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Abstract 
 

 

ANALYSIS AND INNER-ROUND PIPELINED IMPLEMENTATION OF SELECTED 
PARALLELIZABLE CAESAR COMPETITION CANDIDATES  
 
Sanjay Deshpande, M.S. 
 
George Mason University, 2016 
 
Thesis Director: Dr. Kris Gaj 
 
 

 

In this thesis, we have first characterized candidates of the Competition for 

Authenticated Encryption, Security, Applicability, and Robustness (CAESAR). Then, we 

have chosen five candidates from the Round 2 and Round 3 submissions, namely 

SCREAM, AES-COPA, Minalpher, OCB, and AES-OTR. We first obtained the initial 

estimates of the Maximum Clock Frequency, Throughput, Area, and Critical path from 

the Basic Iterative High Speed Architecture. Then, we implemented the inner-round 

pipelining for all the selected algorithms to improve the Frequency and Throughput by 

reducing Critical path and processing multiple blocks of data simultaneously. We 

targeted the largest available FPGA in the student version of Xilinx ISE, i.e., Xilinx Virtex 

6 XC6VLX75T-3FF784. Our results have demonstrated the improvement in the Clock 

Frequency by a factor varying from x1.28 for OCB to x1.84 for SCREAM, and the 

improvement in the Throughput to Area ratio (with Area expressed using LUTs) by a 

factor varying from x0.96 for Minalpher to x1.70 for SCREAM.
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1. Introduction 
 
 
 

Encryption is the most effective way to achieve data security. The primary purpose of 

encryption is to protect the confidentiality of digital data stored on computer systems or 

transmitted via the Internet or other computer networks. Modern encryption algorithms 

play a vital role in the security assurance of IT systems and communications as they can 

provide not only confidentiality, but also the following key elements of security 

Authentication: The origin of a message can be verified. 

Integrity: Proof that the contents of a message have not been changed since the 

message was sent. 

Non-repudiation: The sender of a message cannot deny sending the message. 

 

1.1. Authenticated Encryption: 

1.1.1. What is Authenticated Encryption? 

Authenticated Encryption (AE) or Authenticated Encryption with Associated Data (AEAD) 

is a cryptographic algorithm that simultaneously provides confidentiality, integrity, and 

authentication of message; decryption is combined in single step with integrity 

verification. The Authenticated ciphers takes plaintext message, associated data AD, a 

public message number Npub, and an optional secret message number Nsec as an 
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input and provide resulting ciphertext C, tag T, and optional encrypted Nsec.  The 

ciphertext C, and optional encrypted Nsec are computed as a function of Npub, Nsec, 

AD, message, and key and this transformation ensures the confidentiality of the 

transaction. At the end of plaintext encryption a tag T is produced which is a keyed-hash 

function computed from all blocks of the AD and plaintext, as well as Npub, Nsec, and 

key. The tag is appended to the end of the ciphertext to assure and verify the integrity 

and authenticity of the transaction as shown in the Figure 1. Decryption of the ciphertext 

and optional encrypted Nsec is conducted in a similar fashion. Identical parameters, 

including AD, key, and message numbers, are required for validation. Tag’ is then 

computed as above, and verified against the concatenated Tag. If Tag = Tag’ then 

authentication and integrity of the transaction are assured; otherwise the decrypted 

ciphertext is not released. If authenticity and integrity are verified, the outputs of the 

transaction are the AD, plaintext, and optional decrypted Nsec. 

 

 

 

 

Figure 1: Input and Output of an Authenticated Cipher. Notation: Npub - Public Message 
Number, Nsec - Secret Message Number, Enc Nsec - Encrypted Secret Message 

Number, AD - Associated Data 
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A typical programming interface for Authenticated Encryption provides the following 

functions. 

Encryption: 

Input: plaintext, key, and optionally a header in plaintext that will not be encrypted, but 

will be covered by authenticity protection. 

Output: ciphertext and authentication tag (Message Authentication Code). 

Decryption: 

Input: ciphertext, key, authentication tag, and optionally a header. 

Output: plaintext, or an error if the authentication tag does not match the supplied 

ciphertext or header. 

1.1.2. Applications and Advantages of Authenticated Encryption 

Authenticated encryption can provide plaintext awareness and security against chosen 

ciphertext attacks. In these attacks, an adversary attempts to gain an advantage against 

a cryptosystem (e.g., information about the secret decryption key) by submitting carefully 

chosen ciphertexts to some decryption oracle and analyzing the decrypted results. 

Authenticated encryption schemes can recognize improperly-constructed ciphertexts 

and refuse to decrypt them. This in turn prevents the attacker from requesting the 

decryption of any ciphertext unless he generated it correctly using the encryption 

algorithm, which would imply that he already knows the plaintext. Implemented correctly, 

this removes the usefulness of the decryption oracle, by preventing an attacker from 

gaining useful information that he does not already possess. 
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1.2.  CAESAR Contest 

1.2.1. Organization and Schedule 

Cryptographic competitions have become common way of developing the cryptographic 

standard. This process has worked really well in case of Advanced Encryption Standard 

(AES), developed in the period 1997-2001, and then SHA 3 competition (Secure Hash 

Algorithm 3), developed in the period 2007-2012. In 2013, a new contest, called 

CAESAR - Competition for Authenticated Encryption: Security, Applicability, and 

Robustness - has been announced. This contest started off with 57 candidates in Round 

1, and then reached Round 2 with 29 candidates and Round 3 with 15 candidates 

remaining. 

1.2.2. Evaluation Criteria  

Performance of candidates in hardware has always been a very important evaluation 

factor, when all remaining algorithms have been found to have adequate security 

strength. Hardware evaluation has become possible in CAESAR because of the two 

novel approaches. First, the design teams have been asked to submit their own 

Verilog/VHDL code before the end of Round 2. Secondly, High-Level Synthesis, based 

on the newly developed Xilinx Vivado HLS tool, has been applied to transform reference 

C implementations of CAESAR candidates to the corresponding efficient Register 

Transfer Level (RTL), hardware description language (HDL). 

1.2.3. Importance of Hardware Benchmarking   

 In CAESAR competition, an attempt has been made to conduct hardware benchmarking 

of each candidate at early stages of the contest, when the number of competing 

algorithms was still very large, namely there were still 29 authenticated cipher families 

remaining, with multiple variants for some of them (such as PRIMATEs, Deoxys, Keyak). 
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2. Classification of the CAESAR Candidates 
 
 
 

2.1.  Introduction 

Secret-key Cryptography helps in protecting the confidentiality and integrity of the 

messages against all possible misbehavior by the attacker. Even if the Public Key 

Cryptography introduced new ways to protect and share the messages, the Secret-key 

cryptography has always proven to outperform it in terms of speed and speed to area 

ratio. Usually the data is protected either by secret-key cryptography alone or by a hybrid 

of public-key and secret-key cryptography. 

 

2.2. Design Classification 

2.2.1. Type 

Block cipher: A Block cipher encrypts one block of a message at a time, independently 

from other blocks. A block cipher consists of two paired algorithms, one for encryption 

and the other one for decryption. The decryption algorithm is said to be the inverse 

function of encryption.  

The encryption function can be specified as follows 

EK(P) := E(K,P) : {0,1}k X {0,1}n → {0,1}n, 

The inverse function, i.e., the decryption function can be specified as follows: 
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E-1
K(C) := DK(C) =D(K, C) : {0, 1}k

  x {0,1}n → {0,1}n 

From the equations we can see that both encryption and decryption accept two inputs: 

an input block of size n bits and a key of size k bits, both yielding an n-bit output block. 

For example, AES is a block cipher that encrypts a 128-bit block using a 128bit, 192-bit, 

and 256-bit keys. 

 

 

 

 

 

Figure 2: Block Cipher 
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Stream Cipher: 

 In a Stream cipher every block of ciphertext is a function of the current block of plaintext 

and the current internal state of the cipher. A stream cipher encrypts a variable length 

message using a public nonce and a secret key.  

 

 

 

Figure 3: Stream Cipher 

 

 

 

Message Authentication Code (MAC): MAC is used to authenticate the message, it is 

a short piece of information used to confirm that the message has been received from 

the stated sender and has not been changed in transit. The Authenticator is also sent 

with the encrypted message which protects message against corruption. MACs are often 

built from block ciphers or from cryptographic hash functions such as SHA-3. 



8 
 

Authenticated Encryption with Associated Data (AEAD): AEAD is a block cipher 

mode of operation, which provides all three security services, i.e., confidentiality, 

integrity and authentication. Decryption involves integrity and authenticity verification.  

From the Round 2 of the CAESAR competition, data of all the 29 candidates was 

extracted from the specification of each cipher and analysis of all candidates from the 

point of view of capability for parallel processing of blocks belonging to the same 

associated data, message, and ciphertext was done. All the data was tabulated as 

shown in Table 1.  

Then, from the ciphers which had the capability for parallel processing of blocks, 5 

candidates were selected based on their maximum clock frequency in Basic High-Speed 

Architecture. The ciphers which had lowest maximum frequency were selected.  
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Table 1: Analysis of ALL Round 2 candidates from the point of view of capability for 
parallel processing of blocks belonging to the same AD/message/ciphertext. 
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NMRM 

ACORN SC 128 128 128 1 293 <264 10 yes  

AEGIS-128L BC 128 128 128 256 1024 264 1 no  

AEGIS-128 BC 128 128 128 128 640 264 1 no  

AEGIS-256 BC 128 256 256 256 768 264 1 no  

AES-COPA BC 128 128 128 128 128 271 10 yes yes 

AES-JAMBU BC 48 96 48 48 144 <264 52 no  

AES-JAMBU BC 32 96 32 32 96 <264 42 no  

AES-JAMBU BC 64 128 64 64 192 <264 68 no  

AES-JAMBU BC 64 128 64 64 192 <264 68 no  

AES-OTR BC 128 128 96 128 128 264 10 yes  

AES-OTR BC 128 128 96 128 128 264 10 yes  

AES-OTR BC 128 256 96 128 128 264 10 yes  

AES-OTR BC 128 256 96 128 128 264 10 yes  

AEZ TBC 128 128 128 128 128 251 8 < R< 24 yes yes 

Ascon-128 P 128 128 128 64 320 <267 6 no  

Ascon-128a P 128 128 128 128 320 <268 8 no  

CLOC-AES-12 BC 64 128 96 128 256 <267 10 no/yes  

CLOC-AES-8 BC 64 128 64 128 256 <267 10 no/yes  

CLOC-TWINE BC 32 80 48 128 256 <267 10 no/yes  

SILC-AES BC 64 128 96 128 256 <267 10 no/yes  

SILC-AES BC 64 128 64 128 256 <267 10 no/yes  

SILC-
PRESENT BC 32 80 48 128 256 <267 31 no/yes  

SILC-LED BC 32 80 48 128 256 <267 48 no/yes  
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Table 1(2): Analysis of ALL Round 2 candidates from the point of view of capability for 
parallel processing of blocks belonging to the same AD/message/ciphertext. 
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NMRM 

Deoxys ≠  
  -128  - 128 BC 128 128 64 128 128 267 14 yes  

Deoxys ≠  
  -256  - 128 BC 128 256 64 128 128 267 16 yes  

Deoxys = 
-128-128 BC 128 128 128 128 128 267 14 yes yes 

Deoxys=  

-256-128 BC 128 256 128 128 128 267 16 yes yes 

ELmD BC 128 128 64 128 128 264 12 yes yes 

HS1-SIV-lo HS1 64 256 96 256 512 267 8 no yes 

HS1-SIV HS1 128 256 96 256 512 267 12 no yes 

HS1-SIV-hi HS1 256 256 96 256 512 267 20 no yes 

ICEPOLE 128 P 128 128 128 1024 1280 264 6 no  

ICEPOLE 128a P 128 128 96 1024 1280 264 6 no  

Joltik≠ -64 - 64 TBC 64 64 64 128 128 <235 24 yes  

Joltik≠-80 - 112 TBC 112 80 64 128 128 <235 32 yes  

Joltik≠ -96 - 96 TBC 96 96 64 128 128 <235 32 yes  

Joltik≠ -128 - 64 TBC 64 128 64 128 128 <235 32 yes  

Joltik= -64-64 TBC 64 64 64 128 128 <266 24 yes yes 

Joltik= -80-112 TBC 112 80 64 128 128 <266 32 yes yes 

Joltik= -96-96 TBC 96 96 64 128 128 <266 32 yes yes 

Joltik= -96-96 TBC 96 96 64 128 128 <266 32 yes yes 

Joltik= -128-64 TBC 64 128 64 128 128 <266 32 yes yes 

Ketje Jr P 64 96 86 16 200 <296 22 no  

Keyak P 128 128 128 1600 1536 <2123 12 no  
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Table 1(3): Analysis of ALL Round 2 candidates from the point of view of capability for 
parallel processing of blocks belonging to the same AD/message/ciphertext. 
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NMRM 

Minalpher TBC 128 128 104 256 64 <2104-1 17 yes yes 

MORUS-1280-
128 SC 128 128 128 128 1280 <264 5 no  

MORUS-640-
128 SC 128 128 128 128 640 <264 5 no  

MORUS-1280-
256 SC 128 256 128 256 1280 <264 5 no  

NORX32 P 128 128 64 128 512 <2128 6 no  

NORX64 P 256 256 128 128 1024 <2128 4 no  

OCB BC 128 128 120 128 128 <2128 10 yes  

OMD CF 
32-
256 256 256 256 256 <264 64 no  

PAEQ64 P 64 64 64 432 512 <299 20 yes  

PAEQ80 P 80 80 80 416 512 <299 20 yes  

PAEQ128 P 128 128 128 368 512 <299 20 yes  

PAEQ64-T P 512 64 64 432 512 <299 20 yes  

PAEQ64-TNM P 512 64 128 432 512 <299 20 yes  

PAEQ128-T P 512 128 128 368 512 <299 20 yes  

PAEQ128-TNM P 512 256 256 240 512 <299 20 yes yes 

PAEQ192 P 128 192 128 304 512 <299 20 yes  

PAEQ160 P 160 160 128 336 512 <299 20 yes  

PAEQ256 P 128 256 128 240 512 <299 20 yes  

Π-Cipher096 P 128 96 32 256 128 <267-8 3 no  

Π-Cipher128 P 256 128 128 512 256 <267-8 3 no  

Π-Cipher128 P 512 128 128 1024 512 <267-8 3 no  

Π-Cipher256 P 512 256 128 1024 512 <267-8 3 no  
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Table 1(4): Analysis of ALL Round 2 candidates from the point of view of capability for 
parallel processing of blocks belonging to the same AD/message/ciphertext. 

 

 
 
 

Legend: 

R - Number of Rounds 

NMRM - Nonce Misuse Resistant Mode 
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NMRM 

POET-AES10-
AES4 BC 128 128 128 128 128 <2128 10 yes yes 

POET-AES10-
AES10 BC 128 128 128 128 128 <2128 10 yes yes 

PRIMATEs-
HANUMAN-

120 P 120 120 120 40 280 <2120 12 no  

PRIMATEs-
GIBBON-120 P 120 120 120 40 280 <2120 6 no  

PRIMATEs- 
APE-120 P 240 240 120 80 280 <2120 12 no  

PRIMATEs-
HANUMAN-80 P 80 80 80 40 200 <280 12 no  

PRIMATEs-
GIBBON-80 P 80 80 80 40 200 <280 6 no  

PRIMATEs- 
APE-80 P 160 160 80 80 200 <280 12 no  

SCREAM TBC 128 128 96 128 128 <2128 10 yes  

SHELL BC 128 128 64 128 256 <270 10 yes  

STRIBOB P 128 192 128 64 128 2127/264 12 yes  

Tiaoxin-346 BC 128 128 128 128 768 <2128-1 35 yes  

TriviA-ck SC 128 128 64 64 384 <264/<2128 64 no  
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Max AD - Maximum Associated Data  

M size - Message size in bits 

In Parallelizable column no/yes means that Encryption is not parallelizable and 

Decryption is parallelizable. 

 

Types of Cipher: 

SC- Stream Cipher based 

BC -Block Cipher based 

P - Permutation based 

TBC- Tweakable Block Cipher based 

CF - Compression Function based 

HS1- Hash Stream 1 based 
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3. General Methodology 
 
 
 

Pipelining is one of the well-known techniques used to increase the speed of any 

digital design. In this project we have implemented inner-round pipelining of 5 

different ciphers. The inner-round pipelining provides substantial amount of 

increase in the speed of the cipher with small increase in the circuit area. In this 

method the pipeline registers are inserted inside the round function of the cipher 

and then path is balanced accordingly for the dataflow [15]. 

The Basic Iterative architecture, as shown in Figure 4, is implemented first, and its 

frequency, area and critical path are determined. Based on this information, we 

insert a pipeline register to reduce the critical path. The location of the pipeline 

register is chosen in such a way that the critical path between two adjacent 

registers is reduced and balanced. In this project we have implemented a two-

stage inner-round pipelining, as shown in Figure 5.  
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Figure 4: Basic Architecture  

 

 

Figure 5: 2-stage inner-round pipelined architecture  
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The implementation strategy of a pipelined architecture is as shown in the form of a 

timing diagram in Figure 6 and Figure 7.  

For N Rounds: 

 
 
 

 

Figure 6: Basic iterative architecture: B-Block, R- Round, B1R1- Block1 Round1, and so 
on. 

 

 

 

 

Figure 7: 2-stage inner-round pipelined architecture: B-Block, R- Round, B1R1- Block1 
Round1, B2R1 Block2 Round1, and so on. 

 

 

 

As shown in Figure 6, in the basic iterative architecture single block of data is processed 

through N rounds in N clock cycles, and then the result is sent to the output. In the 2-

state inner-round pipelined architecture, two blocks of data are read in two consecutive 

clock cycles, and the output is collected after 2N+1 clock cycles. Additionally, two 

consecutive pairs of input blocks can be processed every 2N clock cycles. 
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We have implemented five selected ciphers targeting the largest available FPGA in the 

student version of Xilinx ISE, i.e., Xilinx Virtex 6 XC6VLX75T-3FF784. The inner-round 

pipeline implementations of all ciphers are shown in the following chapters. 
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4. SCREAM – Side Channel Resistant Authenticated Encryption with 
Masking 

 
 
 

4.1.  Introduction and Major Features 

SCREAM [6] is a CAESAR candidate submitted by Grosso et al. It is based on Liskov, 

Rivest and Wagner’s Tweakable Block Cipher (TBC).  It is a simple and regular design 

allowing excellent performance using a wide range of architectures. The specification of 

the cipher claims the ease of masking used as a side-channel countermeasure. The 

SCREAM’s resistance against conventional attacks is inherited from TAE, providing 

security beyond the birthday bound. The other important advantage of SCREAM is that it 

provides fully parallelizable authenticated encryption. 

4.2. Recommended Parameters 

There are totally four sets of Parameters for SCREAM, based on the security level (with 

6, 8, 10 and 12 steps). 

 

Lightweight security. 80-bit security, with a protocol avoiding related keys 

 Tight parameters: 6 steps, Safe parameters: 8 steps. 

 

Single-key security. 128-bit security, with a protocol avoiding related keys 

 Tight parameters: 8 Steps, Safe parameters: 10 steps. 
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Related-key security. 128-bit security with possible related keys 

Tight parameters: 10 Steps, Safe parameters: 12 Steps. 

The recommended sets of parameters are as follows:  

 First set of recommended parameters: SCREAM with 10 steps, single-key 

security.  

 Second set of recommended parameters: SCREAM with 12 steps, related-key 

security. 

  

4.3. Encryption and Decryption 

The SCREAM works in the TAE mode as proposed in [1].  

There are 3 main steps in the encryption process:  

First, the associated data is processed by dividing it into 128-bit blocks. Each block is 

encrypted through the tweakable block cipher and then the output values are XORed, 

and the final output of this step is stored as Auth.  

 
 
 
 

 

Figure 8: TAE: associated data processing. 
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Second, plaintext is encrypted using the tweakable block cipher in order to generate the 

ciphertext values.  If the last block is partial, its bitlength is encrypted to generate a mask 

and the result of encryption is truncated to the partial block. This block is then XORed 

with the partial plaintext block, such that the ciphertext length is same as the plaintext 

length. 

 

Figure 9: TAE: encryption of the plaintext blocks. 

 

 

 

Finally, the tag is generated as shown below in Figure 10. The checksum (i.e. the XOR 

of all plaintext blocks) is encrypted and then XORed with auth. 
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Figure 10: TAE Tag processing 

 

 

 

In TAE mode, for security reasons we always use distinct tweak values. The algorithm 

uses some special values for domain separation, and tweaks of the form (N||c||control 

byte), where N is the Nonce and c is a block counter. 

 

Decryption is similar to encryption, with slight changes, which will be discussed in 

Section 4.4. During decryption, the values of ciphertext C, tag T, and associated data A 

are used to recover the plaintext. If the tag is incorrect, the algorithm returns a null 

output. 

 

4.4. Basic High-Speed Architecture 

The implementation of SCREAM has been divided into a Datapath and Controller. This 

design processes one 128-bit block at a time. 
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4.4.1.  Datapath Design 

From the recommended set of parameters, SCREAM with 10 steps, single-key security 

was implemented.  The values of Key, public message number (Npub), checksum, Tag 

and Tweak input are registered as shown in Figure 11. The inputs are given to the 

Ek_bidir, which computes values of ciphertext/message from the given 

message/ciphertext respectively.  

 

 

 

 

Figure 11: SCREAM Datapath 
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The entity Ek_bidir is involved in performing both Encryption and Decryption. The 

Ek_bidir has a step function called Ek_step, which is built with the combination of 

S-Box and L-Box. The values of Sigma and Tweak are registered and are 

provided as an input to Ek_step. All the inputs from the top module are converted 

into Reverse Endian and given as an input to Ek_step. The Ek_step function acts 

like a round function from AES. The algorithm includes 10 rounds known as 

steps. The count of each step value is dependent upon the value of Sigma. The 

sigma value is initiated with zero in encryption mode and incremented by one per 

each clock cycle until ten (the number of rounds) whereas in the decryption mode 

the value of sigma is initialized with ten and is decremented by one in each clock 

cycle until it reaches zero. The Tweak value is dependent on the value of sigma, 

so with each new value of sigma the tweak value changes as well. Processing of 

one block of data takes ten clock cycles.    
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Figure 12: Ek_bidir  

 

 

 

The Ek_Step function consists of two round functions, round0 and round1. The 

round function is formed with the combination of S-box and L-box. After the data 

is processed through the S-box, it is XORed with the Round constant, and then 

sent through the L-box. The order of round0 and round1 processing is based on 
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mode of operation. In encryption mode the data is processed through round0 

first, and then it is passed through round1, whereas in decryption mode, data is 

processed through round1 first and then through round 2. After processing these 

rounds, the resulting value is XORed with the Tweak value. 

 

4.4.2. Controller Design: 

Upon the reset the controller enters the initialization state as shown in the Figure 

13. Then, the next state is Key update. In this state, if bdi_valid and key_update 

are high, then the key is updated, else the control moves to the next state, that is 

Load public message number. In this state Public message number (Npub) is 

loaded. Then, the associated data processing starts. Every time the Ek_done 

signal goes high, next block of associated data is loaded in for processing. When 

the end of type signal (bdi_eot) goes high, then the last block of associated data 

is processed. Next state is Encryption/Decryption of Message. Based on the 

value of the decrypt signal, the processing is started with Ek_start going high. 

Every time Ek_done signal goes high, the next block of message is loaded for 

Encryption/Decryption. Once the last block of message is encrypted/decrypted 

next state is Tag generation. In this state, if the decrypt is low, then tag is 

generated, done signal goes high, and control shifts to the initialization state. If 

the decrypt signal is high, then after Tag generation state, the next state is Tag 

verification state, where the Tag is verified and then the control shifts to the 

initialization state.    
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Figure 13: SCREAM Cipher Controller ASM (1) 
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Figure 14:  SCREAM Cipher Controller ASM (2) 
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Figure 15: SCREAM Cipher Controller ASM (3) 
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Figure 16: SCREAM Cipher Controller ASM (4) 

 



30 
 

4.5. Optimized Pipelined Architecture 

In the pipelined architecture, the Datapath and Controller design from Basic Iterative 

Architecture were used as a starting point. The optimized pipelined design can 

process two 128-bit data blocks at a time. The Datapath design is the same as the 

Basic Iterative Architecture with a few modifications in bus widths and addition of 

components.  To reduce the critical path, Registers were inserted in the Datapath 

design of Basic Architecture. 

 

 

 

Figure 17: Scream Datapath Pipelined 
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The critical path of the design lies through the round function of the cipher as it is the 

longest path. By placing register experimentally at different locations, critical path 

was tested by calculating Maximum clock frequency. 

4.5.1. Register Insertion    

Two registers were inserted in the Round function of the cipher, i.e., Ek_Step, one for 

encryption and one for decryption, as shown in Figure 18. These registers also help 

processing two blocks of data in parallel, with modifications in controller shown in 

Section 3.5.2. They also help with reducing the critical path of the circuit.  To process 

two blocks of data in parallel and to maintain the timing and synchronization, datapath 

design was also modified as shown in Figure 18.  

4.5.2. Path Balancing 

Changes made with respect to the basic iterative architecture are as follows  

 One additional Tweak calculator was added, as shown in Figure 17, which 

helps in achieving the synchronization, while processing the data.  

 The sigma value increases once per two clock cycles, both for encryption and 

decryption. 

 An additional Reverse endian module was added to process second block of 

data. 
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Figure 18:  Ek_bidir Pipelined 
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4.5.3. Controller Modifications 

The controller from the basic architecture is modified to meet the timing and 

synchronize the design.  Extra states and three additional signals ‘en1’, ‘en2’, 

and ‘msb’ were added to the control logic to handle the new block of data as 

shown in the figure. This design takes 21 clock cycles to complete the processing 

of two blocks of data. The modified controller is as shown in the Figure 19.  



34 
 

Figure 19: SCREAM Controller Pipelined (1) 
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Figure 20: SCREAM Controller Pipelined (2) 
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Figure 21: SCREAM Controller Pipelined (3) 
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Figure 22: SCREAM Controller Pipelined (4) 
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5. AES-COPA 
 
 
 

5.1. Introduction and Major features 

AES-COPA [10] is CAESAR candidate which was designed by Elena Andreeva, Andrey 

Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser and Kan Yasuda. The two 

important parameters of  AES-COPA are key length ‘k’ which can be either 16 bytes 

(128 bits), 24 bytes (192 bits), or 32 bytes (256 bits) and tag length ‘τ’ which lies 

between bytes (64 bits) and 16 bytes (128 bits). It also has nonce a.k.a public message 

number of length 16 bytes (128 bits). The key size of AES-COPA is same as the key 

size of the AES. AES-COPA does not support secret message number, It supports 

variable length associated data and plaintexts. 

 

5.2. Recommended Parameters:  

There is only one recommended parameter set given in the specification.  

 key length: 16 byte (128 bits)  and  tag length: 16 byte (128 bits). 

 

5.3. Encryption and Decryption 

The encryption takes public message number ‘N’, associated data ‘A’, and message ‘M’ 

as input and returns ciphertext ‘C’ and tag ‘T’. The decryption takes public message 

number ‘N’, associated data ‘A’, ciphertext ‘C’ and tag ‘T’ as input and returns output ‘M’ 

if the tag is correct and otherwise null. Bit ‘P’ is also supplied as an input in both 
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encryption and decryption process indicating whether the last block of M was incomplete 

and thus padding is applied. 

First the associated data is processed to get a ‘V’ value as shown in the Figure 23. 
 
 

 

 

Figure 23: Associated data processing 

 

 

 

The encryption and decryption procedures of AES-COPA on such a (possibly padded) 

message M [1].….M[d] of d 128-bit blocks and on a ciphertext  C[1]…..C[d] is as shown 

in the Figure 24. Each 128 bit block of message/ciphertext is XORed with ‘2(d-1)3L’ and 

then processed through the AES the result is now XORed with ‘V’ and ‘L’ values and 

then they are processed in AES and the result is then XORed with ‘2dL’ and stored as 

ciphertext/message. All the intermediate values after first AES block are XORed and 

stored as ‘S’ value  as shown in the Figure 24, this value is used in the Tag generation. 
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Figure 24: Message/ Ciphertext processing 

 

 

After encryption/decryption then next step is the tag calculation as shown in the Figure 

25. In this step all the message blocks are XORed with each other and L value and then 

are processed through the AES block and then the result is then XORed with S value 

and processed through the AES block and the result is XORed with final L value and 

then stored as Tag. 
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Figure 25: Tag Generation 

 

 

 

5.4. Basic High-Speed Architecture 

The Basic High-speed Architecture of AES-COPA has been divided in to a Datapath and 

Controller as shown in the figure below.  

 

5.4.1. Datapath Design 

The associated data processing, plain text processing and tag processing requires two 

Ek(AES) blocks as shown in Figure 27. So, in Basic High-Speed Architecture design two 

AES encryption/decryption blocks AES_EncDec1 and AES_EncDec2 (as shown in 

Figure 30) were used. The The ‘L’ value is processed by encrypting a block of zeros 

through AES_EncDec1 and is stored in a register. Then using the Galois field 

multiplication blocks, with different multipliers like multi2, multi3 and multi7 the ‘L’ value 

is processed as shown in the Figure 26. The value of L is XORed with the associated 
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data or plaintext/ciphertext before sending through the AES block. After processing all 

the associated data blocks through AES_EncDec1 then ‘V’ value is stored in a register. 

After that, when first block of plaintext/ciphertext enters the AES_EncDec1 and 

completely processed, AES_EncDec2 sits idle. After the first block is processed through 

the AES_EncDec1 the result is sent for the further processing through AES_EncDec2. 

At the same time second block of data is loaded in to the AES_EncDec1. This way 

parallel processing is done through all the blocks. After processing all the 

message/ciphertext blocks the tag is calculated using checksum (XOR of all input 

blocks) value. 

 

 

 



43 
 

 

Figure 26: Delta value Calculation 
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Figure 27: AES-COPA Datapath 
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Figure 28:  Multi 3, Multi 7, Delta 

 

Figure 29: Multi 2 
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Figure 30:  AES Datapath 

 

 

5.4.2. Controller Design 

Upon the reset the controller enters reset state and then if the key needs to be updated 

then the next state is key_read and then based of key_valid signal Key scheduling is 

done. After that L value is calculated and delta is initialized. If the key update is not 

required then the controller enters the associated data processing initialization state 

where if the bdi_valid is high then associated data processing starts, every time the 
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done1 signal goes high new block of associated data is processed till it reaches the last 

block of associated data(i.e. when the bdi_eot goes high). After the associated data 

processing, the controller enters in to encryption or decryption based on the value of 

bdi_decrypt. In case of first block of encryption/decryption only the first AES core is 

started. From the second block parallel processing is done in first AES core and second 

core as described in AES-COPA datapath design. Every time the done signal goes high 

new block of message/ciphertext is encrypted/decrypted till it reaches the last block of 

message/ciphertext after which the controller waits for bdo_ready signal to write the 

message to output. Once the encryption/decryption state is completed next state is tag 

generation. In case of encryption the once the tag generation is completed controller 

waits for bdo_ready to write the message to the output and then enters the reset state 

whereas tag generation in decryption is slightly different than encryption because we 

require all the messages for tag generation. So the controller waits for extra 10 clock 

cycles to complete the processing of last block of data in AES_EncDec2 and then tag 

generation is started and then enters the tag comparison state where tag is matched 

with received tag and then controller goes to the reset state.    
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Figure 31: AES-COPA Controller (1) 
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Figure 32: AES-COPA Controller (2) 
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Figure 33: AES-COPA Controller (3) 
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Figure 34: AES Controller 

 

 

5.5. Optimized Pipelined Architecture 

In the pipelined architecture, the Datapath and Controller Design from Basic Iterative 

Architecture were used as a starting point. The optimized pipelined design can process 

two 128-bit data blocks at a time. The Datapath design is same as the Basic Iterative 

Architecture with few modification in bus widths and addition of components as shown in 

the Figure 35.  To reduce the critical path, Registers were inserted in the Datapath 

design of Basic Architecture. The critical path of the design lies in the round function of 

the AES as it is the longest path.  
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Figure 35:  AES-COPA Datapath Pipelined 
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5.5.1. Register Insertion 

Two registers were inserted in the round function based on the critical path from basic 

high-speed architecture, one register in round function and the other register in the 

invround function of AES_EncDec in the Figure 36. The register insertion reduced the 

critical path and increased the Maximum clock frequency.  

 
 
 
 

 

Figure 36: AES Round Pipelined 

 

 

 

 



54 
 

5.5.2. Path Balancing 

The path was balanced by changing the widths of the buses to 256 bits as shown in the Figure 35 and 

additional Galois field multipliers were added in the datapath to generate the ‘2(d-1)3L’ value for the second 

block of data as shown Figure 29. The AES_EncDec datapath was also modified to support two blocks of 

data as shown in the 

 

Figure 37.  
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Figure 37: AES Datapath Pipelined 
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Figure 38: Delta Value calculation Pipelined 

 

 

 

 

Figure 39: Multi 3, Multi 7, Delta –Pipelined. 

 

Figure 40: Multi 2 pipelined 
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5.5.3. Controller Modifications 

The top-level controller was slightly modified to support the (d-1)th block of associated 

data(from Figure 23) as shown in the figure. The flow of the main controller is mainly 

dependent on the done signals from two AES cores done1 and done2 for processing 

data. So the changes in the AES_EncDec controller were made accordingly to balance 

the path. 

Changes in the controller of AES_EncDec: 

The Key scheduling in AES_EncDec remained the same but the data processing was 

changed by adding four additional states.  Three states were added to get the data 

ready entering the round function and an additional state was added to process two 

blocks of data at the same time. The round value increases by one per two clock cycles 

and same round key is available for two clock cycles. The modified controller ASM chart 

is as shown in the Figure 41. 
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Figure 41: AES Controller Pipelined 
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6. Minalpher 

 

6.1.  Introduction and Major Features 

Minalpher [11] was submitted by NTT Secure Platform Laboratories, Mitsubishi Electric 

Corporation, University of Fukui in CAESAR competition. It was designed by Yu Sasaki, 

Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yumiko Murakami, 

Mitsuru Matsui, Shoichi Hirose.  

Minalpher supports two functionalities  

i. Authenticated Encryption and Associated Data (AEAD) 

ii. Message Authentication Code (MAC) 

The construction is based on Kurosawa’s Tweakable block-cipher [3][4] from a 

permutation based block-cipher by Even and Mansour[2]. 

Tweakable Even-Mansour 

The Tweakable Even-Mansour is a Tweakable block cipher which is based on 

permutation denoted by P. It operates on n bits such that n mod 2 = 0.  Inverse of P is 

denote by P-1. Modes of operation of Minalpher are based on Tweakable Even-Mansour. 

The encryption and decryption algorithms are denoted by TEM_ENC and TEM_DEC 

respectively. These algorithms are also useful in tag generation. 
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6.2. Recommended Parameters:  

Recommended parameter set given in the specification.  

 key length: 16 byte (128 bits)  and  tag length: 16 byte (128 bits). 

 

6.3. Encryption and Decryption 

The functionality followed for the encryption and decryption is AEAD. It consists of two 

algorithms i.e. AEAD_ENC which is encryption algorithm and AEAD_DEC which is 

decryption algorithm.  

AEAD Encryption: The inputs to AEAD_ENC are a secret key ‘K’, nonce ‘N’, associated 

data ‘A’ and message ‘M’ in return it gives the ciphertext ‘C’, tag or a reject symbol as 

the output. 

AEAD Decryption: The input to AEAD_DEC are a secret key ‘K’, nonce ‘N’, associated 

data ‘A’ ciphertext ‘C’ and tag in return it gives message ‘M’ or the reject symbol as the 

output. 

Both AEAD_ENC and AEAD_DEC does not accept inputs that do not satisfy the 

following conditions and return reject symbol as output. 

 a secret key, denoted by ‘K’, such that K ∈ {0, 1}n/2, 

 a nonce, denoted by ‘N’, such that N ∈ {0, 1}n/2-s, 

 associated data, denoted by ‘A’, such that A ∈ {0, 1}*,  

 a message, denoted by ‘M’, such that M ∈ {0, 1}*, 

 a ciphertext, denoted by ‘C’, such that |C| mod n = 0 and |C| ≥ n, and 

 a tag, denoted by tag, such that |tag| = l, 

Where n=256 and s= 24. 
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Minalpher-P: 

Minalpher-P is a primitive permutation function which maps 256-bit input value to a 256-

bit output value. The P block in Figure 43 is Minalpher P. Minalpher P has round function 

R which consists of a four permutation functions as shown.   

 S-function 

 T-function 

 M-function 

 E-function 

Number of rounds is denoted by ‘r’ where r = 17(recommended). Let the number of 

rounds be r + 0.5. The following are performed from i= 1 to r. The input to the function is 

as shown  

Xi <= R(Xi-1, E(i-1)) 

R(X, E) is the round function and is denoted by 

R(X, E(i)) <= M o T o S(X) ⊕ E(i) 

Last round(half round) is as follows 

Xr+1 <= T o S(Xr) 
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Figure 42: Round Function 

 

 

 

SN in the Figure 42 stands for subnibbles where each nibble in the state into another 

value by using 4-bit S-box where s is the permutation. SR is the shufflerows which 

shuffles the nibble positions within each row. SR consists of 2 different shuffle functions 

SR1 and SR2 with different set of permutations. SM is swap matrices which swaps the 

matrix Ai for the matrix Bi as shown in Figure 42. XM is XOR matrix where matrix A is 

XORed with matrix B and assigned to Bxm. MC is mixcolumns which is a linear function 

which can be expressed as multiplication by the following matrix. 

[

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

] 

Then there is addition of round constant RCi-1 calculated from the round number i and its 

matrix. 
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Figure 43:  Associated data and plaintext processing. 

 

 

 

6.4. Basic High-Speed Architecture 

6.4.1. Datapath Design: 

The Datapath design of Minalpher consists of two TEM cores TEM_M and TEM_AUX 

which acts as the permutation block as shown in the Figure 44. The values of message, 

ciphertext, associated data, public message number and key are registered before 

processing them. Firstly the value of L is calculated by concatenating the key, flag and 

nonce value and then encrypting it and then the result is processed through galois field 

multiplication and the result is stored as ‘t’. The tweak value is calculated based on the 

values of ‘i’ and ‘j’ per each block of data. The associated data blocks are processed 
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through the TEM_AUX block and stored. After that message blocks are processed 

through the TEM_M blocks. After each message block is processed through the 

TEM_M, then the resulting value is sent through the TEM_AUX for the calculation of tag. 

After all the message blocks are processed then the value of tag is calculated. 

 
 
 

 

Figure 44: Minalpher Datapath 
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TEM_AUX and TEM_M blocks are shown clearly in Figure 45 and Figure 46. Both 

consists of tweak calculator which takes the values ‘i’, ‘j’ and previous ‘L’ value as an 

input and process the next L. Minalpher_P block is the permutation block which consists 

of subnibbles, shufflerows, swap-matrix, mixcolumn and add round constant as shown in 

Figure 47 and Figure 48. Each block is processed 17 rounds through the permutation 

function i.e. each block of data takes 17 clock cycles to give the output.  

 

 

 

Figure 45: TEM_AUX 
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Figure 46: TEM 
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Figure 47:  Minalpher_P 
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Figure 48: Minalpher_P forward 
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6.4.2. Controller Design: 

 Upon the reset the controller enters the initialization state and if key need to be updated 

the new key is loaded and then the associated data initialization is started and then the 

‘γa’ value i.e., the subkey is calculated and registered. Then, if the bdi_valid is high the 

associated data is loaded and processed through the Minalpher_P block. After each 

value of associated data is processed, the value is XORed with previously processed 

associated data and stored in the register. After processing all the blocks of associated 

data, if the bdi_ready and bdi_valid are high, then the plaintext is loaded and XORed 

with ‘Ψm‘ then it processed through Minalpher_P and then the ciphertext is collected. 

This Ciphertext is again processed through Minalpher_P block and stored in a register 

‘T’. Similarly after each ciphertext is processed through the Minalpher_P blocks and 

XORed with previous block and stored in Register ‘T’. This value helps in the calculation 

of Tag. After all the plaintext processing is done then the value of Tag is calculated. The 

‘T’ value is processed through the Minalpher_P block to calculate the Tag. 

 

TEM Controller: 

Separate controller was also developed to handle the TEM blocks which starts 

processing of data on the start signals from main controller the and at the end of 

processing of each block will provide a signal TEM_finished as shown in the Figure 53. 
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Figure 49: Minalpher Controller (1) 
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Figure 50: Minalpher Controller (2) 
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Figure 51: Minalpher Controller (3) 
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Figure 52: Minalpher Controller (4) 

 

 

 

Figure 53:  TEM Controller 
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6.5. Optimized Pipelined Architecture: 

In the pipelined architecture, the Datapath and Controller Design from Basic Iterative 

Architecture were used as a starting point. The optimized pipelined design can process 

two 256-bit data blocks at a time. The Datapath design is same the Basic Architecture 

with few modification in bus widths and addition of components.  To reduce the critical 

path, registers were inserted in the Datapath design of Basic Architecture. The critical 

path of the design lies in the round function of the TEM_M and TEM_AUX as it is the 

longest path.  

 

Figure 54: TEM_AUX Pipelined 
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Figure 55: TEM Pipelined 

 

 

 

6.5.1. Register Insertion: 

Two registers were inserted in the Minalpher_P block, one in the encryption path and 

other in the decryption path as shown in the Figure 56 and one register was inserted in 

the Minalpher_P_FWD block as shown in Figure 57. The register insertion has reduced 

critical path and increased the maximum clock frequency. 
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Figure 56: Minalpher_P Pipelined 
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Figure 57: Minalpher_P forward Pipelined 
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6.5.2. Path Balancing 

Path balancing was achieved by changing the widths of the buses to 256 as shown in 

Figure 54 and Figure 55. The Tweak generator in TEM_AUX and TEM_M was 

duplicated for the calculation of the tweak for the second block of data. The output from 

the first tweak generator was given to the second tweak generator to generate the 

second tweak. An additional register was placed at the output of the Minalpher_P to hold 

the first block of data till the last round of second block of data was processed as shown 

in Figure 54 and Figure 55. 

  

6.5.3. Controller Modifications  

There were no modifications in the top level controller. As the control was totally 

dependent of TEM_finished signal. Changes were made in the lower level TEM_M and 

TEM_AUX controllers. Four additional signals en1, en3, en4 and msb and two additional 

states were added to handle the processing of the second block of data as shown in the 

Figure 58. One state for initialize the second block and second state to control the round 

for two blocks of data.  
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Figure 58: TEM Controller Pipelined 
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7. OCB 
 
 
 

7.1. Introduction and Major features 

OCB [8] was submitted and designed by Ted Krovetz and Phillip Rogaway in CAESAR 

competition. OCB was designed to have following features fast, provably secure, 

parallel, timing-attack resistant, online and Static AD. OCB is an AEAD scheme that 

depends on a block cipher. The block cipher must have 128 bit block size. In this design 

we made a choice of AES 128 as a block cipher. OCB uses nonce ‘N’ encryption and 

decryption which should be distinct for each encryption operation.  After encrypting 

plaintext ‘P’ in the presence of associated data ‘A’ the cipher outputs the ciphertext ‘C’ of 

same length as ‘P’ and additionally authentication tag. 

 

7.2. Recommended Parameters:  

Recommended parameter set given in the specification.  

 key length: 16 byte (128 bits)  and  tag length: 16 byte (128 bits). 

 

7.3. Encryption and Decryption 

As mentioned earlier the encryption and decryption in OCB are dependent on the 

blockcipher.  
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Encryption: OCB encrypt function accepts key, nonce, associated data and plaintext as 

input. Initialization is done by calculation of key dependent variable i.e. L, double L. After 

the initialization the plaintext is divided in to sequence of 128 bit blocks. Next step is to 

calculate nonce dependent variables and per-encryption variables i.e bottom, Ktop, 

stretch, offset_0, checksum_0. Then the full block encryption takes place following which 

partial block is padded and encrypted. After all the plaintext blocks are encrypted then 

the tag calculation takes place. Finally ciphertext and tag are assembled together and 

sent as the output. 

 

Decryption: OCB Decrypt function works similar to OCB Encrypt with few modifications. 

The blockcipher in OCB decrypt works in decrypt mode. OCB decrypt function accepts 

key, nonce, associated data, ciphertext and tag. Initialization is done by calculation of 

key dependent variable i.e. L, double L. After the initialization the ciphertext is divided in 

to sequence of 128 bit blocks. Next step is to calculate nonce dependent variables and 

per-encryption variables i.e bottom, Ktop, stretch, offset_0, checksum_0. Then the full 

block decryption takes place following which partial block is padded and decrypted 

checksum is also calculated in parallel. After all the ciphertext blocks are decrypted then 

the tag calculation takes place. The calculated tag and received tag are compared and 

validated. If the tag is valid then the plaintext blocks are assembled and sent to the 

output else the invalid flag is set high. 
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7.4. Basic High-Speed Architecture 

7.4.1. Datapath Design: 

The Datapath design of OCB consists of AES 128 core as shown in the Figure 59 which 

is used as a block cipher. The 128 bit key is loaded in four clock cycles i.e. 32 bits in 

each clock cycle. After which the L value is calculated by encrypting block of zeros using 

the key. Then, the key dependent variable L and double_L are calculated and are stored 

in a RAM. After which the associated data is processed using the AES_EncDec. The 

processed associated data is XORed with the previously processed associated and 

stored as Sum. This sum is useful later during the tag calculation. Before processing the 

message the nonce dependent variables called bottom, ktop, and stretch are calculated. 

Then, the plaintext processing is started by loading 128 bits of plaintext for processing 

each time. After processing all the blocks of data, the tag value is calculated by XORing 

checksum_m(XOR of all input values), offset_m and L value and then processing it 

through the AES_EncDec. If we are running cipher in the decryption mode then the tag 

verification is done after this step.   

The AES 128 block that we used in this design consists of a mixed round which helps in 

calculation of both round as well as inverse round and the datapath is as shown in 

Figure 60.  
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Figure 59: OCB Datapath 

 

Figure 60: AES Datapath 
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Figure 61:  Mixed Round 

7.4.2. Controller Design:  

Upon the reset the controller enter the initialization state as shown in the Figure 62. 

Then, next step is Key check where it checks whether the key update is required or not. 

If key_update is high then controller moves to the load keys state, it takes 4 clock cycles 

to load the key completely (i.e. 32 bits in each clock cycle). Then, the next state is key 

initialization where the value for L (key dependent variable) value is calculated and 

stored. Then, in the next state the controller waits for the data, when the bdi_type is 

nonce then Ktop is calculated and if the bdi_type is message/ciphertext then the 

encryption/decryption starts based on decrypt equals to low/high respectively. Once the 

data is completely processed (i.e. bdi_eoi is high) then the next state is Tag calculation. 

After Tag calculation the controller goes back to the initialization state. 
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Figure 62: OCB Controller (1) 
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Figure 63: OCB Controller (2). 
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Figure 64: OCB Controller (3) 
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Figure 65: OCB Controller (4) 



89 
 

 

Figure 66: OCB controller (5) 

 

 

7.5. Optimized Pipelined Architecture: 

In the pipelined architecture, the Datapath and Controller Design from Basic Iterative 

Architecture were used as a starting point. The optimized pipelined design can process 

two 128-bit data blocks at a time. The Datapath design is same the Basic Architecture 

with few modification in bus widths and addition of components. To reduce the critical 



90 
 

path, registers were inserted in the Datapath design of Basic Architecture. The critical 

path of the design lies in the round function of the AES as it is the longest path.  

 

 

Figure 67: OCB Datapath Pipelined 

 

 

 



91 
 

7.5.1. Register Insertion 

Two registers were inserted in the mixed round function of AES as shown in the Figure 

68 to reduce the critical path. This register helps in processing two blocks of data in 

parallel. Due to the insertion of this register the maximum frequency was increased. 

 
 
 

 

Figure 68: AES Mixed Round Pipelined 

 

 

 

7.5.2. Path Balancing 

The width of bdi and bdo were changed to 256 bits. In the new design, additional set of 
key dependent variables i.e. L_2, double_L_2 are pre-calculated and stored in RAM and 
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nonce dependent variables i.e. bottom_2, ktop_2 and stretch_2 were calculated to help 
the processing of second block of data as shown in the 

 

Figure 67. Changes were made in the AES datapath as shown in the Figure 69. 

Additional register was added at the output of the mixed round function to hold the value 

of first block after processing until the second block was processed. 
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Figure 69: AES Datapath pipelined 

 

 

7.5.3. Controller Modification 

There were no changes in the top level controller. Changes in the AES controller were 

made. 

Changes in the controller of AES: 

The Key scheduling in AES_EncDec remained the same but the data processing was 

changed by adding four additional states.  Three states were added to get the data 

ready entering the round function and an additional state was added to process two 
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blocks of data at the same time. The round value increases by one per two clock cycles 

and same round key is available for two clock cycles. The modified controller ASM chart 

is as shown in the Figure 70. 

 
 
 

   

Figure 70: AES Controller Pipelined 
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8. AES-OTR 

 

8.1. Introduction and Major features 

AES-OTR [9] was submitted by NEC Corporation, Japan which was designed by 

Kazuhiko Minematsu. It is a blockcipher mode of operation to perform an encryption with 

associated data. OTR stands for Offset Two-Round.  The encryption/decryption 

algorithm uses AES as the block cipher. The encryption function accepts key, nonce, 

associated data and plaintext as the input and provides ciphertext and tag as the output. 

The decryption function accepts the key, nonce, associated data and ciphertext as the 

input and provides plaintext as output when tag matches (|M| = |C|) otherwise rejection 

symbol is sent as an output. For processing the associated data there are two distinct 

types of associated data processing (ADP) techniques Serial ADP and Parallel ADP. In 

this project we used parallel ADP. 

  

8.2. Recommended Parameters:  

There are four different parameter sets recommended in specification. 

 Primary recommendation: 16-byte (128 bits) key, 12-byte nonce (102 bits), 16-

byte tag (128 bits), and parallel ADP. 

 Secondary recommendation: 16-byte (128 bits) key, 12-byte (102 bits) nonce, 

16-byte (128 bits) tag, and serial ADP. 
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 Third recommendation: 32-byte (256 bits) key, 12-byte (102 bits) nonce, 16-byte 

(128 bits) tag, and parallel ADP. 

 Fourth recommendation: 32-byte (256 bits) key for AES-256, 12-byte (102 bits) 

nonce, 16-byte (128 bits) tag, and serial ADP. 

We used primary recommendation in this project. 

 

8.3. Encryption and Decryption 

First step in encryption process is partition the plaintext in to 128 bit blocks i.e. 

(M[1],M[2]...,M[m])←M. Let us assume 256 bit blocks of plaintext be to be (M[1], . . . 

,M[ℓ])←M. For every i < ℓ the ith chunk M[i] = M[2i − 1],M[2i]) is encrypted with the help of 

two-round feistel permutation with masks as shown in the following equations  

 

C[2i − 1] = EK(2i−1L ⊕M[2i − 1]) ⊕M[2i] 

C[2i] = EK(2i−13L ⊕ C[2i − 1]) ⊕M[2i − 1] 

L in the above mentioned equation is obtained by encrypting the nonce with tag-length. 

For the last chunk of plaintext the encryption process is slightly different. If the number of 

bits in last chunk is greater than 128 bits then a variant of two-round feistel permutation 

is is applied for encryption of this plaintext and if number of bits in last chunk is less than 

128 bits then variant of CTR mode is applied as shown in the Figure 71.  
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Figure 71: AES-OTR Encryption 

 

 

 

As mentioned earlier there are two variants for processing associated data, serial ADP 

and parallel ADP. As per the primary recommendation we used parallel ADP in this 

implementation. In Parallel ADP it uses a parallelizable pseudorandom function which is 

a variant of PMAC. Untrancated data tag TA is calculated by processing associated data 

as shown in Figure 72.  
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Figure 72: Parallel ADP 

 

 

 

For tag calculation the Σ value and L value from Figure 71 and TA value from the Figure 

72 are used. The Σ value is XORed with L value and Encrypted then the result is XORed 

with the TA value to obtain tag as shown in the Figure 73. 

 

 

 

 

Figure 73: Tag calculation. 
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8.4. Basic High-Speed Architecture 

8.4.1. Datapath Design: 

The Datapath design of AES-OTR consists of AES key on the fly function used for the 

Ek block as shown in the Figure 74. It consists of galois field multiplication by 4 and 

multiplication by 2 fields. It also consists of padding block for the incomplete blocks. The 

value of key, nonce, and public message number are registered. The data flow in the 

datapath is as follows: Initially the key is loaded and then the ‘Q’ value and gamma value 

are calculated from the nonce. After that the associated data processing is started, each 

processed data block is XORed with next block and then that value is registered. Same 

procedure is repeated until last block and then the resulting value is again processed 

through the AES block and then stored as TA shown in Figure 72. Then, the plaintext 

processing is started. The encryption/decryption process in AES-OTR is quite different, 

when compared to the other algorithms. It consists of fiestel structure where the even 

plaintext/ciphertext block depends on the values odd plaintext/ciphertext as shown in the 

Figure 71. After the encryption then next step is tag calculation where the checksum 

value is encrypted and XORed with the TA value to get the tag value.  

 

 

 



100 
 

 

Figure 74: AES KOF Datapath 

 

 

 

 

Figure 75: AES KOF Round 
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8.4.2. Controller Design:  

Upon the reset the controller enters the initialization state. Then, the next state is wait 

state where the controller checks whether a new input is available first then it checks for 

the key update. If the key update is high next state is wait for key and whenever key is 

ready, key is initialized. After key update next state is wait for public message number, 

after loading public message number next state is initialize message where controller 

waits for message initialization delay then the controller moves to the next state i.e. wait 

for message, in this state, based on the value of bdi_type controller decides the further 

processing. If the bdi_type is associated Data then next state will be associated data 

processing, if the bdi_type is message/ciphertext then next state will be process data 

state where message/ciphertext will be encrypted/decrypted. Once all the blocks are 

processed next state is tag generation and if its decryption then next step is tag 

authentication where the tag is checked with the tag received. After this controller goes 

back to the initialization state. 
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Figure 76: AES OTR Controller (1) 
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Figure 77: AES OTR Controller (2) 
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Figure 78: AES OTR Controller (3) 
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Figure 79: AES KOF Controller 

 

 

 

8.5. Optimized Pipelined Architecture: 

In the pipelined architecture, the Datapath and Controller Design from Basic Iterative 

Architecture were used as a starting point. The optimized pipelined design can process 

two 128-bit data blocks at a time. The Datapath design is same as the Basic Architecture 

with few modification in bus widths and addition of components.  To reduce the critical 

path, registers were inserted in the Datapath design of Basic Architecture. The critical 
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path of the design lies in the round function of the AES as it is the longest path. This 

design was different when compared to the other designs due to the feistel structure and 

the data dependency between odd and even blocks. The pipelined architecture works in 

the following way: The value of first block and third Block are simultaneously loaded and 

processed then the second and fourth blocks are loaded and they are processed with 

the help of first and third blocks. 

8.5.1. Register Insertion 

Register was inserted in the round function of AES_KOF function as shown in the Figure 

80. Due to the insertion of this register the Maximum clock frequency from basic 

architecture was increased. 

 
 
 

 

Figure 80: AES KOF Round Pipelined 
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8.5.2. Path Balancing 

The Path balancing was done by pre-calculating the values of gamma for second block 

of associated data processing and pre-calculating the L value for the for second block of 

plaintext/ciphertext. 

 
 

   

Figure 81:  AES-OTR Pipelined 
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8.5.3. Controller Modifications 

The Top level controller was slightly modified because after the critical path was shifted 

to the following signals after the register insertion in AES_KOF so, the signals ‘ctr’ and 

no_msg_flag were registered to reduce the critical path.   

Changes in the controller of AES_KOF: The data processing was changed by adding 

four additional states.  Three states were added to get the data ready entering the round 

function, one additional state was added to process two blocks of data at the same time 

and the additional. The round value increases by one per two clock cycles and same 

round key is available for two clock cycles. The modified controller ASM chart is as 

shown in the Figure 82. 

 

 

 

 

Figure 82: AES KOF Controller Pipelined  
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9. Performance Evaluation 
 
 
 

Performance of each candidate was evaluated based on the area occupied by 

the design and improvement in the maximum clock frequency and throughput. All 

the following results were generated targeting the largest available FPGA in the 

student version of Xilinx ISE, i.e., Xilinx Virtex 6 XC6VLX75T-3FF784. 

Formula for Throughput Calculation of each candidate: 

Basic Architecture: 

Table 2: Throughput Calculation Formula: Basic Architecture 

Candidate Throughput Formula 

SCREAM (128/11)*fclk ≈ 11.63*fclk 

AES-COPA (128/11)*fclk ≈ 11.63*fclk 

AES-OTR (128/12)*fclk ≈ 10.66*fclk 

MINALPHER (256/19)*fclk ≈ 13.47*fclk 

OCB (128/12)*fclk ≈ 10.66*fclk 

 

fclk = Clock Frequency 
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Pipelined Architecture: 

Table 3: Throughput Calculation Formula: Pipelined Architecture 

Candidate Throughput Formula 

SCREAM (256/23)*fclk ≈ 11.13*fclk 

AES-COPA (256/23)*fclk ≈ 11.13*fclk 

AES-OTR (256/24)*fclk ≈ 10.66*fclk 

MINALPHER (512/38)*fclk ≈ 13.47*fclk 

OCB (256/24)*fclk ≈ 10.66*fclk 

 

fclk = Clock Frequency 

9.1. Implementation Results 

The following tables are the implementation results of Basic Architecture Design 

versus the Pipelined Design. Table 44 shows the comparison of maximum clock 

frequency in Basic Architecture and Pipelined Architecture. 
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Table 4: Maximum Clock Frequency comparison. 

 

Candidate 

Maximum Clock Frequency (MHz) 

Basic Architecture Pipelined Architecture 

SCREAM 92 170 

AES-COPA 120 210 

AES-OTR 150 235 

MINALPHER 168 222 

OCB 172 221 

 

 

 

Table 5: Throughput Comparison. 

 

Candidate 

Throughput (Mbits/sec) 

Basic Architecture Pipelined Architecture 

SCREAM 1071 1892 

AES-COPA 1396 2337 

AES-OTR 1600 2507 

MINALPHER 2264 2991 

OCB 1835 2357 
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Table 55 shows the comparison of Throughput in Basic Architecture and 

Pipelined Architecture. 

Table 66 shows the comparison of Area expressed in LUTs in Basic Architecture 

and Pipelined Architecture. 

 

 

Table 6: Area Comparison (expressed in LUTs). 

 

Candidate 

Area (LUTs) 

Basic Architecture Pipelined Architecture 

SCREAM 3644 3968 

AES-COPA 4902 6484 

MINALPHER 7836 11285 

OCB 3312 3673 

AES-OTR 5058 7443 

 

 

Error! Not a valid bookmark self-reference.7 shows the comparison of 

Area expressed in Slices in Basic Architecture and Pipelined Architecture. 

Table 88 shows the comparison of Throughput to Area ratio (Area expressed 

in LUTs) in Basic Architecture and Pipelined Architecture. 
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Table 7: Area Comparison (expressed in Slices) 

 

Candidate 

Area (Slices) 

Basic Architecture Pipelined Architecture 

SCREAM 1546 2442 

AES-COPA 2216 4431 

MINALPHER 3974 5915 

OCB 1742 2905 

AES-OTR 2219   3637 

 

 
 

Table 8: Throughput to Area ratio (Area expressed in LUTs) 

 

Candidate 

Throughput/Area  (Mbits/sec LUTs) 

Basic  

Architecture 

Pipelined 

Architecture 

SCREAM 0.29 0.48 

AES-COPA 0.28 0.36 

AES-OTR 0.32 0.34 

MINALPHER 0.29 0.27 

OCB 0.55 0.64 
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Table 9: Throughput to Area ratio (Area expressed in Slices) 

 

Candidate 

Throughput/Area (Mbits/sec Slices) 

Basic Architecture Pipelined 

Architecture 

SCREAM 0.69 0.77 

AES-COPA 0.63 0.53 

AES-OTR 0.72 0.69 

MINALPHER 0.57 0.51 

OCB 1.05 0.81 

 
 
 
Table 99 shows the comparison of Throughput to Area ratio (Area expressed in 

LUTs) in Basic Architecture and Pipelined Architecture. 

 

9.2. Analysis of Results 

From the tabulated data the graphs have been visualized as shown in Figure 83, Figure 

84, Figure 85, Figure 86, Figure 87, and Figure 88. We can see that the candidate 

SCREAM has gained 84% increase in its maximum clock frequency. AES-COPA has 

gained 75% increase in its maximum clock frequency. MINALPHER has gained 39.88% 

increase in its maximum clock frequency. OCB has gained 28.49% increase in its 

maximum clock frequency. AES-OTR has gained 56% increase in its maximum clock 

frequency. 
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Figure 83: Plot - Maximum Clock Frequency- Basic Architecture vs Pipelined 
Architecture 

 

Figure 84: Plot - Throughput- Basic Architecture vs Pipelined Architecture 
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Figure 85: Plot – Area Comparison (expressed in LUTs) 

 

Figure 86: Plot - Area Comparison (expressed in Slices) 
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Figure 87: Plot - Throughput to Area Ratio (Area expressed in LUTs)  

 

Figure 88: Plot - Throughput to Area Ratio (Area expressed in Slices)   
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10. Conclusions 
 
 
 

The improvement in Maximum clock frequency and Throughput depends on the 

algorithm and its critical path. We can say that the candidate with the lowest value in the 

Basic Architecture has achieved the highest amount of gain in the percentage increase 

of maximum clock frequency and throughput in Pipelined Architecture. Our results have 

demonstrated the improvement in the Clock Frequency by a factor varying from x1.28 for 

OCB to x1.84 for SCREAM, the improvement in the Throughput by a factor varying from 

x1.28 for OCB to x1.77 for SCREAM, and the improvement in the Throughput to Area 

ratio (with Area expressed using LUTs) by a factor varying from x0.92 for Minalpher to 

x1.62 for SCREAM. Improvement in Throughput/#LUTs was observed in four candidates 

except Minalpher. Improvement in Throughput/#Slices was observed in one candidate 

i.e. SCREAM. Pipelined implementation performance wise, the top 3 candidates are 

SCREAM, AES-COPA, and AES-OTR. The candidates MINALPHER and OCB fall at the 

bottom as there was not much improvement in their maximum clock frequency and 

throughput after pipelining. 
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