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ABSTRACT 

REMOTE SENSING TECHNIQUES FOR MONITORING AQUATIC VEGETATION 

Alfonso Blanco, Ph.D. 

George Mason University, 2013 

DissertationDirector: Dr. John J. Qu 

 

This research addresses the need for a more accurate, efficient, large–scale and timely 

methods for identifying and mapping hydrilla infestation in coastal estuaries and other 

water bodies, as nutrient loadings continue to exert pressures on estuarine habitats. The 

majority of hydrilla infestations surveys are presently completed through ground surveys 

and manual aerial photograph interpolation which is time consuming, costly and subject 

to inconsistencies. Remote sensing has been used for assessing wetlands and other non-

invasive aquatic species, but there is limited information on the detection of hydrilla 

using hyperspectral sensors. The first objective of this research was to establish a 

database of hydrilla spectral signatures from an experimental tank and from a field setting 

using a spectrometer. These spectral signatures will be used to identify the optimal 

spectral and spatial characteristics that are required to identify and classify the 

distribution of hydrilla canopies in a coastal estuary. 
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The second objective is to process the Hyperion satellite images with workflow process 

in ENVI version 4.8, named the Spectral Hourglass Wizard. This processing technique 

analyzes the hyperspectral images using several evaluation algorithms such as the 

Minimum Noise Fraction (MNF), Pure Pixel Index, n- D Visualization and the 2 D 

Scatter plot. Another image analysis tool the Spectral Angle Mapper (SAM) was applied 

to the hyperspectral images for classifying the hydrilla canopy and then matching the 

endmember collected spectra with the spectral library profiles that were developed from 

the  in-situ field measurements. 

The third objective was to process the airborne image collected with the AISA sensor 

with the same Spectral Hourglass Wizard workflow process. 

The fourth objective was to validate the satellite and airborne hyperspectral images with 

the spectral signatures collected from the experimental tank and the field measurements. 

In addition, the Hyperion and AISA imaging results were compared with the aerial 

photos collected by the Virginia Institute of Marine Sciences (VIMS) and the ground 

survey data collected by Maryland Department of Natural Resources (MDDNR) for 

verifying the extent and the location of the hydrilla canopies. 

The spectral signatures from the experimental tank and the field were compared to the 

spectral signatures resulting from the MNF and SAM spectral profiles which  showing 

that the Hyperion image produced a spectral reflectance averaging 18% which can be 

interpreted that the hydrilla canopy was floating or partly submerged. The results of the 

AISA image were similar to the Hyperion with an average spectral reflectance of 18%. It 

can be concluded that when reflectance is below 10% the hydrilla canopy is submerged 
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and when it is above 10 % the hydrilla canopy is floating; however, the higher the 

reflectance, the more exposed the canopy is above the water surface. The analysis also 

showed that the average spectral reflectance from the hydrilla tank resulted in a 16 % 

reflectance compared to the field measurements which was only 6% reflectance. The 

hyperspectral analysis of both sensors provided for dual results, one is the identification 

and classification of hydrilla from hyperspectral imaging sensors and secondly the 

identification of blue-green algae in very productive waters. Accuracy assessment for 

Hyperion was almost the same as with the AISA sensor. The major contribution of this 

research was the development of a hydrilla spectral library and remotely identify and 

classify infestations of hydrilla in productive waters using hyperspectral sensors and 

simultaneously detect the presence of blue-green algae. The spectral library was 

established for hydrilla could be used by academia,  other researches, as well as 

consultants to be used on future studies. The achievement of such mapping techniques 

will provide a more cost-effective (eventually), timely, and repeatable method for 

creating accurate baseline maps for water resource managers that are less subjective and 

will benefit the Federal, State and County agencies, as well as the coastal community 

programs at the national and international level. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 
 

Executive Order 13112, 1999, defines an invasive species such as Hydrilla 

vertillicata as “any species of plant or animal that is not native to that ecosystem and 

whose introduction does or is likely to cause economic or environmental harm or harm to 

human health.” Invasive aquatic plant species can have severe ecological and economic 

impacts and can adversely impact navigation, nutrient cycling in wetlands, water quality, 

drinking water supplies, hydropower facilities, irrigation, fisheries, recreation, wildlife, 

and native vegetation diversity (Jakubauskas et al., 2002; Laba et al., 2008; Madden, 

2004; Underwood et al., 2006). Federal and state agencies spend millions of dollars 

annually on aquatic plant management programs. Major portions of these budgets are 

targeted towards the monitoring and control of invasive aquatic plant species. 

The National Invasive Species Council defines an invasive species as non-native 

to the ecosystem under consideration and whose introduction causes or is likely to cause 

economic or environmental harm or harm to human health. The Nature 

Conservancy/University of Florida, ranks hydrilla as the second most invasive plant after 

water hyacinth, out of 129 aquatic plants in the U.S. evaluated in their risk assessment. 

The name hydrilla is derived from the Latin word “hydro” and “illa” meaning 

something that lives in the water. Verticillata is the Latin word for whorled and refers to 
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the leaf arrangement of this plant. Hydrilla is an aggressive, invasive, non-native aquatic 

weed that originated in Southeast Asia. An aquarium business dealer from Tampa, 

Florida imported this submersed aquatic plant in 1951 (Schmitz et al., 1991). It was first 

discovered in the wild in a canal in South Florida during the early 1960’s (Chadwell and 

Engelhardt, 2008). Hydrilla was marketed under the name ‘Indian star-vine’ indicating its 

origin; it originally shipped to the U.S. from Ceylon, currently Sri Lanka. In 1960, a 

severe infestation of Indian star-vine was reported in Snapper Creek, southeast of Miami. 

The plant was incorrectly identified as Elodea canadensis until 1965. Elodea canadensis 

does not produce subterranean tubers and the plant was then correctly identified as 

Hydrilla verticillata (Blackburn et al. 1969). Hydrilla verticillata (L.F.) Royle is either 

monoecious or dioecious with both male and female flowers. The monoecious strain is 

dominant in the Chesapeake Bay area. Presently hydrilla has been found in 21 states 

across the US, as far north as Maine and Washington State (figure 1). 

 

Figure 1 USGS Map of hydrilla coverage in the U.S. (Source: USGS, 2003) 
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USGS first reported hydrilla in the Chesapeake Bay in August 1982, specifically 

in the Potomac River (Haller 1982), south of Alexandria, VA and in Kenilworth Aquatic 

Gardens Ohio (C & O) Canal near Seneca, Marylend. This infestation began in the spring 

of 1980 when floating cages of hydrilla were incorrectly identified as Elodea canadensis 

and were placed in the Potomac River in order to restore the aquatic grasses.  

There is an increased need by governmental agencies, consultants, and private 

groups for mapping submerged aquatic vegetation (Madden 2004; Shuman and Ambrose 

2003). 

Satellite imagery is a cost effective method for collecting information and 

mapping aquatic vegetation in coastal freshwater habitats; satellite imagery costs one half 

the amount of field surveys (Valta-Hulkkomen et al., 2005). 

1.2 The importance of hydrilla 
 

Hydrilla is an important component of wetland and coastal ecosystems, playing a 

key role in ecological function. Many macrophyte communities are characterized by high 

growth rates, rapid biomass accumulation, and, in seasonal ecosystems such as wetlands 

and floodplains, by connection to the flooding pattern of the landscape (Junk 1997). 

Aquatic plants like hydrilla have a large capacity to absorb harmful substances and 

pollutants and can be indicators of the eutrophic status of a water body (Onaindia et al., 

1996). Monitoring and restoring is a key element for preservation of the Chesapeake Bay. 

Hydrilla is important to the overall restoration effort because of the various roles it plays 

in the ecosystem, including the following: 
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It provides for a  nursery habitat, food, and shelter for juvenile fish, blue crabs, 

and other commercially and ecologically important species. 

It serves as a vital food source for resident and migratory waterfowl, some of 

which are endangered, that consumes both its vegetative material and seeds. 

It enhances water clarity by buffering shorelines, reducing sediment resuspension, 

and trapping suspended particles. 

It reduces erosion by stabilizing the sediment with its roots and rhizomes. 

It improves water quality by removing toxins and nutrients, such as nitrogen and 

phosphorus, from the water column. 

It produces detritus as it decomposes, which serves as a valuable food source for 

zooplankton, thereby contributing to energy transfer up the food chain. 

It oxygenates the surrounding water column, enhancing water quality for other 

aquatic organisms. 

1.3 Statement of the problem 
 

Waterways can be impaired by infestations of hydrilla, which create several 

problems for the transportation industry. Dense hydrilla mats can block commercial and 

recreational traffic through navigable waterways, ports, and passenger ferry terminals. 

Figure 2 shows the hydrilla invasion on the Potomac River under the Woodrow Wilson 

Bridge.  
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Figure 2 Hydrilla infestations on the Potomac River near the Woodrow  

Wilson Bridge (Source: Washington Suburban Sanitary District) 

 

Floating mats of hydrilla have also been known to exert large amounts of pressure 

on bridge piers, locks, and docks. The weight of large mats of hydrilla pushed by water 

currents can scour bridge abutments, weakening infrastructures and thereby requiring 

costly repairs and/or replacements. This damage to the transportation system caused by 

hydrilla infestation is a significant and costly problem in southern and coastal states. 

Hydrilla has an annual maintenance cost of about $110 million, which includes the cost 

of losses, damages, and management costs associated with the infestations and invasion 

control (Pimentel et al., 2000). In the Upper Chesapeake Bay hydrilla has spread very 

rapidly, causing problems in cooling ponds for power generating utility companies. 

Similar to problems caused in canals, hydrilla mats can clog and damage dams, power 

plants, and other water control structures. In 1991, hydrilla mats blocked the intake 

structures at the St. Stephen hydroelectric facility on Lake Moultrie, South Carolina, 
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forcing the shutdown of the dam and the loss of $4 million in power generation. In 

addition, the infestation cost $1.2 million for emergency treatment alone (Richardson 

2008). 

1.4 General description of the study area 
 

The Otter Point Creek is located in the Bush River watershed. This watershed is 

becoming increasingly urbanized with the densest development located in Harford 

County’s residential and industrial development envelope (figure 3). This envelope was 

established by Harford County in 1977 in order to direct development towards areas 

served by water and sewer infrastructure. North of the development area is classified as 

an agriculture zone. Presently about 35 percent of the Bush River is along developed 

land, however, the north side of Otter Point Creek, where the Anita Leight Center is 

located, is undeveloped land. This means there have been little change in the water 

quality. The Maryland Department of the Environment (MDE) cites this sub watershed in 

the Bush River basin as an impaired water body because it contains high nutrient 

loadings, suspended sediments, and toxic substances (Delgado 2011). The Otter Point 

Creek (OPC) study area is located in the Chesapeake Bay National Estuarine Research 

Reserve system in Maryland’s upper western shore of the Chesapeake Bay Watershed at 

a latitude of 39.4508 N and longitude of 76.2746 W. OPC is located in Harford County, 

east of the intersection of U.S. Route 40 and Maryland Route 24, and north of the town of 

Edgewood as shown in (figures 3, 4) (Pasternak and Hinnov). The creek flows into the 

Bush River and subsequently drains into the Chesapeake Bay in southeastern Baltimore 

County. OPC covers 672 acres of open water, tidal marshes, forested wetlands, and 
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upland hardwood forests surrounded by highways, residential, and commercial 

development in relatively natural and undisturbed condition. Bush River is located near 

the U.S. Army Aberdeen Proving Grounds site and is classified as oligohaline (low 

salinity or brackish waters). The creek is one of the few large tidal freshwater marshes in 

the upper Chesapeake Bay, which is still in a relatively natural and undisturbed condition 

(Delgado 2011). OPC consists of an estuarine wetland complex located near the 

headwaters of the Bush River. Figure 5 is an aerial view of OPC showing upland 

vegetation, creeks, mudflats, wetlands, and submerged aquatic vegetation. 

 

 

Figure 3 General location map of study area (Source: Pasternak and Hinnov, 2003)) 
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Figure 4 Study area (Source: Pasternak and Hinnov, 2003) 

 

 

Figure 5 Aerial view of Otter Point Creek (Source: Delgado 2011) 
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From 2005 thru 2011 the dominant SAV species in Otter Point Creek has been 

Hydrilla verticillata as indicated on Table 1. In 2005, Otter Point Creek had 116 acres 

covered by hydrilla
21

 

Table 1 Ground Survey Data Otter Point Creek (Source: Delgado 2011) 

Date Surveyor Lat.  Long.  Location Species 

8/23/2007 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

10/30/2007 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

4/29/2008 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

6/20/2008 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

10/16/2008 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

6/16/2009 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv, Cd 

8/6/2009 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

10/8/2009 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

6/14/2010 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

8/13/2010 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

6/6/2011 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

8/9/2011 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv, Nm 

10/13/2011 Delgado 39.444167 -76.275 
Otter Point 

Creek 
Hv 

 

Hv = Hydrilla 

Cd= Elodeas canadensis 

Nm- Najas minor 

                                                 
web.VIMS.edu/bio/SAVSAV05/Tble/quadrate_page.htm

2
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1.5 Hydrilla characteristics 
 

Once hydrilla invades an aquatic ecosystem, it competes with other native species 

for oxygen and can spread very rapidly, growing up to 1 inch per day and forming dense 

mats (Langeland 1996). Hydrilla reproduces using four mechanisms: fragmentation, 

turions, tubers, and seeds (figure 6). Hydrilla beds play an important role in supplying 

fishery habitats, a food source for aquatic and non-aquatic wildlife, slope stabilization, 

enhancement of sedimentation, and a reduction in wave energy. When hydrilla invades an 

aquatic ecosystem, it drives out native aquatic plants, creating a pure hydrilla canopy. 

This noxious weed can impact the aquatic environment by blocking sunlight to other 

native species. It can survive in a depth of nearly 10 m, anchoring itself in soft sediments 

along coastal, estuarine, and freshwater habitats (Dennison et al., 1993). 

 

 

Figure 6 Hydrilla stems (Source: Chadwell, 2004) 
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Hydrilla’s ability to use low light allows it to start photosynthesizing earlier in the 

morning than other plants. Hydrilla’s speed of growth is also impressive. The plant is 

composed of 93-95 percent water, allowing it to create huge volumes of biomass with 

very few resources. As a result, it can grow very rapidly, doubling its biomass every two 

weeks in summer conditions. Hydrilla also branches profusely as it approaches the water 

surface, densely filling the entire water column up to 10 m deep and shading out other 

plants. Hydrilla grows very aggressively in a wide variety of water conditions and 

temperatures; so few habitats are safe from it. Many times hydrilla has been referred as 

the perfect aquatic weed because it survives in many aquatic environments (Langeland 

1996).  

1.6 Research objectives 
 

This research effort will identify and classify hydrilla canopies in a coastal estuary 

using satellite and airborne measurements and validating the results. The specific 

objectives proposed herein are as follows: 

1) The first objective was to build a hydrilla spectral library from in-situ field 

measurements collected from an experimental tanks and field setting in order to 

establish  a baseline for validation purposes 

2) The second objective was to identify and classify hydrilla aquatic vegetation 

using spaceborne platform (Hyperion) for validation of target identification 

3) The third objective was to identify and classify hydrilla aquatic vegetation using 

an airborne platform (AISA) for validation of target identification 
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4) The fourth objective was to validate the Hyperion and AISA remote sensing 

measurements with the in-situ field measurements. Finally a comparison of the 

image results will be made with VIMS aerial photos and MDDNR ground surveys  

 

1.7 Structure of dissertation 
 

This dissertation consists of eight chapters. 

Chapter 1 presents background information on hydrilla and various explanations 

for the importance of Submerged Aquatic Vegetation (SAV), a statement of the problem, 

research objectives, structure of the dissertation, and major data sources. 

Chapter 2 presents a literature review and addresses previous research in aerial 

photography, field measurements, and remote sensing of aquatic vegetation. 

Chapter 3 discusses theory of aquatic optics and remote sensing of aquatic 

vegetation. 

Chapter 4 presents the field measurements collected in-situ and the procedures 

for the data collection from the experimental tanks and from the estuary. The data was 

analyzed and the results shown. 

Chapter 5 covers remote sensing techniques for processing a Hyperion image 

with the Environment for Visualizing Software (ENVI) version 4.8 software and covers 

the procedures which includes preprocessing techniques, band removals, atmospheric 

correction, and algorithms such as Minimum Noise Fraction (MNF), Pixel Purity Index 

(PPI), 2 D Scatter plot, n-Dimensional Visualizer, and Spectral Angle Mapper (SAM). 
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Chapter 6 covers remote sensing techniques for processing an AISA image using 

ENVI with the same preprocessing and processing techniques as in Chapter 5 

Chapter 7 Validation of the satellite and airborne hyperspectral images with the 

in situ field measurements collected from the experimental hydrilla tank and field 

settings, and aerial photos. The images that resulted from the hyperspectral processing 

techniques were compared to the aerial photos collected by VIMS and the ground surveys 

collected by the Maryland Department of Natural Resources (MDDNR).  

Chapter 8 Conclusions and Discussion of the in-situ field measurements, remote 

sensing techniques, and validation procedures. In addition, it includes a discussion and 

comparison of results of the airborne sensor AISA and the satellite sensor Hyperion and 

the differences in endmember collection spectra collected from both sensors. The in-situ 

field measurements will be compared to spectra collected by both sensors. Also the aerial 

photos collected by the Virginia Institute of Marine Sciences (VIMS) will be validated 

against the resulting images from both sensors. This chapter will summarize the entire 

dissertation and it will discuss major contributions to the science of remote sensing, 

limitations, and future research needs. 

1.8 Major data sources 

 

This section describes the procedure for collecting and processing the aerial 

photographs by the Virginia Institute of Marine Sciences (VIMS), the in-situ field 

measurements of the experimental tank and the field, and the collection of hyperspectral 

images from the satellite and airborne sensors. The experimental tanks and field 

measurements were collected at the Anita Leight Center on August 8, 2008 and the field 
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measurements at the Otter Point Creek coastal estuary on August 9,2009. The 

experimental tank and field measurements were collected using an ASD Field SpecPro 

field spectrometer. The AISA image was atmospherically corrected with FLAASH and 

provided by the University of Nebraska CALMIT and FAMU as the sensor was flown on 

July 15, 2005 and the satellite hyperspectral image from Hyperion was downloaded from 

the Earth Explorer website for a flyover of July 20, 2011. Both images were processed 

and analyzed with the Environment for Visualizing Software (ENVI®) version 4.8. The 

aerial photography was provided by VIMS taken on July 15, 2011. 

1.8.1 Protocol for the collection and processing of aerial photographs 

 

Black-and-white photographs at a scale of 1:24,000 were collected by VIMS for 

identifying all visible aquatic vegetation beds by the VIMS for several ideal conditions, 

such as low tide, when maximum delineation of aquatic vegetation is observed; when 

phenologic stage overlap was the greatest; when surface reflectance from sun glint did 

not cover more than 30 percent of the frame; when the sun angle was generally between 

20° and 40° to minimize water surface glitter; when the clarity of water ensured complete 

delineation of grass beds; during periods of no or low wind; and during periods of no or 

low haze and/or clouds below aircraft in the vertical mode with less than a 5° tilt. 

Scale/altitude/film/focal length combination permitted resolution and identification of 

one square meter area of aquatic vegetation at the surface (Moore et al., 2009; 2000). 

Each flight line included sufficient identifiable land area to assure accurate plotting of 

grass beds. The procedures established were that aerial photography negatives covering 

aquatic vegetation beds were scanned and orthorectified to create orthophoto mosaics. 
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The outlines of the beds were then interpreted on-screen, providing a digital database for 

analysis of bed areas and locations. Ground survey information was collected in 2011 by 

MDDNR tabulated and entered into a Geographic Information System (GIS) by VIMS 

(Moore et al., 2009; 2000). USGS 7.5 minute quadrangle maps were used to organize the 

mapping process, which included interpreting the beds from aerial photography, mapping 

ground survey data, and compiling SAV bed area measurements in OPC. The negatives 

from the aerial photos were scanned, georectified and orthographically corrected to 

produce a seamless series of aerial mosaics in accordance to VIMS Standard Operating 

Procedures (SOP). The SAV beds were interpreted on-screen from the orthophoto 

mosaics using Environmental Research Institute, Inc. (ESRI) Arc Info GIS software 

(Moore et al., 2009; 2000). The identification and delineation of aquatic vegetation beds 

by photo interpretation utilizes all available information including: knowledge of aquatic 

grass signatures on film, distribution of aquatic vegetation in 2010 from aerial 

photography, 2010 ground survey information, and aerial site surveys (Moore et al., 

2009; 2000). In addition to delineating SAV bed boundaries, an estimate of SAV density 

within each bed was made by visually comparing each bed to an enlarged crown density 

scale similar to those developed for estimating crown cover of forest trees from aerial 

photography (Paine 1981). Bed density of seventy to one hundred percent was 

characterized for the Otter Point Creek aerial photo.  

1.8.2 Experimental tank and field measurements 

 

The experimental tank spectral measurements were collected from a hydrilla tank 

on August 5, 2008 that grows hydrilla for harvesting to the estuary during the summer 

http://web.vims.edu/bio/sav/sav10/crown_density.html
http://web.vims.edu/bio/sav/sav10/crown_density.html
http://web.vims.edu/bio/sav/sav10/lit_cited.html
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months. Field spectral measurements were collected on August 9, 2009 at the Otter Point 

Creek pier when hydrilla was at its maximum annual growth. The instrument used to 

collect the spectra was a FieldSpec
®

 Pro spectroradiometer (ASD Inc, Boulder, CO, 

USA). A more detailed description of the experimental tank and field spectral collection 

is detailed in Chapter 4.  

1.8.3 Hyperion data acquisition and characteristics 

 

The Hyperion satellite was tasked by NASA Goddard Space Flight Center 

(GSFC) to fly over the study area on July 20, 2011 at a twenty to twenty-nine percent 

cloud cover. The image was downloaded from the Earth Explorer website.managed by 

USGS The acquisition date for Hyperion was collected the same month and year as the 

VIMS aerial photo, July 2011. Hyperion was NASA’s first hyperspectral imager aboard 

NASA’s Earth Observing-1 (EO-1) under the New Millennium Program (NMP) of 

November 2000. Hyperion is the first civilian hyperspectral image sensor in space having 

a sun-synchronous, circular orbit inclined at 98.2
0 

and at an altitude of 705 km, a swath of 

7.5 km by 185 km. Hyperion is a push broom-type imaging spectrometer that follows the 

same track as Landsat-7 satellite at only about one minute behind. Hyperion sensor has 

220 spectral bands with the spectral range of 400 to 2500 nm at 30 m spectral resolution. 

1.8.4 AISA data acquisition and characteristics 

 

The acronym AISA stands for Airborne Imaging Spectrometer and it is capable of 

acquiring continuous data within many narrow bands, up to 244 spectral bands, at a 

spectral resolution of approximately 10 nm from the Visible and Near-Infrared regions of 
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the electromagnetic spectrum (EMS). Spatial resolution that can be achieved range from 

less than 1 m to 10 m. The hyperspectral imagery acquired by AISA provides for an 

attractive alternative to aerial photographs and broad–based images acquired by space 

borne sensors because of its high spectral and high spatial resolution in the same image, 

and its increased dynamic range (Staenz 1992). An AISA image was acquired of the 

study site onboard an aircraft managed by the University of Nebraska's Center for 

Advanced Land Management Information Technologies (CALMIT) remote sensing 

center and Florida Agricultural and Mechanical University (FAMU). AISA was flown on 

July 10, 2005 at 6:13 PM over the Otter Point Creek estuary at an altitude of 3.07 km 

above sea level under clear skies. The ground surface was relatively dry. AISA is a push-

broom imaging spectrometer with a spectral resolution of 2.5 nm and a spatial resolution 

of 2.0 x 2.0 nm. The AISA imagery acquired for this research has a spectral resolution of 

ninety-seven (97) bands within a range of 498 nm to 819 nm. The AISA image was 

atmospherically corrected by CALMIT taking into consideration the solar irradiance, 

interaction of the electromagnetic energy with the atmospheric absorption, reflectance, 

and scattering, and the sensor geometry using the Fast Line-of-Sight Atmospheric 

Analysis of Spectral Hypercube (FLAASH) in ENVI version 4.8. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 In - situ field surveys of aquatic vegetation 
 

Presently conventional methods of mapping aquatic vegetation beds consist in 

ground surveys, which are sampling and field surveys along quadrants and transects. 

These methods tend to be expensive and time consuming. Maryland Department of 

Natural Resources (MDDNR) uses this method for collecting SAV data at Otter Point 

Creek. Collection of field data in areas of dense aquatic vegetation can be difficult to gain 

access making these conventional methods impractical (Jakubauskas et al., 2002; Jensen 

et al., 1986). One drawback of field surveys and mapping techniques is that they can 

disturb the aquatic vegetation beds and aquatic life (Shuman and Ambrose, 2003). The 

inventorying of large geographical areas of aquatic vegetation can be impractical to use. 

These conventional mapping techniques can be challenging to implement when there is a 

need for accounting for changes in density, especially when looking at a seasonal or 

interannual time scale (Jakubauskas et al., 2002).  

2.2 Mapping by aerial photography 
 

Application of aerial photography has been successful in marine and littoral 

environments (Marshall and Lee, 1994; Valta-Hulkkonen et al., 2004). The advantages of 

conventional film based methods are the very fine resolution (0.1 to 1.0 m, dependent on 

scale) (Jensen et al., 1986) and cost-effective data acquisition compared to airborne 
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multispectral scanner data. However the results have been shown to be somewhat 

inaccurate as aerial photographs require careful geo-correction to overcome geometric 

distortions introduced by aircraft instability and the camera lens (Chauvaud et al., 1998). 

If manually undertaken, photo-interpretation of such media is more often than not a 

subjective process and, applied as an operational tool, can be time consuming and limited 

in temporal coverage (Valta-Hulkkonen et al., 2004). Digital images are an improvement 

over manual ones in that they provide better geographical positioning and can be 

superimposed upon and compared with other geographical data in order to study the 

interactions between parameters and temporal changes. As much of the interpretation of 

aerial photography is based upon brightness, shallow submerged aquatic vegetation 

appears dark and is often indistinguishable from deep water. Variable water clarity, 

bottom sediments, macroalgae, and epiphytes add to the uncertainty in photographic 

identification of benthic vegetation habitats (Werdell and Roesler, 2003). Despite high 

spatial resolution, the poor spectral resolution of aerial photography is insensitive to 

subtle spectral variations and is certainly a limiting factor for successfully discriminating 

submerged features; however, the relatively high spatial resolution of aerial photographs 

can be suitable for terrestrial vegetation and emergent aquatic vegetation where the signal 

is not influenced by an overlying water column.  

Presently, color aerial photographs combined with image analysis successfully 

have mapped SAV in the Lower Chesapeake Bay, Maryland (Orth and Moore, 1983). 

Aerial photography had poor spectral resolution when compared to remote sensors. 

Aerial photography can identify homogenous emergent submerged aquatic vegetation 
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beds, but is not adequate to map most submerged aquatic vegetation (Jensen et al., 1986; 

Moore et al., 2000). Visual interpretation of aerial photography is a labor-intensive 

process (Marshall and Lee, 1994; Nelson et al., 2006). Aerial photography has limited 

use when assessing aquatic vegetation distributions across small water bodies spread 

across a large geographical area (Nelson et al., 2006). This is because even high-

resolution cameras mounted on an aircraft do not have a great field of view as a remote 

sensor on a satellite (Madden, 2004). Aerial photography requires multiple passes by an 

airplane to cover the same area acquired at one point in time by a satellite as shown in 

Figure 7. These additional passes can introduce changes in light and atmospheric 

conditions, which in turn can affect classification attempts (Jensen, 2005). A zoom of the 

Otter Point Creek study area is shown in Figure 8.  

 

 

Figure 7 Main image mosaic (Source: VIMS, 2011) 
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Figure 8 Aerial photo of study area  

(Source: VIMS, 2011) 

 

Presently color aerial photographs combined with image analysis successfully 

have mapped Submerged Aquatic Vegetation (SAV) in the Lower Chesapeake Bay, 

Maryland (Orth and Moore, 1983). Current approaches for mapping aquatic vegetation in 

coastal estuary areas have been primarily done thru visual interpretation of photographs 

or satellite image data sets in combination with field-surveys. Recent reviews of 

databases and approaches for mapping, monitoring and modeling of aquatic vegetation 

show that accurate image are aerial photos that have been restricted to coastal areas 

which are shallow and have moderate to high levels of aquatic vegetation mats with 

densities greater than 40 percent (VIMS 2005). 
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2.3 Field spectroscopy of aquatic vegetation 
 

Spectral libraries as the basis for developing routine methods of applying remote 

sensing to aquatic vegetation surveys are a fundamental part of many hyperspectral image 

classification and radiative transfer modeling procedures, including atmospheric and 

water column correction, spectral unmixing and endmember mapping (Jupp et al., 1985). 

Spectral libraries will ultimately have the potential to serve as valuable tools for 

identifying characteristic wavelengths that can be incorporated into bottom classification 

and bathymetry algorithms. Spectral libraries also provide information needed to make an 

informed choice about the spectral resolution required of a sensor and the wavebands that 

will be most useful for a particular application. After spectral libraries are obtained, 

analysis of the data for identifying significant components of the signal must be made.  

Aquatic vegetation reflects a strong spectral signature that can be tracked using 

satellite and airborne remote sensors (Armstrong, 1993; Mumby et al., 1997; Dierssen et 

al., 2003).  

Spectral differences between aquatic plants are difficult to detect, because most 

aquatic plants have essentially the same biochemical and spectral characteristics, which 

remain, unchanged (Jakubauskas et al., 2000). To date there has been little or no analysis 

of the different processing techniques suitable for mapping spectrometry data for 

identifying hydrilla using hyperspectral image analysis (Jakubauskas et al., 2000).  

Jakubauskas et al., (2000) studied the effects of canopy coverage on the spectral 

signature of the emergent macrophyte spatterdock or yellow pond lily (Nuphar 

polysepalum). As the coverage of emergent macrophyte decreased, the amount of 
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reflectance decreased in the green and infrared parts of the spectrum. Similar results were 

also found using water hyacinth (Eichornia crassipes) and percent coverage in Texas 

waterways (Jakubauskas et al., 2002). The researchers concluded that even though this 

work was done at close range with hand-held hyperspectral sensors, the high correlations 

between vegetation cover and infrared reflectance should be transferable to satellite 

sensors with broader bandwidths (Jakubauskas et al., 2000). 

Blanco et al., (2012) collected and analyzed spectral signatures of hydrilla from a 

tank and field settings at Otter Point Creek, Edgewood, Maryland in August 8, 2008 and 

on August 9, 2009 and determined that the field spectra collected from the field had a 

lower reflectance than the tank spectra because the hydrilla was submerged and was 

affected by turbidity and other constituents in the water column. The tank spectra from 

hydrilla vegetation were emergent which resulted in an average peak reflectance of 16 

percent while the field peak reflectance was only 6 percent. Therefore, it was concluded 

that the reflectance of hydrilla depended on the water depth. 

It is known that different types of aquatic vegetation have subtly different spectral 

reflectance signatures, which differ greatly from open water and clear vegetative areas 

(Ozesmi and Bauer, 2002; Underwood et al., 2003). However, in the case of mixed beds, 

the varying contribution of each emergent macrophytes species to the total coverage 

remains difficult to detect (Underwood et al., 2006; Vis et al., 2003). Mapping submerged 

aquatic vegetation with remote sensing can be problematic because water absorbs much 

of the electromagnetic spectrum used. A major complication of remotely sensing 

submerged vegetation is depth of the macrophyte canopy in the water column (Han and 
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Rundquist 2003). Non-canopy forming aquatic vegetative species are the most commonly 

misclassified submerged vegetation (Valta-Hulkkonen et al., 2005; Vis et al., 2003; 

Wolter et al., 2005). It has been reported in studies that the mapping of aquatic vegetation 

can be remotely sensed and classified to a maximum depth between 2 m and 3 m (6.5 ft. 

and 9.8 ft.) (Han, 2002; Sawaya et al., 2003). However, aquatic vegetation is harder to 

remotely sense when concentrations of algae and turbidity increase (Underwood et al., 

2006; Valta-Hulkkonen et al., 2005; Vis et al., 2003). When aquatic vegetation is 

mapped, researchers often label it only as “submerged” with no attempt to differentiate 

between species or plant structure types (Sawaya et al., 2003; Wolter et al., 2005). For 

this reason, researchers have primarily used remote sensing to detect dense homogenous 

clusters of submersed vegetation (Nelson et al., 2006; Underwood et al., 2006; Vis et al., 

2003; Zhu et al., 2007). Han and Rundquist (2003) studied the effects of depth on the 

spectral signatures of coontail (Ceratophyllum demersum), a submerged, freshwater 

macrophyte. They also considered the effects of depth in both clear and algae-laden 

waters. They found that as depth increases the amount of reflectance from the submerged 

macrophyte decreased, particularly in the infrared and green parts of the spectrum. 

Another study on aquatic vegetation examined a type of eel grass (Vallisneria spiralis), 

but focused on coverage as opposed to depth in both a laboratory and in algae-laden 

waters in the field (Yuan and Zhang, 2007). As the amount of coverage of the submerged 

macrophyte decreased, the amount of reflectance decreased; again, most heavily in 

infrared and green wavelengths. Of particular interest is that Yuan and Zhang (2007) 

found that the “green peak” was more evident in algae-laden waters and did not decrease 
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as quickly with a decrease in coverage in algae-laden waters as in clear waters. The 

presence of algae emphasizes the green portion of the spectrum and masks the decrease in 

the spectral signature with respect to coverage that is normally seen in non-algae laden 

waters. Several studies have shown the capability of hyperspectral imaging to detect and 

map vegetation types and their cover (Asner et al., 2002, Lass et al., 2005).  

2.4 Remote sensing for monitoring aquatic vegetation 

 

The study of aquatic macrophytes using remote sensing techniques has been less 

comprehensive than that of terrestrial vegetation because of the additional challenges 

associated with water reflectance, differentiating between different macrophyte species, 

and the small scale of freshwater aquatic environments compared to the resolution of 

most sensors (Nelson et al., 2006; Underwood et al., 2006). 

Airborne and space borne imagery has been researched for mapping terrestrial 

invasive species (Williams and Hunt, 2002; DiPietro et al., 2002; Underwood et al., 

2003); however, the application of remote sensing techniques to invasive aquatic 

vegetation has been limited. In order to overcome conventional satellite sensor 

limitations and to accurately monitor small-scale macrophyte dynamics (<10 m), airborne 

remote sensing has been used. The recent advances in computer and detector technology 

has generated imaging spectroscopy (Green et al., 1998; Vane et al., 1993), as airborne 

sensors usually have higher spatial and spectral resolution than satellite sensors. This 

provides more spectral information on more pure targets, and thus greater spectral 

accuracy in detailed benthic habitat mapping (Mumby et al., 1997). Instrumentation and 

technique development in the 1990’s was somewhat limited, with macrophyte species 
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discrimination by absorption spectrum largely dependent on water column depth. Several 

studies successfully used airborne digital sensors to examine benthic vegetation, (Malthus 

and George, 1997; Mumby et al., 1997). Recent mapping applications of hyperspectral 

technology include an analysis of coastal seagrass. To date, only a few studies have 

reported spectra from a variety of macrophyte species and growth habits (Penuelas et al., 

1993; Malthus and George, 1997). The spectral reflectance characteristics of features 

within a submerged coastal environment are optically similar, so confusion can arise in 

identification. The results indicated that airborne remotely sensed data have good 

potential for monitoring freshwater macrophyte species. In comparison to conventional 

spaceborne sensors such as Landsat TM and SPOT, airborne hyperspectral sensor data is 

more accurate and precise (Jakubauskas et al., 2000). AVIRIS, HyMap, and CASI 

airborne hyperspectral sensors show highly accurate results in mapping aquatic 

vegetation. Hyperspectral sensors increase the spectral resolution of mixed pixels and 

together with spectral libraries, improve the ability to unmix the signal and resolve the 

make-up of each mixed pixel scene. Until recently, airborne sensors were the only way to 

acquire hyperspectral images of aquatic vegetation. 

Remote sensing technology not only can be applied for mapping vegetation 

covers over land areas, but also in underwater areas focusing on mapping aquatic 

vegetation which is regarded as a powerful indicator of environmental conditions in 

marine and freshwater ecosystems (Lathrop et al., 2006; Wolter et al., 2005). Remote 

sensing can be an effective method for mapping SAV in saltwater, brackish water, and 

freshwater environments (Ciraolo et al., 2006; Everitt et al., 2008). However, as the 
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spatial resolution of the satellites improve, a change from aerial photography to satellite 

imagery for mapping aquatic vegetation has taken place (Everitt et al., 2008; Olmanson et 

al., 2002; Ozemi and Bauer, 2002). Satellite imagery is more effective than aerial 

photography when high spatial resolution is needed for covering a large geographical 

area. Using satellite imagery generates maps, which can be used to prioritize areas for 

removal of aquatic vegetation, such as an invasive aquatic species (hydrilla) and allows 

for evaluating the effectiveness of aquatic plant control efforts (Jakubauskas et al., 2002; 

Madden, 2004). Satellite imagery has been used to track and monitor the spread of 

invasive aquatic vegetation, which can facilitate the early detection of new or spreading 

species that eradication efforts could be successful (Laba et al., 2008).  

Remote sensing techniques of aquatic vegetation has been less comprehensive 

than that of terrestrial vegetation because of additional challenges associated with water 

reflectance, differentiating between aquatic vegetation species, and the small scale of 

freshwater aquatic environments compared to the resolution of most sensors (Nelson et 

al., 2006; Underwood et al., 2006). Aquatic vegetation from coastal waters have different 

spectral signatures, which differ greatly from ocean waters and non-vegetated areas 

(Marshall and Lee, 1994; Ozesmi and Bauer 2002; Peñuelas et al., 1993; Underwood et 

al., 2003). At least one study has shown that it is possible to differentiate between 

submerged macrophyte using remote sensing. Pinnel et al. (2004) was able to distinguish 

between the two submerged macrophytes groups (Chara and Potomageton) using 

hyperspectral sensors. Satellite imagery with high spectral and spatial resolution provides 

more detailed spectral information relatively to traditional photography that can be used 
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to classify aquatic macrophytes species (Jensens et al., 1986). Early satellites like Landsat 

TM, with moderate spatial and spectral resolutions were unable to identify mixed beds 

unless they dominated the beds (Laba et al., 2008). Coarser resolutions have also been 

linked to lower accuracies in classifications (Everitt et al., 2008) and are not suited to 

mapping most submerged aquatic vegetation (Underwood et al., 2006).  

Hyperspectral satellites and airborne scanners have been used to map aquatic 

vegetation in shallow waters (Ciraolo et al., 2003). While hyperspectral imagery can be 

useful in discriminating between vegetation and exotic species, the large data volume 

inherent in this method makes it challenging for use by water resource managers without 

sufficient expertise and data processing capabilities (Madden, 2004). Recently, 

hyperspectral imagery, consisting in many contiguous bands, has been applied to 

mapping aquatic vegetation, Eurasian watermilfoil and wild celery, in the lower Potomac 

River of the Chesapeake Bay (Williams et al., 2003). 

Hyperspectral imaging has been used to remotely delineate wetland areas and 

classify hydrophytes vegetation characteristics and promoted the use of high spectral and 

spatial resolution for improving the mapping of salt marsh vegetation of similar structural 

characteristics. The analysis identified regions in the electromagnetic spectrum, which 

discriminated between wetland species (Schmidt and Skidmore, 2003). The study also 

focused on the importance of hyperspectral imaging systems for the Visible and Near- 

Infrared regions (Becker et al., 2005). Several studies have investigated the potential of 

providing timely date for mapping and monitoring aquatic vegetation which has been 

identified as one of the most important aspects of ecosystems restoration and 
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reconstruction (Lin and Liquan, 2006; Pengra et al., 2007) tested the applicability of 

AVIRIS hyperspectral satellite imagery for mapping phragmites, an invasive plant in 

coastal wetlands. Lobo et al,,2009 identified cyanobacterial blooms using Hyperion/EO-1 

data in Patos Lagoon estuary located in Rio Grande do Sul state, Brazil. The Spectral 

Angle Mapper was used to identify the potential areas of cyanobacterial blooms. Li et al., 

2008 applied the Hyperion sensor for detecting tidal flats in a coastal region. Demuro and 

Chisholm, assessed mangrove communities by using the Hyperion sensor for 

discriminating vegetation in coastal wetlands.  
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CHAPTER THREE: AQUATIC OPTICS AND REMOTE SENSING OF 

AQUATIC VEGETATION 

3.1 Principles of aquatic optics 
 

The water bodies in the Otter Point Creek estuary are classified as coastal 

estuarine waters.  This creates some difficulty due to complexity of substance mixtures, 

unstable atmospheric residue and noise. Water-leaving radiances used for the extraction 

of upper ocean constituents represent no more than 10 percent of the total radiance 

captured by satellite optical sensors. Figure 9 shows the interaction of the different 

components, which interfere when a sensor collects an image from a water body.  

 

 

Figure 9 Aquatic Optics Processes Diagram (Source: Dekker and Buittikofer) 
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A schematic diagram of the various processes that contribute to the signal as 

measured by a remote sensor in optically shallow waters (class 2 waters) where the 

substrate has a significant effect on the water-leaving radiance (Dekker et al., 2001). 

The overall brightness of the water surface will increase in the blue band, which is 

the visible region of the spectrum, so the water no longer appears as a dark object but 

instead becomes brighter as the concentration of the constituents in the water column 

increases, the wavelength then shifts from the blue to the green region of the 

electromagnetic spectrum. Aquatic optics is the branch of physics that deals with the 

interaction of spectral radiation and its propagation within molecular water and 

surrounding matter that is suspended or dissolved therein (Bukata 2005). Photons that 

pass thru the air water interface will attenuate in the water column. Attenuation results 

from absorption and back scattering. A spectrometer is an instrument that measures the 

amount of attenuation in the water column as a function of reflectance by measuring the 

apparent optical properties of the water body. These apparent properties are a function of 

inherent optical properties (IOP’s). IOP’s are a quality of the water body itself, which 

includes the organic and inorganic constituents (Bukata 2005). Remote sensing 

techniques applicable to class 2 waters are related to several relationships of surface 

reflectance, R (λ), where R is the reflectance and λ the wavelength. This property is 

directly related to Inherent Optical Properties (IOP’s), total absorption a, and 

backscattering coefficients, bb (Bukata, 2005). 
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Equation 1 Relationship of reflectance and inherent optical properties (Bukata, 2005) 

 



R() 
bb ()

a() bb ()  v b 

 

When sunlight penetrates the water column, the light intensity decreases 

exponentially as the depth increases and this is called attenuation. In the visible light 

region of the electromagnetic spectrum, the red portion attenuates more rapidly than the 

shorter wavelength of the blue region, illustrated in (figure 10).  

 

 

Figure 10 Electromagnetic Spectrum (Source: Sheppert 1998) 

 

 

The spectral radiance recorded by a sensor is dependent on the surface reflectance 

and the depth. Phytoplankton in water converts the electromagnetic energy into 

photosynthesis. Other absorbers are inorganic and organic matter resulting from the 



49 

 

breakdown of plant tissue, and water itself, which absorbs red light and has a smaller 

effect on shorter wavelength. Chlorophyll in algae will look green because reflects in the 

central region of the visible spectrum, green, and absorbs strongly at either end of the 

spectrum. Dissolved organic compounds absorb at the shorter wavelengths, blue, and 

strongly reflect in the yellow-red end, impacting the gelbstoff. Electromagnetic radiation 

may interact with the Total Suspended Matter (TSM) in the water column and generate 

backscattering effects. This scattering process is caused by the inorganic and organic 

constituents in the water column and will increase with turbidity. In water quality 

applications, we do not have transmittance or reflectance. Waters in this tidal estuary of 

Otter Point Creek are not pure due to these organic and inorganic constituents, which 

cause interference of the sunrays, especially at the surface.  

The waters in Otter Point Creek are highly turbid and very productive waters. 

This particular research only applies to Class 2 waters (productive waters), which are not 

pure like Class 1 waters, because they have organic and inorganic constituents contained 

in the water column, especially at the surface (Bukata 2005). Sunlight will reflect and 

diffract according to IOP’s, but in open waters the sunlight scatters by absorption. These 

constituents will cause Near Infrared Region (NIR) surface reflectance and subsurface 

volumetric scattering so the amount of NIR radiant flux leaving the water surface will 

increase. The TSM will cause significant scattering and reflectance of the radiant flux to 

the sensor causing brightening. When light penetrates water, the intensity decreases 

exponentially as the depth increases (Green et al., 2000) and this is called attenuation and 

it exerts an effect on the remotely sensed data. In the region of visible light, the red part 
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of the electromagnetic spectrum attenuates more rapidly than the shorter wavelength 

(blue region). As the depth increases, the ability to differentiate substrate spectra 

declines. Spectral radiance recorded by a sensor is dependent on the reflectance and the 

depth of the location being imaged. Absorption involves converting the electromagnetic 

energy into photosynthesis in phytoplankton because it is one of the main absorbers in 

water. In addition, it has been well documented that the water bodies researched contain 

various organic matters like phytoplankton, Chlorophyll a, Colored Dissolved Organic 

Matter (CDOM) which result from the breakdown of plant tissue, inorganics like Total 

Suspended Matter (TSM), and water itself which absorbs red light and has a smaller 

effect on shorter wavelength blue light (causing the blue color of clear water). These 

constituents interfere with remote sensing data (Gitelson 1992). Figure 11 shows spectral 

signatures of case 1 (clea) and case 2 waters (algae-laden). 

 

Figure 11 Percent reflectance of clear and algae-laden water based on in-situ measurements 

(Jensen, 1995) 
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3.2 Remote sensing characteristics for Class 2 waters 
 

When performing water quality studies using remote sensing data, the most 

important data that we need to collect is the subsurface volumetric radiance. Water bodies 

are able to transmit significant amounts of radiation, but vary with the wavelength, so the 

direct observation in the visible spectrum is not transferred to other regions of the 

spectrum. For instance, shown on (figure 12), a red object absorbs most of the blue and 

green incident light and reflects most of the red light toward a sensor. In part b of figure 

12 a red filter looks red because it selects the blue and green light while allowing the red 

light to go through it (Simmons et al., unpublished).  

 

 

Figure 12 Concept of transmittance and reflectance (Source: Jensen 1995) 

 

 

Other types of transmittance which will need to be considered is atmospheric 

transmittance in which the transmittance is dependent on the wavelength and the spatial 

data is limited to the areas which have not been blocked. Transmittance is important 
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because natural formed materials like vegetation are opaque to visible radiation, but 

vegetation transmits much of the infrared radiation. The relationship between 

transmittance and reflectance can be explained by Equation 2 as follows: transmittance is 

the radiation been transmitted when it passes through without significant changes. The 

capability of a material that has a depth and a thickness for transmitting energy is called 

transmittance.  

 

Equation 2 Transmittance and radiation (Jensen ,2000) 

 

                   
                          

                  
 

 

Transmittance happens when radiation passes through a material without 

significant changes. When the light photons enter the water column, they are influenced 

by absorption and scattered by particles that are suspended on the water, such as in Class 

2 waters. The color of the water is determined by volume scattering rather than by surface 

reflectance, and spectral properties are determined by transmittance rather than by surface 

characteristics alone. Maximum penetration of sunlight in the blue region is 400 to 446 

nm, but at a slightly longer wavelength, the penetration is much greater for recording the 

bottom of the water body. However, at longer wavelengths, toward the red region, the 

absorption of sunlight is much greater, and only shallow features can be detected. Finally, 

in the Near Infrared Region (NIR) 700 nm absorption is so great that only a land-water 

distinction can be made. Coastal waters contain suspended sediments and dissolved 
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organic matter (Zhang 2005). Class 2 waters is the classification of the water bodies in 

the Otter Point Creek estuary, which creates some difficulty due to the complexity of 

substance mixtures, unstable atmospheric residue and noise. Water-leaving radiances 

used for the extraction of upper ocean constituents represent no more than 10 percent of 

the total radiance captured by satellite optical sensors. Atmospheric correction may be 

performed to remove the contribution of the atmosphere in satellite measurements. The 

interaction of the different optics takes place when a sensor collects an image from a 

waterbody (Rundquist et al., 1996). The overall brightness of the water surface will 

increase in the visible region so the water stops appearing as a dark object and becomes 

bright as the sediment concentration increases, the wavelength then shifts from the blue 

to the green region of the electromagnetic spectrum. For different classes of water depth 

the intensity of radiation will decrease exponentially with depth, in other words 

brightness decreases as depth increases. Dark waters mean an area is deep, brighter 

waters mean they are shallow. Equation 3 is interpreted as the reflected energy Er is equal 

to the EI (λ)- EA that is either absorbed or transmitted. Water is capable of transmitting 

large quantities of radiation, which changes with wavelength, so the direct observation in 

the visible range of the electromagnetic spectrum does not transfer to other transmitting 

parts of the spectrum. When the energy from the sun hits the earth surface, basic 

interactions occur. Some portions of the energy is reflected, absorbed, and/or transmitted. 

If we apply the principles for energy conservation, we can show the following 

relationships can be show. Radiation from the sun, when incident upon the earth’s 

surface, is reflected by the surface, transmitted into the surface or absorbed and emitted 
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by the surface (figure 13). These changes are detected by the remote sensor and enable 

the interpreter to obtain useful information about the object of interest. The remotely 

sensed data contain both spatial information such as size, shape and orientation, and 

spectral information such as tone, color and spectral signature. 

 

Equation 3 Energy Equation (Jensen, 2000) 

 

 

 

EA that is either absorbed or transmitted. This equation is interpreted as the 

reflected energy Er is equal to the EI (λ). From the viewpoint of interaction mechanisms, 

with the object-visible and infrared wavelengths, from 300 to 1600 nm  
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Figure 13 Energy Balance (Source: Liliesand and Kiefer, 1999) 

 

Two important relationships can be observed from (figure 13) above. One is that 

the proportion of the energy reflected, absorbed, and transmitted changes with the 

different surface features that are directly dependent on type of materials and condition. 

This difference allows for the image analyst to distinguish different features found in the 

image. Secondly, the proportion of the different energies being reflected, absorbed, and 

transmitted vary at the different wavelengths, for instance, in the electromagnetic 

spectrum range, these different spectral variations will result in color which means that 

we can define certain objects as blue in color, when they reflect in the blue range of the 

spectrum, and green color in the green spectrum. Total radiance recorded by the sensor 

onboard an airborne or satellite platform is a direct function of the electromagnetic 

energy from the four sources shown in (figure 14). 
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Figure 14 Water Leaving Radiances (Source: Bukata, 2005; Jensen, 2000) 

 

 

In our research it is necessary to identify the organic and inorganic constituents in 

the water column such as Chl a and TSM by separating the subsurface volumetric 

radiance. This equation is interpreted as the reflected energy Er is equal to the EI (λ) - EA 

that is either absorbed or transmitted. 

 

Equation 4   Total Radiance (Source: Jensen 2000) 

 

                               

 

Equation 4 is requiring the atmospheric correction of the sensor data by removing 

the atmospheric attenuation (Lp) surface glint as previously mentioned other surface 

reflectance (Ls), and bottom reflectance (Lb). Subsurface volumetric radiance (Lv) is the 
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product of down swelling solar and sky radiation that actually penetrates the air-water 

interface, interacting with the water and organic/inorganic constituents and then going out 

of the water column towards the sensor without even reaching the bottom surface (Bukata 

1995). Lv is a function of the concentration of pure water (w), inorganic suspended 

minerals (SM), organic Chlorophyll a (Chl a), dissolved organic material (DOM) and the 

total amount of attenuation of absorption and scattering taking place inside the water 

column. 

 
Equation 5 Down swelling solar and sky radiation penetrating the air water 

interface (Source: Jensen 2000) 

 

                                      
 

Equation 5 is the portion of the radiance which is been recorded at the sensor 

which results from the down swelling solar (Esum) and Sky (Esky) radiance which does 

not reach the water surface. Ls is the radiance from the down swelling solar and sky 

radiation that reaches air-water interface, at the surface layer or boundary layer, and only 

penetrates about 1 mm and is reflected back. The interface volumetric radiance shown on 

Equation 6 where Lv is from the down swelling solar and sky radiation that penetrates the 

air-water interface and intersects with the water constituents that exists in the water 

column without touching the bottom. This is called interface volumetric radiance and is 

important to collect.  

 

Equation 6   Interface volumetric radiance (Jensen 2000) 

 

                 



58 

 

 

Lb is the portion of the radiance been recorded which results from the down 

welling solar and sky radiation that penetrates the air-water interface and reaches the 

bottom and is propagated back through the water column, and finally exits. In aquatic 

remote sensing, the radiance is extracted from all of the radiance components, which are 

recorded by the sensor. In this approach, the organic and inorganic water column 

constituents’ spectra will be collected. By correcting the sensor data radiometrically, the 

atmospheric attenuation (Lp), surface sunglint and bottom reflectance (Lb) can be 

removed (Bukata, 2005, Jensen 2000). 

3.3 Water quality habitat requirements 
 

The major parameters that control aquatic vegetation distribution is light 

attenuation (Batiuk et al., 2000). Light attenuation (reduction in light intensity) in the 

water column is due to light absorption by water molecules and suspended particles. 

Light attenuation can be measured in two ways: with a secchi depth disc or with a light 

meter for calculating the light attenuation coefficient (Kd) based on exponential decay 

function. Chlorophyll a (Chl a) and other suspended solids are responsible for the 

majority of the total light attenuation in the water column. Chl a is a pigment found in all 

photosynthetic phytoplankton. Measurements of Chl a concentrations are used as 

indicators of phytoplankton biomass and, therefore, indirectly provide a measure of 

nutrient loading. Total Suspended Solids (TSS) is a measure of suspended inorganic 

solids, plus microorganisms and organic detritus. Nutrients like nitrogen and phosphorus 

are important habitat parameters because they indirectly affect the light attenuation by 
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stimulating growth of phytoplankton in the water column and algal epiphytes on the SAV 

leaves and stems. These parameters are measured as Dissolved Inorganic Nitrogen (DIN) 

and Dissolved Inorganic Phosphorus (DIP) (Batiuk, 2000). The principal relationships 

between water quality conditions and light regimes for growth of SAV is shown in 

(figure 15). Incident light is partially reflected at the water surface and is attenuated 

through the water column above SAV by particulate matter.  

  

 

Figure 15 Conceptual model of light, nutrient effects on submerged aquatic vegetation 

habitat (Source: Chesapeake Bay Program 2000) 

 

3.4 Class 2 waters 
 

Class 2 waters contain suspended sediments, dissolved organic matter, and other 

particles. Coastal zones are mostly classified as Class 2 waters is the classification of 
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water bodies creates a difficulty due to complexity of substance mixtures, unstable 

atmospheric residue and noise. In Class 2 waters there is a significant water-leaving 

radiance in both the visible and near-infrared regions. It has been well documented that in 

Class 2 waters the extrapolation of aerosol path radiance into visible bands results in 

distorted or negative reflectance at visible wavelengths. Current operational ocean color 

algorithms are not suited to analyze Class 2 waters. Some algorithms additionally apply a 

turbid water test on 555 nm channel normalized water leaving radiances after the full 

atmospheric correction. They label isolated Class 2 waters because chlorophyll estimates 

in these waters are unreliable. Phytoplankton containing carbon sinks to the bottom of a 

water body once they die and other sediments will cover the carbon in the dead 

phytoplankton. Phytoplankton uses carbon dioxide (CO2) and produces oxygen during 

the photosynthetic process. 

3.5 Spectral behavior of submerged aquatic vegetation 
 

The green region of the electromagnetic spectrum 570 to 578 nm is considered the 

most suitable for detecting submerged aquatic vegetation, followed by the red and red 

edge regions. Pigment concentrations and cellular structure are responsible for the main 

differences among aquatic vegetation species (figure 16). The green region provides 

greater light penetration in waters with higher concentrations of suspended and dissolved 

material (Kirk 1994). Water absorbs electromagnetic radiation in the optical spectral 

region, resulting in the dampening of the radiometric signal. Due to this effect, surface 

reflectance measurements for submerged aquatic vegetation is usually less than 10 

percent reflectance (Pinnel et al., 2004). The principles behind aquatic vegetation spectral 
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characteristics are the same as land vegetation. The presence and concentrations of the 

leaf pigments determine the response in the visible region of the spectrum, and the leaf 

morphology and their water content are the main factors affecting the infrared 

wavelength.. Plants that grow vertically have a reduced leaf area, which have less of a 

surface area for interacting with the down swelling radiation; however, plants that have a 

canopy and broadleaved plants have more of an effective reflective area (Williams et al., 

2003).  

 

 

Figure 16 Leaf-radiation interactions at microscopic level.  

Note: The thickness of the arrows are proportional to the magnitude of the radiation fluxes 

(Source: Silva et al., 2008) 
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characteristics. It is useful to distinguish whether the aquatic vegetation is 

submergent and floating or emergent, as these factors act differently in each condition. 

3.6 Spectral characteristics of aquatic vegetation 
 

Figure 17 demonstrates how internal scattering of leaf pigments and leaf water 

content affect the reflectance and transmittance properties of the leaves (Peterson et al., 

1989). 

 

 

Figure 17 Spectral reflectance characteristics of healthy, green vegetation  

(Source: Jensen 2000) 

 

 

The dominant factors controlling leaf reflectance are the various leaf pigments in 

the palisade mesophyll (e.g., chlorophyll a and b, and β-carotene), the scattering of near-
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infrared energy in the spongy mesophyll, and the amount of water in the plant. The 

primary chlorophyll absorption bands occur at 430 to 450 nm and 650 to 660 nm in the 

visible region. The primary absorption occurs at 970, 1190, 1450, and 2700 nm. Other 

pigments present in the mesophyll region are usually masked by an abundance of 

chlorophyll pigments yellow carotenes and xanthophyll pigments with strong absorption 

in the blue band region. β Carotene absorption spectra absorbs in the 450 nm. 

Phycocyanin absorbs in the green and red regions at 620 nm, which allows most of the 

blue and some of the green light to be reflected. Chlorophyll a and b are the dominant 

pigments in the leaves because they absorb much of the blue and red wavelengths. It is 

important to understand the plant physiology and their pigmentation characteristics in 

order to appreciate how a plant will appear when chlorophyll absorption starts to decrease 

due to seasonal senescence or environmental stress. The lack of chlorophyll pigmentation 

usually causes the plant to absorb less in the chlorophyll absorption bands 430 to 450 nm 

650 to 660 nm. Therefore, they will have a higher reflectance especially in the green and 

red regions. According to Carter (1993), increased reflectance in the visible spectrum is 

the most consistent leaf reflectance response to plant stress. Leaf spectral reflectance in 

the regions 535 to 640 nm and 685 to 700 nm visible light range indicates plant stress. 

The increased reflectance near 700 nm represents a blue shift of the red edge. This shift 

occurs in stressed plants when reflectance plots against wavelength (Cibula and Carter, 

1992). The above ranges are the ones that may provide capability for detecting plant 

stress on leaves or on entire densely vegetated canopies (Carter, 1993; Carter et al., 

1996). In a typical healthy green leaf, the NIR reflectance increases in the 700 to 1200 
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nm. The reason for the reflectance and transmittance of plant leaves increases while the 

absorbance falls to low values because in the NIR the direct sunlight incident on plants 

have the bulk of the energy. The mesophyll layer controls the amount of NIR energy 

reflected because this is where photosynthesis and respiration takes place. In the NIR, 

healthy green vegetation has high reflectance (40 to 60%), high transmittance (40 to 

60%) thru the leaves onto underlying leaves, and low absorption (5 to 10%). Imaging 

spectrometers can identify small changes in absorption and reflectance because sensors 

like AISA and Hyperion have channels that are 10 nm apart (i.e., 10 channels from 600 to 

700 nm). High reflectance of the NIR (700 to 1200 nm) energy from plant leaves is due 

to internal scattering at the cell wall-air interface within the leaf (Gausman et al., 1969; 

Peterson and Running, 1989). 
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CHAPTER FOUR: IN - SITU FIELD MEASUREMENTS  

4.1 Study sites 
 

The in-situ field measurements were collected from a hydrilla experimental tank 

site and a field setting on the waters adjacent to a fishing pier located behind the Anita 

Leight Estuary Center (39° 26′ 54”N, 76° 16′ 05”W) in Harford County, Edgewood, 

Maryland, USA (figure 18).  

 

Figure 18 Study area (Source: Pasternack and Hinnov, 2003) 
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4.1.1Anita Leight Center 

The Center grows hydrilla, wild celery, redhead grass, long leaf pondweed, 

slender pondweed, and water stargrass, in four experimental tanks as shown in (figure 

19). The Center is located north of the Otter Point Creek estuary and it functions as an 

educational center for students to learn about aquatic vegetation, native animals, and 

history of the area. 

4.1.2 Otter Point Creek estuary site  

 

The second study site is located at the Otter Point Creek Estuary (39° 27′ 03”N, 

76° 16′ 28”W), south of the Susquehanna River, in the upper Chesapeake Bay National 

Estuarine Research Reserve. Otter Point Creek is one of the last remaining freshwater 

tidal marshes in the Chesapeake Bay, classified as oligohaline (low salinity or brackish 

water) with a surface area of 672 acres consisting of open water, tidal marshes, forested 

wetlands, and upland hardwood forests which are ideal conditions for the growth of 

hydrilla.  

4.2 Data collection 

4.2.1 Experimental tank measurements 

 

The experimental tank measurements of hydrilla were collected on August 5, 

2008 behind the Anita Leight Center. 
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Figure 19 Anita Leight Center experimental tanks  

(Source: Anita Leight Center) 
 

 

A total of 35 reflectance measurements were collected at the surface and 

processed with an Analytical Spectral Devise (ASD) spectroradiometer FieldSpec Pro 

Full Range (FR). The spectroradiometer has three spectrometers recording wavelengths 

from 350 nm to 2500 nm with a spectral resolution of 1 nm. The instrument averaged the 

readings to compensate for noise and ten readings were analyzed. The hydrilla in the 

experimental tank was observed to be emergent without suspended matter or turbidity 

that could attenuate the light. The measurements were collected from 10:00 AM to 10:30 

AM. The weather conditions at the time of collecting the data were partly cloudy, but 

there was no precipitation. In order to account for changes in light conditions and 

instrument drift, the ASD (Analytical Spectral Devices, Boulder, Colorado, 2013) 

instrument was calibrated every 10 min according to the instrument manufacturer by 
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taking measurements above-water down-welling irradiance with a Spectralon (Labsphere, 

North Sutton, NH, USA) white reference panel. The Spectralon panel has a high diffuse 

reflectance over a wide spectral range and converts it to percent reflectance. The Field 

SpecFR has a 1.5 m fore optic (25
o
 field of view) which was positioned at nadir 

approximately 46 cm above the vegetation as shown in (figure 20). The probe was 

positioned at several locations inside the tank to collect the highest reflectance values. 

 

 

Figure 20 Collection of spectral signatures in the experimental tank 

 

 

The spectral signatures collected were pre-analyzed on the ASD instrument 

computer to ensure accuracy of the data before processing it. The radiance measurements 

were converted to reflectance by dividing them with the Spectralon and recorded by the 
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instrument. A sample of hydrilla stem collected from the hydrilla tank is shown in (figure 

21).  

 

Figure 21 Sample of hydrilla collected from the tank 

 

4.2.2 Field measurements collected at the estuary 

 

Field measurements were collected on August 9, 2009 at the Otter Point Creek 

pier when hydrilla was at its maximum annual growth. Hydrilla spectral signatures were 

collected on the water surface next to the fishing pier, about 10 m from the shoreline. The 

study site was selected because of accessibility to the water from a fishing pier, abundant 

hydrilla species (e.g., dominant species), and obstructions which could interfere with the 

field measurements. Figure 22 shows the hydrilla been submergent in the study area.  
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Figure 22 Hydrilla mats submerged on the left side of the pier 

 

 

 

At the time the field measurements were collected, there were dense hydrilla mats 

submerged on both sides of the fishing pier. The weather during collection activities was 

clear and sunny. It was recommended that the instrument manufacturer that field 

measurements should be collected between 10:00 AM and 2:00 PM because this is when 

the sunrays are at its maximum. Low tides occur in the early morning and late afternoon 

which are outside of the recommended times for spectra collection. Because of the strong 

absorption of NIR light by water, only the 400 to 900 nm range was used. The instrument 

used to collect the spectra was a FieldSpec
®
 Pro spectroradiometer. The instrument 

measures spectral reflectance in the range between 350 and 2500 nm with a 1.4 nm 

bandwidth. The instrument was calibrated every 10 minutes with the Spectralon
®

 

(Labsphere, North Sutton, NH, USA) white reference panel to compensate for changes in 
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light conditions and instrument drift. Viewing and illumination geometries were 

standardized while obtaining signals from the hydrilla canopy. The spectral 

measurements were collected by holding the fiber-optic tip of the probe at approximately 

40 cm above the hydrilla mats and the probe positioned at an angle where reflectance was 

the highest. Twenty-nine (29) readings were collected at different locations within 2 

square meters
 
(Blanco et al., 2012). The ASD instrument averaged the sampling to twelve 

(12) readings.  

The Otter Point Creek site is optimum because hydrilla is the dominant species 

(i.e., monoecious). The density of hydrilla at the pier site was 100 percent, similar as to 

the hydrilla tank. No other aquatic plant species were identified within the hydrilla 

canopy. The spectral signatures were collected on August 9, 2009 at high tide from 10:00 

AM to 11:00 AM. The conditions of the water in the pier area were turbid and the depth 

was about 0.8 feet at 10:47 AM. The weather conditions were excellent, sunny, no cloud 

cover and no precipitation. The  ASD instrument was calibrated every 10 min with the 

Spectralon white reference panel for accounting for changes in light conditions and 

instrument drift. Twenty-nine readings were collected and processed by the ASD 

instrument at the site, but only twelve spectra were plotted for clarity. The spectral 

signatures were processed and converted from ASD format to text format, then graphed 

 using Excel 2007 software program. 
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4.3 Summary of Results  
 

Due to water absorption recorded by the ASD instrument above 900 nm, only 

wavelengths from 400 to 900 nm were used for comparing the hydrilla between the tank 

and the field measurements because this range covers the sensitivity of conventional 

color. A total of 35 spectral measurements were collected from the tank. The spectral 

measurements, as per instrument specifications, were averaged to ten spectra (figure 23) 

for compensating for noise 567 nm with a surface reflectance of 4.36 percent, and two in 

the NIR region, one at 716 nm and the other at 817 nm with a peak reflectance of 6.43 

percent and 7.71 percent, respectively. The two absorption troughs shown on the graph 

are attributed to the absorption of chlorophyll a at a wavelength of 679 nm, with a 2.8 

percent surface reflectance and at 740 nm, and 3.0 percent surface reflectance. As seen in 

figure 24, the field data generated two reflectance peaks which are assumed that the 

hydrilla leaves in the experimental tank were emergent and not exposed to turbidity, 

sediments, nutrients, or other elements contained in the water column, while the hydrilla 

mats in the field were submerged and exposed to the effects  of light attenuation. The 

difference between the reflectance of hydrilla in the tank and in the field is 16 percent and 

6 percent, respectively. The double peaks at 723 nm and 800 nm are the result of water 

absorption in the canopy. The spectral signatures of hydrilla observed in the tank and the 

field had similar characteristics, of low reflectance in the visible region of the spectrum 

from 400 to 700 nm, but high reflectance in the NIR region 700 to 900 nm.  
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Figure 23 Results of spectral signatures in the experimental tank 

 

 

Each colored spectra was extracted from the moist hydrilla leaves from a different 

location in the tank. A separation was noted between the third and fourth spectra due to 

the movement of the probe from one location to another. The surface reflectance of 

hydrilla was plotted against wavelengths between 400 nm and 900 nm and compared to 

the field measurements collected at the pier. The maximum reflectance in the 

experimental tank was observed in the NIR region at 26.5 percent and a wavelength 

818nm. Chlorophyll absorbance was noted at a wave- length of 488 nm, 2.6 percent and 

670 nm, and 3.26 percent. An irregular reflection was noted at 760 nm for all the spectral 

signatures, due to water absorption by the ASD instrument. A total of 29 measurements 

were collected from the pier, but only twelve were plotted for simplicity (figure 24). The 

spectral signatures for the tank and field measurements were averaged as shown on 
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(figure 25). The data shows that there were some differences in the spectral signatures 

collected from the experimental tank and from the field.  

 

 

Figure 24 Results of spectral signatures in the field from the pier 

 

The findings in this study showed that the reflectance measurements in the tank 

were higher than in the field because hydrilla in the tank was emergent. Both spectra 

collection were spectrally distinct over the NIR regions as shown on the figures. 

Similarly as in the experimental tank measurements, an irregular reflection was observed 

at 760 nm caused by water absorption registered in the ASD instrument. It is more 

noticeable on the spectra collected on the field than in the experimental tank. Hydrilla in 

the experimental tank were emergent, while the hydrilla in field were submerged. 

Hydrilla showed the typical vegetation reflectance pattern in the tank both sites; green 
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region peaking at a wavelength of 550 nm, red absorption near 670 nm, and NIR greater 

than 700 nm. Figure 25 above shows a reflectance difference between the tank and the 

field measurements from a wavelength of 685 to 839 nm. In the tank, hydrilla registered a 

peak reflectance at a wavelength of 818 nm and 16 percent and 6 percent for the field. 

 

 

Figure 25 Results of the average measurements collected in the tank and the field 

 

Results for the NDVI values for ten spectral measurements of hydrilla were 

calculated for the hydrilla in the experimental tank and are reported in an online library 

website
2
. The average NDVI for hydrilla was 0.695 for the experimental tank and 0.345 

for the field. Kim et al. (1994) developed the Chlorophyll Absorption Ratio Index 

                                                 
2
 The results for the hydrilla spectral library can be found at the following 

website: http://estc.gmu.edu/database/Hydrilla/ 
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(CARI), which measures the depth of chlorophyll absorption at 670 nm relative to the 

green reflectance peak at 550 nm and the reflectance at 700 nm. This ratio index was 

developed to reduce the changes of the active radiation due to the presence of different 

materials. The index uses bands which correspond to minimum absorption of the 

pigments  which are centered at wavelength 550 nm and 700 nm, in conjunction with the 

maximum chlorophyll a absorption band which is at 670 nm. Wu et al. (2008) modified 

this chlorophyll ratio index (MCARI) as follows: 

 

Equation 7   Modified Chlorophyll Absorption Ratio Index (CARI) 

 

                                             
    

    
  

 

The MCARI average values for ten spectral measurements of hydrilla were 0.026 

for the experimental tank and 0.01665 for the field. 
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CHAPTER FIVE: REMOTE SENSING TECHNIQUES USING THE HYPERION 

SENSOR FOR MONITORING HYDRILLA  

5.1 Background information 
 

The Hyperion satellite was NASA’s first hyperspectral imaging device aboard 

NASA’s Earth Observing-1 (EO-1) under the New Millennium Program (NMP) of 

November 2000. Hyperion was the first civilian hyperspectral image sensor sent into 

space with a sun-synchronous, circular orbit inclined at 98.2
0 

and at an altitude of 705 

km. It covers an altitude swath of 7.5 km to 185 km. Hyperion is a push broom-type 

imaging spectrometer that follows about one minute behind the track of the Landsat-7 

satellite. The Hyperion sensor has 220 spectral bands with the spectral range of 400 to 

2500 nm at 30 m spectral resolution (Pearlman et al., 2003). The Hyperion satellite was 

tasked by NASA Goddard Space Flight Center (GSFC) to fly over the study area on July 

20, 2011 at a twenty to twenty-nine percent cloud cover. The resulting image was 

downloaded from the Earth Explorer website. The acquisition date for the Hyperion data 

was collected the same month as the VIMS aerial photo. The objective of using the 

Hyperion sensor is to determine if hydrilla could be identified and classified in a 

waterbody by analyzing the spectral profiles processed using hyperspectral imaging 

techniques in the ENVI software. 

5.1.1 Band selection 
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The Hyperion level 1R image, as previously mentioned, has up to 242 bands over 

an array of 256 pixels of which 182 bands are calibrated. There were sixty (60) noisy 

bands, which were not calibrated and were set to zero (Jupp et al., 2002). The reason for 

these non-calibrated bands was that Hyperion has a low signal to noise response (Felde et 

al., 2003). The 242 bands were viewed one by one for selecting noise-free bands for 

further processing. The noisy bands were 1–7, 58–78, 80–82, 120–132, 165–182, and 

185–187. Bands corresponding to water absorption features were very noisy containing 

no spatial information and were subsequently removed from the data set. Also there is a 

spectral overlap between SWIR and VNIR sensors making two pairs of bands redundant. 

5.1.2 Image acquisition and characteristics 

 

The Hyperion image was downloaded from the Earth Explorer website
3
, which 

was flown over the study site on July 20, 2011 area under a twenty to twenty-nine percent 

cloud cover. The acquisition date for the Hyperion data was collected the same month as 

the VIMS aerial photo. There was a spatial-temporal difference between the ground truth 

measurements collected on August 9, 2009 and the flyover of Hyperion on July 20, 2011.  

Figure 26 shows the Hyperion fly path over the study area. A subset of the Main 

Hyperion image is shown on (figure 27). 

 

                                                 
3 The Earth Explorer website is available at the following link: 

http://earthexplorer.usgs.gov/metadata/1854/EO1H0150322011201110K3_SGS_01  

http://earthexplorer.usgs.gov/metadata/1854/EO1H0150322011201110K3_SGS_01
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Figure 26 Hyperion flyover image highlighting the study area 

(Source: USGS, 2011) 

 

 

Figure 27 Subset of Hyperion image downloaded from EarthExplorer website
1
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5.2 Data processing and analysis 
 

The Hyperion image was atmospherically corrected using Quick Atmospheric 

Correction (QUAC), which is part of the Atmospheric Correction Module and is added to 

core ENVI version 4.8 (ITT-Exelis). QUAC is a Visible-Near Infrared through 

Shortwave Infrared (VNIR-SWIR) atmospheric correction method for hyperspectral 

imagery and is based on the empirical findings that average the reflectance of a collection 

of diverse material spectra. One example of this diverse spectra is the endmember 

spectra, which is essentially scene-independent.  

QUAC provides for automated atmospheric correction of hyperspectral data in the 

solar reflective spectral region, between 400 and 2500 nm. QUAC creates an image of 

retrieved surface reflectance scaled into two-byte signed integers using a reflectance scale 

factor of 10,000. QUAC was selected because it performs an acceptable approximate 

atmospheric correction to FLAASH and other physics-based first-principle methods, 

generally producing reflectance spectra within an uncertainty of approximately +/-15 

percent (Agrawal Gaurav et al., 2001). 

5.3 Hyperspectral image analysis 
 

The spectral Z profile was generated using ENVI, by opening a subset of a resized 

image, as shown in figure 28, and collecting the spectra from the green canopies in the 

water. Where there is surface vegetation on the water, typical vegetation spectra are 

generated on the graph. Figure 29 shows the spectral profile of the spectra collected from 

random pixels. The spectral signature of hydrilla begins to climb at the red edge, around 

680 nm, and reaches a maximum reflectance at approximately eight percent. The spectral 
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range in the visible to the infrared regions decreases in surface reflectance as the 

signature increases in the spectrum; this could be due to certain attenuation in the water 

column such as algae or partial submersion of the hydrilla mats. 

 

 

 

 Hydrilla Water  Grass  Mudflats 

 

Figure 28 Subset of the raw image after atmospheric correction with QUAC 

 

 

The spectral Z profile shows a water-vegetation spectrum with a high surface 

reflectance at 18 percent and a wavelength of 435 nm and declining to a wavelength of 

680 nm with a surface reflectance of 6 percent. The hydrilla spectra begins to develop 

once it reaches the “Red Edge” at 680 nm, then it increases to a reflectance of about 8 

percent. At 770 nm there is an irregularity, which is could be to water absorption. 
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Figure 29 Spectral Z profile processed from the Hyperion image subset 

 

 

5.3.1 Spectral Hourglass Procedure 

 

The Spectral Hourglass Wizard (SHW) procedure derives endmembers from the 

hyperspectral image beginning with calibration of the imaging spectrometer radiance 

data, converting the data to reflectance, reducing the spectral and spatial dimensions to a 

few key endmembers for identification purposes, and then finally uses partial spectral 

unmixing to map the abundance and spatial distribution of the specific endmembers 

(Boardman and Kruse, 2011). SHW can extract spectral information without having 

previous knowledge or requiring the collection of referenced data. The SHW process 

flow diagram shown in (figure 30) uses the spectrally over-determined nature of 

hyperspectral data to find the most spectrally pure or spectrally unique pixels 
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(endmembers) within the dataset and to map their locations and sub-pixel abundances. 

This process flow begins with reflectance or radiance input data. The data can be 

spectrally and spatially subset, visualized in n-D space and the purest pixels can be 

clustered into endmembers. When the endmembers are located, the Spectral Analyst is 

used to identify them and for reviewing the mapping results. The SAM classification 

method was used in this study, which produced a classified image based on the value 

specified for the Maximum Angle (0.1 radian). 
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Figure 30 Flow process diagram of Spectral Hourglass Wizard  

(Source: Boardman and Krause, 2011) 
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5.3.2 Minimum Noise Fraction (MNF) 

 

The MNF reduces the spectral variances of the data existent in the image so that 

the image can be displayed in a minimized form without changing the original data 

(Keshara and Mustard 2002). MNF reduced the number of bands to 33, and then 

produced an estimate of noise statistics. Higher order images have larger eigenvalues and 

spatially coherent MNF images (Jensen 2005). These larger eigenvalues correspond to 

most of the spectral data in an image. (ENVI Tutorials 2008. ITT-Exelis Inc, Boulder, 

CO). The eigenvalues range from 87.65 to 1.75 for bands 1 - 15. Figure 31 shows hydrilla 

and algae-laden productive waters at Otter Point Creek. The brighter red color defines the 

hydrilla area with the highest spectral reflectance. Figure 32 shows plot of MNF 

eigenvalues, showing the amount of covariance in each output MNF band. The output 

results of this data reduction process leaves 15 bands containing data. 

 

Figure 31 Subset of MNF image 
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Table 2 Hyperion Eigenvalues 

 

Eigenvalues 

(Bands) 

Eigenvalues 

1 87.65 

2 48.75 

3 28.18 

4 20.08 

5 18.34 

6 11.44 

7 9.25 

8 8.95 

9 6.17 

10 4.62 

11 2.94 

12 2.35 

13 2.04 

14 1.77 

15 1.75 

 

 

Figure 32 Plot of MNF eigenvalues 
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5.3.2.1 Minimum Noise Fraction statistics 

 

ENVI will generate statistical reports and display plots of histograms (frequency 

distributions), mean spectra, eigen values, and other statistical information. It will also 

calculate basic statistics and/or tabulated histogram information. The minimum, 

maximum, and mean spectrum was calculated for multi-band images (figures 33, 34). 

Similarly the covariance statistics, including the eigen vectors and a correlation matrix, 

was only calculated for multi-band images. 

 

 

Figure 33 Hyperion Minimum Noise Statistics (Red) 
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Figure 34 Hyperion MNF Noise Statistics (Green) 

 

 

Definitions 

 Basic statistics - these include minimum, max, mean, and standard deviation for 

all bands. ENVI does not calculate the band 

 Covariance-The covariance calculates the covariance matrix, correlation matrix, 

eigen values, and eigen vectors 

The MNF Transform produces two separate statistics; one is the MNF Noise 

Statistics and the other one MNF Statistics. ENVI Version 4.8 software computes the 

mean for each band of the raw Hyperion image for normalizing the data, the Covariance 

Statistics of the noise, for the noise rotation and normalization, and the Covariance 

Statistics. The first MNF rotation stores a complete set of covariances statistics in ENVI 
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file. The second rotation stores the eigen vector matrix and eigenvalues in the ENVI 

Statistics file. The ENVI program assumes that each pixel contains both signal and noise, 

and the adjacent pixels contain the same signal, but different noise. A shift difference is 

performed on the data differentiating adjacent pixels to the right and above each pixel 

being processed. The best noise estimate is collected using the shift-difference statistics 

from a homogenous area rather than an entire image. For the noise subset, the subset of 

the study area was used, most bands have little change in the subset; however, if any band 

in the data is set to zero (0) variance, a problem may occur where the covariance matrix 

cannot be inverted and the result would be too many (iterations) bands, by generating and 

receiving the statistics report on the same shift-difference subset of the raw image. If it is 

determined that any band has a zero variance, then a different or larger subset is chosen 

for the noise estimate. The shift-difference spatial subset needs to have more pixels than 

bands.  

5.3.2.3 Interpreting the MNF eigenvalues plot 

 

In the output is shown that the number of bands that were selected as the output. 

Bands with large eigenvalues greater than 1 contain data and bands with less than one 

contain noise. These compare the MNF band from the Available Band List in ENVI to 

the MNF eigenvalue plot to determine which bands have noise and which ones do not. 

After the processing is complete, the spectrally subset the MNF bands, so only include 

those bands where the images appear to be spatially coherent and the eigenvalues are 

above the break in slope of the MNF eigen value plot. 
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5.3.3 Cyanobacteria spectral profile 

 

The spectral Z profile extracted from the MNF image (figure 35) derived a bell 

shaped curve which is recognized as a Cyanobacteria (blue - green algae) curve. Several 

pixels were selected at random from the MNF image which generated a series of spectral 

signatures. As noted, no water spectra was collected from the image. 

Figure 36 shows the typical spectral profile of a cyanobacteria curve generated by 

several researchers. This pectral profile is similar as the one collected by the Hyperion 

sensor 

 

 

Figure 35 Endmember collected spectra from MNF image 

 

 

Cyanobacteria is characterized by accesory pigments which favor the absorption 

of electromagnetic radiation in wavelengths other than that of Chlorophyll a, taking 

advantage of a wider range of the available photosynthetic radiation (Kirk 1994). The 

three main pigment groups affecting cyanobacteria optical properties are: chlorophyll a, 
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with absorption bands from 440 to 675 nm ; carortene, with absorption at the ultra-violet 

and blue region; and phycobiliproteins, which are exclusive of cyanobacteria and have an 

absorption band at 620 nm and a fluorescence band at 650 nm. The phycobiliprotein 

absorption band at 620 nm, produced by the phycocyanin pigment-protein complex in 

freshwater systems, is therefore a marker for cyanobacteria presence in eutrophic waters 

(Kutser 2004). Chlorophyll has two maximum absorption bands, one in the shorter blue 

light wavelengths and another in the longer red wavelength region. The maximum 

absorption bands for chlorophyll a is approximately 430 nm and 665 nm. Chlorophyll d 

absorbs at slightly higher bands, hitting maximums at approximately 448 nm and 690 nm 

(Rowan 1989). Phycoerythrin in cyanobacterial species can exhibit two absorption 

maximums, at about 559 nm and 569 nm. Phycocyanin exhibits an absorption maximum 

of about 620 nm. Allophycocyanin absorbs at a maximum of about 615 nm and 650 nm 

(Rowan 1989). The absorption band in the lower wavelengths of about 470 nm is likely 

due to a combination of Chla, carotenoids and dissolved matter (Rowan, 1989; Rundquist 

et al., 1996; Gitelson et al., 1999; Schalles and Yacobi, 2000). The green peak at 560 nm 

is present at the position of maximum reflectance caused by minimum absorption of algal 

pigments and scattering by non-organic particles and phytoplankton cell walls (Rundquist 

et al., 1996; Gitelson et al., 2000; Schalles and Yacobi, 2000). A trough at 628 nm 

represents the absorption maximum. At 650 nm, a small peak (d) represents a region of 

reduced pigment absorption and possibly fluorescence due to the PC (Rowan, 1989; 

Schalles and Yacobi, 2000). The second absorption peak of Chlorophyll a and cell wall 

competitively influence the spectra causing a trough at 675 nm (Rundquist et al., 1996; 
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Gitelson et al., 2000). This trough is followed by a peak at 704 nm which is caused by the 

interaction of suspended matter, including algal cells, and absorption due to water and 

Chlorophyll a (Gitelson et al., 1995; Gitelson et al., 2000; Schalles and Yacobi, 2000). 

Beyond this peak the spectra is strongly influenced by the absorption of water, causing 

low reflectance.  

 

 
Figure 36 Spectral curves presenting common cyanobacteria features 

 (Source: Lobo et al., 2009) 

 

The spectra collected from the subset of the raw image in the productive waters of 

Otter Point Creek resulted in a peak reflectance of 5 percent at a wavelength of 
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approximately 550 nm. This coincides with the cyanobacteria curves shown in (figure 

37).  

 

 

Figure 37 Spectral signature of algae-laden water (Source: Bukata 2005) 

 

5.3.4 Pure Pixel Index 

 

The PPI algorithm finds spectrally pure pixels in the hyperspectral image. A PPI 

image was created from the MNF image data set in which the Digital Numbers (DN) of 

each pixel represents the spectral pureness of the pixel. A threshold value of 2.5 was 

placed in the PPI image for segregating the pixels with high PPI values, which identifies 

the location of spectrally pure pixels. The resulting PPI had a number of iterations 5000 

and 12,000 pixels. Figure 38 shows the PPI results with the number of iterations and the 

cumulative number of pixels. Once the iterations are completed, the PPI image (figure 
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36) is created in which the value of each pixel corresponds to the number of times that 

the pixel was recorded as spectrally extreme (ENVI version 4.8 ITT-Exelis 2008). 

 

 

Figure 38 Pixel Purity Index curve 

 

5.3.5 Two-dimensional scatter plot 

 

A two-dimensional scatter plot was for used for testing the image data. Two bands 

were selected for identifying the training sites, including different classes such as water 

and aquatic vegetation. These training sites were used to identify the hydrilla mat on the 

water surface. The two-dimensional scatter plot method provides a two-band interactive 

classification of image data. Band 45 (803 nm) and 104 (1184 nm) were selected with 

minimum correlation to show high scattering for pixels as shown in (figure 39). 

Therefore, a good separation is shown between hydrilla, land vegetation, and water. 
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Pixels corresponding to the pixels colored on the two-dimensional scatter plot are 

highlighted. At the same time, the pictures and the composite image were used to identify 

the pixels that represent each class. The density distribution shows the density of the 

cloud of pixels at each location in the scatter plot. Regions of interest (ROIs) are selected 

for the three classes: hydrilla (red), vegetation (green), and water (blue), as shown in 

(figure 39).  

 

 

Figure 39 Two-dimensional scatter plot 
 

5.3.6 Regions of Interest (ROI) 

 

Once a set of pixels were defined using a scatter plot, each separate projection on 

the scatter plot, which corresponded to a pure end-member, was exported to a ROI from 
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the apparent reflectance data to act as end-members for spectral mapping (Kruse et al., 

2003). The extracted end-members from the image were compared to the spectral library 

integrated in ENVI, which were collected on the water at the study site. A subset of 

identified end-member spectra that were extracted from the Hyperion image were used 

for spectral mapping techniques. Identified endmember spectra, including water and 

hydrilla, is shown in (figure 40). Figure 41 is the endmember collected spectra from the 

image in figure 40. 

 

 

       Hydrilla           Vegetation               Water 

Figure 40 Regions of Interest 
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Figure 41 Endmember collection spectra of ROI 

5.3.7 Spectral Angle Mapper (SAM) 

 

The Spectral Angle Mapper (SAM) is a hyperspectral classification technique 

based on the method of matching spectral signatures. This classification technique 

matches the reference spectra from the spectral library and the pixels extracted from the 

remote sensing image for each pixel. This algorithm determines the spectral similarity 

between two spectra by computing the angle between them. It assumes that each 

spectrum can be described as a vector in n-dimensional space where n is the number of 

spectral bands. As such, it calculates the angle between the vector of the test pixel spectra 

and the vector of the reference spectra. The greater the difference between the test and 

reference spectra, the larger the resulting value. A threshold is set such that a pixel within 

the threshold is classified as the material being identified. An import feature in SAM is 

that it uses only the vector direction and not its length to calculate the spectral angle 
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between an input and a reference spectrum. This means that the method is not sensitive to 

spectra intensity changes and allows comparison between spectral signatures of different 

brightness levels. The algorithm derives from basic geometry; two vectors pointing in the 

same direction with different magnitudes have a zero degree angle difference. Relative 

image brightness acts as a scalar vector and will not change the reported angle between 

vectors. The spectral intensity could change due to changes in the inherent optical 

properties (IOP) in the water column, or due to atmospheric effects. If it is assumed that 

the IOP are constant for a given pixel, atmospheric and other environmental effects could 

be ignored. However, the accuracy of SAM is sensitive to the reference spectra. 

SAM is applied to hyperspectral data for identifying spectral signatures of aquatic 

vegetation. The Spectral Angle Mapper (SAM) was applied to the image using ENVI 

version 4.8 for identifying potential areas of hydrilla. There were three bands selected for 

processing by SAM with NIR wavelengths ranging from 440 nm to 900 nm. 

5.3.8 Spectrum extraction and analysis 

 

There are several pixels extracted from the image of (figure 42) that show how the 

SAM algorithm was applied to the hydrilla mats. Image classification was performed 

using the Spectral Angle Mapper (SAM) in ENVI Version 4.8 in conjunction with the 

ground measurements collected on August 9, 2009 (Blanco et al., 2012). The SAM 

classified all 182 Hyperion bands for each pixel in the image set to determine the 

similarity between the spectral signatures developed from a pixel and that of a spectral 

signature from the spectral library. 
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      Hydrilla                  Land  Vegetation               Water  

Figure 42 SAM results 

 

 

Figure 43 Spectral profile from SAM 

 

 

Experimental tank 

measurements 

Hydrilla 

Water 

Field Measurement 
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The SAM results are shown in (figure 42) and the spectral library plots extracted 

from the SAM image are shown in (figure 43). Figure 42 shows the SAM classification 

map produced spectrally dominant hydrilla as clusters of red colored pixels using red 

band 201, green band 45, and blue band 23 corresponding to 2163 nm, 803 nm, and 579 

nm respectively. Figure 43 shows the spectral library plots of hydrilla and vegetation end-

member spectra extracted from the Hyperion image. The maximum reflectance of 

hydrilla was at twelve and seventeen percent at a wavelength of 810 nm. 

5.4 Summary Results 
 

The spectral signatures generated from the image using ENVI were similar to the 

spectral signatures collected at the OPC pier. A field survey done by the Maryland 

Department of Natural Resources (MDDNR) for the years 2008 thru 2011 confirmed that 

the dominant SAV species is hydrilla (Delgado 2011). Therefore, the spectral profile 

generated from the field measurements agree with the spectral profile generated from the 

Hyperion image. Bands were linearly transformed using the Minimum Noise Fraction 

(MNF) transformation and evaluated considering the eigenvalues. MNF component 

images show steadily decreasing image quality with increasing component number (Chen 

2000). Higher eigenvalues have higher spectral values, as shown in Table 2, which shows 

the hydrilla footprint as a red color on the water. These potential end-member spectra 

were used in an n-dimensional (n-D) scatter plot and rotated in real time on the screen 

until extreme points on the scatter plot were exposed (Boardman 1993). Identified end-

member spectrum of hydrilla is shown in (figure 43). These preliminary results prove that 

hyperspectral imaging techniques can be used for refining the results. Image 
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classification was performed using the Spectral Angle Mapper (SAM) in ENVI Version 

4.8 in conjunction with the spectral library collected during the ground measurements on 

August 9, 2009 (Blanco et al., 2012). The SAM classifier examined the Digital Numbers 

(DN) of all 180 Hyperion bands for each pixel in the image set to determine the similarity 

between the spectral signatures developed from a pixel and that of a spectral signature 

from the spectral library. Figure 42 shows that the SAM classification map produced 

spectrally dominant hydrilla, as clustered of colored red pixels. 
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CHAPTER SIX: REMOTE SENSING TECNIQUES USING THE AISA SENSOR 

FOR MONITORING HYDRILLA  

6.1 AISA sensor 
 

The Airborne Imaging Spectrometer for Applications (AISA) sensor (Specim 

Corporation) is a compact airborne sensor whose charged-coupled device (CCD) array is 

sensitive to the VNIR wavelengths of the reflected spectrum. AISA was developed and 

tested in Finland in 1992 as a portable, cost effective, and programmable imaging 

spectrometer. AISA has a direct sight imaging spectrograph and high performance 

camera. It has a built in miniature global positioning system (GPS/INS) that allows for 

aircraft roll, pitch, and yaw information to be encoded for georeferencing (Jensen 2005). 

AISA is a push broom imaging spectrometer designed for airborne measurement 

although it can also be used for ground-based campaigns. AISA was flown on July 10, 

2005 at 6:13 PM over the Otter Point Creek estuary at an altitude of 3.07 km. The AISA 

image was acquired onboard an aircraft managed by the University of Nebraska's Center 

for Advanced Land Management Information Technologies (CALMIT) remote sensing 

center. AISA has a spectral resolution of 2.5 m and a spatial resolution of 2.0 m. The 

AISA imagery acquired for this research has a spectral resolution of ninety-seven (97) 

bands with a range of 498 nm – 819 nm. The objective of using the AISA sensor is to 

determine if hydrilla could be identified and classified in a waterbody by analyzing the 

spectral profiles processed using hyperspectral imaging techniques in the ENVI software. 
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6.2 Hyperspectral imaging analysis 
 

The AISA image shown on figure 44 was analyzed in ENVI for the selection of 

the spectral Z profile and collection of spectral signatures from random pixels on the raw 

image. The bands that were selected were 67 for the red band (912 nm), 35 for the green 

band (700 nm), and 8 for the blue band (536 nm), which resulted in a true color image 

(see Figure 42). The Z profile was created from the ENVI version 4.8 software. Figure 45 

shows the spectral profile extracted from random pixels in the AISA image. 

 

 

Figure 44 AISA True color image 
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6.3 Data preprocessing and analysis 

6.3.1 Atmospheric correction 

 

The conversion of radiance to reflectance for a hyperspectral image is necessary 

for atmospheric correction (Goetz et al., 2002). Atmospheric correction provides for more 

reliable results, especially the correction used with vegetation indices because the 

atmosphere introduces different levels of error into the bands that were used to create the 

indices. Moreover, data from different sensors, satellites, or aerial platforms can be 

substituted if the first selection is not available due to cloud cover, limitations of the orbit 

or technical issues. The AISA image was atmospherically corrected taking into 

consideration the solar irradiance, interaction of the electromagnetic energy with the 

atmospheric absorption, reflectance, scattering, and the sensor geometry. The AISA data 

set provided by the University of Nebraska, CALMIT, was corrected by the commercial 

package Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercube, or FLAASH, 

Hydrilla 

Turbid Waters 

Figure 45 Spectral profile (Z) of true color image 

Tank Measurements 
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which is included in the ENVI Version 4.8 software. FLAASH corrects for atmospheric 

water vapor, oxygen, carbon dioxide, methane, ozone, and molecular and aerosol 

scattering. FLAASH also produces useful auxiliary information including a column water 

vapor image, a cloud map and a visibility value for the series (ENVI version 4.8 ITT-

Exelis 2008). FLAASH is an atmospheric correction algorithm that covers the visible to 

the shortwave infrared (SWIR) hyperspectral data. FLAASH is a two-step process. The 

first step consists in the retrieval of atmospheric parameters. This is related to the aerosol 

type and its distribution, and water vapor. The second step then requires solving the 

radiation equation for the specific aerosol and water column and transformation to 

surface resistance. FLAASH uses the latest MODTRAN radiation transfer code to 

generate a unique solution for image (ENVI Tutorials 2008, ITT-Exelis Inc, Boulder, 

CO). 

6.3.2 Spectral Hourglass Wizard procedure 

 

The Spectral Hourglass Wizard process derives endmembers from the 

hyperspectral image. This process begins with calibrating the imaging spectrometer 

radiance data, converting the data to reflectance, reducing the spectral and spatial 

dimensions to a few key endmembers for identification purposes, and then using partial 

spectral unmixing to map the abundance and spatial distribution of the specific 

endmembers (Boardman and Kruse, 2011). The steps were previously shown in Figure 

30. The Spectral Hourglass can extract spectral information without having previous 

knowledge or requiring the collection of ground data. The hourglass processing flow uses 

the spectrally over-determined nature of hyperspectral data to find the most spectrally 
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pure or spectrally unique pixels, called endmembers, within the dataset and to map their 

locations and sub-pixel abundances. This processing flow begins with reflectance or 

radiance input data. The data can be spectrally and spatially subset, visualized in n-D 

space and the purest pixels can be clustered into endmembers. When the endmembers are 

located, the Spectral Analyst is used to identify them and to review the mapping results. 

To perform an image classification several methods are integrated in the wizard and they 

are SAM, the Mixture Tuned Matched Filtering (MTMF) and the Linear Spectral 

Unmixing. Only the SAM method was used in this study, which produced a classified 

image based on the value specified for the Maximum Angle of 0.1.  

6.3.3 Flow diagram of Spectral Hourglass Wizard 

 

A flow diagram of hyperspectral imaging processes for the Spectral Hourglass 

Wizard was shown previously in Chapter 5, Figure 30. 

6.3.4 Minimum Noise Fraction Transformation 

 

The first step in the hourglass processing flow was the Minimum Noise Fraction, 

or MNF, rotation, a process that determined the inherent dimensionality of the data set, 

segregated noise in the data, and reduced the computational requirements for further 

processing (Boardman and Kruse, 1994). For example, this process determined the 

number of possible endmembers. The MNF transform in ENVI is modified from Green et 

al., 1998 and is essentially a double, or cascaded principal component transformation that 

results in a data space that can be divided into two parts, one part associated with a 

coherent signal, and a complementary part dominated by noise. Using only the coherent 
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portion in further processing, the noise was separated from the data, reducing the size of 

the data set, and improving the results. The MNF results indicated the true dimensionality 

of the dataset; the number of MNF bands containing a coherent signal is approximately 

equal to the number of unique endmembers in the dataset. The objective of the Minimum 

Noise Fraction Transform (MNFT) process is to reduce the spectral variances of the data 

that exist in the image so that it can be displayed in a minimized form without changing 

the original data (Keshara and Mustard, 2002). The magenta color delineates the hydrilla 

mat area in figure 46. The green color defines the algae-laden water. Figure 47 resulted in 

a typical spectral profile for very productive waters containing cyanobacteria (blue-green 

algae) in the visible region at 550 nm with a peak reflectance of 19 percent. This spectra 

profile is similar to the one from the Hyperion image (figure 35). At the “Red Edge”, 

hydrilla peaked at a reflectance of 13 percent and at a wavelength of 710 nm. At 710 nm, 

hydrilla absorbs water, so the reflectance declines. Both spectra were selected from the 

same pixel location. 

MNF reduced the data set to 10 bands as shown on Table 2 and then processed an 

estimate of the noise statistics. The higher order images will have larger eigenvalues and 

spatially coherent MNF images (Jensen 2005). The spectral profile shown a target spectra 

was collected from random pixels in the MNF image shown on figure 47. 
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Hydrilla                  Algae      Water  

 

Figure 46 MNF image results 

 

 

Figure 47 Target spectral profile collected from MNF image 
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The hydrilla spectra and the associated spectra in the image were examined for 

weighting using the high variance, or Eigen vector, portion of the spectra. Bands 1 – 10 

have the highest eigenvalues as shown on Table 3 (250 to 2). 

 

Table 3 AISA Eigenvalues 

Eigenvalues 

(Bands) 

Eigenvalues 

1 250 

2 200 

3 150 

4 50 

5 12 

6 10 

7 8 

8 6 

9 4 

10 2 

  

6.3.4.1 Minimum Noise Fraction Statistics 

 

 Figure 48  Plot of MNF 
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ENVI will generate statistical reports and display plots of histograms (frequency 

distributions), mean spectra, eigen values, and other statistical information. ENVI will 

calculate basic statistics and/or tabulated histogram information for single –band or 

multi-band images. The minimum, maximum, and mean spectrum was calculated for 

multi-band images (figures 49, 50). Similarly the covariance statistics, including the 

eigen vectors and a correlation matrix, was only calculated for multi-band images. 

 

 

Figure 49 AISA Minimum Noise Fraction Statistics (Red) 
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Figure 50 AISA Minimum Noise Statistics (Green) 

 

  

6.3.5 Pixel Purity Index (PPI)  
 

The PPI algorithm is integrated in ENVI Version 4.8 and it finds spectrally pure 

pixels in hyperspectral images. A PPI image was created from the MNF image dataset in 

which the digital numbers (DN) of each pixel represents the spectral pureness of the 

pixel. A threshold was placed in the PPI image for segregating the pixels with high PPI 

values, which identifies the location of spectrally pure pixels. PPI results show the 

number of iterations, 5000, and the cumulative number of pixels, 22,000, that have been 

found to be spectrally extreme. Once the iterations were completed, the PPI image was 

created in which the value of each pixel corresponds to the number of times that the pixel 

was recorded as spectrally extreme, as shown in figure 51.  
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Figure 51 Pure Pixel Index 

 

6.3.6 Two-dimensional scatter plot 

 

The two-dimensional scatter plot shown on figure 52 was used for testing the 

image data. Two bands were selected for identifying the training sites, which included 

different classes such as water, and aquatic vegetation. These training sites were used to 

identify the hydrilla mat on the water surface. The 2D scatter plot method provides a two-

band interactive classification of image data. Two bands, band 48 (803 nm) and band 104 

(1184 nm), were selected with minimum correlation to show high scattering for pixels. 
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   Hydrilla   Vegetation  Water 
 

Figure 52 Two-dimensional scatter plot 
 

 

 

The cursor is dragged over the scatter plot to mark pixels in color. The pixels 

corresponding to the pixels colored on the 2D scatter plot are highlighted in the image 

simultaneously. At the same time, the pictures and the composite image were used to 

identify the pixels that represent the class. A good separation is visible between hydrilla, 

land vegetation, and water. The density distribution shows how dense the cloud of pixels 

is at each location in the scatter plot. ROI’s are selected for three classes: hydrilla (red), 

vegetation (green), and water (blue), as shown in figure 52. 

6.3.7 n-Dimensional visualizer 

 

The n-Dimensional Visualizer is an interactive tool for finding endmembers by 

locating and clustering the purest pixels in n-dimensional space. The spectra are points in 
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an n-dimensional scatter plot, and n is the number of MNF bands as shown on figure 53. 

The coordinates for cluster of pixels in n-space consist of “n” values that are simply the 

spectral radiance or reflectance values in each band for a given pixel.  

 

 

 
     Hydrilla            Vegetation            Water  

 

Figure 53 n-Dimensional Visualizer 

 

 

The n-D Visualizer on figure 54 rotates the data cloud and colors draw a polygon 

on the image (figure 53) around a corner in the n-D Visualizer.T he position in the scatter 

plot conveys the same information in the spectrum for a single pixel. The best 

endmembers occur as vertices, or corners, of an n-Dimensional data cloud or mixing 

volume. A spectral profile is extracted from (figure 54) resulting on (figure 55) which is a 

typical vegetation spectra.  
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Figure 54 Regions of Interest 

 

 

 

 

                                   Hydrilla                       Vegetation            Water 
 

Figure 55 n-D Visualizer Endmember Spectra 
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6.3.8 Spectral Angle Mapper 

 

A supervised classification using the SAM classifier was performed on an AISA 

image with the following three steps. First, the classification key was formulated 

consisting of the classes hydrilla, algae-laden water, and water. The classification scheme 

was partly based on the inspection of the classes present in the MNF results and the 

reference data collected on the water. Second, approximately 10 training sites were 

collected from the AISA imagery based on a random sampling. The training sites were 

carefully determined based on the homogenous nature of pixels with respect to tone, 

texture, association, etc., within a similar class. Their selection was guided by photo 

interpretation of the AISA image’s very high spatial resolution imagery. Figure 56 

illustrates the average hyperspectral spectra of the training sites collected for different 

classes. Using the training site data, the SAM classifier was processed using the ENVI 

version 4.8 software. SAM classifies the imagery based on the spectral similarity between 

image spectra and the reference spectra (Kruse et al., 1993). The spectral similarity is 

determined by calculating the angle between reference spectra and satellite image spectra 

when treating them as vectors in an n-dimensional space where ‘n’ is equal to the number 

of spectral bands of the sensor. Reference spectra can be generally taken either from 

laboratory or field measurements or can be equally extracted directly from the remote 

sensing imagery. In an n-dimensional multispectral space, a pixel vector has both 

magnitude (length) and an angle measured with respect to the axes that defines the 

coordinate system of the space. SAM is an automated method for comparing spectra of 

image pixels to the spectra of reference endmembers (also termed “Training Classes”) 
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(CSES, 1992; Kruse et al., 1993). SAM treats each spectrum as a vector and determines 

the similarity between the unknown pixel spectrum and the reference spectrum by 

calculating the spectral angle between them. An example is shown in Figure 57 that uses 

a reference spectrum for Material A and an unknown spectrum from Material B with a 

data set of n spectral bands. The reflectance of each material can be plotted in a 2-D 

scatter plot for each combination of bands in the data set. A vector is extended from the 

origin to the point I-J reflectance for each material. The two band spectral angle for the 

reference and unknown pixels in the I-J data space is the angle between the two vectors. 

The color of a material is defined by the direction of its unit vector in n-dimensional 

spectral space. The length of the vector relates only to how fully the pixels are 

illuminated, not its absorption features. Because SAM uses only the direction of the 

spectrum, and not its length, all levels of illumination are treated equally. Poorly 

illuminated pixels fall closer to the origin, but still lie on the same vector as brightly 

illuminated pixels. Notice that the angle between the vectors is the same regardless of the 

length. In SAM, only the angular information is used for identifying pixel spectra, as the 

method is based on the assumption that an observed reflectance spectrum is a vector in a 

multidimensional space where the number of dimensions equals the number of spectral 

bands. A detailed description of the SAM algorithm is given in Kruse et al. (1993). The 

n-dimensional space for the SAM implementation was defined by the total number of 

AISA bands remaining after the implementation of the last pre-processing step. A single 

value of 0.1 radians was used as the maximum classification threshold value for all 

classes.  
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Figure 56 Two-dimensional example of SAM (CSES 1992) 

 

 

The SAM algorithm generalizes this geometric interpretation to n-dimensional 

space. SAM determines the similarity of an unknown spectrum “t” to a reference 

spectrum “R” by applying the equation shown in Equation 9 (CSES, 1992). In this 

equation, “nb” is the number of bands in the image. This technique was developed by 

J.W. Boardman and determines the spectral similarity between given reference spectra, 

“r” (image endmember) and the spectra found at each pixel, “t” (Kruse et al., 1992). The 

result of the comparison is reported as the angular difference in radians between the two 

spectra. 

Material A – Hydrilla pixel spectra 

from reference data 

 

Material B – Hyrilla pixel spectra 

from AISA sensor 
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Equation 4 SAM Algorithm (CSES, 1992) 

 

 

 

6.4 Summary Results  

6.4.1 Spectral Angle Mapper (SAM) 

 

SAM is the final step in the spectral hourglass wizard (SHW) procedure and is the 

best method for mapping Hydrilla. Past experience in other studies supports the selection 

of SAM as the most commonly used technique. The SAM output consists of a 

classification image as shown on (figure 57) and a set of rule images, which corresponds 

to the spectral angle, calculated between each image pixel and each endmember. The rule 

images are helpful if the SAM classification image does not show spatially coherent 

classes. They can be examined individually by loading each rule image into a display 

window. The SHW automatically reverses the color table and estimates a linear stretch of 

the image. The best matches are the small angles. In order to change the stretch 

maximum of the displayed rule image the desired value can be entered in the default 
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stretch max text box. The ENVI cursor location tool was used to look at SAM spectral 

angles for each pixel and identify a new SAM threshold, if necessary (ENVI Tutorials 

2008. ITT-Exelis Inc, Boulder, CO). The threshold was set at 0.1 radian. Finally a SHW 

summary report is obtained which contains a summary of processing steps and a list of 

output files. SAM classified all 97 AISA bands for each pixel in the image set to 

determine the similarity between the spectral signatures developed from a pixel and that 

of a spectral signature from the spectral library.  

 

 

 

Hydrilla              Algae              Algae                   Water  
 

Figure 57 Spectral Angle Mapper Results 
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For mapping hydrilla, the SAM was selected and produced an image map 

showing the distribution and abundance of hydrilla. Figure 58 shows the spectral library 

plots of hydrilla and vegetation endmember spectra extracted from the Hyperion image. 

 

 

Figure 58 Spectral profile collected from SAM 

 

 The maximum reflectance of hydrilla is 17 percent at 810 nm, which 

approximately agrees with MNF results of about 19 percent. The user determines the 

spectral properties of the class by defining an ROI within an image and extracting the 

spectral information for that group of pixels. The types of classes defined by the user 

depend on the themes of interest within the image. The major thematic classes often used 

Experimental tank 

measurements 

Hydrilla 

Field measurements 
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for invasive plant species mapping are: invasive plant species versus background, 

primary vegetation groupings and disturbance. 

Chlorophyll-a is represented by the yellow patches and the green may be algae. 

The aquamarine and blue cluster of pixels represent turbid conditions in productive 

waters. The turquoise and blue water are turbid and clear water. Hydrilla is dominant in 

the Otter Point Creek estuary. Therefore the spectral profile generated from the ground 

truth measurements are in agreement with the spectral profile generated for the spectral 

profile generated from the AISA image. 

6.5 Accuracy assessments 
 

Accuracy was empirically determined by selecting a sample of pixels from the 

thematic map and checking their labels against classes determined from the ground 

measurements. Accuracy assessments determine the quality of the information derived 

from remotely sensed data (Congalton and Green, 2009). Assessments can be either 

qualitative or quantitative. Qualitative assessments, a map is looked at to see whether the 

image is correct or not by comparing what is observed on the image with the ground. 

This analysis is very straightforward. Qualitative assessment attempts to identify and 

measure remote sensing-based error. In this assessment, the reference data is compared to 

thein-situ field measurements. The Confusion Matrix was calculated in ENVI using the 

ROI’s. Adding up the number of pixels that are correctly classified and dividing it by the 

total number of pixels calculates the overall accuracy. The ground ROI defined the true 

class of the pixels. The Overall Accuracy for the AISA image was 49.35 5 AND A Kappa 

Coefficient of 0.36. 
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CHAPTER SEVEN: VALIDATION OF SATELLITE AND AIRBORNE 

HYPERSPECTRAL IMAGES WITH IN SITU FIELD MEASUREMENTS AND 

AERIAL PHOTOS 

7.1 Validation of satellite and airborne with in - situ field measurements 
 

The easiest way of validating the satellite and airborne hyperspectral 

measurements is to compare the spectral profile collected from the Hyperion and AISA 

images, MNF, and SAM, with the field measurements. The spectral signature profiles 

collected from the experimental hydrilla tank with the hydrilla canopy emergent 

generated a range of peak reflectance between 16 and 26% at a wavelength of 810 nm as 

seen on (figure 59) because the hydrilla canopy was emergent on the tank. The spectral 

profile from the estuary, as shown in (figure 60), generated a lower spectral reflectance 

between 4 and 7% at 810 n. At the time the field measurements were obtained on the 

water surface, the hydrilla canopy was submerged; therefore, this validates the spectral 

profiles on Figure 61. A reflectance of less than 10% generally indicates that the hydrilla 

is submergent. 
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Figure 59 Experimental tank spectral profile of hydrilla 

 

 
 

 

Figure 60 Reference field spectral profile 
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7.2 Validation of the Hyperion measurements  
 

The image in Figure 61 was generated from a subset of a true color Hyperion 

image. The plot below is based on a collection of random pixels in the image. The 

spectral profile in the visible region of the electromagnetic spectrum declines from an 

average reflectance of 19% at 425 nm to 5% at 690 nm. At the “Red Edge”760 nm the 

spectral curve reaches a peak reflectance at 28 %. Oxygen is absorbed at 760 nm 

followed by water absorption at 820 and 935 nm. The trough on Figure 59 at 680 nm 

agrees with Figure 60, 690 nm at a surface reflectance of 3%. The peaks shown on Figure 

60 reference field data at 765 nm are due to oxygen absorption. 

 

 

Figure 61 Subset of raw Hyperion image after atmospheric correction 
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Figure 62 Spectral signature profiles of hydrilla collected from Figure 63 

 

The spectral profiles from the Hyperion true image the “Red Edge” starts from to 

760 nm with a peak reflectance of 28%, which validates Figure 62. The spectral library 

plots generated from the Spectral Angle Mapper (SAM) image Figure 62 resulted in a 

peak reflectance between 17 and 27% at a wavelength of 810 nm as shown on Figure 65. 

It is possible that the hydrilla canopy is floating at the higher reflectivity and submerged 

at less than 16% reflectance. This comparison of spectral results matches very well and 

validates the hydrilla canopy as floating.  
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Figure 63 SAM results 

 

 

 

 

Figure 64 Spectral profile generated from the Spectral Angle Mapper 
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7.3 Validation of AISA measurements  

 

Several random pixel locations were selected on the water surface of Otter Point 

Creek from the true color image shown on Figure 65. A spectral signature profile was 

processed in ENVI® version 4.8 for the AISA true color image resulting in a peak 

reflectance in the NIR of 11.5 to 18% at a wavelength of 730 nm as shown on Figure 66. 

This means that the hydrilla is floating. When we compared this spectral profile with the 

field reference data, we noted similarities. For instance, the profile shows two peak 

reflectances, one at the “Red Edge” 710 nm with a peak reflectance of 10% and 11% at 

830 nm. 

 

 

 

 

 

Figure 65 Subset of AISA true color image 
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Figure 66 Spectral profile generated from true color AISA image 

 

 

Figure 67 Spectral profiles generated from SAM image 
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7.4 Hyperion and AISA MNF results 
 

The results from the processing of the MNF algorithm are compared for 

determining the extent of the hydrilla canopy. Figure 68 shows a bright red canopy inside 

a darker red canopy. This may be interpreted as the hydrilla canopy being partly 

submerged in water. Figure 68 is the MNF results from the AISA image. By visual 

analysis, the Hyperion sensor resulted in a more distinct hydrilla canopy than the AISA 

image. 

 

 

Hydrilla      Land Vegetation       Water  

Figure 68 MNF results of Hyperion image 
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      Hydrilla   Vegetation Water  

Figure 69 MNF results of AISA image 

 

7.5 Validation of hydrilla canopy 
 

Table 4 shows coverage in the area for four years and it can be concluded that no 

change in surface area for the hydrilla canopy occurred for those years. There were only 

two other SAV beds found in Otter Point Creek for those years. No SAV data was 

collected for the years 2006, 2009, and 2010.  

Table 4 Surface area of hydrilla for 2005, 2007, 2008, and 2011 (Source: VIMS) 

 

Year Class of SAV Area (m
2
) Density % Source 

2011 Hydrilla 470,297 70-100 VIMS 

2008 Hydrilla 470,207 70-100 VIMS 

2007 Hydrilla 470,207 70-100 VIMS 

2005 Hydrilla 470,207 70-100 VIMS 
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7.6 Photo interpretation and bed delineation 

 

The SAV beds were interpreted on-screen from the orthophoto mosaics shown on 

(figure 70) using ESRI ArcInfo GIS ® software. The identification and delineation of 

SAV beds by photo interpretation used knowledge of aquatic grass signatures on film, 

distribution of SAV in 2011 from aerial photography, 2011 ground survey information, 

and aerial site surveys. In addition to delineating SAV bed boundaries, an estimate of 

SAV density within each bed was made by visually comparing each bed to an 

enlarged crown density scale similar to those developed for estimating crown cover of 

forest trees from aerial photography (Paine 1981).  

 

 

Figure 70 Aerial photo of Otter Point Creek 

Note: Hydrilla canopy is shown as darker areas. (Source: VIMS , 2011) 

 

http://web.vims.edu/bio/sav/sav11/crown_density.html
http://web.vims.edu/bio/sav/sav11/lit_cited.html
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Bed densities were categorized into one of four classes based on a subjective 

comparison with the density scale. These were: 1, very sparse (<10% coverage); 2, sparse 

(10-40%); 3, moderate (40-70%); or 4, dense (70-100%) (Wilcox et al., 2009). Figures 70 

and 71 show the aerial photos taken of the study area showing submerged SAV as dark 

areas on the water. 

 

 

Figure 71 Subset of the aerial photo showing the fishing pier 

where in situ field measurements were collected. (Source: VIMS, 2011) 
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Figure 72 Subset of Otter Point Creek showing in detail the location of the hydrilla canopy 

 as D3 and D4 (Source: VIMS 2005) 

 

 

Figure 73 Subset of Otter Point Creek showing in detail the location of the hydrilla canopy 

indicated by HB4. HV- hydrilla, Cd -Elodeas Canadensis, Nm- Najas Minor (VIMS 2005) 

 

 



135 

 

 

Maryland Department of Natural Resources has collected reference values of 

aquatic species in the Otter Point Creek from 2007 to 2011. The dominant species at OPC 

has been hydrilla. Few other species were present during the data collection effort 

(Delgado 2011). 

7.8 Accuracy assessment of Hyperion and AISA images 
 

Accuracy is determined empirically by selecting a sample of pixels from the 

thematic map and checking their labels against classes determined from the ground 

measurements. From these checks, the percentage of pixels from each class in the image 

labeled correctly by the classifier can be estimated along with the proportions of pixels 

from each class erroneously labeled as other classes. Accuracy assessments determine the 

quality of the information derived from remotely sensed data (Congalton and Green, 

2009). Assessments can be either qualitative or quantitative. For qualitative assessments, 

a map is visually looked at to see whether the image is right or not by comparing what is 

seen on the image with the ground. This analysis is done in a very straightforward way. 

Qualitative assessment attempts to identify and measure remote sensing-based error. In 

this assessment, the reference data is compared to the ground truth data. 

ENVI® Version 4.8 calculated the Confusion Matrix using the ground truth 

image or ground truth ROI’s. Adding up the number of pixels that are correctly classified 

and dividing it by the total number of pixels calculate the Overall Accuracy. The ground 

truth image or ground ROI’s define the true class of the pixels. The pixels that were 

correctly classified are found along the diagonal of the Confusion Matrix table that lists 
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the number of pixels that were classified into the correct ground truth classes. The 

Producer’s Accuracy relates to the probability that a reference sample photo is correctly 

mapped and measures the error of omission. This User’s Accuracy indicates the 

probability that a sample from a map actually matches the reference data (photo) and 

measures the error of commission (Congalton and Green, 2009). Another measure of 

classification accuracy is the Kappa Coefficient (k) which is calculated by multiplying 

the total number of pixels in all the ground measurement cases by the sum of the 

Confusion Matrix diagonals, subtracting the sum of the ground truth pixels in a class 

multiplied by the sum of the classified pixels in that class. The Overall Accuracy of the 

Hyperion image using ENVI classification image was 54.36 % with a  Kappa Coefficient of 0.27 

and the Overall Accuracy of the AISA image was 49.35%  with a Kappa Coefficient of 

0.36.   

 
 

7.10.5 Summary Results of Hyperion and AISA images 

 

The Hyperion classification image had Overall Accuracy of 54.36% and a Kappa 

value of 0.27. For classification of the Hyperion image, the only classification method 

realistic enough to quantify with an accuracy assessment was the SAM classification 

using MNF transformed bands. The AISA classification image had Overall Accuracy of 

49.35 % and a Kappa value of 0.36. For classification of the AISA image, the only 

classification method realistic enough to quantify with an accuracy assessment was the 

SAM classification using MNF transformed bands. The Hyperion accuracy was 
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influenced by noise, which is considered a tradeoff for minimizing the risk of committing 

an error of omission. 
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CHAPTER EIGHT: CONCLUSIONS AND DISCUSSIONS FOR THEINSITU 

FIELD MEASUREMENTS, HYPERION SENSOR, AND AISA SENSOR 

8.1 Conclusions 
 

This study arrived at several conclusions first of all that the spectral signatures 

collected in situ from the experimental hydrilla tank and the field settings can be utilized 

to determine whether the hydrilla canopies resulting from the identification and 

classification using the hyperspectral sensors are either floating or submerged. The 

spectral library was necessary to approximately match the spectral signatures from the 

tank and the field measurements with the spectra collected from the remote sensors.  

The Spectral Hourglass Workflow in ENVI performed very well thru the different 

algorithms and classification method for the Hyperion and the AISA sensor. The spectral 

profile resulting from the SAM classification determined that the Hydrilla canopies were 

floating on the water surface since the reflectance of the mat was higher than the 

established threshold of 10% surface reflectance. During the processing of the Minimum 

Noise Fraction Transform it was concluded that the spectral profile was compared with 

results from other researchers and it was determined that a Cyanobacteria (blue-green 

algae) was present in the algae-laden waters. The accuracy assessment showed that 

hydrilla had a close overall accuracy for the Hyperion image and the AISA image. 

 Results from this study demonstrate that spaceborne and airborne hyperspectral 

imagery can be very useful data sources for distinguishing homogenous canopies of 
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hydrilla. The Spectral Hourglass Wizard can be used for mapping other invasive and non-

invasive aquatic species. The Minimum Noise Fraction Transform with spatially coherent 

MNF bands is sufficient for identifying the location of hydrilla in the image. The SAM 

classification and spectral profile performed well, but these results are dependent only for 

Case 2 waters such as in coastal estuaries that have very productive waters.  

It was also concluded that the spectral profiles from the AISA and Hyperion 

images matched closely with the spectral signatures collected from the experimental 

hydrilla tanks. Cyanobacteria (blue –green algae) was identified from the MNF spectral 

profile from both remote sensors. Therefore, the Hyperion and AISA sensors can identify 

not only algae blooms, but also hydrilla canopies in productive waters.  

Validation of the satellite and airborne hyperspectral images with in situ field 

measurements, aerial photos, and ground surveys verified and valida the extent and the 

location of the hydrilla canopy at Otter Point Creek estuary. The SAM classification 

images from the Hyperion and AISA sensors when validated with surface area collected 

by VIMS and the surveys from the MDDNR for the years 2005 to 2011 concluded that 

hydrilla was the dominant aquatic vegetation in the estuary. 

This research for the first time collected Hydrilla signatures from a satellite sensor, an 

airborne sensor, a ground truth site and aerial photography over the same site. Hydrilla 

spectral signatures were also collected at an experimental research tank in the immediate 

area. This provided a unique opportunity to compare and analyze these signatures and 

other sources of information about hydrilla in this area of Chesapeake Bay. The spectral 
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signatures that were taken and analyzed in this study are included in the spectral library 

that was also developed under this research and is housed at George Mason University.  

 

8.2 Discussion 
 

 Hyperspectral imaging techniques are an important tool for identifying and 

classifying submergent or emergent aquatic vegetation. Hyperspectral imaging can assess 

the environmental and ecological impacts by non-native aquatic vegetation because 

changes in climate can be detected.  

A very interesting finding during the image processing was the collection of 

endmember spectra, which resulted in the identification of cyanobacteria (blue-green 

algae). The analysis determined that the cyanobacteria curve had a higher reflectance of 

19% than the hydrilla canopy of 14% for the Hyperion and AISA images. The spectral Z 

profiles of the Hyperion true color image was compared to the AISA image for 

determining that the spectra reflectance declined as the wavelength increases which could 

be interpreted as the hydrilla canopy being submerged. Once the light penetrates the 

water column it attenuates and reaches the submerged aquatic vegetation the reflectance 

increases. This is a typical reflectance curve in algae-laden waters. Algae-laden waters 

spectra behave similarly to the cyanobacteria curve at a wavelength of 550 nm. However, 

the AISA spectral profile derived different spectral signatures with higher surface 

reflectance of 20% in the NIR. The hydrilla canopy was emergent at low tide conditions. 

The SAM results from the Hyperion sensor generated a reflectance of over 20% at the 

“Red Edge” (680 – 760 nm), which compares very favorably with the spectral profiles 
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extracted from the AISA image. Both SAM results were compared with the spectral 

library plots from the reference data in the experimental tank and from the estuary and it 

can be concluded that the spectral signatures match with some slight differences in the 

NIR (15 to 26 %). From these results, it can also be concluded that the homogenous 

hydrilla canopy was emergent at the time the sensor flew over the site. Both sensors 

validated the spectral signatures of the tank and field measurements, which was one of 

the main objectives of this research. 

Accuracy assessment was performed for both images using the Confusion Matrix 

or Error Matrices. The AISA image gave an Overall Accuracy of 49% with a Kappa 

Coefficient; however, the Hyperion image was not as accurate as the AISA image, with 

Overall Accuracy of 54.36% and a Kappa Coefficient of 0.27. Hydrilla had very good 

accuracies because of the uniformity of the canopies and because the training pixels were 

homogenous. The blue-green algae detected could have been confused spectrally with 

hydrilla in the Hyperion image resulting in lower accuracy. The water column exerts a 

strong effect in the signal where absorption and scattering water column is higher. With 

the AISA sensor all of the 97 bands were usable with very little noise; however, the 

Hyperion image did have calibration issues, and noise so the accuracies were lower than 

the AISA image. Hyperion flies at a higher altitude than the AISA which affects the 

signal to noise ratio.  

 The spatial-temporal differences were due to several factors which controlled the 

timing between the collection of the in situ measurements and the satellite and airborne 

flyovers: 
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The NASA flight schedule for the Hyperion sensor was not controllable because 

the satellite needed to be tasked by GSFC at a time with no cloud cover. 

The image over the study area needed to be acquired under low tides and calm 

surface conditions and when the sun angles are low enough to avoid sunglint. 

The spectrometer provided was not calibrated, so another calibrated instrument 

needed to be obtained from USGS and it needed to be operated by experienced personnel. 

The personnel were not always available and it took two (2) years to secure the 

instrument. 

There were problems with the weather and the flyover by Hyperion. The flyover 

needed to be tasked by NASA weather permitting. Different dates had to be coordinated 

with NASA. 

The only airborne image collected of the study area was in July 13, 2005 by the 

University of Nebraska  

Since hydrilla has the same basic spectral characteristics because all vegetation 

are composed of the same types of biochemical pigments, water, cellulose, etc. Leaf 

spectra are dominated by the influence of four (4) variables: photosynthetic pigments, 

water, dry matter, and structural parameter related to leaf thickness. The phenological 

characteristics do not change from year to year. 

The results from this study should be of interest to many scientists and water 

resource managers that have an interest in using cost effective techniques to identify and 

map hydrilla infestation in the aquatic environments, as well as alarming environmental 

agencies of possible harmful algae blooms.  
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The author recommends several areas for future work: 

 Incorporate bathymetric measuring system such as LIDAR for determining depth 

with spectral reflectance 

 Develop a spectral library for different aquatic vegetation species in the study 

areas at different times during the growing season. 

 Synchronize the field measurements with hyperspectral sensor’s overpass of the 

study area. 

 Determine changes in hydrilla using historical aerial images from VIMS and 

collecting hyperspectral images for the same period in order to detect changes in 

the shallow and the deeper areas of the study area.  

 Focus on the selection of sample types in the design of the sampling study in 

order to capture a substantial amount of variability in environmental conditions.  

The best classification methods identified for one site may not perform the best 

for other sites. Therefore, it is always necessary to evaluate different image processing 

and classification techniques in order to obtain the best classification results. It is 

important to know that the ground spectra collected by the ASD instrument collects true 

pixels as it is held close to the hydrilla mat.  

The next step is to test the feasibility of the ENVI software using other 

classification techniques such as Mixture Tuned Match Filtering, Linear Unmixing 

Spectral Feature Fitting (SFF), Linear Spectral Unmixing, and Matched Filtering 

covering different aquatic species over a large spatial area. Reference spectra should be 

collected at the same time of the sensor flyover. Reference spectra should be collected at 
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different times, place and solar conditions for examining several factors that can 

influence the spectral characteristics of other aquatic species.  

Future work should evaluate other ENVI Workflows such as Target Detection 

Wizard and THOR, as well as other subpixel analysis techniques. 
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