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Abstract

DYNAMIC MINKOWSKI SUM OPERATIONS

Evan Behar, PhD

George Mason University, 2016

Dissertation Director: Dr. Jyh-Ming Lien

The Minkowski sum is an important operation in a wide variety of applications, including

robotic motion planning, computer animation, physical simulation, rapid prototyping, and

computer-aided design, as well as being the fundamental operation in computing configu-

ration spaces of objects. The computation of Minkowski sums focuses primarily on finite

boundary representations. Although the Minkowski sum has been studied extensively since

the 1970s, still the great bulk of work in the field of Minkowski sums focuses on comput-

ing the Minkowski sums of objects which do not rotate or deform, but remain in a single

orientation and formation.

In many applications, however, the objects provided are transformed over time by means

of rotation, scaling, or localized deformation, or make use of significantly similar or repeated

geometry. In these cases it is often not practical to recompute the Minkowski sum after each

transformation. This is largely owing to the computational complexity of the Minkowski

sum–for non-convex objects in d dimensions, the worst-case boundary complexity of the

Minkowski sums is O(mdnd), where m and n are the number of facets in the inputs. However,

because of the challenges of working with non-convex objects, the little existing work in

computation re-use for Minkowski sums focuses solely on convex objects.



In computer graphics, for example, it is common to create a collection of similar objects by

copying a master object and deforming or reorienting each copy in some way. To recompute

the Minkowski sum of each such object from scratch is extremely expensive and undesirable.

Instead, we would prefer to compute the Minkowski sum of the master object once, and then

use the computation already done on the master object to update the sums for each such

transformed copy efficiently. The main idea here is that when the transformation applied is

small, the resulting change in the Minkowski sum boundary will typically also be small.

In this work, methods are presented for dynamically updating the Minkowski sum

boundaries of non-convex triangle meshes global changes to the input mesh. The underlying

Minkowski sum technique is based on the convolution of the meshes–a superset of the

Minkowski sum boundary which is efficient to compute. The Minkowski sum boundary is

then extracted from the convolution.

The methods proposed for rotation and scaling depend upon a dynamic convolution

algorithm that operates on the Gauss map of P . The technique for local deformation relies

on updating the convolution in only those regions affected by the deformation, limiting

the amount of work necessary to extract the Minkowski sum boundary. These methods are

implemented under the CGAL framework, and testing demonstrates that the computations

are significantly faster than recomputing the Minkowski sum from scratch when the scale of

the transformations is small, making these methods useful for applying the Minkowski sum

to applications where the input operands must undergo transformations.



Chapter 1: Introduction

1.1 Motivation

The Minkowski sum of two point sets P and Q is defined by the set of pairwise sums of their

points: P ⊕Q = {p+ q | p ∈ P, q ∈ Q}. In particular, given polygons and polyhedra, we are

interested in the Minkowski sums of these shapes. The set of polytopes is closed under the

Minkowski sum, and so the Minkowski sum of two polygons will also yield a polygon, and

similarly, the Minkowski sum of two polyhedra is itself a polyhedron.

Since the late 1970s, the Minkowski sum has been an important operation to researchers

interested in a wide variety of fields. The Minkowski sum forms the fundamental operation

for computing configuration spaces (C-spaces) which are directly applicable to motion

planning, virtual assembly and rapid prototyping tasks. Further, the Minkowski sum provides

a straightforward way of performing tasks such as penetration depth estimation, offsets,

rounding, and sweeping. It is also used for continuous collision detection, physical simulation

and mathematical morphology operations such as dilation and erosion.

However, research into the Minkowski sum slowed significantly in the 1980s, and

continued to be sparse until very recently due to the high computational complexity of the

Minkowski sum boundary for general inputs and the intractability of computing geometric

boundaries in high dimensional spaces. Given two non-convex d-dimensional inputs of

boundary complexities m and n, the worst-case boundary complexity of the Minkowski sum

boundary is O(mdnd).

Even explicit boundary computations for rotating polygonal inputs, whose boundaries are

only as complex as those of non-rotating polyhedral inputs, have mostly eluded researchers

until recently [9] . However these explicit representations remain important. In virtual

1



assembly and rapid prototyping, motion planning problems that require incomplete plan-

ners, continuous collision detection, packing problems, and penetration depth estimation

algorithms, efficient computation of the Minkowski sum remains a the rate limiting step.

The algorithms in existing work have mostly centered on computing static Minkowski

sums of polygons and polyhedra. These algorithms are generally unsuitable for use in

applications where such inputs must transform in some ways, as the boundary must be

recomputed from scratch with every transformation of either input.

1.2 Complexity analysis and dynamic operations

Table 1.1 summarizes worst-case complexity of the Minkowski sum boundary in both two

and three dimensions, for inputs P and Q of input size m and n respectively.

Table 1.1: Worst-case boundary complexity of the Minkowski sum for given input types
convex ⊕ convex convex ⊕ non-convex non-convex ⊕ non-convex

polygons O(m+ n) O(mn) O(m2n2)
polyhedra O(mn) O(m2n2) O(m3n3)

As shown in the table above, for general polygons and polyhedra, the worst-case boundary

complexity is quite high, such that even worst-case optimal algorithms for computing the

Minkowski sum can be quite slow in practice.

In many applications, it is desirable for at least one of the inputs to transform in some

way. Perhaps the most common example is rotation of a rigid body. This is a common input

change in virtual assembly. As parts are developed separately and manipulated together,

the addition of rotational velocity is frequently a component of collision response. Packing

problems can be better served by taking into account degrees of freedom of rotation, and

robots in motion planning problems may need to change orientation in order to better

2



navigate through an environment.

Given the high complexity of the Minkowski sum boundary, it is undesirable to discard

all existing computation and simply recompute the boundary of the transformed inputs from

scratch. Ideally, we would like to take advantage of computation we have already done

in computing the Minkowski sum boundary and only recompute portions which cannot be

updated.

Most existing strategies for addressing this problem either enumerate all of the structural

changes that may occur with regard to a particular degree of freedom (dof), such as a single

rotation axis [26], or approximate these changes via discretization of the dof [42]. These

strategies are generally not practical for situations in which the inputs possess many dofs,

and so we are interested in the idea of dynamically updating the Minkowski sum boundary.

In this work I address a number of strategies for computing Minkowski sums dynamically

across a variety of changes to the input models. In Chapters 3 and 4, I address strategies for

computing the Minkowski sums of polygons in two dimensions. In Chapter 5, I provide a

method for dynamically updating the Minkowski sum of convex polyhedra. In Chapter 6, I

provide methods for the scaling of general polygons and convex polyhedra. In Chapter 7, I

introduce a dynamic convolution algorithm, which may be used to allow dynamic Minkowski

sum methods for convex polyhedra to be used on non-convex inputs, and discuss a new

continuous penetration depth algorithm based on the convex map. In Chapter 8, I analyze

the results of my research and discuss future work.
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Chapter 2: Related work

The work in this dissertation builds on related work in a number of fields: numerical

robustness, which allows us some guarantee on the exactness of our computations; the

notion of the arrangement, which allows us to create non-overlapping regions from a set

of potentially overlapping line segments; the notion of a convolution of polytopes, from

which Minkowski sum boundaries can be extracted; and previous methods of computing

Minkowski sum boundaries. In this chapter, we give an overview on each of these topics.

2.1 Numerical robustness

Because we demonstrate algorithms which can compute Minkowski sum boundaries exactly,

it is important to discuss the issue of numerical robustness and models of robust computing

before we proceed further. Because geometric computations take place over the domain of

real numbers and there are many arithmetic computations necessary in order to determine

such things as intersections between primitives, numerical error when using floating point

types is inevitable.

However, in geometric computing, numerical error can easily introduce significant errors

into results. For example, numerical error in computing the intersections between line

segments can result in the wrong regions being identified in the result. If these regions

represent important information, such as the location of a building on a map, such errors

can result in errors which render the result unusable for its application. Further, numerical

error can result in important properties of groups such as closure failing to hold. There

are several different proposed strategies for dealing with numerical robustness, which we

address briefly below.
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2.1.1 Arbitrary precision floating point representations

Arbitrary precision floating point types attempt to address rounding errors by allowing the

introduction of additional bits of precision at run-time. Given certain assumptions about

the input, it may be possible then to determine the maximum number of bits of precision

required such that even with rounding errors, ordering predicates will evaluate correctly, or

that the results of computation can be considered to be exact. For example, in computing

the determinants of n × n matrices, a precision of nL + n lg n bits is sufficient when the

entries are L-bit integers. [52] Arbitrary precision types suffer from efficiency concerns due

to requiring special logic not necessary with built-in floating point types. Additionally, there

may be extra slowdown incurred in detecting precision problems and adjusting the available

precision at run-time. Also, while there are a number of arbitrary precision packages in C and

C++ to perform arbitrary precision arithmetic, such as the GNU GMP1 and MPFR2 projects,

overall, the theoretical underpinnings of selecting optimal precisions are not well-explored.

Benouamer, et. al. [14] describe a lazy method for updating the precision of an arithmetic

expression in which an evaluation tree is constructed for the predicate and a desired precision

is set for the root node. They then iteratively update the precision at the leaf nodes until the

desired precision is obtained for the root node. Yap and Dubé [52] in contrast propagate

the root’s precision to all of its leaves automatically, computing the leaves using primitives

to approximate the result to the given precision. However, both of these methods accept

the precision of the root node as a user input and do not explore in detail how to choose a

satisfactory precision.

2.1.2 Exact computation

Yap and Dubé [52] also defined the exact computation paradigm. The exact computing

paradigm as described strives to render numerical errors nonexistent by representing a

closed subset of the real numbers exactly via algebraic representations. Examples of exact

1GMP - http://gmplib.org/
2MPFR - http://www.mpfr.org/
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computing types are rational number types and square-root extensions. Rational types store a

numerator and a denominator rather than computing a fixed or floating point representation

explicitly. Square root extensions extend the rationals into other closed subsets of the reals,

being expressed in the form a+ b
√
r, where a, b and r are all rational numbers. Square root

extensions are closed for values with the same root value r, and can be efficiently compared

to each other even when the roots differ. However, computation under exact types is subject

to overflow constraints when using built-in integer types and inefficiency when using custom

“big-int” numerical types.

They describe a further extension from simple square root types using isolating interval

representations. Given a polynomial P (x) with real root α, it is possible to represent α as

the pair (P (x), I) where I is an interval in R with rational endpoints such that I contains no

other real roots of P (x). This representation, like many exact representations, suffers from

the property that it is not unique.

2.1.3 k-th order statistics

In computing the k-way union of polygons, Lu, et. al. [43] propose a robustness model for

finding the union boundary of polygons that eschews computing intersection points entirely.

Instead, the closest intersection is determined by using visibility metrics. Given a point q

on a segment s, and a line segment t in the set of polygon edges S, the visibility between

q and t is determined by sign(−→qr · tn) where r is a point on t and tn is the normal of t. If

sign(−→qr · tn) > 0, then q and t are visible to each other, if it is 0, then q is on t, and if it is less

than 0, then q is invisible to t.

The algorithm proceeds by partitioning S into sets of visible, invisible, and ”on” segments

for a given q, denoted V, I,O respectively, and iteratively selecting a new q until |I| = 1, in

which case s 3 q is the segment with the intersection we’re searching for. As compared to

computing intersections explicitly, which requires many arithmetic operations, each visibility

operation computes only a dot product, which consists of only two multiplications and one
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R1

R2

R3

R4

R0

Figure 2.1: A sample arrangement of line segments in a plane. R0 is the unbounded outer
region, while R1 through R4 are the internal bounded regions. The black circles represent
the intersections of the line segments

summation. As a result, accumulated error from mathematical operations is significantly

smaller.

The algorithm is also able to determine when standard floating point or double precision

types are insufficient. If the search range for the desired segment is empty but there are still

segments left in S, then the segments of S cannot be adequately distinguished at the current

precision and the precision is doubled to enable the computation to continue. In computing

the intersections explicitly, determining adequate precision is not straightforward.

There are two major drawbacks of the k-th order statistics method. First, it only applies

to finding intersections between primitives and has no current extensions to other geometric

tasks. Secondly, it is currently only well-defined in two dimensions. The visibility concept has

not been extended to three dimensions and is thus not useful for polyhedra at the moment.

2.2 Arrangement

Having discussed the underlying numerical robustness for geometric computations, it is also

important to discuss briefly the arrangement of primitives. Given a set of primitives P in Rd,

the arrangement of P =< I, S,R >, where I is the set of all intersections between primitives

of P , S is the set of all sub-divided primitives formed by those intersections, and R is the set
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of regions enclosed by I and S. Figure 2.1 demonstrates an arrangement of line segments in

a plane.

The arrangement is important in computing the Minkowski sum for several reasons:

many union techniques depend upon computing the arrangement of the inputs, which is

important in convex decomposition methods, defined and discussed in Section 2.4.1. Also,

the arrangement is used heavily in the convolution-based methods defined and discussed in

Section 2.4.2.

Edelsbrunner’s zone theorem [22] demonstrates that the output complexity of the

arrangement is O(n2) for n line segments. He also demonstrates that the arrangement may

be computed in worst-case O(n2) time by adding line segments incrementally.

2.3 Convolution

In 1983, Guibas et al. [30] propose the idea of the convolution as part of a kinetic framework

for geometric computing. They defined the notion of polygonal tracings, curves in a plane

which have both a direction of motion and a well-defined outward normal direction. They

further defined the notions of convex tracings. The convolution of polygonal tracings has

the property that, given two totally convex polygonal tracings as input, their convolution

is the same as the boundary of their Minkowski sum, and that for non-convex tracings, the

convolution is a superset of the Minkowski sum boundary. Since then, Basch et al. [8] have

extended the notion to polyhedral tracings, and the convolution has become an important

underlying operation in computing the Minkowski sums of shapes–itself a fundamental

operation in many problems.

In 1993, Ghosh [28] propose the use of a slope diagram and an operation called the

boundary sum. The slope diagram is essentially equivalent to the Gauss map from which the

convolution is computed, at least in the sense that one can compute the Gauss map trivially

from the slope diagram and vice versa, however the boundary sum that Ghosh defines is

actually a superset of the convolution, which is, itself a superset of the Minkowski sum
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boundary.

However, since [8] there has not been much development on computing convolutions. In

particular, while there has been an increase in interest for computing dynamic Minkowski

sums, the dynamic computation of convolutions has not generally been raised as an issue

except in the computation of Minkowski sums of convex objects in our own previous

work [10,13] where the convolution and the Minkowski sum are identical.

2.4 Computing Minkowski sum boundaries

In order to properly address the related work, it is important to have a solid understanding

of the foundational ideas behind computing the boundary of the Minkowski sum.

Problem statement 1. Let ∂(P ) denote the boundary of a shape P . Given inputs ∂(P ) and

∂(Q), we wish to compute ∂(P ⊕Q).

Existing methods for computing the boundary of the Minkowski sum can broadly be

divided into two paradigms, convex decomposition-based methods, and convolution-based

methods. Convex decomposition-based methods, as the name implies, decompose the inputs

into convex pieces and then compute pairwise Minkowski sums for these convex pieces. In

order to construct the final Minkowski sum boundary, these pairwise sums must then be

unioned together.

In contrast, convolution-based methods use the idea of compatibility between the primi-

tives of the inputs to construct the convolution of the inputs, which is known to be a superset

of the Minkowski sum boundary []. The convolution boundary must then be trimmed in

order to obtain the final Minkowski sum boundary.

2.4.1 Convex decomposition

Formally, given boundary-defined input shapes P and Q, convex decomposition methods

decompose P and Q into sets of disjoint convex shapes, Pconvex = {P1, P2, ..., Pm} and
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Qconvex = {Q1, Q2, ..., Qn}. The set of all pairwise sums, Spair = {Pi ⊕Qj | 1 ≤ i ≤ m, 1 ≤

j ≤ n}, is computed and the final Minkowski sum boundary is computed as ∂(
⋃
s∈Spair

s).

This takes advantage of the fact that computing the Minkowski sum of convex shapes is

much more efficient than that of non-convex shapes.

Convex decomposition is a popular method because of the conceptual simplicity of

the approach. However, the convex decomposition strategy has significant drawbacks. In

particular, for polygons with holes as well as for general non-convex polyhedra, finding an

optimal convex decomposition of the input shape is known to be NP-hard [47].

Convex decompositions are also not unique, and Agarwal, et. al. [1] determined that

the decomposition strategy chosen greatly influences performance. The number of convex

components may be very large, resulting in a potentially huge number of pairwise Minkowski

sums that must be computed and then unioned together. In Figure 2.2, the model of the

bunny was decomposed into 16549 convex components, the model of the David into 85132

convex components. This results in over 1.4 billion pairwise Minkowski sums.

The performance of the union step is also heavily dependent upon the order in which

these unions are computed, as traditionally the union operator is implemented as a binary

operation. Recently, k-way polygon unions have been produced [43], but these methods

have not yet been extended to polyhedra. In general the union operation is difficult to

implement both efficiently and robustly, due to the many possible degeneracies.

Additionally, because the union operation is difficult for open sets, features of the

Minkowski sum boundary may be lost during the union step due to regularization. The

regularized union of sets S and T , denoted S ∪∗ T , is defined as the closure of S ∪ T . The

regularized Minkowski sum of S and T is ∂(S ⊕ T ) ∪∗ (S ⊕ T ), and we denote it S ⊕∗ T .

As shown in Figure 2.3, some non-manifold portions of the sum boundary may represent

narrow passages in motion planning and other problems requiring the contact space of

the inputs. Thus, great care must be taken when using convex decomposition for these

applications since completeness of the result may be compromised.
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(a) bunny, 16549 convex components

(b) david, 85132 convex components

Figure 2.2: For these inputs under the convex decomposition paradigm, the total number of
pairwise Minkowski sums needing to be unioned is over 1.4 billion.
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Figure 2.3: (left) P , (center) Q, (right) ∂(P ⊕Q), demonstrating a non-manifold boundary
edge in the Minkowski sum boundary which represents a narrow passage.

Keeping an eye toward the proposed work, convex decomposition strategies are difficult,

even conceptually, to map to an idea of dynamically updating the Minkowski sum. A large

quantity of intermediate geometry would be necessary in order to avoid recomputing the

entire decomposition and union steps, which is impractical for complex inputs.

2.4.2 Convolution

Computing the Minkowski sum boundary is closely related to another geometric operation,

the convolution of P and Q, denoted P ⊗Q. The convolution of P and Q is defined using the

notion of compatibility between primitives: vertices, edges and faces. The Minkowski sums

of so-called compatible primitives form the boundary of the convolution, which is known

to be a superset of the Minkowski sum boundary. In particular, when P and Q are convex,

P ⊗Q=∂(P ⊕Q).

Convolution-based methods work by computing P⊗Q, and then extracting the Minkowski

sum boundary by removing superfluous portions of the convolution. If we consider the

sets defined by P and Q to be the open sets defined by their boundaries, rather than

their closures, then the Minkowski sum P ⊕ Q is the open set defined by ∂(P ⊕ Q), and

extracting the Minkowski sum boundary is tantamount to identifying the maximal subset

S of the convolution such that S is also a subset of the Minkowski sum: S ⊂ P ⊕ Q and

P ⊕Q− S ∩ P ⊗Q− S = ∅.
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(a) square
(P )

(b) dented
square (Q)

(c) the convolution,
P ⊗Q

(d) rotated star
(P )

(e) star (Q) (f) the convolution,
P ⊗Q

Figure 2.4: Two sample polygon convolutions

Because identifying S constitutes the great bulk of the work done in convolution-based

methods, we defer this discussion to specific methods later in the chapter. In the following

sections, we define and demonstrate the notion of compatible primitives and the convolution

boundary as preliminaries. A more detailed survey of techniques for extracting the Minkowski

sum boundary from the convolution is presented in Sections 2.5 and 2.6.

P Q

v

û2

û1

û2

û1

û

e

Figure 2.5: Two polygons, P and Q. Labeled: an edge e of P , a vertex v of Q, and the edge
normals û, û1, and û2.
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v

P

T

Q

v

û

û2

û1

û1

û2

e

Figure 2.6: The dashed arc shows the turn. In the upper-right, we isolate v, û1, û2 and T .
Since û is within the arc formed by the turn, e⊕ v will be an edge of the convolution.

Compatibility of polygons in a plane For polygons, the idea of compatibility only applies

between an edge e of P and a vertex v of Q, or vice versa. As defined above, when e and

v are compatible, the edge e⊕ v is contributed to the convolution boundary–we say that v

convolves with e, and vice versa. To determine compatibility between edges and vertices, we

consider the outward normals of the edges of P and Q.

Without loss of generality, we assume that P and Q are oriented counter-clockwise.

Consider an edge e of P with outward unit normal û, and a vertex v = vn of Q such that

v has incident edges, e1 = (vn−1, v), e2 = (v, vn+1) with outward unit normals û1 and û2

respectively, as illustrated in Figure 2.5.

We denote the counter-clockwise rotation of û1 by some angle θ as R(û1, θ), and define

θp < 2π to be the angle such that R(û1, θp) = û2.

Definition 1. We call the clopen interval T = [0, θp) the turn between e1 and e2, (identically,

the turn of v), and we say that the unit normal û of e lays on this turn iff there exists some

θ ∈ T such that R(û1, θ) = û,

See Figure 2.6 for an example. Having defined the turn, the notion of the compatibility

of v and e follows directly from it.

Definition 2. We call v and e compatible iff e’s outward unit normal û lays on the turn of v.
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This is a fairly straightforward application of the turn. In Figure 2.6, e is compatible with

v since û lays on the turn of v.

P

Q

û1
û2

v

û1

û2

Figure 2.7: The dashed arc shows the turn. Each edge of P marked with a green outward
normal will convolve with v. Notice that the turn of the reflex vertex here is much larger
than that of the convex vertex in Figure 2.6.

It is important to note that because the turn is defined according to a counter-clockwise

rotation of e1, when v is a reflex vertex, that is, a vertex whose interior angle is greater than

π as in Figure 2.7, the length of the turn interval will be greater than π. As a result, reflex

vertices can convolve with potentially many more edges than convex vertices.

Compatibility of polyhedra In three dimensions, P and Q are polyhedra, and the notion

of the turn between edge normals does not adequately describe the relationship between

primitives. In order to extend this, we turn to the notion of the Gaussian map.

The Gaussian map is a mapping of the surface normals of the faces of a polyhedron to

points on the surface of a unit sphere. Examples are shown in Figure 2.8 for a cube and a

tetrahedron. We denote the Gaussian map of P as G(P ) (similarly for Q as G(Q)). Similarly,

we denote the mapping of a primitive p as G(p). In Figure 2.8, The faces f1 and f2 map to

the points shown on the surface of the unit sphere as G(f1) and G(f2). The vertex v in the

first example corresponds to the region on the surface of the sphere marked G(v), and the

edge e which is incident to both f1 and f2 maps to a geodesic arc G(e), which has G(f1) and
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Images adapted from Minkowski Sums of Convex Polyhedra, Efi Fogel, 2009

Figure 2.8: Gaussian map of a cube (left) and a tetrahedron (right). The edge e highlighted
in red on the tetrahedron maps to the geodesic arc G(e) in the Gaussian map.

G(f2) as its endpoints.

Strictly speaking, the Gaussian map does not preserve information about the primitives

which are used to create the map. Given P and G(P ), it not necessarily possible to determine

that the face which originated the point G(f1) is in fact f1, only that G(f1) is the normal

of some face in P . Because of this, convolution methods typically employ an extended

Gaussian map, under which G(f1) is labeled with its originating face. For the remainder of

this proposal, when we refer to the Gaussian map we will be talking about the extended

Gaussian map.

It is important to note that since the geodesic on the unit sphere consists of the great

circle containing both G(f1) and G(f2),there are actually two arcs along the geodesic which

connect these points. G(e) will be the shorter arc between G(f1) and G(f2) when e is a

convex edge, and the longer arc when e is a reflex edge.

To see that this is the case, we can project f1 and f2 to line segments in the plane of the

geodesic which share a vertex proj(e) which is projected from the edge e, as in Figure 2.9.

This projection preserves the orientation of the faces and their incident edge. As a result,
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f1
f2

û2

e

û1

(a)

proj(û2)
proj(û1)

proj(f2)
proj(f1)

proj(e)

(b)

proj(û1)
proj(û2)

(c)

Figure 2.9: (a) The faces f1 and f2 adjoin a reflex edge e. (b) The projection to the plane of
the Gaussian map’s geodesic. (c) The turn of proj(e).

Figure 2.10: Overlay of the Gaussian maps for the cube and the tetrahedron

if e is a convex edge, the turn of proj(e) will be precisely the shorter arc of the geodesic.

Similarly, if e is a reflex edge, the turn of proj(e) will be the longer arc of the geodesic.

Having defined the Gaussian map, the compatibility of primitives in P and Q arises from

their overlays. Figure 2.10 shows the overlay for the cube and the tetrahedron. We define

two distinct types of compatibility in three dimensions: vertex-face (vf) compatibility, and

edge-edge (ee) compatibility. A vertex v from P and a face f from Q (or vice versa) are

compatible iff G(f) is inside the region formed by G(v) in the overlay of the Gaussian maps.

Notionally similar, two edges, eP from P and eQ from Q are compatible iff G(eP ) and G(eQ)

intersect in the overlay of the Gaussian maps, as shown in Figure 2.11. The overlays are

computed as the arrangement of the geodesic arcs in the Gaussian maps.

17



G(fq1)

G(fq2) G(fq3)

G(fp2)

G(fp1)

G(fp3)

G(v)

Figure 2.11: A flattened region of a Gaussian map overlay. In this example, fq2 is compatible
with vp because G(fq2) is in the region of G(v). Additionally, the edge between fq2 and
fq3 is compatible with the edge between fp1, fp2 because (G(fq2), G(fq3)) intersects with
(G(fp1), G(fp2)) in the overlay.

Other representations

A small number of works have attempted to compute the Minkowski sum boundary by

eschewing the standard paradigms. These include point-based approximations of the bound-

ary [38, 46], voxelization approaches [36, 49], and a linear programming technique for

d-dimensional polytopes [27]. We discuss these approaches briefly below.

2.5 Minkowski sum methods for convex inputs

Computing the Minkowski sum of convex shapes is drastically more efficient than computing

those of non-convex inputs as shown in Section 1.2, and is an integral part of the convex

decomposition strategy for computing Minkowski sums of non-convex shapes. Due to its

relative simplicity, fewer works concentrate strictly on static Minkowski sums of convex

shapes.
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Lozano-Perez [42] proposed a method for computing ∂(P ⊕ Q) based on the idea of

sliding Q around the surface of P . The algorithm selects a reference vertex on the boundary

of Q, and then computes contact configurations of Q such that at least one vertex of Q is in

contact with a vertex of P . To compute the final Minkowski sum boundary, edges connect the

positions of Q’s reference vertex as it traverses the edges of P . Because the sliding method

must compute contact configurations for P and Q, it runs in O(mn) time, much worse than

the O(m+ n) worst-case complexity of convex P and Q.

In the same paper, another method was introduced which approaches the notion of the

convolution. The method functions by inducing a total ordering on the normals of the edges

in P and Q according to their rotation angles from a pre-determined unit vector û. It then

merges the edges based on this total ordering. This is tantamount to the merge step of

the merge-sort algorithm, as the insertion of each contributed edge to the Minkowski sum

boundary takes constant time, and so this merge-based algorithm runs in O(m+ n) time.

In 2004, Fukuda [27] introduced a linear programming solution to construct the

Minkowski sum of d-dimensional convex polytopes. Fukuda’s method depends on the

fact that when P and Q are convex, P ⊕Q = conv(vert(P )⊕ vert(Q)), where vert(M) is

the set of vertices on a model M and conv(S) is the convex hull of S. Fukuda computes

the Minkowski sum of just the polytope vertices, and then induces a graph on it. He then

constructs a spanning tree on the graph using linear programming to locate the extreme

points of the graph and construct the convex hull. The linear programming problem is solved

using the simplex algorithm, and runs in LP (d, δ), where d is the dimensionality of the

inputs, and δ is the maximum degree of the induced graph. While this is the only known

efficient algorithm for polytopes of arbitrary dimensionality, the complexity of the linear

programming problem renders it generally unsuitable for polygons and polyhedra.

More recently, Fogel and Halperin [26] introduced a method for computing the Minkowski

sum of convex polyhedra using the notion of a cubical Gaussian map. The cubical Gaussian

maps surface normals of the polyhedra faces to the surface of a cube, instead. The cube can

then be unfolded into six bounded planar regions, and the arrangement of the overlay on
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each face of the cube can be computed using standard planar arrangement methods, which

are simpler to compute than the arrangement of the standard Gaussian overlay.

2.6 Minkowski sum methods for non-convex inputs

Due to the greater complexity and generality of methods for computing Minkowski sums

of non-convex inputs, there is a significantly larger body of existing research on Minkowski

sums of non-convex (general) inputs. We subdivide this section into methods for polygons,

and methods for polyhedra.

2.6.1 Minkowski sums of non-convex polygons

We begin again with Lozano-Perez [42], who extended the merging algorithm to non-convex

shapes by surface decomposition of the polygon into convex arcs. These convex arcs are

then closed into polygons. The result is, fundamentally, a convex decomposition scheme

where the convex decomposition is performed by boundary decomposition instead of solid

decomposition. However, there is no union step–the computed boundaries are simply

reported all together, leaving self-intersections in. As a result, the time complexity of the

method is O(mn), but it does not provide a proper Minkowski sum boundary.

In 1997, De Berg, et. al. [19] proposed to use triangulation of polygons as a straightfor-

ward method of decomposition, since polygons may be triangulated efficiently. Triangulation

of a polygon yields O(n) pieces regardless of the input geometry, and so we must merge

O(mn) pairwise Minkowski sums for two non-convex inputs of size m and n respectively. The

approach is straightforward, but the linear number of convex components is quite high, and

so the union step must produce a comparatively large number of intermediate geometries.

Even though the worst-case complexity of the algorithm is O(m2n2), which is worst-case

optimal, in practice this method is relatively slow compared to later methods.

In particular, in 2006 Wein [50] proposed to use a convolution-based method to compute
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the Minkowski sum boundary. Wein’s algorithm first computes P ⊗Q, and then its arrange-

ment. The method then computes the winding number of each cell in the arrangement. The

winding number of a point p with respect to a closed curve C is defined to be the number of

full counter-clockwise rotations C traces around p, less the number of full clockwise rotations

C traces around p. Any point in a given cell in the arrangement of the convolution will have

the same winding number, so it is trivial to extend the notion of the winding number from

the point to the cell. After computing the winding number of every cell, Wein’s algorithm

removes any edge in the arrangement which is not adjacent to a cell with winding number 0.

Wein’s method is currently the default algorithm for polygons used by CGAL3

The worst-case complexity of the convolution is O(mn), since at most, each of the m

edges in P can convolve with n vertices in Q and vice versa. Consequently, computing

the arrangement of the convolution is worst-case O(m2n2). The winding number of the

cells in the convolution can be computed in linear time, as can removing edges from the

arrangement. As a result, Wein’s algorithm is worst-case optimal. Moreover, Wein’s method

outperforms convex decomposition strategies except in rare cases where (1) optimal or

near-optimal convex decompositions of the inputs are extremely easy to compute, and (2)

the complexity of the resulting Minkowski sum exhibits worst-case behavior.

2.6.2 Minkowski sums of non-convex polyhedra

In 1993, Ghosh [28] introduces the idea of the slope diagram, which is similar to the

Gaussian map. There are two major differences between the slope diagram and the Gaussian

map. First, the slope diagram stores edge length information from its originating faces. As a

result, the originating model can be reconstructed up to scale strictly from the slope diagram.

Secondly, the slope diagram eschews the use of ”turns”, instead adopting the concept of

sense. The sense of a face of a polyhedron (edge of a polygon) is positive if it is adjacent only

to convex edges (vertices), and negative if it is adjacent to at least one reflex edge (vertex).

In the slope diagram, adjacent primitives are always connected by the shorter arc of the
3The Computational Geometry Algorithms Library. http://www.cgal.org
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geodesic, but these arcs are annotated with sense information.

Ghosh defines a boundary sum, P ]Q, which is practically identical to the convolution

P ⊗ Q except that it uses the slope diagram to construct its compatibility instead of the

Gaussian map. Because of the slope diagram convention of always using the shortest arc

between mapped primitives, the boundary summation is nominally different in structure

from the convolution unless P and Q are both convex. Ghosh provides an algorithm for

computing P ]Q, but does not provide any pruning algorithms for extracting the Minkowski

sum boundary when the inputs are non-convex.

Varadhan and Manocha [49] propose to use a convex decomposition strategy. Their

approach is novel in that instead of computing the union of the pairwise sums, they instead

voxelize the space and extract an isosurface from the space of pairwise Minkowski sums

by using an improved marching cubes algorithm. The approximate boundary they produce

is fairly accurate and guaranteed to yield the same topology as the exact Minkowski sum,

however their method does not tolerate degeneracies in the pairwise sums.

Lien proposes a point-based method [37] and a convolution-based method [38] for

computing the Minkowski sum boundary. The point-based approximation uses the notion of

a d-covering on the input: a sampling of points such that given any point s in the sampling,

there exists another sample point t such that dist(s, t) ≤ d. The algorithm computes

a d-covering on both P and Q, and then computes the Minkowski sum of those covers.

The resulting point set is a superset of a d-cover of the actual Minkowski sum boundary.

Superfluous points are filtered out by removing points whose originating primitives are not

compatible. Then the neighborhood of the boundary is identified using an octree; points not

in this neighborhood are rejected. Finally, the points in the neighborhood of the boundary

are culled using collision detection.

The convolution-based method in [38] constructs a superset of the convolution facets

(owing to numerical error, rather than any particular strategy for extracting the boundary),

and the intersections of the convolution facets with each other. Then, for each face, the

planar arrangement of the face with its intersections is computed. The cells in these planar
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arrangements are culled using collision detection tests. Though the method is quite efficient,

it does not compute the exact Minkowski sum boundary–it may identify some boundary

regions as superfluous which represent tight passages, sacrificing accuracy for speed.

More recently, Peter Hachenberger proposed a new decomposition strategy for polyhedra

based on the idea of sight walls. A sight wall of a reflex edge e is the set of all points which

can be connected to e by a vertical line segment without intersecting a face, edge or vertex.

These sight walls are very effective at decomposing polygons, yielding in the worst case

O(r2) convex pieces, where r is the number of reflex edges in the input. Hachenberger’s

method is the decomposition strategy implemented in CGAL.

In 2011, Barki [7] proposed a method for a non-convex/convex pair of inputs based

on the idea of contributing vertices. The idea behind contributing vertices is that they are

vertices of one input which are ”compatible” with a face f of the other input by virtue

of being at a maximal distance from the plane on which f lies. However, the method of

contributing vertices put forth here only works when one of the input is convex, thus limiting

its utility.

In 2015, Zhang and Zheng [54] presented a method for extracting the Minkowski sum

boundary of general polyhedra based on [7] by generalizing the contributing vertex method

to polygons. The runtime of their method is comparable to that of the work that we present

in [12]. Also in 2015, Baram, et al. [6] proposed an exact method for the Minkowski sum

of general polyhedra based on the reduced convolution, which we introduce in Chapter 3.

This method operates by finding holes in each input that are ”small” relative to the other

input and filling them, which reduces the complexity of the inputs and therefore the time

complexity of finding the Minkowski sum.

2.7 Dynamic Minkowski sum operations

At present there are only two published works related to the subject of dynamic Minkowski

sums. Mayer, et. al. [45] deal with the rotation of convex polyhedra by computing a criticality
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map. When rotating an input polygon P by some angle θ about a fixed axis, the underlying

structure of the Minkowski sum will change as P rotates. However, the structure does not

change continuously–these structural changes only occur at a finite set of critical values of θ.

Mayer, et. al., take advantage of this to compute a data structure, the criticality map, which

stores these critical θ values, along with a template of the Minkowski sum structure at the

critical value.

The criticality map is set up for fast retrieval–when a given rotation is requested, the

template is retrieved. Since the underlying structure no longer needs to be computed, the

precise positions of the faces are updated according to the actual rotation angle. However,

there are a potentially large number of θ values for which the structure changes, and the

criticality map can become quite large for even relatively simple-seeming inputs. Further,

expanding the rotation to Euler angles about two or three axes dramatically increases the

space complexity of algorithm to the point of being impractical. As a result, while the

algorithm is suitable for dealing with rotation about an arbitrary axis, once that axis is

chosen, it is fixed unless one is willing to recompute the entire criticality map.

Lien proposes to update the facets of the Minkowski sum of convex polyhedra by identi-

fying a linear subset of errors introduced through rotation; locating the remaining errors

by forming connected components using the elements of the linear subset as seeds. The

published work was a video abstract, as a preliminary to our later work [10].
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Chapter 3: Efficient 2D Minkowski sums using the reduced

convolution

3.1 Introduction

We begin the discussion of our work with [12] a convolution-based method that forms the

foundation for our work in two-dimensions.

For computing the Minkowski sum (M-sum) of non-convex shapes, many methods

are based on the idea of convex decomposition. In these methods, the input models are

decomposed into components. Because computing theM-sum of convex shapes is easier than

non-convex shapes, convex decomposition is widely used. The next step in this framework

computes the pairwiseM-sums of the components. Finally, all these pairwiseM-sums are

united to form the finalM-sum. Although conceptually simple, this method is usually not

practical due to the size of the decomposition and the difficulty in implementing a robust

union operation.

Convolution-based methods do not have these problems. The convolution of two shapes

P and Q, denoted as P ⊗Q, is a set of line segments in 2D or facets in 3D that is generated

by “combining” the segments or the facets of P and Q [30]. One can think of the convolution

as theM-sum that involves only the boundary, i.e., P ⊗Q = ∂P ⊕ ∂Q. It is known that the

convolution forms a superset of theM-sum [28], i.e., ∂(P ⊕ Q) ⊂ P ⊗ Q. To obtain the

M-sum boundary, it is necessary to trim the line segments or the facets of the convolution.

In [12], we propose a new method for computing the 2DM-sum of non-convex polygons.

Our method can be viewed as a convolution-based approach. The main idea is to use the

reduced convolution (defined later in Section 3.3) and extract the boundaries by using the

topological properties of theM-sum.
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(a) (b) (c)

Figure 3.1: (a) Input polygons: star and fence. (b) The reduced convolution of star and
fence. (c) The Minkowski sum of star and fence generated from the reduced convolution.

The main idea of the reduced convolution is inspired by the fact that, in most cases,

the complexity of the complete convolution is much higher than the complexity of the

final M-sum boundary. This means that a large portion of the computation is spent on

computing the arrangement induced by the complete convolution, and many elements in

this arrangement are later on thrown away.

To improve the efficiency, an obvious approach is to avoid computing the complete

convolution and its arrangement. However, the difficulty now becomes whether we can

define a smaller set of the convolution while still being able to extract theM-sum from this

set.

Our method is designed to specifically avoid this waste of computation and address these

difficulties. A detailed description of the proposed method can be found in Section 3.3.

Finally, in Section 3.4, we experimentally demonstrate that the proposed method is more

efficient than the existing methods.

Although this method is not dynamic, it forms the basis for some of our later work in

dynamic Minkowski sums. It has also found direct use in applications. Elkeran [24] used our
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Minkowski sum method in the process of solving the sheet nesting problem, and Guerrero,

et al. [29], used it to implement a method for edit propagation across similar polygons in

computer design work.

3.2 Notation

Let P and Q be simple polygons composed of n and m (counterclockwise) ordered vertices,

respectively. We denote the vertices of P as {pi} and the edge that starts at vertex pi

as ei = pipi+1. The edge ei has two associated vectors, the vector from pi to pi+1, i.e.,

~vi = −−−−→pi pi+1 , and the outward normal ~ni. The definition for the vertices {qj} and edges of Q

is the same.

3.3 Method

We propose a new method to compute theM-sum of simple non-convex polygons. Similar

to Wein’s method [50], our method can be considered as a type of convolution-based

approach. However, unlike Wein [50], the proposed method avoids computing (1) the

complete convolution, (2) the arrangement of the segments of the convolution, and (3) the

winding number for each arrangement cell.

Algorithm 3.3.1: M-SUM(P,Q)

R = Compute the reduced convolution of P and Q

L = Extract orientable loops from R

M = Filter boundaries from L

return (M)

Our method is sketched in Algorithm 3.3.1. Algorithm 3.3.1 first computes a subset

of the segments that is from the convolution of the inputs. We call this subset a “reduced
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(a) input/output (b) convolution

(c) subset of the convolu-
tion

(d) segment normals

(e) orientable loops (f) incorrect loop

Figure 3.2: Steps for computing theM-sum of two simple polygons. In (a), the boundary of
theM-sum of a star and a slightly rotated copy of itself is shown.

convolution.”

Definition 3. A reduced convolution is a set of segments pipi+1 ⊕ qj and pk ⊕ qlql+1 and qj

and pk must be convex.

Then Algorithm 3.3.1 identifies closed loops that are (1) non-overlapping and (2) ori-

entable. These loops form potential boundaries of theM-sum and are further filtered by

analyzing their nesting relationship. Finally, the remaining boundaries are filtered by check-

ing the intersections between the input polygons placed at the configurations along these

loops. Fig. 3.2 illustrates these steps.
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3.3.1 Reduced convolution

In the first step of the algorithm, we compute a subset of the segments of the convolution

based on the following simple observation.

Observation 1. Given a convolution segment s = ei ⊕ q of an edge ei ∈ P and a vertex q ∈ Q,

if q is a reflex vertex, s must not be a boundary of theM-sum of P and Q. This observation

remains true if s = p⊕ ej , where p ∈ P is a reflex vertex and ej ∈ Q is an edge.

Proof. Let S be a set of segments formed by the end points of ei and the edges incident to q.

Because s must be incident to the segments S, the vertex incident to both s and S is locally

non-manifold. Moreover, by definition of convolution, s must be enclosed by the turning

range of S. Therefore, s cannot be on the boundary of theM-sum.

Figs. 3.2(b) and 3.2(c) show an example of the difference between the complete convolu-

tion and the reduced convolution. Because of the definition of a reflex angle, the number of

edges that are compatible with any convex vertex in Q form a lower bound on the number

of edges compatible with any reflex vertex in Q. Due to this, the number of segments filtered

by Observation 1 is significant, and the size of the problem that we have to consider later is

greatly reduced, in particular when the number of the reflex vertices is large. See the more

detailed analysis later in this section.

3.3.2 Orientable Loop Extraction

Now, since the segments that we will be working with are no longer a complete convolution,

we cannot apply the idea of computing the winding number for each arrangement cell to

extract theM-sum boundary as done in [50]. Instead, we proceed by defining two filters.

Observation 2. We observe that the boundary of the Minkowski sum must be an orientable

loop (if it encloses an area, either positive or negative).

We say that a loop is orientable if all the normal directions of the edges in the loop are

all either pointing inward or outward. Note that the segments we considered are edges
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from P and Q, therefore, they are directional (as vertices in P and Q are ordered) and

include normal directions pointing outward (to P or Q). Fig. 3.2(d) shows the normals of

the segments. Therefore, given two adjacent segments s = {u, v} and s′ = {v, u′} sharing an

end point v, we can check whether s and s′ belong to an orientable loop if

−→u v × ~ns =
−−→
v u′ × ~ns′ , (3.1)

where ~nx is the normal vector of segment x, and × is the cross product. If s and s′ satisfy

Eq. 3.1, we say they are compatible segments.

To extract all orientable loops, we compute the intersections of the segments and split all

segments at the intersections. A loop is then traced by starting at an arbitrary segment s that

has not been considered and then iteratively including compatible segments adjacent to s.

Note that there can be multiple compatible segments adjacent to s and all are incident to a

single point v. This problem is in fact easy to handle since allM-sum boundaries must be

manifold. Thus, we simply pick the segment that makes the largest clockwise turn from s

among all the incident segments. Fig. 3.2(e) shows the loops generated by this step.

Observation 3. The loops must obey the nesting property, i.e., the loops that are directly

enclosed by the external loop must be holes and will have negative areas, and the loops that are

directly enclosed by the holes must have positive areas.

This is because all loops we generated are non-overlapping (i.e., they don’t intersect or

touch) due to the manifold properties. The nesting property can be determined efficiently

using a plane sweep algorithm, e.g., [4], in O(n log n) time for n segments. This filter

removes the inner loop in Fig. 3.2(e) because it has a positive area.

3.3.3 Boundary Filtering

So far, we have introduced three quite efficient filters based on Observations 1 through 3.

Unfortunately, not all of the remaining loops are boundaries of theM-sum. For example,
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the hole in Fig. 3.2(f) is a false loop. Therefore, we will have to resort to collision detection

to remove all the false loops. That is, we will use the close relationship between theM-sum

boundary and the concept of “contact space” in robotics. Every point in the contact space

represents a configuration that places the robot in contact with (but without colliding with)

the obstacles. Given a translational robot P and obstacles Q, the contact space of P and Q

can be represented as ∂((−P )⊕Q), where −P = {−p | p ∈ P}. In other words, if a point x

is on the boundary of theM-sum of two polygons P and Q, then the following condition

must be true:

(−P ◦ + x) ∩Q◦ = ∅ ,

where Q◦ is the open set of Q (i.e., the interior, Q− ∂Q,) and (P + x) denotes translating P

to x. Fig. 3.2(f) shows a hole loop that passes all the filters except the last filter.

Although there are many methods to optimize the computation time for collision detec-

tion, collision detection is more time consuming than the previous filters. Fortunately, it is

easy to show that only a single collision detection is needed to reject or accept a loop based

on the following lemma.

Lemma 1. All the points on a false hole loop must make P collide with Q.

Proof. Each loop must belong to a cell from the arrangement of the segments in the complete

convolution. Moreover, all vertices in an arrangement cell must have the same winding

number according to [50]. Therefore, a single point from each loop is sufficient to test if the

loop is a true boundary or not.

3.3.4 Complexity Analysis

When P and Q have n and m vertices which include n′ and m′ reflex vertices, respectively,

there will be 2mn segments in the complete convolution; in the reduced convolution there

are at most (m − m′)n + (n − n′)m segments. That is, the arrangement of the reduced
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convolution is at least 4 times less complex than that of the complete convolution when

n′ = 1/2n and m′ = 1/2m. Note that this analysis is based on the assumption that a convex

vertex is compatible with Θ(n) edges and in the worst case that each segment will intersect

all the other segments. In the examples that we will use in the experiment (shown in

Fig. 3.3), the difference between the reduced and complete convolutions is more significant

(e.g., “star/star” and “dog/bird”). The time complexity for computing the M-sum of P

and Q is O ((mn+ I) log (mn+ I) + `Tcd), where I = O(m2n2) is the complexity of the

arrangement of the reduced convolution, ` is the number of loops, and Tcd = O(mn) is the

collision detection time in our implementation.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q)

(a) airplane (b) bar (c) bird (d) blob (e) dog (f) G1
size=51 4 275 18 145 30
(g) G2 (h) G3 (i) G4 (j) hand1 (k) hand2 (l) insignia

size=34 24 43 57 84 4
(m) sewing (n) fence (o) pentagon (p) star (q) U

size=10 10 5 44 8

Figure 3.3: Models used in the experiments. The table shows the names and the sizes of the
polygons.

3.4 Experimental results

In this section, we show that the computation time of the proposed method is more efficient

than the traditional approach. All the experiments are performed on a machine with Intel
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CPUs at 2.13 GHz with 4 GB RAM. Our implementation is coded in C++.

In our current implementation, the line segment intersection and the collision detection

between P and Q are performed by exhaustively checking all pairs of segments. Figure 3.3

shows 17 models that we will use in the experiments. In Figure 3.4, we show three examples

generated by the proposed method.

(a) bird⊕airplane (b) G1⊕G2 (c) hand1⊕hand2

Figure 3.4: Examples of theM-sums generated by our program using the models in Fig. 3.3.
(a) There are 1339 vertices and an external boundary. (b) There are 1204 vertices and 101
boundaries. (c) There are 375 vertices and an external boundary.

3.4.1 Computation Time

We first compare the computation time of the proposed method to the convolution imple-

mentation provided by CGAL [25]. As stated in the CGAL documentation, the CGAL code

implements Wein’s idea [50]. We use all the models in Fig. 3.3 in this experiment and

compute theM-sums from all pairs. The results are shown in Fig. 3.5.

In all examples, our method is always faster than CGAL. The smallest speedup is 1.3

from bar⊕bar, and the largest speedup is 42.4 from bird⊕hand1. In fact, from the results of

this experiment, we observe that when the input models are larger (e.g., bird), our method
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tends to gain more speedup. On average, our method takes 20.26 milliseconds to compute

eachM-sum while CGAL takes 260.73 milliseconds.

In each figure we call out a few notable examples:

(A) G3⊕monkey [smallest speedup]

(B) monkey ⊕monkey [most complex convolution]

(C) G1⊕G2 [largest percent computation time performing collision detection]

(D) hand1⊕ hand2 [least complex convolution]

(E) bird1⊕ hand1 [largest speedup].
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Figure 3.5: Speedup over CGAL implementation. Each dot is computed as tCGAL/tours,
where tCGAL and tours are the computation times for a specific pair of models using CGAL
and our method, respectively. Input pair (B) does not appear on this graph because CGAL
failed to terminate on this pair.

Next, we look further into the behavior of the proposed method. We break down the

computation time into three parts, i.e., (1) time for computing the intersections of the

segments in the reduced convolution, (2) time for identifying the non-intersecting orientable

loops, and (3) time for filtering hole boundaries. In this experiment, we use only the larger

models in Fig. 3.3 (airplane, bird, dog, G1, G2, G3, G4, hand1, hand2, and star). The results
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obtained from all pairs of these larger models are shown in Fig. 3.6.

One may be concerned that the use of collision detection for filtering out the remaining

holes will be the bottleneck of the entire computation. Fig. 3.6 shows that this is in fact

not the case. In all of the examples we have tested, the filtering step only takes less than

40% of the time. The bottleneck is in fact in finding the line segment intersections of the

convolution. Recall that in our implementation both collision detection and line segment

intersection are calculated by checking line segments exhaustively between all pairs.
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Figure 3.6: Normalized computation time for each step in our algorithm. The total computa-
tion for eachM-sum is normalized to 1. The dark grey part indicates the time for computing
the intersections of the segments in the reduced convolution. The grey part is the time for
identifying the loops. The light grey is the time for filtering hole boundaries. Only the larger
models (airplane, bird, dog, G1, G2, G3, G4, hand1, hand2, and star) are used in this plot.

3.4.2 Reduced Convolution vs. Complete Convolution

In this experiment, we show that the size of the reduced convolution is the key that the

proposed method is more efficient. Theoretically, the reduced convolution is at most half

of the complete convolution. However, this analysis (in Section 3.3.4) is based on the

assumption that a convex vertex is compatible with Θ(n) edges. Practically, this assumption
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may be off. Fig. 3.7 shows exactly this. Again, we use larger models in Fig. 3.3 and compute

theM-sums of all pairs. We study the differences when the reduced convolution and the

complete convolution are used.

Fig. 3.7 clearly shows that the size of the reduced convolution is significantly smaller

than that of the regular convolution. Note that the y axis in this plot is in logarithmic scale.

In the best case (bird⊕dog), the reduced convolution is 13.13 times smaller. In this case, the

reduced convolution has 2,921 segments and the convolution has 38,342 segments. In the

worst case (G3⊕G3), the reduced convolution is only 1.98 times smaller. In this case, the

reduced convolution has 320 segments and the convolution has 632 segments.

Note that this experiment only studies the size of the convolutions. The discrepancy

between the size of the arrangement of the reduced convolutions and that of the complete

convolutions will be even larger.
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Figure 3.7: Number of segments in the reduced convolution and the complete convolution.
The size of the reduced convolution is significantly smaller than that of the regular convolu-
tion. Note that the y axis is in logarithmic scale. Only the larger models (airplane, bird, dog,
G1, G2, G3, G4, hand1, hand2, and star) are used in this plot.
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Chapter 4: Computing the configuration space of rotating

polygons

4.1 Introduction

The configuration space (C-space) of a movable object P is the enumeration of all configura-

tions of P . A closed subset of the C-space that causes P to collide with obstacles Q is called

C-space obstacle (C-obst). It is the mapping from the workspace obstacles to the C-obst that

has interested researchers since the late 1970s.

It is well known that computing an explicit geometric representation of C-space is in-

tractable for objects with high degree of freedom [18], and researchers have been successfully

solving difficult problems without computing the C-obst, e.g., using probabilistic motion

planners (see [34]). However, an explicit representation of C-space remains important

to many problems, including problems that require complete motion planners (e.g., as-

sembly/disassembly), CAD (e.g., Caine’s design of shape [16]), virtual prototyping, object

placement [3] and containment [5]. In addition, C-space mapping is fundamental to basic

geometric operations, such as continuous collision detection and generalized penetration

depth estimation. Since the early 1980s to the mid-1990s, many researchers have proposed

several methods to compute and approximate various types of representation of the C-obst.

However, not until more recently have newer developments (e.g. the idea of configuration

products by Nelaturi and Shapiro [46]) been made toward improving and generalizing these

methods, partly because the need for an explicit representation of C-obst diminished after the

development of sampling-based motion planners. See the survey by Wise and Bowyer [51]

for a complete review on these earlier works and see Section 2 for a brief overview of the

related and recent works.
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(a) M-sum (b) C-obst

(c) M-sum (d) C-obst

Figure 4.1: Examples. (a) and (b) are generated from bar and grate 3 in Fig. 4.3. (c) and
(d) are generated from star and hand in Fig. 4.3.

There exist few methods that focus on the exact representations of C-obst of polygons,

e.g., [3, 15, 21, 31]. In these techniques, the methods proposed by Avnaim et al. [3] and

Brost [15] are the ones closely related to our work. Avnaim et al. [3] proposed to compute

∂C-obst using contact regions. A contact region is computed between a vertex of P and an

edge of Q or vice versa. ThoughM-sums are not used in this method, a similar configuration

space is produced. Their algorithm has time complexity O(n3m3 log nm) for polygons with n

and m vertices. Similar to Avnaim et al. [3], Brost [15] also considered all possible contacts.

In both methods, a contact region can have zero area on C-obst. This means that the entire

contact region is trimmed. In fact, even for simple shapes (for example the star shape shown

in Fig. 3.2), many contact regions will not be on the surface of C-obst. As a result, significant

computation is wasted on finding the intersections between contact regions (which is a

computational expensive operation).

In [9] we present a new method for mapping 2-d polygons to their 3-d C-obst. Our

method represents the boundary (∂C-obst) of C-obst as a set of ruled surfaces. The proposed

method is simpler to implement than the existing methods in the literature [3,15] and is
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often more efficient. These main advantages are provided by a new algorithm that allows

us to extract the Minkowski sum (M-sum) boundary from the reduced convolution (defined

in Section 4.3.2) of the input polygons. As a warm-up, we will first show that the C-obst

of convex polygons can be computed using the idea of convolution at critical orientations

(in Section 4.3.1). We then show that theM-sum of two simple non-convex polygons can

be computed efficiently using the filtering-based approach from the reduced convolution.

Finally, the ∂C-obst of non-convex polygons is constructed by updating theM-sum at the

critical orientations. The time complexity of our method is O(m3n3 + bTcd) for polygons

with m and n vertices, where b is the number of boundaries of C-obst, and Tcd is the time for

a single collision query. We also show that the resulting C-obst can be used for efficiently

estimating the generalized penetration depth by computing the closest feature between the

query point and the ruled surfaces (Section 4.4.2).

4.2 Preliminaries

We assume that P is movable while Q is stationary. Both P and Q are simple polygons

composed of n and m (counterclockwise) ordered vertices, respectively. Our approach is

based on computing and updating the M-sums using the reduced convolution approach

described in Chapter 3.

Without loss of generality, we assume that P rotates counterclockwise about c, and c is

the world origin, so that cx = cy = 0.

4.3 Our Methods

We will first discuss the case of convex polygons in Section 4.3.1 and then extend the ideas

the handle non-convex polygons in Section 4.3.2.
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P

Q

q1

q2

q3
p3

p2

p1n1

n2

n3

m3

m2

m1

(a)

2π0

n1m2 n1m3 n1m1

2π0

n2m3 n2m1 n1m2

2π0

n3m1 n3m2 n3m3

(b)

Figure 4.2: (a) Two convex polygons P and Q shown with the edges outward normals. (b)
Events for ~n1, ~n2, and ~n3 (from top to bottom) when P rotates counterclockwise from 0 to
2π. For example, when P rotates π/4, ~n1 and ~m2 (and ~n2 and ~m3) become aligned and two
events are issued.

4.3.1 C-obst of Convex Polygons

Given two convex polygons P and Q (see Fig. 4.2(a)), an edge of their convolution is the sum

of an edge pipi+1 of P and a vertex qj of Q or vice versa. We let θ0 be the orientation when

an edge/vertex pair is born until it dies at θ1 when P rotates counterclockwise, and each

edge/vertex pair forms a parameterizable ruled surface (i.e. contact region). Let pi = (x0, y0)

and pi+1 = (x1, y1). We take a vector ~v = −−−−→pi pi+1 and a vector ~t =
−−→
O qj , where O is the

world origin. Then the surface defined by the pair (pipi+1 and qj) is parameterized as:

SR(r, θ) =


(x0 + rvx) cos θ − (y0 + rvy) sin θ + tx

(x0 + rvx) sin θ + (y0 + rvy) cos θ + ty

θ

 , (4.1)

where r ∈ [0, 1], θ ∈ [θ0, θ1).

Surfaces are also formed by the edges of Q as P rotates. Similarly, we let qj = (x0, y0)

and qj+1 = (x1, y1). We take the vector ~v = −−−−→qj qj+1 and a vector ~t =
−−→
O pi . The surface for
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the pair pi and qjqj+1 is parameterized as:

SN (r, θ) =


y0 cos θ − x0 sin θ + tx + rvx

x0 cos θ + y0 sin θ + ty + rvy

θ

 . (4.2)

In order to support operations like distance query and line intersection, each surface is

stored as a tuple (p, q, θ0, θ1), where p and q are the indices to the vertices and edges of P

and Q, and θ0 and θ1 define the birth and death orientations of the surface. To construct the

surfaces in this representation, we use a sweeping algorithm that updates the convolution at

critical orientations (events). Fig. 4.2(b) shows all the events for each edge of P . To handle

each event, we delete two segments from the convolution and create two new segments.

For example, at event ~n3m1 in Fig. 4.2(b), the pairs 〈p3p1, q1〉 and 〈p1, q1q2〉 both die and

the pairs 〈p3p1, q2〉 and 〈p3, q1q2〉 are both born. Note that these changes are local, therefore

each event can be handled in a constant time, and there can be at most mn events. Moreover

the events for each edge of P is simply an offset copy of the normals of Q, so all (sorted)

events can be built in linear time. Therefore, the entire computation takes only Θ(nm) time.

For two convex polygons, the surfaces trivially form ∂C-obst, as the surfaces will never

penetrate into the interior of the C-obst. However, in the case where one or both of the inputs

are non-convex, this is not guaranteed to be the case. This poses fundamental problems

in computing the penetration depth on such a solid; for example, the closest point on a

non-manifold hull to a query point inside the solid may consequently still be on the interior

of the solid.

4.3.2 C-obst of General Simple Polygons

We have already discussed how to compute theM-sum for polygons without rotation in

Chapter 3. We now generalize generalize the approach to consider rotation.
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Handling Rotation

Similar to the algorithm that we proposed for computing the ∂C-obst for convex shapes, the

algorithm for the ∂C-obst for non-convex shapes also consists of Θ(mn) events for creating

and deleting each contact patch. Each patch is generated by a segment (with varying length)

in the reduced convolution. In addition to these events, the intersection of line segments

(from the reduced convolution) also changes during the rotation of P , and these changes

can affect the topological structure of theM-sum. Therefore, the second type of event for a

given segment s is a list of rotations {θi} where the intersection status of s changes (e.g., s

starts to intersect or stops intersecting with a segment) when P rotates from 0 to 2π. There

can be O(C2) such events, where C is the size of the reduced convolution.

The data structure that we use for representing the surface is also a tuple (p, q, θ0, θ1, s1, s2),

where p, q, θ0, and θ1 are the same as the convex case, and s1 and s2 are indices to the

convolution segments intersecting with the segment between θ0, and θ1. We use the same

sweeping algorithm to construct this data structure. To handle the events where a segment s

is created (or deleted), we simply add (or remove) s to the reduced convolution and add (or

remove) the intersections due to s. To handle the second type of event, intersections due to

the events are updated.

When a new intersection occurs, s is split into two segments at the intersection point.

One of the new segments resulting from this split may be degenerate in the case of a new

intersection occurring at an endpoint of s, however this does not require any special case

handling. The degenerate segment will expand with the movement of the intersecting

segment into a proper line segment and generate the correct ruled surface. An additional

benefit to this is that the result of the splitting operations guarantees us that at most two

line segments intersect each of the resulting segments of the convolution. This ensures that

our data structure is always sufficient to represent a particular surface patch of the C-obst.

For both events, we check if the event site (i.e., the new or dead intersection) is locally

orientable and manifold to decide if a loop (of constant size) should be created or deleted as
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described above. Note that we will skip the last two filters (i.e., the polygon nesting and the

collision detection filters) during sweeping. Both filters will only be needed at the end of the

sweep to reject the false 3-d hole boundaries. Similarly, we can show that only one (2-d)

point is needed to verify each 3-d boundary; the proof is similar to Lemma 1.

An example of the results generated by our method is shown in Fig. 4.4. From the figures,

we can see that the interior part of the C-obst is hollow and all the extra parts of the reduced

convolution are correctly removed.

In the rest of this section, we will briefly discuss how to detect the second type of event.

Each of these events can be found in constant time, though the computation requires us to

classify the types of edges and surfaces, i.e., SR and SN in Eqs. 4.1 and 4.2, since they move

(and rotate) in different ways.

Consider two rotating edges in the convolution e1 and e2 that may intersect at some θ.

We let θ0 be the first value of θ for which e1 and e2 are both alive. An edge ei lies along a

line Li whose equation is yi(θ) = mi(θ)xi(θ) + bi(θ). The intersection (x(θ), y(θ)) of Li can

be computed so that

x(θ) =
b2(θ0)− b1(θ)
m1(θ)−m2(θ0)

,

where bi(θ) = x0 cos θ + y0 sin θ + ty −mi(θ)(y0 cos θ − x0 sin θ + tx) and mi(θ) = 1+mi tan θ
mi−tan θ ,

and mi is the initial slope of Li. It is trivial to compute y(θ) from x(θ). Then from the

intersection of the lines, we solve for θ such that the intersection (x(θ), y(θ)) will fall into

the range of the line segments e1 and e2. This is done by classifying the segments into three

cases that involving rotating and non-rotating edges. We say that the edges that create SR

surfaces are rotating edges and the edges that create SN surfaces are non-rotating edges.

Therefore e1 and e2 can be either (1) both rotating edges, (2) both non-rotating edges or (3)

a rotating and non-rotating pair. In certain cases, the segments can be checked quickly to

determine if they ever intersect. The details are shown in the Appendix.
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(a)(b) circle (32) (c) sewing
(10)

(d) star (44) (e) hand
(57)

(f) grate 1
(30)

(g) grate 2
(34)

(h)

(i) grate 4 (43) (j) dog (145) (k) bird (275)

Figure 4.3: Models used in the experiments, a subset of those used in Chapter 3. (a) bar (4);
(h) grate 3 (34). The numbers in the parentheses are the size of the polygons. Some of these
models are inspired by those in [32,50].

4.4 Experimental Results, Application and Discussion

4.4.1 Results

We have implemented the proposed method in C++. In this section, we reproduce from [9]

results that we obtained from this implementation using the examples shown in Fig. 4.3. In

these examples, there are two convex polygons and 9 non-convex polygons. The number

of the vertices of each polygon is also shown. Some of these models are inspired by those

in [32,50]. All the experiments are performed on a PC with Intel CPUs at 2.13 GHz with 4

GB RAM.

In Table 4.1, we show the computation time for constructing ∂C-obst using the proposed

method. The running times range from a fraction of a second to close to an hour. Since we

have no other implementation to compare to and our implementation is highly unoptimized

(for example, our collision detection takes Θ(mn) for each collision check), it is important to

look at these running times relatively. Therefore, we list the number of ruled surfaces before

trimming (Ns), the number of ruled surfaces on the final ∂C-obst (ns), and the number

(external and hole) of C-obst boundaries (nb). From the values of Ns, ns, and nb, it is clear

all of them can affect the computation time. For example, both “star/star” and “grate 1/grate
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Table 4.1: Experimental results for C-space mapping. Here, Ns is the number of ruled
surfaces before trimming, ns is the number of ruled surfaces on ∂C-obst, nb is the number
(both external and hole) of C-obst boundaries, and t is the total computation time in seconds.
P/Q bar/circle bar/sewing star/star star/hand grate 1/grate 2 bar/grate 4
t 0.1 0.05 4.9 6.8 4.9 0.3
Ns 256 68 2288 3286 1028 244
ns 256 82 3499 3034 4097 1027
nb 1 1 1 1 126 17

P/Q grate 3/grate 4 dog/bird
t 21.7 3350.6
Ns 991 39145
ns 1947 18500
nb 39 1

2” take about the same time to compute, but the number of ruled surface patches in “grate

1/grate 2” is half of that in “star/star.” Therefore, it is the large nb in “grate 1/grate 2” that

increases the computation time. Moreover, it is clear that the reason that the “dog/bird”

takes nearly an hour to finish is because of Ns, which is about 40 times the Ns of “grate

1/grate 2” and “grate 3/grate 4.” One single example that we cannot explain from Table 4.1

is the time difference between “grate 1/grate 2” and “grate 3/grate 4.” Both Ns and ns are

smaller and nb is larger in “grate 1/grate 2.”

Fortunately, we can explain this in Table 4.2. In Table 4.2, we show the number of

segments and the number of intersections in both complete convolution (N⊗ and I⊗, resp.)

and reduced convolution (n⊗ and i⊗, resp.) at the orientation shown in Fig. 4.3. The reason

that “grate 1/grate 2” takes less time to compute than “grate 3/grate 4” does is because

“grate 1/grate 2” tends to have smaller i⊗.

An important observation from Table 4.2 is the significant difference between N⊗ and

n⊗. As we have mentioned above, when the full convolution is used, a large number of

ruled surfaces will be generated and many of these ruled surfaces are not on ∂C-obst. As a

result, much computation is wasted on computing the intersections between these surfaces.

To make the problem worse, the values for I⊗ and i⊗ show that these unnecessary surfaces
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produce drastically more intersections than those left in the reduced convolution. This

difference can also be observed in Fig. 3.2. This property distinguishes our method from

the existing methods [3,15], which consider all contact regions (surfaces). Therefore, we

believe that our method is more efficient.

Table 4.2: Experimental results forM-sum computation. Here,N⊗ is the number of segments
in the convolution, n⊗ is the number of segments in the reduced convolution, I⊗ is the
number intersections in the convolution and i⊗ is the number intersections in the reduced
convolution.
P/Q bar/circle bar/sewing star/star star/hand grate 1/grate 2 bar/grate4
N⊗ 36 42 1608 1689 1394 191
I⊗ 36 33 1300 2758 5243 131
n⊗ 36 30 382 281 469 92
i⊗ 36 22 257 297 1204 77

P/Q grate 3/grate 4 dog/bird
N⊗ 1162 38342
I⊗ 10136 255635
n⊗ 400 2921
i⊗ 1544 3742

4.4.2 Application: Generalized Penetration Depth Estimation

The parameterizations in Eqs. 4.1 and 4.2 also yield distance functions in r and θ which

can be used to find the minimum distance to a given facet relatively easily. Let p be a

query point and let f(r) = (x0 + rvx), g(r) = (y0 + rvy), F (r) = g(r) cos θ − f(r) sin θ, and

G(r) = f(r) cos θ + g(r) sin θ, then the square distance d(r, θ, p) for the rotating edges:

d(r, θ, p) = (F (r) + tx − px)2 + (G(r) + ty − py)2 + w2(θ − pz)2

If we fix r, then d is a very well-behaved sinusoid, and while there does not seem to be a

closed-form solution for the global minimum, it is easy to find the minimum using simple
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(a) M-sum (b) C-obst

Figure 4.4: TheM-sum and C-obst of grate 1 and grate 2 in Fig. 4.3. The darker (lighter)
patches in (b) are SR (SN) surfaces.

gradient descent. If by contrast we fix θ, then d is simply quadratic in r, and finding the

global minimum on [0, 1] is also quite easy.

Computing d(r, θ). In the case of SR (see Fig. 4.5(a)), the regularity of the surface of the

distance function allows us to easily calculate a global minimum by finding θ values for the

global minimums at r = 0 and r = 1 by gradient descent, then finding the global minimums

for r when we fix θ at the values found by fixing r initially. Picking the minimum of the

yielded values gives us the global minimum of the distance function, as well as yielding r

and θ values which explicitly give us the closest point on the facet (see Fig. 4.5(c)). The

distance function follows similarly for SN (see Fig. 4.5(b)), except that because the r term

is independent of the rotation, the surface is somewhat more regular. We still end up with

no clear closed-form solution for the sinusoid however, so we must solve for the minimum

using gradient descent as above.

In the case of non-convex polygons, a surface may have a left-r-bound function rmin(θ)

and a right-r-bound function rmax(θ) that describe how its non-manifold intersections move

as θ changes, so that its associated facet is r-bounded at a given θ by [max{0, rmin(θ)},min{1, rmax(θ)}].

These same r-bounds apply to the distance function. As a consequence, finding seed values

for r and θ in the general case is more complicated. To deal with this issue, we choose
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Figure 4.5: (a) An example distance function for SR, c = (0, 0), p = (10,−5, π), v = (1, 4),
x0 = 1, y0 = 1. (b) An example distance function for SN , same parameters as (a) except that
v is elongated. (c) An example gradient descent for the sinusoid portion zoomed in on the
gradient descent. The descent converges in just 5 iterations (two iterations in which only
step-size is adjusted), and in this case finds not only the local minimum for the sinusoid at
rmax, but also the global minimum.

to seed at regular intervals. Let segment e have its birth at θ0 and death at θ1, then seed

values are taken for θ ∈ {k |(θ0−θ1)|8 : k ∈ Z, 0 ≤ k ≤ 8}. For each of these θ values, we seed

at max{0, rmin(θ)}, min{1, rmax(θ)}, and (max{0, rmin(θ)}+ min{1, rmax(θ)})/2± ε, just to

the left and right of the medial axis of the r-bounds.

This gives us a total of 36 seeds per surface. We use so many seeds largely because the

r-bounds are irregular enough that some descents may get caught along the boundary. This

spread however provides good coverage. Because of the regularity of the surface itself, a

particular iteration of the gradient descent tends to converge in a small number of iterations

and so the total cost of the gradient descent is relatively low in any case.
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Table 4.3: Results for penetration depth estimation. Here ε is the avg. distance error, t is the
avg. query time over 1000 queries, and T is the time to pre-compute the distances for all
samples.

P/Q bar/circle bar/sewing star/star grate 1/grate 2
ε 0.000004 0.00067 0.0004 0.0001
t 7.8ms 6.5ms 8.5ms 12.0ms
T 50.1s 80.1s 398.2s 862.2s

Computing penetration depth. Given a configuration p of P , we would like to find the

closest feature on ∂C-obst. This problem can be decomposed into two steps: (1) find the

closest surface f to p and (2) find the closest point on f to p. We have already proposed a

method for the second step. For finding the closest surface, ideally, we can precompute the

Voronoi tessellation of the space using each surface as a site, and then find which cell q is in.

However, both computing the tessellation and finding the enclosing cell seem to be difficult.

The only properties that we know are that the boundaries of the tessellation are also ruled

surfaces, and each cell forms a single connected component. Based on these properties, we

propose a sampling-based approach. Initially, a set of uniformly distributed samples are

taken, and the closest surface for each sample point is computed offline using a brute-force

search (through all surfaces). Each query point is then categorized by its k nearest neighbors,

and only the n ≤ k surfaces associated with those neighbors are checked. For the results

in Table 4.3, we set k = 10 experimentally. For convex polygons, this approach yields a

very high rate (98.3% for bar/circle) of identifying the actual closest facet and low average

error values (< 10−5) when a facet other than the closest is chosen for distance comparison.

For non-convex polygons, this approach still yields very high rate (> 95.7%) of identifying

the actual closest facet and low average error values (< 10−3). The accuracy and error are

estimated by comparing to the results of the brute force approach.
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4.4.3 Complexity Analysis

When P and Q have n and m vertices which include n′ and m′ reflex vertices, respectively,

there will be 2mn segments in the complete convolution; in the reduced convolution there

are at most (m − m′)n + (n − n′)m segments. That is, the arrangement of the reduced

convolution is at least 4 times less complex than that of the complete convolution when

n′ = 1/2n and m′ = 1/2m. Thus, the reduction will further reduce the complexity of the

arrangement of 3-d rule-surface patches by at least 8 times. Note that this analysis is based

on the assumption that a convex vertex is compatible with Θ(n) edges and in the worst case

that each segment will intersect all the other segments. In the examples that we have above,

the difference between the reduced and complete convolutions is more significant (e.g.,

“star/star” and “dog/bird”). The time complexity for computing theM-sum of P and Q is

O ((mn+ I) log (mn+ I) + `Tcd), where I = O(m2n2) is the complexity of the arrangement

of the reduced convolution, ` is the number of loops, and Tcd = O(mn) is the collision

detection time in our implementation. The time complexity for computing the C-obst of

P and Q is O
(
(mn+ I) log (mn+ I) +m2n2Te + bTcd

)
, where b is the number of (hole)

boundaries in the C-obst, and Te = O(mn) is the time for handling each event (i.e., finding

all new/dead intersections and update theM-sum locally near the intersections).
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Chapter 5: Dynamic rotation of convex objects

5.1 Introduction

We are also interested in a method that can efficiently compute the Minkowski sum of

rotating convex polyhedra, as well as generalized 2D polygons. Computing the Minkowski

sum of polyhedra undergoing rotations can be found in many problems, such as general

penetration depth estimation [55] for physically-based simulation and configuration-space

obstacle mapping [51] for robotic motion planning . Figure 5.1 shows an example of the

Minkowski sums before and after rotating the ellipse.

The main challenge of computing the Minkowski sum of two rotating polyhedra comes

from that fact that the Minkowski sum can be dramatically different after the input polyhedra

rotate. Therefore, existing methods simply re-compute a new Minkowski sum every time P

or Q rotates. For example, this approach is traditionally used to slice the C-space obstacles

(C-obst) in motion planning. When the rotation of the robot is considered, C-obst are

approximated by repetitively computing the Minkowski sums of the robot with different

orientations. These Minkowski sums are usually separated by a fixed rotational resolution. A

main problem of re-computing the Minkowski sum from scratch is that it requires the same

amount of computation even when a small amount of rotation is applied to P or Q.
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(a) ellipse (b) slightly rotated ellipse

(c) (a)⊕GS4 (d) (a)⊕GS4

Figure 5.1: The Minkowski sums of a rotating ellipse and a sphere (GS4, shown in Fig. 5.3).
The ellipse in (b) is rotated by π/40 from (a). The dark (red) facets in (d) are the differences
between (c) and (d).

Our work is motivated by the observation described above. Thus, our objective is to

compute the Minkowski sums of rotating convex polyhedra without re-computing the entire

Minkowski sum repetitively. The main idea in our method is to generate the Minkowski sum

from the existing Minkowski sum. More specifically, we generate the new Minkowski sum by

correcting the “errors” introduced by rotation.

In theory, computing the Minkowski sum of two convex shapes P and Q will take

O(mn logmn) time by overlaying the Gaussian maps of P and Q with complexities O(m)

and O(n), respectively [26]. It is also known that the (space) complexity of the Minkowski

sum of the same P and Q is O(mn) [26]. Therefore, we expect an algorithm, similar to ours,

that updates the Minkowski sum, instead of re-computing from scratch, will be O(logmn)

faster than the traditional (brute force) approach.
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Our Contribution. In [10], we demonstrate a method that provides the desired prop-

erties mentioned above. We call this method: DYMSUM (dynamic Minkowski sum). We

show that DYMSUM is significantly more efficient than the näıve method of re-computing the

Minkowski sum from scratch, in particular when the size of the input polyhedra are large

and when the rotation angle is small between frames. From our experimental results, we

show that the computation time of DYMSUM grows slowly (e.g., linearly if inputs are cubes)

with respect to the size of the input comparing to the näıve approach (see Section 5.4). A

preliminary version of this work can be found in a video abstract [39]. Although we focus on

rotation of convex shapes, DYMSUM serves as the foundation for our work in scaling convex

polyedra. We then demonstrate extensions of the work to non-convex shapes using a convex

polyhedral mapping.

5.2 A Brute Force Method

Without loss of generality, we assume that P is movable while Q is stationary. We let Ps and

Pt be two copies of P at two configurations s and t with distinct orientations. Our goal is to

compute Mt = Pt⊕Q from Ms = Ps⊕Q. Moreover, the computation time of the Minkowski

sum should be sensitive to the orientation difference between Ps and Pt, i.e., the smaller the

difference between Ps and Pt, the faster the computation of Mt.

Computing the Minkowski sum of two convex shapes is usually based on the idea of

overlaying two Gaussian maps of the inputs. The Gaussian map g(P ) of a polyhedron P is a

sub-division of S2. One can think g(P ) and P as dual to one another. That is, each face f of

P with the outward normal nf corresponds to a vertex g(f) ∈ g(P ) with coordinate nf , and

each vertex v of P corresponds to a face g(v) ∈ g(P ) bounded by the normals of the faces

incident to v. When we overlay two Gaussian maps g(P ) and g(Q), a vertex v in g(P ) must

be associated with exactly one face in g(Q) that encloses v and vice versa. Moreover, the

edges in g(P ) and g(Q) can also intersect.

The facets of a Minkowski sum are defined exactly by these two types of interactions
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between g(P ) and g(Q): the facets generated from a facet of P and a vertex of Q or

vice versa, called fv-facets; and the facets generated from a pair of edges from P and Q,

respectively, called ee-facets. A facet f and a vertex v produce an fv-facet if and only if the

normal of f is a conical combination of the normals of the facets incident to v. Similarly, a

pair of edges e1 and e2 form an ee-facet if and only if the cross product of vectors parallel to

e1 and e2 is a convex combination of the normals of the facets incident to e1 and e2.

These criteria allow us to test if a given pair of features (a facet/vertex pair or an edge

pair) will produce a Minkowski sum facet by checking only the neighborhood of these

features. Given a pair of features (facet/vertex or edge/edge), we say that the features are

compatible if they form either an fv-facet or an ee-facet. When Ps transforms to Pt, some

facets (i.e., pairs of features) in Ms will no longer be compatible. We call these facets the

“errors” introduced by rotation.

A brute force algorithm, which is used in all existing methods except [45], computes

the Minkowski sums from Ps and Pt without considering the correspondences between

them as shown in Algorithm 5.2.1. Given Ps and Q and the existing Minkowski sum Ms.

Algorithm 5.2.1 rotates Ps by θ to obtain Pt. Then it uses an existing Minkowski sum

algorithm to compute Mt.

Algorithm 5.2.1: BRUTEFORCE(Ms, Ps, Q, θ)

Pt = Rotate(Ps, θ)

Mt = MinkowskiSum(Pt, Q)

return (Mt)

5.3 Dynamic Minkowski sums (DYMSUM)

In this section, we describe the details of DYMSUM. Our goal is to take advantage of the

correspondences between Ms and Mt that are completely ignored by Algorithm 5.2.1. Let us
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consider the Gaussian map again. Ms is computed by overlaying g(Ps) and g(Q). To obtain

Mt, we need to find out which vertices in g(Ps) are moved to another face in g(Q) and

determine whether the edges of g(Ps) intersect or stop intersecting with the edges of g(Q)

after rotating Ps to Pt . This is exactly what DYMSUM does. That is, DYMSUM first determines

these changes in the overlay introduced by the rotation, and then corrects the errors to

generate the new Minkowski sum Mt. Therefore, the Minkowski sum Mt is composed of

two types of facets: (1) the facets from Ms that still satisfy the aforementioned criteria after

rotation and (2) the facets that are created due to the errors.

A sketch of DYMSUM is shown in Algorithm 5.3.1. In contrast to the brute-force method,

DYMSUM is sensitive to the amount of rotation. That is, when θ is smaller, there will be fewer

errors in the Gaussian map overlay. In this case, DYMSUM will likely take less time to compute

the result than the näıve method. In the rest of this section, we will discuss how the errors

are determined (Section 5.3.1) and how to correct these errors (Sections 5.3.2 and 5.3.3).

Algorithm 5.3.1: DYMSUM(Ms, Ps, Q, θ)

Pt = Rotate(Ps, θ)

Et = FindErrors(Ms, Pt, Q)

Mt = CorrectErrors(Et,Ms, Pt, Q)

return (Mt)

5.3.1 Find Errors

There are two types of errors, fv-errors and ee-errors, corresponding to fv-facets and ee-

facets, respectively. If a pair of features was compatible and becomes incompatible after the

rotation of P , we call this pair an error.

Before we talk about how these errors can be identified, we will first show the relationship

between the fv-errors and the ee-errors. Theoretically, the complexity of the Minkowski sum
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is O(mn) and there can only be O(m+ n) fv-facets. Therefore, the number of fv-facets can

be far smaller than the number of ee-facets. Moreover, it is easy to show that no ee-errors

can occur if there are no fv errors.

Theorem 1. fv-errors and ee-errors must coexist.

Proof. We first show that if there is an ee-error, there must be an fv-error. Let e and e′ be

a pair of edges that are compatible before rotation and become an ee-error after rotation.

When e and e′ are compatible, g(e) and g(e′) must intersect and, after rotating P , g(e) and

g(e′) no longer intersect. This means at a certain point during the rotation, an end point

of g(e) must cross g(e′) or vice versa. When a point v crosses the edge g(e), v changes the

face with which it is associated from one side of g(e) to the other side of g(e). This change

indicates that there must be an fv-error.

We then show that if there is an fv-error, there must be an ee-error. If a facet f of P

and a vertex v of Q become an fv-error, we know that f now must be compatible with

some other vertex v′ 6= v of Q. As a result, an edge g(e) incident to g(f) must be moved (or

deformed) with g(f). Since the faces in g(Q) are convex and g(e) cannot intersect with a

segment more than twice, g(e) must intersect with some new edges of Q when g(f) moves

from g(v) to g(v′). This indicates that there must be at least one ee-error.

Therefore, fv-errors and ee-errors must coexist.

Based on Theorem 1, we can find all errors by first exhaustively checking all fv-facets

in Ms (the Minkowski sum before rotation) to find fv-errors. Then we use these fv-errors

to identify all ee-errors. That is, if there are no fv-errors found, then we can immediately

conclude that there are no ee-errors as well. Otherwise, the ee-errors must occur at the edges

incident to the vertices involved in the fv-errors. Thus, it is clear that finding all fv-errors

will take O(m+ n) time.
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Figure 5.2: (a) A 2-d drawing shows the definition of IC(f, v) and its witness vv′. Using
gradient descent, we will find the compatible vertex u for f . (b) Determine the associated
edges for edge e.

5.3.2 Correct fv-errors

For each fv-error, we perform a gradient descent to compute a new fv-facet. More specifi-

cally, given a facet/vertex pair, we can measure the degree of incompatibility of the pair and

attempt to iteratively minimize the incompatibility until a compatible pair is found.

Let f be a facet of P and v be a vertex of Q. When f and v are compatible, all the edges

that are incident to v must be below or on the half-plane supported by f . When f and v are

incompatible, we can define the degree of incompatibility

IC(f, v) = max{d(e, f) | e ∈ Ev} ,

where Ev is a set of edges incident to v and d(e, f) is the longest Euclidean distance from any

point on e to f . We say an edge e is the witness of the incompatibility if d(e, f) is IC(f, v).

Fig. 5.2(a) illustrates an example of fv-error and IC(f, v).

In order to find the compatible pair, we find the witness of the incompatibility e, and

replace v with the other end point v′ 6= v of e, and repeat this until f and v become

compatible. In Fig. 5.2(a), this vertex is u. Since Q is convex, this procedure must be able
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to find a vertex of Q such that all of its incident edges are below f , therefore, will always

terminate.

This process is equivalent to finding an extreme point at the outward normal direction of

f and therefore can be done in O(log n) time if Q has n vertices.

5.3.3 Correct ee-errors

After all the fv-errors are corrected, the incident edges associated with these fv-errors are

marked as ee-errors. Let e be such an edge from P and let f− and f+ be the facets in P

incident to e. Our goal is to find the edges of Q that are compatible with e. An exhaustive

search for compatible edges will certainly be slow. Fortunately, we can find the compatible

edges using the results from fv-facets. That is, since we know that the incident facets f−

and f+ both have the compatible vertices q− and q+ of Q, we can find the compatible edges

for e using q− and q+. The relationships between e, f± and q± are shown in Fig. 5.2(b).

More specifically, if we overlay the Gaussian map g(e) of e with g(Q), g(e) will intersect

a set of faces in g(Q) and the end points of g(e) are inside g(q−) and g(q+). See the bottom

of Fig. 5.2(b). If we can determine the rest of the faces intersected by g(e), we can find

the compatible edges for e. We further know that these faces form a connected component

between g(q−) and g(q+), thus the compatible edges for e must be on the boundary of these

faces. To find these Gaussian faces, we start from g(q−), and find an incident edge e′ of g(q−)

that is compatible with e. It is obvious that e′ must exist unless q− = q+. From e′, we replace

q− with the vertex x′ 6= q− incident to e′, and repeat the process until q− = q+.

The computation time is equal to the sum of the degree of vertices of Q visited during

the search process.

5.4 Experimental results

In this section, we show that the computation time of DYMSUM is more efficient than the

traditional approach (Algorithm 5.2.1) and is indeed sensitive to the amount of rotation
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applied to P . In our experiments, the polyhedron P rotates using a sequence of random

quaternions. Each quaternion is applied to P for a random period of time. All the computa-

tion times that we show below are obtained by averaging over 100 random rotations. All the

experiments are performed on a machine with Intel CPUs at 2.13 GHz with 4 GB RAM. Our

implementations are coded in C++.

Figures 5.3 and 5.4 show 13 models that we use in the first two experiments. Many of

these models are from [26] and can be obtained from the authors’ website. Theoretically,

DYMSUM works with polyhedra tessellated with arbitrary polygons, but in our current

implementation DYMSUM only takes triangulated polyhedra. Therefore, all the models in

Figures 5.3 and 5.4 are triangulated.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.3: Models used in the experiments. (a) cone, 78 facets (b) cube, 12 facets (c)
cylinder, 140 facets (d) dioctagonal dipyramid (DD), 32 facets (e) ellipse, 960 facets (f)
geodesic sphere 1 (GS1), 80 facets (g) GS2, 180 facets (h) GS3, 320 facets (i) GS4, 500
facets
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(a) (b) (c) (d)

Figure 5.4: Models used in the experiments. (a) hexagonal pyramid (HP), 10 facets (b)
triakis icosahedron (T), 60 facets (c) truncated icosidodecahedron (TI), 236 facets (d) v-rod,
324 facets.

5.4.1 Experiment 1: Dymsum vs. Brute-force method

In Table 5.1, we compare the proposed method, DYMSUM, to a brute-force method (Al-

gorithm 5.2.1) that re-computes the Minkowski sum in every time step. The brute-force

method checks the compatibility of all facet-vertex and edge-edge pairs every time that P

rotates. The values in the table are td/tbf , where td and tbf are the (averaged) updating or

re-computing times for DYMSUM and the brute-force method.

From Table 5.1, it is clear that DYMSUM is always faster than the brute-force method. Even

for very simple cases, such as cone⊕HP, DYMSUM is at least 8 times faster. For more complex

examples, such as ellipse⊕ellipse, DYMSUM is about 176 times faster than the brute-force

method.

5.4.2 Experiment 2: Computation time vs. Rotational resolution

In this experiment, we study the computation time of DYMSUM with respect to the rotational

resolution of P . Our goal is to show that, in contrast to the brute force approach, DYMSUM is

in fact sensitive to the magnitude of the rotation. In the problem of motion planning, this

resolution defines the number of slices in mapping the configuration space. In the physically-

based simulation, this value defines the number of collision detections and penetration depth

estimations per second. Fig. 5.5 shows the results obtained using DYMSUM. Notice that the x
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Table 5.1: The speedup of dymsum using the models in Figs. 5.3 and 5.4. The values in the
table are td/tbf , where td and tbf are the computation times for DYMSUMand the brute-force
method.

cone 9.26
cube 8.58 10.50

cylinder 12.83 10.31 18.73
DD 9.82 9.85 13.33 10.93

ellipse 24.97 14.50 47.51 21.67 176.34
GS1 15.09 11.21 23.66 15.39 51.38 25.23
GS2 19.73 12.15 32.96 17.95 86.99 33.16 52.73
GS3 22.92 12.42 40.45 19.63 120.23 38.88 65.53
GS4 24.50 12.70 45.22 20.19 146.15 44.21 73.89
HP 8.02 9.32 9.59 9.25 13.19 9.75 10.84

T 14.50 11.16 20.66 14.05 35.95 20.33 26.01
TI 21.30 13.87 35.55 19.53 91.48 38.02 56.86

v-rod 20.30 18.31 34.00 21.92 88.30 46.53 65.46
cone cube cylinder DD ellipse GS1 GS2

Table 5.2: Speedup of dymsum cont.
GS3 86.26
GS4 100.15 121.26
HP 11.58 11.51 9.00

T 29.21 31.83 10.28 16.17
TI 69.25 78.26 12.78 28.08 63.45

v-rod 77.73 83.05 15.76 34.23 67.24 123.75
GS3 GS4 HP T TI v-rod

axis is in logarithmic scale.

The x axis of Fig. 5.5 is the number of steps for P to make a full rotation. For example,

when x = 500, P will take 500 steps to rotate 360◦ degree. That is, P rotates π/250 around

a random axis every step. Therefore, when x is large, the changes in the Minkowski sum

will be small. From the figure, we can see that the computation time drops quickly around

x = 500 and then stabilizes below the 0.5 millisecond mark. In Experiments 1 and 3, we set

x = 500.
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Figure 5.5: Computation time at different rotational speeds. More steps per 2π means slower
rotational speed.
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Figure 5.6: Computation times of DYMSUM and brute force of two identical cubes. The
numbers of triangles in the cubes are 12, 48, 108, 192, 300, 432, 588, 768, 972 and 1200.

5.4.3 Experiment 3: Computation time vs. Input size

In this last experiment, we study the relationship between the computational time and the

input size. We use a 10 × 10 × 10 cube with different numbers of triangles tessellated on

the surface. Fig. 5.6 shows that the computation time of the brute-force method increases

rapidly while that of DYMSUM stays almost constant. When we show DYMSUM’s computation

time along in Fig. 5.6(b), DYMSUM’s computation time is increased linearly along with the

size of the cubes.

Recall that the complexity of a Minkowksi sum of two convex shapes is O(mn), however

the number of the fv-facets is O(m+ n). Therefore a large portion of the Minkowksi sum is

composed of the ee-facets. In our experiment, we see a linear increase in computation time.
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We speculate that only a few errors occur at each step and most of the computation time is

spent on verifying and updating the compatibility of the fv-facets.
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Chapter 6: Dynamic scaling of arbitrary polygons and convex

polyhedra

6.1 Introduction

The development of a method for the operation of rotation, which is global on the input

it acts on, leads us naturally to explore the idea of other global operations. In particular,

we consider the case of scaling an object, either uniformly or non-uniformly along its axes.

Scaling of an object P is simply the transformation of each vertex v = (v1, v2, ..., vd) in P

to a new position v′ = (s1v1, s2v2, ..., sdvd), where v ∈ Rd and si ∈ (0,∞). Uniform scaling

consists of the special case where s1 = s2 = ... = sd.

In [13] we propose two methods for dynamic Minkowski sums of inputs under scaling.

We base our first method on the Minkowski sum methods in our previous work [12, 40],

which computes the reduced convolution of the two polygons or two polyhedra. In 2D, the

reduced convolution is a subset of the full convolution which omits contributions from the

reflex vertices of the input polygons. Reflex vertices are vertices whose interior angles are

greater than 180 degrees. Two reduced convolutions are illustrated in Fig. 6.1.

Given this reduced convolution, denoted by P ⊗̂Q, we show that there is an efficient way

to update 2D Minkowski sums under scaling regardless of the convexity of the input models

(Section 6.2). The set of intersecting faces in the Minkowski sum changes only at a finite set

of scale values. Scaling of an object P by a scale factor s is simply the transformation of each

vertex v = (v1, v2, ..., vd) in P to a new position v′ = (s1v1, s2v2, ..., sdvd), where for v ∈ Rd

and si ∈ (0,∞). Uniform scaling consists of the special case where s1 = s2 = ... = sd.

Our goal is to develop an algorithm that can efficiently update the Minkowski sum when

the objects are scaled without recomputing the Minkowski sum from scratch. The main
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challenge comes from the fact that the Minkowski sum can change drastically when the

underlying objects are scaled. For example, in Fig. 6.1, when the disc is scaled to twice its

original size, not only the geometry but also the topology of the Minkowski sum changes.

We present two exact, output-sensitive algorithms whose computation time depends on

the amount of scale and therefore depends on the number of changes to the Minkowski sum

due to scaling.

We base our first method on the Minkowski sum methods in our previous work [12,40],

which computes a reduced convolution of the two polygons or two polyhedra. In 2D, the

reduced convolution is a subset of the full convolution which omits contributions from the

reflex vertices of the input polygons. Reflex vertices are vertices whose interior angles are

greater than 180 degrees. Two reduced convolutions are illustrated in Fig. 6.1.

Given this reduced convolution, denoted by P ⊗̂Q, we show that there is an efficient way

to update both 2D Minkowski sums under scaling regardless of the convexity of the input

models (Section 6.2). The set of intersecting faces in the Minkowski sum changes only at a

finite set of scale values.

We show that this method can be extended naturally to 3D (in Section 6.3). However,

we also show that it is not practical to do so due to time and space complexity constraints

as the convolution in 3D is much more complex. To address this, in Section 6.4, we

introduce the second method, which dynamically identifies compatibility errors in the

convolution for convex polyhedra and corrects these errors without precomputing when

they will occur. We show that this method supports non-uniform scaling, provides significant

speed improvements over brute force, and does not encounter the complexity constraints of

precomputation.

In addition to reusing computations for the obvious purpose of increasing the computation

efficiency, in Section 6.6 we also demonstrate that our method can be extended to answer the

query, “Given the specification of manufacturing tolerance, what are the largest and smallest

scales of P for which a given path is valid?” This query is useful in rapid prototyping, for

determining the necessary scale for parts to fit into an assembly. With this information we
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can check whether there exists a scale for a part P that can guarantee it fits into the assembly

properly. The proposed method also finds unusual applications in shape decomposition,

where it can be used to identify structural features based on multi-scale convolutions.

This work [13] is the first to consider dynamic Minkowski sums under scale and our

results are encouraging. However, there are two main limitations for the first method. First,

it is only able to handle uniform scaling, as it relies on the idea that the facet normals do

not change under scaling. Secondly, it is impractical in more than two dimensions due to its

large time and space complexities. In three or more dimensions, we quickly run up against

the curse of dimensionality. The main limitation of the second method is its inability to

handle non-convex inputs, since it relies on the principle that each facet in the convolution

will be associated with at most one vertex in the input models.

6.2 Uniform Scaling in 2D

(a) input (b) s = 1 (c) s = 2

Figure 6.1: Comparison of the Minkowski sums [(b) and (c)]. The neuron polygon shown in
(a) has 18 holes and 1,815 vertices and the disc is represented as a polygon with 32 vertices.
The topology of the Minkowski sum changes between scales.
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We seek to update the Minkowski sum of polygons P and Q transforming under uniform

scales. We assume without loss of generality that P scales uniformly and Q remains fixed.

Since the Minkowski sum is commutative, scaling Q can be done identically by simply

swapping P and Q in the input order. The uniform scaling operation P ′ = sP generates

P ′ such that for every point v ∈ P , sv ∈ P ′. A key observation is that when P scales by s,

the outward normals of all its line segments remain the same, and so scaling of P does not

change the combinatorial structure of the reduced convolution (RC); only the length and

position of the segments in RC change.

Even though the combinatorial structure of the RC does not change when P is scaled,

the outer boundary of the Minkowski sum will change. In particular, the set of edges (2D) or

facets (3D) which intersect with each other may change–some intersections may be deleted

while others may be added. We call these additions and deletions critical events.

To use these critical events, we compute the ranges of s within which intersections

between edges actually occur. We can then add or delete intersections by stepping through

the critical events between two values of s. When we finish adding and deleting intersections

in this way, we can correctly and efficiently update by considering only those intersections

between line segments that are valid for the given s.

6.2.1 Tracking the intersection values in 2D

Consider a single edge of the convolution, a. Suppose a is formed from the contribution of

an edge of P , ep, and a vertex of Q, vq. Then a = ep + vq, that is, ep translated by vq. When

P scales, only ep changes, so a(s) = sep + vq. Because such edges are scaled as P is scaled,

we call them S-edges. Note that S-edges will also be translated in the updated convolution.

Similarly, if a is formed from an edge of Q, eq and a vertex of P , vp, then a = eq + vp, and

a(s) = eq + svp, since only P scales. We call such edges T-edge since as P is scaled, they are

translated but not scaled. Fig. 6.2 illustrates both types of edges.

Now consider two line segments a and b in the convolution, and let their endpoints be
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∆xI(s)

xI1

xI0

svp
svp

(a) T-edge

∆xI(s)

xI1

xI0

sep0
sep1

(b) S-edge

Figure 6.2: In (a) an edge from Q and a vertex from P form a T-edge in the convolution, so
the segment only translates as s changes. In (b) an edge from P and a vertex from Q form
an S-edge edge, so the segment also scales as it translates. In both cases the underlying lines
translate.

(a0, a1) and (b0, b1), respectively. Let the lines containing a and b be la and lb, respectively.

We parameterize the intersection point of la and lb over s ∈ (0,∞). To do this, we consider

the parameterized forms of la and lb:

la(r) = a0 + r(a1 − a0) = a0 + rv

lb(t) = b0 + t(b1 − b0) = b0 + tw ,

68



where v = a1 − a0 and w = b1 − b0.

Observation 4. Let u = a0 − b0. Then the intersection point of la and lb is at

rI =
vyux − vxux
vxwy − vywx

,

and the coordinate of that intersection is xa(rI) = a0 + rIv.

The parameterized form lets us find the critical events we are looking for.

6.2.2 Finding critical regions

Let x(s) be the intersection point between the line la containing a and the line lb containing

b when P is scaled by a factor of s. x(s) is a parameterized line as well. Let the intersection

point computed above be x0. This intersection is computed at the base scale value, s = 1.

Therefore, x(1) = x0. Then we can define x(s) = x0 + (s− 1)σ for a slope vector σ. It is easy

to recompute the line segments at some other scale, s′, and compute the intersection of the

new lines to find x(s′) = x0 + (s′ − 1)σ, and so σ = x(s′)−x0
s′−1 . We choose s′ = 2, since in this

case, s′ − 1 = 1 and so σ = x(2)− x(1), which eliminates the division.

Assume that a and b do not intersect. As P scales, if a and b start to intersect, they must

do so first at an endpoint of either a or b. Similarly, when a and b separate, their final point

of contact will be at an endpoint of either a or b. The values of s where these initial and final

points of contact for some set of edges occur are the critical events.

We begin by parameterizing the endpoints of a over s, as a0(s), a1(s). We wish to find

the values of s for which x(s) = a0(s) and x(s) = a1(s) that is, the scale factors for which

the intersection of the two edges is precisely the endpoint of one of them.
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Critical region for S-edge

Suppose that a is an S-edge in the convolution is formed from an edge, ep in P and a vertex

vq in Q. Then:

a0(s) = ep0s+ vq

a1(s) = ep1s+ vq .

Setting x(s) = a0(s) we obtain x0 + (s− 1)σ = sep0 + vq, x0 − σ − vq = s(ep0 − σ). This is

an equation of the form:

sα = β, where α = 〈α1, α2〉 and β = 〈β1, β2〉. Since s is scalar in uniform scaling, this is an

overdetermined system of equations; there is no solution for s if the system is inconsistent.

Otherwise, we obtain a possible bound on s values for contact with the a0(s). We can proceed

to totally bound the s interval where the intersection lays on the segment a by computing

the same bound for a1(s), which is of the same form.

Critical region for T-edge

But what about convolution edges formed from an edge eq of Q and a vertex vp of P?

Assume, without loss of generality, that b is such an edge, and so b = eq + vp. Then its

endpoints are defined by b0(s) = eq0 + svp, b1s = eq1 + svp.

Again we seek to bound the intersection in this case by finding s such that x(s) = b0(s)

and x(s) = b1(s). As above, x(s) = x0 + (s − 1)σ, and so the form of these equalities are:

x0 + (s− 1)σ = eqi + svp. This is an overdefined system of the same form as above, subject

to the same results.
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Critical region of a segment pair

To obtain the intersection interval for the segment pair, we just take the intersection of the

intervals computed above, [max{Ba0 , Bb0},min{Ba1 , Bb1}] where Bu is the s boundary for

the endpoint u.

We can compute these intervals for all pairs of line segments as a pre-processing step

in O(n2). Using this, we can compute a list of critical events–s values when intersections

are introduced into the arrangement or removed from it. This allows us to update only

those intersections at each scaling operation which are relevant. Because computing the

intersections of the arrangement is the largest bottleneck in the reduced convolution method,

this promises significant speed advantages over recomputing the arrangement from scratch

every time s changes.

Update arrangement for a given scale factor s

In order to update the arrangement, we produce an array of critical events: pairings of s

values with a list of insertions or deletions since the last event produced by the intervals

for pairs of line segments. Given an initial scale value s0 and its arrangement, and a final

scale value sfinal, we can step through the structure, deleting and adding nodes in the

arrangement as necessary at each event until we reach an event such that sevent > sfinal, at

which point we update all of the remaining nodes according to the above equations.

6.3 Uniform scaling in 3D

In 2D, events are defined by the contact of two edges. Similarly, in 3D, events are defined

by the contact of two faces. There are two possible cases for these events in 3D: a vertex of

one face comes into contact with any part of another face, or an edge of one face comes

into contact with an edge of the other face without any vertex contacts. We call these vertex

events and edge events, respectively.
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6.3.1 Finding vertex events

Computing vertex events is a relatively straightforward extension of the 2D case. Given two

faces, f1 and f2, we consider each edge e of f1 independently, and we parameterize the line l

containing e and the plane p containing f2, and compute the intersections at s = 1 and s = 2

as in the 2D case. Uniform scaling still only causes linear motion in 3D, and so computing

where the vertex contact occurs is fundamentally identical to the 2D case.

We can again compute σ = x(2)− x(1), and parameterize the intersection point across

s as x(s) = x0 + (s − 1)σ. We then set the intersection point equal to the parameterized

endpoints e1(s) and e2(s) to find candidate events, identically to the 2D case. The equation

x(s) = ei(s) is overdetermined. There are three equations and only one free variable, similar

to the 2D case, and so there may be no consistent solution again – this will occur when the

edges are parallel or skew.

If there is a consistent solution we check and make sure these intersection points also lay

in the face f2 just as one would ensure that the contacts in 2D lay on the line segment and

not just the line. The vertex events between the edges of f2 and f1 are found in the same

way.

6.3.2 Finding edge events

Computing edge events is slightly more complicated. We consider two edges, e1 and e2,

and the lines which contain them, l1 and l2 respectively. We cannot simply check for an

intersection point since it is most likely that l1 and l2 are skew. Instead, faces f1 incident to e1

and f2 incident to e2, and their supporting planes, p1 and p2 respectively. We are interested

in the intersection x1 between l1 and p2 and the intersection x2 between l2 and p1. Then l1

and l2 will intersect precisely when x1 = x2.

A line l which contains an edge e with endpoints ea and eb can be parameterized as

ea + (eb − ea)t, and the plane p which contains triangle t with vertices ta, tb, tc can be

parameterized as ta + (tb − ta)u+ (tc − ta)v. We set these equal to each other and simplify,
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yielding

ea − ta =


ea − eb

tb − ta

tc − ta


T 

t

u

v

 .

We have five vertices from the convolution in this equation, ea, eb, ta, tb, tc, each of which

is parameterized in the scale domain by its P and Q components, v = vq + svp. Substituting,

we obtain expressions for t, u and v parameterized by s:


t

u

v

 =



eaq − ebq + s(eap − ebp)

tbq − taq + s(tbp − tap)

tcq − taq + s(tcp − tap)


T

−1

(eaq − taq + s(eap − tap)) .

c1

c6

c5

c4

c3

c2

Figure 6.3: Degenerate ee contacts for parallel faces, contacts are marked as c1 through c6.
Notice that no vertices are involved in this event.

When we solve this for l1 and p2 as well as l2 and p1, we obtain two expressions in s for

the intersections of the line and the plane, which we can set equal to each other and solve

for s.
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Parallel faces When f1 and f2 are parallel but not always coplanar, then


ea − eb

tb − ta

tc − ta


T

,

will be singular, and so we will not be able to detect edge events in the usual way. If any

vertex of either face is involved in the contact, then we will correctly detect these events as

vertex events, but it is possible that this isn’t the case. Figure 6.3 shows a situation in which

two coplanar faces have no vertex contacts. In order to determine whether an event will

occur, we must find the scale value when the faces are coplanar, and then check the edges of

the faces for intersections at that scale. Fortunately, the detection for vertex events is robust

enough that it does not need to deal with parallel faces as a special case.

To determine the value of s where the faces are coplanar, we pick an arbitrary vertex v

on f1 and proceed as though we were detecting a vertex event with f2. However, we do not

need to check if v(sevent) is inside of f2, since we are only interested in the value of s where

v hits p2–this will be the value of s at which the faces are coplanar.

Because of this, we do not need to perform the usual edge event detection at all when

dealing with parallel faces. For these faces, we find the scale of contact from the vertex event

detection step. If there are no vertex events, we check for edge intersections to see if there

are any edge events.

Coplanar faces Finally, in some cases, f1 and f2 will always be coplanar. In these

coplanar cases, the contact possibilities for f1 and f2 reduce to the 2D case, in which edge

events are impossible. Therefore, we can use the logic from the 2D scaling directly in order

to detect the events for the coplanar faces by transforming f1 and f2 into the xy-plane, and

applying 2D vertex event detection.
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6.4 Non-uniform scaling for convex polyhedra

In three dimensions, the worst-case complexity of the event space is O(m4n4). The memory

necessary to store the event structure and the time necessary to compute it rapidly become

overwhelming. While there are several practical strategies for mitigating memory issues,

including narrowing the scaling domain to a smaller window and disk swapping, the event

space must be computed for all pairs of faces, resulting in worst-case time complexity.

Enumerating all critical events also makes the extension to non-uniform scaling almost

impossible. As a result, we look to a method with less pre-computation.

Similar to our strategy for handling rotation [10], we propose to dynamically repair the

Minkowski sum after scaling. To do so, we define errors in the transformed convolution to

be convolution facets constructed from either vertex-face (vf) pairs or edge-edge (ee) pairs

that are no longer compatible, called fv-errors and ee-errors, respectively. Our method works

simply by correcting the errors introduced by the scaling. Correcting the fv-errors involves

gradient descent on the degree of incompatibility until the vertex and face pair become

compatible. Let f be a facet of P and v be a vertex of Q. When f and v are compatible, all

the edges that are incident to v must be below or on the half-plane supported by f . When f

and v are incompatible, we can define the degree of incompatibility: IC(f, v) = max{d(e, f) |

e ∈ Ev}, where Ev is a set of edges incident to v and d(e, f) is the longest Euclidean distance

from any point on e to f . We say an edge e is the witness of the incompatibility if d(e, f) is

IC(f, v). Fig. 5.2(a) illustrates an example of fv-error and IC(f, v).

We have already shown that any ee-errors must coexist with fv-errors (see Theorem 1).

Since, for convex pairs, there are only O(m + n) vf -facets, but O(mn) ee-facets, we can

increase the repairing speed by first checking all fv-facets for errors. Using the fv-errors as

starting points, we then form chains of ee-errors connected to the vf -error.

More specifically, let e be such an edge from P involved in an ee-error, and let f−

and f+ be the facets in P incident to e. Assume that the facets f− and f+ both have the

compatible vertices q− and q+ of Q. If we overlay the Gaussian map g(e) of e with g(Q),
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g(e) will intersect a set of faces in g(Q) and the end points of g(e) are inside g(q−) and

g(q+). See the bottom of Fig. 5.2(b). If we can determine the rest of the faces intersected

by g(e), we can find the compatible edges for e. We further know that these faces form a

connected component between g(q−) and g(q+), thus the compatible edges for e must be on

the boundary of these faces. To find these Gaussian faces, we start from g(q−), and find an

incident edge e′ of g(q−) that is compatible with e.

Because both P andQ are convex, the faces f1 and f2 incident to ewill each be compatible

with precisely one vertex, v1 and v2 respectively. The edges with which e is compatible must

form a path from v1 to v2 along the surface of the model. We check each of v1’s incident

edges to find the edge with which e is compatible. We then replace v1 with the vertex at the

other end-point of the compatible edge, and repeat, ignoring the incident edge which has

already been found to be compatible. When we find v2 by this path, we have enumerated all

of the compatible vertices. The complexity of this update is O(|E|), where E is the set of

edges incident to at least one vertex in the path.

In convex pairs, each face of P will be paired with precisely one vertex of Q and vice-

versa. We depend on this relationship in order to correctly identify errors. An extension to

non-convex inputs depends on the existence of a convex map–a convex polyhedron whose

Gaussian map is identical to the arrangement of the Gaussian map of the non-convex input.

Discussion of the convex map is outside the scope of this paper.

6.5 Results

In this section, we reproduce our experimental results from [13] to demonstrate the perfor-

mance of the proposed methods. Our implementations are based on the publicly available

implementation from our previous work in 2D [12] and 3D [10]. All experiments reported

in this section are performed on a machine with Intel CPUs at 2.13 GHz with 4 GB RAM and

our implementation is coded in C++, using GNU MPFR and the MPFRC++ wrapper for high

precision arithmetic.
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6.5.1 Results from uniform Scaling in 2D

(a) G1 (30) (b) G2 (34) (c)
G3
(24)

(d) G4 (43) (e) dog (145)

Figure 6.4: Models used in the experiments. The figure shows the names and the sizes of the
polygons. Note that (c) is G3 (24).

Table 6.1 shows average speed-up factors for several model pairs in Fig. 6.4 across the

scaling domain [0.1, 10] in increments of 0.1 scale factor. Speed-up is computed as tstatic
tdynamic

over 100 random re-scalings. Our method is always faster than recomputing from scratch

and is on average 150.682 times faster. The largest speedup is over two orders of magnitude

(from g1⊕ g4) and even on model pairs with high event density (dog ⊕ g2 in Table 6.1), the
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Table 6.1: Average speed-up of the 2D enumerative dynamic update algorithm over 100
random re-scalings. Models in the first column are the model being scaled in each experiment,
while models in the first row are the static (unscaled) model. The bolded figures are the
lowest and highest speed-up values achieved.

dog g1 g2 g3 g4
dog 28.911 115.651 5.592 32.408 6.538
g1 115.651 131.150 432.069 533.141 473.282
g2 15.223 313.710 298.038 161.712 88.916
g3 112.354 152.790 171.825 34.347 79.362
g4 14.519 201.861 45.220 80.230 122.565

(a) Input P , monkey (1204) (b) Input Q, bird (275)

Figure 6.5: Input models for the graphs shown in Figure 6.6

proposed method is faster though the improvement here is more marginal.

The results in Fig. 6.6 show speed-up factors on one of the more complex model pairs,

shown in Figs. 6.5(a) and 6.5(b). The monkey model contains 1204 vertices, and the bird

model has 275 vertices. Their reduced convolution contains 16,425 segments. When the

monkey is scaled along the interval s ∈ (0,∞], there are 56,996,430 critical events.

Fig. 6.7 shows speed-up factors for the neuron⊗̂disc pair shown in Fig. 6.1. There

are 1815 vertices in the neuron model and 32 vertices in the disc model. The reduced

convolution of the neuron and the disc has 3196 segments. There are 56238 critical events

discovered when the disc is scaled across s ∈ (0,∞).

For more complex model pairs, the table shows that the update method outperforms

recomputing the intersections by an order of magnitude in general. Of course, for larger

scale jumps, the bottleneck of this method is in updating the events as P scales. This is
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(a) Speed-up vs. Number of critical events processed
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(b) Speed-up vs. Number of intersections updated

Figure 6.6: Speed-up as a function of critical events and number of intersections updated
as P scales in 3D. The number of events processed is a much better predictor of the speed
gain than the number of intersections updated, as events generally outstrip intersectins in
number by orders of magnitude.

largely due to the high number of events that occur, especially in complex model pairs. In

practice, however, scaling that needs to be done continuously tends to occur over smaller

intervals that are generally quick to update.

The time to compute the scale bounds in 2D is on the order of the time necessary to

compute the intersections using brute force. Asymptotically, the time bound of O(n2) for

the initial computation to identify all intersections and all events is worse than the best-case

bound for the static computation of intersections, Θ(n log n) (with a constant number of
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intersections). However, on average, the time taken to compute the events during dynamic

scaling is a fraction of the time taken to compute the intersections. The monkey/bird model

pair required on average about 140 seconds to build the initial intersections, but only about

28.7 seconds to compute the events. The neuron/circle pair took about 5.3 seconds to

compute its nodes, but only 1.25 seconds to compute the events.

Even though both pre-processing steps are asymptotically similar, on average the time

taken to compute the events is a fraction of the time taken to compute the intersections. The

monkey/bird model pair required on average about 140 s to build the initial intersections, but

only about 28.7 s to compute the events. The neuron/disc pair took about 5.3 s to compute

its nodes, but only 1.25 s to compute the events.

With that in mind, given significant speed-up from our method only a small number of

queries are needed to make up the difference in pre-computation time before it is vastly more

expensive to perform the entire Minkowski sum computation again and again. Additionally, in

this case it is reasonable to treat the initial computation of intersections as a pre-computation

for situations requiring dynamic scaling queries. The advantage of the brute-force method

then is its simplicity of implementation; there are fewer degeneracies to account for.

6.5.2 Results from Uniform and Non-Uniform Scaling in 3D

3D enumerative scaling under uniform scaling

The enumerative approach does not scale well in 3D. In Fig. 6.9, we see speed-up values

for the knot ⊕ clutch model pair by number of events processed. Computing the event

structure took approximately 65 minutes, and computed 8, 427, 881 events on the scaling

domain [0.2, 2]. We see a similar asymptotic behavior in speed-up over recomputing the

line intersections from scratch, as we do in 2D. However, unlike 2D examples, the collision

detection step that we use to filter out boundaries interior to the Minkowski sum boundary

takes about 50% of the total computation time [40]. When we compute total overall

speedup, the enumerative method does not provide a significant increase in speed, especially
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(b) Speed-up vs. Number of intersections updated

Figure 6.7: Speed-up factors for the neuron⊗̂disc pair from Fig. 6.1. Again, number of events
processed is a good predictor for speed-up, while number of intersections processed is not,
though in this case it correlates more consistently than in monkey⊗̂bird. (a) Speed-up by
critical events for neuron⊗̂disc. (b) Speed-up by intersections updated for neuron⊗̂disc.

considering the extremely long time needed to compute the event structure.

Non-uniform scaling for convex polyhedra

We tested the 3D non-enumerative update-based method against computation from scratch

over 100 random non-uniform scaling factors. Note that we have no experimental results for

convex models in the previous sections because scaling the convex models uniformly simply

makes their Minkowski sums scale uniformly. On the contrary, non-uniform scaling provides
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(a) knot, 992 facets (b) clutch, 2116 facets

Figure 6.8: Knot and clutch models.
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Figure 6.9: (a) Speed-up from updating knot⊕ clutch using event enumeration, including
time used for collision detection. (b) Speed-up for updating intersections only.

more complex and interesting behaviors to the Minkowski sums of convex models.

Our results for non-uniform scaling using models in Fig. 3.3 are shown in Table 6.2.

The speedup values shown, computed again as tstatic
tdynamic

, are the average speed-up over 100

queries. Here, we see significant speed-up (between 13 and 94) for computing convex

Minkowksi sums dynamically over manual recomputation across all studied models. Note

these figures are much less varied than the 2D case because the the convolution for convex

pairs is always equal to the Minkowski sum boundary, and so no culling is necessary.
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(a) (b) (c)

(d) (e)

Figure 6.10: Models used in the experiments: (a) ellipse, 960 facets, (b) GS3, 320 facets, (c)
GS4, 500 facets, (d) truncated icosidodecahedron (TI), 236 facets, (e) v-rod, 324 facets.

6.6 Applications

In this section, we discuss two direct applications of the proposed dynamic Minkowski sum

method.

6.6.1 Motion planning and rapid virtual prototyping

Our method has applications to motion planning problems with repeated, scaled objects.

As shown in Fig. 6.11, the example environment contains only 12 scaled objects yet has a

speed-up factor of 38.8 over recomputing the intersections from scratch. Very few scaling

requests are necessary to make up the difference caused by pre-processing the events. As a

result, the efficiency of computing configuration spaces for motion planning environments is
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Table 6.2: Average speed-up of the 3D non-enumerative dynamic update algorithm over 100
random non-uniform rescalings. Models in the first column are the model being scaled in
each experiment, while models in the first row are the static (unscaled) model. There is
no collision detection component here, the values provided are total speed-up. The bolded
values are, again, the lowest and highest speed-up values achieved.

ellipse GS3 GS4 TI v-rod
ellipse 17.231 16.653 32.312 14.636 19.060
GS3 44.475 18.311 17.584 17.423 29.902
GS4 13.109 17.273 13.050 18.026 34.342
TI 18.685 20.332 19.669 24.952 37.960

v-rod 24.471 40.246 40.691 44.757 97.410

greatly enhanced.

Furthermore, the method can also be used for a robot of uncertain size to answer the

following query: “Given a base assumed size for the robot, what is the largest scale factor

for which a given path is valid?” by computing events for the robot’s scaling. Similar to the

contact point computation for intersection events, such events can be computed for segments

of the robot’s path. This allows reporting of the scale of first contact between an obstacle

boundary and the robot’s path. In fact, computing these events is easier than computing the

convolution events, because the robot’s path in this case does not vary with scale.

In rapid prototyping, it is important to minimize waste of both time and materials by

guaranteeing that the parts of any assemblies produced will fit together once they are

constructed from the CAD input. However physical objects are manufactured to tolerance,

while CAD models do not have this limitation. The models can clip through each other,

or produce physical output that is larger than the virtual model specifies. In a particular

problem called part removal, which is similar to the motion planning application discussed

above, one possible method of dealing with this uncertainty in size is to determine tight

bounds on the physical sizes that will actually fit into the assembly without slipping out or

causing unwanted motion. By first computing the upper bound on the scale of the part that

will fit to the configuration in the assembly, we can then find the smallest scale for which the

assembly traps it in place by specifying an escape path through the assembly and computing
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KSEP

WXEVX

(a) Example environment

WXEVX

KSEP

(b) Corresponding C-space

Figure 6.11: An example environment with repeated scaled obstacles. In (a), unfilled
polygons are the obstacles, the filled polygon is the robot. Computing the convolution
intersections for the example environment required 96.811 ms recomputing the intersections
from scratch, but only 2.498 ms using our update method, a speed-up factor of approximately
38.755.

the largest valid part scale for which that path is valid.

6.6.2 Feature detection and shape decomposition

Minkowski sum involving a dynamically-scaling disc or sphere has strong connection to

the medial axis (MA), an important shape descriptor. Follow the notation used in α-shapes

by Edelsbrunner et al. [23], we call a disc and a sphere with diameter α, an α-disc and

α-sphere.

Lu et al. [44] proposed a method to create shape decompositions by detecting the

intersections of convolution between a polygon and a sequence of α-discs. They show that

the vertices in the arrangement of convolution are closely related to well-known features,

such as bridges and pockets, related to the concavity of polygons. More specifically, a bridge

β of a given polygon P is a segment β = vu that lies completely in the space exterior to P ,

where v and u are two points on the boundary ∂P of P . More specifically, a segment vu is a
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bridge of P if and only if v, u ∈ ∂P and the open set of vu is a subset of the complement of

P , and an α-bridge is a bridge between the tangent points of an empty α-disc centered at

an intersection x of the convolution.

By varying the value of α, these α-bridges are born and die, thus the persistence (i.e., life

span) of bridges provide an important measurement to the significance of concave features.

More specifically, when α = 0, the bridges correspond to the reflex vertices and when

α =∞, the bridges correspond to the convex hull edges of the polygon. Interestingly, these

intersections parameterized by α also implicitly trace out the Voronoi Complex (VC) in the

space exterior to P . Thus, the persistence analysis corresponds to measuring the length of

the segments on the VC.

In [44], the convolution and its intersections are computed from scratch when α changes.

As shown in Appendix, there is a straightforward way to modify Section 6.2 to handle the

situation with arcs. This approach allows us to continuously update the concave features

for multiple α values at only critical events. The speed-up for the decomposition of the

polygons shown in Fig. 6.12 using the proposed method is 68.556 over that of repetitive

re-computation of the Minkowski sums.

(a) α = 0.05 (b) α = 0.2 (c) α = 0.4 (d) 0.05 ≤ α ≤ 1

Figure 6.12: The lighter (blue) discs on the outer boundary are convolution intersections,
and the darker (red) discs on the beetle polygon are pocket minima. Corresponding pairs
are connected. Several concave features disappear after α increases from 0.05 to 0.2. Figure
(d) shows the decompositions using persistence analysis for 0.05 ≤ α ≤ 1.
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Chapter 7: Convex mappings of non-convex polyhedra and their

applications

7.1 Introduction

In Chapter 5 we discussed dynamic methods for rotating convex polyhedra, but many inputs

used in practical applications are non-convex. As we have noted, the time complexity for

computing Minkowski sums of non-convex polyhedra can be much larger, by as much as four

orders of magnitude. Therefore, if we can extend our methods to non-convex polyhedra, we

can address a much more general set of inputs and solve a wider array of problems.

In considering how to extend our existing approaches to non-convex polyhedra, a natural

question that arises is: does a convex representation of a non-convex input exist that is useful

for our purposes? It turns out that the answer to this question is that such a representation

does exist. The arrangement of a Gauss map for a given polyhedron is embedded on the

surface of a unit sphere.

Although the sphere itself is a convex object, it does not provide the kind of representation

we originally envisioned for methods like the dynamic Minkowski sum described in Chapter 5,

which accepts only polyhedral meshes. However, it turns out that we can apply these same

methods to the arrangement of the Gauss map with no significant modification.

Measuring interpenetration between two models in collision is an important problem in a

number of applications, including geometric modeling, computer graphics, and algorithmic

robotics. Penetration depth (PD), which is defined as a minimum translation to separate

models in collision [17,20], is a commonly used measure of interpenetration. In dynamics

simulations, assembly planning, robotic motion planning, or six-degree-of-freedom haptic
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rendering, collision happens frequently due to numerical errors, controls errors, discretiza-

tion of motion, or interface latency. Collision states are often considered invalid in these

applications, as materials in non-simulated environments often cannot interpenetrate in this

way, and PD is often used in reverting such an invalid state to a valid, collision-free state; an

approach known as a penalty-based system.

If P and Q overlap, the penetration depth PD(P,Q) is defined as the minimum distance

between the common origin of P and Q, o and the boundary surface of the Minkowski sums,

∂(P ⊕−Q) [20]:

PD(P,Q) = {min ‖q‖ | q ∈ ∂(P ⊕−Q)}. (7.1)

In other words, we can compute PD between P and Q by projecting o onto the surface of

the Minkowski sum ∂(P ⊕−Q).

However, the definition of PD in Eq. 7.1 can lead to a discontinuity in the the gradient of

the PD when o crosses the medial axis of ∂(P ⊕−Q) [2]. This discontinuity is a significant

problem in penalty-based systems [48] that rely on PD, as it can cause the simulation to

become extremely unstable.

Recently, there has been some research into solving the discontinuity problem via a

new PD approach known as continuous penetration depth (CPD). Zhang et al. [56] first

proposed a method for computing CPD using spherical parameterization of configuration

spaces. However this definition can be only be applied when the Minkowski sum of the

inputs is homeomorphic to a sphere with no holes.

Lee and Kim [35] proposed another CPD approach using Phong projection [35]. Unfortu-

nately both approaches are initial forays into this area of research, and they have limited use

in practical applications, since they do not function when a model rotates or contains holes.

However, by using our approach of computing local Minkowski sums dynamically via the

convex map [53], Lee et al. also recently proposed another approach, published alongside

our work in [53], which not only provides the ability to efficiently estimate CPD for models

under rotation and with holes, but also provides more optimal CPD estimation than previous
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methods.

That paper defines a construction method of a convex polyhedron based on the arrange-

ment of the Gauss map. It has since been shown that the construction defined in that paper

is not correct–it is not capable of constructing all possible combinatorial structures of convex

polyhedra. However, by the using the arrangement of the Gauss map directly instead of

relying on the convex map, we are able to avoid these concerns.

We further introduce a modified method of the dynamic Minkowski sum originally shown

in Chapter 5, which uses the arrangement of the Gauss map instead of the convex mapping,

combine with gap-filling to patch the Minkowski sum. Finally, we discuss in more depth

the main results achieved by using our new methods for continuous penetration depth

estimation.

7.2 Dynamic convolution using the arrangement of the Gauss

map

We can use the arrangement of the G to dynamically construct the convolution P ⊗Q of two

arbitrary polyhedra. First we observe that each point G(f) ∈ G(P ) represents a (possibly

empty) set S which is a subset of the faces in P which have the same outward normal

direction as f , we call this set F the correspondence set of f . Similarly, each edge e and vertex

v represents a possibly empty set which is a subset of the edges or vertices, respectively, of P .

We denote these correspondence sets E and V respectively. The following things are true:

1. Given any region G(v) ∈ G(P ), for every v ∈ V , G(v) is wholly contained within G(v),

that is, ∀v ∈ G(P ), ∀v ∈ V : G(v) ⊂ G(v).

2. Given any edge e ∈ G(P ), for every e ∈ E, G(e) is wholly contained within G(e)

(G(e) ⊂ G(e)).

3. Given any face f ∈ G(P ), for every f ∈ F , G(f) = G(f).
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As a consequence, given G(P ) and G(Q), we have that if G(f) ∈ G(P ) is in G(v) ∈

Q, then ∀f ∈ F , v ∈ V , f is compatible with v. Similarly, for intersecting G(eP ) ∈

G(P ), G(eQ) ∈ G(Q), ∀eP ∈ EP , eQ ∈ EQ, we have that eP is compatible with eQ.

The direct correspondence between the labels of the Gauss map overlay of G(P ) and

G(Q) and P ⊗Q enables us to use the techniques from Chapter 5 to update the convolution

dynamically as Q rotates. First, we note that as Q rotates, so does G(Q)–this is a trivial

observation since the outward normals of f ∈ FQ rotate the same as the outward normals of

f ∈ FQ. Secondly, we observe that the degree of incompatibility described in Chapter 5 uses

gradient descent to find corresponding compatible faces through the use of face normals.

This does not require us to have the exact shape of the input; the Gauss map suffices for us

to use the method directly. However, because the inputs are non-convex, this yields not a

dynamic Minkowski sum but a dynamic convolution.

7.2.1 Constructing local Minkowski sums using the convex map

Given an ε-ball, Si and two polyhedra, P and Q, we are interested in finding the local

Minkowski sum boundary ∂M = ∂(P ⊕−Q)∩Si at interactive rates: a task that no traditional

approaches is able to accomplish. In this section, we first present a robust but slower method

that determines ∂M without considering temporal coherence and then the idea of gap filling

is presented to exploit temporal coherence. In our implementation, the first method is used

as a bootstrap step to populate Si and also as the last step in filling the missing facets. This

new approach can also be viewed as a hybrid method that takes the advantages from the

decomposition-based and convolution-based approaches.

7.2.2 Bootstrapping using Bounding Sphere Hierarchy

Constructing the entire Minkowski-sum surface of two polyhedra is prohibitively slow for

real time applications. Here we show that the computational efficiency can be significantly

improved if the computation domain is confined within a small sphere Si. The key idea is to
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cull the computation that generates the facets far from Si . Let S(X) be the bounding sphere

hierarchy of an object X and SX be a node in S(X). The following theorem provides the

main mechanism in the culling procedure.

Theorem 2. Let P ′ = P ∩ SP be a nonempty subset enclosed by sphere SP . Similarly,

Q′ = Q ∩ SQ is a nonempty subset in sphere SQ. If (SP ⊕ SQ) ∩ Si = ∅, then it is guaranteed

that the Minkowski sum (P ′ ⊕ Q′) ∩ Si = ∅. Alternatively, if (SP ⊕ SQ) ⊂ Si, then it is

guaranteed that the Minkowski sum (P ′ ⊕Q′) ⊂ Si.

Note that SP ⊕ SQ is simply a sphere with radius rP + rQ centered at cP + cQ, where rX

and cX are the radius and the center of the sphere X. Theorem 2 implies a culling procedure

that starts from the a pair of root nodes of S(P ) and S(Q). If (SP ⊕ SQ) is neither entirely

inside nor outside Si then all children pairs of SP and SQ are further tested.

The culling procedure can be further optimized near the bottom of the hierarchies. If SP

encloses a single triangle tP of P , and SQ encloses only tQ, then it is not difficult to see that

the smallest bounding sphere of tP ⊕ tQ can be much smaller than SP ⊕ SQ, for example,

when tP and tQ are long sliver triangles perpendicular to each other. Therefore, when the

culling process reaches the bottoms of S(P ) and S(Q), a sphere tightly enclosing tP ⊕ tQ is

constructed and compared to Si.

Given a pair of internal nodes SP and SQ, their enclosed subsets P ′ and Q′ contain

multiple facets and can be convoluted using their gauss maps G(P ) and G(Q). We then

gather the local convolution facets inside Si, and these facets are subdivided and stitched

into 2-manifold patches in a way such that each patch can be classified as either on the

Minkowski-sum surface or in its interior using the method proposed in [41].

7.2.3 Gap filling and Error repair

Let ∂Mi−1 denote the local Minkowski sum constructed in iteration i− 1. As we pointed out

in Chapter 5, the combinatorial structures of ∂Mi−1 may become invalid after Q rotates and

result in convolution errors and Minkowski-sum errors. In this section, we will present a

91



method that constructs ∂Mi for the iteration i by repairing these errors. Note that we do

not make any assumptions regarding the amount of rotation applied to Q. In some sense,

the computation time of our approach is sensitive to the amount to rotation. Larger amount

of rotation between consecutive frames leads to bigger errors, and thus longer computation.

f

v

v'

Figure 7.1: We identify and repair convolution errors. The (blue) face f on the left was
compatible with the vertex v on the right before rotation. After rotation, our method finds
f ’s new associated vertex v′ using gradient decent on the Gauss maps.

Repairing Convolution Errors Removing convolution errors (i.e. incompatible features)

results in gaps in the convolution surface. These gaps need to be filled with new compatible

features. We find these features using the dynamic convolution described in Section 7.2. Both

the convolution errors and the new compatible features can be identified using this method.

We identify these errors using the method described in Section 7.2. Fig. 7.1 illustrates an

example of the dynamic convolution repairs.

The repaired convolution is guaranteed to form 2-manifold patches inside Si. However,

because the repairs start from the remaining valid convolution facets, it is possible that the

recovered facets are incomplete. Fig. 7.2 illustrates such an example. As we will discuss

next, these missing facets may be discovered when we repair the Minkowski-sum errors.

Repairing Minkowski-sum Errors Given the repaired convolution surface, the surface

again can be subdivided into 2-manifold patches and each patch can be classified as either
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Figure 7.2: A red edge of the convolution (left) is identified as an error and repaired (middle).
The ε-ball may contain facets that are not continuously connected to the existing facets. For
example the region illustrated in blue (right).

on the Minkowski-sum surface or in the interior.

Observation 5. A convolution patch classified as Minkowski-sum surface must form a 2-

manifold whose boundaries must be on the surface of Si. An example is shown in Fig. 7.3.

If this property is violated, that means some convolution facets are missing and are not

continuously connected to the existing convolution facets inside the ball (i.e. the example

shown in Fig. 7.2). To identify these missing convolution facets, we let X be a 2-manifold

convolution patch. Assume that there exists at least one point x ∈ ∂X \ ∂Si. We construct

a query ball S(x) centered at x that is furthest away from ∂Si and has radius equal to the

distance between x and ∂Si. Finally, the procedure described in Sec. 7.2.2 is invoked to

construct the surfaces in S(x).

Type Full Brute F. BSH Gap Fill.
Cone/Axes 58.91 16.10 24.23 10.33
Spoon/Cup 1393.61 453.29 69.38 13.91
Fish/Torus 1719.12 584.39 185.82 28.80

Torus/Torus 2842.93 1158.74 390.65 36.06

Table 7.1: Average Minkowski computation time in ms. The second to fourth columns
represent the average running time of computing the full Minkowski sum, local Minkowski
sums using brute force, bounding sphere hierarchy and the gap filling approaches. The
radius of the ε-ball is 50. See Fig. 7.4.

93



Figure 7.3: Minkowski sum of two U shapes. The boundaries of the Minkowski sum (colored
in green) must be on the surface of Si.

In Table 7.1, we compare the proposed dynamic Minkowski sum methods using bounding

sphere hierarchies and gap filling to the method that computes the full Minkowski sum and

a brute force method that computes all the convolution facets without using the dynamic

convolution and uses only the ε-ball to filter the facets outside the ball. The radius of the local

ε-ball used in these experiments is 50. The smallest bounding spheres of the full Minkowski

sums of all examples have radii either equal to or less than 250 in all examples. Example

outputs of the full and local dynamic Minkowski sums are shown in Fig. 7.4.

7.3 Continuous penetration depth estimation using local Minkowski

sums

As mentioned above, Lee et al. [53] used our approaches to provide significant performance

improvements to their continuous penetration estimates through the use of a Phong projec-

tion onto the Minkowski sum surface. We do not delve extensively into the details of their

method here; see [53] for a deep discussion of their method and results. We will, however,

discuss to some extent the results achieved by their method.

The use of dynamic convolutions, local Minkowski sums, and the gap-filling method,
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(a) Cone/Axes (b) Spoon/Cup (c) Fish/Torus (d) Torus/Torus

Figure 7.4: Top: full Minkowski sum. Bottom: local Minkowski sum. The radius of the local
ε-ball is 50. The smallest bounding spheres of the full Minkowski sums have radii equal to or
smaller than 250 in all four examples.

allow a reduced computation time while still achieving the advantages of using the Minkowski

sum surface to compute penetration depth. As noted in their results, the vast majority of

their algorithm’s time is spent computing the Minkowski sum–in many cases the Phong

projection step takes less than 1ms. Therefore a significant amount of value is brought by

the ability to compute dynamic Minkowski sums.

The difference in PD magnitude and smoothness also quite dramatic. The results obtained

via the CPD algorithm are much smoother than those obtained via PolyDepth, and though

not universally so, the CPD results are also often notably lower in magnitude, providing

more optimal PD results as compared to PolyDepth, while still completing at interactive rates.

For details on these results, please see the graphs in the results section of [53].
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7.4 Analysis

We have shown that Gauss maps can be used to efficiently correct the convolutions of non-

convex inputs, thus expanding on our work in Chapters 5 and 6. Based on this work, we have

developed a method to compute local Minkowski sums using the convex map to identify and

repair errors in the Minkowski sum boundary. We have also discuss a practical application of

this new construction in the form of a continuous penetration depth estimation based on the

construction of continuously updated local Minkowski sums, which demonstrates that our

methods yield significant performance gains in solving a problem with wide applications to

motion planning, computer design, haptics, and other geometric problems.
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Chapter 8: Conclusions

The core work in this dissertation is the construction and presentation of new methods for

building dynamic Minkowski sums by partial reuse of intermediate computation from an

initial Minkowski sum. To that end, we have demonstrated a number of new methods for

constructing such dynamic sums, using various strategies such as explicit computation of

the dynamic space, partial or complete construction of the event space, and dynamically

finding and repairing errors in the Minkowski sum surface. In addition, the contribution of

the dynamic convolution and its application to repairing local Minkowski sums has already

yielded a practical application in the form of a new, efficient continuous penetration depth

algorithm.

8.1 Future Research

There remain many open problems in the space of dynamic Minkowski sum operations.

In this section I discuss possible future research directions for dynamic Minkowski sum

operations on general polyhedra.

8.2 Extensions of the dynamic convolution

Combined with the dynamic convolution algorithm presented in Chapter 7 Section 7.2,

extensions of the methods laid out in Chapter 3 to 3D may be viable for producing complete

dynamic Minkowski sums under rotation and non-uniform scaling for general polyhedra,

rather than only convex polyhedra. By using the dynamic convolution to identify surface

errors and rebuilding the convolution surface locally at error sites, it may be possible to
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efficiently re-trim the convolution without running new collision detecting steps on many of

the internal facets of the convolution set.

Remember that in Chapter 3 Section 3.3, we showed that boundary elements not partici-

pating in any closed loop, or that are part of a loop that does not define a properly-nested

area are culled. The same idea functionally applies in three dimensions: faces in the con-

volution will not be on the Minkowski sum boundary unless they are part of a closed shell

which defines a properly-nested volume inside the next outer-most boundary shell. (See

Chapter 3 Section 3.3 for a refresher on what it means to be properly-nested.)

However it is entirely expected that in 3D, this approach still has the problem of yielding

false shells akin to the false loops discussed in that method, which would need to be

eliminated via collision detection. This is the expensive portion of the 2D algorithm defined

in Chapter 3. However, in a dynamic rebuilding of a convolution, it may be possible to use

prior information from the original trimming to identify when these culled faces do not

need to be rechecked. This requires a more in-depth investigation into the properties and

the temporal coherence of false shells than we can delve into in this section, but it bears

investigation in future work.

8.3 Dynamic convolutions under generalized deformations of

the input surfaces

A common geometric change that occurs during the design of objects–robots, part assemblies,

and other such use cases–is the partial or total deformation of a mesh surface. We addressed

a kind of total deformation in the form of model scaling of convex objects in Chapter 6,

however local deformations are much more limited in scope, and can benefit from efficiency

gains by only partially recomputing the Minkowski sum surface. Although at a passing

glance, this may sound quite similar to the work we have done with local Minkowski sums

for the continuous penetration depth application, it is actually quite different. In the work

laid out in Chapter 7, local Minkowski sum patches are generated on a rigid model that has
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undergone global transformation. This is not clearly extensible to a local change to a model

resulting in a computation of a new, complete Minkowski sum.

We can imagine a limited set of primitive deformation operations that we would like

to perform, under certain constraints such as the mesh being manifold and containing a

well-defined volume:

• Translation of a connected component of model vertices

• Extrusion of a connected component of model faces

• Inverting convexity of edges between adjacent faces

• Insertion of a vertex on the surface of the model

• Deletion of a vertex on the surface of the model

These operations create a significant capability to deform the shape of the mesh in very

localized ways. Although the translation of vertices creates errors in ways clearly analogous

to the non-uniform scaling of convex polyhedra discussed in Chapter 6, the remaining

operations may drastically alter the local area of the mesh in ways that do not map well

to the existing notion of errors we have, and for which errors in the sense of the dynamic

Minkowski sum methods discussed already do not provide a significant advantage, since we

are making local patches whose locality is already quite clear to us upon making the update

to begin with.

8.4 Minkowski sums under uncertainty

In environments whose exact geometries are not available in various applications, for

example due to input uncertainty in the case of motion planning problems, or to bound

uncertainty about the volume of the output when pieces are produced in situations of

computer design and rapid prototyping applications, we may wish to compute Minkowski

sums in such a way as to allow us to continue to act on the inputs we do have, and still
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complete motion plans or assemblies that will be guaranteed to fit together. If we are given

one input whose geometry is well-known, and a second input whose geometry is actually

supplied as a set of possible variant geometries of the actual object to be represented. If we

assume that these variants are, in a somewhat loose sense, similar to the actual object, then

they should also be somewhat similar to each other, at least component-wise, and we may

be able to compute Minkowski sum boundaries on these efficiently such that we can make

guarantees about the computed spaces.

Although we may achieve the desired result by unioning the variant geometries together

prior to taking a Minkowski sum, depending on the ways in which the inputs vary, the union

may be much more complicated than the union of the Minkowski sums of its inputs. As a

simplified example, if all inputs are convex but offset from each other, their union may yield

a complex non-convex mesh for which it is much more expensive to compute the Minkowski

sum.

In Chapter 3 we mentioned that Guerrero et al. [29] published a method for edit

propagation based on our 2D Minkowski sum method which considers the concept of edit

distance of two polygons. It may be possible to extend this work to polyhedra, in which case

identifying non-similar patches of variant possible geometries of an uncertain true object

may be simplified, and we may reuse the gap-filling approach to generate local patches from

computation already done by computing the Minkowski sum of a random input from the set,

and then correcting non-similar patches identified by such an algorithm.
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