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Abstract. The paper presentsinitial results from an emerging new direction in
engineeringdesignresearchjn particular, creative design.It arguesthat constructive
induction which was originally proposed in the field of machine learning,seaveas a
foundationfor developinga computationaltheory of engineeringdesign and design
creativity. Constructiveinductionis a processof creatingnew knowledge(e.g., design
knowledge) by performing two intertwined searches,one—for the most adequate
knowledge representation space, and second—for the best hypothb&ssipace Basic
concepts and methods of constructive inductireviewedandillustratedby examples

of their applicationto conceptualstructuraldesign. Several crucial design concepts,
including those of an emergentconceptand of a goal-orientedtransformationof the
design representation space are interpreted in terms of a construction induction firocess.
is also shown how constructive inductiappliesto the control of the designcreativity

level. Several measures of the design complexity and relative creativity are proposed. The
conclusion presents some unresolved problems and a plan for future research.

1. Introduction

Engineering is presently undergoing a paradigm change. The previous
analytical paradigmis being graduallyeplacedby a knowledgeparadigm,
and this change appears to have a significant impact on the understahding
engineeringdesign creativity. When the first paradigm was dominant, the
major focus in engineeringwasto build analytical models of engineering
systems in order to develop understandifigheir behaviorand to produce
knowledge about them. In this context, engineering knowledge was
understoodasa combinationof a representatiorof the engineeringsystem
being designed,of the design processitself, as well as of all relationships
existing among attributes describing the systemand their groups in the
representation space.
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At present, sufficient knowledgabout engineeringsystemss frequently
available;therefore,the focus in designis on how to utilize the available
knowledge by means of informatidechnologyin the developmentof new
designs. In this context, information technology signitieedusterof related
disciplines concerned with acquisition, processing, distribution and/or
generation of information, or knowledge, using computer technoldbgse
disciplines include computer science, artificial intelligence, machine learning,
automated reasoning, decision science, software engineering, systems
engineering,and others.The processof entering the knowledge paradigm
can be compared to moving from medietiatesto renaissanceOne of the
hallmarksof renaissancevas Leonardo daVinci’'s observationthat human
artistic creativity, a spontaneousprocess of employing imagination and
thinking to create art, can be usedproduce engineeringinventionsand to
solve engineering problems. In the knowledge paradigm, reasoning,
invention and creativity are viewed as knowledge processingactivities, and
could be, at least partially, performed on a computer. Such a view is
supported by the developmentof machine learning methods and their
applicationto an automatedknowledge creation and improvement. It is
believedtheseefforts will likely leadto the developmentof computational
foundations of conceptualdesign and to building a new class of design
support tools. Such tools could, in turn, result in a new generation of
inventions.

The above prospect creatas outstandingchallengefor researcherand
calls for study of design processes in terms of ideas develapthe areaof
artificial intelligence, particularly in machine learning and inference.
Researchin this new direction is at an early stageand, naturally, resultsare
preliminary and have not made any significant impact on the design
practice. This paper presentsrecentresultsof work on engineeringdesign
and design creativity in the context of constructive induction and the
recently proposed Inferential Theory of Learning (Michalski, 1994). The
material presented here rests on three ideas.

* The first idea is that the problems of design creativity can be usefully
discussed by employingonceptsand methodsdevelopedin the field of
inductive learning. Any designprocesscan be viewed as a searchfor a
knowledge structurda design,in this case)that satisfiesgiven objectives
and constraints. Such a process is a forrteafning, therefore,ideasand
methods developedin the field of machine learning may potentially
bring new insights to the understanding of design processes.

* The second ide# that traditional learning methods,in which the search
for desiredknowledgeoccursin the samerepresentatiorspacein which
the original dataare presentedare inadequatefor understandingdesign
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processesA more adequateapproachis basedon viewing the design
processes as a form obnstructive induction.

Constructiveinduction is a conceptproposedin the field of inductive
conceptlearning (Michalski, 1978a) to cope with learning problemsin
which the original representatiorspaceis inadequatefor the problem at
hand, and needsto be improved in order to correctly formulate the
knowledgeto be learned. More specifically, constructiveinduction is a
process of hypothesizing neknowledgethat involvesnot one search as
traditionally done, but two interrelated searches. The first searfch ihe
“best” representation space in which desirable knowledge (e.g., a design)
is to be searchedfor and represented.The secondsearchis for the
“best” hypothesis in the representation space which has been fohed.
underlying principlefor this approachis that the desirableknowledgeis
easierto determineif the searchfor it is in the “right” representation
space.lt is claimed that partitioning a design processinto two such
searchescan lead to novel and powerful models of design creativity.
Thus, constructive induction can be viewed as the key to design creativity.

» The third ideais that the two searchesn constructiveinduction can be
conducted by applyingesignknowledgetransmutationsas proposedin
the Inferential Theory of Design (Arciszewski and Michalski, 1994).
Design knowledge transmutations ayenerictypesof designknowledge
changes or generations, and have been based ongaoesalknowledge
transmutationsas first proposedin the Inferential Theory of Learning
(Michalski, 1994).

The following sections present a more detailed exposition of the atieas,
discusstheir significance for engineering design, and illustrate them by
specific examples.

2. Basic Concepts and Assumptions

To explain theproposedview of designcreativity asa form of constructive
induction, we start with presenting basic concepts and assumptions.

ENGINEERING DESIGN

An engineering design is a description of an engineering system (that
usually does not yet exist) expressedin terms of attributes defining a
representation spacét consists of two majocomponents:a designconcept
and adetailed description
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REPRESENTATION SPACE FOR AN ENGINEERING DESIGN

This is a multidimensional space spanned over attributes (in general,
descriptiveterms or descriptors)that are usedto describean engineering
design (that is, a design concept and a detailed design description).
Attributes can be symbolic (when they take valuesfrom an unorderedor
partially ordered set) or numerical (when they take numerical values
representing quantities or measurements)Symbolic attributes that take
valuesfrom an unorderedsetare called nominal attributes;whenthey take
values from a partially ordered set, they are called structured. Design
conceptsare typically describedin termsof symbolic attributes. Numerical
attributes are used for a detailed description of a design.

DESIGN CONCEPT

A design concept describesfiture engineeringsystemin termsof abstract
concepts,called “primary concepts; that involve nominal attributes and
possibly also relations among design components.ekample:the concept
of a steeltrusscan be understoodasa structural systemwhose description
employs at least three primary concepts(symbolic attributes) and their

values:the type of materialwith the value “steel,” the member shapewith

the value “straight,” and the type of connectionwith the value“pinned.”

Similarly, a concept of a belt truss system in wbrdcingsof a tall building

employs primary concepts of a truss, a vertical truss, a truss grid, etc.

DETAILED DESCRIPTION

A detailed description of a design specifieduesof all numericalattributes
characterizing the desigsuch as specific dimensionsnumber of members,
weight, etc.

DESIGNS COVERED BY A DESIGN CONCEPT

A given design concept representsa large class of specific engineering
designs that differ in their detailed descriptions,i.e., in the values of
numerical attributes characterizing these descriptions.

CONCEPTUAL DESIGN PARADIGMS

Five major conceptual design paradigms can be distinguished. This
classification is based on the taxonompnpposedby Altschuller (1969), but
has been modified and adaptedin the context of the Inferential Design
Theory:

1. Selectionithe designconceptis producedby selectingit from a class
of known concepts in a given engineering domain.
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2. Modification: the design concept jsoducedasa combinationand/or
modification of known design concepts from a given domain. The
modification processis basedon a deterministic or random generation
process.

3. Innovation: the design concept is produced as a combination of known
concepts from a given domain and other domains.

4. Invention: the design conceptpsoducedasa combinationof known
concepts from a given domain and new concepts based on a new technology,
which have been recently introduced.

5. Discovery: the design concept is producea asmbinationof known
conceptsfrom a given domain and new conceptsbasedon new scientific
principles.

ROUTINE DESIGN

Routine design is a design process based only on selection or on
modification. In both cases, no changes in the representation space occur.

CREATIVE DESIGN

Non-routine or creative design is a conceptual design pragess$ is based
on innovation, invention, or discovery. In all these cases,changesin a
representatiorspaceoccur. Thus, designprocessesre divided into creative
or routine dependingon whetherthe changesin the representatiorspace
occur or not, respectively.

ROUTINE VERSUS CREATIVE DESIGN

In general, there arvo major differencesbetweenthe routine and creative
design processes: the number of changes of the represergpsiosand the
nature of inference.There are no changesin the representationspacefor
routine design,and at leastone changefor non-routine or creative design.
Routine design typically employs deductive inference (selection and
modification), while creative design employs inductive inference (innovation,
invention and/or discovery).For a definition and classificationof inference
types that are adopted in this paper, see (Michalski, 1994).

OPERATORS FOR REPRESENTATION SPACE TRANSFORMATION

Operators that change the representation space during the design process can
be divided into four classesattribute elimination (removing unimportant
attributes), attribute abstraction (combining attribute values into langj¢s),
attribute addition (adding new attributesto the representatiorspace),and
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attribute construction (creating new attributes, called “constructed
attributes by a simple or complex transformationof the initial attributes).
The last class is particularly interesting from the viewpoint of design
creativity.

CONSTRUCTIVE INDUCTION

Constructive induction (in the context of engineering desigm) processof

creating new knowledge (design) by two intertwined processesone that
searches for the best representation space for the dasidithe secondthat
searchesfor the best design in that space. Searching for the best
representatiorspaceis done by applying constructiveinduction operators
for the representatiorspacetransformation.This can be accomplishedwith

the help of a humandesigneror automatically.In the first case,a human
designer considers various design aspects (attributes from different
representation spaces or primary concepts), intuitively condust@agchfor

the best representationand looking for emergent concepts(constructed
attributes) which might lead to a creative design. In the automated
representationspace transformation, constructive induction operators are
applied by a computer program according to a constructive induction
algorithm. Such an algorithm may use the adviseof a designerasto the

desirablerepresentatiorspacetransformationsand/or a set of predefined
rules and methods. Constructive induction thus offers a fommahodology
for characterizing and/or modeling a creative design process.

INDUCTIVE NATURE OF CREATIVE DESIGN

A creative design processis intrinsically inductive. It createsknowledge
(design)that cannot be deductively derived from the original knowledge.
The design is typically represented in a new representation space that was not
initially given. A new representatiorspacecan be produced by employing
knowledgefrom previousdesignsin other domainsor by another process.
In the former case,we say that constructive induction is guided by
knowledgedrawn from other domains. The new representationrspacemay
employ constructedattributesthat appearto have high relevancefor the
design (emergentconcepty. Their importance is recognized by human
designerson the basis of their subjective understanding (background
knowledge),and/orby applying methodsfor multicriterion evaluation.The
evaluationcriteria are usually acquired as the result of a human learning
processabout the problems being solvedin the context of the designer's
background knowledge.
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EMERGENT CONCEPT

The emergent concept is a new concept created in the process of constructive
induction that is potentially significant to the desireddesign. It providesa

new understanding of thgroblem being solvedand/ora new insight that is

crucial for creative problem solving.he emergentconceptis a constructed
attribute whoseintroduction may simplify or improve a problem solving
process (design process).

CONSTRUCTED ATTRIBUTE

A constructed attribute is derived from the initial attributesahyapplication
of constructive induction operators (thedn potentially involve any type of
operationon attributes).Such an attribute hasthe potential to improve the
effectivenessor quality of the problem solving process.This potential is
estimatedby someattribute evaluationfunction. A constructedattribute is
usually amore abstractconceptthat the attributes/conceptfrom which it is
derived, and it is supposed to improve the problem solgimgessand/orits
understanding.

DESIGN KNOWLEDGE TRANSMUTATIONS

Design knowledge transmutations are knowledge operatordrémestformor

generate new knowledge from other knowledge. Timay useany form of

inference in sucla process.The Inferential Theory of Designintroduceda

class of 22 basic design knowledge transmutations or transforms
(Arciszewskiand Michalski, 1994; Michalski, 1994). Thesetransmutations
are consideredto be major knowledge operatorsin conceptual design
processes.

IMPLEMENTABILITY OF CONSTRUCTIVE INDUCTION

Knowledge spacetransformationsemployed in constructive induction are
related to basic knowledge transmutationsas defined in the Inferential
Theory of Learning. Foexample,a contractionof the representatiorspace
(e.g., by removing attributesor abstractingattribute values) performs an

abstractiontransmutationof objects represented in this spade. expansion
of the representationspace (by adding new attributes or defining more
specific values of attributeg)erforms a concretiontransmutationof objects
represented in this space. Computational aspeatsmdtructiveinduction in

engineering design go beyond the scope of this paper. Wenlllmention
that design knowledge transmutationsdiscussedhere can be defined in a
formal way and are therefore implementable.
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POTENTIAL IMPACT OF MACHINE LEARNING ON DESIGN

Both learning and conceptualdesign processesare basedon performing
various forms of inference. Therefore, all experience froachinelearning
researchthat studieslearning asan inferential processis relevantto design
and can be usedfor developinga formal model of design processesThe
initial formulation of the Inferential Design Theory is a result of such
efforts.

3. Constructive I nduction

3.1 BASIC CONCEPTS

Constructiveinduction (Cl) employs a number of innovative ideas and

assumptions:

« It is basedon the ideathat the quality of the knowledge representation
space is the most important factor in concept learning. If the
representationspace is of high quality (i.e., chosen attributes or
descriptive terms are of high relevance to pineblem at hand), learning
processwill be relatively easy and will likely produce hypotheseswith
high predictive accuracy.If the quality of representatiorspaceis low
(e.g., attributes are of little relevante the problem), a learning process
will be complex and no method may be able to produce good
hypotheses.

« It searches for patterns in data andéarnedhypothesesand usesthem
for proposing knowledge space transformations (that may expand or/and
contract the space).

» It creates new descriptors (attributes or terms) that mayebecomplex,
multilevel functions or transformations of the original descriptors.

e It postulates that produced concept descriptions should be
comprehensibleto human experts,so that they are relatively easy to
interpret and express in terms and forms used by experts.

As mentionedearlier, constructiveinduction dividesthe processof creating
new knowledge into a phase that determinesthe “best” knowledge
representation, and a phase thatually formulatesthe desirableknowledge
structure.The reasonfor sucha division is that the original representation
space,in which design cases, constraints, etc. are presented,is often
inadequate for representing the sought design.

To illustrate this problem, consider Fig. 1A. Let us supposethat the
problem is to constructa descriptionthat separategpoints marked by “ +"
from points marked by “-".In this casethe problem is easybecause' +”
points can beseparatedrom “-” points by a straightline or a rectangular
border.
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A. High quality RS B. Low quality RS C. Improved RS due to CI
- + - + - - + + +
+ + | = - + + - + = Cl + + -
— |+ +
+ \ + - + + o+ - -
+ + + ‘\- + - -+ - - - :

Figure 1.High vs. low quality representation spaces for concept learning.

Let us suppose now that “+"s and “-&e distributedasin Fig. 1B. In
this case, “+”s and “-” arehighly intermixed, which may be an indication
that the representationspaceis inadequatefor the problem at hand. A
traditional approachis to draw complex boundariesthat will separatethese
two groups. The constructiveinduction approachis to searchfor a better
representatiorspace suchasshownin Figure 1C, in which the two groups
are well separated.

Conducting constructive induction thus requires mechanisms for
generating new, more problem-relevant dimensions of the knowledge
representation space (attributes or descriptive teamgell asmodifying or
removing lessrelevantdimensionsfrom among thoseinitially provided. In
other words,a constructiveinduction systemperforms a problem-oriented
transformation ofthe knowledgerepresentatiorspace.Once an appropriate
representationspaceis found, a relatively simple learning method may
suffice to develop a desirable knowledge structure (indhge,a description
that separates the two groups of points).

3.2 CLASSIFICATION OF CONSTRUCTIVE INDUCTION APPROACHES

Research on constructive induction has prodwegdeatvariety of methods
for that purpose (e.g., Larson aMichalski, 1977; Lenat, 1977; Langley et
al., 1983; Utgoff, 1984; Rendell,1985; Kokar, 1985; Flann and Dietterich,
1986; Schlimmer, 1987; Bentrup et al., 1987; Muggleton and Buntine, 1988;
De Raedt and Bruynooghe, 1989rastal,Czako and Raatz,1989; Matheus,
1989; Morik, 1989; Pagallo and Haussler, 1989; Knoblock, 1990ek and
Michalski, 1991, 1994a). A simple way to characterize¢hesemethodsis to
classifythemin termsof the primary strategyemployedfor inventing new
dimensionsin the representatiorspace(or generally descriptors: attributes,
terms, or transformations)in order to improve the original representation
space(a “representationalbias”). Basedon such criterion, constructive
induction methods can be classified into the following categories:
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Data—Driven Constructive Induction (DCI)

The representatiorspacetransformationsare proposedon the basisof an

analysisof the input data(examples)and a detectionthe interrelationships
among descriptors.On that basischangesin the representationspaceare

made. Examples of systemsimplementing DCI methods include: PLSO

(Rendell,1985), AQ-DCI (Bloedorn and Michalski, 1991), BACON (Langley

et al., 1983, 1987), ABACUS (Falkenhainerand Michalski, 1990; Greene
1988; Michael, 1991), Wyl, 10E (Flann and Dietterich, 1986; Flann 1990),

STAGGER (Schlimmer, 1987)FCE (Carpineto, 1992).

Hypothesis—Driven Constructive Induction (HCI)

The representatiorspacetransformationsare proposedon the basisof an
analysis of inductive hypotheses generateddnsecutiveterations.Patterns
detected in one iteration are us@dthe next iteration. Examplesof systems
implementing HCI methods includ®&LIP (Emde et al., 1983; Morik, 1989;
Wrobel, 1989), FRINGE (Pagallo and Haussler,1990), CITRE (Matheus,
1989),AQ-HCI (Wnek and Michalski, 1991, 1994a).

Knowledge—-Driven Constructive Induction (KCI)

Expert-provided domain knowledge is used to construct a new
representationspace. Examples of systemsimplementing KClI methods
include: INDUCE (Larson and Michalski, 1977), AM (Lenat, 1977, 1983);
SPARC/E(Dietterich and Michalski, 1983, 1985, 1986)IRO (Drastalet al.,
1989), COPER (Kokar, 1986).

Multistrategy Constructive Induction (MCI)

Two or more strategiesare combinedfor constructinga new representation
space. Such methods include: INDUCE-1 (Larson and Michalski 1977;

Michalski, 1978a, 19835 TABB (Mitchell et al., 1983; Utgoff, 1984, 1986),

DUCE (Muggleton, 1987), CIGOL (Muggleton and Buntine, 1988), ALPINE

(Knoblock et al., 1990,1991FLINT (De Raedt and Bruynooghe, 1989).

The AQ-DCI andAQ-HCI methods havéeendevelopedin the courseof our
recent research (Wnek and Michalsk91, 1994ab; Wnek, 1993; Bloedorn
and Michalski, 1991) in thdachine Learning and Inference Laboratory at
George Mason University. Computer programs in whitdsemethodswere
implemented AQ17-DCIl andAQ17-HCI) have beertestedon severallearning
problems (Arciszewski et al., 1992; Badtal., 1992; Wnek, 1993) and have
produced promising results. However,the successof a particular method
depends orthe user'sexpertisein matchingthe method'scapabilitiesto the
requirements of the learning problem. Therefdhe problem arisesof how
to automaticallyadapt a constructiveinduction method to the problem at
hand.
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3.3 THE AQ-HCI STRATEGY FOR HYPOTHESIS-DRIVEN CONSTRUCTIVE
INDUCTION

The AQ-HCI strategy for Hypothesis-Driven Constructive Induction is
described here with some deth#causdt hasbeenrecently investigatedby
the authorsand appearsvery promising for engineering design purposes
(Arciszewskiet al. 1994). Therefore,thereis a possibility that this strategy
will be the first one to be used for actual design purposes.

A hypothesis-driverstrategyproposeschangesthe representationspace
by analyzingthe hypothesegyeneratedn the previousstepof the learning
process. The initial hypotheses candmneratecby a decisionrule learning
algorithm or some other method. In our experiments,the best results in
termsof the predictive accuracyand simplicity of the knowledge acquired
have been consistently obtained when using an AQ-type rule learning system
(Michalski et al, 1986; Wnek et al, 1995). Someof theseresults have been
describedin (Wnek and Michalski, 1994a). Below is a brief descriptionof
the AQ-HCI method that uses an AQ-type learning program.

The method works iteratively (Fig. 2), and is divided into two major
phases. The first phase determinesthe best representation space by
performing an multistage iterative process of representation space
transformationand formulation of intermediate tentative hypothesesThe
second phase determines the final concept description.

In the first phase eachiteration takestraining examples(P) projectedto
the current representation space, identifies descriptiotiseafonceptsto be
learned, and then analyses the descriptions to determine what changes, if any,
are to be made to the representationspace. The processstops when the
generated hypothesis satisfactoryor the allocatedtime or spaceresources
have been exhausted(the “stopping criterion”). Transformationsof the
representation space may involve botintractionand expansionoperators.
Contraction operators decreasethe number of attributes spanning the
representatiorspaceor the number of valuesin the attribute value set (by
merging values into more abstramits). Expansionoperatorsgeneratenew
attributes or add new values to the legal value sets of the existing attributes.

New attributes are generated by detecting patterns in the concept
description generated in a given step. By a pati@meana componentof
a conceptdescriptionthat coversa significant number of positive training
examplesand only a small number of negative examples.The AQ-HCI
method searchedor the following four types of patterns:value-patterns,
condition-patterns, rule-patterns, and class-patterns. Value-patterns aggregate
subsetsof co-occurring attribute valuesinto single, more abstractvalues.
Condition-patternsrepresenta conjunction of two or more elementary
conditions that frequently occur in a hypothesistube-patternconsistsof a
setof rules. Classpatternsrepresentrelationsthat a common for subsetsof



12 T. ARCISZEWSKI, R.S. MICHALSKI AND J. WNEK

learned classes (concepts) (Wnek, 1993; Wnek & Michalski, 1994ab).

The AQ-HCI strategy was used both@e of the basicstrategiesas well
as to control strategyselectionin the multistrategy constructiveinduction
system AQ17-MCI (Bloedorn, Michalski and Wnek, 1993).

INPUT : Examples & Definitions
of Initial Attributes

Phase 1 y -
Iterative Determination . . .
of the Representation Split of Examples into P & S |«@— Reformulation of Examples

Space * *

Representation Space
Transformation

A A

Rule Evaluation (on S) Rule Analysis

\\
Stopping Condition
Satisfied

B . = R R . &

Rule Learning (from P)

R . . R R R

Yes

Phase 2

Learning the Final Final Rule Learning (from P&S)

Concept Description

in the Acquired *

Representation Space (OUTPUT . Rules & Definitions of )
Constructed Attributes

NOTE: P — Primary Training Examples
S — Secondary Training Examples

Figure 2.Hypothesis-driven constructive induction: Algorithm.

4. Design Creativity in the Context of Constructive Induction

4.1 INDUCTIVE LEARNING VERSUS CREATIVE DESIGN

There is an important similarity between learning and creative design.
Learning can be viewed as a processwhose objective is to acquire new
knowledge. Such a processincludes the acquisition of new facts, the
acquisition or discovery of new concepts, the combination of known
conceptsin order to developmore complex conceptsthe determinationof
relationshipsamong known and newly introduced concepts,etc. Creative
design can be viewed as a processwhose objective is to produce new
conceptsin engineeringdesigns.This includes discovering new concepts,
combining known concepts into more complex concepts, and, as a
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byproduct, finding out new relationships among known and newly
introduced concepts (knowledge acquisition aspect). Therefore, creative
design can be considered aspecific caseof a learning processconducted
in an engineeringdomain whoseobjectiveis to producea specific classof
engineeringconcepts.Such understandingenablesone to consider creative
designin the context of machinelearning, particularly in the context of
constructive induction, which appearsto be the form of learning most
relevant to creative design. Tiheasonfor this is that constructiveinduction
is concerned with transformations of the representation space.

Constructive induction is the key to understanding creative design
becauseof five major reasons:it 1) generatesnew attributes,2) stimulates
human thinking, 3) changes the design graphical representatiompd)ves
the performanceof the designer,5) allows the formal measuringof the
creativity level. Individual reasons are discussed below.

In constructiveinduction, new attributesare generatedthat can become
emergentconcepts.Such conceptscan lead to a new understandingof a
given domain and can produce additional knowledge, including new
conceptsand their relationshipsto the primary concepts.Therefore, such
new knowledge is relatively easy to comprehend and accept by designers.

The idea of an emergent concepeigplainedusing two examplesof the
applicationof the hypothesis-drivenconstructiveinduction (AQ-HCI) to a
concept learning problem. The first problem is derived from computer
science,and is consideredmostly for illustrative purposes.It deals with
detecting symmetriesin conceptsand formulating “counting attributes”
(e.g., M-of-N concepts).As symmetriesoften occur in engineeringdesign,
the example may be of interest to thisa.The secondproblem concernsa
structural design of wind bracings in steel skeleton structures of tall
buildings.

4.2 PROBLEM 1: LEARNING M-OF-N CONCEPTS

This problem concernsa class of learning tasks for which conventional
symbolic methodstypically produce DNF-type (disjunctive normal form)
decision rules that are very long and inaccurate. ddsenceof the problem
is that these methods cannot simply represent contiegtinvolve counting
the presenceof some propertiesin an object. An example of such a
"counting property" is th&-of-N concept (“at least M out of N properties of
a certainkind are presentin an object”). Problemsof this type occur in
variousreal-world situations,for example,in medicine (Spackman,1988),
planning (Callan and Utgoff, 1991), game playing (Fawcettand Utgoff,
1991), biology (Baffes and Mooney, 1993) and biochemistry (Towell and
Shavlik, 1994).

Fig. 3 gives three examples fof-N concepts for an abstract domain: "at
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least3-0f-4," "1 or 4-o0f-4," and "even-of-4" (Wnek and Michalski, 1994b).

These concepts are symmetrical with reg@ardhput variables(variablescan

be exchangedwithout changingthe concept).In Fig. 3, theseconceptsare

representedusing the diagrammaticvisualizationtool DIAV (Wnek, 1993,

1995) basedon General Logic Diagrams (GLD) proposedby Michalski

(1973, 1978hb). Each diagram representsa 4-dimensional representation
space defined by four binary attributes: x0-x3. Plusesramilisesrepresent
positive and negative instances of concepts, respectively.

In this case, thaQ-XOR (exclusiveor) methodwasused.In the method,
arithmetic-type conceptsare produced, or they emerge,from logic-type
conceptsthrough the detection of exclusive-or(XOR) symmetrypatterns
among pairs of attributes and a subsequentapplication of the counting
attribute generationrule of constructiveinduction. The underlying idea is
relatedto the representationof arithmetic operationsusing binary logic
circuits in computer engineering.

In the method,a combination of two logical operators,AND and XOR,
yields a more powerful arithmetic operaddD. Consequently, new attribute
can be defined asan arithmetic sum of attributes.Values of the counting
attribute representthe number of attributesthat hold for a given concept
example, and its domain (value setthe setof integervaluesfrom 0 to N.
For all M-of-N conceptsin the original representationspace,a simple
transformation leads to one counting attribute #Attrin{x1,x2,...x8Siichan
attribute is read "the number of attributes in the attribute set {x1,x2,...xN}."

S
S e

NS 5
x1| x0 x1|x0 x1| x0
0] 1 o 1 |x3 0] 1 o 1 |x3 0] 1 o 1 ]x3
0 1 X2 0 1 X2 0 1 X2
A. At least 3-of-4 B. 1 or 4-0f-4 C. Even-of-4

The shading reflects symmetrical instances in each concept representation.
Figure 3.Three examples of M-of-4 concepts.

Figure 4 showsa visual representatiorof the three conceptsusing the
newly constructed attribute, CA=#Attrin{x0,x1,x2,x3}. Chasfive values,0
to 4, that can express the number of properties obtlggnal four attributes
{x0,x1,x2,x3}.
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[calo[1J2]3[a] [caJofJ1[2[]3[af [caJoJ1[2]3[4]
A. At least 3-of-4 B. 1 or 4-0f-4 C. Even-of 4
[ #AttrIn{x0,x1,x2,x3} >= 3] [ #Attrin{x0,x1,x2,x3} = 1 or 4 ] [#AttrIn{x0,x1,x2,x3}=0 or 2 or 4]

By employing the derived concept "number of attributes in the set {x0,x1,x2,x3}" the
representation of M-of-N concepts from Figure 3 is straightforward and simple.

Figure 4.Concepts from Figure 3 in the transformed representation space.

The shading otells matchesthe shadingof respectiveareasin the original
representation space. Up six cellsin the original representatiorspaceare
mappedinto one cell in the spacedefined by CA. In sum, the emergent
conceptsthat count the number of attributesin the setsof attributes are
general. If such concepts are used as new attributes for expanding
representationspace, then it is simple to representany M-of-N—type
concept.

4.3 PROBLEM 2: STRUCTURAL DESIGN OF WIND BRACINGS

The secondexampleof the applicationof the AQ-HCI strategyconcernsa
problem from the area of conceptualdesign of wind bracings in steel
skeletonstructuresof tall buildings. The objective of the feasibility study
reported here was to find decision rules which would asgigisagnerduring
the conceptualdesignstage.Theserules representthe relationshipsamong
attributes describing the design requirementsto be met, the possible
structuraldesigndecisions,and an assumedjuality criterion (in our case-
the unit steel weight, as discussedbelow). The quality criterion was
considered a dependent attribute, while all remaining attributes were assumed
independent.Decision rules sought were expectedto be design rules, or
design knowledge, which would show how various structural design decisions
taken under different combinationsof designrequirementswould result in
one of four valuesof the quality criterion. Therefore,four categoriesof
design rules were sought, associatedwith the individual values of the
dependentattribute, in our caseof the quality criterion. The original
representatiorspaceconsistedof sevenindependentmultivalued attributes:
number of stories(x1), bay length (x2), wind intensity factor (x3), type of
joints (x4), number of braced bays (x5), number of vertinasegx6), and
number of horizontal trusses(x7). The first three attributeswere used to
define design requirements,while the remaining attributes are used to
characterizestructural design decisions available. Classification of design
examples into the four categories of the dependent attribalied unit steel
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weight (x8), was done according to the relative unit steelweight, and the
following category names were used: low, medium, high, and infedsible
given design case when a structural system of the assumeddyjaenot be
produced. The relative unit steel weight was determined considering all
normalized unit weights of various types of wind bracings of the same height
designed under identical conditions. Accordingly, design redéestedto the
dependentattribute category“low” werecalled “recommendationrules,”
those related tohe category“medium” were called “standard rules,” and
thoserelated to the category “high” were called “avoidance rules.” All

rules relatedto the category“infeasible” were called “infeasibility rules”
since they represent relationships among indeperaténtbuteswhich occur

in the casewhenit is impossibleto designa wind bracing of a given type
under assumed design conditions. The stwdgconductedusing the setof

384 optimal (minimum weight) designsof wind bracing in steel skeleton
structuresof tall buildings. More detailsof the design problem considered

and the representation space used are provided in (Arciszewski et al. 1994).

Fig. 5 illustrateshe knowledgerepresentatiorspaceusing diagrammatic
visualization. Points in this spacemarked 1, 2, 3, 4 representindividual
categoriesof examples.The used representationspace allows for 2880
different possible examples in this space.

For the purpose of the domain considered, the AQ-3S (SubSEmeh)
method was used. The AQ-3S method does not extract patterns from
hypothesesinstead,basedon an analysisof the hypothesesjt determines
which attributes may create strong conjunctions (SCs)gamératesoncept
descriptions from examples projected into subspacesof the original
representation space. Subsequerttig, rules of suchgenerateddescriptions
become parts of the new attribute's description. By generating descriptions in
subspaces of the representation space, the ingbawdth attribute noiseand
classificationnoise are significantly reduced.This way, strong conjunctions
are not split in the process of rule induction.

In the processof expandingthe representatiorspace,one multivalued
attribute is constructed.For each concept learned, one attribute value is
assignedand defined by a set of strong conjunctions characterizingthe
conceptin subspace®f the original representatiorspace.Such definitions
combine rules that firmly discriminatethe respectiveclassfrom all other
classes. An additional attribute value is assigned to be the negatiinSdls
used in defining learned concepts (Szczepanik, Arciszewski and Wnek,
1995).

Fig. 6 showsone of the subspacesonsideredfor detectingdiscriminant
conjunctions. Empty cells represent conditighat were not encounteredn
the training data. Cells with single number inside representconditionsthat
discriminate the given class from all other classes.Cells with multiple
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numbers represent non-discriminant conditions. Examples described by
such conditions have to be characterizedusing different combinations of
original attributes.
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Eachcell in the diagramcontains 16 invisible cells, eachrepresentingone vector—a
combination of valuesof sevenattributesx1, x2, ... x7 that span the representation
space. Numbers 1,2,3,4 marking individual cells denote concepts assigned to the
correspondingvectors (also called events). The total representationspaceconsists of
2880 cells. Empty cells represent events for which no concept has been assigned.

Figure 5.Diagrammatic visualization of four concepts (1-4) in structural design.

The constructiveinduction processproduced new useful concepts.The
strongest conjunction in the case was [x1=2,3,4k&=2], which accounted
for 25% of trainingexamplesand uniquely characterizedexamplesof class
No. 3, i.e. a classwhich containsthe avoidancedesignrules. The concept
describedby [x1=2 or 3 or 4] & [x4=2] is well-known in structural
engineering. It is the concept of truss bracings in mid-height skeleton
structures(12 - 24 stories). The decision rule says thahmUSA designing
of trusswind bracingsfor mid-height buildings will resultin the relatively
high unit weight of bracing and thereforeit should be avoided. However,
sucha rule mostlikely would neverbe derivedfrom examplespreparedin
Europe,whererequirementsegardingthe lateral stiffnessof wind bracings
are more stringentthan in the USA, and therefore truss wind bracingsin
mid-height buildings are usually preferable, in terms ofuhi steelweight,
to bracings in the form of rigid frames, or braced rigid frames.
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Figure 6.The distribution of examples of four concepts in the
representation space defined by x1, x2, and x4.

4.4 CONSTRUCTIVE INDUCTION IN DESIGN

The major objective of constructive induction is to imprake performance
of a learning systemin terms of its ability to classify objects. When the

cooperative design is considereahy improvementin the performanceof a

designtool immediatelyresultsin the improvementof the performanceof

the entire human-tool system and may be amplifigdhe human ability to

learn. Also, the performanceof a learningtool can be formally monitored
using variousempirical error ratesand, therefore,the progressof the entire
design“team” can be quantified. This aspectis important in the caseof

industrial applications of constructive induction.

Constructive induction can also be considered in the context of
knowledge acquisition, which is important in design, particularly when
knowledge-basedupporttools are usedand continually updatedto reflect
the changesin the understandingof a given domain. Traditionally,
knowledge acquisition in engineering is understood as a process of
acquiring designrules. However,equally important is learning a systemof
conceptsin a given design domain; only constructive induction has the
unique ability to produce new concepts in the form of constructed attributes.

Learning basedon constructiveinduction may be conductedin parallel
with diagrammaticvisualizationof the representatiorspacesand all design
examples considered, as illustrated in Figs. 5 and éisnway, the designer
gradually builds his/herunderstandingof the learning processin terms of
changesin the representationspace and clustering of examples. The
significance of this insight cannot be underestimatedfrom the cognitive
point of view. Also, monitoring the subsequendiagramscan be used to
determine the progress of learniagd whenthis processis completed.The
complexity of emergent concepts/constructedattributes can then be
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controlled in constructive induction by the "stopping criterion." This
criterion requires that the prediction accuracy of the learned concept
descriptions exceeds a predefined thresholthatthereis no improvement
of the accuracy over the previous iteration.

It has already beedemonstratedMcLaughlin, 1993) that the discovery
of emergent valugswhich is referred here asnergentconceptsis crucial in
creativedesign for a combination of reasons.In the caseof cooperative
design,whena human designeris working with a design support tool, an
emergentconceptis a strong stimulantwhich can trigger human creativity
and may directly lead to creative and patentable designs, as described below.

In the mid-eighties, a series of experimewith a computerprogram for
the generation of desigronceptswasconducted(Arciszewski,1988a). The
objective of the experimentswas to produce an innovative concept or
concepts. If this would not be possible, the secondary objectiveonastain
someinitial resultswhich would stimulate the developmentof innovative
concepts.The program randomly generatedcombinationsof attributesand
their valuesfrom a given representationspace,and was based on the
principles of morphological analysis. The first author, who conductedthe
experiments,had some experience related to the subject of research,
including the actual design experience,and was able to determine the
structural meaning of results.

The experimentswere performedin the areaof designof joints in steel
spacestructures,which are mostly usedfor large span roof structuresin
exhibition halls and industrial buildings. A joint in a spacestructureis a
geometrically invariable system of connected members (Arciszewski and
Uduma, 1988) whose functions are 1) to connect at least three space
structure membersat a point, 2) to provide the required distribution of
external forces applied at this point, and 3) to protfdedistribution of the
internal forces in individual members connected at this point. In the
conceptualdesign of joints, three major interrelated features are usually
considered:ithe size of a joint, its strength,and its weight. There are strong
antinomies among these features,and any improvementin one feature
causes undesirable changes in the other two.

In the experiments a 40-attribute representation space was used which was
developedover a period of severalyearsin close cooperationwith a group
of structural designers specializing in steel space structures. The
representation space was initially prepared in thedatentiedor the patent
studiesand for practicaldesignpurposesAs a resultof the experiments,a
large class otombinationsof attributesand their valueswasgeneratedand
evaluated. The majority of the produced combinations appeared
meaningless and wasdiminated. However,severalcombinationswerefound
meaningful from thestructuralviewpoint, becausehey actually represented
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conceptsof joints. Theseconceptswere then analyzedin terms of their
feasibility and innovation. None of them wasevaluatedas a successn the
search for innovative joints. However, one concept caught attention of one of
the authors (Arciszewski) and was found interesting. It inspired him to
consider theclassof known sphericaljoints in the contextof the generated
concept in order to develop a new joint concept which wouléehsibleand
sufficiently innovativeto justify its patenting.Thus, it becamean emergent
concept. From the structural point of view, this conaepresenteda system
of four spheresof equal diametersconnectedtogetherso that their centers
are situated at the vertex of an equilateral pyramid. Such a system is
geometrically invariable, light and vengid, but it is not “smooth,” and it
would be difficult to connect structurahembersto it. The critical issuewas
how to improve “the smoothness”of the joint while attaining its other
desirable structural characteristics.In this case the emergent concept
stimulated thinking about sphericgints and about spheresn general,and
that led to anotherinterestingand potentially useful conceptof a joint. An
additional sphereof larger diameterwasaddedto the generatedsystemof
four spheresso that a systemof five sphereswas created.In this case,the
sphericaljoint is in the form of five sphereswith four spheresof identical
diametersituatedinside a fifth one having a larger diameter (Fig. 7). The
created joint has a smooth surfgsingle sphere),can be built with a larger
diameter, and may be relatively rigid and light dughe internal bracingin
the form of four spheres.Such a joint could be useful for huge space
structures,when a great number of heavy members of large diameters
requires joints ofsignificant dimensionswhich, at the sametime, should be
smooth outside, simple in form, light, and have advantageousdamping
characteristicsThe conceptof this new joint waspatentedin the USA and
Canada.

The experimentswith the generationof designconceptsby a computer
led to the conclusionthat the control of the complexity of the emergent
conceptds important and may lead to planning creative designswith the
assumedlevel of creativity. That control is critical in the caseof applied
innovative design in industry, when the design objective is sometimesto
produce conceptsonly marginally more innovative than existing patented
conceptsin order to avoid use of patentsand to utilize the available
experience. The related issue is the acceptability for designéng tdvel of
complexity of constructed attributes/emergentconcepts which can be
partially controlled in the constructive induction process, as discussed below.

The above is particularly important in the context of knowledge
acquisition in design, especiallywhen knowledge-basedsupport tools are
used and continually updated to reflélse changesin the understandingof
a given domain. For all these reasons,the control of complexity of the
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emergent concepts isreew and important designresearchssuethat should
be addressedin order to develop design tools with built-in complexity
control mechanism.Gregory (1986) divided conceptual design products
(design concepts or simply designs) into routine and creative designs,
assumingthat the former are known while the latter are unknown, yet
feasible.Maher and Gero (1993) divided designsinto routine, innovative,
and creative designs, considering known designs as routine, innovative
designsasthosewith valuesof the design variablesoutside the commonly
usedrange, and creative designsas those resulting from the use of new
designvariables.Altschuller (1969) and Arciszewski (1988b) proposedto
divide the designsinto five categories,including standard, modification,
innovation, invention and discovery.

Figure 7.Patented invention inspired by a computer-generated concept.

Altschuller’s classificationis basedon the nature of knowledge usedto
produce designs. These examplesillustrate the interest of many design
researchersn a formal classification of designsand its importance for
design researchand practice. However, any inflexible classification of
designs is inadequate in the context of the Inferential Design Th€biyis
particularly true considering that in an actuadustrial environmentdesigns
are always evaluated in relatiom the other known designs.In addition, the
designersusually want to determine in a quantifiable way the relative
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creativity level of a given design. The affiliated problenhasv to determine
conceptualdesignoperatorswhich havebeen,or could have been,usedto
transformthe initial known referencedesigninto a different design being
considered.In other words, the problem is how to learn what innovative
design shaping conceptswere used in order to store them for the future
utilization. Fortunately, constructiveinduction provides a conceptualand
formal outline for dealing with both problems.

In structural engineering,the morphological distancewas proposed in
(Arciszewskiand Kisielnicka, 1977, Arciszewski, 1986) for measuringthe
relative complexity, and indirectly the relative creativity, of a structural
concept with respectto a certain reference concept. This distance was
defined asthe number of different valuesof attributesdescribing both the
conceptunder considerationand the referenceconcept. Similar ideas have
beenusedin constructiveinduction for controlling the extent of building
constructed attributes, which msedon the conceptof the logical distance,
proposed by Michalski (1975).

The distancebetweentwo eventsis defined as the sum of the distances
between values of descriptors used in describing the events. A measure of the
distanced(x, y) betweenthe valuesof a descriptordependson the type of
descriptor. Three typesf descriptorsare considered:interval, nominal, and
structured. The distanced(x,y) betweentwo descriptorvalues,x andy, is
defined differently for different descriptor types:

1. Interval descriptors

_ Ix-yl
d(X’y)_W(X)

where x and y belong to the interval represented by the set X: {0,.1, 3.
card(X) is the cardinality of the set, i.e. the size of the interval.

2. Nominal descriptors

_d 1 if xisnotidentical toy
d(xy) _{O, otherwise

3. Structural descriptors

NB
d(x,y) = m

where NB is the length of the shortest phttking x with y and MNB is the
length of the longestof all the shortestpathslinking any two nodesin the
structure.

The measureof the logical distancecan then be usedto determinethe
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relative creativity level of a given conceptfor the purposeof its evaluation
and it can also be usddr the control of the constructiveinduction process
in order to achievean assumedevel of creativity. To illustrate this idea of

measuringthe relative creativity of a given conceptthrough the use of the
logical distance,an example from the areaof conceptualdesign of wind

bracing in steel skeleton structuresis provided. For the clarity of the
example, only four simple transverse wind bracings in a three-bay
symmetrical skeleton structure are discussed. A more detailed anafiytbis
conceptualdesignof wind bracingsin tall buildings in the context of the
morphological distance can be found in (Arciszewski 1986).

In the design case presented, the simplest wind bracing is in theofoam
single one-bay rigid frame centrally located in the skeleton structure.
Therefore,it can be usedasa referenceconcept.This conceptis described
by the attributes x4 = 1, x5 = ¥6 = 1, x7 = 1 (for the discussionof these
attributesseesection4.3, Problem 2: Structural Design of Wind Bracings)
and it is denoted by No. 1 in Fig. 8.

A large class ofnnovativewind bracingswith respectto this one can be
developedand the relative creativity of individual conceptcan be formally
evaluated using the logicdistance.The referenceconceptof a single one-
bay frame can be easily developed into ssumilar conceptsof two one-bay
rigid frames and of a three-bay rigid frame. The first one is describeédeby
attributesx4 = 1, x5 = 2,x6 = 1, x7 = 1 and denotedby No. 2 in Fig. 8
while the second one is described by the attributes x4 = 1, x5 = 3, X8 1,
= 1 and denoted by No. 3 in the same figure. The new concepts &l 2
differ from the reference concept No.irl one attribute only (attribute x5 -
the number of bays entirely occupieg the wind bracing). Thereforetheir
relative creativity with respectto the conceptl, asmeasuredby the logical
distance, is equal to unity and it is obviously low. Thia iypical caseof an
innovationin accordanceto Maher and Gero (1993). However, the initial
referencewind bracing can be also developedadding a horizontal truss
situated on its top, as shown in Fig. 8 for the concept denoted b#. Ndnis
concept is described by the attributes x4 = 3, x5 = 36 x7 = 2. In this
case,\valuesof two attributesare different than for the referenceconcept,
therefore the relative creativity of this concept in terms of the logical
distance is two, and its is obviously higher than in the casemdeptsNo. 2
and 3. From the structural point of view, this resuldlso consistentwith the
intuitive understanding of the relativamplexity if this new concept,which
was producedmaking two design decisionsregarding the nature of joints
and the number of horizontal trussesin bracing, as opposedto the single
designdecisionrelatedto the number of baysoccupiedby bracingswhich
let to the Concepts No. 2 and 3.
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No. 4
x4=3 x5=1 x6=1 x7=2
x4=1 -> x4=3
No. 2 No. 1 X7=1->x7=2 No. 3
x5=1 -> x5=2 x5=1 -> x5=3
B ey >
x4=1 x5=2 x6=1 x7=1 x4=1 x5=1 x6=1 x7=1 x4=1 x5=3 x6=1 x7=1

Figure 8.Logical distance of wind bracing concepts.

The developmentof a creativity measurefor structural design concepts
was the subject of the researchon the design of joints in steel space
structures (Arciszewski and Uduma, 1988). It resulted in the identification
six “innovative shapingconcepts,” or conceptualdesign operators,which
wereusedto producea classof 15 patentedsphericaljoints in steel space
structures All thesejoints were related to the first sphericaljoint in space
structures, called MERO, which was patented in 1935. The identified
innovative shaping concepiscluded the elimination of material,or part of
the joint, the use of division or multidivision of the joint, the use of
symmetry, the use of asymmetry, the addition of internal or external
componentsand the shapechangeof the joint or of its end-pieceslin this
case, the relative creativity aidividual joints was proposedto be measured
by the “innovative distance” from the assumedreference MERO joint
considering the number of innovative shaping concepts necessaryto
transform the MERO joint into a given joint. All identified innovative
shaping concepts, as well as the innovative distance, could be easily
expressedn termsof attributesdescribingthe joint. Therefore,they could
be considered agperatorswhoseuseresultedin hew concepts(constructed
attributes)which are basedon primary concepts.In this way, constructive
induction can be considered here as an underlining computational
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foundation for conceptualdesign whose objective is to produce creative
concepts.

5. Conclusions

Constructive induction has been demonstratedto be a powerful
theoretical framework for describing an engineering design process,in
particular, a creative conceptualdesign. Several crucial ideas, such as an
emergentdesign conceptand a task-orientedimprovement of the design
representation space, have been presented in teromnsfructiveinduction.
Their interpretationand useis consistentwith both the areasof designand
computer science.

Constructive induction and its system of concepts and methodsblesre
found highly relevant to explaining conceptual design. Therefore,
constructive induction has been proposed agw paradigmfor developing
computational foundations for conceptual design. The control of the
creativity level of design concepts can be accomplishedusing various
proposedcomplexity (or relative creativity) measures.The generation of
emergentconceptsin constructiveinduction, and their explicit presentation
to the designer, was found to particularly important becauseof cognitive,
computational,and engineering reasons.In general, the introduction of
constructive induction to design bridges the gap betvegmyineeringdesign
and artificial intelligence. This resuthay naturally lead to the development
of a new generationof design support tools with a real impact on design
practice.

Furtherresearchin the presenteddirection includesthe developmentof
theoretical foundations and practical methods for the construicttgction-
based conceptual design. Various design experimentsusing constructive
induction methodswill be initiated. In view of the existenceof several
constructiveinduction strategiesand methods,future researchwill explore
the usefulness of multistrategy constructive induction metlimd®nceptual
design. Such methods integrate various combinations of strategies. A

multistrategy constructive induction system for design will be experimentally

developed and ultimately turned into a practical design support tool.
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