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ABSTRACT 

MORPHOLOGICAL CLASSIFICATION OF GLIA: A NEUROINFORMATICS 

APPROACH 

Masood A. Akram, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Giorgio A. Ascoli 

Neurons and glia are the two main types of cells in the nervous system. Neurons 

communicate by transmitting signals giving different species the ability to perform 

various complex functions. As opposed to neurons, glial cells support the nervous system 

and are responsible for maintaining normal homeostasis. Glial cells are as abundant as 

neurons in the nervous systems of most animals, including humans. Just like neurons, 

glial cells are also characterized by complex branching morphologies. Scientists have 

long been interested in classifying neurons; however, little attention has been given to 

classifying glia. 

In recent years, advances in neuroscience research have led to an increased 

interest in neuroinformatics, data sharing, and online data repositories, as well as a related 

need for data organization. NeuroMorpho.Org is the world’s largest public repository of 

digitally reconstructed neural morphology with more than 172,000 traced cells. This 
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online neuralbank provides open access to neural reconstructions so that published data 

can be downloaded for statistical and mathematical modeling, leading to new scientific 

discoveries. Each tracing entry in NeuroMorpho.Org is accompanied by a battery of 

morphometric features such as length, volume, angles, diameter, etc., as well as detailed 

metadata annotations describing the animal subject, anatomy, and experimental 

preparation. 

As a member of the NeuroMorpho.Org team, I have mastered different tasks 

including database maintenance, and helped NeuroMorpho.Org grow from 62,000 to 

more than 172,000 digital neural tracings, of which glia now constitute more than 10% of 

the total content. However, content expansion and continuous growth increased the 

complexity of data and metadata, requiring effective resources for information access. 

Therefore, we introduced the online tool Summary reporting to generate structured 

reports of morphometry organized into homogenous metadata groups for arbitrary subsets 

of data selected by the user. 

As the first application of this new functionality, we focused on advancing models 

to classify neurons and glia. We applied supervised learning algorithms including 

Support Vector Machine, Random Forest, and K-Nearest Neighbors to distinguish 

neurons and glia based on their extracted morphometric features. Across a diverse set of 

metadata, including species, brain regions, and histological processing, the classifiers 

were able to discern neurons and glia with high precision. Our results indicate that arbor 

morphology is an effective and robust way to categorize brain cells. In particular, our 
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work identifies an individual morphometric measure, Average Branch Euclidean Length 

(ABEL), which can be robustly used to distinguish neurons from glia across different 

vertebrate and invertebrate animal models, a variety of experimental conditions, and 

anatomical regions, except for the cerebellum. In addition, we found that calculating the 

ABEL from as few as five branches can provide above 95% accuracy in classifying 

neurons and glia without requiring the entire cell arbor to be reconstructed. 

 



   

 

1 

 

CHAPTER 1: INTRODUCTION 

Cellular classification has been a long-studied topic since the inception of 

neuroscience, because it provides the fundamental parts list underlying brain structure 

and function: in other words, it strives to identify the building blocks defining the key 

neural correlates of learning, memory and cognition (Armañanzas & Ascoli, 2015a). 

Morphology, electrophysiology, and biochemistry are the most common methods used to 

study cells in the nervous system (The Petilla Interneuron Nomenclature Group (PING), 

2008). Over the last decade, these three methods have witnessed tremendous 

technological breakthroughs (Litvina et al., 2019a). In particular, morphological studies 

have benefited from substantial advancement in microscopy, tracing software, 

computational modeling, and machine learning (Peng et al., 2017a). However, 

neuroscientists have traditionally focused their classification techniques on neurons (Bota 

& Swanson, 2007a); very few studies have been undertaken to develop an integrated 

classification of glia, despite their similar abundance to neurons (von Bartheld et al., 

2016). Therefore, understanding the morphological features that distinguish glia from 

neurons and the best method for categorizing the significant types of glia is an essential 

but unfulfilled step in developing a complete cell census of any nervous system. 

Neurons and glia are the main cellular components of nervous systems. Neurons 

transmit and process information via action potentials, whereas glial cells maintain 



   

 

2 

 

homeostasis within the nervous system. The three major types of neurons are principal 

cells, interneurons, and sensory cells. A principal cell is a long-range projecting neuron 

(Shepherd et al., 2019) that transmits electrical signals to non-adjacent anatomical 

regions, allowing brain-wide information integration. Local interneurons are the neurons 

whose actions, excitation or inhibition, are limited to the local circuit (Shepherd et al., 

2019).  Sensory neurons are responsible for receiving a range of chemical and physical 

stimuli, including temperature, pain, and touch, from the environment and various organs, 

and transmitting them to the brain (Donnelly et al., 2020). Like neurons, glial cells are 

also divided into multiple types. Among the main types of glia are microglia, astrocytes, 

and oligodendrocytes. Microglia are protective cells in the brain and cause inflammation 

in response to injury or disease. In addition, they play an essential role in suppressing 

excess synaptic connections during development (Aguzzi et al., 2013a). Astrocytes 

regulate neurotransmitter levels in the brain, support synaptic modification (Ullian et al., 

2001), and communicate with neurons via calcium signals (J. Yang et al., 2016). They are 

the most abundant glial cells in the central nervous system (CNS) and play an essential 

role in the formation of the blood brain barrier, regulation of blood flow, synaptic, circuit, 

and behavioral functions (Zhou et al., 2019). The oligodendrocytes provide myelin 

insulation to the long-range projection axons (Nave, 2010) in the central nervous system 

to minimize the electrical leaking of impulses. Additionally, oligodendrocytes aid in 

transferring energy from blood cells to axons. 

The usage of confocal microscopes in conjunction with computers enabled the 

routine reconstruction and archiving of complex branching morphologies (such as 
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dendrites, axons, and glial processes) as digital files containing three-dimensional 

coordinates as well as their tree structures (Senft, 2011a). Recent advances in microscopy 

and digital tracing have enabled a growing number of cellular reconstructions of neurons 

and glia to be uploaded to NeuroMorpho.Org, which is currently the largest repository of 

cellular neuronal and glial reconstructions in neuroscience. In NeuroMorpho.Org, each 

reconstruction is described in detail with metadata, providing a qualitative description of 

the cell (Parekh et al., 2015a). This information consists of 35 distinct fields pertaining to 

the animal subject, anatomy, completeness, experimental procedure, and provenance. 

Most of this information is directly provided by the research groups who deposit their 

digital tracings, and then supplemented by in-house curators through the mining of the 

reference peer-reviewed articles. Besides the reconstruction files and metadata, each cell 

is also assigned with 21 standard morphometric parameters. L-Measure extracts these 

parameters, including the average branch diameter, number of branches, total arbor 

length, volume, bifurcation angles, topological asymmetry, fractal dimension, and taper 

rate, among others (Scorcioni et al., 2008b). An additional characterization of arbor 

geometry was recently added to NeuroMorpho.Org, called Persistence Diagram Vectors 

(PDVs). In PDVs, branching distributions of neuronal and glial trees are represented 

using the mathematical formalism of algebraic homology, which encompasses the 

information contained in popular Sholl diagrams – namely, the number of branch points 

by Euclidean distance from the soma (Y. Li, Wang, et al., 2017a). 
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Founded in 2006 with an initial collection of fewer than 1000 neurons (Ascoli et 

al., 2007a), NeuroMorpho.Org provides unhindered access to all digital tracings of 

neuronal morphology freely shared upon request by researchers. Glial cells were added to 

this online repository in version 7.1, released in 2017. With version 8.1.137 (the latest at 

the time of this writing: released March 21st, 2022), glial cells constitute about 11% of 

more than 170,000 cellular reconstructions. Hundreds of laboratories worldwide 

continuously contribute neurons and glia tracings to NeuroMorpho.Org, which are 

processed, morphometrically quantified, and annotated with comprehensive metadata. 

During my doctoral studies, I had the opportunity to learn about, and contribute to, 

different aspects of the maintenance and continuous development of NeuroMorpho.Org. 

Chapter 2 describes the four main stages of this process: literature mining, data 

processing, metadata curation, and public release. Literature mining involves searching 

and shortlisting published articles based on an automated tool (Maraver et al., 2019b), 

which are then thoroughly examined. If digital tracings are found in the published 

articles, authors are contacted to share their data for public posting. The metadata is 

typically provided by the author, but in some instances, the annotations are obtained from 

the published article by the curators. The digital tracings added to the database must meet 

specific criteria, so the shared files from authors are checked using different software 

tools, such as CVapp (Cannon et al., 1998c), Neuromantic (Myatt et al., 2012), neuTube 

(Feng et al., 2015), and several others (Parekh & Ascoli, 2013), to make sure they are at 

the required standard. Once the reconstructions have met the standards, they are added to 
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NeuroMorpho.Org in the pre-release version and authors are asked to review the online 

archive before public release (Akram et al., 2018b).  

 

Due to the rapid expansion of the NeuroMorpho.Org data as more and more labs 

around the world share their experimental data, numerous functionalities have been 

continuously added to NeuroMorpho.Org since its inception to make data reuse efficient 

and user-friendly. Among these features are early morphological pipelines (Halavi et al., 

2008a), the ontological search engine (Polavaram & Ascoli, 2017a), and more recent 

advances in extended file standards (Nanda et al., 2018b) and automated literature mining 

(Maraver et al., 2019b). In addition, the Application Programming Interface (API) can be 

utilized in order to download the data in bulk from the online repository. Despite this, a 

graphical user interface that is intuitive and interactive was missing, which is an 

undeniable obstacle for non-technical users. By introducing Summary Reporting (Akram 

et al., 2022a), we have provided researchers with novel data mining capabilities, which 

are described in chapter 3. Specifically, this new functionality provides the ability to 

generate and download comprehensive metadata and morphometric features for arbitrary 

subsets of content within the database via web-accessible dropdown menus. In addition to 

the valuable resources already available within the neuroinformatics’ workbench, this 

new open-source resource will help end-users identify the most appropriate datasets for 

their research questions.  

 

 In chapter 4, Summary Reporting was utilized to download metadata and 
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morphometrics of a balanced dataset of glia and neurons for the purpose of applying three 

supervised learning classifiers: Random Forest (Breiman, 2001a, 2001a; Sarica et al., 

2017b), K-Nearest Neighbor (Aha et al., 1991a), and Support Vector Machine (Cortes & 

Vapnik, 1995a). All three algorithms performed exceptionally in classifying glia and 

neurons. However, recognizing the morphological signatures distinguishing glia from 

neurons was an important yet unfulfilled step. We investigated different morphometric 

features, such as overall arbor height and length, maximum Euclidean distance, average 

contraction, total volume, number of branches, etc., to understand how they contributed 

to classification,  Previous evidences suggested that the height, length, volume, and 

tortuosity are all useful parameters for classification (Matas et al., 2013). Furthermore, it 

is believed that neurons are bigger than glia (García-Marín et al., 2007a; Y. Lu et al., 

2015a; Veldman et al., 2020a; Zisis et al., 2021a), and that some glia are more complex 

than other types of glia (Khakh & Deneen, 2019; Verkhratsky et al., 2019). Based on the 

analysis of the machine learning results, we defined a new morphometric parameter, the 

Average Branch Euclidean Length (ABEL), and calculated it for each cell using the L-

Measure (Scorcioni et al., 2008b). Our results showed that ABEL gave us better 

classification accuracy than any other morphological measure previously tried. 

Traditionally, neuron and glia have to be traced before different morphometric features 

could be measured. Some cells have as many as 4000 branches, making this process 

tedious and inefficient. Our analysis demonstrated that not every branch is required to 

categorize a cell; in fact, if only five branches are used, we can achieve an accuracy of 

over 95%.  



   

 

7 

 

 

In addition to the main chapters of this dissertation, I also participated in different 

projects mentioned in the appendices including the connectivity-guided morphological 

analysis of axo-axonic cells (appendix 1). Morphology is an intuitive presentation of 

various types of neurons, reflecting their connectivity (Seung & Sümbül, 2014; Sümbül et 

al., 2014). Even though the shape of a single neuron is not sufficient to identify all 

presynaptic sources and postsynaptic targets, it can be analyzed morphologically in a way 

that reflects global and local connectivity patterns. In this study, we examined the 

morphology of dendrites and axons of axo-axonic cells (chandelier cells), which are 

critical to network connectivity and cell function. This morphological analysis found that 

the differences in input-output connectivity were significant factors in determining the 

subtypes of neurons (Wang et al., 2019). 

 

As an active member of the NeuroMorpho.Org tram, I was involved in using, 

testing, and providing feedback on the metadata portal's functionality. In the past, 

metadata curation was purely manual, but a user-friendly online metadata portal that is 

less error-prone and labor-intensive has recently been developed (Bijari, Akram, et al., 

2020b). The goal of this metadata portal is to allow data contributors from all over the 

world to share their neural reconstruction data as well as the metadata annotations 

quickly and efficiently. As a result, we reduced the labor costs, had fewer backlogs of 

data, and were able to provide the scientific community with rapid access to digital 

reconstructions for statistical and computational modeling. (appendix 2). 
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Moreover, I also contributed to a novel tool called Similarity Search (Ljungquist 

et al., 2021), as detailed in appendix 3. By means of this functionality, users can shortlist 

hundreds of thousands of neurons and glia that have similar structure and similarity score 

based on the selection of one cell quickly and efficiently by using the Facebook AI 

Similarity Search (FAISS) software. Cells are shortlisted based on the L-Measure derived 

morphometric features, persistence diagram vectors, and a combination of the two, by 

analyzing the explained variance following Principal Components Analysis (PCA) 

application. 

 

Appendix 4 is comprised of the supplementary material of some archives 

analyzed in chapter 4. Most reconstructions in NeuroMorpho.Org have coordinates 

reported in microns, but there were some archives in which the coordinates were 

expressed in pixels. Therefore, we manually calculated the height of at least one cell in 

each archive and compared the resulting value to the height reported by 

NeuroMorpho.Org. If the values did not match, we revised the size-related morphometric 

features (width, height, total length, total surface, total volume, maximum Euclidean 

distance, and maximum path distance) of those archives.  

 

In summary, in my tenure as a PhD student in the Center for Neural Informatics, 

Structures, & Plasticity (CN3), I did a substantial amount of work on NeuroMorpho.Org 

(Ascoli et al., 2007a).  I have actively participated in the increase (from 62,000 to more 

than 172,000) of the number of neural reconstructions within the database, mastering 
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different software tools for data processing, literature portal for article mining, and 

metadata curation. As an active member of NeuroMorpho.Org, I have been a part of, and 

created different functionalities for end users to analyze and understand the data. 

Furthermore, I discovered a novel morphometric biomarker that led to the efficient 

separation of cells of the nervous system. In addition to fostering future research towards 

understanding the structure-activity-relationship of neurons and glia, as well as the three 

main classes of glia, I believe my work at NeuroMorpho.Org has already had a 

substantial impact. 
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CHAPTER 2: AN OPEN REPOSITORY FOR SINGLE-CELL 

RECONSTRUCTIONS OF THE BRAIN FOREST 

Masood A. Akram1, Sumit Nanda1, Patricia Maraver1, Rubén Armañanzas1 & Giorgio A. 

Ascoli1 

1Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced 

Study, George Mason University, Fairfax, VA (USA). 

 

*This chapter was published in Sci Data 5, 180006 (2018). 

 

Note: This manuscript, including all the figures, is written by Masood A. Akram. 

 

 

Abstract 

NeuroMorpho.Org was launched in 2006 to provide unhindered access to any and 

all digital tracings of neuronal morphology that researchers were willing to share freely 

upon request. Today this database is the largest public inventory of cellular 

reconstructions in neuroscience with a content of over 80,000 neurons and glia from a 

representative diversity of animal species, anatomical regions, and experimental methods. 

Datasets continuously contributed by hundreds of laboratories worldwide are centrally 

curated, converted into a common non-proprietary format, morphometrically quantified, 

and annotated with comprehensive metadata. Users download digital reconstructions for 

a variety of scientific applications including visualization, classification, analysis, and 

simulations. With more than 1000 peer-reviewed publications describing data stored in or 

utilizing data retrieved from NeuroMorpho.Org, this ever-growing repository can already 

be considered a mature resource for neuroscience. 
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Introduction 

At the turn of the millennium the field of neuroinformatics was still in its infancy, 

but many researchers had already embraced computer simulations as an important 

approach to ground the understanding of the nervous system into quantitative models 

(Dayan, 1994; Hines & Carnevale, 2001; Sejnowski et al., 1988). Pioneering work in 

anatomy and physiology had long established that the tree-like morphologies of neuronal 

axons and dendrites play fundamental roles in network connectivity and signal 

processing. Progress in hardware and software had gradually enabled the practice of 

digitally reconstructing neuronal morphology three-dimensionally from live microscopic 

feeds or image stacks (Senft, 2011a). These data were especially useful to carry out 

comprehensive statistical analyses and to build realistic computational models. However, 

interactions between experimentalists and theoreticians were the exception rather than the 

norm, and sporadic data exchange relied on serendipitous peer-to-peer contacts.  

 

In that context, NeuroMorpho.Org was envisioned as an open, public-access, 

online portal where digital reconstructions of neurons from different animal species, brain 

regions, cell types, experimental conditions, and acquisition methods could be stored and 

freely retrieved for re-use in any scientific, educational, or artistic application (Ascoli, 

2006). The first version of the database was released in 2006 with an initial set of less 

than 1000 cells (Ascoli et al., 2007a) and was immediately adopted with broad 

enthusiasm in the neuroscience community (Ascoli, 2007). Since then the repository 

continuously evolved, adding both new data and improved functionality in each of 30 
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releases over 11 years. Nevertheless, the key operational principles have remained stable: 

identifying suitable data in peer-reviewed publications, requesting the source files from 

authors, and making them available to the community after processing into ready-to-reuse 

form.  

 

Here we describe the current status and future prospects of this mature resource 

from multiple perspectives, including those of the users, contributors, and developers. We 

start with an overview of the content and web-based accessibility, then we describe the 

community usage of these data, and lastly we provide a backstage view of the curation 

process enabling dense coverage of this data type (Halavi et al., 2008a). 

 

Results 

Database Content 

 Version 7.3 of NeuroMorpho.Org (fall 2017 release) contains 80,012 cells 

contributed by 416 laboratories and described in 714 peer-reviewed articles. These data 

come from ~50 anatomical regions of more than 40 animal species ranging from 

nematodes to humans and notably encompassing both common experimental model 

(mouse, rat, fruit fly, etc.) and less usual sources (e.g. manatee, leopard, and giraffe). 

Most pertinently, all major cell types of the nervous system are represented across a 

number of dimensions (Fig. 2.1), including sensory receptors, glia, local interneurons and 

projection neurons releasing excitatory, inhibitory or modulatory neurotransmitters.  
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For every cell, the database includes the original morphological tracing file as 

provided by the contributors, the standardized version, and a detailed log of all changes. 

The basic data format describes the represented trees shape as a set of 3D coordinates (in 

micrometers), each associated with a tag indicating the type of structure (soma, axon, 

dendrite, apical, unspecified neurite, glial process or custom-defined), thickness, and the 

identity of the connected point in the path to the root. In addition to this digital 

reconstruction file, every cell is displayed with an image, an animation, and a user-

interactive in-browser display. For certain users, this latter functionality may require 

minor JAVA setting adjustments (detailed in the Frequently Asked Questions) due to 

recent security updates on several operating systems. Moreover, all cells are 

comprehensively annotated with metadata (Parekh et al., 2015a) regarding the animal 

subject (species, strain or genotype, sex, age, weight), the cell studied (anatomical region, 

molecular expression, physiological features), the methodological procedure 

(experimental condition, tissue sectioning, specimen staining, imaging resolution, tracing 

system), and linked identifiers (PMID and DOI) of the corresponding referenced 

publication. Last but not least, a battery of geometric features (length, angles, branch 

topology, fractal dimension, etc.) is extracted and provided with each individual cell 

(Scorcioni et al., 2008b). 

 

Web Functionality  

NeuroMorpho.Org provides a user-friendly graphical interface to access the data 

through any modern web browser. Visitors can sample a random set of neurons or browse 

the entire repository by cell type, brain region, animal species, or contributing laboratory, 
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corresponding to the intuitive elements most immediately associated with every study 

(what, where, which, who). In all cases, data can be selected and downloaded or simply 

dynamically visualized in rapid sequence with simple cursor movements. Furthermore, 

the separate Neuron Atlas application, which can be freely downloaded from the Browse 

menu, repurposes an earlier implementation of the Allen Brain Atlas software to map the 

spatial distribution of neurons across the major anatomical subdivisions of the rodent 

brain. The interactive 3D display links to the individual neuron pages and also enables 

direct visualization of the metadata and the single neuronal morphologies (Fig. 2.2). 

 

The web front-end also offers multiple search functions. The metadata search 

option enables one to quickly identify content by conveniently combining filters through 

logically organized drop-down menus. For example, selecting mouse or drosophila as 

species populates the strain menu with completely different content. Choosing ‘C57BL/6’ 

from the former while setting experimental protocol to ‘in vitro’ pulls (as of version 7.3, 

released in November 2017) 4803 cells, which can be displayed as a summary or 

downloaded in bulk. The morphometry search is similarly organized allowing users to  
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Figure 2. 1. Digital reconstructions of cellular morphologies in NeuroMorpho.Org. (a) Microglia cell 

from mouse spinal cord (Ohgomori et al., 2016a), with processes in blue and cell body in red. (b) Ganglion 

cell from mouse retina (Badea & Nathans, 2011), with dendrites in green, axon in silver, and soma in red. 

(c) Pyramidal neuron from mouse neocortex (Economo et al., 2016), with apical dendrites in magenta, 

basal dendrites in green, and long projection axon in silver. (d) Pyramidal neuron from rat hippocampus 

(Ishizuka et al., 1995), with apical dendrites in magenta, basal dendrites in green, and (incomplete) axon in 

silver. (e) Interneuron from mouse retina (Helmstaedter et al., 2013a), with unspecified neurites in pink. (f) 

Direction sensitive mechanoreceptor from cricket peripheral nervous system, with unspecified neurites in 

pink (Jacobs & Theunissen, 2000). (g) Olivocerebellar neuron from rat myelencephalon, with axon in silver 

(Brown et al., 2012). (h) Pyramidal neuron from cat neocortex (Martinez et al., 2005), with apical dendrites 

in magenta, basal dendrites in green, and long projection axon in silver. 
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Figure 2. 2. Browse functionality. (a) Summary view of selected neurons from the Browse-by-Archive 

pane, with links to individual entries and options for download. (b) NeuronAtlas, a free downloadable 

application for exploring digital reconstructions of neuronal morphologies from rat and mouse brains. 
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select the quantitative ranges of geometric parameters of interest. For instance, querying 

for neurons with at least 100 branches and a maximum path distance from the soma 

greater than 1 mm retrieves 5706 cells (v.7.3). 

 

A distinct search mechanism adopts a familiar “Google-like” keyword bar with 

Boolean logic and wildcards. Alternatively, the advanced OntoSearch function leverages 

logical reasoning by generalization and specification of hierarchically organized 

knowledge (Polavaram & Ascoli, 2017a). Moreover, users can query the database content 

using the Literature Search,  
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Figure 2. 3. NeuroMorpho.Org’s API gives developers and data miners access to database content 

and information allowing integration with other neuroinformatics tools. Complete usage 

documentation and definitions are available at neuromorpho.org/apiReference.html. (a) Sample of available 

JSON objects characterizing experimental methods. (b) Selected entries specifying the dimension of cell 

types. (c) Subset of a given cell’s morphometric characteristics defined as attribute-value pairs. (d) 

Bibliographic details for a data set from an individual publication. 

 

 

 

 

 

Figure 2. 4. Infographics summary of data download activity from the NeuroMorpho.Org portal. 
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which is further elaborated on in the Methods section. The most recently added search 

functionality makes information machine-accessible through a public Application 

Programming Interface (API) using JavaScript Object Notation (JSON), a lightweight 

data-interchange format. The NeuroMorpho.Org API provides large-scale data access 

through anchors to neuron metadata, morphometric measurements, and literature 

references, in addition to brain regions, animal species, and more (Fig. 2.3). 

 

Usage Statistics  

Digital reconstructions shared through NeuroMorpho.Org are re-used for various 

purposes including training and dissemination, implementation of morphologically 

realistic computational simulations, assessments of potential synaptic contacts, validation 

of developmental growth models, and comparative statistical analyses across different 

neuron types, anatomical locations or experimental conditions. The usage of the 

repository can be quantified in terms of unique website visits, number of downloads, and 

derived publications. As of December 2017, the web page has been visited above 270,000 

times from more than 75,000 unique internet addresses in 166 countries. The number of 

hits increased from less than 3000 in the first year to over 15,000 in the June-August 

2017 trimester. Notably, two-thirds of this traffic comes from the United States and 

China. 

 

A total number of 7.5 million neurons were downloaded in standardized format 

along with 4.5 million ancillary files (original “as received” morphologies and 

standardization logs) before the 7.3 release. Approximately 50,000 files were 
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downloaded in the first year of the project up to a record 2.5 million in June-August 2017 

(Fig. 2.4). The download volume can also be tallied in number of neurite branches (700 

million) or total cable length (35 km). Based on an average of three working days per 

neuron (one for histology, one for imaging, one for tracing), it would take nearly 100,000 

people working for a year to produce the amount of data downloaded in the course of this 

project. The most popular species and brain region are respectively mouse and neocortex 

(11 downloads per cell per month). The most frequently downloaded neuron types are 

Purkinje, newborn granule, and extraverted pyramidal cells (10 downloads per cell per 

month). Complete statistics are updated online at every release.  

 

The standard way to quantify impact in scientific research is by tracking citations. 

At least 543 publications cite NeuroMorpho.Org, 353 of which describing results that 

were directly based on data obtained from this resource. This “secondary” usage 

substantially adds to the primary service of providing a data repository and 

standardization process. In this regard, before describing representative examples of re-

usage application in the next section, it is worth mentioning that leading publishers, 

including Springer-Nature, Elsevier, and the Public Library of Science, recommend 

NeuroMorpho.Org as a trusted database for deposition of digitized morphological 

reconstructions. This is particularly important given the growing opportunity for ‘data 

publication’ (Akins et al., 2017). 

 



   

 

23 

 

Representative Applications  

One of the most typical usages of digital reconstructions of neuronal morphology 

consists of constraining and validating data-driven models of electrophysiological 

activity or of developmental structural dynamics. For example, pyramidal cells taken 

from NeuroMorpho.Org are frequently studied in simulations of activity (Popovic et al., 

2015) or structure (López-Cruz et al., 2011a). Often these studies are extended to obtain 

novel computational or theoretical conclusions. For instance, the comparative analysis of 

dendritic complexity across animal taxonomy was recently related to the discriminative 

capacity of signal integration (Zippo & Biella, 2015), and  the virtual generation of 

neuronal trees revealed a balance between the minimization of total wiring and signal 

conduction time (Cuntz et al., 2010). An open problem increasingly addressed with 

morphological quantification is the unbiased classification of neuron types (Armañanzas 

& Ascoli, 2015a). Application of co-clustering techniques on a large set of neocortical 

cells from many different labs and experimental preparations revealed a clear separation 

between principal neurons located in different cortical areas and depths (Y. Lu et al., 

2015a). Leveraging modern machine learning methods also yielded methods for content-

based retrieval of morphologies, where similar neurons can be efficiently identified from 

a large collection based on sparse examples (Conjeti et al., 2016a).  

 

Earlier examples of secondary discoveries have been extensively reviewed 

elsewhere (Parekh & Ascoli, 2015a). Evidence of broader impact has also emerged 

beyond basic scientific research. The open availability of digital data is encouraging 

uptake in divulgation efforts, from undergraduate education (Chu et al., 2015a) to 3D 
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printable models (McDougal & Shepherd, 2015). By their own nature, many expository 

or outreach applications are not associated with peer-reviewed references, but are 

nonetheless beneficial to global societal progress. As representative examples we 

mention the selection as “Site of the Month” in Neuroscience For Kids 

(faculty.washington.edu/chudler/neurok.html), the creation of an online teaching module 

in BrainU (brainu.org), and the use as testing dataset in a past competition of the Chinese 

Applied Math Olympiads (neuromorpho.org/china_contest.jsp). Similarly, data from 

NeuroMorpho.Org are used to train commercial expert systems 

(drvtechnologies.com/aivia5) and to produce multimedia art installations 

(vimeo.com/191338612). Only a fraction of these outcomes could be predicted at the 

outset, reinforcing the notion that open data availability may generate genuinely new 

opportunities for discovery and creativity that would be missed in a more restrictive 

“sharing upon request” model. 

 

Discussion 

After more than a decade of continuous operation, NeuroMorpho.Org is now 

considered a stable and mature resource in the neuroscience community. Strikingly, we 

curators receive as much positive feedback and expressions of gratitude from data 

contributors as from data users. On the one hand this reflects the value added by the 

systematic standardization and annotation processes that are detailed in the Methods 

section. On the other, the above observation strongly refutes the entrenched view of a 

unidirectional cost-benefit flow from the “heroic” experimental data producers to the 
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“parasitic” computational data modelers (Longo & Drazen, 2016). On the contrary, it 

corroborates the alternative idea of synergistic cooperation even in the absence of direct 

collaboration, since re-usage demonstrably augments the impact of the original dataset 

(Ascoli et al., 2017c). At the same time, we treasure constructive criticisms from the 

community, and the vast majority of new and enhanced functionalities were implemented 

over time to address outside suggestions and requests. 

 

The pace of growth in database content continued to rise substantially over the 

lifespan of the project. While reconstructions initially accumulated at an average rate of 

less than 500 per year, most recently the yearly increase of data received passed the 

figure of 25,000. This rather dramatic acceleration is due to several compounded causes. 

Most prominently, the field of computational neuroanatomy became increasingly ‘hot’ 

and the number of publications describing digital reconstruction of neuronal and glial 

morphology has grown by an order of magnitude over the past 11 years (from ~7 to ~70 

articles per month), even faster than the general upward trend in biomedical research in 

general and neuroscience in particular. Secondly, the progressive automation of the 

tracing process is boosting the typical dataset size (Nanda et al., 2015), from less than 20 

neurons per study in the first year of operation to over 100 in the most recent one, with a 

notable single contribution of over 16,000 reconstructions (Chiang et al., 2011). Third, 

the attitude towards data sharing is gradually improving, from a hesitant 25% of positive 

responses in 2006 to a more encouraging 55% in 2017. In order to keep up with the 

expanding volume of incoming datasets, the information technology and data 
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management infrastructure had to be progressively modernized and improved, as 

described in the Methods.  

 

The content is also adapting to the parallel evolution of neuroscience research. 

For instance, glia (astrocytes, oligodendrocytes, microglia, and other types), once 

considered the “dark-matter” of the nervous system or the “forgotten” brain cells, are 

now recognized to contribute crucially to fundamental physiological processes, such as 

neural development (Zuchero & Barres, 2015), signal processing (I. Song & Dityatev, 

2018), and synaptic plasticity (Dzyubenko et al., 2016). Furthermore, glial cells are 

involved in major neuropathologies, including Alzheimer’s (J. Rodríguez et al., 2016) 

and Parkinson’s (Greggio et al., 2017) diseases, stroke (F.-E. Song et al., 2017) and 

epilepsy (Vezzani et al., 2017), as well as traumatic brain (Sajja et al., 2016) and spinal 

cord injuries (Ahuja et al., 2017). Specifically, glia morphology represents one of the 

most useful biomarkers of brain function and dysfunction, as exemplified by enlargement 

of activated microglia upon rising neuronal death (Plaza-Zabala et al., 2017), loss of 

myelination related to retraction of oligodendrocytes (Dulamea, 2017), and altered 

astrocyte architecture in response to pharmacological treatment (Ahmed et al., 2017) and 

neurotoxicity (Blanco-Suárez et al., 2017). In line with this mounting emphasis and 

awareness, we started receiving spontaneous requests from researchers to include digital 

tracings of glia arbor morphology into the repository. We thus appropriately modified the 

metadata schema, search engine, and ingestion scripts, and release 7.3 now contains 3069 

glial reconstructions from 8 initial datasets. 
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In the foreseeable future, NeuroMorpho.Org is similarly expected to keep 

growing both quantitatively (content amount) and qualitatively (content type). 

Continuous integration with community resources will emphasize neuronal classification 

both through comprehensive programs such as the National Institutes of Health-fostered  

 

 

 

 

Figure 2. 5. Flowchart of the operational procedures of NeuroMorpho.Org from start (Literature 

search) to end (Main site release), highlighting literature mining (blue), morphological 

standardization (green), metadata annotation (pink), and data release (yellow). 
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Brain Initiative Cell Census Network (BICCN) and domain-specific projects like 

Hippocampome.Org (Wheeler et al., 2015). This growth is going to necessitate the design 

and implementation of ergonomic, smart, and robust tools for richer metadata annotation 

benefiting authors and data curators alike. Moreover, it will be essential to incorporate 

the anatomical embedding of the reconstructed neurons in a representation of the 

surrounding tissue. Technically, this only requires the specification of a triad of non-

aligned three-dimensional neuronal tracing points relative to a common coordinate 

framework. This augmented representation is within reach at least for fly, mouse, and 

human datasets, and would synergistically complement ongoing efforts to capture 

correlated pre- and post-synaptic circuit connectivity along with the digital morphology 

(Takemura et al., 2017). Last but not least, progress is advancing towards the extension of 

the arbor reconstruction format to accommodate temporal and multi-channel information 

(Nanda et al., 2018b). These additions are especially important in light of recent 

experimental breakthrough in live time-lapse super-resolution imaging which could 

reveal critical biochemical details of neuronal dynamics. 

 

Methods 

This section describes the current operational pipeline of NeuroMorpho.Org. The 

overall process can be broadly divided into four main task aggregates: literature mining, 

data processing, metadata annotation, and public release (Fig. 2.5). The execution of most 

steps is logically serial for each dataset, though the team organization is largely parallel: 
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while releases are lumped into a few versions per year, new datasets are continuously 

identified, requested, received, processed, and annotated. 

 

Given NeuroMorpho.Org’s mission of freely distributing digital reconstructions 

from peer-reviewed publications, it is natural for the data identification process to begin 

with literature mining (Halavi et al., 2012a). Using a comprehensive battery of keywords 

in appropriate combinations and several full-text search engines, we collect a set of newly 

published articles every month which possibly describe tracing datasets. Since the 

monthly queries were optimized to minimize the number of missed articles, only 

approximately a third of the shortlisted potential hits actually contain relevant data. 

Furthermore, users can also directly suggest articles to mine by checking the reference 

status using the Literature Search function. Team curators carefully evaluate each article 

and extract preliminary metadata information for every positive instance, including 

number of reconstructions, brain region, cell type, reconstruction system, bibliographic 

reference, and corresponding author contact. These minimal details are necessary and 

sufficient to invite data submission. The outcome of the request (after multiple reminders 

and follow-ups as needed) determines whether each given dataset is available (received 

and in processing pipeline) or unavailable (unanswered: ~70%, declined: ~15%, or 

declared lost: ~15%). A small but increasing proportion of data (5% in 2017) is sent 

spontaneously by the authors before publication. In addition to new data, the literature 

mining staff also tracks published usage of data downloaded from the repository. The 
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entirety of the above information is recorded in a public literature database (Ascoli, 

2015c) that is updated monthly (Fig. 2.6). 

 

 

 

Figure 2. 6. Literature database and search. (a) Retrievable information by availability status. To avoid 

singling out individual authors, the identifiers for declined or unanswered queries are fictional in this 

illustration; actual unabridged data are publicly posted online in the ‘Literature Coverage’ section of 

NeuroMorpho.Org. (b) Preliminary metadata annotation for all references deemed to describe digital 

reconstructions of neuronal morphology. 

 

 

 

If the authors choose to share their traced cells, the next steps are metadata 

annotation and morphological standardization. The authors are invited to contribute to the 
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metadata annotation; their input is complemented with information extracted from the 

corresponding publication and team curators formalize the resulting description using 

control vocabularies and formal ontologies prior to ingestion (Polavaram & Ascoli, 

2017a). New terms are judiciously added as needed to the corresponding schema. 

Meanwhile, every neuron is assigned a unique machine-readable identifier while also 

maintaining its original human-assigned name after minor modifications if necessary to 

avoid occasional duplications or special characters known to interfere with smooth web 

interactions.  

 

The raw neuronal reconstructions, which can be acquired in more than 20 

different tracing systems and file types, are then translated into a common non-

proprietary format (Cannon et al., 1998a) and undergo a series of consistency checks 

such as detection of non-positive diameters, overlapping points, and disconnected 

branches among many others. A comprehensive description of the complete 

standardization process is also posted on NeuroMorpho.Org along with the open-source 

checking software. Inconsistencies are edited using a variety of programs, including 

CVapp (Cannon et al., 1998a), Neuromantic (Myatt et al., 2012), neuTube (Feng et al., 

2015), Vaa3D (Peng et al., 2011), TREES Toolbox (Cuntz et al., 2011), and several more 

as needed (Parekh & Ascoli, 2013). Importantly, all edits are tracked in accompanying 

log reports.  
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After completing morphological editing, data processing is finalized by extraction 

of morphometric parameter and generation of static images (Torben-Nielsen, 2014a) and 

rotating animations for each neuron. All data, metadata, and ancillary files are then 

ingested into the previous version of the database to produce a password-protected 

Review site. This step is essential to enable all contributing authors to preview their data 

and request changes prior to public release. Furthermore, at this stage we can implement 

a number of cross-checks, which include: detecting duplicated cells, broken web links, 

and missing data files; ensuring the accuracy and consistency of new metadata entries 

and proper integration of enhanced functionalities; and updating usage statistics and 

frequently asked questions. Upon resolving any ensuing issues if any, the new version is 

finally openly released and publicly announced through mailing lists and social media. 

 

As with any large-scale scientific database, occasional errors in data or metadata 

are detected and reported after public release. We try and correct all mistakes 

immediately if possible, without waiting for the next release. In case of simple typos, the 

correction is implemented silently. Any change in metadata, in contrast, is disclosed in 

the following release with a link to detailed documentation (see e.g. last bullet of v6.3 in 

the “What’s New” page). When correcting the morphological files themselves, a link to 

the previous version is provided in the Notes of the corresponding neuron page (cf. sixth 

bullet of v6.1 in the “What’s New” page). 
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Abstract 

Advancements in neuroscience research have led to steadily accelerating data 

production and sharing. The online community repository of neural reconstructions 

NeuroMorpho.Org grew from fewer than 1,000 digitally traced neurons in 2006 to more 

than 140,000 cells today, including glia that now constitute 10.1% of the content. Every 

reconstruction consists of a detailed 3D representation of branch geometry and 

connectivity in a standardized format, from which a collection of morphometric features 

is extracted and stored. Moreover, each entry in the database is accompanied by rich 
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metadata annotation describing the animal subject, anatomy, and experimental details. 

The rapid expansion of this resource in the past decade was accompanied by a parallel 

rise in the complexity of the available information, creating both opportunities and 

challenges for knowledge mining. Here, we introduce a new summary reporting 

functionality, allowing NeuroMorpho.Org users to efficiently download digests of 

metadata and morphometrics from multiple groups of similar cells for further analysis. 

We demonstrate the capabilities of the tool for both glia and neurons and present an 

illustrative statistical analysis of the resulting data. 

 

Introduction 

Combining microscopes with computers in neuroscience has enabled routine 

reconstruction of complex branching structures, like dendrites, axons, and glial processes, 

into digital files, thus describing morphological information in dedicated data files 

(Parekh & Ascoli, 2015b; Senft, 2011b). For instance, the swc format (Cannon et al., 

1998b) stores a standardized 3D digital representation by defining a tree structure of 

nodes, their coordinates, and radii. The largest public inventory of such standardized 

cellular reconstructions, NeuroMorpho.Org, was launched in 2006 with an initial data set 

of fewer than 1000 cells (Ascoli et al., 2007) to provide unhindered access to all digital 

tracings of neuronal morphology freely shared by willing researchers upon request. Glial 

cells were added to this online repository in version 7.1, publicly released in 2017 (Ascoli 

et al., 2017a). With the latest version 8.0.111 (2021-03-19), glial cells constitute over 

10% of more than 145,000 cellular reconstructions. Hundreds of laboratories worldwide 
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continuously contribute data sets of neurons and glia to NeuroMorpho.Org (Ascoli, 

2015b), which then are processed (including conversion into standardized swc format), 

morphometrically quantified, annotated with comprehensive metadata, and ingested for 

public access (Akram et al., 2018c). 

 

Morphological studies have benefited from substantial advancement in 

microscopy and tracing software (Peng et al., 2017b), enabling automation. As a result, 

the rate with which cells are traced has increased. Together with an improved attitude 

towards data sharing in neuroscience (Gleeson et al., 2017b), this has enabled the data 

deposited to NeuroMorpho.Org to grow substantially into a true Big Data resource. This 

significant increase in the amount of data was unavoidably accompanied by a parallel rise 

in metadata complexity (Figure 3.1). Upon first launching, NeuroMorpho.Org included 

digital reconstructions from 7 species, 31 neuron types, and 16 brain regions, shared by 

21 individual laboratories. The latest major release, 8.0, tallies 76 species, 1183 cell 

types, 372 brain regions, and 686 contributing labs (Fig. 3.1A-i/ii). On the one hand, 

community usage also continues to grow, with 22 million downloads and 1.2 million 

unique accesses worldwide (Fig. 3.1A-iii). On the other, the sheer diversity in important 

details such as experimental conditions, labeling methods, histological protocols, and 

tracing software (Fig. 3.1B) has created both opportunities and challenges for knowledge 

mining.  
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Figure 3. 1. Growth and complexity of data in NeuroMorpho.Org. A-i. Numbers of cell types and brain 

regions added to the database from 2006 to 2021. Inset: representative mouse spinal cord glial cell from the 

Ohgomori archive (Ohgomori et al., 2016b). A-ii. Numbers of contributing labs and represented species 

since 2006. Inset: mouse neocortical chandelier cell from the Gonzalez-Burgos archive (Miyamae et al., 

2017). A-iii. Numbers of downloaded cells from and unique online hits to the repository. Inset: guinea pig 

hippocampal pyramidal cell from the Wittner archive (Wittner & Miles, 2007). B. Infographic display of 

the diversity in experimental conditions, slicing directions, reconstruction formats, labeling methods, and 

other metadata details in the current release of NeuroMorpho.Org. Images from panel B are modified from 

commons.wikimedia.org under a Creative Commons Attribution-Share Alike 2.5 Generic license. 
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Here, we present an original tool, summary reporting, which provides novel data 

mining capabilities and allows researchers to generate and download comprehensive 

metadata and morphometric features for arbitrary user-selected subsets of the database 

content. Cataloging and grouping cells by homogenous metadata and morphometrics 

provides an intuitive overview of the database content and facilitates further scientific 

discovery (Halavi et al., 2012b), including classification (Armañanzas & Ascoli, 2015b), 

computational modeling (Berzhanskaya et al., 2013; Koene et al., 2009; López-Cruz et 

al., 2011b), visualization and quantification (Chu et al., 2015b; Wan et al., 2015a), 

statistical analyses (López-Cruz et al., 2011b; Polavaram et al., 2014a), connectomics 

estimates (J. Lu, 2011; Ropireddy & Ascoli, 2011), and electrophysiological simulations 

(Lazarewicz et al., 2002; Vermaas et al., 2020). This article demonstrates the capabilities 

of the tool, including statistical analysis of the results to illustrate possible usages and 

applications. 

 

Materials and Methods 

Every reconstruction in NeuroMorpho.Org is annotated with metadata providing 

a detailed qualitative description of the cell (Parekh et al., 2015b). This information 

consists of 35 distinct fields pertaining to the animal subject, anatomy, completeness, 

experimental conditions, and provenance. Part of this information is often provided 

directly from the research groups depositing their digital tracings and is then 

complemented by in-house curators through analysis of the reference peer-reviewed 

article. Metadata curation used to be a purely manual annotation process, but a user-
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friendly online metadata portal was recently introduced that is more reliable and less 

labor-intensive (Bijari, Akram, et al., 2020c). 

 

Along with the reconstruction files and accompanying metadata, 21 standard 

morphometric parameters are also automatically calculated for each cell (Figure 3.2) 

using the L-Measure tool (Scorcioni et al., 2008c). They include soma surface, number of 

branches, length, volume, angles, topological asymmetry, fractal dimension, and taper 

rate among several others. A new characterization of arbor geometry was added in 

version 7.5 (2018) of NeuroMorpho.Org, called Persistence Diagram Vectors (PDVs). 

Persistence diagrams compactly describe the branching patterns of neuronal and glial 

trees using the mathematical formalism of algebraic homology (Kanari et al., 2018a). 

NeuroMorpho.Org PDVs formally subsume the distributions of the numbers of branches 

as a function of distance from the soma (“Sholl plots”) into 100-dimensional normalized 

real number values (Y. Li, Wang, et al., 2017b).  
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Figure 3. 2. Data, metadata, and morphometry content of NeuroMorpho.Org. Left: metadata of a glial 

cell from the Roysam archive (Megjhani et al., 2015a). The various fields specify for instance the species 

(rat), cell type (Iba1-positive microglia), brain region (motor cortex), experimental conditions (control), and 

protocol (in vitro). Middle: three digital reconstructions from this group of cells. Right: morphometric 

parameters derived from L-Measure and the bibliographic citation to the reference article for these data. 
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Summary reporting now enables users to select a subset of data (such as glia) 

and for that subset produces comma-separated-value (CSV) files of morphometry, 

persistence diagram vectors, and metadata details for all matching cells grouped in 

distinct (and internally homogeneous) metadata groups. The implementation of this 

functionality uses the NeuroMorpho.Org Application Programming Interface (API). The 

new summary reporting tool is divided into three parts: a front-end, a back-end, and a 

metadata term cache proxy. The front-end, programmed in JavaScript, creates the user 

interface by fetching metadata terms from the cache proxy and then, as per user 

interaction, feeds the queries to the back-end. The back-end, developed in Python, fetches 

the data from the NeuroMorpho.Org API as well as directly from the MySQL database 

and organizes the output from these data sources. The API is in turn connected to Apache 

Solr, a data search and index replication software, which maximizes the speed of 

common queries from the underlying MySQL database. The metadata term proxy, also 

written in Python, provides a cached copy of all the possible metadata terms that are used 

for populating the user interface, to make the user experience faster. The code for all 

three modules is available open-source at github.com/NeuroMorpho/summary-report. 

 

As a representative testbed, we used summary reporting to download the 

metadata, morphometrics, and persistence diagram vectors of all glial cells (from any 

species) as well as all monkey principal neurons in the database. This resulted in 

summaries of 11,569 glial cells divided into 218 distinct groups by their metadata 

characteristics and 1,129 monkey principal neurons divided into 77 distinct groups. We 
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thus compared each of those 218 glial groups against all other 217 and each of the 77 

monkey principal neuron groups against all other 76 to determine how many of the 35 

metadata fields were different across every pair in both cases. 

 

Unlike metadata, the 21 morphometric parameters consist of continuous variables 

whose numerical value is unique for every cell. We thus applied pairwise two-tailed t-

tests, implying the need to correct for multiple comparisons. While 218 groups give rise 

to 23,653 pairings (218 choose 2), which for 21 morphometric parameters produce a total 

of 496,713 (23,653 times 21) possible tests, some pairwise comparisons are excluded a 

priori, because not every morphometric can be extracted for all cells. For example, some 

datasets may not contain the cell body (yielding a ‘not applicable’ value for soma 

surface), while others might be traced in 2D from a maximum intensity projection 

(yielding a ‘not applicable’ value for arbor depth). After discounting excluded 

comparisons, the number of valid tests was 396,212. We thus established statistical 

significance (α=0.05) at the threshold p-value of 1.26195·10-7 (0.05 divided by 396,212) 

after Bonferroni correction for multiple testing. Similarly, we applied pairwise two-tailed 

t-tests on the monkey principal neuron dataset. The total number of possible tests was in 

this case 2,926 (77 choose 2), for a total number of possible tests of 61,446 (2,926 times 

21). The number of valid tests after excluded comparisons was 37,977 and the threshold 

p-value was 1.31659·10-6
 after Bonferroni correction for multiple testing. 
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Lastly, for the PDV comparisons, we first calculated the dot products of the 

vectors corresponding to each pair of cells within and between groups. Each dot product 

produces a pairwise arccosine distance. If two cell groups differ in terms of their branch 

distribution, it is expected that the distance of two cells belonging to the same group will 

tend to be smaller than that of two cells belonging to separate groups. Based on this logic, 

we computed t-tests on the arccosine values by comparing within-group to between-

group distances. For example, in the comparison of group 1 with group 2, the arccosine 

values of all cell pairs within group 1 and of all cell pairs within group 2 were tested 

against the arccosine values of all pairs with one cell from group 1 and the other from 

group 2. Since the test is only meaningful if between-group distances are greater than 

within-group, a one-tailed t-test was applied. The threshold p-value for the glia dataset 

was set to 2.11390·10-6 (0.05 divided by 23,653 group pairs) after Bonferroni correction 

for multiple comparisons, and the threshold p-value for the monkey principal neuron 

dataset was set to 1.709·10-5
 (0.05 divided by 2,926 group pairs). 

 

Results 

The newly introduced summary reporting tool provides a user-friendly interface 

to efficiently organize and download metadata, morphometrics, and persistence diagram 

vectors for any subsets of glia and neurons of interest. These reports may then be further 

utilized for computational and statistical modeling. The functionality can be accessed 
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from any page on NeuroMorpho.Org1 by selecting “Summary reporting” from the 

‘Search’ drop-down options of the main top-banner menu (Figure 3.3).  
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Figure 3. 3. Summary reporting graphical user interface. An intuitive set of drop-down menus 

corresponding to the annotated metadata dimensions enables users to set the selection filters for choosing 

the targeted subset of data. The entries represented here serve the sole purpose of illustrating the diversity 

of possibilities and the tool functionality rather than constituting scientifically meaningful filtering choices. 

After selecting the desired entries, the webpage allows users to determine the selected data size (“Hits”) 

and to download CSV files of metadata grouping, morphometric parameters, and persistent diagram 

vectors. 

 

 

Users can select specific entries across various metadata fields to filter the desired 

target content. Multiple selections from distinct fields are interpreted as linked with the 

Boolean operator AND. For example, selecting ‘mouse’ from the species menu and ‘glia’ 

from the primary cell type menu will identify all and only mouse glia reconstructions in 

the database. In contrast, multiple selections from the same field are linked with OR 

logic. For example, selecting ‘hippocampus’ and ‘spinal cord’ from the primary brain 

region menu will identify any entry from either of those two anatomical areas. 

Combining all four of the above filters would identify all glial cells from mouse 

hippocampus or spinal cord. The “hits” button at the bottom of the page returns the 

number of cells shortlisted based on the specified details, followed by the option of 

downloading three reports respectively for metadata, morphometrics, and persistence 

diagram vectors, individually or collectively. The metadata report lists the specific 

annotation entries in each of the 35 dimensions for every distinct group of cells within the 

filtered subset, along with the number of cells in that group. The morphometric report 

lists the individual values of each of the 21 variables for every single cell in the subset 

along with the group belonging of that cell. Lastly, the PDV report lists the 100 scalar 
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components of the vectors corresponding to every single cell in the subset, again together 

with the group belonging of that cell. 

 

By providing a framework for filtering subsets of data by combinations of 

metadata annotations (Fig. 3.3), summary reporting thus collates the respective 

information from the archives in the database, creating the CSV files dynamically. In the 

downloadable CSV files, all cells meeting the selected criteria are partitioned into 

homogeneous metadata groups whereas cells from distinct groups differ in at least one 

metadata detail. For instance, in the above example identifying all glial cells from mouse 

hippocampus or spinal cord, hippocampal cells will be in separate groups from spinal 

ones; moreover, hippocampal glia will be further separated into distinct groups based on 

any difference in mouse strain, developmental stage, slicing orientation, labeling method, 

or other experimental details. Such data extraction and organization steps occur in just 

seconds even for considerably large data sets, thereby keeping user wait time to a 

minimum. For instance, it takes less than 2 seconds to generate and download the reports 

for 3,055 astrocytes (80 groups). Table 3.1 provides additional benchmarks for 

representative user filter selections. 
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Table 3. 1. Summary reporting use case scenarios. Wall clock time to shortlist and download the CSV files for representative user selections of 

different metadata combinations along with the total number of hits, the corresponding count of distinct cell groups, and the resulting file size. 

Selected metadata filter  Time to 

shortlist 

(sec) 

Time to 

download 

(sec) 

Total 

cell hits 

Distinct cell 

groups 

CSV 

File size 

(kB) 

Species = Monkey 

AND Cell type = 

Principal cell 

0.5 1 2,700 231 174 

Brain region = Basal 

ganglia 

AND Cell type = Glia 

0.5 0.5 984 18 19 

Cell type = Microglia OR 

Oligodendrocytes 

0.5 2.5 9,750 182 228 

Developmental stage = 

Adult OR Young adult  

AND Cell type = 

Interneuron 

0.5 4.0 16,911 3,126 3,606 

Species = rat AND Brain 

region = Hippocampus 

AND Cell type = 

microglia 

0.5 2 1,244 33 33 

Cell type = GFAP-

positive astrocytes AND 

0.5 2 1,613 12 41 
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Slicing direction = 

coronal 

(Species = mouse OR rat) 

AND (Brain region = 

Neocortex OR 

hippocampus) AND Cell 

type = microglia  

0.5 2.5 7,193 106 158 

(Species = monkey OR 

mouse) AND (Cell type = 

astrocytes OR microglia) 

AND Label = 

immunostaining 

0.5 2.5 4,296 144 131 
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To illustrate the content and utility of the CSV files, we employed summary 

reporting to extract the metadata grouping characteristics, morphometric values, and 

PDVs for all glial cells in the database as of version 8.0 (released 2020-06-29). This 

dataset includes 11,569 cells from 26 contributing laboratories, 8 animal species, 14 brain 

regions, and a variety of other experimental details, for a total of 218 groups (Figure 

3.4). The format of the downloaded files makes it seamless to determine and quantify the 

diversity in the available data using standard spreadsheet programs such as Microsoft 

Excel. For example, from the metadata grouping CSV file (Fig, 3.4A, top) we derived the 

count and identities of differing metadata fields between all pairs of groups (Fig. 3.4A, 

bottom). Similarly, from the morphometric CSV file (Fig. 3.4B, top) we derived the 

count and identities of the morphometric parameters that displayed statistically 

significant pairwise differences between groups (Fig. 3.4B, bottom). 
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Figure 3. 4. Metadata and morphometry summaries. A. Different metadata groups (top) and 

corresponding pairwise comparison table (bottom). Colors indicate oligodendrocytes (yellow), astrocytes 

(green), microglia (blue), and other glia (pink). Red squares highlight an example pairwise comparison. In 

the comparison table, entries above the diagonal list the different metadata dimensions and entries below 

the diagonal indicate their count. B. Morphometric parameters for all cells organized by groups (top) and 

corresponding comparison table (bottom). 

 

 

 

Based on the above data, we can then characterize the metadata and 

morphometric distinctiveness of each group of cells based on the extent by which that 

group differs from all other groups. Similarly, we can compute the distinguishing power 

of each metadata dimension and morphometric parameter as the proportion of pairwise 

group comparisons differentiated by that particular characteristic (Figure 3.5). On 

average, glial groups differ from each other by 18.9 ± 4.2 (mean ± standard deviation) 

metadata features or 54.0% ± 11.9% of the 35 possible annotated properties (Fig. 3.5A). 

The most distinctive subset of data in this regard is the control group of mouse glial cells 

from Denk archive (Helmstaedter et al., 2013b), which differs on average in 23 metadata 

details from other groups. The least distinctive subset is the control group of rat microglia 

from La Barbera archive (Krashia et al., 2019), which differs on average in 16 metadata 

details from other groups. Brain region is the most distinguishing metadata dimension, 

differentiating more than 96% of group pairs when considering all available anatomical 

information, such as sub-area and layer. Interestingly, glial cell types and subtypes (for 

instance, fibrous astrocytes vs. vessel-associated microglia vs. NG2-positive 
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oligodendrocytes vs. others) differentiate over three-quarters of the group comparisons 

(Fig. 3.5B). By contrast, the staining method has low distinguishing power (<30%), 

underscoring widespread usage of relatively uniform techniques (immunolabeling) across 

a broad diversity of biological analyses (nervous system location and cell phenotype). 
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Figure 3. 5. Group distinctiveness and feature distinguishing power of NeuroMorpho.Org glia and 

monkey principal neurons. A. Histogram distribution of the average number of metadata details (out of 

35 fields) differentiating a group from the other groups. B. Distinguishing power of the 35 metadata fields 

expressed as the percentage of group pairs differing in each dimension. C. Histogram distribution of the 

average number of morphometric parameters (out of 22) statistically differentiating a group from the other 

groups. D. Distinguishing power of the 22 morphometric parameters expressed as the percentage of group 

pairs differing in each parameter. 

 

 

 

To investigate how representative these observations might be over different 

datasets, we repeated the analysis for all monkey principal neurons. These groups differ 

from each other by 17.5 ± 6.1 metadata features or 50% ± 17.4% of the 35 possible 

annotated properties (Fig. 3.5A). The most distinctive subset of metadata is the control 

group of monkey pyramidal neurons from Wearne_Hof archive (Duan et al., 2002a), 

which differs on average in 23 metadata details from other groups. The least distinctive 

subset is the control group of monkey dLGN-projecting neurons from Briggs archive 

(Bragg et al., 2017; Briggs et al., 2016), which differs on average in 8 metadata details 

from other groups. Brain region is the most distinguishing metadata dimension followed 

by the age of the animals. As expected, species has a 0% distinguishing power as all the 

animals are monkey followed by the experimental condition (<3%) because almost all 

groups are control (Fig. 3.5B). 
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Just like for metadata, we next compared the 218 distinct glial groups with each 

other in terms of statistically significant differences in morphometric parameters. For this 

analysis, we considered the branch patterns captured by PDVs as an additional 

morphometric feature using arccosine statistical testing as described in the Methods 

section. On average, glial groups differ from each other by 8.7 ± 2.4 morphometric 

parameters (Fig. 3.5C) or 41.6% ± 11.5% of the 22 possible measure variables (21 

extracted by L-Measure plus PDVs). The most distinctive group is the lipopolysaccharide 

injection group of rat microglia from Balleine archive (Becchi et al., 2017), which differs 

on average in 13 morphometric parameters from other groups. The least distinctive group 

is the traumatic brain injury group of mouse microglia from Weil archive (Karelina et al., 

2016), which differs on average in 3 morphometric parameters from other groups. We 

then calculated the distinguishing power of each morphometric parameter (Fig. 3.5D). 

The total volume occupied by glial processes has the highest distinguishing power and 

can differentiate over 60% of group pairs. In contrast, partition asymmetry (measuring 

the topological imbalance of arbors) and bifurcation angles are relatively uniform across 

glia, only differentiating between one-quarter and one-third of group comparisons. 

Interestingly, persistence diagram vectors display intermediate distinguishing power, 

being able to statistically separate almost half of the group pairs.  

 

Lastly, the monkey principal neuron groups differ from each other by 4.26 ± 5.36 

morphometric parameters (Fig. 3.5C) or 19.3% ± 24% of the 22 possible measure 

variables. The most distinctive group is the control group from Fujita archive (Oga et al., 
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2016), which differs on average in 11 morphometric parameters from other groups. The 

least distinctive group is the control group from Luebke archive (Amatrudo et al., 2012a; 

Rocher et al., 2010), which differs on average in 1 morphometric parameter from other 

groups. Total fragmentation had the highest distinguishing power among morphometric 

features by differentiating over 54.75% of group pairs followed by persistence diagram 

vectors with 53.8% distinguishing power. Partition asymmetry had the lowest 

distinguishing power of approximately 8% (Fig. 3.5D). 

 

Discussion 

Various functionalities have been continuously added since the launch of 

NeuroMorpho.Org 15 years ago to make the reuse of data efficient and user friendly, 

from the early morphological standardization pipeline (Halavi et al., 2008b), through the 

ontological search engine (Polavaram & Ascoli, 2017b), to the more recent 

implementations of extended file standards (Nanda et al., 2018a) and automated literature 

mining (Maraver et al., 2019a). Of particular relevance here, the Application 

Programming Interface allows machine-readable access to the database metadata and 

morphometric content. While the API can be used to download data in bulk 

programmatically, the absence of an intuitive graphical interface constituted until now an 

undeniable obstacle for non-technical users. To overcome this impediment, this work 

introduced summary reporting, a novel tool enabling end-users to seamlessly filter and 

download metadata and morphometrics information of interest through web-accessible 

dropdown menus. 
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Over the years, an entire ecosystem of distributed resources emerged in the 

computational neuroscience community that are either interoperable with or direct 

extensions of the data and functionality of NeuroMorpho.Org. For example, increasingly 

sophisticated modeling tools enable the investigation of single-neuron activity both by 

compartmental and stochastic-diffusion simulations (Edwards et al., 2014; Magalhães et 

al., 2019; Ray et al., 2016). Similarly, powerful approaches have been developed for the 

quantitative analysis of neural arbors, enabling rigorous statistical comparisons of 

datasets across species, brain regions, and experimental conditions (Ledderose et al., 

2014; Lu et al., 2015; Torben-Nielsen, 2014). The growing recognition of the potential 

for novel scientific insight and discovery from secondary usage of digital reconstructions 

of neural morphologies further stimulated the creation of dedicated software utilities for 

efficient searching and mining of NeuroMorpho.Org data (Conjeti et al., 2016; Costa et 

al., 2016; Wan et al., 2015). Most recently, novel computer programs appeared that semi-

automate the high-throughput query, retrieval, and testing of NeuroMorpho.Org tracings 

(Friedman, 2020; Mottini et al., 2015; O’Halloran, 2020). Despite this mounting 

abundance of applications, there is no similar tool available operating on 

neuromorphological files like summary reporting. The open-source addition of this new 

resource to the neuroinformatics workbench will help end-users identify the appropriate 

datasets to tackle the scientific questions of their calling.  
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With recent technological breakthroughs and expected continuous advancements 

in both microscopic imaging and 3D computer reconstructions, the accumulation of 

morphological data is noticeably accelerating. With the number and completeness of the 

available tracings, the diversity of the repository content increases as well: the recent 

introduction of glia in the database is only one of many examples of genuinely new 

classes of available data. Moreover, the switch to an agile release pipeline in 2020 

implies the rapid-fire posting of often daily new datasets as soon as they clear the 

ingestion workflow after the publication of the corresponding research article. The free 

availability of such a large-scale resource undoubtedly benefits scientific progress. At the 

same time, its dynamic expansion also creates a challenge for researchers interested in 

meta-analysis, machine learning, and other big-science applications. The new 

NeuroMorpho.Org functionality described here, summary reporting, aims to solve this 

challenge by helping users handle the ever-rising complexity of data and metadata. With 

its intuitive ergonomics and user-friendly graphical interface, summary reporting 

complements and augments the existing NeuroMorpho.Org API for high-throughput data 

access to metadata, morphometrics, and persistence diagram vectors. Future work in the 

same direction includes the forthcoming roll-out of a new similarity search functionality 

enabling interested users to identify data of interest based on specific exemplars in the 

database. 
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Abstract 

 

Neurons and glia are the two main cell classes in the nervous systems of most 

animals. Although functionally distinct, neurons and glia are both characterized by 

multiple branching arbors stemming from the cell bodies. Glial processes are generally 
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known to form smaller trees than neuronal dendrites. However, the full extent of 

morphological differences between neurons and glia in multiple species and brain regions 

has not yet been characterized, nor is it known whether these cells can be reliably 

distinguished based on geometric features alone. Here, we show that multiple supervised 

learning algorithms (K-nearest neighbor, random forest, and support vector machine) 

deployed on a large database of morphological reconstructions can systematically classify 

neuronal and glial arbors with nearly perfect accuracy and precision. Moreover, we report 

multiple morphometric properties, both size-related and size-independent, that differ 

substantially between these cell types. In particular, we newly identify an individual 

morphometric measurement, Average Branch Euclidean Length (ABEL) that can 

robustly separate neurons from glia across multiple animal models, a broad diversity of 

experimental conditions, and anatomical areas, with the notable exception of the 

cerebellum. We discuss the practical utility and physiological interpretation of this 

discovery. 

 

Keywords: Cellular Identity, Morphology, NeuroMorpho.Org, Neuroinformatics, 

Supervised Learning, Branch Length, Tree Size. 

 

Introduction  

 

Neuronal classification is an increasingly important subject because of its ultimate 

goal of linking cell types with computation, behavior, and cognition (Armañanzas & 

Ascoli, 2015c). The main experimental approaches to characterize neurons are 
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biochemistry, physiology, and morphology (Petilla Interneuron Nomenclature Group, 

2008). These techniques have all yielded major breakthroughs in recent years thanks to 

rapid progress in genomics and transcriptomics, large-scale electric recordings, and high-

resolution microscopic imaging (Litvina et al., 2019b), respectively. Both the European 

Human Brain Project and the American BRAIN Initiative identified cell type 

classification among their first priorities (Insel et al., 2013; Markram, 2012). Relative to 

neurons, glial cells have received less attention despite being similarly abundant in most 

organisms with a nervous system, including humans and all common animal models. Glia 

are involved in numerous important functions, such as myelination, anti-inflammatory 

protection, maintenance of neurochemical environment, and exchanges between nervous 

and vascular systems (Aguzzi et al., 2013b; Bronzuoli et al., 2018; Jessen, 2004; 

Rasband, 2016). Most glial cells emanate from the cell body complex branching 

processes that resemble the structural architecture of neuronal dendrites. While large 

numbers of neurons have been morphologically reconstructed for over three decades, 

digitally tracing glial trees has only more recently become a routine practice as well. 

 

Although it is usually recognized that glial arbors are smaller than dendritic trees 

(García-Marín et al., 2007b; Y. Lu et al., 2015c; Veldman et al., 2020b; Zisis et al., 

2021b), a comprehensive morphological comparison has not yet been carried out. In 

particular, it is still unknown whether these two main categories of cells can be reliably 

distinguished based on geometric features alone. The general problem is further 

complicated by several factors. First, both neurons and glia are intrinsically diverse, with 
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the former often distinguished by circuit role (long-range projecting, local interneurons, 

and sensory receptors) and the latter typically divided by functional specialization 

(microglia, astrocytes, oligodendrocytes, etc.). Second, both neurons and glia tend to 

differ broadly across animal species (especially between vertebrates and invertebrates), 

anatomical regions (e.g., neocortex, brainstem, spinal cord, peripheral nervous system), 

and developmental stage (such as embryo, early postnatal, and adult). Third, 

morphological characterization may be affected by the tremendous variability in 

experimental methods, including animal care, histological details, labeling protocol, 

imaging modality, and reconstruction software. Thus, it remains an open question 

whether suitable morphometric biomarkers exist that can robustly and systematically 

discriminate between neuronal and glial arbors.  

 

Hundreds of laboratories worldwide continuously contribute their digital 

reconstructions of neurons and glia to the public online database NeuroMorpho.Org 

(Akram et al., 2018a). This repository associates every cell entry with metadata (Bijari, 

Akram, et al., 2020a) describing the animal subject (species, strain, sex, age, and weight), 

anatomy (brain region, sub-region, cell type, and sub-type), experimental details 

(protocol, condition, histology, microscopy, and tracing), and provenance (authors, 

source publication, original version, and processing logs). Moreover, the detailed 3D 

representation of arbor geometry is accompanied by a battery of morphometric 

parameters extracted with L-Measure (Scorcioni et al., 2008a), such as total length, 

number of branches, arbor height, and tortuosity. Glial cells were introduced to 
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NeuroMorpho.Org in version 7.1 (2017) and now constitute 11.3% of over 170,000 

tracings. The unrestricted availability of these data provides an unprecedented 

opportunity for scientific exploration, statistical analysis, and computational modeling 

(Ascoli et al., 2017b). 

 

Machine learning is a branch of artificial intelligence that aims at enabling the efficient 

and automatic detection of data patterns. Machine learning strives to produce the most accurate 

predictions, a distinct goal from that of statistical models designed to quantify the relationships 

variables (Aha et al., 1991b). Recent advancements in machine learning have not only benefitted 

healthcare with automatic diagnoses and treatment planning (Kohli & Arora, 2018), but were also 

successfully applied in neurobiological data analysis such as automatic tracing of neurons and 

glia (Peng et al., 2017c) and their quantification (Bijari et al., 2021b). In supervised machine 

learning, an algorithm is trained with the known class labels and identifies the most informative 

combination of features that are associated with those labels (Kotsiantis et al., 2006). The 

resultant classifiers can then be applied for predicting the labels of unknown data based on their 

feature values. Here we leverage supervised learning algorithms (K-Nearest Neighbor, Random 

Forest, and Support Vector Machine) to classify glia and neurons, and to recognize the 

morphological structures that distinguish these two main cell types of the nervous system. 

 

Materials and Methods 

 

Dataset selection and preprocessing. Morphological reconstructions of neurons and 

glia were obtained from NeuroMorpho.Org using the Summary Reporting web-based 

functionality (Akram et al., 2022b). This tool collates for every digital tracings the 
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annotation of 35 distinct metadata fields, providing a detailed qualitative description of 

the cell (Parekh et al., 2015c), as well as 21 morphometric measurements which capture 

the quantitative structural features of the arbor (Scorcioni et al., 2008a). First, we 

downloaded all glial cells available at the time we began data analysis (Fall 2020), 

corresponding to 10 consecutive releases of NeuroMorpho.Org (versions 7.1 to 8.0 

inclusive). We then analyzed the distributions of their metadata with respect to animal 

species, developmental stage, anatomical region, and other experimental conditions, and 

queried the database to identify the same number of neurons with the most similar 

metadata characteristics. Since we were interested in comparing glial processes 

specifically to neuronal dendrites (as opposed to axons), only neurons with dendritic 

tracings available were selected. Moreover, we solely included neurons and glia with 

complete or moderately complete reconstructions, thus excluding those annotated as 

incomplete dendrites or incomplete glial processes by the original contributors. The 

resulting balanced dataset of 22,792 cells was comprised of 11,398 neurons and 11,394 

glia. 

 

Of the 21 morphometrics extracted for each cell from NeuroMorpho.Org, we 

excluded Soma Surface and Depth from the analysis. Soma Surface is not an arbor 

morphometric, and 4.7% of the tracings in our dataset did not include soma 

reconstruction. Depth was similarly not reported for 8.6% of the cells as the accuracy of 

the tracing is reduced in certain cases by light diffraction and tissue shrinkage in the 

direction perpendicular to the imaging place. The remaining 19 morphometric features 
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were used in the analysis: number of stems, number of bifurcations, number of branches, 

overall width, overall height, average diameter, total length, total surface, total volume, 

maximum Euclidean distance, maximum path distance, maximum branch order, average 

contraction, total fragmentation, partition asymmetry, average Rall’s ratio, average 

bifurcation angle local, average bifurcation angle remote, and fractal dimension. The 

formal definitions of these metrics are available on the Frequently Asked Questions of 

NeuroMorpho.Org (http://neuromorpho.org/myfaq.jsp) and on the online manual of L-

Measure (http://cng.gmu.edu:8080/Lm/help/index.htm). 

 

Most reconstructions in NeuroMorpho.Org have coordinates reported in microns. 

In a subset of reconstructions, however, the coordinates are expressed in pixels. In these 

cases, the nominal measurements listed in the morphometric tables must be converted by 

an appropriate scaling factor. Therefore, we manually calculated the height of at least one 

cell in each archive from the figures of the corresponding original publications (and 

relative scale bar) and compared the resulting value to the height reported by 

NeuroMorpho.Org. If the values did not match, we computed a conversion factor and 

applied it to size-related morphometric features including width, height, total length, total 

surface, total volume, maximum Euclidean distance, and maximum path distance. The 

specific archives that underwent rescaling and the calculations for the scale correction are 

detailed in the Supplementary Material at https://github.com/Masood-

Akram/Classification_Neurons-Glia/tree/main/Supplementary_Material 
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When we concluded the main analysis for this work (Fall 2021), a new version of 

NeuroMorpho.Org had been released (v.8.1). We thus identified an additional balanced 

dataset of 4292 neurons and 4286 glia, up to version 8.1.90 (December 2021), allowing 

us to test the robustness of our main results on a completely independent dataset. The 

scale correction details and the complete metadata breakdown for this additional dataset 

are also included in the Supplementary Materials at https://github.com/Masood-

Akram/Classification_Neurons-Glia/tree/main/Supplementary_Material 

 

Dimensionality reduction. We computed the coefficient of determination (R2) to 

quantify the pairwise correlation (Di Bucchianico, 2008) among the 19 morphometric 

parameters across neurons and glia using the rcorr function in the R package Hmisc 

(Harrel & Dupont, 2021). We then used Principal Component Analysis (PCA) to reduce 

the feature redundancy. PCA transforms the data into a set of new orthogonal variables 

by identifying the directions (principal components) along which the variation in the data 

is maximal (Abdi & Williams, 2010). By discarding the least informative components, 

each sample can be represented by fewer, linearly independent features instead of more, 

mutually dependent variables (Ringnér, 2008). Thus, PCA reduces the dimensionality 

while retaining most of the variation of the data. PCA was performed with the R package 

stats (Core Team, 2021) by using the function prcomp() and setting scale = TRUE. 

Along with PCA, all parameters were standardized by first subtracting the mean of the 

entire feature vector from each element and then dividing by the standard deviation. 
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Supervised learning. Training data consisted of the normalized principal components of 

the morphometric features as input, and the known class labels (the cell identity ‘neuron’ 

or ‘glia’) as output. We used three distinct classification algorithms implemented in the R 

programming language (Core Team, 2021) v.4.1.1 for Windows. In all cases we 

calculated sensitivity, specificity, and accuracy, respectively defined as the fractions of 

true positives, true negatives, and correctly classified (true positives plus true negatives) 

cells, using the caret (Kuhn, 2021) package in R (Core Team, 2021). 

 

K-Nearest Neighbor (KNN) is a supervised learning algorithm that can be used both for 

classification (discrete value output), as applied here, and regression (continuous value 

output) problems. In KNN, the training instances are stored with their labels and each 

new instance is compared with the labeled ones using a similarity matrix. The vote for 

each new instance’s label by comparing to existing instances is taken from the value of k. 

For example, if k is set to 5, 5  nearest neighbors are identified from the training instances 

and the class label with the highest frequency is assigned to the new instance (Aha et al., 

1991b). The default Euclidean distance was used here to compute similarity between two 

data points. The built-in caret package (Kuhn, 2021) was utilized for the KNN 

implementation by using the train() function and setting method = “knn” with 

tuneLength = 10 and k = 5. 

 

Support Vector Machine (SVM) is a binary classification algorithm based on finding 

the maximum margin hyperplane that gives the greatest separation between the data 
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points of different classes in multidimensional space. Those data points closest to the 

hyperplane are called the support vectors. If the data are not linearly separable, different 

kernels can be selected for nonlinear classification. This classifier is robust to large 

number of variables and small sample sizes (Cortes & Vapnik, 1995b). We implemented 

SVM using the caret package (Kuhn, 2021) using the train() function with tuneLength = 

10, and method = “radial” kernel, which gave the best classification accuracy and is also 

a common choice for classification tasks (Luts et al., 2010). 

 

Random Forest (RF) consists of a large number of individual decision trees. Each 

individual tree in the forest splits out a class prediction and the most frequent class 

becomes the model prediction. This is one of the most popular machine learning 

algorithms and is capable of both classification (as used here) and regression (Breiman, 

2001b; Sarica et al., 2017a). We applied the randomForest package (Liaw & Wiener, 

2002) using function train(), method = “rf”, and ntree = 500. The rationale for this 

choice is that a relatively high number of decision trees ensures that every input row is 

predicted multiple times. Parameter mtry determines the number of variables randomly 

sampled as candidates at each split and was set to the default value of 5. 

 

K-fold Cross Validation (K-fold CV). It is customary in supervised learning to train the 

model on the majority of the data, leaving the remaining for testing. To rigorously 

examine the classification performance on our data, we performed K-fold cross 

validation. This process divides the dataset into k equal parts. A classifier is first trained 
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on k-1 parts for each fold. The accuracy of the trained model is then assessed by using the 

part of data excluded from the k-1 parts in training (Bouckaert, 2003).  We performed 10-

fold CV repeated 10 times using the caret (Kuhn, 2021) package by using the function 

trainControl(),  method = “repeatedcv”, number = 10, and repeats = 10.  

 

PSwarm is a global optimization solver for bound and linearly constrained problems 

(Vaz & Vicente, 2009). This algorithm is based on a pattern search and particle swarm 

method, which guarantees the convergence to stationary points from arbitrary starting 

points. We used the PSwarm Solver (v.1.5, June 2020, norg.uminho.pt/aivaz/pswarm/) 

implementation in R to find the linear discriminant of neurons and glia based on two 

morphometric parameters. We set the lower and upper bounds to 75 and 175, 

respectively, for intercept and to -10 and 75 for slope, and the number of iterations 

(maxit) to 2·109. 

 

All analyses were carried out on a 64-bit machine equipped with an Intel Core i7-8565U 

and 16 GB of RAM running Windows 10. The R scripts utilized in this work are released 

open source at https://github.com/Masood-Akram/Classification_Neurons-

Glia/tree/main/R_Code. 

 

Average Branch Euclidean Length (ABEL) is the average over all branches in a cell of 

the straight-line distance between the beginning and ending points of each branch. This 

quantity was calculated from three of the morphometric parameters provided for each cell 
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by NeuroMorpho.Org: branch path (geodesic) length, the number of branches, and 

contraction, which is the ratio between Euclidean branch length and branch path length 

(its inverse is tortuosity). Specifically, ABEL was derived by summing the product of 

contraction by branch path (geodesic) length and then dividing the result by the total 

number of branches in each cell: 

Equation 4. 1 

                                       𝐴𝐵𝐸𝐿 =  
∑ (𝑁𝐵

𝑖=1 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝐵𝑟𝑎𝑛𝑐ℎ 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ)

𝑁𝐵
 ,                               

where NB is the total number of branches. We also calculated ABEL of the terminal 

branches (from a bifurcating point to the tip) and of internal branches (between two 

consecutive bifurcation points) of both glia and neurons from the .swc reconstruction 

files provided by NeuroMorpho.Org using L-Measure. In particular, for every cell we 

first extracted path length and contraction values for each branch while setting 

“Terminal_Degree=1” under Specificity for terminal branches and “Terminal_Degree>1” 

for internal branches. We then multiplied the path length and contraction values and took 

the average within each group (terminal, internal). Lastly, we were also interested to 

determine the classification power of ABEL when only a small sample of branches was 

used to estimate the ABEL value. To this aim, we first extracted for every cell path length 

and contraction values of all branches with L-Measure without setting any Specificity 

(thus including both internal and terminal branches) and multiplied each pair of values to 

obtain the Euclidean lengths of all branches. We then utilized the random library (Van 

Rossum, 2020) in Python 3 (Van Rossum & Fred L., 2009) to stochastically select 100 

sets of N values without replacement, where N varied from 1 to 15. The N values were 



   

 

73 

 

used to compute ABEL within each set, and the average and standard deviation were then 

computed over the 100 sets. Finally, classification was carried out using the mean ABEL 

value. The code for this analysis is released open source at: https://github.com/Masood-

Akram/Classification_Neurons-Glia/tree/main/Python_Code. 

 

Average Branch Euclidean Length (ABEL). All morphological reconstructions utilized 

in this work are available at NeuroMorpho.Org. The individual archive listing, the 

metadata, and the scaling adjustments are all included in the Supplementary Materials. 

The source code for all analysis is publicly available on github.com 

 

Results 

 

The morphological reconstructions of glial processes and neuronal dendrites 

utilized in this work were contributed to NeuroMorpho.Org by over 250 independent 

laboratories (listed in Supplementary Materials) and reflect the distribution of published 

arbor tracings in neuroscience 
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Figure 4. 1. Representative diversity of morphological reconstructions of glia and neurons from 

NeuroMorpho.Org with labels indicating animal species, anatomical region, and cell type. Blue: glial 

processes; green: neuronal dendrites; red: cell bodies.  
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(Fig. 1). Consistent with this multifarious provenance, the dataset spans a broad diversity 

of experimental methodologies, including over 20 different staining methods (e.g., 

genetic green fluorescent protein labeling, intracellular biocytin injection, 

immunostaining, and rapid Golgi), 15 digital reconstruction software (Neurolucida, 

Imaris, Amira, NeuronJ, Simple Neurite Tracer, Vaa3D, Knossos, NeuTube, etc.), and a 

continuum of ages across the developmental, from embryo through juvenile to old adults. 

Moreover, the data came from both mammalian and non-mammalian species and a large 

variety of anatomical regions but were balanced between neurons and glia across these 

dimensions (Fig. 2). The full breakdown of all metadata categories annotated in 

NeuroMorpho.Org is provided in Supplementary Materials. 
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Figure 4. 2. Balanced distribution (A) animal species and (B) brain regions for the analyzed glia and 

neuron datasets. 



   

 

77 

 

 

 

The morphometric quantification of neural trees supplied by NeuroMorpho.Org 

provides a detailed 3D representation of branch geometry (Fig. 3). The extracted features 

include parameters characterizing both the overall size of the arborization and the scale-

invariant properties. The formers include total cable length and surface area, spanning 

height and width, maximum Euclidean and path (geodesic) distance from the root (soma), 

and average branch diameter among others. The latter measurements capture bush 

complexity (e.g., number of branches and tree stems), branch angles (local and remote 

bifurcation amplitude), topological imbalance (partition asymmetry and maximum branch 

order), and spatial meandering (contraction and fractal dimension), among others. 

Altogether, this set of morphometric parameters is well suited to characterize the 

structure of neuronal dendrites and glial processes alike, and thus to quantify their 

similarities and differences.  
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Figure 4. 3. Schematic of selected morphometric features. (A) Illustration of width, depth, and 

maximum Euclidean distance (left) in a monkey neocortical pyramidal cell (NMO_00002) from the 

Wearne_Hof archive (Duan et al., 2002); and of height and fragmentation (right) in a hippocampal granule 

cell (NMO_73103) from the Diaz archive (Sebastián-Serrano et al., 2016). (B) Diameter and local or 

remote bifurcation amplitude (left) in a rat neocortical microglia (NMO_95641) from the Roysam archive 

(Megjhani et al., 2015b); and maximum path distance, length, and number of branches, bifurcations, and 
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stems in a rat cortical oligodendrocyte (NMO_131081) from the Sato_Bigbee archive (Mohamed et al., 

2020).  

 

 

Although the above-described parameters are intuitively interpretable, they may 

not be completely independent of each other. For example, total tree length, surface area, 

and average branch diameter are expected to be interrelated. This information redundancy 

can unduly bias the objective characterization of the structural differences between glia 

and neurons, complicating subsequent interpretations. The pairwise coefficients of 

determination (R2) for glial (Fig. 4A) and neuronal (Fig. 4B) morphometrics confirm the 

substantial correlation between specific features. For example, surface is highly 

correlated to volume, the number of bifurcations to the number of branches, length, 

fragmentation, and branch order (and the latter four to one another), path distance to 

Euclidean distance, and contraction to fractal dimension. Although the coefficients of 

determination tended to be higher in neurons than in glia, most visibly between maximum 

path distance and total surface area, and between overall height and maximum Euclidean 

distance, the majority of correlations were highly consistent between the two cell types. 

In order to remove the interdependency among features, we performed PCA jointly on 

the full dataset to orthogonalize the morphometric parameters (Fig. 4C). The first 11 

principal components captured 95.70% of the variance and we thus decided to exclude 

the last 8 components from machine learning. The 11 principal components considered in 

subsequent analysis constitute a combined transformation of all 19 morphometric 

parameters described above but are guaranteed by PCA to be independent.  
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Figure 4. 4. Orthogonalization of morphometric features. (A) Correlation matrix quantifying the 

interdependence among 19 morphometric features of glia and of (B) neurons. The coefficient of 

determination (R2) is shown on a dark intensity scale. (C) Scree plot of the variance contributed by each 

sequential principal component (blue bars, left axis) and the corresponding cumulative distribution (red 

line, right axis). 
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The first two components (PC1 and PC2) alone capture more than 50% of the 

overall morphological variance in neural cells. A striking separation between cell classes 

is apparent on the PC1-PC2 projection plane, with neurons more abundant towards 

positive coordinates and glia towards negative in both dimensions (Fig 5A). Data points 

that are close to each other in this projected space represent structurally similar cells, 

whereas morphologically different cells occupy distant positions. The first two principal 

components consist of distinct linear combinations of morphometrics: PC1 (Fig. 5B) has 

strongly positive loading on size (e.g., total cable length, overall arbor height, maximum 

path distance), while PC2 (Fig. 5C) has strongly negative loadings on tree complexity 

and other scale-invariant measures, such as number of bifurcations, maximum branch 

order, and fractal dimension. These results therefore confirm that neurons have greater 

overall arbor size than glia, as quantifiable by multiple alternative metrics. Furthermore, 

this analysis reveals that, compared to neuronal dendrites, glial processes tend to form 

bushier trees, with more symmetric branching distributions and wider bifurcations angles.  
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Figure 4. 5. (A) PCA biplot of the 2-dimensional distribution of neurons and glia relative to the first two 

principal components (PC1 and PC2). Morphological tracings of several cells (glia: blue; neurons: green) 

are also shown to illustrate their structural variability and similarity in this space. (B) Linear contributions 

of all morphometric parameters to PC1 and (C) PC2. Negative loadings indicate a high weight of the scale 

low-end for a parameter: for instance, cells with large positive PC2 values tend to have very few branches, 

whereas cells with many branches tend to have large negative PC2 values.  
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The above analysis suggests that neurons and glia may be reliably recognized 

based on morphological features alone independent of numerous confounds such as 

species, anatomical region, and experimental methods. To test this hypothesis, we used 

the 11 principal components explaining >95% of the variance for classification with three 

supervised learning algorithms: Support Vector Machine (SVM), K-Nearest Neighbors 

(KNN), and Random Forest (RF). In all cases we performed 10-fold cross validation: the 

dataset was randomly split into 10 folds without replacement, with 90% of the data used 

to train the classifier and the remaining 10% used for testing. The process was repeated 

10 times for more reliable assessment. The total runtime for 10 repeats of 10-fold cross 

validation was 15 minutes for KNN with 5 nearest neighbors (k=5), 2.2 hours for SVM, 

and 5 hours for RF. All three classifiers performed remarkably well in separating glia 

from neurons (Fig. 6). SVM slightly outperformed KNN in terms of sensitivity, 

specificity, and accuracy, with RF displaying intermediate performance metrics. 

However, all classification measurements fell within 1% difference for the three 

algorithms, and the area under curve (AUC), a robust measure of predictive modeling 

accuracy, was >99.5% for each of them. 
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Figure 4. 6. Classification performance for Support Vector Machine (SVM), K-Nearest Neighbors 

(KNN), and Random Forest (RF), including the area under the curve (AUC) of the Receiver 

Operating Characteristic plot. 

 

 

The supervised classification results clearly demonstrate that a variety of 

automated methods can reliably distinguish glia from neurons by using morphological 

features alone. Given that the principal components utilized to train the machine learning 

algorithms represent an extensive battery of morphometric measurements, the question 

remains whether individual geometric features can be identified that achieve similarly 

robust performance. Based on the PC1 and PC2 loadings described above, measures of 

arbor size such as overall height and total length and measures of arbor complexity such 

as number of branches could constitute viable candidates. Although the corresponding 

silhouette profiles (Fig. 7) corroborated the expected statistical differences, it also 
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revealed extensive overlap in the corresponding data distributions. For example, the 

optimal height threshold to discriminate neurons from glia (76.15 µm) resulted in a 

suboptimal classification accuracy of <0.95, with >6% of neurons misclassified, and even 

worse performance for total length, number of branches, and any other individual 

parameter. We reasoned, however, that since neurons have longer cable and glia have 

more branches, an appropriately combined feature could achieve a multiplicative 

improvement in discrimination. Specifically, dividing length by number of branches, 

which defines average branch path length, should yield parameter values with an even 

larger ratio between neurons and glia than length alone. Moreover, since neurons have 

slightly less tortuous branches than glia, as indicated by larger (if only marginally) 

contraction values, multiplying branch length by contraction and averaging over all 

branches, which defines average branch Euclidean length (ABEL), should further 

increase corresponding parameter value between neurons and glia. Silhouette analysis 

confirms the considerably better separation between neurons and glia based on ABEL 

when compared to all other individual morphometrics (Fig. 7). 
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Figure 4. 7. Silhouette profiles of length, height, contraction, number of branches, and average 

branch Euclidean length (ABEL) of glia and neurons, and examples of branch Euclidean length 

measurements from a rat basal ganglia GABAergic cell (NMO_68194) from the Smith archive (Smith et 

al., 2015). 
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The optimal ABEL threshold of 14.33 µm results in overall classification 

accuracy of 97.6%, with fewer than 2.4% of glia and 2.5% of neurons misclassified. 

Notably, the misclassification rate dropped steeply around the threshold ABEL value, 

with >90% of the misclassified cells found in a narrow ABEL range of 7 (12-19) µm 

(Fig. 8A). These results were robust across multiple species, strains, developmental 

stages, anatomical regions, types of glial and neuronal cells, labeling techniques, and 

experimental methods, as detailed in the Supplementary Materials. For example, when 

dividing all data by contributing labs, for more than three-quarters of cases the 

misclassification rate was less than 1%. The rare exceptions consisted of specific 

phenotypes as discussed at the end of the Results. Furthermore, even an incomplete 

sampling of neural branches is sufficient for reliable classification based on ABEL: the 

accuracy is essentially unaltered when using 15 randomly chosen branches (97.3%) and 

remains above 95% when reducing the ABEL sample size to 5 branches (Fig. 8B). To 

determine if the classification could be improved further by considering arbor height 

together with ABEL, we combined the two measures (Fig. 8C). The optimal linear 

boundary separating neurons and glia followed the equation A=-0.1352H+23.04 µm, 

where A and H stand for ABEL and height, respectively. This combination increased the 

classification accuracy of glia and neurons only marginally compared to using ABEL 

alone, from 97.6% to 98.5%. Altogether, these results indicate that ABEL is an effective, 

novel morphological biomarker for identifying the main neural cell class. 
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Figure 4. 8. Classification performance of average branch Euclidean length (ABEL). (A) ABEL 

distributions of neurons (green), glia (blue), and cells that are misclassified (red, secondary axis) based on 

optimal separation threshold of 14.33 µm (vertical dashed line). (B) Misclassification rate as a function of 

the number of branches sampled to estimate ABEL. (C) Linear separation (black dashed line) between 

neurons (green) and glia (blue) on the plane defined by arbor height and ABEL. 
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Multiple studies reported that certain neuron types have longer terminal branches 

than internal (bifurcating) branches (Duan et al., 2002b; Kawaguchi et al., 2006; Y. Li et 

al., 2005), but it is unknown whether the same may be true for glia. Since neurons have 

greater ABEL values than glia, if glial processes have similar length for their terminal 

and internal processes, then terminal ABEL might be even more effective than overall 

ABEL to distinguish neurons from glia. To test this possibility, we extracted terminal and 

internal ABEL for all cells. The distribution of the ratios between terminal and internal 

ABEL values had an average of approximately 2 for neurons (Fig. 9A), confirming 

earlier reports that dendrites tend to have longer terminal than internal branches. In 

contrast, the distribution of the terminal/internal ABEL ratios had an average close to 

unity for glia, indicating that this phenomenon is limited to neurons. This was also 

confirmed by linear regression analysis, where the relationship between terminal ABEL 

and overall ABEL was essentially described by the identity line for glia, but had a slope 

above unity for neurons (Fig. 9B). Nevertheless, terminal ABEL did not improve the 

classification accuracy of glia and neurons compared to overall ABEL: in fact, it was 

slightly decreased to 97.1%, with an optimal separation threshold of 16.20 µm. To 

investigate why restricting ABEL measurements to terminal branches failed to improve 

classification performance, we examined the terminal/internal ABEL ratio specifically for 

the misclassified cells (Fig. 9C). Interestingly, those outlying neurons with exceptionally 

low ABEL values also displayed similar length between terminal and internal branches. 

Conversely, outlying glia with exceptionally high ABEL values had longer terminal than 

internal branches. Linear regression of terminal ABEL versus overall ABEL for the 
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misclassified cells also confirmed that most cells misclassified using overall ABEL are 

also misclassified using terminal ABEL (Fig. 9D). 

 

 

 

Figure 4. 9. Relationship between the average branch Euclidean length (ABEL) of terminal branches 

and internal (bifurcating) branches for glia (blue) and neurons (green). (A) Distribution of the ratio 

between terminal and internal ABEL, with medians (vertical dotted lines) and means (vertical dashed lines) 

indicated. (B) 2D scatter and linear regression between terminal ABEL and all-branch ABEL, with 

respective classification thresholds indicated by horizontal and vertical dashed lines. (C) Same as A except 

limited to cells that are misclassified based on all-branch ABEL. (D) Same as B except limited to cells that 
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are misclassified based on all-branch ABEL. The filled circles represent the subset of neurons and glia that 

are misclassified based on all-branch ABEL but correctly classified based on terminal ABEL. An even 

larger number of cells (not shown) are correctly classified based on all-branch ABEL but misclassified 

based on terminal ABEL. 

 

 

Next, we tested the robustness of ABEL as a morphological biomarker of neurons 

and glia and how well the optimized classification thresholds generalize to new cell 

datasets. To this aim, we extended the analysis to the additional glial cells released at 

NeuroMorpho.Org since the beginning of this study and through the time of this writing 

(v.8.1.90; N=4,286), balancing the dataset with an equivalent number of neurons 

(N=4,292) from similar species, anatomical regions, and other metadata (as detailed in 

Supplementary Materials). The ABEL classification accuracy for this new dataset was the 

same at 97.6% (using the unaltered 14.33 µm threshold). We then tried to assess whether 

the few outliers were due to systematic patterns or random noise. Classification accuracy 

was largely consistent across almost all of the metadata investigated,  
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Figure 4. 10. Classification of glia and neurons across anatomical regions. (A) Number of cells 

analyzed (stacked blue bars, right axis: main dataset, solid; and additional dataset, striped) and 

classification accuracy (black line and red triangle, left axis). (B) ABEL distribution of cerebellar glia. 

Cells to the right of the threshold (vertical dashed line) are misclassified. (C) ABEL distribution of 

cerebellar neurons. Cells to the left of the threshold (vertical dashed line) are misclassified. 
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with only notable exceptions when portioned by brain region (Fig. 10A). Specifically, the 

high misclassification rate in the cerebellum prompted a deeper evaluation of cells from 

that region. The misclassified glia consisted of 70 transitional oligodendrocytes and only 

1 Iba1-positive microglia, whereas all 78 oligodendrocyte precursor cells, and the rest of 

cerebellar microglia were correctly classified (Fig. 10B). The 62 misclassified neurons 

include 8 out of 11 granule cells, and all 54 Purkinje cells, whereas cerebellar basket, 

stellate, Golgi, Lugaro, and glutamatergic cells were all correctly classified (Fig. 10C). 

The results indicate that certain cerebellar neurons, specifically Purkinje and granule 

cells, share similar ABEL with glia. The second, less extreme, exception consisted of the 

peripheral nervous system (PNS). Here we found that the single culprit was a specific 

subtype of invertebrate sensory neuron: dendritic arborization (da) Class III cells from the 

fly larva (46 out of 47 misclassified). In contrast, 104 out of 108 Class I and Class IV 

sensory neurons, and the quasi totality (98.5%) of PNS glial cells, were correctly 

classified. 

 

 

Discussion 

 

Open sharing of digitally reconstructed neuronal morphology from labs across the world 

has made it possible for researchers to carry out statistical analysis, classification, and 

computational modeling of their interest (Bota & Swanson, 2007b; Halavi et al., 2012c; Parekh & 

Ascoli, 2015c). Far fewer morphological classification studies have also included glia, and they 

typically did not focus on directly comparing neurons to glia. For example, Leyh et al. (2021) 
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classified different types of microglia in healthy and diseased mouse model, while Zhang et al. 

(2021) added glia as a separate phenotype in a multiclass neuron type categorization task using 

convolutional neural networks. Recognizing the morphological signatures that distinguish glia 

from neurons is an important yet unfulfilled step. 

 

This study sought to determine whether neuronal dendrites and glial processes can be 

reliably separated solely based on their arbor geometries and independent of animal species, 

anatomical region, developmental stage, and experimental condition. To this aim, we harnessed 

all publicly available reconstructions of glia and balanced them with an equivalent number of 

neurons with as closely matching metadata as possible. The resulting dataset of over 30,000 cells 

spanned the very broad methodological diversity in the field. We then produced a compact, 

orthogonalized quantification of those morphologies by applying principal component analysis to 

an extensive battery of extracted morphometrics. Deployment of three traditional supervised 

learning algorithms yielded exceptionally high (>99%) classification accuracy. We thus set out to 

determine which specific differences could explain such striking separation. While neurons were 

confirmed to have larger arbors than glia, we also discovered that glial trees tend to bifurcate 

more than neurons, and that glial branches are slightly more tortuous than their neuronal 

counterparts. These features have already proved useful in the separate investigation of neurons 

(Kawaguchi et al., 2006; Polavaram et al., 2014), and glia (Khakh & Deneen, 2019; Verkhratsky 

et al., 2019), but to our best knowledge never in their comparison. Combining these 

measurements, we defined a novel morphometric parameter, the average branch Euclidean length 

or ABEL, and demonstrated that it constitutes a powerful and robust morphological biomarker of 

cell type. Throughout the whole dataset, glia had smaller ABEL values than neurons, and fewer 

than 2.5% of cells were misclassified based on a simple ABEL threshold of ~14 µm. Standard 
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measures of arbor size, such as height, yielded a more than double misclassification rate relative 

to ABEL.  

 

Molecular expression remains a prominent approach for the consistent 

identification of cell types in the nervous system. For example, glial fibrillar acidic 

protein (GFAP), nerve/glial antigen 2 (NG2), and ionized calcium binding adapter 

molecule 1 (Iba1) are commonly utilized to identify distinct classes of glia. Similarly, 

neurons are often distinguished by their main neurotransmitter based on presence of 

vesicular glutamate transporters, glutamic acid decarboxylase, choline acetyl transferase 

or tyrosine hydrolase. In situ hybridization of the corresponding genes is useful to study 

the somatic distribution of these neurons and glia but does not reveal their dendrites and 

processes. Immunolabeling can in some cases visualize cell type-specific neural arbors, 

and multi-color combinations of antibodies may allow co-labeling of distinct cell types in 

the same preparation. In contrast, relatively simpler but non-selective staining such as 

Golgi (Ghosh, 2020) impregnates a broad spectrum of neurons and glia. In these cases, 

ABEL can provide a practical way to quickly recognize neurons from glia. It is important 

to note in this regard that measuring ABEL does not necessarily require the detailed 

tracing of the full arbors. Euclidean length is simply defined as the straight-line distance 

between the start and end points of a branch, which can be computed directly from the 

microscopic image in any common software. Moreover, we showed that as few as five 

branches are sufficient to provide an ABEL approximation that distinguishes glia from 
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neurons with >95% accuracy. Even for complex arbors with hundreds of bifurcations and 

terminations, it is thus possible to estimate ABEL with minimum effort.  

 

Besides the practical utility, it is tempting to speculate about the possible 

scientific interpretation of our main finding. The systematically small ABEL values of 

glia suggest a tendency to optimize spatial occupancy, consistent with extensively 

reported tiling properties for these cells (Barber et al., 2021; Pogodalla et al., 2022). In 

contrast, the larger ABEL values of neurons are indicative of pressure to maximize 

spatial exploration, in line with the role of dendrites to integrate converging synaptic 

signals from multiple neural pathways (Anton-Sanchez et al., 2018; Stepanyants & 

Chklovskii, 2005). It is especially intriguing to consider the rare exceptions that emerged 

from our analysis. Since the only glial outliers in terms of ABEL were transitional 

oligodendrocytes, it is possible that the compact arbor is an acquired property of mature 

glia rather than an innate feature, and that seeking myelination targets requires a degree 

of spatial exploration. The main neuronal exceptions were cerebellar granule and 

Purkinje cells. It may not be a coincidence that these two neuron types together form one 

of the most peculiar circuits in any neural system: the parallel fibers of the cerebellum, 

which ascend from granule cell axons and contact the Purkinje dendrites on up to 

100,000 spines. Purkinje cells are the output cells of the cerebellar cortex, and their 

dense, planar dendrites are fan-shaped and branch extensively to cover the field of their 

respective territories without overlapping (Fujishima et al., 2018). These features, which 

push Purkinje dendrites towards the compact spatial occupancy typical of glia, are 
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dictated by the need to sample the exceptionally large number of synaptic signals from 

the parallel fibers (Hirano, 2018). Cerebellar granule cells are the single most abundant 

neuron type in the mammalian brain (Herculano-Houzel, 2010) as well as the most 

densely packed (Badura & De Zeeuw, 2017), leading to considerably small dendritic 

fields (Houston et al., 2017). These characteristics, again determined by the unique 

connectivity profile of the cerebellar parallel fibers, are more akin to those of glial 

processes than of typical neuronal dendrites. Of note, the other cerebellar neurons 

(basket, Lugaro, Golgi, and stellate cells) are all correctly classified by ABEL. These 

exceptions point to a clearly different cell organization in the cerebellum compared to 

other brain regions.  

 

Aside from the sparse exceptions, the robustness of the results reported in this 

study is underscored by the very large dataset, distributed provenance of the 

reconstructions, and broad diversity of metadata. At the same time, it is also essential to 

recognize that this study is intrinsically limited by the data availability. For example, 

although the included species span primates, rodents, fish, and invertebrates, the majority 

of reconstructions for both neurons and glia come from rats and mice. Furthermore, while 

many anatomical regions are represented in the study, the list is far from complete. And 

albeit several classes of glia and of neurons were analyzed, their distribution was far from 

uniform. These factors reflect the state of the research in this field rather than a flawed 

analysis design. Nevertheless, the conclusions must be considered tentative until further 

validated as more data continue to accumulate. 
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This work also illustrates the usefulness of subjecting very large datasets to 

exploratory analysis via machine learning, followed by a targeted investigation of the 

most promising phenomena or patterns revealed. This “breadth-then-depth” approach 

may help shed light on otherwise elusive mechanisms. In particular, tracing glial 

morphology has become progressively more common and, thanks to increased awareness 

of data sharing, ever larger amounts of glial reconstructions are being deposited to 

NeuroMorpho.Org. This increment in data availability in a public repository opens new 

doors for scientific discovery, especially when applying different analysis and modeling 

techniques for glia that have been productively applied to neurons since the early days of 

computational neuroscience. 

 

 

Supplementary material 

The following files are available at https://github.com/Masood-

Akram/Classification_Neurons-Glia/tree/main/Supplementary_Material 

Scale Correction Main Dataset: calculations of the correction factors for 

the archives of the main dataset reporting reconstruction coordinates in pixels 

rather than microns.  
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Scale Correction Additional Dataset: calculations of the correction factors 

for the archives of the additional dataset reporting reconstruction coordinates in 

pixels rather than microns.  

Metadata Dimensions Main Analysis: detailed breakdown of the metadata 

for all archives of the main dataset. 

Metadata Dimensions Additional Analysis: detailed breakdown of the 

metadata for all archives of the additional dataset. 
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Summary 

Parsing diverse nerve cells into biological types is necessary for understanding 

neural circuit organization. Morphology is an intuitive criterion for neuronal 

classification and a proxy of connectivity, but morphological diversity and variability 

often preclude resolving the granularity of neuron types. Combining genetic labeling with 

high-resolution, large-volume light microscopy, we established a single neuron anatomy 

platform that resolves, registers, and quantifies complete neuron morphologies in the 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/light-microscopy
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mouse brain. We discovered that cortical axo-axonic cells (AACs), a cardinal 

GABAergic interneuron type that controls pyramidal neuron (PyN) spiking at axon initial 

segments, consist of multiple subtypes distinguished by highly laminar-specific soma 

position and dendritic and axonal arborization patterns. Whereas the laminar 

arrangements of AAC dendrites reflect differential recruitment by input streams, the 

laminar distribution and local geometry of AAC axons enable differential innervation of 

PyN ensembles. This platform will facilitate genetically targeted, high-resolution, and 

scalable single neuron anatomy in the mouse brain. 

  

Graphical Abstract 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/interneurons
https://www.sciencedirect.com/topics/immunology-and-microbiology/axon-initial-segment
https://www.sciencedirect.com/topics/immunology-and-microbiology/axon-initial-segment


   

 

102 

 

 

 

 

Introduction 

Defining and cataloging neuronal cell types, groups of neurons that share 

anatomical, physiological, and molecular properties are necessary for understanding the 

organizational logic of neural circuits (Huang & Zeng, 2013). As phenotypic variations of 

neurons often span substantial parameter space, it is necessary to carry out 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/phenotypic-variation


   

 

103 

 

comprehensive, quantitative, and scalable single-cell analysis to resolve the appropriate 

granularity of cell type definition (Zeng & Sanes, 2017). Recent advances in single-

cell RNA sequencing (scRNA-seq) enable quantitative measurements of 

cellular transcriptome profiles at massive scale, and computational analyses reveal 

increasing number of “transcriptional types” and discrete as well as continuous variations 

(Macosko et al., 2015; Tasic et al., 2018; Zeisel et al., 2015). As neuronal phenotypes are 

inherently multi-modal, it is necessary to achieve single-cell analyses of orthogonal cell 

features toward an integrated definition of neuron types that encapsulate the issue of 

granularity. 

Neuronal morphology has been an intuitive first-level description of cell types. In 

several invertebrate systems (Aso et al., 2014; Chiang et al., 2011) and 

the vertebrate retina (Sanes & Masland, 2015) in which neurons are relatively small and 

stereotyped, comprehensive and quantitative single-neuron morphometry has allowed 

operational and consensual definition of neuron types. Morphology-based cell catalogs in 

these systems have been achieved or within reach (Aso et al., 2014; Hobert et al., 2016; 

Seung & Sümbül, 2014), which provide a foundation for multi-modal analysis and for 

exploring neural circuit organization. In the mammalian brain, however, the vast 

diversity, large spatial span, and seemingly endless variations of neuronal shapes present 

unique challenges in morphological tracing and analysis (Huang & Zeng, 2013; Lichtman 

& Denk, 2011). Single-neuron anatomy in the mammalian brain requires overcoming 

several technical hurdles. The first is labeling: to systematically, reliably, sparsely, and 

completely label specific sets of individual neurons. The second is imaging: to achieve 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/shotgun-sequencing
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/transcriptome
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/vertebrates
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/morphometry
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axon resolution imaging in brain-wide volume (Economo et al., 2016; Gong et al., 2013; 

A. Li et al., 2010). The third is cell reconstruction: to convert large image stacks into 

digital datasets of single-neuron morphology. The fourth is analysis: to register neuronal 

morphology within appropriate spatial coordinate framework, and to extract, quantify, 

and classify biologically relevant attributes (e.g., those relate to neural connectivity). 

Here, we present a robust genetic single neuron anatomy (gSNA) platform in the 

mouse that overcomes some of these challenges. We combined genetic cell labeling with 

dual-color fluorescence micro-optical sectioning tomography (dfMOST) (Gong et al., 

2016) to achieve axon resolution and brain-wide imaging and spatial registration of 

genetically targeted single neurons. We focused our analysis on one of the most 

distinctive cortical GABAergic interneurons: the axo-axonic cells (AACs) that 

specifically innervate the axon initial segment (AIS) of glutamatergic pyramidal neurons 

(PyNs) (Somogyi et al., 1982; Taniguchi et al., 2013; Woodruff et al., 2010) and likely 

control spike initiation. Complete reconstruction of single AACs and their precise 

registration along cortical laminar coordinate allowed quantitative morphological analysis 

in the context of input-output connectivity. We discovered that cardinal AACs consist of 

multiple discrete subtypes that are distinguished by highly laminar-specific soma position 

and dendritic and axonal arborization patterns. The laminar arrangements of AAC 

dendrites may allow differential recruitment by presynaptic input streams. Furthermore, 

the laminar stratification of AAC axon arbors correlates with the distribution of PyN 

subsets and the local geometry of AAC axon terminals differentially conform to the 

laminar features of PyN AIS, suggesting differential innervation of PyN ensembles. Our 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/tomography
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/interneurons
https://www.sciencedirect.com/topics/immunology-and-microbiology/axon-initial-segment
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glutamatergic
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/axon-terminal
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results support a hierarchical scheme of neuronal classification (Zeng & Sanes, 2017) and 

suggest that cardinal neuron types consist of fine-grained subtypes, which can be deduced 

from light microscopy and mesoscale analyses that inform input-output connectivity 

patterns. The gSNA platform enables scalable and comprehensive single-neuron 

anatomical analysis, which will provide foundational datasets for neuron type discovery 

and classification in the mammalian brain. 

 

 

Results 

 

Establishing a gSNA Platform 

Our gSNA platform consists of four components (Figure A1.1). The first is a 

method to systematically label different sets of genetically targeted individual neurons to 

their entirety; the second is a technology for simultaneous imaging of labeled neurons at 

axon resolution and all other cell body positions throughout the entire mouse brain 

(dfMOST) (Gong et al., 2016); the third is a procedure to completely reconstruct single 

neurons from brain volume image stacks; the fourth is an analysis pipeline that registers 

and quantifies neuronal morphology within an appropriate spatial coordinate system that 

reflect network connectivity. Here, we integrate genetic labeling with fMOST in the 

gSNA platform to analyze the morphological diversity of a well-

recognized interneuron type in the cerebral cortex. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/light-microscopy
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig1
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/interneurons
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cerebral-cortex
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Figure A1. 1. Schematic of the gSNA Platform Applied to the Mouse Brain. (A) Pipeline and 

components of genetic single neuron anatomy (gSNA). (B) Left: scheme of genetic and viral strategy for 

the labeling of axo-axonic cells (AACs). A transient CreER activity in MGE progenitors is converted to a 

constitutive Flp activity in mature AACs. Flp-dependent AAVs injected in specific cortical areas enables 

sparse and robust AAC labeling. (C) fMOST high-resolution whole-brain imaging. Two-color imaging for 

the acquisition of GFP (green) channel and PI (propidium iodide, red) channel signals. PI stains 

brain cytoarchitecture in real time, and therefore provides each dataset with a self-registered atlas. A 488-

nm wavelength laser was used for the excitation of both GFP and PI signals. Whole-brain coronal image 

stacks were obtained by sectioning (with a diamond knife) and imaging cycles at 1-μm z steps, guided by a 

motorized precision XYZ stage. 

 

 

AACs were recognized as a bona fide type largely based on their unique 

morphology and specific innervation of PyNs at AIS  (Somogyi et al., 1982). Although 

the precise physiological action of AACs remains be elucidated (J. Lu et al., 2017; 

Szabadics et al., 2006; Woodruff et al., 2010), the defining feature is their specialization 

in regulating the spike initiation of PyNs. As multiple morphological variants of AACs 

have been found in several cortical structures (e.g., the hippocampus [(Szabo et al., 2017; 

https://www.sciencedirect.com/topics/neuroscience/ganglionic-eminence
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cytoarchitecture
https://www.sciencedirect.com/topics/immunology-and-microbiology/axon-initial-segment
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Varga et al., 2014)], piriform cortex, and neocortex) and in different cortical layers 

(Defelipe et al., 1985; Lewis & Lund, 1990; Somogyi et al., 1982; Taniguchi et al., 

2013), this raises the questions of whether the cardinal AAC type consist of multiple 

“subtypes,” and how AAC subgroups should be defined. We have previously captured 

cortical AACs through genetic fate mapping of neural progenitors of the embryonic 

medial ganglionic eminence (MGE) using the Nkx2.1-CreER driver line (Taniguchi et al., 

2013). Conversion of transient Nkx2.1-CreER expression in MGE progenitors to a 

constitutive Flpase activity in AACs enabled postnatal viral targeting (He et al., 2016). 

By controlling CreER efficiency (i.e., tamoxifen dose) and AAV injection volume and 

location, we were able to achieve specific, sparse, and complete labeling of AACs in 

defined cortical areas (Figures A1.2 and A1S1). Here, we analyzed AACs in the medial 

prefrontal (mPFC), motor (MC), and somatosensory (SSC) cortex. We use the original 

nomenclature axo-axonic cells (AACs) (Somogyi et al., 1982) to refer to all GABAergic 

interneurons that innervate PyNs at AIS. Under this category, we use the term chandelier 

cells (ChCs) to refer to the subsets of AACs in the cerebral cortex (especially those in 

supragranular layers), whose axon arbors resemble the candlesticks of a chandelier light. 

 

 

https://www.sciencedirect.com/topics/neuroscience/piriform-cortex
https://www.sciencedirect.com/topics/neuroscience/ganglionic-eminence
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/tamoxifen
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig2
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/chandelier-cell
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/chandelier-cell
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Figure A1. 2. Areal and Laminar Distribution of AACs Revealed from Whole-Brain fMOST Dataset. 

(A) A schematic of whole-brain coronal dataset collection (top) with an example of GFP channel (center) 

and PI channel (bottom) images. Scale bars: 1,000 μm. (B) An example of the distribution of sparsely 

labeled AACs in mPFC. Green: AAC morphology, 100-μm max-intensity projection. 

Blue: cytoarchitecture revealed by PI, 5-μm max-intensity projection. Scale bar: 1,000 μm. (C and D) 

Laminar distribution of L2 AACs in mPFC. Enlargement of PI channel (C) and GFP channel (D) images 

from the left box in (B). (E and F) Laminar distribution of L5 AACs in mPFC. Enlargement of PI channel 

(E) and GFP channel (F) images from the right box in (B). Dashed lines in (C)–(F) indicate the layer 

boundaries. Cortical layers were discriminated based on cell body distributions in PI channel according to 

the Allen Mouse Brain Reference Atlas (http://portal.brain-map.org/). Scale bars in (E) and (F): 100 μm. 

 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/propidium-iodide
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cytoarchitecture
http://portal.brain-map.org/
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Following tissue resin embedding and processing (Gong et al., 2016; Xiong et al., 

2014), we used a dfMOST system to image the whole-brain samples at submicron 

resolution (Figure A1.1C; Video A1S1). The dual-channel capturing of neural 

morphology labeled by GFP and brain cytoarchitecture stained by propidium iodide (PI) 

(red) were achieved by using a wide-field upright epi-fluorescence microscopy with a 

blue laser (488 nm) for fluorescence excitation and two separate charge-coupled device 

(CCD) cameras for signal detection (details in STAR Methods). Importantly, the PI 

channel provided each brain dataset with a self-registered Nissl-like reference atlas of cell 

body distribution information, which allowed reliable delineation of cortical areas and 

layer boundaries (Figures A1.2, A1.3A, and A1S1). Furthermore, the image contrast in PI 

channel was sufficient for the reconstruction of PyN main dendrites, which were used for 

identifying local laminar and vertical coordinates, readjusting cell orientation, and 

establishing a standardized platform for comparative analysis between cells in different 

cortical areas (Figures A1.3A and A1.3B). 

 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/tomography
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc2
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cytoarchitecture
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/propidium-iodide
https://www.sciencedirect.com/science/article/pii/S2211124719302116#sec4
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig2
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3


   

 

110 

 

 

 

Figure A1. 3. Single AAC Reconstructions in Cerebral Cortex. (A) A representative AAC 

reconstruction and its co-registered PI channel images. Left: overlay of the reconstructed cell with its PI 

channel image (10-μm max intensity projection) with the original orientation. Cytoarchitecture information 

shows the cortical laminar organization (more details in STAR Methods). Scale bar: 50 μm. Middle: single 

slice of PI channel. Right: enlarged image series from the boxed area in middle panel. Arrows indicate a 

pyramidal neuron main dendrite extending from cell body. Scale bar: 15 μm. (B) Rotation and alignment 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/propidium-iodide
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cytoarchitecture
https://www.sciencedirect.com/science/article/pii/S2211124719302116#sec4
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procedures based on reconstructed pyramidal dendrites (green). Randomly selected pyramidal dendrites 

near the AAC cell body were reconstructed in Neurolucida360. The vertical axis of the local cortical 

column was calculated by performing principal-component analysis (PCA) on the centered dendritic 

reconstructions. AAC reconstruction was then re-aligned in the coronal plane (XY plane) and sagittal plane 

(YZ plane) around the cell body based on the identified cortical column orientation. (C) Representative 

AAC single-cell reconstructions in mPFC, MC, and SSC. Cortical layers in each area were indicated by 

dashed lines. Black: soma body. Red: dendrites. Blue: axons. The orientation of each reconstruction was re-

adjusted according to the local cortical vertical axis (see more details in STAR Methods). Representative 

translaminar axonal and dendritic arbors in the SSC are indicated by blue and red arrows, respectively. (D) 

Left: scheme of the laminar arrangement of the input and output streams of SSC, in part rooted in the 

laminar organization of pyramidal neuron types with distinct projection targets. Right: a schematic of 

representative AACs in the SSC with characteristic laminar dendritic and axonal distribution patterns. Str, 

striatum; Bsm, brainstem; Scd, spinal cord; SCs, superior colliculus; Pom, posterior complex of thalamus; 

VPM, ventral posteromedial nucleus of the thalamus; Th, thalamus; ipsi, ipsilateral; contra, contralateral. 

 

 

 

Download video  
Supplementary Video A1.1. dfMOST Imaging of Viral-Labeled AACs at Single-Axon Resolution, 

Related to Figure A1.1. 100 μm max intensity projection of original GFP channel images without any 

imaging processing.  

 

 

https://www.sciencedirect.com/topics/neuroscience/cortical-column
https://www.sciencedirect.com/topics/neuroscience/cortical-column
https://www.sciencedirect.com/topics/neuroscience/coronal-plane
https://www.sciencedirect.com/science/article/pii/S2211124719302116#sec4
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/brainstem
https://www.sciencedirect.com/topics/immunology-and-microbiology/superior-colliculus
https://www.sciencedirect.com/topics/neuroscience/ventral-posteromedial-nucleus
https://ars.els-cdn.com/content/image/1-s2.0-S2211124719302116-mmc2.mp4
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From 11 whole-brain dfMOST datasets, we completely reconstructed 62 AACs 

from mPFC, MC, and SSC (Figures A1.3C and A1S2A; Table A1S1). As axon arbors of 

AACs were extremely dense and complex, all AACs were manually reconstructed. With 

rare exceptions (Bienvenu et al., 2012; Viney et al., 2013), previous labeling of AACs 

were largely carried out in brain slice preparations where axons and dendrites were 

severed, and thus reconstructions were mostly incomplete (Blazquez-Llorca et al., 2015; 

Kawaguchi & Shindou, 1998; Somogyi et al., 1982; Woodruff et al., 2010). Our dataset 

represents a set of complete and comprehensive AAC reconstructions in the cortex since 

their discovery four decades ago (Szentágothai & Arbib, 1974). The average length of 

AAC axons was 2.14 ± 0.79 cm (n = 62; mean ± SD), average number of axon branches 

was 1,369 ± 499 (n = 62; mean ± SD), and average axon branch order was 32 ± 8 (n = 62; 

mean ± SD). A major goal of our analysis is to define and discover AAC subtypes based 

on morphological features that inform connectivity, taking full advantage of the 

obligatory synaptic relationship between AAC axon terminals and PyN AIS. Our strategy 

was to examine the location and distribution of AAC cell bodies, their dendrite and axon 

arbor distribution, and their axon arbor geometry in the well-established coordinates of 

cortical laminar organization based on AAC postsynaptic targets—the PyNs 

(Figure A1.3D). 

AACs Tend to Localize at the Borders between Cortical Layers 

Previous studies in several species found that AACs are distributed across most if 

not all cortical areas and in multiple cortical layers (Lewis & Lund, 1990; Somogyi et al., 

1982; Taniguchi et al., 2013), but more precise description of AAC distribution and 

https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/axon-terminal
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/subcellular-localization
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positioning has not been reported. The cellular resolution spatial coordinate information 

in the dfMOST datasets allowed unambiguous and quantitative localization of AACs. 

Within all three areas, the largest proportion of our reconstructed AACs was located 

within the supragranular layers, with a major fraction at the layer 2 to layer 1 (L2/1) 

border (55%) and a much smaller set in L3 (5%) (Figures A1.2, A1.3C, and A1S1). A 

significant portion of AACs were found in infragranular layers, both in L5 (L5 22%) and 

L6 (16%). We found one AAC in L4 of SSC in our dataset. Interestingly, in most cases, 

AAC somata tended to localize at the border between cortical layers, with 

prominent apical dendrites and basal axons (Figures A1.2, A1.3C, and A1.3D). 

 

AACs Elaborate Laminar-Restricted Apical and Basal Dendrites That Protrude 

Dendritic Spines 

Almost all of the reconstructed AACs elaborated prominent apical dendrites 

(Figure A1.4). The average span of apical dendrites of L2 AACs was 85.0 μm (90% of 

dendrite arbors horizontally cover 85.0 ± 23.0-μm radial distance; mean ± SD; n = 61) 

from soma (Figures A1.4G and A1S3). In most cases (51/62; 82% of all reconstructed 

AACs), the apical dendrite extended within the one layer above the soma location (e.g., 

L1 for L2 AACs and L5 for L6 AACs). In several cases, L3 (3 cells) and L5 (4 cells) 

AACs extended apical dendrites all the way to the pia (Figure A1.3C; Videos 

A1S4 and A1S5). In particular, all L2 (34 AACs) and some L3 (3 cells), L5 (2 cells) 

AAC dendrites appeared to tightly attach to the pia with thickened apical tufts; this is in 

contrast to many PyN apical dendrites in L1 that do not reach near or adhere to pia 

https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig2
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/topics/neuroscience/apical-dendrite
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig2
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig4
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig4
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc5
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surface (Figures A1.4A, A1.4B, A1.4F, and A1S3B). Interestingly, the apical but 

not basal dendrites of L2 ChCs sprouted filopodia-like slender dendritic spines, which 

were enriched in the upper half (68% in upper L1, the rest near L1/2 border) of L1 

(Figures A1.4C–A1.4K). 

 

 

https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig4
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Figure A1. 4. Characteristics of L2 AAC Dendrites. (A) A representative L2 AAC in mPFC. 100-μm 

max intensity projection. Scale bar: 100 μm. (B) Dendrites of L2 AAC. Image was enlarged from the box 
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in (A). Scale bar: 50 μm. (C and D) Apical (C) and main dendrites (D) were enlarged from boxes in (B). 

Scale bars: 30 μm (C) and 5 μm (D). (E) Spines (arrows) on the apical dendrites were enlarged from the 

box in (C). Scale bar: 5 μm. (F) Complete reconstruction of dendrites (red) and spines (black). The same 

cell shown in (A) and (B). Inset: enlarged from the box. Black circle: cell body. Gray lines: pia and L1/2 

border. Scale bar: 50 μm. (G) Horizontal dendritic arbor distributions of up-layer (L2 and L3) and deep-

layer (L4, L5 and L6) AACs in mPFC, MC, and SSC. Data are mean ± SD. (H) An example of heatmaps 

showing the density distribution patterns of a L2 AAC dendritic arbor length (left), branching nodes 

(middle left), terminal nodes (middle right), and spines (right). Scale bar: 200 μm. (I) Single-cell density 

plots of L2 AAC dendrites (same as in H) along the cortical depth. (J) Density plots of dendrites from 11 

L2 AACs in mPFC. Different colors indicate different cells. 

(K) Normalized density plots of (J) based on pia and L1/2 border positions (see more details in STAR 

Methods). Black circles in (I)–(K) indicate AAC soma positions in the coordinate. Dashed lines correspond 

to the place of pia (top) and L1/2 border (bottom). Dark black curves in (J) and (K) are averages of all the 

cells. Density value was presented by ratio. 
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Download video  

Supplementary Video A1.5. A L5a (L5-cross) AAC in mPFC, Related to Figure A1.3.  

https://ars.els-cdn.com/content/image/1-s2.0-S2211124719302116-mmc6.mp4
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Although overall more sparse than apical dendrites, the basal dendrites of AACs 

show striking laminar restriction to the same layer of the cell soma (Figures A1.4H–

A1.4K, A1S3C, and A1S3D). For example, all L2 AACs (n = 34) restrict their basal 

dendrites strictly to L2 without extending to L3, while L3 AACs (n = 3) restrict their 

basal dendrites strictly to L3 without extending to L2 and L4 (Figures A1S2A 

and A1S5D). Similarly, L5 and L6 AAC basal dendrites manifest the same intralaminar 

restriction. Together, these results suggest that AACs elaborate their dendritic arbors in a 

laminar-specific and unitary pattern instead of a continuous and diffuse pattern. The 

polarized dendritic arborization suggests that AACs receive most of their inputs from 

above their cell bodies; in particular, pia-attached AAC dendrites may recruit the most 

superficial L1 inputs and select or modify these inputs through dendritic spines. On the 

other hand, the basal dendrites receive inputs strictly targeting the same layer where the 

cell soma is located. 

AACs Elaborate Laminar-Stratified Axon Arbors, Some with Translaminar Arbors 

Although the characteristic shape and exquisite specificity of AAC axons have 

been recognized decades ago, few if any have been reconstructed to their entirety. We 

found that AACs axons arborized very extensively near the cell soma (below the soma 

for L2 AACs and both above and below the soma for other cortical AACs; Figures 

A1.5A–A1.5C, A1S4, and A1S5A). The average span of AAC axon arbors was 129.2 μm 

https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig4
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig5
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig5
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
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(90% of axon arbors horizontally cover 129.2 ± 27.5-μm radial distance; mean ± SD; n = 

61). In addition to the highly predominant local arbor (i.e., intralaminar; Figure A1.5A), a 

significant fraction of L2 and L3 AAC axons (∼74% of our L2 AAC reconstructions) 

further extended to the deeper layers (i.e., cross- and trans- laminar; Figures A1.3C, 

A1.3D, A1.5A, A1.5B, A1.5D, A1S2, A1S5A, A1S5D, and A1S5F; Videos S2 and S3). 

In particular, translaminar axons of L2 AACs descended through intervening layers (e.g., 

L3–L5A in MC or L4 in SSC) before elaborating terminal branches with presynaptic 

boutons (Figure A1.5D). This result suggests that, in addition to exerting powerful 

control over local PyN populations, some L2/3 AACs likely coordinate firing between 

local PyNs and a distant ensemble in an infragranular layer. Overall, AAC axon arbors 

appear to strictly conform to laminar borders instead of extending diffusely across layers, 

suggesting a laminar-specific and unitary pattern of axon stratification. Interestingly, we 

observed one L6 AAC with an inverted polarity—its dendrite extended below toward the 

white matter, whereas the axon extended above toward L5 (Figures A1.3C, A1S5E, and 

A1S5G). 
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Figure A1. 5. Morphology and Distribution Patterns of AAC Axons in the Neocortex. (A) A 

representative image of two examples of nearby intra- (left) and cross- (right) L2 AACs in mPFC. Insets 

are enlarged images from boxed regions showing the main axon extending from the soma (1; arrow), 

characteristic axon cartridge clusters, and individual boutons from different regions of the axon arbor (2, 3, 

and 4). Image is a projection of 100-μm image stack. Scale bars: 100 μm (low-mag image) and 10 μm 

(insets). (B) A representative image containing nearby L2, L4, and L5 AACs in SSC. Enlarged L4 and L5 

AACs were from the boxes in the left panel. Scale bars: 100 μm (left) and 10 μm (right). Dashed lines in 

(A) and (B) indicate cortical layers. (C) Horizontal axon arbor distributions of up-layer (L2 and L3) and 

deep-layer (L4, L5 and L6) AACs in mPFC, MC, and SSC. Data are mean ± SD. (D) Length density 

analysis of axons and dendrites from all the AACs shown in (A) and (B). Left: projection of reconstructions 

(dendrites in red; axons in blue). Middle: heatmap of length density distribution of dendrites (middle left) 

and axons (middle right). Right: length density plots of AAC dendrites and axons along cortical depth (y 

axis). Dashed lines indicate layer boundaries. Insets in rows 3 and 4 highlight axon branches in deep layers. 

(E) An example of axon bouton reconstruction of L2 AAC in mPFC. Inset: magnified view of the boxed 

region. (F) Axon cartridges that innervate PyN AIS can point upward, downward, or split from the middle. 

(G and H) The numbers of synaptic boutons correlate with axon length quantified by absolute value (G) or 

ratio (H). 
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Download video 

Supplementary Video A1.2. Nearby L2-Intra and L2-Cross AACs in mPFC, Related to Figure A1.3.  

 

 

 

https://ars.els-cdn.com/content/image/1-s2.0-S2211124719302116-mmc3.mp4
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Download video 
Supplementary Video A1.3. Reconstructions of Nearby L2-Intra and L2-Cross AACs in mPFC, Related to 

Figure A1.3.  

 

 

AACs Consist of Multiple Subtypes Distinguished by Dendrite-Axon Distributions 

That Reflect Input-Output Connectivity Patterns 

The substantial variations in the location and morphology of AACs raise 

questions of whether they consist of anatomical “subtypes” and how subtypes can be 

resolved with biologically relevant properties. As morphology is a proxy to and serves 

the purpose of connectivity, we first adopted a connectivity-guided approach to 

morphology-based AAC subtyping. Our analysis was based on the premise that, at a 

mesoscale, establishing a synaptic connection requires the physical overlap between a 

https://ars.els-cdn.com/content/image/1-s2.0-S2211124719302116-mmc4.mp4
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/subtyping


   

 

124 

 

presynaptic axon and its postsynaptic element within a specific anatomic location, i.e., an 

“anatomic parcel,” that represents the input or output component of a neural 

network (Ascoli & Wheeler, 2016); this tight spatial correlation often extends to the 

matching of fine-scale geometric features (e.g., presynaptic climbing fibers and 

postsynaptic Purkinje cell dendrites in the cerebellum). This obligatory correlation 

between pre- and post-synaptic elements, when framed in the context of circuit 

connectivity, provides a biologically relevant coordinate for morphological analyses. 

 

The mesoscale correlation between pre- and post-synaptic elements is particularly 

identifiable and compelling for AAC and PyNs. Within the laminar architecture of the 

neocortex, different types of PyNs that project to distinct cortical and subcortical targets 

are organized, to the first approximation, into different layers, and different sources of 

cortical and subcortical inputs are routed through laminar streams (K. D. Harris & 

Shepherd, 2015) (Figure A1.3D). Importantly, the obligatory relationship between AAC 

axon terminals and PyN AIS represents a rare case where AAC axon distribution alone 

indicates connectivity to specific types of postsynaptic targets. Together, these provide an 

inherent spatial coordinate system to register AAC position and morphology in the 

framework of cortical input and output streams (Figure A1.3D). As the laminar 

arrangement of AAC dendrites recruit different input streams and the laminar 

stratification of axons mediate their output to separate PyN ensembles, we designed an 

AAC clustering analysis that emphasized the laminar density distribution of AAC 

dendritic and axonal arbors (Figure A1.6). We excluded L3 and L4 AACs 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/neural-networks
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/neural-networks
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/purkinje-cell
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig6
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(Figure A1S2A) from this analysis as there were few such examples (less than 4) in our 

current dataset. 
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Figure A1. 6. Hierarchical Clustering of AACs Based on Cortical Laminar Density Distribution of 

Axons and Dendrites. (A) Dendrogram of hierarchically clustered AACs (n = 53). KL divergences 

(Kullback-Leibler divergence) of normalized arbor distribution functions along cortical depth were taken as 

the distance metric, and furthest distance was taken as the linkage rule. See more details in STAR 

Methods and Figure A1S6 for the normalization procedures. Dashed lines correspond to the cutoff linkages 

of the identified eight cell clusters. Inset: silhouette analysis of the eight AAC clusters. (B) 3D scattering 

plots of the eight AAC clusters from (A) based on three principal components. (C) Axon (blue) and 

dendrite (red) length density distribution profiles of the eight AAC clusters. Dashed lines: cortical layer 

boundaries. Black circles: soma body positions. Bold lines: average of all the neurons in each cluster. Note 

that cell #38 in cluster 5 has apical dendrites (arrow) reading L1, a defining feature of cluster 6, but its lack 

of L3 axon branches (as it is located in SSC with a prominent L4) likely assigned it to cluster 5. (D–G) 

Clique analysis for the identification of robust AAC clusters. Clique analysis was conducted based on 

hierarchical clustering with five different metrics on AAC axons: three persistent-homology-based metrics, 

using three different ways of measuring distance from the soma, as scalar descriptor functions defined on 

the neuronal processes: Euclidean, geodesic, and depth from cortical surface (“y axis”), and the length 

density and L-measure metrics (Scorcioni et al., 2008b) defined in the text (D and E). Laplacian eigenmap 

embedding of hierarchical clustering for the y axis-based metric (D) and other descriptors (Figure A1S7A–

A1S7E). The selection of “K” was based on silhouette analysis. Silhouette plot for K = 4 with y axis as the 

input metric; thickness denotes sizes of clusters; red dotted line denotes average silhouette score; larger 

score means better clustering (E). The relations between the five metrics were quantified by similar index 

(SI) and adjusted Rand index (F). Three robust AAC clusters were identified based on the clique analysis 

(G). The full listing of the three cliques are shown in Figure A1S7F. 

 

 

Based on brain cytoarchitecture information of dfMOST datasets, we normalized 

AAC dendrite and axon density distribution to a standardized cortex template 

(Figure A1S6). Hierarchical clustering based on cortical laminar density distribution of 

axons and dendrites revealed eight AAC clusters grouped according to the laminar 

distribution of their cell body position and dendritic and axonal arborization (Figures 

A1.6A–A1.6C). The four L2 ChC clusters correspond to intra- (cluster 4), cross- (cluster 

1), and trans- (cluster 2 and cluster 3) ChC subtypes. The axon arbors of cluster 3 extend 

both L5 and L6 branches, but more dominantly innervate L5 (Figure A1S2B). Cluster 5 

AACs resided in L5; their axons and dendrites were largely restricted within L5. Cluster 

6 AACs resided in L5a; their axon arbors elaborated mostly within L5, but their dendrites 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dendrogram
https://www.sciencedirect.com/science/article/pii/S2211124719302116#sec4
https://www.sciencedirect.com/science/article/pii/S2211124719302116#sec4
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extended to L1. Cluster 7 AACs resided at L5 and L6 border (i.e., L6a), their dendrites 

were restricted in L5 and L6a, and their axons arborized mainly in L6. Cluster 8 consisted 

of L6 AACs with intralaminar dendrite and axon arbors. These different AAC clusters 

likely receive different inputs and control different subsets of PyNs, and thus are 

distinguished by their circuit connectivity patterns. Importantly, both the dendritic and 

axonal arbors of AACs conform to specific cortical layers rather than extending diffusely, 

presumably to recruit inputs or innervate targets in those layers, respectively. This 

suggests that the morphological variation of AACs might be more unitary than 

continuous. This was particularly apparent for two broad groups of L5 AACs, one 

extended short, L5-restricted apical dendrite and the other extended long, L1-reaching 

apical dendrites (Figures A1.3 and A1S5A–A1S5C). We noted that this clustering 

method was not perfect as it assigned cell 38 to cluster 5, even though cell 38 extended 

apical dendrite to L1, as those characteristic to cluster 6 (Figures A1.6 and A1S5A). In 

addition to these eight clusters (Figure A1.6), we detected three L3 AACs (two in SSC, 

one in MC) with translaminar axon arbors and apical dendrite reaching L1 (Figures 

A1S5D and S5F; Video S4), one L4 AACs in SC (Video S6), and one inverted L6 AAC 

in mPFC (Figures A1S5E and A1S5G show the projection image of L6 AAC). 
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Download video 
Supplementary Video A1.4. Reconstructions of Nearby L3 and L5-Intra AACs in MC, Related to 

Figure A1.3.  

 

 

 

https://ars.els-cdn.com/content/image/1-s2.0-S2211124719302116-mmc5.mp4
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Download video 
Supplementary Video A1.6. Nearby L4 and L6a (L5/L6 border) AAC in SSC, Related to Figure A1.3. 
  

 

 

Hierarchical clustering based on the laminar distribution of axon density alone has 

a potential shortcoming: it may over-cluster or mis-cluster two identical density profiles 

appearing at different layer depths. Furthermore, low-dimensional projections do not 

always show well-separated clusters and may need other indirect evidence about 

clustering in the high-dimensional space such as silhouette plots. We therefore carried out 

a robust comparative analysis of morphological types using additional geometrical and 

topological characteristics of the neurons. For analyzing topological characteristics, we 

used a recently developed framework employing persistent homology (Y. Li, Wang, et 

al., 2017a) to derive a metric in the space of neuronal shapes (see STAR Methods and 

references). Briefly, this framework employs a descriptor function defined on the 

neurons, and a topological summary independent of neuronal location and orientation is 

derived from the descriptor function. We utilized three descriptor functions based on 

three different ways of measuring distances from the soma (Euclidean, geodesic, 

and cortical depth). In addition, we also used a community-standard metric (Scorcioni et 

al., 2008b), employed on http://neuromorpho.org/. 

We performed hierarchical clustering employing each of these metrics, varying 

the number of clusters. By examining the overlap between the resulting clusters (adjusted 

Rand index [ARI] and similarity index [SI]; Figures A1.6D and A1.6E), we concluded 

that the metrics carry independent information about neuronal shape. We hypothesized 

https://ars.els-cdn.com/content/image/1-s2.0-S2211124719302116-mmc7.mp4
https://www.sciencedirect.com/science/article/pii/S2211124719302116#sec4
http://neuromorpho.org/
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that if a pair of neurons appears in the same cluster across all the metrics, this provides 

robust evidence that those neurons belong to the same morphological type. We thus 

proceeded by defining a graph in which each neuron is a node, and two nodes are 

connected if and only if they appear in the same cluster across all five metrics considered. 

This procedure produced a set of disconnected cliques (fully connected clusters). The 

three largest cliques corresponded to three robustly identified AAC cell types that are 

also visible in the hierarchical clustering using only the laminar density of the axons: the 

intra-, cross-, and trans-L2 AAC subtypes (Figures A1.6G and A1S7). Currently, a 

number of AACs could not be grouped into cliques, likely due to less than enough sample 

size. We hypothesize that, with larger datasets, we will obtain similar robust cliques 

corresponding to other AAC subtypes for which evidence is provided by the hierarchical 

clustering shown in Figures A1.6D–A1.6G. 

AAC Subtypes Can Be Revealed by Axon Terminal Geometry That Correlates with 

That of Postsynaptic AIS 

In addition to the laminar stratification of axon arbors, AAC axon terminals in 

different cortical layers manifested different geometric characteristics such as orientation, 

tortuosity, path distance, and branch order (Figures A1.5E–A1.5H and A1.7). As strings 

of AAC presynaptic terminals (i.e., “cartridges”) mostly align with the AIS of 

postsynaptic PyNs, we hypothesized that certain geometric features of AAC terminals 

reflect and correlate with those of the AIS. For example, the orientations of AIS in 

supragranular layers of mPFC were largely vertically aligned, but deviated substantially 

from this columnar orientation in infragranular layers (especially in L6; Figures A1.7A–

https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig6
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https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig6
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https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig7
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A1.7C and A1S2B). Consistent with this postsynaptic feature, AAC axon terminals in 

supragranular layers were also organized in predominantly vertical and parallel 

orientations, each largely straight and decorated with strings of presynaptic boutons (e.g., 

cartridges), which together earned them the name “chandelier cell.” In infragranular 

layers, on the other hand, the orientation of AAC terminals varied significantly with 

increased tortuosity that correlated with local PyN AISs (Figures A1.7D–A1.7I). 

Interestingly, analysis of several geometrical features of AAC terminals properly grouped 

AACs according to areas, laminar positions, and L2 subtypes (Figure A1.7J). In 

particular, several pairwise combinations of features classified AACs according to their 

areal, laminar locations, and even the three subtypes within layer 2 (Figures A1.7K–

A1.7O). It is notable that AAC subtypes identified by axon local geometry are consistent 

with those identified by analyzing the laminar distribution of dendritic and axonal arbors 

(Figure A1.6), both rooted in their connectivity to PyNs. Together, these results suggest 

that a connectivity-based framework of morphological analysis is informative in 

resolving the granularity of AAC subtypes. 
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Figure A1. 7. AAC Subtypes Revealed by Axon Terminal Characteristics That Correlate with AIS. 

(A) Distributions of AACs in mPFC (50 μm thick). AACs were labeled by the crossing of Nkx2.1-CreER 

mouse and Ai14 (LSL-tdTomato) mouse with low dose of TM induction at E18.5. Top: AACs (green) 

shown by the immunostaining of tdTomato. Center: cortical layers shown by the immunostaining of 

m2AchR. Bottom: color merged. Scale bar: 1,000 μm. (B) AIS distributions in PrL (prelimbic cortex). 

Images were captured from the box in (A). Left: overlay image of AAC (green) and AIS (red). Right: 

immunostaining of AISs with Ankyrin-G. Insets: enlarged images. Gray lines indicate layer boundaries. 

Scale bars: 100 μm (low-mag) and 20 μm (insets). 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/immunohistochemistry
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(C) AIS reconstructions (purple). Insets: representative reconstructions of presynaptic AAC cartridge and 

postsynaptic PyN AIS pairs in L2/3, L5, and L6. Green: cartridges. Red: AISs. Scale bar: 100 μm. (D and 

E) Distribution differences of AIS angles among cortical layers in mPFC (∗∗∗p < 0.0001, 95% confidence 

level, Kruskal-Wallis test followed by Dunn’s multiple-comparisons test). Plots indicate median (full 

horizontal bar), mean (×), quartiles, and range. AIS data (D) and cumulative plots (E) are from the 

reconstructions in (C). (F and G) The corresponding distribution differences of AAC axon terminal angles 

in mPFC (∗∗∗p < 0.0001, 95% confidence level, Kruskal-Wallis test followed by Dunn’s multiple-

comparisons test). Plots indicate median (full horizontal bar), mean (×), quartiles, and range. Axon terminal 

data (F) and cumulative plots (G) are extracted from all our AAC reconstructions in mPFC 

(Figure A1S2A). (H and I) Averaged distribution differences of AAC axon terminal angles across mPFC, 

MC, and SSC (∗∗∗p < 0.0001, 95% confidence level, Kruskal-Wallis test followed by Dunn’s multiple-

comparisons test). Plots indicate median (full horizontal bar), mean (×), quartiles, and range. Axon terminal 

data (H) and cumulative plots (I) are extracted from all our AAC reconstructions (Figure A1S2A). (J) 

Summary of axon terminal geometric features that separate AAC categories (cortical areas and cortical 

layers refer to somatic location). Green: statistically significant differences between all three pairs 

compared. Yellow: statistically significant differences between two of three pairs compared. Orange: 

statistically significant differences between one of three pairs compared. Red: no statistically significant 

differences. (K and L) Areal and laminar categories of AACs separated by axon terminal geometric 

parameters. Parameter pairs of branch order and (K) branch tortuosity or (L) branch path length are shown. 

Data are mean ± SEM. (M) Reconstructions of representative L2 AAC subtypes (L2-intra, L2-cross, and 

L2-trans). (N and O) Axon terminal geometric parameters separate L2 AAC subtypes. Parameter pairs of 

branch path length and (N) branch fractal dimension or (O) branch tortuosity are show. Data are mean ± 

SEM. (P) Schematic of inferred L2 AAC connectivity with PyNs. 

 

 

Discussion 

As individual neurons are the basic building blocks of the nervous system, single-

neuron analysis is essential to reveal the true degree of cell diversity and principles of 

circuit organization. Morphology is an intuitive depiction of neuron types that reflects 

their input-output connectivity; thus, the visualization and quantification of complete 

single-neuron shapes are necessary to identify and classify neuron types and deduce their 

anatomic relationships. However, the vast diversity, large spatial span, and vexing 

variations of mammalian neurons present unique challenges in cell labeling, imaging, and 

analysis. Recent advances in light microscopy begin to overcome the technical hurdle of 

submicron-resolution imaging of the entire mouse brain using either wide-field structured 

https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fractal-dimensions
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/light-microscopy
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light illumination microscopy (i.e., MOST and fMOST) (Gong et al., 2013; A. Li et al., 

2010) or fast-scanning two-photon microscopy (Economo et al., 2016). In particular, the 

dual-channel dfMOST approach allows fast and simultaneous acquisition of both neural 

structures and their whole-brain spatial reference at cellular resolution (Gong et al., 

2016). 

Another key requirement for reconstructing single neurons using light microscopy 

is sparse and robust labeling, and systematic labeling across neuronal populations is 

necessary to achieve comprehensive discovery of neuron types. Conventional transgenic 

approach lacks specificity and sparseness. Although viral vectors can achieve sparse 

labeling of distal axons (Economo et al., 2016), their limitations include (1) dense 

labeling of local collaterals that are difficult to reconstruct, (2) lack of specificity to 

local interneurons, and (3) lack of orthogonal information (e.g., molecular markers) to 

further restrict labeling and help interpret morphological variations in cell type 

identification. Our combinatorial genetic strategy overcomes these limitations. We 

engage multiple cell features to target subpopulations defined by gene 

combinations, lineage, birth time, and anatomy (He et al., 2016). We further incorporate 

inducible and viral methods to achieve reliable single-cell labeling (Figure A1.1B), which 

should enable “saturation screening” of morphological types or subtypes within the 

subpopulation. Although here we have not reached saturation screening of cortical AACs, 

as L4 and inverted L6 AACs were detected only once in our dataset, the approach 

demonstrates unprecedented specificity and comprehensiveness to a rare cortical 

cell type. Iterations of this labeling scheme through systematic generation of mouse 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/tomography
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/interneurons
https://www.sciencedirect.com/topics/immunology-and-microbiology/lineages
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig1


   

 

136 

 

driver lines (J. A. Harris et al., 2014) will enable comprehensive targeting of neuron types 

as has been demonstrated in genetic targeting in Drosophila  (Aso et al., 2014; Jenett et 

al., 2012). Thus together with scRNA-seq, gSNA provides an orthogonal and scalable 

single-neuron analysis platform. Currently, the bottleneck of the gSNA is single-neuron 

reconstruction, which mostly relies on manual procedures. Future innovation in machine 

learning-based automatic reconstruction algorithms may increasingly overcome this 

limitation (Peng et al., 2015, 2017a). 

The goals of single-neuron anatomy are to identify and catalog cell types and, 

ultimately, to inform cell function through inferring connectivity. With increasing 

throughput in single-neuron reconstruction, a pressing issue is how to extract biologically 

relevant information from morphology datasets. Traditional approaches deploy a large set 

of geometric and topological metrics (The Petilla Interneuron Nomenclature Group 

(PING), 2008) to quantify single-neuron morphology in isolation often without a proper 

spatial coordinate and circuit context; these analyses are mostly ineffective in parsing 

neurons into reliable and biologically informative groups. As morphology is a proxy to 

and serves the purpose of connectivity (Seung & Sümbül, 2014; Sümbül et al., 2014), we 

have adopted a connectivity-guided approach to morphological analysis. This approach is 

based on the premise that, although single-neuron shape by itself does not contain 

information about presynaptic sources and postsynaptic targets, such information can be 

extracted, to varying degrees, if neuron morphology can be registered and analyzed in an 

appropriate spatial coordinate that reflects local and/or global connectivity patterns. 

Indeed, the inherent polarity of dendrites and axons ensures that their distribution and 
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geometry reflect the input source and output targets in the corresponding spatial domains, 

or “anatomic parcels” (Ascoli & Wheeler, 2016). Although the precise identity of input 

and output elements cannot be inferred from spatial location alone, anatomic parcels 

based on decades of classic studies provide significant information to include and exclude 

pre- and post-synaptic elements and thus to infer possible as well as impossible 

connectivity. This analysis framework is likely to recognize seemingly “subtle” 

morphological variations (e.g., translaminar dendrite or axon branches of AACs), which 

yet have significant impact on connectivity and thus cell function. In this context, the 

dfMOST datasets, which allow automatic registration of single-neuron morphology into 

proper global and local coordinates at cellular resolution within the same brain (Gong et 

al., 2016), is key in analysis strategies to identify and distinguish cell types and to inform 

connectivity. In analyzing AAC morphology, for example, the precise cell 

distribution information of the dfMOST dataset is crucial to derive and normalize laminar 

coordinates in different cortical areas, which enabled areal and laminar comparisons and 

inferences of input-output connectivity patterns that distinguished AAC subtypes. 

A recent study suggests that cardinal GABAergic neuron types are distinguished 

by their input-output synaptic communication patterns encoded in transcription profiles 

(Paul et al., 2017). Beyond cardinal types, finer division into subtypes may be necessary 

to represent and explain the intricacies of neural circuit organization (Zeng & Sanes, 

2017), but there is no consensus and mechanistic basis on the granularity and boundary of 

neuronal subtypes. Our results on cortical AACs suggest that differences in input-output 

connectivity, which are reflected in cell morphology, are likely a major determinant of 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/subcellular-localization
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/subcellular-localization
https://www.sciencedirect.com/topics/neuroscience/gaba-receptor
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neuronal subtypes. Differential gene expression in supragranular or infragranular AACs 

in the frontal cortex (Paul et al., 2017) is consistent with this interpretation. We therefore 

suggest that synaptic communication patterns may distinguish neuronal subtypes as well 

as cardinal types. 

It is notable that AAC subtypes, when registered along cortical laminar 

coordinates, appear to manifest a degree of stereotypy and fine granularity that is similar 

to those of retinal bipolar cell subtypes registered upon the much finer coordinates of 

retinal sub-laminae (Shekhar et al., 2016). A true saturation anatomical analysis of 

cortical AACs will likely reveal additional subtypes. While the division of retinal bipolar 

subtypes is further supported by molecular, physiological, and functional evidence (Euler 

et al., 2014), the division of AACs subtypes based on anatomy needs to be substantiated 

by orthogonal datasets, such as their physiological connectivity (J. Lu et al., 2017) and 

gene expression profiles (Paul et al., 2017). On the other hand, our results suggest that 

high-resolution morphology dataset alone, when registered within proper spatial 

coordinates that reflect brain circuit organization, contain rich anatomical information on 

cell identity and connectivity, providing a structure basis to integrate orthogonal datasets. 

This analysis strategy should apply to projection neurons as dfMOST datasets contain 

brain-wide information on anatomical parcels that will inform the potential 

synaptic targets of long-range axon branches. Therefore, light microscopy-based high-

throughput single-neuron anatomy will likely provide substantial information and insight 

on cell type diversity and mesoscale connectivity in the mammalian brain. 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/differential-gene-expression
https://www.sciencedirect.com/topics/immunology-and-microbiology/frontal-cortex
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/synaptic-potential
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/synaptic-potential
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STAR★Methods 

 

 

Key Resources Table 
Table A1. 1. Key resource table. 

REAGENT or 

RESOURCE 

SOURCE IDENTIFIER 

 

Antibodies 

Rabbit polyclonal RFP Rockland Cat# 600-401-379; RRID:AB_828392 

Mouse monoclonal 

Ankyrin-G 

Neuromab Cat# 75-146; RRID:AB_10673030 

Rat monoclonal 

muscarinic 

Acetylcholine receptor 

m2 (m2AChR) 

Millipore Cat# Cat# AB5166; RRID:AB_91715 

Alexa Fluor 488 goat 

anti-rat 

 

Invitrogen Cat#A-11006; RRID:AB_2534074 

Alexa Fluor 594 goat 

anti-rabbit 

Invitrogen Cat# A-11037; RRID:AB_2534095 

Alexa Fluor 647 goat 

anti-mouse IgG2a 

Invitrogen Cat#A-21241; RRID:AB_2535810 

Recombinant DNA 

http://antibodyregistry.org/AB_828392
http://antibodyregistry.org/AB_10673030
http://antibodyregistry.org/AB_91715
http://antibodyregistry.org/AB_2534074
http://antibodyregistry.org/AB_2534095
http://antibodyregistry.org/AB_2535810
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pAAV-EF1a-fDIO-

TVA-GFP 

this paper N/A 

pAAV-EF1a-FLEX-GT Callaway Lab Addgene plasmid # 26198 

pAAV-EF1a-fDIO-YFP-

WPRE 

 

Deisseroth Lab Fenno et al., 2014 

Chemicals, Peptides, and Recombinant Proteins 

Lowicryl HM20 resin electron microscopy sciences Cat#RT-14340 

Propidium iodide (PI) Invitrogen Cat#P1304MP 

Experimental Models: Organisms/Strains 

Nkx2.1-CreER mouse Jackson Laboratory JAX: 014552 

Rosa26-loxp-stop-loxp-

flpo (LSL-Flp) mouse 

Jackson Laboratory JAX: 028584 

Rosa26-lox-stop-lox-

tdTomato (Ai14) mouse 

Jackson Laboratory JAX: 007905 

Software and Algorithms 

Amira FEI, Mérignac Cedex, France https://www.thermofisher.com/global/en/home/industrial/electron-

microscopy/electron-microscopy-instruments-workflow-solutions/3d-

visualization-analysis-software/amira-life-sciences-biomedical.html; 

RRID:SCR_014305 

Neurolucida360 MBF Bioscience, Williston, 

VT 

https://www.mbfbioscience.com/neurolucida360; RRID:SCR_001775 

NLMorphologyConverte

r 

Neuronland; Neuromorpho.or

g 

http://neuronland.org/NLMorphologyConverter/NLMorphologyConverter.htm

l; RRID:SCR_001817 

https://www.sciencedirect.com/science/article/pii/S2211124719302116#bib11
https://www.thermofisher.com/global/en/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/amira-life-sciences-biomedical.html
https://www.thermofisher.com/global/en/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/amira-life-sciences-biomedical.html
https://www.thermofisher.com/global/en/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/amira-life-sciences-biomedical.html
https://www.mbfbioscience.com/neurolucida360
http://neuromorpho.org/
http://neuromorpho.org/
http://neuronland.org/NLMorphologyConverter/NLMorphologyConverter.html
http://neuronland.org/NLMorphologyConverter/NLMorphologyConverter.html
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Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to 

and will be fulfilled by the Lead Contact, Qingming Luo (qluo@mail.hust.edu.cn) or Z. 

Josh Huang (huangj@cshl.edu). 

 

Experimental Model and Subject Details 

Experimental Animals and Low Dose TM Induction 

To achieve sparse and specific targeting of AACs across neocortical areas, we 

crossed Nkx2.1-CreER mice (The Jackson Laboratory stock 014552) with Rosa26-loxp-

stop-loxp-flpo (LSL-Flp) mice (The Jackson Laboratory stock 028584). At postnatal day 

0 (P0) or day 1 (P1), we intraperitoneally induced each pup with low dose 

of tamoxifen (TM, 0.25 mg per pup). Tamoxifen stock solution (5mg/ml in corn oil) were 

prepared beforehand. Sparsely targeted AACs would express FlpO constitutively (He et 

al., 2016). 

For immunostaining experiments, we crossed Nkx2.1-CreER mice with Rosa26-

lox-stop-lox-tdTomato (Ai14) mice (The Jackson Laboratory stock 007905). To ensure 

embryonic day 18.5 (E18.5) TM inductions, Swiss Webster or C57B6 females (Taconic) 

were housed with Nkx2.1-CreER:Ai14 (ht/homo) males overnight and females were 

checked for vaginal plug by 9am the following morning. At E18.5, pregnant females 

were given oral gavage administration of TM (dose 3mg / 30 g of body weight) for sparse 

mailto:qluo@mail.hust.edu.cn
mailto:huangj@cshl.edu
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/tamoxifen
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/immunohistochemistry
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/swiss-webster-mouse
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/c57bl-6-mouse
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labeling of AACs. AACs are labeled with tdTomato. Genetic hybrids of C57B6 and 

Swiss Webster animals were used in these experiments. All animal breeding and surgical 

experiments were approved by the Institutional Animals Care and Use 

Committee (IACUC) of Cold Spring Harbor Laboratory or the Institutional Animal 

Ethics Committee of Huazhong University of Science and Technology. 

 

Method Details 

Stereotaxic Virus Injection 

Flp dependent pAAV-EF1a-fDIO-TVA-GFP (TVA: avian glycoprotein EnvA 

receptor) cassette was assembled and cloned using standard molecular cloning protocols 

with restriction enzymes from New England Biolabs. TVA-GFP (pAAV-EF1a-FLEX-GT) 

was a gift from Ed Callaway (Addgene plasmid # 26198). The cassette was subcloned 

into pAAV-EF1a-fDIO-YFP-WPRE (a gift from the Deisseroth laboratory, Stanford 

University) using NheI and AscI cloning sites (Fenno et al., 2014). All constructs were 

sequenced to ensure their fidelity and proper reversed orientation of the inserts, and 

packed into AAV8 viral vectors with titers ranging from 1.0 × 1012 to 2.4 × 1012 pfu from 

the UNC Vector Core (Chapel Hill, North Carolina). 

For stereotaxic injection, post-weaned animals (3 to 4-week-old) were 

anesthetized by intraperitoneal 

injection with ketamine and xylazine (ketamine:100 mg/kg, xylazine: 10 mg/kg in 

saline), and then were fixed in a stereotaxic headframe (Kopf Instruments Model 940 

series) for the identification of the coordinates of mPFC, MC and SSC areas based on the 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/animal-genetics
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/institutional-animal-care-and-use-committee
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/institutional-animal-care-and-use-committee
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/molecular-cloning
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/restriction-enzyme
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/ascus
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/intraperitoneal-injection
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/intraperitoneal-injection
https://www.sciencedirect.com/topics/neuroscience/ketamine
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/xylazine
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Allen Mouse Brain Reference Atlas (http://atlas.brain-map.org). Each animal received 

bilateral injection in mPFC, MC and SSC areas (6 injection sites per mouse). At each site, 

we injected 100 nL virus with Nanoliter 2010 Injector (World Precision Instruments). 

And we let virus express more than 21 days for strong labeling. The membrane tagged 

labeling by TVA-GFP fusion significantly improved the labeling of fine axon terminal. 

The stereotaxic coordinates are: mPFC (A/P: 1.98 mm, M/L: ± 0.5 mm; D/V: 1.5mm 

depth from pial surface), MC (A/P: 0.5 mm, M/L: ± 1.5 mm; D/V: 0.5 mm) and SSC 

(A/P: −1.5 mm, M/L: ± 3.0 mm; D/V: 0.5mm). 

Immunostaining 

Animals (P45-P60) were perfused with 4% PFA in PBS. The brains were 

removed and post-fixed overnight in the same fixative. Coronal brain slices were 

sectioned at 75 um thickness via vibratome. Sections were blocked with 10% normal goat 

serum in 0.5% Triton in PBS for an hour and then incubated overnight with primary 

antibodies diluted in blocking solution at room temperature. Primary antibodies used 

were: rabbit polyclonal RFP (1:1000, Rockland) for labeling AACs, mouse monoclonal 

Ankyrin-G (1:500, Neuromab) to label pyramidal axon initial segments (AIS), and rat 

monoclonal muscarinic Acetylcholine receptor m2 (m2AChR) (1:500, Millipore Sigma) 

to discriminate L3/5 and L5/6 boundaries in mPFC. Sections were subsequently washed 

and incubated with the appropriate fluorescently-conjugated secondary antibodies diluted 

in the same buffer for 3 hours at room temperature. Secondary antibodies used 

were: Alexa Fluor 488 goat anti-rat (1:500, Invitrogen), Alexa Fluor 594 goat anti-rabbit 

(1:500, Invitrogen), and Alexa Fluor 647 goat anti-mouse IgG2a (1:500, Invitrogen). 

http://atlas.brain-map.org/
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/injectors
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/axon-terminal
https://www.sciencedirect.com/topics/immunology-and-microbiology/axon-initial-segment
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/muscarinic-acetylcholine-receptor-m2
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/alexa-fluor
https://www.sciencedirect.com/topics/immunology-and-microbiology/immunoglobulin-g2a
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Perfusion and Whole-Brain Resin Embedding (Gang et al., 2017) 

Mice were deep anesthetized by overdose of ketamine and xylazine, and then 

intracardially perfused with 0.01M PBS (Sigma-Aldrich Inc., St Louis, MO, USA) and 

4% paraformaldehyde (PFA, Sigma-Aldrich Inc., St Louis, MO, USA). After brain 

dissection and about 18 hours of post-fixing in 4% PFA, brain samples were rinsed in 

0.01M PBS overnight. Then samples were dehydrated in graded series of ethanol (with 

distilled water): 50% ethanol (2h, 3 times), 75% ethanol (2h, 1 time), 100% ethanol (2h, 2 

times). After dehydration, we replaced ethanol with graded series of xylene (with pure 

ethanol): 50% xylene (2h, 2 times) and 100% xylene (2h the first time, and then 

overnight). We then infiltrated samples in graded series of Lowicryl HM20 resin (in 

xylene): 50% HM20 (2h), 75% HM20 (2h), 100% HM20 (2h, 2 times), 100% HM20 

(2 days). After resin infiltration, samples were heat-polymerized at 50°Cfor 8 hours in a 

vacuum oven. All dehydration and infiltration procedures were treated at 4°C. All 

solutions were prepared in weight. 

Note: During wide-field based dfMOST imaging, autofluorescence produced 

by lipofuscin in the resin-embedded brain tissue often interfered with image contrast. 

Swiss Webster mice, especially after 2months of age, usually express more lipofuscin 

compared with C57/BL6 mice. To reduce the effect of lipofuscin, all animals in this study 

were sacrificed around P51-P54. 

Whole-Brain Dual-Color fMOST (dfMOST) Imaging 

Plastic embedded brain samples were mounted on a metal base and then installed 

under a dual-color fluorescence micro-optical sectioning tomography (dfMOST) system 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/xylene
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/infiltration
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/tomography
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/autofluorescence
https://www.sciencedirect.com/topics/neuroscience/lipofuscin
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for whole-brain imaging. The dfMOST system is a wide-field block-face imaging system. 

A blue laser (488nm) was used as the excitation light source with two separate TDI-CCD 

cameras for signal detection. This system runs in a stripe scanning mode (x axis) and 

combines with an afterward image montage to realize the centimeter-scale coronal data 

acquisition (T. Yang et al., 2015). A precision motorized XYX stage is used to conduct 

imaging scanning, areal expansion and ultra-thin sectioning by a diamond knife (A. Li et 

al., 2010). The high throughput and high resolution imaging of fluorescent 

protein labeled samples is realized with chemical sectioning (X.W. and T.Y., unpublished 

data). Following each scanning of one coronal plane (X-Y axes), the sample was 

sectioned to remove the top layer (Z axis), and then imaged again. The imaging-

sectioning cycles were performed automatically with 1.0 μm Z steps until whole brain 

was imaged. The resin-embedded GFP fluorescence were well preserved through 

chemical reactivation (Xiong et al., 2014) provided by adding Na2CO3 in the imaging 

water bath (0.05 M, PH = 11.4). 

We used a 60X water immersion objective (NA 1.0) for imaging, which provided 

the system with submicron resolution at 0.2 × 0.2 × 1 μm voxel sampling rate for each 

whole-brain dataset. High resolution and high density sampling rate greatly facilitated our 

cell reconstruction procedures and are especially necessary for reconstructing dense 

neural arborizations and fine structures (such as axon boutons and spines). 

The red channel was used to capture the whole brain cytoarchitecture which was 

counterstained by propidium iodide (PI) (Gong et al., 2016). PI dyes were dissolved in 

the imaging water bath, thus stained the exposed DNAs and RNAs on the tissue surface. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fluorescent-proteins
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fluorescent-proteins
https://www.sciencedirect.com/topics/neuroscience/coronal-plane
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/water-immersion
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cytoarchitecture
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The staining occurred within thus was in real time. The 488 nm laser was strong enough 

for PI excitation. The counterstained cytoarchitecture provided a self-registered Nissl like 

brain atlas for the GFP channel and was used for the identification of cortical areas and 

layers. Furthermore, the image contrast in the PI channel was sufficient for identification 

and reconstruction of PyN main dendrites (Figures A1.3A and A1.3B). Weakly stained or 

unstained tubular cellular objectives, such as blood vessels and pyramidal main dendrites, 

can be seen in good contrast in PI channel. 

Quantification and Statistical Analysis 

Single Cell Reconstruction and Layer Boundaries Discrimination 

To reconstruct sparsely labeled single ChCs from the whole-brain image datasets 

(∼8 TB), we transformed TIFF format raw images series to LDA type (Y. Li, Gong, et 

al., 2017). We then used Amira software (v 5.2.2, FEI, Mérignac Cedex, France) to load 

the LDA data and identify cells for initial reconstruction. We only chose cells with highly 

characteristic axon terminal cartridges which were true ChCs (∼30% GFP-labeled 

neurons were not the ChC type). The areal and laminar location of selection of cells were 

identified based on the cytoarchitecture provided by PI staining according to Allen 

Mouse Brain Reference Atlas. All initial reconstructed cells were saved in SWC format. 

The arborization of a complete single ChC was extremely dense: the average 

length of AAC axons was ∼2.1cm, the average number of AAC axon branches was 

∼1369, and the average axon branch order was ∼31. Only manual procedure was feasible 

to reconstruct cells with such arbor complexity. Each AAC took up to one week to 

complete by one person. 

https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/chandelier-cell
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To ensure all AAC reconstructions were correct and complete, we carried out 

revisions on each initial reconstruction in Neurolucida360 software (Neurolucida, MBF 

Bioscience, Williston, VT). Since neurolucida 360 was not compatible with the reading of 

SWC format files and couldn’t hold TB-size image datasets, we transformed all the SWC 

files to Neurolucida ASC format using the Neuronland software (Neuromorpho.org), and 

we cropped smaller image stacks (GB-size) of GFP and PI channels from the whole brain 

datasets. The Cropping areas were based on the coordinates calculated from the initial 

SWC reconstructions. 

Cortical layer boundaries were reconstructed in the co-registered PI channel in 

Neurolucida 360. Laminar positions were discriminated based on cell body distributions 

according to the online version of Allen Mouse Brain Atlas (http://portal.brain-map.org/). 

5μm max intensity projections of PI images were used to better show the cell body 

distributions. Since only PFC area has relative clear L2, L3 boundaries, we did not draw 

L2/L3 borders for all the cells. In our analysis, the axons are separated to layer 2 and 

layer 3 by defining the upper half of L2/3 as layer 2, and the lower half as layer 3. L3/5 

boundary was identified by the existence of sparser cell distributions and 

larger pyramidal cell bodies in L5. L5/6 boundary was determined based on the missing 

of large cell bodies and the appearance of denser and horizontal oriented cell bodies in 

L6. 

Adjusting the Orientation AACs to the Vertical Axis of Local Cortical Column 

To identify the local vertical axis of cortical depth, we randomly reconstructed a 

few pyramidal main dendrites near the reconstructed AAC cell body in PI channel. We 

http://neuromorpho.org/
http://portal.brain-map.org/
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/subcellular-localization
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pyramidal-cell
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took the main direction of PyN apical dendrites near the AAC cell body as the cortical 

column vertical axis. We first randomly reconstructed a few pyramidal apical dendrites. 

We then centered all the traced pyramidal dendrites, and identified their main orientation 

based on the vectors calculated with pyramidal dendritic vectorization by Principal 

Component Analysis (PCA). Using this orientation as the proxy of cortical vertical axis, 

we re-orientated each AAC reconstruction using the MATLAB software (Figure A1.3B). 

Length Density Analysis 

Length density analysis of AAC morphology 

Length density analysis of dendrites and axons were performed using custom 

MATLAB routines (Yamawaki et al., 2014). Briefly, for each orientation-readjusted 

AAC, we set the soma center as origin of coordinate. The neuronal arbors were divided 

into 15 μm × 15 μm grid space in the xy plane, and the arbor length in each grid were 

summed covering the whole z direction. The distribution pattern in coronal plane (i.e., xy 

plane) was represented in heatmap. Length density profile along the cortical depth 

direction (i.e., y axis) were plotted to quantify the laminar distribution pattern by 

integrating fiber length along x direction from heat-map. Similarly, length density 

profiles along x axis (middle-lateral) and z axis (anterior-posterior) were plotted to 

quantify the horizontal distribution patterns (Figures A1S4C–A1S4F). To make easy 

comparison, we normalized profile by dividing the fiber total length of the cell (length 

ratio). Layer boundaries were also plotted in the length density figures (dashed lines). 

Their positions in the y axis was the average coordinates of all the contouring points 

covering the neuron arbor extent in x direction (Figure A1S6). 

https://www.sciencedirect.com/topics/neuroscience/apical-dendrite
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sequest
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
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Normalized Length density distribution on a standard cortex template 

For comparative analysis among AACs from different brain areas and samples, 

we normalized the laminar distribution of AAC axonal and dendritic arbors to a standard 

cortex template (y axis only). In the neocortex, only SSC has L4 compared with mPFC 

and MC, and the L6-WM (white matter) border in mPFC is usually not discernable in the 

coronal plane. And the thickness of the same layer in different cortical areas and even 

subareas can be different. To address these issues, we performed normalization based on 

the thickness of each layer, rather than using the distance from pia to WM. The number 

of laminar arbitrary units (AUs) been used for subdividing each layer was decided based 

on the average thickness of each layer from all cells (L1: 100.04 μm, L2/3: 180.52 μm, 

L5: 215.33 μm, n = 53). Here we kept the dividing size to be around 15 μm to match with 

the unnormalized length density analysis. Thus, the numbers of laminar AUs for dividing 

L1, L2/3 and L5 are 7 AUs, 12 AUs and 14 AUs respectively. According to these 

parameters, as shown in Figure A1S6, axon arbors were subdivided with different 

intervals for L1, L2/3 and L5. For the arbors above L1 and below L5 (L6), we used the 

dividing intervals of L1 and L5 respectively. Since the axons of most AACs did not 

innervate L4 (except one L4 AAC), we removed L4 length density data for all the AACs 

in SSC. Based on this method, we could get normalized length density distribution curves 

of dendrites and axons for each cell from all the three cortical areas. 

Cluster Analysis 

Based on normalized distribution of neural arbor length density along the y axis 

(cortical depth), 53 AACs were hierarchically clustered using a weighted KL divergence 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/axonal-cell
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1


   

 

150 

 

(KLDw, symmetrized (D. Johnson & Sinanovic, 2001)) as the distance metric and the 

furthest distance as the linkage rule. A weight coefficient λ was defined as the ratio of 

average axon length to total axon and dendrite length across all neurons. The 

KLDw matrix was calculated by multiplying the axon distribution by the length based 

weight λ and the dendrite distribution by (1 - λ). That is KLDw = λKLDaxon + (1 -

λ)KLDdendrite. Based on the clustering dendrogram of KL divergence, 53 AACs can be 

grouped to different clusters. Corresponding silhouette analysis was done based on the 

cutoff linkages used in the clustering 

Clique Analysis 

To robustly classify the AACs we did a comparative clustering study across five 

different metrics, to find neuronal groups that clustered together irrespective of metric 

utilized. 

Three of the metrics were derived from topological considerations described 

in (Y. Li, Gong, et al., 2017; Y. Li, Wang, et al., 2017a). This methodology starts by 

defining a “descriptor function,” which is a scalar valued function defined on the axons 

and dendrites of each neuron. The procedure then computes a topological signature 

known as the persistence diagram for each neuron based on the descriptor function. 

Finally, the distance between two neurons is defined by computing a suitable metric 

between the persistence diagrams. The persistence diagrams are by definition invariant to 

rigid translations and rotations, and may have further invariances. Three of the metrics 

were defined by using three different descriptor functions, in each case defined as a 

suitable distance from the soma to the point on the neuron. The three distance functions 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dendrogram
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used were Euclidean distance, Geodesic distance along the neuron, and distance along the 

normal to the cortical sheet (we denote this the “y-axis” for brevity). 

In addition, we used a metric defined by taking KL distance between the 

histograms created by projecting the neuronal processes onto the y axis (“length 

density”), and finally a community-standard metric, the L-measure (Scorcioni et al., 

2008b), used on neuromorpho.org. 

How related are these metrics? To answer this question, we performed 

hierarchical clustering using each of the metrics, fixing the total number of clusters to be 

K. In general, the different metrics produced different sets of clusters. We compared the 

sets of clusters across two metrics, using the Adjusted Rand Index (ARI), and the 

Similarity Index (Bohland et al., 2009) (SI) defined in Bohland et al. 

(https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0007200) to 

compare different parcellations of brain atlases. In each case, these indices lie between 0 

and 1, with 1 corresponding to perfect correspondence between two sets of clusters. We 

found (Figure A1.6F) that both indices were generally closer to 0 than to 1, indicating 

that these metrics measured independent geometrical/topological characteristics of the 

neurons. Thus, if neurons were grouped together by all five metrics, we would gain 

confidence that they were robustly classified into these clusters. 

To perform this robust classification, we used the following method: (i) first, we 

carried out hierarchical clustering using each of the metrics, with a fixed number K of 

clusters. (ii) We then defined an undirected graph G with each node corresponding to a 

neuron. The edge between two neurons is either 1 or 0 based on whether the neurons 

http://neuromorpho.org/
https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0007200
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig6
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clustered together or not as described below. (iii) We then looked for disjoint cliques (in a 

clique, each node is connected to every other node in the clique; intuitively, a clique 

constitutes a set of very similar neurons). These disjoint cliques were our robust clusters. 

Let the number of metrics be M ( = 5 in our case). We introduced a parameter N 

that controlled the edge weights of the graph G as follows: If two neurons belonged to at 

the same cluster for at least N of the M metrics, then we gave that edge a weight 1, 

otherwise we gave it a weight 0. Thus, the graph G was a function of two parameters 

K,N. We then looked for maximal cliques in G(K,N). For N < M, the maximal cliques in 

G were not in general disjoint, however for N = M the cliques can be shown to be 

disjoint. Consider the relation between two neurons given by an edge in G(K,M). This 

relation is transitive: if two pairs of neurons (N1,N2) and (N2,N3) are connected, then 

(N1,N2) must belong to the same cluster across all metrics, as well as neurons (N2,N3). It 

follows that (N1,N3) must also belong to the same cluster (of which N2 is a member). 

This transitivity guarantees the disjointedness of the maximal cliques: If two cliques 

share a vertex, then the two cliques must be identical. Thus, we considered only G(K,M) 

and found the disjoint maximal cliques. In our case M = 5. We selected K by examining 

the average silhouette scores of the clusters versus K (https://scikit-

learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html). Finally, 

performing clique analysis on G(K = 4, N = M = 5), we found 3 cliques with size greater 

than 2 (with sizes 4,6 and 8 respectively; Figures A1.6G and A1S7). These cliques were 

the output of our robust clustering analysis, and exemplars from each clique 

are showin in Figure A1.6G. 

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig6
https://www.sciencedirect.com/science/article/pii/S2211124719302116#mmc1
https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig6
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Calculation of Single Neuron Anatomical Features 

Basic neuron morphological features of neuronal dendrites and axons were 

calculated using Neurolucida software. The position of cell body (area, layer) were 

practically identified based on the PI channel cytoarchitecture information. The distance 

of soma to L1/2 border were calculated based on the readjusted neuron orientation 

(Figure A1.3B) with MATLAB software. Area: brain areas that cell body stays. L1 

thickness: the thickness of L1. Layer: laminar position of cell body. Soma to L1/2 border: 

the distance of soma center to L1/2 in micron. Soma radius: average of the distance of 

reconstructed contour points to the center. Dendrite Qty: the number of dendrite trees that 

grows out from soma. Dendrite nodes: the number of branching points of all dendrites. 

Dendrite ends: the number of terminal tips of dendrites. Dendrite full length: the full 

length of all dendrite fibers. Dendrite mean length: the mean length of all dendrite trees. 

Dendrite max_branch_order: max branch order of all dendrite trees. For branch order 

calculation, here we use centrifugal ordering, which is the basic scheme to assign branch 

order to a tree. Dendrite branch Qty: the number of total dendrite branches. Dendrite 

branch mean length: average length of all branches. Dendrite mean tortuosity: average of 

the tortuosity values of all dendrite branches, tortuosity is defined as [Distance along 

process] / [Straight line distance]. Dendrite tortuosity SD: standard deviation of the 

tortuosity values of all dendrite branches. Dendrite convex hull: the volume of a convex 

polygon by connecting the tips of the distal dendrites or axon. Axon morphological 

parameters are similarly defined as dendrite. 

https://www.sciencedirect.com/science/article/pii/S2211124719302116#fig3
https://www.sciencedirect.com/topics/neuroscience/convex-hull
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Sholl Analysis on Dendrites and Axons 

We did sholl analysis on AAC dendrites and axon fiber distributions at 3D. Fiber 

length was used here for analysis. Sholl analysis generates a set of nested concentric 

spheres centered at the cell body. The smallest sphere has a radius of 5 um considering 

the soma radius. The spheres increase in size by a constant change in 15um, which is 

defined as the radius in Figures A1.4G and A1.5C. According to this spheres, many shells 

are constructed. Shell is the volume contained out to the given radius, but does not 

include the volume of any smaller shells. The fiber length in each shell was summarized. 

To compare different cell, we normalized fiber length as [fiber length in a shell] / [the full 

length for a given fiber type]. 
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Figure A1S1. 1. Sparse labeling of AACs in mPFC, MC and SSC. Related to Figure A1.2. (A) 

Distribution of sparsely labeled AACs in mPFC shown as overlay of GFP channel (green, 200 µm max 

intensity projection) and PI (propidium iodide) channel (blue, 5 µm max intensity projection) images. (B-
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C) PI channel (B) and overlay (C) images enlarged from the boxed region in (A). The cytoarchitecture was 

stained by PI dyes. Dashed lines indicate cortical layer boundaries. (D-F) High resolution GFP channel 

images show the fine structures of ACCs. Images are enlarged from boxed areas in (C). (G-L) Distribution 

of sparsely labeled AACs in MC. Legends are similar as those for (A-F). (M-R) Distribution of sparsely 

labeled AACs in SSC. Legends are similar as those for (A-F). 

 

 

 

 

 

Figure A1S1. 2. AAC reconstructions (orientation adjusted) and typical AAC individuals. Related to 

Figure A1.3. (A) Full list of all reconstructed AACs in mPFC, MC and SSC (orientation readjusted). (B) 

Typical AAC subtypes in neocortex. 100 µm max intensity projection. Inserts are enlarged images from the 

boxes. Scale bars: 100 µm (large images) and 10 µm (inserts). (This figure corresponds to Figure A1.6 

clustering analysis). 



   

 

158 

 

 

 



   

 

159 

 

Figure A1S1. 3. Characteristics of L2 AAC dendrites. Related to Figure A1.4. (A) Representative 

reconstructions of AAC dendrites in mPFC, MC and SSC. Scale bar: 100 µm. Black circle: cell body. Red: 

dendrite. Gray lines indicate the positions of pia and L1/2 border. (B) Left: L2 AACs in mPFC. The apical 

dendrites of L2 AAC clamp the pia surface (box) and show lateral extensions (arrow). Right: the apical 

dendrites of a L3 pyramidal neuron do not contact pia and show different apical dendrite features compared 

with the dendrite of L2 AAC. Dashed lines indicate the pia and L1/2 border position. Scale bar: 100 µm. 

(C) Density plots of dendritic length, branching modes, terminal nodes and spines of L2 AACs in MC. Top 

row: density plots of a representative single cell. Bottom row: normalized density plots of the dendritic 

characteristics of all L2 AACs (n=10). Black curves: average of all the cells. Black circles: cell body 

positions in the coordinate. Dashed lines indicate the pia and L1/2 border. (D) Density plots of L2 AAC 

dendritic characteristics in SSC (n=7). Legends are similar as for (C). 
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Figure A1S1. 4. Cylindrical length density distribution pattern of L2 AAC axons. Related to Figure 

A1.5. (A) Top view projections of L2 AACs in mPFC, MC and SSC. Red: dendrites. Blue: axons. Black: 
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cell body. Scale bars: 200 µm. (B) 3D-view of a L2 AAC in SSC. Left: 5 µm max intensity projection of PI 

channel. Middle: 100 µm max intensity projection of GFP channel. Right: 3D view of cell reconstruction. 

Frontal view corresponds to coronal projection. Lateral view corresponds to sagittal projection. Scale bar: 

100 µm. (C) A schematic of the projection of axon arbor distributions along anterior-posterior (A-P), 

medial-lateral (M-L) and dorsal-ventral (D-V) directions. (D-E) Axon length density distributions (ratio) of 

L2 AACs in mPFC (D), SSC (E) and MC (F). Top rows are length density curves along A-P and M-L axes. 

Bottom rows are length density curves along D-V axis. ‘0’ point in x-axis corresponds to cell body 

position. Columns correspond to individual L2 AACs. 
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Figure A1S1. 5. Representative individual and clustered AACs in the neocortex. Related to Figure 

A1.5. (A) Nearby L2 and L5a AACs in SSC. Left: 100 µm max intensity projection of GFP channel 

images. Middle: overlay of GFP channel and PI channel (5 µm max intensity projection) images. Right: 
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enlarged images from the boxes. Dashed lines: layer boundaries. Scale bars: 100 µm (left and middle) and 

10 µm (enlarged images). Note the L5a AAC (cell #38) was incorrectly assigned to cluster 5 by the 

hierarchical clustering algorithm in Figure A1.6. (B-C) L5 AACs in mPFC (B) and MC (C). Left: 100 µm 

max intensity projection of GFP channel images. Scale bar: 100 µm. Right: Reconstruction (top) and 

length-density of dendrites (red) and axons (blue) along cortical depth (bottom). Inserts: enlarged from the 

boxes. Scale bar: 10 µm. Dashed lines: layer boundaries. Laminar borders are determined from the PI 

channel as in (A) (data not shown). Arrows indicate the cell bodies. (D) L3 AAC in SSC. 100 µm max 

intensity projection of GFP channel images. Inserts: enlarged images from the boxes. Dashed lines: layer 

boundaries. Scale bars: 100 µm and 10 µm (inserts). (E) Inverted L6 AAC in mPFC. Left: 200 µm max 

intensity projection of GFP channel images. Inserts: axon terminals (typical cartridges; enlarged from the 

box). Right: reconstruction. Gray lines indicate the layer boundaries. Scale bars: 100 µm and 10 µm 

(inserts). (F-G) length-density analysis of the AACs in (D) and (E). Left: reconstruction. Middle: heatmaps 

of length densities of dendrites and axons. Right: length-density of dendrites (red) and axons (blue) along 

cortical depth. 
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Figure A1S1. 6. Schematic of normalizing axonal and dendritic length-density distribution to a 

standard cortex template. Related to Figure A1.6. Note that L4 only exists in SSC, and L6-WM (white 

matter) boundary cannot be drawn in mPFC. Layer thicknesses vary significantly between areas. 

 

 

 

 

Figure A1S1. 7. Clique analysis of AAC types. Related to Figure A1.6 and STAR Methods. (A-E) The 

3D Laplacian Eigenmap embeddings for each of the 5 metrics for K=4. (F) A full listing of the three 

cliques found from the robust clustering analysis. Dashed lines indicate the layer boundaries. 
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Table A1S1. 1. Complete cell list and Neurolucida dataset on morphometry. 

Samples and Cells Cell body Dendrite Axon 
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TDI21301010_cell3 1 PFC 143.9 L2 -69 5.2 7 38 46 3590.0 512.9 10 84 42.7 42.7 1.2 0.3 2749150 914 950 30068.6 30 1864 16.1 17.4 1.2 0.4 9095980 

TDI21301017_cell2 2 PFC 126.3 L2 3 4.6 7 40 47 2281.0 325.9 9 87 26.2 30.6 1.2 0.2 2329810 552 555 17840.4 22 1107 16.1 18.3 1.2 0.4 5035430 

TDI21301017_cell3 3 PFC 120.0 L2 5 5.3 7 36 43 2628.4 375.5 10 79 33.3 37.6 1.2 0.2 2180860 1059 1070 35480.7 28 2129 16.7 18.2 1.2 0.4 12164500 

TDI21301013_cell2 4 PFC 121.2 L2 -20 6.4 6 48 57 3544.5 590.7 10 105 33.8 31.6 1.2 0.2 2628850 890 897 32588.6 31 1787 18.2 18.1 1.2 0.3 11142200 

TDI21301013_cell3 5 PFC 130.8 L2 -2 5.8 6 35 41 3130.8 521.8 6 76 41.2 38.9 1.1 0.1 4314140 1033 1040 38993.4 31 2073 18.8 19.4 1.2 0.3 16858900 

TDI21301012_cell3 6 PFC 136.2 L2 -26 5.4 10 19 29 2172.1 217.2 7 48 45.3 41.8 1.2 0.2 1548340 550 563 16449.9 30 1113 14.8 15.6 1.2 0.3 6089710 

TDI21301012_cell6 7 PFC 117.9 L2 -14 4.0 5 20 28 1955.7 391.1 9 48 40.8 47.8 1.3 0.3 1633720 484 490 13552.8 39 974 13.9 17.5 1.3 0.6 5787130 

TDI21301012_cell5 8 PFC 121.7 L2 -17 4.4 6 22 29 1782.3 297.1 8 51 34.9 29.8 1.2 0.2 1375690 372 383 14887.6 40 755 19.7 22.2 1.3 0.7 4881080 

TDI21301008_cell4 9 PFC 126.8 L2 -2 4.6 6 31 37 2672.8 445.5 8 68 39.3 38.2 1.2 0.2 1896390 872 888 24561.9 50 1760 14.0 14.6 1.2 0.3 8062300 

TDI21301008-cell13 58 PFC 124.8 L2 -23 5.3 5 63 71 2010.0 402.0 19 134 15.0 17.4 1.1 0.1 1372740 506 532 16630.4 39 1038 16.0 17.0 1.2 0.6 6840800 

TDI21301012-cell4 59 PFC 142.7 L2 -2 4.4 6 25 31 1791.1 298.5 11 56 32.0 28.6 1.1 0.1 1806930 364 375 11865.6 25 739 16.1 15.2 1.3 0.6 3971610 

TDI21301012_cell1 10 PFC 115.5 L5 -316 6.3 5 65 71 3554.1 710.8 14 136 26.1 34.1 1.2 0.2 5218500 936 956 31197.5 30 1892 16.5 17.7 1.2 0.5 21604200 

TDI21301012_cell2 11 PFC 122.3 L5 -333 5.8 8 49 58 3652.5 456.6 9 107 34.1 40.8 1.1 0.1 3361780 1028 1040 34427.6 46 2068 16.6 16.7 1.3 0.6 13247400 

TDI21301013_cell1 12 PFC 142.8 L5 -395 6.0 9 66 75 3713.1 412.6 12 141 26.3 27.2 1.1 0.1 3392320 1232 1248 34836.6 39 2480 14.0 15.3 1.2 0.4 18838400 

TDI21301008_cell1 13 PFC 94.3 L5 -342 4.6 6 50 57 3701.2 616.9 9 107 34.6 39.8 1.2 0.1 3934560 879 895 29528.9 36 1774 16.6 17.9 1.2 0.3 12282400 

TDI21302012_cell1 14 PFC 144.3 L5 -408 4.9 7 38 45 2858.0 408.3 10 83 34.4 36.6 1.1 0.1 3314500 618 622 19447.4 30 1240 15.7 15.9 1.2 0.4 9601130 

TDI21301006_cell1 15 PFC 150.5 L5 -373 5.7 6 39 45 3661.1 610.2 10 84 43.6 51.4 1.2 0.1 5045700 897 898 35225.4 48 1795 19.6 21.3 1.3 0.4 19956300 

TDI21301008-Cell2 52 PFC 141.9 L6 -454 4.8 7 33 41 3114.4 444.9 7 74 42.1 38.1 1.2 0.2 4152530 417 427 19901.2 20 844 23.6 27.6 1.2 0.3 14517700 

TDI21301008-cell5 53 PFC 155.3 L6 -553 4.4 5 95 ## 2826.1 565.2 18 199 14.2 17.6 1.2 0.2 2856580 477 478 13816.8 25 955 14.5 15.5 1.3 0.4 7347240 

TDI21301008-Cell21 54 PFC 152.8 L6 -374 4.8 4 33 37 2989.2 747.3 10 70 42.7 37.8 1.2 0.1 3220960 573 582 21309.5 29 1155 18.4 20.5 1.3 0.3 9675610 

TDI21301010_Cell 61 PFC 118.1 L5 -251 5.8 7 53 60 4164.6 594.9 12 113 36.9 37.8 1.1 0.1 5925090 638 640 21920.8 29 1278 17.2 19.2 1.3 0.5 13587400 

TDI21301008_cell25 63 PFC 115.1 L5 -252 4.8 6 23 29 2409.0 401.5 10 52 46.3 53.4 1.1 0.1 2795260 484 486 15030.4 24 970 15.5 16.3 1.2 0.3 8248750 

TDI21301017_cell5 16 MC 98.9 L2 7 4.4 5 42 47 4213.3 842.7 9 89 47.3 58.2 1.2 0.2 8192600 1232 1240 30864.7 34 2472 12.5 12.7 1.2 0.3 10372900 

TDI21301017_cell10 17 MC 82.6 L2 2 3.8 6 30 36 2746.4 457.7 8 66 41.6 46.1 1.1 0.1 3151810 659 675 19797.1 26 1334 14.8 14.5 1.2 0.3 9437580 

TDI21301012_cell12 18 MC 63.8 L2 -4 4.2 7 15 22 1875.9 268.0 5 37 50.7 51.1 1.2 0.2 1132300 558 572 13908.5 25 1130 12.3 11.6 1.2 0.3 3893400 

TDI21301008_cell14 19 MC 114.5 L2 -55 5.0 4 39 45 2791.2 697.8 9 84 33.2 38.9 1.2 0.3 1755900 500 513 15678.6 48 1013 15.5 14.6 1.2 0.3 7608080 

TDI21301015_cell3 20 MC 95.1 L3 -124 4.1 5 29 34 2618.8 523.8 8 63 41.6 43.5 1.2 0.2 1899200 566 569 17009.2 25 1135 15.0 15.8 1.3 0.4 6355410 

TDI21302012_cell2 21 MC 111.9 L2 -13 4.5 6 30 36 2807.8 468.0 7 66 42.5 39.8 1.2 0.2 2566650 510 511 16752.9 25 1021 16.4 16.2 1.2 0.3 9892980 

TDI21302012_cell4 22 MC 101.4 L2 -29 3.5 5 36 41 3218.6 643.7 7 77 41.8 43.5 1.2 0.2 3172040 734 736 20255.8 28 1470 13.8 14.8 1.2 0.4 9239210 

TDI21301020_Cell2 23 MC 96.7 L2 -56 4.5 8 54 62 3016.5 377.1 12 116 26.0 44.1 1.2 0.3 3560520 646 647 17178.9 26 1293 13.3 13.9 1.2 0.3 10705900 

TDI21301012_cell8 24 MC 71.7 L2 -7 3.4 8 26 34 1942.0 242.7 7 60 32.4 31.3 1.2 0.1 1392880 467 472 10413.7 27 939 11.1 13.6 1.2 0.3 8574650 

TDI21301017_cell8 25 MC 97.3 L2 -13 5.0 6 44 50 4361.7 727.0 8 94 46.4 43.8 1.2 0.2 4282790 969 980 28597.2 42 1949 14.7 15.0 1.2 0.4 31085400 

TDI21301019_cell3 26 MC 97.4 L2 -23 4.4 7 54 61 3491.2 498.7 18 115 30.4 36.8 1.2 0.2 3076410 647 654 19125.0 43 1301 14.7 17.7 1.2 0.3 30578100 
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TDI21301020_Cell1 27 MC 103.4 L2 -3 5.2 8 29 37 2981.0 372.6 7 66 45.2 45.7 1.2 0.2 3216450 532 537 15175.3 25 1069 14.2 20.6 1.2 0.3 19408000 

TDI21301009_Cell1 28 MC 117.4 L2 -53 4.6 6 30 36 4653.8 775.6 6 66 70.5 69.4 1.2 0.1 7167070 1133 1137 36603.5 43 2270 16.1 17.4 1.3 0.4 39961000 

TDI21301018_cell3 29 MC 80.9 L2 -18 4.0 8 17 25 1849.0 231.1 6 42 44.0 36.2 1.3 0.3 1184710 528 532 13860.8 29 1060 13.1 13.3 1.2 0.3 4284460 

TDI21301008_Cell20 30 MC 100.5 L6 -499 5.6 5 46 51 3059.7 611.9 10 97 31.5 31.5 1.2 0.1 3672310 873 882 24464.7 28 1755 13.9 15.5 1.2 0.3 15156700 

TDI21301012_Cell11 31 MC 74.4 L6a -316 4.7 4 57 61 2706.4 676.6 16 118 22.9 27.7 1.2 0.3 2222030 722 729 27718.2 34 1451 19.1 21.8 1.3 0.4 13643500 

TDI21301015_Cell2 32 MC 115.6 L5 -358 5.2 7 38 45 2978.4 425.5 6 83 35.9 33.2 1.2 0.1 2596490 668 668 22686.6 20 1336 17.0 19.6 1.2 0.3 16156600 

TDI21301019_Cell1 33 MC 77.2 L5 -297 4.8 4 81 88 2654.1 663.5 23 169 15.7 23.3 1.1 0.2 2027960 459 462 16046.3 19 921 17.4 18.3 1.2 0.3 7262440 

TDI21301017-Cell1 34 MC 91.3 L5a -178 4.9 7 31 38 2588.2 369.7 9 69 37.5 39.9 1.1 0.1 4791730 949 954 27735.1 30 1903 14.6 16.3 1.2 0.4 14860400 

TDI21301013_Cell5 35 SSC 66.0 L2 -5 4.5 9 23 32 1899.2 211.0 7 55 34.5 29.1 1.1 0.1 1077580 628 644 13993.5 33 1272 11.0 11.7 1.2 0.3 8013190 

TDI21301017_Cell12 36 SSC 71.3 L2 1 3.6 9 49 58 2051.9 228.0 16 107 19.2 25.7 1.1 0.2 1615340 575 581 12397.4 26 1156 10.7 10.9 1.2 0.3 3965010 

TDI21301012_Cell9 37 SSC 68.4 L2 -10 4.9 6 25 31 2019.5 336.6 10 56 36.1 40.5 1.2 0.2 2357480 548 558 13722.2 32 1106 12.4 12.7 1.2 0.4 4112270 

TDI21301017_Cell13 38 SSC 72.5 L2 -16 4.2 3 47 50 2575.3 858.4 10 97 26.6 31.1 1.1 0.2 1939460 456 458 13377.0 22 914 14.6 15.7 1.2 0.3 4594670 

TDI21301017_Cell6 39 SSC 78.9 L2 -13 3.8 6 29 35 2134.1 355.7 8 64 33.4 32.9 1.1 0.2 1887100 529 537 15800.1 24 1066 14.8 15.3 1.2 0.2 8162120 

TDI21301018_Cell1 40 SSC 84.7 L2 -31 4.7 7 46 53 3130.4 447.2 10 99 31.6 37.4 1.2 0.3 2037070 889 893 23004.7 30 1782 12.9 12.2 1.2 0.2 9603060 

TDI21301008_Cell19 41 SSC 82.2 L2 -19 5.7 6 31 38 2989.7 498.3 7 69 43.3 47.6 1.2 0.2 2340220 475 481 15363.1 21 956 16.1 16.2 1.2 0.3 11465400 

TDI21301010-cell7 55 SSC 64.6 L2 -5 4.2 6 34 40 2154.9 359.1 8 74 29.1 30.8 1.2 0.2 1482180 382 390 12617.0 30 772 16.3 17.2 1.3 0.5 4625740 

TDI21301012-cell10 56 SSC 55.1 L2 0 4.4 7 21 28 1873.5 267.6 8 49 38.2 30.9 1.1 0.2 1904680 532 546 11988.4 45 1078 11.1 11.0 1.2 0.8 5513540 

TDI21301012-cell13 57 SSC 56.0 L2 3 4.6 6 31 37 2120.8 353.5 8 68 31.2 37.0 1.2 0.1 1807520 588 597 14474.3 48 1185 12.2 12.3 1.2 0.3 5334430 

TDI21301009-Cell2 42 SSC 100.9 L3 -179 4.9 6 33 39 3809.1 634.8 6 72 52.9 46.9 1.2 0.2 7081040 1150 1157 29169.6 34 2307 12.6 13.6 1.2 0.3 15866800 

TDI21302012_Cell3 43 SSC 113.8 L3 -108 4.2 5 45 51 3087.0 617.4 10 96 32.2 37.7 1.2 0.2 2548630 476 480 16718.3 31 956 17.5 16.9 1.2 0.3 8351940 

TDI21301017_cell11 44 SSC 78.7 L4 -177 5.5 8 21 29 2759.8 345.0 6 50 55.2 53.8 1.1 0.1 3505300 1049 1052 31759.6 25 2101 15.1 16.9 1.2 0.3 18153000 

TDI21301014_cell2 45 SSC 104.2 L5 -320 4.8 6 45 51 3747.8 624.6 11 96 39.0 43.2 1.2 0.2 8996910 669 672 23437.1 35 1341 17.5 18.9 1.2 0.3 19764300 

TDI21301013_cell6 46 SSC 53.4 L5 -253 4.5 3 19 22 1561.1 520.4 7 41 38.1 34.1 1.1 0.1 1760840 325 332 13054.5 25 657 19.9 23.9 1.2 0.4 10309900 

TDI21301017_cell15 47 SSC 75.0 L5b -426 5.3 8 52 60 2751.3 343.9 12 112 24.6 26.3 1.1 0.1 2885760 1239 1242 39214.2 40 2481 15.8 17.9 1.2 0.3 27046400 

TDI21301018_cell2 48 SSC 84.9 L6a -320 4.8 6 28 34 2747.9 458.0 7 62 44.3 39.9 1.2 0.1 2369140 712 717 20208.3 33 1429 14.1 14.8 1.2 0.3 8647810 

TDI21301015_cell1 49 SSC 67.9 L6a -463 5.5 9 62 71 3339.1 371.0 17 133 25.1 24.0 1.2 0.1 4231820 709 712 25020.3 25 1421 17.6 19.3 1.3 0.4 19235300 

TDI21301010_cell6 50 SSC 64.8 L6a -306 4.1 7 23 31 2136.2 305.2 5 54 39.6 34.3 1.2 0.2 1327990 253 259 16517.3 47 512 32.3 37.9 1.4 0.4 11768100 

TDI21301010_cell5 51 SSC 50.5 L6 -334 4.4 9 24 33 2582.8 287.0 5 57 45.3 41.8 1.1 0.1 2537150 485 495 22684.6 23 980 23.1 26.6 1.2 0.4 14605800 

TDI21301009_cell5 62 SSC 78.1 L6 -549 5.4 8 18 26 2226.6 278.3 5 44 50.6 41.9 1.1 0.1 2675880 389 385 16105.4 24 774 20.8 23.0 1.2 0.4 8120620 
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Abstract  

Research advancements in neuroscience entail the production of a substantial 

amount of data requiring interpretation, analysis, and integration. The complexity and 

diversity of neuroscience data necessitate the development of specialized databases and 

associated standards and protocols. NeuroMorpho.Org is an online repository of over one 

hundred thousand digitally reconstructed neurons and glia shared by hundreds of 

laboratories worldwide. Every entry of this public resource is associated with essential 

metadata describing animal species, anatomical region, cell type, experimental condition, 

and additional information relevant to contextualize the morphological content. Until 

recently, the lack of a user-friendly, structured metadata annotation system relying on 

standardized terminologies constituted a major hindrance in this effort, limiting the data 

release pace. Over the past 2 years, we have transitioned the original spreadsheet-based 

metadata annotation system of NeuroMorpho.Org to a custom-developed, robust, web-

based framework for extracting, structuring, and managing neuroscience information. 

Here we release the metadata portal publicly and explain its functionality to enable usage 

by data contributors. This framework facilitates metadata annotation, improves 
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terminology management, and accelerates data sharing. Moreover, its open-source 

development provides the opportunity of adapting and extending the code base to other 

related research projects with similar requirements. This metadata portal is a beneficial 

web companion to NeuroMorpho.Org which saves time, reduces errors, and aims to 

minimize the barrier for direct knowledge sharing by domain experts. The underlying 

framework can be progressively augmented with the integration of increasingly 

autonomous machine intelligence components.  

 

Keywords: Neuroscience curation, Metadata extraction, Knowledge engineering, Data 

sharing, Information management tools, Neuronal morphology 

 

Introduction 

 

Neuroscience is continuously producing an immense amount of complex and 

highly heterogeneous data typically associated with peer-reviewed publications. When 

building data-driven models of brain function, computational neuroscientists must engage 

in the laborious task of reviewing, annotating, and deriving many parameters required for 

numerical simulations. More generally, the process of curation consists of extracting, 

maintaining, and adding value to digital information from the literature and underlying 

datasets (Bandrowski et al., 2012). Mature reference management tools exist to aid 

general-purpose bibliography organization and content annotation, including Zotero 

(Puckett, 2011), Mendeley (Holt Zaugg, Richard E. West, Isaku Tateishi, Daniel L. 
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Randall, 2011), and EndNote (Agrawal & Rasouli, 2019). Moreover, community-sourced 

terminologies (Bug et al., 2008; Gardner et al., 2008; Hamilton et al., 2017; Shepherd et 

al., 2019) and domain-specific markup languages (Gleeson et al., 2010; Goddard et al., 

2001; Grewe et al., 2011) provide human-interpretable controlled vocabularies and 

machine-readable file formats, respectively. Efforts are also underway to generate 

standardized data models (Gleeson et al., 2019; Rübel et al., 2015; Teeters et al., 2015) 

and to formalize related concepts into robust ontologies (Hamilton et al., 2012; 

Koopmans et al., 2019; Larson & Martone, 2013). As a result, full-text information 

retrieval systems are becoming indispensable research aids (Falagas et al., 2008; 

Hutchins et al., 2019; Müller et al., 2008, 2018). 

 

Despite promising progress, neuroscience and related fields lacked until recently a 

user-friendly tool to annotate a dataset or journal article across a customizable variety of 

fields with a set of controlled vocabularies. At the same time, a systematic and well-

documented extraction process is essential to keep the curated metadata updated over 

time and portable between different projects (O’Reilly et al., 2017). Perhaps the sole 

example of an open-source, web-based framework for the acquisition, storage, search, 

and reuse of scientific metadata is the CEDAR workbench (Gonçalves et al., 2017). On 

the one hand, the entirety of neuroscience is too broad and diverse to fully benefit from 

an all-encompassing metadata annotation tool. On the other, the most useful motivating 

applications are typically task specific and, consequently, difficult to compare with other 

developed tools. Meanwhile, several fundamental metadata dimensions, including details 
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about the animal subject, the location within the nervous system, and the experimental 

condition, are largely common to even considerably distinct subfields of neuroscience. 

One possible approach is therefore to design a practical solution to a specific problem of 

interest while adhering to a strictly open-source implementation that may foster broad 

adoption and custom adaptation throughout the neuroscience community. 

 

Here, we introduce a resource developed to promote and facilitate data sharing 

and metadata annotation for NeuroMorpho.Org, a repository providing unrestricted 

access to digital reconstructions of neuronal and glial morphology (Akram et al., 2018b; 

Ascoli et al., 2007a). The acquisition and release of morphological tracings begin with 

the continuous identification of newly published scientific reports describing data of 

interest (Halavi et al., 2012a, 2012a; Maraver et al., 2019b). To annotate the 

reconstructions with proper metadata, the repository administrators have also been 

inviting data contributors to provide suitable information through a semi-structured Excel 

spreadsheet (Parekh et al., 2015a). While the ecosystem of neuronal reconstructions has 

coalesced around a simple data standard for over two decades (Nanda et al., 2018b), 

selection and interpretation of metadata concepts remain highly variable and inconsistent. 

Thus, for every new dataset, a team of trained curators must validate or reconcile the 

author-provided information, complemented as needed by the associated publication, 

with the metadata schema and preferred nomenclature of the database. Many data 

releases also introduce new metadata concepts, which need to be integrated into the 

existing ontology and require updating relevant database hierarchies with appropriate 
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terms. Although the described process is time-consuming, labor-intensive, and error-

prone, metadata annotation is instrumental to enable NeuroMorpho.Org semantic queries 

(Polavaram & Ascoli, 2017a) and machine accessibility through Application 

Programming Interfaces (Ascoli et al., 2017c). 

 

This article presents the NeuroMorpho.Org metadata portal, a novel, open-source, 

web-based tool for the efficient annotation and collaborative management of data 

descriptors for digital reconstructions of neuronal and glial morphology. The main goal 

of this effort is the gradual automation of the metadata extraction process to reduce the 

burden on database curators, thus streamlining the data release workflow for the benefit 

of the entire research community. A related motivation is to bring domain expertise 

closer to the crucial task of metadata curation by empowering data contributors with 

direct dataset annotation through a graphical user interface. The longer-term vision is to 

lay the training data foundation for augmenting neuro-curation with semi-autonomous 

machine learning components such as recommendation systems or natural language 

processing tools (Benedetti et al., 2019; Bijari, Zare, et al., 2020; Egyedi et al., 2018). 

With this report, we freely release the documented code base to date and welcome 

modifications or improvements by other developers to tailor the metadata management 

platform for different neuroscience initiatives. 
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Methods  

The metadata portal is designed to match the NeuroMorpho.Org metadata 

structure. Here first we summarize the organization of reconstruction metadata in this 

resource and then explain how the architectural design of the portal optimally serves the 

needs of the project. 

 

Organization of NeuroMorpho.Org metadata 

NeuroMorpho.Org stores over 120,000 digital reconstructions of neuronal and 

glial morphology from nearly 650 independent laboratories and more than 1000 peer-

reviewed articles. Each reconstruction is associated with detailed metadata across 25 

dimensions thematically grouped into five different categories, 

namely animal, anatomy, completeness, experiment, and source (Parekh et al., 2015a). 

 

The animal category specifies the subject of the study: species, strain, sex, weight, 

development stage, and age. 

The anatomy category designates the brain region and cell type. Each of these two 

dimensions is hierarchically divided into three levels, from generic to specific: for 

instance, hippocampus/CA1/pyramidal layer and interneuron/basket cell/parvalbumin-

expressing. Three considerations are especially important in this regard: first, additional 

information can be added in multiple entries at the third level. In the above example, the 
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brain region could be further annotated as left and dorsal; and the cell type as fast-spiking 

and radially oriented. Second, the anatomical hierarchies are loosely rather than strictly 

organized since the specific details reported in (and relevant for) different studies vary 

considerably. If another paper describes the brain region of its dataset simply as dorsal 

hippocampus (without mentioning sub-area and layer), the concept “dorsal” would shift 

up to the second level. Third, both brain regions and cell types depend dramatically on 

the animal species, and most substantially diverge at the vertebrate vs. invertebrate taxa. 

Whenever possible, NeuroMorpho.Org follows the BrainInfo classification and 

NeuroNames terminology for vertebrates (Bowden et al., 2012), and Virtual Fly Brain for 

invertebrates (Osumi-Sutherland et al., 2012). 

The completeness category provides details on the relative physical integrity of 

the reconstruction (accounting for tissue sectioning, partial staining, limited field of view, 

etc.), the structural domains included in the tracing (soma, axons, dendrites, 

undifferentiated neurites or glial processes), and the morphological attributes included or 

excluded from the measurement (most importantly, diameter and the depth coordinate). 

The experiment category consists of methodological information describing the 

preparation protocol (e.g. in vivo, slice or culture), condition (control vs. lesioned, treated 

or transgenic), visualization label or stain, thickness and orientation of slicing or optical 

sections, objective type and magnification, tissue shrinkage and eventual corrections, and 

the tracing software. 
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The fifth category, source, provides details on the contributing laboratory, the 

reference publication, the original digital file formats, and the dates of receipt and release. 

If any metadata dimension is not returned by the author or mentioned in the 

publication, the corresponding entry is marked as “Not reported” in the repository. 

Here we refer to ‘dataset’ as a collection of reconstructions associated with a 

single peer-reviewed publication. Many datasets are naturally divided into distinct 

metadata groups, either as a focus of the study (e.g. control vs. experimental condition) or 

because of cell-level specification of a particular variable (often animal sex or age). 

Typically, almost all metadata features are identical across the entire dataset except for 

specific details varying between groups. NeuroMorpho.Org preserves the same 

annotation organization at the levels of dataset, groups, and individual cells (Fig. A2.1). 

This intuitive yet compact structure conveniently allows both comparative statistical 

analyses and machine-readable accessibility via APIs. 
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Figure A2. 1. Metadata organization in NeuroMorpho.Org. Every dataset is associated with a 

publication and is typically divided into homogeneous annotation groups, each containing several 

reconstructed cells. Dots in the figure indicates continuation of groups and reconstructions. The formal 

database schema is publicly available at neuromorpho.org/images/Schema.png 

 

 

Design and implementation of the metadata portal 

To ensure flexibility, scalability, portability, and efficiency, the metadata portal is 

designed based on the model-view-controller (MVC) software architecture (Bass et al., 

2003). This modular approach separates the application into three essentially independent 

components. The model represents the metadata structure and reflects the constraints, 

relations, and formats stored in the database through an object-relational mapper (ORM). 

The view defines the display presented to the operator through the graphical user 

interface (GUI). The controller mediates the requests of the user, interacts with the 

model, and generates an appropriate response for the view (Fig. A2.2). While anchoring 

the architectural foundation of the metadata portal onto a safe and trusted design pattern, 

the novelty of this development mostly lies in its goal and features that assist users in the 

metadata curation process. 
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Figure A2. 2. Overview of the system’s architecture. The code base of the metadata portal is running on 

Nginx and Gunicorn webservers. The Django controller handles all requests submitted by the users or 

received through the application programming interface (API), translates them into machine-readable 

commands and database queries, and returns the proper results 
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The entire implementation abides by open-source principles and relies solely on 

open-source resources. The relational models of the portal in addition to the data are 

maintained in PostgreSQL, a fast, secure, and extensible relational database management 

system. The user interface is formulated by HTML, JavaScript, and Bootstrap, a 

Cascading Style Sheet (CSS) framework directed at responsive front-end web 

development. The control back-end is programmed in Django, a Python-based framework 

emphasizing pluggable and reusable elements, to regulate the interactions between 

database and users. Such modular yet integrated web-based framework offers rapid, cost-

effective, and customizable application development. The resulting application is 

effortlessly accessible anytime across different platforms, enhancing interoperability and 

enabling different classes of users (authors, admins, and curators) to use the system 

independently while maintaining their work in the database. 

The metadata portal encompasses most of the essential components to fulfill the 

curation needs of NeuroMorpho.Org. At the same time, it is also continuously evolving 

as new operational capabilities are prioritized. Recently developed features include: (i) 

the API (http://cng-nmo-meta.orc.gmu.edu/api/) enabling data interaction between the 

metadata portal and NeuroMorpho.Org; (ii) keyword search (http://cng-nmo-

meta.orc.gmu.edu/search/), a user-friendly search engine allowing users to look for 

available terms in the database and their hierarchy; and (iii) bulk-modification feature, 

providing the ability to modify a large portion of terms within datasets. 

http://cng-nmo-meta.orc.gmu.edu/api/
http://cng-nmo-meta.orc.gmu.edu/search/
http://cng-nmo-meta.orc.gmu.edu/search/
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The user interface of metadata portal offers seamless access to different parts and 

features of the system. The main page (http://cng-nmo-meta.orc.gmu.edu/) lists all active 

datasets. Each dataset is annotated with the name of the data contributor, publication 

identifiers (PMID and URL), and information regarding grant support. Metadata groups 

and their corresponding labels can be entered manually or are automatically created upon 

uploading grouped reconstruction files. Next, users select the actual entries for every 

metadata dimension, and the entire information remains accessible and editable through 

the web form. A detailed step-by-step metadata annotation protocol follows at the end of 

the Results. 

 

Results 

 

We deployed the metadata portal for internal usage in the NeuroMorpho.Org 

curation team in spring 2018 after release v.7.4 of the database, which contained 86,893 

reconstructions. The most recent release at the time of this writing (fall 2019), v.7.9, 

contains 121,578 reconstructions. Thus, we completed five full releases and annotated 

nearly 35,000 new reconstructions using the novel system described in this article. 

Moreover, we analyzed the records regarding metadata entry over four releases prior to 

deployment of the current system, namely, from right after release v7.0 (fall 2016), which 

contained 50,356 reconstructions. In the next section, we describe the positive impact on 

the project of switching from offline spreadsheet annotation to the web-based metadata 

portal. 

http://cng-nmo-meta.orc.gmu.edu/
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Metadata complexity, time saving, and error reduction 

The metadata form in NeuroMorpho.Org employs more than 40 fields to 

encompass the details of the experiment, as several dimensions (e.g. animal weight and 

age) require more than one field (e.g. a numerical value and a unit scale). If treated as 

free text entry, many terms can be written in multiple equivalent variants, as in ‘mouse’, 

‘Mouse’, ‘mice’, ‘mus musculus’ as well as being prone to semantically deviant typos 

(‘moose’). When considering the combination of all metadata fields, even in the absence 

of errors, the exact same information can be annotated in more than 10,000 distinct ways. 

Such an extreme case of combinatorial synonymy raises serious database management 

issues, in addition to slowing down search queries and requiring substantially inflated 

curation efforts. While the ‘mouse’ example may appear innocuous, even professional 

annotators can rapidly slide outside their zone of comfort when trying to distinguish 

between terminological equivalence and subtle but important differences in a genetic 

manipulation, staining process or electrophysiological firing pattern. The metadata portal 

offers a solution based on a corpus of controlled vocabularies consisting of public 

NeuroMorpho.Org content practically organized in user-friendly dropdown menus with 

autocomplete functionality and ‘similar hits’ suggestions. Moreover, the web form is 

endowed with hierarchical logic so that, for example, rat strains are not presented if 

mouse is selected as species. 

Another major aspect of metadata annotation is the ongoing necessity to add new 

terms to describe previously unencountered entries. While certain dimensions, such as 

developmental stage, sex, objective type, and physical integrity, remain essentially 
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unaltered over time, others, including brain regions, cell types, and experimental 

conditions, grow continuously at rates of approximately 5% (amounting to hundreds of 

new entries) per database release (Table A2.1). The web-based system facilitates the 

management of new concepts by enabling submission of free-text entries when needed; 

these are logged in real time into the database, allowing secondary review and 

provenance tracking. 
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Table A2. 1. Number of distinct scientific concepts in the metadata portal arranged by category, with separate indication of newly added 

concepts in recent releases. 
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7.x denotes version of the NeuroMorpho.Org. The vertical doubled line indicates the adoption of the 

Metadata Portal by the internal curation team 

aDevelopmental stage, Sex (continuous variables Age and Weight are not relevant here) 

bProtocol design, Objective type, Physical integrity, Structural domain, Morphological attributes 

(continuous variables Magnification and Tissue shrinkage are not relevant here) 

 

 

Note that the growth of the data has maintained an approximately constant pace 

throughout the analyzed period, with similar amounts of metadata annotations considered 

before and after the introduction of the portal. Based on our lab records and analytics 

reports, the initial manual annotation of datasets in the last four releases (v.7.1–4) prior to 

deploying the metadata portal took an average of 1 h and 40 min per article 

(100 ± 10 min, mean ± standard deviation; N = 308 articles). The mean time required for 

the same operation in the five subsequent releases following the introduction of the portal 

(v. 7.5–9) dropped to 55 ± 5 min per article (N = 166), corresponding to a net saving of 

45 min in the first step of metadata curation for each dataset. Moreover, all new terms 

need to be identified both to ensure appropriate database updating and synchronization, 

and to inform users upon release. This operation used to be carried out manually by 

visually inspecting each form, which normally required 14 ± 1 h of labor per release. The 

web-based portal automatically logs and reports all new terms, thus completely 

eliminating the need for this effort. 
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After the first annotation phase, metadata curation requires a second step of 

quality check after the preview release on the password-protected server and 

corresponding review by data contributors and database curators prior to public release. 

In most cases, this second phase entails at least some corrections and adjustments. When 

metadata was entered manually through a regular spreadsheet form (through v.7.4), most 

errors requiring corrections consisted of spelling mistakes (‘neocrotex’ instead of 

‘neocortex’) or use of non-preferred terms (‘isocortex’ or ‘ctx’). A less common type of 

corrections involved conventional order of entries, as in “neocortex > medial 

prefrontal > right” vs. “neocortex > right > medial prefrontal”. Altogether, these issues 

required 100 ± 15 corrections per release in the old system. Use of controlled 

vocabularies, dropdown menus, smart filters, and autocomplete functionality dramatically 

reduced these instances to as few as 15 ± 5 per release. Corrections are especially taxing 

on data curators and database administrators, because mistaken ‘new’ entries need to be 

removed post-ingestion to avoid inconsistencies, indices and caches cleared, and 

synonyms properly linked for searches to work as intended. The drastic reduction in the 

number of required corrections saved about 18 h of labor per release, from 22 ± 3 prior to 

portal adoption to 4 ± 1 afterwards. 

When considering all sources of time saving (annotation, new term extraction, 

and corrections), the introduction of the web portal reduced the metadata annotation 

effort from 115.6 ± 35.4 to 48.3 ± 19.5 person-hour/release, a 58% effort reduction 

(Fig. A2.3). 

https://braininformatics.springeropen.com/articles/10.1186/s40708-020-00103-3#Fig3
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Figure A2. 3.Labor-saving per version release yielded by the metadata portal. a Effort saved by the 

adoption of web-based annotation in the last 5 releases (7.5 to 7.9) of NeuroMorpho.Org. b Detailed 

categories of annotation mistakes requiring post-ingestion corrections during the review phase before (left) 

and after (right) transitioning to the new annotation system; the average numbers of necessary corrections 

per release are indicated inside the pie charts 

 

 

Usage protocol 

In addition to the many advantages of the metadata portal described above, the 

web-based implementation naturally enables its direct usage by the authors of the articles 

described the original datasets, namely the data contributors. Considering the greatly 

improved performance of metadata annotation, with this article we invite all researchers 

depositing their neuronal and glial tracings into NeuroMorpho.Org to utilize the portal for 

annotating their submission. In this section, we overview the functionality, features and 

usage of the system http://cng-nmo-meta.orc.gmu.edu/. 

In order to limit the server susceptibility to automated malicious activities, users 

must log in via username (nmo-author) and password (neuromorpho) or using a Google 

account. Using the latter approach, the user’s entry remains private (only visible to the 

contributor and the administrators, but not to other users) until approved for public 

release by the NeuroMorpho.Org curators. Upon entering the portal (Fig. A2.4), users can 

create a dataset by clicking on the ‘New!’ button in the main view. 

 

http://cng-nmo-meta.orc.gmu.edu/
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Figure A2. 4. View of the portal’s main page. a Logged-in user. b ‘New!’ button to create a 

dataset. c Table listing the available datasets for the user in the system. d Sample (demo) dataset 

 

 

The newly opened window prompts the insertion of information related to the 

reference publication such as PMID, authorship, and grant support. Next, clicking 

‘Submit & create the dataset’ transitions to the next phase, namely uploading 

reconstruction files and defining the experimental groups (Fig. A2.5). 
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Figure A2. 5. Newly created dataset in the metadata portal. a Basic information about the dataset as 

well as edit and removes buttons. b Reconstruction section to upload digital tracing files. c Menu for 

creating, editing, and removing the experimental groups associated with the dataset 

 

 

To upload reconstruction files, users should click the ‘Browse’ button to locate 

the zip folder containing the data. Separate groups with distinct experimental conditions 

(control vs. treatment, but also different anatomical locations, animal sex/age, etc.) must 

be organized as corresponding folder in the compressed archive. The ‘New’ button in the 

Neuron group section adds an experimental group and calls a new form window 

requesting the corresponding metadata details (Fig. A2.6). 
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Figure A2. 6. Metadata form to annotate the details of the reconstruction within each experimental 

group. 

 

 

 

After filling out the entries as completely as possible, the user can click on 

‘submit the group’. In case of multiple groups, the auxiliary buttons facilitate duplication, 

propagation, and modification of metadata details (Fig. A2.7). 
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Figure A2. 7. Final dataset with reconstructions and all experimental groups added in the metadata 

portal. 

 

 

Shortly after final submission, the internal NeuroMorpho.Org secondary curation 

begins, which includes validating the newly added terms. The reconstruction files along 

with the descriptive metadata are then ready for ingestion and release on a password-

protected preview site that mirrors the look-and-feel of NeuroMorpho.Org while allowing 
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extensive review of content, annotations, and functionality by data contributors and 

curators prior to public release. 

 

Conclusion 

 

Continuous growth of neuroscience knowledge requires a parallel maturation of 

informatics resources to annotate data for future re-use and interpretation. This report 

introduced a newly developed metadata portal that leverages web-based technologies to 

facilitate effective curation of digital reconstructions of neuronal and glial morphologies. 

All components of this framework are open-source and can thus be adopted for or 

adapted to the needs of other related projects. Moreover, the metadata portal is ready to 

be integrated with artificial intelligence modules such as natural language processing or 

smart recommendation systems to further expedite and improve the critical bottleneck of 

database curation. Recently, machine learning algorithms have been successfully 

deployed for metadata extraction (Martínez-Romero et al., 2019). In particular, text 

mining tools, such as named entity recognition, can learn, identify, and label crucial 

elements of neuroscience documents like neuron names, brain regions, and experimental 

conditions (Bachman et al., 2018; Shardlow et al., 2019) . Hence, our future aim will be, 

first, to train and validate a model on the growing set of curated articles in the 

NeuroMorpho.Org literature database, as well as on the named entities therein; and then 

to deploy it on the metadata portal in order to facilitate assisted keyword extraction. To 
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be clear, we consider it unrealistic to expect full automation of all metadata extraction 

tasks in the near future, as too many decisions involve domain-specific expertise and 

often ad-hoc conventions. Nevertheless, the prospect of a hybrid human–computer 

interface ergonomically optimized to maximize the breadth, depth, and accuracy of 

annotation while minimizing time and labor is in our view well within reach. As a first 

step in that direction, the systematic coding of the prior entirely manual spreadsheet 

annotation process of NeuroMorpho.Org metadata within a web-form interfaced to a 

back-end database has already substantially reduced the ongoing curation effort. We are 

now releasing this system publicly to allow willing data contributors to enter the details 

of their datasets directly at the time of data submission. While the design of the portal 

still allows and encourages an iterative process of collaborative review to reduce the risk 

of ambiguity and inconsistencies, we hope that enabling metadata annotation by the 

“ultimate experts” who produced the data will bring us closer to a robust, distributed, and 

dynamic community-based resource. 

 

Availability of data and materials 

 

Project name: NeuroMorpho.Org Metadata Annotation. Project home 

page: http://cng-nmo-meta.orc.gmu.edu/. Operating system: Platform independent. 

Programming language: Python, HTML, Java script. Other requirements: Python 2.7, 

http://cng-nmo-meta.orc.gmu.edu/
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Django 1.9, Nginx License: GPL 3.0. Source 

code: https://github.com/NeuroMorpho/metadata-portal. 
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Abstract  

 

Most functions of the nervous system depend on neuronal and glial morphology. 

Continuous advances in microscopic imaging and tracing software have provided an 

increasingly abundant availability of 3D reconstructions of arborizing dendrites, axons, 

and processes, allowing their detailed study. However, efficient, large-scale methods to 

rank neural morphologies by similarity to an archetype are still lacking. Using the 

NeuroMorpho.Org database, we present a similarity search software enabling fast 

morphological comparison of hundreds of thousands of neural reconstructions from any 

species, brain regions, cell types, and preparation protocols. We compared the 

performance of different morphological measurements: 1) summary morphometrics 

calculated by L-Measure, 2) persistence vectors, a vectorized descriptor of branching 

structure, 3) the combination of the two. In all cases, we also investigated the impact of 

applying dimensionality reduction using principal component analysis (PCA). We 

https://doi.org/10.1101/2021.12.17.473026
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assessed qualitative performance by gauging the ability to rank neurons in order of visual 

similarity. Moreover, we quantified information content by examining explained variance 

and benchmarked the ability to identify occasional duplicate reconstructions of the same 

specimen. The results indicate that combining summary morphometrics and persistence 

vectors with applied PCA provides an information rich characterization that enables 

efficient and precise comparison of neural morphology. The execution time scaled 

linearly with data set size, allowing seamless live searching through the entire 

NeuroMorpho.Org content in fractions of a second. We have deployed the similarity 

search function as an open-source online software tool both through a user-friendly 

graphical interface and as an API for programmatic access.  

 

Keywords: Neuronal Morphology, Principal Component Analysis, Neuroinformatics, 

Similarity search, Software as a Service 

 

Introduction 

 

Since the dawn of neuroscience, with the elegant drawings of Ramón y Cajal 

(Azoulay & Ramón y Cajal, 1894), it has been known that the branching morphology of 

neuronal and glial (henceforth referred to as neural) arbors underlie their functional role 

in the nervous system. Specific neuron types often have characteristic dendritic or axonal 

trees, as exemplified by the iconic structures of cerebellar Purkinje cells and cortical 

chandelier cells, respectively (Ascoli, 2015a). Multifarious analysis approaches have 
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been developed both to establish common morphological characteristics within neural 

types and to compare structural differences between types (Laturnus et al., 2020). 

Quantitative representations of tree morphologies harnessed, for example, different 

morphometrics statistics (Y. Lu et al., 2015a; Polavaram et al., 2014c; Scorcioni et al., 

2008b; Uylings & van Pelt, 2002) and spatial density maps (Cuntz, 2012; Jefferis et al., 

2007). Arbor topology was captured through sequence representation (Gillette et al., 

2015) or using a local alignment between pairs of neurons via dynamic programming 

(Wan et al., 2015c). More recently, algebraic methods based on persistent homology 

allowed to quantify branching distribution into vector metrics (Kanari et al., 2018b; Y. 

Li, Wang, et al., 2017a).  

It should be possible to leverage these characterizations to find similar 

morphologies from a large set, given a neuronal or glial reconstruction of interest as the 

query vector. To this purpose, the NBLAST algorithm combined cell position with local 

geometry (Costa et al., 2016a). A different method for global search employed an 

asymmetric binary coding strategy based on the maximum inner product (Z. Li, Fang, et 

al., 2017), while encoding of morphology with hashing forests has shown promising 

performance on large datasets (Conjeti et al., 2016a). Another variant is to query sub-

structures of the neuron with graph representations of the (sub-)trees (J. Yang et al., 

2020) or using structure tensors and expanding this field via gradient vector flow 

(Ganglberger et al., 2014). A conceptually related problem is to compare two 

morphological reconstructions of one and the same neuron, such as when benchmarking 
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an automated tracing software against the gold standard of expert manual proofreading 

(Gillette et al., 2011).  

For the past 15 years, NeuroMorpho.Org enabled sharing of 3D reconstructions of 

neural morphology (Akram et al., 2018b), with the latest major release, 8.1, accruing 

150,000 digital tracings from 78 species, 1330 cell types, 381 brain regions, and 774 

contributing labs. The growth rate of this repository has continuously increased due to a 

combination of more efficient reconstruction techniques, greater willingness of the 

neuroscience community to share, and rising open data expectations from funding 

organizations and scientific publishers (Ascoli et al., 2017c). In parallel, the 

NeuroMorpho.Org internal processing pipeline evolved into a micro-service-based 

architecture, reducing the time from deposition to publication from months to weeks 

(Anderson et al., 2021). Within the data standardization workflow, it must be verified that 

each submitted reconstruction is not a duplicate of any previously submitted specimen. 

This step, equivalent to an extreme case of similarity matching, used until recently 

Pearson correlation of morphometric data. However, such method was slow for larger 

data sets, prompting the development of the more efficient alternative described in this 

work.  

To our knowledge, no readily available Software as a Service method provides 

precise and fast search of neural reconstructions solely by morphological similarity for 

larger data sets (>100k reconstructions). Therefore, we engineered a combination of the 

state-of-the-art software Facebook AI Similarity Search, or FAISS (J. Johnson et al., 

2021), with L-Measure statistical morphometrics (Scorcioni et al., 2008b) and persistence 
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vectors descriptors (Y. Li, Wang, et al., 2017a). We report that this system enables 

efficient and massive parallel searches, works flexibly with both global (whole cell) and 

local (parts of the cell) neural arbors, and is highly effective at duplicate detection. 

Moreover, we investigated the impact of dimensionality reduction using PCA (principal 

component analysis) in terms of precision and speed. Lastly, we present the new 

NeuroMorpho.Org functionality enabling users to carry out similarity searches through 

an intuitive graphic interface or an Application Programming Interface (API). All code is 

released open source to ensure maximum reproducibility and encourage further 

community development (Gleeson et al., 2017a). 

 

Materials and Methods 

NeuroMorpho.Org provides for each reconstruction 21 morphometrics, for 

example, total length, average bifurcation angle, and the number of branches (for a 

complete list, see http://NeuroMorpho.Org/myfaq.jsp?id=qr4#QS3), as derived by L-

Measure (Scorcioni et al., 2008b). These metrics are calculated both for the entire cell, 

referred to as summary morphometrics, as well as separately for each structural domain, 

for example only the axon, and are then referred to as detailed morphometrics. For 

summary morphometrics, the dimensionality is thus 21, while for detailed morphometrics 

it is a multiple of 21 depending on the number of distinct structural domains, up to a 

maximum of 63 for a neuron with apical and basal dendrites as well as an axon. 

In addition to the summary and detailed morphometrics, NeuroMorpho.Org also 

stores 100- dimensional persistence vectors quantifying the branch distribution by 
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algebraic homology (Y. Li, Wang, et al., 2017a). We have modified the original C++ and 

Java open-source code (Y. Li, Wang, et al., 2017a) to run on Linux and added a Python 

wrapper to make the software callable as a service. The source code of this modified 

software is available open source at https://github.com/NeuroMorpho/swc2pvec, and the 

service is briefly described and callable as an API at http://cng-

nmomain.orc.gmu.edu/swp2pvec (for a complete API description, please see the GitHub 

page). 

NeuroMorpho.Org also provides rich metadata for all reconstructions (Parekh et 

al., 2015a), including both nonnumerical (e.g., species and brain region) and numerical 

specifications (e.g., slice thickness and objective magnification). For purposes of 

similarity search, we hashed and normalized nonnumerical metadata values into a 

numerical representation, resulting in a 29-dimensional vector. 

FAISS (Facebook AI Similarity Search) is a fast and memory-efficient similarity 

search software developed by the company Meta, formerly Facebook (J. Johnson et al., 

2021). To generate an index of distances (similarity) from the input data, FAISS offers 

different methods trading off properties such as memory usage vs speed. We have 

consistently used a flat L2 index in our implementation. The index may then be queried 

using a vector of the same dimensions as the indexed data. We have also normalized all 

data before building the index. The resulting similarity is the L2 normalized distance 

between the two vectors, ranging from -1 to 1, with -1 meaning they are maximally 

dissimilar, and 1 that they are identical. In addition to FAISS, we have implemented for 

benchmarking purposes a traditional Pearson correlation for similarity search of a single 
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cell at a time (non-parallel). We have also tested a combination of the two, FAISS 

similarity multiplied by Pearson correlation, which thus also can only handle searches 

with one neuron at a time. Pearson correlation was calculated in real-time, as pre-

calculation would take for the current database 130 GB of memory, far exceeding the 

available RAM. The RAM footprint of a typical similarity search in our implementation 

stayed around 2-3 GB. 

The similarity search software was written in Python, including NumPy and Flask 

in addition to the FAISS Python library, and deployed as a Docker service using Ubuntu 

Linux 18.04 LTS as the operating system on a virtual machine hosted at the data center of 

George Mason University’s Office of Research Computing. We created the following 

data vectors for each neuron to build a similarity search, with dimension m as indicated: 

1. Summary morphometrics (m=21); 2. Detailed morphometrics (m=21, 42 or 63, that is, 

21 per structural domain present); 3) Persistence vectors (m=100); 4) 1 combined with 3 

(m=121); 5) 2 combined with 3, (m=121, 142 or 163); and 6) Binary metadata 

comparison (m=29). 

For the above morphometric data sets, we applied PCA by calculating the 

eigenvectors (principal components) and correspondent eigenvalues of the covariance 

matrix and sorting them in order of falling ratio of explained variance. We adopted the 

broken stick method for determining how many principal components to include as base 

vectors (Jackson, 1993). This method advocates stopping when the ratio of explained 

variance of the next principal component falls below what could be expected if 

performing the PCA on white noise, that is 1/m, where m is the dimension of the original 
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data. For the selected principal components, we calculated the sum of explained variance 

as a measure of their information content. 

A similarity search user interface was implemented in JSP and integrated with 

NeuroMorpho.Org, where, starting from any cell page of interest, users may search for 

similar cells choosing any of the 6 methods described above. As with other 

NeuroMorpho.Org search functionalities, the SWC files of the found neurons or glia can 

be immediately visualized or saved for separate downloading. Users may also select to 

apply PCA and whether to utilize FAISS, Pearson correlation, or their scalar product. The 

graphical user interface in turn calls an underlying API, which is also independently 

machine-accessible (https://github.com/NeuroMorpho/similaritysearch). 

In order to assess the capability of the software to rank morphological similarity, 

we performed a visual evaluation. Similarity search was performed on a representative 

set of 100 reconstructions from NeuroMorpho.Org selected so as to cover the broad span 

of species, brain regions, cell types, and experimental methods in the database. The 

search used summary morphometrics plus persistence vector as data, dimensionality 

reduction using PCA, and combined FAISS and Pearson correlation as index. The top six 

most similar cells were then compared with six randomly selected cells relative to the 

original reconstruction, and their similarity scores calculated. Furthermore, we generated 

a histogram of the similarity scores from each target cell to all other cells in the database. 

To evaluate performance scaling for parallel searches, that is searching 

simultaneously through the entire NeuroMorpho.Org content for entries similar to many 
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cells, we used persistence vector plus summary morphometrics (m=121) and compared 

that with the same after dimensionality reduction by PCA (m=8). For the two approaches, 

we varied the number of parallel searches from 200 cells to 4800 in 200 increments and 

measured the similarity search execution time. This was performed using FAISS as 

Pearson correlation cannot handle parallel searches. 

We then evaluated the ability to find data duplicates of the different morphometric 

indices, with and without PCA applied, thus comparing six different methods. Detailed 

measurements were not used as they cannot compare cells of different structural domains. 

Likewise, we did not use metadata similarity for the purpose of duplicate detection, as 

cells often share the same metadata when they are contributed from the same lab to the 

database. We compared the efficiency of these six methods in finding duplicates by 

calculating the false negative rate (FNR or miss rate) and false positive rate (FPR or fall-

out) for duplicates detection. The trial for this detection utilized the 131,960 

reconstructions from the latest major release of NeuroMorpho.Org that contained 

duplicates (v. 8.0), since those have been cleared out as of v. 8.1. Starting from a set 

(1000 cells) of potential duplicates identified using all three descriptors as well as an 

archive-by-archive inspection, we manually generated a list of 235 true duplicates by 

confirming through visual inspection and examination of the source files and related 

annotations provided by the original contributors. For all 131,960 reconstructions, we 

then applied parallel FAISS similarity search for an all-against-all duplicate detection 

using all six methods separately. This generated a list of the 10 most similar cells for each 

method and cell. If any of these had a similarity score >=0.9999, it was considered a 
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potential duplicate. This was then compared against the list of true duplicates and, if 

confirmed, considered a true positive, otherwise a false positive. If a cell pair was on the 

list as a true duplicate, but fell below the similarity threshold, it was considered a false 

negative. Lastly, cell pairs that neither were on the true duplicate list nor passed the 

similarity threshold were considered true negatives. We also evaluated impact to FPR and 

FNR when setting the required similarity score to >=0.99999 or >=0.999. 

The implementation is provided open source at the NeuroMorpho.Org GitHub 

account: https://github.com/NeuroMorpho/similarity-search. Database credentials have 

been removed, as direct database access is not provided to outside users for security 

reasons, but all data used for similarity search is provided as Python pickle files (*.pkl). It 

is also possible to download the application as a Docker container image, including the 

pickle files: https://hub.docker.com/repository/docker/neuromorpho/sis. 

 

Results 

The visual evaluation of representative cells demonstrated that the similarity 

search selects visually similar neurons when compared to random neurons (Figure A3.1). 

All other inspected cells showed analogous results in terms of the ability to find visually 

similar cells. Moreover, we noted that the distribution of similarity scores for an 

individual cell against the whole database was shaped differently (unimodal or bimodal, 

right-tailed or left-tailed etc.) for distinct cell types, such as projection neurons, 

interneurons, and glia.  
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Figure A3. 1. Similarity search results compared to random controls for six representative cells from 

NeuroMorpho.Org: 1) zebrafish main olfactory bulb interneuron (Meehan et al., 2011) (NeuroMorpho 

identifier: NMO_93878); 2) mouse retinal ganglion cell (Favero & Castro-Alamancos, 2013) 

(NMO_128003); 3) mouse hippocampal pyramidal cell (Banks et al., 2011) (NMO_94734); 4) rabbit 

corpus callosum astrocyte (Silberberg & Markram, 2007) (NMO_53207); 5) drosophila melanogaster 

peripheral nervous system sensory neuron (Mott et al., 1997) (NMO_76528); and 6) mouse hippocampal 

projection cell (Amatrudo et al., 2012b) (NMO_121747). Top left figure in each row is the search target. 

The histogram directly below each target cell plots the similarity of that cell against all others in the 

database. Immediately to the right of each target cell are the six most similar cells found by the search in 

falling order of similarity score (indicated in top right corner of each cell). On the second row, to the right 

of the histogram, six random cells are shown with their similarity score in the top right corner as well. The 

color of the frame of each cell designates its similarity, with purple the most similar (score 1), green neutral 

(score 0), and blue the least similar (score -1). The original target cells are colored with respect to structural 

domain, while all other cells are greyed out to avoid visual bias. 

 

 

The implemented microservice-based similarity search allows for fast and 

efficient search both for machine and human users. In particular, starting from any “cell 

page” (e.g., http://neuromorpho.org/byRandom.jsp), NeuroMorpho.Org users can search 

for similar morphologies after selecting preferred search parameters (Figure A3.2). 

Choices include the similarity implementation to use (FAISS and/or Pearson correlation), 

the numerical descriptors (summary morphometrics, persistence vectors, their 

combination, detailed morphometrics, or metadata), whether or not to apply PCA, and the 

result size (10, 25, 50, or 100 most similar hits). Results are delivered within a fraction of 

a second in all cases. The underlying API has the same parameter options for 

programmatic access.  
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Figure A3. 2. Similarity search with the graphical user interface. Starting from any cell page as in the 

illustrated example of an interneuron (Kubota, 2014) (left), users can access the new Similarity Search 

functionality and select the desired options (center, bottom). The results are displayed in order of similarity 

scores among the entire content of the database (right). The illustration has been adapted slightly from the 

current user interface look for optimal display 

 

 

Search response time was linear with the number of parallel searches: 0.15s for 

1000 cells, 0.3s for 2000, and 0.6s for 4000. The time difference between summary 

morphometrics plus persistence vectors with PCA (9 dimensions) and no PCA (121 

dimensions) applied was constant with a mean of 0.05s.  

The broken stick method for selecting principal components of the three 

descriptors resulted in different results for each (Figure A3.3). For the persistence 

vectors, summary morphometrics, and their combination, the number of eigenvalues 

greater than the cut-off limit were 7, 4, and 8, with a sum of explained variance of 96.5%,  

91.3%, and 97.1% respectively. 
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Figure A3. 3. Ratio of variance of each eigenvalue for the three different descriptors used in 

similarity search. Dashed lines represent the calculated cut-off n using the broken stick method (>1/m 

where m is the original dimension). 

 

 

Evaluation of the duplicate detection test showed that combining summary 

morphometrics and persistence vectors at a similarity threshold of 0.9999 is effective for 

finding the occasional repeated reconstructions (Table A3.1). Notably, persistence 

vectors alone performed worst, while summary morphometrics performed better but still 

far worse than the combined method both in terms of false positive rate (FPR) and false 

negative rates (FNR). Applying PCA improved both FPR and FNR for persistence 

vectors, while performing worse for FNR using summary morphometrics and slightly 
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worse for the combined method, but substantially better for FPR for both. Using a higher 

similarity threshold of 0.99999 improved FPR slightly to 0.18% but worsened FNR 

dramatically to 29.87% for the combined method with PCA. Conversely, reducing the 

threshold to 0.999 completely eliminated false negative but yielded an unacceptably high 

FPR of 7.4%. 
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Table A3. 1. Duplicate detection false positive rate (FPR) and false negative rate (FNR) for the different methods at a threshold similarity of 

0.9999, expressed as percentages with standard deviation. A total of 235 true duplicates were presented in the set of 131,960 cells used for the statistics 

calculation 

Method Full - FPR PCA - FPR Full - FNR PCA - FNR 

Persistence 

vectors 

35.37% ± 0.13% 19.91% ± 0.11% 24.68% ± 0.12% 17.02% ± 0.10% 

Summary 

Morphometrics 

17.34% ± 0.10% 6.66% ± 0.07% 2.55% ± 0.04% 9.79% ± 0.08% 

Persistence 

vectors + 

summary 

morphometrics 

 

1.34% ± 0.03% 

 

0.49% ± 0.02% 

 

0.43% ± 0.02% 

 

0.85% ± 0.03% 

 



   

 

214 

 

 

 

Discussion 

In this work, we introduced and evaluated a similarity search among neuronal and 

glial reconstructions based on three numerical descriptors of morphology. When 

combined with the Facebook AI Similarity Search (FAISS) software, the result is fast, 

efficient, and precise. In addition to sharing the code freely for further development and 

standalone implementations, we deployed this new function in the publicly available 

database NeuroMorpho.Org both as a user-friendly graphical interface and as API. Users 

can perform seamless similarity searches against hundreds of thousands of cells easily 

and quickly. Common applications include finding reconstructions similar to a target 

archetype of interest or identifying occasional duplicates across large data sets. The 

results obtained with FAISS are qualitatively similar to those yielded by traditional 

Pearson correlation, but FAISS additionally enables massive parallel searches. This 

allows the programmatic ranking of similarities for thousands of reconstructions 

simultaneously with results in fractions of a second. Such a performance, which to our 

knowledge has not been previously achieved, may facilitate ever more powerful unbiased 

classification of neural morphology (Bijari et al., 2021a). 

A visual inspection of the similarity results showed that the method has a strong 

ability to find similar reconstructions to a representative variety of target morphologies 

when compared to a random selection. Interestingly, the distributions of the similarity 
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scores against the entire NeuroMorpho.Org database varied substantially from one target 

cell to another. We observed that cells with similar metadata tended to display 

comparable similarity distributions, but a detailed investigation of these distributions 

remains a subject for future study. 

We evaluated the information content of the three morphological descriptors: 

persistence vectors, L-Measure summary morphometrics, and the combination of the two, 

by studying the explained variance after PCA application. Persistence vectors combined 

with summary morphometrics constitute the most information rich descriptor, with a 

reduction from 121 to 8 dimensions retaining over 97% of the variance. The summary 

morphometrics, with PCA dimensionality reduction from 21 to 4, only retained 91.3% of 

the variance, while the persistence vectors, with dimensionality reduced from 100 to 7 

post-PCA, retained 96.5% of the original variance. Our interpretation is that summary 

morphometrics alone is a noisier descriptor but delivers superior precision for similarity 

search when combined with persistence vectors. 

Execution time performance scales linearly with a growing number of cells in a 

parallel query. However, larger dimensions of each query vector have a comparatively 

smaller impact, as the similarity with no PCA applied (m=121) was only marginally 

slower than the similarity search with PCA applied (m=8). It should be noted that we 

have used the CPU implementation of FAISS on standard server hardware, with no GPU 

(Graphics Processing Unit) support. This was sufficient for our purposes, as the similarity 

search in most cases returned results within a fraction of a second. The search is expected 

to execute substantially faster when applying GPU acceleration. The method is therefore 
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likely suitable also for exceptionally large data sets including whole-brain data sets of 

millions of neural reconstructions. 

Using persistence vectors and summary morphometrics combined as a descriptor 

constitutes in our experience the strongest similarity search function. This same 

combination also provides the most effective duplicate detection test and is superior to 

the persistence vectors and summary morphometrics used separately as query vectors. 

We also noticed that applying PCA generally yields improved results for all three 

methods investigated when considering both false positive and negative rates. Therefore, 

we recommend the combined method with PCA as the default setting for 

NeuroMorpho.Org similarity searches, although different options should be explored 

when working with defined subgroups of cells, such as only microglia, only cultured 

cells, only long axonal projections, or only invertebrate neurons. 

Similarity search is available for both human users through the NeuroMorpho.Org 

graphical interface as well as for programmatic usage as an API, therefore allowing all 

users to discover morphologically similar neurons efficiently. The now fully automated 

microservice-based data ingestion pipeline of NeuroMorpho.Org (Anderson et al., 2021) 

checks for duplicate reconstructions before ingestion as a part of the data quality 

assurance. This is necessary as reconstructions may unintentionally be resubmitted if they 

are used in different studies together with novel reconstructions. Lastly, this work 

highlights NeuroMorpho.Org as a mature database, which provides the necessary data 

diversity and quality required for a precise similarity search. 
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APPENDIX 4: SCALE CORRECTION 

Glia 

 

1. Zheng  

PMID 30415998 

Scale bar in the article = 5 µm 

Pixel for scale bar = 33 pixel 

Height of the cell in pixel = 186 pixel 

Nominal height reported = 249.47 µm 

 

33 is 5.63 times of 186, so 5 µm x 5.63 = 28.1 µm (this is the Height) 

28.1/249.47=0.1130, ABEL should be multiplied by 0.1130 

 

2. Foerster  

PMID 29162696 

Scale bar in the article = 10 µm 

Pixel for scale bar = 37 pixel 

Height of the cell in pixel = 367 pixel 

Nominal height reported = 345.58 µm 

 

37 is 9.91 times of 367, so 10 µm x 9.91 = 99.1 µm (this is the Height) 

99.1/345.58= 0.2870, ABEL should be multiplied by 0.2870 

 

3. Di Benedetto  

PMID 26869881 

Scale bar in the article = 20 µm 

Pixel for scale bar = 34 pixel 

Height of the cell in pixel = 50 pixel 

Nominal height reported = 222.35 µm 

 

34 is 1.47 times of 50, so 20 µm x 1.65625 = 29.411 µm (this is the Height) 

29.411/222.35= 0.1323, ABEL should be multiplied by 0.1323 
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4. Wake  

PMID 31862977 

Scale bar in the article = 10 µm 

Pixel for scale bar = 20 pixel 

Height of the cell in pixel = 115 pixel 

Nominal height reported = 360.78 µm 

 

20 is 5.75 times of 115, so 10 µm x 5.75 = 57.5 µm (this is the Height) 

57.5/360.78= 0.1594, ABEL should be multiplied by 0.1594 

 

5. Maguire-Zeiss  

PMID 28921719 

Scale bar in the article = 10 µm 

Pixel for scale bar = 37 pixel 

Height of the cell in pixel = 89 pixel 

Nominal height reported = 339.08 µm 

 

37 is 2.405 times of 89, so 10 µm x 2.405= 24.05 µm (this is the Height) 

24.05/339.08= 0.0710, ABEL should be multiplied by 0.0710 

 

6. Rusakov  

PMID 30177844 

Scale bar in the article = 10 µm 

Pixel for scale bar = 24 pixel 

Height of the cell in pixel = 201 pixel 

Nominal height reported = 358.16 µm 

 

24 is 8.375 times of 201, so 10 µm x 8.375 = 83.75 µm (this is the Height) 

83.75/358.16= 0.2338, ABEL should be multiplied by 0.2338 

 

7. H_Zhang  

PMID 30654821 

Scale bar in the article = 20 µm 

Pixel for scale bar = 38 pixel 

Height of the cell in pixel = 128 pixel 

Nominal height reported = 334.26 µm 

 

38 is 3.36 times of 128, so 20 µm x 3.36 = 67.36 µm (this is the Height) 

67.36/334.26= 0.2015, ABEL should be multiplied by 0.2015 
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8. Weil  

PMID 26833850 

Scale bar in the article = 20 µm 

Pixel for scale bar = 78 pixel 

Height of the cell in pixel = 81.9 pixel 

Nominal height reported = 30.57 µm 

 

78 is 1.05 times of 81.9, so 20 µm x 1.05 = 21.17 µm (this is the Height) 

21.17/30.57= 0.6926, ABEL should be multiplied by 0.6926 

 

9. Fernandez-Ruiz  

PMID 30076846  

Multiply by 0.65 & Divide by 2 

 

10. Xiong  

PMID 34330901 

Scale bar in the article = 20 µm 

Pixel for scale bar = 124 pixel 

Height of the cell in pixel = 302 pixel 

Nominal height reported = 237.32 µm 

 

124 is 2.43 times of 302, so 20 µm x 2.43 = 48.6 µm (this is the Height) 

48.6/237.32=0.2050, ABEL should be multiplied by 0.2050 

 

Neurons 

 

1. Firestein 

 

PMID 25542305 

Scale bar in the article 50 µm 

Pixel of scale bar = 76 pixel 

Height of the cell in pixel = 323 pixel 

Nominal height reported = 474.15 µm 

 

76 is 4.25 times of 323, so 50 µm x 4.25 = 212.5 µm (this is the Height) 

212.5/474.15 = 0.4482, ABEL should be multiplied by 0.4482 
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PMID 29982499 

Scale bar in the article 50 µm 

Pixel of scale bar = 70 pixel 

Height of the cell in pixel = 273 pixel 

Nominal height reported = 27.24 µm 

 

70 is 3.9 times of 273, so 50 µm x 3.9 = 195 µm (this is the Height) 

195/27.24 = 7.1586, ABEL should be multiplied by 7.1586 

 

PMID 32157575 

Scale bar in the article 100 µm 

Pixel of scale bar = 83 pixel 

Height of the cell in pixel = 188 pixel 

Nominal height reported = 28.79 µm 

 

83 is 2.265 times of 188, so 100 µm x 3.34 = 226.5 µm (this is the Height) 

226.5/28.79 = 7.8675, ABEL should be multiplied by 7.8675 

 

 

2. Moons  

PMID 34073191  

Scale bar in the article 20 µm 

Pixel of scale bar = 36 pixel 

Height of the cell in pixel = 399 pixel 

Nominal height reported = 174.54 µm 

 

36 is 11.08 times of 399, so 20 µm x 11.09 = 221.8 µm (this is the Height) 

221.8/174.54=1.2710, ABEL should be multiplied by 1.2710 

 

3. Wong_Silver  

PMID 30074985  

Scale bar in the article 50 µm 

Pixel of scale bar = 68 pixel 

Height of the cell in pixel = 423 pixel 

Nominal height reported = 208.5 µm 

 

68 is 6.22 times of 423, so 50 µm x 6.22 = 311 µm (this is the Height) 

311/208.5= 1.4920, ABEL and Height should be multiplied by 1.4920 

 

4. Manica_Leon  

PMID 32633719 
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Scale bar in the article 50 µm 

Pixel of scale bar =   71 pixel 

Height of the cell in pixel = 475 pixel 

Nominal height reported = 124.82 µm 

 

71 is 6.69 times of 475, so 50 µm x 6.69 = 334.5 µm (this is the Height) 

334/124.82= 2.6760, ABEL and Height should be multiplied by 2.6760 

 

5. Wadiche  

PMID 21490706  

Scale bar in the article 20 µm 

Pixel of scale bar =   72 pixel 

Height of the cell in pixel = 420 pixel 

Nominal height reported = 96.19 µm  

 

72 is 5.83 times of 420, so 20 µm x 5.83 = 116 µm (this is the Height) 

111/96.19= 1.1540, ABEL and Height should be multiplied by 1.1540 

 

 

6. Cai  

PMID 30715234  

Scale bar in the article 50 µm 

Pixel of scale bar = 15 pixel 

Height of the cell in pixel = 83 pixel 

Nominal height reported = 95.24 µm 

 

15 is 5.53 times of 83, so 50 µm x 5.53 = 276.5 µm (this is the Height) 

276.5/95.24 = 2.9032, ABEL and Height should be multiplied by 2.9032 

 

7. Summavielle  

PMID 28274785  

Scale bar in the article 20 µm 

Pixel of scale bar = 22 pixel 

Height of the cell in pixel = 233 pixel 

Nominal height reported = 37.04 µm 

 

22 is 10.59 times of 233, so 20 µm x 10.59 = 211.8 µm (this is the Height) 

211.8/37.04 = 5.7120, ABEL and Height should be multiplied by 5.7120 
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8. Cox 

PMID: 21811639  

Scale bar in the article = 50 µm 

Pixel for scale bar = 118 pixel 

Height of the cell in pixel = 309 pixel 

Nominal height reported = 473.95 µm 

 

21 is 14.71 times of 309, so 50 µm x 14.71 = 735.71 µm (this is the Height) 

735.71/473.95 = 1.5523, ABEL should be multiplied by 1.5523 

PMID: 30395636  

Scale bar in the article = 100 µm 

Pixel for scale bar = 47 pixel 

Height of the cell in pixel = 292 pixel 

Nominal height reported = 588.73 µm 

 

47 is 6.21 times of 292, so 100 µm x 6.21 = 621 µm (this is the Height) 

621/588.73 1.0553, ABEL should be multiplied by 1.0553 

9. Zhang_X  

PMID 28263300 

Scale bar in the article = 100 µm 

Pixel for scale bar = 57 pixel 

Height of the cell in pixel = 259 pixel 

Nominal height reported = 92.17 µm 

 

57 is 4.54 times of 259, so 100 µm x 4.54 = 454.38 µm (this is the Height) 

454.38/92.17 = 4.9299 ABEL should be multiplied by 4.9299 

 

 



   

 

224 

 

CONCLUSION 

As a doctoral student, I made substantial contributions to 

NeuroMorpho.Org. By the time I joined the project, NeuroMorpho.Org hosted 

62,000 reconstructions, and with the recent version of the database, the total 

content has exceeded 172,000 digital tracings. I was specifically responsible for 

adding glia to the database in 2017 with an initial number of 195, and with the 

recent release, these numbers total more than 19,000. As the amount of data 

increases, there is always a need to add more functionalities to NeuroMorpho.Org. 

I wanted to organize the data in a way that was conducive to datamining, 

exploratory analysis, and machine learning. Therefore, we added summary 

reporting to the database, which allows users to download the data of their choice 

quickly and efficiently.  

I leveraged summary reporting to download a balanced dataset of glia and 

neurons for supervised classification. All classifiers performed exceptionally well 

in separating glia and neurons. Previous evidence suggests that neuronal dendrites 

are bigger than glial processes, therefore upon investigation of morphometric 

features contributing to this separation, I discovered a novel morphometric 

biomarker called average branch Euclidean length (ABEL) that separates neurons 

and glia better than height. We also found out that the reconstruction process for 

classification can be avoided by just taking ABEL of 5 branches with any image 

processing software with a classification accuracy of more than 95%.  
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The successful completion of this thesis provides new avenues for cellular 

comparison in the nervous system. Despite our research demonstrating the ability 

to distinguish glia and neurons by their arbors, the question of identifying the 

main subclasses within glia and neurons still remains. Traditionally, classification 

techniques in neuroscience have focused on neurons (Bota & Swanson, 2007a; 

Zhang et al., 2021b), it is exciting to see if we can differentiate between the main 

subclasses of neurons and glia simultaneously. We decided to perform multiclass 

classification using SVM, KNN, and RF. While SVM performed the best with 

94.70% accuracy, majority of the misclassified cells were astrocytes and 

oligodendrocytes indicating that these results are still unsuitable for scientific 

interpretation. Such an endeavor would require balanced datasets where the 

paucity of certain classes (astrocytes, oligodendrocytes) does not negatively 

impact performance of classification algorithms.  

In order to conduct a comprehensive morphometric analysis, cellular 

reconstructions are required. The process of reconstructing a brain cell is labor-

intensive and time consuming. The fact that ABEL alone performed well 

especially when randomly selecting a few branches for classification, it is 

intriguing to see if it could be used in the future studies as a quick tool for 

classification of the nervous system cells. In case it does not perform well, we will 

still need to reconstruct a whole cell and perform morphometric analysis using 

supervised machine learning. 
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There are various neurodegenerative disorders in which the structure of 

glial cells is altered. For example, enlargement of microglia in Alzheimer’s 

disease (Plaza-Zabala et al., 2017), dysfunction of oligodendrocytes leading to 

demyelination in multiple sclerosis (Dulamea, 2017), and changes in astrocyte 

morphology in Parkinson’s and Huntington’s disease (Liddelow et al., 2017). It is 

fascinating to see that the same machine learning techniques that we applied in 

this thesis could be applied to diseased states and control conditions for the 

identification of abnormal cells. 

 There are also some limitations when it comes to classification of the 

nervous system cells in order to complete the cell census of the brain of any 

specie. The first thing is the lack of data from different species, anatomical 

regions, cell classes, experimental conditions, etc. Secondly, scientists have been 

trying to classify neurons for centuries, but glia have given a lot less attention, 

which is also clear from the content of NeuroMorpho.Org. Additionally, an 

average time to reconstruct a brain cell takes about 6 hours after all the 

advancements in microscopy and tracing techniques. For example, if we want to 

reconstruct each neuron and glia in the human brain, hundreds and thousands of 

hours are needed to reconstruct every cell. As a result, it will take years to study 

just one human brain, knowing the fact that each brain is different and works 

differently out of billions of other brains in the whole world. Although the field of 

neuroscience has made tremendous advances over the years, we still need new 
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techniques that will allow us to study the brain efficiently, especially if we are to 

complete the cell census of the nervous system. 
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