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ABSTRACT 

PROTEOME-TRANSCRIPTOME ALIGNMENT OF MOLECULAR PORTRAITS BY 

SELF-CONTAINED GENE SET ANALYSIS: BREAST CANCER SUBTYPES CASE 

STUDY 

Koushik Ayaluri, M.S. 

George Mason University, 2020 

Thesis Director: Dr. Ancha Baranova 

 

Gene sets are formed by grouping together functionally related genes or pathways. Gene 

set analysis (GSA) is a method previously developed for examining transcriptome data. 

As the gene sets are unit of expression in transcriptome-level GSA, similarly, the unit of 

protein abundance may be used for proteomics GSA.  Self-contained and Competitive are 

two GSA approaches which differ by their underlining null hypothesis. In Self-contained 

approach, each gene set is evaluated to check if it is expressed differentially between two 

phenotypes. In Competitive approach, each gene set is compared to all the genes except 

the genes in that set. Competitive approaches are rapidly becoming popular for analyzing 

proteomics data, as much as they were for transcriptomics data. This research 

applied Self-contained GSA test of Gene sets net correlations analysis (GSNCA) to 

proteomics data of 77 annotated samples of breast cancers. Regardless of significant 

variation in the structure of proteomics and transcriptomics data, many pathway-wide 
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characteristics features of breast cancer molecular subtypes were replicated at the protein 

level. In this work, GSA yielded a set of observations visible at proteome level, such as 

mitotic cell cycle process involvement in the HER2 molecular subtype. Overall, this 

study proves the value of Gene Sets Net Correlation Analysis (GSNCA) approach as a 

critical tool for analyzing proteomics data in general, and for dissecting protein-level 

molecular portraits of breast cancer tumors, in particular. 

 

 



1 

 

 

 

INTRODUCTION 

 

In recent years, several proteomic methodologies have been developed that now 

make it possible to identify, characterize, and comparatively quantify the relative levels 

of expression of hundreds of proteins that are co-expressed in each cell type or tissue. 

One of the most fundamental approaches to understanding the functions of individual 

proteins in complex cellular processes is to correlate protein expression levels with 

observed biological changes [1]. Processing and analysis of this proteomics data are done 

through a complex multistep procedure. The molecular profiles obtained in these large-

scale omics experiments are most frequently represented by gene expression levels, 

protein abundances or metabolite concentrations, and always require further analysis and 

interpretation. Most often these types of data do not offer immediate understanding of 

difference between phenotypes, or clearly display mechanism of the disease. To 

understand the fundamental biological processes underpinning phenotypic differences 

between normal and malignant states and to discern relevant pathophysiological 

mechanisms, high throughput data are usually analyzed in a context of pre-existing 

biological information, such as protein-protein interactions (PPIs), biological pathways, 

drug-protein interaction data; disease-specific databases and other relevant information 

sources are being commonly interrogated. Therefore, in the context of proteomics data, 
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we will start with the very first and highly common step of integration of proteome 

profiles with biological pathways [2]. The techniques for proteomics data integration that 

we will use are very similar to that already tested in the field of genomics data [3].  

The major difficulty in applying overrepresentation analysis for proteomics data is 

limited sample size. Gene set analysis requires a list of entities, significantly different 

between two phenotypes. In proteomics datasets, underlining variances in protein 

expression or technical variances often preclude clear determination of differentially 

abundant (DA) protein lists. For example, in the case of analyzing a proteomics data set 

collected from patients with Parkinson’s disease [4], there were 72 test patients and 72 

healthy control patients, a relatively large sample size for proteomics data. When this 

data set was studied for overrepresentation of genes [5], after correction for multiple 

testing, no DA proteins between the two groups were found. Because of that, unadjusted 

p-values were used for overrepresentation analysis, which lead to high risk of false 

positives. 

The overrepresentation analysis of gene sets has been designed to improve our 

understanding of tediously long differentially expressed (DE) gene lists, which is a 

typical output of transcriptomics research. This type of analysis compares sets of genes 

annotated to pathways in a Gene Ontology (GO) categories, or Kyoto Encyclopedia of 

genes and genomes (KEGG), or Molecular Signature Database (MSigDB), or any other 

pathway database to a list of those genes that are significantly Differentially expressed 

(DE) between two phenotypes, using standard statistical tests for enrichment [6]. This 
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overrepresentation analysis is also commonly used for examining proteomics data. Here 

we will use an approach collectively known as Gene Set Analysis (GSA). GSA 

approaches are characterized into two groups: self-contained or competitive, on the basis 

of the null hypotheses they test [7]. In proteomics GSA, significantly differentially 

abundant (DA) proteins are extracted from proteomics data, in the place of significantly 

DE genes. Competitive GSA approaches are progressively becoming popular and are 

more comprehensively analyzed in the context of proteomics data as much as in context 

of transcriptomics data [2].  

The various techniques similar to Gene Set Enrichment Analysis (GSEA) applied 

for proteomics data are known as protein set enrichment analysis (PSEA)) [8] and PSEA-

Quant (an example of protein set enrichment analysis allowing to compare proteomic 

profiles from one or more conditions) [9]. According to our knowledge, self-contained 

approaches are not frequently applied to proteomics data, even though they have a low 

Type I error rate and high power compared to the competitive approach [10].  

In a previous recently published work, self-contained GSA tests were successfully 

applied in an analysis of the proteomes of the four consensus molecular subtypes (CMSs) 

previously established by transcriptome dissection of colon carcinoma specimens 

[GLAZKO G et al., 2019]. Self-contained approaches compare whether a gene set is 

differentially expressed between two phenotypes, while competitive approaches compare 

a gene set against its complement that contains all genes except genes in the set. Inspired 

by this work, were undertook an effort to understand the power and the applicability of 
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self-contained GSA tests on proteomics data by applying these tests on breast cancer 

proteomics data.  

Breast cancer is a heterogenous disease with distinct molecular portraits, with 

subtype-dependent clinical outcomes [11]. When breast cancer is detected in the early 

stage, and is in the localized stage, with suitable treatment the 5-year relative survival 

rate is 100%. The size of a breast cancer and how far it has spread are two of the 

most important factors in predicting the prognosis. Initial clinical characterization of the 

breast cancer is defined by TNM (Tumor, Nodes, Metastasis) stage. T describes the size 

of the tumor (area of cancer) and its stage. N describes whether the cancer has spread to 

the lymph nodes that are involved. M describes whether the cancer has spread to a 

different part of the body. A significant limitation of the breast cancer TNM staging 

system is that it does not account for biologic factors known to have predictive and 

prognostic value such as tumor grade, estrogen receptor (ER) and progesterone receptor 

(PR) status, and HER2 status [12]. So, the treatments and the therapies that follow are 

decided by the different molecular phenotype of the breast cancer. 

In the last two decades whole transcriptome analysis became routinely used to 

dissect cancer molecular subtypes correlating with clinical outcomes. Starting with the 

seminal paper of Golub et al [13], defining finer subclasses of the leukemias, there has 

been a steady growth in similarly designed research [14,15]. The Breast cancer is 

differentiated into four different molecular subtypes based on mRNA expression into 

Luminal A, Luminal B, Basal-like (triple-negative) and HER2 positive. The basal-like 
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subtype is characterized by the expansion of keratins typically found in basal epithelial 

cells, such as keratins CK5 and CK17, low expression of the ER gene cluster and HER2 

gene cluster and high expression of the proliferative gene cluster [16]. HER2 (ERBB2) 

gene amplification and its corresponding overexpression are present in 15–30% of 

invasive breast cancers and is associated with poor prognosis [17]. Signaling pathways 

activated by HER2 include mitogen-activated protein kinase (MAPK), phosphoinositide 

3-kinase (PI3K/Akt), phospholipase C γ, protein kinase C (PKC), signal transducer and 

activator of transcription (STAT) [18]. At the RNA and protein level, Luminal A and B 

subtypes are largely distinguished by the expression of two main biological processes: 

proliferation/cell cycle-related and luminal/hormone-regulated pathways [19]. When 

compared to the Luminal A tumors, the Luminal B tumors have higher expression of 

proliferation/cell cycle-related genes or proteins (e.g. MKI67 and AURKA) and lower 

expression of several luminal-related genes or proteins such as the progesterone receptor 

(PR) [19] and FOXA1, but not the estrogen receptor [19], which is found similarly 

expressed between the two luminal breast carcinoma subtypes, and, therefore, may help 

to distinguish luminal from non-luminal disease only. 

As protein expression links genotype to phenotype, for more detailed 

characterization of breast cancer molecular subtypes, respective proteomes were also 

analyzed. Proteomic data are commonly collected using high-resolution accurate mass 

tandem mass spectrometry (MS/MS) that includes extensive peptide fractionation and 

phosphopeptide enrichment [20]. Although mass spectrometry-based proteomics has the 

advantage of detecting thousands of proteins from a single experiment, it faces certain 
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challenges such as the presence of missing values, indicating lack of quantification for 

certain protein in some but not all samples. This is a common issue in proteomic 

experiments, which arises due to sample complexity and variation in sampling from one 

run to another [21]. To overcome the missing value problem, proteins that are too 

sparsely quantified must be removed from consideration. In my preliminary run, I have 

removed the proteins which have more than 5% of missing data. After filtering the data, 

some more missing values remained in the dataset. These values may be imputed using 

certain statistical approaches [22]. Here I implemented the imputation method by MICE 

package and imputed the missing values by median imputation. 

Here I reanalyze previously published proteomes of breast cancer molecular 

subtypes to explain to what extent transcriptionally identified breast cancer molecular 

subtypes are detected at the proteome level with gene sets network correlations analysis 

(GSNCA) a self-contained GSA test and find if any new pathways are detected with the 

GSNCA. 
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MATERIALS AND METHODS 

 

1. MICE package 

MICE (Multivariate Imputation via Chained Equations) is a multiple imputation 

technique. MICE operate under the assumption that given the variables used in the 

imputation procedure, the missing data are Missing at Random (MAR) [23]. It imputes 

data on a variable by variable basis by specifying an imputation model per variable. 

2. Self-contained GSA tests 

2.1 KS and RKS 

There are two variants of the Kolmogorov-Smirnov test, one that tests the null 

hypothesis of mean vector equality (KS) while the other that tests the variance vector 

equality (RKS) between the two phenotypes. The Radial Kolmogorov-Smirnov is 

sensitive to the alternatives which show similarity in mean vectors and difference in the 

scale. These two tests are available in GSAR Bioconductor in R [24]. 

2.2 ROAST 

Rotation gene set tests (ROAST) checks if the coefficient is non-zero for all the 

genes using a linear modeling framework [25]. It gives information about the correlations 

between the genes and also has the ability to use different alternative hypotheses to test 

the direction of change for a gene [25]. This test uses a parametric resampling method 
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called rotation and hence has better p-values even for the small sample sizes.  It is 

available in the limma Bioconductor of R.  

 

2.3 GSNCA  

Given two conditions, the Gene Sets Net Correlation Analysis is used to account 

for the net correlation structure for a gene between them [26]. It is available in R as a 

function named GSNCA test in a Bioconductor package GSAR. Here GSNCA test was 

applied to the gene sets to find the differential expression (DE), differential variability 

(DV) and differential co-expression (DC) between the cancer subtypes.  

For a pathway to be included as a DE or a DV pathway, it should have the 

Benjamini - Hochberg value adjusted to <0.01 after multiple testing corrections. A 

pathway needs to include more than 60% each of upregulated and downregulated genes 

and the original pathways should account for at least 50%. Its addition to this, a pathway 

should have the Benjamini - Hochberg value <0.1 after correction, to be included in DC 

pathway [2]. 

3. Competitive GSA tests  

3.1 GSEA  

The Gene Set Enrichment Analysis is said to be the first competitive GSA test 

method [27]. It tests the null hypothesis that the phenotypic association between the 

genes in a gene set is random. As local and global test statistic, it uses signal to noise 

ratio and weighted Kolmogorov-Smirnov tests respectively. It may be accessed on the 

website (http://software.broadinstitute.org/gsea/index.jsp). 

http://software.broadinstitute.org/gsea/index.jsp
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3.2 ROMER  

As the name suggests, the Rotation testing using Mean Ranks (ROMER) tests if 

the genes in a gene set are randomly associated with the phenotype as the null hypothesis. 

This is similar to that of GSEA except for the fact that it uses rotations to get the p-values 

instead of permutations as seen in ROAST. This is available in the limma package of 

Bioconductor [28]. 

4. Minimum spanning tree 

The co-expression networks are produced using the minimum spanning tree 

(MST) method. In MST2 the vertices correspond to gene in the gene set and set of edges 

connecting pairs of vertices with weights estimated by some correlation distance 

measure. The connection network MST2 provides the minimal set of critical interactions 

between genes, which we interpret as a functional interaction network. A gene that is 

strongly associated with most of the other genes in the series of genes appears to occupy 

a central role and has a relatively high degree in MST2, as the shortest paths connecting 

the vertices of the first and second MSTs continue to pass through this gene. A gene with 

low inter-gene associations, by comparison, most likely occupies a non-centric role in the 

MST2 and has a degree of 2. This property of the MST2 makes it a powerful graphical 

visualization method, by highlighting the most influential genes, to analyze the full 

correlation network obtained from gene expression data [24]. 
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5. Data Set 

 The breast cancer proteomes consist of 77 tumor samples and 3 biological 

replicates and 6807 proteins were downloaded from [20]. The data is already normalized 

and TCGA identifiers as well as clinical information were available for each sample [20]. 

This cohort includes a balanced representation of PAM-50 defined intrinsic subtypes of 

breast cancers including 19 basal-like, 13 HER2 (ERBB2)-enriched tumors, 23 luminal A 

and 25 luminal B tumors. 
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RESULTS 

 

When the samples for all four-breast cancer molecular subtypes were analyzed by 

PCA based on their proteome features, the separation of subtypes was relatively poor 

(Fig.1). Here we embark on finding out if there are any protein-level pathways from 

MSigDB C2 curated gene sets that were differentially expressed between breast cancer 

molecular subtype. 

 

 

 

 

Figure 1. PCA plot for Breast cancer subtypes. The number in parenthesis indicates 

the percent of variance explained by each Principal Component.  
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1. Breast cancer subtype specific insights extracted using GSNCA 

Using GSNCA analysis, five pathways were differentially co-expressed between 

basal subtype and other three subtypes, seven pathways were differentially co-expressed 

between HER2 subtype and other three subtypes, three pathways differentially co-

expressed between Luminal A and other three subtypes and seven pathways differentially 

co-expressed between Luminal B and other three subtypes. Significant pathways were 

those with Benjamini-Hochberg adjusted p-value <0.01. 

1.1 Pathways differentially expressed between Basal subtype and other breast 

cancer subtypes 

Previous transcriptome analysis showed that the genes associated with signal 

transduction, angiogenesis, cell cycle and proliferation, cell survival, DNA replication 

and recombination, motility and invasion, and NFkB signaling are overexpressed in basal 

tumors [29]. The 5 differentially co-expressed pathways between basal subtype and the 

other three breast cancer subtypes are ‘Doane breast cancer classes downregulated’, 

’Ginestier breast cancer 20Q13 amplification upregulated’, ’Nikolsky breast cancer 7Q21 

Q22 amplicon’, ’Roylance breast cancer 16Q copy number upregulated’ and ‘Yang breast 

cancer ESR1 upregulated’ (Table 1) discovered from the MSigDb C2 curated gene sets 

with Benjamini-Hochberg adjusted p-value <0.01. As we can observe from the (Table 

2), all the hub genes for both groups are upregulated. The hub genes are defined as genes 
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with the largest weights and show that these genes correspond frequently to major and 

specific pathway regulators, as well as to genes that are most affected by the biological 

difference between two conditions. 

 

 

 

Table 1: GSNCA highlighted pathways differentially co-expressed between basal 

subtype and other breast cancer subtypes and their GSNCA P-values 

 

Pathway Names 
GSNCA 

P-value 

DOANE_BREAST_CANCER_CLASSES_DN 0.008 

GINESTIER_BREAST_CANCER_20Q13_AMPLIFICATION_UP 0.004 

NIKOLSKY_BREAST_CANCER_7Q21_Q22_AMPLICON 0.004 

ROYLANCE_BREAST_CANCER_16Q_COPY_NUMBER_UP 0.001 

YANG_BREAST_CANCER_ESR1_UP 0.002 
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Table 2: Hub genes differ between Basal subtype and other breast cancer subtype

 
Hub Genes 

Pathway Names 

Group-1 

(Basal 

Subtype) 

Up or 

Down 

Group-2 

(Other 

three 

subtypes) 

Up or 

Down 

DOANE_BREAST_CANCER_CLASSES_DN PARVB Up FERMT1 Up 

GINESTIER_BREAST_CANCER_20Q13_AMPLIFICATION_UP CFD Up SEC62 Up 

NIKOLSKY_BREAST_CANCER_7Q21_Q22_AMPLICON MVD Up ZC3H18 Up 

ROYLANCE_BREAST_CANCER_16Q_COPY_NUMBER_UP PLCG2 Up CPNE2 Up 

YANG_BREAST_CANCER_ESR1_UP INPP4B Up CA12 Up 
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Figure 2. Different co-expression network configuration of Yang Breast Cancer ESR1 

Up in Basal subtype vs other subtypes. 

 

 

  

 Below the differences in ‘Yang breast cancer ESR1 upregulated’ gene set 

representation in two types of breast cancer are explained in detail. For basal subtype, the 

hub protein of this pathway is INPP4B, which encodes for inositol polyphosphate 4-

phosphate type II. This enzyme is involved in phosphatidylinositol signaling pathway. It 

plays an important role in the late stages of macropinocytosis by dephosphorylating 

phosphatidylinositol 3,4-bisphosphate in membrane ruffles. For the other breast 

carcinoma subtypes, the hub protein is CA12, which participates in a variety of biological 
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processes, such as respiration, calcification, acid-base balance, bone resorption, and the 

formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. The carbonic 

anhydrase XII (CA12) gene encodes a zinc metalloenzyme, which is responsible for 

acidification of the microenvironment of cancer cells, commonly taking place in estrogen 

receptor alpha positive (ER alpha +ve) breast tumors [30]. 

INPP4B, which is a hub gene of group-1 breast cancers, interacts with MLPH, 

WFS1, FBP1 and ABAT genes, among which both MLPH and FBP1 are upregulated. 

INPP4B acts as a tumor suppressor by negatively regulating normal and malignant 

mammary epithelial cell proliferation through regulation of the PI3K/Akt signaling 

pathway. The loss of INPP4B protein is a marker of aggressive basal-like breast cancer 

[31]. It interacts with MLPH gene which is upregulated in Group 1 breast cancers (basal 

subtype), and encodes a protein called melanophilin. FBP1 gene, which is also 

upregulated only in group 1 breast cancers, acts as a rate-limiting enzyme in 

gluconeogenesis by catalyzing the hydrolysis of fructose 1,6-bisphosphate to fructose 6-

phosphate in the presence of divalent cations. In breast cancer, overexpression of FBP1 

protein may repress tumor growth, migration and glycolysis by targeting P4HTM [32].  

Overall, a set of proteome-derived pathways, that I have detected in basal breast 

cancer subtype samples was somewhat aligned with the previously known transcriptional 

characteristics of basal subtype of breast cancer, with an addition of overexpression of 

P4HTM gene, which is not common in the breast cancer as the involvement of the 

P4HTM gene in the breast cancer is currently poorly explained. 
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1.2 Pathways differentially expressed between HER2 subtype and other breast 

cancer subtypes 

Human epidermal growth factor receptor 2 (HER2) shows high levels of protein 

expression in HER2-positive cancers, which represent an aggressive type of breast 

tumors. Previous transcriptomic analysis showed the major features of HER2-positive 

subtype of the breast cancer are ubiquitin mediated proteolysis, RHO-family GTPase 

signaling, M-phase signaling, integrin signaling and TGF-beta signaling [33], with 

activation of a number of signaling pathways such as mitogen-activated protein 

kinase (MAPK), phosphoinositide 3-kinase (PI3K/Akt), phospholipase C γ, protein 

kinase C (PKC), signal transducer and activator of transcription [43]. The seven 

differentially co-expressed pathways between HER2-positive breast cancer and other 

three subtypes were ‘Framer breast cancer cluster 2’,’Lien breast carcinoma metaplastic 

vs ductal downregulated’, ’Pujana breast cancer with BRCA1 mutated upregulated’, 

’Smid breast cancer luminal B upregulated’, ’Smid breast cancer relapse in brain 

downregulated’, ’Sortiriou breast cancer grade 1 vs 3 upregulated’, and ’Vantveer breast 

cancer ESR1 upregulated’ (Table 3). All of these pathways were discovered among the 

MSigDb C2 curated gene sets with Benjamini-Hochberg adjusted p-value <0.01. As we 

can observe from the (Table 4), all the hub genes for both comparison groups were 

upregulated.  
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Table 3. GSNCA highlighted pathways differentially co-expressed between HER2 

subtype and other breast cancer subtypes and their GSNCA P-values 

Pathway Names 
GSNCA 

P-values 

FARMER_BREAST_CANCER_CLUSTER_2 0.001 

LIEN_BREAST_CARCINOMA_METAPLASTIC_VS_DUCTAL_

DN 

0.003 

PUJANA_BREAST_CANCER_WITH_BRCA1_MUTATED_UP 0.001 

SMID_BREAST_CANCER_LUMINAL_B_UP 0.001 

SMID_BREAST_CANCER_RELAPSE_IN_BRAIN_DN 0.003 

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP 0.002 

VANTVEER_BREAST_CANCER_ESR1_UP 0.004 
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Table 4. Hub genes differ between HER2 subtype and other breast cancer subtypes 

 

 

 Hub Genes 

Pathway Names 

Group-1 

(Her2 

Subtype) 

Up 

or 

down 

Group-2 

(Other 

three 

subtypes) 

Up 

or 

down 

FARMER_BREAST_CANCER_CLUSTER_2 CENPE Up KIF11 Up 

LIEN_BREAST_CARCINOMA_METAPLASTIC_VS_DUCTAL_DN SPINT2 Up FOXA1 Up 

PUJANA_BREAST_CANCER_WITH_BRCA1_MUTATED_UP DNMT1 Up NCAPD2 Up 

SMID_BREAST_CANCER_LUMINAL_B_UP ERBB4 Up FOXA1 Up 

SMID_BREAST_CANCER_RELAPSE_IN_BRAIN_DN KIAA1324 Up FOXA1 Up 

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP CEP55 Up NCAPH Up 

VANTVEER_BREAST_CANCER_ESR1_UP SCAMP1 Up TBC1D9 Up 
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Figure 3. Different co-expression network configuration of Farmer Breast Cancer Cluster 

2 in HER2 subtype vs other subtypes 

 

 

 

 Below the differences in the ‘Farmer Breast Cancer Cluster 2’ pathways revealed 

by the group comparison depicted above are explained in detail. For HER2 subtype of the 

breast tumors, the hub protein is CENPE. This protein plays a crucial role in the cell-

cycle promotion from metaphase to anaphase [34]. In breast cancer, CENPE upregulation 

is strongly correlated with disease-specific survival [35]. The progression of breast cancer 

cells to G2-M phase is assumed to be heavily dependent on CENPE. Notably, this gene 

also plays similar function in the prostate cancer cells. For the other breast carcinoma 
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subtypes, the hub gene of the same pathway is KIF11, which encodes a member of 

kinesin-like protein family involved in several spindle dynamics. The major function of 

this gene is in the processes of centrosome separation, chromosome positioning and in 

establishing a polar spindle during cell mitosis [30]. The overexpression of KIF11 is 

common in the advanced stage of the malignancy [36]. 

 The CENPE hub gene interacts with ESRP1, CEP55, NDC80, KIF15, ASPM and 

RB1CC1 genes. In breast cancer, overexpression of the NDC80 gene is associated with 

poor clinical outcomes. NDC80 plays a crucial role in tumorigenesis, as it is a potential 

mitotic target for breast cancer [37]. However, only CEP55, ASPM, ESRP1, CENPE, 

RB1CC1 and PRKDC genes are upregulated in the group 1 tumors, which is HER2 

subtype phenotype. The overexpression of PRKDC gene plays a critical role in regulating 

cell cycle and chromosomal segregation which promotes tumorigenesis and results in 

poor survival of HER2 subtype breast cancer [38]. RB1CC1 gene which is upregulated 

inhibits PTK2/FAK1 and PTK2B/PYK2 kinase activity, affecting their downstream 

signaling pathways [39,40]. The protein encoded by RB1CC1 interacts with signaling 

pathways to regulate cell growth, cell proliferation, apoptosis, autophagy, and cell 

migration. ASPM plays a crucial role in controlling the function of mitotic spindle [41]. 

ASPM overexpression similar to the CENPE is involved in the regulation of G2/M cell 

cycle progression [42]. So, I am assuming ASPM and CENPE could play crucial role in 

the progression of HER2 subtype breast carcinoma. 

 Overall, a set of proteome-derived pathways deregulated in HER2 breast cancer 

subtype was aligned with known transcriptomic characteristics of the HER2 breast cancer 
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subtype phenotype such as upregulated genes involved in G2/M cell cycle progression, 

inhibition of PTK2B/PYK2 kinase activity [39,40]. 

1.3 Pathways differentially expressed between Luminal A subtype and other breast 

cancer subtypes 

Luminal A breast cancer is hormone receptor positive, HER2 negative and exhibit 

low levels of protein Ki-67 which assists in how rapid the cancer cells multiply. They 

represent 50% - 60% of all the breast cancers. The previous transcriptomic analysis of the 

luminal A breast cancer subtype show expression of luminal epithelial cytokeratins (CK) 

8 and 18 and show expression of the genes encoding the estrogen-receptor and related 

proteins such as LIV1, FOXA1, XBP1, GATA3, BCL2, erbB3 and erbB4 [44]. The three 

differentially co-expressed pathways of the Luminal A subtype and other three breast 

cancer subtypes are ‘Poola invasive breast cancer’, ‘Smid breast cancer relapse in brain 

downregulated’, ’Vantveer breast cancer ESR1 upregulated’ (Table 5) discovered from 

the MSigDb C2 curated gene sets with Benjamini-Hochberg adjusted p-value <0.01. As 

we can observe from the (Table 6), all the hub genes for both the groups are upregulated. 

 

 

Table 5. GSNCA highlighted pathways differentially co-expressed between Luminal A 

subtype and other breast cancer subtypes and their GSNCA P-values 

Pathway Names 
GSNCA 

P-values 

VANTVEER_BREAST_CANCER_ESR1_UP 0.004 

POOLA_INVASIVE_BREAST_CANCER_DN 0.005 

SMID_BREAST_CANCER_RELAPSE_IN_BRAIN_DN 0.008 
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Table 6. Hub genes differ between Luminal A subtype and other breast cancer subtypes 

 
Hub Genes 

Pathway Names Group-1 

(Luminal-A) 

Up or 

down 

Group-2 

(Other three 

subtypes) 

Up 

or 

down 

POOLA_INVASIVE_BREAST_CANCER_DN TF Up RABEP1 Up 

SMID_BREAST_CANCER_RELAPSE_IN_BRAIN_DN GATA3 Up TBC1D9 Up 

VANTVEER_BREAST_CANCER_ESR1_UP FOXA1 Up TBC1D9 Up 
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Figure 4. Different co-expression network configuration of Smid breast cancer relapse in 

brain downregulated in Luminal A subtype vs other subtypes 

 

 

 

 Below the differences in ‘Smid breast cancer relapse in brain downregulated’ 

pathways will be discussed in detail. For luminal A subtype breast cancer group 1 the hub 

gene is GATA3 which is an important expression gene from the transcriptional analysis. 

GATA3 is a transcriptional activator which binds with the enhancer of the T-cell receptor 

alpha and delta genes [45]. In luminal subtype breast cancer, the GATA3 upregulates 

protooncogenes with increased expression of the ER target genes and may promote 

tumorigenesis [46]. While for the other subtypes pathway the hub gene is TBC1D9 which 

is also known as multidrug resistance gene (MDR1). 41.2% of the breast cancer tumors 
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express TBC1D9 [47]. TBC1D9 gene expression plays a significant role in supporting 

resistance to adjuvant chemotherapy in women with breast cancer. 

 The GATA3 is a hub gene of group 1 co-expression pathway (Fig 4). It interacts 

with FOXA1, RBM47, AR, CELSR1, ERBB3 & KIAA1324 genes which are upregulated 

genes in Luminal A subtype of the breast cancer. If a breast cancer tumor exhibits the 

expression of these four transcription factors (GATA3, ER-alpha, FOXA1 and XBP1), it 

is actually classified as Luminal A subtype as its very definition. GATA3 acts as an 

important marker of the all luminal breast cancers [48]. In the Luminal A subtype breast 

cancer, a combination of FOXA1 and GATA3 transcription factors controls the gene 

expression pattern. ESR1, which encodes an estrogen receptor 1, also exhibits 

overexpression in the Group 1 (Luminal A) cancer subtype. There is also a small network 

in the Group 1, where upregulated LIN7A, DACH1, SLC9A1, MAST4 and ITPR1 genes 

are interlinked. This small subnetwork is not prominent in the Group 2 gene network. 

Notably, this subnetwork was previously noted as associated with brain cancer relapse. 

This subnetwork includes MAST4, a mast cell biomarker implicated in the metastasis of 

breast cancer cells, and DACH1, a cell fate determination factor [49].  

 Overall, a set of proteome derived pathways deregulated in the Luminal A 

subtype breast cancer aligns well with the previously described transcriptional 

characteristics of the Luminal A subtype breast cancer.  
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1.4 Pathways differentially expressed between Luminal B subtype and other breast 

cancer subtypes 

Luminal B subtype breast cancers are characterized by higher expression of 

Estrogen receptor, Progesterone receptors and Ki-67 protein. A total of 15-20% of the 

breast cancers belong to Luminal-B subtype; they have generally more aggressive 

phenotype [44]. The major difference between the Luminal A and B subtypes is that 

Luminal B subgroup has increased expression of proliferation-related genes such as avian 

myeloblastosis viral oncogene homolog (MYB), gamma glutamyl hydrolase (GGH), 

lysosome-associated transmembrane protein 4-beta (LAPTMB4), nuclease sensitive 

element binding protein 1 (NSEP1) and cyclin E1 (CCNE1) [44]. Previous transcriptomic 

analysis of the Luminal-B subtype breast tumors pointed at increased expression of 

growth receptor signaling genes [50]. The seven differentially co-expressed pathways of 

Luminal B subtype when compared with other three subtypes of breast cancer are 

‘Bertucci medullary vs Ductal breast cancer downregulated’, ‘Doane breast cancer 

classes upregulated’, ‘Lien breast carcinoma metaplastic vs Ductal downregulated’, 

‘Smid breast cancer Luminal B upregulated’, ‘Smid breast cancer relapse in bone 

upregulated’, ‘Vantveer breast cancer poor prognosis’ and ‘Yang breast cancer ESR1 

downregulated’ (Table 7). All these pathways were discovered in the MSigDb C2 

curated gene sets with Benjamini-Hochberg adjusted p-value <0.01. As we can observe 

from the (Table 8), all the hub genes for both comparison groups were upregulated. 
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Table 7. GSNCA highlighted pathways differentially co-expressed between Luminal B 

subtype and other breast cancer subtypes and their GSNCA P-values 

Pathway Names GSNCA  

P-Values 

BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_DN 0.01 

DOANE_BREAST_CANCER_CLASSES_UP 0.008 

LIEN_BREAST_CARCINOMA_METAPLASTIC_VS_DUCTAL_DN 0.01 

SMID_BREAST_CANCER_LUMINAL_B_UP 0.001 

SMID_BREAST_CANCER_RELAPSE_IN_BONE_UP 0.003 

VANTVEER_BREAST_CANCER_POOR_PROGNOSIS 0.002 

YANG_BREAST_CANCER_ESR1_DN 0.008 
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Table 8. Hub genes differ between Luminal B subtype and other breast cancer subtypes 
 Hub Genes 

Pathway Names 
Group-1 

(Luminal-
B) 

Up or 
down 

Group-2 
(other 
three 

subtypes) 

Up or 
down 

BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_DN TPM2 Up TPM2 Up 

DOANE_BREAST_CANCER_CLASSES_UP CDK12 Up FOXA1 Up 

LIEN_BREAST_CARCINOMA_METAPLASTIC_VS_DUCTAL_DN TTC39A Up FOXA1 Up 

SMID_BREAST_CANCER_LUMINAL_B_UP ESR1 Up GATA3 Up 

SMID_BREAST_CANCER_RELAPSE_IN_BONE_UP TOM1L1 Up GATA3 Up 

VANTVEER_BREAST_CANCER_POOR_PROGNOSIS PRC1 Up MCM6 Up 

YANG_BREAST_CANCER_ESR1_DN CDH3 Up TRIM2 Up 
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Figure 5. Different co-expression network configuration of Yang breast cancer ESR1 Dn 

in Luminal B subtype vs other subtypes 

 

 

 

  The changes in the ‘Yang breast cancer ESR1 DN’ will be discussed in detail 

below. The hub gene for the Group 1 of the Luminal A subtype breast cancer gene 

pathway is CDH3. Its product, cadherin 3 (CDH3) plays an important role in cell 

adhesion, sorting and cell recognition-related signaling. Particularly, in breast cancers the 

CDH3 gene promotes the cell division and tumor aggressiveness; both factors contribute 

to a poor prognosis [51]. On the other hand, the hub gene for the co-expression pathway 

of other three subtypes (group 2) was TRIM2. This gene plays an important 

neuroprotective role, and functions as an E3-ubiquitin ligase in proteasome-mediated 
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degradation pathways [50]. TRIM2 product is a direct regulator of Bim degradation in 

TAM-resistant breast cancer cells [52].  

 The Cadherin 3 (CDH3) hub gene of group 1 expression pathway (fig 5) interacts 

with YEATS2, TUBB6 and PROM1 genes. There were several genes upregulated in the 

Group 1 of the co-expression gene network which are not upregulated in the gene 

network in Group 2 (Fig 5). These genes were LBR, TUBB6, TLE4, CDH3 and YEATS2, 

which implies that the phenotype of Group 1 is Luminal B subtype. TUBB6 (Tubulin 

Beta 6 Class V) protein confers to the breast tumors an increased sensitive to taxane-

based chemotherapy. Studies have observed a downregulation of the TUBB6 in the breast 

cancers [53]. Nevertheless, when we compare the group 1 (Luminal B) network to the 

networks of all other breast cancers, relative upregulation of the TUBB6 gene was 

observed. YEATS2 product is the histone acetyltransferase involved in the non-small cell 

lung carcinoma [54]. The TLE4 gene may behave as either a tumor suppressor gene or as 

a facilitator of oncogenesis in invasive breast cancer. TLE4 gene promotes cell 

proliferation and invasion via activation of a JNK-c-Jun pathway and leads to increased 

expression in cyclin D1 and decreased expression in P27Kip1 [55]. Upregulation of the 

laminin (LBR) in the breast cancer declines with tumor grade, and these decreases reflect 

increased probability of dying from cancer [56].  

 Overall, a set of proteome derived pathways deregulated in the Luminal B 

subtype breast cancer was not exactly aligned with the already discovered transcriptional 

characteristics of the Luminal B subtype breast cancer.  
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DISCUSSION 

 

 There are several computational methods developed exclusively for the analysis 

of proteomics data for normalizing and preprocessing, the identification and 

quantification of protein complexes [57], protein-protein interaction network analysis and 

visualization [58]. Oftentimes, these tools are built upon special dedicated software 

platforms, where each technique is supported by a group of statistical tools compatible 

with high dimensional proteomic data analysis [59]. A number of competitive GSA tests 

were specifically developed for proteomics data [8, 9]. Surprisingly, no self-contained 

GSA approaches were specially developed for proteomics data analysis, with no 

significant efforts put to repurposing of existing self-contained GSA tests previously 

developed for transcriptomics, and to their application to the proteomics data. As self-

contained GSA approaches have more power than competitive GSA [2], it is likely that 

proteomics data analysis maybe aided by adoption of self-contained GSA tests previously 

developed for transcriptomics [2]. 

 To investigate the possibility of the alignment of the previously known 

transcriptomic characteristics of breast cancer subtype with the proteomics data I 

conducted a self-contained GSA analysis, specifically, the gene sets network correlation 

analysis (GSNCA) of the breast cancer subtype proteome profiles. In total, I have 

analyzed 77 breast cancer patient samples and 3 biological replicates belonging to four 
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molecular subtypes. These samples were already analyzed by high-resolution mass 

spectrometry (MS/MS), thus providing an opportunity for cross-omics comparison. 

Typically, experimental proteomics and phosphoproteomic data are plagued by 

large amounts of missing values, partly because of particular protein expression in a 

particular sample not recorded due to sample complexity and variation in sampling from 

one specimen to another. To overcome the problem of missing value, I have removed the 

proteins that were quantified sparingly. Then, I have found that the rest of the missing 

data values are at random (MAR) in the dataset, and implemented the MICE method of 

data imputation. Since the missing values of the proteome data mostly correspond to the 

proteins with low levels of expression, these missing values are replaceable with the 

calculated number. In a nutshell, the probability that a value is missing depends only on 

observed values and is predicted using them. The missing datapoints are imputed on a 

variable basis by specific imputation model per variable. 

In order to understand the biological mechanism and the associated network, we 

need to have a thorough understanding of how proteins and mRNAs respond to external 

stimulations and how gene commands are neglected, leading to a decrease in a correlation 

between transcriptomic and proteomic details [60]. Exact congruency of the 

transcriptome and proteome-based portraits of the breast cancer subtypes may not be 

anticipated due to several reasons. Due to a combination of the molecular properties of 

proteins and the technical difficulties in assaying, proteomics data differ from 

transcriptomic data. For example, protein half-lives are defined by post transcription 
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machinery [60], not by the state of its own gene. At post-transcriptomic level, both 

translation and protein degradation contribute to the steady state abundance of each 

proteins [61]. In addition, despite the power of predominant MS-based technologies, 

some parts of the proteome remain secret due to technical limitations of the extraction 

and solubilization techniques [62]. The correlations between protein and mRNA 

abundances in both bacteria and eukaryotes are estimated at approximately a square 

Pearson association coefficient of ~0.40, i.e. only 40 percent of the variance in protein 

abundance can be explained by the abundance of respective mRNAs [61].  

Given all these difficulties, it is surprising how well the self-contained GSA test 

was able to align many characteristic features found at mRNA level with the protein 

level. It should be noted that the competitive GSA assessments at the specified level of 

significance may not have sufficient power to identify differentially expressed pathways, 

while self-contained GSA test are capable of this feat. 

In conclusion, our work points that the use of self-contained GSA methods makes 

it possible to integrate observations derived from molecular profiles of breast cancer 

tumor subtypes independently based on transcriptomics and proteomics. In addition, 

applying self-contained GSA methods at the protein level allow one to extract additional 

insights concerning molecular mechanisms and actionable targets, which are only 

accessible at the protein level. Complementing proteomics data analysis with self-

contained GSA tests, in addition to competitive tests, explicitly designed for proteomics 

data, will find it use in the future. 
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APPENDIX I 

 

 The R script that I used in this study is mentioned here. 

library(GSAR) 

library(GSVAdata) 

proteomes <- read.csv("C:/Users/koush/OneDrive/Desktop/Thesis/other 

datasets/basal_proteomes.csv") 

data("c2BroadSets") 

library(org.Hs.eg.db) 

library(GSEABase) 

#proteomes2 <- proteomes[c(1:len), c(1,2:20,34:56)] (Basal & Luminal-A) 

rownames(proteomes) <- proteomes[,1] 

proteomes <- proteomes[,-1] 

View(proteomes) 

dim(proteomes) 

proteomes <- data.matrix(proteomes) 

C2 <- as.list(geneIds(c2BroadSets)) 

len <- length(C2) 

genes.entrez <- unique(unlist(C2)) 

genes.symbol <- array("",c(length(genes.entrez),1)) 

x <- org.Hs.egSYMBOL 

mapped_genes <- mappedkeys(x) 
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xx <- as.list(x[mapped_genes]) 

for (ind in 1:length(genes.entrez)){ 

  if (length(xx[[genes.entrez[ind]]])!=0) 

    genes.symbol[ind] <- xx[[genes.entrez[ind]]] 

} 

## discard genes with no mapping to gene symbol identifiers 

genes.no.mapping <- which(genes.symbol == "") 

if(length(genes.no.mapping) > 0){ 

  genes.entrez <- genes.entrez[-genes.no.mapping] 

  genes.symbol <- genes.symbol[-genes.no.mapping] 

} 

names(genes.symbol) <- genes.entrez 

##discard genes in C2 pathways which do not exist in proteomes dataset 

overlap <- rownames(proteomes) 

remained <- array(0,c(1,len)) 

for (k in seq(1, len, by=1)) { 

  remained[k] <- sum((genes.symbol[C2[[k]]] %in% overlap) &  

                       (C2[[k]] %in% genes.entrez)) 

} 

## discard C2 pathways which have less than 10 or more than 500 genes 

C2 <- C2[(remained>=10)&&(remained<=500)] 

pathway.names <- names(C2) 

c2.pathways <- list() 

for (k in seq(1, length(C2), by=1)){ 
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  selected.genes <- which(overlap %in% genes.symbol[C2[[k]]]) 

  c2.pathways[[length(c2.pathways)+1]] <- overlap[selected.genes] 

} 

names(c2.pathways) <- pathway.names 

path.index <- which(names(c2.pathways) == 

"DOANE_BREAST_CANCER_CLASSES_DN") 

target.pathway <- 

proteomes[c2.pathways[["DOANE_BREAST_CANCER_CLASSES_DN"]],] 

target.pathway <- data.matrix(target.pathway) 

View(target.pathway) 

group.label <- c(rep(1,19), rep(2,61)) 

#dim(target.pathway) 

WW_pvalue <- WWtest(target.pathway, group.label) 

KS_pvalue <- KStest(target.pathway, group.label) 

MD_pvalue <- MDtest(target.pathway, group.label) 

RKS_pvalue <- RKStest(target.pathway, group.label) 

RMD_pvalue <- RMDtest(target.pathway, group.label) 

F_pvalue <- AggrFtest(target.pathway, group.label) 

GSNCA_pvalue <- GSNCAtest(target.pathway, group.label) 

WW_pvalue 

KS_pvalue 

MD_pvalue 

RKS_pvalue 

RMD_pvalue 

F_pvalue 
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GSNCA_pvalue 

plotMST2.pathway(object=proteomes[c2.pathways[[path.index]],], 

                 group=c(rep(1,19), rep(2,61)), 

name="DOANE_BREAST_CANCER_CLASSES_DN",  

                 legend.size=1.2, leg.x=-1.2, leg.y=2,  

                 label.size=1, label.dist=0.8, cor.method="pearson") 

results <- TestGeneSets(object=proteomes, group=group.label,  

                        geneSets=c2.pathways[1:3272], min.size=10, max.size=100, 

test="GSNCAtest") 

results 

#write.csv(results, file = "basal_pathways.csv") 
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