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Dissertation Director: Dr. David Wong 
 
 
 
 
 Accurate identification of urban land use is essential for many applications in 

environmental study, ecological assessment, and urban planning, among other fields.  

However, because physical surfaces of land cover types are not necessarily related to 

their use and economic function, differentiating among thematically-detailed urban land 

uses (single-family residential, multi-family residential, commercial, industrial, etc.) 

using remotely-sensed imagery is a challenging task, particularly over large areas.  

Because the process requires an interpretation of tone/color, size, shape, pattern, and 

neighborhood association elements within a scene, it has traditionally been accomplished 

via manual interpretation of aerial photography or high-resolution satellite imagery.  

Although success has been achieved for localized areas using various automated 



 

techniques based on high-spatial or high-spectral resolution data, few detailed (Anderson 

Level II equivalent or greater) urban land use mapping products have successfully been 

created via automated means for broad (multi-county or larger) areas, and no such 

product exists today for the United States. 

 In this study I argue that by employing a zone-based approach it is feasible to map 

thematically-detailed urban land use classes over large areas using appropriate 

combinations of non-image based predictor data which are nationally and publicly 

available.  The approach presented here uses U.S. Census block groups as the basic unit 

of geography, and predicts the percent of each of ten land use types - nine of them urban - 

for each block group based on a number of data sources, to include census data, 

nationally-available point locations of features from the USGS Geographic Names 

Information System, historical land cover, and metrics which characterize spatial pattern, 

context (e.g. distance to city centers or other features), and measures of spatial 

autocorrelation. 

 The method was demonstrated over a four-county area surrounding the city of 

Boston.  A generalized version of the method (six land use classes) was also developed 

and cross-validated among additional geographic settings: Atlanta, Los Angeles, and 

Providence.  The results suggest that even with the thematically-detailed ten-class 

structure, it is feasible to map most urban land uses with reasonable accuracy at the block 

group scale, and results improve with class aggregation.  When classified by predicted 

majority land use, 79% of block groups correctly matched the actual majority land use 

with the ten-class models.  Six-class models typically performed well for the geographic 



 

area they were developed from, however models had mixed performance when 

transported to other geographic settings.  Contextual variables, which characterized a 

block group’s spatial relationship to city centers, transportation routes, and other 

amenities, were consistently strong predictors of most land uses, a result which 

corresponds to classic urban land use theory.  The method and metrics derived here 

provide a prototype for mapping urban land uses from readily-available data over broader 

geographic areas than is generally practiced today using current image-based solutions. 
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1. Introduction 

 

1.1 Rationale for research/background 

 Mapping urban land is essential to many applications:  ecological assessments 

study the effect of urbanization on biota or stream water quality; urban planning requires 

understanding of the urban environment at multiple scales; and economic, sociologic, and 

political decisions are often made to some degree based on knowledge of where people 

are and how they use the land.  The need for such mapping is likely to increase as urban 

areas grow, and a larger proportion of the world’s population inhabits urban 

environments.  Effective solutions to monitoring characteristics of urban landscapes are 

desirable; cost-effective solutions even more so. 

 Although numerous variations of land use/land cover classifications exist, most 

are based on the seminal work of Anderson et al. (1976).   The highest level of 

categorization (Level I) distinguishes among broad land cover types: urban, agricultural, 

forest, water, wetlands, etc.  For urban land, the second level of categorization (Level II) 

distinguishes among thematically detailed land uses: residential, commercial, industrial, 

and so on (Table 1-1).  While land cover may often be adequately derived from the 

spectral information in remotely sensed imagery alone, derivation of land use (how 

humans use the land) requires higher order information that describes the size, shape, 

pattern, and association among elements in a scene (Estes et al., 1983; Haack et al., 1997; 
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Graham and Koh, 2002; Aplin, 2003).  Land use delineation is primarily an interpretation 

of the economic function of the land (Campbell, 1996), to which there may be clues in 

the pattern, shape, extent, and intensity of urban surfaces.  However, there is a 

considerable leap from land cover to land use identification (Lackner and Conway, 2008).  

Estes et al. (1983) describe a hierarchy of image elements that are fundamental to image 

interpretation (Figure 1-1), which at the most basic level represent tone/color and at the 

highest level the site and association of objects.     

 

Table 1-1: Classification scheme of urban land use/land cover, from Anderson (1976) 
Level I Level II Level III (example for Residential) 

1 Urban or Built-up Land 11 Residential 111 Single-family units 

    112 Multi-family units 

    113 Group quarters 

    114 Residential hotels 

    115 Mobile home parks 

    116 Transient lodging 

    117 Other 

  12 Commercial and Services   

  13 Industrial   

  14 Transportation, Communications, and Utilities   

  15 Industrial and Commercial Complexes   

  16 Mixed Urban or Built-up Land   

  17 Other Urban or Built-up Land   

 

 

 Assimilating the information in these elements, to include the highest levels of 

interpretation, is often straightforward for a human image interpreter employing high-

resolution imagery (“large multi-branched building adjacent to parking lots with school 

buses, a running track and ball fields:  feature is probably a school”).  However achieving 

the same result from digital data, particularly for image processing techniques based on 
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per-pixel extraction of information, is highly challenging (Johnsson, 1994; Jensen et al., 

2001; Herold, 2003; Lackner and Conway, 2008). 

 

 

Figure 1-1: The primary ordering or image analysis elements in imagery interpretation 
(from Estes et al., 1983) 

 
 

 The literature and popular press are often imprecise regarding the terms “land 

use” and “land cover”.    In this paper we will adhere to the differentiation of land cover 

as describing physical surfaces (in the context of urban surfaces as meaning either their 

physical composition – e.g. asphalt, concrete, metal, etc. – or a specific physical function 

– e.g. rooftops, roads, parking lots, etc.) vs. land use as the broader use/economic 
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function similar to that described by Anderson Level II classes: single-family residential, 

commercial, industrial, recreation, etc. 

 It is further recognized that the difficulty in correctly identifying urban land uses 

increases as the spatial resolution of the image data becomes coarser (Aplin, 2003).  

Welch (1982) posited that although Anderson Level I urban classification may require 

only 30 to 80-meter (m) resolution data, Anderson Level II requirements increase 

dramatically, calling for 0.5 to 10-m spatial resolution, depending on the landscape type.  

This is echoed by Forster (1985) and Jensen and Cowan (1999), who suggest 5 to 20-m 

resolution as the minimum resolution feasible for multispectral data in order to 

adequately classify Anderson Level II categories.  Because of the tradeoff between high 

spatial resolution and swath width/areal coverage, image data of those resolutions is not 

readily available at anything approaching reasonable cost for broad areas (i.e. multi-

county or larger, in the United States).  For example, as of this writing, purchase of 

mosaiced 4-m Ikonos multispectral image data which covers the footprint of a single 30-

m Landsat scene would cost more than $800,000 (GeoEye, 2009).  Even those studies 

which have been successful at automated delineation of urban land uses from high-

resolution imagery have acknowledged the need to incorporate information outside the 

spectral domain, either in the form of shape/spatial metrics or ancillary information such 

as census data (Gong et al., 1992; Mesev, 1998; Chen, 2002; Herold, 2002; Barnsley et 

al., 2003; Herold et al., 2003; Rocha, 2006; Taubenenboeck, 2006).  In short, a traditional 

multi-spectral image classification solution to mapping Anderson Level II-like land uses 

at regional or national scales is not currently feasible, and is not likely to be in the 
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foreseeable future using existing methodologies.  At present there is no product which 

maps urban land use across the United States. 

 The history of urban land use mapping in the United States reflects these realities.  

Before digital media began to be widely used and available (roughly the 1970s), land use 

maps were created from manual interpretation of aerial photographs.  This method, 

employed by a skilled interpreter, was (and still is) considered to be the most accurate 

method for delineating land uses, because (a) it incorporates the knowledge base of a 

human expert who could interpret the full range of site and association elements of a 

scene, and (b) it is based on large-scale high-resolution imagery. During the mid-1970s, 

the U.S. Geological Survey (USGS) began to produce the first nationally consistent maps 

of land use and land cover for the conterminous United States and Hawaii (Price et al., 

2006). Polygons of land use/land cover were delineated manually using aerial 

photography and mapped following the Anderson classification system, containing the 

seven urban land use classes noted in Table 1-1. The minimum mapping unit (MMU) was 

4 hectares for all urban and water classes (approximately equivalent to 44 30-m pixels in 

a Landsat scene) and 16 hectares for most other classes. The USGS published these land 

use and land cover maps at 1:250,000 and 1:100,000 scales for the conterminous United 

States, Hawaii, and part of Alaska.  
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Figure 1-2: Sample of GIRAS for the area of 
Fairfax City, VA.     
The product was derived by manually delineating land 
use polygons from aerial photography, and contained 7 
land use classes (only 4 present in scene shown).   
 

 The USGS also developed the 

Geographic Information Retrieval and 

Analysis System (GIRAS) software 

(Mitchell et al., 1977) to digitize, edit, 

and produce cartographic and 

statistical output from the mapped 

information (Price et al., 2006). 

(Although technically the acronym 

"GIRAS" refers to the software 

system used to create the digital 

format of the land use/land cover 

maps – themselves referred to as the 

“LULC” – the term GIRAS is often 

used to refer to the land use/land cover maps and subsequent digital product itself, and 

will be the term used in this paper).  The data are currently distributed by the USGS in 

the original GIRAS file format (USGS, 2009a), and in a modified format to reflect areas 

of population density change (USGS, 2009b).  Visual examples of the GIRAS and 

subsequent national land use/land cover products are given in Figures 1-2 through 1-4 

with current locations of some landmarks labeled. All three products are publicly-

available national datasets. 
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 The manual interpretation of imagery that constituted the GIRAS had two 

drawbacks.  First, manual interpretation is recognized to be both a “science and an art” 

(Graham and Koh, 2002), which draws to some degree on the subjective skill and 

interpretation of the analyst, and is not necessarily reproducible.  Second, it is a highly 

labor intensive activity, which could require years of work by teams of skilled individuals 

to map large areas, as was the case with the GIRAS. 

 The 1970s may also be considered the advent of the era of readily-available 

satellite imagery, with the launch in 1972 of a series of Landsat satellites, with an initial 

instrument which imaged five spectral bands at nominal 80-m spatial resolution, then in 

1982 with the Thematic Mapper (TM) instrument, with seven bands, six of which had 30-

m resolution.  The Landsat series of satellites have been imaging the Earth with a repeat 

cycle of 16 days continually since 1972, and have been by far the most common source 

of earth information for deriving land use/land cover information at broad scales over the 

past decades.  A 30-m Landsat scene footprint measures approximately 180km x 180km.  

Although this covers a reasonably broad (multi-county) area, approximately 410 Landsat 

scenes would be required to image a single season across the conterminous (lower 48) 

United States. 
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 Because Landsat data had the 

coverage from which it was possible 

to map the entire US and reasonably 

detailed spatial resolution, and 

recognizing the difficult and labor-

intensive nature of manually repeating 

the GIRAS, the USGS and partner 

agencies created the National Land 

Cover Dataset 1992 (NLCD92) 

dataset, which was a 30-m mapping of 

21 land use/land cover classes 

representing the early 1990s era 

(Vogelmann et al., 2001).  The 

NLCD92 contained four urban land-use classes (see Figure 1-3), fewer than the GIRAS, 

but was produced in a more automated fashion at higher spatial resolution.  The 

methodology for producing the NLCD92 was based on an unsupervised classification 

with subsequent labeling/identification of clusters, and incorporated census data as the 

basis for distinguishing residential from non-residential urban land.  Clusters were in part 

manually interpreted from aerial photography, particularly for urban areas (James 

Vogelmann, personal communication, June 19, 2008).  The NLCD92 was at least in part 

a “hybrid” product, produced by both automated and manual means. 

 

Figure 1-3: Sample of NLCD92 for the area of 
Fairfax City, VA.  
The NLCD92 was a 30-m pixel-based product that had 
four land use classes. 
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 Even though considerable effort was put in to creating the NLCD92, and it was 

widely recognized as a high-quality and valuable product, the difficulty in accurately 

identifying urban land use on a pixel basis was evident, and the reported accuracy of the 

individual urban classes generally was less than 50% (Stehman et al., 2003).  There was 

in particular difficulty in separating the high-intensity residential class from the low-

intensity residential, and 

commercial/industrial/transportation 

class. 

 In 2006 the USGS 

completed and released the National 

Land Cover Database 2001 

(NLCD01; Homer et al., 2007).  The 

methodology for the NLCD01, 

although still based primarily on 

Landsat data and mapped at 30-m 

resolution, was a departure from 

that used for the NLCD92, and was 

based on a classification and 

regression tree approach.  The 

NLCD01 contains two products 

which map urban land, although one is essentially a variation of the other: the first 

product is a fraction image which maps the percent impervious surfaces (scaled 0-100) 

Figure 1-4: Sample of NLCD01 for the area of 
Fairfax City, VA. 
The NLCD01 does not attempt to portray land use, but 
represents four urban classes as classifications of 
degrees of imperviousness + urban open space.    
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for each 30-m pixel, and the second is a categorical version of the fraction image, which 

is primarily a recoding of the fraction image into four classes (e.g. 80-100% 

imperviousness was recoded as “Developed, High Intensity”, 50-80% recoded as 

“Developed, Medium Intensity”, etc.).  Although the NLCD01 categorical product does 

include “Developed, Open Space” as part of the lowest imperviousness class, there is 

otherwise not an attempt to capture urban land use as part of its depiction of the 

landscape, and the classes do not impute any economic function to the urban landscape, 

as the NLCD92 and GIRAS products did.  

 The United States is not alone in lacking a broad area land use product derived 

from an automated or semi-automated process.  Regions or countries with similar land 

area to the US (Europe, Canada, Australia) may have national land use/land cover 

products which map detailed urban land uses, however they were created by manual 

means.  For example, the European CORINE Land Cover dataset (European 

Environment Agency, 2009) maps nine detailed urban classes in vector polygon format at 

the 1:100,000 scale, however they were derived from photo-interpretation.  The Canadian 

National Topographic Database (NTDB; Natural Resources Canada, 2009) is a digitized 

vector version of topographic maps with detailed urban features at the 1:50,000 scale 

which were originally created from manual interpretation of aerial photos (recent 

activities by the Canadian government to combine the NTDB with other data to create 

urban mappings is discussed in Section 2).  Products which were derived entirely by 

automated means from satellite imagery for those countries at the national scale lack 

detailed urban land use classes.  
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 In short, manual interpretation of aerial photographs is still the norm for mapping 

urban land use (Nichol et al, 2007).   However, because there is widespread recognition 

in the advantages of finding automated means, there has been great interest in alternative 

approaches.  One of these is processing the landscape in an “object-oriented” (also 

sometimes referred to as a “segment-based”) approach. In an object-oriented treatment of 

the landscape two-step processing occurs: first the scene or study area is broken into 

homogeneous component parts (“objects”) according to some segmentation criteria, then 

the objects are classified by relating relevant spectral, spatial, or hierarchical properties 

(Johnsson, 1994; Jensen et al., 2001; Qian et al., 2007; Tiede et al., 2010).  It is 

fundamentally different to traditional pixel-based classifiers in that there is the potential 

to break the scene into “real-world” objects that are meaningful (e.g. an industrial area), 

potentially incorporate the kinds of site and association information that a human would 

recognize, and additionally reduce the noise and heterogeneity that is inherent in a per-

pixel approach (De Wit and Clevers, 2004).   

 Successful applications of object-oriented identification of urban land use exist 

(and tools to aid the process are available in a number of software packages such as 

IDRISI or eCognition), however are almost entirely image-based and have employed 

high-spatial, or high-spectral resolution imagery, often in conjunction with detailed city 

or county-level supportive data (Segl et al., 2003; Kachouie et al., 2004; Carleer and 

Wolff, 2005; Taubenboeck et al., 2006; Qian et al., 2007; Sun et al., 2007; Lackner and 

Conway, 2008).  At the national level, even if it were feasible to successfully segment 30-

m Landsat data into zones of homogeneous land uses, it would require processing 
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hundreds or even thousands of Landsat images (if multi-season images were included), 

and essentially reproducing the years of work and many thousands of man-hours that 

went in to creating the NLCD01, in an attempt to redefine land use from scratch.   

 Our goal is to find a more accessible, non-image based approach to accurately 

identifying urban land uses that would be feasible over broad areas, not be constrained by 

the limited footprints of high or even medium-resolution imagery, and at the same time 

require a minimum of manual interpretation.  We hypothesize that it is feasible to identify 

thematically detailed urban land uses based entirely on existing public national datasets, 

and to be able to do so at a scale that is still fine enough to be highly useful for regional 

or national applications. The greatest problem with the object-oriented approach is 

successfully breaking the study area into segments of homogeneous land use.  Because 

city or county parcels typically represent a single land use, parcel boundaries present one 

possible solution to partitioning the landscape.  For example, Wu et al. (2007) show the 

ability to classify parcels according to urban land use for the city of Austin, Texas, using 

high-resolution data.  However, at the national or even regional scale parcel boundaries 

are inconsistent or unavailable (more detail on the difficulties of parcel data is given in 

Section 1.3).  Nationally-available boundaries – census geographies – present the next 

best alternative.  The primary disadvantage is that census zones do not have 

homogeneous land use even at the smallest unit (the census block), and therefore are not 

amenable to being classified categorically.  Nonetheless, predicting continuous 

parameters such as population (Lo, 2003; Wu and Murray, 2007) or imperviousness 

(Civco et al., 2006) have been well demonstrated using a census zone-based approach.  
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We believe that a zone-based approach using census boundaries and predicting 

percentages of land use as continuous variables (i.e. a regression instead of a 

classification) is a promising alternative to any of the above-described approaches (i.e. 

manual interpretation, per-pixel approach, or segmenting/classifying by homogeneous 

zone), would be readily reproducible, and feasible with national-scale data.  A further 

great advantage of using census zones is that numerous socio-economic parameters 

which are likely to be predictors of land use (e.g. “number of housing structures with 

more than 5 units in the structure”) are already collected  and publicly available at a 

number of census geography levels. 

1.2 Objectives 

 Given the above background, this dissertation has the following objectives: 

� Demonstrate a method for a zone-based identification and mapping of urban land 

use using readily available national-scale data.  The thematic resolution of the 

classes should be at least equivalent to or better than Anderson Level II classes, 

and the scale of the zones should be no coarser than census block groups.  The 

result will be decision tree models which map thematically-detailed urban land 

use over broad areas. 

� In so doing, create an inventory of datasets and metrics based on literature and 

classic urban land use theory which may be logically used as predictor variables 

for this purpose, to include manipulations or creation of data which may not exist 
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previously, or spatial pattern, contextual/proximity, or measures of spatial 

autocorrelation.   

� Test the feasibility of applying the method (or some version of the method) to 

diverse geographic areas that were not part of the model building.  The results of 

this will provide insight into how best to perform an automated mapping of urban 

land use at the national or regional scales, and whether it is possible to apply 

models across diverse urban settings. 

� Because analysis of this type has not previously been performed at this scale, 

identify which data sets and metrics are most useful in predicting particular urban 

land use classes and to investigate the importance of certain classes of predictors.  

In this way, regardless of the ultimate ability to truly make an accurate “national 

urban land use map”, the result will include a large body of information about the 

relationship of socio-economic and infrastructure data and types of land use 

settings at a broad scale, which may aid other urban researchers. 

1.3 Feasibility of a national approach to mapping urban land use 

 The intention of this section is to defend in somewhat more detail the need, 

usefulness, originality, and feasibility of the project.  Because Frequently Asked 

Questions (FAQs) are a concise way of responding to questions, it is given in that format: 

Why does anyone care about urban land use at regional or national scales?  Isn’t 

that the kind of detail that only local governments or local studies would be interested in, 

and they would have access to that kind of information at their scale? 
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 Yes, local governments or local studies would probably have access to some kind 

of land use information, such as parcel or zoning data from a city/county, or could derive 

it themselves if needed.  However, the format and information content varies between 

every county, may not be publicly available, and may not even exist in digital format. 

 There are however, numerous national or regional research bodies and studies for 

whom a national urban land use map would be extremely valuable.  For example the 

USGS National Water-Quality Assessment Program (NAWQA, U.S. Geological Survey, 

2009c) or the USEPA National Wadeable Streams Assessment (U.S. Environmental 

Protection Agency, 2009) are national monitoring programs which study (among other 

things) the effects of urbanization on the nation’s rivers and streams.  NAWQA, for 

example, has a database of several thousand watersheds across the US which are 

monitored, and the program desires to have the highest-resolution data possible 

(thematically and spatially) in order to effectively carry out their mission.  The lack of 

urban land use information at the national scale is a striking data gap. 

Isn’t there a national parcels database or something similar, that would 

essentially contain this information?  What about private companies that appear to have 

national parcel data, like zillow.com?  What about zoning information? 

 There has been talk about the creation of a National Parcels Database since at 

least 1980, however it is still a long way from reality (National Research Council, 2007).  

While standards have evolved for creating such a product, the National Research Council 

(NRC) notes there are numerous obstacles.  Many cities or counties do not have the 

resources to participate in a project to update and reformat their data to a national 
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standard, a non-trivial effort.  (Fairfax County, for example, has > 350,000 parcels).  The 

NRC estimates that about 30% of county parcel data do not even exist in digital format.  

Even when/if a national parcels database comes into existence it is not clear that it would 

necessarily contain the type of information desired (land use of the parcel), or that the 

information would be nationally consistent even if it did exist. 

 Some private companies like zillow.com have, at great effort, gathered property 

information from local sources, primarily for the purpose of pricing.  Their databases are 

generally not for sale, do not necessarily contain land use information as such, and do not 

necessarily cover the entire United States. 

 Having said that, this project will test the value of one such proprietary system 

(whose data can be purchased) – ESRI’s Business Analyst data (ESRI, 2009) as a 

predictor input.  It by itself, however, does not contain land use information beyond 

business and some institutional location information. 

 Incorporating zoning information entails many of the problems noted above, 

because while every county or town in the U.S. has publicly-available zoning maps, they 

have variable class definitions, consistency, and currency. Even for adjacent counties 

within the same state, such as Massachusetts, zone classifications might have similar 

names but quite different definitions (MassGIS, 2008).  Numerous exceptions may exist 

for different zoning classes, but the exceptions themselves differ for each county or town. 

For example, some residential zones may permit churches or recreation or commercial 

land to exist within the zone in one county, but the same exceptions might not exist for 
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another county, even if the zoning classes are ostensibly identical.  Finally, and possibly 

the greatest difficulty, zoned land use may be considerably different to actual land use.   

Why isn’t land cover or percent imperviousness, such as that portrayed in the 

NLCD01, good enough – doesn’t it basically have the same information? 

 No.  It’s true that the difference between land cover and land use is often ignored 

in ecological or other studies (Cadenasso et al, 2007; Comber, 2008), however land use 

differences are important for testing numerous hypotheses, and the land surface’s form is 

different to its function.  As noted earlier there is quite a leap from land cover to land use, 

and knowing the percent imperviousness of a watershed does not have the same 

information content as knowing how much land is used for industrial or residential or 

parkland purposes.  It is for that reason that many studies have been undertaken over the 

years (see Literature Review section) to explore better ways to identify land uses. 

There was urban land use information in the 1970s GIRAS and in the 1992 NLCD 

– can’t one or both of those simply be updated? 

 Those products would certainly be helpful in making a current national land use 

map to the extent that areas that were correctly coded in those products could still have 

the same land use.  The plan here is to test the viability of both of those products as 

predictors of current land use, and it is likely they will end up participating in the model.  

So in a sense they will be updated, just at a different scale and resulting in somewhat 

different classes. 
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What has the focus been on in the past with automated urban land use mapping? 

 Many studies have focused on image-based solutions and particularly in 

demonstrating how well urban land use can be delineated using high-spatial or high-

spectral resolution data.  Other studies have focused on non-image based solutions, but 

nevertheless using detailed local-scale data.  Those studies show great potential but are 

extremely difficult or impossible to execute over very broad regions because of the 

unavailability or expense of those kinds of data.  Perhaps someday very high resolution 

data will be cheap and easily accessible for large areas, however that day is still far away. 

 And even when that day arrives there are still data processing issues with regard 

to national mapping.  For example, processing 4-m multi-spectral imagery over the entire 

U.S. for the purpose of land cover delineation would be a stupendous data processing 

task.  Even the proposed method in this project is not without challenge:  although the 

method here uses nationally-available data, from a data processing perspective it would 

still be a non-trivial amount of work to execute for the entire country (for example, there 

are about 220,000 block groups in the United States).  There are a limited number of 

organizations who have the mandate or motivation to undertake data-intensive national 

mapping. 

So you think urban land use can be mapped with reasonable accuracy using 

readily-available national data without having to individually process thousands of 

unique images.  If that’s true then doesn’t the information essentially already exist?   

 Yes, the hypothesis is that the information does exist, but needs to be teased out 

and successfully modeled from the predictor data, which is likely to be non-trivial (and if 
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it were trivial then someone would already have done it).  It also likely includes non-

linear relationships, i.e. data relationships will exist at some range of values but not at 

others, which are more difficult to model.  Some of the classes to be presented here are 

definitely not predictable from land cover or population density alone (e.g. 

“Institutions”), and identifying some classes may require unique combinations of data or 

metrics which have not been tried before for this purpose or at this scale.  It is 

hypothesized, for example, that spatial pattern metrics might be useful for predicting 

some classes, but not for others, and the method presented here allows for focus on each 

individual land use class.  

If you intend to use a zone-based approach, what is the appropriate scale?  

Blocks? Block groups?  Tracts?  Counties? 

 This is an important issue, because the resolution of the zones will determine how 

useful the end product will be.  For example, if the resolution of the zones was at the state 

or county scale they would be of limited use in characterizing watersheds that were (for 

example) smaller than 50 km2. 

 The best result of this project would be accurate estimation of land use at the 

smallest census geography, possible, i.e. census blocks.  However, because the intention 

is to extract spatial pattern metrics from 30-m data (the spatial resolution of the national 

land cover datasets), there is an obvious need to match the grain of the data (30-m) to the 

extent of the zone (Saura, 2002).  To that end, the sizes of census geographies were 

examined in two of the states which will be involved in this study (and likely to be 

similar to other states) (Table 1-2): 
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 Although there are no definitive guidelines (and the requirement may vary with the 

type of metric), Herold et al. (2003) suggest that several hundred pixels are an appropriate 

minimum for executing various spatial pattern metrics.  Because at the block geography 

only a few dozen 30-m pixels would be contained in a median-sized zone (and therefore 

half would have even fewer than that), the block group geography appears to be the 

smallest feasible scale for this project.  The vast majority of block groups in these two 

states (> 90%) are made up of at least 200 30-m pixels.  This study will therefore be 

conducted at the block group scale.   

 

Table 1-2: Representative statistics of census geographies for two sample states  
(block boundaries from: SILVIS Lab, 2009, other data from: U.S. Census Bureau, 2009a) 

  California Massachusetts 

  n 
median size (sq 

km*) 
# 30-m pixels in 

median area n 
median size (sq 

km*) 
# 30-m pixels in 

median area 

Blocks 561,218 0.03 33 118,171 0.02 22 

Block Groups 22,195 0.53 589 5,054 0.86 956 

Tracts 7,115 2.03 2,256 1,364 4.25 4,722 

Counties 58 4070.81 4,523,122 14 1465.59 1,628,433 

* 1 sq km = 100 ha = 247 acres 

 
 

 It is also worth noting that there is a quite a bit of variation in block group sizes.  

For example, even though the median block group size for Massachusetts above is 0.86 

km2, 25% are > 3.0 km2 (rural or less developed block groups), and another 25% are < 

0.25 km2 (urban block groups).  Census geographies were originally designed to roughly 

encompass the same number of individuals being enumerated, however both the 

population and boundaries have changed over time.  In any case, it is believed that block 
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groups are a good compromise between the desire for fine-scale mapping, and the reality 

of doing so over a large area.  While block groups may be coarse for some applications, 

as another perspective, the median values noted above are smaller than a single pixel 

from a typical regional-scale remote sensing platform such as the AVHRR series of 

satellites (approx. 1-km resolution) (Figure 1-5). 

 

 

You said that block groups do not have homogenous land use, and that the 

method would be demonstrated by predicting land use as a continuous variable.  How is 

that going to work? 

 The percent of each land use type within a block group will be predicted 

independently.  That is, a block group may be predicted to have 40% single-family 

residential, 10% multi-family residential, 20% commercial, 20% industrial, and 10% 

recreational land use.  To assess the accuracy those values will be compared to the actual 

 

Figure 1-5: Example block group boundaries (blue) over Fairfax, VA.   
Area of the block group is shown.  Right-hand side: for the same area, 1-km pixels are shown for scale 
perspective (USGS National Atlas vegetation for year 2000; USGS, 2008). 
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values for withheld validation records.  The independent stand-alone models may or may 

not add up to 100% land use, so they will be integrated and constrained after the fact so 

that they do in the end represent a “holistic” 100% prediction (although they also have 

value by themselves as stand-alone predictions). Assignment of categorical classifications 

(for example, assignment by majority percent) will also be explored to some degree after 

the fact. 

Is the method going to entail using special software or data that will be difficult 

for someone else to duplicate? 

 No, and in fact accessibility is one of the key tenets of this project, and it is 

intended that methods should be reasonably simple to reproduce.  Very commonly used 

GIS software will be employed (ESRI ArcInfo), and other tools, including the regression 

and prediction software (R platform), are all public domain.  

 Data to be used will also be public-domain and freely available with the exception 

(as noted previously) of a test of a sample of the proprietary ESRI Business Analyst data.  
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2. Literature Review 

 

 Literature review for this topic is broken into four categories:  determinants of 

land use, urban land use classification at broad scales, object-oriented or zonal 

approaches to urban land use identification, and spatial pattern and contextual measures 

used for urban land use identification.  Key terms which provide a conceptual basis for 

predictors and modeling methods used in this project are bolded for emphasis.  

2.1 Determinants of land use 

 The most basic and first formal spatial model of land use theory was proposed by 

J.H. von Thünen in 1826 pre-industrial Germany (Fellman et al., 1992).  Although von 

Thünen’s model was based on agricultural land use, it is noteworthy primarily because it 

was the first model to incorporate ideas of distance-to-city and transportation costs as 

drivers of land use and value (“land rent”).  In it, an idealized isolated city existed, 

around which agricultural production occurred, and transport costs were based on 

distance to the city.  The locational rent for any unit area, what could be gained from 

farming or utilizing it, was therefore a function of distance to the city, and represented as: 

 

 LR = Y(Price – ProdCost) – (Y)(Trans)(d)    (1) 
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Figure 2-1.  Von Thünen land use model.   
The city (market) is represented by the central black 
dot and major transportation by the dotted line.  The 
most intensively produced crops are found in the 
areas closest to the city and transportation routes, 
while those which have extensive uses of land are 
located farthest from the city.  Figure adapted from 
Chisholm, 1968. 

where LR = locational rent, Price =maket price per unit of commodity, ProdCost = 

production cost per unit of the commodity, Trans = transport cost, d = distance to the city, 

and Y = yield (quantity of production).  These market forces resulted in ringed zones of 

land use (Figure 2-1), in which the innermost land uses were the most intensive, and the 

outermost land uses were the least intensive, e.g. grazing of livestock.  Because locational 

rent drops as distance from the city increases, the production of some goods which 

required certain intensities (production per unit area) became unprofitable at some 

distance. Distance to the central city and transportation costs as they related to 

requirements for production intensity were therefore the key determinants of land use.  

The intensive/extensive nature of urban land use with regard to distance from the city is 

most prominently evident today for most cities in the form of residential density. 

 The idea of centrality 

underlies another seminal work on 

location theory, that of William 

Alonso (Alonso, 1964), which 

extended some of the general von 

Thünen model to cities and residential 

location.  Alonso’s premise was that 

central sites, which have highest 

accessibility, are attractive to most 

land users.  However, some land users 
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may value centrality more than others, for example a retail shop may require centrality, a 

residential user perhaps less so, and agricultural uses may have even lower need for 

centrality.  Every user then has their own “bid-rent curve”: a curve that gives the price 

that a user is willing to pay for sites at various distances from the center, depending on 

their demand for space and location (Figure 2-2).   

 

 

 
At central locations retail or commercial users will prevail, but at greater 

distances residential users will be willing to pay a higher price: superimposing the curves 

allows a pattern of concentric land use to emerge, but in this case within the city itself.  

As transport or accessibility costs drop the influence of location drops.  In this idealized 

Figure 2-2.  Example of bid-rent curves.   
Commercial land uses have higher requirement for centrality, and therefore 
shopkeepers are willing to pay more for land closer to the city center.  
Industrial land uses have less demand for centrality, and residential uses even 
less so.  If rotated around the central axis the area between 0 and A forms a 
concentric ring of commercial land, between A and B of industrial land, and 
between B and C residential land (adapted from Kivell (1993)). 
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model the Central Business District (CBD) resides at the center of activity.  Important 

works of other urban economists include Richard Muth (1969), Edwin Mills (1980), and 

Grant Thrall (1980), who expanded and refined the socio-economic effects of income 

and consumption on the monocentric model. 

 There are three classic urban land use models that describe urban structure, 

derived from the social and geographic disciplines, but which may be considered as 

variations of land rent models based on economics. Although urban environments have 

changed considerably since the models came into being (1920s-1940s) they still broadly 

describe many aspects of urban places, in a general sense.  The models are: 

1) Concentric zone model (Burgess, 1925).  This model describes a series of six 

concentric rings around the CBD, which reasonably approximated some 

American cities at the beginning of the 20th century.  The land-rent curves and 

von Thünen rings described above provide a degree of explanation for this model.  

At the center the CBD provides commercial services, and surrounded by  a second 

zone of uses which were supportive of that:  wholesale, transportation and light 

manufacturing.  The third zone represented older residential areas which had 

become low income, and abandoned by higher-income residents.  The fourth zone 

represented primarily blue-collar workers who owned their own homes.  The fifth 

zone was a zone of single family homes which were wealthier and who could 

afford to travel to the central city.  The sixth zone represented “satellite cities”: 

low density, upper-middle class residential areas which were the beginnings of 
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what is today suburbia.  There is a distance-decay factor:  values of land per unit 

area generally decrease with distance from the CBD. 

The concentric zone model was built on the ecological analog of invasion and 

succession, i.e. people found their preferred niche, as species do, and represented 

a kind of continual conversion of land use as cities continued to expand.  The 

model was developed before automobile transportation was commonly available, 

and therefore did not take into account today’s modern transportation modes. 

2) Sector model (Hoyt, 1939, as cited in Mather, 1986).  This model proposed that 

socio-economic status varied in a sectoral fashion, the sectors being oriented 

strongly along transportation axes.  The city is still oriented around the CBD as 

a commercial district, however other areas take advantage of road and rail 

systems in their pattern of development.  As in the concentric model lower-

income residential areas are located closest to the CDB and nearest to industrial 

areas.  Medium-class residential areas are allocated farther out, and a high-income 

axis exists in which wealthier people with automobiles have access to the central 

city.  As in the concentric model the city center is still assumed to be the center of 

employment. 

3) Multiple nuclei model (Harris and Ullman, 1945, as cited in Mather, 1986).  This 

model acknowledged that multiple city centers could exist, and that peripheral 

growth spread from numerous sources. In this model, an original core of CBD 

still exists, however now land uses tend to organize themselves in mutually-

beneficial ways, aided by the existence of modern transportation.  There is 
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agglomeration of uses, and attractive or repelling forces of land use compatibility 

play a large role.  Locations of specialized functions develop.  In this model, there 

is still separation between highest-class residential areas and low class, as well as 

from heavy industrial, and land uses may leapfrog non-urban areas.  Income 

strongly defines residential zones.  The Harris and Ullman model was one of the 

first to describe the multiple-center suburban patterns of the landscape that were 

to follow in later decades. 

 

 Classic models of land rent and urban structure necessarily make certain 

assumptions, however, as Mather (1986) notes, there are numerous reasons why patterns 

of land use in the real world deviate from theoretical patterns. Firstly, land use is affected 

by drivers at several scales. Broadest-scale predictors of land use include natural 

elements such as climate, topography, geology, soils, water supply, and access to 

navigable water bodies (Walsh et al., 2003).  It is entirely predictable that there are no 

cities in Antarctica, nor permanent habitation at elevations > 20,000 feet.  At some finer 

scale the presence of anthropogenic features and institutions become important: presence 

of cities, jobs, transportation and infrastructure facilities, or quality of schools.  Other 

medium-local scale forces include land use regulations, aquatic amenities, or social 

forces: the attraction of cultural or ethnic enclaves, quality or access to arts or sports, or 

age of population.  At any even finer scale characteristics of specific sites drive demand; 

for example lakeside or riverside land may be more desirable (or a requirement) to 

residential or certain industrial users than other users. Technology also plays a part:  for 
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example, improvements in telecommuting technologies may reduce the desirability of 

residential land near employment centers.  Not all land is desired or used in an 

economically rational way, and it is likewise clear that the urban land market functions 

imperfectly (Kivell, 1993).  Economic cycles of boom and bust affect how land is desired 

– commercial land may be more desirable in certain periods.  Political and cultural 

changes affect land use – for example the construction of public housing may be a 

sought-after goal of one administration but not another.  Inflation, availability of credit, 

or growing affluence may likewise affect many aspects of urban change – for example, 

purchase or construction of second homes.  Meyer and Turner (1994) categorize the 

human driving forces of land use change as: (a) population and income, (b) technology, 

(c) political-economic institutions, and (d) cultural. 

 McKnight (2001) suggests that the morphology of many North American cities 

have a general pattern.  The CBD is the commercial (and sometimes geographical) center 

of the city.  He also notes the wide variability of commercial and retail forms, to include 

suburban shopping malls or big-box stores, or strip shopping centers and linear 

commercial development along road systems. On the margin of the CBD is a transition 

zone (Mather 1986; McKnight, 2001): a discontinuous area of irregular shape and 

unpredictable size that has a changing land use pattern: commercial, residential, or 

industrial. This zone may also function as tenement section of low-income housing.  

Outside the transition zone are more typically residential areas, which take up the greatest 

areal extent of the urban form: most generally residential areas are densest closer in to the 

central city, and less dense in the outer suburbs.  Suburban areas have become more 
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complex over the decades and often themselves evolve into nucleated centers of 

commercial uses.  Higher income households are often in suburban locations in the 

United States.  Industrial areas, particularly in older American cities, often organize 

themselves along major transportation routes: waterfronts, rail, or rivers.  Other land uses 

which have relatively low percentage of land area but are critical to the urban fabric – 

transportation, recreational, or institutional - have typically a less predictable location and 

are more scattered.  McKnight remarks that the central city in North American has been 

for decades decreasing in variety and importance in function with suburbanization and 

sprawl.   

 In addition to the structure of an individual city, systems of cities evolve.  The 

German geographer Walter Christaller in 1933 was one of the first to specify a Central 

Place Theory, which acknowledges the interaction and complementary effects of urban 

places.  He noted that the system of central places was interdependent (Fellmann et al., 

1992), and were one town eliminated the entire system would have to readjust its spatial 

pattern or change production to provide consumers with needed central place goods and 

services.  He also noted that a regular hierarchy of central place sizes exist: for example 

that the ratio of second order towns to first order towns will be roughly 3:1, and that there 

is a regular and relatively predictable regular spacing between towns of certain sizes.  

Christaller’s characterization of central places, while idealized, reinforce the notion of 

interconnectivity, access, and influence zones based on proximity to cities of different 

size.   
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 Given this background, what are likely to be general indicators that would help us 

to identify urban land use types?  Certainly socio-economic factors such as income, home 

size, family size, or mode of transport to work are likely to be related to a number of 

different types of land use.  Land cover, both current and prior (land cover and land use, 

if available), is an obvious close cousin to land use that has been the basis for identifying 

uses (e.g. Herold et al., 2003), but it remains a challenge to clearly link urban surfaces to 

urban functions.  Transportation routes are key element controlling land use models 

both theoretically (e.g. Hoyt, 1939; Thrall, 1980), and in practical land use identification 

studies (e.g. Wu et al., 2007).  The presence of infrastructure landmarks (such as 

schools, hospitals, or airports), or amenities (such as golf courses) in part drive the 

desirability of residential areas. The spatial pattern and agglomeration of landscape 

features or socio-economic factors has also been a clear indicator of land use types when 

based on relatively high-resolution data (Segl et al., 2003; Barr et al., 2004; Mesev, 

2005).  In this project we distinguish between spatial pattern at a local scale (within a 

block group), and at a broader scale (e.g. spatial autocorrelation across block groups).  

Finally, proximity and accessibility to city centers and other features is perhaps the 

strongest conceptual predictor of land use from classic land use and land rent models.  

Proximity to centers is likewise likely to play at a role at multiple scales, e.g. distance to 

both large and small city centers. 
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2.2 Urban land use classification at broad scales 

 As noted earlier, the advent of satellite remote sensing (RS) platforms, 

particularly Landsat in the early 1970s, made possible some of the earliest efforts at 

automated broad-area mapping of urban land use/land cover (“broad-area” defined here 

as multi-county or larger areas, in the U.S.).  The history of the national mappings of land 

use/land cover in the U.S.: the GIRAS (Price et al., 2006), NLCD92 (Vogelmann et al., 

2001) and NLCD01 (Homer et al., 2007) has been noted in the Introduction.  There is 

widespread agreement that land use is not a physically-measurable quantity, but a 

combination of cultural and economic factors which may only have indirect links to 

land cover (Campbell, 1996; Barnsley and Barr, 1997; Mesev 2003).  Many studies have 

long recognized the difficulty of differentiating urban land uses (or detailed urban 

features) from moderate-resolution imagery such as 30-m Landsat, particularly using 

spectral based pixel-oriented methods alone (Welch, 1982; Forster 1985; Haack, 1987; 

Jensen and Cowan, 1999; Jensen et al., 2001; Aplin, 2003; Mesev, 2003; Falcone and 

Gomez, 2005; Lackner and Conway, 2008).  

 In addition to the NLCD92, a number of studies have had success in mapping 

urban land use by incorporating 30-m imagery and data outside the spectral domain: 

either spatial/textural, contextual, socio-economic, or cadastral-based data.  Because 

Landsat images cover a fairly broad area (~ 180 x 180 km) these 30-m Landsat-based 

products demonstrate the possibility of mapping land use over a large metropolitan area.  

The majority of these studies have incorporated fine-scale ancillary data (such as city or 

county-based data), which generally are unique to that location and may not be available 
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consistently elsewhere.  The studies include Moeller-Jensen (1990) who used a 

knowledge-based (object-oriented) approach incorporating contextual information and 

textural measures of Landsat-TM imagery to demonstrate discriminating between land 

uses.  Harris and Ventura (1995) used census and local zoning data for post-classification 

sorting of Landsat-derived urban classes and increased the thematic detail from 5 to 14 

urban classes in their final product in doing so.  Debeir et al. (2002) likewise incorporated 

texture and contextual information with Landsat data to map CORINE-like classes 

(European Environment Agency, 2009). Sun et al. (2007) used an object-oriented 

approach which incorporated detailed city-level data with Landsat data to simulate time 

series of urban land use.  Smith and Fuller (2001) used parcel-level data to assist Landsat 

mapping to derive five urban classes.  Vogelmann et al. (1998), Chen (2002), and Yu and 

Wu (2006), all likewise employed ancillary data and Landsat data to good use in 

identifying some form of urban land use.  It is noted in numerous studies that the quality 

of the ancillary data are very important to the overall result (Vogelmann et al., 1998), and 

that dasymetric mapping (combining data sources to map a quantity) may improve 

classification (Schumacher et al., 2000).   

 There is evidence, therefore, that although 30-m imagery by itself is recognized as 

not being adequate for thematically-detailed urban land use classification, incorporating 

supportive GIS ancillary data may greatly improve land use identification from 30-m 

image data or products.  In some studies it is recognized that the GIS data, particularly if 

fine-scaled, are the primary source of information, and imagery only secondary (Wu et 

al., 2007).   
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 Several issues exist however with 30-m Landsat-based solutions to urban land use 

delineation (or other satellite platforms with similar spatial resolution and swath width). 

The first is that each image is unique based on the distinctive characteristics of the 

surface materials that were imaged at the moment of sensing, as well as atmospheric 

conditions, sun angle, cloud cover, sensor calibration, and how the data were processed 

and stored after the fact.  Each image must therefore be processed and classified 

uniquely, and classifications based on one image cannot generally be applied to another.  

In a typical land cover classification as was done for the NLCD01, several images for the 

same image footprint are often processed for better accuracy (i.e. at least a leaf-on and 

leaf-off image).  Even if the goal is to classify a single metropolitan area, the footprint for 

a single Landsat image may or may not coincidentally cover the area:  in the case of 

Boston, for example, the Landsat path/row break occurs through the middle of the study 

area.  That is, the most basic approach at a Landsat based classification of the Boston 

metropolitan area would require processing at least four unique images.  As another 

example, a land cover derivation with which the author is intimately familiar (Falcone 

and Pearson, 2006) for the Dallas-Fort Worth area based on the NLCD01 protocols 

required 24 unique Landsat images, because of the unlucky way that Landsat footprints 

fall over that metropolitan area (see Figure 6 of that reference).  Image data of higher 

spatial resolution have correspondingly much smaller area coverage and may be very 

expensive to acquire over large areas, as has been previously noted.  Image processing is 

additionally less accessible to most users:  while many researchers are comfortable with 

GIS-based processing, a much smaller subset have the specialty image processing tools 
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and requisite skills for handling and classifying multi-spectral imagery.  An effective 

GIS-based method requiring only seamless national-scale data, which are furthermore 

publicly-available, and requiring only common GIS and public-domain software, has 

therefore several inherent strong attractions. 

 Two Canadian efforts have been proposed or exist which are similar in conception 

to that proposed here.  The first of these is proposed by Lemonsu et al. (2008) to create 

detailed 12-class urban maps for any Canadian or US city based on 15-m ASTER and 30-

m Landsat imagery, and incorporating population density data and estimates of building 

heights using surface DEMS and DEMS from the shuttle radar topography mission 

(SRTM), which are available continental-wide.  The methodology however requires 

processing unique imagery (ASTER or Landsat) for each city, which in the case of the 

United States would amount to thousands of unique processing tasks.  The second 

(Leroux et al., 2009) supersedes the Lemonsu idea (they are both co-authors on the 

other’s paper), and is similar, but replaces land cover derived from imagery with land 

cover/land use derived from the Canadian National Topographic Database (NTDB).  

Their replacement of an image-based solution with a GIS-based solution for urban 

mapping echoes the arguments of this dissertation. The NTDB is a 102-class mapping 

of detailed polygon, point and line features, which is modeled using a decision tree 

technique combining census information and building height estimates to create a 5-m 

44-class raster land use dataset, of which 34 of the classes are urban. However, because 

the product, known as UrbanX, is based on the very detailed and consistent Canadian 

NTDB, it is Canadian-specific. (An equivalent of the NTDB does not exist in the US; the 
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closest thing being USGS 1:24k Digital Line Graphs, for which there would be a number 

of significant issues to use in a similar manner, primarily consistency). UrbanX is 

complete for all major Canadian cites, but not publicly available (A. Leroux, personal 

communication, Jan 20, 2010). 

 Ridd (1995) suggested that urban landscapes could be mapped to some degree 

from a linear combination of three bio-physical parameters (vegetation, impervious 

surface, soil; so-called V-I-S model). V-I-S based classifications have been employed 

using Landsat data in a number of studies (Wu et al., 2005; Setiawan et al., 2006).   

 Comber (2008) notes the common confusion between land cover and land use and 

proposes an approach for separating them using a set of 14 literature-based “data 

primitives” that allow a mapping of where the NLCD01 primarily depicts land cover 

(primarily natural land cover types), where land use (agriculture and urban classes), and 

where the concepts are confused.  The primitives, however, are not information external 

to the NLCD01, but rather, categories which are assigned a score based on the NLCD 

class descriptions: for example: naturalness, vegetation height, wetness, biomass 

production, estimated amount of human activity, etc.  The categorizations are useful in 

that they propose a method for separating “land cover” from “land use” classes within the 

NLCD01, but do not distinguish among urban land uses.  

 A national mapping effort which is also similar in nature to that proposed here, 

but focused on population mapping only, is the Oak Ridge National Lab Landscan project 

(Dobson et al., 2000; Bhaduri et al., 2007).  Two products exist, one a global mapping of 

population, and a second, more spatially detailed mapping of the USA, at 3 arc seconds 
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(about 90-m).  The motivation behind the Landscan USA is to map population not only 

spatially but temporally, including a “daytime” and “nighttime” count.   The general 

methodology allocates population count to individual 90-m cells.  Cells are weighted by a 

probability coefficient (probability of population in the cell) based on 10 variables (in 

Landscan USA 1.0).  Then the population count for the block is apportioned to all the 

cells in the block according to the probability coefficient weighting for each cell.  

Weightings are assigned from the input variables based on expert judgment, i.e. how 

important it is believed those variables are to that particular county or state.  The final 

product is evaluated county by county by a GIS analyst who checks for discrepancies and 

verifies it against high resolution imagery.  The 10 probability variables used are: land 

cover, proximity to roads, proximity to rail, slope, landmark polygon feature, parks, 

schools, prisons, airports, and water bodies.    Most of the data sources other than land 

cover are based on commercial data, i.e. accessible only at fairly significant cost.  It is 

noteworthy that most of these variables are also employed in this dissertation, although 

their exact form might be somewhat different.  There are thus similarities between 

Landscan and the method presented here in the sense that multiple national data layers 

are used to map a characteristic of urbanization (in Landscan’s case population 

count), however differ in the end product being produced and in the method details.  

Landscan’s method benefits from the great advantage of knowing a priori what the total 

population count is in the block so that results may be constrained within the zone, 

whereas in the case of urban land use no such knowledge exists (except as may exist in 

disparate and local datasets). 
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 There are at least two additional proposed efforts outside the U.S. which are 

pertinent to that proposed in this dissertation, and explore similar methods.  The first of 

these is a conceptual framework for a spatial database of Russian urban areas 

(Perepechko et al., 2005), based on combining multiple source data (e.g. demographic, 

sociologic, image-based, infrastructure, human-expert categorization).  The existence of 

such a database would allow for detailed urban studies to be enacted at multiple scales.  

The second proposal is for the construction of a national land use dataset from public 

domain information for the United Kingdom (Wyatt, 2004).  Wyatt notes that enough 

publicly available data exists in the UK at the land parcel scale to be combined to make a 

comprehensive land use dataset for any urban area, and proposes a methodology to do so.  

It is noted here, however, that the same detail of information publicly available in the UK 

does not exist at the national level in the United States (e.g. parcel-level data 

descriptions). 

 In short, while some image-based applications of identifying thematically-detailed 

urban land use over broad areas have been demonstrated, they have been limited to the 

area of a single Landsat footprint, and even then only feasible by incorporating ancillary 

data.  A different solution, one which incorporates and models data from numerous 

sources, to include land cover data already derived from RS data, is recognized as a more 

viable solution for very broad or national-scale urban applications (e.g. examples are the 

Canadian UrbanX and U.S. Landscan projects).   
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2.3 Object-oriented or zonal approaches to urban land use identification 

 Object-oriented and zonal approaches to identifying land use are conceptually 

similar to the extent that they are departures from traditional per-pixel classification of 

the landscape, and that contextual relationships may be incorporated as important 

elements of land use identification.  Humans are very adept at incorporating bits of 

information into a knowledge-base and accurately classifying objects from that.  

Experienced image interpreters (or even ordinary people) are able to identify features in 

imagery based on a lifetime of contextual experiences: one recognizes that small-medium 

sized structures with driveways next to them and arranged in certain patterns are likely to 

be single-family residential homes; or that very large structures surrounded by acres of 

parking lot are likely to be commercial or sports complexes, etc.  What is missing from 

traditional per-pixel classification of imagery is the ability to leverage contextual 

information about proximity and relationships to other features in the landscape 

(for example, agglomeration or spatial autocorrelation of features).  There is therefore 

very good intuitive rationale for not attempting to classify urban land use through 

traditional per-pixel approaches. 

 Object-oriented approaches and related techniques such as artificial neural 

networks, represent a type of artificial intelligence (Jensen, 1996).  They are similar to 

the extent that the system is trained to recognize objects from a knowledge base similar to 

that of a human expert, which typically includes an understanding or representation of 

hierarchical, network, or neighborhood relationships.   A number of studies have 

incorporated object-oriented (“knowledge-based”) processing in classifying urban land 
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using imagery data.  These include Moeller-Jensen, 1990 (30-m Landsat); Johnsson, 1994 

(10-m SPOT data); Bauer and Steinnocher, 2001 (4-m IKONOS); Kachouie et al., 2004 

(1-m IKONOS); Carleer and Wolff, 2006 (0.6-m QuickBird); Taubenboeck et al., 2006 

(4-m IKONOS); Cabral, 2007 (30-m Landsat); Dong and Wu, 2007 (10-m SPOT); Qian 

et al., 2007 (30-m Landsat); Stow et al., 2007 (0.6-m QuickBird); Sun et al., 2007 (30-m 

Landsat); Lackner and Conway, 2008 (4-m IKONOS); Su et al., 2008 (0.6-m QuickBird), 

and Aubrecht et al., 2009 (airborne laser data).  Likewise, artificial neural networks have 

been used to determine urban land from objects (Jensen et al., 2001; De Lira et al., 2006; 

Rocha et al., 2006) 

 As noted in the Introduction section, a typical object-oriented treatment of land 

classification occurs in two steps:  a segmentation step and a classification step.  How the 

image is segmented is arguably the more difficult of the two.  Wu et al. (2007) suggest it 

may be done in one of three ways:  by manual delineation of boundaries, by segmentation 

from the image data themselves, or by using pre-existing administrative zonal 

boundaries.  Manual delineation of boundaries for contiguous areas of the scene (perhaps 

without knowing yet how to label the areas) is advantageous in that a human interpreter is 

likely to be able to partition the area more effectively than an automated process.  This 

was done by Herold et al. (2003) for the purpose of testing the effectiveness of spatial 

pattern metrics on identifying land use, and by Dean and Smith (2003) for mapping land 

cover from high-resolution imagery.  It is disadvantageous, however, in that it requires 

manual intervention by an expert, and is essentially infeasible over very large areas.   
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 The second method is the application of image or scene segmentation techniques, 

which identify areas of spectral and/or spatial similarities.  This also is sometimes called 

“region-growing” (Qian et al., 2007), and is perhaps the most common technique for 

creating objects.  This has been demonstrated by Segl et al. (2003); Kachouie et al. 

(2004); Carleer and Wolff (2006); De Lira et al. (2006); Rocha et al. (2006); 

Taubenboeck et al. (2006); Qian et al. (2007); Sun et al. (2007); Lackner and Conway 

(2008), among others.  Because individual image scenes typically have unique properties 

which do not apply to other images, this technique is generally practiced from a single 

image, and therefore is not ideal for regional or national mapping.  It has not been 

demonstrated across regions or multiple metropolitan areas. For non-image data, 

strategies have been proposed which may “re-partition” Census areas according to user-

defined criteria (Openshaw and Rao, 1995; Poulsen, 2002), however, these lack the 

simplicity and well-recognized nature of already-defined Census boundaries, as well as 

the potential for loss of accuracy when Census statistics are re-aggregated. 

 The third method of identifying objects – using pre-defined governmental or 

administrative boundaries which have a homogeneous land use – has also been used. 

These are primarily based on parcel boundaries.   Wu et al. (2007 and 2009b) used this 

method based on tax parcel boundaries and building footprint outlines, along with 

detailed (0.6-m) imagery to classify parcels.  Bauer and Steinnocher (2001) also 

employed parcel boundaries for classification.  Smith and Fuller (2001) manually 

modified detailed vector data to create parcel boundaries of areas of homogeneous land 

use for classification, with Landsat data.  Tiede et al. (2010) likewise used city parcel 
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boundaries as the basis for a land use classification.  The advantage of areas as small as 

tax parcels is that they have homogenous land use and thus are amenable to categorical 

classification.   

 An alternative to categorical classification is estimation of a continuous 

parameter for a census zone, which is the approach of this project.  Census 

geographies (blocks, block groups, tracts) have been used as a basis for characterizing 

various continuous-variable parameters, for example impervious surface (Civco et al., 

2006 – by tract), population or housing unit density (Lo, 2003 – by tract; Wu and Murray, 

2007 – by block group; Bhaduri et al., 2007 – by block; Hardin et al., 2008 – by block), 

or “quality of life” (Li and Weng, 2007 – by block group).  However, thematically-

detailed urban land use classes have not been processed in this way, even for 

localized areas.  Of the above studies, Hardin et al. (2008) had perhaps the greatest 

similarity to this project, except that the target dependent variable was housing unit 

density, as opposed to our 10 urban land use types.  They predicted housing unit density 

for 1,945 census blocks for the city of Terre Haute, IN.  Their final model, based on a 

multiple regression equation, used seven predictor variables based on the percents of five 

land cover classes from a classified Landsat image, and two spatial pattern metrics 

likewise derived from the Landsat classified image.  50% of the study area records were 

used for training and 50% for validation, and they reported an r2 of 0.62 if 63 outlier 

records were removed, and r2 of 0.37 if outliers were kept. 

 In summary, while object-oriented approaches, which classify areas of 

homogeneous land uses, have been demonstrated based on high-resolution imagery or 
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very detailed ancillary data, they are much less feasible over broad areas.  The zonal-

approach, which estimates a continuous variable for a zone, is a much more promising 

framework for processing broad areas, however has not been demonstrated to date for 

urban land use applications. 

2.4 Spatial and contextual measures for urban land use identification 

 Incorporating spatial or contextual measures of the landscape, i.e. information 

beyond the traditional spectral domain, has been another method which has shown 

promise over the years in identifying urban land use.  Spatial measures encompass a wide 

variety of possible methods, but may be broadly defined as a technique that characterizes 

forms and patterns across the landscape, taking into account relationships between 

elements in some fashion as a human eye might see it (Jensen, 1996) – for example how 

close buildings are to one another, their shape, whether or not boundaries are sharp or 

gradual, how much variation exists, etc.  The techniques are not new in image processing, 

and to the extent that they represent a basic form of pattern recognition are not new 

whatsoever.  For example, one of the most common, characterizing the texture of a scene 

has been used successfully in various types of analysis at least back to the 1950s 

(Haralick et al., 1973; Hsu, 1978).  There is no single definition of texture (Debeir et al., 

2002), however it is essentially the impression of smoothness or coarseness in an image, 

and may be measured by the tonal variations within a certain neighborhood (e.g. kernel 

processing using a 3x3 or 5x5 moving window;). Simple statistics such as range, standard 

deviation, or variety may be straightforward measures of texture (Gong et al., 1992).  
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Forster (1993) showed that housing density and size were functions of the coefficient of 

variation in various moving window sizes from both SPOT and Landsat data.  Other 

texture measures, such as lacunarity, which measures the presence of gaps (Dong, 2000), 

the grey level co-occurrence matrix (GLCM, Haralick et al., 1973), Moran’s I (coefficient 

of autocorrelation; Bowersox and Brown, 2006; Su et al., 2008), or semi-variograms 

(Brivio and Zilioli, 2001) are somewhat more complex to compute, but are similar in 

nature. Many other studies have employed texture as a measure of spatial characterization 

(Moeller-Jensen, 1990; Zhang et al., 2003; Tso and Olsen., 2004; Moeller-Jensen et al., 

2005; Liu et al., 2006; Cabral, 2007).  Most texture measures are scale-dependent, i.e. 

may vary with window size (Dong, 2000). 

 Other methods exist which are based on the adjacency of classified pixels within a 

moving window kernel.  It has been shown that classifying how pixels are clustered 

within a 3x3 or 5x5 window (for example) are useful for inferring urban land use 

(Barnsley and Barr, 1996), or other patterns of fragmentation (Riitters et al., 2000). 

 Another approach might be called a “patch-based” method, in which patches of 

contiguous classified pixels are identified and spatial pattern metrics are calculated based 

on their association (MacGarigal and Marks, 1995). These have been shown to be 

advantageous in numerous urban land use studies, in that a wide range of metrics exist 

which may help to characterize the landscape:  connectivity of patches (cohesion; Saura, 

2004), edge measures (edge density; Herold et al., 2003), fractal dimension (Bowersox 

and Brown, 2001), distance of patches to like patches (Euclidean nearest-neighbor, 

Herold et al., 2003), linearity (Wang et al., 2008), perimeter-area ratio (Salas et al., 
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2003), among others.  In the sense that point locations (e.g. postal addresses) may be 

considered patches, similar metrics may be executed for points, for example nearest-

neighbor distances (e.g. Mesev, 2005). At the national scale, these metrics, based on the 

NLCD01 categorical land cover data, provide the possibility of aiding land use 

identification. 

 Morphological properties of buildings (e.g. size, compactness) have been 

examined in several studies (Segl et al., 2003; Barr et al., 2004; Wu et al., 2007), 

however require greater spatial resolution than 30-m to be effective. 

 Another avenue to be examined in this project is the “abruptness” of transitions 

within the landscape, or boundary-based metrics (Jacquez et al., 2000).  While edge-

density, above, characterizes the edges of patches, categorical land cover data such as the 

NLCD01 are not well suited to measuring transitions in urbanization.  In the same way 

that slope may be calculated from a Digital Elevation Model (DEM) and provides unique 

information about the terrain, the “slope” of urban transitions may provide useful 

information.  At the national scale it is possible to calculate this from the NLCD01 

continuous-data impervious surface fraction image.  This basic concept has been explored 

in other studies (Bowersox and Brown, 2001; Zhang and Wang, 2003), in which 

thresholds are applied to characterize the percent of the landscape that has boundary 

gradients above or below certain levels.  Boundary-based metrics are less well examined 

than patch-based metrics for the purpose of urban land use identification (Brown et al., 

2004), but have potential. 
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 An important point regarding spatial pattern metrics is that nearly all may vary 

with and are sensitive to scale (Gustafson, 1997; Saura, 2004; Wu, 2004).  This is best 

illustrated with an example (Figure 2-3).  The red pixels in Figure 2-3 (“Class1”) as 

calculated from the single tract area shown have a considerably lower perimeter-area 

ratio (a measure of how dispersed a feature is) than that calculated from its three 

component block groups because of the overall increase in perimeter (an example of both 

the scale and zoning effects of the so-called Modifiable Areal Unit Problem 

(Fotheringham and Wong, 1991)).  The implication is that those metrics which may be 

meaningful in characterizing pattern at one scale may not work well at another scale.  

How successful some commonly used 

spatial pattern metrics are at identifying 

urban land uses using national-scale data 

is one of the results of this project. 

As an aid to urban classification, 

contextual measures - here defined as 

proximity or spatial association to 

landmarks, cities, or other known features 

– have been used in various ways.  

Moeller-Jensen (1990) incorporated 

distance to city center as an input variable 

to predicting land use, and Debeir et al. 

Figure 2-3: Example of how spatial metrics 
may change with scale.   
The perimeter-area ratio for “Class1” 
calculated from a single tract area may differ 
considerably from the mean for its three 
component block groups. 
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(2002) likewise incorporated distance to roads, rail, and other features. As noted above, 

the Landscan product (Bhaduri, 2007) incorporates proximity to road and rail as 

predictors of population.  Wu et al., (2009a) use nine predictor variables to map land use 

change, six of which are proximity measures (distances to nearest city center, rail station, 

major road, city amenity, community service and shopping center).  Wu et al. (2007) use 

the highest road category within 50-m to help predict parcel land use.  Proximity of 

features within certain buffer distances is also frequently used, for example, Walsh et al. 

(2003) calculated the association of residential land use to aquatic amenities (lakes, 

wetlands, streams) at various buffer distances and found that residential areas were 

positively associated with lakes in the upper Midwest (and to roads, within 100-m 

distance).  Distances are typically measured using Euclidean distance, however, it is 

noted that for some purposes, for example characterizing distributions of urban 

population, other methods of calculating distance, such as the Minkowskian distance, 

may be better suited (Griffith and Wong, 2007). 

 In summary, spatial pattern metrics based on imagery or data derived from 

imagery have been common aids in urban classification studies.  We tested some of the 

most common ones as indicated by the literature, and supplemented those with additional 

metrics which have a similar basis.  Contextual measures have been noted throughout 

the Literature Review section as being key elements which strongly influence the urban 

landscape, and while they have been employed in a number of studies, we nevertheless 

feel they have been an under-appreciated tool in previous identifications of land use.  

Given the potential importance of a land unit’s location with regard to city centers, 
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amenities, and other features as a determinant of its use, it is believed that a more 

thorough examination of contextual/proximity measures should be an outcome of this 

project. 
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3. Data and Methods 

 

3.1 Study Area 

 The main analysis for this study was conducted for a four county area surrounding 

the city of Boston, Massachusetts (figure 3-1).  The study area was chosen primarily 

because of the availability of high-quality reference data in that region. It is in this area 

that both 10-class and 6-class land use prediction models were derived and validated.  
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Connecticut

New Jersey

Rhode Island

Boston

Providence

Study Area

Atlantic Ocean

0 50 10025 Kilometers

Figure 3-1: Location and 2001 land cover for the four county Boston area (USGS, 2009d).   
Urban land cover is shown as red and pink tones. 
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The 6-class model was additionally tested by data samples from three other areas: 

Atlanta, Los Angeles and Providence.  The reference data for all areas and the locations 

and significance of the three external validation areas are discussed in section 3.2.1.3.  

The Boston study area includes four counties (Essex, Middlesex, Norfolk, and Suffolk) 

encompassing 2,764 block groups (BGs), with an area of approximately 4,800 km2 (1,850 

mi2).  A small portion of Norfolk County was omitted because it was discontiguous. 

 The four-county area includes the city of Boston, as well as outlying suburban 

areas and smaller cities and towns, and incorporates a total population of approximately 

3.5 million people (Census 2000).  Boston is essentially a monocentric city (Griffith and 

Wong, 2007), the center being at the Boston-Cambridge nexus (2000 population roughly 

790,000), with Lowell (105,000) being the next largest population center in our study 

area (and Worcester – 172,000 – exerting possibly a small influence on the western part 

of our study area).  The block groups studied include as wide a range of urban features as 

are likely to be found in any US metropolitan area, to include extremely dense central-

city residential and commercial areas, industry, major airports and harbor facilities, 

commercial areas of all type, recreation, and areas of lower-density residential of a wide 

range.  The median size of the 2,764 block groups is 0.46 km2 (= 46 ha = 114 acres).  

Summary statistics for the four counties are given in Table 3-1.  Note that Suffolk County 

(central Boston) has different land use characteristics to the other three counties, as it is 

more intensely urbanized (greater density of multi-family and small lot residential, more 

commercial, institutional, and transportation, less non-urban). 
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Table 3-1: Summary statistics for four counties and overall study area.   
Land use data from MassGIS, 2008 (also described in more detail in next section).   
Census data from 2000 Census. 

LU class Essex Middlesex Norfolk Suffolk Total 

Population 723,419 1,466,847 643,047 690,445 3,523,758 

Area (sq km) 1385 2191 1045 176 4,797 

# block groups 543 1123 467 631 2,764 

Actual land use (%):           

Single family residential, > 1/2 acre lot 10.53 13.01 12.25 0.18 11.65 

Single family residential, 1/4 - 1/2 acre lot 9.65 13.43 16.50 0.70 12.54 

Single family residential, < 1/4 acre lot 5.68 5.51 4.75 21.51 5.98 

Multi-family residential 0.94 1.80 1.20 13.98 1.87 

Commercial 1.99 2.49 2.08 10.07 2.54 

Industrial 1.79 2.82 3.12 3.35 2.61 

Institutional 1.15 1.72 1.60 6.03 1.69 

Transportation 1.71 1.72 1.83 10.57 2.07 

Recreation-Urban Open Space 3.15 3.02 3.59 9.65 3.43 

Non-urban 63.42 54.48 53.07 23.96 55.63 

 

3.2 Data 

 Data for this project fall into two categories:  (a) reference data (“ground truth”), 

used for both training and validation, and (b) predictor data, used as independent 

variables for model building.  The dependent variables to be predicted are the percents of 

actual land use within a block group.  Throughout this document, dependent variables 

(DVs) are given in all upper case, such as “SFRES_L” (single-family residential, large-

lot), while independent variables (IVs) are given in italics, with the first component of the 

name being the predictor type (described below), such as “CENS_popden” (a population 

density variable derived from census data).  The terms predictor variables and 

independent variables are used synonymously in this dissertation. 
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3.2.1 Reference Data 

3.2.1.1 Reference Data for Massachusetts 

 The ability to execute this project depends on having high-quality reference data, 

i.e. an authoritative and detailed mapping of “true” land uses.  Approximately 20-25 

regional or state-wide land use maps derived by various organizations were examined.  

These maps had been created from manual digitization of aerial photography.  The 

criteria for potential use in this project 

were:  (1) the time period must be close to 

the time period for the predictor data to be 

used in the project (e.g. census data, 

NLCD01), that is, the period 2000-2001, 

plus or minus one or two years, (2) the 

thematic resolution must be at least at 

Anderson Level II, and preferably at 

Level III, and (3) the data must include a 

large metropolitan area.  Data available 

from the Massachusetts State Office of 

Geographic and Environmental 

Information (MassGIS, 2008) 

representing the 1999 time frame were 

selected as the best candidate.  The data are a polygon-based 37-class photo-

interpretation of land use for the entire state, with an MMU of 1 acre (0.4 ha) (figure 3-2).  

Figure 3-2.  Block group boundaries 
displayed over State of Massachusetts 
reference data polygon boundaries for a 
portion of the city of Lowell, MA. 
 Polygon labels represent the “true” land use class 
(see Appendix A), as manually derived from aerial 
photography.  For example, class 11 = 
“Residential, smaller than ¼ acre lots”.  Note that 
block groups are nearly always comprised of 
multiple land uses. 
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The data are also noteworthy because (although not used for this project) they include 

mappings of two prior time periods: 1971 and 1985, which were thought to have potential 

for future analysis.  Class descriptions for the MassGIS mappings are provided in 

Appendix A. 

3.2.1.2 Dependent Variable Definitions and Rationale 

 Although the Anderson Level II classes are frequently used as a starting point and 

often referenced in urban land use studies, they are rarely used exactly “as is”, and indeed 

it is difficult to find any two studies which have precisely the same definitions of urban 

classes at approximately that level.  One rationale to deviate from the Anderson classes is 

that of the seven Anderson II classes two of them are mixed classes (“Industrial and 

Commercial Complexes” and “Mixed Urban or Built-up Land”).  It is preferable to have 

classes which have a single unambiguous type if possible because results are more 

interpretable.  A second reason to deviate is that there is evidence (Herold et al., 2003; 

Wu et al., 2007) that some Level III classes may be successfully differentiated along with 

Level II (e.g. “Single-family residential” and “Multi-family residential” instead of 

“Residential”).  A third reason to deviate from the Anderson classes is that the class 

structure needs to be matchable to available reference data.  That is, if Commercial and 

Industrial are merged as a single class in the ground truth it is not possible to study them 

separately.  The classes to be examined in this study are given in Table 3-2, and 

compared to those used by two studies which are similar in nature to this project: 
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Table 3-2: Land use classes to be used in this project and those used in two similar studies.   
Study area for Herold was Santa Barbara, CA, and for Wu was Austin, TX. 

Herold et al. (2003) Wu et al. (2007) Falcone - 10-class Falcone - 6-class 
Single-unit low density 
residential 

Single-family 
residential 

Single-family large lot 
residential Residential, low intensity 

Single-unit med. density 
residential Multi-family residential 

Single-family medium lot 
residential Residential, high intensity 

Single-unit high density 
residential Commercial 

Single-family small lot 
residential 

Commercial/ industrial/ 
institutional 

Multi-unit residential Office Multi-family residential Transportation 

Commercial & industrial Industrial Commercial Recreation & Open Space 

Institution Civic (institution) Industrial Non-urban* 

Recreation & Open Space Transportation Institutional   

Agriculture & rangeland* 
Recreation & Open 
Space Transportation   

Forest & wetlands* Undeveloped* Recreation & Open Space   

    Non-urban*   

* = non-urban classes    

 

 

 Both the Herold and Wu studies showed that there was good separability among 

their classes based on the attributes studied (spatial pattern metrics of land cover and 

building height/shape/areas, respectively), and initial tests of prototype data in this 

project indicated that, even though some classes are closer to each other than others, there 

was both hypothetical and empirical evidence that they can potentially be distinguished 

(also see Section 3.3.1). 

 The 10-class structure was used for identifying land use in a single region only, 

the Boston area, because reference data at that thematic resolution are not consistently 

available elsewhere for the correct time period.  The 6-class scheme was used for 

validating and testing the method in both Boston and in Atlanta, Los Angeles, and 

Providence, because consistent validation data are available for the 6-class level in those 

regions.   
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 The following are text descriptions and abbreviations of the ten classes used in 

this project.  Figure 3-3 gives examples of the spatial configuration of representative 

types for the nine urban classes (Non-urban not shown).   

� Single-family residential, large lot (SFRES_L):  Detached residential homes on 

lots > ½ acre.  May include rural residential, including farms.  Generally low 

population density, large patches of interspersed vegetation. 

� Single-family residential, medium lot (SFRES_M):  Detached residential 

homes on lots between ¼ and ½ acre.  Generally medium population density; 

interspersed vegetation somewhat less; medium road density. 

� Single-family residential, small lot (SFRES_S):  Detached residential homes on 

lots of < ¼ acre.  Generally medium-high population density; urban surfaces 

often have regular patterns and smaller patches of interspersed vegetation; high 

road density. 

� Multi-family residential (MFRES):  Residential units which are attached.  

Includes duplexes, condominiums, low and high-rise apartments, and attached 

mobile homes.  High population density; medium-high road density; may have 

sizeable patches of interspersed vegetation. 

� Commercial (COMMERC):  Office buildings, retail stores, commercial centers, 

strip shopping centers, malls, hotels, and motels.  Low-medium population 

density; may have highly concentrated areas of imperviousness or in linear 

configurations. 
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� Industrial (INDUST): Light and heavy industry, manufacturing.  Low population 

density; large structures, often clustered; concentrated imperviousness; low road 

density. 

� Institution (INSTIT):  Public facilities, government offices, police and fire 

stations, hospitals, nursing homes, churches, schools, universities, libraries, 

prisons, and military bases.  Generally low population density; may have large 

structures with attendant large patches of vegetation. 

� Transportation (TRANSP): Airports, freeways, railways, bus and truck 

terminals, harbor facilities, major utility and communication facilities.  Does not 

include road systems smaller than freeways, which are considered to be an 

integral part of other land uses.  Low population density; either very large areas 

of concentrated imperviousness or linear features. 

� Recreation and open space (RECR_OPEN): Parks, golf courses, recreational 

areas, sport fields, cemeteries, and other open urban space.  Low population 

density; generally large areas of green vegetation with interspersed roads and 

structures. 

� Non-urban (NON_URB):  All other land not included above.  Very low 

population density; largely vegetated; very low imperviousness. 

 
 The 6-class categorization is simply a subset of the 10-class, in which 3 classes 

are merged classes.  The following shows the aggregation and abbreviations for the 6-
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class names (TRANSP, RECR_OPEN, and NON_URB do not change and are used in 

both schemes): 

 

  

SFRES_M + SFRES_L   = RESID_LOW_6CL (low intensity residential) 

SFRES_S + MFRES    = RESID_HIGH_6CL (high intensity residential) 

COMMERC + INDUST + INSTIT  = COM_IND_INST_6CL (commerc./indust./instit.) 

TRANSP     = TRANSP (transportation) 

RECR_OPEN     = RECR_OPEN (recreation-open space) 

NON_URB     = NON_URB (non-urban) 

 

 

 The above classes (both 10 and 6-class schemes) represent the dependent 
variables to be used in this project.
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SFRES_L: 

 

SFRES_M: 

 

AFRES_S: 

 
MFRES: 

 

COMMERC: 

 

INDUST: 

 
INSTIT: 

 

TRANSP: 

 

RECR_OPEN: 

 Figure 3-3: Example of spatial configuration of nine urban land use types for the Boston area 
(“Non-urban” not shown).   
Images are 0.5-m orthoimages dated 2001 (USGS Seamless Server). 
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3.2.1.3 Reference Data for Other Urban Areas 

 One of the goals of this project is to test how well models created for the Boston 

area perform if tested against data samples from other urban areas, and vice-versa.  

During the search for regional land use products it was noted that nearly every one, 

although loosely based on the Anderson scheme, had different class structures which in 

some cases made them incompatible, depending on the desired aggregation.  For 

example, some products did not distinguish commercial and industrial land or had 

difficult-to-compare breakpoints of residential lot size.  Others had subtle differences that 

were apparent only after visual examination, for example in some cases the product 

“burned in” all roads as part of a transportation class (as opposed to the more common 

delineation of only major highways).  Additionally some were from time periods other 

than the desired circa 2000 window.  Because it was not possible to locate multiple 

reference datasets external to Massachusetts which could be confidently recoded to the 

10-class structure, three datasets were selected which were suitable for the simplified 6-

class structure (figure 3-4).  These were 

for Atlanta, GA (data for 13 counties 

available, Atlanta Regional 

Commission, 2008), Los Angeles, CA 

(6 counties, Southern California 

Association of Governments, 2008), and 

Providence, RI (5 counties, Rhode 

Island Geographic Information System, 
Figure 3-4.  Location of three study areas 
external to Boston where models were tested. 
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2008).  The five counties in Rhode Island encompass the entire state.  The product time 

periods were: Atlanta, 2001; Los Angeles, 2001; and Providence, 2003-4.  As with the 

Boston reference data, the products were all manually interpreted and polygon-based in 

format.  The Los Angeles data were supplemented with county parcel data to more 

accurately distinguish lot sizes.  It was believed these external reference data were as 

similar as was possible to acquire, given the desired criteria, and represented a variety of 

urban settings, which included different physical characteristics of background vegetation 

and terrain. 

 More detail about the data and methods for the three external areas is provided in 

Section 3.3.8. 

3.2.2 Predictor Data 

 No previous study has attempted a comprehensive examination of urban land use 

mapping with national-scale data.  The broad aspects of determinants of land use have 

been discussed in Section 2, and while there is some guidance from literature as to which 

of these determinants are likely to be important, their specific form (how specific 

variables should be calculated or derived) is much less clear, particularly from national-

scale data.  We theorized that sources of commonly-available data (e.g. census data or 

landmark point locations) or metrics derived from national-scale data (e.g. the rate of 

change of imperviousness over the landscape, or the degree of spatial autocorrelation of 

certain features) had a basis to serve as predictors of different types of urban land use.  To 

that end a large number of predictor variables were assembled or derived to predict the 10 
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different dependent variables.  It should be noted here however, that after reducing for 

multicollinearity not all were necessarily tested as predictors and only a small number 

were actually used in final models, as is described in sections 3.3.3 and 3.3.4.  These 

independent variables are broken into 10 categories, which broadly match categories of 

land use determinants and indicators discussed in Section 2: Census, Landcover, 

Historical LULC, Transportation, Landmarks, Proximity, Spatial Autocorrelation, 

Spatial Pattern-categorical data, Spatial Pattern-continuous data, and 

Miscellaneous. 

 All data are national, although in some cases are available only for the lower 48 

states.  The variables for eight of the ten categories (Census, Landcover, Historical 

LULC, Transportation, Landmarks, Spatial Pattern-categorical data, Spatial 

Pattern-continuous data, and Miscellaneous) are calculated based on data contained 

within a block group.  For example, population density (CENS_popden in Census) is 

calculated as the number of persons/sq km for the block group.  The other two categories 

(Proximity and Spatial Autocorrelation) are calculated based on data/relationships that 

may extend outside the block group (but are summarized for the block group).  For 

example, distance to nearest 250k city (PROX_city250k_dist in Proximity) is calculated 

as the distance of the block group centroid to the point location of the nearest city of 

population > 250,000.  The following presents a brief description of the categories and 

rationale for their use.  The names, descriptions, and units for all variables are given in 

Appendices B1 – B10, however in some cases additional explanation for individual 

variables is given in the following text, where merited. 
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1. Census.  Population density characteristics are clearly related to land use, 

however several other socio-economic characteristics have intuitive or theoretical 

relationships which have yet to be examined.  For example, household income, 

median number of rooms in home, or percent of population who take public 

transport to work may all plausibly be related to land use types (e.g. high 

percentage of population using public transport positively correlates to multi-

family residential housing). One of the advantages of the block-group scale (as 

opposed to the block scale) is the greater availability of census information.   For 

block groups and coarser geographies, the Census “Summary File 3” data are 

available, which are detailed information derived from the Census long-form 

(U.S. Census Bureau, 2009b), then summarized for the geography.  Data are 

publicly available via the Census American Fact Finder (U.S. Census Bureau, 

2009c), and include information about population and housing.  All information 

available from the Census for the block-group scale was examined, and a reduced 

set of 20 variables was created, also based on preliminary testing.  This list is 

given in Appendix B1. 

2. Landcover: Data from the National Land Cover Data 2001 dataset (NLCD01) are 

the most current national mapping of US-wide land cover, however, as noted 

earlier, do not include urban land use classes, but rather gradations of 

imperviousness.  All land cover classes from the NLCD01 (USGS, 2009d), to 

include some aggregated classes (e.g. “all natural vegetation”) were included, as 

well as derived classes which were hypothesized to have value in predicting 
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certain classes.  For example, low values of the ratio of housing unit density to % 

imperviousness (LC_ratio_huden_imperv in Appendix B2) were theorized to be a 

good predictor of industrial or commercial land uses, because those LU types 

typically have low housing density but high levels of imperviousness (Bauer and 

Steinnocher, 2001).  These variables included values for the NLCD01 categorical 

data as well as the NLCD01 continuous impervious surface data.  Variables are 

listed in Appendix B2. 

3. Historical LULC:  Prior land use information, if available, is likely to be 

indicative of current land use and has been used in other research to model current 

land use (Vogelmann et al., 1998).  As noted previously, even though the 

NLCD92 and GIRAS are older datasets of differing format and neither maps 

completely to the class structure proposed here, they are likely to be valuable to 

the degree that they were a) originally accurate, and that b) if originally accurate, 

that land use has not changed since their creation.  If both of those conditions are 

fulfilled it is hypothesized that certain classes of one or both of those historical 

datasets will be good predictors of current land use: for example the NLCD92 

class “Urban/recreational grasses” (HIST_nlcd92_85 in Appendix B3) is 

potentially an excellent predictor of the RECR_OPEN dependent variable.  A 

number of variables in this category are indices of land cover over several time 

periods.  For example, HIST_indust_all_times is an estimate of industrial land 

based on the sum of classes which are the most similar to industrial from all three 
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available time periods (LC_nlcd01_23, LC_nlcd01_24, HIST_nlcd92_23, 

HIST_giras12).  Variables are listed in Appendix B3. 

4. Transportation:  This category contains metrics regarding roads, railroads, port 

facilities, and airports, from the Bureau of Transportation Statistics (BTS, 2009), 

Census (U.S. Census Bureau, 2009d) and ESRI (ESRI, 2009a).  Roads 

particularly are a defining feature of urban environments (Falcone et al., 2007) 

that may be useful in distinguishing land use types and have been used in 

numerous land use studies (Schumacher et al., 2000; Sun et al., 2007; Wu et al., 

2007).  Several variables in this category are likewise ratios (e.g. 

TRANSP_ratio_roadden_imperv) or an index derived from combining 

transportation data elements (TRANSP_alltrans).  Variables are listed in 

Appendix B4. 

5. Landmarks:  The most comprehensive source for landmark point locations is the 

U.S. Geological Survey’s Geographic Names Information System (GNIS; GNIS, 

2009).  The USGS maintains this publicly-available registry which consists of 

approximately two million features considered to be significant enough to have an 

“official” name (GNIS, 2009).  These include locations of hospitals, school, 

churches, post offices, cemeteries, airports, parks, government buildings, prisons, 

and more.  The GNIS database is continually being updated.  Figure 3-5 and 

Table 3-3 give visual and tabular examples of GNIS point locations in the local 

Fairfax area. 
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Table 3-3: GNIS features as they pertain to this project, example of how many exist in Fairfax 
County, VA (as reference to a familiar area), and their potential use as predictor 

GNIS Feature Class 
Number in 

Fairfax County Likely useful predictor for: 

Airports 9 TRANSP 

Buildings 205 Most are "institutional": INSTIT 

Cemeteries 39 RECR_OPEN 

Churches 410 INSTIT 

Civil 13 INSTIT 

Crossings 56 Mostly major freeways: TRANSP 

Hospitals 19 INSTIT 

Locales 293 
Variety of features, but mostly 
shopping centers and industrial parks. 

Military 3 INSTIT 

Parks 264 RECR_OPEN 

Post Offices 34 INSTIT 

Resort 20 RECR_OPEN 

Schools 396 INSTIT 

 

Figure 3-5: GNIS example:  
GNIS features for the George Mason University area (same area shown as in 
Figure 1-5). 
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  It was anticipated that the GNIS point locations would primarily be 

helpful in mapping the INSTIT and RECR_OPEN classes.  An uncertainty with 

the GNIS points is their consistency across the country.  Because the database is 

in part updated by local cooperators they are not necessarily consistent from state 

to state, and the consistency may additionally vary within specific layers, e.g. 

point locations for cemeteries may be very current and accurate for specific states 

or regions, but less so for other areas (Roger Payne, USGS, personal 

communication, April 24, 2009).  However, the data layers that were most useful 

in this project and were most common – schools, hospitals, public buildings, 

parks, cemeteries, golf courses, and a few others – seem to be fairly consistent 

from area to area.   

  The GNIS points were first sub-categorized to the extent that sub-

groupings were discernible from the feature name (the only descriptive 

information in the GNIS dataset).  For example the GNIS points as downloaded 

contain a single feature class “School” to identify all schools.  Recognizing that 

schools may have tremendous variability in their areal extent (the characteristic 

being predicted in this project), e.g. high schools vs. elementary schools, several 

feature classes were broken out into sub-categories, to the degree that that was 

possible. These derived classes were then examined against known landmarks to 

determine the most effective way of quantifying their presence for the purpose of 

estimating their areal extent.  A straight density of point locations was used for 

some predictors (see Appendix B5).  Two consolidated predictor variables were 
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constructed from a weighted average for points believed to be good predictors for 

“recreation” and “institutions”, respectively.  The weighting was based on a very 

simple scheme drawn from our visual observations (each value represents the 

number of point locations of that type): 

 
LANDMRK_gnisconsol_recr_density = ((resorts * 2) + parks + cemeteries)/area 

 

LANDMRK_gnisconsol_inst_density = ((buildings / 2) + churches + correctional 

+ (hospitals * 2) + (military * 2) + post 

office + school-elementary + school-

middle + (school-highschool * 1.5) + 

(school-univ * 1.5) + school-other)/area 

  
  Because it was not know a priori if a gridded representation of GNIS 

points or a calculated point density (above) would be more effective, two other 

representations for GNIS points as grids were built by “growing” point locations 

as grid points according to their perceived areal extent (the variables 

LANDMRK_gnis_recr_grid and LANDMRK_gnis_inst_grid).  Variables are listed 

in Appendix B5. 

6. Proximity:  Urban land use is formed to a large degree based on the accessibility 

of land with relation to the central city or other features and amenities, as noted in 

Section 2.  This has been expressed in a classification process by the terms 

“context” or “proximity” of pixels or land parcels to other known features 



68 
 

(Moeller-Jensen, 1990; Debeir et al, 2002; Bhaduri, 2007).  In this project a 

number of predictor variables were derived which attempted to quantify a block 

group’s relationship to other features likely to be important: roads, city centers, 

large contiguous urban patches, and GNIS point locations. (Another predictor of a 

land use type is likely to be other known land uses, however because actual land 

uses are unknown – they are the dependent variables to be predicted – they are not 

available as independent variables).  The following describes the general 

derivation of the Proximity category variables (all based on Euclidean distance 

except for the “cost distance” variables): 

� Proximity to roads or airport: mean pixel distance to nearest road 

(PROX_mean_dist_road), and distance of block group centroid to nearest 

freeway (PROX_interstate_road_dist), nearest primary road 

(PROX_prim_road_dist), any major road (PROX_major_road_dist), or 

airport/interstate crossing (PROC_airport_crossing_dist). 

� Proximity to nearest large (> 2 ha) contiguous urban patch 

(PROX_patch_2ha)  (also see Spatial Pattern-categorical data section 

below for more detail on derivation of large contiguous patches).  

� Percent of land in large contiguous patches within 120 m and 240 m of 

road (PROX_expand4rds_inters_patchgr2ha and 

PROX_expand8rds_inters_patchgr2ha).  Percent of land in NLCD01 

classes 23 and 24 (high intensity urban) within 120 m and 240 m of road 

(PROX_expand4rds_inters_2324 and PROX_expand8rds_inters_2324). 
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� Proximity to cities of various sizes: distance of block group centroid to 

point location of nearest 10k, 20k, 50k, 100k, and 250k city 

(PROX_city10k_dist, PROX_city20k_dist, PROX_city50k_dist, 

PROX_city100k_dist, PROX_city250k_dist). 

� Proximity to GNIS points: distance of block group centroid to nearest 

GNIS recreation, institution, and commercial/industrial point locations 

(PROX_allrec_gnis, PROX_allinst_gnis, PROX_allcomind_gnis). 

� “Cost distance” of any pixel in the landscape to one of six different 

features.  Six cost surface grids were created by calculating every pixel’s 

weighted distance to a) the nearest 10k city, b) the nearest 50k city, c) the 

nearest 100k city, d) the nearest large urban patch, e) the nearest GNIS 

institution location (schools, hospitals, etc.), and f) the nearest GNIS 

recreation location (parks, cemeteries, etc.).  The weighting was based on 

the pathway to the feature via the nearest major road (lowest cost), nearest 

minor road (second lowest cost) and nearest urban pixel (third lowest 

cost).   It was hypothesized that the mean cost distance for a block group 

to a particular feature type would be an effective unique metric for 

measuring a block group’s urban “spatial identity”:  it measures how 

urban the block group is, how far it is from the feature, and its 

accessibility to the roads network.  Figure 3-6 gives visual examples of the 

two of the six cost surfaces.   

All Proximity variables are listed in Appendix B6. 
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7. Spatial Autocorrelation:  A nearly self-evident feature of urban landscapes is 

that some elements of the landscape may exhibit clustering, and that clustering 

may be an identifying 

characteristic of LU 

types.  Griffith and 

Wong (2007) note 

that introducing a 

spatial autoregressive 

term improves 

population modeling, 

and we theorize that 

predictors based on 

the same concept 

would likewise 

improve decision tree 

models.  While the 

contiguousness, 

cohesion, patch 

density and other 

spatial pattern 

metrics of land cover 

Figure 3-6: Example of two of six cost surfaces:  
cost surface to nearest city > 50,000 population (top) and cost 
surface to nearest GNIS institution point location (bottom), 
showing the same area in Boston’s southwest. The cost surface is 
a continuous grid which measures a distance to the nearest feature 
based on a weighted pathway of major roads, minor roads, and 
urban land cover.  Lowest costs therefore tend to be oriented 
particularly along major roads. 
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are examined under the category Spatial Pattern-categorical data below, this 

separate Spatial Autocorrelation (SA) category attempts to capture measures of 

clustering or similarity that span block group boundaries.  These are as follows: 

� The Local Moran I statistic was calculated for a number of landscape 

features whose clustering generally mapped to land uses, based on our 

visual observation.  Using measures of spatial autocorrelation as predictors 

or input variables to classification is not uncommon in the mapping (e.g. 

Su et al., 2008) or other sciences (Bell et al., 2007), although typically in 

land cover/land use mapping they are based on image data.  As example, 

figure 3-7 (left panel) shows a mapping of one of these variables – the 

census variable median number of rooms per household 

(CENS_hu_median_numb_rooms).  There is a clear tendency for 

households to have fewer rooms in central Boston, and more rooms in the 

outer suburbs.  The right panel on figure 3-7 shows the local Moran z-

score (standard deviations), based on inverse distance across the entire 

landscape.  High positive z-scores (if > 1.96, significant at 0.05 level) 

shown in blue have significant clustering with like values. Low negative z-

scores shown in red are significant outliers: they have either high values 

near low values or vice versa.  It is noteworthy that low negative z-scores 

here generally map to urban transition zones.  The z-scores for these 

variables (e.g. SA_localMoran_medianrooms) therefore had the potential 

to provide additional information about the landscape not evident from 
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simple block group means, and were additionally amenable to the decision 

tree approach to be used (section 3.3.2).  That is, the decision tree would 

be able to partition high z-scores which were in highly urban areas vs. 

high z-scores which were in highly non-urban areas, based on splits 

created by other variables.  Detail on decision tree mechanisms are given 

in 3.3.2.   

� The percentage of urban land cover in 400m, 800m, 1200m, and 1600m 

buffers surrounding the boundary of each BG was calculated, and 

Figure 3-7: Example of calculation of local Moran metrics to be used as predictor: 
median number of rooms mapped by BG (left) and local Moran z-score (right).  Inverse Distance 
method used. Blue areas exhibit significant clustering of similar values (p = 0.05) and red areas 
significant dissimilarities.  Red areas map well to transition zones. 
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compared to the percentage in the BG itself.  McKnight (2001) notes the 

common trend for large industrial or commercial areas to be set in 

undeveloped settings, and this method was an alternative method for 

estimating how similar urbanization was in the BG to its surrounding 

areas, and thus to potentially capture those areas. The variables created 

from this were the difference between the BG’s percent urban and each of 

the buffers and a calculation of the auto-correlation function across the 

four zones. 

 Variables are listed in Appendix B7. 

8. Spatial Pattern-categorical data:  As noted earlier, spatial pattern metrics – the 

shape, size, and configuration of the landscape – have been used as indicators of 

thematically-detailed land use type in a number of studies, however have been 

little investigated for that purpose based on relatively coarse national-scale data 

(e.g. 30-m data).  To that end we tested two categories of spatial pattern predictors 

– one based on the categorical NLCD01 land cover data, and one based on the 

continuous NLCD01 imperviousness data (next section).  The categorical-based 

predictors are broken out as follows: 

� We used the publicly available and commonly used FRAGSTATS 

package (McGarigal et al., 2002) to calculate a suite of pattern metrics 

based on two classes of the NLCD01 data: an aggregated class consisting 

of the sum of NLCD01 classes 22, 23, and 24 (urban land with 

imperviousness > 20%), and NLCD01 class 21 (urban land with 
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imperviousness < 20%).  Although many hundreds of FRAGSTATS 

variables are available for calculation, we were guided primarily by 

Herold et al. (2003) and selected a subset of 17 metrics which we believed 

would be useful for each of these classes.  These included metrics such as 

patch density, edge density, and perimeter-area ratio, among others 

(Appendix B8).  These metrics are well-established in the literature 

(Bowersox and Brown, 2001; Saura and Martinex-Millan, 2001; Herold, 

2003; Salas et al., 2003; Saura, 2004). 

� A grid was created of all contiguous high-imperviousness urban land 

(classes 23 + 24) which existed in patches greater than 2 ha (about 5 

acres).  The mean area consisting of these patches was calculated for each 

BG. 

� We used the fragmentation metrics proposed by Riitters et al. (2000) to 

further characterize fragmentation in the individual urban classes as well 

as aggregated natural vegetation.  The metrics Interior, Transitional, and 

Edge were calculated for each of those classes using Arc Grid. 

� Land cover variety for each block group was calculated based on (a) the 

Shannon Diversity Index (Entropy) (Odum, 1971), from Anderson Level I 

classes (e.g. “urban”, “forest, etc.), and (b) the simple variety (# of unique 

values) from Anderson Level II classes.  Land cover variety at both levels 

was typically inversely related to urbanization in this region at the BG 

scale. 
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� Herold et al. (2003) and others have noted that “institutions” (schools, 

churches, hospitals, etc.) are often large spatially distinct structures 

surrounded by vegetation.  Capabilities in Arc Grid for annulus processing 

(an annulus defined as the area between two concentric circles) provided 

one possibility to capture these settings, although it was again unknown if 

the spatial resolution of the land cover data would be detailed enough for 

it to be successful.  We developed a process to identify all urban pixels 

(NLCD01 classes 22, 23, 24) which were primarily surrounded by 

vegetation.   

� Measures of shape and compactness have been shown to be strongly 

related to urban land uses when based on high-resolution data (Barr et al., 

2004; Mesev, 2005).  A number of shape metrics were calculated:  a shape 

index (area/perim2) for aggregated pixels in NLCD01 classes 22-24, and 

for class 21 (higher values indicative of more compact shape), and the 

ratio of the classes 22-24 ellipse semi-major axis to semi-minor axis 

(higher values indicative of greater linearity).   

 Variables are listed in Appendix B8. 

9. Spatial Pattern-continuous data:  As noted earlier, the literature is rich with 

examples of the use of spatial pattern metrics in analysis based on categorical 

data.  To some degree this is possibly related to the availability of well-

established tools for categorical data (e.g. Fragstats), and that categorical data 

may be somewhat simpler conceptually. One of the intents of this project is to 
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also explore the value of using the NLCD01 impervious surface grid as a basis for 

metrics.  The impervious surface grid has integer values scaled from 0-100 (so 

strictly might not be a “continuous” grid), but as such may be treated as such.  

Measures of “slope” in the impervious surface grid may be meaningful to the 

extent that they represent gradual or abrupt changes in the landscape, and that 

boundary-based metrics based on continuous data may be at least as effective as 

patch-based metrics based on categorical data for characterizing landscapes in 

some regards (Jacquez et al., 2000; Bowersox and Brown, 2001; Brown et al., 

2004).  The use of these metrics in this project is admittedly exploratory, however 

are based on perceived differences in not only the intensity but also the pattern of 

imperviousness and rate of change of imperviousness between different land use 

types (figure 3-8).    

  Several measures of spatial autocorrelation for the imperviousness grid 

were calculated using two somewhat different methods: The first was by 

executing the Grid ‘Moran’ function against all pixels with imperviousness > 50% 

(because there was greater separation among land uses for high imperviousness 

than for all imperviousness pixels). The Moran function as implemented in Arc 

measures only the spatial autocorrelation against immediate pixel neighbors, 

which limits its usefulness, however it was still a potential measure of spatial 

pattern of the imperviousness grid.  The second method was to calculate the focal 

mean in a 3x3 window for all pixels with values > 50, then re-executed for a 7x7 
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window.  BGs in which there was little difference between the two values had 

typically clustered imperviousness.  

  Variables are listed in Appendix B9. 

  

SFRES_S  

 

Orthoimage Imperviousness Slope of imperv.  Highest slope pixels 

INDUST 
 
Figure 3-8: Example differences in imperviousness pattern by land use setting. 
Top four panels show 4 representations of a high-density single family residential area.  Left-most panel is 

0.5-m orthoimage (2005).  The second panel shows the same area as represented by the NLCD01 
imperviousness data (30-m pixels):  bright pixels = high imperviousness.  The third panel shows 
imperviousness slope (mean rate of change from each pixel to neighbors): bright pixels = high 
slope.  Right-most panel shows highest slope pixels (slope_class4, described below).   

Bottom four panels show same sequence for an industrial park.  Note differences in intensity and pattern of 
imperviousness slope between the two landscape types. 
 



78 
 

The NLCD01 imperviousness grid was converted to a percent slope grid (Grid 

‘Slope’ function), where each pixel represents the mean rate of change of each 

pixel to its eight nearest neighbors.  Statistics from the slope grid were calculated 

(e.g. SPCON_is_slope_max = maximum imperviousness slope in the BG).  The 

slope grid was visually examined for break points that distinguished land use 

types (as in Zhang and Wang, 2003) and broken into four categories (slope_class1 

– 4), with slope_class1 containing the lowest slopes and slope_class4 the highest 

slopes.  The mean and pattern metrics for each of the four slope classes were then 

calculated. For consistency, the same suite of Fragstats pattern metrics that were 

calculated for the categorical land cover classes were calculated for the 

imperviousness slope classes. 

10. Miscellaneous:  The Miscellaneous category consists of six variables which do 

not readily fall into the above groups. They were: 

 Topography: area in sq km of the block group, mean elevation, and mean 

(topographic) slope from 30-m elevation data.  Measures of topography have been 

shown to be related to land uses (e.g. Smith and Fuller, 2001). 

 Average annual vegetation:  the USGS produces a series of 1-km resolution grids 

based on AVHRR NDVI values which give a measure of the average green 

vegetation growth for a particular year (USGS, 2008).  The grid for the year 2000 

was downloaded and the average value per block group calculated.  Because most 

block groups are smaller than 1 km2 in size, this serves as only a coarse measure 

of vegetation, but it is useful because it is available for individual years (unlike 
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the NLCD, which has typically been accomplished every 10 years), and therefore 

could be targeted by individual year in research that might spin off from this 

project. 

 Protected areas:  Percent “protected lands” (e.g. National or State Parks, 

Wilderness Areas, etc.) as maintained in a national coverage by the Conservation 

Biology Institute (2009) was calculated.  Protected lands have a clear relation to 

urban land use in that certain land use types are restricted from those areas. 

 Maritime:  binary value: whether the BG is adjacent to the ocean, or ocean-access 

via a bay or inlet, or has no direct ocean access (also based on Smith and Fuller, 

2001). 

 Variables are listed in Appendix B10. 

3.2.3 Proprietary Data as Predictors 

 One of the objectives of this project is to demonstrate a method by which urban 

land use may be mapped given publicly-available national scale data.  We are less keen 

about demonstrating methods which could only be duplicated by purchasing expensive 

proprietary data or software.  Nevertheless, we felt it was informative to at least 

tangentially examine the effectiveness of other, proprietary data sources, if available.  To 

that end this project examined one of these: ESRI Business Analyst data (although 

proprietary data will not be built into final models developed).  The GMU GGS 

department has kindly provided a sample from the ESRI Business Analyst package 

(ESRI, 2009b) for the state of Massachusetts.  The ESRI Business Analyst is a software 
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package, which, among other features, contains a national point location database of 

approximately 12 million U.S. businesses, and the location of some 4,000 major shopping 

centers/malls. The data have certain re-use restrictions and contain fairly detailed 

information about each location, to include business name, industry classification code 

(NAICS code; NAICS Association, 2009), sales, number of employees, and sq footage.  

The Business Analyst ArcGIS extension is available for purchase as of February 2009 at 

the commercial rate of $18,000 for the entire U.S. (personal communication, ESRI sales 

rep, Feb 26, 2009), but less for specific regions or states (e.g. single state purchase = 

$8,500).   

 The Business Analyst data are primarily useful for predicting the commercial or 

industrial classes, and may also be a better source of information for institutions (schools, 

churches, etc.) than the GNIS data.  The Business Analyst data were examined against 

known locations, and based on that, several predictor variables representing point density, 

number of employees, and distance to block group centroid were derived as independent 

variables.  These were based primarily on a “cleaned” set of point locations (eliminating 

probable home-based businesses and other locations not useful for this application) of 

commercial/industrial and institution locations.  These are described in Appendix B11.   

3.3 Data Evaluation/Model Building 

 The following gives an overview of the methods in this project: 

� Methods for evaluating actual land use (dependent variables) (section 3.3.1). 

� Rationale for use of a decision tree as modeling technique (section 3.3.2) 
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� Methods to pre-process independent variables and reduce to a manageable set 

(section 3.3.3). 

� Methods to build stand-alone decision tree models: (section 3.3.4) 

� Methods for evaluating model performance and variable importance (section 

3.3.5). 

� Methods for integrating stand-alone model results (section 3.3.6). 

� Methods for cross-validating Boston models with data from other urban areas, and 

building models for those areas as alternatives (section 3.3.7).   

3.3.1 Evaluation of Actual Land Use 

  Regardless of the method ultimately chosen to create predictive models, we felt it 

was important to systematically evaluate the reference data in order to understand (a) 

where it is, (b) how it is configured and how the classes relate to each other, and (c) 

similarities and differences between classes.  This part of the project was fundamental to 

understanding the urban landscape in the study area and provided insight and valuable 

results even aside from the results of predictive model building.  We undertook this using 

both quantitative and qualitative methods.  Some of these results are given in this section, 

because they provide context to the methods in general. 



82 
 

The first step was to simply map the actual land use in the study area.  Figure 3-9 

shows the spatial distributions of residential and non-residential classes around Boston 

(broken out simply for the purpose of making them easier to see on the map). 

 Several general hypotheses suggest themselves for urban land use mapping based 

on these figures: 

� There is a general gradient of residential land use intensity around the largest 

cities: in this region around the largest city, Boston, and to a lesser extent Lowell 

and Lawrence (Lawrence not shown) (2000 populations 105,000 and 72,000, 

Figure 3-9: Actual land use (MassGIS, 2008).   
Left panel shows residential classes.  Right panel shows non-residential classes.  Non-urban land is not 
shown for clarity. 
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respectively).  With a few exceptions, nearly concentric rings of housing unit 

density exist around Boston.  Distance and access to the central city is certainly a 

major determinant of land use. 

� Non-residential uses dominate in central Boston.  Commercial land is prevalent in 

the CBD and shows linear patterns along road systems.  Industrial land is often 

organized around major transportation routes. 

� Institutions and recreational lands are scattered.  Predicting their spatial 

distribution based on location is very challenging with national-scale data. 

  
 The global Moran I statistic was calculated for the percent of each type of actual 

land use across the study area by block group (Figure 3-10).  High values of the statistic 

(normalized here as z-score) indicate greater clustering.  This reinforces the visual 

impression of clustering of the 

MFRES class, particularly, and 

more dispersed nature of the 

INDUST, INSTIT, TRANSP, 

and RECR_OPEN classes at a 

regional scale. 

 We explored the pattern 

and location of actual land use 

using several quantitative 

measures.  The first of these was 

Figure 3-10: Global Moran I z-scores for actual land use 
distribution.   
All values have p < 0.01.  Highest z-scores indicate greatest 
spatial clustering. 
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to calculate a number of basic statistics for each type, to characterize the classes.  Several 

noteworthy characteristics are given in Table 3-4.   

 The areal extent of urban lands is dominated by residential land, and not 

surprisingly, by the two lowest density classes.  Mean percent imperviousness (percent of 

area covered by manmade sealed surfaces) provides a measure of urban intensity, with 

commercial land having the largest percentage of impervious surfaces.  Mean 

imperviousness, however, may 

not give information about the 

spatial configuration 

(fragmentation) of urban 

surfaces.  For example, the 

SFRES_S and MFRES 

classes have similar overall 

imperviousness (53 and 58%, 

respectively), but in different 

configuration: only 24% of SFRES_S land consists of large patches > 2 ha in size, 

compared to 44% of MFRES land.  Other pattern metrics we calculated for the reference 

classes reinforced that the COMMERC, INDUST, and MFRES classes consisted 

generally of high levels of concentrated imperviousness, and the INSTIT, TRANSP, and 

SFRES_S classes of high imperviousness but of a more discontiguous nature.  The 

SFRES_M, RECR_OPEN, and SFRES_L classes have decreasing percent and 

concentration of impervious surfaces. 

LU class 

Percent of 
urban land in 
study area 

Mean percent 
imperviousness 

Pct of class in 
large (> 2ha) 
patches 

SFRES_L 26.27 13.0 0.1 

SFRES_M 28.26 31.8 1.3 

SFRES_S 13.49 53.2 24.0 

MFRES 4.20 57.9 44.3 

COMMERC 5.71 65.5 52.9 

INDUST 5.87 57.4 41.6 

INSTIT 3.80 48.5 24.3 

TRANSP 4.66 49.8 23.3 

RECR_OPEN 7.73 18.6 5.9 

NON_URB - 3.5 0.7 

Table 3-4: Basic statistics of actual land use in the study 
area. 
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What is the relationship of these classes to the current National Land Cover 

Dataset?  This is a question that may of keen interest to some users. To test this, we 

calculated the likelihood of a pixel of any NLCD01 class being in a particular LU class, 

based on the percentage that actually did fall in that class (Table 3-5): 

 

 
 

  SFRES_L SFRES_M SFRES_S MFRES COMMER INDUST INSTIT TRANS RECR_ NON_UR  

11 1.93 2.12 2.08 0.80 1.10 1.14 2.33 1.53 3.54 83.43 100.00 

21 17.14 16.57 7.01 4.29 2.46 2.55 5.51 10.07 28.77 5.63 100.00 

22 12.05 19.07 13.38 7.76 4.92 6.12 9.48 13.51 11.35 2.35 100.00 

23 2.13 9.60 18.18 16.93 12.00 11.92 12.49 12.51 3.48 0.77 100.00 

24 0.06 0.42 6.38 14.31 28.46 22.41 13.24 12.12 2.28 0.31 100.00 

31 2.62 1.00 1.89 0.43 6.49 27.64 6.74 8.27 37.52 7.41 100.00 

41 27.78 9.84 1.64 3.32 2.61 3.48 5.54 2.52 9.50 33.76 100.00 

42 33.19 10.23 1.10 3.75 1.78 2.23 5.16 1.24 8.32 33.01 100.00 

43 19.58 6.31 1.04 2.94 2.69 4.98 4.24 2.03 11.85 44.34 100.00 

52 20.64 7.30 1.05 4.00 3.76 8.35 6.17 4.56 26.38 17.78 100.00 

71 11.49 4.41 0.95 2.04 1.87 6.80 16.63 6.00 39.89 9.92 100.00 

81 17.62 5.91 0.80 4.32 5.32 7.60 14.50 4.32 27.13 12.46 100.00 

82 3.50 0.87 0.20 2.20 10.41 29.37 14.99 7.96 21.58 8.92 100.00 

90 12.45 5.10 0.71 2.43 3.94 6.57 3.84 5.14 8.90 50.93 100.00 

95 6.25 3.75 3.91 3.29 4.66 8.22 8.57 10.37 13.61 37.37 100.00 

 
 

 The classes of primary interest in Table 3-5 are the four urban classes (21-24).  

While there is a very rough correspondence to land use in some cases – for example, the 

lower intensity classes 21 and 22 do have a somewhat higher likelihood to be in the lower 

density residential and recreation classes -  the thematic detail of this information is very 

low.  For example, a class 23 pixel could just as easily be single-family residential, multi-

 

Table 3-5: Percentage of pixels of each NLCD01 class that fell in each land use type in the 
four-county Boston study area. 
Codes are in first column; see Appendix B2, e.g. class 11 is Open Water.   
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family residential, commercial, industrial, institutional, or transportation. The NLCD was 

not designed to provide urban land use information. 

Another method we used to quantify relationships amongst the actual land use 

classes was to calculate the percentage of each land use that was within certain distances 

from every other land use.  We did this by buffering all the pixels of a single land use 

class by 200m, 400m, and 800m, then calculating the percentage of all other types that 

fell within those buffers.  Results are shown in Table 3-6 for the 400-m buffer results: 

 

Table 3-6: Percentage of type x within 400m of type y, for actual land use. 
    type x        

   SFRES_L SFRES_M SFRES_S MFRES COMMER INDUST INSTIT TRANS RECR_ NON_URB 

 SFRES_L - 76 30 35 48 51 48 54 62 46 

 SFRES_M 50 - 56 46 61 52 56 45 55 23 

type y SFRES_S 7 24 - 44 47 33 40 22 32 6 

 MFRES 8 22 37 - 47 30 35 22 24 5 

 COMMER 20 41 68 78 - 64 53 52 42 11 

 INDUST 11 22 33 43 51 - 29 47 27 8 

 INSTIT 17 40 74 69 56 32 - 25 42 8 

 TRANS 11 14 25 36 45 51 23 - 22 7 

 RECR_ 38 54 75 74 68 62 78 50 - 20 

 

 

 The table summarizes spatial proximity of the actual land uses for that buffer 

distance.  For example, looking at the last column: 46% of NON_URB land is within 

400-m of a large-lot single family residential area (SFRES_L), but only 5% of 

NON_URB land is within 400m of an apartment or row house land use (MFRES). 

Several relationships are noteworthy: for example, that roughly ¾ of high density 
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residential land (MFRES and SFRES_S) is close to COMMERC, INSTIT, and 

RECR_OPEN. 

Table 3-7: Cross-correlation matrix (Spearman’s rho) of actual percent land use within block 
groups.   
Values in red have p < 0.001.  Values greater than |0.30| are bolded. 

 

 We additionally characterized spatial distribution with a cross-correlation matrix 

of percentages of actual land use within each block group (Table 3-7).  Block groups are 

large enough areas to almost always contain several land uses (98% of BGs in this study 

have multiple land uses).  The correlations give only a snapshot of LU within the block 

group, and do not capture relationships over larger scales, however do give additional 

information about relationships amongst the classes: for example, the fairly strong 

negative correlation between MFRES and SFRES_S (-0.41) indicates that they are rarely 

both present in the same block group, and confirms the visual impression in Figure 3-9 of 

their general separation into distinct zones.  It was hoped these observations would lead 

to a better understanding of the classes and potentially how they could be predicted and 

mapped. 

  SFRES_L SFRES_M SFRES_S MFRES COMMERC INDUST INSTIT TRANSP RECR_ NON_URB 

SFRES_L - 0.59 -0.35 -0.22 -0.24 0.19 -0.15 0.09 0.14 0.68 

SFRES_M - - -0.29 -0.26 -0.16 0.14 -0.10 0.01 0.14 0.54 

SFRES_S - - - -0.41 -0.05 -0.13 0.03 -0.17 -0.07 -0.29 

MFRES - - - - 0.15 -0.04 0.07 0.02 -0.03 -0.25 

COMMERC - - - - - 0.13 0.15 0.09 -0.01 -0.21 

INDUST - - - - - - -0.08 0.30 0.15 0.31 

INSTIT - - - - - - - -0.07 0.10 -0.21 

TRANSP - - - - - - - - 0.11 0.21 

RECR_ - - - - - - - - - 0.26 

NON_URB - - - - - - - - - - 
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  A final series of analyses were performed to test class separabilities.  That is, to 

what degree are the land use classes different, from the predictor variables we assembled.  

To do this we took a random sample of 600 ground truth polygons of each class across 

the study area (i.e. 6000 polygons total). A random sample was used in order to minimize 

effects of spatial autocorrelation.  We then calculated the mean, standard deviation, and 

other basic statistics from a wide variety of predictors for those samples and compared 

the values from each class in order to understand which classes were “most different” and 

“most similar” and in what regard.   The analyses performed included: 

� Test for significant differences between any two dependent variable classes for a 

predictor variable (Wilcoxon signed-rank test).  The Wilcoxon signed-rank test is 

a non-parametric equivalent to a matched-pairs t-test (Burt and Barber, 1996), as 

many of the independent variables were non-normal in distribution. 

� Summarize similarities between classes for multiple variables using a distance 

measure (Mahalanobis distance). 

� Summarize differences among all classes for a specific variable (Kruskal-Wallis 

test), e.g. does population density or road density more effectively “separate” the 

LU classes.  The Kruskal-Wallis test is a non-parametric equivalent to an 

ANOVA F-test (Burt and Barber, 1996). 

� A hierarchical cluster analysis (dendrogram), as graphical representation of class 

similarities. 

 These results are summarized in Section 4.1. 
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3.3.2 Rationale for Decision Tree as Modeling Technique 

We assembled numerous predictor variables for this project because, as national-

scale mapping of urban land use by any means is little-researched, the literature guidance 

on the efficacy of specific variables is not clear.  Identifying effective national-scale 

predictor variables, or classes of variables, is one of the desired outcomes of this project. 

We also observed that a number of key relationships between predictor and 

dependent variables are non-linear in form.  For example, high density single-family 

residential land (SFRES_S) has overall a low correlation to population density by block 

group, because at very high population densities the land is built up as multi-family 

residential (MFRES).  However, taken over a smaller part of its range where population 

densities are somewhat lower, there is a much stronger (positive) correlation.  The 

presence of many clearly non-linear data relationships argued against a linear modeling 

approach in this project. 

 A number of scientific fields, for example the machine learning, data mining, or 

medical/genome communities, have for years used tree-based methods to handle similar 

situations – i.e. where there are high-dimensional data, uncertainty about the form of the 

independent variables, and potentially complex and non-linear interactions among 

variables (Cutler et al., 2007; Maindonald and Braun, 2007).  Tree-based methods, which 

produce a set of rules for classification or regression of the data, have a number of 

advantages in such situations, however are considerably – some would say radically - 

different than more traditional regression techniques (Venables and Ripley, 1999; 

Maindonald and Braun, 2007).  The strengths and weaknesses of tree-based methods 
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have been detailed in the literature (e.g. Quinlan, 1993; Yohannes and Hoddinott, 1999; 

Cutler et al., 2007; De’ath, 2007; Maindonald and Braun, 2007), and might be 

summarized as follows: 

 Strengths: 

� They are non-parametric and make no distributional assumptions of any kind 

on the dependent or independent variables. 

� Relatively complex interactions among large numbers of independent 

variables may be modeled. 

� Independent variables can typically be either categorical or continuous data. 

� The model performance is not affected by outliers nor collinearities.  Outliers 

are isolated in a node and do not have any effect on tree splitting. 

� Implementations typically have a built-in method for dealing with missing 

values of a variable for a case. 

� They are insensitive to monotonic transformations of the independent 

variables, i.e. there is no need or effect of transforming explanatory variables 

to logarithms or square roots. 

� They in essence reduce dimensionality:  a large number of independent 

variables may be reduced to a model incorporating only a few important 

variables. 

� The results, for methods resulting in a single tree, generally produce an easily 

interpretable set of rules. 
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 Weaknesses: 

� They are less effective with small datasets or small numbers of explanatory 

variables, for which parametric or linear regression may be more suitable.  

That is, straightforward linear relationships may be less obvious. 

� Individual trees do not have a probability or confidence interval associated 

with them.  

� Some implementations treat continuous variables, inefficiently, as categories. 

� Large trees, or ensembles of trees, make poor intuitive sense and must be 

treated essentially as black boxes.  There are, however, strategies which may 

ameliorate that (section 3.3.5). 

 Decision trees in general work on the following principles (Cutler et al., 2007; 

Maindonald and Braun, 2007): A set of cases are input which have the values of a single 

dependent variable and multiple independent variables associated with them.  The 

independent variables are examined with regard to the dependent variable and binary 

splits are identified which partition the data into homogeneous regions (“nodes” of the 

tree).  The nodes are split to maximize the variance between the nodes (between-group 

residual sum of squares).  Each node is then split again recursively until further 

subdivision achieves some predefined threshold (“when to stop”).  That threshold may be 

a predefined tree depth, a minimum number of cases per node, or a measure of variability 

such as a Gini index (Cutler et al., 2007).  The lower branches of the tree (“terminal 

nodes”) model sample error, so lower branches may additionally be “pruned” to improve 

performance.  The result is a tree (with root at the top), with a set of if-then rules defining 
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the predicted values.  This may be done either as a category or continuous value.  The 

result is a non-linear solution which resembles a piecewise linear model, except that rules 

may overlap (Xian et al., 2002).  Decision trees have been used in numerous applications 

of detection and mapping of land cover and land use (Debeir et al., 2002; Falcone and 

Pearson, 2006; Homer et al., 2007; Walton, 2008). 

 Figure 3-11 gives a simple example of a decision tree, based on the R recursive 

partition tree function rpart()  (R project, 2009).  The dependent variable to be predicted 

in this example are values for the INDUST class (i.e. the percent of industrial land in the 

block group).  The root node sets the rule “is the independent variable 

TRANSP_ratio_roadden_imperv >= 0.1962?”.  If the answer is yes, the branch is 

followed to the left; if not, to the right, and the cases are split accordingly.  On the right 

Figure 3-11: Example decision tree, based on the R function rpart().   
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branch, the cases remaining are split on the rule “is HIST_nlcd92_23 < 24.68?” If yes, 

then left, if not then right, again.  Eventually the terminal nodes are assigned a predicted 

value based on the dependent variable mean of the remaining cases for that node. 

Because it is possible that different training samples from a large dataset may give 

different trees, a technique known as bagging (“bootstrap aggregation”) helps reduce 

instability of the model (Breiman, 1996).  In bagging, multiple bootstrap training samples 

(with replacement) are extracted from the dataset and a tree is created for each.  The final 

result is an aggregation of the results for all the trees, i.e. either a majority vote for 

categorical classifications or an average for regression.  This is sometimes referred to as 

an example of “ensemble learning” (Liaw and Wiener, 2002).  The major drawback of 

ensemble trees (“forests”), as noted above, is their lack of interpretability: interpreting the 

averaged results of thousands of trees is obviously more difficult than a single tree. 

The specific decision tree tool to be used in this project is the Random Forests 

(RF) classification and regression method (Breiman, 2001; Liaw and Wiener, 2002; 

Breiman and Cutler, 2009).  We also evaluated another popular (commercial) decision 

tree package, Cubist (Rulequest, 2008), and found the publicly-available Random Forests 

performance to be at least as good.  Random Forests has been shown to be adept at 

handling complex non-parametric interactions and highly correlated predictors (Cutler et 

al., 2007; Strobl et al., 2008).  Random Forests runs under the public domain R statistical 

system (R project, 2009).  As in traditional bagging, RF selects a bootstrap sample (5/8 of 

the training data).  The remainder that are left out are referred to as out-of-bag (OOB) 

observations.  A tree is fit to each bootstrap sample, however, RF adds an additional layer 
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of randomness to bagging, in that at each branch of the tree a random subset of the 

predictor variables is selected, which reduces correlation between trees (Breiman, 2001; 

Walton, 2008).  Trees are grown to their maximum depth (not pruned).  This approach 

has been shown to perform very well compared to other methods, including more 

traditional ones (e.g. multiple linear regression) or more complex ones (e.g. discriminant 

analysis, support vector machines, or neural networks) (Liaw and Wiener, 2002, Carlisle 

et al., 2009).  The final prediction for each observation is obtained by averaging the 

predictions across all the trees.  Because of the ensemble nature of the prediction, RF is 

believed to be relatively robust against overfitting, a primary concern of traditional 

regression trees (Breiman, 2001; Liaw and Wiener, 2002; Pal, 2005; Carlisle et al., 2009), 

although there is evidence that a large number of noisy predictors degrades performance 

(Segal, 2004; Walton, 2008).  Random Forests has the facility for classification, 

regression, or unsupervised learning. 

 For each tree the fitted model is applied to the out-of-bag observations, and the 

mean error and coefficient of determination (r2) (in the case of regression) for those 

samples are aggregated and reported.  These are called the OOB estimate of error, and are 

the equivalent of what is sometimes referred to as k-fold or v-fold cross-validation 

(Siroky, 2009).  These OOB error rates are believed to be comparable to those that would 

be reported from completely independent data (Carlisle et al., 2009), have the advantage 

of not requiring a separate independent dataset for assessing the accuracy of the method, 

and allowing the model to be built on the maximum number of cases available.   
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 A further desirable feature of RF is that it reports two measures of “variable 

importance” (Liaw and Wiener, 2002; Maindonald and Braun, 2007; Kuhn et al., 2008).  

These are: 

 Mean decrease in accuracy (%IncMSE); essentially a “leave-one-out” measure: 

mean increase in error in the OOB set from the training set when the variable is 

permuted.  Higher values indicate higher variable importance. 

 Mean decrease in Gini impurity index (IncNodePurity): every time a node is split 

on a variable the Gini impurity index of the two descendent nodes is less than the parent 

node.  This measure sums the Gini index decreases for each variable.  A higher 

IncNodePurity represents a higher value of importance, i.e. nodes are “purer”.  

 The method of analysis of the importance measures in this project is given in 

more detail in later sections. 

 The prediction made by RF for regression is the average of the n tree predictions 

(e.g. 500 predictions), however it is also possible to obtain a matrix of all of the 

predictions, for either the training predictions (the ones that went in to making the 

model), or the out-of-bag validation predictions (those withheld from model building).  

From this one may calculate a standard deviation, standard error, and confidence intervals 

for the prediction for each case. 

 We recognize that there are other possible predictive techniques that might have 

been employed in the project (e.g. stepwise linear regression, canonical correlation 

analysis, geographically-weighted regression), however we believed the decision tree 

approach was most appropriate for the goals of this application, given the complexity of 
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the predictors and the desire to be able to apply some models to withheld data (e.g. other 

urban areas).  Section 3.3.4.2 gives more detail on some simple tests that were performed 

to compare modeling techniques for this application. 

 Some researchers identify a dichotomy between explanation and prediction in 

statistical modeling (e.g. Shmueli and Koppius, 2007).  On one hand, if the primary goal 

is accurate prediction, then models may be more complex/less interpretable.  If the 

primary goal is explaining a process, then some performance may be sacrificed at the 

benefit of clarity.  In this project a middle way is taken to some degree. The primary goal 

of this project is to demonstrate good accuracy in predicting land use, but with a 

reasonably parsimonious method involving a small number of predictors.   

3.3.3 Predictor Variable Evaluation and Data Reduction 

  As with the dependent variable evaluation, our first step in examining the 

independent variables was to simply map them.  This step, although qualitative, was 

nonetheless helpful in understanding the spatial distribution of elements of the landscape, 

particularly given that an end goal of the predictive modeling was to create land use 

maps.  Figure 3-12 provides an example of visual comparisons:  the actual recreation land 

(dependent variable RECR_OPEN; upper left panel) compared to the land cover class 

that was most similar to recreation from the three independent variable land cover 

datasets available (GIRAS, NLCD92, and NLCD01).  The GIRAS and NLCD92 classes 

appeared to have the potential to be reasonably good predictors; the NLCD01 less so. 
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We created scatterplots and boxplots for many of the IVs against dependent 

variables, and created a correlation matrix of independent vs. dependent variables 

(Appendix C).  The scatterplots allowed identification of possible blunders or gross errors 

in the data.  The correlation matrix, although it provided only information about linear 

correlation of IVs and DVs, nonetheless gave insight about which IVs were nonetheless 

likely to be promising even given the non-linear decision tree approach.  In some cases 

new independent variables were created based on these observations. For example, it was 

observed that INDUST areas had typically very high imperviousness but low road 

density, leading to the creation of the variable TRANSP_ration_roadden_imperv, which 

was thought to have the potential to be a better predictor than either of those variables 

separately. 
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The data ranges and values for the independent variables were checked and in 

some cases a small number of values were manually filled.  For example, a number of 

IVs represented ratios (e.g. LC_ratio_popden_nlcd2324), where there was a possibility 

that the denominator 

could be zero (causing the 

spreadsheet-calculated 

value to resolve to 

“#DIV/0!”), in this 

example if there was no 

land cover of either class 

23 or 24 in the BG.  In 

this case the denominator 

was set to a very small but 

positive number (e.g. 0.1).  

The number of necessary 

adjustments of this kind 

was very small. 

 Approximately 

320 independent variables 

had been assembled (the 

variables listed in 

Figure 3-12: Example visual comparison of dependent and 
independent variables 
DV RECR_OPEN (upper left) to the IVs HIST_giras_17 (upper 
right), HIST_nlcd92_85 (lower left), and LC_nlcd01_21 (lower 
right).  
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Appendices B1-B10).  Some of these were already summaries of a number of data layers 

(e.g. TRANSP_alltrans), or ratios of variables, however there was obvious 

multicollinearity in the data.  Some researchers have suggested that keeping correlated 

variables is actually beneficial in RF regression because, although some variables may be 

correlated, they nevertheless may participate in building parts of the tree which add 

predictive power (Cutler et al., 2007).  Nevertheless, for interpretability sake, we believed 

that reducing some multicollinearity would be beneficial, as models with multiple 

collinear variables would be more difficult to interpret.  In this application there seemed 

to be several solutions to reducing the effect of redundant variables (Falcone et al., 2009): 

one was to use a statistical technique such as principal components analysis (PCA) to re-

orient the information content of the original variables into new uncorrelated 

components.  A second solution was to use literature-based evidence or judgment to 

eliminate some variables which showed multicollinearity. We used a conservative 

approach using the latter solution, for several reasons.  Creating predictor variables from 

PCA component scores, while creating uncorrelated predictors, resulted in variables 

which had very low interpretability.  That is, even when we used PCA rotations which 

are known to provide more interpretable results (e.g. Varimax rotation), it was very 

difficult to assign interpretable meaning to most of the resultant variables.  Further, our 

initial tests using PCA-derived variables suggested PCA-based predictors were likely to 

have lower performance than using original variables.   Section 3.3.4 gives more detail on 

testing with PCA-based predictor variables.   
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 To reduce the number of IVs, we first used results of preliminary testing and 

judgment to eliminate approximately 70 which we were fairly certain had little predictive 

power.  A cross-correlation matrix was then constructed for the resultant set of 250 

variables, which gave the linear correlation (Spearman r value) of each of the 250 against 

each of the others.  This matrix was examined and variable pairs which had an r value > 

0.9 were identified.  In each of these pairs the variable that was believed to be the least 

interpretable was eliminated. In a very small number of cases both variables were 

retained because it was too difficult to judge interpretability and/or we believed there 

might be small but important differences in the two variables.  The primary example of 

this was the variable pair CENS_popden and CENS_huden (population and housing unit 

densities, respectively).  The resultant set consisted of 188 variables, which was the final 

set of independent variables used as the starting point in model building and analysis. 

3.3.4 Model Building 

 As noted earlier, the basic method employed in this project is to create predictive 

models which estimate the percent of each of 10 different land uses for a block group; 

therefore 10 predictive models are created (as well as 3 additional ones to create a 

simpler 6-class scheme to apply to areas outside Boston).  The results of those stand-

alone models are then integrated (described in section 3.3.6).  Individually solving for 

separate dependent variables has the advantage that each model may be tuned to best suit 

that target, and the alternative – solving for multiple dependent variables simultaneously 

– is rarely attempted (Tofallis, 1999), in part because of the highly complex nature of 
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interpreting such a result.  We recognize that land uses do not exist independently of one 

another, however it was not possible to explicitly take other land uses into account in any 

stand-alone model because the land uses themselves are not known  (they are the 

dependent variables to be predicted). However, it was believed that the predictor data 

assembled, to include land cover spatial pattern, locations of landmarks, measures of 

proximity to different feature types, etc. would serve as the best available proxies for 

incorporating the effect of other land uses into any stand-alone model. 

3.3.4.1 Creating 10-class and 6-class stand-alone models 

 Once the 188 independent variables were finalized, a model was created for each 

of the dependent variables in Random Forests.  Each model was based on the entire 

dataset of 2,764 block groups, and performance evaluated primarily by the OOB error on 

withheld records from each tree.  RF has a small number of tuneable parameters that a 

user may control to tweak performance.  The primary ones are ntree, the number of trees 

to grow, and mtry, the number of variables to be randomly selected at each split.  We 

experimented extensively with both parameters. We found the results to be generally 

insensitive to increasing ntree greater than 500.  Likewise, Liaw and Wiener (2002) 

suggest varying mtry to ½ the default (default = n / 3), the default, and 2x the default, 

however note that results do not typically change significantly.  That was also our 

experience.  We therefore used 500 trees and the default (n / 3) mtry values throughout 

for the models of this project.  Execution time increased primarily with the number of 

predictor variables.  For example, using a Dell Precision Workstation 670, running RF 
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with 7 predictor variables and 2,764 records building 500 trees took 20-25 seconds, while 

running the same with 188 predictor variables took 8-9 minutes to complete. 

 One of the unique features of RF is that, because of the random nature of variable 

selection at splits, the results are slightly different for each execution (every time a new 

forest is created), using identical input.  Our experience was that, using 500 trees or more 

there was a fairly small range in results.  For example if one execution resulted in an r2 of 

.615, others might be .613 or .617.  We typically tested models using an average over 

two-three runs.  The precision of the result increased with model performance; i.e. 

models with very high r2 varied virtually not at all between executions.  

Our primary measure of performance for fine-tuning the models was the root 

mean square error (RMSE) and r2 for the out-of-bag withheld data.  Those same measures 

for the training data themselves are less meaningful (and uniformly very low and high, 

respectively, e.g. r2 > 0.9), because of the ensemble nature of the model (personal 

communication, Andy Liaw, Dec. 10, 2009).  Our guidance from the developers of RF 

was to focus on the OOB performance measures as the most meaningful measures of 

model performance.  

 After each RF execution we ranked the two importance measures (%IncMSE and 

IncNodeGenerally) that resulted.  The importance measures generally, but did not always, 

agree in their rankings of importance.  There is no clear guidance as to which importance 

measure to prefer (Kuhn et al., 2008).  Their agreement is greater with very strong 

predictor variables.  For example, in a typical RF execution with 100 predictor variables, 

if a predictor was ranked in the top 10 by one measure, it typically was also ranked in the 



103 
 

top 10, or close to that, by the other measure.  A very weak predictor, on the other hand, 

might be ranked 75th by one measure, but 50th or 100th, by the other.  We interpret this 

lack of precision in identifying importance for weak predictors as meaning there was 

essentially no difference between the 50th ranked predictor or the 100th ranked predictor, 

and that predictors with such low ranks were essentially noise.  The importance measures 

were a general indicator of which variables were likely to most improve performance 

(RMSE and r2), and were most useful as a filter for screening variables that had little or 

no effect on the models. 

 With that background, we created the models in the following fashion: 
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 A model was created for each dependent variable using all 188 predictor variables 

as input.  The RMSE and r2 values were noted.  The resultant %IncMSE and 

IncNodePurity were examined for each dependent variable.  A cumulative distribution 

plot was made of those metrics and examined.  Figure 3-13 gives an example of the 

cumulative distribution values of %IncMSE (increase in error if variable is left out) for a 

typical result: y-axis are importance scores, x-axis represent each of the 188 variables. 

Higher y-axis values represent variables which are more important in the decision trees. 

 Our experience in testing was that a great number of the 188 variables could be 

dropped with no appreciable loss of performance, and the breakpoint at which variables 

could be dropped was generally related to the point at which the slope of the distribution 

lines of the two importance measures started to go up steeply.  We qualitatively judged 

that to include any variable that was in the top 20 importance scores of either %IncMSE 

Figure 3-13: Distribution of %IncMSE for an initial RF run of 188 
predictors against a dependent variable (in this case MFRES).  
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or IncNodePurity.  There was not always agreement between the two measures, as noted 

earlier, so this resulted in a reduced set of 20-30 predictor variables for each dependent 

variable.  This set of 20-30 predictor variables for each model represented a “first cut” at 

creating a manageable and interpretable model from the 188 IVs for each dependent 

variable.  Figure 3-14 shows a flow chart of the progression from 320 variables to final 

stand-alone models: 

Figure 3-14: Flow chart showing number of independent variables that existed in each step of the 
process of creating final models.   
The TRANSP, RECR_OPEN, and NON_URB classes are shared in 10-class and 6-class schemes.  The 
“fine-tuning” process that occurred in going from 20-30 variables to a final smaller subset is described 
below. 
 

 Our goal was to create a reasonably economical model, with a small number of 

predictor variables that still had fairly high performance.  To that end, the “fine-tuning” 
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stage of model building incorporated a number of different methods to whittle down the 

set of 20-30 predictor variables remaining.  The following general steps were taken for 

each of the dependent variables: 

 RF was executed using the new set of 20-30 variables for each dependent 

variable.  The RMSE and r2 values were noted.  In every case the performance of the 

models was as good or better using the set of 20-30 variables than using the full set of 

188.  This confirmed results reported by Segal (2004) and Walton (2008) that a large 

number of noise predictors were likely to degrade performance somewhat.  The resultant 

%IncMSE and IncNodePurity were examined for each variable.  As noted earlier, they 

were useful but not perfect indicators of which variables were likely to make the best 

models. 

 Although our experience with creating PCA-based predictors from the set of 188 

had not been that fruitful, we nonetheless experimented with doing the same from the set 

of 20-30.  PCA was performed (R princomp() function) using the correlation matrix, then 

loadings rotated using the Varimax rotation.  Component loadings were examined and an 

attempt to interpret them against original variables was made. The full set of PC scores, 

as well as subsets of the PC scores (e.g. only the first 5 or 10) were used as predictors and 

RF re-executed.  Typically performance did not improve significantly (and was 

sometimes worse), and the resultant new variables were also more difficult to understand, 

and in many cases not interpretable.  We eventually abandoned using PCA-based 

predictors. 
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 Even though the greatest multicollinearity had been previously removed (in 

reducing to the set of 188), there was still the potential of considerable multicollinearity 

to be present in the set of 20-30.  We examined which variables had similar information 

content primarily from the Variance Inflation Factor (VIF; R vif() function), which gives 

a measure of how correlated each variable is to every other variable in a linear regression.  

High VIF scores indicated variables which were the most collinear with other variables.  

We attempted to eliminate variables in such a way that the resultant set of variables had 

low VIF scores, because this would aid in interpreting results. 

 We also executed a stepwise linear regression for each set of 20-30 variables.  

While we did not expect a linear regression to give better performance at this point than 

the decision tree (and it did not), the stepwise process (R step() function) provided 

information about which variables were most significant in a linear model, which could 

potentially translate to the tree method.  We examined the p-values for the resultant 

variables as another indicator of which variables were useful. 

 During this process we also used non-statistical knowledge (judgment) based on 

our understanding of the physical nature of relationships of the dependent and 

independent variables.  We used the rpart() function to create single trees (e.g. Figure 3-

11,  previously shown), which helped understanding how the variables were related.  We 

generally favored variables which were more interpretable and easier to understand, all 

other things being equal. 

 RF was then re-executed in a “leave-one-out” manner, eliminating variables 

which were likely to be the least effective in building the model, based on the above 
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criteria.  We recorded the resultant RMSE and r2, and if believed useful, mapped the 

results and/or residuals to examine them for patterns.  This was done in a stepwise 

manner until eliminating any variable caused the model r2 to drop by more than 1% of 

total variance explained (i.e. .01).  These were then considered to be the final models of 

this project for the Boston area.  The number of variables that resulted in each model is 

given in the bottom row of the flowchart in Figure 3-14, above.  We calculated the 

confidence interval for each case for each land use type based on the withheld OOB 

validation predictions. 

 Our final step in building models for the Boston area was to examine the effect of 

adding the ESRI Business Analyst predictor variables (Appendix B11).  These were 

tested only for the INSTIT, COMMERC, and INDUST classes, as they would 

improbably affect the other dependent variables.  The Business Analyst predictor 

variables were injected into the final models for those three classes, and the results were 

evaluated. 

 All results are given in Section 4. 

3.3.4.2 Tests of other methods  

 We wished to convince ourselves that we had not missed some potentially simple 

method for predicting land use, other than that described above.  To that end we 

compared a version of the method above to two other methods.  In order to be able to 

compare performance between the three methods we randomly separated the 2,764 BGs 

into two groups: a training set consisting of 1,939 records (2/3) and a validation set 
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consisting of 825 records (1/3) (because not all three methods could use the OOB 

validation performance measures).  The three methods were: 

� Executing RF for each dependent variable based on the set of 1,939 records and 

188 predictor variables.  The resultant models were then applied to the 825 

validation dataset and RMSE and r2 recorded. 

� Performing a stepwise linear regression for the same records and variables for 

each dependent variable.  The resultant equation was then likewise applied to the 

validation dataset. 

� Executing principal components analysis for the 188 variables and using the first 

90 PC scores used as predictors in an RF model.   (Experimentation had shown 

that performance was slightly better with the first 90 components as opposed to 

using all 188 or a smaller subset of 30).  The resultant models were likewise 

applied to the validation data set. 

 Results for these three tests are given in Section 4. 

3.3.5 Model Evaluation, Variable Importance, and Training Data Sensitivity 

 This section describes model evaluation for the stand-alone models described 

above.  Section 3.3.6 describes methods for integrating the stand-alone models.   

 As noted above, we have used the RMSE and r2 values of validation datasets as 

our primary measures of model performance for the stand-alone models described above.  

R2 is a measure of association but not necessarily accuracy, however r2 values may be 

reasonably compared between models based on the same number of observations (e.g. 



110 
 

comparing r2 for the SFRES_L model to the MFRES model).  RMSE is a better measure 

of accuracy, however comparing models directly is diffucult, because the mean 

percentage of land use varies among the classes.  The RMSE values in this project are 

therefore normalized (NRMSE) using the following (Qian and Rasheed, 2004; 

Karunasinghe and Liong, 2006): 

 NRMSE =    � �
i ii AP 2)(  / 2)(� �

i i AP    (2) 

 

 Where Pi = the predicted percent of land use for block group i, Ai = the actual 

percent of block group i, and A = the mean of actual values.  This gives a performance 

measure relative to a prediction of the mean (i.e. a “null model” - Pontius et al., 2004; 

Wu et al., 2009b): e.g. if the mean percent of SFRES_S land across the study area is 15%, 

then the null model predicts 15% for every record.  If the mean is predicted for every 

record then NRMSE will be 1.  If every prediction is exactly correct then NRMSE will be 

0.  Values of (1-NRMSE * 100) represent a percent improvement over prediction of the 

mean (e.g. if NRMSE = 0.6, then it is a 40% improvement over prediction of the mean). 

Predictions worse than the null model should be considered to be poor.   

 Stand-alone models were also evaluated by mapping results, residuals, and 

confidence intervals for each block group and calculating the spatial autocorrelation of 

residuals for each model.  The primary goal of this project is to demonstrate good 

accuracy in predicting land use with a reasonably parsimonious method, and uses the 
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spatial autocorrelation of predictors as a valuable input, however minimal spatial 

autocorrelation of residuals is also a desirable outcome. 

 The interaction of predictor variables in each model was also qualitatively 

evaluated by creating individual decision tree solutions using rpart().  These individual 

tree diagrams (as in the example in Figure 3-11) give useful information about general 

relationships between dependent and independent variable using a decision tree algorithm 

that is functionally similar to RF.  This is a method by which the “black box” nature of 

RF is circumvented for general analysis. 

 Variable importance was evaluated by examining the rankings of the two 

importance measures reported by RF, and more importantly in final models, by 

calculating the loss of predictive power if a variable is omitted.   

 Variable importance was also evaluated in two other ways: 

� By predictor class.  That is, did certain classes of predictors (e.g. Proximity) 

typically have greater importance than other classes, for a specific land use, or 

across land uses, and,  

� By evaluating specific predictors across all land use classes.  That is, are there 

certain variables or types of variables which are uniformly useful in predicting 

multiple types of land use.  

 

Finally, we performed sensitivity analysis on training data sample sizes.  As noted 

above, we used all data for the entire study area as input to Random Forests, which then 

selects random samples of 5/8 (62.5%) of the data for training and 3/8 for validation.  
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Using all data for the study area maximizes model interpretability, but does not give 

information about “how little” training data might be needed for comparable 

performance. To that end, we tested random samples which resulted in 50, 40, 30, 20, 10, 

and 5% of all study area data being used as training, and validated those against a 

separate 10% random sample.  These results gave an indication of model performance 

drop-off vs. training sample size. 

3.3.6 Integrating Stand-alone Model Results 

 The stand-alone models described so far make a prediction for a particular land 

use for each block group, without directly interacting with each other.  We believed this 

was a reasonable but not complete solution to the problem of predicting multiple 

continuous variables in the same areal unit, and as noted earlier, there are no areal units 

defined at the national scale which incorporate a single land use (such as parcels).  There 

was also a precedent for the method: two products as part of the USGS NLCD01 had a 

similar development – the Impervious Surface and Forest Canopy sub-pixel datasets 

(USGS, 2009d).  Each of these two products likewise made an independent prediction of 

a percent-of-area dependent variable for the same areal unit: the percent imperviousness 

and percent forest canopy for every 30-m pixel across the US.   In their case, as in our 

case, the results of the models clearly relate to each other in an inverse manner: that is, if 

a pixel is predicted to have 90% imperviousness, and the prediction is reasonably 

accurate, then the pixel is likely to have very low forest canopy, and vice versa. 
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 We considered how best to incorporate the results of our models.  While we felt 

that the predictors that were assembled were likely to already account for the effects of 

other land use forces in the landscape (e.g. distance to cities, spatial correlation of land 

cover types), we wished to do two things for a more complete product: (1) attempt to 

leverage information from the other predictions, and (2) constrain the results of all 

models so that the sum of all predictions equaled 100%.  In that way each stand-alone 

model would be functional as is (i.e. it would be technically possible to make a prediction 

of recreational land across the US without incorporating any of the other models), but 

there would also be a prediction of each land use based on the integration of all the other 

models.   

 The method was as follows: 

� Each model is our best prediction of how much of each land use exists in the 

block group, and is therefore the best proxy available for the actual land use.  

The predictions for the other land use classes were therefore used as predictors 

themselves in a “second pass” of the final model.  For example the final 

SFRES_L model was based on 6 predictor variables:  those 6 variables were 

combined with the predictions for the percent of the other 9 land use classes 

(which are based on withheld validation data not involved in model building) 

so that the second pass consisted of 15 predictors.  We reasoned this was the 

most effective way to incorporate as much information as was available about 

other land uses in each model. 
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� Theoretically the new predictors would improve the model for that class, 

leading potentially to a “third pass” (or fourth, etc.) of iteratively including 

results of the other models.  In practice, however, we found that 

improvements were limited to the second pass and there was no benefit in a 

third pass. 

� Once these integrated models were created they still had the potential to sum 

to greater than 100% for any block group.  The final models were therefore 

constrained to 100% by dividing each stand-alone prediction by the sum of the 

stand-alone predictions and multiplying by 100.  The result was 10 predictions 

(for the 10-class scheme) which summed to 100, and 6 predictions (for the 6-

class scheme) which also summed to 100 for each block group. 

 We recognized that there were other possible solutions, such as allowing fuzzy 

boundaries amongst classes (possibly based on the confidence intervals for each 

prediction), however we believed that creating a product that was constrained to 100% 

was the most straightforward and interpretable result. 

3.3.7 Cross-validation with Other Urban Areas (6-class models) 

 Our final major analysis was to compare models across geographic areas.  Once 

the 6 stand-alone models which represented the 6-class scheme were completed 

(RESID_LOW_6CL, RESID_HIGH_6CL, COM_IND_INST_6CL, TRANSP, 

RECR_OPEN, and NON_URB – see Figure 3-14 (flowchart)), they were validated and 

compared against data from the three external urban areas: Providence, RI, Atlanta, GA, 
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and Los Angeles, CA.  The intent was not to perform a comprehensive evaluation of land 

uses from those cities, but to compare how models derived from one urban setting would 

transport to sample data from other urban areas which had (potentially) different 

characteristics.   The goal was to gain insight into how a true national mapping of urban 

land uses could best be achieved, beyond this project.  A brief description is given of 

each of the three external datasets: 

 The study data for Providence consisted of the entire state of Rhode Island, 

comprising five counties (Figure 3-15).  A handful of block groups on islands were 

eliminated, so that the validation dataset consisted of 815 BGs.  This was equivalent to 

approximately 1/3 of the BGs in the Boston study area.   
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We wanted the number of block groups from each of the three external areas to be 

equivalent, so we limited the number of block groups in Atlanta and Los Angeles to 

approximately the same number as were available for Providence (although theoretically 

we could have extended the Rhode Island data by adding block groups from neighboring 

southern Massachusetts, we felt that the 800+ BGs from RI were adequate as a good 

sample of data from an area different to Boston).  A random block group was selected 

near central Atlanta and a group of contiguous BGs surrounding that point were selected 

(Figure 3-16).  Contiguous block groups were needed in order to calculate the Spatial 

Autocorrelation independent variables described above.  The final set consisted of 833 

BGs. 

Boston

New York

Providence

New York

Vermont

Maine

Massachusetts

New Hampshire

Connecticut

New Jersey

Rhode Island

Pennsylvania

Study area

Atlantic Ocean

0 50 10025 Kilometers

Figure 3-15: Study block groups for Providence, RI.   
Background land cover is NLCD01.  Red areas are developed.  Scale of inset map matches 
insets for MA, GA, and CA. 
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A like number was selected in similar fashion for Los Angeles (figure 3-17). 

Figure 3-16: Study block groups for Atlanta, GA.   
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Figure 3-17: Study block groups for Los Angeles, CA. 
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Some basic statistics for each of the three areas and the Boston validation set are given in 

Table 3-8. Each area encompassed an area of more than 1 million people. 

 

Table 3-8: General statistics of block group samples from study areas.  Census data are from 2000 
Census. 

  Providence Atlanta Los Angeles 
Boston 

(validation) 

n (# of BGs) 815 833 830 825 

Area (sq km) 2,859 1,535 241 1,531 

Population 1,048,000 1,562,057 1,177,000 1,054,000 

Median pop. density (#/sq km) 1,565 1,227 6,072 2,306 

Number of schools (from GNIS) 781 606 242 598 

Median household income ($) 42,100 43,600 28,800 54,400 

Pct workers using public transport 1.6 6.2 12.1 9.4 
Total population of entire 
Metropolitan Statistical Area (MSA)* 1,583,000 4,248,000 12,366,000 4,391,000 

     

 

* MSA: 
Providence-New 
Bedford-Fall River, 
RI-MA 

* MSA: Atlanta-
Sandy Springs-
Marietta, GA 

* MSA: Los 
Angeles-Long 
Beach-Santa Ana, 
CA 

* MSA; Boston-
Cambridge-
Quincy, MA-NH 

 

The characteristics of 

the study areas clearly differ.  

Figure 3-18 shows boxplots of 

the percent urban land cover 

(NLCD01) by block group for 

all four datasets.  The data 

distribution of percent urban 

land cover is most similar 

between Providence and 

Boston.  The Los Angeles data 
Figure 3-18.  Box plots of percent urban land cover (y-
axis) from the four datasets in this study.   
The median is represented by the center line of boxes and 
boxes represent inter-quartile range.  
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represent an area of very high intensity urbanization, and Atlanta and Los Angeles are 

characterized by Griffith and Wong (2007) as polycentric (multiple major population 

centers). 

The fact that each of these datasets represented different versions of urbanization 

provided the opportunity to test (a) the hypothesis that models developed for one area 

would transport best to areas that were most similar, and transport poorly to areas that 

were most different, and (b) more broadly, to test if it was feasible whatsoever to 

transport models to areas outside of where the training data originated.  After re-

calculating the dependent and independent variable values for each of the three areas we 

compared data characteristics 

among the four datasets.  A 

clustering technique (R 

functions dist(), hclust(), and 

plclust()) was used to create 

dendrograms based on a number 

of key indicators of urbanization 

(population density, percent 

imperviousness, road density, 

vegetation index), (Figure 3-19), 

and socio-economic factors (not 

shown). 

Figure 3-19. Dendrogram based on several key 
measures of urbanization from the four data samples.   
Nodes are organized by similarity to each other:  Boston and 
Providence are the most similar to each other by those 
measures; the Los Angeles block groups are the most 
different to the other three.  Dendrogram based on 19 socio-
economic variables yields a nearly identical result. 
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 It should be noted that, although by many measures the Boston and Providence 

samples are most similar to each other, by some specific measures they may not be.  For 

example, based on the variable “percent of workers using public transport” (Table 3-6) 

Boston is least similar to Providence and most similar to Los Angeles: a function of the 

development of mass transit in those particular areas.  Similarity may vary depending on 

the variables used for comparison. 

 We applied the Boston 6-class models to the data from each of the other areas and 

recorded the results.  The stand-alone models were used because they were more 

straightforward conceptually.  Because the data had already been calculated and the 

method for creating models had already been established, it was reasonably 

straightforward to repeat the process for the datasets from the other three areas, as 

follows. 

� 6-class models were created from each of the Providence, Atlanta, and Los Angeles 

datasets, using the method described above (section 3.3.4.1).  The data were validated 

from the withheld OOB data, as for the Boston 6-class models.   

� The models for each city were then validated against the other three cities. The 

validation dataset used for the Boston area consisted of the 1/3 sample validation 

dataset described previously (n=825), so that validation for each area was based on a 

similarly-sized dataset.  The result was four sets of tables showing the performance of 

each set of models against data for its own area, and against the other areas.  

� The importance of specific predictor variables and classes of variables was recorded 

and compared across the four datasets. 
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4. Results 

 

The results are broken into four sections: 

� Evaluation of actual land use classes (section 4.1).  This helps to “set the stage” 

for evaluation of land use generally, and is a continuation of partial results 

presented in section 3.3.1.  

� Results of testing other methods (section 4.2).  This was a test to assure ourselves 

that our modeling method was reasonable, compared to two alternatives. 

� Results of 10-class models for Massachusetts study area (section 4.3). 

� Results of 6-class models (section 4.4).  Transporting models between 

Massachusetts, Rhode Island, Georgia, and California. 

Sections 4.3 and 4.4 represent the key results of this project. 

4.1 Land Use Separability 

 Evaluating the separability of the true land use classes helps to inform the 

prediction and mapping of land use (even beyond this project), understanding class 

differences, and the urban landscape in general.  As noted earlier, examining the 

differences of classes with respect to certain variables in some cases led to the creation of 

new independent variables that in some cases were important predictors.  Additionally, 
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evaluating class differences helps to explain why some classes are more difficult to 

predict than others. 

 As described in the 

Methods section, the 

following results were 

derived from a random 

sample of 600 polygons of 

each land use class from the 

reference data.  Differences 

by class were examined in 

both graphical and tabular 

format.  For example, Figure 

4-1 shows the range of values 

of block group median 

household income (CENS_median_hh_income) by land use class.  There were significant 

differences between household income for large lot single-family residential (SFRES_L; 

median = $94,600) and the higher density residential classes (SFRES_S median = 

$60,400 and MFRES median = $57,600).  The income for block groups in which non-

residential reference polygons are located are more similar to the high density residential 

classes.  Appendix D provides additional data distributions by LU class for a number of 

variables. 

Figure 4-1.  Range of values for median household 
income for 600 reference polygons of each class.   
Y-axis units are dollars. 
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 The statistical difference between any two classes for these and other variables 

was also assessed with the Wilcoxon signed-rank test.  (Rank tests were used here and 

generally elsewhere because the data for this and many of the variables did not have 

normal distributions.)  For example, differences in the household income data from 

Figure 4-1 are given in Table 4-1.  These confirm the observation above, i.e. that the most 

significant differences in income are between SFRES_L and the SFRES_S and MFRES 

classes. 

 

Table 4-1: Pairwise z-value results from Wilcoxon rank-sum tests for block group median 
household income (CENS_median_hh_income).   
Higher values indicate greater differences between classes.  Values in red have p < 0.001.  

  SFRES_L SFRES_M SFRES_S MFRES COMM INDUS INSTIT TRANS RECR_O NON_UR 

SFRES_L - 13.94 21.42 21.85 20.98 18.23 14.31 18.76 14.39 7.94 

SFRES_M - - 11.28 15.08 14.02 9.11 5.87 10.36 5.22 -3.66 

SFRES_S - - - 2.37 1.41 -4.16 -5.77 -2.79 -7.29 -16.31 

MFRES - - - - -0.85 -5.79 -7.41 -4.66 -8.81 -17.12 

COMM - - - - - -4.93 -6.49 -3.78 -7.94 -16.19 

INDUS - - - - - - -2.36 1.12 -3.54 -12.19 

INSTIT - - - - - - - 3.36 -0.83 -8.43 

TRANS - - - - - - - - -4.50 -13.03 

RECR_O - - - - - - - - - -8.06 

 

 

 Examining pairwise class differences graphically and statistically was useful for 

ensuring that by individual, or combinations of measures, every class had unique 

characteristics.  This was clearly the case, as even from the one census variable given 

here as example, there are statistically significant differences between most classes. 
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 We also summarized the differences among all classes for individual variables by 

using the non-parametric Kruskal-Wallis chi-squared test.  Table 4-2 shows results for a 

number of key indicators (same variables as shown in boxplot figures): 

 From these results, land use classes 

have generally greater differences with regard 

to land cover than socio-economic measures.  It 

is noteworthy, however, that even the strongest 

variable, imperviousness, does not distinguish 

between every class (Appendix D), for 

example SFRES_S and MURES or INSTIT, 

nor does this table provide information about 

how well any variable predicts a specific land 

use class. 

 We developed a distance matrix 

between every land use class using the 

Mahalanobis distance from eight of the above variables believed to be important 

(LC_nlcd01_imperv_mean, LC_sum_nlcd01_allveg, TRANSP_allroads_density, 

SPCAT_patch_2ha_pct, CENS_huden, CENS_popden, PROX_cost_10k_city, and 

PROX_cost_100k_city). The Mahalanobis distance is a measure of separation between 

datasets (Venables and Ripley, 1999), and shows the degree of similarity between classes 

for those variables (Table 4-3). 

Variable Chi-sq value 

LC_nlcd01_imperv_mean 3825 

LC_sum_nlcd01_allveg 2498 

TRANSP_allroads_density 2317 

SPCAT_patch_2ha_pct 2141 

CENS_huden 2118 

CENS_popden 2073 

PROX_cost_10k_city 1367 

CENS_median_hh_income 1062 

CENS_pct_hu_owneroccupied 955 

PROX_cost_50k_city 920 

PROX_cost_100k_city 626 

CENS_pct_nonwhite 546 

CENS_pden_change90_00 71 

  

Table 4-2: Kruskal-Wallis chi-squared test 
results.   
Higher values indicate there is greater 
separability among all LU classes for that 
variable.  All p-values < 0.001, and df=9. 
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 Finally, we used the same clustering technique shown earlier to create a 

dendrogram which organized the LU classes according to those same eight variables 

(Figure 4-2): 

 

Table 4-3: Mahalanobis distance results.   
Values by themselves are not meaningful, but are useful simply for comparison: low values indicate classes 
are “similar”, high values indicate classes are “different” with regard to the measured variables. 

  SFRES_L SFRES_M SFRES_S MFRES COMM INDUST INSTIT TRANS RECR_ NON_URB 

SFRES_L - 2.46 6.29 7.39 11.78 10.81 6.37 6.12 3.16 4.49 

SFRES_M - - 1.75 3.88 8.47 8.80 3.95 3.90 6.31 12.68 

SFRES_S - - - 2.20 4.70 6.93 3.11 2.75 11.50 17.84 

MFRES - - - - 4.30 5.34 1.57 3.01 9.69 15.58 

COMM - - - - - 1.37 2.98 1.55 14.69 19.71 

INDUST - - - - - - 2.03 1.21 11.75 16.52 

INSTIT - - - - - - - 0.99 7.79 12.89 

TRANS - - - - - - - - 9.13 13.45 

RECR_ - - - - - - - - - 5.97 

NON_URB - - - - - - - - - - 

 

Figure 4-2. Dendrogram based on eight independent variables thought 
to be important in distinguishing LU types.   
Nodes are organized by similarity to each other. 
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 The distance matrix and dendrogram generally confirm prior observations about 

class similarities and physical proximities. In some cases these results suggest alternative 

aggregations of classes which could be examined in future work.  The 10-class 

aggregation to 6-classes was based primarily on literature examples (for example our 

COMMERC, INDUST, and INSTIT classes were combined in part from the example of 

Gong et al., 1992), as well as  perceived interpretability (i.e. combining residential classes 

seems logical).   

 As noted previously, these results of class separability tests are provided primarily 

as background and general information regarding the nature of the land use classes. 

4.2 Results of Testing Other Methods 

 Although we believed the method we followed for predictive modeling was a 

reasonable one, we were inevitably curious about how some other methods might fare 

doing the same thing, at least in a general way.  It was not the intent of this project to 

exhaustively explore every possible modeling technique, but the results here are 

nevertheless informative. 

 As described earlier, we compared the three following methods: 

� Executing RF for each dependent variable based on the set of 2/3 sample of 

1,939 records and 188 predictor variables.  The resultant models were then 

applied to the 825-record validation dataset and RMSE and r2 recorded.  This 

is termed the RF_ORIG method below.   
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� Performing a stepwise linear regression for the same records and variables 

for each dependent variable.  The resultant equation was then likewise 

applied to the validation dataset.  This is termed the STEP_LIN method 

below. 

� Executing principal components analysis for the 188 variables and using the 

first 90 PC scores used as predictors in an RF model, likewise applied to the 

validation dataset.   This was a bit of a hybrid method, using Random Forests 

but with a PCA-derived set of predictors.  This is termed the RF_PCA 

method below. 

 This was done for the 10-class scheme, with the following results: 

 

Table 4-4: Results of other-methods testing.   
R2 values are given on the left and normalized percent improvement of RMSE from prediction of the mean 
on the right.  Validation based on 825 withheld records. 

r2  
Pct improvement from prediction of means (1 – 

NRMSE * 100) 

LU class RF_ORIG STEP_LIN RF_PCA  LU class RF_ORIG STEP_LIN RF_PCA 

SFRES_L 0.481 0.402 0.326  SFRES_L 28 21 18 

SFRES_M 0.581 0.454 0.515  SFRES_M 35 25 29 

SFRES_S 0.679 0.427 0.583  SFRES_S 42 22 31 

MFRES 0.580 0.245 0.567  MFRES 35 1 34 

COMMERC 0.419 0.359 0.287  COMMERC 24 18 16 

INDUST 0.442 0.374 0.278  INDUST 25 21 15 

INSTIT 0.382 0.329 0.199  INSTIT 20 13 8 

TRANSP 0.576 0.510 0.254  TRANSP 34 29 14 

RECR_OPEN 0.593 0.520 0.439  RECR_OPEN 35 30 24 

NON_URB 0.957 0.963 0.859  NON_URB 79 81 59 

 
 

 As the RF_ORIG test represented the same (first step of the) method we used in 

this project we were reasonably satisfied that it would have at least as good, and probably 
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better, performance than either of the other methods tested here, which were simple 

alternatives. 

4.3 Results of 10-class Models 

 The 10-class models were created for the Massachusetts data only.  Separate 

sections are given for describing stand-alone models (section 4.3.1) and integrated 

models (sections 4.3.2 and 4.3.3), which integrate the results of all land use models.   

4.3.1 Stand-alone Models 

 The stand-alone models were evaluated from the withheld OOB validation data, 

as described previously.  Table 4-5 summarizes their performance.  Each model had a 

(potentially) different set of predictors, as noted in the num_vars column. (Results are 

discussed in detail in Section 5). 

 

Table 4-5: Results of stand-alone model validation.   

LU class num_vars r2 

Pct 
improvement 
from prediction 
of means (1 - 
NRMSE * 100) 

SFRES_L 6 0.582 35 

SFRES_M 8 0.648 41 

SFRES_S 9 0.727 48 

MFRES 7 0.706 46 

COMMER 7 0.471 27 

INDUST 7 0.429 24 

INSTIT 7 0.411 23 

TRANSP 9 0.568 34 

RECR_OP 7 0.535 32 

NON_UR 2 0.930 74 
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 Table 4-6 shows the variables that were included in one or more of the final 

models. 

Table 4-6:  Variables that were part of final 10-class stand-alone models.   
“X” indicates variable was built as part of that model.  Variables are given in alphabetical order, which 
organizes them by category. 

                
                 Variable 

S
F

R
E

S
_L

 

S
F

R
E

S
_M

 

S
F

R
E

S
_S

 

M
F

R
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CENS_hu_median_numb_rooms X   X X             

CENS_huden             X       

CENS_pct_hu_owneroccupied             X       

CENS_pct_walkbike_to_work             X       

CENS_popden   X X               

HIST_giras_12         X           

HIST_giras_13           X         

HIST_giras_14               X     

HIST_giras_17                 X   

HIST_indust_all_times               X     

HIST_nlcd92_21   X X               

HIST_nlcd92_22       X             

HIST_nlcd92_23           X         

HIST_nlcd92_85                 X   

LANDMRK_gnisconsol_instit_density             X       

LANDMRK_gnisconsol_recr_density                 X   

LC_nlcd01_21                 X   

LC_nlcd01_24         X           

LC_nlcd01_imperv_mean X                   

LC_ratio_popden_nlcd2324         X X         

LC_sum_nlcd01_2122   X                 

LC_sum_nlcd01_urban                   X 

MISC_vg2000_mean X                   

PROX_airport_crossing_dist   X X               

PROX_city100k_dist   X   X X X         

PROX_city250k_dist   X X X X X X   X   

PROX_cost_10k_city         X           

PROX_cost_50k_city   X X               

PROX_major_road_dist       X             

PROX_mean_dist_road X X X         X   X 

SA_localMoran_allnatveg     X X             

SA_localMoran_lc_entropy                 X   

SA_localMoran_popden     X X       X     
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                 Variable 
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R
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SPCAT_shape_index_22_24 X                   

SPCON_cohesion_slopeclass2             X       

SPCON_ed_slopeclass1 X                   

SPCON_focal77_gt50_is_cv             X       

TRANSP_a11_a17_roads_density               X     

TRANSP_a11_a38_roads_density               X     

TRANSP_alltrans               X     

TRANSP_bts_faf2_pct         X           

TRANSP_bts_rail_pct           X   X     

TRANSP_ratio_roadden_imperv           X   X X   

 

 Once the final models were created the component variables were re-evaluated 

using a leave-one-out approach, i.e. the model was successively re-built using all 

variables but one, and the results recorded.  The decrease in performance when a variable 

was left out was used as a measure for ranking the variables in the final models.  

Appendix E shows the final variables for each model and their relative importance as 

judged by that measure.   

 The above variables were included in our final models, however the importance 

of all of the 188 predictor variables by class is also of interest.  We recorded the two RF 

importance measures after executing a prediction using all 188 variables, then took the 

average rank of the two importance measures as a measure of the variable’s importance.  

This is provided in Appendix F, from which the strength of general classes of variables 

by land use class may be seen.  For example, a number of Proximity (PROX_) and 

Spatial Autocorrelation (SA_) variables were consistently important across many land 

use classes, whereas Spatial Pattern variables (SPCAT_ and SPCON_) were consistently 
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less important and when so, important to only one or two classes.  These results are 

discussed in detail in Section 5. 

 What do the results look like?  Because of the difficulty of visualizing every class 

together on one map, Figures 4-3(a)-(j) show a series of panels juxtaposing the actual 

land use (left side) with the modeled land use (right side) as predicted from the withheld 

validation records.  These series of figures show the same subset of the study area shown 

in Figure 3-10 (because showing the entire study area makes it too difficult to see 

details), and uses the same color scheme as Figure 3-9 for the actual land use panels. 
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Figure 4-3(a)-(j):  Actual (left) vs. predicted (right) land use.   
Right hand panels are categorized using Jenks natural breaks breakpoints. 
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Figure 4-3(a)-(j) continued…  
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Figure 4-3(a)-(j) continued… 
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Figure 4-3(a)-(j) continued… 
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Figure 4-3(a)-(j) – the last 
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 We mapped residuals for each class from both the training and validation data to 

visually identify patterns of error (Appendix G) and calculated the global Moran I 

statistic of residuals for both.  Although there was statistically significant clustering of 

residual values for every class (p < 0.01), the visual clustering evident from the training 

residuals was in most cases modest.  Additionally, error was not significantly clustered 

when block groups were evaluated categorically (discussed in section 4.3.2).  

 Because of the ensemble nature of Random Forests it is not possible to examine a 

single set of rules for each model.  However, as alternative, we took the variables from 

each final stand-alone model and applied them in the recursive partition tree rpart(), 

which produces a single set of rules and tree.  These tree diagrams give useful 

information about the general nature of relationships between dependent and independent 

variables, using a functionality that is similar to Random Forest (albeit with likely lower 

accuracy – Maindonald and Braun, 2007).  The rpart() trees and rules are discussed where 

pertinent in Section 5. 

4.3.2 Integrated (constrained) models 

  Incorporating predictions from other classes and constraining results to 100% led 

to small but measurable (above RF variability) improvements in individual models for 

several classes (SFRES_S and MFRES), but little or no improvement to most others 

(Figures 4-4(a) and (b)).   
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Figure 4-4(a).  Change in individual model performance (r2) after integrating results with other 
models. 
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Figure 4-4(b).  Change in individual model performance (1 – NRMSE * 100) after integrating 
results with other models. 
 

  

 We assessed the integrated models, which now summed to 100% land use for 

each block group, across classes and assigned a majority land use classification (highest 
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percent) to both the actual and predicted land use.  A secondary classification (the second 

highest percent) was also assigned to the predicted land use.  Figure 4-5 shows the 

majority land use in the block group for actual land use (left) and predicted (right).   

 

 

Figure 4-5.  Majority actual land use in the block group (left) vs. majority predicted land use.   
Predicted are based on withheld validation values. 
 

 

 The majority prediction for 79% (2176 / 2764) of all block groups correctly 

matched the majority actual land use classification.  The prediction for 92% of all block 

groups matched using either the majority or secondary classification (Figure 4-6).  There 

is low spatial autocorrelation of error when assessed in this categorical manner:  block 
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groups which did not match the majority land 

use classification are randomly scattered 

(Global Moran I = 0.0005, p = 0.17). 

 We also assessed confidence of 

predictions by examining the standard 

deviation of the set of predictions for each 

class.  As noted earlier, we took the matrix of 

all validation predictions for a class (which 

for 500 RF trees was 187 predictions), and 

calculated the standard deviation, standard 

error and confidence intervals for each 

record for each class.  The sum of the 

standard errors (Figure 4-7) gives another 

indication of the overall confidence of 

predictions:  low values indicate block 

groups where RF made very similar 

Figure 4-6.  BGs whose predicted majority 
or secondary classification matched actual 
land use classification. 

Figure 4-7.  Sum of standard error of RF 
validation predictions across all 10 classes.   
Categories use Jenks natural breaks 
breakpoints. 
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predictions across all trees for most classes, high values indicate the reverse. 

4.3.3 Total land area estimation 

  A key result is how well the method estimates the overall total land area for each 

class (without regard to error for individual block groups).  Comparing overall land area 

between actual and modeled results is a common practice in land cover/land use product 

evaluation (Vogelmann et al., 1998).   In general one would expect results to be more 

accurate as aggregated over larger census areas (Wu and Murray, 2005).  The predicted 

percent for each integrated model was multiplied by the actual land area of each block 

group to give a sum total land area prediction for each class (Table 4-7): 

 

LU class actual predicted 
% 

difference 

SFRES_L 559.1 556.7 -0.4 

SFRES_M 601.5 614.8 2.2 

SFRES_S 286.9 305.1 6.3 

MFRES 89.6 99.3 10.8 

COMMERC 121.6 131.7 8.3 

INDUST 125.1 124.4 -0.6 

INSTIT 81.0 85.5 5.6 

TRANSP 99.2 92.1 -7.2 

RECR_OPEN 164.4 171.6 4.4 

NON_URB 2669.0 2616.2 -2.0 

        
sum 4797.4 4797.4   

 

Table 4-7: Comparison of actual land area (sq 
km) of each class for the entire study area to 
prediction from integrated models. 
 Negative differences are underestimation, positive 
differences are overestimation of land use. 
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 Figure 4-8 shows this graphically, and additionally shows the calculation of the 

prediction from the mean for comparison (i.e. if every block group were assumed to have 

the mean land use percent for that class – our “null model”). 
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Figure 4-8.  Entire study area: comparison of actual land area (sq km) for each class, predicted 
land area, and prediction from mean (null model).   
 

 
 The land use sums could also be separated out by county (Figures 4-9(a) – (d)): 

i.e. predictions for individual counties based on models built from the data for the entire 

study area:  
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Figure 4-9(a).  Essex County: comparison of actual and predicted land area (sq km) for each 
class. 
 

Figure 4-9(b).  Middlesex County: comparison of actual and predicted land area (sq km) for each 
class. 



144 
 

Norfolk Co.

128.1 172.5

49.7

12.6 21.7 32.7
16.8 19.1 37.5

554.9

131.4 163.5

59.2

14.7 25.0 25.9
18.0 18.5 37.5

551.9

0.0

100.0

200.0

300.0

400.0

500.0

600.0

SFRES_L

SFRES_M

SFRES_S

M
FRES

CO
MM

ERC

IN
DUST

IN
STIT

TRANSP

RECR_O
PEN

NON_U
RB

actual

predicted

Suffolk Co.

0.3 1.2

37.9

24.6

17.7

5.9
10.6

18.6
17.0

42.2

2.0
4.5

39.2

26.5

19.4

9.3 10.7 13.4 14.3

36.7

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

SFRES_L

SFRES_M

SFRES_S

M
FRES

CO
MM

ERC

IN
DUST

IN
STIT

TRANSP

RECR_O
PEN

NON_U
RB

actual

predicted

Figure 4-9(c).  Norfolk County: comparison of actual and predicted land area (sq km) for each 
class. 

Figure 4-9(d).  Suffolk County: comparison of actual and predicted land area (sq km) for each 
class. 
  

  

 The percent differences for the county comparisons by class are similar to those in 

Table 4-7, i.e. most differences are within 10%, about half are within 5%, and some are 

virtually perfect predictions, e.g. RECR_OPEN land area in Norfolk County is an exact 

prediction of actual land use.  It is noteworthy that the predictions for the first three 

counties have the highest accuracy, but area predictions for Suffolk County (central 
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highly-urbanized Boston) less so.  This is not entirely unexpected, as most of the training 

data comes from the first three counties and they are somewhat dissimilar to Suffolk 

County.  Even given that, the predictions for Suffolk County represent a quite reasonable 

match to actual data. 

4.3.4 Results of Sensitivity Analysis 

  We tested random samples in which 50, 40, 30, 20, 10, and 5% of all data for the 

study area were used by RF for model training, and validated these against a separate 

10% random sample.  Table 4-8 summarizes the results. 

 

 

LU class Percent of study area data used as training 

  50% 40% 30% 20% 10% 5% 

SFRES_L 0.518 0.492 0.490 0.490 0.450 0.416 

SFRES_M 0.730 0.711 0.695 0.650 0.614 0.598 

SFRES_S 0.811 0.797 0.772 0.750 0.738 0.711 

MFRES 0.742 0.726 0.693 0.673 0.648 0.592 

COMMERC 0.496 0.494 0.480 0.447 0.416 0.302 

INDUST 0.434 0.415 0.416 0.417 0.346 0.269 

INSTIT 0.351 0.334 0.329 0.256 0.227 0.178 

TRANSP 0.642 0.632 0.627 0.628 0.627 0.592 

RECR 0.502 0.490 0.468 0.425 0.418 0.340 

 

 These results are discussed in Section 5. 

4.3.5 Results of Business Analyst predictors 

  After including the ESRI Business Analyst predictors in stand-alone models, we 

evaluated the performance of resulting models for the COMMERC, INDUST, and 

Table 4-8: Performance (r2) vs percent of data used as training. 
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INSTIT classes, as noted earlier.  The result was a small but measurable increase in 

performance for those classes (Table 4-9): 

 

Table 4-9: Effect of adding Business Analyst predictors to final models 
for the COMMERC, INDUST, and INSTIT classes.   
As before, all results are from withheld validation records. 

 r2   

Pct improvement from 
prediction of means (1 - 

NRMSE * 100) 

LU class 

Without 
BusAnalyst 
predictors 

With 
BusAnalyst 
predictors   

Without 
BusAnalyst 
predictors 

With 
BusAnalyst 
predictors 

COMMERC 0.471 0.491   27 29 

INDUST 0.429 0.463   24 27 

INSTIT 0.411 0.434   23 25 

 

 

4.4 Results of 6-class models 

 The reason for creating the 6-class models was to be able to test models between 

urban areas with different physical settings.  We had theorized that models built from the 

Massachusetts dataset should have better performance for areas/datasets that were most 

similar (e.g. Rhode Island).  The feasibility of doing so was unclear prior to testing, as, to 

our knowledge such a test had not previously been performed with predictive urban land 

use models, and especially not with national-scale data.  The following are the results of 

validation of the Massachusetts 6-class models. 
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 Table 4-10(a): Results of Boston 6-class model validation.   

Column for the area on which the model is built is highlighted.  Negative values of pct improvement from 
prediction of means indicate a fairly poor prediction, i.e. worse than a simple prediction of the mean. 
 

 r2  
Pct improvement from prediction of 
means (1 - NRMSE * 100) 

LU class MA RI GA CA  MA RI GA CA 

RESID_LOW_6CL 0.725 0.304 0.472 0.003  47 -35 6 -32 

RESID_HIGH_6CL 0.812 0.782 0.340 0.325  57 36 17 12 

COM_IND_INST_6CL 0.630 0.764 0.751 0.651  39 51 33 40 

TRANSP 0.568 0.645 0.573 0.785  34 40 34 52 

RECR_OPEN 0.535 0.475 0.303 0.323  32 18 13 7 

NON_URB 0.930 0.949 0.501 0.686  74 73 -43 42 

 
 

 With the exception of the RESID_LOW_6CL, the Providence dataset (RI) came 

closer to matching the performance of the Massachusetts models than the Atlanta (GA) or 

Los Angeles (CA) datasets.  These are discussed in detail in Section 5.  The next obvious 

question was how would models created from those areas perform, both in their own 

areas, and against the others?  These are summarized in Tables 4-10(b) – (d), which are 

identical in format to Table 4-10(a), but for models created from data from the 

Providence, Atlanta, and Los Angeles data, respectively. 

 

Table 4-10(b): Results of Providence model validation.   

 r2  
Pct improvement from prediction of 
means (1 - NRMSE * 100) 

LU class MA RI GA CA  MA RI GA CA 

RESID_LOW_6CL 0.435 0.594 0.389 0.003  10 36 -24 -32 

RESID_HIGH_6CL 0.691 0.885 0.232 0.393  42 66 8 11 

COM_IND_INST_6CL 0.490 0.743 0.707 0.576  28 49 31 32 

TRANSP 0.471 0.683 0.499 0.736  27 44 28 46 

RECR_OPEN 0.469 0.529 0.235 0.413  26 31 9 19 

NON_URB 0.926 0.952 0.401 0.742  68 78 -91 45 
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Table 4-10(c): Results of Atlanta model validation.  

 r2  
Pct improvement from prediction of 
means (1 - NRMSE * 100) 

LU class MA RI GA CA  MA RI GA CA 

RESID_LOW_6CL 0.395 0.331 0.756 0.028  20 -87 52 -23 

RESID_HIGH_6CL 0.612 0.564 0.639 0.140  8 -6 40 3 

COM_IND_INST_6CL 0.302 0.479 0.819 0.237  -51 -63 58 -21 

TRANSP 0.423 0.597 0.572 0.770  21 32 33 24 

RECR_OPEN 0.256 0.289 0.511 0.393  14 13 30 18 

NON_URB 0.880 0.889 0.735 0.315  47 37 48 14 

 

 

Table 4-10(d): Results of Los Angeles model validation.  

 r2  
Pct improvement from prediction of 
means (1 - NRMSE * 100) 

LU class MA RI GA CA  MA RI GA CA 

RESID_LOW_6CL 0.002 0.007 0.109 0.689  -30 -78 -18 44 

RESID_HIGH_6CL 0.575 0.835 0.207 0.782  28 38 5 53 

COM_IND_INST_6CL 0.442 0.579 0.696 0.826  20 17 42 58 

TRANSP 0.128 0.335 0.227 0.853  -13 4 -2 62 

RECR_OPEN 0.182 0.218 0.270 0.571  -19 -39 -23 35 

NON_URB 0.800 0.846 0.395 0.763  27 18 -11 51 

  

 
 There are obvious difficulties in predicting land use from models of urban areas 

with different characteristics.  For example, while predicting low intensity residential 

land (RESID_LOW_6CL) in Los Angeles is fairly successful from Los Angeles data (r2 

= 0.689, pct improvement = 44), transporting that model to the other areas is remarkably 

unsuccessful, and in every case the accuracy is worse than simply predicting from the 

mean.  The characteristics of low intensity residential land are clearly different in the Los 

Angeles data sample than in the other areas.  These results are discussed in more detail in 

Section 5. 



149 
 

 Similar to Table 4-6, the variables that were built in final models for each area are 

summarized in Tables 4-11(a)-(f).  As noted earlier, the process for model building was 

identical to that described for the 10-class Boston models, i.e. the goal was a model with 

a small number of variables which had as good a performance as possible for the 

withheld validation data for the area from which it was built. 

 

Table 4-11(a):  RESID_LOW_6CL.   
Variables that were part of final models for each area for RESID_LOW_6CL.  “X” indicates variable was 
built as part of that model.  Variables are given in alphabetical order, thus organized by predictor class. 

Variable MA RI GA CA 

CENS_hu_median_numb_rooms   X   X 

CENS_huden       X 

CENS_median_hh_income       X 

CENS_pct_5_or_more_units_in_structure       X 

CENS_pct_hu_owneroccupied     X   

CENS_pden_change90_00   X     

HIST_nlcd92_21 X       

HIST_sum_nlcd92_allveg   X     

LC_nlcd01_21     X   

LC_nlcd01_23     X   

LC_nlcd01_imperv_mean   X X   

LC_ratio_popden_nlcd2324       X 

LC_sum_nlcd01_2122 X X     

MISC_vg2000_mean X     X 

PROX_city100k_dist   X X X 

PROX_city250k_dist X       

PROX_cost_50k_city X       

PROX_mean_dist_road   X X   

SA_localMoran_popden X       

SPCAT_lc_entropy     X   

SPCON_focal33_gt50_is_std   X     

TRANSP_ratio_roadden_imperv     X   
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Table 4-11(b):  RESID_HIGH_6CL.   
Variables that were part of final models for each area for RESID_HIGH_6CL.   

Variable MA RI GA CA 

CENS_hu_median_numb_rooms X       

CENS_huden     X X 

CENS_median_hh_income   X     

CENS_pct_5_or_more_units_in_structure     X X 

CENS_pct_hu_owneroccupied       X 

CENS_popden X       

HIST_giras_11   X     

HIST_highresid_92_and_01   X     

HIST_highresid_all_times   X   X 

HIST_nlcd92_21   X     

HIST_nlcd92_22     X   

LC_nlcd01_22     X   

LC_nlcd01_23 X X   X 

LC_ratio_huden_imperv X     X 

PROX_city100k_dist     X   

PROX_city250k_dist X       

PROX_cost_10k_city       X 

PROX_cost_50k_city X       

PROX_mean_dist_road   X     

SA_localMoran_popden X   X   

SPCON_focal33_gt50_is_std       X 

 

Table 4-11(c):  COM_IND_INST_6CL.   
Variables that were part of final models for each area for COM_IND_INST_6CL.   

Variable MA RI GA CA 

CENS_hu_median_numb_rooms X       

CENS_pct_hu_owneroccupied   X     

HIST_commerc_all_times   X X   

HIST_highresid_all_times       X 

HIST_nlcd92_21   X     

HIST_nlcd92_23 X X     

HIST_sum_giras_comm_ind X X   X 

LANDMRK_gnisconsol_instit_density X X     

LC_nlcd01_23     X   

LC_nlcd01_24 X     X 

LC_nlcd01_imperv_mean     X   

LC_nlcd01_imperv_range       X 

LC_nlcd01_imperv_stdev     X   

LC_ratio_huden_imperv     X X 

MISC_vg2000_mean       X 

SPCON_focal33_gt50_is_std   X X   



151 
 

Variable MA RI GA CA 

SPCON_focal77_gt50_is_cv X       

TRANSP_bts_rail_pct X       

TRANSP_ratio_roadden_imperv X   X   

 

Table 4-11(d):  TRANSP.   
Variables that were part of final models for each area for TRANSP.   

Variable MA RI GA CA 

HIST_giras_14 X X X X 

HIST_indust_all_times X X X   

HIST_nlcd92_23   X X   

LMiZScore_alltrans   X   X 

LMiZScore_bgpopden X       

PROX_city100k_dist       X 

PROX_city250k_dist       X 

PROX_mean_dist_road X       

TRANSP_a11_a17_roads_density X X X X 

TRANSP_a11_a38_roads_density X     X 

TRANSP_alltrans X X X X 

TRANSP_bts_faf2_pct     X   

TRANSP_bts_rail_pct X X     

TRANSP_ratio_roadden_imperv X       

 

Table 4-11(e):  RECR_OPEN.   
Variables that were part of final models for each area for RECR_OPEN.   

Variable MA RI GA CA 

HIST_giras_17 X X   X 

HIST_nlcd92_11       X 

HIST_nlcd92_85 X X X X 

HIST_recr_all_times   X X X 

LANDMRK_gnisconsol_recr_density X X X X 

LC_nlcd01_21     X   

LC_nlcd01_22 X       

LC_sum_nlcd01_ag     X   

PROX_city250k_dist X   X   

PROX_mean_dist_road     X X 

SA_localMoran_allnatveg   X     

SA_localMoran_lc_entropy X       

SPCAT_lc_entropy   X     

TRANSP_ratio_roadden_imperv X       
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Table 4-11(f):  NON_URB.   
Variables that were part of final models for each area for NON_URB.  Note that in RI the “model” consists 
of a single variable. 

Variable MA RI GA CA 

CENS_median_hh_income     X   

CENS_pct_pop_below_poverty_lev     X   

LC_nlcd01_21     X   

LC_sum_nlcd01_allnatveg     X   

LC_sum_nlcd01_urban X X X X 

MISC_ned30m_slope       X 

PROX_mean_dist_road X   X   

SA_localMoran_allnatveg       X 

 

 
 What do the results look like?  Figure 4-10(a)-(d) show mappings of the 

RESID_HIGH_6CL class for each area as example, from the model for that area.  As in 

the Figure 4-3 series, these also show a series of panels juxtaposing the actual land use 

(left side) with the modeled land use (right side) as predicted from the withheld validation 

records.  In this series, because the same class is mapped in each figure, the categories on 

the right-hand side maps use the same breakpoints in each figure. 
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Figure 4-10(a).  Boston area.   

Figure 4-10(b). Providence area.   
 

Actual (left) vs. predicted (right) land use for RESID_HIGH_6CL.   
 

Actual (left) vs. predicted (right) land use for RESID_HIGH_6CL.  
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Figure 4-10(c). Atlanta area.   
Actual (left) vs. predicted (right) land use for RESID_HIGH_6CL. Actual land use clipped to study block 
groups’ extent for clarity. 

 
Figure 4-10(d). Los Angeles area.   Actual (left) vs. predicted (right) land use for 
RESID_HIGH_6CL. Actual land use clipped to study block groups’ extent for clarity. 
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5. Discussion 

 

5.1 10-class models 

5.1.1 Stand-alone models 

 Very broad scale drivers of land use: climate, topography, geology or access to 

water supply, were not major considerations in our analysis of the 10-class Boston 

models.  Except for the Boston metropolis being limited from expansion to the east, we 

considered the relatively minor variations in those factors to be negligible in our study 

area. However, classical land use theories suggest that several broad elements of the built 

environment should be important in driving the pattern of the landscape.  These are 

proximity influences of cities of various sizes, accessibility (transportation), and 

agglomeration (spatial autocorrelation). Those elements were also key predictors in this 

study.  Examining the importance scores in Appendix F, one readily notes the greater 

importance of Proximity (PROX_) and Spatial Autocorrelation (SA_) variables across 

models and higher rankings within models.   

 From the importance scores of the 188 predictor variables in Appendix F, we 

summarized the overall importance of variables across classes, assuming equal weight to 

each of the 10 classes, in two ways.  The first of these was to assign a score of 50 to any 

cell with a dash (i.e. a low score: those were variables we considered to be noise), then 
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averaging the scores across all 10 classes.  The top ranked of these are given in Table 5-1 

(left side).  The second way we measured importance across all classes was to count the 

number of times (out of 10 classes) that the variable ranked in the top 20 predictors.  

Those that were in the top ranked predictors in three or more classes are given on the 

right side of Table 5-1.  The prevalence of Proximity and SA variables is clear:  from the 

first method, the top three variables were measures of Proximity to cities or roads, and 

four of the top 10 were additionally measures of SA.  They were also highly placed with 

the second method.  The two most important variables, by far, from both methods were 

consistent: the most important predictor across classes was distance to nearest 250k city 

(Boston center), followed by distance to nearest road. Other classes of predictors were 

useful across a smaller range of land use types, but still regularly or specifically 

important (CENS_, LC_, TRANSP_, HIST_).  Our measures of spatial pattern from 30-m 

data (SPCAT_ and SPCON_) were much less useful across classes of land use type. 
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Table 5-1: Summary ranking of predictor variable importance across land use classes, of 188 total 
variables.  
The left hand side shows those variables which had the highest average rank order of importance from all 
10 classes (as given in Appendix F).  The right hand side shows the number of times (out of 10 classes) that 
the variable was in the top 20 predictors.  

Variable 

Overall rank 
across 
classes  Variable 

Num times in 
top 20 

PROX_city250k_dist 1  PROX_city250k_dist 8 

PROX_mean_dist_road 2  PROX_mean_dist_road 7 

PROX_city100k_dist 3  CENS_hu_median_numb_rooms 4 

TRANSP_ratio_roadden_imperv 4  HIST_indust_all_times 4 

SA_localMoran_allnatveg 5  LC_nlcd01_imperv_stdev 4 

MISC_vg2000_mean 6  LC_ratio_huden_imperv 4 

SA_localMoran_popden 7  PROX_city100k_dist 4 

SA_localMoran_dist_road 8  SA_localMoran_allnatveg 4 

CENS_huden 9  SA_localMoran_popden 4 

SA_localMoran_medianrooms 10  TRANSP_ratio_roadden_imperv 4 

HIST_highresid_all_times 11  CENS_huden 3 

LC_ratio_huden_imperv 12  CENS_pct_hu_owneroccupied 3 

CENS_pct_hu_owneroccupied 13  CENS_popden 3 

PROX_interstate_road_dist 14  HIST_commerc_all_times 3 

LC_ratio_popden_nlcd2324 15  HIST_giras_11 3 

LC_nlcd01_imperv_stdev 16  HIST_highresid_all_times 3 

HIST_indust_all_times 17  HIST_nlcd92_23 3 

CENS_pct_5_or_more_units_in_structure 18  PROX_cost_10k_city 3 

PROX_cost_gnis_instit 19  PROX_cost_50k_city 3 

SA_localMoran_imperv 20  PROX_cost_gnis_instit 3 

HIST_nlcd92_21 21  PROX_interstate_road_dist 3 

CENS_hu_median_numb_rooms 22  SA_localMoran_dist_road 3 

HIST_nlcd92_23 23  SA_localMoran_imperv 3 

PROX_cost_10k_city 24  SA_localMoran_medianrooms 3 

SA_localMoran_nlcd2324 25  SA_localMoran_nlcd2324 3 

   SPCON_is_slope_max 3 

   TRANSP_bts_faf2_pct 3 

   TRANSP_bts_rail_pct 3 

 
 

 There was value in characterizing some elements of the landscape both within a 

block group and its spatial autocorrelation over a broader area.  For example, population 

density (CENS_popden) was a highly ranked predictor for three of the residential classes 

(see Appendix F:  ranked #17 for SFRES_M, #10 for SFRES_S and #3 for MFRES).  
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However, the local Moran z-score value for population density 

(SA_localMoran_popden), which was calculated over a broader area than the block group 

(calculation was based on inverse distance for the entire study area), was an even stronger 

predictor for those same classes (ranked #6, #1, and #1, respectively).  This would 

suggest a landscape-wide effect of population density stronger than a local effect. The 

overall conclusion from this, however, is the near-universal strength of measures of 

proximity to cities, roads and other landmarks, and the autocorrelation of some 

characteristics (vegetation, population density), in predicting urban land use.  This 

strongly reinforces the argument against a per-pixel only attempt to measure land use, 

and the importance of accounting for distance and clustering effects. 

 It is highly noteworthy that in predicting these thematically detailed urban land 

use classes, current land cover was only occasionally one of the strongest predictors, and 

in no instance were models comprised primarily of land cover variables alone. Four of 

the 10 final models did not include a LC_ predictor. Another test we did to look at this 

was to create models based on current land cover variables alone (those in Appendix B2). 

Table 5-2 show the results for the urban classes, and confirm that predicting most land 

uses from land cover alone gives poor results.  The results of this project overall strongly 

support the notion that land cover may only give clues to land use, and that the one is not 

directly mappable from the other.   
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Table 5-2: Comparison of performance of final models 
with models built from only current land cover variables.   

 Examining the results in 

Table 4-5, the primary measures 

of performance of the 10-class 

models, the three classes other 

than NON_URB which had the 

best performance were the three 

highest density residential classes: SFRES_S (r2 = 0.727), MFRES (r2 = 0.706) and 

SFRES_M (r2 = 0.648).  These were also the classes with the highest degree of spatial 

autocorrelation and clustering into zones (see Figures 3-9 and 3-10).  Indeed, the degree 

of clustering of any class was a reasonably good indicator of how well it could be 

predicted:  those land use classes that were the most dispersed were the most difficult to 

predict (Figure 5-1). 

Figure 5-1.  Class clustering vs. ability to predict.   
Y-axis are Global Moran z-scores (same values as shown in Figure 3-11); X-
axis is final model r2 value.  Land use types with higher clustering were easier 
to predict than dispersed land use types. 

 r2 - final model r2 - only LC_ predictors 

SFRES_L 0.582 0.505 

SFRES_M 0.648 0.441 

SFRES_S 0.727 0.373 

MFRES 0.706 0.323 

COMMERC 0.471 0.299 

INDUST 0.429 0.255 

INSTIT 0.411 0.021 

TRANSP 0.568 0.194 

RECR_OPEN 0.535 0.241 
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 Classes which percentagewise were relatively sparse were also more difficult to 

predict, with the notable exception of MFRES.  That is, the classes that were most 

difficult to predict - INSTIT, INDUST, COMMERC, RECR_OPEN and TRANSP – were 

also the land uses with the smallest percentages in three of the four study counties (Essex, 

Middlesex, and Norfolk), although less so in the central Boston county of Suffolk.  This, 

however, corresponded to what we expected – that detecting very small percentages of a 

land use in a BG would be difficult.  The clustered nature of MFRES land made it the 

exception, i.e. although it made up a small proportion of the entire area, it was centralized 

in certain areas, and was therefore easier to detect.. 

 Another general factor affecting performance was variability within a class with regard 

to various predictors.  Classes with great variability were more difficult to predict generally.  

Of the land cover variables, impervious surfaces were very important because they formed the 

basis for a number of predictor variables.  Several classes, notably INSTIT and TRANSP had 

larger variability of imperviousness within the class (e.g. the large range and interquartile 

distributions seen in first figure of Appendix D), which made them more difficult to identify.   

 There were, however, unique aspects of each class and model. A brief evaluation 

of the prediction of each of the 10 classes is given here: 

5.1.1.1 Single-family large lot residential (SFRES_L) 

 These were the reference polygons with the most scattered urbanization of the 

urban classes and were recognizable primarily from three measures: a) spatial pattern of 

urban surfaces, b) low general levels of urbanization, and c) the median number of rooms 

per home.  This was one of only two classes where spatial pattern metrics made it into the 
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final model (the other being INSTIT).  The strongest variable in the model (Appendix E) 

was SPCON_ed_slopeclass1 – the edge density of the lowest imperviousness slope 

pixels; i.e. areas where imperviousness was present but of low contrast to its 

surroundings.  The other important spatial pattern metric was 

SPCAT_shape_index_22_24: an index of the shape of high intensity urban pixels:  high 

values indicating more compact shape.  The single-family large lot areas represented the 

opposite of this, and were characterized by very irregular or un-compact shapes of 

urbanization (secondary roads and scattered or discontiguous housing areas).  To interpret 

the meaning of these variables and help visualize roughly how models were built, the 

rpart() version of the final model is useful to examine (Figure 5-2): low values of the 

shape index (branching to the right hand side of tree), high values of the edge density 

measure, or high values of median number of rooms led to prediction of high values of 

SFRES_L.   

 

  

Figure 5-2.  rpart() version of final model for the SFRES_L class.   
Highest predicted values are given from the rules leading to the right-hand side of the tree. 



162 
 

 These variables, combined with measures of imperviousness or vegetation, and 

distance to nearest road comprised the final model. The performance of this model was 

the poorest of the four residential classes (r2 = 0.582, NRMSE = 0.65), although is better 

than the non-residential classes and compares well to results from those few studies we 

can find that are similar.  For example, Hardin et al. (2008) use a similar zone-based 

approach to model block level housing unit density with r2 validation result of 0.624 with 

a priori removal of outliers, and 0.370 without removal of outliers (we did not remove 

outliers). Although it is not advisable to directly compare results of studies which have 

somewhat different goals and methods (on the one hand, block level prediction is likely 

to be more difficult than block-group level prediction, but on the other hand the Hardin 

study has the advantage of using Landsat image data, which we have eschewed as being 

too unwieldy at the national scale); nonetheless it helps put our results in context. 

It is noteworthy that distance to largest city center (PROX_250k_dist), although as 

noted above was almost universally important in other models, was not an especially 

strong predictor for this class.  This was contrary to expectation, however, we attribute 

this to the existence of numerous block groups which were also distant from the center 

city but had no or little presence of SFRES_L (i.e. either completely non-urban areas, or 

small towns/cities which had other types of residential housing), and that other variables 

such as distance to nearest road better captured the basic concept of lack of centrality for 

this class.   
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5.1.1.2 Single-family medium lot residential (SFRES_M) 

 This was the most common urban land overall in the study area (slightly more so 

than SFRES_L).  Many of the major predictors for this class were measures of proximity 

or accessibility of the block group to various urban centers (PROX_city250k_dist, 

PROX_cost_50k_dist, PROX_city100k_dist), or to roads (PROX_mean_dist_road and 

PROX_airport_crossing_dist).  These variables, combined with measures of low-medium 

intensity urbanization and population density, comprised the final model.  The NLCD01 

classes 21 and 22 (low-medium imperviousness) were a very common land cover coding 

in this class, and therefore a number of metrics derived from those classes were also 

reasonably strong predictors, even if they did not end up in the final model.  The 

performance of this model was an improvement from the SFRES_L class (r2 = 0.648, 

NRMSE = 0.59). The proximity effects from both smaller and larger population centers 

were evident in this land use. 

5.1.1.3 Single-family small lot residential (SFRES_S) 

 The predictors for this land use class were quite similar to the SFRES_M class, 

however the spatial extent of the class was more concentrated in a regular proximity to 

city centers (see Figure 4-3): most of these high-density housing areas are in a ring 

surrounding central Boston or in close proximity to smaller cities.  This allowed predictor 

variables which characterized proximity, as above, to be effective.  In both the SFRES_M 

and SFRES_S classes the variable PROX_city250k_dist was an especially strong 

predictor (see Appendix E).  Two of our measures of spatial autocorrelation 

(SA_localMoran_popden and SA_localMoran_allnatveg) were significant contributors to 
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the model.  It is also notable that, even though the variable 

CENS_hu_median_numb_rooms had a non-significant linear correlation to this class (see 

Appendix C), it was a valuable contributor to the final model.  This reinforces again the 

non-linear relationships of some if not most variables.  Historical land cover information 

was also useful in both these classes in the form of the HIST_nlcd92_21 variable (“low 

intensity residential” from 1992).  The performance of this model was very successful 

and was the best of all of the urban classes (r2 = 0.727, NRMSE = 0.52). 

5.1.1.4 Multi-family residential (MFRES) 

 The predictors for this land use class were likewise similar to the two previous 

classes, and the spatial extent of the class was even more concentrated than the SFRES_S 

class (see Figure 4-3): most of these very high-density housing areas are in a tight 8 km 

ring surrounding central Boston.  These lands were by far the most clustered of the land 

use classes, as noted above and in Figure 3-11. This allowed predictor variables which 

characterized proximity and spatial autocorrelation, as above, to be effective.  The 

variable which characterized clustering of population density (SA_localMoran_popden) 

was by far the strongest predictor (Appendix E).  The census variable 

CENS_hu_median_numb_rooms was also again a contributor to this model.  The 

performance of this model was the second highest of the urban classes (r2 = 0.706, 

NRMSE = 0.54). 

5.1.1.5 Commercial (COMMERC) 

 Commercial lands were primarily located either in city centers or strung along 

road systems, however a large number of exceptions existed.  The predictors for this class 
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also incorporated measures of proximity to city centers (PROX_city250k_dist, 

PROX_cost_10k_city, and PROX_city100k_dist).  For the first time in the models 

discussed so far a measure of current land cover (LC_nlcd01_24 – highest intensity urban 

land cover) was a strong predictor, and in fact by far the strongest predictor (Appendix 

E). Historical 1970s-era commercial land (HIST_giras_12) was also a prominent 

predictor, as well as co-location with major roads (TRANSP_bts_faf2_pct) and the ratio 

of population density to high-intensity urban land cover (LC_ratio_popden_nlcd2324).  

All of these make intuitive sense.  The performance of this model was a medium-level 

result in this project (r2 = 0.471, NRMSE = 0.73). 

5.1.1.6 Industrial (INDUST) 

 Industrial land is often lumped together with commercial land in a classification 

scheme because they are both non-residential and both often require large structures 

which may co-locate in a commercial/industrial park.  In the Boston area, however, 

industrial lands tended to be more distant from city centers, more likely to be near major 

transportation hubs, but at the same time had low road density themselves.  However, as 

with commercial lands there were very regular exceptions to this.  Industrial lands were 

one of the least clustered land uses (Figure 3-11). 

 The predictors for this class reflected that.  The strongest predictor was 

TRANSP_ratio_roadden_imperv, the ratio of road density to imperviousness.  Low 

values of this indicated few (public) roads and high imperviousness, a typical situation 

for industrial land.  PROX_city250k_dist and PROX_city100k_dist again were also major 

predictors, along with measures of historical land use (HIST_nlcd92_23 and 
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HIST_giras_13) and co-location with rail lines (TRANSP_bts_rail_pct).  Low levels of 

population density to high-intensity urban (LC_ratio_popden_nlcd2324) rounded out the 

model predictors.  The performance of this model was also on the low side of our 10 

classes, reflecting the difficulty of mapping this class (r2 = 0.429, NRMSE = 0.76).  

Nonetheless, a categorical map showing predicted vs. actual as in Figure 4-3 shows a 

quite reasonable mapped correspondence. 

 Figure 3-12 was given as a generic example of a decision tree but is in fact the 

rpart() version of our final model for INDUST (although it omits PROX_city250k_dist).  

The general relationships between variables are discernible:  for example the highest 

prediction of industrial land (37.89, on the right hand side) results from low values of 

TRANSP_ratio_roadden_imperv, high values of HIST_nlcd92_23 and high values of 

HIST_giras_13.  Conversely, if there are somewhat higher values of 

TRANSP_ratio_roadden_imperv, in the range 0.1962 and 0.2236, and 

PROX_city100k_dist is less than about 1600 meters then there is also likely to be fairly 

high industrial land (22.79).  The model is thus able to capture multiple kinds of 

relationships, even of the same variable. 

5.1.1.7 Institutional (INSTIT) 

 Institutions are scattered.  As Fellman et al. (1992) note, they are typically outside 

the normal rent-bid auction for land because society deems certain functions – schools, 

hospitals, libraries, public buildings – important without regard to their economic 

competitiveness.  As noted earlier, we anticipated that their scattered and rather sparse 
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nature would make them more difficult to map.  Performance of this model was indeed 

the lowest of our classes (r2 = 0.411, NRMSE = 0.73).   

 The strongest predictor, by far, for the class was our aggregation of GNIS 

institutional point locations (LANDMRK_gnisconsol_instit_density).  This was also one 

of the few classes in which spatial pattern predictors played a significant role: 

SPCON_cohesion_slopeclass2 and SPCON_focal77_gt50_is_cv).  Both are in essence 

measures of the contiguity (or lack thereof) of impervious surfaces from the NLCD01 

impervious surface continuous data layer.  Three census variables also were important: 

CENS_pct_walkbike_to_work, CENS_pct_hu_owneroccupied, and CENS_huden.  

Examining an rpart() tree of this model (not shown), these are interpretable as: high 

percentages of people who walk or bike to work indicate higher presence of institutions 

(by itself a somewhat interesting result and suggests perhaps that a greater than average 

proportion of the people who work in public institutions might be walking or biking 

there!); low values of homes which are owner-occupied and lower values of housing unit 

density tend to be predictors of higher values of institutional land. 

5.1.1.8 Transportation (TRANSP) 

 Many of the features in the TRANSP class - major road, rail, airports, terminals, 

harbors, and utility and communications facilities - are already well mapped from 

national data sources, e.g. the BTS.  This made predicting them more straightforward 

however, there are enough exceptions to the available data sources – primarily in the 

form of small-medium sized utility or communications facilities, which are not well 

mapped at the national scale, to reduce the accuracy of a zonal prediction. 
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 No one predictor variable stands out as extraordinarily strong in this model, but, 

as might be expected, a number participate from the TRANSP_ predictor class 

(TRANSP_bts_rail_pct, TRANSP_a11_a17_roads_density, TRANSP_alltrans, 

TRANSP_a11_a38_roads_density, TRANSP_ratio_roadden_imperv), and historical 

predictors (HIST_indust_all_times, HIST_giras_14), which included previous-era 

representations of transportation, also participate.  Measures of population density 

clustering and proximity to roads also were in the final model.  There is some colinearity 

among predictors, however enough of the information is unique for all the variables to be 

useful. The performance of this model was the best of the non-residential urban classes 

(r2 = 0.568, NRMSE = 0.66).   

5.1.1.9 Recreation and Open Space (RECR_OPEN) 

 Large features of this class (large parks, golf courses, etc.) were reasonably well 

mapped from the 1992 NLCD and the 1970s era GIRAS.  It might be argued that the 

class is also well-represented in the NLCD01 in that most of those large features are also 

correctly coded as NLCD class 21, however many other areas which are also coded as 21 

represent areas of low-level imperviousness which are interspersed in every land use (see 

Figure 3-12).  Numerous other small parks, playgrounds, sports fields, etc. may or may 

not be captured accurately in the NLCD01, and there is regular confusion with agriculture 

or pasture land in that product.  Nonetheless, the combination of those three data sources 

and the GNIS recreation predictor we created allowed a fairly good prediction.  The four 

strongest variables (Appendix E) were: HIST_nlcd92_85, 

LANDMRK_gnisconsol_recr_density, HIST_giras_17, and LC_nlcd01_21.  The 
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performance of this model was reasonably good, and better than the COMMERC, 

INDUST, and INSTIT classes (r2 = 0.535, NRMSE = 0.68).   

5.1.1.10 Non-urban (NON_URB) 

 This class is of course not an urban land use class at all, and was included 

essentially for completeness sake, i.e. that the sum of all models could be made to add to 

100%.  Modeling non-urban land from these data is extraordinarily easy because there is 

an almost perfect linear correlation to current urban land cover from the variable 

LC_sum_nlcd01_urban (r = -0.96 – see Appendix C).  

5.1.2 Integrated (constrained) models 

 Integrating and constraining the models to 100% gives a more complete solution 

to mapping urban land use.  Although the stand-alone models are entirely functional by 

themselves – i.e. one might have an interest in mapping Industrial land alone across a 

large region without regard to any other type of land use – integrating them allows for 

comparison of percentages of land use within a block group, and for their sum to account 

for no more and no less than the actual sum.  As described in Section 3, the method we 

selected for integrating model results was to use results from the nine other class models 

as input to a second pass prediction.  The theoretical basis for this is that, if one has a 

good estimate of other land uses in the block group, then those would aid in prediction if 

there were relationships between the land uses.  For example, there is a fairly strong 

inverse relationship between the SFRES_S and MFRES land uses (r = -0.41; see Table 3-



170 
 

7), which would imply that if one could guess that there was a lot of MFRES land, that 

should argue against SFRES_S land being present. 

 The results showed only very modest improvements in individual models (Figures 

4-4a and b), and then only for the two classes just mentioned: SFRES_S r2 improved 

from 0.727 to 0.753 and MFRES from 0.706 to 0.741. In both cases we interpret the 

improvement as the RF model being able to leverage the information about the other 

class predictions, in particular the negative relationship between those two classes, to 

slightly improve those predictions. 

 The second part of integration was to range-standardize the 10 predictions for 

each block group to 100%.  Although our primary analysis of results in this project has 

been from regression results (residuals = |pct prediction – pct actual|), one might also 

analyze the results as categorical data.  We did this by taking the majority classification 

in the block group, as shown in Figure 4-5 and 4-6. Comparing the actual majority to 

predicted majority, 79% of block groups are classified correctly, and 92% are classified 

correctly when comparing the actual majority to predicted majority or secondary.  

Assuming the majority as the block group’s classification, the following traditional 

confusion matrix results (Table 5-3): 
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Table 5-3: Confusion matrix of block groups from actual majority and predicted majority 
land use.   
Acc = (Consumer’s) accuracy. 

     predicted       

   SF_L SF_M SF_S MF COM IND INST TRAN REC NON Totals 

 SF_L 10 12 1 0 0 0 0 0 0 19 42 

 SF_M 5 248 65 0 2 0 0 0 1 57 378 

 SF_S 0 47 755 37 9 0 0 0 6 25 879 

actual MF 0 0 55 350 8 1 1 0 2 3 420 

 COM 0 5 16 38 60 2 3 0 0 5 129 

 IND 0 3 8 4 9 18 0 3 0 10 55 

 INST 0 1 3 10 11 2 9 0 1 3 40 

 TRAN 0 0 1 1 5 5 0 4 1 5 22 

 REC 0 1 5 0 1 1 1 0 28 11 48 

 NON 0 34 16 1 2 1 1 0 2 694 751 

                         

 Totals: 15 351 925 441 107 30 15 7 41 832 2764 

 Acc (%): 66.7 70.7 81.6 79.4 56.1 60.0 60.0 57.1 68.3 83.4 78.7 

 

 

 The matrix basically confirms our previous results: the highest density residential 

classes – MFRES and SFRES_S are predicted very well (79% and 82%, respectively) as 

majority categories, and the other urban classes follow approximately the same accuracy 

distribution as given in Table 4-5 for regression results. 

5.1.3 Total land area estimation 

 These results were also very encouraging (Table 4-7 and Figures 4-8 and 4-9(a)-

(d)).  By multiplying the predicted percentage of land in each class in each block group 

(from integrated models) by the block group’s area, and summing, one obtains an 

aggregated areal estimate for the entire study area, or for individual counties.  For 

example, the actual SFRES_L land area in the study area was 559.1 km2, and the 

predicted was 556.7 km2 (0.4% difference); the actual INSTIT was 81.0 km2, and the 
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predicted 85.5 km2 (5.6% difference).  The worst result was a difference of 10.8% 

(MFRES class). 

 The fact that these aggregated results are so good is essentially a manifestation of 

the modifiable areal unit problem (MAUP).  In a mapped product it might be that every 

individual pixel is incorrect, yet over some larger area the product could be very accurate.  

Because errors of omission or commission average themselves out over a larger area the 

prediction of some classes (e.g. INSTIT) might be much better than if assessed for 2,764 

individual block groups.  As noted earlier, preliminary testing and literature results (e.g. 

Wu and Murray, 2005) led us to believe this was a possible outcome. 

 The results of breaking out land area numbers by county were also quite good, 

particularly for Essex, Middlesex, and Norfolk Counties (Figures 4-9(a) – (c)), but less so 

for Suffolk County (Figure 4-9(d)).  Suffolk County is different in nature to the other 

three (much more densely urbanized overall – central Boston), and it is therefore not 

surprising that a model built from all four counties might underperform there. 

 We broke the results out by tract as well, and although not formally reported here, 

the results were overall better than by block group, but not as good as by county (judged 

semi-qualitatively by percent difference - we did not calculate r2 and NRMSE by county, 

because there were only four of them). This also seemed in line with expectations. 

5.1.4 Sensitivity Analysis 

 While incorporating data for the entire study area provides the most robust 

possible models for interpretation (e.g. which land uses are best predicted by which 

variables), it does not provide information about how much training data might be 
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required to achieve a certain performance; information which would be valuable for a 

practical extension of this project to mapping of other areas, or conceivably the entire 

U.S.  Figure 5-3 gives a graphic portrayal of the data in Table 4-8:  

 Although in every case performance does decrease with fewer block groups used 

as training, in some cases that decrease is quite minimal.  For example, the TRANSP 

model is only slightly worse with 5% training data as with 50% training data.  The four 

residential classes are likewise less affected by less training data, and most models 

maintain reasonable performance with 10% (276 block groups) or even 5% (138 block 

groups) training data.  The classes most affected by less training data are the 

COMMERC, INDUST, and INSTIT classes, which are the most difficult to predict 

overall as well.  In these cases model performance is reasonably consistent down to 20% 

Figure 5-3.  Sensitivity of performance to training data sample size   
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training data, but suffers at lower levels.  This suggests that these relatively sparse classes 

may (a) need to be combined, and/or (b) have more targeted training samples collected, 

which ensure that enough data are available for robust models. 

5.1.5 Incorporating Business Analyst data 

 Incorporating the ESRI Business Analyst point data, based on the predictors we 

created from them, led to only modest improvements in the three classes tested 

(COMMERC, INDUST, and INSTIT; Table 4-8).  However, these are useful 

improvements, because those three classes are the most difficult overall to predict. 

Although we invested a considerable amount of time in creating these predictors 

(“cleaning” the dataset of what we believed were residence-based businesses, evaluating 

NAICS codes, then categorizing locations by commercial/industrial or institution), it is 

entirely possible that others could find more effective ways to manipulate or use these 

data as predictors of land use or some other target variable (and that effort by itself could 

constitute a fairly sizeable project). Our judgment from the experience here is that, for a 

well-funded national effort to map land uses it might be worthwhile to acquire the data, 

but that some of the information content is already in other datasets (for institutions 

particularly, from the GNIS).  Of course, for other applications, the dataset might be 

critically valuable.  
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5.1.6 Noteworthy variables 

 Although a number of individual variables have been discussed above in the 

context of specific models, some discussion about particular variables by predictor class 

is warranted, either because they were very useful, or because they are of unique interest: 

 Census: While, as was expected, population and housing unit density 

(CENS_popden and CENS_huden) were often major components for predicting land use, 

the number of rooms per home (CENS_hu_median_numb_rooms) ended up being a 

surprisingly strong predictor of several land uses.  Because the variable maps to distance 

from city centers (more distant homes have more rooms – see Figure 3-7), it incorporates 

some of the predictive power of the proximity variables.  Several other census variables 

similarly had a generally linear relationship with distance to city centers, and of these 

CENS_pct_hu_owneroccupied (people in outer suburbs more likely to own their homes), 

and CENS_median_hh_income (higher incomes in suburbs) were also useful predictors. 

Other variables which did not necessarily have a monotonic relationship with distance to 

city center were also useful for specific land uses (e.g. 

CENS_pct_5_or_more_units_in_structure, CENS_pct_walkbike_to_work).   

 Landcover: Some of the most useful predictors in this category were ratios of 

land cover with a socio-economic variable.  Specifically, the ratio of housing unit density 

to imperviousness (LC_ratio_huden_imperv) and ratio of population density to high-

intensity urban (LC_ratio_popden_nlcd2324) captured relationships of land cover and 

socio-economic data that were predictive of land use.  The simple mean and variability of 

imperviousness (LC_nlcd01_imperv_mean, LC_nlcd01_imperv_stdev) were also 
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regularly useful, as well as specific variables for some classes (e.g. LC_nlcd01_24 for the 

COMMERC class). 

Historical LULC: One might suppose that representations of land cover/land use 

from relatively recent periods would be highly predictive of current land use, and the 

variables from this class were regularly very useful, particularly for the COMMERC, 

INDUST, TRANSP, and RECR_OPEN classes.  However, their usefulness as predictors 

of current land use is limited by three factors: (1) their original MMU (e.g. many 

instances of small parks and recreation areas fall below the 1970s GIRAS MMU of 4 

hectares), (2) their original accuracy (e.g. the stated accuracy of some NLCD92 urban 

classes was less than 50%), and (3) their currency.(e.g. one need only look at the GIRAS 

panel in Figure 1-2 to see that the area around Fairfax, VA has changed quite a bit since 

the 1970s).  Despite that, for specific land uses the correspondence to current land use 

and helpfulness of a number of these variables is quite strong.  A number of composite 

variables created – HIST_highresid_all_times, HIST_indust_all_times, 

HIST_commerc_all_times, particularly – our best guesses at those land uses from three 

time periods – were also helpful.  

Transportation: As with the ratios noted above, the variable 

TRANSP_ratio_roadden_imperv (ratio of road density to pct imperviousness) was 

particularly helpful, and the fourth strongest variable overall across all classes (Table 5-1, 

above).  It was the strongest predictor of the INDUST class, i.e. a class with low road 

density and high imperviousness.  The all-purpose composite of transportation we created 

– TRANSP_alltrans was also useful for the TRANSP class. 
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Landmarks: The GNIS point locations were among the strongest predictors for 

two classes (INSTIT and RECR_OPEN), but less useful for other classes.  

Representations of institutions and recreation areas is quite good in the GNIS, but 

representation of shopping, industrial, or other land uses is spotty.  The consolidated 

predictors LANDMRK_gnisconsol_inst_density and 

LANDMRK_gnisconsol_recr_density – weighted point density representations were 

better predictors than gridded versions (LANDMRK_gnis_inst_grid and  

LANDMRK_gnis_recr_grid).  

 Proximity: As noted above, these context variables were overall the strongest 

predictors of land use as a whole. A fairly global metric – simple Euclidean distance to 

Boston center (PROX_city250k_dist) and mean distance to nearest road 

(PROX_mean_dist_road) – a more local metric - were the two overall strongest 

predictors of land use generally, and PROX_city100k_dist was also a prominently helpful 

predictor.  Our cost-distance representations of context, particularly 

PROX_cost_gnis_instit, PROX_cost_10k_city, and PROX_cost_50k_city were also 

regular model participants and helped to characterize relationships to smaller cities and 

institutions.  It is worth pursuing these representations of context in future research. 

Spatial Autocorrelation: Using local Moran z-score representations of 

clustering, particularly of population density, natural vegetation, imperviousness, and 

median number of rooms, was effective as a prediction method (the variables 

SA_localMoran_popden, SA_localMoran_allnatveg, SA_localMoran_imperv, and 

SA_localMoran_medianrooms, respectively).  The measures capture clustering over 



178 
 

larger areas, which are indications of land use patterns, and their use might also benefit 

from further exploration. 

Spatial Pattern-categorical data: As a class these variables were not hugely 

effective in determining land use, but in specific instances, as noted above several 

variables were useful.  The variable we created to characterize annuluses, 

SPCAT_foc_annulus, was one of the strongest predictors of SFRES_L land, however was 

fairly collinear with SPCAT_shape_index_22_24, and was ultimately not a participant in 

a final model.  Both are essentially measures of the homogeneity/contiguity of urban 

land.   That the spatial pattern variables were very useful for some classes (SFRES_L and 

INSTIT) is notable, but that they were not useful for most other classes is a reflection of 

the coarseness of the 30-m data in describing specific land use patterns.  One of the goals 

of this project was to assess the general usefulness of spatial pattern measures derived 

from 30-m land cover data, and generally one might conclude that, with a few 

exceptional cases, they have only tangential usefulness. 

Spatial Pattern-continuous data: The same conclusion may be drawn about the 

spatial pattern metrics created from the NLCD01 30-m imperviousness data.  Although 

some variables were useful in final models, as noted above, as a class of predictors 

overall they are useful only in landscape settings with high degree of fragmentation of 

surfaces, specifically SFRES_L and INSTIT, as above.  The slope-of-imperviousness 

variables we derived were useful for these two classes, but not in others, suggesting 

transition areas of imperviousness may be more significant for those classes.  The results 

suggest some additional investigation might be warranted. 
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Miscellaneous: The variable MISC_vg2000_mean was a useful predictor in a 

number of classes.  This was of interest, because the variable is based on coarse 

resolution (1-km pixels) representations of vegetation.  If coarse resolution data (e.g. 1-

km) provide the same information as higher resolution data (e.g. 30-m) for some 

characteristics, then that is noteworthy, as the 1-km data are easier and faster to 

manipulate, require less storage, etc. 

5.2 6-class models 

 The 6-class models created for Boston had good performance as validated from 

Boston data (Table 4-10(a); red columns).  Those classes that were aggregated had better 

performance than their component classes: for example, in the 10-class models, the 

classes SFRES_L and SFRES_M had r2 of 0.582 and 0.648, respectively.  When those 

classes were merged into the single class of RESID_LOW_6CL, the r2 was 0.725.  The 

same was true of the other aggregations: Table 5-4 summarizes these: 

 

Table 5-4: Comparison of Boston 10-class model performance with their 6-class equivalent, 
where classes were aggregated. 

10-class r2  6-class r2 

SFRES_L 0.582   RESID_LOW_6CL 0.725 

SFRES_M 0.648       

SFRES_S 0.727   RESID_HIGH_6CL 0.812 

MFRES 0.706       

COMMERC 0.471   COM_IND_INST_6CL 0.630 

INDUST 0.429       

INSTIT 0.411       

 

 



180 
 

 That thematically-aggregated classes would have better predictions was not too 

surprising, but the magnitude of the improvement was encouraging.  The 

RESID_HIGH_6CL mapping is shown for Boston in Figure 4-10(a).  

 When the Boston model was applied to Providence, five of the six models held 

their performance fairly well (Table 4-10(a)), i.e. r2 and pct improvement were not much 

different from Boston.  In fact, the Boston COM_IND_INST_6CL model performed 

considerably better in Providence than with the Boston data (r2 0.764 vs. 0.630).  So that 

would imply that at least some models are well transportable to another geographic area.  

However, the class RESID_LOW_6CL had significantly worse performance in 

Providence, and in fact the metric pct improvement from mean has a negative value 

(worse prediction than simply using the mean).  This implies that there must be sizeable 

differences in low-intensity residential areas between Boston and Providence (and it 

might be that there are some), however, it is also noteworthy that the model created from 

Providence data itself (Table 4-10(b)) has somewhat middling performance even for its 

own area (r2 = 0.594, pct improvement = 36), and has the poorest performance for that 

class of any of the four cities.  This would suggest either (a) the characteristics of that 

class might be much more variable in that area, and/or (b) there are inconsistencies in the 

reference data or (c) there is some other yet-to-be-determined unknown that causes that 

class to be difficult to predict in that area. 

 The Boston models as applied to Atlanta and Los Angeles had mixed 

performance.  For example, both the Boston COM_IND_INST_6CL and TRANSP 

models transport very well to all of the other three cities, and have performance as good 
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or better there as they do in Boston.  The other four models, however, transport poorly to 

Atlanta and Los Angeles. 

 Examining the performance of the models created from the Providence data 

(Table 4-10(b)), we find that the models perform fairly well for Providence itself, and 

lower, but generally reasonable performance for Boston, but in some cases much worse 

performance for Atlanta, for example, in some cases negative pct improvement from 

mean. 

 Examining the performance of the models created from the Atlanta and Los 

Angeles data (Tables 4-10(c) and (d), respectively), we find that the models for each area 

perform well for that area (with minor exceptions: the NON_URB models for Atlanta and 

Los Angeles are not as good as those for Providence and Boston), however generally do 

not transport well to the other cities.  There are some exceptions to this too, for example, 

the Los Angeles RESID_HIGH_6CL model transports fairly well to Boston and 

Providence, but on the whole they are not particularly good performers in the other areas, 

and in some cases quite poor. 

 Taking a look at which predictors went into the models for each area (Tables 4-

11(a) – (d)) gives some insight into why this is so.  Firstly, one would not necessarily 

expect models from different areas to be built from identical variables even if the areas 

were similar, because there is some colinearity in the predictors, and even very small 

differences might cause one variable to be preferred over the other.  That by itself is not a 

problem nor unexpected given the modeling technique.  There are however obviously 

very different characteristics in some ways between the four areas and datasets, and the 
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same LU class may have different characteristics in different cities.  For example, the 

variable SPCAT_lc_entropy (land cover diversity) is a good predictor of the 

RESID_LOW_6CL class in Atlanta, because the background vegetation in low density 

residential areas may consist of deciduous forest, evergreen forest, mixed forest, various 

types of wetlands, pasture, crops, or other vegetation.  However, in Los Angeles land 

cover diversity in similar areas is very low (primarily shrubland and some evergreen), 

thus the model predicts poorly from that predictor.  In Los Angeles a predictor of 

RECR_OPEN land is HIST_nlcd92_11, which is Open Water land cover: in Los Angeles 

ponds and lakes are nearly always associated with parkland; in the other areas much less 

so.  And while the relationship of some census variables to land uses may be fairly 

consistent across areas, for example, population density or housing unit density, other 

socio-economic variables may differ considerably, for example population density 

change may not have occurred consistently from area to area within land uses.  Numerous 

other predictors may have different characteristics: for example, presence of rail 

(TRANSP_bts_rail_pct) is a predictor of the COM_IND_INST_6CL class in Boston, but 

not elsewhere because the characteristics of where rail lines are located differ. 

 How then to apply models between areas?  One solution is to a priori limit the 

predictor variables to only ones known to be perfectly consistent among the areas.  This 

is a poor solution because (a) it might not be easy to identify consistency, and more 

importantly (b) there would likely end up being very few predictors, and model 

performance for all areas would be poor.  A second solution is to simply not try to apply 

models between areas:  that is, every urban area should have modeled land use based on 
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training data from that area only.  This was in fact the approach of the development of the 

NLCD01 itself, which was assembled from 66 zones across the US: every zone was 

modeled based on local training data.  That is a perfectly reasonable solution, but requires 

more data collection.  Another solution is to develop a series of more generic models 

which might be applied to typologies of urban areas which are similar.  That is, a set of 

models might exist for Southwest cities of size greater than 500,000, which might be 

applicable to El Paso, Albuquerque, Tucson, Phoenix, and Las Vegas.  The safer, but 

more time-consuming option, however, is to develop training data from each area.  All of 

the models we developed, with very minor exception, performed very well for the area 

from which it was built, albeit using training data available for the entire study area.  In 

addition to the results given above regarding sensitivity of performance to training 

sample size, it is anticipated that future research will provide additional information 

about training sample size requirements. 

5.3 Limitations, improvements, lessons learned 

 A limitation of the zonal method shown here is the lack of a mapping at a spatial 

resolution finer than a block group.  For some applications this might cause a problem.  

For example, if one’s goal were to map urban land within 100-m riparian (near-stream) 

zones for the entire country, data mapped by block group would have insufficient 

resolution for it to be useful.  However, we would counter that block groups are an 

absolutely useful scale for many, if not most, national or regional-scale applications, and 

that, as noted previously, the median size of a block group in this study (0.46 km2) is 
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much smaller than a single pixel from a regional-scale remote sensing platform such as 

the AVHRR series of satellites (approximately 1-km resolution).   

 Additionally, a work-around for this, although not demonstrated here, is certainly 

feasible, which is to perform a dasymetric mapping of the zonal information to 30-m land 

cover data.  That is, if one has estimated that x% of the zone consists of industrial land 

use, and one has an explicit 30-m pixel mapping of four land-cover categories of 

increasing imperviousness, one could devise a formula for assigning a new category to 

define some of those pixels as “industrial”.  This may be a useful area of future 

investigation. 

 An aspect of the method demonstrated here that might require future modification 

is that the nature of Census data in the U.S. is changing.  Previous decadal Census 

collections (2000, 1990, etc.) have been based primarily on “short-form” (100% count 

and basic demographic data), and “long-form” data (more detailed questionnaire sent to 

only a sample of homes, which is then aggregated to block group and coarser 

geographies).  With the 2010 Census, however, the “long-form” data is no longer 

collected only at decadal intervals but rather is now (since 2003) collected by a rolling set 

of surveys known as the American Community Survey (ACS).  The ACS provides a 

dataset known as the Public Use Microdata Sample (PUMS), which allows users to 

tabulate information across specific demographic categories – for example, what are the 

income characteristics of only unemployed people?  This is advantageous, in that the 

information may be more current for a specific area than a decadal survey, and that 

information may be more tailorable to users’ needs.  However, it is somewhat 



185 
 

disadvantageous in terms of national mapping efforts in that data for different regions 

may represent snapshots of somewhat different time frames. 

 We chose the block group as a the unit of geography partially based on the 

rationale that it was the finest census geography at which it was defensible to use spatial 

pattern metrics from 30-m data (as described in Section 1).  As it turned out, the spatial 

pattern metrics we executed were only partially helpful for the task at hand.  It would 

certainly be useful to think about executing the method at the block level (finest possible 

census scale), however, it would increase the data storage and processing requirements 

substantially, and there may be a tradeoff of zone resolution with predictive accuracy. 

 We could have characterized land use at multiple scales, i.e. for both block groups 

and tracts, but because of the already substantial data processing requirements of the 

project and volume of results from the block group scale alone, we opted against it.  The 

block group scale, in any case, allows for aggregating up, as was shown in Section 4.3.3. 

 We have used the term national-scale to refer to data which are available 

nationally (the data exist in a consistent dataset or format), but also to refer to the 

feasibility of processing them in a reasonably straightforward and timely way, given 

today’s technologies.  Although technologies (disk storage, compression, computing 

power) are constantly improving, the feasibility of processing very high resolution data of 

the kind that would significantly improve some metrics (let’s say 1-m resolution 

impervious surface data) at the national scale would be a daunting task to even a well-

funded and motivated organization, even if those data were available.  However, that is in 
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essence one of the points of this project: to show that quite a lot can be done even with 

the publicly-available data currently existing, given a good method and metrics. 

 We have used a simple areal estimation based on a 2-dimensional earth, however, 

of course in reality, land uses may exist in 3-dimensions, i.e. buildings might have 

multiple land uses in a vertical dimension (even above and below ground).  This might be 

at least partly characterized with data of high enough resolution (Aubrecht et al., 2009), 

however was not feasible with national data.  Having said that, the method proposed by 

Leroux et al. (2009) shows that building heights may be modeled to some degree using 

national-scale (continental-scale even) SRTM data, and that exploring this method is 

intriguing for its potential to add additional predictive information.   

 It is important to note that the results are only as good as the input data, and that 

in some cases national-scale data have consistency issues.  The GNIS particularly, as 

noted earlier, have consistency issues with some data layers.  These inconsistencies have 

not been well quantified and are more or less based on our own observations and personal 

communication with USGS personnel.  On the other hand, the data layers that were most 

useful in this project and were most common – schools, hospitals, public buildings, parks, 

cemeteries, golf courses, and a few others – seem to be fairly consistent from area to area.  

Some others, such as interstate crossings, are not.  The NLCD01 (and every dataset, 

frankly) also of course has some data issues. For example, in the RECR_OPEN model for 

Atlanta, one of the stronger predictors ended up being LC_sum_nlcd01_ag: the 

percentage of agricultural land in the block group. On closer examination it turned out 

that this was simply because there were a number of park and recreation areas incorrectly 



187 
 

coded as agriculture in the NLCD01.  These kinds of errors are confounding.  

Nonetheless, it appears to be a localized error, and we also believe these kinds of errors 

are relatively rare.   

 It is also important that the reference data be consistent.  The design of this 

project was based on being able to acquire consistent and high-quality reference data, 

which we did have for Massachusetts.  We believe the reference data from the other three 

areas were also consistent – or as consistent as is possible to find – however, even minor 

variations might make some difference – year of collection, subtle differences in class 

interpretations, etc.  We used already-existing reference data because we believed this 

was more defensible than creating our own ground truth, i.e. that there was little 

possibility for personal bias to creep in.  However, the difficulty of finding consistent and 

detailed reference data for land use using the same class definitions and from the same 

year would make it nearly impossible to execute this method over a much larger area or 

many cities without creating one’s own ground truth dataset, which does require some 

time and labor.  On the positive side, being able to control your own ground truth 

increases its consistency and of course allows you to target any urban area. And most 

importantly, it would allow finer thematic detail.  The only reason we modified the 

testing from 10 to 6 classes was because it was so difficult to find consistent detailed 

classes in multiple datasets. 

 One approach that might be taken to improve the models, at the risk of 

complicating or over-training, is to segment them by some criteria, notably, either by 

population density or by a “more urban/less urban” segmentation.  Lo (2003) found that 
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dividing census tracts into two groups of “periphery” and “centre” improved population 

modeling.  The danger in our case might be of a proliferation of models even for a single 

metropolitan area, and of a paucity of certain land uses within certain areas. 

 While we did measure proximity and access in several ways and to different kinds 

of centers and features (population centers, major and minor roads, large urban patches, 

institutions, recreation), there might have been additional ways.  Retrospectively, one of 

these that we note is distance to employment centers (McMillen, 2004), which are 

feasible to derive from U.S. Department of Transportation data.  Employment centers, to 

the extent that they are different from (nighttime) population centers are additional 

landscape forces of land use and should be included in future research. 

5.4 Next steps 

5.4.1 Applying methods to systematic mapping of US or regions 

 Because the method presented here is based entirely on nationally-available 

predictor data, it is feasible for it to be applied to large metropolitan areas across the 

continental US (some predictor data for Alaska and Hawaii may not be as readily 

available).  If reference data are derived for the project, then the full thematically-detailed 

10-class structure, or a similarly-detailed variation thereof, could be used.  Although we 

invested a large block of time deriving predictor variables and testing their usefulness, the 

number that were truly useful and necessary for final models was rather small (Table 4-

6), and could fairly readily be calculated for any area in the continental US.  We believe 

this is promising for anyone interested in urban land use at broad scales. 
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 As noted above, if one wished to map urban land use for (as example) the 20 

largest US cities, it would likely be necessary to create training and validation data by 

visually interpreting imagery samples for each area, because consistently-derived 

reference data do not exist over that kind of scale, and transporting models from one area 

to another may be problematic. However, the great advantage, as noted earlier, is that 

creating one’s own reference data allows for much greater flexibility in where to map, 

which classes to define (10-class or similarly detailed), and having consistent methods.  

As noted above, we anticipate that we will conduct future study of training data sample 

size requirements. 

Over what area(s) should or could the method presented here be applied?  We 

have intentionally not adopted a strict definition of a city in this project because the 

proposed method is potentially modifiable or applicable to different levels of 

urbanization.  For the 2000 Census the U.S. Census Bureau defined an urban area as 

“core census block groups or blocks with population density of at least 1,000 people per 

square mile (386/sq km) and surrounding blocks that have an overall density of at least 

500 people per square mile” (U.S. Census Bureau, 2009e).  Metropolitan Statistical Areas 

(MSAs) – counties surrounding core areas of at least 50,000 people – are an alternate 

definition.  Numerous studies have used MSAs as a basis for large-city characterization 

(e.g. Griffith and Wong, 2007), and they would be a perfectly reasonable approach to 

executing this method over a larger area, for example, the top 10, or 20, or 50 largest 

MSAs. Such a product would be a valuable complement to existing and future land cover 

datasets.  
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5.4.2 Related research questions/future work 

 In the course of this dissertation, a number of potential avenues of future research 

have been noted.  These are summarized here: 

� Investigating how models may more effectively be transported between cities, 

to include investigating whether models for city “typologies” is feasible.  That 

is, could the largest U.S. metropolitan areas be partitioned into city types, and 

a single model be effective for all the cities in each group, and if so, using 

what class structure.  Even though the results here suggested transportability 

was generally low, even our two most similar cities, Boston and Providence, 

are still fairly different (the Boston MSA is 3x more populous than the 

Providence MSA).  If reference data were derived specifically for the project 

then any city or cities could be studied.  We limited ourselves here to only 

places where fairly compatible reference data already existed, which limited 

the choice of study areas. 

� Identifying more specific requirements for training data sample size.  Can a 

metropolitan area be modeled well with training data from 200 block groups?  

What about 100?  Our initial results indicate different classes likely have 

different sample size requirements. 

� An alternative spatially-explicit mapping of cities is shown by Leroux et al. 

(2009), which, however, is  possible because of the existence of very detailed 

feature mapping in Canadian data (the Canadian NTDB).   It would, however, 

be possible to apply some of the same data and methods to create a similar, if 
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less detailed, product here.  Essentially, one could create a categorical urban 

mapping of US cities which integrated available national data: - roads and 

other transportation features, 30-m landcover, population density, building 

height estimates from SRTM/DEM, GNIS point locations, and possibly other 

data - into a single thematic layer.  That layer might or might not have the 

same kind of thematic land use information as proposed in this dissertation 

(for example classes might be something like “High intensity urban, > 40m 

structures”).  At present these datasets that describe urbanization exist only as 

separate entities and it is up to individual users to integrate them, if done at 

all.  The availability of a single dataset that had more detailed thematic 

information would be helpful for many purposes. 

� Extending the method to a dasymetric mapping by pixel.  That is, take the 

broader knowledge of percent land use in a block group and apply that to 

individual 30-m pixels. 

� Explore other possible data sources that might improve the process, such as 

publicly available volunteer-collected data available from openstreetmap.org. 

� Are there better ways to relate land cover – portrayed in the NLCD01 as levels 

of imperviousness – to economic-function land use areas?  We showed the 

relationship between the NLCD01 classes and Boston land use in this project 

(Table 3-5), which indicated only a very rough correspondence between land 

cover and land use, and then only for some classes.  However providing 
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additional information and analysis as to how one might be able to relate land 

cover and land use would be of great value to some national-scale data users. 
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6. Summary 

 

Why should we care about characterizing urban land?  Because increasingly the 

landscape of the United States is dominated by humans.  The late film director Anthony 

Minghella, in describing why the 2003 film “Cold Mountain”, set in 19th century North 

Carolina, had been filmed in Romania, stated that when scouting locations in the eastern 

US it was nearly impossible to find a broad landscape view that did not have visible 

presence of 20th century man – roads, cars, houses, power lines, mechanized agriculture, 

cell phone towers, etc. (Chicago Sun-Times, 2004).  In the United States population 

nearly doubled between 1950 and 2000, and land change has even outstripped that: for 

decades the extent of urbanized land area in the United States has exceeded the 

percentage of population growth (Theobald, 2005).  “Urban sprawl”, generally 

considered the undesirable growth pattern of a small population consuming a 

disproportionate amount of natural land, is now a defining aspect of the US urban 

landscape.  It is clear that the issues of the third millennium will be urban (Weber, 2001).   

 The distribution of people on the landscape has important implications to the 

environment (U.S. EPA, 2010), in addition to many other aspects of modern life.  

Improved methods and information about the urban environment, and especially about 

how the land is used, are therefore noteworthy.  As noted earlier, the lack of consistent 

urban land use information at the national scale in the U.S. is a striking data gap.  This 
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gap makes it difficult or impossible to perform certain types of study of the environment, 

of climate, of landscape trends, and much else, at broad scales in the U.S. 

 The fundamental motivation for this project is to demonstrate that a zone-based 

mapping of urban land use using block groups as the unit of measurement can be 

effectively done with national data, and public data at that.  Block groups (of which there 

are about 220,000 in the U.S.) provide a grain size that is sufficiently detailed for most 

national and regional applications, and the method avoids some of the problems with 

other methods of identifying urban land use (manual interpretation, per-pixel mapping, 

delineating and classifying areas of contiguous land use). 

These are the major outcomes of this project: 

1. A zone-based approach to mapping thematically detailed (10-class) urban land 

use with publicly-available national data was demonstrated for a four-county area 

around Boston, using block groups as the zonal unit.  Performance was very good 

for some classes, particularly the highest-density residential classes (e.g. 

integrated model validation r2 of 0.753 for single-family small lot residential, and 

0.741 for multi-family residential), but more difficult for other classes, namely 

institutions (r2 = 0.411), industrial (0.429), and commercial (0.471).  We 

discussed in detail some of the issues with predicting and mapping these classes at 

broad scales, and explored some alternative methods. We demonstrated a decision 

tree as a good modeling method for this application. 

2. An aggregation of results to less thematically detailed classes (10 classes to 6 

classes) resulted in improved results. For example, an aggregation of the single-
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family small lot and multi-family residential classes to “high density residential” 

resulted in r2 of 0.812. 

3. An aggregation of results to the county or study-unit level likewise resulted in 

high accuracy of predicting land use, sometimes within 1% of a land use type.  

For example, actual industrial land use in the four counties was 125.1 km2, and 

predicted, based on withheld validation data, was 124.4 km2 (0.6% difference). 

The median difference by class between actual and predicted was about 5%. 

4. Stand-alone models were built for each class, then integrated so that predicted 

land use summed to 100%.  Integrating the models slightly improved prediction 

of some land use classes.  If classifying by majority land use, 79% of our 

predicted majorities by block group matched the actual majority land use, and 

92% if taking the secondary land use. 

5. A large suite of predictor variables were created and tested from nationally-

available sources, some of them novel approaches to characterizing measures of 

spatial pattern, proximity, or spatial autocorrelation.  By general category, 

measures of proximity to city centers and roads, and measures of spatial 

autocorrelation were some of the consistently strongest predictors of land use. We 

note that land cover by itself was rarely one of the strongest predictors.  We 

discussed the strengths and weaknesses of many of the variables and provide a 

listing of their relative usefulness in predicting various land uses.  The results 

support classical land use theory of the importance of distance to city centers and 

access routes as determinants of land use. 
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6. Although spatial pattern metrics derived from either 30-m categorical or 

continuous data were useful for two classes where fragmentation of the landscape 

is fairly prevalent (single-family large lot residential and institutions), overall, 

spatial pattern metrics from 30-m data appear to have limited predictive power for 

thematically detailed land use.  They are likely to be simply too coarse to give 

good detailed information about land use. 

7. Models based on 6 land use classes,  when applied to a completely different 

geographic area (Providence,  Atlanta, Los Angeles) had mixed performance, and 

models built from data of those cities likewise generally did not transport 

particularly well, with the exception of fair transportability between Boston and 

Providence.  The results imply that, with the exception of possible transportability 

between areas which are similar, the surest way to apply the methods here to 

many cities is for models to be built from training data for that city.  This is 

perfectly reasonable, given that there may be considerable differences in urban 

characteristics, vegetation, etc. between urban areas.  The 6-class models built for 

each city all had good performance for their own area. 

8. Training data requirements were examined for the 10-class models.  The 

residential and transportation classes maintained fairly good performance with 

only 5 or 10% of data used for training, however the commercial, industrial, and 

institutional classes had poorer performance at those levels.  These results may 

help to guide how classes should be aggregated and/or how training data are 

collected for future efforts. 
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9. The separability and unique characteristics of each of the 10 detailed land use 

classes were examined extensively, to include some inter-class relationships (e.g. 

land use type proximities), and their linear correlation to each of the predictor 

variables is given.  The relationship of each of the land use classes to the current 

NLCD01 is also given. 

10. A brief examination of the usefulness of the commercial ESRI Business Analyst 

product for land use prediction is given. 

 

 All data or detail about specific methods or calculations are available from the 

author on request. 
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Appendix A 

 Land use codes and descriptions for Massachusetts reference data (MassGIS, 
2008).  For historical reasons classes 23-37 may in some cases overlap with classes 1-22. 
 

Code Description Recoded to 

1 Intensive Agriculture NON_URB 

2 Extensive Agriculture NON_URB 

3 Forest NON_URB 

4 Nonforested freshwater wetland NON_URB 

5 Mining - sand, gravel, rock NON_URB 

6 Open land - abandoned agriculture, power lines, areas of no vegetation NON_URB 

7 Participation recreation - golf, tennis, playgrounds, skiing RECR_OPEN 

8 Spectator recreation - stadiums, racetracks, fairgrounds, drive-ins RECR_OPEN 

9 Water-based recreation - beaches, marinas, swimming pools RECR_OPEN 

10 Multi-family residential MFRES 

11 Single-family residential - smaller than 1/4 acre lots SFRES_S 

12 Single-family residential - 1/4 to 1/2 acre lots SFRES_M 

13 Single-family residential - larger than 1/2 acre lots SFRES_L 

14 Salt marsh NON_URB 

15 Commercial COMMERC 

16 Industrial INDUST 

17 Urban open - parks, cemeteries, public greenspace, vacant land RECR_OPEN 

18 Transportation - airports, docks, divided highway, freight, railroads TRANSP 

19 Waste disposal - landfills, sewage lagoons RECR_OPEN 

20 Water NON_URB 

21 Woody perennial - orchards, nursery, cranberry bog NON_URB 

22 (used for MassGIS QA/QC) NON_URB 

23 Cranberry bog NON_URB 

24 Power lines NON_URB 

25 Saltwater sandy beaches (part of #9, no longer used) NON_URB 

26 Golf RECR_OPEN 

27 Tidal salt marshes (part of #14, no longer used) NON_URB 

28 Irregularly flooded salt marshes (part of #14, no longer used) NON_URB 

29 Marina NON_URB 

30 New ocean (areas of accretion) NON_URB 

31 Urban public INSTIT 

32 Transportation facilities TRANSP 

33 Heath NON_URB 

34 Cemeteries RECR_OPEN 

35 Orchard NON_URB 

36 Nursery NON_URB 

37 Forested wetlands (part of #3, no longer used) NON_URB 
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Appendix B1 

 Census-based predictor variables (U.S. Census Bureau, 2009c). 
 

Variable name Description 

CENS_hu_median_numb_rooms Median number of rooms per household 

CENS_hu_median_year_struct_built Median year structure built 

CENS_hu_pct_bottledgas 
Percent housing units using bottled gas as home heating 
source 

CENS_hu_pct_lacking_complete_plumbing Percent housing units lacking complete plumbing facilities 

CENS_huden Housing unit density (units/sq km) 

CENS_median_hh_income Median household income 

CENS_pct_2_or_more_units_in_structure Percent housing units with 2 or more units in structure 

CENS_pct_5_or_more_units_in_structure Percent housing units with 5 or more units in structure 

CENS_pct_foreignborn Percent population foreign-born 

CENS_pct_households_with_ss_income Percent households with social security income 

CENS_pct_hu_5ormore_person_household Percent housing units with 5 or more person households 

CENS_pct_hu_occupied Percent housing units occupied 

CENS_pct_hu_one_person_household Percent housing units with one person household 

CENS_pct_hu_owneroccupied Percent housing units owner-occupied 

CENS_pct_nonwhite Percent population non-white 

CENS_pct_pop_below_poverty_lev Percent population below poverty level 

CENS_pct_publictransport_to_work Percent population commute via public transport 

CENS_pct_walkbike_to_work Percent population walk or bike to work 

CENS_pden_change90_00 Change in population density, 1990-2000 (persons/sq km) 

CENS_popden Population density (persons/sq km) 
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Appendix B2 

 National Land Cover Data (NLCD01) predictor variables (USGS, 2009d). 

 

Variable name Description 

LC_nlcd01_11 NLCD01 percent Open Water 

LC_nlcd01_21 NLCD01 percent Developed, Open Space 

LC_nlcd01_22 NLCD01 percent Developed, Low Intensity 

LC_nlcd01_23 NLCD01 percent Developed, Medium Intensity 

LC_nlcd01_24 NLCD01 percent Developed, High Intensity 

LC_nlcd01_31 NLCD01 percent Natural Barren 

LC_nlcd01_41 NLCD01 percent Deciduous Forest 

LC_nlcd01_42 NLCD01 percent Evergreen Forest 

LC_nlcd01_43 NLCD01 percent Mixed Forest 

LC_nlcd01_52 NLCD01 percent Shrubland 

LC_nlcd01_71 NLCD01 percent Herbaceous 

LC_nlcd01_81 NLCD01 percent Pasture/Hay 

LC_nlcd01_82 NLCD01 percent Cultivated Crops 

LC_nlcd01_90 NLCD01 percent Woody Wetlands 

LC_nlcd01_95 NLCD01 percent Emergent Herbaceous Wetlands 

LC_nlcd01_imperv_mean NLCD01 mean percent impervious surfaces 

LC_nlcd01_imperv_range NLCD01 range of impervious surface values 

LC_nlcd01_imperv_stdev NLCD01 std dev of impervious surface values 

LC_ratio_huden_imperv Ratio of housing unit density to pct imperviousness 

LC_ratio_popden_nlcd2324 Ratio of population density to high intensity urban lc 

LC_sum_nlcd01_2122 NLCD01 percent all lower intensity urban classes (21+22) 

LC_sum_nlcd01_ag NLCD01 percent agriculture classes (81+82) 

LC_sum_nlcd01_allnatveg 
NLCD01 percent all natural veg. classes 
(41+42+43+52+71+90+95) 

LC_sum_nlcd01_allveg 
NLCD01 percent all veg. classes 
(41+42+43+52+71+81+82+90+95) 

LC_sum_nlcd01_forest NLCD01 percent forest classes (41+42+43) 

LC_sum_nlcd01_urban NLCD01 percent all urban classes (21+22+23+24) 
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Appendix B3 

 
 Historical predictor variables: NLCD92 (USGS, 2009d), GIRAS (USGS, 2009a), 
 

Variable name Description 

HIST_nlcd92_11 NLCD92 percent Open Water 

HIST_nlcd92_21 NLCD92 percent Low Intensity Residential 

HIST_nlcd92_22 NLCD92 percent High Intensity Residential 

HIST_nlcd92_23 NLCD92 percent Commercial/Indust/Transp. 

HIST_nlcd92_31 NLCD92 percent Bare Rock/Sand/Clay 

HIST_nlcd92_32 NLCD92 percent Quarries/Strip Mines/Gravel Pits 

HIST_nlcd92_33 NLCD92 percent Transitional 

HIST_nlcd92_41 NLCD92 percent Deciduous Forest 

HIST_nlcd92_42 NLCD92 percent Evergreen Forest 

HIST_nlcd92_43 NLCD92 percent Mixed Forest 

HIST_nlcd92_51 NLCD92 percent Shrubland 

HIST_nlcd92_61 NLCD92 percent Orchards 

HIST_nlcd92_81 NLCD92 percent Pasture Hay 

HIST_nlcd92_82 NLCD92 percent Row Crops 

HIST_nlcd92_85 NLCD92 percent Urban/Recreational Grasses 

HIST_nlcd92_91 NLCD92 percent Woody Wetlands 

HIST_nlcd92_92 NLCD92 percent Emergent Herbaceous Wetlands 

HIST_sum_nlcd92_urban NLCD92 percent all urban classes (21+22+23) 

HIST_sum_nlcd92_forest NLCD92 percent forest classes (41+42+43) 

HIST_sum_nlcd92_allveg NLCD92 percent all veg. classes (41+42+43+51+61+81+82+85+91+92) 

HIST_sum_nlcd92_ag NLCD92 percent agriculture classes (81+82) 

HIST_sum_nlcd92_allnatveg NLCD92 percent all natural veg. classes (41+42+43+51+71+91+92) 

HIST_giras_11 GIRAS percent residential 

HIST_giras_12 GIRAS percent commercial and services 

HIST_giras_13 GIRAS percent industrial 

HIST_giras_14 GIRAS percent transportation, communication and utilities 

HIST_giras_15 GIRAS percent industrial and commercial complexes 

HIST_giras_16 GIRAS percent mixed urban or built-up land 

HIST_giras_17 GIRAS percent other urban or built-up land 

HIST_giras_21 GIRAS percent cropland and pasture 

HIST_giras_22 GIRAS percent orchards, groves, vineyards, nurseries 

HIST_giras_24 GIRAS percent other agricultural land 

HIST_giras_41 GIRAS percent deciduous forest 

HIST_giras_42 GIRAS percent evergreen forest 

HIST_giras_43 GIRAS percent mixed forest 

HIST_giras_51 GIRAS percent streams and canals 

HIST_giras_52 GIRAS percent lakes 
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Variable name Description 

HIST_giras_53 GIRAS percent reservoirs 

HIST_giras_54 GIRAS percent bays and estuaries 

HIST_giras_61 GIRAS percent forested wetlands 

HIST_giras_62 GIRAS percent nonforested wetlands 

HIST_giras_72 GIRAS percent dry salt flats 

HIST_giras_75 GIRAS percent bare exposed rock 

HIST_giras_76 GIRAS percent transitional areas 

HIST_sum_giras_comm_ind GIRAS sum classes commercial-industrial (12,13,15,16) 

HIST_sum_giras_urban GIRAS sum urban classes (11-17) 

HIST_sum_giras_forest GIRAS sum forest classes (41-43) 

HIST_sum_giras_allveg GIRAS sum all veg classes (21-43,61,62) 

HIST_sum_giras_ag GIRAS sum all veg classes (21-24) 

HIST_sum_giras_allnatveg GIRAS sum all veg classes (41-43,61,62) 

HIST_delta_natveg_1970_2001 NLCD01_sum_allnatveg minus HIST_sum_giras_allnatveg 

HIST_recr_all_times Index of classes most similar to recreation in all 3 time periods 

HIST_lowresid_all_times Index of classes most similar to low intensity residential in all 3 time periods 

HIST_highresid_all_times Index of classes most similar to high intensity residential in all 3 time periods 

HIST_commerc_all_times Index of classes most similar to commercial in all 3 time periods 

HIST_indust_all_times Index of classes most similar to industrial in all 3 time periods 

HIST_highresid_92_and_01 
Percent pixels which were  residential in 92 (21 or 22) AND high intensity 
urban in 2001 (23 or 24) 

HIST_veg1970_urban01 Percent pixels which were vegetation in GIRAS and urban in NLCD01 
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Appendix B4 

 
 Transportation predictor variables (Geolytics, 2001; BTS, 2009, ESRI, 2009a; 
U.S. Census Bureau, 2009d). 
 

Variable name Description 

TRANSP_bts_faf2_pct 
Bureau of Transportation Statistics (BTS) Freight Analysis Network freeways 
gridded at 200m, percent 

TRANSP_bts_portfac_pct 
Bureau of Transportation Statistics (BTS) Port Facilities gridded at 400m, 
percent 

TRANSP_bts_rail_pct Bureau of Transportation Statistics (BTS) Rail lines gridded at 100m, percent 

TRANSP_allroads_density Census 2000 TIGER roads, all roads density, km/sq km 

TRANSP_ratio_roadden_imperv Ratio of road density to pct imperviousness 

TRANSP_culdesac_density Census TIGER shapefiles, cul-de-sac point locations, number/sq km. 

TRANSP_a11_a17_roads_density 
Census 2000 TIGER roads, A11-A17, + A63 density (interstates + cloverleafs), 
km/sq km 

TRANSP_a21_a28_roads_density Census 2000 TIGER roads, A21-A28 density (primary roads), km/sq km 

TRANSP_a11_a38_roads_density 
Census 2000 TIGER roads, A11-A38 density (interstates + primary + secondary 
roads), km/sq km 

TRANSP_alltrans 
Index of all major transportation: grid of polygon airports, and expanded 
interstate, rail and port facilities. Percent. 
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Appendix B5 

 
 Landmark predictor variables (GNIS, 2009). 
 

Variable name Description 

LANDMRK_gnis_indust_density 
Density of GNIS "locale" points believed to be industrial in nature (based on 
name), number/sq km 

LANDMRK_gnis_shopping_density 
Density of GNIS "locale" points believed to be shopping centers (based on 
name), number/sq km 

LANDMRK_gnis_station_density Density of GNIS "station" points (primarily rail or subway), number/sq km 

LANDMRK_gnisconsol_recr_density 
Density of consolidated GNIS points which are recreational in nature (see 
text), number/sq km 

LANDMRK_gnisconsol_instit_density 
Density of consolidated GNIS points which are institutional in nature (see 
text), number/sq km 

LANDMRK_gnis_comind_density 
Density of consolidated GNIS points which are commercial/industrial/post 
offices, number/sq km 

LANDMRK_gnis_recr_grid 
Gridded representation of recreational points, point locations expanded 
according to type, percent 

LANDMRK_gnis_inst_grid 
Gridded representation of institutional points, point locations expanded 
according to type, percent 
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Appendix B6 

 
 Proximity predictor variables.  Citations as noted. 
 

Variable name Description 

PROX_mean_dist_road 
Mean distance of any pixel to nearest road in meters (m), based on national 
grids obtained from Watts et al. (2007) 

PROX_city10k_dist 
Linear distance of block group centroid to point location of nearest city of 
population > 10,000 (m).  City point locations from ESRI (2009a). 

PROX_city20k_dist 
Linear distance of block group centroid to point location of nearest city of 
population > 20,000 (m). City point locations from ESRI (2009a). 

PROX_city50k_dist 
Linear distance of block group centroid to point location of nearest city of 
population > 50,000 (m). City point locations from ESRI (2009a). 

PROX_city100k_dist 
Linear distance of block group centroid to point location of nearest city of 
population > 100,000 (m). City point locations from ESRI (2009a). 

PROX_city250k_dist 
Linear distance of block group centroid to point location of nearest city of 
population > 250,000 (m). City point locations from ESRI (2009a). 

PROX_interstate_road_dist 
Linear distance of block group centroid to nearest interstate road line 
(CFCC categories a11-a17) (m) 

PROX_prim_road_dist 
Linear distance of block group centroid to nearest primary road line (CFCC 
categories a21-a28) (m) 

PROX_major_road_dist 
Linear distance of block group centroid to nearest major road line (CFCC 
categories a11-a38) (m) 

PROX_allrec_gnis 
Linear distance of block group centroid to nearest GNIS "recreation" point 
(m) 

PROX_allinst_gnis 
Linear distance of block group centroid to nearest GNIS "institution" point 
(m) 

PROX_patch_2ha 
Linear distance of block group centroid to nearest large (> 2ha) urban patch 
(m) 

PROX_expand4rds_inters_patchgr2ha 
Percent of land in BG consisting of a large contiguous patch (> 2ha) and 
within 120 m of road. 

PROX_expand4rds_inters_2324 
Percent of land in BG consisting of NLCD01 classes 23 and 24 and within 
120 m of road. 

PROX_expand8rds_inters_patchgr2ha 
Percent of land in BG consisting of a large contiguous patch (> 2ha) and 
within 240 m of road. 

PROX_expand8rds_inters_2324 
Percent of land in BG consisting of NLCD01 classes 23 and 24 and within 
240 m of road. 

PROX_allcomind_gnis Linear distance of block group centroid to nearest GNIS 
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Variable name Description 

"commercial/industrial" point (m) 

PROX_airport_crossing_dist 
Linear distance of block group centroid to nearest airport or interstate 
crossing (m) 

PROX_cost_10k_city 

Mean cost in BG to nearest 10k city.  Cost as calculated here represents a 
weighted distance (m) to the feature taking into account connectivity to 
major and minor roads and intervening urban pixels. 

PROX_cost_50k_city 

Mean cost in BG to nearest 50k city. Cost as calculated here represents a 
weighted distance (m) to the feature taking into account connectivity to 
major and minor roads and intervening urban pixels. 

PROX_cost_100k_city 

Mean cost in BG to nearest 100k city. Cost as calculated here represents a 
weighted distance (m) to the feature taking into account connectivity to 
major and minor roads and intervening urban pixels. 

PROX_cost_patch_2ha 

Mean cost in BG to nearest large urban patch. Cost as calculated here 
represents a weighted distance (m) to the feature taking into account 
connectivity to major and minor roads and intervening urban pixels. 

PROX_cost_gnis_instit 

Mean cost in BG to nearest GNIS institution location. Cost as calculated 
here represents a weighted distance (m) to the feature taking into account 
connectivity to major and minor roads and intervening urban pixels. 

PROX_cost_gnis_recr 

Mean cost in BG to nearest GNIS recreation location. Cost as calculated 
here represents a weighted distance (m) to the feature taking into account 
connectivity to major and minor roads and intervening urban pixels. 
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Appendix B7 

 
 Spatial Autocorrelation predictor variables. 
 

Variable name Description 

SA_localMoran_popden 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
CENS_popden 

SA_localMoran_medianrooms 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
CENS_hu_median_numb_rooms 

SA_localMoran_medianyear 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
CENS_hu_median_year_struct_built 

SA_localMoran_imperv 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
LC_nlcd01_imperv_mean 

SA_localMoran_lc_entropy 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
SPCAT_lc_entropy 

SA_localMoran_dist_road 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
PROX_mean_dist_road 

SA_localMoran_nlcd2122 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
sum NLCD01 classes 21+22 

SA_localMoran_nlcd2324 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
sum NLCD01 classes 23+24 

SA_localMoran_allnatveg 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
LC_sum_nlcd01_allnatveg 

SA_localMoran_gnis_recr 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
LANDMRK_gnis_recr_grid 

SA_localMoran_gnis_inst 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
LANDMRK_gnis_inst_grid 

SA_localMoran_alltransp 
Local Moran Z-score (standard deviations) using Inverse Distance method for 
TRANSP_alltrans 

SA_diff_urbanbuf400m 
Percentage of urban land in 400m buffered area surrounding BG minus percent 
in BG 

SA_diff_urbanbuf800m 
Percentage of urban land in 800m buffered area surrounding BG minus percent 
in BG 

SA_diff_urbanbuf1200m 
Percentage of urban land in 1200m buffered area surrounding BG minus 
percent in BG 

SA_diff_urbanbuf1600m 
Percentage of urban land in 1600m buffered area surrounding BG minus 
percent in BG 

SA_acf1_400_1600m_bufs Autocorrelation function over the 400, 800, 1200, 1600m buffered differences 

SA_acf2_400_1600m_bufs Autocorrelation function over the 400, 800, 1200, 1600m buffered percents 
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Appendix B8 

 
Spatial pattern predictor variables derived from NLCD01 categorical land cover data. 
 

Variable name Description 

SPCAT_np_22_24 Fragstats NP variable: number of patches of aggregated NLCD01 classes 22-24 

SPCAT_pd_22_24 Fragstats PD variable: patch density of aggregated NLCD01 classes 22-24 

SPCAT_lpi_22_24 Fragstats LPI variable: largest patch index of aggregated NLCD01 classes 22-24 

SPCAT_ed_22_24 Fragstats ED variable: edge density of aggregated NLCD01 classes 22-24 

SPCAT_area_mn_22_24 
Fragstats AREA_MN variable: mean area of patches of aggregated NLCD01 classes 
22-24 

SPCAT_area_sd_22_24 
Fragstats AREA_SD variable: std dev of area of patches of aggregated NLCD01 
classes 22-24 

SPCAT_area_cv_22_24 
Fragstats AREA_CV variable: cv of area of patches of aggregated NLCD01 classes 
22-24 

SPCAT_frac_mn_22_24 
Fragstats FRAC_MN variable: fractal dimension mean of patches of aggregated 
NLCD01 classes 22-24 

SPCAT_frac_sd_22_24 
Fragstats FRAC_SD variable: fractal dimension std dev of patches of aggregated 
NLCD01 classes 22-24 

SPCAT_frac_cv_22_24 
Fragstats FRAC_CV variable: fractal dimension cv of patches of aggregated NLCD01 
classes 22-24 

SPCAT_para_mn_22_24 
Fragstats PARA_MN variable: perimeter-area ratio of patches of aggregated 
NLCD01 classes 22-24 

SPCAT_para_sd_22_24 
Fragstats PARA_SD variable: perimeter-area ratio std dev of patches of aggregated 
NLCD01 classes 22-24 

SPCAT_para_cv_22_24 
Fragstats PARA_CV variable: perimeter-area ratio cv of patches of aggregated 
NLCD01 classes 22-24 

SPCAT_circle_mn_22_24 
Fragstats CIRCLE_MN variable: smallest circumscribing circle mean of patches of 
aggregated NLCD01 classes 22-24 

SPCAT_circle_sd_22_24 
Fragstats CIRCLE_SD variable: smallest circumscribing circle std dev of patches of 
aggregated NLCD01 classes 22-24 

SPCAT_circle_cv_22_24 
Fragstats CIRCLE_CV variable: smallest circumscribing circle cv of patches of 
aggregated NLCD01 classes 22-24 

SPCAT_cohesion_22_24 
Fragstats COHESION variable: cohesion index of patches of aggregated NLCD01 
classes 22-24 

SPCAT_np_21 Fragstats NP variable: number of patches of NLCD01 class 21 

SPCAT_pd_21 Fragstats PD variable: patch density of NLCD01 class 21 

SPCAT_lpi_21 Fragstats LPI variable: largest patch index of NLCD01 class 21 

SPCAT_ed_21 Fragstats ED variable: edge density of NLCD01 class 21 

SPCAT_area_mn_21 Fragstats AREA_MN variable: mean area of patches of NLCD01 class 21 
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Variable name Description 

SPCAT_area_sd_21 Fragstats AREA_SD variable: std dev of area of patches of NLCD01 class 21 

SPCAT_area_cv_21 Fragstats AREA_CV variable: cv of area of patches of NLCD01 class 21 

SPCAT_frac_mn_21 
Fragstats FRAC_MN variable: fractal dimension mean of patches of NLCD01 class 
21 

SPCAT_frac_sd_21 
Fragstats FRAC_SD variable: fractal dimension std dev of patches of NLCD01 class 
21 

SPCAT_frac_cv_21 Fragstats FRAC_CV variable: fractal dimension cv of patches of NLCD01 class 21 

SPCAT_para_mn_21 Fragstats PARA_MN variable: perimeter-area ratio of patches of NLCD01 class 21 

SPCAT_para_sd_21 
Fragstats PARA_SD variable: perimeter-area ratio std dev of patches of NLCD01 
class 21 

SPCAT_para_cv_21 Fragstats PARA_CV variable: perimeter-area ratio cv of patches of NLCD01 class 

SPCAT_circle_mn_21 
Fragstats CIRCLE_MN variable: smallest circumscribing circle mean of patches of 
NLCD01 class 

SPCAT_circle_sd_21 
Fragstats CIRCLE_SD variable: smallest circumscribing circle std dev of patches of 
NLCD01 class 21 

SPCAT_circle_cv_21 
Fragstats CIRCLE_CV variable: smallest circumscribing circle cv of patches of 
NLCD01 class 21 

SPCAT_cohesion_21 Fragstats COHESION variable: cohesion index of patches of NLCD01 class 21 

SPCAT_patch_2ha_pct Percent of land consisting of urban patches > 2 ha in size 

SPCAT_riit21_interior Riitters et al. (2000): :"Interior" pixels of class 21, percent 

SPCAT_riit21_transitional Riitters et al. (2000): :"Transitional" pixels of class 21, percent 

SPCAT_riit21_edge Riitters et al. (2000): :"Edge" pixels of class 21, percent 

SPCAT_riit22_interior Riitters et al. (2000): :"Interior" pixels of class 22, percent 

SPCAT_riit22_transitional Riitters et al. (2000): :"Transitional" pixels of class 22, percent 

SPCAT_riit22_edge Riitters et al. (2000): :"Edge" pixels of class 22, percent 

SPCAT_riit23_interior Riitters et al. (2000): :"Interior" pixels of class 23, percent 

SPCAT_riit23_transitional Riitters et al. (2000): :"Transitional" pixels of class 23, percent 

SPCAT_riit23_edge Riitters et al. (2000): :"Edge" pixels of class 23, percent 

SPCAT_riit24_interior Riitters et al. (2000): :"Interior" pixels of class 24, percent 

SPCAT_riit24_transitional Riitters et al. (2000): :"Transitional" pixels of class 24, percent 

SPCAT_riit24_edge Riitters et al. (2000): :"Edge" pixels of class 24, percent 

SPCAT_riit2324_interior Riitters et al. (2000): :"Interior" pixels of aggregated classes 23+24, percent 

SPCAT_riit2324_transitional Riitters et al. (2000): :"Transitional" pixels of aggregated classes 23+24, percent 

SPCAT_riit2324_edge Riitters et al. (2000): :"Edge" pixels of aggregated classes 23+24, percent 

SPCAT_riitnatveg_interior 
Riitters et al. (2000): :"Interior" pixels of aggregated class for all natural vegetation, 
percent 
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Variable name Description 

SPCAT_riitnatveg_transitional 
Riitters et al. (2000): :"Transitional" pixels of aggregated class for all natural 
vegetation, percent 

SPCAT_expan_zone_diff_21 
Percent diff between random sample class 21 pixels and percent in expanded (by 3) 
zone 

SPCAT_expan_zone_diff_22 
Percent diff between random sample class 22 pixels and percent in expanded (by 3) 
zone 

SPCAT_expan_zone_diff_23 
Percent diff between random sample class 23 pixels and percent in expanded (by 3) 
zone 

SPCAT_expan_zone_diff_24 
Percent diff between random sample class 24 pixels and percent in expanded (by 3) 
zone 

SPCAT_riitnatveg_edge 
Riitters et al. (2000): :"Edge" pixels of aggregated class for all natural vegetation, 
percent 

SPCAT_lc_entropy 
Land cover variety (entropy; Odum, 1971) based on Anderson Level I 
classes,unitless 

SPCAT_lc_zonalvariety Zonal variety (# of unique values) of Anderson Level II lc 

SPCAT_foc_annulus 
Mean percent pixels in class 22-24 which intersect with focal annulus (3-6 pixels) of 
vegetation (incl. class 21), and at least 80% vegetation in focal window 

SPCAT_flattening_22_24 
Aggregated classes 22-24 mean semi-major divided by semi-minor axis (from Grid 
Zonalgeometry) 

SPCAT_shape_index_22_24 
Aggregated classes 22-24 area divided by perimeter squared, unitless, higher values 
= more compact 

SPCAT_shape_index_21 Class 21 area divided by perimeter squared, unitless, higher values = more compact 
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Appendix B9 

 
Spatial pattern predictor variables derived from NLCD01 impervious surface 

continuous data layer. 
 

Variable name Description 

SPCON_is_slope_max 
Maximum slope of imperviousness in BG, percent.  Slope is the mean rate of 
change between each pixel and its 8 nearest neighbors. 

SPCON_is_slope_mean Mean slope of imperviousness in BG, percent 

SPCON_is_slope_std Std dev of slope of imperviousness in BG, percent 

SPCON_slopeclass1_mean Mean slope_class1 imperviousness (see text) in BG, percent 

SPCON_slopeclass2_mean Mean slope_class2 imperviousness (see text) in BG, percent 

SPCON_slopeclass3_mean Mean slope_class3 imperviousness (see text) in BG, percent 

SPCON_slopeclass4_mean Mean slope_class4 imperviousness (see text) in BG, percent 

SPCON_np_slopeclass1 Fragstats NP variable: number of patches of slope_class1 

SPCON_pd_slopeclass1 Fragstats PD variable: patch density of slope_class1 

SPCON_lpi_slopeclass1 Fragstats LPI variable: largest patch index of slope_class1 

SPCON_ed_slopeclass1 Fragstats ED variable: edge density of slope_class1 

SPCON_area_mn_slopeclass1 Fragstats AREA_MN variable: mean area of patches of slope_class1 

SPCON_area_sd_slopeclass1 Fragstats AREA_SD variable: std dev of area of patches of slope_class1 

SPCON_area_cv_slopeclass1 Fragstats AREA_CV variable: cv of area of patdches of slope_class1 

SPCON_frac_mn_slopeclass1 Fragstats FRAC_MN variable: fractal dimension mean of patches of slope_class1 

SPCON_frac_sd_slopeclass1 
Fragstats FRAC_SD variable: fractal dimension std dev of patches of 
slope_class1 

SPCON_frac_cv_slopeclass1 Fragstats FRAC_CV variable: fractal dimension cv of patches of slope_class1 

SPCON_para_mn_slopeclass1 Fragstats PARA_MN variable: perimeter-area ratio of patches of slope_class1 

SPCON_para_sd_slopeclass1 
Fragstats PARA_SD variable: perimeter-area ratio std dev of patches of 
slope_class1 

SPCON_para_cv_slopeclass1 Fragstats PARA_CV variable: perimeter-area ratio cv of patches of slope_class1 

SPCON_circle_mn_slopeclass1 
Fragstats CIRCLE_MN variable: smallest circumscribing circle mean of patches of 
slope_class1 

SPCON_circle_sd_slopeclass1 
Fragstats CIRCLE_SD variable: smallest circumscribing circle std dev of patches 
of slope_class1 

SPCON_circle_cv_slopeclass1 
Fragstats CIRCLE_CV variable: smallest circumscribing circle cv of patches of 
slope_class1 

SPCON_cohesion_slopeclass1 Fragstats COHESION variable: cohesion index of patches of slope_class1 

SPCON_np_slopeclass2 Fragstats NP variable: number of patches of slope_class2 

SPCON_pd_slopeclass2 Fragstats PD variable: patch density of slope_class2 

SPCON_lpi_slopeclass2 Fragstats LPI variable: largest patch index of slope_class2 

SPCON_ed_slopeclass2 Fragstats ED variable: edge density of slope_class2 

SPCON_area_mn_slopeclass2 Fragstats AREA_MN variable: mean area of patches of slope_class2 

SPCON_area_sd_slopeclass2 Fragstats AREA_SD variable: std dev of area of patches of slope_class2 

SPCON_area_cv_slopeclass2 Fragstats AREA_CV variable: cv of area of patdches of slope_class2 

SPCON_frac_mn_slopeclass2 Fragstats FRAC_MN variable: fractal dimension mean of patches of slope_class2 

SPCON_frac_sd_slopeclass2 
Fragstats FRAC_SD variable: fractal dimension std dev of patches of 
slope_class2 

SPCON_frac_cv_slopeclass2 Fragstats FRAC_CV variable: fractal dimension cv of patches of slope_class2 
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Variable name Description 

SPCON_para_mn_slopeclass2 Fragstats PARA_MN variable: perimeter-area ratio of patches of slope_class2 

SPCON_para_sd_slopeclass2 
Fragstats PARA_SD variable: perimeter-area ratio std dev of patches of 
slope_class2 

SPCON_para_cv_slopeclass2 Fragstats PARA_CV variable: perimeter-area ratio cv of patches of slope_class2 

SPCON_circle_mn_slopeclass2 
Fragstats CIRCLE_MN variable: smallest circumscribing circle mean of patches of 
slope_class2 

SPCON_circle_sd_slopeclass2 
Fragstats CIRCLE_SD variable: smallest circumscribing circle std dev of patches 
of slope_class2 

SPCON_circle_cv_slopeclass2 
Fragstats CIRCLE_CV variable: smallest circumscribing circle cv of patches of 
slope_class2 

SPCON_cohesion_slopeclass2 Fragstats COHESION variable: cohesion index of patches of slope_class2 

SPCON_np_slopeclass3 Fragstats NP variable: number of patches of slope_class3 

SPCON_pd_slopeclass3 Fragstats PD variable: patch density of slope_class3 

SPCON_lpi_slopeclass3 Fragstats LPI variable: largest patch index of slope_class3 

SPCON_ed_slopeclass3 Fragstats ED variable: edge density of slope_class3 

SPCON_area_mn_slopeclass3 Fragstats AREA_MN variable: mean area of patches of slope_class3 

SPCON_area_sd_slopeclass3 Fragstats AREA_SD variable: std dev of area of patches of slope_class3 

SPCON_area_cv_slopeclass3 Fragstats AREA_CV variable: cv of area of patdches of slope_class3 

SPCON_frac_mn_slopeclass3 Fragstats FRAC_MN variable: fractal dimension mean of patches of slope_class3 

SPCON_frac_sd_slopeclass3 
Fragstats FRAC_SD variable: fractal dimension std dev of patches of 
slope_class3 

SPCON_frac_cv_slopeclass3 Fragstats FRAC_CV variable: fractal dimension cv of patches of slope_class3 

SPCON_para_mn_slopeclass3 Fragstats PARA_MN variable: perimeter-area ratio of patches of slope_class3 

SPCON_para_sd_slopeclass3 
Fragstats PARA_SD variable: perimeter-area ratio std dev of patches of 
slope_class3 

SPCON_para_cv_slopeclass3 Fragstats PARA_CV variable: perimeter-area ratio cv of patches of slope_class3 

SPCON_circle_mn_slopeclass3 
Fragstats CIRCLE_MN variable: smallest circumscribing circle mean of patches of 
slope_class3 

SPCON_circle_sd_slopeclass3 
Fragstats CIRCLE_SD variable: smallest circumscribing circle std dev of patches 
of slope_class3 

SPCON_circle_cv_slopeclass3 
Fragstats CIRCLE_CV variable: smallest circumscribing circle cv of patches of 
slope_class3 

SPCON_cohesion_slopeclass3 Fragstats COHESION variable: cohesion index of patches of slope_class3 

SPCON_np_slopeclass4 Fragstats NP variable: number of patches of slope_class4 

SPCON_pd_slopeclass4 Fragstats PD variable: patch density of slope_class4 

SPCON_lpi_slopeclass4 Fragstats LPI variable: largest patch index of slope_class4 

SPCON_ed_slopeclass4 Fragstats ED variable: edge density of slope_class4 

SPCON_area_mn_slopeclass4 Fragstats AREA_MN variable: mean area of patches of slope_class4 

SPCON_area_sd_slopeclass4 Fragstats AREA_SD variable: std dev of area of patches of slope_class4 

SPCON_area_cv_slopeclass4 Fragstats AREA_CV variable: cv of area of patdches of slope_class4 

SPCON_frac_mn_slopeclass4 Fragstats FRAC_MN variable: fractal dimension mean of patches of slope_class4 

SPCON_frac_sd_slopeclass4 
Fragstats FRAC_SD variable: fractal dimension std dev of patches of 
slope_class4 

SPCON_frac_cv_slopeclass4 Fragstats FRAC_CV variable: fractal dimension cv of patches of slope_class4 

SPCON_para_mn_slopeclass4 Fragstats PARA_MN variable: perimeter-area ratio of patches of slope_class4 

SPCON_para_sd_slopeclass4 
Fragstats PARA_SD variable: perimeter-area ratio std dev of patches of 
slope_class4 

SPCON_para_cv_slopeclass4 Fragstats PARA_CV variable: perimeter-area ratio cv of patches of slope_class4 

SPCON_circle_mn_slopeclass4 
Fragstats CIRCLE_MN variable: smallest circumscribing circle mean of patches of 
slope_class4 

SPCON_circle_sd_slopeclass4 Fragstats CIRCLE_SD variable: smallest circumscribing circle std dev of patches 
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Variable name Description 
of slope_class4 

SPCON_circle_cv_slopeclass4 
Fragstats CIRCLE_CV variable: smallest circumscribing circle cv of patches of 
slope_class4 

SPCON_cohesion_slopeclass4 Fragstats COHESION variable: cohesion index of patches of slope_class4 

SPCON_moran_gt50_is_30m Grid 'Moran' function mean for all imperviousness pixels with value > 50 

SPCON_moran_gt50_is_adjusted 
Grid 'Moran' function mean for all imperviousness pixels with value > 50 adusted 
by percent class23-24 pixels 

SPCON_moran_gt50_is_60m Difference between executing Moran at 30m and for data resampled to 60m 

SPCON_focal33_gt50_is_mean Focal mean of imperviousness for pixels > 50% in 3x3 window 

SPCON_focal33_gt50_is_std Focal std dev of imperviousness for pixels > 50% in 3x3 window 

SPCON_focal33_gt50_is_cv Focal cv of imperviousness for pixels > 50% in 3x3 window 

SPCON_focal77_gt50_is_mean Focal mean of imperviousness for pixels > 50% in 7x7 window 

SPCON_focal77_gt50_is_std Focal std dev of imperviousness for pixels > 50% in 7x7 window 

SPCON_focal77_gt50_is_cv Focal cv of imperviousness for pixels > 50% in 7x7 window 

SPCON_focal_diff_33_77 

Difference between SPCON_focal33_gt50_is_mean and 
SPCON_focal77_gt50_is_mean, i.e. change in imperviousness over broader area 
where high imperv pixels exist 

SPCON_is_variety Variety (# of unique values) of imperviousness 
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Appendix B10 

 
 Miscellaneous predictor variables (USGS, 2008; Conservation Biology Institute; 
2009; USGS, 2009a) 
 

Variable name Description 

MISC_area_km2 Area in square km of the BG 

MISC_ned30m_elev Mean elevation in the BG, from 30m National Elevation Data, meters 

MISC_ned30m_slope Mean slope in the BG, from 30m National Elevation Data, percent 

MISC_vg2000_mean Mean annual green vegetation index, 1-km pixels, from USGS National Atlas, unitless 

MISC_padcat1_2 
Percent land in one of the first 2 protected categories (e.g. National Parks) from the 
Conservation Biology Institute 

MISC_maritime 
Whether the block group is adjacent to the ocean or ocean-access bay or inlet, binary value 
(1/0) 
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Appendix B11 

 ESRI Business Analyst predictor variables (ESRI, 2009b, NAICS Association, 
2009). 

Variable name Description 

ESRI_nai_indco_pt_density 
Point density of NAICS codes believed to represent non-home based 
commercial/industrial physical ("bricks and mortar") locations, #/sq km 

ESRI_numemp_nai_indco_cvr 
Total number of employees in non-home based commercial/industrial locations in the 
block group 

ESRI_nai_indco_dist 
Linear distance of block group centroid to point location of nearest 
commercial/industrial location, meters 

ESRI_nai_inst_pt_density 
Point density of NAICS codes believed to represent non-home based institution 
physical locations, #/sq km 

ESRI_numemp_nai_inst_cvr 
Total number of employees in non-home based institution locations in the block 
group 

ESRI_nai_inst_dist 
Linear distance of block group centroid to point location of nearest institution 
location, meters 
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Appendix C  

 
Correlation matrix (r values) of dependent (columns) and independent (rows) variables 
for the final 188 independent variables used in testing, for 10-class prediction.  All values 
> |0.07| have p-values < 0.001.  Positive correlations >= 0.50 are highlighted in red, 
negative correlations <= -0.50 are highlighted in blue.  Variables are given in alphabetical 
order, which organizes them by category. 
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CENS_hu_median_numb_rooms 0.48 0.35 0.03 -0.39 -0.45 -0.13 -0.27 -0.19 -0.09 0.39 

CENS_hu_median_year_struct_built 0.09 0.06 -0.06 -0.03 0.00 0.02 -0.02 -0.01 -0.07 0.06 

CENS_hu_pct_bottledgas -0.07 -0.18 -0.06 0.22 0.12 0.00 0.05 0.02 -0.05 -0.06 

CENS_hu_pct_lacking_complete_plumbing -0.12 -0.15 0.03 0.14 0.13 0.09 0.06 0.08 0.01 -0.16 

CENS_huden -0.26 -0.30 0.00 0.60 0.31 -0.11 0.14 0.00 -0.09 -0.46 

CENS_median_hh_income 0.52 0.28 -0.09 -0.30 -0.30 -0.13 -0.19 -0.13 -0.06 0.35 

CENS_pct_5_or_more_units_in_structure -0.23 -0.24 -0.21 0.29 0.43 0.09 0.27 0.19 0.10 -0.21 

CENS_pct_foreignborn -0.28 -0.35 0.07 0.41 0.32 0.11 0.16 0.09 0.00 -0.45 

CENS_pct_households_with_ss_income -0.01 0.18 0.11 -0.27 -0.13 0.01 -0.07 -0.02 0.07 0.08 

CENS_pct_hu_5ormore_person_household 0.13 0.03 0.08 -0.04 -0.13 0.00 -0.08 -0.08 -0.10 0.01 

CENS_pct_hu_occupied 0.09 0.16 0.05 -0.13 -0.22 0.00 -0.05 -0.09 -0.03 0.08 

CENS_pct_hu_one_person_household -0.29 -0.23 -0.04 0.20 0.35 0.07 0.26 0.15 0.11 -0.25 

CENS_pct_hu_owneroccupied 0.41 0.44 0.00 -0.48 -0.46 -0.11 -0.31 -0.15 -0.07 0.48 

CENS_pct_nonwhite -0.25 -0.31 0.10 0.34 0.26 0.05 0.19 0.02 0.01 -0.39 

CENS_pct_pop_below_poverty_lev -0.26 -0.32 -0.05 0.37 0.31 0.07 0.28 0.14 0.06 -0.32 

CENS_pct_publictransport_to_work -0.29 -0.37 0.01 0.53 0.33 -0.05 0.18 0.15 0.04 -0.47 

CENS_pct_walkbike_to_work -0.17 -0.22 -0.17 0.30 0.34 0.02 0.39 0.14 0.06 -0.24 

CENS_pden_change90_00 -0.03 -0.06 -0.04 0.10 0.08 0.01 0.06 0.03 -0.03 -0.07 

CENS_popden -0.30 -0.34 0.06 0.63 0.29 -0.12 0.20 -0.02 -0.11 -0.53 

HIST_commerc_all_times -0.47 -0.35 0.15 0.32 0.53 0.33 0.27 0.27 -0.01 -0.65 

HIST_delta_natveg_1970_2001 -0.07 -0.11 0.09 0.07 0.06 -0.03 0.09 0.05 0.14 -0.19 

HIST_giras_11 -0.25 0.01 0.47 0.28 -0.05 -0.19 0.06 -0.18 -0.12 -0.68 

HIST_giras_12 -0.17 -0.12 -0.08 0.04 0.42 0.21 0.21 0.15 0.08 -0.23 

HIST_giras_13 -0.06 -0.07 -0.07 -0.01 0.05 0.37 0.00 0.16 0.02 -0.02 

HIST_giras_14 -0.06 -0.07 -0.08 -0.01 0.16 0.02 0.04 0.39 -0.03 -0.01 

HIST_giras_17 -0.01 0.00 -0.04 -0.07 -0.05 0.00 -0.01 -0.03 0.45 0.02 

HIST_highresid_92_and_01 -0.48 -0.34 0.46 0.49 0.23 -0.08 0.19 -0.11 -0.12 -0.78 

HIST_highresid_all_times -0.41 -0.12 0.49 0.41 0.09 -0.14 0.14 -0.14 -0.09 -0.83 
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HIST_indust_all_times -0.51 -0.38 0.23 0.39 0.48 0.25 0.24 0.30 -0.06 -0.72 

HIST_nlcd92_11 -0.03 -0.09 -0.14 -0.13 -0.08 0.00 -0.07 0.12 0.04 0.43 

HIST_nlcd92_21 -0.08 0.30 0.46 -0.14 -0.20 -0.20 -0.03 -0.24 -0.02 -0.40 

HIST_nlcd92_22 -0.31 -0.38 0.09 0.54 0.33 0.01 0.21 0.01 -0.09 -0.51 

HIST_nlcd92_23 -0.16 -0.14 -0.20 0.01 0.42 0.45 0.11 0.48 0.04 -0.12 

HIST_nlcd92_31 0.03 -0.02 -0.03 -0.05 -0.04 -0.02 -0.05 0.02 0.02 0.13 

HIST_nlcd92_32 0.06 -0.01 -0.08 -0.06 -0.04 0.08 -0.05 0.01 -0.02 0.16 

HIST_nlcd92_33 0.09 0.03 -0.14 -0.13 -0.08 0.11 -0.09 0.06 0.02 0.30 

HIST_nlcd92_85 0.07 -0.03 -0.18 -0.10 -0.04 0.11 -0.02 0.15 0.55 0.12 

HIST_nlcd92_91 0.24 0.10 -0.26 -0.22 -0.14 0.08 -0.13 0.02 -0.03 0.51 

HIST_nlcd92_92 0.08 -0.01 -0.18 -0.14 -0.07 0.07 -0.08 0.06 0.03 0.38 

HIST_recr_all_times 0.26 0.26 -0.19 -0.24 -0.18 -0.02 -0.08 -0.03 0.49 0.18 

HIST_sum_giras_ag 0.23 0.01 -0.17 -0.12 -0.11 -0.03 -0.07 -0.04 -0.02 0.39 

HIST_sum_giras_allveg 0.44 0.13 -0.39 -0.29 -0.26 -0.04 -0.20 -0.09 0.07 0.79 

HIST_sum_giras_comm_ind -0.18 -0.13 -0.09 0.03 0.42 0.32 0.20 0.19 0.08 -0.23 

HIST_sum_giras_urban -0.42 -0.10 0.41 0.30 0.27 0.03 0.22 0.03 0.08 -0.90 

HIST_sum_nlcd92_ag 0.27 -0.02 -0.21 -0.14 -0.13 -0.01 -0.10 -0.04 -0.07 0.50 

HIST_sum_nlcd92_allveg 0.50 0.18 -0.42 -0.35 -0.29 -0.02 -0.20 -0.04 0.08 0.83 

HIST_veg1970_urban01 0.27 0.22 -0.31 -0.24 -0.19 0.06 -0.15 0.04 -0.04 0.53 

LANDMRK_gnis_comind_density -0.06 -0.05 0.03 -0.02 0.13 0.06 0.06 0.10 0.03 -0.10 

LANDMRK_gnis_indust_density 0.00 0.00 -0.04 -0.03 -0.02 0.17 -0.03 0.06 0.01 0.02 

LANDMRK_gnis_inst_grid -0.03 -0.01 -0.09 -0.02 0.12 0.02 0.08 0.02 0.30 -0.04 

LANDMRK_gnis_recr_grid -0.11 -0.04 -0.08 0.12 0.22 -0.03 0.49 -0.02 0.04 -0.23 

LANDMRK_gnis_shopping_density -0.04 -0.01 -0.03 -0.04 0.17 0.11 0.03 0.03 0.03 -0.05 

LANDMRK_gnisconsol_instit_density -0.15 -0.16 -0.06 0.23 0.24 -0.06 0.50 -0.01 0.01 -0.27 

LANDMRK_gnisconsol_recr_density -0.09 -0.10 -0.06 0.11 0.24 0.00 0.12 0.00 0.16 -0.16 

LC_nlcd01_11 -0.03 -0.07 -0.13 -0.14 -0.09 -0.01 -0.08 0.09 0.02 0.43 

LC_nlcd01_21 0.48 0.52 -0.22 -0.34 -0.27 -0.10 -0.13 -0.11 0.16 0.27 

LC_nlcd01_22 0.16 0.50 0.07 -0.32 -0.25 -0.13 -0.09 -0.12 0.16 -0.01 

LC_nlcd01_23 -0.48 -0.18 0.54 0.28 0.07 -0.05 0.11 -0.08 -0.07 -0.71 

LC_nlcd01_24 -0.34 -0.40 0.01 0.42 0.51 0.23 0.24 0.24 -0.06 -0.51 

LC_nlcd01_82 0.16 0.01 -0.17 -0.11 -0.08 0.02 -0.06 -0.01 -0.01 0.34 

LC_nlcd01_90 0.36 0.13 -0.32 -0.22 -0.19 -0.02 -0.16 -0.05 -0.07 0.62 

LC_nlcd01_95 0.03 -0.05 -0.13 -0.12 -0.08 0.02 -0.07 0.07 0.03 0.37 

LC_nlcd01_imperv_mean -0.53 -0.35 0.34 0.47 0.43 0.14 0.25 0.13 -0.06 -0.86 

LC_nlcd01_imperv_range 0.18 0.27 -0.11 -0.52 -0.21 0.13 -0.07 0.00 0.22 0.45 

LC_nlcd01_imperv_stdev -0.03 0.28 -0.17 -0.36 -0.12 0.20 -0.04 0.14 0.24 0.31 

LC_ratio_huden_imperv -0.22 -0.28 -0.02 0.56 0.25 -0.15 0.10 -0.03 -0.07 -0.37 

LC_ratio_popden_nlcd2324 0.11 -0.11 -0.05 0.25 0.03 -0.13 0.06 -0.07 -0.07 -0.11 
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LC_sum_nlcd01_2122 0.33 0.57 -0.06 -0.37 -0.29 -0.13 -0.12 -0.13 0.18 0.12 

LC_sum_nlcd01_ag 0.32 0.05 -0.28 -0.19 -0.17 -0.03 -0.10 -0.07 -0.01 0.59 

LC_sum_nlcd01_allnatveg 0.52 0.12 -0.41 -0.30 -0.27 -0.06 -0.21 -0.08 -0.04 0.86 

LC_sum_nlcd01_urban -0.45 -0.08 0.43 0.33 0.29 0.06 0.21 0.03 0.03 -0.96 

MISC_area_km2 0.38 0.00 -0.30 -0.22 -0.20 -0.03 -0.16 -0.03 -0.06 0.69 

MISC_maritime -0.03 -0.08 -0.01 -0.05 -0.06 -0.04 -0.04 0.03 0.01 0.20 

MISC_ned30m_elev 0.36 0.33 -0.14 -0.28 -0.27 -0.09 -0.14 -0.17 -0.10 0.39 

MISC_ned30m_slope 0.17 0.12 0.07 -0.10 -0.24 -0.16 -0.09 -0.15 -0.05 0.12 

MISC_padcat1_2 0.04 -0.04 -0.15 -0.02 -0.06 -0.02 -0.04 0.05 0.06 0.26 

MISC_vg2000_mean 0.29 0.28 -0.06 -0.22 -0.17 -0.03 -0.08 -0.15 -0.01 0.16 

PROX_airport_crossing_dist 0.05 -0.19 0.09 0.10 -0.05 -0.13 0.03 -0.15 0.01 0.01 

PROX_allcomind_gnis 0.38 0.12 -0.20 -0.22 -0.27 -0.11 -0.16 -0.10 -0.07 0.55 

PROX_allinst_gnis 0.38 0.12 -0.27 -0.28 -0.24 0.02 -0.28 -0.02 -0.06 0.67 

PROX_allrec_gnis 0.33 0.16 -0.19 -0.24 -0.23 -0.03 -0.18 -0.04 -0.19 0.53 

PROX_city100k_dist 0.31 0.30 -0.16 -0.41 -0.23 -0.03 -0.20 -0.10 -0.06 0.55 

PROX_city20k_dist 0.36 0.09 -0.26 -0.22 -0.17 -0.05 -0.17 -0.05 -0.06 0.59 

PROX_city250k_dist 0.27 0.23 -0.11 -0.39 -0.23 0.04 -0.18 -0.10 -0.07 0.52 

PROX_cost_10k_city 0.39 0.08 -0.30 -0.24 -0.22 -0.08 -0.19 -0.06 -0.09 0.70 

PROX_cost_50k_city 0.39 0.25 -0.30 -0.32 -0.24 -0.05 -0.21 -0.06 -0.06 0.65 

PROX_cost_gnis_instit 0.38 0.08 -0.33 -0.29 -0.27 -0.01 -0.25 -0.02 -0.04 0.81 

PROX_cost_gnis_recr 0.30 0.04 -0.25 -0.26 -0.26 -0.01 -0.19 -0.01 -0.13 0.73 

PROX_expand8rds_inters_2324 -0.28 -0.25 0.07 0.26 0.38 0.09 0.18 0.26 -0.03 -0.43 

PROX_interstate_road_dist 0.24 0.12 -0.07 -0.23 -0.19 -0.11 -0.11 -0.25 -0.07 0.41 

PROX_major_road_dist 0.19 0.13 -0.05 -0.19 -0.21 -0.08 -0.12 -0.16 -0.05 0.34 

PROX_mean_dist_road 0.27 0.00 -0.36 -0.29 -0.24 0.02 -0.16 0.05 0.05 0.84 

PROX_patch_2ha -0.38 -0.47 0.16 0.50 0.41 0.13 0.23 0.13 -0.03 -0.61 

PROX_prim_road_dist 0.17 0.08 -0.07 -0.16 -0.15 -0.06 -0.12 -0.04 -0.03 0.31 

SA_acf1_400_1600m_bufs 0.01 0.01 0.01 -0.03 -0.01 0.01 -0.02 0.01 0.01 0.01 

SA_acf2_400_1600m_bufs -0.01 -0.01 -0.01 0.01 0.07 -0.01 -0.01 0.02 -0.01 -0.02 

SA_diff_urbanbuf800m 0.05 -0.20 -0.19 -0.02 -0.06 0.00 -0.02 0.01 0.08 0.43 

SA_localMoran_allnatveg 0.19 -0.31 -0.13 0.20 0.06 -0.06 0.02 -0.01 -0.16 0.17 

SA_localMoran_alltransp -0.06 -0.08 -0.08 -0.02 0.16 0.01 0.08 0.36 -0.01 0.00 

SA_localMoran_dist_road -0.03 -0.27 -0.01 0.27 0.10 -0.13 0.03 -0.08 -0.18 0.01 

SA_localMoran_gnis_inst -0.06 -0.08 -0.12 0.15 0.16 -0.04 0.33 0.00 0.01 -0.11 

SA_localMoran_gnis_recr -0.04 -0.06 -0.07 0.07 0.22 -0.01 0.09 0.00 0.04 -0.08 

SA_localMoran_imperv -0.04 -0.30 -0.18 0.51 0.34 0.06 0.15 0.12 -0.18 -0.29 

SA_localMoran_lc_entropy -0.09 -0.27 -0.10 0.49 0.27 -0.01 0.09 0.07 -0.27 -0.26 

SA_localMoran_medianrooms -0.01 -0.17 -0.27 0.28 0.34 -0.02 0.25 0.23 0.03 -0.15 

SA_localMoran_medianyear 0.03 -0.01 -0.03 0.00 -0.04 -0.02 -0.04 -0.02 0.01 0.09 
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SA_localMoran_nlcd2122 0.05 0.01 -0.06 0.24 0.12 -0.01 0.07 0.11 -0.12 -0.29 

SA_localMoran_nlcd2324 -0.02 -0.29 -0.12 0.53 0.27 0.02 0.14 0.07 -0.22 -0.33 

SA_localMoran_popden -0.10 -0.15 -0.18 0.48 0.22 -0.10 0.15 -0.01 -0.10 -0.22 

SPCAT_area_mn_22_24 -0.22 0.15 0.09 -0.18 0.04 0.32 0.01 0.21 0.08 -0.17 

SPCAT_area_sd_21 0.54 0.19 -0.24 -0.22 -0.20 -0.07 -0.12 -0.06 0.11 0.35 

SPCAT_circle_mn_21 0.33 0.40 -0.20 -0.50 -0.31 0.01 -0.16 -0.05 0.17 0.54 

SPCAT_circle_mn_22_24 0.13 0.09 -0.13 -0.15 -0.04 0.01 -0.10 0.06 0.01 0.25 

SPCAT_circle_sd_21 0.42 0.45 -0.31 -0.44 -0.32 -0.02 -0.20 -0.07 0.05 0.63 

SPCAT_ed_22_24 -0.21 -0.01 0.12 0.43 0.21 -0.15 0.14 -0.06 -0.01 -0.64 

SPCAT_expan_zone_diff_21 0.22 0.37 -0.16 -0.44 -0.28 0.02 -0.13 -0.05 0.17 0.46 

SPCAT_expan_zone_diff_22 0.13 0.03 -0.03 -0.29 -0.11 0.06 -0.07 0.01 0.13 0.31 

SPCAT_expan_zone_diff_23 0.42 0.25 -0.49 -0.33 -0.10 0.08 -0.13 0.09 0.08 0.67 

SPCAT_expan_zone_diff_24 0.05 0.11 -0.07 -0.21 -0.17 0.00 -0.06 -0.04 0.13 0.29 

SPCAT_flattening_22_24 0.00 -0.02 -0.04 0.00 0.04 0.03 -0.04 0.04 -0.04 0.06 

SPCAT_foc_annulus 0.69 0.17 -0.36 -0.26 -0.24 -0.09 -0.17 -0.09 -0.03 0.62 

SPCAT_frac_mn_22_24 0.15 0.37 -0.14 -0.33 -0.18 0.00 -0.12 -0.01 0.14 0.29 

SPCAT_frac_sd_21 0.51 0.44 -0.35 -0.44 -0.33 -0.04 -0.20 -0.09 0.04 0.66 

SPCAT_lc_entropy 0.44 0.34 -0.44 -0.43 -0.31 0.03 -0.19 -0.04 0.12 0.81 

SPCAT_lpi_21 0.35 0.29 -0.08 -0.22 -0.17 -0.08 -0.06 -0.08 0.23 0.06 

SPCAT_np_21 0.51 0.22 -0.38 -0.30 -0.26 -0.04 -0.20 -0.06 -0.05 0.71 

SPCAT_np_22_24 0.56 0.03 -0.33 -0.23 -0.22 -0.08 -0.17 -0.09 -0.05 0.70 

SPCAT_para_mn_22_24 0.46 0.32 -0.41 -0.31 -0.28 -0.06 -0.19 -0.05 0.03 0.69 

SPCAT_pd_21 0.21 0.56 -0.11 -0.35 -0.24 -0.07 -0.11 -0.09 0.10 0.18 

SPCAT_pd_22_24 -0.01 -0.23 -0.06 0.50 0.18 -0.18 0.10 -0.05 -0.08 -0.31 

SPCAT_riit21_interior 0.37 0.19 -0.14 -0.16 -0.15 -0.06 -0.07 -0.05 0.24 0.13 

SPCAT_riit22_interior 0.07 0.25 0.04 -0.18 -0.15 -0.08 -0.06 -0.03 0.23 -0.01 

SPCAT_riit23_edge -0.39 -0.04 0.47 0.09 0.00 0.01 0.09 -0.09 -0.06 -0.53 

SPCAT_riit23_interior -0.25 -0.10 0.45 0.04 -0.07 -0.06 -0.01 -0.09 -0.07 -0.35 

SPCAT_riit23_transitional -0.48 -0.12 0.44 0.29 0.10 0.01 0.14 -0.04 -0.02 -0.71 

SPCAT_riit2324_edge -0.24 0.20 0.25 -0.17 -0.05 0.05 0.04 -0.01 0.06 -0.23 

SPCAT_riit2324_transitional -0.46 -0.10 0.32 0.38 0.23 -0.08 0.15 -0.03 -0.05 -0.71 

SPCAT_riit24_interior -0.16 -0.19 -0.11 0.08 0.41 0.33 0.11 0.36 -0.01 -0.20 

SPCAT_shape_index_21 -0.17 -0.12 0.23 -0.06 0.05 0.02 0.08 0.04 0.11 -0.19 

SPCAT_shape_index_22_24 -0.43 -0.46 0.34 0.51 0.32 -0.01 0.21 0.02 -0.12 -0.68 

SPCON_area_cv_slopeclass1 0.37 0.09 -0.30 -0.28 -0.15 0.08 -0.15 0.09 0.10 0.54 

SPCON_area_cv_slopeclass2 0.35 0.35 -0.38 -0.41 -0.23 0.14 -0.17 0.08 0.07 0.64 

SPCON_area_cv_slopeclass3 0.30 0.41 -0.23 -0.47 -0.26 0.06 -0.13 -0.02 0.09 0.52 

SPCON_area_sd_slopeclass2 0.29 0.41 -0.10 -0.36 -0.18 0.07 -0.10 0.00 0.14 0.15 

SPCON_circle_cv_slopeclass3 0.19 0.26 -0.06 -0.47 -0.21 0.09 -0.08 0.01 0.15 0.37 
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SPCON_circle_mn_slopeclass2 -0.10 -0.11 0.12 0.17 0.08 -0.05 0.03 -0.01 -0.10 -0.21 

SPCON_circle_sd_slopeclass3 0.22 0.32 -0.11 -0.49 -0.22 0.08 -0.09 0.00 0.17 0.42 

SPCON_cohesion_slopeclass2 -0.08 0.10 0.27 0.03 0.00 0.03 0.08 -0.06 0.00 -0.47 

SPCON_cohesion_slopeclass3 0.24 0.37 -0.14 -0.49 -0.24 0.06 -0.10 -0.04 0.18 0.43 

SPCON_ed_slopeclass1 -0.28 -0.31 0.26 0.44 0.30 0.03 0.13 0.06 -0.08 -0.68 

SPCON_ed_slopeclass2 -0.39 -0.08 0.35 0.39 0.27 -0.01 0.19 -0.01 -0.01 -0.89 

SPCON_ed_slopeclass3 0.00 0.48 -0.02 -0.30 -0.11 0.03 -0.01 -0.04 0.16 -0.03 

SPCON_focal_diff_33_77 -0.16 0.28 -0.04 -0.15 0.03 0.10 0.09 0.07 0.19 -0.12 

SPCON_focal33_gt50_is_std -0.57 -0.39 0.28 0.36 0.35 0.19 0.27 0.14 0.02 -0.63 

SPCON_focal77_gt50_is_cv -0.54 -0.16 0.29 0.20 0.21 0.15 0.23 0.09 0.10 -0.56 

SPCON_frac_mn_slopeclass2 -0.19 -0.22 0.33 0.26 0.12 -0.10 0.09 -0.06 -0.11 -0.48 

SPCON_frac_mn_slopeclass3 0.10 0.15 0.04 -0.34 -0.14 0.06 -0.05 -0.01 0.11 0.20 

SPCON_frac_sd_slopeclass2 0.15 0.26 -0.07 -0.34 -0.13 0.06 -0.06 -0.01 0.17 0.22 

SPCON_frac_sd_slopeclass3 0.24 0.39 -0.15 -0.51 -0.25 0.06 -0.10 -0.03 0.17 0.45 

SPCON_is_slope_max 0.24 0.26 -0.28 -0.49 -0.22 0.18 -0.12 0.08 0.18 0.62 

SPCON_is_slope_mean -0.22 0.34 0.15 -0.12 0.02 0.10 0.10 0.03 0.16 -0.40 

SPCON_is_slope_std 0.12 0.27 -0.26 -0.41 -0.17 0.17 -0.09 0.12 0.19 0.49 

SPCON_is_variety 0.28 0.43 -0.20 -0.58 -0.30 0.11 -0.14 -0.02 0.18 0.56 

SPCON_lpi_slopeclass1 -0.17 -0.27 0.03 0.33 0.30 0.05 0.06 0.14 -0.02 -0.35 

SPCON_lpi_slopeclass2 -0.38 -0.17 0.46 0.35 0.21 -0.04 0.21 -0.04 -0.05 -0.86 

SPCON_lpi_slopeclass3 -0.20 0.13 0.14 0.04 0.04 -0.06 0.09 -0.06 0.10 -0.32 

SPCON_lpi_slopeclass4 -0.16 -0.07 -0.02 -0.05 0.04 0.13 0.05 0.16 0.13 0.03 

SPCON_moran_gt50_is_30m -0.20 -0.15 -0.12 0.04 0.28 0.29 0.11 0.22 0.05 -0.06 

SPCON_moran_gt50_is_60m -0.23 -0.19 0.04 0.20 0.18 0.06 0.16 0.09 -0.02 -0.22 

SPCON_moran_gt50_is_adjusted -0.47 -0.37 0.19 0.38 0.46 0.25 0.24 0.20 -0.06 -0.66 

SPCON_para_mn_slopeclass2 0.20 0.28 -0.28 -0.37 -0.16 0.11 -0.12 0.07 0.13 0.50 

SPCON_para_mn_slopeclass3 0.02 0.02 0.11 -0.21 -0.07 0.07 -0.02 0.01 0.04 0.07 

SPCON_para_mn_slopeclass4 0.19 0.30 -0.10 -0.44 -0.20 0.06 -0.08 -0.03 0.17 0.36 

SPCON_para_sd_slopeclass2 0.13 0.16 -0.08 -0.28 -0.10 0.05 -0.05 0.00 0.14 0.25 

SPCON_para_sd_slopeclass3 0.21 0.29 -0.08 -0.48 -0.21 0.10 -0.08 -0.01 0.15 0.39 

SPCON_pd_slopeclass1 -0.33 -0.16 0.35 0.39 0.19 -0.06 0.16 -0.05 -0.08 -0.73 

SPCON_pd_slopeclass2 -0.15 -0.08 -0.16 0.20 0.16 0.03 0.04 0.10 0.01 -0.03 

SPCON_pd_slopeclass3 -0.17 0.13 0.19 -0.05 0.03 0.03 0.08 -0.01 0.10 -0.32 

SPCON_pd_slopeclass4 -0.06 0.33 -0.07 -0.24 -0.06 0.08 0.02 0.01 0.17 0.06 

TRANSP_a11_a17_roads_density -0.03 -0.04 -0.09 -0.03 0.10 0.08 -0.02 0.52 -0.02 -0.01 

TRANSP_a11_a38_roads_density -0.10 -0.11 -0.08 0.09 0.24 0.02 0.12 0.38 0.04 -0.16 

TRANSP_a21_a28_roads_density -0.10 -0.11 -0.05 0.11 0.18 -0.01 0.14 0.24 0.07 -0.17 

TRANSP_alltrans -0.04 -0.10 -0.12 -0.02 0.15 0.11 0.05 0.55 0.01 -0.02 

TRANSP_bts_faf2_pct -0.21 -0.22 -0.05 0.22 0.43 0.06 0.19 0.32 0.03 -0.35 
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TRANSP_bts_portfac_pct -0.05 -0.07 -0.08 0.01 0.06 0.08 0.04 0.21 0.01 0.03 

TRANSP_bts_rail_pct -0.14 -0.12 -0.03 0.08 0.23 0.25 0.03 0.32 0.00 -0.20 

TRANSP_culdesac_density 0.03 0.06 -0.03 0.01 -0.02 -0.02 -0.05 -0.01 -0.02 0.01 

TRANSP_ratio_roadden_imperv 0.38 0.02 -0.09 -0.08 -0.17 -0.26 -0.14 -0.16 -0.15 0.36 
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Appendix D 

 
Data distributions of independent variables of interest for 600 randomly-selected 
reference polygons of each land use class.   
 

 
 
Percent impervious surfaces.   (LC_nlcd01_imperv_mean). 
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Proportion of land consisting of urban patches > 2 ha in size. (SPCAT_patch_2ha_pct). 

 

 

Road density, all roads, (proportion of land from gridded version (TRANSP_allroads_density). 
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Percent vegetated land. (LC_sum_nlcd01_allveg). 

 

Percent housing units which are owner occupied (CENS_pct_hu_owneroccupied). 
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Percent population non-white (CENS_pct_nonwhite). 

 

Population density (#/sq km) (CENS_popden). 
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Housing unit density (#/sq km) (CENS_huden). 

 

Mean cost distance to nearest city of population > 10,000 (PROX_cost_10k_city). 
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Mean cost distance to nearest city of population > 50,000 (PROX_cost_50k_city). 

 

Mean cost distance to nearest city of population > 100,000 (PROX_cost_100k_city). 
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Population density change, 1990-2000 (#/sq/km) (CENS_pden_change90_00). 
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Appendix E 

 
Component variables in final models for 10-class stand-alone models.  The y-axis is the 
drop in % variance explained (decrease in r2) if variable is left out, i.e. variables with 
higher values are more important to the model. 
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Appendix F 

 
Importance rankings of 188 predictor variables: lower rankings = higher importance.  The 
rank is the result of executing a Random Forests prediction, then averaging the ranks of 
the %IncMSE and IncNodePurity importance measures (so ties are possible).  Rankings 
>= 50 are not shown, as those variables had little or no useful effect on model 
performance.  Variables are given in alphabetical order, which organizes them by 
category (same list and same order as in Appendix C). 
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CENS_hu_median_numb_rooms 8 - 18 18 10 - - - - - 

CENS_hu_median_year_struct_built - - - 46 - - - - - 48 

CENS_hu_pct_bottledgas - - - - - - - - - - 

CENS_hu_pct_lacking_complete_plumbing - - - - - - - - - - 

CENS_huden - 23 6 2 49 - 12 - 30 29 

CENS_median_hh_income 22 - 43 47 - - 19 42 31 19 

CENS_pct_5_or_more_units_in_structure - - 13 20 7 - 30 27 - - 

CENS_pct_foreignborn - 29 - - 42 41 27 - - - 

CENS_pct_households_with_ss_income - - - - - - 49 - - - 

CENS_pct_hu_5ormore_person_household 28 - - - - - - - - - 

CENS_pct_hu_occupied - - - - - - - - - - 

CENS_pct_hu_one_person_household - - - 39 18 - 41 - - - 

CENS_pct_hu_owneroccupied - 21 12 17 26 - 9 44 45 - 

CENS_pct_nonwhite - - 46 28 14 - 25 40 - - 

CENS_pct_pop_below_poverty_lev - - - 47 - - 40 33 - - 

CENS_pct_publictransport_to_work - 30 49 43 - - 49 11 33 39 

CENS_pct_walkbike_to_work - - 31 - - - 3 - - - 

CENS_pden_change90_00 25 - - 42 44 29 22 - 40 - 

CENS_popden - 17 10 3 - - - - - - 
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HIST_commerc_all_times 11 - - - 1 6 - - - - 

HIST_delta_natveg_1970_2001 - - - - - - - - - 21 

HIST_giras_11 18 15 40 - 35 - - - - 17 

HIST_giras_12 - - - - 10 9 36 - 33 - 

HIST_giras_13 - - - - - 5 - 25 - - 

HIST_giras_14 - - - - - - - 3 - - 

HIST_giras_17 - - - - - - - - 4 - 

HIST_highresid_92_and_01 - 41 20 22 - - - - - - 

HIST_highresid_all_times 33 17 2 11 30 - - - - 27 

HIST_indust_all_times 5 - - - 6 15 - 9 - - 

HIST_nlcd92_11 - - - - - - - - - - 

HIST_nlcd92_21 47 2 8 45 - - - 35 - 15 

HIST_nlcd92_22 - - 42 15 - - - - 48 - 

HIST_nlcd92_23 - - 41 - 7 2 - 5 - - 

HIST_nlcd92_31 - - - - - - - - - - 

HIST_nlcd92_32 - - - - - - - - - - 

HIST_nlcd92_33 - - - - - - - - - - 

HIST_nlcd92_85 - - - - - - - - 1 34 

HIST_nlcd92_91 - - - - - 13 - - - 24 

HIST_nlcd92_92 - - - - - 28 - - - 42 

HIST_recr_all_times - - - - - - - - 2 46 

HIST_sum_giras_ag - - - - - - - - - - 

HIST_sum_giras_allveg - - - - - - - - - 10 

HIST_sum_giras_comm_ind 45 - - - 18 19 - - 43 - 

HIST_sum_giras_urban 46 - - - - - - - - 3 

HIST_sum_nlcd92_ag - - - - - - - - - - 

HIST_sum_nlcd92_allveg - - - - - - - 44 32 11 
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HIST_veg1970_urban01 - - - - - - - - - 13 

LANDMRK_gnis_comind_density - - - - - - - - - - 

LANDMRK_gnis_indust_density - - - - - 12 - - - - 

LANDMRK_gnis_inst_grid - - - - - - - - 7 - 

LANDMRK_gnis_recr_grid - - - - - - 2 - - - 

LANDMRK_gnis_shopping_density - - - - - - - - - - 

LANDMRK_gnisconsol_instit_density - - - - - - 1 - - - 

LANDMRK_gnisconsol_recr_density - - - - 48 - - - 3 - 

LC_nlcd01_11 - - - - - - - - - 22 

LC_nlcd01_21 49 12 - - - - - - - - 

LC_nlcd01_22 - 9 34 - - - - - 20 31 

LC_nlcd01_23 19 42 4 - - - - - - - 

LC_nlcd01_24 - - - 44 1 36 - - - - 

LC_nlcd01_82 - - - - - - - - - - 

LC_nlcd01_90 - - - - - - - - - - 

LC_nlcd01_95 - - - - - - - - - - 

LC_nlcd01_imperv_mean 9 - - 40 21 48 - - - 13 

LC_nlcd01_imperv_range - - - - - - - - - - 

LC_nlcd01_imperv_stdev - 37 16 47 - 45 - 20 13 5 

LC_ratio_huden_imperv - - 34 4 46 11 8 19 - - 

LC_ratio_popden_nlcd2324 - - 49 24 34 2 31 14 23 - 

LC_sum_nlcd01_2122 16 1 - - - - - - - 12 

LC_sum_nlcd01_ag - - - - - - - - - - 

LC_sum_nlcd01_allnatveg - - - - - - - - - 7 

LC_sum_nlcd01_urban - 34 - - - - - - - 1 

MISC_area_km2 - 39 23 13 - 45 - - 29 - 

MISC_maritime - - - - - - - - - - 
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MISC_ned30m_elev - 47 - - - - 44 - 16 33 

MISC_ned30m_slope - - - - - - - - 14 - 

MISC_padcat1_2 - - - - - - - - - - 

MISC_vg2000_mean 3 6 36 37 27 - 33 29 33 36 

PROX_airport_crossing_dist 40 49 19 21 - - 39 26 - 49 

PROX_allcomind_gnis - - - 19 24 48 29 - - - 

PROX_allinst_gnis - - - - - 32 3 - - 45 

PROX_allrec_gnis - - - - - - - - 11 - 

PROX_city100k_dist 26 13 15 14 17 21 24 27 - - 

PROX_city20k_dist - - 37 7 7 - 31 - 41 - 

PROX_city250k_dist 19 2 9 5 20 18 9 24 19 34 

PROX_cost_10k_city - 38 17 5 14 - 37 - - - 

PROX_cost_50k_city 36 10 25 35 49 - - 49 - - 

PROX_cost_gnis_instit - - - - - 7 7 31 45 9 

PROX_cost_gnis_recr - - - - - - 18 43 - 40 

PROX_expand8rds_inters_2324 - - - - 36 22 - - - - 

PROX_interstate_road_dist 12 39 25 22 - - 20 6 - - 

PROX_major_road_dist - - 21 15 40 26 - 47 - - 

PROX_mean_dist_road 11 19 4 36 25 14 13 22 18 3 

PROX_patch_2ha - - - - 13 - - - - - 

PROX_prim_road_dist - - 33 - 41 - - 37 - - 

SA_acf1_400_1600m_bufs - - - - - - 27 - - - 

SA_acf2_400_1600m_bufs - - - - - - - - - - 

SA_diff_urbanbuf800m 21 - - - - - - 39 - - 

SA_localMoran_allnatveg - 16 6 12 23 34 11 - - 31 

SA_localMoran_alltransp 32 - - 8 - - 26 10 - - 

SA_localMoran_dist_road - 8 29 24 31 31 14 17 - 41 
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SA_localMoran_gnis_inst - - 23 27 28 42 6 - - - 

SA_localMoran_gnis_recr 26 - 44 26 47 - - - 15 47 

SA_localMoran_imperv - 44 14 9 39 - - 16 28 - 

SA_localMoran_lc_entropy - 26 25 32 - - - - 5 - 

SA_localMoran_medianrooms 13 - 3 29 43 40 16 34 - 23 

SA_localMoran_medianyear - - 45 30 31 38 - - - - 

SA_localMoran_nlcd2122 - 14 38 40 - - - - 11 - 

SA_localMoran_nlcd2324 10 46 32 10 - - - 20 44 - 

SA_localMoran_popden - 6 1 1 - 47 34 15 38 - 

SPCAT_area_mn_22_24 - - - - - 37 43 41 - - 

SPCAT_area_sd_21 35 24 - - - - - - - 43 

SPCAT_circle_mn_21 - 31 - - - - - - - - 

SPCAT_circle_mn_22_24 - - - - - - - - - - 

SPCAT_circle_sd_21 - 47 - - - - - - - - 

SPCAT_ed_22_24 - 28 - - - 35 46 31 - 18 

SPCAT_expan_zone_diff_21 13 - - - - - - - - - 

SPCAT_expan_zone_diff_22 - 20 - - - - - - - - 

SPCAT_expan_zone_diff_23 - 31 11 - 44 - - - - - 

SPCAT_expan_zone_diff_24 - - - - 31 - - - - - 

SPCAT_flattening_22_24 - - - - - - - - - - 

SPCAT_foc_annulus 1 - - - - - - - - - 

SPCAT_frac_mn_22_24 44 - - - - - - - - - 

SPCAT_frac_sd_21 - 31 - - - - - - - - 

SPCAT_lc_entropy - 25 22 - - - - - 42 5 

SPCAT_lpi_21 - - - - - - - - 27 - 

SPCAT_np_21 13 4 - - - - - - - - 

SPCAT_np_22_24 5 - - - - - - - - - 
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SPCAT_para_mn_22_24 - - - - - 20 45 30 - - 

SPCAT_pd_21 - 5 - - - - - - - - 

SPCAT_pd_22_24 5 - - 31 - 44 - 46 49 - 

SPCAT_riit21_interior - - - - - - - - 36 - 

SPCAT_riit22_interior - - - - - - - - 9 - 

SPCAT_riit23_edge - - - - - - - - - - 

SPCAT_riit23_interior - - 29 - - - - - - - 

SPCAT_riit23_transitional - - - - - - - - - - 

SPCAT_riit2324_edge - 36 - - - - - - - - 

SPCAT_riit2324_transitional - 21 - - - 17 - - - - 

SPCAT_riit24_interior - - - 34 3 10 42 38 - - 

SPCAT_shape_index_21 30 - - - - - - - 22 - 

SPCAT_shape_index_22_24 1 26 38 - - - - - - 20 

SPCON_area_cv_slopeclass1 - - - - - - - - - - 

SPCON_area_cv_slopeclass2 - - - - - - - 48 37 16 

SPCON_area_cv_slopeclass3 - - - - - - 23 - - - 

SPCON_area_sd_slopeclass2 - - - - - 25 - - - - 

SPCON_circle_cv_slopeclass3 - - - - - - - - - - 

SPCON_circle_mn_slopeclass2 - - - - - - - - - - 

SPCON_circle_sd_slopeclass3 - - - - - - - - - - 

SPCON_cohesion_slopeclass2 41 - - - - - 17 - - - 

SPCON_cohesion_slopeclass3 - - - - - - - - 24 - 

SPCON_ed_slopeclass1 3 - - - - - 34 - - 30 

SPCON_ed_slopeclass2 - - - - - - - 35 - 2 

SPCON_ed_slopeclass3 - 11 - - - - - - - 26 

SPCON_focal_diff_33_77 - - - - 22 - - - - - 

SPCON_focal33_gt50_is_std 22 - - - - 32 15 - - - 
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SPCON_focal77_gt50_is_cv 37 - - - 38 38 21 - - - 

SPCON_frac_mn_slopeclass2 - - - - - - - - - - 

SPCON_frac_mn_slopeclass3 - - - - - - - - 38 - 

SPCON_frac_sd_slopeclass2 30 - - - - - - - 26 - 

SPCON_frac_sd_slopeclass3 - - - - - - - - 45 - 

SPCON_is_slope_max 16 - - - - 48 - 17 17 44 

SPCON_is_slope_mean - - - - - - - - - 8 

SPCON_is_slope_std - 45 - - - - - 22 6 38 

SPCON_is_variety - 42 47 32 - 23 - - - - 

SPCON_lpi_slopeclass1 - - - - - - - - 25 - 

SPCON_lpi_slopeclass2 - - 48 - - - - - - 37 

SPCON_lpi_slopeclass3 - 35 - - - - - - - - 

SPCON_lpi_slopeclass4 42 - - - - - - - 8 - 

SPCON_moran_gt50_is_30m - - - - 14 42 - - - - 

SPCON_moran_gt50_is_60m - - - - - - - - - - 

SPCON_moran_gt50_is_adjusted 39 - - - 4 7 38 - - - 

SPCON_para_mn_slopeclass2 - - - - - - - - - - 

SPCON_para_mn_slopeclass3 - - - - - - - - - - 

SPCON_para_mn_slopeclass4 34 - - - - - - - - - 

SPCON_para_sd_slopeclass2 - - - - - - - - - - 

SPCON_para_sd_slopeclass3 - - - 38 - - - - - - 

SPCON_pd_slopeclass1 48 - - - - - 47 - - 24 

SPCON_pd_slopeclass2 29 - - - - 30 47 - - - 

SPCON_pd_slopeclass3 37 - - - - 24 - - - 27 

SPCON_pd_slopeclass4 - - - - - - - - 21 - 

TRANSP_a11_a17_roads_density - - - - - - - 1 - - 

TRANSP_a11_a38_roads_density - - - - 29 26 - 8 - - 
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TRANSP_a21_a28_roads_density - - - - - - - 12 - - 

TRANSP_alltrans 42 - - - - - - 1 - - 

TRANSP_bts_faf2_pct - - - - 5 15 - 13 - - 

TRANSP_bts_portfac_pct - - - - - - - - - - 

TRANSP_bts_rail_pct - - - - 12 4 - 4 - - 

TRANSP_culdesac_density 
- - - - 

 
- 

 
- 

 
- 

 
- 

 
- - 

TRANSP_ratio_roadden_imperv 22 - 28 - 37 1 3 6 10 - 
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Appendix G 

 Mapped residuals (percent) of stand-alone 10-class models for training (left) and 
validation (right), for each class. 
SFRES_L: 
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