

ANALYSIS AND INNER-ROUND PIPELINED IMPLEMENTATION OF SELECTED

PARALLELIZABLE CAESAR COMPETITION CANDIDATES

by

Sanjay Deshpande

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Master of Science

Computer Engineering

Committee:

_________________________________ Dr. Kris Gaj, Thesis Director

_________________________________ Dr. Jens Peter Kaps, Committee Member

_________________________________ Dr. Xiang Chen, Committee Member

_________________________________ Dr. Monson Hayes, Department Chair

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date: _____________________________ Fall Semester 2016

 George Mason University

 Fairfax, VA.

Analysis and Inner-Round Pipelined Implementation of Selected Parallelizable
CAESAR Competition Candidates

A Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

by

Sanjay Deshpande
Bachelor of Technology

Jawaharlal Nehru Technological University, 2014

Director: Kris Gaj, Associate Professor
Electrical and Computer Engineering

Fall Semester 2017
George Mason University

Fairfax, VA

ii

Copyright: 2016 Sanjay Deshpande
All Rights Reserved

iii

Dedication

I dedicate this thesis to Shri Kesari Hanuman, my grandfather Shri Nand
Kumar Deshpande, my parents Megha Deshpande & Vinay Deshpande, my
advisor Dr. Kris Gaj, and Ankitha Prabhu and my beloved friends.

iv

Acknowledgement

I would like to express my heartfelt gratitude to my advisor Dr. Kris Gaj for
his patience, motivation and guidance through the research and thesis
documentation. I would also take this opportunity to thank Dr. Jens Peter Kaps,
Ekawat Homsirikamol a.k.a “Ice”, William Diehl, Farnoud Farahmand, Panasayya
Yalla, Ahmed Ferozpuri, Malik Umar Sharif and Rabia Shahid for their immense
help.

v

Table of Contents

 Page

List of Tables .. viii

List of Figures .. iix

Abstract .. xiii

1. Introduction .. 1

1.1. Authenticated Encryption: .. 1

1.1.1. What is Authenticated Encryption? ... 1

1.1.2. Applications and Advantages of Authenticated Encryption 3

1.2. CAESAR Contest .. 4

1.2.1. Organization and Schedule ... 4

1.2.2. Evaluation Criteria ... 4

1.2.3. Importance of Hardware Benchmarking .. 4

2. Classification of the CAESAR Candidates ... 5

2.1. Introduction .. 5

2.2. Design Classification ... 5

2.2.1. Type .. 5

3. General Methodology ... 14

4. SCREAM .. 18

4.1. Introduction and Major Features .. 18

4.2. Recommended Parameters ... 18

4.3. Encryption and Decryption .. 19

4.4. Basic High-Speed Architecture .. 21

4.4.1. Datapath Design ... 22

4.4.2. Controller Design: ... 25

4.5. Optimized Pipelined Architecture .. 30

vi

4.5.1. Register Insertion .. 31

4.5.2. Path Balancing .. 31

4.5.3. Controller Modifications .. 33

5. AES-COPA .. 38

5.1. Introduction and Major features ... 38

5.2. Recommended Parameters: .. 38

5.3. Encryption and Decryption .. 38

5.4. Basic High-Speed Architecture .. 41

5.4.1. Datapath Design ... 41

5.4.2. Controller Design .. 46

5.5. Optimized Pipelined Architecture .. 51

5.5.1. Register Insertion .. 53

5.5.2. Path Balancing .. 54

5.5.3. Controller Modifications .. 56

6. Minalpher ... 58

6.1. Introduction and Major Features .. 58

6.2. Recommended Parameters: .. 59

6.3. Encryption and Decryption .. 59

6.4. Basic High-Speed Architecture .. 62

6.4.1. Datapath Design: .. 62

6.4.2. Controller Design: ... 68

6.5. Optimized Pipelined Architecture: ... 73

6.5.1. Register Insertion: ... 74

6.5.2. Path Balancing .. 77

6.5.3. Controller Modifications .. 77

7. OCB ... 79

7.1. Introduction and Major features ... 79

7.2. Recommended Parameters: .. 79

7.3. Encryption and Decryption .. 79

7.4. Basic High-Speed Architecture .. 81

7.4.1. Datapath Design: .. 81

vii

7.4.2. Controller Design: ... 83

7.5. Optimized Pipelined Architecture: ... 88

7.5.1. Register Insertion .. 90

7.5.2. Path Balancing .. 90

7.5.3. Controller Modification .. 92

8. AES-OTR ... 93

8.1. Introduction and Major features ... 93

8.2. Recommended Parameters: .. 93

8.3. Encryption and Decryption .. 94

8.4. Basic High-Speed Architecture .. 97

8.4.1. Datapath Design: .. 97

8.4.2. Controller Design: ... 99

8.5. Optimized Pipelined Architecture: ... 103

8.5.1. Register Insertion .. 104

8.5.2. Path Balancing .. 105

8.5.3. Controller Modifications .. 106

9. Performance Evaluation ... 107

9.1. Implementation Results ... 108

9.2. Analysis of Results .. 112

10. Conclusions .. 116

Bibliography .. 117

viii

List of Tables

Table Page

Table 1: Analysis of ALL Round 2 candidates from the point of view of capability

for parallel processing of blocks belonging to the same AD/message/ciphertext. 9

Table 2: Throughput Calculation Formula: Basic Architecture 107

Table 3: Throughput Calculation Formula: Pipelined Architecture 108

Table 4: Maximum Clock Frequency comparison. .. 109

Table 5: Throughput Comparison. ... 109

Table 6: Area Comparison (expressed in LUTs). .. 110

Table 7: Area Comparison (expressed in Slices) .. 111

Table 8: Throughput to Area ratio (Area expressed in LUTs) 111

Table 9: Throughput to Area ratio (Area expressed in Slices) 112

ix

List of Figures

Figure Page

Figure 1: Input and Output of an Authenticated Cipher. Notation: Npub - Public

Message Number, Nsec - Secret Message Number, Enc Nsec - Encrypted

Secret Message Number, AD - Associated Data .. 2

Figure 2: Block Cipher .. 6

Figure 3: Stream Cipher ... 7

Figure 4: Basic Architecture.. 15

Figure 5: 2-stage inner-round pipelined architecture .. 15

Figure 6: Basic iterative architecture .. 16

Figure 7: 2-stage inner-round pipelined architecture. ... 16

Figure 8: TAE: associated data processing. ... 19

Figure 9: TAE: encryption of the plaintext blocks.. 20

Figure 10: TAE Tag processing .. 21

Figure 11: SCREAM Datapath.. 22

Figure 12: Ek_bidir ... 24

Figure 13: SCREAM Cipher Controller ASM (1) ... 26

Figure 14: SCREAM Cipher Controller ASM (2) .. 27

Figure 15: SCREAM Cipher Controller ASM (3) ... 28

Figure 16: SCREAM Cipher Controller ASM (4) ... 29

Figure 17: Scream Datapath Pipelined ... 30

Figure 18: Ek_bidir Pipelined ... 32

Figure 19: SCREAM Controller Pipelined (1) ... 34

Figure 20: SCREAM Controller Pipelined (2) ... 35

Figure 21: SCREAM Controller Pipelined (3) ... 36

Figure 22: SCREAM Controller Pipelined (4) ... 37

Figure 23: Associated data processing ... 39

Figure 24: Message/ Ciphertext processing ... 40

Figure 25: Tag Generation ... 41

Figure 26: Delta value Calculation .. 43

Figure 27: AES-COPA Datapath .. 44

Figure 28: Multi 3, Multi 7, Delta .. 45

Figure 29: Multi 2 .. 45

Figure 30: AES Datapath ... 46

Figure 31: AES-COPA Controller (1) .. 48

Figure 32: AES-COPA Controller (2) .. 49

x

Figure 33: AES-COPA Controller (3) .. 50

Figure 34: AES Controller ... 51

Figure 35: AES-COPA Datapath Pipelined .. 52

Figure 36: AES Round Pipelined .. 53

Figure 37: AES Datapath Pipelined .. 54

Figure 38: Delta Value calculation Pipelined .. 55

Figure 39: Multi 3, Multi 7, Delta –Pipelined. .. 55

Figure 40: Multi 2 pipelined .. 56

Figure 41: AES Controller Pipelined ... 57

Figure 42: Round Function ... 61

Figure 43: Associated data and plaintext processing. 62

Figure 44: Minalpher Datapath ... 63

Figure 45: TEM_AUX ... 64

Figure 46: TEM ... 65

Figure 47: Minalpher_P ... 66

Figure 48: Minalpher_P forward ... 67

Figure 49: Minalpher Controller (1) ... 69

Figure 50: Minalpher Controller (2) ... 70

Figure 51: Minalpher Controller (3) ... 71

Figure 52: Minalpher Controller (4) ... 72

Figure 53: TEM Controller ... 72

Figure 54: TEM_AUX Pipelined .. 73

Figure 55: TEM Pipelined ... 74

Figure 56: Minalpher_P Pipelined ... 75

Figure 57: Minalpher_P forward Pipelined .. 76

Figure 58: TEM Controller Pipelined ... 78

Figure 59: OCB Datapath ... 82

Figure 60: AES Datapath .. 82

Figure 61: Mixed Round .. 83

Figure 62: OCB Controller (1) ... 84

Figure 63: OCB Controller (2). .. 85

Figure 64: OCB Controller (3) ... 86

Figure 65: OCB Controller (4) ... 87

Figure 66: OCB controller (5).. 88

Figure 67: OCB Datapath Pipelined ... 89

Figure 68: AES Mixed Round Pipelined ... 90

Figure 69: AES Datapath pipelined .. 91

Figure 70: AES Controller Pipelined ... 92

Figure 71: AES-OTR Encryption ... 95

Figure 72: Parallel ADP .. 96

Figure 73: Tag calculation. ... 96

xi

Figure 74: AES KOF Datapath ... 98

Figure 75: AES KOF Round ... 98

Figure 76: AES OTR Controller (1) ... 100

Figure 77: AES OTR Controller (2) ... 101

Figure 78: AES OTR Controller (3) ... 102

Figure 79: AES KOF Controller .. 103

Figure 80: AES KOF Round Pipelined .. 104

Figure 81: AES-OTR Pipelined .. 105

Figure 82: AES KOF Controller Pipelined ... 106

Figure 83: Plot - Maximum Clock Frequency .. 113

Figure 84: Plot - Throughput ... 113

Figure 85: Plot – Area Comparison (expressed in LUTs) 114

Figure 86: Plot - Area Comparison (expressed in Slices) 114

Figure 87: Plot - Throughput to Area Ratio (Area expressed in LUTs) 115

Figure 88: Plot - Throughput to Area Ratio (Area expressed in Slices) 115

xii

Abstract

ANALYSIS AND INNER-ROUND PIPELINED IMPLEMENTATION OF SELECTED
PARALLELIZABLE CAESAR COMPETITION CANDIDATES

Sanjay Deshpande, M.S.

George Mason University, 2016

Thesis Director: Dr. Kris Gaj

In this thesis, we have first characterized candidates of the Competition for

Authenticated Encryption, Security, Applicability, and Robustness (CAESAR). Then, we

have chosen five candidates from the Round 2 and Round 3 submissions, namely

SCREAM, AES-COPA, Minalpher, OCB, and AES-OTR. We first obtained the initial

estimates of the Maximum Clock Frequency, Throughput, Area, and Critical path from

the Basic Iterative High Speed Architecture. Then, we implemented the inner-round

pipelining for all the selected algorithms to improve the Frequency and Throughput by

reducing Critical path and processing multiple blocks of data simultaneously. We

targeted the largest available FPGA in the student version of Xilinx ISE, i.e., Xilinx Virtex

6 XC6VLX75T-3FF784. Our results have demonstrated the improvement in the Clock

Frequency by a factor varying from x1.28 for OCB to x1.84 for SCREAM, and the

improvement in the Throughput to Area ratio (with Area expressed using LUTs) by a

factor varying from x0.96 for Minalpher to x1.70 for SCREAM.

1

1. Introduction

Encryption is the most effective way to achieve data security. The primary purpose of

encryption is to protect the confidentiality of digital data stored on computer systems or

transmitted via the Internet or other computer networks. Modern encryption algorithms

play a vital role in the security assurance of IT systems and communications as they can

provide not only confidentiality, but also the following key elements of security

Authentication: The origin of a message can be verified.

Integrity: Proof that the contents of a message have not been changed since the

message was sent.

Non-repudiation: The sender of a message cannot deny sending the message.

1.1. Authenticated Encryption:

1.1.1. What is Authenticated Encryption?

Authenticated Encryption (AE) or Authenticated Encryption with Associated Data (AEAD)

is a cryptographic algorithm that simultaneously provides confidentiality, integrity, and

authentication of message; decryption is combined in single step with integrity

verification. The Authenticated ciphers takes plaintext message, associated data AD, a

public message number Npub, and an optional secret message number Nsec as an

2

input and provide resulting ciphertext C, tag T, and optional encrypted Nsec. The

ciphertext C, and optional encrypted Nsec are computed as a function of Npub, Nsec,

AD, message, and key and this transformation ensures the confidentiality of the

transaction. At the end of plaintext encryption a tag T is produced which is a keyed-hash

function computed from all blocks of the AD and plaintext, as well as Npub, Nsec, and

key. The tag is appended to the end of the ciphertext to assure and verify the integrity

and authenticity of the transaction as shown in the Figure 1. Decryption of the ciphertext

and optional encrypted Nsec is conducted in a similar fashion. Identical parameters,

including AD, key, and message numbers, are required for validation. Tag’ is then

computed as above, and verified against the concatenated Tag. If Tag = Tag’ then

authentication and integrity of the transaction are assured; otherwise the decrypted

ciphertext is not released. If authenticity and integrity are verified, the outputs of the

transaction are the AD, plaintext, and optional decrypted Nsec.

Figure 1: Input and Output of an Authenticated Cipher. Notation: Npub - Public Message
Number, Nsec - Secret Message Number, Enc Nsec - Encrypted Secret Message

Number, AD - Associated Data

3

A typical programming interface for Authenticated Encryption provides the following

functions.

Encryption:

Input: plaintext, key, and optionally a header in plaintext that will not be encrypted, but

will be covered by authenticity protection.

Output: ciphertext and authentication tag (Message Authentication Code).

Decryption:

Input: ciphertext, key, authentication tag, and optionally a header.

Output: plaintext, or an error if the authentication tag does not match the supplied

ciphertext or header.

1.1.2. Applications and Advantages of Authenticated Encryption

Authenticated encryption can provide plaintext awareness and security against chosen

ciphertext attacks. In these attacks, an adversary attempts to gain an advantage against

a cryptosystem (e.g., information about the secret decryption key) by submitting carefully

chosen ciphertexts to some decryption oracle and analyzing the decrypted results.

Authenticated encryption schemes can recognize improperly-constructed ciphertexts

and refuse to decrypt them. This in turn prevents the attacker from requesting the

decryption of any ciphertext unless he generated it correctly using the encryption

algorithm, which would imply that he already knows the plaintext. Implemented correctly,

this removes the usefulness of the decryption oracle, by preventing an attacker from

gaining useful information that he does not already possess.

4

1.2. CAESAR Contest

1.2.1. Organization and Schedule

Cryptographic competitions have become common way of developing the cryptographic

standard. This process has worked really well in case of Advanced Encryption Standard

(AES), developed in the period 1997-2001, and then SHA 3 competition (Secure Hash

Algorithm 3), developed in the period 2007-2012. In 2013, a new contest, called

CAESAR - Competition for Authenticated Encryption: Security, Applicability, and

Robustness - has been announced. This contest started off with 57 candidates in Round

1, and then reached Round 2 with 29 candidates and Round 3 with 15 candidates

remaining.

1.2.2. Evaluation Criteria

Performance of candidates in hardware has always been a very important evaluation

factor, when all remaining algorithms have been found to have adequate security

strength. Hardware evaluation has become possible in CAESAR because of the two

novel approaches. First, the design teams have been asked to submit their own

Verilog/VHDL code before the end of Round 2. Secondly, High-Level Synthesis, based

on the newly developed Xilinx Vivado HLS tool, has been applied to transform reference

C implementations of CAESAR candidates to the corresponding efficient Register

Transfer Level (RTL), hardware description language (HDL).

1.2.3. Importance of Hardware Benchmarking

 In CAESAR competition, an attempt has been made to conduct hardware benchmarking

of each candidate at early stages of the contest, when the number of competing

algorithms was still very large, namely there were still 29 authenticated cipher families

remaining, with multiple variants for some of them (such as PRIMATEs, Deoxys, Keyak).

5

2. Classification of the CAESAR Candidates

2.1. Introduction

Secret-key Cryptography helps in protecting the confidentiality and integrity of the

messages against all possible misbehavior by the attacker. Even if the Public Key

Cryptography introduced new ways to protect and share the messages, the Secret-key

cryptography has always proven to outperform it in terms of speed and speed to area

ratio. Usually the data is protected either by secret-key cryptography alone or by a hybrid

of public-key and secret-key cryptography.

2.2. Design Classification

2.2.1. Type

Block cipher: A Block cipher encrypts one block of a message at a time, independently

from other blocks. A block cipher consists of two paired algorithms, one for encryption

and the other one for decryption. The decryption algorithm is said to be the inverse

function of encryption.

The encryption function can be specified as follows

EK(P) := E(K,P) : {0,1}k X {0,1}n → {0,1}n,

The inverse function, i.e., the decryption function can be specified as follows:

6

E-1
K(C) := DK(C) =D(K, C) : {0, 1}k

 x {0,1}n → {0,1}n

From the equations we can see that both encryption and decryption accept two inputs:

an input block of size n bits and a key of size k bits, both yielding an n-bit output block.

For example, AES is a block cipher that encrypts a 128-bit block using a 128bit, 192-bit,

and 256-bit keys.

Figure 2: Block Cipher

7

Stream Cipher:

 In a Stream cipher every block of ciphertext is a function of the current block of plaintext

and the current internal state of the cipher. A stream cipher encrypts a variable length

message using a public nonce and a secret key.

Figure 3: Stream Cipher

Message Authentication Code (MAC): MAC is used to authenticate the message, it is

a short piece of information used to confirm that the message has been received from

the stated sender and has not been changed in transit. The Authenticator is also sent

with the encrypted message which protects message against corruption. MACs are often

built from block ciphers or from cryptographic hash functions such as SHA-3.

8

Authenticated Encryption with Associated Data (AEAD): AEAD is a block cipher

mode of operation, which provides all three security services, i.e., confidentiality,

integrity and authentication. Decryption involves integrity and authenticity verification.

From the Round 2 of the CAESAR competition, data of all the 29 candidates was

extracted from the specification of each cipher and analysis of all candidates from the

point of view of capability for parallel processing of blocks belonging to the same

associated data, message, and ciphertext was done. All the data was tabulated as

shown in Table 1.

Then, from the ciphers which had the capability for parallel processing of blocks, 5

candidates were selected based on their maximum clock frequency in Basic High-Speed

Architecture. The ciphers which had lowest maximum frequency were selected.

9

Table 1: Analysis of ALL Round 2 candidates from the point of view of capability for
parallel processing of blocks belonging to the same AD/message/ciphertext.

Candidate

T
y
p

e

T
a
g

 S
iz

e

K
e
y
 S

iz
e

N
o

n
c
e
 S

iz
e

B
lo

c
k
 S

iz
e

S
ta

te
 s

iz
e

M
a
x
 A

D
/
M

 S
iz

e

#
R

o
u

n
d

P
a
ra

ll
e
li
z
a
b

le

NMRM

ACORN SC 128 128 128 1 293 <264 10 yes

AEGIS-128L BC 128 128 128 256 1024 264 1 no

AEGIS-128 BC 128 128 128 128 640 264 1 no

AEGIS-256 BC 128 256 256 256 768 264 1 no

AES-COPA BC 128 128 128 128 128 271 10 yes yes

AES-JAMBU BC 48 96 48 48 144 <264 52 no

AES-JAMBU BC 32 96 32 32 96 <264 42 no

AES-JAMBU BC 64 128 64 64 192 <264 68 no

AES-JAMBU BC 64 128 64 64 192 <264 68 no

AES-OTR BC 128 128 96 128 128 264 10 yes

AES-OTR BC 128 128 96 128 128 264 10 yes

AES-OTR BC 128 256 96 128 128 264 10 yes

AES-OTR BC 128 256 96 128 128 264 10 yes

AEZ TBC 128 128 128 128 128 251 8 < R< 24 yes yes

Ascon-128 P 128 128 128 64 320 <267 6 no

Ascon-128a P 128 128 128 128 320 <268 8 no

CLOC-AES-12 BC 64 128 96 128 256 <267 10 no/yes

CLOC-AES-8 BC 64 128 64 128 256 <267 10 no/yes

CLOC-TWINE BC 32 80 48 128 256 <267 10 no/yes

SILC-AES BC 64 128 96 128 256 <267 10 no/yes

SILC-AES BC 64 128 64 128 256 <267 10 no/yes

SILC-
PRESENT BC 32 80 48 128 256 <267 31 no/yes

SILC-LED BC 32 80 48 128 256 <267 48 no/yes

10

Table 1(2): Analysis of ALL Round 2 candidates from the point of view of capability for
parallel processing of blocks belonging to the same AD/message/ciphertext.

Candidate

T
y
p

e

T
a
g

 S
iz

e

K
e

y
 S

iz
e

N
o

n
c

e
 S

iz
e

B
lo

c
k

 S
iz

e

S
ta

te
 s

iz
e

M
a

x
 A

D
/
M

 S
iz

e

#
R

o
u

n
d

P
a

ra
ll

e
li
z
a

b
le

NMRM

Deoxys ≠
 -128 - 128 BC 128 128 64 128 128 267 14 yes

Deoxys ≠
 -256 - 128 BC 128 256 64 128 128 267 16 yes

Deoxys =
-128-128 BC 128 128 128 128 128 267 14 yes yes

Deoxys=

-256-128 BC 128 256 128 128 128 267 16 yes yes

ELmD BC 128 128 64 128 128 264 12 yes yes

HS1-SIV-lo HS1 64 256 96 256 512 267 8 no yes

HS1-SIV HS1 128 256 96 256 512 267 12 no yes

HS1-SIV-hi HS1 256 256 96 256 512 267 20 no yes

ICEPOLE 128 P 128 128 128 1024 1280 264 6 no

ICEPOLE 128a P 128 128 96 1024 1280 264 6 no

Joltik≠ -64 - 64 TBC 64 64 64 128 128 <235 24 yes

Joltik≠-80 - 112 TBC 112 80 64 128 128 <235 32 yes

Joltik≠ -96 - 96 TBC 96 96 64 128 128 <235 32 yes

Joltik≠ -128 - 64 TBC 64 128 64 128 128 <235 32 yes

Joltik= -64-64 TBC 64 64 64 128 128 <266 24 yes yes

Joltik= -80-112 TBC 112 80 64 128 128 <266 32 yes yes

Joltik= -96-96 TBC 96 96 64 128 128 <266 32 yes yes

Joltik= -96-96 TBC 96 96 64 128 128 <266 32 yes yes

Joltik= -128-64 TBC 64 128 64 128 128 <266 32 yes yes

Ketje Jr P 64 96 86 16 200 <296 22 no

Keyak P 128 128 128 1600 1536 <2123 12 no

11

Table 1(3): Analysis of ALL Round 2 candidates from the point of view of capability for
parallel processing of blocks belonging to the same AD/message/ciphertext.

Candidate

T
y
p

e

T
a
g

 S
iz

e

K
e

y
 S

iz
e

N
o

n
c

e
 S

iz
e

B
lo

c
k

 S
iz

e

S
ta

te
 s

iz
e

M
a

x
 A

D
/
M

 S
iz

e

#
R

o
u

n
d

P
a

ra
ll

e
li
z
a

b
le

NMRM

Minalpher TBC 128 128 104 256 64 <2104-1 17 yes yes

MORUS-1280-
128 SC 128 128 128 128 1280 <264 5 no

MORUS-640-
128 SC 128 128 128 128 640 <264 5 no

MORUS-1280-
256 SC 128 256 128 256 1280 <264 5 no

NORX32 P 128 128 64 128 512 <2128 6 no

NORX64 P 256 256 128 128 1024 <2128 4 no

OCB BC 128 128 120 128 128 <2128 10 yes

OMD CF
32-
256 256 256 256 256 <264 64 no

PAEQ64 P 64 64 64 432 512 <299 20 yes

PAEQ80 P 80 80 80 416 512 <299 20 yes

PAEQ128 P 128 128 128 368 512 <299 20 yes

PAEQ64-T P 512 64 64 432 512 <299 20 yes

PAEQ64-TNM P 512 64 128 432 512 <299 20 yes

PAEQ128-T P 512 128 128 368 512 <299 20 yes

PAEQ128-TNM P 512 256 256 240 512 <299 20 yes yes

PAEQ192 P 128 192 128 304 512 <299 20 yes

PAEQ160 P 160 160 128 336 512 <299 20 yes

PAEQ256 P 128 256 128 240 512 <299 20 yes

Π-Cipher096 P 128 96 32 256 128 <267-8 3 no

Π-Cipher128 P 256 128 128 512 256 <267-8 3 no

Π-Cipher128 P 512 128 128 1024 512 <267-8 3 no

Π-Cipher256 P 512 256 128 1024 512 <267-8 3 no

12

Table 1(4): Analysis of ALL Round 2 candidates from the point of view of capability for
parallel processing of blocks belonging to the same AD/message/ciphertext.

Legend:

R - Number of Rounds

NMRM - Nonce Misuse Resistant Mode

Candidate
T

y
p

e

T
a
g

 S
iz

e

K
e

y
 S

iz
e

N
o

n
c

e
 S

iz
e

B
lo

c
k

 S
iz

e

S
ta

te
 s

iz
e

M
a

x
 A

D
/
M

S
iz

e

#
R

o
u

n
d

P
a

ra
ll

e
li
z
a

b
le

NMRM

POET-AES10-
AES4 BC 128 128 128 128 128 <2128 10 yes yes

POET-AES10-
AES10 BC 128 128 128 128 128 <2128 10 yes yes

PRIMATEs-
HANUMAN-

120 P 120 120 120 40 280 <2120 12 no

PRIMATEs-
GIBBON-120 P 120 120 120 40 280 <2120 6 no

PRIMATEs-
APE-120 P 240 240 120 80 280 <2120 12 no

PRIMATEs-
HANUMAN-80 P 80 80 80 40 200 <280 12 no

PRIMATEs-
GIBBON-80 P 80 80 80 40 200 <280 6 no

PRIMATEs-
APE-80 P 160 160 80 80 200 <280 12 no

SCREAM TBC 128 128 96 128 128 <2128 10 yes

SHELL BC 128 128 64 128 256 <270 10 yes

STRIBOB P 128 192 128 64 128 2127/264 12 yes

Tiaoxin-346 BC 128 128 128 128 768 <2128-1 35 yes

TriviA-ck SC 128 128 64 64 384 <264/<2128 64 no

13

Max AD - Maximum Associated Data

M size - Message size in bits

In Parallelizable column no/yes means that Encryption is not parallelizable and

Decryption is parallelizable.

Types of Cipher:

SC- Stream Cipher based

BC -Block Cipher based

P - Permutation based

TBC- Tweakable Block Cipher based

CF - Compression Function based

HS1- Hash Stream 1 based

14

3. General Methodology

Pipelining is one of the well-known techniques used to increase the speed of any

digital design. In this project we have implemented inner-round pipelining of 5

different ciphers. The inner-round pipelining provides substantial amount of

increase in the speed of the cipher with small increase in the circuit area. In this

method the pipeline registers are inserted inside the round function of the cipher

and then path is balanced accordingly for the dataflow [15].

The Basic Iterative architecture, as shown in Figure 4, is implemented first, and its

frequency, area and critical path are determined. Based on this information, we

insert a pipeline register to reduce the critical path. The location of the pipeline

register is chosen in such a way that the critical path between two adjacent

registers is reduced and balanced. In this project we have implemented a two-

stage inner-round pipelining, as shown in Figure 5.

15

Figure 4: Basic Architecture

Figure 5: 2-stage inner-round pipelined architecture

16

The implementation strategy of a pipelined architecture is as shown in the form of a

timing diagram in Figure 6 and Figure 7.

For N Rounds:

Figure 6: Basic iterative architecture: B-Block, R- Round, B1R1- Block1 Round1, and so
on.

Figure 7: 2-stage inner-round pipelined architecture: B-Block, R- Round, B1R1- Block1
Round1, B2R1 Block2 Round1, and so on.

As shown in Figure 6, in the basic iterative architecture single block of data is processed

through N rounds in N clock cycles, and then the result is sent to the output. In the 2-

state inner-round pipelined architecture, two blocks of data are read in two consecutive

clock cycles, and the output is collected after 2N+1 clock cycles. Additionally, two

consecutive pairs of input blocks can be processed every 2N clock cycles.

17

We have implemented five selected ciphers targeting the largest available FPGA in the

student version of Xilinx ISE, i.e., Xilinx Virtex 6 XC6VLX75T-3FF784. The inner-round

pipeline implementations of all ciphers are shown in the following chapters.

18

4. SCREAM – Side Channel Resistant Authenticated Encryption with
Masking

4.1. Introduction and Major Features

SCREAM [6] is a CAESAR candidate submitted by Grosso et al. It is based on Liskov,

Rivest and Wagner’s Tweakable Block Cipher (TBC). It is a simple and regular design

allowing excellent performance using a wide range of architectures. The specification of

the cipher claims the ease of masking used as a side-channel countermeasure. The

SCREAM’s resistance against conventional attacks is inherited from TAE, providing

security beyond the birthday bound. The other important advantage of SCREAM is that it

provides fully parallelizable authenticated encryption.

4.2. Recommended Parameters

There are totally four sets of Parameters for SCREAM, based on the security level (with

6, 8, 10 and 12 steps).

Lightweight security. 80-bit security, with a protocol avoiding related keys

 Tight parameters: 6 steps, Safe parameters: 8 steps.

Single-key security. 128-bit security, with a protocol avoiding related keys

 Tight parameters: 8 Steps, Safe parameters: 10 steps.

19

Related-key security. 128-bit security with possible related keys

Tight parameters: 10 Steps, Safe parameters: 12 Steps.

The recommended sets of parameters are as follows:

 First set of recommended parameters: SCREAM with 10 steps, single-key

security.

 Second set of recommended parameters: SCREAM with 12 steps, related-key

security.

4.3. Encryption and Decryption

The SCREAM works in the TAE mode as proposed in [1].

There are 3 main steps in the encryption process:

First, the associated data is processed by dividing it into 128-bit blocks. Each block is

encrypted through the tweakable block cipher and then the output values are XORed,

and the final output of this step is stored as Auth.

Figure 8: TAE: associated data processing.

20

Second, plaintext is encrypted using the tweakable block cipher in order to generate the

ciphertext values. If the last block is partial, its bitlength is encrypted to generate a mask

and the result of encryption is truncated to the partial block. This block is then XORed

with the partial plaintext block, such that the ciphertext length is same as the plaintext

length.

Figure 9: TAE: encryption of the plaintext blocks.

Finally, the tag is generated as shown below in Figure 10. The checksum (i.e. the XOR

of all plaintext blocks) is encrypted and then XORed with auth.

21

Figure 10: TAE Tag processing

In TAE mode, for security reasons we always use distinct tweak values. The algorithm

uses some special values for domain separation, and tweaks of the form (N||c||control

byte), where N is the Nonce and c is a block counter.

Decryption is similar to encryption, with slight changes, which will be discussed in

Section 4.4. During decryption, the values of ciphertext C, tag T, and associated data A

are used to recover the plaintext. If the tag is incorrect, the algorithm returns a null

output.

4.4. Basic High-Speed Architecture

The implementation of SCREAM has been divided into a Datapath and Controller. This

design processes one 128-bit block at a time.

22

4.4.1. Datapath Design

From the recommended set of parameters, SCREAM with 10 steps, single-key security

was implemented. The values of Key, public message number (Npub), checksum, Tag

and Tweak input are registered as shown in Figure 11. The inputs are given to the

Ek_bidir, which computes values of ciphertext/message from the given

message/ciphertext respectively.

Figure 11: SCREAM Datapath

23

The entity Ek_bidir is involved in performing both Encryption and Decryption. The

Ek_bidir has a step function called Ek_step, which is built with the combination of

S-Box and L-Box. The values of Sigma and Tweak are registered and are

provided as an input to Ek_step. All the inputs from the top module are converted

into Reverse Endian and given as an input to Ek_step. The Ek_step function acts

like a round function from AES. The algorithm includes 10 rounds known as

steps. The count of each step value is dependent upon the value of Sigma. The

sigma value is initiated with zero in encryption mode and incremented by one per

each clock cycle until ten (the number of rounds) whereas in the decryption mode

the value of sigma is initialized with ten and is decremented by one in each clock

cycle until it reaches zero. The Tweak value is dependent on the value of sigma,

so with each new value of sigma the tweak value changes as well. Processing of

one block of data takes ten clock cycles.

24

Figure 12: Ek_bidir

The Ek_Step function consists of two round functions, round0 and round1. The

round function is formed with the combination of S-box and L-box. After the data

is processed through the S-box, it is XORed with the Round constant, and then

sent through the L-box. The order of round0 and round1 processing is based on

25

mode of operation. In encryption mode the data is processed through round0

first, and then it is passed through round1, whereas in decryption mode, data is

processed through round1 first and then through round 2. After processing these

rounds, the resulting value is XORed with the Tweak value.

4.4.2. Controller Design:

Upon the reset the controller enters the initialization state as shown in the Figure

13. Then, the next state is Key update. In this state, if bdi_valid and key_update

are high, then the key is updated, else the control moves to the next state, that is

Load public message number. In this state Public message number (Npub) is

loaded. Then, the associated data processing starts. Every time the Ek_done

signal goes high, next block of associated data is loaded in for processing. When

the end of type signal (bdi_eot) goes high, then the last block of associated data

is processed. Next state is Encryption/Decryption of Message. Based on the

value of the decrypt signal, the processing is started with Ek_start going high.

Every time Ek_done signal goes high, the next block of message is loaded for

Encryption/Decryption. Once the last block of message is encrypted/decrypted

next state is Tag generation. In this state, if the decrypt is low, then tag is

generated, done signal goes high, and control shifts to the initialization state. If

the decrypt signal is high, then after Tag generation state, the next state is Tag

verification state, where the Tag is verified and then the control shifts to the

initialization state.

26

Figure 13: SCREAM Cipher Controller ASM (1)

27

Figure 14: SCREAM Cipher Controller ASM (2)

28

Figure 15: SCREAM Cipher Controller ASM (3)

29

Figure 16: SCREAM Cipher Controller ASM (4)

30

4.5. Optimized Pipelined Architecture

In the pipelined architecture, the Datapath and Controller design from Basic Iterative

Architecture were used as a starting point. The optimized pipelined design can

process two 128-bit data blocks at a time. The Datapath design is the same as the

Basic Iterative Architecture with a few modifications in bus widths and addition of

components. To reduce the critical path, Registers were inserted in the Datapath

design of Basic Architecture.

Figure 17: Scream Datapath Pipelined

31

The critical path of the design lies through the round function of the cipher as it is the

longest path. By placing register experimentally at different locations, critical path

was tested by calculating Maximum clock frequency.

4.5.1. Register Insertion

Two registers were inserted in the Round function of the cipher, i.e., Ek_Step, one for

encryption and one for decryption, as shown in Figure 18. These registers also help

processing two blocks of data in parallel, with modifications in controller shown in

Section 3.5.2. They also help with reducing the critical path of the circuit. To process

two blocks of data in parallel and to maintain the timing and synchronization, datapath

design was also modified as shown in Figure 18.

4.5.2. Path Balancing

Changes made with respect to the basic iterative architecture are as follows

 One additional Tweak calculator was added, as shown in Figure 17, which

helps in achieving the synchronization, while processing the data.

 The sigma value increases once per two clock cycles, both for encryption and

decryption.

 An additional Reverse endian module was added to process second block of

data.

32

Figure 18: Ek_bidir Pipelined

33

4.5.3. Controller Modifications

The controller from the basic architecture is modified to meet the timing and

synchronize the design. Extra states and three additional signals ‘en1’, ‘en2’,

and ‘msb’ were added to the control logic to handle the new block of data as

shown in the figure. This design takes 21 clock cycles to complete the processing

of two blocks of data. The modified controller is as shown in the Figure 19.

34

Figure 19: SCREAM Controller Pipelined (1)

35

Figure 20: SCREAM Controller Pipelined (2)

36

Figure 21: SCREAM Controller Pipelined (3)

37

Figure 22: SCREAM Controller Pipelined (4)

38

5. AES-COPA

5.1. Introduction and Major features

AES-COPA [10] is CAESAR candidate which was designed by Elena Andreeva, Andrey

Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser and Kan Yasuda. The two

important parameters of AES-COPA are key length ‘k’ which can be either 16 bytes

(128 bits), 24 bytes (192 bits), or 32 bytes (256 bits) and tag length ‘τ’ which lies

between bytes (64 bits) and 16 bytes (128 bits). It also has nonce a.k.a public message

number of length 16 bytes (128 bits). The key size of AES-COPA is same as the key

size of the AES. AES-COPA does not support secret message number, It supports

variable length associated data and plaintexts.

5.2. Recommended Parameters:

There is only one recommended parameter set given in the specification.

 key length: 16 byte (128 bits) and tag length: 16 byte (128 bits).

5.3. Encryption and Decryption

The encryption takes public message number ‘N’, associated data ‘A’, and message ‘M’

as input and returns ciphertext ‘C’ and tag ‘T’. The decryption takes public message

number ‘N’, associated data ‘A’, ciphertext ‘C’ and tag ‘T’ as input and returns output ‘M’

if the tag is correct and otherwise null. Bit ‘P’ is also supplied as an input in both

39

encryption and decryption process indicating whether the last block of M was incomplete

and thus padding is applied.

First the associated data is processed to get a ‘V’ value as shown in the Figure 23.

Figure 23: Associated data processing

The encryption and decryption procedures of AES-COPA on such a (possibly padded)

message M [1].….M[d] of d 128-bit blocks and on a ciphertext C[1]…..C[d] is as shown

in the Figure 24. Each 128 bit block of message/ciphertext is XORed with ‘2(d-1)3L’ and

then processed through the AES the result is now XORed with ‘V’ and ‘L’ values and

then they are processed in AES and the result is then XORed with ‘2dL’ and stored as

ciphertext/message. All the intermediate values after first AES block are XORed and

stored as ‘S’ value as shown in the Figure 24, this value is used in the Tag generation.

40

Figure 24: Message/ Ciphertext processing

After encryption/decryption then next step is the tag calculation as shown in the Figure

25. In this step all the message blocks are XORed with each other and L value and then

are processed through the AES block and then the result is then XORed with S value

and processed through the AES block and the result is XORed with final L value and

then stored as Tag.

41

Figure 25: Tag Generation

5.4. Basic High-Speed Architecture

The Basic High-speed Architecture of AES-COPA has been divided in to a Datapath and

Controller as shown in the figure below.

5.4.1. Datapath Design

The associated data processing, plain text processing and tag processing requires two

Ek(AES) blocks as shown in Figure 27. So, in Basic High-Speed Architecture design two

AES encryption/decryption blocks AES_EncDec1 and AES_EncDec2 (as shown in

Figure 30) were used. The The ‘L’ value is processed by encrypting a block of zeros

through AES_EncDec1 and is stored in a register. Then using the Galois field

multiplication blocks, with different multipliers like multi2, multi3 and multi7 the ‘L’ value

is processed as shown in the Figure 26. The value of L is XORed with the associated

42

data or plaintext/ciphertext before sending through the AES block. After processing all

the associated data blocks through AES_EncDec1 then ‘V’ value is stored in a register.

After that, when first block of plaintext/ciphertext enters the AES_EncDec1 and

completely processed, AES_EncDec2 sits idle. After the first block is processed through

the AES_EncDec1 the result is sent for the further processing through AES_EncDec2.

At the same time second block of data is loaded in to the AES_EncDec1. This way

parallel processing is done through all the blocks. After processing all the

message/ciphertext blocks the tag is calculated using checksum (XOR of all input

blocks) value.

43

Figure 26: Delta value Calculation

44

Figure 27: AES-COPA Datapath

45

Figure 28: Multi 3, Multi 7, Delta

Figure 29: Multi 2

46

Figure 30: AES Datapath

5.4.2. Controller Design

Upon the reset the controller enters reset state and then if the key needs to be updated

then the next state is key_read and then based of key_valid signal Key scheduling is

done. After that L value is calculated and delta is initialized. If the key update is not

required then the controller enters the associated data processing initialization state

where if the bdi_valid is high then associated data processing starts, every time the

47

done1 signal goes high new block of associated data is processed till it reaches the last

block of associated data(i.e. when the bdi_eot goes high). After the associated data

processing, the controller enters in to encryption or decryption based on the value of

bdi_decrypt. In case of first block of encryption/decryption only the first AES core is

started. From the second block parallel processing is done in first AES core and second

core as described in AES-COPA datapath design. Every time the done signal goes high

new block of message/ciphertext is encrypted/decrypted till it reaches the last block of

message/ciphertext after which the controller waits for bdo_ready signal to write the

message to output. Once the encryption/decryption state is completed next state is tag

generation. In case of encryption the once the tag generation is completed controller

waits for bdo_ready to write the message to the output and then enters the reset state

whereas tag generation in decryption is slightly different than encryption because we

require all the messages for tag generation. So the controller waits for extra 10 clock

cycles to complete the processing of last block of data in AES_EncDec2 and then tag

generation is started and then enters the tag comparison state where tag is matched

with received tag and then controller goes to the reset state.

48

Figure 31: AES-COPA Controller (1)

49

Figure 32: AES-COPA Controller (2)

50

Figure 33: AES-COPA Controller (3)

51

Figure 34: AES Controller

5.5. Optimized Pipelined Architecture

In the pipelined architecture, the Datapath and Controller Design from Basic Iterative

Architecture were used as a starting point. The optimized pipelined design can process

two 128-bit data blocks at a time. The Datapath design is same as the Basic Iterative

Architecture with few modification in bus widths and addition of components as shown in

the Figure 35. To reduce the critical path, Registers were inserted in the Datapath

design of Basic Architecture. The critical path of the design lies in the round function of

the AES as it is the longest path.

52

Figure 35: AES-COPA Datapath Pipelined

53

5.5.1. Register Insertion

Two registers were inserted in the round function based on the critical path from basic

high-speed architecture, one register in round function and the other register in the

invround function of AES_EncDec in the Figure 36. The register insertion reduced the

critical path and increased the Maximum clock frequency.

Figure 36: AES Round Pipelined

54

5.5.2. Path Balancing

The path was balanced by changing the widths of the buses to 256 bits as shown in the Figure 35 and

additional Galois field multipliers were added in the datapath to generate the ‘2(d-1)3L’ value for the second

block of data as shown Figure 29. The AES_EncDec datapath was also modified to support two blocks of

data as shown in the

Figure 37.

55

Figure 37: AES Datapath Pipelined

56

Figure 38: Delta Value calculation Pipelined

Figure 39: Multi 3, Multi 7, Delta –Pipelined.

Figure 40: Multi 2 pipelined

57

5.5.3. Controller Modifications

The top-level controller was slightly modified to support the (d-1)th block of associated

data(from Figure 23) as shown in the figure. The flow of the main controller is mainly

dependent on the done signals from two AES cores done1 and done2 for processing

data. So the changes in the AES_EncDec controller were made accordingly to balance

the path.

Changes in the controller of AES_EncDec:

The Key scheduling in AES_EncDec remained the same but the data processing was

changed by adding four additional states. Three states were added to get the data

ready entering the round function and an additional state was added to process two

blocks of data at the same time. The round value increases by one per two clock cycles

and same round key is available for two clock cycles. The modified controller ASM chart

is as shown in the Figure 41.

58

Figure 41: AES Controller Pipelined

59

6. Minalpher

6.1. Introduction and Major Features

Minalpher [11] was submitted by NTT Secure Platform Laboratories, Mitsubishi Electric

Corporation, University of Fukui in CAESAR competition. It was designed by Yu Sasaki,

Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yumiko Murakami,

Mitsuru Matsui, Shoichi Hirose.

Minalpher supports two functionalities

i. Authenticated Encryption and Associated Data (AEAD)

ii. Message Authentication Code (MAC)

The construction is based on Kurosawa’s Tweakable block-cipher [3][4] from a

permutation based block-cipher by Even and Mansour[2].

Tweakable Even-Mansour

The Tweakable Even-Mansour is a Tweakable block cipher which is based on

permutation denoted by P. It operates on n bits such that n mod 2 = 0. Inverse of P is

denote by P-1. Modes of operation of Minalpher are based on Tweakable Even-Mansour.

The encryption and decryption algorithms are denoted by TEM_ENC and TEM_DEC

respectively. These algorithms are also useful in tag generation.

60

6.2. Recommended Parameters:

Recommended parameter set given in the specification.

 key length: 16 byte (128 bits) and tag length: 16 byte (128 bits).

6.3. Encryption and Decryption

The functionality followed for the encryption and decryption is AEAD. It consists of two

algorithms i.e. AEAD_ENC which is encryption algorithm and AEAD_DEC which is

decryption algorithm.

AEAD Encryption: The inputs to AEAD_ENC are a secret key ‘K’, nonce ‘N’, associated

data ‘A’ and message ‘M’ in return it gives the ciphertext ‘C’, tag or a reject symbol as

the output.

AEAD Decryption: The input to AEAD_DEC are a secret key ‘K’, nonce ‘N’, associated

data ‘A’ ciphertext ‘C’ and tag in return it gives message ‘M’ or the reject symbol as the

output.

Both AEAD_ENC and AEAD_DEC does not accept inputs that do not satisfy the

following conditions and return reject symbol as output.

 a secret key, denoted by ‘K’, such that K ∈ {0, 1}n/2,

 a nonce, denoted by ‘N’, such that N ∈ {0, 1}n/2-s,

 associated data, denoted by ‘A’, such that A ∈ {0, 1}*,

 a message, denoted by ‘M’, such that M ∈ {0, 1}*,

 a ciphertext, denoted by ‘C’, such that |C| mod n = 0 and |C| ≥ n, and

 a tag, denoted by tag, such that |tag| = l,

Where n=256 and s= 24.

61

Minalpher-P:

Minalpher-P is a primitive permutation function which maps 256-bit input value to a 256-

bit output value. The P block in Figure 43 is Minalpher P. Minalpher P has round function

R which consists of a four permutation functions as shown.

 S-function

 T-function

 M-function

 E-function

Number of rounds is denoted by ‘r’ where r = 17(recommended). Let the number of

rounds be r + 0.5. The following are performed from i= 1 to r. The input to the function is

as shown

Xi <= R(Xi-1, E(i-1))

R(X, E) is the round function and is denoted by

R(X, E(i)) <= M o T o S(X) ⊕ E(i)

Last round(half round) is as follows

Xr+1 <= T o S(Xr)

62

Figure 42: Round Function

SN in the Figure 42 stands for subnibbles where each nibble in the state into another

value by using 4-bit S-box where s is the permutation. SR is the shufflerows which

shuffles the nibble positions within each row. SR consists of 2 different shuffle functions

SR1 and SR2 with different set of permutations. SM is swap matrices which swaps the

matrix Ai for the matrix Bi as shown in Figure 42. XM is XOR matrix where matrix A is

XORed with matrix B and assigned to Bxm. MC is mixcolumns which is a linear function

which can be expressed as multiplication by the following matrix.

[

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

]

Then there is addition of round constant RCi-1 calculated from the round number i and its

matrix.

63

Figure 43: Associated data and plaintext processing.

6.4. Basic High-Speed Architecture

6.4.1. Datapath Design:

The Datapath design of Minalpher consists of two TEM cores TEM_M and TEM_AUX

which acts as the permutation block as shown in the Figure 44. The values of message,

ciphertext, associated data, public message number and key are registered before

processing them. Firstly the value of L is calculated by concatenating the key, flag and

nonce value and then encrypting it and then the result is processed through galois field

multiplication and the result is stored as ‘t’. The tweak value is calculated based on the

values of ‘i’ and ‘j’ per each block of data. The associated data blocks are processed

64

through the TEM_AUX block and stored. After that message blocks are processed

through the TEM_M blocks. After each message block is processed through the

TEM_M, then the resulting value is sent through the TEM_AUX for the calculation of tag.

After all the message blocks are processed then the value of tag is calculated.

Figure 44: Minalpher Datapath

65

TEM_AUX and TEM_M blocks are shown clearly in Figure 45 and Figure 46. Both

consists of tweak calculator which takes the values ‘i’, ‘j’ and previous ‘L’ value as an

input and process the next L. Minalpher_P block is the permutation block which consists

of subnibbles, shufflerows, swap-matrix, mixcolumn and add round constant as shown in

Figure 47 and Figure 48. Each block is processed 17 rounds through the permutation

function i.e. each block of data takes 17 clock cycles to give the output.

Figure 45: TEM_AUX

66

Figure 46: TEM

67

Figure 47: Minalpher_P

68

Figure 48: Minalpher_P forward

69

6.4.2. Controller Design:

 Upon the reset the controller enters the initialization state and if key need to be updated

the new key is loaded and then the associated data initialization is started and then the

‘γa’ value i.e., the subkey is calculated and registered. Then, if the bdi_valid is high the

associated data is loaded and processed through the Minalpher_P block. After each

value of associated data is processed, the value is XORed with previously processed

associated data and stored in the register. After processing all the blocks of associated

data, if the bdi_ready and bdi_valid are high, then the plaintext is loaded and XORed

with ‘Ψm‘ then it processed through Minalpher_P and then the ciphertext is collected.

This Ciphertext is again processed through Minalpher_P block and stored in a register

‘T’. Similarly after each ciphertext is processed through the Minalpher_P blocks and

XORed with previous block and stored in Register ‘T’. This value helps in the calculation

of Tag. After all the plaintext processing is done then the value of Tag is calculated. The

‘T’ value is processed through the Minalpher_P block to calculate the Tag.

TEM Controller:

Separate controller was also developed to handle the TEM blocks which starts

processing of data on the start signals from main controller the and at the end of

processing of each block will provide a signal TEM_finished as shown in the Figure 53.

70

Figure 49: Minalpher Controller (1)

71

Figure 50: Minalpher Controller (2)

72

Figure 51: Minalpher Controller (3)

73

Figure 52: Minalpher Controller (4)

Figure 53: TEM Controller

74

6.5. Optimized Pipelined Architecture:

In the pipelined architecture, the Datapath and Controller Design from Basic Iterative

Architecture were used as a starting point. The optimized pipelined design can process

two 256-bit data blocks at a time. The Datapath design is same the Basic Architecture

with few modification in bus widths and addition of components. To reduce the critical

path, registers were inserted in the Datapath design of Basic Architecture. The critical

path of the design lies in the round function of the TEM_M and TEM_AUX as it is the

longest path.

Figure 54: TEM_AUX Pipelined

75

Figure 55: TEM Pipelined

6.5.1. Register Insertion:

Two registers were inserted in the Minalpher_P block, one in the encryption path and

other in the decryption path as shown in the Figure 56 and one register was inserted in

the Minalpher_P_FWD block as shown in Figure 57. The register insertion has reduced

critical path and increased the maximum clock frequency.

76

Figure 56: Minalpher_P Pipelined

77

Figure 57: Minalpher_P forward Pipelined

78

6.5.2. Path Balancing

Path balancing was achieved by changing the widths of the buses to 256 as shown in

Figure 54 and Figure 55. The Tweak generator in TEM_AUX and TEM_M was

duplicated for the calculation of the tweak for the second block of data. The output from

the first tweak generator was given to the second tweak generator to generate the

second tweak. An additional register was placed at the output of the Minalpher_P to hold

the first block of data till the last round of second block of data was processed as shown

in Figure 54 and Figure 55.

6.5.3. Controller Modifications

There were no modifications in the top level controller. As the control was totally

dependent of TEM_finished signal. Changes were made in the lower level TEM_M and

TEM_AUX controllers. Four additional signals en1, en3, en4 and msb and two additional

states were added to handle the processing of the second block of data as shown in the

Figure 58. One state for initialize the second block and second state to control the round

for two blocks of data.

79

Figure 58: TEM Controller Pipelined

80

7. OCB

7.1. Introduction and Major features

OCB [8] was submitted and designed by Ted Krovetz and Phillip Rogaway in CAESAR

competition. OCB was designed to have following features fast, provably secure,

parallel, timing-attack resistant, online and Static AD. OCB is an AEAD scheme that

depends on a block cipher. The block cipher must have 128 bit block size. In this design

we made a choice of AES 128 as a block cipher. OCB uses nonce ‘N’ encryption and

decryption which should be distinct for each encryption operation. After encrypting

plaintext ‘P’ in the presence of associated data ‘A’ the cipher outputs the ciphertext ‘C’ of

same length as ‘P’ and additionally authentication tag.

7.2. Recommended Parameters:

Recommended parameter set given in the specification.

 key length: 16 byte (128 bits) and tag length: 16 byte (128 bits).

7.3. Encryption and Decryption

As mentioned earlier the encryption and decryption in OCB are dependent on the

blockcipher.

81

Encryption: OCB encrypt function accepts key, nonce, associated data and plaintext as

input. Initialization is done by calculation of key dependent variable i.e. L, double L. After

the initialization the plaintext is divided in to sequence of 128 bit blocks. Next step is to

calculate nonce dependent variables and per-encryption variables i.e bottom, Ktop,

stretch, offset_0, checksum_0. Then the full block encryption takes place following which

partial block is padded and encrypted. After all the plaintext blocks are encrypted then

the tag calculation takes place. Finally ciphertext and tag are assembled together and

sent as the output.

Decryption: OCB Decrypt function works similar to OCB Encrypt with few modifications.

The blockcipher in OCB decrypt works in decrypt mode. OCB decrypt function accepts

key, nonce, associated data, ciphertext and tag. Initialization is done by calculation of

key dependent variable i.e. L, double L. After the initialization the ciphertext is divided in

to sequence of 128 bit blocks. Next step is to calculate nonce dependent variables and

per-encryption variables i.e bottom, Ktop, stretch, offset_0, checksum_0. Then the full

block decryption takes place following which partial block is padded and decrypted

checksum is also calculated in parallel. After all the ciphertext blocks are decrypted then

the tag calculation takes place. The calculated tag and received tag are compared and

validated. If the tag is valid then the plaintext blocks are assembled and sent to the

output else the invalid flag is set high.

82

7.4. Basic High-Speed Architecture

7.4.1. Datapath Design:

The Datapath design of OCB consists of AES 128 core as shown in the Figure 59 which

is used as a block cipher. The 128 bit key is loaded in four clock cycles i.e. 32 bits in

each clock cycle. After which the L value is calculated by encrypting block of zeros using

the key. Then, the key dependent variable L and double_L are calculated and are stored

in a RAM. After which the associated data is processed using the AES_EncDec. The

processed associated data is XORed with the previously processed associated and

stored as Sum. This sum is useful later during the tag calculation. Before processing the

message the nonce dependent variables called bottom, ktop, and stretch are calculated.

Then, the plaintext processing is started by loading 128 bits of plaintext for processing

each time. After processing all the blocks of data, the tag value is calculated by XORing

checksum_m(XOR of all input values), offset_m and L value and then processing it

through the AES_EncDec. If we are running cipher in the decryption mode then the tag

verification is done after this step.

The AES 128 block that we used in this design consists of a mixed round which helps in

calculation of both round as well as inverse round and the datapath is as shown in

Figure 60.

83

Figure 59: OCB Datapath

Figure 60: AES Datapath

84

Figure 61: Mixed Round

7.4.2. Controller Design:

Upon the reset the controller enter the initialization state as shown in the Figure 62.

Then, next step is Key check where it checks whether the key update is required or not.

If key_update is high then controller moves to the load keys state, it takes 4 clock cycles

to load the key completely (i.e. 32 bits in each clock cycle). Then, the next state is key

initialization where the value for L (key dependent variable) value is calculated and

stored. Then, in the next state the controller waits for the data, when the bdi_type is

nonce then Ktop is calculated and if the bdi_type is message/ciphertext then the

encryption/decryption starts based on decrypt equals to low/high respectively. Once the

data is completely processed (i.e. bdi_eoi is high) then the next state is Tag calculation.

After Tag calculation the controller goes back to the initialization state.

85

Figure 62: OCB Controller (1)

86

Figure 63: OCB Controller (2).

87

Figure 64: OCB Controller (3)

88

Figure 65: OCB Controller (4)

89

Figure 66: OCB controller (5)

7.5. Optimized Pipelined Architecture:

In the pipelined architecture, the Datapath and Controller Design from Basic Iterative

Architecture were used as a starting point. The optimized pipelined design can process

two 128-bit data blocks at a time. The Datapath design is same the Basic Architecture

with few modification in bus widths and addition of components. To reduce the critical

90

path, registers were inserted in the Datapath design of Basic Architecture. The critical

path of the design lies in the round function of the AES as it is the longest path.

Figure 67: OCB Datapath Pipelined

91

7.5.1. Register Insertion

Two registers were inserted in the mixed round function of AES as shown in the Figure

68 to reduce the critical path. This register helps in processing two blocks of data in

parallel. Due to the insertion of this register the maximum frequency was increased.

Figure 68: AES Mixed Round Pipelined

7.5.2. Path Balancing

The width of bdi and bdo were changed to 256 bits. In the new design, additional set of
key dependent variables i.e. L_2, double_L_2 are pre-calculated and stored in RAM and

92

nonce dependent variables i.e. bottom_2, ktop_2 and stretch_2 were calculated to help
the processing of second block of data as shown in the

Figure 67. Changes were made in the AES datapath as shown in the Figure 69.

Additional register was added at the output of the mixed round function to hold the value

of first block after processing until the second block was processed.

93

Figure 69: AES Datapath pipelined

7.5.3. Controller Modification

There were no changes in the top level controller. Changes in the AES controller were

made.

Changes in the controller of AES:

The Key scheduling in AES_EncDec remained the same but the data processing was

changed by adding four additional states. Three states were added to get the data

ready entering the round function and an additional state was added to process two

94

blocks of data at the same time. The round value increases by one per two clock cycles

and same round key is available for two clock cycles. The modified controller ASM chart

is as shown in the Figure 70.

Figure 70: AES Controller Pipelined

95

8. AES-OTR

8.1. Introduction and Major features

AES-OTR [9] was submitted by NEC Corporation, Japan which was designed by

Kazuhiko Minematsu. It is a blockcipher mode of operation to perform an encryption with

associated data. OTR stands for Offset Two-Round. The encryption/decryption

algorithm uses AES as the block cipher. The encryption function accepts key, nonce,

associated data and plaintext as the input and provides ciphertext and tag as the output.

The decryption function accepts the key, nonce, associated data and ciphertext as the

input and provides plaintext as output when tag matches (|M| = |C|) otherwise rejection

symbol is sent as an output. For processing the associated data there are two distinct

types of associated data processing (ADP) techniques Serial ADP and Parallel ADP. In

this project we used parallel ADP.

8.2. Recommended Parameters:

There are four different parameter sets recommended in specification.

 Primary recommendation: 16-byte (128 bits) key, 12-byte nonce (102 bits), 16-

byte tag (128 bits), and parallel ADP.

 Secondary recommendation: 16-byte (128 bits) key, 12-byte (102 bits) nonce,

16-byte (128 bits) tag, and serial ADP.

96

 Third recommendation: 32-byte (256 bits) key, 12-byte (102 bits) nonce, 16-byte

(128 bits) tag, and parallel ADP.

 Fourth recommendation: 32-byte (256 bits) key for AES-256, 12-byte (102 bits)

nonce, 16-byte (128 bits) tag, and serial ADP.

We used primary recommendation in this project.

8.3. Encryption and Decryption

First step in encryption process is partition the plaintext in to 128 bit blocks i.e.

(M[1],M[2]...,M[m])←M. Let us assume 256 bit blocks of plaintext be to be (M[1], . . .

,M[ℓ])←M. For every i < ℓ the ith chunk M[i] = M[2i − 1],M[2i]) is encrypted with the help of

two-round feistel permutation with masks as shown in the following equations

C[2i − 1] = EK(2i−1L ⊕M[2i − 1]) ⊕M[2i]

C[2i] = EK(2i−13L ⊕ C[2i − 1]) ⊕M[2i − 1]

L in the above mentioned equation is obtained by encrypting the nonce with tag-length.

For the last chunk of plaintext the encryption process is slightly different. If the number of

bits in last chunk is greater than 128 bits then a variant of two-round feistel permutation

is is applied for encryption of this plaintext and if number of bits in last chunk is less than

128 bits then variant of CTR mode is applied as shown in the Figure 71.

97

Figure 71: AES-OTR Encryption

As mentioned earlier there are two variants for processing associated data, serial ADP

and parallel ADP. As per the primary recommendation we used parallel ADP in this

implementation. In Parallel ADP it uses a parallelizable pseudorandom function which is

a variant of PMAC. Untrancated data tag TA is calculated by processing associated data

as shown in Figure 72.

98

Figure 72: Parallel ADP

For tag calculation the Σ value and L value from Figure 71 and TA value from the Figure

72 are used. The Σ value is XORed with L value and Encrypted then the result is XORed

with the TA value to obtain tag as shown in the Figure 73.

Figure 73: Tag calculation.

99

8.4. Basic High-Speed Architecture

8.4.1. Datapath Design:

The Datapath design of AES-OTR consists of AES key on the fly function used for the

Ek block as shown in the Figure 74. It consists of galois field multiplication by 4 and

multiplication by 2 fields. It also consists of padding block for the incomplete blocks. The

value of key, nonce, and public message number are registered. The data flow in the

datapath is as follows: Initially the key is loaded and then the ‘Q’ value and gamma value

are calculated from the nonce. After that the associated data processing is started, each

processed data block is XORed with next block and then that value is registered. Same

procedure is repeated until last block and then the resulting value is again processed

through the AES block and then stored as TA shown in Figure 72. Then, the plaintext

processing is started. The encryption/decryption process in AES-OTR is quite different,

when compared to the other algorithms. It consists of fiestel structure where the even

plaintext/ciphertext block depends on the values odd plaintext/ciphertext as shown in the

Figure 71. After the encryption then next step is tag calculation where the checksum

value is encrypted and XORed with the TA value to get the tag value.

100

Figure 74: AES KOF Datapath

Figure 75: AES KOF Round

101

8.4.2. Controller Design:

Upon the reset the controller enters the initialization state. Then, the next state is wait

state where the controller checks whether a new input is available first then it checks for

the key update. If the key update is high next state is wait for key and whenever key is

ready, key is initialized. After key update next state is wait for public message number,

after loading public message number next state is initialize message where controller

waits for message initialization delay then the controller moves to the next state i.e. wait

for message, in this state, based on the value of bdi_type controller decides the further

processing. If the bdi_type is associated Data then next state will be associated data

processing, if the bdi_type is message/ciphertext then next state will be process data

state where message/ciphertext will be encrypted/decrypted. Once all the blocks are

processed next state is tag generation and if its decryption then next step is tag

authentication where the tag is checked with the tag received. After this controller goes

back to the initialization state.

102

Figure 76: AES OTR Controller (1)

103

Figure 77: AES OTR Controller (2)

104

Figure 78: AES OTR Controller (3)

105

Figure 79: AES KOF Controller

8.5. Optimized Pipelined Architecture:

In the pipelined architecture, the Datapath and Controller Design from Basic Iterative

Architecture were used as a starting point. The optimized pipelined design can process

two 128-bit data blocks at a time. The Datapath design is same as the Basic Architecture

with few modification in bus widths and addition of components. To reduce the critical

path, registers were inserted in the Datapath design of Basic Architecture. The critical

106

path of the design lies in the round function of the AES as it is the longest path. This

design was different when compared to the other designs due to the feistel structure and

the data dependency between odd and even blocks. The pipelined architecture works in

the following way: The value of first block and third Block are simultaneously loaded and

processed then the second and fourth blocks are loaded and they are processed with

the help of first and third blocks.

8.5.1. Register Insertion

Register was inserted in the round function of AES_KOF function as shown in the Figure

80. Due to the insertion of this register the Maximum clock frequency from basic

architecture was increased.

Figure 80: AES KOF Round Pipelined

107

8.5.2. Path Balancing

The Path balancing was done by pre-calculating the values of gamma for second block

of associated data processing and pre-calculating the L value for the for second block of

plaintext/ciphertext.

Figure 81: AES-OTR Pipelined

108

8.5.3. Controller Modifications

The Top level controller was slightly modified because after the critical path was shifted

to the following signals after the register insertion in AES_KOF so, the signals ‘ctr’ and

no_msg_flag were registered to reduce the critical path.

Changes in the controller of AES_KOF: The data processing was changed by adding

four additional states. Three states were added to get the data ready entering the round

function, one additional state was added to process two blocks of data at the same time

and the additional. The round value increases by one per two clock cycles and same

round key is available for two clock cycles. The modified controller ASM chart is as

shown in the Figure 82.

Figure 82: AES KOF Controller Pipelined

109

9. Performance Evaluation

Performance of each candidate was evaluated based on the area occupied by

the design and improvement in the maximum clock frequency and throughput. All

the following results were generated targeting the largest available FPGA in the

student version of Xilinx ISE, i.e., Xilinx Virtex 6 XC6VLX75T-3FF784.

Formula for Throughput Calculation of each candidate:

Basic Architecture:

Table 2: Throughput Calculation Formula: Basic Architecture

Candidate Throughput Formula

SCREAM (128/11)*fclk ≈ 11.63*fclk

AES-COPA (128/11)*fclk ≈ 11.63*fclk

AES-OTR (128/12)*fclk ≈ 10.66*fclk

MINALPHER (256/19)*fclk ≈ 13.47*fclk

OCB (128/12)*fclk ≈ 10.66*fclk

fclk = Clock Frequency

110

Pipelined Architecture:

Table 3: Throughput Calculation Formula: Pipelined Architecture

Candidate Throughput Formula

SCREAM (256/23)*fclk ≈ 11.13*fclk

AES-COPA (256/23)*fclk ≈ 11.13*fclk

AES-OTR (256/24)*fclk ≈ 10.66*fclk

MINALPHER (512/38)*fclk ≈ 13.47*fclk

OCB (256/24)*fclk ≈ 10.66*fclk

fclk = Clock Frequency

9.1. Implementation Results

The following tables are the implementation results of Basic Architecture Design

versus the Pipelined Design. Table 44 shows the comparison of maximum clock

frequency in Basic Architecture and Pipelined Architecture.

111

Table 4: Maximum Clock Frequency comparison.

Candidate

Maximum Clock Frequency (MHz)

Basic Architecture Pipelined Architecture

SCREAM 92 170

AES-COPA 120 210

AES-OTR 150 235

MINALPHER 168 222

OCB 172 221

Table 5: Throughput Comparison.

Candidate

Throughput (Mbits/sec)

Basic Architecture Pipelined Architecture

SCREAM 1071 1892

AES-COPA 1396 2337

AES-OTR 1600 2507

MINALPHER 2264 2991

OCB 1835 2357

112

Table 55 shows the comparison of Throughput in Basic Architecture and

Pipelined Architecture.

Table 66 shows the comparison of Area expressed in LUTs in Basic Architecture

and Pipelined Architecture.

Table 6: Area Comparison (expressed in LUTs).

Candidate

Area (LUTs)

Basic Architecture Pipelined Architecture

SCREAM 3644 3968

AES-COPA 4902 6484

MINALPHER 7836 11285

OCB 3312 3673

AES-OTR 5058 7443

Error! Not a valid bookmark self-reference.7 shows the comparison of

Area expressed in Slices in Basic Architecture and Pipelined Architecture.

Table 88 shows the comparison of Throughput to Area ratio (Area expressed

in LUTs) in Basic Architecture and Pipelined Architecture.

113

Table 7: Area Comparison (expressed in Slices)

Candidate

Area (Slices)

Basic Architecture Pipelined Architecture

SCREAM 1546 2442

AES-COPA 2216 4431

MINALPHER 3974 5915

OCB 1742 2905

AES-OTR 2219 3637

Table 8: Throughput to Area ratio (Area expressed in LUTs)

Candidate

Throughput/Area (Mbits/sec LUTs)

Basic

Architecture

Pipelined

Architecture

SCREAM 0.29 0.48

AES-COPA 0.28 0.36

AES-OTR 0.32 0.34

MINALPHER 0.29 0.27

OCB 0.55 0.64

114

Table 9: Throughput to Area ratio (Area expressed in Slices)

Candidate

Throughput/Area (Mbits/sec Slices)

Basic Architecture Pipelined

Architecture

SCREAM 0.69 0.77

AES-COPA 0.63 0.53

AES-OTR 0.72 0.69

MINALPHER 0.57 0.51

OCB 1.05 0.81

Table 99 shows the comparison of Throughput to Area ratio (Area expressed in

LUTs) in Basic Architecture and Pipelined Architecture.

9.2. Analysis of Results

From the tabulated data the graphs have been visualized as shown in Figure 83, Figure

84, Figure 85, Figure 86, Figure 87, and Figure 88. We can see that the candidate

SCREAM has gained 84% increase in its maximum clock frequency. AES-COPA has

gained 75% increase in its maximum clock frequency. MINALPHER has gained 39.88%

increase in its maximum clock frequency. OCB has gained 28.49% increase in its

maximum clock frequency. AES-OTR has gained 56% increase in its maximum clock

frequency.

115

Figure 83: Plot - Maximum Clock Frequency- Basic Architecture vs Pipelined
Architecture

Figure 84: Plot - Throughput- Basic Architecture vs Pipelined Architecture

92 120 150 168 172170 210 235 222 221
0

50

100

150

200

250

SCREAM AES-COPA AES-OTR MINALPHER OCB

M
ax

im
u

m
 C

lo
ck

 F
re

q
u

en
cy

Basic Architecture Pipelined Architecture

x1.84

x1.75
x1.32x1.56

x1.28

1071 1396 1600 2264 18351892 2337 2507 2991 2357
0

500

1000

1500

2000

2500

3000

3500

SCREAM AES-COPA AES-OTR MINALPHER OCB

Th
ro

u
gh

p
u

t

Basic Architecture Pipelined Architecture

x1.77

x1.67 x1.28

x1.32

x1.57

116

Figure 85: Plot – Area Comparison (expressed in LUTs)

Figure 86: Plot - Area Comparison (expressed in Slices)

3644 4902 5058 7836 33123968 6484 7443 11285 3673

0

2000

4000

6000

8000

10000

12000

SCREAM AES-COPA AES-OTR MINALPHER OCB

A
re

a(
LU

Ts
)

Basic Architecture Pipelined Architecture

x1.08

x1.32

x1.44

x1.47

x1.10

1546 2216 2219 3974 17422442 4431 3637 5915 2905
0

2000

4000

6000

8000

10000

12000

SCREAM AES-COPA AES-OTR MINALPHER OCB

A
re

a(
Sl

ic
es

)

Basic Architecture Pipelined Architecture

x1.58

x1.99
x1.64

x1.67

x1.49

117

Figure 87: Plot - Throughput to Area Ratio (Area expressed in LUTs)

Figure 88: Plot - Throughput to Area Ratio (Area expressed in Slices)

0.29 0.28 0.32 0.29 0.550.48 0.36 0.34 0.27 0.64
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

SCREAM AES-COPA AES-OTR MINALPHER OCB

Th
ro

u
gh

p
u

t/
#L

U
Ts

Basic Architecture Pipelined Architecture

x1.62

x1.27

x1.16

x0.92
x1.06

0.69 0.63 0.72 0.57 1.050.77 0.53 0.69 0.51 0.81
0.00

0.20

0.40

0.60

0.80

1.00

1.20

SCREAM AES-COPA AES-OTR MINALPHER OCB

Th
ro

u
gh

p
u

t/
#

Sl
ic

es

Basic Architecture Pipelined Architecture

x1.12

x0.84

x0.77

x0.89

x0.96

118

10. Conclusions

The improvement in Maximum clock frequency and Throughput depends on the

algorithm and its critical path. We can say that the candidate with the lowest value in the

Basic Architecture has achieved the highest amount of gain in the percentage increase

of maximum clock frequency and throughput in Pipelined Architecture. Our results have

demonstrated the improvement in the Clock Frequency by a factor varying from x1.28 for

OCB to x1.84 for SCREAM, the improvement in the Throughput by a factor varying from

x1.28 for OCB to x1.77 for SCREAM, and the improvement in the Throughput to Area

ratio (with Area expressed using LUTs) by a factor varying from x0.92 for Minalpher to

x1.62 for SCREAM. Improvement in Throughput/#LUTs was observed in four candidates

except Minalpher. Improvement in Throughput/#Slices was observed in one candidate

i.e. SCREAM. Pipelined implementation performance wise, the top 3 candidates are

SCREAM, AES-COPA, and AES-OTR. The candidates MINALPHER and OCB fall at the

bottom as there was not much improvement in their maximum clock frequency and

throughput after pipelining.

119

Bibliography

[1] M. Liskov, R. L. Rivest, and D. Wagner, Tweakable block ciphers, J. Cryptology, 24

(2011), pp. 588–613.

[2] Shimon Even and Yishay Mansour. A Construction of a Cipher from a Single

Pseudorandom Permutation. Journal of Cryptology, 10(3):151{162, 1997.

[3] Kaoru Kurosawa. Power of a public random permutation and its application to

authenticated-encryption. IACR Cryptology ePrint Archive, 2002:127, 2002.

[4] Kaoru Kurosawa. Power of a public random permutation and its application to

authenticated encryption. IEEE Transactions on Information Theory, 56(10):5366-5374,

2010.

[5] ATHENa results database. http://cryptography.gmu.edu/athenadb/. Automated Tool

for Hardware EvaluatioN project.

[6] Vincent Grosso, Gaetan Leurent, Francois-Xavier Standaert, Kerem Varici, Francois

Durvaux, Lubos Gaspar, and Stephanie Kerckhof. SCREAM and iSCREAM. Submission

to CAESAR, March 2014.

[7] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand, Malik

Umar Sharif, and Kris Gaj. Gmu hardware api for authenticated ciphers. Cryptology

ePrint Archive, Report 2015/669, 2015. http://eprint.iacr.org/.

[8] Ted Krovetz and Phillip Rogaway. The OCB Authenticated-Encryption Algorithm.

Submission to CAESAR, May 2014.

[9] Kazuhiko Minematsu. AES-OTR v3.1. NEC Corporation, Japan. Submission to

CAESAR, September 2016.

[10] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser,

and Kan Yasuda. AES-COPA v.2. Dept. Electrical Engineering, ESAT/COSIC, KU

Leuven, Belgium, iMinds, Belgium, DTU Compute, Technical University of Denmark,

Denmark, NTT Secure Platform Laboratories, Japan. Submission to CAESAR.

http://eprint.iacr.org/

120

[11] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara,

Yumiko Murakami, Mitsuru Matsui, Shoichi Hirose. Minalpher v1.1. NTT Secure Platform

Laboratories, Mitsubishi Electric Corporation, University of Fukui, Submission to

CAESAR, August 2015.

[12] K. Gaj and P. Chodowiec, "Comparison of the Hardware Performance of the AES

Candidates Using Reconfigurable Hardware," Proc. 3rd Advanced Encryption Standard

Conference, New York, April 2000, pp. 40-54.

[13] P. Chodowiec, P. Khuon, and K. Gaj, "Fast Implementations of Secret-Key Block

Ciphers Using Mixed Inner- and Outer-Round Pipelining," ACM/SIGDA Ninth

International Symposium on Field Programmable Gate Arrays, Monterey, CA, Feb.

2001, pp. 94-102.

[14] K. Gaj and P. Chodowiec, "Fast Implementation and Fair Comparison of the Final

Candidates for Advanced Encryption Standard using Field Programmable Gate Arrays,"

LNCS 2020, Progress in Cryptology - CT-RSA 2001, Ed. D. Naccache, RSA Conference

2001 - Cryptographers' Track, San Francisco, Apr. 2001, pp. 84-99.

[15] E. Homsirikamol, M. Rogawski, and K. Gaj, "Throughput vs. Area Trade-offs in

High-Speed Architectures of Five Round 3 SHA-3 Candidates Implemented Using Xilinx

and Altera FPGAs," in LNCS 6917, Cryptographic Hardware and Embedded Systems -

CHES 2011, Nara, Japan, Sep. 28-Oct. 1, pp. 491-506.

[16] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M.U. Sharif, and K. Gaj, "A

Universal Hardware API for Authenticated Ciphers," 2015 International Conference on

Reconfigurable Computing and FPGAs, ReConFig 2015, Mayan Riviera, Mexico, Dec.

7-9, 2015.

[17] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M.U. Sharif, and K. Gaj

"GMU Hardware API for Authenticated Ciphers," Cryptology ePrint Archive: Report

2015/669, first version - July 2015.

[18] W. Diehl and K. Gaj, "RTL Implementations and FPGA Benchmarking of Three

Authenticated Ciphers Competing in CAESAR Round Two," 19th Euromicro Conference

on Digital System Design - DSD 2016, Limassol, Cyprus, Aug. 31-Sep. 2, 2016.

121

Curriculum Vitae

Sanjay Deshpande received his Bachelors of Technology degree from the Jawaharlal
Nehru Technological University, India in 2014. He was ranked among the top 3 students
in the university. He has been involved in teaching various undergraduate courses at
George Mason University. He was also involved as a Research Assistant in
Cryptographic Engineer Research Group (CERG) with interest in High Speed
implementation of CAESAR candidates.

