs. The downscaled results have potential to aid 
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climate models like WRF in the form of providing higher resolution inputs. The 

downscaled results could also be used to force mountain glacier models for local 

impact studies, where the complete absence of climate monitoring activities 

within the regions of interest presents a data challenge (Jarosch, Anslow, and 

Clarke 2012). 

1.4 Dissertation Overview 

The rest of this dissertation is organized as follows. In Chapter 2, the studies of 

storing gridded climate datasets or arrays in databases are reviewed. An n-dimensional 

hash function is introduced as a cost-efficient method to retrieve data from a unified data 

storage structure. A database engine prototype called LotDB is developed as the 

implementation. Query test results and performance evaluation are also included in 

Chapter 2. Chapter 3 focuses on the study of precipitation downscaling. The related 

works regarding precipitation downscaling are investigated and a new precipitation 

downscaling method called PreciPatch is proposed based on dictionary learning. Two 

case studies are generated to evaluate the performance of the downscaling method. 

Chapter 4 concludes this dissertation with summaries for both gridded climate data 

management study and precipitation downscaling study and an outlook for future works.  
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CHAPTER 2. A MULTIDIMENSIONAL ARRAY DATABASE ENGINE FOR 

GRIDDED CLIMATE DATA  

2.1 Introduction 

In climate community, with the growth of both data volume and complexity of 

spatiotemporal gridded data, the importance of efficient data storage, fast access, and 

analysis are well recognized by both data producers and data users. Gridded climate data 

management systems are the foundation of many climate studies and online services. 

Rapidly searching and querying abilities are affecting the speed of science investigations 

in climate-related researches (e.g. precipitation downscaling study). As the nature of 

many natural phenomena, climate can be modeled as array data sets with some 

dimensionality and known lengths (Baumann 1999). The studies of storing and 

manipulating multidimensional gridded data in databases can be generalized to: 1) array 

data model mapping in relational databases or NoSQL databases, and 2) array database 

development. Meanwhile, recent studies that using big data frameworks like Hadoop 

systems to store and retrieve multi-dimensional climate data sets have excellent 

performance results on data analysis queries (Li et al. 2017; Cuzzocrea, Song, and Davis 

2011; Song 2015). However, most of the solutions were developed as customized 

applications for specific data formats or data sets and could not be applied to arbitrary 

multidimensional arrays. The related works in this section focus on the database solutions 

for multidimensional array storage and retrieval, and efforts done by researchers to 
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enhance the array data query. The output of this research could be used to boost climate 

data related studies like precipitation downscaling (Chapter 3). 

2.2 Literature Review 

2.2.1 Relational Database 

The data model in relational databases are tables, most of the relational database 

systems do not support storing multidimensional arrays natively. Building an array model 

on top of existing relational databases is difficult. A natural way to store arrays in tables 

is to split arrays cell into rows, which is straightforward for 1D/2D datasets, however, 

problematic for higher-dimensional data. Operationally speaking, array orientated 

analysis is often done on platforms like MATLAB, which is limited by memory capacity 

and may have an error-prone developing process. To close this gap, in 2004, van 

Ballegooij introduced an array data structure in a relational database environment, 

developed a multidimensional array DBMS called RAM (Relational Array Mapping) 

which maps array onto a traditional relational schema. The multiple index columns in a 

multidimensional array were compressed into a single column in their approach. Data 

retrieval process was based on existing database system with bulk array processing. RAM 

aims to utilize the advantages of the mature database system and storage structure, 

adapting to an array model to fit in the existing DBMS to ease the array storage and 

analysis process. RAM also designed a query language for an array data structure in the 

relational model which composed of two methods: data extraction from array storage, 

and construction of arrays. They provided an intellectual framework and ease the use of 

map arrays to relational models in a distributed application as the implementation (van 
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Ballegooij et al. 2005). However, mapping the array model to relational could only be 

treated as a compromised solution rather than the ideal solution. 

In 2005, the prototype of MonetDB was introduced as a main memory database 

system that uses a column-at-a time execution model for the data warehouse. Although 

MonetDB is not a native array database but a full-fledged relational DBMS (Idreos 

2012), it provided useful thoughts and ideas for processing array models. It is a column-

oriented database and each column, or BAT (Binary Association Table), in the database 

is implemented as a C-array on storage level. (Boncz, Zukowski, and Nes 2005) 

MonetDB has focused on optimizing the major components of traditional database 

architecture to make better use of modern hardware in database applications that support 

massive data volumes (Boncz, Kersten, and Manegold 2008). MonetDB is a column-

based storage engine that favors analysis queries by better-using CPU caches. The 

analysis is focusing on highly CPU-efficient execution. In 2008, Cornacchia et al. also 

introduced an example of using a matrix framework with a Sparse Relational Array 

Mapping (SRAM) by Information Retrieval (IR) researchers, they used MonetDB/X100 

as the relational backend, which provided fast response and good precision. The matrix 

framework is based on the array abstraction, and by mapping them onto the relational 

model and develop array queries, MonetDB allows them to optimize the performance and 

develop a high-performance IR application. In general, relational databases are designed 

and optimized for Online Transactional Processing (OLTP) operations, which are not 

ideal for Online Analytical Processing (OLAP) analysis.  
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2.2.2 NoSQL Database 

Main NoSQL (Not Only SQL) database categories are key-value, document, 

column, and graph. All of them can store large volumes of semi-structured or 

unstructured data with high Read/Write throughput (Amirian, Basiri, and Winstanley 

2014). Lakshman and Malik (2010) presented a key-value based NoSQL database 

(Cassandra) approach to handle very large amounts of structured data, which has been 

found performance gain compared to the relational database system when evaluated with 

persistency and I/O operations on genomic data (Aniceto et al. 2014). However, key-

value databases (e.g., Cassandra) provide limited functionality beyond key-value storage 

and have no support for relationships. Other representative key-value systems include 

Memcached, Aerospike, Redis, Riak, Kyoto Cabinet, Amazon DynamoDB, and 

CouchDB. A document-based NoSQL database such as MongoDB is used for managing 

geospatial data more effectively than the key-value database because geospatial data 

inside the document database can be retrieved using more flexible queries than key-value 

based database, and many document databases support geospatial data natively, for 

example, through GeoJSON format. Also, proximity queries can be efficiently 

implemented using the document database (Amirian, Basiri, and Winstanley 2014). 

Using MongoDB to store and access climate satellite data, Ameri et al. (2014) compared 

the results with a SQL database (MySQL). The performance was improved up to a factor 

of 46 using 11 threads on a 12-core system. However, relationships and joins are not 

supported as in relational databases, and such systems lack native support for 

multidimensional data. Other document databases include Couchbase, RavenDB, and 
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FatDB. For the column-based NoSQL databases, the queries are limited to keys and, in 

many cases, do not have a way to query by column or value, requiring a mapping layer to 

handle highly connected geospatial data, which is not efficient. Han and Stroulia (2013) 

demonstrated a data model of stored location data based on the column database (HBase). 

Although it does not have clear advantages regarding query response time, it scales well 

and supports efficient performance for range and k-nearest neighbor queries. Other 

systems in this category include Google BigTable, Cloudata, and Cassandra (also a key-

value database).  

2.2.3 Array Database 

Array databases are sometimes subsumed under the NoSQL category. More 

recent views have treated multidimensional arrays as Multidimensional OLAP (MOLAP) 

data cubes in the context of Data warehouses and OLAP systems (Baumann et al. 2018), 

which are business intelligence technologies that allow decision-makers to analyze huge 

volumes of data on the fly according to the multidimensional data model (d’Orazio and 

Bimonte 2010). The main difference is the OLAP data cubes are rather sparse 

(Naydenova and Kaloyanova 2010) whereas gridded climate data tend to be rather dense 

(i.e. few grids hold non-null value). Research on array DBMS usually includes two parts, 

the storage of multidimensional array and query language (Baumann et al. 1999). The 

multidimensional database has a long history as the statistical database has been studied. 

While OLAP often focuses on business array data, scientific studies on computing and 

imaging have been developed formal concepts on array data manipulation, like AQL 

(Libkin, Machlin, and Wong 1996) and the array manipulation language AML (Marathe 



20 

 

and Salem 1997), but not been implemented and evaluated as real-life applications before 

Rasdaman (Baumann 1999). Also, many formal models are not designed for array 

operations; instead, they are for the goal of mapping arrays to relations tuples that do not 

provide a general solution. A declarative query language suitable for multiple dimensions 

was firstly introduced by Libkin, Machlin, and Wong (1996), Rasdaman introduced its 

algebraic framework in 1999 for expressing cross-dimensional queries, for which consists 

of only three operations: an array constructor, a generalized aggregation, and a 

multidimensional sorter (Baumann 1999). Although the structure is not complicated, it is 

sufficient to cover a wide range of imaging, statistical, and OLAP operations. On the data 

model level (Baumann et al. 1999), Rasdaman integrates an array model into the existing 

overall model, which is based on a formal algebraic framework and developed with 

declarative multidimensional discrete data (MDD). MDD is the data storage unit in 

Rasdaman. On storage level, binary large objects (BLOBs) are the smallest units of data 

access (Reiner et al. 2002), and the size stored in Rasdaman is from 32KB to 640 KB. 

MDD object is divided into arbitrary tiles or subarrays and combined with a spatial index 

to access the tile object used by a query (Baumann et al. 1998). On a practical level, 

Rasdaman introduced array as a new attribute type in Postgres, utilizing the existing 

relational model to adapt multidimensional arrays. The metadata is also stored in the 

relational model. 

Two years later, SciDB was first debuted in 2009 by Cudré-Mauroux et al. It 

provides a native array data structure on storage level and supports clustering (Brown 

2010). The system architecture is a shared-nothing design. SciDB itself is a distributed 
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storage manager, and data in the array is expendable but not directly updateable (no-

overwrite); the updated values form a new array in SciDB. The arrays are vertically 

partitioned; the attributes are split in a single logical array and values are handled 

separately. The motivation is similar to column-store systems, like MonetDB, vertical 

partitioning reduces I/O cost since users often focus on a particular query on a subset of 

attributes in a logical array. The arrays are decomposed into potentially overlapping 

chunks. Different from Rasdaman (which store chunking information in the relational 

model), the metadata, location information of chunks are also stored within the logical 

array. The size of a chunk could be an order of 64 MB, which is much larger than 

Rasdaman and MonetDB. Since the chunks are potentially overlapped, this characteristic 

increases the total data volume stored in the database (Brown 2010). SciDB also provided 

a new way of dealing with “not valid” cells, in which no space is allocated in the array 

data chunk for such cells (Stonebraker et al. 2013). At the same time, SciDB optimizes 

CPU performance by performing vector processing, which was from the contribution of 

MonetDB. The version 1 of SciDB was released in 2010, the same year, a science 

benchmark paper (SS-DB) was published which included a comparison between SciDB 

and MySQL (Cudré-Mauroux et al. 2010), in which SciDB presented a high-performance 

potential. In 2012, Planthaber, Stonebraker, and Frew provided an integrated system of 

using SciDB to analyze MODIS level 1B data. They pre-processed MODIS data from 

HDF format to CSV, then CSV to SciDB DLF files as a system. The SciDB engine 

showed a promising performance and being the most powerful competitor of Rasdaman. 

Three years after SciDB was first announced, a SQL-based query language called SciQL 
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was introduced in the relational model for scientific applications with both tables and 

arrays as first-class citizens (Kersten et al. 2011; Zhang et al. 2011). In nature, it is an 

array extension to MonetDB and makes MonetDB effectively function as an array 

database. However, it still involves data model mapping and is not a fully operational 

solution. 

In 2013, Rasdaman added the in-situ support for tiff files and NetCDF files 

(Baumann, Dumitru, and Merticariu 2013). The same year, Dr.Stonebraker, one of the 

main starters of SciDB (who is also the author of Postgres, VoltDB, etc.) pointed out why 

Hadoop is not a good solution for scientific data processing in the following three 

problems: 1) Problems that look like “grep”, 2) Problems that look like queries, 3) 

Problems that look like data analytics. The same year, Dr. Stonebraker et al. (2013) also 

pointed out that the SciDB research directions were in the areas of elasticity, query 

processing, and visualization. He also presented an example using SciDB for MODIS 

processing pipeline. Additional researches have been done in the recent years to 

customize SciDB. Soroush and Balazinska (2013) developed TimeArr as a new storage 

manager for SciDB, in which speeds up the process of creating or selecting a specific 

version of arrays, allowing researchers to explore how time changes affect the cell values 

in a specific array section. Liu et al. (2014) proposed a window aggregation method upon 

SciDB arrays to speed up the window aggregation query. One remarkable research was 

done by them; they extended SciDB to use GPUs and improved its query performance by 

1.5X to 11X. Simultaneously, they found out that the array partitioning, load imbalance, 

and CPU-GPU hybrid execution were the bottlenecks that limited their steps. Unlike 
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CPU, which benefits from small chunk size, larger chunking size increases the 

performance due to lower scheduling and data transfer overheads. 

To summarize, without the support of standard databases, scientists tend to 

employ customized programs or file-based implementations serving and analyzing array 

data (Baumann, Dumitru, and Merticariu 2013). Array DBMSs like Rasdaman (Baumann 

1998), SciDB (Cudré-Mauroux et al. 2009), and SciQL (Kersten et al. 2011) fill this 

demand by extending the supported data structure in the database with unlimited-size 

multidimensional arrays. However, mapping the array data model to the relational model 

is a performance sacrifice, limited the data access ability. Also, data tiling and chunking 

are good for clustering and mapping to the non-array data structure. However, it causes 

the problem of data volume increase and decreases the I/O performance on secondary 

storage by using random access instead of sequential access.  

2.3 Methodology 

Array databases have shown the potential to be valid solutions for storing and 

manipulating multidimensional array data. However, current solutions fail to provide 

good support for multidimensional climate gridded data and face issues related to overall 

performance. In this section, a new data management solution is presented as the 

foundation to build an array database. In general, a valid data management solution for 

data storage and retrieval includes 1) a data storage structure and 2) a data access and 

update method. Specifically, the solution should have the essential functions of data 

manipulating: create, read, update, and delete (CRUD). To feed the needs, a unified data 
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storage structure is adopted for persistent storage of data on secondary-storage, and an n-

dimensional hash function is proposed as the main algorithm for data manipulation. 

2.3.1 A Unified Data Storage Structure 

For array data structure on entity-level, the array data structure provides O(1) 

complexity for single data retrieval; this is the fastest way computers can do when 

retrieving something. Traditional ways involve tiling and chunking big arrays (Baumann 

et al. 1999; Boncz et al. 2005; Cudré-Mauroux et al. 2009). Typically, tiling and sub-

setting are necessary for array database, like in Rasdaman, the size of its smallest element 

is from 32KB to 640KB, as the order of default page file size (4KB). However, arrays are 

not suitable for fragmenting because they will increase data access and search 

complexity. Since disks are designed to do the sequential reading, too little or too much 

tilling is not good for I/O performance. In 2002, Reiner developed an R + tree for MDD 

tile node searching (Reiner et al. 2002); however, since the storage rectangles are 

duplicated, the R+ tree increases the data volume and makes construction and 

maintenance more expansive. In computational complexity concern, data retrieve 

complexity will be O(log𝑀𝑛) + O(1). Ideally, a multidimensional array will provide 

O(1) complexity when retrieving data from it. However, because of tiling and sub-

setting, the complexity for search increases considerably if the tiling unit is small and the 

whole dataset is large. Meanwhile, when a multidimensional array is stored in a 

secondary storage device, data files are often not sequentially stored on the device and 

the cost to access different byte addresses is different. Although the computational 

complexity is the same for each cell in an array, the cost of finding the index and let the 
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disk head (in HDD) to retrieve is different. Even for SSDs, which does not have a 

physical head inside, random access and sequential access varies largely in speed. Since 

the ability to do random read/write and sequential read/write is different, storing data 

bytes closer to each other will have better performance for data read when they are 

retrieved together. Therefore, instead of chunking and tiling, putting a multidimensional 

array in a holonomic array form should have a performance gain for sequential data 

retrieval. 

 

 

(a)                                                                       (b) 

Figure 1 Chunked Storage and Unified Storage: (a) chunked storage with multilayer array indexing, (b) unified 

storage with no extra indexes 
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Figure 1 illustrates the differences in storage structure between a chunked storage 

structure and a unified storage structure. The chunked storage requires additional 

indexing for data storage and retrieval; however, a unified storage has the native array 

index as its storage index. Another benefit of using a unified storage is the possibility of 

saving storage space. Specifically, if a multidimensional array Z has 𝑁 dimensions, and 

the size for the 𝑖th dimension is S𝑖, then when it stores in a unified form, it takes the B𝐿 

space in terms of bytes as expressed in the following (Equation 1): 

Equation 1 Data size 

B𝐿 = B𝑑 ∗ ∏ S𝑖

𝑁

𝑖=1

, for B𝑑 = data type size 

It is the minimum space an array will cost without any compression. For example, 

if a 5-D array (32-bit float) with dimensions 10 × 5 ×  6 × 4 × 7 will cost about 33KB. 

The HDF and NetCDF file formats use similar structures to hold a multidimensional 

array along with other information integrated. In practical use, it requires additional 

programming skills to access the data set, and a full data set load to memory space. 

Although a specific cell location could be calculated through its dimension sizes, there is 

no indexing function to map from the original multidimensional array to its unified form 

for subsetting.  

2.3.2 An N-Dimensional Hash Function for the Unified Storage Structure 

The unified storage structure provides a one-dimensional native index for each 

cell of it. Querying an n-dimensional array needs a hash function to map the n-

dimensional index to the one-dimensional native index. In this section, I propose an n-

dimensional Hash Function Algorithm to fill the demands for fast data retrieval based on 
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the unified array data storage structure. The detailed procedures for this algorithm are 

described in Table 1.  

 

Table 1 An N-Dimensional hash function 

Name: Computation of 1-D storage index from n-D query index 

Definition: 

(1) Z is a 𝑁 dimensional array 

(2) The dimensions form an ordered set as D = (A1, A2, A3, … , A𝑛). 

(3) The data storing order follows the same order as D. The size of each axis 

forms another ordered set as S = (S1, S2, S3, … , S𝑛). 

(4) Query a subset of Z is expressed as 

“Find(A1{Min1, Max1}, A2{Min2, Max2}, A2{Min2, Max2}, … , A𝑛{Min𝑛, Max𝑛})” 

Input: 

Array A𝑧 = [S1, S2, S3, … , S𝑛] 
Array A𝑀𝑖𝑛𝑀𝑎𝑥 = [Min1, Max1, Min2, Max2, Min3, Max3, … , Min𝑛, Max𝑛], 

for ℎ ∈ ℤ: ℎ ∈ [1, 𝑛], Sℎ ≥  Maxℎ ≥ Minℎ ≥ 1  
Array A𝑇 = [s1, s2, s3, … , s𝑛], for ℎ ∈ ℤ ∶ ℎ ∈ [1, 𝑛], sℎ = (Maxℎ − Minℎ + 1) 

Output: 

 Array A𝐼 = [i1, i2, i3, … , i𝑚], for m = ∑(

𝑛

ℎ=1

sℎ) 

Procedure: 
(1) Compute the first element of A𝐼: i1   

i1 = ∑(

𝑛

ℎ=1

Minℎ ∗ ∏ (S𝑘)

𝑛

𝑘=ℎ+1

),  for S𝑛+1 =  1 

(2) Compute the last element of A𝐼: i𝑚 

i𝑚 = ∑(

𝑛

ℎ=1

Maxℎ ∗ ∏ (S𝑘)

𝑛

𝑘=ℎ+1

),  for S𝑛+1 =  1 

(3) If (i1 = i𝑚 ) then {  

Return A𝐼 = [i1] } 

(4) Else: index D𝑖𝑛𝑑𝑒𝑥 =  i1 

(5) Compute array A𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = [g1, g2, g3, … , g(𝑛−1)], for 𝑝 ∈ ℤ ∶  𝑝 ∈ [1, (𝑛 − 1)] 

 g(𝑛−1) = (S(𝑛−1) − s(𝑛−1)) + 1 

 g(𝑝) =  g(𝑝+1) + (S(𝑝) − s(𝑝)) ∗ ∑ (𝑛
𝑖=(𝑝+1) S𝑖) 

(6) For (R1 = 1 𝐭𝐨 R1 = s1) do { 

For (R2 = 1 𝐭𝐨 R2 = s2) do { 

        For (R3 = 1 𝐭𝐨 R3 = s3) do {  

                  … 
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                              For (R𝑛 = 1 𝐭𝐨 R𝑛 = s𝑛) do { 

                                                Appending D𝑖𝑛𝑑𝑒𝑥 as the last element of A𝐼 

                                                If (R𝑛 ≠ s𝑛) then { D𝑖𝑛𝑑𝑒𝑥 =  D𝑖𝑛𝑑𝑒𝑥 + 1 } 

                                } 

                   … 

                   If (R3 ≠ s3) then { D𝑖𝑛𝑑𝑒𝑥 =  D𝑖𝑛𝑑𝑒𝑥 + g3 } 

            } 

If (R2 ≠ s2) then { D𝑖𝑛𝑑𝑒𝑥 =  D𝑖𝑛𝑑 + g2 } 

     } 

                 If (R1 ≠ s1) then { D𝑖𝑛𝑑𝑒𝑥 =  D𝑖𝑛𝑑𝑒𝑥 + g1 } 

          } 

(7) Return A𝐼 

 

 

 

(a)                                                                         (b) 

Figure 2 Index on chunked storage and unified storage, (a) current index, (b) proposed index 

 

As a result, if the total number of data for retrieval is G, the n-dimensional hash 

function will hold an O(G) complexity. Figure 2 shows the difference between the idea of 

the traditional indexing method and the proposed indexing method. In the traditional 
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indexing method, executing a data retrieve query forces the index to locate the initial 

pointers to each chunk and return with the integrated output. In the proposed indexing 

method, the indexing system is only used to calculate the first and last elements and a 

jumping step set (A𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒) and data are retrieved sequentially with specific jumping 

steps. Typically, algorithms are designed independently from hardware (H/W), which 

may lead to a diminishing return of actual performance. The intention to design this 

algorithm is to consider the H/W limit while performing data retrieval action. 

Specifically, by implementing a sequential-like data retrieval action, the n-dimensional 

hash function algorithm will utilize the sequential read ability in disks when it is possible. 

It is similar to the motivation of building MonetDB to break the memory wall (Boncz et 

al. 2008). Also, climate gridded data queries often rely heavily on value retrieval than 

value search. The n-dimensional hash function and the unified storage structure are 

designed to maximize the value retrieval ability than value search.  

2.4 Implementation 

2.4.1 System Design 

LotDB is a prototype array database library developed with C++ and the memory-

mapping technology; it is an implementation of the n-dimensional hash function and 

unified data storage design. It follows a lightweight, standalone, and single-use design. 

LotDB acts as both a client-based database manager and a database library for 

applications on top, like Google’s LevelDB.  
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2.4.2 Memory-Mapping Technology 

In LotDB, data are stored in the secondary storage system, and the access to it is 

done by utilizing memory-mapping technology and through page files. This technology is 

widely used in database systems like LMDB and MongoDB. Specifically, instead of 

loading the whole file into memory, the file handler maps the file to virtual memory as a 

big array and assigns a virtual memory address to each page file without loading any 

actual data into the memory other than the file’s metadata. When a data access call is 

made for a page file, it will cause a page fault and enable the read/write of the secondary 

storage. This way, bytes are copied to actual memory addresses directly, and no need to 

go through disk caches as the standard open/write will do. Also, by utilizing memory-

mapping of arrays, LotDB could exceed the memory cap for accessing large data files 

and make it possible for LotDB accessing big arrays without tiling. Meanwhile, when 

integrating with the n-dimensional hash function, the array indexes could be virtually 

calculated with low costs and could increase data retrieve speed exponentially when 

compared with traditional database solutions.  

2.4.3 LotDB System Architecture 
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Figure 3 Architecture of LotDB 

 

The general architecture of LotDB is shown in Figure 3. The system core is the 

LotDB engine, which consists of the n-dimensional hash function algorithm and memory-

mapping module. Data are stored in files and separated from their metadata files; data 

retrieve queries are called through built-in functions, and results are stored in memory. 

Functions are designed to perform different calculations and services, including upload 

multidimensional arrays directly from their original formats like HDF or NetCDF, etc. 

Meanwhile, the query communications are done through a query language parser and a 

client. For spatiotemporal grid-based climate datasets, they are often produced and 

packaged without the demand of over-write. The empty cells in a grid-based climate data 

product do not require adjustments when storing. Such cells, or often referred to as noise, 

will only be eliminated when the analysis is performed and will stay with the original 

data. LotDB is designed to meet this characteristic of climate datasets, it will be fast to 

store static array data which does not change once captured. The drawback of this is that 
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data updating will be very expensive if it involves changes in array shape or size and the 

empty cells cost the same for storage as the non-empty cells. Although keeping the empty 

cells does waste storage space and is not ideal for sparse data, it accelerates the data 

retrieval by simplifying the data storage architecture on disks. 

 

 

Figure 4 A glance view of LotDB 

 

Figure 4 provides a glance view of LotDB. Arrays are stored in a database and 

can be manipulated through queries.   

2.5 LotDB Query Tests and Performance Evaluation 

In this section, the proposed array database engine LotDB was tested against three 

modern databases (PostgreSQL, MongoDB, and SciDB) to evaluate their performance on 

handling multidimensional gridded climate data. 

 

Database 

Array 

Query 
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2.5.1 Experiment Setup and Design 

2.5.1.1 Introduction  

LotDB is designed and developed as a quick implementation of the unified 

storage structure and the N-Dimensional hash function in chapter 3. The primary goal for 

this part of the research is to improve gridded climate data query performance for 

possible geoscience applications and reduce storage volume at the backhand to offer as a 

cost-efficient solution for climate scientists. Although LotDB is not a fully developed 

database system but a simple database engine for multidimensional array data storage and 

query, it is still worthwhile to evaluate its performance with modern databases or popular 

solutions that researchers are currently adapted when handling multidimensional gridded 

climate data. 

2.5.1.2 Experiment Design and Objectives 

The general design of this experiment is to store the same climate datasets into 

different databases or containers and use the same query contents to query against 

different databases installed under the same hardware environment. The performance is 

evaluated to conclude for databases’ abilities on handline multidimensional gridded 

climate data. 

2.5.1.2.1 Environment  

All the databases are installed as standalone modes on individual servers with the 

same hardware configuration: Intel Xeon CPU X5660 @ 2.8Ghz×24 with 24GB RAM 

size and 7200 rpm HDD. 

2.5.1.2.2 Databases  
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To compare the performance of LotDB with other databases, three popular 

databases are chosen with their commonly used versions; specifically, they are 

PostgreSQL 9.3 (Relational Database), MongoDB 4.0.4 (NoSQL Database), and SciDB 

18.1 (Array Database). PostgreSQL is an open-source object-relational database 

management system; it has been launched for 30 years and maintained a very stable 

performance in different domains. MongoDB is a document-oriented NoSQL database 

system, which follows a schema-free design and is one of the most popular databases for 

modern applications. SciDB, as mentioned in the previous chapters, is a high-

performance array database designed specifically for storing and querying scientific 

datasets. The choice of these three databases covers the most popular database solutions 

for handling climate gridded data. CentOS 6.6 is chosen to hold SciDB, and Ubuntu 

14.04 is chosen to hold MongoDB, PostgreSQL, and LotDB. Different OS is chosen 

because SciDB 18.1 could not be easily configured under Ubuntu. Both CentOS and 

Ubuntu are utilizing common Linux kernel, newer kernel versions may carry slight 

improvements in performance; yet, such improvements are rarely important to database 

users.  

2.5.1.2.3 Query Design 

Different spatiotemporal queries are designed to evaluate the performance of 

selected databases (Table 2) for the year 2017 with a raw data size of 3.45 GB. 

Specifically, nine queries were designed to simulate end-users’ normal operations on 

gridded climate data. Table 2 lists these queries in a detailed explanation and estimates 
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the corresponding grid points each query will retrieve from the data containers 

(databases).  

 

Table 2 Spatiotemporal Queries 

Index Query Content Number 

of Grid 

Points 

Retrieved 

Q1 What’s the precipitation in D.C. at 9:30 a.m. on August 1st, 

2017? 

1 

Q2 What’s the precipitation in D.C. from 9:30 a.m. to 21:30 p.m. 

for each day in June 2017? 

403 

Q3 What’s the precipitation in D.C. from 9:30 a.m. to 21:30 p.m. 

for each day in 2017? 

4,745 

Q4 What’s the precipitation in the Chesapeake Bay at 9:30 a.m. 

on August 1st, 2017? 

72 

Q5 What’s the precipitation in the Chesapeake Bay from 9:30 

a.m. to 21:30 p.m. for each day in June? 

29,016 

Q6 What’s the precipitation in the Chesapeake Bay from 9:30 

a.m. to 21:30 p.m. for each day in 2017? 

341,640 

Q7 What’s the precipitation in the U.S. at 9:30 a.m. on August 

1st, 2017? 

4,753 

Q8 What’s the precipitation in the U.S. from 9:30 a.m. to 21:30 

p.m. for each day in June 2017? 

1,915,459 

Q9 What’s the precipitation in the U.S. from 9:30 a.m. to 21:30 

p.m. for each day in 2017? 

22,552,985 

 

2.5.1.2.4 Data Ingest Volume Design 

Different raw data sizes are chosen to evaluate the data storage consumption in 

different databases in addition to 3.45 GB. Specifically, they are 10 MB, 100 MB, 1 GB, 

and 10 GB. The number of grid points is the estimated number of array cells to be 

retrieved for the corresponding query 

2.5.1.2.5 Validation and Evaluation  



36 

 

Data validation processes are executed for each run of query tests and after data 

importing to databases. Raw data is treated as the guideline for data accuracy, grid points 

retrieved from databases are compared against the raw data to check for errors or missing 

values. For the evaluation part, the databases are evaluated in the following aspects: 1) 

data uploading and pre-processing time, 2) data storage volume consumption, and 3) 

spatiotemporal query run-time. The query run-time refers to the elapsed real-time or wall-

clock time in this experiment. 

2.5.1.3 Multidimensional Datasets  

The MERRA-2 dataset is collected and selected as the experiment data, which is 

produced and provided by the Global Modeling and Assimilation Office of NASA 

Goddard Space Flight Center. MERRA-2 dataset is stored in NetCDF4 format and 

contains about 49 variables (e.g., Surface Wind Speed, Precipitation, Surface Air 

Temperature, etc.). PRECTOTCORR is chosen as the variable to use in this experiment, 

which is the bias-corrected precipitation output from an atmospheric model. The 

spatiotemporal resolution of this variable is 0.625° by 0.5° with hourly reads for each day 

of the year. The year selected for this experiment is 2017, and the dataset is a 4D array 

with dimensions 365 × 24 ×  361 × 576, and its data type is 32-bit float. This one-year 

dataset contains around 1.8 Billion grid points.  

As an example, Figure 5 shows the plot view and the array view of this dataset at 

one time-step in the Chesapeake Bay area. 
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(a) 

 

(b) 

Figure 5 MERRA-2 in Panoply: (a) grid dataset in plot view, (b) grid dataset in the array view 

 

2.5.1.3.1 Data Preprocessing 

Data preprocessing are used for databases that do not take NetCDF file as the 

import format. NetCDF files are converted into tables in CSV format as a data 

preprocessing step. 

2.5.1.4 Experiment Procedure  

The general procedure for all databases follows the same pattern: 1) data import 

or data preprocessing and then data import, 2) data validation check for stored data sets in 
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databases, 3) spatiotemporal data query tests and data validation for each test run, and 4) 

database evaluation.  

2.5.2 Experiment Results and Analytics 

PostgreSQL and MongoDB do not have native support for NetCDF format, and 

SciDB does not have a stable and fully functional plugin for NetCDF data import. 

Therefore, data were converted into the CSV format and then uploaded to each database. 

Meanwhile, LotDB is developed with data import functions to upload multidimensional 

data directly from the NetCDF/HDF format. To accelerate the preprocessing process, 

SSDs are utilized to store the raw datasets and intermediate results. Then, the 

preprocessed results were uploaded to servers. No additional indexes were built for all 

databases, data were dumped to the databases with their basic indexes. Table 3 lists the 

processing time and intermediate data size in CSV format, from 120 MB to 168 GB as 

the raw data increases from 10 MB to 10 GB. 

 

Table 3 Preprocessing Data (from NetCDF to CSV) 

Raw Data (NetCDF format) 10 MB 100 MB 1 GB 3.45 GB 10 GB 

Intermediate Data (CSV format) 120 MB 1.4 GB 16.3 GB 52 GB 168 GB 

Pre-processing Time (hours) 0.01 0.13 1.4 4 13.4 

 



39 

 

 

Figure 6 Data Uploading Time for PostgreSQL, MongoDB, SciDB, and LotDB 

 

After the pre-processing, PostgreSQL, SciDB, and MongoDB all require 

additional time for data uploading. The detailed time variation is shown in Figure 6. The 

vertical axis records the data uploading time to each database from CSV files, and the 

horizontal axis represents different uploading cases for different raw data size. The data 

uploading time in this figure is independent of the pre-processing time. As the figure 

shows, MongoDB took the longest time for data uploading in almost all the cases. 

Meanwhile, LotDB used the least time amount for data uploading because of its native 
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support for NetCDF data files and unified data storage design. As a representative of a 

relational database in this experiment, PostgreSQL shows a stable increase in uploading 

time as raw data size increases. It has an advantage when dealing with a small number of 

array datasets compare to MongoDB and SciDB. SciDB is increasing in its data 

uploading time with a decrease in speed change, which implies a potential advantage in 

handling larger datasets. MongoDB has the highest rate of time complexity while LotDB 

has an almost linear rate for data uploading. As designed in the LotDB data import 

function, data are dumped directly from the raw dataset if it was stored linearly in 

multidimensional array data formats like NetCDF. Therefore, it is not surprising that 

LotDB has significant advantages in multidimensional data uploading. 
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Figure 7 Data volume in different containers 

 

The corresponding data storage volume in different containers for different cases 

is also recorded and displayed in Figure 7. The graph compares the difference in data 

expansion from raw data format to data storage volume in different databases. It is 

observed that although MongoDB took the longest time to upload data, it didn’t use the 

most storage space; instead, PostgreSQL consumed the largest storage space in all cases, 

and data volume increased about 20 to 30 times from the raw data size. SciDB used much 

less space and has a data expansion rate of around 5. LotDB performed the best in all 

cases and has a 2 times data expansion rate; this meets the design of the unified storage 

structure and shows significant advantages in comparison to other tested databases. As 

data are stored in a unified storage structure in LotDB, no extra indexes or data chunks 

are needed. PostgreSQL and MongoDB are using a non-array data model to store arrays, 

extra storage for indexes is expected. SciDB uses an over-lapped chunking design, which 

costs additional storage space for the redundant part. 

 

Table 4 Data Preprocessing & Uploading Time and Data Size in Containers 

Container Preprocessing 

Time (hours) 

Uploading Time 

(hours) 

Data Size 

(GB) 

Raw Data (NetCDF format) N/A N/A 3.45 

PostgreSQL 9.3 (SQL) 4 1.97 89 

MongoDB 4.0.4 (NoSQL) 4 7.3 55 

SciDB 18.1 (Array Database) 4 3.3 12.06 

LotDB 0 0.03 6.78 
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Considering the performance for different databases on spatiotemporal queries, 

the MERRA-2 data set for the year 2017 was chosen. Table 4 lists the detailed data pre-

processing and uploading time for this specific case. Among these data containers, 

MongoDB took the longest, and PostgreSQL required the largest space for data storage. 

By implementing the array as the fundamental data structure, SciDB and LotDB acquired 

much less storage. LotDB holds the top place both in data uploading time, and data 

storage size compare with the other three. 

 

 

Figure 8 Spatiotemporal query run-time of PostgreSQL, MongoDB, SciDB and LotDB 

 

Figure 8 illustrates the spatiotemporal query run-time across four containers for 

nine queries. In terms of performance, LotDB used the shortest time in all the queries 
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even compared with SciDB. The queries were designed to increase in complexity both 

spatially and temporally; the general run-time patterns of PostgreSQL and MongoDB are 

similar. They both tend to be stable in a certain range, the cost to do a simple query as Q1 

is not much different from a complex query as Q9, although the number of data points 

retrieved varies largely. It implies that there exist some initial costs for each 

spatiotemporal query when executed in both databases. MongoDB is a document-based 

database, and PostgreSQL is a relational database. Both of them are not expected to have 

better performance than SciDB because their data models are mismatching with the array 

data model, which also agrees with the results from our previous studies on different data 

containers’ abilities for handling big multidimensional array datasets (Hu et al. 2018). As 

a MongoDB insight, it tends to memory-map the whole collection into the physical 

memory of the machine during the query. When the total size of the dataset is 

significantly larger than the physical memory, a large number of memory page faults are 

observed and thus delayed query speed. As an array database, SciDB has much better 

performance outputs than PostgreSQL and MongoDB and proved to be one of the best 

databases on the market when handling multidimensional arrays. For LotDB, it has a 

significant time advantage among all selected databases. The reason behind the 

outstanding performance is because 1) LotDB implemented a native array data structure 

on the storage level, 2) memory-mapping technology is utilized for data retrieval on the 

byte level, and 3) query process is accelerated by the N-Dimensional hash function. 
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2.5.3 Indication of Results 

The proposed database engine (LotDB) and it's associate algorithms work as 

designed to 1) providing fast query ability on gridded climate data, 2) reducing storage 

volume compared to other databases, and 3) presenting advancement of the indexing 

system and the integrated memory-mapping technology. The results have also proved the 

concept of developing a high-performance and cost-effective solution for gridded climate 

data management. 
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CHAPTER 3. A DICTIONARY BASED PRECIPITATION DOWNSCALING 

METHOD 

3.1 Introduction 

The studies of local climate impact are critical for environmental management 

(Sheehan et al. 2017), including applications such as water resources, ecosystem services, 

and agricultural productivity (Fatichi, Ivanov, and Caporali 2013; Yang et al. 2019). 

GCMs are our primary tools for simulating future climatological variables such as 

temperature, wind, and precipitation (Benestad 2016). However, GCM outputs are often 

too coarse for small-scale further analysis. A necessary step in local climate studies is the 

“downscaling” of climate variables that were generated at a lower resolution. 

Downscaling the low-resolution climate variables is used as a primary method to obtain 

high-resolution information (Wilby et al. 1998). For example, Regional Climate Models 

(RCMs) are nested in GCMs to produce higher resolution outputs in a dynamic 

downscaling fashion with limitations of computing-intensive and small study areas. 

Statistical downscaling methods are also developed to enhance GCM outputs’ resolution 

directly to generate high-resolution results at low cost and with high efficiency.  

Precipitation is one of the most challenging data in downscaling studies because 

precipitation events are not simulated well by models, and precipitation is not 

spatiotemporally continuous (Kundzewicz et al 2007; Maraun 2010; Vrac and Naveau 

2007; Vandal 2018). Previous studies of downscaling precipitation can only provide 
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downscaled results as time-series predictions for a single station point or multi-points. 

Thus, traditional downscaling methods are insufficient for understanding the lifecycle of 

precipitation events in space, especially for short-duration events (Lenderink and Van 

Meijgaard 2008) than point scale or areal averages. However, downscaling precipitation 

as spatially distributed fields is a challenging task (Maraun 2010). It usually cannot be 

achieved by using statistical downscaling methods when high-resolution observation data 

are not available for the study area. The benefit of the proposed method is that it can 

downscale the precipitation of short duration events with full coverage in any region. 

Statistical downscaling and dynamic downscaling are the two main methods to 

generate high-resolution regional precipitation data based on global climate model output 

or reanalysis data (Tang et al. 2016). Dynamical downscaling (Giorgi 1990; Wang et al. 

2004) relies on the availability of GCM and climate model outputs. Statistical 

downscaling adopts the relationship between local climate variables and large-scale 

variables (Wilby et al., 1998) depending significantly on the accessibility to other climate 

variables and the target parameter such as precipitation. Stochastic downscaling can be 

realized without the consideration of other parameters, however, it yields high-resolution 

output only through mathematical transformations and ignores the natural features of the 

target. Machine learning methods are also proposed with the advancement of AI 

technology (Liu et al., 2019) but lack in considering the natural characteristics of 

precipitation. 

I plan to fill this gap by proposing a novel downscaling method, called 

PreciPatch, to produce hourly precipitation at a higher spatial resolution based on GCM 
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outputs. The proposed method uses dictionary learning to construct a dictionary for 

relationships between low-resolution and high-resolution datasets based on historical data 

and applies the dictionary to downscaling low-resolution data for a certain timestamp. In 

addition, PreciPatch could be integrated with the research in Chapter 2 (LotDB) to 

accerlerate the downscaling process by replacing the lower level storage system with 

LotDB.  

The remaining sections report our research as follows: Section 3.2 reviews related 

works in statistical downscaling, stochastic downscaling, Single Image Super-Resolution 

(SISR) based spatial downscaling, and types of downscaled precipitation products. 

Section 3.3 introduces the proposed methods in detail. Section 3.4 evaluates the proposed 

methods using several study areas across CONUS and compares results with results 

generated by other state-of-the-art downscaling methods.  

3.2 Literature Review 

Historically, downscaling is connected with the early development of numerical 

weather forecasting in the 1950s, when the commercially produced digital computers 

were stated to be widely used for business data processing. There are publications on the 

use of an empirical-statistical downscaling (ESD) technique, also known as the “analog 

method” or “analogue method”, in weather prediction since 1951 (Benestad 2016). The 

analogue method (AM) is a statistical method based on finding an analogue to a target 

climate variable from an earlier observation in a similar weather situation (Wetterhall, 

Halldin, and Xu 2005). The early climate models were only able to compute climate 

factors like atmospheric motion on a scale of hundreds of kilometers and with a limited 
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number of vertical levels. The term downscaling was possibly first used in a study by von 

Storch, Zorita, and Cubasch (1993). Statistical downscaling is always the main direction 

in precipitation downscaling; however, recent developments in Single Image Super-

Resolution (SISR) have brought new opportunities into the downscaling domain. For 

example, SISR based downscaling methods do not need extra data when producing future 

predictions, which is a great advantage compares to statistical downscaling methods.  

3.2.1 Statistical Downscaling of Precipitation 

Downscaling could be addressed as a disaggregation problem, in which 

theoretically, any number of small-scale weather sequences can be associated with a 

given set of large-scale values (Wilks 2010). Statistical downscaling is popular in 

precipitation downscaling but the recent opportunities in Single Image Super-Resolution 

(SISR) for downscaling brought the advantage without requiring additional downscaling 

parameters such as temperature, pressure, wind speed and direction. Many studies have 

reviewed downscaling concepts and methods. For examples, Hewitson and Crane (1996) 

reviewed process-based and empirical methods. Wilby and Wigley (1997) investigated 

regression methods, weather pattern (circulation)-based approaches, stochastic weather 

generators, and limited-area climate models. Xu (1999) and Wilby et al. (2004) illustrated 

the guideline for statistical downscaling methods for climate scenarios. Fowler et al. 

(2007)  discussed the hydrological community impact from downscaling, and Maraun et 

al. (2010) tried to connect dynamic downscaling with end-users. We review downscaling 

according to the methodology in the following subsections. There are some differences in 

classifying statistical downscaling methods; yet, general approaches could be divided into 
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the following groups: 1) regression models or Perfect Prognosis (PP) method, 2) weather 

pattern-based approaches, and 3) weather generators. Some popular methods are 

discussed in this section that covers those three categories but not limited to them. 

Although statistical downscaling methods vary one from another, the basic assumption is 

the same for all statistical downscaling methods: regional climates are largely a function 

of the large-scale atmospheric state (Fowler et al. 2007).  

3.2.1.1 Perfect Prognosis (PP) Method  

Perfect Prognosis (PP) method (Klein, Lewis, and Enger 1959) was first used to 

objectively forecast maximum and minimum temperature (Baker 1982). It relies on both 

large-scale observational data (often reanalysis datasets) and local-scale observations 

(Vandal 2018). The idea is to generate a statistical link between large-scale and local-

scale observations and then transfer such a relationship to GCM simulation for future 

estimations (Maraun et al. 2010; Wong et al. 2014). Regression and analog methods are 

categorized as PP approaches. Some early researches have been done for climate change 

(Kim et al. 1984; Wigley et al. 1990) of local-scale monthly temperature and 

precipitation. Such approaches involve establishing linear or non-linear relationships 

between stationary parameters and coarse resolution gridded predictors (Wilby and 

Wigley 1997). The terrain difference (coastal and mountain influences) was found to 

have a significant impact on spatial and temporal variations in model performance. 

Landman et al. (2001) used the PP approach (Wilks 1995) for downscaling dynamical 

model quantities where the authors added an additional layer for bias correction. Their 

focus was seasonal forecasting of categorized streamflow for dams. Another example was 
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provided in 2004 by Tatli et al. to downscale monthly total precipitation over Turkey 

with 31 stations. The analog method was used to downscale daily precipitation from 2° 

resolution GCM output to point station data in Zambia (Brigadier et al. 2016). Chen, 

Brissette, and Leconte (2014) assessed linear regression-based methods in downscaling 

daily precipitation from GCM scale to RCM scale (45km and 15km) and also to a station 

scale across North America. Their results showed that the downscaling of daily 

precipitation occurrence was rarely successful at all scales, and they concluded that 

regression-based approaches did not have good performance in downscaling precipitation 

in the North America area (Chen, Brissette, and Leconte 2014). Part of the reason is that 

the potential deviations from real precipitation make it unsuitable in the PP method 

because it does not fit the crucial assumption of the PP approach (Maraun et al. 2010). 

Recent researches use machine learning to optimize the process of Optimal Predictor 

Selection (Najafi, Moradkhani, and Wherry 2010) and principal component analysis 

(Benestad et al. 2015). 

3.2.1.2 Model Output Statistics (MOS) Method  

Model Output Statistics (MOS) method was proposed and implemented in 1973 

(Klein 1974; Bermowitz 1975) as a replacement of Perfect Prognosis (Benestad 2016). 

This technique uses the local-scale observations with the GCM outputs and does not 

necessarily rely on lower resolution observations (Vandal 2018). Turco et al. in 2011 

tested the MOS implementation of the analog methodology (MOS analog) to downscale 

daily precipitation outputs over Spain. The method aimed to improve the RCM results 

instead of directly using GCM results. A combination of stochastic method and MOS was 
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proposed as a bias correction framework for daily precipitation generated by RCMs 

(Wong et al. 2014). Wetterhall et al. (2012) reviewed three MOS methods to adjust RCM 

daily precipitation, which are 1) a simple direct method (DM), 2) quantile-quantile 

mapping, and 3) a distribution-based scaling approach. The preprocessing step that used 

in that research involves direct interpolation, which potentially increased the bias before 

the downscaling process. Turco et al. (2017) introduced an analog-based MOS 

downscaling method for RCM bias correction, which preserves the original RCM climate 

change signal for different future periods. One limitation of MOS is that the MOS 

corrections are specific to the numerical models and cannot be used with other models 

(Maraun et al. 2010). Recent researches have shown a combination of MOS with support 

vector machine (SVM) to project spatial and temporal changes in rainfall (Pour et al. 

2018).  

3.2.1.3 Weather Pattern Approach 

The weather pattern approach or automated weather classification was also 

referred to as the weather typing approach. This approach could be accomplished by 

deriving conditional probability distributions for observed data (e.g. station data). For 

example, the probability of a wet day following a wet day, or the mean wet-day amount 

associated with a given atmospheric circulation pattern (Hughes and Guttorp 1994). 

Conway and Jones (1998) reviewed three weather typing approaches based on Lamb 

weather types applied to the British Isles, and the methods could reproduce the monthly 

means of station rainfall time series during a validation period. Boé et al. (2006) 

implemented a multivariate downscaling method to generate local precipitation at 
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different sites in France. The distances of a given day to the different weather types were 

used as predictors. Satisfying results are achieved regarding low-frequency variation at 

daily timescale. Vrac, Stein, and Hayhoe (2007) proposed a nonhomogeneous stochastic 

weather typing approach to downscale precipitation at 37 rain gauges in Illinois state. 

Regional climate conditions were categorized into different types and the method 

modeled the transition probabilities from one weather pattern to another by a 

nonhomogeneous Markov model. Later researches have shown combinations of weather 

type studies with Extreme Value Theory (EVT) and Markov model (Vrac and Naveau 

2007; Vrac, Stein, and Hayhoe 2007). 

3.2.1.4 Weather Generators 

Weather generators are statistical models used to create a long synthetic series of 

data, fill in the missing data and produce predictions (Hashmi, Shamseldin, and Melville 

2009). The general idea is to mimic the effects of local processes (Field et al. 2014), 

assuming that these have no connection to global and large scales. The basic weather 

generators assume probability density function (pdf) is constant, with random 

fluctuations (Benestad 2016). For example, the Richardson’s (1981) WGEN model was 

designed to simulate daily time-series of precipitation amount, maximum and minimum 

temperature, and solar radiation for the present climate (Wilby and Wigley 1997). Wilby 

et al. (2002) explored the use of synoptic-scale predictors to downscale the components 

of daily precipitation at sites across the British Isles. The conditional models used in the 

study displayed a greater skill for monthly rainfall statistics to a controlled model; 

however, the generality of the results should be further examined. Chen, Brissette, and 



53 

 

Leconte (2012) presented a statistical downscaling approach for seasonal and annual 

precipitation changes using stochastic weather generator and the change factor on a 

Canadian watershed, which showed advantages in simulating low flows. By coupling a 

single-site downscaling method and a multi-site weather generator, Chen, Chen, and Guo 

(2018) proposed a downscaling method for multi-station sites’ precipitation time series, 

which is an efficient method and can be used to investigate the spatial variability of 

climate change impacts regarding precipitation. Major studies in weather generator 

downscaling area are focusing on the site-based generation of long time-series 

predictions. Recent studies have shown an increase in temporal resolution and extending 

the single-site approach to multi-sites (Peleg et al. 2019; Verdin et al. 2018; Sørup et al. 

2016).  

3.2.1.5 Limited-Area Climate Models (LAMs) 

Limited-area climate models (LAMs) were proposed to embed a higher-resolution 

limited-area climate model (LAM) within GCM in early times, and it has been referred to 

as the RCM in the later studies. However, one concern is that LAM rainfall estimates are 

not reliable on small scales due to the incomplete numerical representation of small-scale 

processes and limited resolution of the observation networks (Rebora et al. 2006). Recent 

researches do not consider this method as one of the statistical downscaling methods 

anymore (Benestad 2016; Vandal 2018; Noor et al. 2019).  

3.2.1.6 Integrated Approaches 

Although there are many downscaling methods applied to GCM outputs, in 

reality, downscaling approaches often embrace more than one technique and therefore 
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tend to be a hybrid in nature (Wilby and Wigley 1997). For example, RCM is used to 

dynamically downscale outputs from a few GCMs, and statistical relationships between 

the RCM outputs and GCM patterns are usually used to downscale other GCMs (Walton 

et al. 2015). Major researches in the statistical downscaling field are often focusing on 

specific areas and leads to case-by-case studies, and therefore, the downscaled quality is 

highly dependent on the availability of local observation data.   

3.2.1.7 Limitations of Statistical Downscaling 

Most statistical downscaling methods rely on empirical mathematical relationships from 

coarse resolution predictors to finer resolution predictands. These relationships are often 

much faster to implement and compute than dynamical downscaling, which is the main 

reason for using statistical downscaling. However, such relationships are subject to the 

stationarity assumption that the relationship between predictors and predictands continues 

to hold, even in a changing climate (Walton et al. 2015; Wilby and Wigley 1997). 

Practically, statistical downscaling is coupled with dynamic downscaling methods to 

provide more reliable results (Chen, Brissette, and Leconte 2012). Both dynamic and 

statistical downscaling methods need assumptions that cannot be verified in a climate 

change context (Giorgi et al. 2001). However, several criteria can be used to assist in the 

selection of the most suitable approach depending on the application (Wilby et al. 2004). 

One major critique of the consistency between GCM inputs and downscaled outputs is 

that the downscaled output is constrained by the limitations of the GCM input. A single 

GCM may give a misleading picture of the true state of knowledge about climate change, 

including in the region of interest. The downscaling results of this single GCM will 
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likewise be misleading (Walton et al. 2015). Meanwhile, with increasing demands from 

local climate researches for better quality downscaled results and higher requirements for 

downscaled outputs, statistical downscaling can hardly meet the needs of providing a data 

independent downscaling method to simulate precipitation as precipitation fields at a 

local scale with a high temporal resolution. Another limitation of statistical downscaling, 

for example, is that it can only provide downscaling results for which the input GCM 

product is corresponding to observation (Benestad 2016). Climate variables like 

precipitation are not well simulated in either GCM or RCM, therefore it is difficult to 

downscale through statistical methods. Meanwhile, most statistical methods are area 

limited and require the availability of higher resolution observation data (Jarosch, 

Anslow, and Clarke 2012), while it is challenging for many regions to get observation 

data (e.g. mountain areas). Additionally, statistical methods can hardly produce 

precipitation field output, but the precipitation field is essential for driving distributed 

hydrological models for climate change impact studies (Chen, Chen, and Guo 2018). 

Most researches in statistical downscaling often focus on specific areas and lead to case-

by-case studies. The downscaled quality is highly dependent on the availability of local 

observation data. Specifically, traditional statistical downscaling methods have the 

following limitations: 1) their dependency on higher-resolution observations or other 

variables in addition to precipitation, 2) their results vary in quality across different 

regions and often not in the form of precipitation fields, and 3) their ability to downscale 

future estimations of precipitation is limited to an hourly basis. 
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3.2.2 Stochastic Downscaling 

Stochastic downscaling is sometimes classified into the weather pattern approach 

because of its similar assumption of probability distributions. A more recent recognition 

is to treat the stochastic downscaling methods as disaggregation techniques that could 

generate small-scale ensemble rainfall predictions (Rebora et al. 2006; Posadas et al. 

2015; Terzago, Palazzi, and Hardenberg 2018). In operations, the stochastic downscaling 

method is one of the few techniques available that could produce downscaled 

precipitation output as precipitation fields. Rainfall Filtered Autoregressive Model 

(RainFARM) is one of the most successful stochastic downscaling models (Rebora et al. 

2006), which is based on the nonlinear transformation of a Gaussian random field and 

constrained by rainfall amounts at larger scales. Many have attempted to enhance the 

RainFARM. For example, Terzago, Palazzi, and Hardenberg (2018) added a map of extra 

weights to adjust RainFARM output. Another approach is done by Posadas et al. (2015) 

using a customized disaggregation model, which requires extra station data to correct the 

final results in the form of generating local heterogeneity. One major argument for using 

stochastic downscaling is its random process, in which random generated downscaled 

results cannot be taken as a faithful deterministic prediction of small-scale precipitation 

and could only be treated as a realization of a process with the appropriate statistical 

properties (Rebora et al. 2006). At the same time, stochastic downscaling methods fail to 

simulate precipitation events on the regional level at high temporal resolution (e.g. 

hourly). The long-term accumulated weights used in stochastic downscaling methods do 

not apply to hourly events and are not yet tested against short-term precipitation events. 
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3.2.3 Single Image Super-Resolution (SISR) Based Spatial Downscaling 

Traditional statistical downscaling methods rely heavily on datasets in addition to 

GCMs, mostly stationary observations. A range of statistical downscaling models, from 

early regressions to neural networks, have been developed for regions where model 

calibration is possible because of the availability of sufficiently good datasets (IPCC 

n.d.). Machine learning frameworks and algorithms are not completely new in the 

downscaling area. Some integrations of statistical downscaling and machine learning 

methods include optimizing the process of Optimal Predictor Selection (Najafi, 

Moradkhani, and Wherry 2010), principal component analysis (Benestad et al. 2015), and 

using Random Forests (RF) in PP method (He 2016). However, there are very few 

researches conducted outside the statistical downscaling category.  

Recent developments in the image processing field have shown promising 

performance in increasing spatial resolution of a single image through prior knowledge 

learned using machine learning approaches (Dong et al. 2014; Kim et al. 2016; Zhang et 

al. 2018). By adopting similar techniques or ideas and using them in downscaling 

applications, Super-Resolution (SR) algorithms and frameworks have drawn significant 

attention because of their potentials. Dictionary learning-based method, or sparse 

regularization (Ebtehaj et al. 2012) and Super-Resolution Convolutional Neural Networks 

(SRCNN) based method (Vandal et al. 2017) are two main directions in precipitation 

downscaling applications. Dictionary learning is an old method while SRCNN is newer 

and is one of the most popular methods for super-resolution reconstruction in image 

processing. Although applying SISR algorithms to gridded datasets and downscaling 
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precipitation fields have been attempted by a few researchers (Vandal et al. 2017), 

providing an appealing result is still a difficult task. Recent developments in machine 

learning and deep learning have shown promising results in image reconstruction with 

super-resolution algorithms, but not enough to produce a satisfying result for 

precipitation downscaling purposes. One drawback of this method is it involves the 

process of image interpolation, which is not a problem for images but dramatically 

increased the uncertainties of gridded datasets. Also, SRCNN based method such as 

DeepSD has added terrain information to help generate precipitation distribution patterns 

on 2D space; however, it is not often applicable for short-duration precipitation events. 

At the same time, “end users” of the downscaled products usually have higher 

requirements than just sharpening the edges or increasing spatial resolution from 2 to 4 

times (at least 8 to 12 times is more common in the downscaling field), which is beyond 

the capability of current SISR algorithms. 

3.2.4 Types of Outputs from Precipitation Downscaling 

Precipitation downscaling could provide three types of outputs: 1) point scale, 2) 

areal average and 3) spatially distributed precipitation fields (Maraun 2010). Specifically, 

point scale products refer to downscaled outputs as the prediction of station sites’ 

observation or fitting GCM output to station networks. Areal average products are 

usually in forms of maps of precipitation zones with high-density station coverage, for 

example, gridded station maps (Hewitson and Crane 2006), analog maps (Wang and 

Zhang 2008), and climate zone maps (Chandler 2011). The temporal resolution for this is 

often monthly, seasonally, or annually. Spatially distributed precipitation field refers to 



59 

 

the continuous rainfall field products and is the most challenging one to produce. It 

simulates fields of precipitation that can provide continuous spatial information as input 

to distributed hydrological models (Terzago, Palazzi, and Hardenberg 2018). The 

temporal resolution of this type is less than a day (e.g. hourly), thus able to capture short-

term precipitation events. Traditional statistical downscaling methods usually provide 

point scale results (e.g. time series prediction of one weather station or multi stations in 

an area), or areal average. Very few of the researches were aimed to provide spatially 

distributed precipitation fields, i.e. regular girds products (Rebora et al. 2006; Posadas et 

al. 2015; He 2016; Vandal et al. 2017). 

3.3 Methodology 

The development of the PreciPatch is inspired by the idea of the Analog Method 

(AM) and sparse regularization or, more recently called, dictionary learning. The general 

assumption is made that future weather will behave similarly to the past. By constructing 

a dictionary for low-resolution and high-resolution patches and using the dictionary with 

mapping information from historical data, the downscaling process could be achieved 

through a dictionary learning approach.  

3.3.1 Precipitation Downscaling Based on Dictionary Learning 

3.3.1.1 Dictionary Learning for Super-Resolution  

A classical dictionary trained for sparse coding consists of a limited collection of 

static atoms, i.e. a set of sample-based fixed patches. It is not a problem in the image 

super-resolution field since the goal for image enhancement is different from 

precipitation downscaling (sharpen the image vs. create local variation), and the 
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resolution enhancement rates are different (2 to 4 vs. 8 to 12) (Vandal 2018). In a 

standard dictionary learning approach for image super-resolution, the estimation of a 

high-resolution image, 𝑥 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚]𝑇 ∈ ℝ𝑚, from its low-resolution 

counterpart, 𝑦 ∈ ℝ𝑛, where 𝑛 ≤ 𝑚, can be recast as an inverse problem. 𝑥 may be 

estimated from 𝑦 through a linear structured degradation operator, 𝐻 ∈ ℝ𝑛×𝑚 and a noise 

𝑒 (Ebtehaj et al. 2012): 

Equation 2 Inverse estimation 

𝑦 = 𝐻𝑥 + 𝑒 

The sparsity of 𝑥 implies that it can be approximated by its orthogonal projection 

𝑥𝑆 by a few atoms, {∅𝑖}𝑖=1
𝑀  of a dictionary, Φ ∈ ℝ𝑚×𝑀 with a vector of representation 

coefficient 𝑐. By approximating 𝑥 with 𝑥𝑆, the equation could be rewritten as: 

Equation 3 Inverse estimation with a dictionary 

𝑦 = 𝐻Φc + 𝑒′, 𝑤ℎ𝑒𝑟𝑒 𝑒′ = 𝐻(𝑥 − 𝑥𝑆) + 𝑒 

𝑦 could also be approximated by using a low-resolution dictionary. The idea of 

dictionary learning is to train two dictionaries: one low-resolution dictionary and one 

high-resolution dictionary. By solving the approximation problem for low-resolution, the 

high-resolution can be recovered using the gathered information. The explanation above 

is a highly simplified version of sparse coding and dictionary learning, but it could be 

accomplished in many ways. For example, the SRCNN super-resolution method could be 

treated as a revised version of dictionary learning with modifications under a deep 

learning framework (Dong et al. 2014).  

3.3.1.2 Dynamic Dictionary Learning 
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A critical aspect of precipitation downscaling is to generate local variations from 

large-scale areal averages. Ideally, the atom number in a dictionary should be large 

enough to create variations under complex conditions. The generality of large-scale and 

local variables could be achieved by merging closer patches, regularizing patches, or 

using regularized searching functions (Freeman, Jones, and Pasztor 2002). The dictionary 

learning method is still inadequate in precipitation downscaling circumstances. One 

important reason is that gridded data sets are different from pure image files, and 

variations in precipitation are difficult to simulate and, therefore hard to generalize.   

The proposed approach is inspired by the idea of dictionary learning; however, it 

differs in many ways and does not follow any dictionary learning frameworks. For 

example, the atoms in the dictionary are not used directly as patches; instead, they were 

used as base patch values to simulate new patches. Therefore, the dictionary learning 

process becomes a dynamic approach.  

3.3.1.3 Downscaling Workflow 

The general workflow for the proposed downscaling method is to construct a 

dictionary consisting of linked low and high-resolution patches using historical datasets. 

A similarity search is then performed on the low-resolution patch with the low-resolution 

GCM product as input to find the linked high-resolution patch in the dictionary. The 

high-resolution output will be produced by linearly aligning the corresponding high-

resolution patches. In detail, the dynamic dictionary learning approach includes the 

following steps: 

1. Select a GCM precipitation product that needs to be downscaled. 
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2. Select a downscaling scale ratio or a desired spatial resolution. Let L𝑠 denote the 

scaling factor, for L𝑠 ∈ ℤ+.  

3. Select an existing gridded precipitation dataset A𝐻𝑅 (observation and bias-

corrected data are preferred) that has a native spatial resolution match or close to 

the desired spatial resolution L𝑠. The temporal resolution should also be matched 

on the same level (e.g. hourly, 6-hourly, daily, etc). 

4. Upscale A𝐻𝑅 to the spatial resolution level that matches or close to the GCM 

precipitation product (a widely used method is to aggregate grids as averages 

from the higher resolution (He 2016)).  

5. Use the upscaled output and A𝐻𝑅 as inputs to construct the patch dictionary.  

6. Use the GCM precipitation product as input and perform a similarity search on 

the constructed dictionary to find an estimated high-resolution patch for each grid. 

7. Align each high-resolution patch to form a weight mask for the high-resolution 

precipitation field. 

8. Use the weight mask as a basis, and the original GCM product as the rain rate 

constraint to produce the downscaled output.  
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Figure 9 General workflow of PreciPatch 

 

The workflow of the PreciPatch method is shown in Figure 9 and detailed in the 

following subsections. 

3.3.2 High-Resolution Dictionary Construction 

The core of the proposed dynamic dictionary learning approach is to construct a 

dictionary consisting of both low-resolution and high-resolution patches. Patches are 

defined as subsets from the original gridded datasets, and the dictionary is enriched by 

ingesting more datasets. This section introduces algorithms to construct the dictionary.  

3.3.2.1 Recording the Spatial Difference 

Before constructing the dictionary, the Diff Array is proposed and defined in 

Table 5 as a record of space difference between grid cells, and is used in further analysis 

of other algorithms. Figure 10 shows the construction of the Diff Array; the difference 

between cells is defined as “top minus bottom” and “left minus right”. In the Diff Array, 

precipitation value differences between nearby grids are recorded and will be used to 

classify the spatial differences between grids. The Diff Array stores 12 values in total for 
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a three by three array. The Diff Array will be used for dictionary construction (section 

3.3.2.2) and similarity search (section 3.3.4). 

 

Table 5 The Diff Array 

Name: Create the Diff Array  

Input: 

Array B𝐿𝑅[3][3], a non-empty array with size 3 × 3 

Output: 

Diff(B𝐿𝑅[3][3]) = B𝐷𝐼𝐹𝐹[12], the Diff array of B𝐿𝑅[3][3] with size 12 
Procedure: 

(1) Diff(B𝐿𝑅[3][3]) = B𝐷𝐼𝐹𝐹[12] is defined as: 

                           B𝐷𝐼𝐹𝐹[0] = B𝐿𝑅[0][0] − B𝐿𝑅[0][1], 
                           B𝐷𝐼𝐹𝐹[1] = B𝐿𝑅[0][1] − B𝐿𝑅[0][2], 
                       B𝐷𝐼𝐹𝐹[2] = B𝐿𝑅[0][0] − B𝐿𝑅[1][0], 
                           B𝐷𝐼𝐹𝐹[3] = B𝐿𝑅[0][1] − B𝐿𝑅[1][1], 
                       B𝐷𝐼𝐹𝐹[4] = B𝐿𝑅[0][2] − B𝐿𝑅[1][2], 
                       B𝐷𝐼𝐹𝐹[5] = B𝐿𝑅[1][0] − B𝐿𝑅[1][1], 
                       B𝐷𝐼𝐹𝐹[6] = B𝐿𝑅[1][1] − B𝐿𝑅[1][2], 
                       B𝐷𝐼𝐹𝐹[7] = B𝐿𝑅[1][0] − B𝐿𝑅[2][0], 
                       B𝐷𝐼𝐹𝐹[8] = B𝐿𝑅[1][1] − B𝐿𝑅[2][1], 
                       B𝐷𝐼𝐹𝐹[9] = B𝐿𝑅[1][2] − B𝐿𝑅[2][2], 
                       B𝐷𝐼𝐹𝐹[10] = B𝐿[2][0] − B𝐿𝑅[2][1], 
                       B𝐷𝐼𝐹𝐹[11] = B𝐿𝑅[2][1] − B𝐿𝑅[2][2] 
(2) Return B𝐷𝐼𝐹𝐹[12] 
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Figure 10 A graph representation of Diff Array 

 

3.3.2.2 The Dictionary Construction Algorithm 

The patch dictionary used in this downscaling method is constructed using the 

algorithm introduced in Table 6. The high-resolution and low-resolution dictionaries are 

integrated as one, and the spatial information (i.e., Diff Array) of the low-resolution 

patches is stored. High-resolution datasets and low-resolution datasets are decomposed 

into small patches and reorganized into a patch dictionary. In this case, the low-resolution 

datasets are divided into three by three low-resolution patches, and the high-resolution 

datasets are divided into high-resolution patches with sizes corresponding to the scaling 

factor. The Diff Array of each low-resolution patch is also calculated and stored, which 

provides additional information about the spatial relationships between nearby grids of 

each low-resolution patch. 
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Table 6 The dictionary construction algorithm 

Name: Construction of the high-resolution dictionary    

Definition: 

L𝑠 is the scaling factor, for L𝑠 ∈ ℤ+  

A𝐻𝑅 is one time slice from a gridded precipitation dataset 

A𝐿𝑅 is the aggregated (upscaled) result from A𝐻𝑅 using area average based on the 

scaling factor L𝑠 

Input: 

Array A𝐿𝑅[𝑚][𝑛] = [

𝑙0,0 ⋯ 𝑙0,𝑛

⋮ ⋱ ⋮
𝑙𝑚,0 ⋯ 𝑙𝑚,𝑛

] , for 𝑚, 𝑛 ∈ ℤ+  

Array A𝐻𝑅[𝑞][𝑝] = [

ℎ0,0 ⋯ ℎ0,𝑝

⋮ ⋱ ⋮
ℎ𝑞,0 ⋯ ℎ𝑞,𝑝

] , for 𝑞, 𝑝 ∈ ℤ+, 𝑞 = (𝑚 + 1) ∗ L𝑠 − 1, 𝑝

= (𝑛 + 1) ∗ L𝑠 − 1 

Output: 

𝐷{𝑑𝐿𝑅 , 𝑑𝐻𝑅 , 𝑑𝐷𝐼𝐹𝐹}, the patch dictionary consists of the low-resolution patch set 𝑑𝐿𝑅, 

high-resolution patch set 𝑑𝐻𝑅, and spatial difference set 𝑑𝐷𝐼𝐹𝐹 (defined in table 5) 

Procedure: 

(1) For (𝑗 = 1 𝐭𝐨 𝑗 = 𝑚 − 1) do { 

              For (𝑖 = 1 𝐭𝐨 𝑖 = 𝑛 − 1) do { 

                         New Array B𝐿𝑅[3][3], Array B𝐻𝑅[L𝑠][L𝑠], Array B𝐷𝐼𝐹𝐹[12] 
                         For (𝑘 = −1 𝐭𝐨 𝑘 = 1) do { 

                                     For (𝑟 = −1 𝐭𝐨 𝑟 = 1) do { 

                                                B𝐿𝑅[𝑘 + 1][𝑟 + 1] = A𝐿𝑅[𝑗 + 𝑘][𝑖 + 𝑟] 
                                      } 

                           } 

                           Appending B𝐿𝑅 as the last element of 𝑑𝐿𝑅 

                           B𝐷𝐼𝐹𝐹[12] = Diff(B𝐿𝑅[3][3]) 

                       Appending B𝐷𝐼𝐹𝐹 as the last element of 𝑑𝐷𝐼𝐹𝐹 

                       B𝐻𝑅 = A𝐻𝑅[(𝑗 ∗ L𝑠) 𝐭𝐨 ((𝑗 + 1) ∗ L𝑠 − 1)][(𝑖 ∗ L𝑠) 𝐭𝐨 ((𝑖 + 1) ∗
L𝑠 − 1)] 
                           Appending B𝐻𝑅 as the last element of 𝑑𝐻𝑅 

              } 

   } 

(2) Return 𝐷{𝑑𝐿𝑅 , 𝑑𝐻𝑅 , 𝑑𝐷𝐼𝐹𝐹} as the integration of sets 𝑑𝐿𝑅 , 𝑑𝐻𝑅 , and 𝑑𝐷𝐼𝐹𝐹 
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3.3.3 A Dynamic Time Warping (DTW) Based Similarity Search 

After constructing the dictionary, a similarity search is performed against the 

dictionary using low-resolution inputs. It is different from the widely used Mean Squared 

Error (MSE) or Euclidean Distance-based similarity search. Dynamic Time Warping 

(DTW) distance is utilized in this research to help to measure spatial similarities between 

two low-resolution patches. For example, the following algorithm is used to calculate the 

DTW distance of two data series with equal length. The original version of DTW 

distance is used for measuring the similarity between two-time series with different 

lengths. See related research done by Itakura (1975) and Keogh and Ratanamahatana 

(2005). Operational speaking, the DTW distance could be applied to any data series in the 

form of arrays. Table 7 provides the algorithm for an application, revised from the 

original version of DTW (Keogh and Ratanamahatana 2005).   

 

Table 7 DTW distance review 

Name: DTW distance of two data series with equal length (n) 

Input: 

Array 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑖, … , 𝑎𝑛] 
Array 𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑗 , … , 𝑏𝑛] 

Output: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝐴, 𝐵), the DTW distance between 𝐴 and 𝐵 

Procedure: 

(1) Construct an n-by-n matrix where the (𝑖𝑡ℎ, 𝑗𝑡ℎ) element of the matrix contains 

the distance 𝑑𝑖𝑠𝑡(𝑎𝑖, 𝑏𝑗) between the two points 𝑎𝑖 and 𝑏𝑗, (i.e. 𝑑𝑖𝑠𝑡(𝑎𝑖, 𝑏𝑗) =

(𝑎𝑖 − 𝑏𝑗)2).  
(2) A warping path W is a contiguous set of matrix elements that defines a mapping 

between A and B. The 𝑘𝑡ℎ element of W is defined as 𝑤𝑘 = (𝑖, 𝑗)𝑘, therefore,  

𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑘, … , 𝑤𝐾, where 𝑛 ≤ 𝐾 ≤ 2𝑛 − 1 

W is subject to several constraints: 

• Boundary conditions: 𝑤1 = (1, 1) and 𝑤𝐾 = (𝑛, 𝑛) 
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• Continuity: given 𝑤𝑘 = (𝑐, 𝑑), then 𝑤𝑘−1 = (𝑐′, 𝑑′), where 𝑐 − 𝑐′ ≤ 1 and 

𝑑 − 𝑑′ ≤ 1  

• Monotonicity: given 𝑤𝑘 = (𝑐, 𝑑), then 𝑤𝑘−1 = (𝑐′, 𝑑′), where 𝑐 − 𝑐′ ≥ 0 and 

𝑑 − 𝑑′ ≥ 0 

(3) The DTW path is the path that minimizes the warping cost: 

𝐷𝑇𝑊(𝐴, 𝐵) = min {√∑ 𝑤𝑘

𝐾

𝑘=1

} 

(4) Define the cumulative distance γ(𝑖, 𝑗) as the distance found in the current cell and 

the minimum of the cumulative distances of the adjacent elements: 

γ(𝑖, 𝑗) = 𝑑𝑖𝑠𝑡(𝑎𝑖, 𝑏𝑗) + min {γ(𝑖 − 1, 𝑗 − 1), γ(𝑖 − 1, 𝑗), γ(𝑖, 𝑗 − 1)} 

(5) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝐴, 𝐵) =  γ(𝑛, 𝑛), where the path is 𝐷𝑇𝑊(𝐴, 𝐵) 

(6) Return 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝐴, 𝐵) 

 

 

3.3.4 Generate the High-Resolution Weight Mask Through a Double-Layer DTW 

Similarity Fuzzy Search Algorithm 

DTW distance offers a more comprehensive estimation for similarity than simple 

MSE. This approach could capture linear changes; however, precipitation field 

downscaling requires estimation of spatial changes. A double-layer DTW similarity 

search is then proposed in Table 8, which utilizes the Diff Array stored in the previous 

steps to compare rainfall peaks and valleys in the neighborhood cells spatially. 

Additionally, a fuzzy search layer is added into the algorithm to avoid the overfitting of 

patches. In Table 8, each grid from the low-resolution input is compared with the patches 

in the constructed dictionary along with its spatial relationship with nearby eight grids 

(the Diff Array). The final high-resolution patches will be estimated by comparing the 

similarity of the low-resolution input grids with low-resolution dictionary patches. 

Specifically, three closest patches from the dictionary are selected for each input grid, 
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and their corresponding high-resolution patches are averaged to produce a final high-

resolution patch for the input grid. The final high-resolution output field is produced by 

aligning each high-resolution patch found for each input grid. 

 

Table 8 A double-layer DTW similarity fuzzy search algorithm 

Name: Similarity fuzzy search based on a double-layer DTW distance 

Input: 

L𝑠, for L𝑠 ∈ ℤ+ , is the scaling factor  

𝐷{𝑑𝐿𝑅 , 𝑑𝐻𝑅 , 𝑑𝐷𝐼𝐹𝐹}, is the patch dictionary with size 𝑇𝐷 for each set 

Array C𝐿𝑅[𝑦][𝑥] = [

𝑙0,0 ⋯ 𝑙0,𝑥

⋮ ⋱ ⋮
𝑙𝑦,0 ⋯ 𝑙𝑦,𝑥

] , for 𝑦, 𝑥 ∈ ℤ+ and 𝑦, 𝑥 ≥ 2, is the low-

resolution dataset 

Output: 

Array C𝐻𝑅[𝑔][𝑘] = [

ℎ0,0 ⋯ ℎ0,𝑘

⋮ ⋱ ⋮
ℎ𝑔,0 ⋯ ℎ𝑔,𝑘

] , for 𝑔, 𝑘 ∈ ℤ+, 𝑔 = (𝑦 − 1) ∗ L𝑠 − 1, 𝑘 =

(𝑥 − 1) ∗ L𝑠 − 1, is the downscaled weight mask 

Procedure: 

(1) For (𝑗 = 1 𝐭𝐨 𝑗 = 𝑦 − 1) do { 

              For (𝑖 = 1 𝐭𝐨 𝑖 = 𝑥 − 1) do { 

                         New Array E𝐿𝑅[3][3], Array E𝐷𝐼𝐹𝐹[12],  
                         New Array E1𝑠𝑡[L𝑠][L𝑠], Array E2𝑛𝑑[L𝑠][L𝑠], Array E3𝑟𝑑[L𝑠][L𝑠] 
                         For (𝑘 = −1 𝐭𝐨 𝑘 = 1) do { 

                                     For (𝑟 = −1 𝐭𝐨 𝑟 = 1) do { 

                                                E𝐿𝑅[𝑘 + 1][𝑟 + 1] = C𝐿𝑅[𝑗 + 𝑘][𝑖 + 𝑟] 
                                      } 

                           } 

                       E𝐷𝐼𝐹𝐹[12] = Diff(E𝐿𝑅[3][3]) 

                           Let 1st_best_so_far =  infinity  
                           Let 2nd_best_so_far =  infinity 

                           Let 3rd_best_so_far =  infinity 

                       For each 𝑡 𝐢𝐧 𝑇𝐷 do { 
                             𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡1 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝑓𝑙𝑎𝑡(E𝐿𝑅), 𝑓𝑙𝑎𝑡(𝑑𝐿𝑅[𝑡])) 
                             𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(E𝐷𝐼𝐹𝐹 , 𝑑𝐷𝐼𝐹𝐹[𝑡]) 
                              𝑑𝑖𝑠𝑡𝑎𝑙𝑙 = 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 + 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 

                              If (𝑑𝑖𝑠𝑡𝑎𝑙𝑙 < 1st_best_so_far ) then {  

                                        1st_best_so_far = 𝑑𝑖𝑠𝑡𝑎𝑙𝑙 
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                                         E1𝑠𝑡 =  𝑑𝐻𝑅[𝑡] } 

                                   Else if (𝑑𝑖𝑠𝑡𝑎𝑙𝑙 < 2nd_best_so_far) then { 

                                        2nd_best_so_far = 𝑑𝑖𝑠𝑡𝑎𝑙𝑙 

                                         E2𝑛𝑑 =  𝑑𝐻𝑅[𝑡] } 

                                   Else if (𝑑𝑖𝑠𝑡𝑎𝑙𝑙 < 3rd_best_so_far) then { 

                                        3rd_best_so_far = 𝑑𝑖𝑠𝑡𝑎𝑙𝑙 

                                         E3𝑟𝑑 =  𝑑𝐻𝑅[𝑡] } 

                                   Else {Continue}                                                                               

                        } 
                         C𝐻𝑅[((𝑗 − 1) ∗ L𝑠) 𝐭𝐨 (𝑗 ∗ L𝑠 − 1)][((𝑖 − 1) ∗ L𝑠) 𝐭𝐨 (∗ L𝑠 − 1)] = 

                        𝐴𝑣𝑒𝑟𝑎𝑔𝑒(E1𝑠𝑡 + E2𝑛𝑑 + E3𝑟𝑑) 
              } 

   } 
(2) Return C𝐻𝑅 

 
 

The result from the algorithm in Table 8 is a high-resolution weight mask, but it 

cannot be treated as the final downscaling result, yet it is very close to the aimed output. 

The downscaling algorithm described in Table 9 is a necessary step to make sure the final 

output is constrained by the original low-resolution input, i.e., consistent with the large-

scale precipitation amount.  

 

Table 9 Downscaling algorithm based on a weighted mask and constrains 

Name: Produce downscaled results from a weighted mask and constrains 

Input: 

L𝑠, for L𝑠 ∈ ℤ+ , is the scaling factor  

Array C𝐿𝑅[𝑦][𝑥] = [

𝑙0,0 ⋯ 𝑙0,𝑥

⋮ ⋱ ⋮
𝑙𝑦,0 ⋯ 𝑙𝑦,𝑥

] , for 𝑦, 𝑥 ∈ ℤ+ and 𝑦, 𝑥 ≥ 2, is the low-

resolution dataset 

Array C𝐻𝑅[𝑔][𝑘] = [

ℎ0,0 ⋯ ℎ0,𝑘

⋮ ⋱ ⋮
ℎ𝑔,0 ⋯ ℎ𝑔,𝑘

] , for 𝑔, 𝑘 ∈ ℤ+, 𝑔 = (𝑦 − 1) ∗ L𝑠 − 1, 𝑘 =

(𝑥 − 1) ∗ L𝑠 − 1, is the downscaled weight mask 
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Output: 

Array 𝐷𝑆𝐻𝑅[𝑔][𝑘] = [

ℎ0,0 ⋯ ℎ0,𝑘

⋮ ⋱ ⋮
ℎ𝑔,0 ⋯ ℎ𝑔,𝑘

] , for 𝑔, 𝑘 ∈ ℤ+, 𝑔 = (𝑦 − 1) ∗ L𝑠 − 1, 𝑘 =

(𝑥 − 1) ∗ L𝑠 − 1, is the downscaled precipitation field from C𝐿𝑅 

Procedure: 

(1) For (𝑗 = 1 𝐭𝐨 𝑗 = 𝑦 − 1) do { 

              For (𝑖 = 1 𝐭𝐨 𝑖 = 𝑥 − 1) do { 

                     DS𝐻𝑅[((𝑗 − 1) ∗ L𝑠) 𝐭𝐨 (𝑗 ∗ L𝑠 − 1)][((𝑖 − 1) ∗ L𝑠) 𝐭𝐨 (𝑖 ∗ L𝑠 − 1)] = 

                    𝑆𝑢𝑚(C𝐿𝑅[𝑗][𝑖]) ∗ (
C𝐻𝑅[((𝑗−1)∗L𝑠) 𝐭𝐨 (𝑗∗L𝑠−1)][((𝑖−1)∗L𝑠) 𝐭𝐨 (𝑖∗L𝑠−1)]

𝑆𝑢𝑚(C𝑅[((𝑗−1)∗L𝑠) 𝐭𝐨 (𝑗∗L𝑠−1)][((𝑖−1)∗L𝑠) 𝐭𝐨 (𝑖∗L𝑠−1)])
) 

              } 

   } 

(2) Return 𝐷𝑆𝐻𝑅 
 

 

3.3.5 Patch Dictionary Classification and Loose Index  

The spatiotemporal complexity of DTW is 𝑂(𝑛2) for data series with the same 

length 𝑛 (Keogh and Ratanamahatana 2005). A patch dictionary contains K data series 

would have a complexity of 𝑂(𝐾 ∙ 𝑛2). The databases or dictionary used in prior research 

is relatively small, typically less than 10,000 samples (Tan, Webb, and Petitjean 2017). 

However, the dictionary constructed in previous sections will easily exceed 1,000,000 

samples after absorbing years of data. Therefore, classification and indexing become 

necessary if we want to maintain searching performance at a practical level. The 

following sections will introduce one classification algorithm to divide the patch 

dictionary into sub-dictionaries, an effective loose index method to generate an individual 

index for each sub-dictionary, and an updated similarity search that utilizes the 

classification and indexing system.  
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3.3.5.1 Dictionary Classification Algorithm 

The patch classification algorithm in Table 10 is a simple but effective coding 

method based on the spatial difference of low-resolution patches. Sub-dictionaries are 

classified according to the code. A similarity search will be done against individual sub-

dictionary instead of the whole dictionary, which saves tremendous scan time.  

 

Table 10 Patch dictionary classification algorithm 

Name: Build up classification  

Input: 

𝐷{𝑑𝐿𝑅 , 𝑑𝐻𝑅 , 𝑑𝐷𝐼𝐹𝐹}, is the patch dictionary with size 𝑇𝐷 for each set 

Output: 

The classification code 𝐶𝑜𝑑𝑒𝐷 of an element 𝐷{𝑑𝐿𝑅[𝑡], 𝑑𝐻𝑅[𝑡], 𝑑𝐷𝐼𝐹𝐹[𝑡]} in 

𝐷{𝑑𝐿𝑅 , 𝑑𝐻𝑅 , 𝑑𝐷𝐼𝐹𝐹} for an element 𝑡 in 𝑇𝐷 
Procedure: 

(1) Let 𝐶𝑜𝑑𝑒𝐷 = "" 

(2) For each 𝑑 𝐢𝐧 𝑑𝐷𝐼𝐹𝐹[𝑡] do { 

            If (𝑑 < 0 ) then {𝐶𝑜𝑑𝑒𝐷+= 𝑠𝑡𝑟𝑖𝑛𝑔(9)} 

              Else if (𝑑 > 0 ) then {𝐶𝑜𝑑𝑒𝐷+= 𝑠𝑡𝑟𝑖𝑛𝑔(1)} 

              Else if (𝑑 = 0 ) then {𝐶𝑜𝑑𝑒𝐷+= 𝑠𝑡𝑟𝑖𝑛𝑔(0)} 

              Else {print (NaN)}                                                                               

       } 

(3) Return 𝐶𝑜𝑑𝑒𝐷 
 

 

Figure 11 gives a preview of the classification system when implementing. Each 

file folder in the figure represents a sub-dictionary that has been classified according to 

the encoding system. 
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Figure 11 Dictionary classification 

 

3.3.5.2 Loose Index Algorithm for Sub-Dictionaries 

Although the atom number in sub-dictionaries is much less than the original 

dictionary, the scanning process will still be long if large amounts of historical data are 

used in constructing the dictionary. Therefore, an indexing system is always needed to 

reduce lookup time. An index is introduced in Table 11 to store comparative DTW 

distance between the patches and the x-axis (sets with all zeros). The idea is to filter 

potential solutions for arbitrary similarity searches. In Table 11, the combined DTW 

distance is pre-calculated for each low-resolution patch between the zero-vector and its 

Diff Array between the zero-vector. The combined DTW distance could not be treated as 

the exact index but enough for a loose indexing system. 

 

Table 11 Sub-dictionary loose indexing algorithm 

Name: Build up a loose index for the sub-dictionary  

Input: 

𝑆𝐷{𝑠𝑑𝐿𝑅 , 𝑠𝑑𝐻𝑅 , 𝑠𝑑𝐷𝐼𝐹𝐹}, is the sub-dictionary under a classification code 𝐶𝑜𝑑𝑒𝑆𝐷 

Encoding 

> 0    →  “1”  
< 0       →  “9” 
= 0          →  “0” 

Example: 

“199919091099” 
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with size 𝑇𝑆𝐷 for each set 

Output: 

Index set 𝑠𝑑𝑖𝑛𝑑𝑒𝑥 with size 𝑇𝑆𝐷 

Procedure: 

(1) For each 𝑡 𝐢𝐧 𝑇𝑆𝐷 do { 

             𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡1 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝑓𝑙𝑎𝑡(𝑠𝑑𝐿𝑅[𝑡]), 𝑓𝑙𝑎𝑡(𝑧𝑒𝑟𝑜𝑠(𝑠𝑑𝐿𝑅[𝑡]))) 

             𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝑠𝑑𝐷𝐼𝐹𝐹[𝑡], 𝑧𝑒𝑟𝑜𝑠(𝑠𝑑𝐷𝐼𝐹𝐹[𝑡])) 

             𝑑𝑖𝑠𝑡𝑧𝑒𝑟𝑜 = 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 + 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 

             Appending 𝑑𝑖𝑠𝑡𝑧𝑒𝑟𝑜 as the last element of 𝑠𝑑𝑖𝑛𝑑𝑒𝑥 

       } 

(2) Return 𝑠𝑑𝑖𝑛𝑑𝑒𝑥 
 

 

3.3.5.3 Updated Similarity Search Based on Dictionary Classification and Loose Index 

After classifying the dictionary and building the loose index, the similarity search 

algorithm should be revised to leverage the index structure. Table 12 offers the updated 

version part of the double-layer similarity fuzzy search algorithm from Table 8. In Table 

12, each low-resolution input grid is compared with the patches in the corresponding sub-

dictionaries that follows the same spatial relationship with its 8 nearby grids. The DTW 

distance between the patches and the zero-vector haven been pre-calculated and is 

compared with the DTW distance between the input grid with the zero-vector to form a 

candidate set of patches. Then the exact DTW distance is calculated among the candidate 

patches to find the three closest patches and produce the final patch piece. 

 

Table 12 Similarity search algorithm based on dictionary classification and loose index 

Name: using the classification and loose index to search 

Input: 

L𝑠, for L𝑠 ∈ ℤ+ , is the scaling factor  

𝑁𝑝𝑎𝑡𝑐ℎ, for 𝑁𝑝𝑎𝑡𝑐ℎ ∈ ℤ+ , is the minimum number of patches will be examined 
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Fully classified patch dictionary 𝐷{𝑑𝐿𝑅 , 𝑑𝐻𝑅 , 𝑑𝐷𝐼𝐹𝐹}, for each sub-class with code 

𝐶𝑜𝑑𝑒𝑆𝐷, the indexed sub-dictionary is 𝑆𝐷{𝑠𝑑𝐿𝑅 , 𝑠𝑑𝐻𝑅 , 𝑠𝑑𝐷𝐼𝐹𝐹 , 𝑠𝑑𝑖𝑛𝑑𝑒𝑥} with size 

𝑇𝑆𝐷, for 𝑆𝐷 ∈ ℤ+ 

A non-empty array E𝐿𝑅[3][3], and its Diff array E𝐷𝐼𝐹𝐹[12] 
Output: 

The similarity fuzzy search results: E1𝑠𝑡[L𝑠][L𝑠], E2𝑛𝑑[L𝑠][L ], and E3𝑟𝑑[L𝑠][L𝑠] 
Procedure: 

(1) Find code 𝐶𝑜𝑑𝑒𝑆𝐷 for E𝐷𝐼𝐹𝐹[12] and locate the sub-dictionary 

𝑆𝐷{𝑠𝑑𝐿𝑅 , 𝑠𝑑𝐻𝑅 , 𝑠𝑑𝐷𝐼𝐹𝐹 , 𝑠𝑑𝑖𝑛𝑑𝑒𝑥} 

(2) Calculate 𝑑𝑖𝑠𝑡𝑧𝑒𝑟𝑜 for E𝐿𝑅[3][3] and E𝐷𝐼𝐹𝐹[12] 
         𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡1 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝑓𝑙𝑎𝑡(E𝐿𝑅[3][3]), 𝑓𝑙𝑎𝑡(𝑧𝑒𝑟𝑜𝑠(E𝐿𝑅[3][3]))) 

         𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(E𝐷𝐼𝐹𝐹[12], 𝑧𝑒𝑟𝑜𝑠(E𝐷𝐼𝐹𝐹[12])) 

         𝑑𝑖𝑠𝑡𝑧𝑒𝑟𝑜 = 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 + 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 

(3) Calculate absolute differences between 𝑑𝑖𝑠𝑡𝑧𝑒𝑟𝑜 and each element in 𝑠𝑑𝑖𝑛𝑑𝑒𝑥 

(4) Sort 𝑠𝑑𝑖𝑛𝑑𝑒𝑥 based on the absolute differences in ascending order 

(5) Find 𝑑𝑖𝑠𝑡𝑡ℎ𝑑 threshold as 𝑑𝑖𝑠𝑡𝑡ℎ𝑑 = 𝑠𝑑𝑖𝑛𝑑𝑒𝑥[𝑁𝑝𝑎𝑡𝑐ℎ], if (𝑇𝑆𝐷 ≤ 𝑁𝑝𝑎𝑡𝑐ℎ), then 

{𝑑𝑖𝑠𝑡𝑡ℎ𝑑 = 𝑠𝑑𝑖𝑛𝑑𝑒𝑥[𝑇𝑆𝐷]} 
(6) For each 𝑡 𝐢𝐧 𝑇𝑆𝐷 do { 

             If (𝑠𝑑𝑖𝑛𝑑𝑒𝑥[t] ≤ 𝑑𝑖𝑠𝑡𝑡ℎ𝑑  ) then {  

                           Let 1st_best_so_far =  infinity  
                           Let 2nd_best_so_far =  infinity 

                           Let 3rd_best_so_far =  infinity 

                       For each 𝑡 𝐢𝐧 𝑇𝑆𝐷 do { 
                             𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡1 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝑓𝑙𝑎𝑡(E𝐿𝑅), 𝑓𝑙𝑎𝑡(𝑠𝑑𝐿𝑅[𝑡])) 
                             𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(E𝐷𝐼𝐹𝐹 , 𝑠𝑑𝐷𝐼𝐹𝐹[𝑡]) 
                              𝑑𝑖𝑠𝑡𝑎𝑙𝑙 = 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 + 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 

                              If (𝑑𝑖𝑠𝑡𝑎𝑙𝑙 < 1st_best_so_far ) then {  

                                        1st_best_so_far = 𝑑𝑖𝑠𝑡𝑎𝑙𝑙 

                                         E1𝑠𝑡 =  𝑠𝑑𝐻𝑅[𝑡] } 

                                   Else if (𝑑𝑖𝑠𝑡𝑎𝑙𝑙 < 2nd_best_so_far) then { 

                                        2nd_best_so_far = 𝑑𝑖𝑠𝑡𝑎𝑙𝑙 

                                         E2𝑛𝑑 =  𝑠𝑑𝐻𝑅[𝑡] } 

                                   Else if (𝑑𝑖𝑠𝑡𝑎𝑙𝑙 < 3rd_best_so_far) then { 

                                        3rd_best_so_far = 𝑑𝑖𝑠𝑡𝑎𝑙𝑙 

                                         E3𝑟𝑑 =  𝑠𝑑𝐻𝑅[𝑡] } 

                                   Else {Continue}                                       

                        } 
             } 

              Else {Continue}                                       

         } 

(7) Return E1𝑠𝑡[L𝑠][L𝑠], E2𝑛𝑑[L𝑠][L𝑠], and E3𝑟𝑑[L𝑠][L𝑠]      
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3.4 Implementation 

The downscaling method was implemented using Python and open-source 

scientific libraries, including NumPy, NetCDF, numba, and itertools. The proposed 

downscaling method is implemented as a batch of computation processes from dictionary 

construction to downscaled output production. The system accepts NetCDF and HDF 

files as input and output downscaled results in NetCDF formats. The current 

implementation method is not under any existing frameworks (to maximize 

implementation flexibility), the implementation of dictionary learning is based on 

programming each algorithm in individual programs, and could be treated as a complete 

downscaling system. 

3.5 Precipitation Downscaling Case Studies 

3.5.1 General Design of Downscaling Experiments  

3.5.1.1 Introduction  

To examine the performance of the proposed downscaling method on the gridded 

precipitation product, two case studies have been conducted in this chapter. The first case 

study is developed as a synthetic experiment with direct ground truth available for 

comparison, and the second case study is a real-world use case in which no direct ground 

truth is available to compare with the downscaled results. The general design and detailed 

setups of the experiments are discussed in this section.  

3.5.1.2 Downscaling Goal and Objective  
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The goal for this downscaling research is to downscale GCMs’ outputs to the 

user’s desired resolution, e.g. mesoscale (200km to 2km) or even microscale (less than 

1km). However, different end-users would have different requirements for the final 

output. In this downscaling research, downscaling functional requirements and non-

functional requirements are developed based on the current challenges discussed in the 

introduction chapter. Specifically, the ability to produce precipitation fields is highly 

valued in this study and yields a base requirement for all the downscaling methods that 

are investigated in this research.  

3.5.1.2.1 Downscaling Functional Requirements  

There are several downscaling requirements guiding the precipitation case studies 

in this research: 

1) Precipitation field generation: the downscaled results should be in the form of 

continuous precipitation field without any gaps in space  

2) Data independence: coarse-resolution gridded precipitation variable should be 

used as the only input for downscaling, other variables shall not be included to 

avoid data dependence when downscaling future estimation of local 

precipitation. Historical precipitation data could be used in modeling or 

training, excluding the input data.  

3)  The downscaling method should be able to produce hourly precipitation 

results. Daily, monthly or larger time frames are not included in this study 

scope.   

3.5.1.2.2 Downscaling Non-Functional Requirements  



78 

 

In addition to the functional requirements, some non-functional requirements are 

also considered as important factors in downscaling, including downscaling speed, 

computational complexity, and resource consumption. They should be maintained at a 

usable level, e.g. if downscaling a small data set would require hours of computing time, 

then it could not be accepted as a valid approach. However, modeling time and training 

time could be excluded from this requirement as they are usually a one-time cost.  

3.5.1.3 Synthetic Experiments and Real-World Use Cases  

A common problem in evaluating the downscaling method is the lack of ground 

truth data. Climate variables like precipitation are simulated differently across models 

and show different patterns and rainfall amounts. So, instead of downscaling a GCM 

output directly, synthetic experiments are often used to evaluate downscaling 

performance. Synthetic experiments are conducted through upscaling higher resolution 

rainfall products and using them as inputs and comparing downscaled results to original 

products to evaluate overall performance (Rebora 2006; He 2016). The upscaling process 

is achieved through aggregate grids as averages from the higher resolution. 

3.5.1.4 Study Areas 

The main study area is the Chesapeake Bay, which is an estuary in the Eastern 

U.S. Additional areas are also included for parallel comparison of the downscaling 

results. The specific areas are separated regions within California, Kansas, and Florida. 

Downscaling methods are used for all four regions and more sets are generated for the 

Chesapeake Bay for long-term comparison. Figure 12 maps the geographical coverage of 

each study region on the U.S. map.   
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Figure 12 Study areas for downscaling studies 

 

3.5.1.5 Datasets  

Two datasets were used in the case studies, IMERG and MERRA-2. The first one 

is for the synthetic experiment and dictionary training and the second one tested as the 

real-world use case. 

3.5.1.5.1 IMERG  

The Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset is collected 

and selected as experimental data which is generated by NASA's Precipitation Processing 

System every half hour with 4-hours (Early) to 3.5-months (Final) latency from 

acquisition time. IMERG V06 Final is chosen, which is a satellite-gauge product. The 
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spatiotemporal resolution of the precipitation in IMERG is 0.1° with half-hour reads for 

each day of the year. 

3.5.1.5.2 MERRA-2 

The MERRA-2 dataset is collected and selected as the experiment data, which is 

produced and provided by the Global Modeling and Assimilation Office of NASA 

Goddard Space Flight Center. MERRA-2 dataset is stored in NetCDF4 format and 

contains about 49 variables (e.g., Surface Wind Speed, Precipitation, Surface Air 

Temperature, etc.). PRECTOTCORR is chosen as the variable to use in this experiment, 

which is the bias-corrected precipitation output from an atmospheric model. The 

spatiotemporal resolution of this variable is 0.625° by 0.5° with hourly reads of the year.  

3.5.1.5.3 Station Data (Gauge Data)  

Station measurement of rainfall is an indirect way to measure precipitation, which 

could be highly biased depending on the local and gauge types. However, it is still the 

closest way to measure how much precipitation had fallen to the ground. The station data 

used in this research was collected from NOAA, National Climatic Data Center (NCDC) 

through Climate Data Online (CDO). Although the station data are the direct read from 

the rain gauges and provide hourly measurements, the recording time frame is different 

from station to station. For example, station A may start the measurement at the 47th min 

of each hour, and Station B always starts to measure at the 17th min of each hour.  

3.5.1.6 Downscaling Methods  

The methods used in downscaling case studies are chosen based on the ability to 

provide precipitation fields as the final output and whether they require climate variables 
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other than precipitation when producing downscaled results. Besides the statistical 

downscaling methods, bilinear interpolation (e.g., bicubic) is considered the baseline for 

the spatial downscaling of precipitation fields (He 2016). Specifically, three methods are 

selected to evaluate besides the proposed method: 1) bicubic interpolation, 2) DeepSD, as 

an SRCNN based super-resolution downscaling method (Vandal et al. 2017), and 3) 

RainFARM (Rebora 2006) as a stochastic downscaling method. Although there are other 

downscaling methods available in the research, most of them are not able to produce 

precipitation fields as output, require other datasets when downscaling, or they are 

limited to a specific area. Statistical methods like regression and PP methods are not 

chosen because they failed to produce continuous precipitation fields and require 

additional variables other than precipitation, which are not suitable for downscaling 

requirements in the previous section. Most of the statistical methods are involved using 

either observation data from the same time frame or other variables if precipitation field 

is desired as the downscaled result. Under this consideration, statistical methods are 

chosen too. 

3.5.1.7 General Procedure  

The downscaling process varies for different downscaling approaches. GCMs’ 

precipitation product was the input, and the model or dictionary that was used in the 

production process could be trained or adjusted using historical datasets including those 

from other sources. However, the input itself or other variables were not used in the 

training process, i.e. the input was independent of the modeling procedure. A pre-test was 

utilized to test the performance of the downscaling method on a small amount of data. If 
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the results are under the baseline, then the corresponding downscaling method will not be 

tested against large sets or in other regions.  

3.5.1.8 Validation and Evaluation  

The validation and evaluation of precipitation downscaling are as difficult as 

downscaling itself. Evaluation is often case-by-case, clarifies the general criteria of a 

good result. The following items are generalized from literature and empirical studies. 

3.5.1.8.1 Validation  

When the ground truth is available, the downscaled results could be compared 

directly with it (as in the case study 1). Yet, data validation becomes a big problem when 

there is no easily obtained ground truth. Since precipitation measurements are different 

from product to product, and station level data could be highly biased; it rises a data 

validation challenge of the downscaled short-duration precipitation field. The data 

validation process is conducted by comparing a large number of the station reads with the 

downscaled results in case study 2 where there is no direct ground truth.    

3.5.1.8.2 Evaluation  

Although the evaluation of downscaling methods is often case-by-case, there are 

some general agreements in measuring the quality of the downscaled results. Specifically, 

the following items are generalized from literature and empirical studies which could 

estimate the quality of different downscaling methods: 

1) Large-scale rainfall amount consistency: The downscaled product should be 

able to aggregate back to coarse resolution products to ensure the downscaled 

output is not another precipitation product (unbiased transformation).  
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2) Small-scale rainfall amount prediction (statistically): The average value, 

maximum value, and standard deviation from the downscaled product should be 

close to the ground truth.  RMSE should be as small as possible, and R2 should be 

as close to 1 as possible. This part ensures the downscaled output values are not 

skewed. 

3) Small-scale spatial pattern prediction (visually): The general patterns, pattern 

edges, and pattern transactions should all be visually close to ground truth to 

ensure the downscaled output looks like a rainfall event. 

4) Other: Data Dependency, Computing Intensity, Area limitation, etc. 

Therefore, if the downscaled model satisfies those rules, it could be called a good 

downscaling model. 

3.5.2 Case Study 1: Downscale Aggregated IMERG Precipitation  

3.5.2.1 Introduction 

This case study is a synthetic experiment using observation-based high-resolution 

precipitation gridded products.  

3.5.2.2 Data 

IMERG precipitation product was utilized in this case study. Specifically, the 

product is the V06 final Gauge Corrected dataset, which has a 3.5 months delay from the 

observation. The native resolution for IMERG is 0.1° longitude and 0.1° latitude, with 

half-hour observation. The year 2014 to 2018 are selected in the experiment, and 2014 to 

2017 were used for any model or dictionary training process, while 2018 is used for 

method comparison in the production process.  
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3.5.2.3 Method 

The downscaling ratio in this case study is 5, which is 5 times in longitude and 5 

times in latitude, i.e. one grid point will be disaggregated to 25 points in space. Original 

IMERG data were aggregated 5 times to a coarse resolution, from 0.1° in both longitude 

and latitude to 0.5° in both longitude and latitude. Temporal aggregation is also executed 

to average half-hour reads to hourly reads. The spatiotemporal aggregated IMERG is 

used as inputs for different downscaling methods. Bicubic interpolation was used to 

establish a baseline for downscaling, DeepSD (Vandal et al. 2017) is selected as a 

representative of SRCNN based precipitation downscaling method, and RainFARM is 

selected as representative of the stochastic downscaling method. Historical IMERG data 

were used to train the model in DeepSD and the dictionary in the proposed method. A 

pre-test is introduced to give a basic view of the downscaling ability from different 

methods. 

3.5.2.4 Results 

Before applying all the methods, PreciPatch, DeepSD, and RainFARM were 

tested and compared with the bicubic interpolation method. According to the research 

result from (Vandal et al. 2017), DeepSD provided a downscaling result close to bicubic, 

which is not enough under this research’s requirements.  

3.5.2.4.1 Pre-test 

As stated in the last section, bicubic interpolation is included as a downscaling 

method baseline. If methods are not working better than the bicubic method, then it is not 

a good idea to continue testing them against large datasets. Therefore, a small amount of 
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data was selected from a separate IMERG data set (IMERG without gauge correction) to 

test the general performance of the downscaling methods. DeepSD was trained using 

three months of IMERG data in the main study area (the Chesapeake Bay), and 

PreciPatch used the same training data set to construct the downscaling dictionary. 

RainFARM is a stochastic model, therefore no training is needed. 

 

  
 

Figure 13 Downscaling pre-test results. The x-axis refers to the longitude, and the y-axis refers to the latitude. 

Snapshot of hourly precipitation at the Chesapeake Bay area on 2018/7/21 (23:30:00 UTC), downscaling from 𝟎. 𝟓° ×
𝟎. 𝟓° to 𝟎. 𝟏° × 𝟎. 𝟏°. 

 

Figure 13 illustrates the pre-test results for DeepSD, RainFARM and the proposed 

method using the coarse-resolution IMERG as input. The result from DeepSD is very 

close to bicubic interpolation and simulated precipitation events as clustered clouds. 

RainFARM did a much better job than bicubic, which is closer to the ground truth. 

PreciPatch provides the best visual result in this pre-test, and the precipitation 

distributions were simulated close to the ground truth. Visually speaking, all three 
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methods are better than or close to bicubic interpolation, therefore they are all chosen for 

the next step in the experiment. 

3.5.2.4.2 Experiment Results  

For each study area, two images from different time slices are selected to show a 

brief view of the general performance of the bicubic method, DeepSD, RainFARM, and 

PreciPatch. The original high-resolution IMERG data set is also visualized to compare 

with the downscaled results from different methods as a direct visual comparison.  

DeepSD is trained using the data from 2014 to 2017 at the same region, bicubic 

and RainFARM do not need a training process, and PreciPatch dictionary is trained using 

the whole U.S. coverage data from 2014 to 2017. 
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Figure 14 The Chesapeake Bay and Florida – IMERG. The x-axis refers to the longitude, and the y-axis refers to the 

latitude. Each row is the input aggregated Integrated Multi-satellitE Retrievals for GPM (IMERG) rain rate, 

Bicubic result, DeepSD result, RainFARM result, PreciPatch result and original high-resolution IMERG 

rain rate respectively for each location. 1st row: hourly precipitation at the Chesapeake Bay area on 2018/7/21 (23:30:00 

UTC), 2nd row: hourly precipitation at the Chesapeake Bay area on 2018/7/21 (16:30:00 UTC), 3rd row: hourly 

precipitation at Florida area on 2018/12/14 (05:30:00 UTC), 4th row: hourly precipitation at Florida area on 2018/12/14 

(18:30:00 UTC). 
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Figure 15 Kansas and California – IMERG. The x-axis refers to the longitude, and the y-axis refers to the latitude. 

Each row is the input aggregated Integrated Multi-satellitE Retrievals for GPM (IMERG) rain rate, 

Bicubic result, DeepSD result, RainFARM result, PreciPatch result and original high-resolution IMERG 

rain rate respectively for each location. 1st row: hourly precipitation at Kansas area on 2018/7/29 (04:30:00 UTC), 2nd 

row: hourly precipitation at Kansas area on 2018/7/29 (08:30:00 UTC), 3rd row: hourly precipitation at California area 

on 2018/1/9 (00:30:00 UTC), 4th row: hourly precipitation at California area on 2018/1/9 (08:30:00 UTC). 

 

Figure 14 and 15 present the downscaled results for different study areas. The 

input column in each figure contains the inputs for different downscaling methods and is 

used as the only input in downscale methods. The results from bicubic, DeepSD, 

RainFARM, and PreciPatch are in the next four columns, respectively. Original IMERG 

data are in the last column for visual comparison with different results. Generally, 

PreciPatch outperformed RainFARM, DeepSD and bicubic, showing results closer to the 

ground truth in most cases. RainFARM method is a valid solution that meets downscaling 

requirements and can produce downscaling results with fast speed. However, due to 

theoretical limitations of this method which assumes rainfall fields as Gaussian random 
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fields at all scale levels (Rebora 2006), the practical shapes and textures of rainfall are not 

sufficiently simulated by RainFARM. Bicubic is often treated as the baseline for 

downscaling, and the results from DeepSD are very close to those from bicubic. DeepSD 

is showing great potential for improvements.  

3.5.2.5 Validation and Evaluation 

 The downscaled results are compared with ground truth statistically.  

 

 

Figure 16 The Chesapeake Bay and Florida – R². The x-axis refers to the ground truth, and the y-axis 

is the prediction. The 45 degrees line in each graph is the perfect match reference line between the 

prediction and the ground truth, showing as the dashed line, the solid line is the trending line. 1st row: 

hourly precipitation at Chesapeake Bay area on 2018/7/21 (23:30:00 UTC), 2nd row: hourly precipitation 

at Chesapeake Bay area on 2018/7/21 (16:30:00 UTC), 3rd row: hourly precipitation at Florida area on 

2018/12/14 (05:30:00 UTC), 4th row: hourly precipitation at Florida area on 2018/12/14 (18:30:00 UTC). 

 

C
h

es
a
p

ea
k

e 

B
a
y

  
F

lo
ri

d
a

 

RainFARM  PreciPatch DeepSD  Bicubic  



90 

 

Figure 17 Kansas and California - R². The x-axis refers to the ground truth, and the y-axis is the 

prediction. The 45 degrees line in each graph is the perfect match reference line between the prediction 

and the ground truth, showing as the dashed line, the solid line is the trending line. 1st row: hourly 

precipitation at Kansas area on 2018/7/29 (04:30:00 UTC), 2nd row: hourly precipitation at Kansas area 

on 2018/7/29 (08:30:00 UTC), 3rd row: hourly precipitation at California area on 2018/1/9 (00:30:00 UTC), 4th row: 

hourly precipitation at California area on 2018/1/9 (08:30:00 UTC). 

 

Figure 16 and 17 shows the direct comparison between the downscaled point 

values (predicted values) to the ground truth in the cases corresponding to the ones 

showing in Figure 14 and 15. Each plot represents a time slice. Statistically speaking, for 

R², bicubic and PreciPatch performs better than DeepSD and RainFARM in most cases. 

Six more criteria are used to evaluate the performance between different methods. A total 

of 2,208 time slices (hourly precipitation from 2018 June, July, and August) are used 

from all four study regions to generate results. The statistical comparison is made through 
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a grid-to-grid comparison between the predicted values from each method to the ground 

truth at each time slice. The detailed statistical comparison is shown in Table 13; the 

values are averaged from all time slices, where PreciPatch shows the best statistical 

accuracies in almost all aspects, followed by RainFARM and bicubic. DeepSD has 

comparatively low performance in this case study, which agrees with the results from the 

pre-test and visual comparison. PreciPatch outperforms RainFARM, bicubic, and 

DeepSD in this synthetic experiment regarding statistical accuracy. The R² core used in 

this research is conducted using sklearn and the negative values regarding R² suggest the 

model does not produce a good result in the prediction (Alexander, Tropsha, and Winkler 

2015).  

 

Table 13 Dictionary vs. RainFARM 

mm/hour Bicubic DeepSD RainFARM PreciPatch 

Average Bias per grid 0.03 0.12 4.3 ×  10−9  0.003 

Average R² 0.18 -0.16 0.29 0.42 

Average (+) R² 0.44 0.3 0.47 0.57 

RMSE 0.45 0.61 0.49 0.42 

Mean Absolute Error 0.13 0.28 0.13 0.1 

Maximum Absolute Error 7.75 7.95 4.2 3.87 

STDV Absolute Error 0.2 0.27 0.09 0.07 
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In addition to the visual and statistical comparison between methods, aggregation 

of the downscaled results was implemented to test the downscaling method’s ability to 

hold precipitation consistency from large-scale to small-scale. As designed with 

constrains for both RainFARM and PreciPatch, the downscaled results from these two 

methods could be upscaled to the original coarse-resolution input with visually 

unnoticeable variations. However, the downscaled results from bicubic interpolation and 

DeepSD methods could not be aggregated back to low-resolution inputs, which means 

such downscaling approaches represent a biased transformation from large-scale data to 

small-scale outputs.  

3.5.2.6 Indication of Results 

The synthetic experiment conducted in this case study has tested the downscaling 

ability of the proposed method (PreciPatch), a classical stochastic method (RainFARM), 

and a newer adapted SRCNN based method (DeepSD). Unfortunately, DeepSD failed to 

produce a result that is visually better than the bicubic interpolation method in the pre-

test. Alternatively, RainFARM, and PreciPatch both had good performances in the pre-

test and real experiments. RainFARM can simulate precipitation fields at the local scale; 

however, the rainfall edges of the precipitation clusters are not well simulated. 

Meanwhile, the PreciPatch could simulate both the rainfall edges and distribution patterns 

closer to the ground truth.   

3.5.3 Case Study 2: Downscale MERRA-2 Precipitation  

3.5.3.1 Introduction 
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MERRA-2 dataset is a typical example of GCM’s output. It is an output of a 

version of the GEOS-5 Atmospheric General Circulation Model (AGCM) (Molod et al. 

2015). As a follow-on product of MERRA, MERRA-2 aims to provide long-term 

reanalysis to simulate the water and energy cycles (Feng and Wang 2019). Currently, 

MERRA-2 products are widely used in many models and algorithms. For example, it is 

used in the IMERG V06 production algorithm (Huffman et al. 2015) and some local 

impact studies involving interpolation of original MERRA-2 (Guyonnet et al. 2019). 

Downscaling MERRA-2 to desired spatial resolution is beneficial in many aspects and 

lead to potential usages in several fields. For example, the downscaled results could aid 

associated research to produce more detailed analysis or modeling with higher resolution 

configuration.  

3.5.3.2 Data 

The data collected for this case study is the standard version of MERRA-2, which 

consists of 49 variables (e.g., Surface Wind Speed, Precipitation, Surface Air 

Temperature, etc.), including two precipitation variables: PRECTOT and 

PRECTOTCORR, and the latter one is the gauge-corrected product. The focus of this 

case study is the downscaling PRECTOTCORR variable. PRECTOTCORR was treated 

as the input low-resolution for the downscaling process, and the target is high-resolution 

PRECTOTCORR variable. MERRA-2 from the year 2018 is select as the inputs for 

downscaling. 

3.5.3.3 Method 
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The downscaling ratio in this case study is the same as in the previous study, 

which is 5 times in longitude and 5 times in latitude. The original spatial resolution of 

MERRA-2 is 0.625° longitude and 0.5° latitude. Similar to the experiment plan and steps 

in case study 1, several downscaling methods are chosen to downscale MERRA-2 

precipitation, including Bicubic interpolation, RainFARM, and the proposed PreciPatch 

method. SRCNN based method like DeepSD was not able to downscale MERRA-2 

without historical high-resolution data, thus unable to produce a result in this case study. 

The general downscaling procedure for each downscaling method is listed below: 

1) Bicubic interpolation: use MERRA-2 at each time slice as input and apply the 

bicubic interpolation algorithm to each grid point using the nearest 4 points. 

2) RainFARM: use MERRA-2 at each time slice as input to the RainFARM 

model and produce results for each time step. 

3) PreciPatch: use MERRA-2 at each time slice as input to do similarity search 

based on the trained dictionary in case study 1, find a high-resolution patch 

for each grid cell in MERRA-2 and linearly align the patches to produce the 

mask for downscaling. Use MERRA-2 as constrains to the mask to produce 

the final downscaled result. Ideally, if reliable higher-resolution of MERRA-2 

is available, the best practice is to train a dictionary with historical high-

resolution data. However, the absence of this data caused the dictionary 

approach in this case study to use the dictionary constructed with IMERG 

patches, which is not the optimal choice but still reasonable (IMERG is based 
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on observation and therefore would provide a better estimation of distribution 

patterns of precipitation events at its scale).    

3.5.3.4 Results 

MERRA-2 precipitation was tested in the same four study areas, the main study 

area, the Chesapeake Bay, and the other three locations.  

 

 

 

Figure 18 The Chesapeake Bay and Florida - MERRA2. The x-axis refers to the longitude, and the y-axis refers to 

the latitude. 1st row: hourly precipitation at the Chesapeake Bay area on 2018/7/21 (23:30:00 UTC), 2nd row: hourly 

precipitation at the Chesapeake Bay area on 2018/7/21 (16:30:00 UTC), 3rd row: hourly precipitation at Florida area on 

2018/12/14 (05:30:00 UTC), 4th row: hourly precipitation at Florida area on 2018/12/14 (18:30:00 UTC). 
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Figure 19 Kansas and California - MERRA2. The x-axis refers to the longitude, and the y-axis refers to the latitude. 

1st row: hourly precipitation at Kansas area on 2018/7/29 (04:30:00 UTC), 2nd row: hourly precipitation at Kansas area 

on 2018/7/29 (08:30:00 UTC), 3rd row: hourly precipitation at California area on 2018/1/9 (00:30:00 UTC), 4th row: 

hourly precipitation at California area on 2018/1/9 (08:30:00 UTC). 

 

Figure 18 to Figure 19 is the downscaling results for those areas. The coarse-

resolution images (grid-based) in the input column are the inputs for different 

downscaling methods and are the only inputs. The next three columns contain the results 

from bicubic interpolation, the RainFARM method, and PreciPatch. Although there is no 

direct ground truth to compare, the visual representation of those results could give us a 

vague impression of their performance. The precipitation field simulated by the 
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RainFARM method is close to PreciPatch, but it lacks quality in simulated rainfall edges, 

which alternatively is well simulated by PreciPatch.  

3.5.3.5 Validation and Evaluation 

For the MERRA-2 downscaling case study, there is no high-resolution MERRA-2 

precipitation gauge corrected data available for direct comparison with the downscaled 

results. Instead, station data was collected from 150 station sites in the main study area 

(the Chesapeake Bay) for the same time frame as the downscaled data (2018 June, July, 

and August). 2,208 time slices were chosen for comparison in total. After preprocessing 

and data cleaning, 201,250 records were considered as valid gauge reads and used in the 

data validation process. The closest grid point in the gridded datasets was chosen for each 

station point and the closest read (hourly reads) from the gridded dataset was indicated as 

the precipitation value to compare. In addition to the downscaled results from bicubic, 

PreciPatch, and RainFARM, the original MERRA-2 precipitation variable (gauge 

corrected) and original IMERG (V06 gauge corrected) were also compared with the raw 

station data to give a general idea of data error against station data. Table 14 lists detailed 

information for the comparison. 

 

Table 14 Station data comparison  

 Original 

MERRA-2 

Bicubic PreciPatch RainFARM Original 

IMERG 

RMSE (mm/h) 2.555  2.672  2.565  2.568 2.657  

Correlation 0.267 0.121 0.259 0.256 0.336 



98 

 

Absolute Bias per hour 

per station (mm/h) 

0.659 0.636 0.662 0.664 0.0699 

 

Across all the precipitation products and downscaled MERRA-2 results, they all 

set at a low level of data correlation with station data, which is expected by the authors. 

This low level of data correlation in hourly precipitation is due to the difficulty of 

obtaining accurate measurements of rainfall and inconsistency between precipitation 

models and observations in short-duration events. There are many known limitations of 

using station data for precipitation estimation, especially for hourly precipitation 

validation. Broadly speaking, the downscaled results’ performance against station data is 

very close to its coarse-resolution input (MERRA-2), which meets the basic validation 

requirements for downscaling: data are not skewed or highly biased, the rainfall amount 

fits into the MERRA-2 estimation path. The downscaled results from PreciPatch and 

RainFARM could be accepted as valid results based on the limited information we can 

collect from stations. Although the comparison with station data could not be treated as 

the formal validation process, it does provide some comparisons between the 

downscaling methods when there is no ground truth available.  

3.5.3.6 Multi-Dictionary Testing for General Coherence and Stability of Downscaled 

Results 

The sparse coding used in the super-resolution field has proved the feasibility of 

using a fixed number of patches to estimate the missing information in a low-resolution 

to the high-resolution mapping process. However, utilizing the sparse coding as a 
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dictionary learning approach for precipitation downscaling has not yet be analyzed with 

real examples and experiments. This part of the section aims to provide examples for 

testing the general coherence and stability of PreciPatch when different data sets are 

ingested to construct the dictionary.  

The datasets from downscaling case study 1 are used in this section for 

constructing different dictionaries. Specifically, U.S. coverage IMERG data was divided 

and subsetted into three regions: 1) the west region, 2) the central region, and 3) the east 

region. The data in each region were trained into separate dictionaries without 

overlapping. Figure 20 demonstrated the workflow of this process. 

 

 

Figure 20 Multi-dictionary training 
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After classification and indexing each dictionary, MERRA-2 data are used as 

inputs to test the performance of each dictionary. The full dictionary which was trained 

by using the data from the whole U.S. and is also tested to produce comparable results. 

 

 

Figure 21 Downscaled results from different dictionaries. The x-axis refers to the longitude, and the y-axis refers to 

the latitude. 1st row: hourly precipitation at the Chesapeake Bay area on 2018/7/21 (23:30:00 UTC), 2nd row: hourly 

precipitation at the Chesapeake Bay area on 2018/7/21 (16:30:00 UTC). 

 

Figure 21 presents the downscaled results by using different dictionaries on the 

same input. Two timeframes were selected to compare. The downscaled results are very 

close to each other as expected from sparse coding. Very few of the variations could be 

observed from the graphs and the full dictionary is showing the most visually appealing 

result. The results that were produced from different dictionaries indicate a general 

conference among the trained dictionaries and the stability of the dictionary learning 

method in a broad sense. 

3.5.3.7 A Step Further 
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Downscaling precipitation events to mesoscale-gamma (2-20km) or even 

microscale (less than 2km) is the final goal of all downscaling studies related to local 

impact studies. However, it is an even harder challenge for downscaling methods based 

on prior knowledge. The stochastic downscaling method like RainFARM does not have 

this problem because it assumes the statistical distribution pattern at all scales following a 

Gaussian distribution pattern, which is not always the truth and has many limitations 

when applying.  

One assumption is made for this downscaling test: precipitation distributions 

would follow the same pattern when the same downscaling ratio is applied. Although this 

statement is not true in every case, it does motivate further scale downscaling tryouts. A a 

better way of using PreciPatch is to find observation gridded data at a similar level with 

the target resolution. A quick implementation would be using the same dictionary that is 

used in the current MERRA-2 downscaling use case. The trained dictionary is treated as a 

5 times enlargement lens in this test. 
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Figure 22 Further downscaling of MERRA2 precipitation. The x-axis refers to the longitude, and the y-axis refers 

to the latitude. 1st row: hourly precipitation at the Chesapeake Bay area on 2018/7/21 (23:30:00 UTC), 2nd row: hourly 

precipitation at the Chesapeake Bay area on 2018/7/21 (16:30:00 UTC). 

 

Figure 22 displays the final results from this test. The downscaled results are 

visually appealing visually, and precipitation patterns were sharpened to the next level. 

The results indicate a potential for seeking downscaling methods at the microscale.  

3.5.3.8 An Example of Full-Field Generation  

An important criterion of evaluating precipitation downscaling method is the 

ability to provide full-field generation of precipitation fields. The traditional statistical 

downscaling methods are often criticized by their limited use when local observation data 

is not enough for a study region or even that no observation data are available (e.g. 

maintain glaciers). One of the approaches used in the statistical downscaling method is to 

migrate the regression mapping relationship from one area to another area (He 2016). 

Such approaches are not good practices because the linear or non-linear relationships 

found in a local area are often unique and not transferable.  

Input (0.625° x 0.5°) 

 (0.125° x 0.1°)  (0.025° x 0.02°) 

RainFARM 

PreciPatch 
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Figure 23 An example of full-field generation 

 

Proposing a method that is capable of full-field generation is included in the 

design of the dynamic dictionary learning method and fits the concept of sparse coding. 

The trained dictionary can produce downscaled results regardless of the location of the 

input. Figure 23 gives a brief view of a downscaled global precipitation field. Compare to 

the bicubic interpolation, PreciPatch has a better simulation result for precipitation in the 

form of providing clear patterns in the precipitation cluster. However, when applying 

such an approach, different dictionaries trained using data from different locations is 

preferred as the possibility of finding a similar precipitation pattern could be dramatically 

increased if local historical data is utilized in the dictionary. 

3.5.3.9 Indication of Results 

This downscaling case study is showing the power of the proposed method when 

applying to real-world examples. The proposed method (PreciPatch) meets the functional 

requirements of precipitation downscaling (discussed in section 3.5.1.2.1 of this chapter). 

MERRA-2 Bicubic PreciPatch 
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Thus, it proved to be a valid downscaling method and can downscale hourly precipitation 

into precipitation fields. Due to the lack of accurate ground truth, comprehensive 

validation and evaluation could not be done to further justify the correctness of the 

downscaled results. The validation of PreciPatch applying to MERRA-2 would require 

further support from dynamic downscaling and the availability of high-resolution ground 

truth.  
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CHAPTER 4. CONCLUSION AND FUTURE WORK 

The goal of this dissertation research is to contribute to geoscience and local 

climate impact studies with a big climate data storage method and a precipitation 

downscaling method. The two methods are to 1) seek high performance and cost-efficient 

solution for gridded climate data storage and query, and 2) investigate current 

downscaling methods and propose a new precipitation downscaling method for gridded 

precipitation data. Methods are proposed for each part of this dissertation research. 

Specifically, 1) an array database engine (LotDB) is developed based on a new N-

Dimensional hash function and the integration with a unified storage structure and 

memory-mapping technology, and 2) a precipitation downscaling method (PreciPatch) 

based dynamic dictionary learning is proposed. Database comparison experiments and 

downscaling case studies have been used to evaluate the proposed methods’ abilities in 

solving current big climate data storage and access challenges, and produce higher 

resolution climate indicators for local-scale impact study challenges.  

4.1 Conclusion 

4.1.1 An Array Database Engine (LotDB) for Climate Gridded Datasets 

Although array is one of the oldest data structures, the study of storing and 

retrieving large multidimensional array datasets are limited. Earth observations and 

climate model simulations are producing larger amounts of output in multidimensional 
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array format due to increases in model resolution and remote sensing technologies. 

However, it is challenging to provide solutions to handle big multidimensional datasets. I 

designed and implemented a solution for efficient gridded data storage and faster data 

retrieval while being cost-effective. I reviewed past research for storing multidimensional 

arrays in both relational databases and array databases. Array databases are more native 

and advanced solutions than relational databases. Current solutions still have their 

limitations regarding query performance and data volume expansion. Therefore, an n-

dimensional hash function algorithm was proposed to perform a fast data retrieval action 

on a unified data storage structure, and a prototype database library (LotDB) was 

developed by integrating memory-mapping technology and this algorithm. PostgreSQL, 

MongoDB, and SciDB were selected to compare the performance with LotDB using 

MERRA-2 data storage and retrieval. The preliminary experimental results have shown 

promising potentials of LotDB for efficient multi-dimensional gridded climate data 

storage, and abilities for fast data retrieval. The run-time results are validated by using 

multiple timers and repeating the same experiments several times. Also, to avoid the 

effect of using in-memory cache in comparison, physical memory is cleaned each time 

before the query execution and cold-run time is recorded instead of the hot-run. 

Therefore, the results are credible for general analysis. Yet, the standalone mode for 

NoSQL databases are far less potent than the clustered mode, MongoDB and SciDB 

would have better results if they were deployed in a cluster. 

Main differences between this dissertation and previous array database research 

include: 
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1) Utilizing the unified storage structure instead of chunked storage 

2) A decentralized index system vs. a centralized index system in other databases 

3) Integrating memory-mapping technology into array database studies 

Even with the upsides, there are some limitations to this research. For example, 

empty cells in a gridded climate dataset will count as full stored cells with value “NaN,” 

which is not a problem for ordinary datasets but a waste of storage space for sparse 

matrix. This part of the dissertation research makes contributions to climate data 

management studies and climate change study in general in the form of offering an N-

Dimensional hash function for a fast query on array-based climate data and a database 

engine as a quick implementation, in detail: 

1) This method could improve the general performance of gridded data analysis 

by reducing the data storage cost and access latency. 

2) Since a large portion of climate data is gridded data, this research provides 

additional options for cost-efficient and high-performance solutions on 

handling gridded data. 

4.1.2 A Gridded Precipitation Downscaling Method (PreciPatch) 

The importance of precipitation downscaling is well recognized in hydrological 

impact studies and local climate change-related domains. However, few statistical 

downscaling methods can provide universally applicable downscaling solutions for 

arbitrary GCM outputs, large amounts of precipitation downscaling related studies are 

area limited and highly additional data-dependent, not applicable for random locations. 

Meanwhile, major research can only provide the downscaled result on a level of single or 
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multiple stations. Providing precipitation fields as outputs are still beyond the reach for 

most traditional methods. Recent developments in the stochastic downscaling method and 

the SR based method brought new opportunities to enhance downscaling studies. A new 

precipitation downscaling method based on dynamic dictionary learning is proposed with 

detailed algorithms and procedures. Two precipitation downscaling study cases are 

conducted to evaluate the performance of the proposed method and compare it with other 

downscaling methods (RainFARM and DeepSD), along with the comparison baseline, 

the bicubic interpolation method. Results from case studies have shown positive feedback 

on the proposed downscaling method, demonstrating good quality for simulating spatially 

distributed precipitation fields and yielding the best performance among all other tested 

methods through visual inspection and quantitative analyses. It is hard for traditional and 

machine learning super-resolution based methods to exclude the interpolation process and 

include the non-linear characteristics of precipitation event into the method design (Yu et 

al. 2020). Meanwhile, many downscaling methods like bicubic interpolation and DeepSD 

do not have extra constraints to enforce the final outputs to hold rainfall consistency with 

the initial inputs. The proposed method interprets the downscaling task as a constrained 

single image super-resolution problem, different from traditional approaches and other 

downscaling methods, it addresses the precipitation downscaling issue using a novel 

approach which excludes the interpolation process and is able to generate non-linear 

spatial patterns that are closer to rainfall observations. Additionally, rainfall consistency 

is ensured by adding extra constraints in the proposed method. As a result, PreciPatch 

achieved better results than other downscaling methods in precipitation downscaling 
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study cases because it takes the spatial characteristics of precipitation into the method 

design consideration and optimizes the method to fit precisely for the precipitation 

downscaling scenario.   

Precipitation field downscaling is a challenging task and related research topics 

have been explored by many studies. Major differences between this dissertation work 

and previous precipitation downscaling research include: 

1) Full-field generation instead of area limited generation or fixed size. 

2) Precipitation fields as target production instead of station networks (e.g., 

single or multiple), providing continuous information in 2D space. 

3) Precipitation field distribution simulated closer to precipitation observation.  

4) Data independence in production (available for downscaling future predictions) 

5) Hourly precipitation downscaling to precipitation fields (downscaling short-

duration precipitation events) instead of a daily average or seasonal 

downscaling in other researches. 

6) Using the prior knowledge learned in one data set and successfully applied to 

another related data set. 

7) The rainfall amount is consistent with large-scale vs. rainfall inconsistency in 

others.  

Major differences between PreciPatch and other downscaling approaches 

regarding methodology includes: 1) comparing to statistical downscaling method: there is 

no need for other climate variables in the downscaling process, no regression process or 

probability assumption process, 2) comparing to stochastic downscaling method: the 
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proposed method is making use of prior knowledge, not purely hypothesis and 

mathematical transformation based, 3) comparing to SRCNN based methods like 

DeepSD: when interpolation process is involved, the final output is constrained by 

coarse-resolution inputs, which is equal to an unbiased disaggregation of precipitation 

amounting to space, 4) comparing to traditional dictionary learning: one master 

dictionary is constructed instead of two in traditional approaches, the proposed method 

uses dynamic patches to recover the high-resolution image, while the traditional approach 

uses stored fixed patches, DTW distance is used instead of MSE or Euclidean distance, 

fuzzy search is utilized in the new method instead of exact search for similarity patches, 

and rainfall amount is consistent in the downscaled result, 5) comparing to Analog 

Method (AM): similarity searching is executed spatially with a fuzzy search instead of 

linearly with a direct search. 

In this research, there are also some limitations to PreciPatch. For example, the 

computing time is longer than other downscaling methods, which makes it hard to apply 

to large datasets and solve time-sensitive problems. The detailed comparison is in Table 

15. 

 

Table 15 Comparison of tested downscaling methods   
Bicubic DeepSD RainFARM PreciPatch 

Training time N/A ~ 1 hour for 3 

months of data 
(national 

coverage) 

N/A ~ 200 hours 

for 300 

Million 

patches 

(national 
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coverage) 

Applicability to 

different areas? 

Direct apply, 

no training is 

needed 

Additional 

training is 

needed if the 

area is different 

or the input size 

is different 

Direct apply, no 

training is needed 

Direct apply, 

no need for 

additional 

training 

Computing time <  0.001 sec 

per grid point 

~0.005 sec per 

grid point 

~0.005 sec per 

grid point 

~2 sec per 

grid point 

per process 

Overall 

downscaling 

performance 

Baseline  Not good – close 

to the baseline 

Rainfall clusters 

are not well 

simulated 

Best 

Holds rainfall 

consistency with 

large-scale 

input? 

No No Yes Yes 

 

However, this limitation could be resolved by including an additional index layer 

for the dictionary and reprogramming the system using more efficient languages such as 

C/C++. Another limitation for the proposed method is its assumption: future precipitation 

would behave similarly as its past, relationships developed for present climate also hold 

for possible future climates (IPCC n.d.) (the same assumption is used in all statistical 

downscaling methods). One advantage compares with other models like DeepSD is that 

PreciPatch does not need additional training when applying to different areas, even for 

regions outside of the training area. The proposed precipitation downscaling method, 

PreciPatch has shown its ability to spatially downscale short-duration precipitation events 
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to precipitation fields and can be applied to downscale future estimations from GCMs or 

other gridded data sources. The bias correction is not addressed by PreciPatch, and the 

bias from GCMs are preserved at the same spatial scale as the input. This research 

contributes to hydrological impact studies and local climate change studies by providing 

a precipitation downscaling method and associated algorithms for simulating 

precipitation fields in local scale and being consistent with large-scale information, in 

detail: 

1) This method does not require additional data as predictors to produce 

downscaled results, and it could be used for downscaling future estimations 

from GCMs. 

2) This downscaling method has the potential to aid climate models like WRF by 

providing higher-resolution inputs.  

3) The downscaled results from this method could be used to force mountain 

glacier models for local impact studies, where the complete absence of climate 

monitoring activities within the regions of interest presents a data challenge. 

In general, the purpose of this downscaling research is not creating a new 

precipitation product for a region. It assumes that if there exists a high-resolution product 

of a low-resolution product, which follows the assumption that the high-resolution 

product holds grid-level rainfall consistency with the low-resolution product. PreciPatch 

will provide a good prediction of the high-resolution product using the low-resolution 

product as the input.  
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4.2 Future Works 

The work presented in this dissertation shows the potential for seeking fast 

gridded data retrieval and efficient storage solutions using existing technologies. 

However, it is challenging to provide up-to-date solutions as the data size is also growing 

at an increasing speed. There are many directions for related future works, include but not 

limited to, 1) design a strategy for big data store and retrieval, 2) design and develop 

LotDB into a complete database system, and 3) extend current storage structure and 

algorithm to a distributed system. The current version of LotDB acts as a quick 

implementation of the N-Dimensional hash function algorithm, further implementations 

could be developed to enhance the data retrieval performance in large multidimensional 

arrays in different scenarios. For gridded precipitation downscaling, future works include: 

1) adding more (spatiotemporal) indexing techniques to speedup the similarity search 

process in PreciPatch, 2) integrating with LotDB to further accerlerate the system, 3) 

converting and rebuilding PreciPatch on top of a machine learning framework to 

generalize the dictionary into a model and accelerate the downscaling process while 

reducing storage space of the dictionary, and 4) use different observation data to evaluate 

the downscaling method regarding expandability and transferability.  
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