

Perfective and Corrective UML Pattern-based Design Maintenance with Design
Constraints for Information Systems

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University.

By

Jaeyong Park

Bachelor of Engineering
Sooongsil University, 1991

Master of Science
Yonsei University, 1993

Director: Dr. David C. Rine, Professor
Co-Director: Dr. Elizabeth White, Associate Professor

The Volgenau School of Information Technology and Engineering

Fall Semester 2007
George Mason University

Fairfax, Virginia

ii

Copyright © 2007 Jaeyong Park
All Rights Reserved

iii

DEDICATION

To My Lord

To My Parents Seong-Deok Park and Hee-Sik Yoon,

My Parents-in-law Dong-Sub Yoon and Soon-Ok Lee,
My Wife Haejoung Park and My Son Junwon Joshua Park

 - For Their Endless Love and Support -

iv

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to my Ph.D. research director, Dr. David C.
Rine, for his great guidance, encouragement, and support for completion of my Ph.D.
degree at George Mason University. I would like to thank Dr. Elizabeth White for her
advice and support just in time.

I would also like to thank other members of the dissertation committee, Dr. Robert
Simon, Dr. Duminda Wijesekera, and Dr. Richard Evans for their advice over the course
of this research and dissertation writing.

I would like to thank my lovely wife Haejoung, who has been very supportive and patient
for many years while taking good care of our son Junwon. My son, Junwon, is the source
of my strength and reason to survive and complete my Ph.D. degree. I would like to
thank my parents Seong-Deok Park, Hee-Sik Yoon and parents-in-law Dong-Sub Yoon,
Soon-Ok Lee, for their love and support. I would like to thank my brother Dr. Sooyong
Park in Sogang University in Korea for being a great advisor for my academic and
personal life. I would also like to thank my brother-in-law Dr. KwanKyu Lee in Korea
University in Korea for his great caring of my family.

Finally, I would like to give my special thanks to the small groups in the Korean United
Methodist Church of Greater Washington (KUMCGW) for their prayers and support.

v

TABLE OF CONTENTS

Page
LIST OF TABLES ... IX

LIST OF FIGURES ...X

ABSTRACT... XIII

CHAPTER 1. INTRODUCTION ..1
1.1 RESEARCH SCOPE AND CONTEXT..1
1.2 GENERAL PROBLEM ..4
1.3 SPECIFIC PROBLEM ...5
1.4 RESEARCH CHALLENGES ..6
1.5 RESEARCH APPROACH ..7
1.6 RESEARCH HYPOTHESES ...9
1.7 RESEARCH EVALUATION...10
1.8 RESEARCH SIGNIFICANCE AND RATIONALE ..10
1.9 DISSERTATION ORGANIZATION...13

CHAPTER 2. BACKGROUND AND RELATED RESEARCH..16
2.1 DESIGN PATTERN SPECIFICATION AND MAINTENANCE ...16

2.1.1 Design Pattern Specification...16
2.1.2 Pattern-based Design Conformance ...18
2.1.3 Pattern-based Design Maintenance ..18
2.1.4 Pattern-based Changes ...19
2.1.5 Stability..20

2.2 SOFTWARE MAINTENANCE ...22
2.2.1 Maintenance Process ..23
2.2.2 Maintenance Categories..24
2.2.3 Maintenance Effort..25
2.2.4 Release and Version ..27

2.3 SOFTWARE PATTERN...27
2.3.1 Pattern History ..27
2.3.2 Design Pattern...28
2.3.3 Other Patterns ...30

2.4 THE UNIFIED MODELING LANGUAGE (UML) ...30
2.4.1 Infrastructure...32

2.4.1.1 Layering ... 33
2.4.1.2 Extensibility ... 34

2.4.1.2.1 Profiles.. 35
2.4.1.2.2 New metamodels... 37

2.4.2 Superstructure ...37

vi

2.4.3 Object Constraint Language (OCL)..39
2.4.4 Design Pattern in UML ...41

2.4.4.1 Role.. 41
2.4.4.2 Collaborations .. 42

CHAPTER 3. PATTERN INSTANCE CHANGES WITH UML PROFILE (PICUP) DESIGN
METHOD 45

3.1 THE STEPS OF PICUP DESIGN METHOD..47
3.2 AN EXAMPLE OF APPLYING PICUP WITH THE DPUP FOR THE OBSERVER DESIGN PATTERN......48

Step 1: Initial setup..48
Step 2: Analyze a given UML design...49
Step 3: Analyze a change request ..53
Step 4: Identify design elements to be changed in the given UML design...54
Step 5: Change the design pattern instance resulting in the new design...55
Step 6: Conform the new design changes to the design pattern ..57
Step 7: Create change list..64

3.3 THE DESIGN PATTERN IN UML PROFILES (DPUP) ...65
3.3.1 DPUP template..68

3.3.1.1 Design Pattern (DP) Profile ... 68
3.3.1.2 DesignPatternPrimitive (DPP) Subprofile.. 69
3.3.1.3 DesignPatternStructure (DPS) Subprofile .. 72
3.3.1.4 Constraints for DPS Subprofile.. 73

3.3.2 Tutorial of DPUP ..73
3.3.2.1 Observer_DP profile .. 75
3.3.2.2 Observer_DPP Subprofile ... 75
3.3.2.3 Observer_DPS Subprofile .. 76
3.3.2.4 Constraints for Observer_DPS Subprofile ... 78
3.3.2.5 Instantiating design elements from the DPUP.. 80
3.3.2.6 Metamodel-level Constraints used for structural conformance in design maintenance 82

3.4 THE DPUP FOR THE OBSERVER DESIGN PATTERN...83
3.4.1 Observer_DP Profile...83
3.4.2 Observer_DPP Subprofile...83
3.4.3 Observer_DPS Subprofile ...84
3.4.4 Constraints for Observer_DPS Subprofile ..86

3.4.4.1 Subject ... 86
3.4.4.2 ConcreteSubject ... 87
3.4.4.3 Observer... 89
3.4.4.4 ConcreteObserver... 89

3.5 DESIGN ASSESSMENT WITH METAMODEL-LEVEL UML DESIGN CONSTRAINTS............................90
3.5.1 Assessment Algorithm..90

3.5.1.1 Class assessment .. 91
3.5.1.2 Association assessment .. 92

3.5.2 Assessment tool..94
3.5.2.1 Patient Care Subsystem design assessment.. 95
3.5.2.2 ARENA Subsystem design assessment.. 99

CHAPTER 4. CASE STUDY METHODOLOGY FOR PICUP DESIGN METHOD
EVALUATION 102

4.1 INTRODUCTION ...102
4.1.1 Empirical Studies ..103
4.1.2 Case Study ...106

4.2 CASE STUDY DESIGN FOR PICUP DESIGN METHOD EVALUATION ...108
4.2.1 Design the Case Study...108

4.2.1.1 Propositions for the case study... 108

vii

4.2.1.2 Questions for the case study... 109
4.2.2 Conduct the Case Study...110

4.2.2.1 The unit of analysis .. 111
4.2.2.2 Comparative case study ... 111
4.2.2.3 Potential bias reduction.. 111
4.2.2.4 Questionnaire ... 113
4.2.2.5 Design solution for change requests... 115
4.2.2.6 Conducting changes in design pattern instances by SMEs... 115

4.2.3 Analyze the Case Study Evidence ..116
4.2.4 Develop the conclusions ..119

CHAPTER 5. CASE I: THE LEXI DOCUMENT EDITOR ..121
5.1 CONDUCTING THE UML PATTERN-BASED DESIGN CHANGE 1..123

5.1.1 Step 1: Initial setup..123
5.1.2 Step 2: Analyze a given UML design...123
5.1.3 Step 3: Analyze a change request..125
5.1.4 Step 4 – Step 7 ...126

5.2 CONDUCTING THE UML PATTERN-BASED DESIGN CHANGE 2..127
5.2.1 Step 1: Initial setup..127
5.2.2 Step 2: Analyze a given UML design...127
5.2.3 Step 3: Analyze a change request..128
5.2.4 Step 4 – Step 7 ...129

5.3 CONDUCTING THE UML PATTERN-BASED DESIGN CHANGE 3..130
5.3.1 Step 1: Initial setup..130
5.3.2 Step 2: Analyze a given UML design...130
5.3.3 Step 3: Analyze a change request..132
5.3.4 Step 4 – Step 7 ...133

5.4 THE DPUP FOR THE VISITOR DESIGN PATTERN...133
5.4.1 Visitor_DP Profile...133
5.4.2 Visitor_DPP Subprofile...134
5.4.3 Visitor_DPS Subprofile ...135
5.4.4 Constraints for Visitor_DPS Subprofile ..135

5.4.4.1 Visitor .. 135
5.4.4.2 ConcreteVisitor .. 136
5.4.4.3 ConcreteElement.. 136

5.5 THE DPUP FOR THE BRIDGE DESIGN PATTERN..137
5.5.1 Bridge_DP Profile...137
5.5.2 Bridge_DPP Subprofile...138
5.5.3 Bridge_DPS Subprofile ...139
5.5.4 Constraints for Bridge_DPS Subprofile ..139

5.5.4.1 Abstraction... 139
5.5.4.2 Implementor ... 140
5.5.4.3 Concrete Implementor.. 141

CHAPTER 6. CASE II: THE ARENA GAME SYSTEM...142
6.1 CONDUCTING THE UML PATTERN-BASED DESIGN CHANGE 1..143

6.1.1 Step 1: Initial setup..143
6.1.2 Step 2: Analyze a given UML design...144
6.1.3 Step 3: Analyze a change request..145
6.1.4 Step 4 – Step 7 ...146

6.2 CONDUCTING THE UML PATTERN-BASED DESIGN CHANGE 2..147
6.2.1 Step 1: Initial setup..147
6.2.2 Step 2: Analyze a given UML design...147

viii

6.2.3 Step 3: Analyze a change request..148
6.2.4 Step 4 – Step 7 ...149

6.3 CONDUCTING THE UML PATTERN-BASED DESIGN CHANGE 3..150
6.3.1 Step 1: Initial setup..150
6.3.2 Step 2: Analyze a given UML design...151
6.3.3 Step 3: Analyze a change request..152
6.3.4 Step 4 – Step 7 ...153

6.4 THE DPUP FOR THE ABSTRACT FACTORY DESIGN PATTERN..154
6.4.1 AbstractFactory_DP Profile ...155
6.4.2 AbstractFactory_DPP Subprofile ...156
6.4.3 AbstractFactory_DPS Subprofile..157
6.4.4 Constraints for AbstractFactory_DPS Subprofile...157

6.4.4.1 AbstractFactory.. 157
6.4.4.2 ConcreteFactory ... 158
6.4.4.3 AbstractProduct.. 158
6.4.4.4 ConcreteProduct... 159
6.4.4.5 AbstractFactory_Client .. 160

6.5 THE DPUP FOR THE OBSERVER DESIGN PATTERN..160
CHAPTER 7. THE RESULTS OF THE TWO-CASE STUDY..161

7.1 QUANTITATIVE EVIDENCE ..162
7.2 QUALITATIVE EVIDENCE...163
7.3 CASE STUDY CONCLUSION ...170

CHAPTER 8. CONCLUSIONS...172
8.1 CONTRIBUTIONS..172
8.2 FUTURE WORK..173

APPENDIX A. TERMS ..175

APPENDIX B. THE CASE STUDY (COVER LETTER)...180

APPENDIX C. THE CASE STUDY (PLAN 1) ..182

APPENDIX D. THE CASE STUDY (PLAN 2) ..205

REFERENCES..221

ix

LIST OF TABLES

Table Page
TABLE 3-1 THE STEPS OF PICUP DESIGN METHOD.. 47
TABLE 3-2 COMPARISON BETWEEN STEREOTYPE DECLARATION AND STEREOTYPE USE.. 70
TABLE 4-1 RELEVANT SITUATIONS FOR DIFFERENT RESEARCH STRATEGIES 105
TABLE 4-2 FIVE COMPONENTS OF A CASE STUDY METHODOLOGY................................... 107
TABLE 4-3 REDUCTION OF POTENTIAL BIAS BY APPLYING DIFFERENT ORDER OF THE TWO

RIVAL DESIGN METHODS INTO THE TWO CASES .. 112
TABLE 4-4 CHARACTERISTICS OF SUBJECT MATTER EXPERTS.. 113
TABLE 4-5 QUESTIONS 1 TO 20 ... 113
TABLE 4-6 TYPES OF DESIGN PATTERN DEFECTS ... 116
TABLE 4-7 DESIGN DEFECT COUNTS (DDC) METRIC BY DESIGN PATTERN 118
TABLE 4-8 EVIDENCE LINKED TO PROPOSITIONS ... 119
TABLE 7-1 INFORMATION OF SUBJECT MATTER EXPERTS... 161
TABLE 7-2 DESIGN DEFECT COUNTS (DDC) METRIC ... 162
TABLE 7-3 ANSWERS FOR QUESTIONS 1 TO 4.. 164
TABLE 7-4 ANSWERS FOR QUESTIONS 5 TO 7.. 165
TABLE 7-5 ANSWERS FOR QUESTIONS 8 TO 10.. 166
TABLE 7-6 ANSWERS FOR QUESTIONS 11 TO 18.. 167
TABLE 7-7 ANSWERS FOR QUESTIONS 19 AND 20 ... 168

x

LIST OF FIGURES

Figure Page
FIGURE 1-1 RESEARCH CONTEXT .. 3
FIGURE 1-2 A DESIGN PATTERN AND ITS TWO INSTANCES (OF MANY) 5
FIGURE 1-3 PICUP WITH DPUPS APPROACH .. 8
FIGURE 1-4 DEFECT CURVES IN DESIGN RELEASES .. 12
FIGURE 2-1 SOFTWARE STABILITY MODEL (SSM) ... 19
FIGURE 2-2 THE MAINTENANCE PROCESS ACTIVITIES... 24
FIGURE 2-3 MAINTENANCE EFFORTS... 26
FIGURE 2-4 EFFORT ON PHASES IN SOFTWARE DEVELOPMENT AND MAINTENANCE........... 26
FIGURE 2-5 HIGH-LEVEL DESIGN VERSIONS AND RELEASES .. 27
FIGURE 2-6 THE INFRASTRUCTURELIBRARY PACKAGE ... 32
FIGURE 2-7 (A) THE UML 4-LAYER METAMODEL ARCHITECTURE AND (B) ITS EXAMPLE.. 34
FIGURE 2-8 A PROFILE DECLARATION ... 36
FIGURE 2-9 A PROFILE APPLICATION... 37
FIGURE 2-10 CLASSIFICATION OF THE UML DIAGRAM ... 39
FIGURE 2-11 AN OCL EXAMPLE ... 40
FIGURE 2-12 AN EXAMPLE OF PATTERN DEFINITION ... 43
FIGURE 2-13 AN EXAMPLE OF PATTERN USAGE... 44
FIGURE 3-1 UML PATTERN-BASED DESIGN CHANGE USING PICUP METHOD 46
FIGURE 3-2 PICUP DESIGN METHOD... 46
FIGURE 3-3 A DESIGN PATTERN BOOK BY [GAMMA ET AL 1994]....................................... 49
FIGURE 3-4 DOMAIN OF THE PATIENT CARE SUBSYSTEM (THE TOP) AND THE OBSERVER

DESIGN PATTERN (THE BOTTOM) .. 50
FIGURE 3-5 THE OBSERVER DESIGN PATTERN STRUCTURE (DPS) 51
FIGURE 3-6 THE PATIENT CARE SUBSYSTEM (PCS) CLASS DIAGRAM IN PACKAGE 52
FIGURE 3-7 THE ASSESSMENT RESULT OF FIGURE 3-6... 53
FIGURE 3-8 A CHANGE REQUEST FORM FOR THE PCS ... 54
FIGURE 3-9 REQUIRED DESIGN ELEMENTS INSTANTIATED FROM THE OBSERVER DPUP ... 56
FIGURE 3-10 THE NEW DESIGN CHANGED FROM THE CHANGE REQUEST............................ 56
FIGURE 3-11 ASSESSING THE NEW DESIGN CHANGE WITH THE OBSERVER DPUP 57
FIGURE 3-12 THE ASSESSMENT RESULT OF FIGURE 3-11 (BOTTOM LEFT).......................... 58
FIGURE 3-13 THE FIRST UPDATED DESIGN... 59
FIGURE 3-14 DESIGN ASSESSMENT WITH B2 OCL CONSTRAINT.. 60
FIGURE 3-15 DESIGN ASSESSMENT WITH B3 OCL CONSTRAINT.. 61
FIGURE 3-16 DESIGN ASSESSMENT WITH B4 OCL CONSTRAINT.. 62

xi

FIGURE 3-17 DESIGN ELEMENTS TO BE ADDED INTO THE NEW DESIGN CHANGE................ 63
FIGURE 3-18 THE SECOND UPDATED DESIGN... 64
FIGURE 3-19 DESIGN PATTERN CORRESPONDING TO UML 4-LAYER ARCHITECTURE 66
FIGURE 3-20 DESIGN PATTERN PROFILE ... 68
FIGURE 3-21 DESIGNPATTERNPRIMITIVE (DPP) SUBPROFILE .. 70
FIGURE 3-22 DESIGNPATTERNSTRUCTURE (DPS) SUBPROFILE .. 72
FIGURE 3-23 THE OBSERVER DESIGN PATTERN DESCRIBED IN [GAMMA ET AL 1994] 74
FIGURE 3-24 OBSERVER_DP PROFILES... 75
FIGURE 3-25 OBSERVER_DPP SUBPROFILE .. 76
FIGURE 3-26 OBSERVER_DPS SUBPROFILE .. 77
FIGURE 3-27 A DESIGN PATTERN INSTANTIATION .. 80
FIGURE 3-28 OBSERVER_DP PROFILES... 83
FIGURE 3-29 OBSERVER_DPP SUBPROFILE .. 84
FIGURE 3-30 OBSERVER_DPS SUBPROFILE .. 85
FIGURE 3-31 THE METHOD ASSESSCLASS ... 91
FIGURE 3-32 THE METHOD ASSESSASSOCIATION .. 94
FIGURE 3-33 THE ASSESSMENT RESULT OF FIGURE 3-5... 95
FIGURE 3-34 CHANGED PATIENT CARE SUBSYSTEM DESIGN - VERSION 1 96
FIGURE 3-35 THE ASSESSMENT RESULT OF FIGURE 3-28... 96
FIGURE 3-36 CHANGED PATIENT CARE SUBSYSTEM DESIGN - VERSION 2 97
FIGURE 3-37 CHANGED PATIENT CARE SUBSYSTEM DESIGN - VERSION 3 98
FIGURE 3-38 THE ARENA SUBSYSTEM DESIGN.. 100
FIGURE 3-39 THE ASSESSMENT RESULT OF FIGURE 3-32... 100
FIGURE 3-40 THE ASSESSMENT RESULT WITH ARENA SUBSYSTEM DESIGN - VERSION 1 101
FIGURE 4-1 CONDUCTING UML PATTERN-BASED DESIGN CHANGE................................. 110
FIGURE 5-1 LEXI’S USER INTERFACE ... 121
FIGURE 5-2 DOCUMENT STRUCTURE ... 122
FIGURE 5-3 THE VISITOR DESIGN PATTERN INSTANCE IN LEXI DESIGN 125
FIGURE 5-4 CHANGE REQUEST FORM 1... 126
FIGURE 5-5 CHANGE REQUEST FORM 2... 129
FIGURE 5-6 PART OF THE LEXI DESIGN REUSING THE BRIDGE DESIGN PATTERN.............. 131
FIGURE 5-7 CHANGE REQUEST FORM 3... 132
FIGURE 5-8 VISITOR_DP PROFILE... 133
FIGURE 5-9 VISITOR_DPP SUBPROFILE .. 134
FIGURE 5-10 VISITOR_DPS SUBPROFILE .. 135
FIGURE 5-11 BRIDGE_DP PROFILE ... 137
FIGURE 5-12 BRIDGE_DPP SUBPROFILE ... 138
FIGURE 5-13 BRIDGE_DPS SUBPROFILE ... 139
FIGURE 6-1 THE ABSTRACT FACTORY DESIGN PATTERN INSTANCE IN ARENA DESIGN . 145
FIGURE 6-2 CHANGE REQUEST FORM 1... 146
FIGURE 6-3 CHANGE REQUEST FORM 2... 149
FIGURE 6-4 PART OF THE ARENA DESIGN REUSING THE OBSERVER DESIGN PATTERN... 152
FIGURE 6-5 CHANGE REQUEST FORM 3... 153

xii

FIGURE 6-6 THE ABSTRACT FACTORY DESIGN PATTERN [GAMMA ET AL 1994]............. 154
FIGURE 6-7 ABSTRACTFACTORY_DP PROFILE ... 155
FIGURE 6-8 ABSTRACTFACTORY_DPP SUBPROFILE ... 156
FIGURE 6-9 ABSTRACTFACTORY_DPS SUBPROFILE ... 157
FIGURE 7-1 ANALYTIC GENERALIZATION OF THE CASE STUDY.. 171

ABSTRACT

PERFECTIVE AND CORRECTIVE UML PATTERN-BASED DESIGN
MAINTENANCE WITH DESIGN CONSTRAINTS FOR INFORMATION SYSTEMS

Jaeyong Park, Ph.D.

George Mason University, 2007

Dissertation Director: Dr. David C. Rine

Dissertation Co-Director: Dr. Elizabeth White

Pattern-based design, the use of design pattern during the design process, has become

widely used in the object-oriented community because of the reuse benefits that take less

cost and effort, but result in high quality in software development and maintenance.

However, design pattern defects can be injected in early design without mandatory

control of the evolution of a pattern-based design and assessment of pattern-based

designs after changes. It is crucial to maintain correct designs during early design

maintenance because defects in early design may cause serious damage to software

systems in later software development and maintenance.

Hence, there is a need of a systematic design method for preventing design pattern

defects being injected during pattern-based design maintenance so that the change results

of pattern-based designs conform to the corresponding design patterns. Conventional

Unified Modeling Language (UML) 2.0 design methods do not provide systematic ways

of assessing pattern-based design conformance.

Pattern Instance Changes with UML Profiles (PICUP) design method is developed as an

improved design method for perfective and corrective UML pattern-based design

maintenance and assessment. Design pattern in UML Profiles (DPUP) is developed for

formal specification of a design pattern. DPUPs are used for instantiation, maintenance,

and assessment of UML pattern-based designs. DPUPs, as the main part of PICUP design

method, provide metamodel-level UML design constraints using UML stereotype

notations and metamodel-level Object Constraint Language (OCL) design constraints.

In this research, assessments of pattern-based designs in UML class diagram with the

corresponding DPUPs enforce maintainers to make correct changes of the designs.

Pattern-related information is annotated in pattern-based design using stereotype

notations. Furthermore, the conformance checking of a given UML pattern-based design

can be automated by using the assessment tool.

An explanatory two-case study is used to evaluate the effectiveness of PICUP design

method with DPUPs, and applied to (1) the Lexi document editor and (2) the ARENA

game information system. Questionnaire answers and design pattern defect counts from

the two-case study conducted by subject matter experts support the hypothesis that the

PICUP method is an improved design method ensuring structural conformance of UML

pattern-based designs to the corresponding design patterns during perfective and

corrective design maintenance for information systems.

 1

CHAPTER 1. INTRODUCTION

A software design as an artifact undergoes continuous changes during design

maintenance, and continuous changes to the software design tend to inject design defects

[Pressman 2005]. The defects injected into the software design during design

maintenance result in problematic situations that may, later, cause unexpected effects to

the software system. Hence, software designs need to be systematically and correctly

changed during early design maintenance in order to prevent design defects being

injected. A design defect is defined as any design that does not conform to a specification

(requirements specification) [Dunn 1984; Zeng 2005].

1.1 Research Scope and Context

The term software design contains two meanings: as a verb (process) and a noun

(product). Software design is “a type of problem solving or decision making activity”

[Budgen 2003; Zhu 2005]; “mapping between the problem space and the solution space”

[Dâetienne and Bott 2002]; “a set of documents… typically diagrams, together with

explanations of what the diagrams mean” [Braude 2004].

This research focuses on UML pattern-based designs (product), instantiated from

general-purpose design patterns (creational, behavioral, and structural design patterns

 2

described in [Gamma et al 1994]), as a special approach to design of object-oriented

design (UML design) beginning with UML specifications.

In general, software design (process) has two levels: high-level design and detailed

design. High-level design is also called early or top-level design. High-level UML design

(early UML design) initially begins with a UML specification. High-level UML design is

a process of defining how to solve a given software development problem specification

by using a set of UML diagrams (see Section 2.4.2 for details). A detailed UML design is

a process of refining and expanding the UML diagrams developed in the high-level UML

design.

UML pattern-based designs as high-level design products are depicted on class diagrams

(static model) because class diagrams have the main role for UML design modeling. This

research concerns with static structure of a design represented as UML class diagrams.

Dynamic structure of a design is represented as UML sequence and state diagrams.

The general scope of this research is for the perfective (changing software design) and

corrective (fixing design pattern defects) pattern-based design maintenance in early UML

design to prevent the likelihood of design pattern defects being injected (defects

prevention) as compared to defects detection and removal. Maintainers conventionally

change reusable UML class diagrams (pattern-based designs) without design constraints

 3

of the design patterns during perfective and corrective pattern-based design maintenance

for information systems.

As shown in Figure 1-1, UML pattern-based design begins with a UML specification

(requirements specification) that includes an initial class diagram (use case level). The

initial design solution derived from the specification is represented in UML class

diagrams (a structural design artifact of UML pattern-based design) where general-

purpose design patterns are reused. The initial UML pattern-based design is assessed to

check design correctness. If design pattern defects are found, the design needs to be fixed

before applying design changes (corrective and perfective design maintenance). Design

changes are performed in the UML class diagrams from design change requests without

changing the UML use case diagrams and class diagram specifications in the use case

level.

Figure 1-1 Research context

 4

1.2 General Problem

A wrong design (in any aspect) at the onset makes the design of a software system

solution wrong, no matter how well that design is implemented as a software system. It is

crucial to maintain correct design during early design maintenance; otherwise second

corrections are needed. Maintaining correct design means that a changed design

conforms to both the requirements specification at the starting point of early design and

change requests (requirements specification).

Defects in early design may cause serious damage to software systems in software

development and maintenance later. Design defects can be dangerous, for example, in

safety-critical systems such as air traffic control and power plants [Sommerville 2001;

Daughtrey 2002; Humphrey 2007]. The NASA Mars Climate Orbiter (MCO) spacecraft

($193.1 million of development cost) was destroyed in 1999 due to a software design

defect that caused data conversion failure [NASA 1998, 1999]. One of the MCO’s

subsystems was designed and developed in English units, while its other subsystem was

designed and developed in metric units. The MCO was intended to be 140 - 150 km

altitude above Mars during orbit insertion, but it actually entered at an altitude of 57 km.

The MCO was burned by atmospheric stresses and friction at such low altitude. It

resulted from some spacecraft commands that were sent in English units instead of being

converted to metric units.

 5

Defects introduced into a design during design maintenance decrease design quality. A

design needs to be systematically and correctly maintained to reduce the likelihood of

design defects injection.

1.3 Specific Problem

UML pattern-based design by reusing design patterns is a special kind of object-oriented

design (UML design). The design pattern has the potential to support “best practices and

good designs, and can capture experience in a way that is possible for others to reuse this

experience” [Hillside 2006]. Design patterns, as a way of design concept reuse, have

become popular in modern software design. Design pattern instances are instantiated

from a design pattern by binding domain knowledge in a particular context as shown in

Figure 1-2. Instantiated design patterns (design pattern instances) are building blocks for

designs, which form the basis of pattern-based design. The terms “design pattern” and

“pattern” are interchangeably used in this research.

Figure 1-2 A design pattern and its two instances (of many)

 6

Changing UML pattern-based designs is particularly challenging because the changes

need to conform to not only both (1) the requirements specification and (2) the change

requests (requirements specification), but also to (3) the design patterns used in the

design. Conventional UML designing does not provide a way of assuring UML pattern-

based design conformance to the corresponding design patterns applied.

Design defects can be injected in UML pattern-based design without mandatory control

of the evolution of design pattern instances in UML pattern-based design. Hence, there is

a need of a design method that helps prevent design being introduced during the change

of design pattern instances in early UML pattern-based design, so that the change result

of a design pattern instance conforms to the corresponding design pattern applied.

1.4 Research Challenges

Three significant challenges minimizing defects in UML pattern-based design include:

Informal definition of design patterns is ambiguous in creating and changing instances of

design patterns in a given design context. A means to ensure that a created design from a

design pattern is correct, or a changed design from a given design pattern instance is

correct can be useful. Otherwise, the design is not an instance of a design pattern. Precise,

but easy to understand, specification of design patterns is a challenge to overcome.

 7

Conventional UML pattern-based design annotation lacks a way for changing UML

pattern-based design. During instantiation process of a design pattern, the design pattern

is bound with domain (application) knowledge by replacing original information of the

design pattern. It is difficult to perform a conformance check on a design without having

the original design pattern information. Systematic instantiation process with naming and

notating conventions for UML pattern-based design can help this challenge.

Making design constraints for enforcing correct evolution of UML pattern-based designs

is a challenge because it requires deep knowledge of design patterns. The assessment of

UML pattern-based designs is performed with constraints for design changes.

1.5 Research Approach

To address these challenges, a design method called the Pattern Instance Changes with

UML Profiles (PICUP) is developed. The Design Pattern in UML Profiles (DPUPs) is

developed to be used in PICUP. This PICUP design method with DPUPs helps preserve

the quality of UML pattern-based design during perfective and corrective design

maintenance for information systems by reducing the number of design pattern defects.

PICUP design method provides a means of how to maintain UML pattern-based design

for change requests and what to be carefully considered in changing of design patterns

instances in a design.

 8

The Design Pattern in UML Profiles (DPUP) as the central element of the PICUP design

method provides a formal way of specifying design patterns using UML Profile

mechanism. The Profile is a built-in mechanism in the UML to extend the standard UML

expressions. Pattern-based design instantiated through UML profiles includes the

information of design patterns. The DPUP for a design pattern specifies the design

pattern in not only graphical UML constraints but also Object Constraint Language

(OCL) expressions in metamodel-level.

FB_ControlStr
ategyA

FBApply()

ControlStrategyA

Apply ()

MeasurementSub
ject

getState()
MeasurePlant()

AbstractObserver
_Subject : AbstractObserver
_ObserverData : DataHolder
TheBlackboard : Blackboard

Update()

Controller
_ControlStrategy : AbstractController

Control()

FeedbackSubjectObserver
_FB_Control : AbstractController

getState()
Update()
control()

AbstractController

Apply()
FBApply()

AbstractSubject
_Observers : AbstractObserver
_SubjectData : DataHolder
B lackboard : Blackboard

Attach()
Detach()
Notify ()

Blackboard
DataStore : DataHolder

SetData()
DataHolder()

FeedbackData

ErrorData

MeasureData

InputData

DataHolder

ControlStrategyB

Apply()

FB_ControlStr
ategyA

FBApply()

ControlStrategyA

Apply ()

FB_ControlStr
ategyB

FBApply()

MeasurementSub
ject

getState()
MeasurePlant()

AbstractObserver
_Subject : AbstractObserver
_ObserverData : DataHolder
TheBlackboard : Blackboard

Update()

AbstractSubject
_Observers : AbstractObserver
_SubjectData : DataHolder
B lackboard : Blackboard

Attach()
Detach()
Notify ()

FeedbackData

ErrorData

MeasureData

InputData

Blackboard
DataStore : DataHolder

SetData()
DataHolder()

DataHolder

ErrorObserver
Controller : Controller
Error : DataHolder

Update()
GetInput()
Analyze()

Controller
_ControlStrategy : AbstractController

Control()

FeedbackSubjectObserver
_FB_Control : AbstractController

getState()
Update()
control()

AbstractController

Apply()
FBApply()

ControlStrategyB

Apply()

FB_ControlStr
ategyA

FBApply()

ControlStrategyA

Apply()

FB_ControlStr
ategyB

FBApply()

MeasurementSub
ject

get Stat e()
MeasurePlant()

AbstractObserver
_Subject : Abst ractObserver
_ObserverData : DataHolder
TheBlackboard : Blackboard

Update()

AbstractSubject
_Observers : AbstractObserver
_SubjectDat a : DataHolder
Blackboard : Blackboard

Attach()
Detach()
Notify ()

FeedbackData

ErrorData

MeasureData

InputData

Blackboard
DataStore : DataHolder

SetData()
DataHolder()

DataHolder

ErrorObserver
Controller : Controller
Error : DataHolder

Update()
GetInput()
Analyze()

Controller
_ControlStrategy : AbstractController

Cont rol()

FeedbackSubjectObserver
_F B_Cont rol : AbstractCont roller

getState()
Update()
control()

AbstractController

Apply()
FBApply()

ControlStrategyB

Apply()

FB_ControlStr
ategyA

FBApply()

ControlStrategyA

Apply()

FB_ControlStr
ategyB

FBApply()

MeasurementSub
ject

get Stat e()
MeasurePlant()

AbstractObserver
_Subject : Abst ractObserver
_ObserverData : DataHolder
TheBlackboard : Blackboard

Update()

AbstractSubject
_Observers : AbstractObserver
_SubjectDat a : DataHolder
Blackboard : Blackboard

Attach()
Detach()
Notify ()

FeedbackData

ErrorData

MeasureData

InputData

Blackboard
DataStore : DataHolder

SetData()
DataHolder()

DataHolder

ErrorObserver
Controller : Controller
Error : DataHolder

Update()
GetInput()
Analyze()

Controller
_ControlStrategy : AbstractController

Cont rol()

FeedbackSubjectObserver
_F B_Cont rol : AbstractCont roller

getState()
Update()
control()

AbstractController

Apply()
FBApply()

F B_ControlStr
ategyA

FBA pply ()

C ontrolStrategyA

A pply ()

MeasurementSub
ject

getS tate()
Meas urePlant()

AbstractObserver
_Subject : AbstractObs erver
_ObserverData : DataHolder
TheB lackboard : B lack board

Update()

C ontroller
_Contro lStrategy : AbstractController

Cont rol()

FeedbackSubjectObserver
_FB_Cont ro l : AbstractController

getS tate()
Update()
c ont rol()

AbstractC ontroller

A pply ()
FB Apply ()

AbstractSubject
_Observers : AbstractObs erver
_S ubjec tData : DataHolder
Blac kboard : Blackboard

At tach()
Detac h()
Notify()

Blackboard
DataStore : DataHolder

S etData()
DataHolder()

F eedbackData

ErrorData

MeasureData

InputData

D ataHolder

Figure 1-3 PICUP with DPUPs approach

A goal of this dissertation research is helping maintainers perform design changes,

especially UML pattern-based designs with design constraints. In the given design

 9

example in Figure 1-3, each pattern-based design is instantiated from the Composite

DPUP and the Observer DPUP. Those two pattern-based designs conform to the

corresponding DPUPs respectively. Which means those designs has no design pattern

defects. During design changes, assessments with DPUPs as metamodel-level UML and

OCL design constraints enforce maintainers to correctly change pattern-based designs so

that the change results also conform to the corresponding DPUPs.

The use of DPUPs in the PICUP method enables maintainers to assess UML pattern-

based designs in terms of the structure of their design patterns. This structural correctness

in the change of UML pattern-based design means that the change results of design

patterns instances in UML class diagram conform to their corresponding design patterns.

1.6 Research Hypotheses

The main hypothesis for this dissertation research is that the PICUP is an improved

design method ensuring structural conformance of UML pattern-based designs to the

corresponding design patterns during perfective and corrective design maintenance for

information systems.

There are two sub-hypotheses derived from the main hypothesis for this dissertation

research as follows:

 10

H1: The design change on a design pattern instance resulting from using the PICUP

design method conforms to the corresponding design pattern during perfective and

corrective design maintenance.

H2: The PICUP method results in fewer design pattern defects than a conventional UML

2.0 design method during perfective and corrective design maintenance for information

systems.

1.7 Research Evaluation

To evaluate the effects of the PICUP design method, an explanatory two-case study is

developed with the document editor software [Gamma et al 1994] and the game

information software [Bruegge and Dutoit 2004]. Various sources of evidence such as

subject matter experts’ questionnaire responses, design results, and design defects

resulting from the two-case study support the main hypothesis of this research.

1.8 Research Significance and Rationale

Reducing maintenance cost is a cost effective way of a software lifecycle; because the

life cycle cost of software maintenance is usually greater than the cost of software

development [Sommerville 2001]. Perfective and corrective maintenance this research is

focusing on are the major maintenance as compared to other maintenance such as

adaptive and preventive maintenance.

 11

Software reuse is a major financial advantage over time. Reuse of software artifacts such

as code components, frameworks, and design patterns improve software quality with less

efforts and time. Reusing software artifacts require changes in the features of artifacts

over time. Quality of pattern-based design during maintenance can be preserved by

controlled correct changes that can reduce design defects in releases. Preserving design

stability is important for preserving entire software stability because detecting defects in

test phase needs more effort than preventing defects injection in design phase [Wagner

2006].

Reducing the number of design defects by controlled correct changes is important

because defects prevention, rather than defects detection and removal, can both raise

quality and save time and money [Amey 2002]. Design changes usually take place in the

beginning of each release because many change requests come in at those times due to

new requirements, defects fix, new technologies, and etc. A reduction in the number of

defects by having design correctness saves time and cost by avoiding corrective

maintenance [Takang and Grubb 1996; Grubb and Takang 2003].

Design defects being introduced during the UML pattern-based design change may result

in loss of the quality of UML pattern-based design. Especially, many defects may be

introduced in the beginning of each software release due to many change requests such as

new requirements and defects fix. Preserving the quality of UML pattern-based design

during maintenance means that preventing design defects from being introduced during

 12

the change of design pattern instances. Design defects prevention starts with reducing the

likelihood of design defects being introduced.

Figure 1-4 Defect curves in design releases

In this dissertation, it is asserted that the number of design defects reported in the PICUP

curve is closer than the number of design defects reported in conventional ad hoc UML

curve to the idealized curve as shown in XFigure 1-4X, which is based on software defect

curves [Pressman 2005]. The curve of design defects should be flattened, but accrual

curve increases due to changes. As changes are made, the possibility of design defects

injection becomes greater. A series of changes may cause the curve to spike. PICUP

method reduces the number of design defects by enforcing change constraints compared

to the existing (actual) curve in design releases.

 13

Although the design pattern specification in UML/OCL (formal) specifies part of the

design pattern description (informal) [Wirfs-Brock 2006], UML/OCL based design

pattern specification approach has the following three benefits [Kim 2004]. This research

1) enables UML support tools to use design patterns, 2) provides precise design and

allows communication among developers, and 3) enables code generation in tools. The

use of formal methods reduces testing and reworking while yielding low-defect software

[Jones et al 2006].

This research primarily benefits the software/design maintainers who change design

pattern instances in design. Design tool developers, such as IBM Rational Rose Modeler

and Borland Together, can embed this method into their tools. Quality assurance

professionals can also improve software quality by preventing design defects injection.

Test managers/engineers may also indirectly benefit because design correctness reduces

test efforts.

1.9 Dissertation Organization

This dissertation is organized with the following chapters.

Chapter 1 introduces the research problem, challenges, solution approach, and research

evaluation. Also, the reason why this research is important is advocated.

 14

Background and related research work is summarized in Chapter 2. To help understand

this research; pattern, the UML, and maintenance are explained.

Chapter 3 describes the Pattern Instance Changes with UML Profiles (PICUP) method as

an improved design method used during perfective and corrective design maintenance for

information systems. PICUP method is based on UML Profile with metamodel-level

OCL expressions. PICUP method describes not only how to change pattern-based design,

but also how to specify and instantiate design patterns to UML class diagrams.

Chapter 4 presents the case study methodology for evaluating the effects of using PICUP

design method. It provides the design concept of the case study and steps in the design

concept. Furthermore, it depicts detailed steps for PICUP design method evaluation

through the explanatory two-case study.

The explanatory two-case study applied to the PICUP is described in Chapter 5 (the Lexi

document editor) and Chapter 6 (the ARENA game information system). This

explanatory case study evaluates the PICUP that is an improved design method among

conventional UML design methods for the change of UML pattern-based design.

This improvement is measured; by design defects found during design changes using the

two rival design methods (the PICUP and the conventional UML 2.0), by measured

 15

severity of design defects found, and by questionnaire answers from the four subject

matter experts (SMEs).

The results of the two-case study are summarized and analyzed in Chapter 7. A set of

evidence from the two-case study supports the main hypothesis of this dissertation

research.

Chapter 8 concludes this dissertation research with contributions and future work.

 16

CHAPTER 2. BACKGROUND AND RELATED RESEARCH

As related research work, design pattern specification and pattern-based design

maintenance are summarized. As background, software pattern and the Unified Model

Language (UML) with Object Constraint Language (OCL) are described in this chapter.

2.1 Design Pattern Specification and Maintenance

2.1.1 Design Pattern Specification

Lauder and Kent [Lauder and Kent 1998] propose design pattern specification using

graphical constraint diagrams. Design patterns are presented in three layers of models:

role-model, type-model, and class-model in the form of further refinement. A role-model

describes highly abstract elements of a design pattern. A type-model refines a role-model

in which domain realizations of the role-model are specified. A class-model further

refines a type-model in terms of concrete classes. Even though their approach for design

pattern specification is a basis of other related researches, their graphical expression is

not currently integrated with the UML.

Guennec and his colleague [Guennec et al 2000] use collaborations in the UML 1.3

Metamodel-level to model design patterns. They suggest that a design pattern can be

 17

expressed with metamodel-level constraints. They provide a precise description of how

participants in a design pattern should collaborate as meta-collaborations. They do not

address behavioral aspects in the UML and the OCL.

France and Kim [France et al 2004; Kim 2004] represent Role-Based Metamodel

Language (RBML) describing for design patterns in the UML 1.5 and 2.0 with the OCL

making up for the weaknesses of previous research for design pattern specification. They

specify the structural and behavioral aspects of a design pattern in UML metamodel with

OCL metamodel-level constraints. The concept of ClassifierRole that RBML uses has

been superseded in UML 2.0.

UML Profile approach as an extension of UML metamodel is used to specify design

patterns. Mak specifies design pattern in the Profile of UML 1.5 [Mak et al 2004]. Dong

uses UML Profile to visualize design patterns [Dong and Yang 2003]. Architecture

structured in levels for defining design patterns is proposed [Debnath et al 2006].

In the literature [Guennec et al 2000; Kim et al 2003; France et al 2004] pattern

specifications are represented in a UML Metamodel level with a set of constraints in the

Object Constraint Language (OCL). The above prior researchers specify design patterns

in UML 1.x and UML 2.0. They do not provide a design method for pattern-based design

maintenance.

 18

2.1.2 Pattern-based Design Conformance

Kim and Shen propose the conformance of pattern-based design based on Role-Based

Metamodel Language (RBML) and develop a prototype tool called RBML Conformance

Checker embedded in IBM Rational Rose with the limitation of Object Constraint

Language (OCL) implementation [Kim 2005; Kim and Shen 2007]. Their work

demonstrates how instantiated elements conform to their corresponding metamodel

elements. It is not stated how to find a particular element in a pattern-based design with

respect to its corresponding metamodel-level element in the pattern.

2.1.3 Pattern-based Design Maintenance

Fayad and his colleague propose an informal Software Stability Model (SSM) [Fayad and

Altman 2001] classifying objects in the system [Fayad 2002c; Wu et al 2002; Hamza et

al 2003]: EBT, BO, and IO. The EBTs and BOs do not change easily, but the IOs are

easily changed without, through informal illustrative examples, concerning about

destroying the whole structure of the model such that the system is stable. Design

patterns in the BO are not explicitly specified. That research does not specify how to

make valid changes to objects in the IOs because of the lack of explicit change

constraints. Even though a SSM keeps software design stable, it increases software

design complexity by inheritance mechanism.

 19

Specific Problem
(Requirements)

Business
Objects

(BO)

Industry Objects
(IO)

Enduring
Business Theme

(EBT)
Design Implementation

Figure 2-1 Software Stability Model (SSM)

2.1.4 Pattern-based Changes

[Vokac 2004] had empirically analyzed C++ source codes (500,000 LOC) over three

years (153 program revisions), and then addressed that the defect rate of design patterns

and their source code complexity are correlated. This research rejected conventional

claim that a pattern-based design will have fewer design defects. Vokac asserted that

design patterns have higher defect rates than the average in the product, unless they are

carefully designed and maintained.

[Bieman et al 2003] tested five software systems to identify change proneness of UML

pattern-based design. The result of the case study showed that classes involved in design

patterns are changed more often than other classes in UML pattern-based design from

four of the five software systems.

 20

[Gueheneuc 2004; Moha et al 2005] developed a semi-automatic reverse engineering tool

(Ptidej) and extracted design patterns from java program (DrJava) using the Ptidej tool.

They also proposed four types of design pattern defects. Missing and incorrect fact of

design patterns are the same type of design pattern defects that this dissertation research

defines.

[Gabriela and Richard 2002] models for verifying compound design patterns in a design.

Compound design patterns means that more than one design patterns are overlapped.

Design constraints are used for matching a design with a particular design patterns

among compound design patterns.

2.1.5 Stability

Software stability as a quality attribute of maintainability can be defined as a software

system’s resilience to unexpected effect of changes in the original requirements

specification [Elish and Rine 2003; Brugali and Reggiani 2005]. [ISO/IEC 9126-1 2001]

describes “the capability of the software product to avoid unexpected effects from

changes of the software”. It is a sub-attribute of maintainability that is an attribute of

software quality model. It refers to an attribute of software to operate, as expected, in

changes for stakeholders’ requirements and new technologies. Martin describes stability

as an attribute “to make software stable in the presence of change” [Martin 1997].

 21

Design stability focuses on “software design” (shortly design) and is described as the

capability of design to avoid unexpected effects from changes of design. Elish

categorizes design stability into structural, behavioral, and creational aspects in object-

oriented design [Elish 2005]. Three aspects are as follows:

• Structural stability: the stability of design structure (form),

• Behavioral stability: the stability of design behavior (function), and

• Creational stability: the stability of design creation (instantiation).

Design is a developer’s decisions made in time. The modification of a design over time

can cause the design to be unstable. There is a need to change the status of a design from

unstable to stable. More specifically, when moving from release i to release i+1, a correct

high-level design of release i should be preserved and extended in the high-level design

of release i+1. And, the resulting high-level design of release i+1 should also be correct.

There are many approaches minimizing design instability with different aspects: 1)

minimizing ripple-effects and 2) minimizing defects injection. Design stability with

ripple-effect is concerned with how to minimize or localized changes in a design.

Structural/behavioral design stability is concerned with remaining design

structurally/behaviorally to be stable in the modification of the design in the original

requirements specification [Elish 2005; Elish and Rine 2005]. Elish’s research [Elish

2005] and Fayad’s Software Stability Model (SSM) [Fayad and Altman 2001; Fayad

2002a, 2002b] are examples of the preservation of design stability with the ripple-effect

 22

aspect. Design stability with conformance is concerned with how to structurally and/or

behaviorally change the design in a way that it conforms both to the change requirements

and the original requirements. This research is an example of structural conformance.

Pattern-based design stability focuses on pattern-based design and is described as the

capability of design to avoid unexpected effects from changes of design pattern instances.

Design by using design pattern instances (or design by reusing design patterns) means

that the element of design consists of design pattern instances.

Design pattern instances stability means the capability of design to preserve the original

intent of a design pattern when instances of the design pattern undergoes continuously

change in the designs of successive releases so that the changed results of the design

pattern instances conform to the design pattern. It implies that instances of a design

pattern within the high-level design should be changed correctly. Otherwise, design

defects may occur due to the incorrect changes of design pattern instances in a design.

Design enforcement [Vienneau and Senn 1995] in the event of changes of design pattern

instances can ensure the design pattern instances to be correctly changed by design

constraints.

2.2 Software Maintenance

Maintenance is “the process of modifying a software system or component after delivery

to correct faults, improve performance or other attributes, or adapt to a changed

 23

environment” [IEEE STD. 610.12 1990]. Software maintenance is performed in order to

deliver versions or releases of correct software to developers, maintainers, or users. In all

phases of a software lifecycle, including design, maintenance is performed on not only

programs, but also documentations of the programs produced from the software

development cycle. Therefore, the maintenance process includes software development

process’ phases such as requirements, design, coding, and testing in general, but it is

different from the initial software development process.

2.2.1 Maintenance Process

Although there are many different software lifecycle phase processes, each generally

includes five common activities: analysis, design, implementation, testing, and

maintenance. The maintenance process starts after the initial software product, version,

or release is delivered to the user. The activities of the maintenance process model in

XFigure 2-2X are described in [IEEE STD. 1219 1998]. The activities of the maintenance

process are similar to the activities of the initial software development process model, but

some detailed activities of the maintenance process are added such as program

understanding (classification & identification) and review/acceptance.

 24

Analysis

Design

Acceptance
Test

Delivery Implementati
on

System Test

Classification
&

Identification

Change Request

Figure 2-2 The Maintenance process activities

2.2.2 Maintenance Categories

There are four maintenance categories as follows:

• Perfective maintenance: Modification of a software system to meet new user or

developer requirements for software updates and enhancements.

• Adaptive maintenance: Modification of a software system to reflect a known

change in the software environment.

• Corrective maintenance: Modification of a software system to fix known defects.

• Preventive maintenance: Modification of a software system to detect and correct

potential defects.

 25

Maintenance was initially categorized by Lientz and Swanson as perfective, adaptive,

and corrective maintenance, and then, later, as four [IEEE Computer 2004]. All of the

preceding takes place when there is a known requirement for change. Warren [Warren et

al 1999] insist that there is the fifth maintenance added on above four maintenance

categories as follows:

• Speculative maintenance : Modification of a software system to check broken

links to web sites and fix them if possible

2.2.3 Maintenance Effort

Proportional software maintenance cost is from 50% to 90% of its total software cost

(software development and maintenance cost) [Koskinen 2003], which means that

software maintenance is more important than initial software development in respect to

cost and needs to be further studied for reducing the cost.

There are many factors to calculate maintenance cost. One of the factors is maintenance

effort represented as time spent. Maintenance effort varies depending on software to be

maintained. XFigure 2-3X shows the distribution of maintenance effort from 487 data

processing organizations researched in early 1980s [Grubb and Takang 2003; Pfleeger

and Atlee 2006]. There is no clear-cut distinction between these types of maintenance. A

misconception about maintenance is that it is bug fixing (corrective maintenance). But

major maintenance includes software updates and enhancement (perfective maintenance),

not just bug fixing.

 26

Corrective
20%Adaptive

25%

Perfective
50%

Preventive
5%

Figure 2-3 Maintenance efforts

Efforts in stages in software development and maintenance is shown in XFigure 2-4X

[Grubb and Takang 2003]. More effort is required in early phases such as requirements

and design in software maintenance, whereas relatively less effort is required in early

phases in the initial software development.

Figure 2-4 Effort on phases in software development and maintenance

 27

2.2.4 Release and Version

A Release refers to a particular version of a software product that is made available to

users [ISO 12207 1999], for example, high-level design releases shown in XFigure 2-5X. A

version refers to an instance of a software product that differs from other instances of the

software product [Elish 2005]. XFigure 2-5X shows high-level design release i to release i+1

where i = 1..n and version 1 to version 1+i between the releases.

Figure 2-5 High-level design versions and releases

2.3 Software Pattern

2.3.1 Pattern History

Software patterns have been influenced by architectural patterns of the bridges, buildings,

and roads architect Christopher Alexander. He said “Each pattern describes a problem

which occurs over and over again in our environment, and then describes the core of the

solution to that problem in such a way that you could use this solution a million times

over without doing it the same way twice” [Alexander et al 1977; Gamma et al 1994].

 28

Cunningham and Beck adapted from Alexander’s architectural pattern concept in

buildings and towns [Alexander et al 1977; Alexander 1979] to introduce the notion of

design pattern for developing Smalltalk GUI design [Cunningham and Beck 1986].

Design patterns became popular in software engineering by Erich Gamma, Richard Helm,

Ralph Johnson, and John Vlissides (also called The Gang of Four or shortly the GoF)

who spelled out 23 design patterns as a catalog of design patterns [Gamma et al 1994].

2.3.2 Design Pattern

A design pattern is a general recurring solution to a commonly recurring problem in a

context and it allows successful designs to be reused. Lea describes the extended

definition for a design pattern as follows [Lea 2000]:

• Context refers to a recurring set of situations in which the pattern applies.

• Problem refers to a set of forces -- goals and constraints -- that occur in this

context.

• Solution refers to a canonical design form or design rule that someone can apply

to resolve these forces.

Design patterns as proven building blocks benefit by (1) reusing design early in the

development lifecycle, (2) reducing development effort and cost, (3) increasing software

quality, and (4) providing a common vocabulary for design among different stakeholders

such as designers and maintainers.

 29

Gamma et al called “Gang of Four” (GoF), for example, describes 23 patterns in a

consistent format having 13 sections: such as intent, structure, participants, and sample

implementation [Gamma et al 1994]. Even though Gamma et al suggests the description

formation of patterns, generally, pattern authors use their own format.

Three different types of patterns used in design are extracted from [Appleton 2000].

• An architectural pattern expresses a fundamental structural organization or schema

for software systems. It provides a set of predefined subsystems, specifies their

responsibilities, and includes rules and guidelines for organizing the relationships

between them.

• A design pattern provides a scheme for refining the subsystems or components of a

software system, or the relationships between them. It describes commonly recurring

structure of communicating components that solves a general design problem within a

particular context.

• An idiom is a low-level pattern specific to a programming language. An idiom

describes how to implement particular aspects of components or the relationships

between them using the features of the given language.

The difference between these three kinds of patterns is in their corresponding levels of

abstraction and detail. Architectural patterns are high-level strategies that concern large-

scale components and the global properties and mechanisms of a system. They have

wide-sweeping implications which affect the overall skeletal structure and organization

 30

of a software system. Design patterns are medium-scale tactics that designs some of the

structure and behavior of entities and their relationships. They do not influence overall

system structure, but instead define micro-architectures of subsystems and components.

Idioms are paradigm-specific and language-specific programming techniques that fill in

low-level internal or external details of a component's structure or behavior.

2.3.3 Other Patterns

When software developers think of patterns, the first thing that comes to their minds is

the design patterns. It is because the design patterns of the GoF are popular in software

engineering. Analysis patterns [Fowler 1997] by Flowler describe patterns used in the

software requirements analysis phase. Anti-Patterns are based on design patterns, but

they are “negative solutions that present more problems than they address” [McCormick

1998].

2.4 The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is defined in UML 2.0: Infrastructure

specification [OMG 2005a] as:

“The UML is a visual language for specifying, constructing, and documenting the

artifacts of systems. It is a general-purpose modeling language that can be used

with all major object and component methods, and that can be applied to all

 31

application domains (e.g., health, finance, telecom, aerospace) and

implementation platforms (e.g., J2EE, .NET).”

The UML is the de facto standard diagramming notation by the Object Management

Group (OMG). OMG is a non-profit consortium that produces and maintains computer

industry specifications. UML 2.0 is current specification published by OMG.

UML 2.0 standard consists of four parts as following:

• Infrastructure: defines the foundational language constructs (infrastructural

constructs) for UML the user level modeling constructs described in

Superstructure below.

• Superstructure: defines the user level modeling constructs. It was called as the

UML specification in UML version 1.x.

• Object Constraint Language (OCL): defines constraints in UML models by

specifying pre- and post-conditions, invariants, and other conditions.

• Diagram Interchange: defines an extension to the UML metamodel for allowing

UML models to be exchanged and manipulated.

In this section the above four parts are described with the viewpoint of this research,

which is design pattern specification and pattern based design evolution. Hence, the

research related issues are only presented from mainly UML 2.0 specification. For details

of UML 2.0, see http://www.omg.org/uml.

 32

2.4.1 Infrastructure

The infrastructure of the UML is defined by the InfrastructureLibrary as shown in XFigure

2-6 X. It defines a metalanguage core to define metamodels such as UML and MOF. It

provides UML extensibility capabilities creating UML dialects through Profiles and new

languages as described in Section X2.4.1.2X.

InfrastructureLibrary

Core

Profile

Figure 2-6 The InfrastructureLibrary package

A metamodel is a model of a modeling language [Mellor 2004]. When we say UML, it

indicates a language for software modeling, which is the UML metamodel. In the

meaning of narrow concept, the UML metamodel defines the structure of UML model

[Rumbaugh et al 2005]. An UML model is captured using a metamodel. The metamodel

itself is expressed in UML [Rumbaugh et al 2005]. In the meaning of broad concept, the

UML metamodel defines the relationship between a child level model (ex, level i) and its

parent level model (ex, level i+1) that defines the child level model [OMG 2005a].

 33

There are six UML metamodel design principles: Modularity, Layering, Partitioning,

Extensibility, and Reuse. Among them layering and extensibility are summarized in the

following subsections.

2.4.1.1 Layering

The UML metamodel is layered in a UML 4-layer metamodel architecture [OMG 2005a]

as shown in XFigure 2-7X. User objects at M0 are instances of model elements in a model at

M1. A model at M1 is an instance of a metamodel at M2. A model is an abstraction of a

software system. A model is a user specification for requirements in a problem domain. A

metamodel at M2 is an instance of a meta-metamodel at M3. A metamodel defines the

structure of models through use of entities such as class, attribute, operation, and

relationship. In other words, a metamodel defines a language specification for models.

UML is an example of a metamodel. A meta-metamodel is structured through the use of,

for example, metaClass, metaAttribure, metaOperation, and metaRelationship. Meta-

Object Facility (MOF) is an example of a meta-metamodel.

 34

M3 Metametamodel

 M2 Metamodel

 M1 Model

instanceOf

 M0 User Object

instanceOf

defines

MOF

UML

instanceOf

defines

defines

User Model

Run-time
instances

Class

ClassAttribute Instance

instanceOf instanceOf instanceOf

+title: String

Video

aVideo

title=”2001: A Space Odyssey

: Video

instanceOf
instanceOf instanceOf

snapshot

instanceOf

instanceOf

classifier

(a) the four-layer metamodel architecture (b) an example of (a)

Figure 2-7 (a) The UML 4-layer metamodel architecture and (b) its example

2.4.1.2 Extensibility

For the purpose of a modeling beyond the UML standard modeling, two extensibility

mechanisms on a UML metamodel are provided in UML as follows [OMG 2005a,

2005b]:

1) Profile approach: extends by creating a new dialect of the UML metamodel without

changing the UML metamodel itself.

2) New metamodel approach: extends by creating a new UML metamodel based on the

existing UML metamodel. In other words, the resulting UML metamodel is new concepts

of metamodel added on the existing UML metamodel.

Above two approaches are metamodel extension mehanisms specified in UML

metamodel level (M2).

 35

2.4.1.2.1 Profiles

The profile is a mechanism used to tailor existing metamodels (UML metamodel in this

case) to adapt it to a specific domain and technology. The profile is an extension

mechanism by specializing the UML metamodel without modifying the UML metamodel.

This is called a lightweight extension mechanism because it is to use UML’s built-in

extension mechanism, which means the UML metamodel is not changed. The benefit of

using the profile is that modification of the existing UML support tools is not required

[Oquendo 2006], which requires a heavy process.

A profile is a package with the keyword «profile» in front of the name of the package.

XFigure 2-8X shows an example of profile declaration named as CarManufacturer. Class is

a metaclass specified in the UML metamodel. Stereotype Vehicle is extended from

Class, which means it is a metaclass. Stereotype Screen is also extended from Interface

metaclass. In addition, a profile contains a set of constraints in metamodel level. A

stereotype is the primary extension construct in a profile declared in metamodel level.

Stereotypes are expressed in a class symbol with «stereotype» keyword in a profile.

 36

Figure 2-8 A profile declaration

Profiles are usually defined and stored in libraries, and then used in a user model. The

CarManufacturer profile is applied to the AssemblyLine package in the model level

(M1) XFigure 2-9X. The keyword «apply» is shown on the dependency arrow. The keyword

string, for example, Vehicle is surrounded by guillemets (or French quotation marks) («

») in front of the name of the model element Sedan.

 37

Figure 2-9 A profile application

2.4.1.2.2 New metamodels

The other way is to directly extend the UML metamodel by creating new concept and

notation. The benefit of using this way is that a modeler can freely create new modeling

concepts that the UML do not support. But this UML extension mechanism, as compared

to the profile, requires an extra plug-in on the existing UML tools because the resulting

metamodel is not compliant to UML [Oquendo 2006]. That is why it is called

heavyweight extension.

2.4.2 Superstructure

Constructs of UML 2.0 Superstructure consist of 13 structures and behavior diagrams

depicted in XFigure 2-10X. The brief description of each kind of diagram is given as follows

[Fowler 2004]:

 38

(1) The structure diagrams depict the static aspects of the software system that satisfy the

structure of the software system’s requirements.

• Class diagram describes class, features, and relationships.

• Object diagram shows an instance of a class diagram at a time (unofficially in

UML 1).

• Component diagram describes structure and connections of components.

• Composite structure diagram presents runtime decomposition of a class (new to

UML 2).

• Package diagram shows compile-time hierarchic structure (unofficially in UML

1).

• Deployment diagram depicts the implementation structure of a system in terms of

nodes.

(2) The behavior diagrams depict the dynamic aspects of the software system that satisfy

the behavior of the software system’s requirements.

• Use Case diagram describes how users interact with a system.

• Sequence diagram depicts interaction between objects, emphasizing on sequence.

• Communication diagram presents interaction between objects, emphasizing on

links (named as collaboration in UML 1).

• Interaction Overview diagram shows mix of sequence and activity diagram. It

presents an overview of the control flow among interaction diagrams (new to

UML 2).

 39

• Timing diagram describes interaction between objects, emphasizing on timing

(new to UML 2).

• Activity diagram shows procedural and parallel behavior with the flow of control

through steps of computation.

• State Machine diagram depicts how events change an object over its life.

Diagram

Structural
Diagram

Behavior
Diagram

Class
Diagram

Component
Diagram

Package
Diagram

Object
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Use Case
Diagram

Activity
Diagram

State
Machine
Diagram

Interaction
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Timing
Diagram

Communicat-
ion Diagram

Figure 2-10 Classification of the UML diagram

2.4.3 Object Constraint Language (OCL)

The OCL is an expression language for object modeling, especially in the UML,

standardized by The OMG [Warmer and Kleppe 2003]. The OCL is used to specify the

details of elements of the UML [Mellor 2004]. The types of the OCL are as follows:

 40

• Invariant is a constraint that must always be met by all instances of the class,

type, or interface.

• Pre- and post-condition are constraints that must be true when the operation is

executed before (pre) and after (post).

Figure 2-11 An OCL example

An example of the OCL in XFigure 2-11X is a simple class diagram in the UML having the

relationship between Person and Company classes. This diagram does not show that the

age of all employees who work for Company must be in between 18 and 65. As a

supplementary expression of the UML, the OCL expression is used as follows:

context Company

 inv workingAge: self.employees.forAll(Person p | p.age >= 18 and p.age <=

65)

The ‘context’ of the above OCL expression specifies the entity for which the OCL

expression is defined. Next to the context, ‘Company’ is the contextual type of the

expression. The ‘inv’ is an invariant expression type indicator that states a condition that

 41

must always be met by all instances of the type for which it is defined. The invariant

must be true and is named ‘workingAge’ in this example. The ‘self’ is used explicitly to

refer to the contextual instance. Next to the ‘self’, the ‘employees’ is used as the opposite

associate-end from the ‘Company’ in order to refer to ‘Person’ class and its properties.

Then for all instances of ‘Person’ their ages must be in between 18 and 65.

2.4.4 Design Pattern in UML

A design pattern describes interactions among (internal) participants. The participants

play their roles. The participants are classes. Roles are presented in a collaboration

[OMG 2005b].

2.4.4.1 Role

There are many different role concepts and expressions in computer science. In computer

security field, roles describe the authorities and responsibilities assigned to a user to

access resources [Sandhu et al 1996]. In software agent field, roles are characteristics and

expected social behaviors of an individual agent [Kendall 1999].

Riehle describes the relationship between a role and an object as “objects play roles”.

Thus, a single object can play several roles, and several objects can play the same role.

Usually, the roles an object can play are statically defined and implemented by the

object’s class” [Riehle 1997]. [Booch et al 2005] presents a role as “the behavior of an

 42

entity participating in a particular context.” Mosse presents various role modeling such as

role association modeling and role class modeling in object-oriented analysis and design

[Mosse 2002].

Many role modeling techniques have been proposed [Reenskaug et al 1996; Riehle 1997,

2000; Mosse 2002] because modeling techniques and languages are based on objects, not

roles. Role expressions for design patterns have adapted to and evolved in the UML as

the UML evolves. UML defined a role as a ClassifierRole. In UML 1.x [OMG 2003], a

classifier role is defined as “a specific role played by a participant in a collaboration. In

the metamodel a ClassifierRole specifies one participant of a Collaboration; that is, a role

Instances conform to.”

In UML 2.0 [OMG 2005b], the concept of ClassifierRole has been superseded without

loss of modeling capabilities in UML. It is because a collaboration is a kind of classifier.

The contents of a collaboration is specified as its internal structure relying on roles and

connectors.

2.4.4.2 Collaborations

A collaboration represents the structural and behavioral aspects of collaborating elements

(roles), but does not have its own internal structure. Instead, a collaboration just

references or uses classifiers (usually classes), which are specifically defined in other

diagrams (usually class diagram). Therefore, details of the actual participants are

 43

suppressed in a collaboration. The benefits of collaboration for design patterns are 1) to

express role collaboration in a design pattern and 2) to separate design pattern

participants from other design elements for reuse.

A design pattern is defined in a collaboration. UML 2.0 Superstructure [OMG 2005b]

does not clearly specify a design pattern expression and its instance expression in a

collaboration.

Figure 2-12 An example of pattern definition

A collaboration is shown as a dashed ellipse icon containing the name of the

collaboration. XFigure 2-12X shows the definition of an Observer pattern in a collaboration.

The Observer pattern’s name ObserverPattern is at the upper part of the dashed ellipse.

Collaboration roles are specified at the lower part of the dashed ellipse. Each role,

subject and observer, is expressed as a classifier, usually showing role name: class

name (e.g. subject: Subject) in the name compartment of a class.

 44

Figure 2-13 An example of pattern usage

A design pattern instance is represented in a collaboration use described as an instance of

a collaboration to specify the relationship among classes playing the roles of the

collaboration. Like a collaboration, a collaboration use is shown as a dashed ellipse icon

containing the name of the collaboration, but referenced classes are out of the dashed

ellipse icon connected with a dotted line. XFigure 2-13X shows the usage of a collaboration

for an Observer pattern instance. In an usage of a collaboration Subject and the

Observer classes are bound to TaskQueue and SliderBar classes respectively. This

process is called instantiation, binding pattern level classes to design level classes with

specific domain knowledge.

 45

CHAPTER 3. PATTERN INSTANCE CHANGES WITH UML PROFILE (PICUP)
DESIGN METHOD

In this research, UML pattern-based design begins with a specification (requirements

specification) of information systems, and we assume that the specification represented

as UML class diagrams is valid. The initial design solution derived from the specification

is represented in UML class diagrams (a structural design artifact of UML pattern-based

design) where general-purpose design patterns are reused. Design changes are performed

in the UML class diagrams from design change requests without changing the UML use

case diagrams and class diagram specifications in the use case level.

Pattern instance changes with UML Profile (PICUP) design method takes a UML

pattern-based design and change requests as inputs, and produces changed UML pattern-

based design and a change list as outputs shown in XFigure 3-1X. PICUP design method

changes design pattern instances in UML pattern-based design, and checks for

conformance of the changed design to the DPUP. A catalog of design patterns (e.g.,

[Gamma et al 1994]) gives fundamental knowledge of design patterns to a maintainer.

 46

Figure 3-1 UML pattern-based design change using PICUP method

PICUP design method in XFigure 3-2 is presented as activity diagram style X.

Figure 3-2 PICUP design method

 47

3.1 The Steps of PICUP Design Method

Detailed steps of PICUP design method is presented in Table 3-1.

Table 3-1 The steps of PICUP design method

PICUP design method

Step 1: Initial setup

Step 2: Analyze a given UML pattern-based design

Step 2.1: Analyze the given UML pattern-based design’s domain with the domain

description (if any).

Step 2.2: Identify the given UML pattern-based design with the corresponding

design pattern (DPUP).

Step 3: Analyze a change request

 Step 3.1: Analyze a change request form and identify maintenance type.

 Step 3.2: Analyze change requirements from the accepted change request form.

Step 4: Identify design elements to be changed in the given UML pattern-based design

Step 4.1: From the step 3.2, identify design elements to be changed (added, deleted,

or modified).

 Step 4.2: Match design elements identified from Step 4.1 with the design pattern.

Step 5: Change the given UML pattern-based design resulting in the new design

Step 6: Conform the new design changes to the corresponding DPUP

Step 6.1: Determine whether the new design changes conform to the corresponding

DPUP or not.

Step 6.2: If a design constraint violation is identified, then change the last design

updated based on defect information, otherwise go to Step 7.

 Step 6.3: Go to Step 6.1

Step 7: Create change list

 48

The key steps of PICPU design method are step 5 and step 6. The step 6 provides

maintainers a means of the new design change assessment with DPUPs. Through the

design assessment, the maintainers check weather the new design change conforms to the

corresponding design pattern specified in DPUPs. Design defects introduction can be

prevented by the design assessment.

PICUP design method is applied to three categorized design patterns in Chapter 5 and

Chapter 6. General-purpose design patterns described in [Gamma et al 1994] are

categorized as creational, structural, and behavioral design patterns. The two-case study

in Chapter 5 and Chapter 6 evaluates PICUP design method with creational (Abstract

Factory), structural (Bridge), and behavioral (Visitor and Observer) design patterns.

3.2 An Example of applying PICUP with the DPUP for the Observer Design

Pattern

To present the detailed description of each step, the Patient Care Subsystem (PCS)

reusing the Observer design pattern will first be used to illustrate these steps. Let us

assume that Mr. Maintainer changes a UML pattern-based design with change requests

using PICUP design method.

Step 1: Initial setup

Mr. Maintainer sets up all components (materials) he needs in conducting a UML

pattern-based design change. Mr. Maintainer needs four components as follows:

 49

1. A UML pattern-based design: the PCS class diagram in XFigure 3-6X.

2. A change request: a change request form in XFigure 3-8X.

3. The Design Patterns in UML Profiles (DPUP): the DPUP for the Observer design

pattern is provided in Section X3.4X below.

4. A catalog of design patterns: Mr. Maintainer may refer to [Gamma et al 1994] in

XFigure 3-3X, other pattern books describing the Observer design pattern, or design

pattern web sites.

Figure 3-3 A design pattern book by [Gamma et al 1994]

Step 2: Analyze a given UML design

Step 2.1: Mr. Maintainer analyzes the given UML design’s domain with the domain

description (if any).

 50

The domain of the Patient Care Subsystem (PCS) is a hospital information system as

shown in XFigure 3-4 (top) X. If a patient’s medical condition is changed such as from a

heart attack, the change of the patient’s condition is notified to a nurse and a doctor.

Then, they get the patient’s medical record and status information.

Figure 3-4 Domain of the Patient Care Subsystem (the top) and the Observer

design pattern (the bottom)

This Patient Care Subsystem at the top in Figure 3-4 is matched with the Observer design

pattern at the bottom in Figure 3-4. The Observer DPS shown in Figure 3-5 is developed

based on the Observer design pattern described in [Gamma et al 1994]. Design pattern

structure (DPS) is the core of DPUP (see Section 3.2.2). B2 and B3 in Figure 3-5

demonstrates Metamodel-level OCL constraints in comment notation.

Subject

Observer1 Observer2

Notice for a change

Request and get for the change

Notice for a medical
condition change

Go and get the patient’s
medical condition PPaattiieenntt CCaassee DDoommaaiinn

 51

B1, B2, B3, B4,
B5, and B6
constraints

(B2) context ConcreteSubject
 inv: subState->size() <= conObs->size()

(B3) context ConcreteSubject
 inv: getState->size() = subState->size()

attach (obsv: Observer) [1]
detach (obsv: Observer) [1]
notify() [1]

observers: Set{Observer} [1]

 «stereotype» [1]
Subject

update () [1]

 «stereotype» [1]
Observer

getState(): subStateType [1..m]
setState(st: obsStateType)
[1..m]

subState: subStateType [1..m]

 «stereotype» [1]
ConcreteSubject

update (subj: ConcreteSubject)
[1]

obsState: obsStateType [1]

 «stereotype» [1..*]
ConcreteObserver

conSub conObs

«profile» Observer_DPS

sub obs

1..*1

1 1

C1 constraint

D1 and D2
constraints

A1, A2, and A3
constraints

Figure 3-5 The Observer Design Pattern Structure (DPS)

Step 2.2: Mr. Maintainer identifies the given UML design with the design pattern.

Mr. Maintainer identifies classes (including attributes and operations), associations, and

multiplicities in terms of the instance of the Observer design pattern depicted in XFigure

3-6 X. The Mr. Maintainer may refer to the catalog of design patterns for the Observer

design pattern such as [Gamma et al 1994].

The Observer design pattern instance in the class diagram (in PatientCareSubsystem

package in XFigure 3-6X.) is instantiated from the DPUP for the Observer design pattern

specified in Section X3.4X below. Stereotype notation shown in XFigure 3-6X provides a

distinction between design pattern instances and other designs in order to easily find and

maintain design pattern instances during design maintenance. To learn naming

 52

conventions of stereotypes used in XFigure 3-6X, please see Section X3.4X below, Tutorial of

the DPUP.

Figure 3-6 The Patient Care Subsystem (PCS) class diagram in package

Before making changes, Mr. Maintainer assesses the given UML pattern-based design,

the PCS class diagram whether or not the given design conforms to metamodel-level

UML design constraints in the Observer DPUP. This assessment can be performed by

the assessment tool. The result of the assessment in Figure 3-7 shows no design pattern

defects found.

 53

Figure 3-7 The assessment result of Figure 3-6

Step 3: Analyze a change request

Step 3.1: Mr. Maintainer analyzes the change request form and identifies maintenance

type.

From the change request form in XFigure 3-8X, Mr. Maintainer identifies that it is a

perfective maintenance change because a new function is being added.

Step 3.2: Mr. Maintainer analyzes the change requirements from the accepted change

request form. Mr. Maintainer specifies change requirements as follows:

• A patient shall notify the payment department about the patient’s discharge from

a hospital using the patient record.

• Then, the payment department shall calculate the bill for the patient.

 54

Figure 3-8 A change request form for the PCS

Step 4: Identify design elements to be changed in the given UML design

Step 4.1: From the step 3.2, Mr. Maintainer identifies design elements to be changed

(added, deleted, or modified).

These two changes are to add the following design elements.

• Payment class (to be added).

• Record attribute (to be added).

Step 4.2: Mr. Maintainer matches design elements identified from Step 4.1 with the

design pattern (XXFigure 3-5).

 55

• Payment is matched with the ConcreteObserver participant.

• Record attribute is matched with the subState in the ConcreteSubject participant.

Step 5: Change the design pattern instance resulting in the new design

There are three different change actions Mr. Maintainer conducts as follows:

• For an addition,

o Mr. Maintainer instantiates design elements (identified from Step 4.1)

from the DPUP as shown in XFigure 3-9X.

o Mr. Maintainer, then, adds the design elements to the given design in

XFigure 3-6X. The new design resulting from these changes is shown in

XFigure 3-10X.

• For a deletion,

o If there are no other designs involved in the design elements to be deleted,

Mr. Maintainer deletes them.

o If there are other designs involved in the design elements to be deleted,

then Mr. Maintainer deletes only related stereotypes of the design

elements.

• For a modification, Mr. Maintainer modifies the design elements with the DPUP.

 56

Figure 3-9 Required design elements instantiated from the Observer DPUP

From the step 4.2, Mr. Maintainer instantiates Record attribute and Payment class

design from the Observer DPUP as shown in Figure 3-9, then makes changes the design

resulted in Figure 3-10.

Figure 3-10 The new design changed from the change request

 57

Step 6: Conform the new design changes to the design pattern

Step 6.1: Mr. Maintainer determines whether or not the new design changes conform to

the DPUP.

Step 6.2: If a design constraint violation is identified, then change the last design updated

based on the design constraint, otherwise go to Step 7.

Step 6.3: Go to Step 6.1.

Mr. Maintainer applies graphical UML design constraints (see Figure 3-11, top right) in

the Observer DPUP, practically the Observer DPS (for classes, attributes, operations, and

associations with their multiplicities) to the new design change (in Figure 3-11, bottom

left).

Figure 3-11 Assessing the new design change with the Observer DPUP

 58

Assessing algorithm is developed (see Section 3.5.1), and then implemented in Java (see

Section 3.5.2). Figure 3-11 shows two generalization associations are omitted at the

bottom left with respect to the Observer DPUP at the top right.

Figure 3-12 shows that the assessment tool automatically discovers the same defects

shown in Figure 3-11.

Figure 3-12 The assessment result of Figure 3-11 (bottom left)

Mr. Maintainer identifies the abstract inheritance relationship from IRequest abstract

class to Payment class, and the association between Payment class and Patient class.

Mr. Maintainer instantiates and changes design elements identified in Step 6.1. The result

is shown in XFigure 3-13X.

 59

Figure 3-13 The first updated design

Then, Mr. Maintainer applies metamodel-level OCL constraints (see Section X3.4.4X) in the

DPUP to the first updated design in XFigure 3-13X. In this example, only three OCL

constraints are applied in order to demonstrate how metamodel-level OCL design

constraints work.

 60

«ObserverOperation»
attach(obsv: Observer)
«ObserverOperation»
detach(obsv: Observer)
«ObserverOperation» notify()

«ObserverProperty»
observers: Observers

«Subject»
Information

«ObserverOperation»
getState_Medical(): Medical
«ObserverOperation»
setState_Medical(me: Medical)

p_name: string
p_id: number
«ObserverProperty»
subState_Medical: Medical
«ObserverProperty»
subState_Records: Records

«ConcreteSubject»
Patient

«ObserverOperation»
update()

«Observer»
IRequest

«ObserverOperation»
update(pa: Patient)

d_Name: string
d_ID: number
«ObserverProperty»
obsState_Medical:
 Medical

«ConcreteObserver»
Doctor

«ObserverOperation»
update(pa: Patient)

p_name: string
p_ID: number
«ObserverProperty»
obsState_Records:
 Records

«ConcreteObserver»
Payment

«ObserverOperation»
update(pa: Patient)

n_name: string
n_ID: number
«ObserverProperty»
obsState_Medical:
 Medical

«ConcreteObserver»
Nurse

«ObserverAssociation»
sub

«ObserverAssociation»
 obs

«ObserverAssociation»conSub

«ObserverAssociation»conSub

«ObserverAssociation»conSub

«ObserverAssociation»
conObs_Doctor

«ObserverAssociation»
conObs_Payment

«ObserverAssociation»
conObs_Nurset

PatientCareSubsystem

(B2) context ConcreteSubject
 inv: subState->size() <= conObs->size()

1
2

1 2 3

Figure 3-14 Design assessment with B2 OCL constraint

Let us apply metamodel-level constraint (B2) in the DPUP (see Section X3.4.4.2X) to the

first updated design. To do so, Mr. Maintainer analyzes the meaning of the metamodel-

level constraint (B2) shown in Figure 3-14. The metamodel-level constraint (B2) means

that the number of instances of the subState meta-attribute is less than or equal to the

number of instances of the end of the conObs meta-association (i.e.,

ConcreteObserver).

 61

From the new design change in XFigure 3-13,, Mr. Maintainer identifies that there are two

instances of subState meta-attribute and three instances of ConcreteObserver meta-class.

This means that the new design change does not violate the metamodel-level constraint

(B2).

«ObserverOperation»
attach(obsv: Observer)
«ObserverOperation»
detach(obsv: Observer)
«ObserverOperation» notify()

«ObserverProperty»
observers: Observers

«Subject»
Information

«ObserverOperation»
getState_Medical(): Medical
«ObserverOperation»
setState_Medical(me: Medical)

p_name: string
p_id: number
«ObserverProperty»
subState_Medical: Medical
«ObserverProperty»
subState_Records: Records

«ConcreteSubject»
Patient

«ObserverOperation»
update()

«Observer»
IRequest

«ObserverOperation»
update(pa: Patient)

d_Name: string
d_ID: number
«ObserverProperty»
obsState_Medical:
 Medical

«ConcreteObserver»
Doctor

«ObserverOperation»
update(pa: Patient)

p_name: string
p_ID: number
«ObserverProperty»
obsState_Records:
 Records

«ConcreteObserver»
Payment

«ObserverOperation»
update(pa: Patient)

n_name: string
n_ID: number
«ObserverProperty»
obsState_Medical:
 Medical

«ConcreteObserver»
Nurse

«ObserverAssociation»
sub

«ObserverAssociation»
 obs

«ObserverAssociation»conSub

«ObserverAssociation»conSub

«ObserverAssociation»conSub

«ObserverAssociation»
conObs_Doctor

«ObserverAssociation»
conObs_Payment

«ObserverAssociation»
conObs_Nurset

PatientCareSubsystem

(B3) context ConcreteSubject
 inv: getState->size() = subState->size()

1
2

1

Figure 3-15 Design assessment with B3 OCL constraint

Let us consider another example, applying metamodel-level constraint (B3) (see Figure

3-15 or Section X3.4.4.2X) to the first updated design. To do so, Mr. Maintainer analyzes the

meaning of the metamodel-level constraint (B3) shown in Figure 3-15X. The metamodel-

 62

level constraint (B3) means that the number of instances of the getState meta-operation

is equal to the number of instances of the subState meta-attribute.

Mr. Maintainer also identifies the violation in applying the metamodel-level constraint

(B4) (see Section X3.4.4.2X).

«ObserverOperation»
attach(obsv: Observer)
«ObserverOperation»
detach(obsv: Observer)
«ObserverOperation» notify()

«ObserverProperty»
observers: Observers

«Subject»
Information

«ObserverOperation»
getState_Medical(): Medical
«ObserverOperation»
setState_Medical(me: Medical)

p_name: string
p_id: number
«ObserverProperty»
subState_Medical: Medical
«ObserverProperty»
subState_Records: Records

«ConcreteSubject»
Patient

«ObserverOperation»
update()

«Observer»
IRequest

«ObserverOperation»
update(pa: Patient)

d_Name: string
d_ID: number
«ObserverProperty»
obsState_Medical:
 Medical

«ConcreteObserver»
Doctor

«ObserverOperation»
update(pa: Patient)

p_name: string
p_ID: number
«ObserverProperty»
obsState_Records:
 Records

«ConcreteObserver»
Payment

«ObserverOperation»
update(pa: Patient)

n_name: string
n_ID: number
«ObserverProperty»
obsState_Medical:
 Medical

«ConcreteObserver»
Nurse

«ObserverAssociation»
sub

«ObserverAssociation»
 obs

«ObserverAssociation»conSub

«ObserverAssociation»conSub

«ObserverAssociation»conSub

«ObserverAssociation»
conObs_Doctor

«ObserverAssociation»
conObs_Payment

«ObserverAssociation»
conObs_Nurset

PatientCareSubsystem

(B4) context ConcreteSubject
 inv: setState->size() = subState->size()

1
2

1

Figure 3-16 Design assessment with B4 OCL constraint

From the Step 6.1, Mr. Maintainer identifies two violations (B3) and (B4). Mr.

Maintainer identifies that getState and setState meta-operations need to be instantiated,

 63

bound with ‘Record’ domain knowledge described in the change request. Mr. Maintainer

instantiates the design elements as shown in XFigure 3-17X from the pattern elements

(getState and setState meta-operations) in the DPUP for the Observer design pattern

(see Section X3.4X below).

Figure 3-17 Design elements to be added into the new design change

Mr. Maintainer adds the instantiated design elements into Patient class to XFigure 3-13X,

and then makes the new updates, as shown in XFigure 3-18X. The second updated design

conforms to the Observer DPUP (metamodel level UML and OCL design constraints).

 64

«ObserverOperation»
attach(obsv: Observer)
«ObserverOperation»
detach(obsv: Observer)
«ObserverOperation» notify()

«ObserverProperty»
observers: Observers

«Subject»
Information

«ObserverOperation»
getState_Medical(): Medical
«ObserverOperation»
setState_Medical(me: Medical)
«ObserverOperation»
getState_Records(): Records
«ObserverOperation»
setState_Records(re: Records)

p_name: string
p_id: number
«ObserverProperty»
subState_Medical: Medical
«ObserverProperty»
subState_Records: Records

«ConcreteSubject»
Patient

«ObserverOperation»
update()

«Observer»
IRequest

«ObserverOperation»
update(pa: Patient)

d_Name: string
d_ID: number
«ObserverProperty»
obsState_Medical:
 Medical

«ConcreteObserver»
Doctor

«ObserverOperation»
update(pa: Patient)

p_name: string
p_ID: number
«ObserverProperty»
obsState_Records:
 Records

«ConcreteObserver»
Payment

«ObserverOperation»
update(pa: Patient)

n_name: string
n_ID: number
«ObserverProperty»
obsState_Medical:
 Medical

«ConcreteObserver»
Nurse

«ObserverAssociation»
sub

«ObserverAssociation»
 obs

«ObserverAssociation»conSub

«ObserverAssociation»conSub

«ObserverAssociation»conSub

«ObserverAssociation»
conObs_Doctor

«ObserverAssociation»
conObs_Payment

«ObserverAssociation»
conObs_Nurse

PatientCareSubsystem

Figure 3-18 The second updated design

Step 7: Create change list

From Step 6, Mr. Maintainer finally results in the second updated design in XFigure 3-18X

as the changed UML pattern-based design.

From Step 5 and Step 6, Mr. Maintainer makes a change list for further design and/or

coding as follows:

• Create Payment class inherited from IRequest interface.

• Make a relationship from Payment class to Patient class.

 65

• Create subState_Records attribute at Patient class.

• Create getState_Records() and setState_Records() operations at Patient

class.

Mr. Maintainer changes a UML pattern-based design with a given change request using

PICUP design method (Step 1 through Step 7) and produces a structurally correct UML

pattern-based design so as to conform to the given design pattern.

3.3 The Design Pattern in UML Profiles (DPUP)

Precise specification of a design pattern is indispensable in order to ensure the

conformance of a change result of a design pattern instance with its design pattern.

Instantiation of a design pattern without precise specification of the design pattern may

produce a defected design, especially by maintainers who are not familiar with design

patterns reused in the design.

Defining a design pattern in a precise form helps maintainers correctly understand the

design pattern and change instances of design patterns in a design. Design patterns are

design concepts and at a higher level of abstraction. There can be various forms in a

design pattern [Wirfs-Brock 2006]. Without a standard form of design pattern developers

and maintainers may use different forms for a design pattern, thereby producing and

maintaining an unintended design.

 66

In the literature of design pattern specification [Guennec et al 2000; France et al 2004;

Kim et al 2004; Mak et al 2004], design patterns are specified in UML metamodel level

(M2) in the context of the UML 4-layer architecture shown in XFigure 3-19X. The reason is

that design patterns are practically reused in the model level through their instantiation

process, which are required by binding domain knowledge with the design patterns

applied in design. In other words, instances of design patterns are actually used in design

instead of design patterns themselves. Hence, it is reasonable that instances of design

patterns are used in model level (M1); design patterns are specified in metamodel level

(M2).

 M3 Metametamodel

 M2 Metammodel

 M1 Model

 M0 User Objects

conformTo

«profile»
Design Patternextension

Design Pattern
Instancesextension

instantiate

conformTo

conformTo

conformToinstantiate

instantiate

instantiate

Figure 3-19 Design Pattern Corresponding to UML 4-layer Architecture

 67

In this research, a design pattern specification is represented using the UML Profile

extended from UML metamodel (M2). When a profile specifying a particular design

pattern is applied in a design, instances of the design pattern are created by combining the

design’s domain knowledge and used in the design.

The UML Profile supports extensions of the UML standard by stereotype. A stereotype

extends the basic vocabulary of the UML [Mellor 05]. Defining a stereotype is similar to

creating a subclass of an existing UML type. All diagrams for design pattern

specification are described in the metamodel level. All OCL expressions are also

described in the metamodel level and provide precise design pattern specification.

The UML Profile for design pattern specification is utilized for checking the

conformance of design patterns instances to design patterns. Conformance checking can

be performed with UML class diagrams and constraints in OCL.

This section describes how to specify design patterns in UML Profile. There are many

different design patterns published and being used. This design pattern specification

method can be applied to any other design patterns if their description form is compliant

or similar with [Gamma et al 1994]’s description form for the design patterns.

 68

3.3.1 DPUP template

3.3.1.1 Design Pattern (DP) Profile

The overview of DPUP is shown in XFigure 3-20X. Profile names in italic are used in

template profiles for specifying a particular design pattern such as the Abstract Factory

pattern, the Composite design pattern, and so on. Profiles are expressed by using

packages with «profile» keyword in front of the name of the profile.

Figure 3-20 Design Pattern Profile

The DesignPattern (DP) profile includes two subprofiles: DesignPatternPrimitive

(DPP) and DesignPatternStructure (DPS). DPP subprofile includes primitive design

elements. DPS subprofile imports DPP subprofile, which is expressed by using

«import» relationship between two profiles.

 69

Naming convention 1: A particular pattern name followed by underscore “_” is added in

front of the names in XFigure 3-20X. For an Observer pattern specification, DPP, for

example, is changed to Observer_DPP. Unique profiles can be identified for each

design pattern.

3.3.1.2 DesignPatternPrimitive (DPP) Subprofile

Stereotype declaration is expressed as a classifier rectangle with the «stereotype»

keyword above or in front of the name of the metamodel element. These stereotyped

elements are extended from the UML base metamodel expressed as a classifier rectangle

with the «metaclass» keyword above or in front of the name of the base. So,

stereotyped elements are new metaclasses. The “extension” relationship is expressed as

an arrow from the stereotype to the metaclass with a triangular filled arrowhead.

 There is a distinction between a stereotype and a stereotype instance. In notation, a

stereotype is expressed with «stereotype» above or in front of the stereotype name (or

the stereotype keyword string); a stereotype instance is expressed with the stereotype

keyword string of surrounded by a pair of guillemets (« ») above or in front of the model

element name. In XTable 3-2X «stereotype» ConcreteSubject is a stereotype declaration.

«ConcreteSubjet» Foo is a stereotype use named as Foo instantiated from the

«stereotype» ConcreteSubject. In semantics, a stereotype declaration is specified in

the UML metamodel level; a stereotype use is specified in the UML model level, which

is instantiated from its declaration.

 70

Table 3-2 Comparison between Stereotype Declaration and Stereotype Use

 Stereotype declaration Stereotype use
Notation Example «stereotype»

ConcreteSubject
«ConcreteSubjet»
Foo

UML Level Metamodel Model

DPP subprofile in XFigure 3-21X defines primitive elements used in DPS sbuprofile.

Primitive elements are extended from the UML base such as «metaclass» Class,

«metaclass» Association, «metaclass» Property, and «metaclass» Operation.

Primitive elements are simply called as class, association, property, and operation

respectively.

«profile» DesignPatternPrimitive (DPP)

«metaclass»
Class

«metaclass»
Operation

«stereotype»
Pattern_Operation

«metaclass»
Property

«stereotype»
Pattern_Property

«metaclass»
Association

«stereotype»
Pattern_Association

«stereotype»
Participant 1

«stereotype»
Participant n

Figure 3-21 DesignPatternPrimitive (DPP) Subprofile

 71

The base class of stereotype «Participant1» is class. The number of participants varies

depending on each design pattern. Observer pattern in section X3.4X, for example, needs

four participants. The base class of stereotype «PatternAssociation» is association. The

base class of stereotype «PatternProperty» is property. The base class of stereotype

«PatternOperation» is operation. Stereotypes «PatternAssociation»,

«PatternProperty», and «PatternOperation» are only used in or with related

stereotype pattern participants.

Those stereotypes above will be shown in design pattern instances. A distinction will be

made between design pattern instances and other design or among design pattern

instances on graphical notation. This distinctive notation using stereotype enhances the

understanding of previous releases, so as to help maintainers maintain complex software

systems [Bratthall and Wohlin 2002].

Naming convention 2: “Pattern” at the name of stereotype in XFigure 3-21X is substituted

with a particular pattern name. For an Observer pattern specification

PatternAssociation, for example, is changed to ObserverAssociation. This naming

convention provides a distinction of model elements stereotyped, especially two design

patterns are applied to a class in a design.

The reason that each design pattern specification profile has its own DPP subprofile is to

uniquely identify primitive elements belonging to each design pattern instance in design

 72

where more than two design pattern instances are depicted in one class. This facilitates to

make a design and maintenance of design pattern instances in a design.

3.3.1.3 DesignPatternStructure (DPS) Subprofile

DPS subprofile provides a design pattern diagram representing metamodel-level UML

and OCL design constraints. OCL expressions consist of invariant constraints and meta-

operations definition in XFigure 3-22X. All metamodel elements for the design pattern

diagram are from DPP subprofile and the UML standard. OCL expressions (invariant

constraints and meta-operations) are grouped by each participant so as to easily apply

related constrains to the change of a design pattern instance in design.

Figure 3-22 DesignPatternStructure (DPS) Subprofile

A design pattern diagram provides a participants-oriented class diagram at the metamodel

level. Participants are the implementation of roles and designed by stereotyped classes

 73

(M2). Multiplicities of metamodel elements such as class, attribute, operation, and

association are precisely specified.

3.3.1.4 Constraints for DPS Subprofile

The term invariant is a constraint that should be true for an object during its complete

lifetime [Warmer and Kleppe 2003]. Invariant in the metamodel-level means: that a

constraint should be true for a class in a design. Meta-operation definitions describe how

operations work in the object level. Those meta-operation definitions need to be

instantiated by applying domain knowledge so as to make operation definitions

3.3.2 Tutorial of DPUP

As an example of the design pattern specification method, the Observer design pattern

(will use ‘Observer pattern’ for a shorter term) is specified. The Observer design pattern

in [Gamma et al 1994] defines dependency between two roles called a subject role and an

observer role. Once the subject role changes its state, the observer role updates its state to

synchronize with the subject role’s state. The Observer design pattern is also known as

Publish-Subscribe.

The Observer design pattern [Gamma et al 1994] focuses a dependency when a change to

one object requires changing others as shown in XFigure 3-23X. The Observer design

pattern works based on the following characteristics:

 74

1. Making two independent abstractions: Subject and Observer (reusability)

2. Making common interface by the abstractions, thereby extending one-to-one

relationship to one-to-many (scalability and extensibility).

a. Adding Observers does not affect to any existing classes.

3. Managing the list of Observers on the Subject so as to notify a change of

subject to Observers.

4. Updating Observers by get operation so as not to access the source in the

Subject directly

Figure 3-23 The Observer Design Pattern described in [Gamma et al 1994]

 75

3.3.2.1 Observer_DP profile

Profiles are expressed by using packages with «profile» keyword in front of the name of

the profile. Observer_DP profile for the Observer design pattern has two subprofiles in

XFigure 3-28X. Observer_DPP is a profile package that contains the Observer design

pattern primitives (DPP) using stereotypes. They are imported to Observer_DPS that is

a profile package representing the Observer design pattern structure (DPS).

Figure 3-24 Observer_DP Profiles

3.3.2.2 Observer_DPP Subprofile

All stereotypes in the XFigure 3-29X are extended from UML metamodel. For example,

«stereotype» ObserverAssociation is extended from UML «metaclass»

Association.

 76

«profile» Observer_DPP

«metaclass»
Class

«metaclass»
Operation

«stereotype»
ObserverOperation

«metaclass»
Property

«stereotype»
ObserverProperty

«metaclass»
Association

«stereotype»
ObserverAssociation

«stereotype»
Subject

«stereotype»
Observer

«stereotype»
ConcreteSubject

«stereotype»
ConcreteObserver

abstract metaclass
in italic.

Figure 3-25 Observer_DPP Subprofile

3.3.2.3 Observer_DPS Subprofile

Observer_DPS subprofile contains the structure of the Observer design pattern

specified using stereotypes in Observer_DPP subprofile. A subject role consists of

Subject and ConcreteSubject participants; an observer role consists of Observer and

ConcreteObserver participants.

The structure of the Observer design pattern is shown in XFigure 3-26X, which is specified

in detail based on XFigure 3-23X. Specific explanation in XFigure 3-26X is as follows:

 77

(1) The relationship between the Subject and the ConcreteSubject is

generalization/specialization. The relationship between the Observer and the

ConcreteObserver is generalization/specialization as well.

(2) Default multiplicity of classifier and property in the DPUP is exactly one [1]. If

the multiplicity of metamodel element in the DPUP is not explicitly specified, it

implies that the metamodel element has one-to-one [1..1] ([1] in short notation)

multiplicity. The one-or-many relationship [1..*] at the end of

ConcreteObservser means that the number of instances of the

ConcreteObservser is greater than or equal to 1.

Figure 3-26 Observer_DPS Subprofile

(3) The multiplicity of subState is determined by the number of instances of the

ConcreteObservser. It is called dynamic multiplicity [Warmer and Kleppe 2003].

 78

The multiplicity [1..m] specifies that the multiplicity of getState() and

setState() are the same multiplicity of subState. These metamodel-level

constraints are specified in OCL (see Section X3.3.2.4X.). Let us assume that any

character in multiplicity notation is the same meaning of many [*]. For example,

the multiplicity [1..m] and [n] means the multiplicity [1..*] and [*] respectively.

(4) The Subject keeps track of objects (of ConcreteObservers) implementing the

Observer. An instance of the “observers” manages the list of objects at the user

objects level (M0).

(5) Metamodel-level constraints are essential for specifying a design pattern. Model-

level constraints specify conditions that a run-time configuration (M0) must

satisfy to conform to the model (M1) [Booch et al 2005]. Likewise, metamodel-

level constraints for a design pattern specify conditions that an instantiated design

(M1) from the design pattern must satisfy to conform to the design pattern (M2).

Metamodel-level constraints support to developing design pattern tools, which are

able to check for the conformance of instantiated design to design patterns.

3.3.2.4 Constraints for Observer_DPS Subprofile

This section describes the Observer_DPS subprofile’s constraints in metamodel-level.

These metamodel-level constraints provide precise specification for the UML structure of

the Observer design pattern in XFigure 3-30X. Metamodel-level constraints for each

 79

participant are two types: invariant constraints (e.g., (B2) and (B3) below) and meta-

operation definitions (e.g., (A2) below).

The following two metamodel-level constraints define constraints depicted at (3) in

Section X3.4.3X.

(B2) The number of instances of subState meta-attribute must have less than or equal to

the number of instances of ConcreteSubject:

context ConcreteSubject

inv: subState->size() <= conObs->size()

(B3) The number of instances of getState() meta-attribute must have the same number

of instances of subState:

context ConcreteSubject

inv: getState->size() = subState->size()

An example of meta-operation definition is shown as follows:

(A2) All instances of attach meta-operation must add an Observer to the class specified

as « Subject» above or in front of the class name in a Metamodel:

context Subject::attach(obsv: Observer)

 pre: true

 post: observers = observers@pre -> including(obsv)

 80

3.3.2.5 Instantiating design elements from the DPUP

Instantiation from a design pattern means (M2) the creation of new design called a design

pattern instance (M1) by binding domain (application) knowledge. XFigure 3-27X shows

how to instantiate part of the Observer design pattern into an Observer design pattern by

binding hospital domain (application) knowledge.

Figure 3-27 A Design Pattern Instantiation

(1) Multiplicity is depicted at the end of each metamodel (meta-class, meta-attribute

(meta-property), meta-operation, or meta-association). Multiplicities of metamodel

elements (M2) indicate that the number of model elements (M1) from the metamodel

elements. Multiplicity [1] indicates that stereotyped Observer meta-class can

instantiate only one design pattern instance (one class).

 81

(2) By definition of stereotype, «Observer» is prefixed on the class name IRequest

named by a designer. The class name is bound with domain knowledge.

(3) Meta-attributes, meta-operations, and meta-associations in the DPUP are stereotypes

(see XFigure 3-29X). Stereotype notations annotate the design pattern instances in UML

pattern-based design in the form of « ». Stereotype notation for design pattern

instances improves readability and understandability in complex designs where many

design pattern instances are overlapped. Therefore, it helps avoid potential design

defects in design maintenance.

(4) An inheritance relationship is instantiated. There is no UML multiplicity.

(5) Stereotyped ConcreteObserver meta-class can have multiple design pattern

instances (classes) in M2.

(6) The names of attributes, operations, and associations are the same names of meta-

attributes, meta-operations, and meta-associations respectively when the multiplicity

is the exactly one relationship [1]. The names of meta-attributes, meta-operations, and

meta-associations start with a lowercase letter, which is the UML naming convention.

(7) When the multiplicity of meta-attributes, meta-operations, or meta-associations shows

an one-or-many relationship [1..*], the beginning word of a name is exactly the same

 82

as the name defined in M2, and then domain name is added to the M2 name after

underscore “_”. The domain name (by a designer or a maintainer) starts with capital

letter.

Naming Convention 3: Let us assume that a name in M2 is called nameM2; a name in

M1 is called nameM1; and a domain name assigned by a developer or a maintainer is

called domainName. For meta-attributes, meta-operations, and meta-associations when

they are instantiated, a name in M1 in Backus-Naur Form (BNF) notation is as follows:

 nameM1 ::= nameM2 | <nameM2> <_> <domainName>

The update and obsState_Medical at the Doctor class in XFigure 3-27X shows an

example of the naming convention 3.

3.3.2.6 Metamodel-level Constraints used for structural conformance in design

maintenance

Not all metamodel-level constraints in the DPUP are used for structural conformance in

design maintenance. Meta-operation definitions such as Attach and Detach meta-

operations are used for behavioral conformation. UML class diagrams in metamodel

level and well-formed constraints are used for structural conformance.

 83

Possible changes of a design pattern instance are related to the one-or-many multiplicity

[1..*] of metamodel elements. Metamodel-level constraints B2, B3, and B4 in Section

X3.4.4.2X need to be checked when a design pattern instance is being changed.

3.4 The DPUP for the Observer design pattern

3.4.1 Observer_DP Profile

Observer_DP profile shown in XFigure 3-28X has two subprofiles: Observer_DPP and

Observer_DPS. The names of profiles conform to the naming convention 1.

Figure 3-28 Observer_DP Profiles

3.4.2 Observer_DPP Subprofile

The XFigure 3-29X shows that «stereotype» ObserverAssociation, ObserverProperty,

and ObserverOperation are extended from UML «metaclass» Association, Property,

 84

and Operation respectively. The Observer design pattern needs four participants:

Subject, ConcreteSubject, Observer, and ConcreteObserver.

«profile» Observer_DPP

«metaclass»
Class

«metaclass»
Operation

«stereotype»
ObserverOperation

«metaclass»
Property

«stereotype»
ObserverProperty

«metaclass»
Association

«stereotype»
ObserverAssociation

«stereotype»
Subject

«stereotype»
Observer

«stereotype»
ConcreteSubject

«stereotype»
ConcreteObserver

Figure 3-29 Observer_DPP Subprofile

3.4.3 Observer_DPS Subprofile

A subject role consists of Subject and ConcreteSubject participants; an observer role

consists of Observer, and ConcreteObserver participants. The relationship between

the Subject and the ConcreteSubject is generalization /specialization. The relationship

between the Subject and the ConcreteSubject is generalization/specialization as well.

 85

attach (obsv: Observer) [1]
detach (obsv: Observer) [1]
notify() [1]

observers: Set{Observer} [1]

 «stereotype» [1]
Subject

update () [1]

 «stereotype» [1]
Observer

getState(): subStateType [1..m]
setState(st: obsStateType)
[1..m]

subState: subStateType [1..m]

 «stereotype» [1]
ConcreteSubject

update (subj: ConcreteSubject)
[1]

obsState: obsStateType [1]

 «stereotype» [1..*]
ConcreteObserver

conSub conObs

«profile» Observer_DPS

sub obs

1..*1

1 1

C1 constraint

D1 and D2
constraints

A1, A2, and A3
constraints

B1, B2, B3, B4,
B5, and B6
constraints

Figure 3-30 Observer_DPS Subprofile

The OCL can be used in a different UML four-layer architecture such as the model and

the metamodel level. OCL expressions are essential for design pattern specification

described in a metamodel level. OCL expressions in model-level specify conditions that a

run-time configuration must satisfy to conform to the model [Booch et al 2005].

Likewise, OCL expressions in metamodel-level for a design pattern specify that

instantiated design from a design pattern must satisfy to conform to the design pattern.

Those expressions support in developing design pattern tools, which are able to check

conformance of instantiated design to design patterns.

 86

3.4.4 Constraints for Observer_DPS Subprofile

This section describes the Observer_DPS subprofile’s constraints defined by OCL.

Those constraints provide precise specification of Observer pattern based on Observer

pattern class diagram in XFigure 3-30X.

Unlike list all OCL expressions of an Observer pattern, we group them by each

participant. Grouped OCL expressions facilitate applications when correctly changing

design pattern instances with respect to the addition, deletion, or modification of a

participant class. OCL expressions for each participant are two types: invariant

constraints and meta-operation definition. Their detailed constraints in OCL metamodel

level is in the following section.

OCL in UML models is used, for example, to specify invariants on classes, and pre- and

post-conditions on operations. As specified below, OCL in UML Profile is used to

specify invariants on stereotyped metaclasses, and pre- and post-conditions on meta-

operations.

3.4.4.1 Subject

(A1) All instances of observers meta-attribute must be a collection type and initialize it

as an empty set:

context Subject::observers : OrderedSet{Observer}

init: OrderedSet { }

 87

-- The observers is a Set type containing the list of ConcreteObservers.

(A2) All instances of attach meta-operation must add an Observer to the class specified

as « Subject» above or in front of the class name in a Metamodel:

context Subject::attach(obsv: Observer)

 pre: true

 post: observers = observers@pre -> including(obsv)

(A3) All instances of detach meta-operation must remove an Observer from to the class

specified as «Subject» in front of the class name in a Metamodel:

context Subject::detach(obsv: Observer)

 pre: observers -> notEmpty()

 post: observers = observers@pre -> excluding(obsv)

3.4.4.2 ConcreteSubject

(B1) All instances of subState meta-attribute must have subStateType as an undefined

type:

context ConcreteSubject::subState: subStateType

inv: self.oclIsUndefined()

(B2) The number of instances of subState meta-attribute must be less than or equal to

the number of instances of ConcreteSubject:

 88

context ConcreteSubject

inv: subState->size() <= conObs->size()

(B3) The number of instances of getState() meta-attribute must be the same as the

number of instances of subState:

context ConcreteSubject

inv: getState->size() = subState->size()

(B4) The number of instances of setState() meta-attribute must be the same as the

number of instances of subState:

context ConcreteSubject

inv: setState->size() = subState->size()

(B5) All instances of getState meta-operation must return the current value of the

subject state:

context ConcreteSubject::getState(): subStateType

 pre: true

 post: result=subState

(B6) All instances of setState meta-operation must set the subject state:

context ConcreteSubject::setState(newState: subStateType)

 pre: true

 89

 post: subjectState = newState

3.4.4.3 Observer

The Observer provides polymorphic encapsulation so that the Subject does not need to

change when new observers (actually ConcreteObservers) are added in the future.

(C1) All instances of update meta-operation must be an abstract operation:

context Observer::update(): abstract

3.4.4.4 ConcreteObserver

(D1) All instances of obsState meta-attribute must have obsStateType that is an

undefined type:

context ConcreteObserver::obsState: obsStateType

inv: self.oclIsUndefined()

(D2) All instances of update meta-operation must change the value of obsState to the

value obtained from ConcreteSubject, and invoke a getState operation call:

Context ConcreteObserver::update(subj: ConcreteSubject)

 pre: true

post: let observerMessage: OclMessage = ConcreteSubject^^getState() ->

notEmpty()

 90

 in obsState = observerMessage.hasReturned() and message.result()

3.5 Design Assessment with metamodel-level UML design constraints

Although a pattern instance by definition should conform to the corresponding pattern,

conformance of a pattern instance to its pattern should be verified. Conformance

verification, in part, is always essential, especially since the instantiation of a pattern is

performed by a human.

3.5.1 Assessment Algorithm

The task of the Assessment algorithm is to assess a given pattern-based design with

respect to the corresponding design patterns specified in Design Pattern Structures

(DPSs). DPS (Section 3.1.3.3) is a subprofile of DPUP. The Assessment starts with

reading a given pattern-based design and the DPSs used for the given pattern-based

design. The Assessment calls the methods of class assessment (Section 3.5.1.1) and

association assessment (Section 3.5.1.2). At the end of the assessment, a description of

detected pattern defects is generated.

A pattern-based design can consist of more than one pattern instance instantiated from

more than one pattern. The Assessment algorithm repeatedly assesses the given pattern-

based design with the corresponding design patterns applied.

 91

3.5.1.1 Class assessment

For each stereotype MetaClass in a given DPS, method assessClass, shown in Figure

3-31, finds and counts the Classes instantiated from the MetaClass by referring to

stereotype names. In addition, this method registers each Class found in the instance list

of the MetaClass for use in the method assessAssociation (Section 3.5.1.2). The method

assessClass calls methods assessProperty and assessOperation to determine whether

the Properties and Operations in the Class conform to MetaProperties and

MetaOperations in the MetaClass. Finally, the number of Classes found is compared with

MetaClass’s lower bound and upper bound, and defect type is printed if the number of

Classes found is out of boundaries (lines 10 to 17).

Figure 3-31 The method assessClass

1 public void assessClass() {
2 for each MetaClass as MC {
3 for each Class as C {
4 if (MC.stereotypeName equals to C.stereotypedName)
5 add 1 to countedClass;
6 register C in the instance list of MC;
7 assessProperty();
8 assessOperation();
9 }
10 if (countedClass < MC.lowerbound) {
11 print(“(1.1) Class omission (out of lower bound)”);
12 add 1 to DP_Omission;
13 }
14 if (countedClass > MC.upperbound) {
15 print(“(2.1) Class incorrect fact (out of upper bound)”);
16 add 1 to DP_IncorrectFact;
17 } } }

 92

The methods assessProperty and assessOperation are omitted in this paper because

they have logic similar to the methods assessClass. An instantiated Property and

Operation can be found where the Property’s name and the Opeation’s name start with

the MetaProperty’s name and the MetaOperation’s name.

3.5.1.2 Association assessment

Method assessAssociation, given in Figure 3-32, is responsible for checking the

associations between the pattern instantiation with respect to the associated DPS. For

each MetaAssociation, method assessAssociation finds Associations instantiated from

the MetaAssociation and counts them (lines 2 to 6 in Figure 5). Associations and

MetaAssociations are only identified from their connected Classes and MetaClasses,

respectively. An instantiated Association from a MetaAssociation is found where the

stereotyped name of the Class connected to the association is equal to the stereotype

name of the MetaClass connected to the MetaAssociation.

The variable requiredAssociation represents the number of Associations that should be

connected to the Classes having the same relationship (lines 9 to 11). Four subtypes (type

1.1, 1.2, 2.1, and 2.2) of design pattern defects defined in Section 4.2.3 are discovered by

comparing the number of Association found with the number of Association that should

be existed (lines 12 to 32).

 93

Association omission has two subtypes. If there is no association found but required, the

Assessment tool discovers a design pattern defect (1.1) that is out of lower bound (lines

12 to 16). If the number of association found is less than the number of association

required, the Assessment tool discovers a design pattern defect (1.2) (lines 17 to 23).

Association incorrect fact has two subtypes. If the number of association found is greater

than the number of association required, the Assessment tool discovers a design pattern

defect (2.1) that is out of upper bound (lines 24 to 27). If an association is instantiated

from the DPS but incorrectly connected to classes, a design pattern defect (2.2) is

discovered (lines 28 to 32). An incorrect connection is discovered by comparing the

stereotyped names of classes connected to an association with the stereotype names of

corresponding metaclasses connected to the corresponding metaassociation.

 94

Figure 3-32 The method assessAssociation

3.5.2 Assessment tool

I developed the Assessment tool in Java for the Assessment algorithm. The Assessment

tool assesses various pattern-based designs instantiated from the Observer pattern and/or

1 public void assessAssociation() {
2 for each MetaAssociation as MA {
3 for each Association as A {
4 if (stereotypedName of two Cs connected to A equals to
5 stereotypeName of two MCs connected to MA)
6 add 1 to countedAssociation;
7 register A in the instance list of MA
8 }
9 requiredAssociation =
10 countedClass of MC connected to MA.end1
11 * countedClass of MC connected to MA.end2
12 if (countedAssociation < requiredAssociation) {
13 if (countedAssociation = = 0) {
14 print (“(1.1) Association is out of lower bound”);
15 add 1 to DP_Omission;
16 }
17 else if (countedAssociation > 0) {
18 find all missing associations by comparing
19 associations in the instance list of MA with
20 classes in the instance list of MC
21 print (“(1.2) A stereotyped association is omitted.”);
22 add 1 to DP_Omission;
23 }}
24 else if (countedAssociation > requiredAssociation) {
25 print (“(2.1) Association is out of upper bound”);
26 add 1 to DP_IncorrectFact;
27 }}
28 if (A is an instance of the DPS,
29 but does not conform to the DPS) {
30 print (“(2.2) Association is incorrectly connected.”);
31 add 1 to DP_IncorrectFact;
32 }}

 95

the Abstract Factory pattern. The Assessment tool discovered all subtypes of pattern

defects defined in Section 4.2.3.

3.5.2.1 Patient Care Subsystem design assessment

Figure 3-33 demonstrates how the Assessment tool shows test results for the design of

the Patient Care Subsystem in Figure 3-6. The Assessment program discovered no pattern

defects. So, the pattern-based design in Figure 3-6 conforms to the Observer DPS.

Figure 3-33 The assessment result of Figure 3-5

Here is a design maintenance scenario. A design change is requested in order to add

Payment function to the design of the Patient Care Subsystem in Figure 3-6. Payment

department in the hospital wants to calculate a patient’s bill when the patient is

discharged. A maintainer adds Payment class instantiated from ConcreteObserver

metaclass to the given pattern-based design, and makes an inheritance relationship

between IRequest class and Payment class. From the maintainer’s decision, Information

class is removed. Instead, a direct association is made between Patient class and IRequest

class. The changed design is shown in Figure 3-34.

 96

Figure 3-34 Changed Patient Care Subsystem design - version 1

The Assessment tool assesses the changed Patient Care Subsystem design version 1 as

shown in Figure 3-34. Three ovals in Figure 3-34 graphically indicate the subtype and

location of design pattern defects discovered by the Assessment tool as shown in Figure

3-35.

Figure 3-35 The assessment result of Figure 3-28

 97

The assessment result of the change Patient Care Subsystem design version 1 in Figure

3-34 shows details of three design pattern defects. The output of the Assessment program

shows subtypes of design pattern defects and discovered locations.

Figure 3-36 Changed Patient Care Subsystem design - version 2

Figure 3-36 represents the change Patient Care Subsystem design version 2, which fixed

all design pattern defects found in Figure 3-35. Information class instantiated from

Subject metaclass is added for fixing the defect type (1.1) as shown in Figure 3-35. An

incorrectly connected association is deleted for fixing the defect type (2.2). An

instantiated association is added in order to connect between Payment class and Patient

class for fixing the defect type (1.2).

 98

The Assessment tool discovers new two design pattern defects in the changed Patient

Care Subsystem design version 2. Two ovals in Figure 3-36 indicate two design pattern

defects in the change Patient Care Subsystem design version 2, which are missing two

associations (1.1).

Figure 3-37 Changed Patient Care Subsystem design - version 3

After fixing the new two pattern defects discovered in Figure 3-36, the change Patient

Care Subsystem design version 3 shows in Figure 3-37. The Assessment program

displays no pattern defects as seen the assessment result in Figure 3-33.

The Assessment tool assesses various pattern-based designs instantiated from the

Observer pattern and/or the Abstract Factory pattern. The Assessment tool checks the

 99

conformation of the given pattern-based design to each pattern one by one, and discovers

pattern defects in each case.

3.5.2.2 ARENA Subsystem design assessment

Figure 3-38 shows a pattern-based design (bottom) instantiated from the Observer design

pattern and the Abstract Factory design pattern (top). The Observer design pattern

specified in the Observder DPS (top-right) is the same in Figure 3-5. The pattern-based

design is based on the ARENA subsystem design [Bruegge and Dutoit 2004].

The ARENA is a game independent organizer conducting tournaments with players. The

Tic-Tac-Toe and Bridge game matches and statistics are designed by the Abstract

Factory design pattern. The match and tournament views through the game board are

design by the Observer design pattern.

 100

Figure 3-38 The ARENA subsystem design

The Assessment tool assesses the pattern-based design shown in Figure 3-38. The tool

discovers three design pattern defects as shown in Figure 3-39. Two missing associations

(out of lower bound) and one missing property in Subject class are graphically shown in

Figure 3-38 as well.

Figure 3-39 The assessment result of Figure 3-32

 101

After fixing all defects, the Assessment tool assesses the changed ARENA subsystem

design version 1. The test result in Figure 3-40 shows no design pattern defects.

Figure 3-40 The assessment result with ARENA subsystem design - version 1

The Assessment Java program assesses metamodel-level UML design constraints, and in

doing so PICUP method assesses the conformance of UML pattern-based design to the

corresponding design patterns (both metamodel-level UML design constraints and OCL

design constraints). The assessment for UML pattern-based designs with metamodel-

level OCL constraints is described in step 6 of PICUP method in Section 3.2.

 102

CHAPTER 4. CASE STUDY METHODOLOGY FOR PICUP DESIGN METHOD
EVALUATION

For the purpose of evaluating the effects of using Pattern Instance Changes with UML

Profiles (PICUP) design method, this chapter presents the case study research method in

[Yin 2003].

4.1 Introduction

The main hypothesis for this dissertation research is that PICUP method is an improved

design method ensuring structural conformance of UML pattern-based designs to the

corresponding design patterns during perfective and corrective design maintenance for

information systems.

Verification of a new software engineering technology, such as a method, tool, or

technique, provides confidence and acceptance in the software engineering community. It

is important for software engineering researchers to select and perform an appropriate

verification methodology for the new software engineering technology; because a variety

of software engineering research approaches are available, both formal and empirical.

 103

There are two approaches for verifying the correctness of research hypotheses. The first

approach is the formal analytical approach. In this approach, hypotheses are verified as

being correct by mathematical proof. The second approach is the empirical approach. In

this approach, hypotheses are verified as being correct by a systematic collection,

analysis, and interpretation of evidence.

The main research hypothesis may be subdivided into further supporting sub-hypotheses.

If all sub-hypotheses are verifiably correct, then the main hypothesis is verifiably correct.

The main research question is a transformation of the main research hypothesis into a

question form. However, the main research question may be subdivided into further

supporting sub-questions (sub-questions are transformed from sub-hypotheses). If all

sub-questions are true (yes), then the main research question is true (yes).

PICUP design method is verified through the designed two-case study evaluation because

of an empirical investigation of a contemporary phenomenon that is one situation of case

studies [Yin 2003]. As a new design method, PICUP design method is compared with the

conventional UML 2.0 design method.

4.1.1 Empirical Studies

Empirical studies are used to compare what we believe to what we observe [Perry et al

2000]. Empirical studies are embodied into, for example, surveys, formal experiments,

 104

and case studies. Although empirical studies have many different forms as mentioned

above, the main steps are the same [Perry et al 2000]:

• Formulating an hypothesis or question to test,

• Observing a situation,

• Collecting data from observation,

• Analyzing the data, and

• Drawing conclusions.

Three main types of empirical studies are a survey, a formal experiment, and a case

study. The differences among those three empirical studies are described based on

[Fenton and Pfleeger 1997; Pfleeger 2001]. A survey inquires through questionnaires to a

population for a particular method, tool, technique, or relationship. Data is collected from

stratified sample of the population. A formal experiment is a controlled investigation of a

situation. It manipulates values of independent variables, for example, the effect of a

particular method, tool, technique, or relationship. It collects data from dependent

variables while controlling other variables (or confounding variables) affecting the

research outcomes. A case study investigates a case of a situation, instead of investigating

all possible cases, where the case affects major role of the situation. It usually compares

two situations: the effect of one method, tool, technique, or relationship with the effect of

another. It has no or less control over actual behavioral events as compared to a formal

experiment. PICUP design method in the two-case study is compared with the

conventional UML 2.0 design method. Design changes, major activities for evaluating

 105

PICUP design method, are conducted by Subject Matter Experts (SMEs), not by the case

study investigator.

XTable 4-1X excerpted from [Yin 2003] compares three strategies stated depending on three

conditions: (1) the form of research questions, (2) the extent of control a researcher has

over behavioral events, and (3) the degree of focus on whether contemporary or historical

phenomena. Even though those empirical studies might be distinguished with respect to

three conditions, not all are clearly classified and not all research contexts are clearly

applied to a particular preferred strategy [Yin 2003].

Table 4-1 Relevant situations for different research strategies

 Condition

Strategy

Form of Research

Question

Requires Control of

Behavioral Event?

Focuses on

Contemporary Event?

Survey
Who, what, where,

how many, how much?
No Yes

Formal

Experiment
How, why? Yes Yes

Case Study How, why? No Yes

The first step is to determine the form of research questions in order to choose the

appropriate research strategy. This research as a cause-and-effect research asks how and

why the PICUP method is better than the existing design methods in changing high-level

design. This question form shows that a formal experiment strategy or a case study is

 106

more appropriate than a survey. A survey is not preferred for the verification of the new

design method because it requires software maintainers (as SMEs) of stratified software

development companies in software industry, who are a good representation of the large

population.

The second step is to determine whether the research requires control of behavioral

events (or confounding variables) affecting the research outcomes. A formal experiment

requires detailed control over confounding variables. If the investigator does not have a

high level of control over confounding variables, the case study strategy is preferable. A

case study is more appropriate than a formal experiment for this dissertation research

verification because there is no control over SMEs in conducting UML pattern-based

design changes.

4.1.2 Case Study

A case study is a comprehensive research strategy drawing research conclusions with

multiple (qualitative and/or quantitative) sources of data, which are analyzed as evidence

to support propositions.

 107

Table 4-2 Five components of a case study methodology

Components Descriptions

1. Propositions
The first component describes assertions to be examined by the

research investigator; the hypotheses of the dissertation research.

2. Questions

The second component specifies what you are interested in

answering. Each study proposition is further subdivided into

questions the SMEs are to answer on a questionnaire. The suitable

type of questions are ‘how’ and ‘why’ questions.

3. The unit of

analysis

The third component is the selected resource to be examined in the

case study. The appropriate choice of the unit of analysis is decided

based on how to accurately specify the research questions.

4. The logic

linking of the data

to the propositions

The forth component represents the data analysis by examining,

categorizing, tabulating, or recombining quantitative and qualitative

evidence to address the initial propositions of a case study.

5. The criteria for

interpreting

This last component describes how to interpret the finding data in

order to make evidences for propositions in a case study.

This dissertation research case study is designed based on Yin’s case study methodology

[Yin 2003], which is a well-known empirical methodology and used in many software

engineering research [Tellis 1997; Perry et al 2000; Lee 2003; Lee and Rine 2004; Perry

et al 2004]. This methodology has five important components that should be defined

during the case study process. XTable 4-2X shows short descriptions of each component of a

case study methodology [Yin 2003].

 108

The following are the four steps of the case study methodology with required components

in each step [Yin 2003].

• Step 1 - Design the case study: 1st and 2nd components;

• Step 2 - Conduct the case study: 3rd component;

• Step 3 - Analyze the case study evidence: 4th and 5th components; and

• Step 4 - Develop the conclusions.

4.2 Case Study Design for PICUP Design Method Evaluation

For evaluating the effects of using PICUP design method, the explanatory case study is

designed based on the case study methodology shown in XTable 4-2X. The exploratory case

study (setting groundwork for research) and the descriptive case study (establishing

scope and depth of research phenomenon) are not applicable to this dissertation research.

4.2.1 Design the Case Study

4.2.1.1 Propositions for the case study

The main proposition, derived from the main dissertation research hypothesis, for this

case study is as follows:

Pattern Instance Changes with UML Profiles (PICUP) is an improved design method

ensuring structural conformance of UML pattern-based designs to the corresponding

design patterns during perfective and corrective design maintenance for information

systems.

 109

Further detailed sub-propositions from the main proposition are as follows:

P1: The design change on a design pattern instance resulting from using the PICUP

design method conforms to the design pattern during perfective and corrective design

maintenance.

P2: The PICUP design method results in fewer design defects than the conventional

UML 2.0 design method during perfective and corrective design maintenance.

It is difficult to make correct changes in design pattern instances because of structural

constraints of design patterns. Maintainers are required to have strong comprehension of

design patterns; otherwise, design defects may occur without controls of design pattern

instances changes. PICUP design method provides design constraints in DPUP. It is

asserted in this research that the number of certain structural design defects in design

pattern instances can be reduced by enforcing design constraints when making UML

pattern-based design changes.

4.2.1.2 Questions for the case study

The main case study question, to be answered in order to support or reject the main

proposition of the case study, is as follows:

Is Pattern Instance Changes with UML Profiles (PICUP) an improved design method for

ensuring structural conformance of UML pattern-based designs to the corresponding

design patterns during perfective and corrective maintenance?

Further detailed sub-questions from the main research question are as follows:

 110

Q1: Does the design change on a design pattern instance resulting from using the PICUP

design method conform to the design pattern during perfective and corrective design

maintenance?

Q2: Does the PICUP design method result in fewer design defects than the conventional

UML 2.0 design method used during perfective and corrective design maintenance?

4.2.2 Conduct the Case Study

The case study investigator prepares UML pattern-based designs (class diagrams) with

change requests, design solution for the change requests, and a questionnaire shown in

XFigure 4-1X. A SME conducts this case study (changing UML pattern-based design using a

given design method for change requests), and produces design answer sheets (the

changed UML class diagrams) and questionnaire answers.

ControlStrategyB

Apply()

FB_ControlStr
ategyA

FBApply()

ControlStrategyA

Apply ()

FB_ControlStr
ategyB

FBApply()

MeasurementSub
ject

getState()
MeasurePlant()

AbstractObserver
_Subject : AbstractObserver
_ObserverData : DataHolder
TheBlackboard : B lackboard

Update()

AbstractSubject
_Observers : AbstractObserver
_SubjectData : DataHolder
Blackboard : Blackboard

Attach()
Detach()
Notify ()

FeedbackData

ErrorData

MeasureData

InputData

Blackboard
DataStore : DataHolder

SetData()
DataHolder()

DataHolder

ErrorObserver
Controller : Controller
Error : DataHolder

Update()
GetInput()
Analyze()

Controller
_ControlStrategy : AbstractController

Control()

FeedbackSubjectObserver
_FB_Control : AbstractController

getState()
Update()
control()

AbstractController

Apply()
FBApply()

FB_ControlStr
ategyA

FBApply()

ControlStrategyA

Apply ()

MeasurementSub
ject

getState()
MeasurePlant()

AbstractObserver
_Subject : AbstractObserver
_ObserverData : DataHolder
TheBlackboard : B lackboard

Update()

Controller
_ControlStrategy : AbstractController

Control()

FeedbackSubjectObserver
_FB_Control : AbstractController

getState()
Update()
control()

AbstractController

Apply()
FBApply()

AbstractSubject
_Observers : AbstractObserver
_SubjectData : DataHolder
Blackboard : Blackboard

Attach()
Detach()
Notify ()

Blackboard
DataStore : DataHolder

SetData()
DataHolder()

FeedbackData

ErrorData

MeasureData

InputData

DataHolder

ErrorObserver
Controller : Controller
Error : DataHolder

Update()
GetInput()
Analyze()

MeasurementSub
ject

getState()
MeasurePlant()

FeedbackSubjectObserver
_FB_Control : AbstractController

getState()
Update()
control()

AbstractObserver
_Subject : AbstractObserver
_ObserverData : DataHolder
TheBlackboard : Blackboard

Update()

FeedbackData

ErrorData

MeasureData

InputData

AbstractSubject
_Observers : AbstractObserver
_Subjec tData : DataHolder
Blackboard : Blackboard

Attach()
Detach()
Notify ()

DataHolder
Blackboard

DataStore : DataHolder

SetData()
DataHolder()

Figure 4-1 Conducting UML pattern-based design change

 111

4.2.2.1 The unit of analysis

The unit of analysis in the case study is a UML pattern-based design (high-level design)

with change requests. A UML pattern-based design is depicted in UML class diagrams.

Let us assume that the change requests in this research are all accepted change requests.

4.2.2.2 Comparative case study

A UML pattern-based design (the unit of analysis) is changed using the PICUP design

method and the conventional UML 2.0 design method respectively. The change results

produced from using two rival design methods are compared.

4.2.2.3 Potential bias reduction

UML pattern-based design changes using two rival design methods can be biased

because of the order of design method that a SME uses. A SME may be affected by

learning one design method followed by the other rival design method. This two-case

study reduces the bias by changing the order of two rival design methods used by each

SME.

Two SMEs conduct UML pattern-based two design changes (changing class diagrams

with given change requests) as shown in XTable 4-3, which is a 2 x 2 full factorial design.

Two UML pattern-based designs and change requests as units of analysis are given by

the case study investigator.

 112

Table 4-3 Reduction of potential bias by applying different order of the two rival

design methods into the two cases

 Plan 1 – SME 1 Plan 2 – SME 2

The PICUP design method

training

The conventional UML 2.0

design method training

Case 1 Lexi design changes using the

PICUP design method (two

perfective and one corrective

changes)

Lexi design changes using the

conventional UML 2.0 design

method (two perfective and one

corrective changes)

The conventional UML 2.0 design

method training

The PICUP design method

training

Case 2

ARENA design changes using the

conventional UML 2.0 design

method (two perfective and one

corrective changes)

ARENA design changes using the

PICUP design method (two

perfective and one corrective

changes)

For the plan 1, SME 1, first, changes the Lexi design using the PICUP design method

with two perfective and one corrective change requests, and then, second, changes the

ARENA design using the conventional UML 2.0 design method with two perfective and

one corrective change requests.

For the plan 2, SME 2, first, changes the Lexi design using the conventional UML 2.0

design method with two perfective and one corrective change requests, and then, second,

 113

changes the ARENA design using the PICUP design method with two perfective and one

corrective change requests.

4.2.2.4 Questionnaire

Each SME is asked about his/her background as shown in Table 4-4. In Table 4-5, there

are three different types of questions provided in this case study questionnaire: (1) yes-

or-no questions, (2) rating questions (“5” being the highest rating and “1” being the

lowest rating), and (3) short-answer questions. Each SME may write open comments on

the questionnaire to elaborate yes-or-no or rating answers.

Table 4-4 Characteristics of Subject Matter Experts

Subject Matter Expert Characterization
Current Job Title/Position:
Education:
Number of Years in Information Technology:

Table 4-5 Questions 1 to 20

Question: Answer
Type

1. How do you rate your experience with UML? Rating (1, 2,
3, 4, 5)

2. How do you rate your experience with the design concepts? Rating (1, 2,
3, 4, 5)

3. How do you rate your experience with the design patterns? Rating (1, 2,
3, 4, 5)

4. How do you rate your experience with formal languages including
the Object Constraint Language (OCL)?

Rating (1, 2,
3, 4, 5)

 114

5. Does the design change on a design pattern instance resulting from
using the PICUP design method conform to the design pattern during
perfective design maintenance?

Yes or No

6. If the result from applying the PICUP design method conforms to
the design pattern during perfective design maintenance, then why is
this true? If not, explain why not?

Short
Answer

7. How does your PICUP design change conform to the design pattern
during perfective design maintenance?

Short
Answer

8. Does the design change on a design pattern instance resulting from
using the PICUP design method conform to the design pattern during
corrective design maintenance?

Yes or No

9. If the result from applying the PICUP design method conforms to
the design pattern during corrective design maintenance, then why is
this true? If not, explain why not?

Short
Answer

10. How does your PICUP design change conform to the design
pattern during corrective design maintenance?

Short
Answer

11. How easy is it to understand the PICUP design method? Rating (1, 2,
3, 4, 5)

12. How easy is it to use the PICUP design method during perfective
and corrective design maintenance?

Rating (1, 2,
3, 4, 5)

13. Is the level of easiness the same for using the PICUP design
method in different design patterns?

Yes or No

14. Is the PICUP design method applicable in real work situation? Yes or No
15. If a constraint checking tool for the PICUP is provided, do you
think that the PICUP design method can save design maintenance time
during perfective and corrective design maintenance?

Yes or No

16. If a constraint checking tool for the PICUP is provided, do you
think that the PICUP design method can preserve or improve design
quality during perfective and corrective design maintenance?

Yes or No

17. Do you think that the PICUP design method can be used with
other design methodologies, such as Rational Unified Process (RUP)?

Yes or No

18. From your experience and assessment, how important is the
PICUP design method used during perfective and corrective design
maintenance in order to prevent design pattern related defects?

Rating (1, 2,
3, 4, 5)

19. What would be the advantage of using the PICUP method during
perfective and corrective design maintenance? Please explain.

Short
Answer

20. What would be the disadvantage of using the PICUP method
during perfective and corrective design maintenance? Please explain.

Short
Answer

 115

4.2.2.5 Design solution for change requests

The case study investigator provides six UML pattern-based design change solution

(UML class diagrams): two perfective maintenance and one corrective maintenance for

the Lexi design, and two perfective maintenance and one corrective maintenance for the

ARENA design. These design solution diagrams are used when the case study

investigator counts design defects from the changed UML class diagrams for change

requests conducted by each SME.

4.2.2.6 Conducting changes in design pattern instances by SMEs

Before a SME conducts design changes with a particular design change method, the case

study investigator teaches the design change method to the SME. This method training

session is done right before the SME uses the design change method. In addition, the

SME can use a design pattern catalog for design patterns from design pattern books (e.g.,

[Gamma et al 1994]) or pattern web sites.

Each SME conducts design changes in UML class diagrams by each of two competing

design methods in the order of the case study setting described in XTable 4-3X. These design

changes take place in design pattern instances for their change requests. The changed

UML class diagrams from using each of two design methods and the questionnaire

answers are collected from each SME.

 116

4.2.3 Analyze the Case Study Evidence

The case study investigator finds and counts design defects from the changed class

diagrams in comparison with the design solution diagrams provided by the case study

investigator.

Table 4-6 Types of design pattern defects

Defect Type Description

1 The number of particular design elements in a UML pattern-based

design (UPD) is less than the lower bound of the corresponding pattern

element in the DPUP.

2 Omission within the boundary: Even though the number of associations

(instantiated from a particular metaassociation) in a UPD is within

boundaries of the metaassociation in the DPUP, an association is

missing between two classes whose two metaclasses are connected to

the metaassociation.

1. Omission

for Design

Pattern

3 A UPD does not contain the metamodel-level OCL constraints.

1 The number of particular design elements in a UPD is greater than the

upper bound of the corresponding pattern element in the DPUP.

2 Incorrect design within the boundary: A particular association in a UPD

is not connected to where it should be with respect to the corresponding

metaassociation in the DPUP.

2. Incorrect

Fact for

Design

Pattern

3 A UPD contains misrepresentations of metamodel-level OCL

constraints.

 117

A design defect is defined as any design that does not conform to software requirements

specifications [Dunn 1984; Zeng 2005]. In this research, specifications are presented

using UML class diagrams.

This research defines two types of design pattern defects: “Omission” and “Incorrect

Fact” of Design Pattern. The two design pattern defect types are based on design defect

types by Basili and his colleagues [Travassos et al 1999]. Omission for Design Pattern

design means that a UML pattern-based design does not contain all the metamodel-level

UML design elements or metamodel-level OCL constraints specified in the design

pattern specification. Incorrect Fact for Design Pattern design means that a UML pattern-

based design contains a misrepresentation of some metamodel-level UML design

elements or metamodel-level OCL constraints specified in the design pattern

specification. The two types of design pattern defects are further divided as shown in

Table 4-6.

Comparison of two design methods (the PICUP method and the conventional UML 2.0

design method) is focused on the number of design pattern defects by defect types as

quantitative measure data (the Design Defect Counts (DDC) and answers to

questionnaires about the degree of usefulness, difficulty, and tool support of each method

as qualitative data.

 118

Design defects by defect types are counted from the changed UML class diagrams by

each of two rival design methods in XTable 4-7X.

Table 4-7 Design Defect Counts (DDC) metric by design pattern

PICUP Conventional UML 2.0

Defect Type
SME 1 SME 2 SME 1 SME 2

1.1

1.2

Omission

1.3

2.1

2.2

Incorrect

Fact

2.3

Total

The DDC metric serves as evidence to support/reject the sub-proposition specified in

Section X4.2.1.1X because correctness (lack of defects) is an essential feature of high-

quality software [Younessi 2002; Galin 2004; Sommerville 2004]; High-severity defects

may, later, cause a system to fail [Jones 2001]. Reducing the number of design defects

and especially high-severity defects during changes of UML pattern-based design serves

as criteria in this two-case study.

 119

Qualitative measures from the questionnaire answers also serve as evidence to

support/reject the sub-proposition specified in Section X4.2.1.1X because the questions in

the questionnaire are related to the sub- and main proposition.

4.2.4 Develop the conclusions

This case study generalizes theories (analytic generalization), not to enumerate

frequencies (statistical generalization) [Yin 03]. XTable 4-8X shows that how a set of

evidence is connected to the related propositions. The DDC metric and the questionnaire

answers collected from design change exercises carried out by the SMEs provide a set of

empirical evidence supporting, or rejecting, sub-proposition and further the main

proposition (and sub-question and the main research question) of this case study defined

in Section X4.2.1.1X and X4.2.1.2X. This, therefore, either supports or rejects the research

hypotheses. It also verifies or does not verify the PICUP method applied to the units of

analysis, in this designed case study methodology.

Table 4-8 Evidence linked to propositions

Propositions Questions Evidence

Main proposition Main research question DDC metric and questionnaire

answers

Sub-propositions Sub-questions DDC metric and questionnaire

answers

 120

A set of evidence collected from the previous step in Section X4.2.3X supports or rejects the

case study’s the main research question linked to the main proposition of the case study.

The results obtained from evidence related to the case study’s the main proposition

support or reject the main research hypothesis. The main hypothesis of this research is

that the Pattern Instance Changes with UML Profiles (PICUP) is an improved design

method ensuring structural conformance of UML pattern-based design to design patterns

during perfective and corrective design maintenance.

The case study methodology has been designed to evaluate the effects of using the

PICUP design method. Through a defined case study mythology, we can verify software

engineering technology improvement. Two multiple cases of the study has been

conducted in this designed case study methodology. The results from the two-case study

provide stronger verification of the PICUP design method.

 121

CHAPTER 5. CASE I: THE LEXI DOCUMENT EDITOR

Lexi is a document editor described in [Gamma et al 1994] as a case study. XFigure 5-1X

shows the user interface of Lexi document editor.

Figure 5-1 Lexi’s user interface

Figure 2 shows the document structure used by the Lexi document editor. A page consists

of multiple columns. A column consists of multiple rows. A row consists of multiple

characters, images, and special characters (symbols). This case study focuses on two

design problems described in the Lexi as follows:

 122

• Spelling checking and word counting. How does Lexi support analytical

operations such as checking for misspelled words and counting words? How can

we minimize the number of classes we have to modify to add a new analytical

operation? (the Visitor design pattern)

• Supporting multiple window systems. Different look-and-feel standards are

usually implemented on different window systems. Lexi's design should be as

independent of the window system as possible. (the Bridge design pattern)

Figure 5-2 Document structure

The SME will be changing a Lexi design, an instance of the Visitor design pattern, using

the PICUP design method. The two (accepted) change requests are for the software

enhancement, which is of perfective maintenance. Let us assume that the initial given

UML class diagram in XFigure 5-3X does not have any design defects.

 123

5.1 Conducting the UML pattern-based design change 1

5.1.1 Step 1: Initial setup

For the initial setup of the case study, the SME needs four components as follows:

1. A UML pattern-base design: a UML class diagram including an instance of the

Visitor design pattern is shown in XFigure 5-3X. The stereotyped notations (« ») in

this class diagram are instantiated from the DPUP for the Visitor design pattern

(refer to Section X5.4X)

2. A change request: Change Request Form 1 (see XFigure 5-4X).

3. The DPUP: The DPUP for the Visitor design pattern (see Section X5.4X)

4. The Visitor design pattern references: For the reference of the Visitor design

pattern, the SME may refer to [Gamma et al 1994], other pattern books describing

the Visitor design pattern, or design pattern web sites.

The SME checks whether all components mentioned above are present.

5.1.2 Step 2: Analyze a given UML design

Step 2.1: The SME as Mr. Maintainer analyzes the given UML design’s domain with the

domain description (if any).

An instance of the Visitor design pattern in Lexi design

The description of applying spelling check and word count to the Visitor design pattern is

from [Gamma et al 1994] chapter 2, page 71-76 and [Colibri 2006] web site.

 124

• SpellCheckingVisitor finds spelling errors.

• WordCountVisitor counts words.

• The Visitor design pattern lets the SME add operations (e.g., spelling checking in

SpellCheckingVisitor and word counting in WordCountVisitor) to classes

(Character and Row) without changing them.

• SpellCheckingVisitor and WordCountVisitor are both called for each character

and each row.

• accept operation of Character, for example, takes SpellCheckingVisitor as an

argument.

• For example, the operation’s name and signature (visit_Character (character))

in visitors identify the class (Character) that sends the visit request (accept) to

the visitors (SpellCheckingVisitor and WordCountVisitor).

Step 2.2: The SME as Mr. Maintainer identifies the given UML design with the design

pattern.

(Figure 5-3)

 125

Figure 5-3 The Visitor design pattern instance in Lexi design

5.1.3 Step 3: Analyze a change request

Step 3.1: The SME as Mr. Maintainer analyzes a change request form and identifies

maintenance type.

From the change request form in XFigure 5-4X, Mr. Maintainer identifies that it is a

perfective maintenance because a new function (Page is enabled to check spelling errors

and count words) is added.

 126

Step 3.2: The SME as Mr. Maintainer analyzes change requirements from the accepted

change request form. Mr. Maintainer specifies change requirements as follows:

• Page shall use functions in SpellCheckingVisitor and WordCountVisitor.

Figure 5-4 Change Request Form 1

5.1.4 Step 4 – Step 7

Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the

PICUP design method. The SME may refer to the PICUP design method.

After completing the seven steps, the SME needs to produce artifacts as follows:

 127

The changed UML pattern-based design (UML class diagram 1 output)

The change list 1

5.2 Conducting the UML pattern-based design change 2

5.2.1 Step 1: Initial setup

For the initial setup of the case study, the SME needs four components as follows:

1. A UML pattern-base design: The SME uses the changed UML pattern-based

design (UML class diagram 1 output).

2. A change request: Change Request Form 2 (see XFigure 5-5X).

3. The DPUP: The DPUP for the Visitor design pattern (see Section X5.4X)

4. The Visitor design pattern references: For the reference of the Visitor design

pattern, the SME may refer to [Gamma et al 1994], other pattern books describing

the Visitor design pattern, or design pattern web sites.

The SME checks whether all components mentioned above are present.

5.2.2 Step 2: Analyze a given UML design

Step 2.1: The SME as Mr. Maintainer analyzes the given UML design’s domain with the

domain description (if any).

Please refer to the description in Section X5.1.2X.

Step 2.2: The SME as Mr. Maintainer identifies the given UML design with the design

pattern.

 128

The SME already knows the design (UML class diagram 1 output) produced in Section

X5.1.4X.

5.2.3 Step 3: Analyze a change request

Step 3.1: The SME as Mr. Maintainer analyzes a change request form and identifies

maintenance type.

From the change request form in XFigure 5-5X, Mr. Maintainer identifies that it is a

perfective maintenance because a new function is added.

Step 3.2: The SME as Mr. Maintainer analyzes change requirements from the accepted

change request form. Mr. Maintainer specifies change requirements as follows:

Image shall use functions in DrawingVisitor.

 129

Project: The Lexi document editor
Change requester: J. Park Date: 2/18/2007
Requested change: Add drawing functions (e.g., line and circle drawings) to Image.

Change Analyzer/Designer: T. Max Analysis date: 2/23/2007
Components affected:
Associated components:
Change assessment: Add drawing functions in DrawingVisitor to Image. Image does not
use functions in SpellCheckingVisitor and WordCountVisitor.

Change priority: Medium
Change implementation: Estimated effort: 7 days
Date to change control board (CCB): 2/25/2007 CCB decision date: 3/5/2007
CCB decision: The change request accepted. The change to be implemented in Release
3.8.
Change implementer: Date of change:
Date submitted to quality assurance (QA): QA decision:
Date submitted to change management:
Comments:

Change Request Form 2

Figure 5-5 Change Request Form 2

5.2.4 Step 4 – Step 7

Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the

PICUP design method. The SME may refer to the PICUP design method.

After completing the seven steps, the SME needs to produce artifacts as follows:

The changed UML pattern-based design (UML class diagram 2 output)

The change list 2

 130

5.3 Conducting the UML pattern-based design change 3

The given Lexi design in XFigure 5-6X was developed reusing the Bridge design pattern, but

a pattern-based design defect has been found in the Lexi design. The SME is assigned the

problem of fixing the pattern-based design defect.

5.3.1 Step 1: Initial setup

For the initial setup of the case study, the SME needs four components as follows:

1. A UML pattern-base design: a UML class diagram including an instance of the

Bridge design pattern is shown in XFigure 5-6X.

2. A change request: Change Request Form 3 (see XFigure 5-7X).

3. The DPUP: The DPUP for the Bridge design pattern (see Section X5.5X)

4. The Bridge design pattern references: For the reference of the Bridge design

pattern, the SME may refer to [Gamma et al 1994], other pattern books describing

the Bridge design pattern, or design pattern web sites.

The SME checks whether all components mentioned above are present.

5.3.2 Step 2: Analyze a given UML design

Step 2.1: The SME as Mr. Maintainer analyzes the given UML design’s domain with the

domain description (if any).

 131

An instance of the Visitor design pattern in Lexi design

The description of applying multiple window systems to the Bridge design pattern is

from [Gamma et al 1994] chapter 2, page 51-58.

Decouple an abstraction (Window) from its implementation (WindowImp) so that the

two can vary independently.

Step 2.2: The SME as Mr. Maintainer identifies the given UML design with the design

pattern. (Figure 5-6)

Figure 5-6 Part of the Lexi design reusing the Bridge design pattern

 132

5.3.3 Step 3: Analyze a change request

Step 3.1: The SME as Mr. Maintainer analyzes a change request form and identifies

maintenance type.

From the change request form in XFigure 5-7X, Mr. Maintainer identifies that it is a

corrective maintenance because there are omitted design elements. This means that the

design does not conform to the Bridge design pattern.

Step 3.2: The SME as Mr. Maintainer analyzes change requirements from the accepted

change request form. Mr. Maintainer specifies change requirements as follows:

Please conduct this sub-step. (The investigator is leaving this work for the SME)

Figure 5-7 Change Request Form 3

 133

5.3.4 Step 4 – Step 7

Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the

PICUP design method. The SME may refer to the PICUP design method.

After completing the seven steps, the SME needs to produce artifacts as follows:

The changed UML pattern-based design (UML class diagram 3 output)

The change list 3

5.4 The DPUP for the Visitor design pattern

5.4.1 Visitor_DP Profile

Figure 5-8 Visitor_DP Profile

 134

5.4.2 Visitor_DPP Subprofile

Figure 5-9 Visitor_DPP Subprofile

 135

5.4.3 Visitor_DPS Subprofile

Figure 5-10 Visitor_DPS Subprofile

5.4.4 Constraints for Visitor_DPS Subprofile

5.4.4.1 Visitor

(A1) The number of instances of visitConcreteElement meta-operation in Visitor must

have the same number of instances of ConcreteElement:

context Visitor

inv: self.visitConcreteElement ->size() = ConcreteElement->size()

 136

5.4.4.2 ConcreteVisitor

(B1) The number of instances of visitConcreteElement meta-operation in

ConcreteVisitor must have less than or equal to the number of instances of

visitConcreteElement meta-operation in Visitor:

context ConcreteVisitor

inv: self.visitConcreteElement ->size() <= Visitor.visitConcreteElement->size()

5.4.4.3 ConcreteElement

(C1) When an instance of ConcreteElement is added in a design, an instance of

visitConcreteElement meta-operation must be added to the instance of Visitor in the

design:

context ConcreteElement

 if (self = self@pre->including(ConcreteElement))

 then Visitor.visitConcreteElement = Visitor.visitConcreteElement@pre + 1

 else true

 endif

 137

5.5 The DPUP for the Bridge design pattern

5.5.1 Bridge_DP Profile

Figure 5-11 Bridge_DP Profile

 138

5.5.2 Bridge_DPP Subprofile

Figure 5-12 Bridge_DPP Subprofile

 139

5.5.3 Bridge_DPS Subprofile

Figure 5-13 Bridge_DPS Subprofile

5.5.4 Constraints for Bridge_DPS Subprofile

5.5.4.1 Abstraction

(A1) The number of instances of operation meta-operation in Abstraction must have the

same number of instances of operationImp meta-operation in Implementor:

context Abstraction

 140

inv: self.operation->size() = self.imp.operationImp->size()

-- This is the same meaning of (B1)

(A2) An instance name of operationImp meta-operation in Implementor must an

instance name of operation meta-operation in Abstraction concatenating ‘Imp’:

context Abstraction

inv: self.imp.operationImp->forAll(c1| c1.name) = self.operation->forAll(c2|

c2.name.concat(‘Imp’))

5.5.4.2 Implementor

(B1) The number of instances of operationImp meta-operation in Implementor must

have the same number of instances of operation meta-operation in Abstraction:

context Implementor

inv: self.operationImp->size() = self.abs.operation->size()

-- This is the same meaning of (A1)

(B2) The number of instances of operationImp meta-operation in Implementor must

have greater than or equal to the number of instances of operationImp meta-operation in

ConcreteImplementor:

context ConcreteImplementor

inv: self.operationImp->size() >= ConcreteImplementor.operationImp->size()

-- This is the same meaning of (C1)

 141

5.5.4.3 Concrete Implementor

(C1) The number of instances of operationImp meta-operation in

ConcreteImplementor must have less than or equal to the number of instances of

operationImp meta-operation in Implementor:

context ConcreteImplementor

inv: self.operationImp->size() <= Implementor.operationImp->size()

-- This is the same meaning of (B2)

 142

CHAPTER 6. CASE II: THE ARENA GAME SYSTEM

ARENA is a “multi-user, web-based system for organizing and conducting tournaments”

[Bruegge and Dutoit 2004]. ARENA has two sub-systems: game organizing part and

game playing part. [Bruegge and Dutoit 2004] describes classes used in this case study as

follows:

• Game: a competition among a number of players that is conducted according to a

set of rules. In ARENA, the term Game refers to a piece of software that enforces

the set of rules, tracks the progress of each player, and decides the winner.

• Match: a contest between two or more players within the scope of a Game. The

outcome of a Match can be a single winner and a set of losers or a tie (in which

there are no winners or losers).

• Tournament: a series of Matches among a set of players. Tournaments end

with a single winner. The way players accumulate points and Matches are

scheduled is dictated by the league in which the Tournament is organized.

In this case study, we only focus on Games that involve a sequence of Moves performed

by players who take turns.

 143

The SME will be changing an ARENA design, an instance of the Abstract Factory design

pattern, using the PICUP design method. The two (accepted) change requests are for the

software enhancement, which is of perfective maintenance (change 1 & 2). Let us assume

that the initial given UML class diagram in XFigure 6-1X does not have any design defects.

6.1 Conducting the UML pattern-based design change 1

6.1.1 Step 1: Initial setup

For the initial setup of the case study, the SME needs four components as follows:

1. A UML pattern-base design: a UML class diagram including an instance of the

Abstract Factory design pattern is shown in XFigure 6-1X. The stereotyped notations

(« ») in this ARENA class diagram are instantiated from the DPUP for the

Abstract Factory design pattern (refer to Section X6.4X).

2. A change request: Change Request Form 1 (see XFigure 6-2X).

3. The DPUP: The DPUP for the Abstract Factory design pattern (see Section X6.4X).

4. The Abstract Factory design pattern references: For the reference of the Abstract

Factory design pattern, the SME may refer to [Gamma et al 1994], other pattern

books describing the Abstract Factory design pattern, or design pattern web sites.

The SME checks whether all components mentioned above are present.

 144

6.1.2 Step 2: Analyze a given UML design

Step 2.1: The SME as Mr. Maintainer analyzes the given UML design’s domain with the

domain description (if any).

An instance of the Abstract Factory design pattern in ARENA design

The description of the Games applying to the Abstract Factory design pattern is from

[Bruegge and Dutoit 2004] chapter 8, page 338-339.

The abstract Game interface is an abstract factory that provides methods for

creating Matches and Statistics as shown in XFigure 6-1X. Each concrete Game

(e.g., TicTacToe and Chess) realized the abstract Game interface and provides

implementations for the Matches and Statistics objects. For example, the

TicTacToe Game implementation returns TTTMatches and TTTStats objects

when the createMatch() and the createStatistics() methods are invoked. The

concrete Match objects (e.g., TTTMatches and ChessMatch) track the current

state of the Match and enforce the Game rules. Each concrete Game also

provides a concrete Statistics object for accumulating average statistics (e.g.,

average Match length, average number of Moves, number of wins and losses per

player, as well as Game specific Statistics). The Tournament objects each use a

concrete Statistics object to accumulate statistics for the Tournament scope.

Because the Tournament object only accesses the abstract Game, Match,

Statistics interfaces, the Tournament works transparently for all Games that

comply with this framework.

 145

Step 2.2: The SME as Mr. Maintainer identifies the given UML design with the design

pattern.

(Figure 6-1)

Figure 6-1 The Abstract Factory design pattern instance in ARENA design

6.1.3 Step 3: Analyze a change request

Step 3.1: The SME as Mr. Maintainer analyzes a change request form and identifies

maintenance type.

From the change request form in XFigure 6-2X, Mr. Maintainer identifies that it is a

perfective maintenance because a new function is added.

 146

Step 3.2: The SME as Mr. Maintainer analyzes change requirements from the accepted

change request form. Mr. Maintainer specifies change requirements as follows:

The Bridge game shall return BridgeMatches and BridgeStats objects when the

createMatch() and the createStatistics() methods are invoked.

Project: The ARENA system
Change requester: J. Park Date: 1/15/2007
Requested change: Add a Bridge game into the Games subsystem.

Change Analyzer/Designer: T. Smith Analysis date: 1/22/2007
Components affected: The Games subsystem
Associated components:
Change assessment: The design for adding a Bridge game to the Abstract Factory
design pattern instance is required.

Change priority: Medium
Change implementation: Estimated effort: 7 days
Date to change control board (CCB): 1/29/2007 CCB decision date: 2/5/2007
CCB decision: The change request accepted. The change is to be implemented in
Release 2.7.
Change implementer: Date of change:
Date submitted to quality assurance (QA): QA decision:
Date submitted to change management:
Comments:

Change Request Form 1

Figure 6-2 Change Request Form 1

6.1.4 Step 4 – Step 7
Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the

PICUP design method with the DPUP for the Abstract Factory design method (Section

X6.4X).

 147

After completing the seven steps, the SME needs to produce artifacts as follows:

The changed UML pattern-based design (UML class diagram 1 output)

The change list 1

6.2 Conducting the UML pattern-based design change 2

6.2.1 Step 1: Initial setup

For the initial setup of the case study, the SME needs four components as follows:

1. A UML pattern-base design: The SME uses the changed UML pattern-based

design (UML class diagram 1 output) produced from the previous design change.

2. A change request: Change Request Form 2 (see XFigure 6-3X).

3. The DPUP: The DPUP for the Abstract Factory design pattern (see Section X6.4X).

4. The Abstract Factory design pattern references: For the reference of the Abstract

Factory design pattern, the SME may refer to [Gamma et al 1994], other pattern

books describing the Abstract Factory design pattern, or design pattern web sites.

The SME checks whether all components mentioned above are present.

6.2.2 Step 2: Analyze a given UML design

Step 2.1: The SME as Mr. Maintainer analyzes the given UML design’s domain with the

domain description (if any).

Please refer to the description in Section X6.1.2X.

 148

Step 2.2: The SME as Mr. Maintainer identifies the given UML design with the design

pattern.

The SME already knows the design (UML class diagram 1 output).

6.2.3 Step 3: Analyze a change request

Step 3.1: The SME as Mr. Maintainer analyzes a change request form and identifies

maintenance type.

From the change request form in XFigure 6-3X, Mr. Maintainer identifies that it is a

perfective maintenance because a new function is added.

Step 3.2: The SME as Mr. Maintainer analyzes change requirements from the accepted

change request form. Mr. Maintainer specifies change requirements as follows:

• Variation class shall provide a selection for variation games of Bridge and

Chess

 149

Project: The ARENA system
Change requester: J. Park Date: 2/15/2007
Requested change: Add a function of selecting variations of Chess and Bridge games to the
Games subsystem.

Change Analyzer/Designer: T. Smith Analysis date: 2/22/2007
Components affected: The Games subsystem
Associated components:
Change assessment: The design of variation (e.g., Western & International) of Chess
games and variation (e.g., Conventional & American) of Bridge games are required. A
function of selecting one of variations in each game is also required.

Change priority: Medium
Change implementation: Estimated effort: 7 days
Date to change control board (CCB): 2/25/2007 CCB decision date: 3/5/2007
CCB decision: The change request accepted. The change is to be implemented in
Release 2.7.
Change implementer: Date of change:
Date submitted to quality assurance (QA): QA decision:
Date submitted to change management:
Comments:

Change Request Form 2

Figure 6-3 Change Request Form 2

6.2.4 Step 4 – Step 7
Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the

PICUP design method with the DPUP for the Abstract Factory design method.

After completing the seven steps, the SME needs to produce artifacts as follows:

The changed UML pattern-based design (UML class diagram 2)

The change list 2

 150

6.3 Conducting the UML pattern-based design change 3

The given UML class diagram in XFigure 6-4X was developed reusing the Observer design

pattern, but a pattern-based design defect has been found in the design. The SME is

assigned the problem of fixing the pattern-based design defect.

6.3.1 Step 1: Initial setup

For the initial setup of the case study, the SME needs four components as follows:

1. A UML pattern-base design: a UML class diagram including an instance of the

Observer design pattern is shown in XFigure 6-4X. The stereotyped notations (« »)

in this ARENA class diagram are instantiated from the DPUP for the Observer

design pattern (refer to Section X6.5X).

2. A change request: Change Request Form 3 (see XFigure 6-5X).

3. The DPUP: The DPUP for the Observer design pattern (see Section X6.5X).

4. The Observer design pattern references: For the reference of the Observer design

pattern, the SME may refer to [Gamma et al 1994], other pattern books describing

the Observer design pattern, or design pattern web sites.

The SME checks whether all components mentioned above are present.

 151

6.3.2 Step 2: Analyze a given UML design

Step 2.1: The SME as Mr. Maintainer analyzes the given UML design’s domain with the

domain description (if any).

The instance of the Observer design pattern

The description of Games applying to the Observer design pattern is from [Bruegge and

Dutoit 2004] chapter 8, page 339-340. The following description has been revised for this

case study (corrective design maintenance).

ARENA supports multi-player games, such as TicTacToe and Chess. Each

player accesses a Match in progress through a client application running on his

local machine. Consequently, many views of the same Match in progress must be

kept consistent. ARENA also supports that each player accesses a Tournament

in progress through a client application running on his local machine.

To address this problem, we use the Observer design pattern in XFigure 6-4X. The

Concrete Subject is the Gameboard that maintains the current state of each

Match and the current state of each Tournament respectively. MatchView and

TournamentView are Concrete Observers.

Step 2.2: The SME as Mr. Maintainer identifies the given UML design with the design

pattern. (Figure 6-4)

 152

Figure 6-4 Part of the ARENA design reusing the Observer design pattern

6.3.3 Step 3: Analyze a change request

Step 3.1: The SME as Mr. Maintainer analyzes a change request form and identifies

maintenance type.

From the change request form in XFigure 6-5X, Mr. Maintainer identifies that it is a

corrective maintenance because there are omitted design elements. This means that the

design does not conform to the Observer design pattern.

Step 3.2: The SME as Mr. Maintainer analyzes change requirements from the accepted

change request form. Mr. Maintainer specifies change requirements as follows:

 153

Please conduct this sub-step. (The investigator is leaving this work to the SME)

Figure 6-5 Change Request Form 3

6.3.4 Step 4 – Step 7
Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the

PICUP design method. The SME may refer to the DPUP for the Observer described in

Section X6.5X.

After completing the seven steps, the SME needs to produce artifacts as follows:

The changed UML pattern-based design (UML class diagram 3 output)

 154

The change list 3

6.4 The DPUP for the Abstract Factory Design Pattern

The intent of the abstract factory design pattern is to provide an interface for creating

families of related or dependent objects without specifying their concrete classes

[Gamma et al 1994]. The abstract factory design pattern is one of five creational design

patterns.

Figure 6-6 The Abstract Factory Design Pattern [Gamma et al 1994]

There are groups of related product objects a client wants to use. The client actually

wants to use a particular product object from each group in a context. If the client directly

handles to choose product objects to be used, high coupling exists between the client and

the product objects. To lose high coupling, assign this responsibility from the client to

somebody else called factory. Each factory creates its particular sets of product objects

from each group as shown in XFigure 6-6X.

 155

Separating the interface from the concrete classes makes it easy not only to change the

concrete classes, but also to be accessed. The client interacts with abstract factory to

create product objects, and then operates with concrete products only through abstract

product.

6.4.1 AbstractFactory_DP Profile

Figure 6-7 AbstractFactory_DP Profile

 156

6.4.2 AbstractFactory_DPP Subprofile

Figure 6-8 AbstractFactory_DPP Subprofile

 157

6.4.3 AbstractFactory_DPS Subprofile

Figure 6-9 AbstractFactory_DPS Subprofile

6.4.4 Constraints for AbstractFactory_DPS Subprofile

6.4.4.1 AbstractFactory

(A1) The number of instances of createProduct meta-operation must have the same

number of instances of AbstractProduct:

context AbstractFactory

inv: self.creteProduct()->size() = self.facClinet.absPro->size()

 158

/* a createProduct() instantiated creates a particular product from a particular group

through the group’s interface. Related products used by the client consist of each product

from each group. To create related products from all groups, the same number of

createProduct() instantiated and the number of groups should exist. */

(A2) The name of instances of createProduct meta-operation in AbstractFactory is

concatenating

6.4.4.2 ConcreteFactory

(B1) The m (m>0) is defined as the number of ConcreteFactory instantiated in a design:

context ConcreteFactory

def: m : self->size()

inv: m > 0

6.4.4.3 AbstractProduct

(C1) The n (n>0) is defined as the number of AbstractProduct instantiated in a design:

context AbstractProduct

def: n : self->size()

inv: n > 0

 159

(C2) The m (m>0) is defined as the number of children of an instance of

AbstractProduct:

context AbstractProduct

def: m : self->select(OclTypeOf(ConcreteProduct))->size()

inv: m > 0

/* The standard operation OclTypeOf takes ConcreteProduct as a parameter in order to

take the subclass (child) of AbstractProduct. The select operation collects all instances

of ConcreteProduct. The size operation calculates the number of children of

AbstractProduct instantiated. */

6.4.4.4 ConcreteProduct

(D1) The nm (nm>0) is defined as the number of ConcreteProduct instantiated in a

design:

context ConcreteProduct

def: nm: self->size()

inv: nm > 0

 (D2) The number of instances of ConcreteProduct meta-class must have the same

number of instances of creteProduct() meta-operation in all instances of

AbstractFactory meta-class:

context ConcreteProduct

inv: self->size() = self.conFac.creteProduct()->size()

 160

6.4.4.5 AbstractFactory_Client

(E1) The number of instances of creteProduct() meta-operation must have the same

number of instances of AbstractProduct meta-class:

context Client

inv: self.absFac.createProduct()->size() = self.absPro->size()

6.5 The DPUP for the Observer Design Pattern

The Observer DPUP is specified in section 3.4.

 161

CHAPTER 7. THE RESULTS OF THE TWO-CASE STUDY

This chapter provides the results of the two-case study (Chapter 5 and Chapter 6) that are

collected from the work of the four subject matter experts (SMEs). SME#1 and SME#2

performed the case study plan 1 specified in Section 4.2.2.3. SME#3 and SME#4

performed the case study plan 2 specified in Section 4.2.2.3. Four SMEs are

characterized as shown in XTable 7-1X.

Table 7-1 Information of Subject Matter Experts

Case Study Plan 1 Plan 2

Subject Matter Expert SME#1 SME#2 SME#3 SME#4

Current Job Title/Position
Research

Scientist
Professor Professor

Research

Assistant

Education Ph.D Ph.D Ph.D
Ph.D

candidate

Number of Years in

Information Technology
14 20 23 10

 162

7.1 Quantitative Evidence

The case study investigator compares the design solution provided by the investigator

with the design answer sheets (the changed UML class diagrams) expedited by four

SMEs. From the comparison between the design solution by the investigator and the

change results by each SME, design defects are counted based on the types of design

defects in Table 4-6 in Chapter 4. X

Table 7-2 Design Defect Counts (DDC) Metric

PICUP Conventional UML 2.0

Defect Type
SME

#1
SME

#2
SME

#3
SME

#4
SME

#1
SME

#2
SME

#3
SME

#4

1.1 1 1 4 5

1.2 Omission

1.3 2

2.1

2.2 2 1 1 Incorrect Fact

2.3 2

Sub-total 0 0 1 1 6 5 3 3

Total 2 17

Table 7-2X shows the number of design defects by defect types produced from four SMEs

using the PICUP design method and using the conventional UML 2.0 design method. The

 163

design defect counts (DDC) metric provides comparative evidence of the effects of using

the two rival design methods.

The evidence (the number of design pattern defects produced using the PICUP design

method and the conventional UML 2.0 design method) shows that defects are

significantly reduced by using the PICUP design method during perfective and corrective

design maintenance for information systems. Totally two design pattern defects are

detected from the changes design by SME#3 and SME#4 using the PICUP design method.

SME#4 produced one design defect of design pattern (DP) omission type. In the meeting

after the design changes, SME#4 mentioned that he/she did not apply all design

constraints during design changes and he/she just overlooked the changed UML pattern-

based design to check whether the change result conforms to the design pattern or not.

Four SMEs produced 17 design defects using the conventional UML 2.0 design method.

It is asserted in this research that it is because there is no control of UML pattern-based

design maintenance when the conventional UML 2.0 design method is used.

7.2 Qualitative Evidence

There are three different types of questions provided in the case study questionnaire: (1)

yes-or-no questions, (2) rating questions (“5” being the highest rating and “1” being the

lowest rating), and (3) short-answer questions. All answers shown from Table 7-3 to

Table 7-7 are collected as qualitative evidence.

 164

Table 7-3 Answers for Questions 1 to 4

Question: Answer
Type

SME
#1

SME
#2

SME
#3

SME
#4

1. How do you rate your experience
with UML?

Rating
(1, 2, 3,
4, 5)

4

3

5

5

2. How do you rate your experience
with the design concepts?

Rating
(1, 2, 3,
4, 5)

5

4

5

5

3. How do you rate your experience
with the design patterns?

Rating
(1, 2, 3,
4, 5)

4

4

4

5

4. How do you rate your experience
with formal languages including the
Object Constraint Language (OCL)?

Rating
(1, 2, 3,
4, 5)

4

4

4

3

 165

Table 7-4 Answers for Questions 5 to 7

Question: Answer
Type

SME
#1

SME
#2

SME
#3

SME
#4

5. Does the design change on a design
pattern instance resulting from using the
PICUP design method conform to the
design pattern during perfective
maintenance?

Yes or
No

Yes Yes Yes Yes

6. If the result from applying the PICUP design method conforms to the design pattern
during perfective maintenance, then why is this true? If not, explain why not?
SME#1 It validates the changed design based on the constraints on multiplicity and

the stereotypes.

SME#2 The method guided through the conformance to the design pattern.

SME#3 Constraints guarantee the changed design as pattern instances during

perfective maintenance.

SME#4 The conformance is checked based on: The stereotype naming convention

checking, Graphical Constraint checking, and OCL checking. These checks,

in my opinion, provide sufficient conditions enforced by the PICUP method

for design conformance while adding new design elements. I also

recommend performing the corrective maintenance (to be sure of

correctness) before doing the preventive maintenance.

7. How does your PICUP design change conform to the design pattern during
perfective maintenance?
SME#1 The constraints and UML profile guided me to conform the design changes

to the given design pattern.

SME#2 Because of the DPUP.

SME#3 By application of PICUP constraints.

SME#4 The methodological steps in the PICUP method guide the analyst to make

stepwise changes based on the DPUP of the design pattern. The detailed

structural and logical explanation of the DPUP and its constraints help the

PICUP design change conform to the design pattern during perfective

maintenance.

 166

Table 7-5 Answers for Questions 8 to 10

Question: Answer
Type

SME
#1

SME
#2

SME
#3

SME
#4

8. Does the design change on a design
pattern instance resulting from using the
PICUP design method conform to the
design pattern during corrective
maintenance?

Yes or
No

Yes Yes Yes Yes

9. If the result from applying the PICUP design method conforms to the design pattern
during corrective maintenance, then why is this true? If not, explain why not?
SME#1 It validates the changed design based on the rules on multiplicity and the

stereotypes.

SME#2 The method guided through the conformance to the design pattern.

SME#3 Constraints guarantee the changed design as pattern instances during

corrective maintenance.

SME#4 During corrective maintenance the conformance is checked based on: The

stereotype naming convention checking, Graphical Constraint checking, and

OCL checking. These checks, in my opinion, provide sufficient conditions

enforced by the PICUP method for design conformance while checking the

existing design elements.

10. How does your PICUP design change conform to the design pattern during
corrective maintenance?
SME#1 It guided me to identify where to make changes.

SME#2 Because of the DPUP.

SME#3 By application of PICUP constraints.

SME#4 The methodological steps in the PICUP method guides the analyst to make

stepwise comparisons of the benchmark set by the DPUP of the design

pattern and check for their conformance in the design pattern instance.

Therefore, the detailed structural and logical explanation of the DPUP and

its constraints helps the PICUP design change conform to the design pattern

during corrective maintenance.

 167

Table 7-6 Answers for Questions 11 to 18

Question: Answer
Type

SME#1 SME#2 SME#3 SME#4

11. How easy is it to understand
the PICUP design method?

Rating
(1, 2, 3,
4, 5)

5 5 4 4

12. How easy is it to use the
PICUP design method during
perfective and corrective
maintenance?

Rating
(1, 2, 3,
4, 5)

5 4 3 3

13. Is the level of easiness the
same for using the PICUP design
method in different design
patterns?

Yes or
No

Yes Yes Yes No

14. Is the PICUP design method
applicable in real work situation?

Yes or
No

Yes Yes Yes Yes

15. If a constraint checking tool
for the PICUP is provided, do you
think that the PICUP design
method can save design
maintenance time during
perfective and corrective
maintenance?

Yes or
No

Yes Yes Yes Yes
(strongl
y)

16. If a constraint checking tool
for the PICUP is provided, do you
think that the PICUP design
method can preserve or improve
design quality during perfective
and corrective maintenance?

Yes or
No

Yes Yes Yes Yes
(strongl
y)

17. Do you think that the PICUP
design method can be used with
other design methodologies, such
as Rational Unified Process
(RUP)?

Yes or
No

Yes Yes Yes Yes

18. From your experience and
assessment, how important is the
PICUP design method used during
perfective and corrective
maintenance in order to prevent
design pattern related defects?

Rating
(1, 2, 3,
4, 5)

5 5 5 5

 168

Table 7-7 Answers for Questions 19 and 20

19. What would be the advantage of using the PICUP method during perfective and
corrective maintenance? Please explain.
SME#1 Preserving the design knowledge as well as the coding styles along with the

design pattern.

SME#2 Knowing the goals of various types of maintenances “explicitly” through the

use of DPUP in the PICUP method and the step-wise method to perform that

in practice.

SME#3 It guarantees design quality consistency regardless of a maintainer’s

experience.

SME#4 Methodological guidance to make a change in a design pattern instance.

Methodological guidance for conformance assessment.

Proof of correctness based on the DPUP.

20. What would be the disadvantage of using the PICUP method during perfective and
corrective maintenance? Please explain.
SME#1 Identification and specification may require additional efforts of experts.

SME#2 It is not the disadvantage of the PICUP. But if the case study was provided

with a tool support then it would have been much easier and faster.

SME#3 Without a tool support it could be time consuming work.

SME#4 May take away attention from satisfying the needs of the problem domain

and make the SME too involved in just checking for design pattern

conformance. The SME may think that since the design pattern instance

conforms to the design pattern, the design is also logically correct and meets

the needs of the problem domain, which may not always be the case.

I have not yet encountered with any example, but I am curious if certain

design pattern instance conformance violations may be necessary to address

the needs of the problem domain. How does one document and capture the

need for doing so? What will be the impact of ignoring certain compliance

requirements on the rest of the design pattern instance conformance? For

 169

example: we might not always have access to all the classes and interfaces

for changing them (proprietary), in that case we cannot always have design

pattern conformance.

The answers from question 12 show that some SMEs experienced a little difficulty in

using the PICUP design method during UML pattern-based design changes. Constraint

checking using the DPUP in the PICUP design method is not easy. This difficulty is

inherited from formal language, not the PICUP design method itself. That is why a tool

for checking design constraints in the DPUP is needed as shown in the answers from

question 15 and question 16.

Question 14 addresses the applicability of the PICUP design method in real work

situation. Question 17 inquires the interoperability of the PICUP with other software

engineering methods. From the answers of question 14 and question 17, SMEs agreed

that the PICUP design method is applicable and interoperable.

The PICUP design method enforces maintainers to make correct changes in UML

pattern-based design (UML class diagrams) by design constraints in the DPUP so that the

change results of a design pattern instance in a UML class diagram conform to its design

pattern. This result is derived from the answers of questions 6, 7, 9, 10, and 19.

 170

The answer of question 20 by SME#1 shows that making the DPUP requires extra

efforts. SME#2 and SME#3 describe in question 20 that a tool support for the PICUP

design method is needed. SME#4 states that the changed UML pattern-based design

needs to be conformed to not only the design pattern, but also its specification (initial

UML pattern-based design). SME#4 also describes the possibility of the conflict between

the specification and the design pattern in UML pattern-based design, even though

SME#4 has not seen a case. A conflict resolution will be needed if that case happens.

Refactoring (restructuring design) technique [Fowler and Beck 1999] may help in that

case.

7.3 Case Study Conclusion

During the case study, assessment a pattern-based design with metamodel-level UML

constraints was performed manually. Since then, I developed the assessment tool which

can perform assessment automatically. This assessment tool is able to discover even the 2

defects resulted from the manual assessment. Now, by using the assessment tool, I

believe we can accomplish zero defects.

A set of evidence collected from Section X7.1X and Section X7.2X supports the case study’s

main research question linked to the main proposition of the case study. XFigure 7-1 shows

analytic generalization of the case study. XThe results obtained from the evidence related

to the case study’s main research proposition support the main research hypothesis. The

main hypothesis of this research is that the Pattern Instance Changes with UML Profiles

 171

(PICUP) is an improved design method ensuring structural conformance of UML pattern-

based design to design patterns during perfective and corrective design maintenance.

Figure 7-1 Analytic generalization of the case study

 172

CHAPTER 8. CONCLUSIONS

This chapter concludes the dissertation research with main contributions and future work.

The PICUP is an improved design method ensuring structural conformance of UML

pattern-based designs to the corresponding design patterns applied during perfective and

corrective design maintenance for information systems.

8.1 Contributions

The main contribution of this dissertation research is (1) development of the PICUP

design method with the DPUPs, (2) development of the Assessment algorithm and its

implementation in Java for assessing UML pattern-based design with metamodel-level

UML design constraints, and (3) a case study design to evaluate the effects of using the

PICUP design method. More specific contributions are as follows:

• The PICUP design method provides a set of detailed steps that maintainers can

follow while conducting UML pattern-based design changes during perfective

and corrective design maintenance for information systems (Section 3.1 and 3.2).

 173

• Using the PICUP design method, maintainers check the conformance of the

changed UML pattern-based design to the corresponding design patterns specified

in the DPUPs (Section 3.3).

• The DPUPs used in the PICUP design method demonstrates how to specify

design patterns in the UML Profile and to instantiate design pattern instances (as

UML pattern-based design) in the UML class diagrams from the DPUPs (Section

3.3).

• Metamodel-level UML constraints using Stereotyped UML notations (served as

graphical constraints of a design pattern) and metamodel level OCL constraints in

the DPUPs enforce maintainers to make structurally correct changes in UML

pattern-based designs (Section 3.3).

• The Assessment algorithm is a sound technique in assessing the conformance of

UML pattern-based design to the design patterns specified in the DPUP,

especially graphical constraints of a design pattern (Section 3.5). The Assessment

tool implemented in Java discovers defined design pattern defects (Section 4.2.3)

from various UML pattern-based designs.

• By the application of the designed case study methodology (Chapter 4), the two-

case study (Chapter 5, 6, and 7) evaluates the PICUP design method (Chapter 3).

8.2 Future Work

The limitations of this dissertation research serve directions for future work as follows:

 174

A tool support for checking design constraints (metamodel-level UML and OCL design

constraints):

The PICUP design method requires checking conformance of the changed UML pattern-

based design to the design pattern. This checking process, applying design constraints

specified in the DPUPs to the changed UML pattern-based design, is time consuming. To

reduce maintainers’ work applying design constraints in the DPUPs, a tool support for

checking design constraints is necessary. Currently the semi-automatic Assessment tool

applying metamodel-level UML design constraints is implemented. The Assessment tool

needs to be embedded in UML design tools for automation. A tool applying metamodel-

level OCL design constraints is needed as well.

Behavioral conformance checking:

A UML pattern-based design also needs to check the behavioral conformance of the

changed UML pattern-based design to the corresponding design patterns. For the

behavioral conformance checking, design patterns need to be specified in the UML

sequence diagrams and/or UML state machine diagrams. The PICUP design method also

needs to expand for the behavioral conformance checking.

 175

APPENDIX A. TERMS

Abstract class A class that may not be instantiated. An abstract class is one whose main

purpose is to define a common interface for the objects of its concrete subclasses. The

name of an abstract or an abstract operation is shown in italics. A class that isn’t abstract

is called a concrete class [OMG 2005b; Rumbaugh et al 2005].

Collaboration A collaboration describes a structure of collaborating elements (roles),

each performing a specialized function, which collectively accomplish some desired

functionality. A collaboration defines a set of cooperating participants that are needed for

a given task. The roles of a collaboration will be played by instances when interacting

with each other. Their relationships relevant for the given task are shown as connectors

between the roles. Roles of collaborations define a usage of instances, while the

classifiers typing these roles specify all required properties of these instances. Thus, a

collaboration specifies what properties instances must have to be able to participate in the

collaboration. A role specifies (through its type) the required set of features a

participating instance must have. The connectors between the roles specify what

communication paths must exist between the participating instances [OMG 2005b;

Rumbaugh et al 2005].

Collaboration use the application of the pattern described by a collaboration to a

specific situation involving specific classes or instances playing the roles of the

collaboration [OMG 2005b; Rumbaugh et al 2005].

Conformance In this research, conformance is used in the context of design pattern.

Structural agreement that UML pattern-based design satisfies to constraints of design

patterns in UML class diagrams.

 176

Constraint a restriction on one or more values of (part of) and object-oriented model or

system [Warmer and Kleppe 2003].

Correctness In this research, correctness of UML pattern-based design is asserted when

it is said that the design is correct with respect to both a specification (requirements

specification) and design patterns.

Defect Any design that does not conform to a specification (requirements specification)

[Dunn 1984; Zeng 2005]. Defects can be categorized as requirement defects, design

defects, code defects, document defects, bad fix defects, test plan defects, and test case

defects [Zeng 2005]. Pressman defines it as a verified lack of conformance to

requirements [Pressman 2005]. This research focuses on defects in design.

Design The process of defining the architecture, components, interfaces, and other

characteristics of a system or component [IEEE STD. 610.12 1990]. Design can be

divided into high-level design and low-level design as follows [IEEE STD. 610.12 1990;

IEEE Computer (Web) 2005]:

• High-level design (or architectural design) is “the process of defining the

architecture, components, interfaces, and other characteristics of a system or

component”; and

• Low-level design (or detailed design) is “the process of refining and expanding

the high-level design of a system or component to the extent that the design is

sufficiently complete to be implemented”.

 177

The focus of this dissertation research is within the process of completing high-level

design.

Feature A property, such as operation or attribute, which is encapsulated as part of a

list within a classifier, such as an interface or a class [OMG 2005b; Rumbaugh et al

2005].

Interface A declaration of a coherent set of public features and obligations. An

interface is a classifier for the externally visible [means public] properties [e.g.,

attributes] and operations of an implementation classifier, without specification of

internal structure. The purpose of interfaces is to decouple direct knowledge of classifiers

that must interact to implement behavior. There are no instances of interfaces at run time.

An interface may be shown using the rectangle symbol with the keyword «interface»

preceding the name [OMG 2005b; Rumbaugh et al 2005].

Invariant A constraint that should be true for an object during its complete lifetime

[Warmer and Kleppe 2003]. Invariant in the metamodel-level means that a constraint

should be true for a class in a design.

Model A representation of a real world process, device, or concept (IEEE 1233-1998

).

Process A sequence of steps performed for a given purpose [IEEE STD. 610.12 1990].

Process model An abstract description of an actual or proposed process that represents

selected process elements of the model and can be enacted by a human or machine.

 178

Protected A visibility value indicating that the given element is visible outside its own

namespace only to descendants of the namespace [OMG 2005b; Rumbaugh et al 2005].

Software The programs, documentation and operating procedures by which computers

can be made useful to men [Grubb and Takang 2003].

Software life-cycle (SLC) The software life cycle is initiated by customer’s need and

terminated by discontinued use of the product. The software life cycle, typically, includes

a concept phase, requirements phase, design phase, implementation phase, test phase,

installation and checkout phase, operation and maintenance phase, and, sometimes,

retirement phase. These phases may overlap in time or may occur iteratively. Note that

software development cycle, typically, includes from requirements phase to test phase,

sometimes, installation and checkout phase.

Software maintenance The process of modifying of a software system or a component

after delivery to correct faults, improve performance or other attributes, or adapt to a

changed environment [IEEE STD. 610.12 1990].

Software Quality: IEEE standard 610.12 defines software quality as (1) the degree to

which a system, component, or process meets specified requirements and/or (2) the

degree to which a system, component, or process meets customer or user needs or

expectations [IEEE STD. 610.12 1990]. Pressman describes it in a general sense as

 179

conformance to explicitly stated functional and performance requirements, explicitly

documented development standards, and implicit characteristics that are expected of all

professionally developed software [Pressman 2005].

Software quality is a complex mix of attributes that can be measured in such a way that

can be compared to known standards. In a hierarchy of quality attributes, higher level

attributes may be called quality factors; lower level attributes called quality attributes.

The ISO/IEC 9126 software quality standard defines six quality factors of software:

functionality, reliability, efficiency, usability, portability, and maintainability [ISO/IEC

9126-1 2001; Pressman 2005].

Structured classifier An abstract metaclass that represents any classifier whose

behavior can be fully or partly described by the collaboration of owned or referenced

instances [OMG 2005b; Rumbaugh et al 2005].

UML pattern-based design A design that consists of design patterns instances as

design blocks and is notated in UML.

 180

APPENDIX B. THE CASE STUDY (Cover Letter)

I would like to thank you for your participation in my case study as a Subject Matter

Expert (SME).

The topic of my dissertation research is UML pattern-based design maintenance. From

given software releases or versions to the next, design changes to UML software design

increases the possibility of design defects that are injected during the design

maintenance. Defects in early design must be prevented because they may cause serious

damages to later releases or versions of software in further software development and

maintenance.

During design maintenance, UML pattern-based design requires special attention which

the change results to a design pattern instance must conform according to the rules or

restrictions of the design pattern. UML pattern-based design, as a special kind of UML

design, is developed by using instances of design patterns. Conventional UML design

methods, however, do not provide a systematic way to correct defects or make changes to

UML pattern-based designs in conformance of design pattern instances. Hence, there is a

need new UML pattern-based design maintenance methods in order to prevent potential

pattern-related design defects.

To solve above UML design maintenance problem, the Pattern Instance Changes with

UML Profiles (PICUP) method, as a new systematic design method, is invented for UML

pattern-based design maintenance. The PICUP design method is dedicated to correct

changes of design pattern instances so as to conform to their design patterns.

The Design Pattern in UML Profiles (DPUP) is especially provided to check

conformance of the UML pattern-based design changed by the PICUP design method.

 181

The UML Profile mechanism is utilized to extend the existing UML 2.0 for specifying

design patterns. Design patterns in the DPUP are specified with stereotypes for design

pattern annotation and with constraints (Object Constraint Language (OCL) 2.0 [Warmer

and Kleppe 2003; OMG 2006] expressions) for design pattern rules. Conventional design

patterns (e.g. [Gamma et al 1994]) informally specify design patterns, and current UML

diagram ‘programming’ for a design pattern is an informal instance of a design pattern,

not a design pattern itself.

To evaluate the PICUP design method, two specific case studies will be conducted by

you. You will change two UML pattern-based designs with given change requests using

the two rival design methods (one with the PICUP design method and the other one with

the conventional UML 2.0 design method [Booch et al 2005; OMG 2005b; Rumbaugh et

al 2005]). Your two case studies results (your changed designs and your answers to the

yes/no and short written response questions on the questionnaire), as evidence for the

study, will be analyzed and evaluated by the investigator.

There are five steps in the case study. During the two specific case studies you will be

conducting, you and I will be communicating interactively at the end of each step

through emails. Although real conducting time for each step is not long (probably 2-3

hours per each case study), it will take a week for completing all steps because of remote

interaction. I will let you know when we will start the case study in 2-3 days, and

hopefully, we will be able to finish it in a week.

Again, I appreciate your participation in the two specific case studies. If you have any

questions, please let me know.

 182

APPENDIX C. THE CASE STUDY (Plan 1)

Plan 1: [1. The case study introduction]

THE CASE STUDY FOR THE PATTERN INSTANCE CHANGES WITH UML
PROFILE (PICUP) DESIGN METHOD

George Mason University

The Volgenau School of Information Technology and Engineering

Case Study Investigator: Jaeyong Park

Conductor: Subject Matter Expert 1

Conducting Date: April 2007

 183

1. INTRODUCTION
The goal of this case study is to evaluate the Pattern Instances Changes with UML
Profiles (PICUP), a new systematic design method, through two explanatory and
comparative cases of the study. The PICUP design method is dedicated to correctly
change UML pattern-based design correctly. UML pattern-based design is a special
design of UML design as shown in Figure 1. Conventional UML design methods do not
provide a way of how to conform the change result of a design pattern instance to its
design pattern. The terms design pattern and pattern are used interchangeably in this case
study.

Figure 1 Software Designs

2. CONDUCTING THE CASE STUDY
You will be changing initially four UML class diagrams developed by using four design
pattern instances with the change requests from using the two rival design methods: two
UML class diagrams with the PICUP design method and two UML class diagrams with
the conventional UML 2.0 design method. A UML pattern-based design as a unit of
analysis is the case. The red rectangle in Figure 2 shows what you are supposed to get
and produce for each case.

Object-Oriented Design
(UML design)

Component
-Based
Design

Pattern-
Based
Design

Aspect-
Oriented
Design

Function-
Oriented

(Structured)
Design

Data-Structure-
Centered
Design

Service-
Oriented
Design

 184

Figure 2 The Steps of UML Pattern-based Design Change

After changing, you fill in one set of design answer sheets (the changed UML class
diagrams and the lists of design changes showing what you have exactly changed) for
the PICUP design method and one set of design answer sheets for the conventional UML
2.0 design method. You turn in the design answer sheets and the questionnaire.

Overall steps of the case study for you (SME 1) are as following:

1. The case study introduction (SME1_1CaseStudyIntroduct.pdf)
a. Q & A session

2. The PICUP design method training (SME1_2PICUP.pdf)
a. Q & A session

3. Changes of Lexi design (chapter 2 in [Gamma et al 1994]) using the PICUP
design method (SME1_3Lexi_PICUP.pdf)

a. No questions during changes
4. The conventional UML 2.0 design method training

(SME1_4ConventionalUML.pdf)
a. Q & A session

5. Changes of ARENA design (chapter 8 in [Bruegge and Dutoit 2004]) using the
conventional UML 2.0 design method (SME1_5ARENA_ConventionalUML.pdf)

a. No questions during changes

Among above the five steps, you can ask the investigator questions during or after step 1,
2, or 4. You can NOT ask the investigator questions during or after step 3 or 5.

 185

3. THE CASE STUDY METHODOLOGY
The plan of the case study has been developed based on [Yin 2003]’s case study
methodology as follows:

 Five important components based on [Yin 2003]:
 1. A study’s propositions: Assertions to be examined;
 2. The study’s questions: Each study proposition is further subdivided into

questions the SMEs are to answer on a questionnaire;
 3. The study’s units of analysis: The selected resource to be examined;
 4. The logic linking the data (from questionnaire and any other answer
sheets) to the propositions; and

 5. The criteria (effective metrics) for interpreting the findings.
 Four steps of the case study based on [Yin 2003]:

 Step 1 – Designing the case study: 1st and 2nd components;
 Step 2 – Conducting the case study: 3rd component;
 Step 3 – Analyzing evidence of the case study: 4th and 5th components;

and
 Step 4 – Developing conclusions.

Main propositions of the case study are as follows:

 P1: The design change on a design pattern instance resulting from using the
PICUP method conforms to the design pattern during perfective and corrective
maintenance.

 P2: The PICUP method results in fewer design defects than the conventional
UML 2.0 design method during perfective and corrective maintenance.

The order of the two rival design methods that a SME uses may affect the results of the
case study. To reduce this potential bias, two SMEs change two cases with different order
of the two rival design methods as shown in Table 1

Table 1 Reduction of Potential Bias
 SME 1 SME 2

The PICUP design method
training

The conventional UML 2.0
design method training

Case 1
Lexi design change using the
PICUP method

Lexi design change using the
conventional UML 2.0 design
method

The conventional UML 2.0
design method training

The PICUP design method
training

Case 2 ARENA design change using the
conventional UML 2.0 design
method

ARENA design change using the
PICUP method

 186

Defect is defined as “nonconformance to specification” [Zeng 2005]. The investigator
categorizes design defects in Figure 3 based on [Travassos et al 1999]. The case study
focuses on design pattern related defects.

The investigator will compare your changed UML class diagrams with UML class
diagram solutions, and count the number of design defects by defect type and the total
number of design defects as quantitative data (design defect count metric). The
investigator will analyze ordinal measure data from the questionnaires such as
effectiveness and difficulty of each method as qualitative data. The investigator will
generalizes theories (analytic generalization), not to enumerate frequencies (statistical
generalization) [Yin 2003].

Design Diagrams

Domain Knowledge

Software Requirements
Specification (SRS)

Knowledge from Other
Domain

Multiple
Interpretations

incorrect fact

extraneous
information

ambiguity

inconsistency

Design Pattern

omission

DP omission

DP incorrect fact

Figure 3 Types of design defects

If you have any questions, please ask the investigator (Jaeyong Park). After Q&A
session, the investigator will give you materials for the next step. Thank you for your
cooperation.

 187

Plan 1: [2. The PICUP design method]

Refer to Chapter 3.

 188

Plan 1: [3. Changes of the Lexi design using the PICUP]

Refer to Chapter 5.

 189

Plan 1: [4. The conventional UML 2.0 design method]

The investigator recommends that you, a Subject Metter Expert (SME), review the
material in the Terms.pdf file (attached in the email of the case study introduction)
including UML four-layer architecture, Profile, and other terms used in conducting the
case study using the conventional UML 2.0 design method.

CHAPTER 1. THE CONVENTIONAL UML 2.0 DESIGN METHOD
Conventional UML 2.0 design methods are the design methods based on UML 2.0 [OMG
2005]. You are allowed to use UML 2.0 design techniques you know as the conventional
UML 2.0 design method, but rule techniques (e.g., Object Constraint Language (OCL)
expressions) are not allowed for conducting these specific case studies using the
conventional UML 2.0 design method.

You may refer to UML 2.0 Superstructure Specification [OMG 2005] (or see UML
current version at http://www.omg.org/technology/documents/formal/uml.htm),
[Rumbaugh et al 2005] “The unified modeling language reference manual,” 2nd edition,
[Booch et al 2005] “The unified modeling language user guide,” 2nd edition, or other
UML 2.0 textbooks.

kth UML
Pattern-based

Design

k + 1th UML
Pattern-based

Design

Next UML Pattern-
based Design

Conventional UML
2.0 design method

Change
Requests

Change
Requests(where k=1..n)

Conventional UML
2.0 design method

Figure 1 Iterative process of UML pattern-based design change using the
conventional UML 2.0 design method

The basic concept of the conventional UML 2.0 design method is shown in Figure 1. The
iterative process of UML pattern-based design change using the conventional UML 2.0
design method proceeds as follows. UML pattern-based design maintenance with the
conventional UML 2.0 design method starts in the initial kth design phase (where k=1..n).
A design pattern instance in the kth design is changed with the conventional UML 2.0
design method. Design k+1th must conform to the design pattern, where the design k+1th
is the result of applying given change requests (CRs) to the design pattern instance at kth.
The result is a changed design.

 190

As a guideline of UML pattern-based design change, the investigator provides the
following seven steps. These steps were originally developed for the conventional UML
2.0 design method. It is optional for you to use these steps in conducting UML pattern-
based design change using the conventional UML 2.0 design method.

1.1. The steps of the conventional UML 2.0 design method
The conventional UML 2.0 design method takes a UML pattern-based design and change
requests as inputs, and produces changed UML pattern-based design and a change list as
outputs shown in Figure 2. The conventional UML 2.0 design method changes design
pattern instances in UML pattern-based design, and checks for conformance of the
changed design to the design pattern. A catalog of design patterns (e.g., [Gamma et al
1995]) gives fundamental knowledge of design patterns to a maintainer. The maintainer
would be you, a SME, in this case study.

Figure 2 UML pattern-based design change using the conventional UML 2.0 design

method

The steps of the conventional UML 2.0 design method are presented in Figure 3. For the
detailed description of each step, the Patient Care Subsystem (PCS) reusing the Observer
design pattern will be used to illustrate these steps. Let us assume that Mr. Maintainer
changes a UML pattern-based design with change requests using the conventional UML
2.0 design method.

 191

Figure 3 The steps of the conventional UML 2.0 design method

1.1.1. Step 1: Initial setup
Mr. Maintainer sets up all components (materials) he needs in conducting a UML pattern-
based design change. Mr. Maintainer needs three components as follows:

1. A UML pattern-based design: the PCS class diagram in Figure 6.
2. A change request: a change request form in Figure 7.
3. A catalog of design patterns: Mr. Maintainer may refer to [Gamma et al 1995] in

Figure 4, other pattern books describing the Observer design pattern, or design
pattern web sites.

Figure 4 A design pattern book by [Gamma et al 1995]

1.1.2. Step 2: Analyze a given UML design
Step 2.1: Mr. Maintainer analyzes the given UML design’s domain with the domain
description (if any).

 192

The domain of the PCS is a hospital as shown in Figure 5. If a patient’s medical condition
is changed such as from a heart attack, the change of the patient’s condition is notified to
a nurse and a doctor. Then, they get the patient’s medical record and status information.

Figure 5 Domain of the Patient Care Subsystem (the top) and the Observer design

pattern (the bottom)

Step 2.2: Mr. Maintainer identifies the given UML design with the design pattern.
Mr. Maintainer identifies classes (including attributes and operations), associations, and
multiplicities in terms of the Observer design pattern depicted in Figure 5. The Mr.
Maintainer may refer to the catalog of design patterns for the Observer design pattern
such as [Gamma et al 1995]. The Observer design pattern is matched with the UML class
design of the PCS in Figure 6.

Subject

Observer1 Observer2

Notice for a change

Request and get for the change

Notice for a medical
condition change

Go and get the patient’s
medical condition PPaattiieenntt CCaassee DDoommaaiinn

 193

Figure 6 The Patient Care Subsystem (PCS) class diagram in package

1.1.3. Step 3: Analyze a change request
Step 3.1: Mr. Maintainer analyzes a change request form and identifies maintenance type.
From the change request form in Figure 7, Mr. Maintainer identifies that it is a perfective
maintenance change because a new function is being added.

Step 3.2: Mr. Maintainer analyzes change requirements from the accepted change request
form. Mr. Maintainer specifies change requirements as follows:

 A patient shall notify the payment department about the patient’s discharge from a
hospital using the patient record.

 Then, the payment department shall calculate the bill for the patient.

 194

Figure 7 A change request form for the PCS

1.1.4. Step 4: Identify design elements to be changed in the given UML design
These two changes are to add the following design elements.

 Payment class (to be added) is matched with the ConcreteObserver.
 Record attribute (to be added) is match with the subState in the ConcreteSubject.

1.1.5. Step 5: Change the design pattern instance resulting in a new design
Mr. Maintainer uses his own UML 2.0 design method to change the design pattern
instance in Figure 6.

1.1.6. Step 6: Conform the new design changes to the design pattern
Mr. Maintainer determines whether or not the new design change conforms to the design
pattern. If the new design change does not conform to the design pattern, Mr. Maintainer
makes further design changes to make it conform to the design pattern. Finally, Mr.
Maintainer makes correct UML pattern-based design as shown in Figure 8.

 195

Figure 8 The changed UML pattern-based design

1.1.7. Step 7: Create change list
From Step 6, Mr. Maintainer finally results in the changed UML pattern-based design in
Figure 8.

From Step 5 and Step 6, Mr. Maintainer makes a list for further design and/or coding as
follows:

 Create Payment class inherited from IRequest interface.
 Make a relationship from Payment class to Patient class.
 Create subState_Records attribute at Patient class.
 Create getState_Records() and setState_Records() operations at Patient

class.

Mr. Maintainer changes a UML pattern-based design with a given change request using
the conventional UML 2.0 design method (Step 1 through Step 7) and produces
structurally correct UML pattern-based design so as to conform to the given design
pattern.

 196

If you have any questions, please ask the investigator (Jaeyong Park). After the Q&A
session about the above material, the investigator will give you the materials you need in
the next step. Thank you!!!

 197

Plan 1: [5. Changes of ARENA design using the conventions UML 2.0]

You will be conducting perfective and corrective maintenance on the given two class
diagrams using the conventional UML 2.0 design method. The two class diagrams,
designed by reusing the Abstract Factory and the Observer design patterns respectively,
are a part of ARENA application [Bruegge and Dutoit 2004].

ARENA is a “multi-user, web-based system for organizing and conducting tournaments”
[Bruegge and Dutoit 2004]. ARENA has two sub-systems: game organizing part and
game playing part. [Bruegge and Dutoit 2004] describes classes used in this case study as
follows:

 Game: a competition among a number of players that is conducted according to a
set of rules. In ARENA, the term Game refers to a piece of software that enforces
the set of rules, tracks the progress of each player, and decides the winner.

 Match: a contest between two or more players within the scope of a Game. The
outcome of a Match can be a single winner and a set of losers or a tie (in which
there are no winners or losers).

 Tournament: a series of Matches among a set of players. Tournaments end
with a single winner. The way players accumulate points and Matches are
scheduled is dictated by the league in which the Tournament is organized.

In this case study, we only focus on Games that involve a sequence of Moves performed
by players who take turns.

1. CONDUCTING PERFECTIVE DESIGN CHANGE
You will be changing an ARENA design, an instance of the Abstract Factory design
pattern, using the conventional UML 2.0 design method (please refer to
SME1_4conventionalUML.pdf). The two (accepted) change requests are for the software
enhancement, which is of perfective maintenance. Let us assume that the initial given
UML class diagram in Figure 1 does not have any design defects.

1.1. Conducting the UML pattern-based design change 1

1.1.1. Step 1: Initial setup
For the initial setup of the case study, you need three components as follows:

1. A UML pattern-base design: a UML class diagram including an instance of the
Abstract Factory design pattern is shown in Figure 1.

2. A change request: Change Request Form 1 (see Figure 2).
3. The Abstract Factory design pattern references: For the reference of the Abstract

Factory design pattern, you may refer to [Gamma et al 1995], other pattern books
describing the Abstract Factory design pattern, or design pattern web sites.

 198

Please check whether you have all components mentioned above.

1.1.2. Step 2: Analyze a given UML design
Step 2.1: Mr. Maintainer analyzes the given UML design’s domain with the domain
description (if any).

An instance of the Abstract Factory design pattern in ARENA design
The description of the Games applying to the Abstract Factory design pattern is from
[Bruegge and Dutoit 2004] chapter 8, page 338-339.

The abstract Game interface is an abstract factory that provides methods for
creating Matches and Statistics as shown in Figure 1. Each concrete Game (e.g.,
TicTacToe and Chess) realized the abstract Game interface and provides
implementations for the Matches and Statistics objects. For example, the
TicTacToe Game implementation returns TTTMatches and TTTStats objects
when the createMatch() and the createStatistics() methods are invoked. The
concrete Match objects (e.g., TTTMatches and ChessMatch) track the current
state of the Match and enforce the Game rules. Each concrete Game also
provides a concrete Statistics object for accumulating average statistics (e.g.,
average Match length, average number of Moves, number of wins and losses per
player, as well as Game specific Statistics). The Tournament objects each use a
concrete Statistics object to accumulate statistics for the Tournament scope.
Because the Tournament object only accesses the abstract Game, Match,
Statistics interfaces, the Tournament works transparently for all Games that
comply with this framework.

Step 2.2: Mr. Maintainer identifies the given UML design with the design pattern.

 199

Figure 1 The Abstract Factory design pattern instance in ARENA design

1.1.3. Step 3: Analyze a change request
Step 3.1: Mr. Maintainer analyzes a change request form and identifies maintenance type.
From the change request form in Figure 2, Mr. Maintainer identifies that it is a perfective
maintenance because a new function is added.

Step 3.2: Mr. Maintainer analyzes change requirements from the accepted change request
form. Mr. Maintainer specifies change requirements as follows:

 The Bridge game shall return BridgeMatches and BridgeStats objects when the
createMatch() and the createStatistics() methods are invoked.

 200

Figure 2 Change Request Form 1

STEP 4 – STEP 7
Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the
conventional UML 2.0 design method.

After completing the seven steps, you need to produce artifacts as follows:

 The changed UML pattern-based design (UML class diagram 1 output)
 The change list 1

Please go on to the next change (UML pattern-based design change 2).

1.2. Conducting the UML pattern-based design change 2

1.2.1. Step 1: Initial setup
For the initial setup of the case study, you need three components as follows:

1. A UML pattern-base design: You use the changed UML pattern-based design
(UML class diagram 1 output) produced from the previous design change.

2. A change request: Change Request Form 2 (see Figure 3).
3. The Abstract Factory design pattern references: For the reference of the Abstract

Factory design pattern, you may refer to [Gamma et al 1995], other pattern books
describing the Abstract Factory design pattern, or design pattern web sites.

 201

Please check whether you have all the components mentioned above.

1.2.2. Step 2: Analyze a given UML design
Step 2.1: Mr. Maintainer analyzes the given UML design’s domain with the domain
description (if any).
Please refer to the description in Chapter 1.1.2.

Step 2.2: Mr. Maintainer identifies the given UML design with the design pattern.
You already know the design (UML class diagram 1 output).

1.2.3. Step 3: Analyze a change request
Step 3.1: Mr. Maintainer analyzes a change request form and identifies maintenance type.
From the change request form in Figure 2, Mr. Maintainer identifies that it is a perfective
maintenance because a new function is added.

Project: The ARENA system
Change requester: J. Park Date: 2/15/2007
Requested change: Add a function of selecting variations of Chess and Bridge games to the
Games subsystem.

Change Analyzer/Designer: T. Smith Analysis date: 2/22/2007
Components affected: The Games subsystem
Associated components:
Change assessment: The design of variation (e.g., Western & International) of Chess
games and variation (e.g., Conventional & American) of Bridge games are required. A
function of selecting one of variations in each game is also required.

Change priority: Medium
Change implementation: Estimated effort: 7 days
Date to change control board (CCB): 2/25/2007 CCB decision date: 3/5/2007
CCB decision: The change request accepted. The change is to be implemented in
Release 2.7.
Change implementer: Date of change:
Date submitted to quality assurance (QA): QA decision:
Date submitted to change management:
Comments:

Change Request Form 2

Figure 3 Change Request Form 2

Step 3.2: Mr. Maintainer analyzes change requirements from the accepted change request
form. Mr. Maintainer specifies change requirements as follows:

 202

 Variation class shall provide a selection for variation games of Bridge and
Chess

STEP 4 – STEP 7
Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the
conventional UML 2.0 design method.

After completing the seven steps, you need to produce artifacts as follows:

 The changed UML pattern-based design (UML class diagram 2)
 The change list 2

Please go on to the next change (UML pattern-based design change 3).

2. CONDUCTING CORRECTIVE DESIGN CHANGE
The given UML class diagram in Figure 4 was developed reusing the Observer design
pattern, but a pattern-based design defect has been found in the design. You will fix the
pattern-based design defect.

2.1. Conducting the UML pattern-based design change 3
2.1.1. Step 1: Initial setup
For the initial setup of the case study, you need three components as follows:

1. A UML pattern-base design: a UML class diagram including an instance of the
Observer design pattern is shown in Figure 4.

2. A change request: Change Request Form 3 (see Figure 5).
3. The Observer design pattern references: For the reference of the Observer design

pattern, you may refer to [Gamma et al 1995], other pattern books describing the
Observer design pattern, or design pattern web sites.

Please check whether you have all components mentioned above.

2.1.2. Step 2: Analyze a given UML design
Step 2.1: Mr. Maintainer analyzes the given UML design’s domain with the domain
description (if any).

The instance of the Observer design pattern
The description of Games applying to the Observer design pattern is from [Bruegge and
Dutoit 2004] chapter 8, page 339-340. The following description has been revised for this
case study (corrective design maintenance).

ARENA supports multi-player games, such as TicTacToe and Chess. Each
player accesses a Match in progress through a client application running on his
local machine. Consequently, many views of the same Match in progress must be

 203

kept consistent. ARENA also supports that each player accesses a Tournament in
progress through a client application running on his local machine.

To address this problem, we use the Observer design pattern in Figure 4. The
Concrete Subject is the Gameboard that maintains the current state of each
Match and the current state of each Tournament respectively. MatchView and
TournamentView are Concrete Observers.

Step 2.2: Mr. Maintainer identifies the given UML design with the design pattern.

Figure 4 The ARENA design reusing the Observer design pattern

2.1.3. Step 3: Analyze a change request
Step 3.1: Mr. Maintainer analyzes a change request form and identifies maintenance type.
From the change request form in Figure 5, Mr. Maintainer identifies that it is a corrective
maintenance because there are omitted design elements. This means that the design does
not conform to the Observer design pattern.

 204

Step 3.2: Mr. Maintainer analyzes change requirements from the accepted change request
form. Mr. Maintainer specifies change requirements as follows:

• Please conduct this sub-step. (The investigator is leaving this work to you, a
SME)

Project: The ARENA system
Change requester: J. Park Date: 3/15/2007
Requested change: Fix the problem of a player not being able to see his match and
tournament on his local machine.

Change Analyzer/Designer: T. Smith Analysis date: 3/22/2007
Components affected: The Games subsystem
Associated components:
Change assessment: Fix the UML class diagram reusing the Observer design pattern.

Change priority: Medium
Change implementation: Estimated effort: 7 days
Date to change control board (CCB): 3/25/2007 CCB decision date: 4/5/2007
CCB decision: The change request accepted. The change is to be implemented in
Release 2.7.
Change implementer: Date of change:
Date submitted to quality assurance (QA): QA decision:
Date submitted to change management:
Comments:

Change Request Form 3

Figure 5 Change Request Form 3

STEP 4 – STEP 7
Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the
conventional UML 2.0 design method.

After completing the seven steps, you need to produce artifacts as follows:

 The changed UML pattern-based design (UML class diagram 3 output)
 The change list 3

So far, you have produced three UML class diagrams and three change lists. Please send
me those outputs. The investigator will then give you a questionnaire. Thank you!!!

 205

APPENDIX D. THE CASE STUDY (Plan 2)

Plan 2: [1. The case study introduction]

THE CASE STUDY FOR THE PATTERN INSTANCE CHANGES WITH UML
PROFILE (PICUP) DESIGN METHOD

George Mason University

The Volgenau School of Information Technology and Engineering

Case Study Investigator: Jaeyong Park

Conductor: Subject Matter Expert 2

Conducting Date: April 2007

 206

1. INTRODUCTION
The goal of this case study is to evaluate the Pattern Instances Changes with UML
Profiles (PICUP), a new systematic design method, through two explanatory and
comparative cases of the study. The PICUP design method is dedicated to correctly
change UML pattern-based design correctly. UML pattern-based design is a special
design of UML design as shown in Figure 1. Conventional UML design methods do not
provide a way of how to conform the change result of a design pattern instance to its
design pattern. The terms design pattern and pattern are used interchangeably in this case
study.

Figure 1 Software Designs

2. CONDUCTING THE CASE STUDY
You will be changing initially four UML class diagrams developed by using four design
pattern instances with the change requests from using the two rival design methods: two
UML class diagrams with the PICUP design method and two UML class diagrams with
the conventional UML 2.0 design method. A UML pattern-based design as a unit of
analysis is the case. The red rectangle in Figure 2 shows what you are supposed to get
and produce for each case.

Object-Oriented Design
(UML design)

Component
-Based
Design

Pattern-
Based
Design

Aspect-
Oriented
Design

Function-
Oriented

(Structured)
Design

Data-Structure-
Centered
Design

Service-
Oriented
Design

 207

Figure 2 The Steps of UML Pattern-based Design Change

After changing, you fill in one set of design answer sheets (the changed UML class
diagrams and the lists of design changes showing what you have exactly changed) for
the PICUP design method and one set of design answer sheets for the conventional UML
2.0 design method. You turn in the design answer sheets and the questionnaire.

Overall steps of the case study for you (SME 2) are as following:

1. The case study introduction (SME2_1CaseStudyIntroduct.pdf)
a. Q & A session

2. The conventional UML 2.0 design method training
(SME2_2ConventionalUML.pdf)

a. Q & A session
3. Changes of Lexi design (chapter 2 in [Gamma et al 1995]) using the conventional

UML 2.0 design method (SME2_3Lexi_ConventionalUML.pdf)
a. No questions during changes

4. The PICUP design method training (SME2_4PICUP.pdf)
a. Q & A session

5. Changes of ARENA design (chapter 8 in [Bruegge and Dutoit 2004]) using the
PICUP design method (SME2_5ARENA_PICUP.pdf)

a. No questions during changes

Among above the five steps, you can ask the investigator questions during or after step 1,
2, or 4. You can NOT ask the investigator questions during or after step 3 or 5.

 208

3. THE CASE STUDY METHODOLOGY
The plan of the case study has been developed based on [Yin 2003]’s case study
methodology as follows:

 Five important components based on [Yin 2003]:
 1. A study’s propositions: Assertions to be examined;
 2. The study’s questions: Each study proposition is further subdivided into

questions the SMEs are to answer on a questionnaire;
 3. The study’s units of analysis: The selected resource to be examined;
 4. The logic linking the data (from questionnaire and any other answer
sheets) to the propositions; and

 5. The criteria (effective metrics) for interpreting the findings.
 Four steps of the case study based on [Yin 2003]:

 Step 1 – Designing the case study: 1st and 2nd components;
 Step 2 – Conducting the case study: 3rd component;
 Step 3 – Analyzing evidence of the case study: 4th and 5th components;

and
 Step 4 – Developing conclusions.

Main propositions of the case study are as follows:

 P1: The design change on a design pattern instance resulting from using the
PICUP method conforms to the design pattern during perfective and corrective
maintenance.

 P2: The PICUP method results in fewer design defects than the conventional
UML 2.0 design method during perfective and corrective maintenance.

The order of the two rival design methods that a SME uses may affect the results of the
case study. To reduce this potential bias, two SMEs change two cases with different order
of the two rival design methods as shown in Table 1

Table 1 Reduction of Potential Bias
 SME 1 SME 2

The PICUP design method
training

The conventional UML 2.0
design method training

Case 1
Lexi design change using the
PICUP method

Lexi design change using the
conventional UML 2.0 design
method

The conventional UML 2.0
design method training

The PICUP design method
training

Case 2 ARENA design change using the
conventional UML 2.0 design
method

ARENA design change using the
PICUP method

 209

Defect is defined as “nonconformance to specification” [Zeng 2005]. The investigator
categorizes design defects in Figure 3 based on [Travassos et al 1999]. The case study
focuses on design pattern related defects.

The investigator will compare your changed UML class diagrams with UML class
diagram solutions, and count the number of design defects by defect type and the total
number of design defects as quantitative data (design defect count metric). The
investigator will analyze ordinal measure data from the questionnaires such as
effectiveness and difficulty of each method as qualitative data. The investigator will
generalizes theories (analytic generalization), not to enumerate frequencies (statistical
generalization) [Yin 2003].

Design Diagrams

Domain Knowledge

Software Requirements
Specification (SRS)

Knowledge from Other
Domain

Multiple
Interpretations

incorrect fact

extraneous
information

ambiguity

inconsistency

Design Pattern

omission

DP omission

DP incorrect fact

Figure 3 Types of design defects

If you have any questions, please ask the investigator (Jaeyong Park). After Q&A
session, the investigator will give you materials for the next step. Thank you for your
cooperation.

 210

Plan 2: [2. The conventional UML 2.0 design method]

Refer to Plan 1: [4. The conventional UML 2.0 design method] in Appendix C.

 211

Plan 2: [3. Changes of the Lexi design using the conventional UML 2.0]

You will be conducting perfective and corrective maintenance on the given two class
diagrams using the conventional UML 2.0 design method. The two class diagrams,
designed by reusing the Visitor and the Bridge design patterns respectively, are a part of
Lexi application [Gamma et al 1995].

Lexi is a document editor described in [Gamma et al 1995] as a case study. Figure 1
shows the user interface of Lexi document editor. Figure 2 shows the document structure
used by the Lexi document editor. A page consists of multiple columns. A column
consists of multiple rows. A row consists of multiple characters, images, and special
characters (symbols). This case study focuses on two design problems described in the
Lexi as follows:

 Spelling checking and word counting. How does Lexi support analytical
operations such as checking for misspelled words and counting words? How
can we minimize the number of classes we have to modify to add a new
analytical operation? (the Visitor design pattern)

 Supporting multiple window systems. Different look-and-feel standards are
usually implemented on different window systems. Lexi's design should be as
independent of the window system as possible. (the Bridge design pattern)

Figure 1 Lexi’s user interface Figure 2 Document structure

1. CONDUCTING PERFECTIVE DESIGN CHANGE
You will be changing a Lexi design, an instance of the Visitor design pattern, using the
conventional UML 2.0 design method (described in SME2_2conventionalUML.pdf). The

 212

two (accepted) change requests are for the software enhancement, which is of perfective
maintenance. Let us assume that the initial given UML class diagram in Figure 3 does not
have any design defects.

1.1. Conducting the UML pattern-based design change 1
1.1.1. Step 1: Initial setup
For the initial setup of the case study, you need three components as follows:

1. A UML pattern-base design: a UML class diagram including an instance of the
Visitor design pattern is shown in Figure 3.

2. A change request: Change Request Form 1 (see Figure 4).
3. The Visitor design pattern references: For the reference of the Visitor design

pattern, you may refer to [Gamma et al 1995], other pattern books describing the
Visitor design pattern, or design pattern web sites.

Please check whether you have all components mentioned above.

1.1.2. Step 2: Analyze a given UML design
Step 2.1: Mr. Maintainer analyzes the given UML design’s domain with the domain
description (if any).

An instance of the Visitor design pattern in Lexi design
The description of applying spelling check and word count to the Visitor design pattern is
from [Gamma et al 1995] chapter 2, page 71-76 and [Colibri 2006] web site.

• SpellCheckingVisitor finds spelling errors.
• WordCountVisitor counts words.
• The Visitor design pattern lets you add operations (e.g., spelling checking in

SpellCheckingVisitor and word counting in WordCountVisitor) to classes
(Character and Row) without changing them.

• SpellCheckingVisitor and WordCountVisitor are both called for each character
and each row.

• accept operation of Character, for example, takes SpellCheckingVisitor as an
argument.

• For example, the operation’s name and signature (visit_Character (character))
in visitors identify the class (Character) that sends the visit request (accept) to
the visitors (SpellCheckingVisitor and WordCountVisitor).

Step 2.2: Mr. Maintainer identifies the given UML design with the design pattern.

 213

visit_Character (character)
visit_Row (row)

Visitor

visit_Character (character)
visit_Row (row)

SpellCheckingVisitor

visit_Character (character)
visit_Row (row)

WordCountVisitor

accept(visitor)

Glyph

accept (visitor)

Character

accept (visitor)

Row

Editor

Figure 3 The Visitor design pattern instance in Lexi design

1.1.3. Step 3: Analyze a change request
Step 3.1: Mr. Maintainer analyzes a change request form and identifies maintenance type.
From the change request form in Figure 4, Mr. Maintainer identifies that it is a perfective
maintenance because a new function (Page is enabled to check spelling errors and count
words) is added.

Step 3.2: Mr. Maintainer analyzes change requirements from the accepted change request
form. Mr. Maintainer specifies change requirements as follows:

 Page shall use functions in SpellCheckingVisitor and WordCountVisitor.

 214

Figure 4 Change Request Form 1

1.1.4. Step 4 – Step 7
Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the
conventional UML 2.0 design method. You may refer to the conventional UML 2.0
design method in the SME2_2conventionalUML.pdf.

After completing the seven steps, you need to produce artifacts as follows:

 The changed UML pattern-based design (UML class diagram 1 output)
 The change list 1

Please go on to the next change (UML pattern-based design change 2).

1.2. Conducting the UML pattern-based design change 2
1.2.1. Step 1: Initial setup
For the initial setup of the case study, you need three components as follows:

1. A UML pattern-base design: You use the changed UML pattern-based design
(UML class diagram 1 output).

2. A change request: Change Request Form 2 (see Figure 5).

 215

3. The Visitor design pattern references: For the reference of the Visitor design
pattern, you may refer to [Gamma et al 1995], other pattern books describing the
Visitor design pattern, or design pattern web sites.

Please check whether you have all components mentioned above.

1.2.2. Step 2: Analyze a given UML design
Step 2.1: Mr. Maintainer analyzes the given UML design’s domain with the domain
description (if any).
Please refer to the description in Chapter 1.1.2.

Step 2.2: Mr. Maintainer identifies the given UML design with the design pattern.
You already know the design (UML class diagram 1 output) produced in Chapter 1.1.4.

1.2.3. Step 3: Analyze a change request
Step 3.1: Mr. Maintainer analyzes a change request form and identifies maintenance type.
From the change request form in Figure 5, Mr. Maintainer identifies that it is a perfective
maintenance because a new function is added.

Step 3.2: Mr. Maintainer analyzes change requirements from the accepted change request
form. Mr. Maintainer specifies change requirements as follows:

 Image shall use functions in DrawingVisitor.

Figure 5 Change Request Form 2

 216

1.2.4. Step 4 – Step 7
Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the
conventional UML 2.0 design method. You may refer to the conventional UML 2.0
design method in the SME2_2conventionalUML.pdf.

After completing the seven steps, you need to produce artifacts as follows:

 The changed UML pattern-based design (UML class diagram 2 output)
 The change list 2

Please go on to the next change (UML pattern-based design change 3).

2. CONDUCTING CORRECTIVE DESIGN CHANGE
The given Lexi design in Figure 6 was developed reusing the Bridge design pattern, but a
pattern-based design defect has been found in the Lexi design. You will fix the pattern-
based design defect.

2.1. Conducting the UML pattern-based design change 3
2.1.1. Step 1: Initial setup
For the initial setup of the case study, you need three components as follows:

1. A UML pattern-base design: a UML class diagram including an instance of the
Bridge design pattern is shown in Figure 6.

2. A change request: Change Request Form 3 (see Figure 7).
3. The Bridge design pattern references: For the reference of the Bridge design

pattern, you may refer to [Gamma et al 1995], other pattern books describing the
Bridge design pattern, or design pattern web sites.

Please check whether you have all components mentioned above.

2.1.2. Step 2: Analyze a given UML design
Step 2.1: Mr. Maintainer analyzes the given UML design’s domain with the domain
description (if any).

An instance of the Visitor design pattern in Lexi design
The description of applying multiple window systems to the Bridge design pattern is
from [Gamma et al 1995] chapter 2, page 51-58.

• Decouple an abstraction (Window) from its implementation (WindowImp) so
that the two can vary independently.

Step 2.2: Mr. Maintainer identifies the given UML design with the design pattern.

 217

Figure 6 The Lexi design reusing the Bridge design pattern

2.1.3. Step 3: Analyze a change request
Step 3.1: Mr. Maintainer analyzes a change request form and identifies maintenance type.
From the change request form in Figure 7, Mr. Maintainer identifies that it is a corrective
maintenance because there are omitted design elements. This means that the design does
not conform to the Bridge design pattern.

Step 3.2: Mr. Maintainer analyzes change requirements from the accepted change request
form. Mr. Maintainer specifies change requirements as follows:

• Please conduct this sub-step. (The investigator is leaving this work for you, a
SME)

 218

Project: The Lexi document editor
Change requester: J. Park Date: 3/18/2007
Requested change: Some display functions do not work. Find and fix those display functions
supporting multiple window systems.

Change Analyzer/Designer: J. Mason Analysis date: 3/23/2007
Components affected: Window and its subclasses, and WindowImp and its subclasses
Associated components:
Change assessment: Find and fix display problems on multiple window system
(Windows and WindowImps). The design reusing the Bridge design pattern will be
affected.

Change priority: Medium
Change implementation: Estimated effort: 7 days
Date to change control board (CCB): 3/25/2007 CCB decision date: 3/5/2007
CCB decision: The change request accepted. The change to be implemented in Release
3.8.
Change implementer: Date of change:
Date submitted to quality assurance (QA): QA decision:
Date submitted to change management:
Comments:

Change Request Form 3

Figure 7 Change Request Form 3

2.1.4. Step 4 – Step 7
Please conduct Step 4 thorough Step 7 of the UML pattern-based design change using the
conventional UML 2.0 design method. You may refer to the conventional UML 2.0
design method in the SME2_2conventionalUML.pdf.

After completing the seven steps, you need to produce artifacts as follows:

 The changed UML pattern-based design (UML class diagram 3 output)
 The change list 3

So far, you have produced three UML class diagram and three change lists. Please send
me those outputs. The investigator will then give you the materials you need in the next
step. Thank you!!!

 219

Plan 2: [4. The PICUP design method]

Refer to Chapter 3.

 220

Plan 2: [5. Changes of the ARENA design using the PICUP]

Refer to Chapter 6.

 221

REFERENCES

222

Reference:

Alexander, C., "The Timeless Way of Building," vol., Oxford University Press, 1979.

Alexander, C., Ishikawa, S., Silverstein, M., and Jacobson, M., "A Pattern Language:

towns, buildings, construction," vol., Oxford University Press, 1977.

Amey, P., "Correctness by Construction: Better Can Also Be Cheaper," CROSSTALK,

The Journal of Defense Software Engineering, 2002.

Appleton, B., "Patterns and Software: Essential Concepts and Terminology," 2000.

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

Bieman, J., Straw, G., Wang, H., Munger, P. W., and Alexander, R. T., "Design patterns

and change proneness: An examination of five evolving systems," Proc. Ninth Int.
Software Metrics Symposium (Metrics 2003), pp. pp. 40-49, 2003.

Booch, G., Rumbaugh, J., and Jacobson, I., "The unified modeling language user guide,"

vol., 2nd ed, Addison-Wesley, 2005.

Bratthall, L. and Wohlin, C., "Is it possible to decorate graphical software design and

architecture models with qualitative Information?-An experiment," Software
Engineering, IEEE Transactions on, vol. 28, 12, pp. 1181-1193, 2002.

Braude, E. J., "Software design : from programming to architecture," vol., J. Wiley,

2004.

Bruegge, B. and Dutoit, A. H., "Object-oriented software engineering: using UML,

patterns and Java," vol., 2nd ed, Prentice Hall, 2004.

Brugali, D. and Reggiani, M., "Software stability in the robotics domain: issues and

challenges," Information Reuse and Integration, Conf, 2005. IRI -2005 IEEE
International Conference on., pp. 585-591, 2005.

Budgen, D., "Software design," vol., 2nd ed, Pearson/Addison-Wesley, 2003.

Colibri, F., "The Lixi Editor," 2006. http://www.felix-

colibri.com/papers/design_patterns/the_lexi_editor/the_lexi_editor.html

223

Cunningham, W. and Beck, K., "A diagram for object-oriented programs," in Conference

proceedings on Object-oriented programming systems, languages and
applications, ACM Press, 1986.

Dâetienne, F. and Bott, F., "Software design--cognitive aspects," vol., Springer, 2002.

Daughtrey, T., "Fundamental concepts for the software quality engineer," vol., ASQ

Quality Press, 2002.

Debnath, N. C., Garis, A., Riesco, D., and Montejano, G., "Defining Patterns Using UML

Profiles," pp. 1147-1150, 2006.

Dong, J. and Yang, S., "Visualizing design patterns with a UML profile," Human Centric

Computing Languages and Environments, pp. 123-125, 2003.

Dunn, R. H., "Software defect removal," vol., McGraw-Hill, 1984.

Elish, M., "Structural Stability-Based Metrics of Object-Oriented Design", Ph.D.

dissertation, George Mason Univ., 2005

Elish, M. O. and Rine, D., "Investigation of metrics for object-oriented design logical

stability," Software Maintenance and Reengineering, 2003. Proceedings. Seventh
European Conference on, pp. 193-200, 2003.

Elish, M. O. and Rine, D., "Indicators of Structural Stability of Object-Oriented Designs:

A Case Study," Software Engineering Workshop, 2005. 29th Annual IEEE/NASA,
pp. 183-192, 2005.

Fayad, M., "Accomplishing software stability," Commun. ACM, vol. 45, 1, pp. 111-115,

2002a.

Fayad, M., "How to deal with software stability," Commun. ACM, vol. 45, 4, pp. 109--

112, 2002b.

Fayad, M. and Altman, A., "Thinking objectively: an introduction to software stability,"

Commun. ACM, vol. 44, 9, pp. 95, 2001.

Fayad, M. E., "How to deal with software stability," Commun. ACM, vol. 45, 4, pp. 109--

112, 2002c.

Fenton, N. E. and Pfleeger, S. L., "Software metrics: a rigorous and practical approach,"

vol., 2nd ed, PWS Pub., 1997.

224

Fowler, M., "Analysis Patterns: Reusable Object Models," vol., Addison-Wesley, 1997.

Fowler, M., "UML distilled: a brief guide to the standard object modeling language,

3rd," vol., 3rd ed, Addison-Wesley, 2004.

Fowler, M. and Beck, K., "Refactoring: improving the design of existing code," vol.,

Addison-Wesley, 1999.

France, R. B., Kim, D.-K., Ghosh, S., and Song, E., "A UML-based pattern specification

technique," Software Engineering, IEEE Transactions on, vol. 30, 3, pp. 193-206,
2004.

Gabriela, A. and Richard, M., "A formal model for verifying compound design patterns,"

vol., ACM Press, 2002.

Galin, D., "Software quality assurance: from theory to implementation," vol.,

Pearson/Addison Wesley, 2004.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., "Design patterns: elements of

reusable object-oriented software," vol., Addison-Wesley, 1994.

Grubb, P. A. and Takang, A. A., "Software maintenance: concepts and practice," vol.,

2nd ed, World Scientific, 2003.

Gueheneuc, Y.-G., "A reverse engineering tool for precise class diagrams," Proceedings

of the 2004 conference of the Centre for Advanced Studies on Collaborative
research, pp. 28-41, 2004.

Guennec, A. L., Sunye, G., and Jezequel, J., "Precise Modeling of Design Patterns,"

UML 2000 - The Unified Modeling Language. Advancing the Standard. Third
International Conference, York, UK, pp. 482--496, 2000.

Hamza, H., Mahdy, A., Fayad, M. E., and Cline, M., "Extracting domain-specific and

domain-independent patterns," in Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, ACM Press, 2003.

Hillside, "Patterns Library," 2006. http://hillside.net/patterns/

Humphrey, W. S., "The Software Quality Profile," in Software Engineering Institute,

2007. http://www.sei.cmu.edu/publications/articles/quality-profile/index.html

225

IEEE Computer, "Guide to the Software Engineering Body of Knowledge," vol., IEEE,
2004.

IEEE Computer (Web), "Software Engineering Online," 2005.

http://www.computer.org/portal/site/seportal/

IEEE STD. 610.12, "IEEE Std 610.12, Standard Glossary of Software Engineering

Terminology," 1990.

IEEE STD. 1219, "IEEE standard for software maintenance," in IEEE Std 1219, 1998.

ISO 12207, "Software Life Cycle Processes," 1999.

ISO/IEC 9126-1, "Software Engineering - Product Quality - Part 1: Quality Model,"

2001.

Jones, C., "Software Measurement Programs and Industry Leadership," CrossTalk, The

Journal of Defense Software Engineering, Feb 2001, 2001.

Jones, C., O'Hearn, P., and Woodcock, J., "Verified Software: A Grand Challenge,"

Computer, vol. 39, 4, pp. 93-95, 2006.

Kendall, E. A., "Role modelling for agent system analysis, design, and implementation,"

Agent Systems and Applications, Third International Symposium on Mobile
Agents., pp. 204-218, 1999.

Kim, D.-K., "A Meta-Modeling Approach to Specifying Patterns", PhD Dissertation,

Colorado State University, 2004

Kim, D.-K., "Evaluating conformance of UML models to design patterns," in 10th IEEE

International Conference on Engineering of Complex Computer Systems,
ICECCS, pp. 30-31, 2005.

Kim, D.-K., France, R., and Ghosh, S., "A UML-based language for specifying domain-

specific patterns," Journal of Visual Languages & Computing, vol. 15, 3-4, pp.
265-289, 2004.

Kim, D.-K., France, R. B., Ghosh, S., and Song, E., "A UML Based MetaModeling

Language to Specify Design Patterns," Proceedings of Workshop on Software
Model Engineering (WiSME), 2003.

Kim, D.-K. and Shen, W., "An approach to evaluating structural pattern conformance of

UML models," ACM symposium on Applied computing, pp. 1404-1408, 2007.

226

Koskinen, J., "Software Maintenance Costs," 2003.

http://www.cs.jyu.fi/~koskinen/smcosts.htm

Lauder, A. and Kent, S., "Precise Visual Specification of Design Patterns," ECOOP'98

Object-Oriented Programming, pp. 114--134, 1998.

Lea, D., "Patterns-Discussion FAQ," http://gee.cs.oswego.edu/dl/pd-FAQ/pd-FAQ.html,

2000.

Lee, S.-W., "Proxy viewpoints model-based requirements discovery", PhD Dissertation,

George Mason University, 2003

Lee, S.-W. and Rine, D., "Case Study Methodology Designed Research in Software

Engineering Methodology Validation," the Sixteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE'04), pp. 117-122,
2004.

Mak, J. K. H., Choy, C. S. T., and Lun, D. P. K., "Precise Modeling of Design Patterns in

UML," in Proceedings of the 26th International Conference on Software
Engineering, IEEE Computer Society, 2004.

Martin, R. C., "Stability," C++ Report, 1997.

McCormick, H. W., "AntiPatterns: Refactoring Software, Architectures, and Projects in

Crisis," SWEE '98, 1998.

Mellor, S. J., "MDA distilled : principles of model-driven architecture," vol., Addison-

Wesley, 2004.

Moha, N., Huynh, D.-l., and Gueheneuc, Y.-G., "A Taxonomy and a First Study of

Design Pattern Defects," 1st International Workshop on Design Pattern Theory
and Practice, part of the STEP'05 workshop, 2005.

Mosse, F. G., "Modeling Roles - A practical series of analysis patterns," Jounal of Object

Technology, vol. 1, no 4, pp. 27-37, 2002.

NASA, "Mars Climate Orbiter," 1998.

http://nssdc.gsfc.nasa.gov/database/MasterCatalog?sc=1998-073A

NASA, "MARS CLIMATE ORBITER TEAM FINDS LIKELY CAUSE OF LOSS,"

1999. http://mars.jpl.nasa.gov/msp98/news/mco990930.html

227

OMG, "Unified Modeling Language (UML) Specification, Version 1.5," vol., The Object
Management Group (OMG), 2003.

OMG, "Unified Modeling Language (UML): Infrastructure, Version 2.0," vol., The

Object Management Group (OMG), 2005a.

OMG, "Unified Modeling Language (UML): Superstructure, Version 2.0," vol., The

Object Management Group (OMG), 2005b.

OMG, "Object Constraint Language (OCL) Specification, Version 2.0," vol., The Object

Management Group (OMG), 2006.

Oquendo, F., "Formally modelling software architectures with the UML 2.0 profile for

ADL," SIGSOFT Softw. Eng. Notes, vol. 31, 1, pp. 1-13, 2006.

Perry, D. E., Porter, A. A., and Votta, L. G., "Empirical studies of software engineering:

a roadmap," in Proceedings of the Conference on The Future of Software
Engineering, ACM Press, 2000.

Perry, D. E., Sim, S. E., and Easterbrook, S. M., "Case studies for software engineers,"

Software Engineering, 2004. ICSE 2004. Proceedings. 26th International
Conference on, pp. 736-738, 2004.

Pfleeger, S. L., "Software engineering: Theory and Practice," vol., 2nd ed, Prentice Hall,

2001.

Pfleeger, S. L. and Atlee, J. M., "Software engineering: Theory and Practice," vol., 3rd

ed, Pearson Prentice Hall, 2006.

Pressman, R. S., "Software engineering: a practitioner's approach," vol., 6th ed,

McGraw Hill, 2005.

Reenskaug, T., Wold, P., and Lehne, O. A., "Working with objects: the OOram software

engineering method," vol., Manning, 1996.

Riehle, D. "A Role-Based Design Pattern Catalog of Atomic and Composite Patterns

Structured by Pattern Purpose," Ubilab Technical Report 97-1-1. Zurich,
Switzerland: Union Bank of Switzerland 1997.

Riehle, D., "Framework Design: A Role Modeling Approach", PhD Dissertation, Swiss

Federal Institute of Technology Zurich, 2000

228

Rumbaugh, J., Jacobson, I., and Booch, G., "The unified modeling language reference
manual, 2nd edition," vol., Addison-Wesley, 2005.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E., "Role-based access

control models," Computer, vol. 29, 2, pp. 38-47, 1996.

Sommerville, I., "Software engineering," vol., 6th ed, Addison-Wesley, 2001.

Sommerville, I., "Software engineering," vol., 7th ed, Addison-Wesley, 2004.

Takang, A. A. and Grubb, P. A., "Software maintenance: concepts and practice," vol.,

International Thomson Computer Press, 1996.

Tellis, W., "Aplication of a Case Study Methodology," The Qualitative Report, vol. 3, 3,

1997.

Travassos, G., Shull, F., Fredericks, M., and Basili, V. R., "Detecting defects in object-

oriented designs: using reading techniques to increase software quality " ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications pp. 47-56 1999

Vienneau, R. L. and Senn, R., "A State of the Art Report: Software Design Methods," Air

Force Research Laboratory, 1995.
http://www.dacs.dtic.mil/techs/design/contemporary.shtml

Vokac, M., "Defect Frequency and Design Patterns: An Empirical Study of Industrial

Code," IEEE Trans. Softw. Eng., vol. 30, 12, pp. 904-917, 2004.

Wagner, S., "Modelling the quality economics of defect-detection techniques," in

Proceedings of the 2006 international workshop on Software quality, ACM Press,
2006.

Warmer, J. B. and Kleppe, A. G., "The object constraint language: getting your models

ready for MDA," vol., 2nd ed, Addison-Wesley, 2003.

Warren, P., Boldyreff, C., and Munro, M., "The evolution of Websites," pp. 178-185,

1999.

Wirfs-Brock, R. J., "Refreshing Patterns," Software, IEEE, vol. 23, 3, pp. 45-47, 2006.

Wu, S., Mahdy, A., and Fayad, M. E., "The Impact of Stability on Design Patterns

Implementation," 9th COnference on Pattern Language of Programs, 2002.

229

Yin, R. K., "Case study research: design and methods," vol., 3rd ed, Sage Publications,
2003.

Younessi, H., "Object-oriented defect management of software," vol., Prentice Hall PTR,

2002.

Zeng, H., "Adaptive estimation framework for software defect fix effort using neural

networks", PhD Dissertation, George Mason Univ., 2005

Zhu, H., "Software design methodology," vol., Elsevier Butterworth-Heinemann, 2005.

230

CURRICULUM VITAE

Jaeyong Park has received his Bachelor of Engineering in Computer Science from
Soongsil University at Seoul, Republic of Korea in 1991 and Master of Science in
Computer Science from Yonsei University at Seoul, Republic of Korea in 1993. Prior to
joining to George Mason University in Fairfax, VA, he worked as a lecturer for the
Department of Computer Science at Ansung National University (currently Hankyung
University) at Ansung, Republic of Korea in 1995.

After joining the Department of Computer Science in School of Information Technology
and Engineering at George Mason University in 1996, he worked as a staff and database
administrator (DBA) for the ITE Laboratory and a graduate teaching assistant for School
of Information Technology and Engineering assisting undergraduate and graduate level
courses such as Operation Systems, Fundamental Database, and Advanced Database. He
is a member of ACM and IEEE.

