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Abstract. The paper presents initial results from an emerging new direction in
engineering design research, in particular, creative design. It argues that constructive
induction, which was originally proposed in the field of machine learning, can serve as a
foundation for developing a computational theory of engineering design and design
creativity. Constructive induction is a process of creating new knowledge (e.g., design
knowledge) by performing two intertwined searches, one—for the most adequate
knowledge representation space, and second—for the best hypothesis in this space. Basic
concepts and methods of constructive induction are reviewed and illustrated by examples
of their application to conceptual structural design. Several crucial design concepts,
including those of an emergent concept and of a goal-oriented transformation of the
design representation space are interpreted in terms of a construction induction process. It
is also shown how constructive induction applies to the control of the design creativity
level. Several measures of the design complexity and relative creativity are proposed. The
conclusion presents some unresolved problems and a plan for future research.

1. Introduction

Engineering is presently undergoing a paradigm change. The previous
analytical paradigm is being gradually replaced by a knowledge paradigm,
and this change appears to have a significant impact on the understanding of
engineering design creativity. When the first paradigm was dominant, the
major focus in engineering was to build analytical models of engineering
systems in order to develop understanding of their behavior and to produce
knowledge about them. In this context, engineering knowledge was
understood as a combination of a representation of the engineering system
being designed, of the design process itself, as well as of all relationships
existing among attributes describing the system and their groups in the
representation space.
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At present, sufficient knowledge about engineering systems is frequently
available; therefore, the focus in design is on how to utilize the available
knowledge by means of information technology in the development of new
designs. In this context, information technology signifies a cluster of related
disciplines concerned with acquisition, processing, distribution and/or
generation of information, or knowledge, using computer technology. These
disciplines include computer science, artificial intelligence, machine learning,
automated reasoning, decision science, software engineering, systems
engineering, and others. The process of entering the knowledge paradigm
can be compared to moving from medieval times to renaissance. One of the
hallmarks of renaissance was Leonardo daVinci’s observation that human
artistic creativity, a spontaneous process of employing imagination and
thinking to create art, can be used to produce engineering inventions and to
solve engineering problems. In the knowledge paradigm, reasoning,
invention and creativity are viewed as knowledge processing activities, and
could be, at least partially, performed on a computer. Such a view is
supported by the development of machine learning methods and their
application to an automated knowledge creation and improvement. It is
believed these efforts will likely lead to the development of computational
foundations of conceptual design and to building a new class of design
support tools. Such tools could, in turn, result in a new generation of
inventions.

The above prospect creates an outstanding challenge for researchers and
calls for study of design processes in terms of ideas developed in the area of
artificial intelligence, particularly in machine learning and inference.
Research in this new direction is at an early stage and, naturally, results are
preliminary and have not made any significant impact on the design
practice. This paper presents recent results of work on engineering design
and design creativity in the context of constructive induction and the
recently proposed Inferential Theory of Learning (Michalski, 1994). The
material presented here rests on three ideas.

• The first idea is that the problems of design creativity can be usefully
discussed by employing concepts and methods developed in the field of
inductive learning. Any design process can be viewed as a search for a
knowledge structure (a design, in this case) that satisfies given objectives
and constraints. Such a process is a form of learning, therefore, ideas and
methods developed in the field of machine learning may potentially
bring new insights to the understanding of design processes.

• The second idea is that traditional learning methods, in which the search
for desired knowledge occurs in the same representation space in which
the original data are presented, are inadequate for understanding design
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processes. A more adequate approach is based on viewing the design
processes as a form of constructive induction.

Constructive induction is a concept proposed in the field of inductive
concept learning (Michalski, 1978a) to cope with learning problems in
which the original representation space is inadequate for the problem at
hand, and needs to be improved in order to correctly formulate the
knowledge to be learned. More specifically, constructive induction is a
process of hypothesizing new knowledge that involves not one search, as
traditionally done, but two interrelated searches. The first search is for the
“best” representation space in which desirable knowledge (e.g., a design)
is to be searched for and represented. The second search is for the
“best” hypothesis in the representation space which has been found. The
underlying principle for this approach is that the desirable knowledge is
easier to determine if the search for it is in the “right” representation
space. It is claimed that partitioning a design process into two such
searches can lead to novel and powerful models of design creativity.
Thus, constructive induction can be viewed as the key to design creativity.

• The third idea is that the two searches in constructive induction can be
conducted by applying design knowledge transmutations, as proposed in
the Inferential Theory of Design (Arciszewski and Michalski, 1994).
Design knowledge transmutations are generic types of design knowledge
changes or generations, and have been based on more general knowledge
transmutations, as first proposed in the Inferential Theory of Learning
(Michalski, 1994).

The following sections present a more detailed exposition of the above ideas,
discuss their significance for engineering design, and illustrate them by
specific examples.

2. Basic Concepts and Assumptions

To explain the proposed view of design creativity as a form of constructive
induction, we start with presenting basic concepts and assumptions.

ENGINEERING DESIGN

An engineering design is a description of an engineering system (that
usually does not yet exist) expressed in terms of attributes defining a
representation space. It consists of two major components: a design concept
and a detailed description.
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REPRESENTATION SPACE FOR AN ENGINEERING DESIGN

This is a multidimensional space spanned over attributes (in general,
descriptive terms or descriptors) that are used to describe an engineering
design (that is, a design concept and a detailed design description).
Attributes can be symbolic (when they take values from an unordered or
partially ordered set) or numerical (when they take numerical values
representing quantities or measurements). Symbolic attributes that take
values from an unordered set are called nominal attributes; when they take
values from a partially ordered set, they are called structured. Design
concepts are typically described in terms of symbolic attributes. Numerical
attributes are used for a detailed description of a design.

DESIGN CONCEPT

A design concept describes a future engineering system in terms of abstract
concepts, called “ primary concepts,“ that involve nominal attributes and
possibly also relations among design components. For example: the concept
of a steel truss can be understood as a structural system whose description
employs at least three primary concepts (symbolic attributes) and their
values: the type of material with the value “steel,” the member shape with
the value “straight,” and the type of connection with the value “pinned.”
Similarly, a concept of a belt truss system in wind bracings of a tall building
employs primary concepts of a truss, a vertical truss, a truss grid, etc.

DETAILED DESCRIPTION

A detailed description of a design specifies values of all numerical attributes
characterizing the design, such as specific dimensions, number of members,
weight, etc.

DESIGNS COVERED BY A DESIGN CONCEPT

A given design concept represents a large class of specific engineering
designs that differ in their detailed descriptions, i.e., in the values of
numerical attributes characterizing these descriptions.

CONCEPTUAL DESIGN PARADIGMS

Five major conceptual design paradigms can be distinguished. This
classification is based on the taxonomy proposed by Altschuller (1969), but
has been modified and adapted in the context of the Inferential Design
Theory:

1. Selection: the design concept is produced by selecting it from a class
of known concepts in a given engineering domain.
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2. Modification: the design concept is produced as a combination and/or
modification of known design concepts from a given domain. The
modification process is based on a deterministic or random generation
process.

3. Innovation: the design concept is produced as a combination of known
concepts from a given domain and other domains.

4. Invention: the design concept is produced as a combination of known
concepts from a given domain and new concepts based on a new technology,
which have been recently introduced.

5. Discovery: the design concept is produced as a combination of known
concepts from a given domain and new concepts based on new scientific
principles.

ROUTINE DESIGN

Routine design is a design process based only on selection or on
modification. In both cases, no changes in the representation space occur.

CREATIVE DESIGN

Non-routine or creative design is a conceptual design process which is based
on innovation, invention, or discovery. In all these cases, changes in a
representation space occur. Thus, design processes are divided into creative
or routine depending on whether the changes in the representation space
occur or not, respectively.

ROUTINE VERSUS CREATIVE DESIGN

In general, there are two major differences between the routine and creative
design processes: the number of changes of the representation space and the
nature of inference. There are no changes in the representation space for
routine design, and at least one change for non-routine or creative design.
Routine design typically employs deductive inference (selection and
modification), while creative design employs inductive inference (innovation,
invention and/or discovery). For a definition and classification of inference
types that are adopted in this paper, see (Michalski, 1994).

OPERATORS FOR REPRESENTATION SPACE TRANSFORMATION

Operators that change the representation space during the design process can
be divided into four classes: attribute elimination (removing unimportant
attributes), attribute abstraction (combining attribute values into larger units),
attribute addition (adding new attributes to the representation space), and
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attribute construction (creating new attributes, called “ constructed
attributes” by a simple or complex transformation of the initial attributes).
The last class is particularly interesting from the viewpoint of design
creativity.

CONSTRUCTIVE INDUCTION

Constructive induction (in the context of engineering design) is a process of
creating new knowledge (design) by two intertwined processes: one that
searches for the best representation space for the design, and the second that
searches for the best design in that space. Searching for the best
representation space is done by applying constructive induction operators
for the representation space transformation. This can be accomplished with
the help of a human designer or automatically. In the first case, a human
designer considers various design aspects (attributes from different
representation spaces or primary concepts), intuitively conducting search for
the best representation and looking for emergent concepts (constructed
attributes) which might lead to a creative design. In the automated
representation space transformation, constructive induction operators are
applied by a computer program according to a constructive induction
algorithm. Such an algorithm may use the advise of a designer as to the
desirable representation space transformations and/or a set of predefined
rules and methods. Constructive induction thus offers a formal methodology
for characterizing and/or modeling a creative design process.

INDUCTIVE NATURE OF CREATIVE DESIGN

A creative design process is intrinsically inductive. It creates knowledge
(design) that cannot be deductively derived from the original knowledge.
The design is typically represented in a new representation space that was not
initially given. A new representation space can be produced by employing
knowledge from previous designs in other domains or by another process.
In the former case, we say that constructive induction is guided by
knowledge drawn from other domains. The new representation space may
employ constructed attributes that appear to have high relevance for the
design (emergent concepts). Their importance is recognized by human
designers on the basis of their subjective understanding (background
knowledge), and/or by applying methods for multicriterion evaluation. The
evaluation criteria are usually acquired as the result of a human learning
process about the problems being solved in the context of the designer's
background knowledge.
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EMERGENT CONCEPT

The emergent concept is a new concept created in the process of constructive
induction that is potentially significant to the desired design. It provides a
new understanding of the problem being solved and/or a new insight that is
crucial for creative problem solving. The emergent concept is a constructed
attribute whose introduction may simplify or improve a problem solving
process (design process).

CONSTRUCTED ATTRIBUTE

A constructed attribute is derived from the initial attributes by an application
of constructive induction operators (that can potentially involve any type of
operation on attributes). Such an attribute has the potential to improve the
effectiveness or quality of the problem solving process. This potential is
estimated by some attribute evaluation function. A constructed attribute is
usually a more abstract concept that the attributes/concepts from which it is
derived, and it is supposed to improve the problem solving process and/or its
understanding.

DESIGN KNOWLEDGE TRANSMUTATIONS

Design knowledge transmutations are knowledge operators that transform or
generate new knowledge from other knowledge. They may use any form of
inference in such a process. The Inferential Theory of Design introduced a
class of 22 basic design knowledge transmutations or transforms
(Arciszewski and Michalski, 1994; Michalski, 1994). These transmutations
are considered to be major knowledge operators in conceptual design
processes.

IMPLEMENTABILITY OF CONSTRUCTIVE INDUCTION

Knowledge space transformations employed in constructive induction are
related to basic knowledge transmutations as defined in the Inferential
Theory of Learning. For example, a contraction of the representation space
(e.g., by removing attributes or abstracting attribute values) performs an
abstraction transmutation of objects represented in this space. An expansion
of the representation space (by adding new attributes or defining more
specific values of attributes) performs a concretion transmutation of objects
represented in this space. Computational aspects of constructive induction in
engineering design go beyond the scope of this paper. We will only mention
that design knowledge transmutations discussed here can be defined in a
formal way and are therefore implementable.
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POTENTIAL IMPACT OF MACHINE LEARNING ON DESIGN

Both learning and conceptual design processes are based on performing
various forms of inference. Therefore, all experience from machine learning
research that studies learning as an inferential process is relevant to design
and can be used for developing a formal model of design processes. The
initial formulation of the Inferential Design Theory is a result of such
efforts.

3. Constructive Induction

3.1 BASIC CONCEPTS

Constructive induction (CI) employs a number of innovative ideas and
assumptions:
• It is based on the idea that the quality of the knowledge representation

space is the most important factor in concept learning. If the
representation space is of high quality (i.e., chosen attributes or
descriptive terms are of high relevance to the problem at hand), learning
process will be relatively easy and will likely produce hypotheses with
high predictive accuracy. If the quality of representation space is low
(e.g., attributes are of little relevance to the problem), a learning process
will be complex and no method may be able to produce good
hypotheses.

• It searches for patterns in data and/or learned hypotheses, and uses them
for proposing knowledge space transformations (that may expand or/and
contract the space).

• It creates new descriptors (attributes or terms) that may be very complex,
multilevel functions or transformations of the original descriptors.

• It postulates that produced concept descriptions should be
comprehensible to human experts, so that they are relatively easy to
interpret and express in terms and forms used by experts.

As mentioned earlier, constructive induction divides the process of creating
new knowledge into a phase that determines the “best” knowledge
representation, and a phase that actually formulates the desirable knowledge
structure. The reason for such a division is that the original representation
space, in which design cases, constraints, etc. are presented, is often
inadequate for representing the sought design.

To illustrate this problem, consider Fig. 1A. Let us suppose that the
problem is to construct a description that separates points marked by “ + ”
from points marked by “-”. In this case, the problem is easy because “ + ”
points can be separated from “-” points by a straight line or a rectangular
border.
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A. High quality  RS B. Low quality  RS C. Improved RS due to CI

CI

Figure 1. High vs. low quality representation spaces for concept learning.

Let us suppose now that “+”s and “-”s are distributed as in Fig. 1B. In
this case, “+”s and “-” are highly intermixed, which may be an indication
that the representation space is inadequate for the problem at hand. A
traditional approach is to draw complex boundaries that will separate these
two groups. The constructive induction approach is to search for a better
representation space, such as shown in Figure 1C, in which the two groups
are well separated.

Conducting constructive induction thus requires mechanisms for
generating new, more problem-relevant dimensions of the knowledge
representation space (attributes or descriptive terms) as well as modifying or
removing less relevant dimensions from among those initially provided. In
other words, a constructive induction system performs a problem-oriented
transformation of the knowledge representation space. Once an appropriate
representation space is found, a relatively simple learning method may
suffice to develop a desirable knowledge structure (in this case, a description
that separates the two groups of points).

3.2 CLASSIFICATION OF CONSTRUCTIVE INDUCTION APPROACHES

Research on constructive induction has produced a great variety of methods
for that purpose (e.g., Larson and Michalski, 1977; Lenat, 1977; Langley et
al., 1983; Utgoff, 1984; Rendell, 1985; Kokar, 1985; Flann and Dietterich,
1986; Schlimmer, 1987; Bentrup et al., 1987; Muggleton and Buntine, 1988;
De Raedt and Bruynooghe, 1989; Drastal, Czako and Raatz, 1989; Matheus,
1989; Morik, 1989; Pagallo and Haussler, 1989; Knoblock, 1990; Wnek and
Michalski, 1991, 1994a). A simple way to characterize these methods is to
classify them in terms of the primary strategy employed for inventing new
dimensions in the representation space (or generally descriptors: attributes,
terms, or transformations) in order to improve the original representation
space (a “representational bias”). Based on such criterion, constructive
induction methods can be classified into the following categories:
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Data–Driven  Constructive Induction (DCI)
The representation space transformations are proposed on the basis of an
analysis of the input data (examples) and a detection the interrelationships
among descriptors. On that basis changes in the representation space are
made. Examples of systems implementing DCI methods include: PLS0
(Rendell, 1985), AQ-DCI (Bloedorn and Michalski, 1991), BACON (Langley
et al., 1983, 1987), ABACUS (Falkenhainer and Michalski, 1990; Greene
1988; Michael, 1991), Wyl, IOE (Flann and Dietterich, 1986; Flann 1990),
STAGGER (Schlimmer, 1987), FCE (Carpineto, 1992).

Hypothesis–Driven  Constructive Induction (HCI)
The representation space transformations are proposed on the basis of an
analysis of inductive hypotheses generated in consecutive iterations. Patterns
detected in one iteration are used in the next iteration. Examples of systems
implementing HCI methods include: BLIP (Emde et al., 1983; Morik, 1989;
Wrobel, 1989), FRINGE (Pagallo and Haussler, 1990), CITRE (Matheus,
1989), AQ-HCI (Wnek and Michalski, 1991, 1994a).

Knowledge–Driven  Constructive Induction (KCI)
Expert-provided domain knowledge is used to construct a new
representation space. Examples of systems implementing KCI methods
include: INDUCE (Larson and Michalski, 1977), AM  (Lenat, 1977, 1983);
SPARC/E (Dietterich and Michalski, 1983, 1985, 1986), MIRO (Drastal et al.,
1989), COPER (Kokar, 1986).

Multistrategy  Constructive Induction (MCI)
Two or more strategies are combined for constructing a new representation
space. Such methods include: INDUCE-1 (Larson and Michalski 1977;
Michalski, 1978a, 1983), STABB (Mitchell et al., 1983; Utgoff, 1984, 1986),
DUCE (Muggleton, 1987), CIGOL (Muggleton and Buntine, 1988), ALPINE
(Knoblock et al., 1990,1991); CLINT (De Raedt and Bruynooghe, 1989).

The AQ-DCI and AQ-HCI methods have been developed in the course of our
recent research (Wnek and Michalski, 1991, 1994ab; Wnek, 1993; Bloedorn
and Michalski, 1991) in the Machine Learning and Inference Laboratory at
George Mason University. Computer programs in which these methods were
implemented (AQ17-DCI and AQ17-HCI) have been tested on several learning
problems (Arciszewski et al., 1992; Bala et al., 1992; Wnek, 1993) and have
produced promising results. However, the success of a particular method
depends on the user's expertise in matching the method's capabilities to the
requirements of the learning problem. Therefore, the problem arises of how
to automatically adapt a constructive induction method to the problem at
hand.



CONSTRUCTIVE INDUCTION: THE KEY TO DESIGN CREATIVITY 11

3.3 THE AQ-HCI STRATEGY FOR HYPOTHESIS-DRIVEN CONSTRUCTIVE 
INDUCTION

The AQ-HCI strategy for Hypothesis-Driven Constructive Induction is
described here with some detail because it has been recently investigated by
the authors and appears very promising for engineering design purposes
(Arciszewski et al. 1994). Therefore, there is a possibility that this strategy
will be the first one to be used for actual design purposes.

A hypothesis-driven strategy proposes changes the representation space
by analyzing the hypotheses generated in the previous step of the learning
process. The initial hypotheses can be generated by a decision rule learning
algorithm or some other method. In our experiments, the best results in
terms of the predictive accuracy and simplicity of the knowledge acquired
have been consistently obtained when using an AQ-type rule learning system
(Michalski et al, 1986; Wnek et al, 1995). Some of these results have been
described in (Wnek and Michalski, 1994a). Below is a brief description of
the AQ-HCI method that uses an AQ-type learning program.

The method works iteratively (Fig. 2), and is divided into two major
phases. The first phase determines the best representation space by
performing an multistage iterative process of representation space
transformation and formulation of intermediate, tentative hypotheses. The
second phase determines the final concept description.

In the first phase, each iteration takes training examples (P) projected to
the current representation space, identifies descriptions of the concepts to be
learned, and then analyses the descriptions to determine what changes, if any,
are to be made to the representation space. The process stops when the
generated hypothesis is satisfactory or the allocated time or space resources
have been exhausted (the “stopping criterion”). Transformations of the
representation space may involve both contraction and expansion operators.
Contraction operators decrease the number of attributes spanning the
representation space, or the number of values in the attribute value set (by
merging values into more abstract units). Expansion operators generate new
attributes or add new values to the legal value sets of the existing attributes.

New attributes are generated by detecting patterns in the concept
description generated in a given step. By a pattern we mean a component of
a concept description that covers a significant number of positive training
examples and only a small number of negative examples. The AQ-HCI
method searches for the following four types of patterns: value-patterns,
condition-patterns, rule-patterns, and class-patterns. Value-patterns aggregate
subsets of co-occurring attribute values into single, more abstract values.
Condition-patterns represent a conjunction of two or more elementary
conditions that frequently occur in a hypothesis. A rule-pattern consists of a
set of rules. Class patterns represent relations that a common for subsets of



12 T. ARCISZEWSKI, R.S. MICHALSKI AND J. WNEK

learned classes (concepts) (Wnek, 1993; Wnek & Michalski, 1994ab).
The AQ-HCI strategy was used both as one of the basic strategies as well

as to control strategy selection in the multistrategy constructive induction
system AQ17-MCI (Bloedorn, Michalski and Wnek, 1993).

INPUT :  Examples & Definitions
 of Initial Attributes

Split of Examples into P & S

Rule Learning (from P)

Rule Evaluation (on S)

Stopping Condition
Satisfied

No

Representation Space
Transformation

Rule Analysis

Yes

OUTPUT :  Rules & Definitions of
Constructed Attributes

Final Rule Learning (from P&S)

Reformulation of Examples

NOTE: P – Primary Training Examples
            S – Secondary Training Examples

Phase 1
Iterative Determination
of the Representation
Space

Phase 2
Learning the Final
Concept Description
in the Acquired
Representation Space

Figure 2. Hypothesis-driven constructive induction: Algorithm.

4. Design Creativity in the Context of Constructive Induction

4.1 INDUCTIVE LEARNING VERSUS CREATIVE DESIGN

There is an important similarity between learning and creative design.
Learning can be viewed as a process whose objective is to acquire new
knowledge. Such a process includes the acquisition of new facts, the
acquisition or discovery of new concepts, the combination of known
concepts in order to develop more complex concepts, the determination of
relationships among known and newly introduced concepts, etc. Creative
design can be viewed as a process whose objective is to produce new
concepts in engineering designs. This includes discovering new concepts,
combining known concepts into more complex concepts, and, as a
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byproduct, finding out new relationships among known and newly
introduced concepts (knowledge acquisition aspect). Therefore, creative
design can be considered as a specific case of a learning process conducted
in an engineering domain whose objective is to produce a specific class of
engineering concepts. Such understanding enables one to consider creative
design in the context of machine learning, particularly in the context of
constructive induction, which appears to be the form of learning most
relevant to creative design. The reason for this is that constructive induction
is concerned with transformations of the representation space.

Constructive induction is the key to understanding creative design
because of five major reasons: it 1) generates new attributes, 2) stimulates
human thinking, 3) changes the design graphical representation, 4) improves
the performance of the designer, 5) allows the formal measuring of the
creativity level. Individual reasons are discussed below.

In constructive induction, new attributes are generated that can become
emergent concepts. Such concepts can lead to a new understanding of a
given domain and can produce additional knowledge, including new
concepts and their relationships to the primary concepts. Therefore, such
new knowledge is relatively easy to comprehend and accept by designers.

The idea of an emergent concept is explained using two examples of the
application of the hypothesis-driven constructive induction (AQ-HCI) to a
concept learning problem. The first problem is derived from computer
science, and is considered mostly for illustrative purposes. It deals with
detecting symmetries in concepts and formulating “counting attributes”
(e.g., M-of-N concepts). As symmetries often occur in engineering design,
the example may be of interest to this area. The second problem concerns a
structural design of wind bracings in steel skeleton structures of tall
buildings.

4.2 PROBLEM 1: LEARNING M-OF-N CONCEPTS

This problem concerns a class of learning tasks for which conventional
symbolic methods typically produce DNF-type (disjunctive normal form)
decision rules that are very long and inaccurate. The essence of the problem
is that these methods cannot simply represent concepts that involve counting
the presence of some properties in an object. An example of such a
"counting property" is the M-of-N concept (“at least M out of N properties of
a certain kind are present in an object”). Problems of this type occur in
various real-world situations, for example, in medicine (Spackman, 1988),
planning (Callan and Utgoff, 1991), game playing (Fawcett and Utgoff,
1991), biology (Baffes and Mooney, 1993) and biochemistry (Towell and
Shavlik, 1994).

Fig. 3 gives three examples of M-of-N concepts for an abstract domain: "at
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least 3-of-4," "1 or 4-of-4," and "even-of-4" (Wnek and Michalski, 1994b).
These concepts are symmetrical with regard to input variables (variables can
be exchanged without changing the concept). In Fig. 3, these concepts are
represented using the diagrammatic visualization tool DIAV  (Wnek, 1993,
1995) based on General Logic Diagrams (GLD) proposed by Michalski
(1973, 1978b). Each diagram represents a 4-dimensional representation
space defined by four binary attributes: x0-x3. Pluses and minuses represent
positive and negative instances of concepts, respectively.

In this case, the AQ-XOR (exclusive or) method was used. In the method,
arithmetic-type concepts are produced, or they emerge, from logic-type
concepts through the detection of exclusive-or (XOR) symmetry patterns
among pairs of attributes and a subsequent application of the counting
attribute generation rule of constructive induction. The underlying idea is
related to the representation of arithmetic operations using binary logic
circuits in computer engineering.

In the method, a combination of two logical operators, AND and XOR,
yields a more powerful arithmetic operator ADD. Consequently, new attribute
can be defined as an arithmetic sum of attributes. Values of the counting
attribute represent the number of attributes that hold for a given concept
example, and its domain (value set) is the set of integer values from 0 to N.
For all M-of-N concepts in the original representation space, a simple
transformation leads to one counting attribute #AttrIn{x1,x2,...xN}. Such an
attribute is read "the number of attributes in the attribute set {x1,x2,...xN}."
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A. At least 3-of-4 B. 1 or 4-of-4 C. Even-of-4

The shading reflects symmetrical instances in each concept representation.

Figure 3. Three examples of M-of-4 concepts.

Figure 4 shows a visual representation of the three concepts using the
newly constructed attribute, CA=#AttrIn{x0,x1,x2,x3}. CA has five values, 0
to 4, that can express the number of properties of the original four attributes
{x0,x1,x2,x3}.
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CA 0 1 2 3 4 CA 0 1 2 3 4CA 0 1 2 3 4

++ + + + + +
A. At least 3-of-4 B. 1 or 4-of-4 C. Even-of 4
[ #AttrIn{x0,x1,x2,x3} >= 3 ] [ #AttrIn{x0,x1,x2,x3} = 1 or 4 ] [#AttrIn{x0,x1,x2,x3}=0 or 2 or 4]

By employing the derived concept "number of attributes in the set {x0,x1,x2,x3}" the
representation of M-of-N concepts from Figure 3 is straightforward and simple.

Figure 4. Concepts from Figure 3 in the transformed representation space.

The shading of cells matches the shading of respective areas in the original
representation space. Up to six cells in the original representation space are
mapped into one cell in the space defined by CA. In sum, the emergent
concepts that count the number of attributes in the sets of attributes are
general. If such concepts are used as new attributes for expanding
representation space, then it is simple to represent any M-of-N—type
concept.

4.3 PROBLEM 2: STRUCTURAL DESIGN OF WIND BRACINGS

The second example of the application of the AQ-HCI strategy concerns a
problem from the area of conceptual design of wind bracings in steel
skeleton structures of tall buildings. The objective of the feasibility study
reported here was to find decision rules which would assist a designer during
the conceptual design stage. These rules represent the relationships among
attributes describing the design requirements to be met, the possible
structural design decisions, and an assumed quality criterion (in our case -
the unit steel weight, as discussed below). The quality criterion was
considered a dependent attribute, while all remaining attributes were assumed
independent. Decision rules sought were expected to be design rules, or
design knowledge, which would show how various structural design decisions
taken under different combinations of design requirements would result in
one of four values of the quality criterion. Therefore, four categories of
design rules were sought, associated with the individual values of the
dependent attribute, in our case of the quality criterion.  The original
representation space consisted of seven independent multivalued attributes:
number of stories (x1), bay length (x2), wind intensity factor (x3), type of
joints (x4), number of braced bays (x5), number of vertical trusses (x6), and
number of horizontal trusses (x7). The first three attributes were used to
define design requirements, while the remaining attributes are used to
characterize structural design decisions available. Classification of design
examples into the four categories of the dependent attribute, called unit steel
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weight (x8), was done according to the relative unit steel weight, and the
following category names were used: low, medium, high, and infeasible for a
given design case when a structural system of the assumed type could not be
produced. The relative unit steel weight was determined considering all
normalized unit weights of various types of wind bracings of the same height
designed under identical conditions. Accordingly, design rules related to the
dependent attribute category “low” were called “recommendation rules,”
those related to the category “medium” were called “standard rules,” and
those related to the category “high” were called “avoidance rules.” All
rules related to the category “infeasible” were called “infeasibility rules”
since they represent relationships among independent attributes which occur
in the case when it is impossible to design a wind bracing of a given type
under assumed design conditions. The study was conducted using the set of
384 optimal (minimum weight) designs of wind bracing in steel skeleton
structures of tall buildings. More details of the design problem considered
and the representation space used are provided in (Arciszewski et al. 1994).

Fig. 5 illustrates the knowledge representation space using diagrammatic
visualization. Points in this space marked 1, 2, 3, 4 represent individual
categories of examples. The used representation space allows for 2880
different possible examples in this space.

For the purpose of the domain considered, the AQ-3S (SubSpace Search)
method was used. The AQ-3S method does not extract patterns from
hypotheses. Instead, based on an analysis of the hypotheses, it determines
which attributes may create strong conjunctions (SCs) and generates concept
descriptions from examples projected into subspaces of the original
representation space. Subsequently, the rules of such generated descriptions
become parts of the new attribute's description. By generating descriptions in
subspaces of the representation space, the impact of both attribute noise and
classification noise are significantly reduced. This way, strong conjunctions
are not split in the process of rule induction.

In the process of expanding the representation space, one multivalued
attribute is constructed. For each concept learned, one attribute value is
assigned and defined by a set of strong conjunctions characterizing the
concept in subspaces of the original representation space. Such definitions
combine rules that firmly discriminate the respective class from all other
classes. An additional attribute value is assigned to be the negation of all SCs
used in defining learned concepts (Szczepanik, Arciszewski and Wnek,
1995).

Fig. 6 shows one of the subspaces considered for detecting discriminant
conjunctions. Empty cells represent conditions that were not encountered in
the training data. Cells with a single number inside represent conditions that
discriminate the given class from all other classes. Cells with multiple
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numbers represent non-discriminant conditions. Examples described by
such conditions have to be characterized using different combinations of
original attributes.

Each cell in the diagram contains 16 invisible cells, each representing one vector—a
combination of values of seven attributes x1, x2, ... x7 that span the representation
space. Numbers 1,2,3,4 marking individual cells denote concepts assigned to the
corresponding vectors (also called events). The total representation space consists o f
2880 cells. Empty cells represent events for which no concept has been assigned.

Figure 5. Diagrammatic visualization of four concepts (1-4) in structural design.

The constructive induction process produced new useful concepts. The
strongest conjunction in the case was [x1=2,3,4] & [x4=2], which accounted
for 25% of training examples and uniquely characterized examples of class
No. 3, i.e. a class which contains the avoidance design rules. The concept
described by [x1=2 or 3 or 4] & [x4=2] is well-known in structural
engineering. It is the concept of truss bracings in mid-height skeleton
structures (12 - 24 stories). The decision rule says that in the USA designing
of truss wind bracings for mid-height buildings will result in the relatively
high unit weight of bracing and therefore it should be avoided. However,
such a rule most likely would never be derived from examples prepared in
Europe, where requirements regarding the lateral stiffness of wind bracings
are more stringent than in the USA, and therefore truss wind bracings in
mid-height buildings are usually preferable, in terms of the unit steel weight,
to bracings in the form of rigid frames, or braced rigid frames.
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Figure 6. The distribution of examples of four concepts in the
 representation space defined by x1, x2, and x4.

4.4 CONSTRUCTIVE INDUCTION IN DESIGN

The major objective of constructive induction is to improve the performance
of a learning system in terms of its ability to classify objects. When the
cooperative design is considered, any improvement in the performance of a
design tool immediately results in the improvement of the performance of
the entire human-tool system and may be amplified by the human ability to
learn. Also, the performance of a learning tool can be formally monitored
using various empirical error rates and, therefore, the progress of the entire
design “team” can be quantified. This aspect is important in the case of
industrial applications of constructive induction.

Constructive induction can also be considered in the context of
knowledge acquisition, which is important in design, particularly when
knowledge-based support tools are used and continually updated to reflect
the changes in the understanding of a given domain. Traditionally,
knowledge acquisition in engineering is understood as a process of
acquiring design rules. However, equally important is learning a system of
concepts in a given design domain; only constructive induction has the
unique ability to produce new concepts in the form of constructed attributes.

Learning based on constructive induction may be conducted in parallel
with diagrammatic visualization of the representation spaces and all design
examples considered, as illustrated in Figs. 5 and 6. In this way, the designer
gradually builds his/her understanding of the learning process in terms of
changes in the representation space and clustering of examples. The
significance of this insight cannot be underestimated from the cognitive
point of view. Also, monitoring the subsequent diagrams can be used to
determine the progress of learning and when this process is completed. The
complexity of emergent concepts/constructed attributes can then be
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controlled in constructive induction by the "stopping criterion." This
criterion requires that the prediction accuracy of the learned concept
descriptions exceeds a predefined threshold or that there is no improvement
of the accuracy over the previous iteration.

It has already been demonstrated (McLaughlin, 1993) that the discovery
of emergent values, which is referred here as emergent concepts, is crucial in
creative design for a combination of reasons. In the case of cooperative
design, when a human designer is working with a design support tool, an
emergent concept is a strong stimulant which can trigger human creativity
and may directly lead to creative and patentable designs, as described below.

In the mid-eighties, a series of experiments with a computer program for
the generation of design concepts was conducted (Arciszewski, 1988a). The
objective of the experiments was to produce an innovative concept or
concepts. If this would not be possible, the secondary objective was to obtain
some initial results which would stimulate the development of innovative
concepts. The program randomly generated combinations of attributes and
their values from a given representation space, and was based on the
principles of morphological analysis. The first author, who conducted the
experiments, had some experience related to the subject of research,
including the actual design experience, and was able to determine the
structural meaning of results.

The experiments were performed in the area of design of joints in steel
space structures, which are mostly used for large span roof structures in
exhibition halls and industrial buildings. A joint in a space structure is a
geometrically invariable system of connected members (Arciszewski and
Uduma, 1988) whose functions are 1) to connect at least three space
structure members at a point, 2) to provide the required distribution of
external forces applied at this point, and 3) to provide the distribution of the
internal forces in individual members connected at this point. In the
conceptual design of joints, three major interrelated features are usually
considered: the size of a joint, its strength, and its weight. There are strong
antinomies among these features, and any improvement in one feature
causes undesirable changes in the other two.

In the experiments a 40-attribute representation space was used which was
developed over a period of several years in close cooperation with a group
of structural designers specializing in steel space structures. The
representation space was initially prepared in the late seventies for the patent
studies and for practical design purposes. As a result of the experiments, a
large class of combinations of attributes and their values was generated and
evaluated. The majority of the produced combinations appeared
meaningless and was eliminated. However, several combinations were found
meaningful from the structural viewpoint, because they actually represented
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concepts of joints. These concepts were then analyzed in terms of their
feasibility and innovation. None of them was evaluated as a success in the
search for innovative joints. However, one concept caught attention of one of
the authors (Arciszewski) and was found interesting. It inspired him to
consider the class of known spherical joints in the context of the generated
concept in order to develop a new joint concept which would be feasible and
sufficiently innovative to justify its patenting. Thus, it became an emergent
concept. From the structural point of view, this concept represented a system
of four spheres of equal diameters connected together so that their centers
are situated at the vertex of an equilateral pyramid. Such a system is
geometrically invariable, light and very rigid, but it is not “smooth,” and it
would be difficult to connect structural members to it. The critical issue was
how to improve “the smoothness” of the joint while attaining its other
desirable structural characteristics. In this case the emergent concept
stimulated thinking about spherical joints and about spheres in general, and
that led to another interesting and potentially useful concept of a joint. An
additional sphere of larger diameter was added to the generated system of
four spheres so that a system of five spheres was created. In this case, the
spherical joint is in the form of five spheres with four spheres of identical
diameter situated inside a fifth one having a larger diameter (Fig. 7). The
created joint has a smooth surface (single sphere), can be built with a larger
diameter, and may be relatively rigid and light due to the internal bracing in
the form of four spheres. Such a joint could be useful for huge space
structures, when a great number of heavy members of large diameters
requires joints of significant dimensions, which, at the same time, should be
smooth outside, simple in form, light, and have advantageous damping
characteristics. The concept of this new joint was patented in the USA and
Canada.

The experiments with the generation of design concepts by a computer
led to the conclusion that the control of the complexity of the emergent
concepts is important and may lead to planning creative designs with the
assumed level of creativity. That control is critical in the case of applied
innovative design in industry, when the design objective is sometimes to
produce concepts only marginally more innovative than existing patented
concepts in order to avoid use of patents and to utilize the available
experience. The related issue is the acceptability for designers of the level of
complexity of constructed attributes/emergent concepts which can be
partially controlled in the constructive induction process, as discussed below.

The above is particularly important in the context of knowledge
acquisition in design, especially when knowledge-based support tools are
used and continually updated to reflect the changes in the understanding of
a given domain. For all these reasons, the control of complexity of the
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emergent concepts is a new and important design research issue that should
be addressed in order to develop design tools with built-in complexity
control mechanism. Gregory (1986) divided conceptual design products
(design concepts or simply designs) into routine and creative designs,
assuming that the former are known while the latter are unknown, yet
feasible. Maher and Gero (1993) divided designs into routine, innovative,
and creative designs, considering known designs as routine, innovative
designs as those with values of the design variables outside the commonly
used range, and creative designs as those resulting from the use of new
design variables. Altschuller (1969) and Arciszewski (1988b) proposed to
divide the designs into five categories, including standard, modification,
innovation, invention and discovery.

Figure 7. Patented invention inspired by a computer-generated concept.

Altschuller’s classification is based on the nature of knowledge used to
produce designs. These examples illustrate the interest of many design
researchers in a formal classification of designs and its importance for
design research and practice. However, any inflexible classification of
designs is inadequate in the context of the Inferential Design Theory. This is
particularly true considering that in an actual industrial environment designs
are always evaluated in relation to the other known designs. In addition, the
designers usually want to determine in a quantifiable way the relative
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creativity level of a given design. The affiliated problem is how to determine
conceptual design operators which have been, or could have been, used to
transform the initial known reference design into a different design being
considered. In other words, the problem is how to learn what innovative
design shaping concepts were used in order to store them for the future
utilization. Fortunately, constructive induction provides a conceptual and
formal outline for dealing with both problems.

In structural engineering, the morphological distance was proposed in
(Arciszewski and Kisielnicka, 1977, Arciszewski, 1986) for measuring the
relative complexity, and indirectly the relative creativity, of a structural
concept with respect to a certain reference concept. This distance was
defined as the number of different values of attributes describing both the
concept under consideration and the reference concept. Similar ideas have
been used in constructive induction for controlling the extent of building
constructed attributes, which is based on the concept of the logical distance,
proposed by Michalski (1975).

The distance between two events is defined as the sum of the distances
between values of descriptors used in describing the events. A measure of the
distance d(x, y) between the values of a descriptor depends on the type of
descriptor. Three types of descriptors are considered: interval, nominal, and
structured. The distance d(x,y) between two descriptor values, x and y, is
defined differently for different descriptor types:

1. Interval descriptors

d x y
x y

card X
( , )

| |

( )
= −

where x and y belong to the interval represented by the set X: {0, 1, 2, ..., n}.
card(X) is the cardinality of the set, i.e. the size of the interval.

2. Nominal descriptors

d x y( , ) ={
0,  otherwise
1,  if x is not identical to y

3. Structural descriptors

d x y
NB

MNB
( , ) =

where NB is the length of the shortest path linking x with y and MNB is the
length of the longest of all the shortest paths linking any two nodes in the
structure.

The measure of the logical distance can then be used to determine the
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relative creativity level of a given concept for the purpose of its evaluation
and it can also be used for the control of the constructive induction process
in order to achieve an assumed level of creativity. To illustrate this idea of
measuring the relative creativity of a given concept through the use of the
logical distance, an example from the area of conceptual design of wind
bracing in steel skeleton structures is provided. For the clarity of the
example, only four simple transverse wind bracings in a three-bay
symmetrical skeleton structure are discussed. A more detailed analysis of the
conceptual design of wind bracings in tall buildings in the context of the
morphological distance can be found in (Arciszewski 1986).

In the design case presented, the simplest wind bracing is in the form of a
single one-bay rigid frame centrally located in the skeleton structure.
Therefore, it can be used as a reference concept. This concept is described
by the attributes x4 = 1, x5 = 1, x6 = 1, x7 = 1 (for the discussion of these
attributes see section 4.3, Problem 2: Structural Design of Wind Bracings)
and it is denoted by No. 1 in Fig. 8.

A large class of innovative wind bracings with respect to this one can be
developed and the relative creativity of individual concept can be formally
evaluated using the logical distance. The reference concept of a single one-
bay frame can be easily developed into two similar concepts of two one-bay
rigid frames and of a three-bay rigid frame. The first one is described by the
attributes x4 = 1, x5 = 2, x6 = 1, x7 = 1 and denoted by No. 2 in Fig. 8
while the second one is described by the attributes x4 = 1, x5 = 3, x6 = 1, x7
= 1 and denoted by No. 3 in the same figure. The new concepts No. 2 and 3
differ from the reference concept No. 1 in one attribute only (attribute x5 -
the number of bays entirely occupied by the wind bracing). Therefore their
relative creativity with respect to the concept 1, as measured by the logical
distance, is equal to unity and it is obviously low. This is a typical case of an
innovation in accordance to Maher and Gero (1993). However, the initial
reference wind bracing can be also developed adding a horizontal truss
situated on its top, as shown in Fig. 8 for the concept denoted by No. 4. This
concept is described by the attributes x4 = 3, x5 = 3, x6 = 1, x7 = 2. In this
case, values of two attributes are different than for the reference concept,
therefore the relative creativity of this concept in terms of the logical
distance is two, and its is obviously higher than in the case of concepts No. 2
and 3. From the structural point of view, this result is also consistent with the
intuitive understanding of the relative complexity if this new concept, which
was produced making two design decisions regarding the nature of joints
and the number of horizontal trusses in bracing, as opposed to the single
design decision related to the number of bays occupied by bracings which
let to the Concepts No. 2 and 3.
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x4=1 x5=2 x6=1 x7=1 x4=1 x5=1 x6=1 x7=1 x4=1 x5=3 x6=1 x7=1

No. 1No. 2 No. 3

No. 4

x4=3 x5=1 x6=1 x7=2

x5=1 -> x5=2 x5=1 -> x5=3

x4=1 -> x4=3
x7=1 -> x7=2

Figure 8. Logical distance of wind bracing concepts.

The development of a creativity measure for structural design concepts
was the subject of the research on the design of joints in steel space
structures (Arciszewski and Uduma, 1988). It resulted in the identification of
six “innovative shaping concepts,” or conceptual design operators, which
were used to produce a class of 15 patented spherical joints in steel space
structures. All these joints were related to the first spherical joint in space
structures, called MERO, which was patented in 1935. The identified
innovative shaping concepts included the elimination of material, or part of
the joint, the use of division or multidivision of the joint, the use of
symmetry, the use of asymmetry, the addition of internal or external
components, and the shape change of the joint or of its end-pieces. In this
case, the relative creativity of individual joints was proposed to be measured
by the “innovative distance” from the assumed reference MERO joint
considering the number of innovative shaping concepts necessary to
transform the MERO joint into a given joint. All identified innovative
shaping concepts, as well as the innovative distance, could be easily
expressed in terms of attributes describing the joint. Therefore, they could
be considered as operators whose use resulted in new concepts (constructed
attributes) which are based on primary concepts. In this way, constructive
induction can be considered here as an underlining computational
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foundation for conceptual design whose objective is to produce creative
concepts.

5. Conclusions

Constructive induction has been demonstrated to be a powerful
theoretical framework for describing an engineering design process, in
particular, a creative conceptual design. Several crucial ideas, such as an
emergent design concept and a task-oriented improvement of the design
representation space, have been presented in terms of constructive induction.
Their interpretation and use is consistent with both the areas of design and
computer science.

Constructive induction and its system of concepts and methods have been
found highly relevant to explaining conceptual design. Therefore,
constructive induction has been proposed as a new paradigm for developing
computational foundations for conceptual design. The control of the
creativity level of design concepts can be accomplished using various
proposed complexity (or relative creativity) measures. The generation of
emergent concepts in constructive induction, and their explicit presentation
to the designer, was found to be particularly important because of cognitive,
computational, and engineering reasons. In general, the introduction of
constructive induction to design bridges the gap between engineering design
and artificial intelligence. This result may naturally lead to the development
of a new generation of design support tools with a real impact on design
practice.

Further research in the presented direction includes the development of
theoretical foundations and practical methods for the constructive induction-
based conceptual design. Various design experiments using constructive
induction methods will be initiated. In view of the existence of several
constructive induction strategies and methods, future research will explore
the usefulness of multistrategy constructive induction methods in conceptual
design. Such methods integrate various combinations of strategies. A
multistrategy constructive induction system for design will be experimentally
developed and ultimately turned into a practical design support tool.
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