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ABSTRACT 

GEOMETRIC PHASE IN QUANTUM COMPUTATION 

JT Thomas, Ph.D. 

George Mason University, 2016 

Dissertation Director: Dr. Ming Tian 

 

A fundamental challenge of quantum computation is being able to scale up a large 

number of high fidelity quantum gates while noise and error are affecting the gate’s 

physical control parameters. This dissertation focuses on the fidelity of single-qubit 

quantum gates constructed by a change in quantum geometric phase, while the control 

parameters are affected by random noise and systematic error. A unified model of 

geometric quantum computation is developed, in which a qubit state is controlled by a 

composite Hamiltonian, resulting in a multiple-segment rotation of the quantum state and 

allowing characterization of evolution paths depending on the associated geometric and 

dynamic phase. The fidelity of the quantum gates in the presence of different noise error 

is compared for purely geometric, hybrid (having both geometric and dynamic phase), 

and conventional dynamic quantum gates built on single Hamiltonians. Results showed 

hybrid quantum gates had the highest fidelities, followed by geometric gates, and 

conventional dynamic gates had the lowest fidelities.  In addition, there was indication in 
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some cases higher fidelities result from gates created from a larger number of segments in 

the quantum state rotation. These results can be understood by the relation of the control 

parameters with the evolution path geometry. By translating between control parameters, 

our model can be applied to different systems for quantum computation, including: the 

laser manipulation of a two-level atom, laser manipulation of trapped ions, nuclear 

magnetic resonance, polarization states of photons, superconducting qubits in cavity 

QED, and quantum dots.
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CHAPTER 1- INTRODUCTION 

Quantum computation enables exponentially faster algorithms than classical 

computation, however, the fundamental challenge is being able to scale up. This includes 

the ability to perform a large number of high fidelity quantum gate operations within the 

coherence time of the qubit state, while noise is affecting the gate’s physical control 

parameters. This dissertation focuses on the fidelity of quantum gates constructed by a 

change in quantum geometric phase, while the control parameters are affected by random 

and systematic noise. 

1.1 Geometric quantum gates  
 

Standard dynamic quantum gates are constructed by a control Hamiltonian 

driving evolution of the qubit state. The performance of such a gate depends on both the 

Hamiltonian and the evolution path, which is highly susceptible to noise affecting the 

control Hamiltonian.  An alternative approach is to utilize the change of quantum 

geometric phase in a qubit state, which depends only on the area subtended by the 

evolution path on the Bloch sphere (Figure 1), and is therefore suspected to naturally be 

less affected by certain types of noise. 
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Figure 1- A quantum gate based on geometric phase: a) the geometric phase of the gate depends only on the area 

A subtended by the evolution path; b) noise affecting the evolution path causes it to jitter, but the area A should 

be preserved (from Filipp 2014). 

 

 

 

The use of geometric phase change in specially designed Hamiltonians for 

quantum gates has been researched in most major physical qubit systems, including solid 

state atoms, nuclear magnetic resonance (NMR) systems, optical systems, trapped 

ions/atoms, quantum dots, and superconducting qubits. However, there is a lack of either 

experimental or theoretical proof of performance improvements in using geometric gates 

instead of dynamics gates in the presence of noise.  In order to solve this problem, a 

systematic study of all possible geometric evolution paths and gate-driving Hamiltonians 

is needed. 

 One complication to this study is that a geometric path is usually driven by a 

composite Hamiltonian, which means searching a parameter space much larger than that 

of a single Hamiltonian.  Research specific to the six physical systems listed above has 

also generated system-specific control parameters and formalism to describe geometric 
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gates and qubit evolution paths, making it difficult to study the intrinsic common 

properties of the geometric phase in different quantum systems.  The unified model 

presented here focuses on these common geometric phase properties that are the 

foundation for design, analysis, and optimization of geometric quantum gates. 

The main objective of this dissertation is to develop a unified theoretical model 

for quantum state manipulation in any general 2-level qubit through parametrization of 

general driving Hamiltonians and their associated evolution operators.  This model can be 

used in designing and analyzing a set of universal quantum gates that are sufficient for 

quantum computation. These quantum gates and their characteristics apply to any two-

level qubit systems. 

Importance of the problem 
This thesis focuses on three important aspects of the unified formalism for 

geometric phase and geometric quantum computing (GQC): the fundamental study of 

quantum physics; design of a quantum gate for GQC; and evaluation of robustness of 

gates and improvement of gate performance. 

Geometric phase is a general property of the evolution of quantum systems. A 

unified formalism allows different physical systems to be analyzed on the same platform. 

The common properties of the quantum state evolution and the driving Hamiltonian can 

be summarized while the differences between the systems can be compared. The 

evolution of any 2-level system can be described by a vector evolving in a 2-dimensional 

Hilbert space (Bloch or Poincare sphere). The Hamiltonian can be defined by control 

parameters that drive the state vector’s evolution. 



4 

 

Based on understanding of the state evolution, the quantum gate for a certain 

manipulation of the qubit can be designed using the control parameters in the 

Hamiltonian. A set of universal gates and the corresponding driving Hamiltonians will be 

designed by purely geometric phase change. A unified formalism will meet the need to 

quickly translate between the variables of the different systems so that the existing 

designs and experimental implementations in different types of qubits will be analyzed 

and used to develop efficient robust quantum gates that are applicable in other qubit 

systems.  

Different qubit systems used in GQC should share some common advantages 

based on intrinsic fault tolerance that results from the global nature of geometric phase. 

However, some quantum gates may work better in certain systems due to the different 

realization of the driving Hamiltonian with system-specified physical variables. A unified 

formalism will make it possible to compare the differences between systems and find the 

advantages and disadvantages of particular systems for geometric quantum computation. 

With a unified formalism, a generalized design and optimization can be more quickly 

applied to various qubit systems. 

An additional aspect of our study involved composite paths that were hybrid (part 

dynamic, part geometric). Besides studying the unique property of geometric paths, our 

model also allows us to explore these hybrid paths and their associated quantum gates.  
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1.2 Overview of the field  
Our main thesis is the question of whether geometric gates have higher fidelity 

under environmental noise than standard dynamic or hybrid gates; we also compare 

whether composite rotation gates have higher fidelity than the standard direct, single 

rotation gates.  It is often stated in the literature that quantum gates built on geometric 

phase are not as sensitive to random noise, since the gate depends only on the solid angle 

subtended by the evolution path on the Bloch sphere, which should remain roughly the 

same. However, this assumption has not yet been proven. 

Zhu –Zanardi work.  
Zhu-Zanardi (ZZ) (2005) gives support for the above assumption of geometric 

quantum gates, by finding higher fidelities on geometric gates than dynamic gates, when 

control parameters were varied to evolve between the two different types of gates. In the 

ZZ scheme, a single completed loop direct rotation is made (see section 2.8 for definition 

of direct rotations). The ZZ paths are a special (1-segment) case of our N-segments 

(composite rotations) work. 

ZZ use an NMR Hamiltonian: 

𝑯 = 
𝟏

𝟐
(𝛚𝟎𝐜𝐨𝐬𝛚 𝝈𝒙 +𝛚𝟎𝐬𝐢𝐧𝛚  𝝈𝒚 +𝛚𝟏𝝈𝒛)     

 

where their control parameters are related to our model’s lab frame control parameters 

(Ω0, 𝜑𝐿 , Δ) by: 

ω0 = −Ω0,       ω =  𝜑𝐿 ,     ω1 = Δ 

The control parameters ω0 and ω1 are directly proportional to an external controllable 

rotating magnetic field B0 and a constant magnetic field B1 in the z-direction. ZZ apply a 

random percentage noise multiplying the control parameters ω0 and ω1. 
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Blais-Tremblay 
On the other hand, Blais-Tremblay (2003) provide evidence against the 

assumption of greater fidelity with geometric quantum gates. However, in their work, the 

geometric gates are created by three-segment rotations and compared with the 

conventional dynamic gates created from just a single rotation. The first and last 

segments of the geometric gates are in the same direction, making this equivalent to a 

two-segment rotation if the same noise is put on these segments. The geometric gate 

paths are also restricted to lie on great circles, so that the hybrid paths (containing both 

geometric and dynamic phases) of our work are not considered.  

ETH Zurich 
The Quantum Device Lab at ETH Zurich have experimentally compared 

geometric gates based on Berry’s phase (adiabatic, cyclic geometric phase) with dynamic 

gates and found an advantage to geometric gates (Berger 2013). The ETH Zurich team 

used a microwave-driven superconducting two-level qubit, with noise modeled by 

producing fluctuations of the control field. The noise-induced dephasing was measured 

with a geometric contribution that only depended on how much the noise distorted the 

path; the dynamic phase gates are path dependent and more affected by dephasing. In 

contrast to this work, our work uses nonadiabatic geometric phase. 

1.3 Methods  

Research method 
The main problem of our research was formulating a unified formalism of 

geometric quantum computation on the Bloch sphere. This involved first studying each of 

the main 2-level systems used in GQC research, and finding the qubits, Hamiltonian, 
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equation of motion, and control variables used in each system. A general notation of 

variables has been chosen from the Bloch equation. A table has been made to translate 

between this general formalism and the qubits, Hamiltonian, equation of motion, and 

control variables used in each of the GQC approaches. 

Dynamic phase elimination 
An important issue in the construction of geometric quantum gates is the 

elimination of the dynamic phase. This can be done in several ways, such as using the 

spin echo technique, which involves traversing the evolution in the opposite direction, so 

that the dynamic phases of the two segments cancel, whereas the geometric phases add. 

Another method of handling the dynamic phase is to use the "unconventional GQC" 

scheme (Zhu & Wang 2003), where instead of eliminating the dynamic phase, the 

dynamic phase is kept proportional to the geometric phase. 

The focus of this thesis for elimination of the dynamic phase will be to use 

evolutions that stay on the great circles of the Bloch sphere. This has the advantage of 

using fewer rotations than the spin echo technique, and also seems to be the most 

straightforward realization of geometric quantum gates. 

Construction of evolution paths 
Our work first defined a generic two-level quantum particle as the physical qubit 

of the unified formalism. The generic control Hamiltonian was parameterized, so that it 

can be modeled as a dipole moment in an effective field. In the next step we designed 

cyclic paths for a universal set of single qubit quantum gates on the Bloch sphere. The 

idea is to specify a general cyclic path, so that by varying the control parameters, any 
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geometric phase can result, and thus any single qubit quantum gate can be constructed. 

The next step of our study analyzed the fidelity of the gates against systematic and 

random errors in the control parameters. Using this study of the fidelity of the gates, the 

geometric paths were optimized for high fidelity gate operation. Finally, the general 

model has been applied to existing physical qubit systems, to specify and analyze the 

control parameters in each specific system.  

N-segment method 
We then extended our research to calculate the geometric and dynamic phases of 

3, 4, 10 and N segments. We calculated the geometric phase for N segments by using the 

geometric phase formula for a spherical polygon and our 2-segment geometric phase 

equations for the wedge each segment makes with its associated geodesic. This also 

generalized our 2-segment rotations to rotation axes in any direction, by using the same 

wedges and associated geodesic, and setting the spherical polygon to 0. Finally, we 

calculated the dynamic phase for N segments by considering the general Hamiltonian for 

each segment rotation, and how it operates on the qubit state along the x-axis. 
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CHAPTER 2- QUBIT THEORY 

2.1 Introduction 
This chapter explains the basic qubit theory of quantum information underlying 

our work, including descriptions of qubit basis states, and how they are represented on 

the Bloch and Poincare spheres; Pauli spin matrices, and how they are used to build the 

evolution matrix and Hamiltonian H; and how the control parameters measured in the lab 

are used to design the Hamiltonians. We briefly discuss how a universal set of gates can 

be made. We show how this theory is applied to the notation of the 6 physical systems 

considered here. We present general formulas for calculating the geometric and dynamic 

phases of rotations, and use this to define direct and composite rotations, which are 

compared later in our work. We describe the way noise is put on the control parameters 

of the Hamiltonian, in order to measure the fidelity of our designed quantum gates. 

Finally, this chapter introduces the application of our model to several other physical 

systems. 

2.2 Qubits on the Bloch sphere 
A quantum state is completely defined (up to a global phase) by two angles: the 

polar angle α and the azimuth angle β (see Figure 2). From our orthogonal basis states, 

defined as: 

|0 > =  (
1
0
) ,  |1 > =  (

0
1
)    (1) 
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the most general qubit state can be written as a superposition: 

|𝜓 > = cos
𝛼

2
 |0 >  + 𝑒𝑖𝛽 sin

𝛼

2
  |1 >   (1) 

or in matrix form 

|𝜓 > =  (
cos

𝛼

2

𝑒𝑖𝛽 sin
𝛼

2

)      (2) 

The Bloch sphere is a two-dimensional unit sphere that represents all possible 

states |𝜓 >  of the qubit. The north and south poles of the Bloch sphere are taken to 

represent the orthogonal states |0 > and |1 > respectively (for example, spin up and spin 

down states); these usually form the computational basis states. Any two vectors pointing 

in opposite directions represent a pair of orthogonal basis states; for example, 

|𝜓 > =  
1

√2
(|0 > +|1 >)    (4) 

pointing along the positive x-axis, and  

|𝜓 > =  
1

√2
(|0 > −|1 >)    (5) 

along the negative x-axis. Each point on the Bloch sphere represents a distinct 

superposition of the computational basis states |0 > and |1 >. 
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Figure 2- Bloch sphere with polar angle α and azimuth angle β locating the state (or Bloch vector) |ψ>.  

 

 

 

The Bloch and Poincare spheres are similar, except that the poles of the Bloch 

sphere are represented by up and down states, whereas the Poincare sphere’s poles are 

defined by right and left polarizations of light beams. 

2.3 Quantum gates and Pauli matrices 
A quantum gate acting on the qubit state of Figure 2 will cause it to rotate to 

another position on the Bloch sphere. For instance, the Pauli spin matrices operate on the 

qubit basis states (defined in equation 1) as follows: 

σx|0 > =|1 >,      σy|0 > = i|1 > ,     σz|0 > = |0 >              

  σx|1 > = |0 >,        σy|1 > = −i|0 > ,       σz|1 > = −|1 >           (6) 

where  

𝜎𝑥 = (
0 1
1 0

) ,      𝜎𝑦 = (
0 −𝑖
𝑖 0

),     𝜎𝑧 = (
1 0
0 −1

)   (7) 

|1> 

  

 

|ψ> 

x 

y 

z 

|0> 

 
β 

α 



12 

 

 

 

More complicated gates can be made from combinations of these Pauli matrices. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 A quantum gate can also be considered a rotation around a rotation axis (see 

Figure 3). The quantum state is represented by a Bloch vector r⃑ pointing to the position 

(θ,φ) on the Bloch sphere; during the operation of the quantum gate, this state is rotated 

around the Rabi vector Ω⃑⃑⃑. In Cartesian coordinates, r⃑ is given by 

r⃑ = (sin θ cos φ, sin θ sin φ, cos θ)   (8) 

The Bloch vector satisfies the Bloch equation: 

Figure 3- Rotation of Bloch vector 𝒓̂ around the Rabi vector 𝛀⃑⃑⃑ on the Bloch sphere. 

x̂

ŷ



ẑ
0

1




𝑟̂ 
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dr

dt
r

  
       (9) 

where the Rabi vector is Ω⃑⃑⃑ =  (−Ω0 cos𝜑𝐿 , −Ω0 sin𝜑𝐿 , Δ), which is a function of the 

measurable control parameters Ω0 , 𝜑𝐿 , and Δ. For instance, in a 2-level atom, these 

control parameters are the Rabi frequency (Ω0), phase of the laser (𝜑𝐿), and laser 

detuning (Δ). 

 

2.4 Evolution operator  
A quantum gate acting on a qubit changes the orientation of the Bloch vector of 

Figure 3. This is equivalent to a rotation around a given axis 𝑛̂ by a given angle 𝜃, made 

by a rotation operator U(,): 

𝑈 = 𝑒𝑖𝛼𝑅𝑛(𝜃) = 𝑒
𝑖𝛼exp {−𝑖

𝜃

2
𝑛̂ ∙ 𝜎⃑}    (10) 

= 𝑒𝑖𝛼 [cos
𝜃

2
𝐼 − 𝑖 sin

𝜃

2
(𝑛𝑥𝜎𝑥 + 𝑛𝑦𝜎𝑦 + 𝑛𝑧𝜎𝑧)]   (11) 

where 𝑛̂ = (𝑛𝑥, 𝑛𝑦 , 𝑛𝑧) is the rotation axis, 𝜎⃑ = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) are the Pauli matrices, I is the 

identity matrix, θ is the rotation angle, and α is any real number making up a global 

phase.  

Any rotation around an arbitrary axis can be made by rotations around two non-

parallel axes in the x-y plane, where the rotation axis is defined by angle φ in 

(cos ,sin ,0)n   . The operator simplifies to:  
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 ( , ) cos sin cos sin
2 2

cos sin
2 2

sin cos
2 2

X Y

i

i

U I i

ie

ie





 
   

 

 



   

 
 

  
  
 

  (12) 

These operators with controllable variables θ and φ are sufficient for achieving a 

universal set of single qubit gates. 

The basic rotation operator can be made through pure geometric phase change. 

For a given pair of angles ( , )  , eigenstates can be defined, such as: 

11

2
ie 

 
   

 
 ,            

11

2
ie 

 
   

 
    (13) 

which are represented by a pair of basis vectors parallel to the rotation axis (see Figure 

4). The rotation operator drives the basis state 


  around loop A. Every segment of the 

loop is on a geodesic and the solid angle enclosed by the loop is the desired rotation angle 

θ.  The basis state 


  gains a geometric phase −
𝜃

2
 and turns into / 2ie 



  . The basis 

state 


  with corresponding loop B is driven by the same rotation operator and gains an 

opposite phase to become / 2ie 


 .  

Under this operation a qubit in an arbitrary initial state 0

1

|
c

c


 
  

 
 turns into 

1 0

1 0

cos sin
2 2

sin cos
2 2

i

i

c ie c

ie c c





 

 

 
 

 
   
 

    (14) 
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This is equivalent to applying a rotation operator in equation 12 to the initial state. On 

this geometric path the rotation operator is equivalent to  

( , ) ( / 2, / 2) ( , / 2 / 2) ( / 2, / 2)U U U U                   (15) 

where the three consecutive rotations on the right hand side are the geometric rotations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Hamiltonian and control parameters 
In order to design the rotation operator U, a Hamiltonian is first designed by 

choosing the values of the physical lab control parameters, which in the 2-level atom 

system are: Rabi frequency (Ω0), laser phase (𝜑𝐿), and laser detuning (Δ). The most 

general Hamiltonian is: 

𝐻 = 
1

2
(−Ω0cos𝜑𝐿𝜎𝑥 −Ω0sin 𝜑𝐿𝜎𝑦 + Δ𝜎𝑧) =

1

2
Ω⃑⃑⃑ ∙ 𝜎⃑   (16) 

x̂

ŷ

n

ẑ









/ 2 A 

B 

Figure 4- Effect of a geometric rotation U(θ,φ) on orthogonal states {|+>,|->}: |+> follows path A and |-> follows 

path B, with rotation angle θ and rotation axis 𝒏̂. 
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where the 𝜎⃑  are the Pauli matrices. The Rabi vector Ω⃑⃑⃑ determines the direction of the 

rotation axis by: 

𝑛̂ =
Ω⃑⃑⃑

|Ω𝑛|
=

1

|Ω𝑛|
{−Ω0 cos𝜑𝐿 , −Ω0 sin𝜑𝐿 , Δ}   (17) 

where the Rabi vector amplitude is  |Ω𝑛| =  √(Ω0)2 + Δ2. 

The rotation operator U is then derived from the Schrodinger equation: 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻𝜓      (18) 

Solving for the wavefunction, we have: 

𝜓(𝑡) =  𝑒−
𝑖

ℏ
𝐻(𝑡−𝑡0)𝜓0     (19) 

Therefore the rotation operator is  

𝑈 =  𝑒−
𝑖

ℏ
𝐻𝜏

      (20) 

where the Hamiltonian is constant over that segment. Setting 𝜏 = 1 and ℏ = 1, each 

segment’s rotation operator is 

𝑈 =   𝑒−
𝑖
2
Ω⃑⃑⃑∙𝜎⃑⃑⃑  = 𝑒−

𝑖
2
|Ω|𝑛̂∙𝜎⃑⃑⃑    

The rotation angle 𝛽′ is related to the rotation duration and the amplitude of the Rabi 

vector by: 

𝛽′ = |Ω|𝜏      (21) 

so that the rotation operator becomes: 

𝑈 = exp {−𝑖 
𝛽′

2
𝜎 ∙ 𝑛̂}     (22) 

where 𝛽′ is the angle amount of rotation around the 𝑛̂-axis. 
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The control parameters defined by the Hamiltonian are varied in our work to 

design paths for rotations on the Bloch sphere, representing the operation of quantum 

gates. For a 2-segment rotation, our control parameters are the Rabi frequency Ω0, the lab 

frame phase φL, and the detuning Δ of the first segment’s Hamiltonian, and the rotated 

frame control parameter φ2, which is the angle between the bisector of the geodesic 

between the two endpoints of the two segments and the second rotation axis. For N 

segments, there are 3N-2 control parameters to vary to create all possible paths. 

2.6 Universal set of gates 
A universal set of gates can be made from a single qubit gate capable of any 

phase, such as the single qubit rotation operator in equation 11, and an entangled two 

qubit gate such as a CNOT or a controlled phase gate (Ekert 2000). These two types of 

gates can be achieved through pure geometric phase change. Our work focuses on single 

qubit gates, but the methods can be extended to two qubit gates as in Zhu & Zanardi 

(2005). 

For each of the different physical systems used to implement geometric quantum 

gates, the actual control parameters/physical variables are different. For instance, in 

NMR, the geometric quantum gates are controlled by the magnitude of the magnetic 

field; in quantum dots, one of the control parameters is the energy band gap. There are 

many other different physical variables that are used as control parameters, taking all the 

different physical systems into account. 
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2.7 Six physical systems for qubit construction 
This section describes how the notations of the 6 physical systems under 

consideration here fit in with the theory described above. We first describe how the 

qubits are made in each system, what the control parameters are, and how they relate to 

the control parameters of our model. 

Laser manipulation of two-level atom 
The two-level atom consists of an atom with two energy levels. By using laser 

pulses, the state of the system can be put into a superposition of the ground and excited 

state.  

Geometric quantum computation can be realized by using a two-level atom driven 

by a laser field (Tian 2004). In this system, the qubit  

|𝜓 > =  𝑐0|0 >  +𝑐1|1 >      (23) 

is formed with an atom by superimposing its two energy levels, a ground state |0 >  and 

an excited state |1 >. A laser tuned near the atomic resonant frequency manipulates the 

state of the atom. The control Hamiltonian for the driving laser pulse is 

H
e

e

i

i























0

2

2
0

0

0









    (24) 

where Ω0 is the Rabi frequency for an on-resonance laser, tuned in resonance with an 

atom of atomic resonant frequency ω0; and φ is the phase of the laser, given by the laser 

electric field:  
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E(t) = Ω0(ω0 t + φ)     (25) 

From this an equation can be found that constrains the Rabi frequency, the laser phase, 

and the coefficients of the state vector. 

The control parameters of this system are the Rabi vector Ω, consisting of a Rabi 

frequency Ω0, the phase φ, and the frequency detuning Δ of the laser field. From the 

amplitude of the Rabi vector 2 2

0     and the time duration τ of the laser pulse, we 

can derive the pulse area, θ: 

 

θ = Ω τ       (26) 

An operation on the Bloch sphere is then completely defined by the laser field. The 

geometric phase in this system can be observed using a stimulated photon echo pulse. 

Two driving pulses with a relative phase between them create a geometric phase that 

creates a phase shift on the photon echo pulse. 

Laser manipulation of trapped ions 
This section is similar to the previous, except the qubits are now formed from 

trapped ions. A proposal for using trapped ions is given by Duan(2001); see also Lemmer 

(2013). 

In trapped ion systems, a set of ions is confined in a linear Pauli trap and 

manipulated by a laser. A scheme for nonadiabatic geometric quantum gates utilizing ion 

traps is described in Li & Cen (2003). The qubits are made from ions with two energy 

levels, |0> and |1>, separated by energy ћω0. The laser field used to selectively address 
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the states is given by E(z) = E0 cos (k· z – ωLt + φ ), with wave vector k, the ion’s center 

of mass coordinate z, laser frequency ωL, and laser phase φ. 

The Hamiltonian for a single qubit gate is 

H = ½ ω0 σz + ω[σ +exp{-iωLt + iφ}+ σ -exp{iωLt - iφ}]   (27) 

where ω = Rabi frequency, and σ + is defined as |0> <1| ; σ - = |1> <0|; and σz = |1> <1| -

|0> <0|. For two-qubit gates, there is an extra exponential term involving phonon 

creation/annihilation operators.  

The Hamiltonian for each ion in the rotating frame (which has angular velocity 

 L ze  ) is 

HR          (28) 

where σ = {σx ,σy ,σz }are the Pauli matrices and the effective magnetic field is Ω = {ω 

cos φ, ω sin φ, ½ (ω0 – ωL)}.  

During operation of the one-qubit gate, the state is rotated around the effective 

magnetic field Ω. The state is kept perpendicular to Ω on the Bloch sphere, so that there 

is no dynamic phase.  

As an example, a state initially in the |+> state (pointing along the y-axis on the 

Bloch sphere, to point A in Figure 5) is hit by a π-pulse with laser frequency φ set to 0, 

and effective magnetic field Ω1 = (ω,0, ½ (ω0 – ωL)). This causes the state to rotate to |-> 

(along the negative y-axis) to point B in Figure 5, along the path ACB. Another π-pulse 

hits the ion with laser frequency φ set to π, and effective magnetic field Ω2 = (-ω, 0, ½ 

(ω0 – ωL)). This causes the state to rotate back to |+> along the path BDA. 
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Figure 5- Evolution of the state vector on the Bloch sphere, keeping perpendicular to the effective magnetic field. 

From Li & Cen (2003).  

 

 

 

After this cyclic evolution, the |+> state acquires a geometric phase factor of 

exp{iγ} while the |-> state acquires the geometric phase factor exp{-iγ}. The 

nonadiabatic (AA) phase is 

γ = 4 arctan [2 ω/(ω0 – ωL)]     (29) 

Under this same gate, the states |0> and |1> rotate to 

|0>  cos γ|0> + sin γ|1>               

|1>  cos γ|1> - sin γ|0>             (30) 

and any arbitrary single qubit rotation can be made with this gate. 

Nuclear magnetic resonance 
The qubits in nuclear magnetic resonance (NMR) are built from precessing spins 

in a rotating magnetic field. There is a constant magnetic field in the z direction which 

creates the split two energy levels, and defines the resonant frequency 𝜔0. Another 
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magnetic field rotates in the x-y plane with frequency 𝜔. At resonance, these two 

frequencies match. 

The qubit in nuclear magnetic resonance (NMR) is built from the two spin states 

of a spin ½ particle, with spin the state |0> representing spin aligned with an external 

magnetic field, and |1> aligned against. The driving force is a rotating magnetic field in 

the x-y plane.  

In nonadiabatic GQC in NMR, parameters are varied in the Hamiltonian instead 

of using rotating operations. The magnetic field is initially in the x-z plane, with polar 

angle θ, and rotates with frequency 𝜔 in the x-y plane. The Hamiltonian in this case is 

given by 

𝟏𝟐(𝛚𝟎𝐜𝐨𝐬𝛚 𝝈𝒙+𝛚𝟎𝐬𝐢𝐧𝛚  𝝈𝒚+𝛚𝟏𝝈𝒛)    (31) 

where the control parameters are related to our model by 

ω0 = −
𝑔𝜇𝐵0

ℏ
= −Ω0,       ω =  𝜑𝐿 ,     ω1 = −

𝑔𝜇𝐵1

ℏ
= Δ   (32) 

and g is the gyromagnetic factor; µ is the Bohr magneton.  

Photon polarization/optical systems 
In optical systems, qubits are created from the polarization of photons. In an 

optical geometric phase experiment, unitary transformations are made on the polarization 

state of photons (Simon 1988). The polarization of a plane light wave in the z direction is 

determined by the complex-valued electric fields Ex and Ey, which form the polarization 

vector E. The ratio Ex/Ey gives the projection space of polarization states. This space is 
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the same as S2, the Poincare sphere (see Figure 6). The qubits for an optical geometric 

gate are made from superpositions of orthogonal polarization states. 

 

 

 

 
Figure 6- Polarization states on the Poincare sphere. (From Wang & Wu 2007). 

 

 

 

The Poincare sphere contains all the possible polarization states. The poles represent the 

states R and L, for the right- and left- circularized polarization states. A and A’ represent 

the linear x- and y- polarizations. The unitary transformations in this experiment are 2x2 

matrices, acting as rotations on the Poincare sphere. Quarter-wave plates produce the 

rotations shown in Figure 6: the first π/2 rotation around the axis OM, and the second π/2 

rotation around the axis ON. 

The basic experimental setup is a Michelson interferometer. Light from one arm 

of the interferometer is used as a reference beam, to be recombined with light from the 

other arm where a geometric phase occurs by using quarter wave plates. In Figure 7, the 
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geometric phase can be varied by rotating the second quarter wave plate (QWP2). The 

half wave plate HWP1 controls whether the incident beam is linearly polarized in the x- 

or y-directions. 

 

 

 

 
Figure 7- Experimental setup for observation of geometric phase in a Michelson interferometer. (From Wang & 

Wu 2007) 

 

 

 

The circuit shown in Figure 6 is traversed as ALBRA, by making the first quarter 

wave plate (QWP1) in arm m1 with the slow axis fixed at θ = π/4. After traversing 

QWP1, the light, which was linearly polarized in the x-direction (so that its state was at A 

on the Poincare sphere), is now left circularly polarized (at the point L on the Poincare 

sphere). The second quarter wave plate, QWP2, is set to the angle θ = 3π/4 + φ, with 

respect to the x-axis. The light emerges from QWP2 at state B. It then hits the mirror and 

reflects back into QWP2 in the opposite direction, taking the state to R. After going 

through QWP1 again, it is back to state A. 
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The solid angle subtended by this circuit is 4φ, where 2φ is the angle between 

points A and B. The Berry phase, or Pancharatnam phase in this case, is ½ the solid 

angle, or equal to 2φ. The Berry phase is -2φ for y-direction linearly polarized incident 

light, and the circuit in Figure 6 is flipped to the opposite side of the Poincare sphere. 

The evolution of the polarization vector E is given by 

EziJ
dz

dE
)(       (33) 

where λ is the wavelength of the laser and J(z) is the evolution matrix: 




















2cos2sin

2sin2cos
)(

n

n
zJ      (34) 

The angle θ is the angle that the birefringent plate’s slow axis makes with the x-

axis, and n+ ε and n- ε are the refractive indices for the slow and fast axes. Equation 33 is 

similar to the Schrodinger equation, and the matrix J(z) is analogous to the Hamiltonian 

for this system. 

The control parameters for the optical geometric phase of this system are the 

angle θ, set by QWP1; the orientation of HWP1 in determining the incident light beam 

polarization; the refractive indices of the birefringent plates (which can be controlled by 

the thickness of the plates); and the wavelength λ of the laser. 

Other optical geometric quantum computer schemes include an optical holonomic 

quantum computer (Pachos 2000). This proposal uses quantum optics devices such as 

interferometers for two qubit interactions, and displacing and squeezing devices, which 

achieve the one qubit rotations. The degenerate space of the Hamiltonian eigenstates 
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needed for the holonomic quantum computation scheme is constructed from two 

dimensional degenerate spaces of laser beams. 

  

Superconducting qubits in cavity QED 
This section describes the different superconducting qubits that can be created in 

cavity/circuit QED using Josephson tunnel junctions. 

Geometric quantum gates have been proposed using superconducting phase qubits 

(Peng 2007). In this system, the qubit is formed from a Hamiltonian with 2 non-

degenerate, orthogonal energy states. The Hamiltonian is a product of the Pauli spin 

matrices and the magnetic field B.  

A superconducting Josephson junction nanocircuit has been proposed to observe 

adiabatic geometric phase in a 2-level system in the Falci scheme (Falci 2000). This 

scheme uses a Josephson junction nanocircuit made of a superconducting electron box 

formed by an asymmetric SQUID, with a magnetic flux Φ and applied gate voltage Vx.  

For the Falci scheme, Josephson couplings EJ1 and EJ2 of the junctions are much 

smaller than the charging energy Ech. The temperature is kept much smaller than the 

couplings. This is called the charging regime. 

The Hamiltonian is  

)cos()()()( 2   Jxch EnnEtH    (35) 

where  
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    (37) 

and e
h
20  is the superconducting quantum of flux; n is the number of Cooper pairs; θ is 

the phase difference across the junction. The phase shift α(Φ) can be controlled in the 

asymmetric SQUID. Other control parameters in the Hamiltonian are the applied gate 

voltage Vx, which controls the offset charge 2enx; and the magnetic flux Φ controls the 

coupling EJ(Φ). 

The quantum gates of the Falci scheme are based on charge qubits. The two 

charge eigenstates n = 0, 1 create the basis {|0>,|1>}. 

This system can be seen to be analogous to a spin in a magnetic field by using the 

effective Hamiltonian 

 BH B
2

1
     (38) 

where 

))21(,sin,cos( xchJJ nEEEB       (39) 

and σ are the Pauli matrices. Charging the system causes it to be coupled to the effective 

magnetic field in the z direction. The Josephson junction coupling terms determine the 

projection on the x-y plane. 

To execute the closed loop that produces the geometric phase, the parameters 

given by the applied gate voltage Vx and the magnetic flux Φ are varied. This drives the 

Hamiltonian HB around a closed loop in the parameter space given by {B}. The 



28 

 

geometric phase obtained is the Berry phase γB(ΦM, nxm), proportional to the solid angle 

enclosed around the degeneracy B= 0. The offset charge nx (proportional to the applied 

gate voltage Vx) is varied from nxm to ½. The magnetic flux is varied from 0 to Φ. 

Varying these two parameters makes a closed loop in an nx-Φ diagram: nx is first varied 

from nxm to 1/2, while keeping Φ at 0; then Φ is varied from 0 to ΦM, while keeping nx at 

½; nx is then varied back to nxm while keeping Φ constant. The circuit is then completed 

by taking Φ back to 0, while keeping nx constant. 

 

Quantum dots 
Quantum dots are made of semiconductor nanocrystals, which can be entangled to 

form qubits. Voltages applied to the leads of quantum dots controls the number of 

electrons in the quantum dot. Quantum information is stored in the spin states of single-

electron quantum dots (Kloeffel & Loss, 2012). 

Quantum dots are another candidate for geometric quantum computation (Pei 

2010). In quantum dot gates, small voltages are applied to the leads, so that the current 

through the quantum dot is controlled. There can also be optical control of the quantum 

dot, in which an oscillating magnetic field is generated by radio-frequency pulses. This 

enables measurements of a single electron’s spin. 

The rotation angle of the geometric rotation in this system depends on the ratio of 

the Rabi frequency to the detuning. When this ratio goes to infinity, then the rotation 

angle is π, and there is no dynamical phase contribution for this geometric rotation. Other 

rotation angles lead to both a dynamical phase and a geometric phase. 
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One approach of nonadiabatic geometric quantum computation using quantum 

dots is given by the Yang-Zhu-Wang (YZW) scheme (Kai-Yu 2003). N quantum dots are 

irradiated by laser light, with charges on each dot. An exciton can be produced by a dot, 

and there can be interdot exchange of excitons. A qubit is made from the basis states 

{|0>,|1>}, where |0> is the state without an exciton, and |1> is the single exciton state. 

For a single qubit gate, the Hamiltonian consists of creation (and annihilation) operators 

for electrons )( ii cc
and holes )( ii hh

 : 

     






 
N

i

ii

N

i

ii

N

i

iiii chtEhctEhhcctH
11

*

1

)()(
2

)(


    (40) 

where ε is the energy band gap of the semiconductor dot, E(t) is the laser shape , and N is 

the number of quantum dots. 

 This Hamiltonian can be written in terms of quasi-spin operators J, by making the 

definitions  





  iiiiiZiiiiii hhccJchJhcJ
2

1
,, : 

  JtEJtEJtH Z )()()( *     (41) 

for a single quantum dot. 

The incident laser pulse shape E(t) is given in terms of amplitude A and frequency 

ω : E(t) = A exp(iωt). The single qubit Hamiltonian becomes a function of this amplitude 

A and frequency ω, the energy band gap ε of the semiconductor dots, and a set of X,Y,Z 

quasi-Pauli operators: 

YtAXtAZtH )sin()cos(
2

)( 


    (42) 

where {X = J+ + J-, Y = i(-J+ + J-), Z = 2 Jz}.  
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On the unit Bloch sphere, the incident laser pulse is the rotation field, and the 

semiconductor energy gap is the constant z-direction field. Two orthogonal states |ψ±> 

evolve cyclically, and are a function of just the three parameters: laser amplitude A, laser 

frequency ω, and energy band gap ε. These three parameters are combined into the 

symbol  

χ = atan (2A/(ε-ω))      (43) 

so that the two orthogonal states become: 









1|
2

cos0|
2

sin|

1|
2

sin0|
2

cos|







     (44) 

The evolution operator acting on the two orthogonal states is 

 



   ||)( ieU      (45) 

after an amount of cyclic time τ = 2π/ω, so that the first orthogonal state, |ψ+> acquires a 

+γ phase, and the |ψ-> orthogonal states acquires a –γ phase after that time τ. 

For an initial state  

   ||| aai      (46) 

the final state is |Ψf> = U(χ,γ) |Ψi>, where the evolution operator is 
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
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U  (47) 

From this evolution operator, any single qubit geometric quantum gate can be 

constructed, by controlling the three control variables in χ (equation 43). 
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2.8 Geometric and dynamic phases 
Geometric phases in the quantum state of a system occur for any evolution of the 

state; this evolution is represented by a path in Hilbert space (Abdumalikov 2013) (or as a 

path on the Bloch sphere). Geometric phase depends only on the solid angle subtended on 

the Bloch sphere, and for Abelian geometric phases, it is a real number.  

When a Bloch vector makes a closed loop on the Bloch sphere, the geometric 

phase for any two-level system is: 

GP = - Θ/2      (48) 

where Θ is the solid angle enclosed by the curve that the Bloch vector traces out on the 

Bloch sphere. 

The dynamic phase can be set to vanish if the evolution path of the Bloch vector r 

is kept perpendicular to the Rabi vector Ω. The dynamic phase is  

𝐷𝑃 = −
1

ℏ
∫ < 𝜓(𝑡 = 0
𝑇

0
)|𝑈†𝐻𝑈|𝜓(𝑡 = 0) > 𝑑𝑡   (49) 

which is a function of the Hamiltonian H, evolution operator U, the wavefunction ψ, and 

the time taken for the evolution. The total phase acquired by the quantum state after a 

cyclical evolution is just the sum of the above geometric and dynamic phases. 

2.9 Direct rotations versus composite (N-segment) rotations 
In later chapters we present comparisons of direct (single) rotations versus 

composite (N-segment, with N > 1) rotations. A direct rotation is represented here by a 

single rotation of the quantum state around the x-axis of the Bloch sphere by an angle θ: 

𝑈𝑑𝑖𝑟𝑒𝑐𝑡(𝜃) = 𝑒
−𝑖
𝜃

2
𝜎𝑥     (50) 
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The total phase of this rotation is -θ/2. Most standard quantum gate operations that do not 

consider geometric phase are direct rotations. When a direct rotation gate operates on the 

initial state of equation 4, which points in the x direction, there is no evolution path on 

the Bloch sphere; the state is just rotated at the x-axis point (see Figure 8). There is no 

solid angle subtended, and therefore no geometric phase: this gate is therefore a purely 

dynamic gate. 

 

 

 

 

Figure 8- Direct rotation around the x-axis, with initial state on x-axis. 

 

 

 

In contrast, a composite rotation is made up of N segments or rotations, which 

form a closed loop on the Bloch sphere. An example of a composite rotation is: 

𝑈𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 𝑅𝑦(𝜋)𝑅𝑧(𝜋)     (51) 
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This gate is made by starting from the initial state of equation (4) on the x-axis, rotating 

around the z-axis by 𝜋, so that the second endpoint is at the negative x-axis, and then 

rotating around the y-axis by 𝜋 to return to the x-axis (see Figure 26a). This makes a 2-

segment geometric gate of geometric phase – π/2; the angle between the segments is 
𝜋

2
 = -

GP. This is equivalent to the above direct rotation gate if 𝜃 = 𝜋 there. 

2.10 Geometric, dynamic and hybrid gates 
Geometric gates have evolution paths only on geodesics, so that the dynamic 

phase vanishes, and there is only a geometric phase. Dynamic gates have no enclosed 

area on the Bloch sphere, so that the geometric phase vanishes, and there is only a 

dynamic phase. The direct rotations of the previous section are an example of dynamic 

gates. Hybrid gates have both a geometric and a dynamic phase. 

2.11 Noise model 
The control parameters that define our quantum gate designs are affected by both 

systematic and random error. These types of noise can affect the fidelity of the designed 

quantum gates. 

Our phase noise is based on the phase diffusion model (Scully 1997), where there 

is a Gaussian noise distribution on the phase of the laser (our control parameter 𝜃𝐿). 

Noise is put on 𝜃𝐿 on each of N time steps, in a random walk: taking the previous value 

and adding a random value from the interval ±
0.01

√𝑁
 to find the current value of the phase.  

Figure 9 shows that the phase noise we used formed a Gaussian distribution. 
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Figure 9-Gaussian noise distribution for random noise on the laser phase 𝜽𝑳, for N = 1920 

 

 

 

 Noise on the Rabi frequency control parameter is modeled as a random 

percentage noise of the ideal value. For instance, for a 10% random noise, a random 

number between 0.9 and 1.1 is multiplied with the ideal Rabi frequency value at each of 

N time steps. 

 Systematic error was applied to the designed quantum gates by applying the same 

types of noise, but in one single time step for each segment of the rotation. 

 

2.12 Fidelity and error rate  
The fidelity F of the paths is found by taking the trace of the ideal evolution 

matrix U (calculated from the ideal control parameters) multiplied by the noisy U matrix 

(= V), calculated with noise added to the control parameters (Thomas et. al. 2011): 
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𝑭 =
𝟏

𝟐
𝑻𝒓|𝑽𝑼†|       

   (52) 

Each of the paths are divided into N time steps, where noise is applied. The fidelity for 

each path is averaged over 200 runs. Error rate is defined as 1- F. 

 

2.13 Application of our unified model to the six physical systems 
In this section, our unified model developed from the N-segments work is applied 

by translating our control parameters into the control parameters of each of the six 

physical systems studied here for creating qubits (see Table 1). 
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Table 1 – Translation of unified model’s control parameters to system control parameters 

System Ω0 φL Δ 

2-Level 

Atom Rabi frequency of laser Phase of the laser Laser detuning 

Trapped 

Ions 

        Ω 

=Rabi frequency of laser 

Φ 

= laser phase 

      ω0-ωL 

where ω0 = resonant 

frequency; 

ωL = laser frequency 

NMR 
−ω0 =

𝑔𝜇𝐵0
ℏ

 

Proportional to the 

strength of the rotating B 

field  

φ  
where phase φ 

usually set to 0. 

ω1 −ω 

where ω = frequency 

of rotating B field;  

constant z-direction B 

field given by  

ω1 = −
𝑔𝜇𝐵1
ℏ

 

 

 

Photons -𝜀 sin 2θ 

where n±ε = refractive 

index of slow/fast axis; θ 

= angle of birefringent 

plate’s slow axis to x-axis 

--- 𝜀cos 2θ 

 

Cavity 

QED: 

charge 

qubits 

EJ = coupling energy    -α  

 = - phase shift (eq. 

37 ) 

-ECH (1-2nx)  

where ECH = charging 

energy; offset charge = 

nx = Vx/2e; Vx = 

applied gate voltage 

Quantum 

Dots 

-A  

A=amplitude of laser 

pulse 

φ  
= laser phase 

ε /2 

ε  = energy band gap 

of semiconductor dots 
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CHAPTER 3- THEORY OF N-SEGMENT PATHS 

For a closed loop of N segments or rotations, we are always left with a spherical 

polygon formed by the geodesics between endpoints of segments, plus the associated 

wedges formed by the evolution path and its associated geodesic (see Figure 10 for an N 

= 3 example). 

 

 

 

 

Figure 10- N= 3-segment path, with evolution paths (solid lines with arrows), and their associated geodesics 

(dashed lines). 

 

 

 

We consider fidelity results for special cases of two- and three-segment rotations, 

as well as quantum gate operations that can be considered N rotations of the qubit state 

around N axes, creating a closed loop on the Bloch sphere. In each case, the geometric 

phase of the N-segments path is a sum of the geometric phase of the wedge made by each 
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segment and the geodesic (great circle) between the two endpoints of that segment, plus a 

geometric phase from the N polygon created from the geodesics between endpoints.   

In the N segment case, we have N rotations given by 3N – 2 lab frame control 

parameters: Ω0 , Ω02 ,…. Ω0(N-1); φL ,φL2 ,…φL(N-1); Δ, Δ2, …Δ(N-1); and φN. The geometric 

phase is again a sum of the geometric phase contributions from each segment’s wedge, 

plus a geometric phase from the N-sided polygon formed by each of the segments’ 

associated geodesics: 

GP = GP1 + GP2 +…+ GPN + GPN-polygon    (53) 

where GPN-polygon = -½ ΩN-polygon , and the solid angle is: 

ΩN-polygon = (Angle 1) + (Angle 2) +….+ (Angle N) –(N-2)π  (54) 

where Angle 1 is the N-polygon’s angle associated with endpoint #1, etc; these angles are 

found from the tangents to the great circles. 

 

3.1 Two-segment paths 
This section calculates the geometric, dynamic and total phase for all closed paths 

on the Bloch sphere made of two segments, each lying on conic circles. By creating a set 

of all possible rotations, showing that we can vary the total phase interval to coincide 

with all possible rotation angles of the state vector, and varying the control parameters to 

create purely dynamic or purely geometric phases, we then are able to compare the 

fidelity of geometric phase and dynamic phase under noise. We consider the case of the 

first segment lying on a great circle, and the more general case of non-great circle paths. 
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We first show we can find a set of paths with total phase continuously varying for 

a π interval, and that we can maximize the GP while simultaneously minimizing the DP 

(and vice versa) over this same set of paths for each value of the total phase, by varying 

the control parameters (in the first case, for the first segment on the great circle, these 

control parameters are: the angle amount of the first rotation and the angle between the 

rotation axes). 

The reason for the requirement of a π interval total phase is as follows: a unitary 

operator U for a rotation of the state vector by angle β around a rotation axis 𝑛̂ is: 

𝑈𝑛(𝛽) = 𝑒
−𝑖
𝛽

2
𝜎𝑛     (55) 

Or in matrix form, for the case that σn = σz : 

𝑈𝑧(𝛽) = (
𝑒−𝑖

𝛽

2 0

0 𝑒𝑖
𝛽

2

)    (56) 

so that basis vectors along the rotation (z) axis: 

|𝑛+ > =  (
1
0
),   |𝑛− > =  (

0
1
)    (57) 

become 

𝑈𝑛(𝛽)|𝑛+ > = 𝑒
−𝑖
𝛽

2 |𝑛+ >  ,   𝑈𝑛(𝛽)|𝑛− > = 𝑒
𝑖
𝛽

2 |𝑛− >  (58) 

after rotation. In this case, the total phase TP = β/2 = GP + DP where GP = geometric 

phase and DP = dynamic phase. For example, a segment that makes a complete great 

circle will have a dynamic phase that vanishes, and the geometric phase is minus one half 

the solid angle: GP = -π; the total phase TP = -π = β/2. To cover any state vector rotation 
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β between 0 and 2π, the total phase must be able to vary between 0 and π for the paths 

selected. 

The first segment is assumed to be a rotation on the great circle (we later consider 

the case of non-great circle paths), in the x-z plane (so that α = (angle from x-axis) = 0 in 

prior calculations), and symmetrical about the equator (so that the angle from the z-axis 

to the initial state position is equal to the angle from the negative z-axis to the final state 

position after the first rotation). Therefore, the first rotation axis is the y-axis. The total 

angle subtended by the first rotation is β1. Therefore, the angle made from the initial state 

position to the x-axis is β1/2, and the angle from the z-axis to the initial state position is 

π/2 - β1/2. 

Our first control parameter is β1, and it can vary between 0 and 2 π, these two 

extreme values being no first rotation at all. At values close to β1=0, the first rotation will 

be just above the x-axis, and the first rotation will be very slight, ending just below the x-

axis; at values close to β1= 2 π, the initial state position is just above the negative x-axis, 

and the first rotation goes almost all the way around the great circle in the x-z plane, to 

end just below the negative x-axis. 

The second segment closes the loop, and is a rotation about an axis that makes an 

angle of φ2 from the x-axis, assumed to be CCW from the x-axis if looking down the z-

axis. This angle φ2 can vary from 0 to 2 π, where a value of 0 or 2 π would mean that the 

second axis of rotation was along the x-axis. Our two control parameters are then β1 and 

φ2. 
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There are two easy ways to make all possible paths: If we fix β1, then the angle to 

the second rotation axis, φ2 can be varied along the equator to get all possible paths for 

that value of β1, and we can make graphs of the phases for all values of β1. Similarly, we 

can fix φ2 and vary β1, making graphs of phases for all values of φ2. Alternatively, we can 

make a 3D map of the phases over both control parameters.  

For the case of the first segment on a non-great circle path, there is an extra 

control parameter: the angle φ1 from the x-axis to the axis of rotation for the first 

segment. The angle amount β1’ rotated around the 1st axis (φ1 from the x-axis) is already 

given by endpoints defined by β1 (angle amount if you stayed on great circle of x-z 

plane). Our set of control parameters are then φ1, φ2 and β1.  

3.2 Geometry of the two segments 
For the first rotation, if we look down the negative y-axis, we see an arc with 

radius r (see Figure 11). Taking the top half (above the x-y equator) of the arc, the angle 

the arc subtends is β1/2. We can construct a triangle by dropping a dotted line from the 

initial state position down to the x-axis, kept perpendicular to the z-axis. The length of 

this dotted line is labeled “z”. From the geometry, we have 

𝑠𝑖𝑛
𝛽1

2
= 

𝑧

𝑟
= 𝑧      (59) 

𝑐𝑜𝑠
𝛽1

2
=
𝑑1

𝑟
= 𝑑1      (60) 

using r = 1 for a unit Bloch sphere.  
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Figure 11- First rotation segment (orange line) around the y-axis (into the paper), by the angle β1. The distance 

d1 is from the origin to the perpendicular dotted line; d1 measures the minimum distance along the x-axis; the 

dotted line measures the maximum height z. 

 

 

 

Now to close the loop, the second rotation will be an arc on the Bloch sphere, 

around an axis of rotation called the x”-axis (see Figure 12-Figure 14).  

 

 

 

 

 

 



43 

 

 

Figure 12- Both rotations (first rotation = orange line; second rotation = green line). Both lines are traversed in 

both directions. The orange dot is the initial (and final) state position on the Bloch sphere; directly behind it 

would be the final state position of the first rotation segment. 

 

 

 

From the geometry of Figure 12, we have 

cos𝜑2 =
𝑑3

𝑑1
,  sin𝜑2 =

𝑑2

𝑑1
,   cos 𝜃1 =

𝑑3

𝑟
= 𝑑3,     sin 𝜃1 =

𝑟2

𝑟
= 𝑟2 (61) 

Using equation (60) for d1, this becomes: 

d3 = cos (β1/2) cos φ2       (62) 

d2 = cos (β1/2) sin φ2      (63) 

So that the cone half apex angle θ1 is given by: 

cos θ1= cos (β1/2) cos φ2  

r2 = sin θ1  
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Figure 13- Both rotations seen looking down the x”-axis (second axis of rotation). 

 

 

 

From Figure 13, we can define β2 (the angle of rotation around the second axis of 

rotation) in terms of the two main control parameters (β1 and φ2). Let α = (π- β2/2); from 

figure 3, β2 = 2π- 2α = 2(π- α ). From the geometry of Figure 12Figure 13, we find that  

cos 𝛼 =
𝑟

𝑟2
cos

𝛽1

2
sin 𝜑2 ,  sin 𝛼 =

𝑟

𝑟2
sin

𝛽1

2
    (64) 

tan α = sin α /cos α= sin (β1/2) / (cos (β1/2) sin φ2) 

or 

α = arctan[ tan (β1/2) / sin φ2] 

and we can solve for β2, the angle amount of the second rotation. Using β2 = 2(π- α ): 

 β2 = 2(π- arctan[ tan (β1/2) / sin φ2])      (65) 
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Also from Figure 13, we can determine r2 by the Pythagorean theorem: 

r2
2 = d2

2 + z2 

Substituting in prior equations, we have 

sin 𝜃1 = √𝑐𝑜𝑠2
𝛽1

2
𝑠𝑖𝑛2𝜑2 + 𝑠𝑖𝑛2

𝛽1

2
    (66) 

The above equations have been calculated with the assumption that the following ranges 

hold:  0 < 𝛽1 < 𝜋,  0 ≤ 𝜑2  ≤ 𝜋/2, 0 < 𝜃1 < 𝜋/2. 

3.3 Calculation of geometric phase (first segment on great circle)  
The geometric phase (GP) is minus one half the solid angle: 

𝐺𝑃 = −
Ω

2
      (67) 

To calculate the solid angle, we follow Mazonka (2011); see also appendix. We want to 

calculate the solid angle that the cone associated with the second rotation segment makes, 

but only up to the great circle on the x-z plane that the first rotation segment lies on (see 

Figure 14). 
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Figure 14- Both rotation segments, with the first segment (orange line) on a great circle in the x-z plane. The 

second rotation segment (green line) is part of the first cone; this cone makes an angle θ1 with the x”-axis; the 

first rotation segment is along the plane of intersection of this cone with another cone making an angle of θ2 with 

its axis. (Figure adapted from Mazonka 2011). 

 

 

 

Variables of Figure 14 : 

θ1= half of apex angle of the 1st cone, associated with the second rotation 

segment. 

θ2 = half of apex angle of the 2nd cone, which provides the 2 intersection points 

where the 2nd cone intersects with the 1st cone. 

φ2 = angle between the x and x” axes (2 rotation axes). 

φ = angle between the d2 segment and the initial state position of the orange (1st) 

segment. 

α = angle between the axes of the two cones. 

β = angle between the tangent to the great circle and the tangent to the second 

rotation segment. 
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r2 = radius of the circle for the cone associated with the second rotation segment. 

d2 = segment distance from the center of the 1st cone (of the second rotation 

segment) to the midpoint of the line connecting the two endpoints of the great circle (first 

rotation segment); this midpoint lies on the x-axis. 

Solid angle of a conical surface 
The solid angle of a general conical surface is then 

Ω = 𝟐𝝅 − ∑ 𝜹𝒊 − ∮𝒅𝒍√𝒖⃑⃑⃑𝟐 − (𝒔⃑⃑ ∙ 𝒖⃑⃑⃑)𝟐𝒊      (68) 

 

(see Mazonka 2011 and appendix A for a proof of this). This assumes that the solid angle 

subtended would be 2π (equivalent to a cone subtending one hemisphere) if there were no 

sharp turns or cut off sections from a cone. The last two terms are corrections cut off 

from this.  

3.4 Calculation of geometric phase (non-great circle paths)  
In this case, we keep the initial point and the endpoint of the first segment the 

same (in the x-z plane). The second segment is the same (makes rotation of angle amount 

β2 around axis making an angle φ2 to the x-axis), but the first segment now is another 

conic curve of angle amount β1’ that rotates around an axis that makes an angle φ1 to the 

x-axis (β1, without the prime, still represents the angle amount between the initial point 

and first segment endpoint (points 1 and 2), if we stayed on a great circle). 

Summary of geometric phase calculations for all segment paths 
The equations for calculating the geometric phase acquired by the quantum state 

after evolving along the two-segment paths are listed below, given the range of the three 

main rotated frame control parameters  𝜑1, 𝛽1, and  𝜑2. This is a set of 16 equations 
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(equations 73-88)) if 𝛽2 and 𝛽1′ are used, where their values depend on the range of the 

three main control parameters: 

For 0 < 𝛽1 ≤ 𝜋,   0 ≤  𝜑1 ≤ 𝜋   and   𝜋 ≤ 𝛽1 <  2𝜋,   𝜋 ≤  𝜑1 ≤ 2𝜋 : 

𝛽1′ = | 2  𝑡𝑎𝑛
−1 (

𝑡𝑎𝑛 
𝛽1
2

𝑠𝑖𝑛 𝜑1
)|     (69) 

For  0 < 𝛽1 ≤ 𝜋,   𝜋 ≤  𝜑1 ≤ 2𝜋  and  𝜋 ≤ 𝛽1 <  2𝜋,   0 ≤  𝜑1 ≤ 𝜋  : 

𝛽1′ = 2 {𝜋 − | 𝑡𝑎𝑛
−1 (

𝑡𝑎𝑛 
𝛽1
2

𝑠𝑖𝑛 𝜑1
)|}    (70) 

For 0 < 𝛽1 ≤ 𝜋,   0 ≤  𝜑2 ≤ 𝜋   and  𝜋 ≤ 𝛽1 <  2𝜋,   𝜋 ≤  𝜑2 ≤ 2𝜋 : 

𝛽2 = 2{𝜋 − | 𝑡𝑎𝑛
−1 (

𝑡𝑎𝑛 
𝛽1
2

𝑠𝑖𝑛 𝜑2
)|}    (71) 

For  0 < 𝛽1 ≤ 𝜋,   𝜋 ≤  𝜑2 ≤ 2𝜋  and ≤ 𝛽1 <  2𝜋,   0 ≤  𝜑2 ≤ 𝜋  :  

𝛽2 = | 2  𝑡𝑎𝑛
−1 (

𝑡𝑎𝑛 
𝛽1
2

𝑠𝑖𝑛 𝜑2
)|     (72) 

The geometric phase equations are then: 

For 0 ≤  𝜑1 ≤
𝜋

2
,    0 < 𝛽1 < 2𝜋, 0 ≤  𝜑2 ≤

𝜋

2
  : 

𝐺𝑃 = −𝑐𝑜𝑠−1

(

 
𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

  +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 + 

−𝜋 + 𝑐𝑜𝑠−1 (
𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

) +
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (73) 

For 0 ≤  𝜑1 ≤
𝜋

2
,    0 < 𝛽1 < 2𝜋,   

𝜋

2
≤  𝜑2 ≤  𝜋 : 
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𝐺𝑃 = −𝑐𝑜𝑠−1

(

 
𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 + 

−𝜋 − 𝑐𝑜𝑠−1 (
𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

) +
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (74) 

For 0 ≤  𝜑1 ≤
𝜋

2
,    0 < 𝛽1 < 2𝜋,   𝜋 ≤  𝜑2 ≤ 

3𝜋

2
 with condition   𝜑2 <  𝜑1 −  𝜋: 

𝐺𝑃 = −𝑐𝑜𝑠−1

(

 
𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 + 

−2𝜋 + 𝑐𝑜𝑠−1(
− 𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

)+
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (75) 

 (add 2π if   𝜑2 >  𝜑1 −  𝜋). 

For 0 ≤  𝜑1 ≤
𝜋

2
,    0 < 𝛽1 < 2𝜋,   

3𝜋

2
≤  𝜑2 ≤  2𝜋 : 

𝐺𝑃 = −𝑐𝑜𝑠−1

(

 
𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 + 

−𝑐𝑜𝑠−1(
− 𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

)+
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (76) 

For  
𝜋

2
≤  𝜑1 ≤ 𝜋,    0 < 𝛽1 < 2𝜋,   0 ≤  𝜑2 ≤

𝜋

2
  : 

𝐺𝑃 =  𝑐𝑜𝑠−1

(

 
𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 + 
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−𝜋 + 𝑐𝑜𝑠−1 (
𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

) +
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (77) 

For 
𝜋

2
≤  𝜑1 ≤ 𝜋,    0 < 𝛽1 < 2𝜋,   

𝜋

2
≤  𝜑2 ≤  𝜋 : 

𝐺𝑃 =  𝑐𝑜𝑠−1

(

 
𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 + 

−𝜋 − 𝑐𝑜𝑠−1 (
𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

) +
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (78) 

For  
𝜋

2
≤  𝜑1 ≤ 𝜋,    0 < 𝛽1 < 2𝜋,   𝜋 ≤  𝜑2 ≤ 

3𝜋

2
  : 

𝐺𝑃 =  𝑐𝑜𝑠−1

(

 
𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 + 

−2𝜋 + 𝑐𝑜𝑠−1(
− 𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

)+
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (79) 

For 
𝜋

2
≤  𝜑1 ≤ 𝜋,    0 < 𝛽1 < 2𝜋,   

3𝜋

2
≤  𝜑2 ≤  2𝜋 with condition   𝜑2 <  𝜑1 −  𝜋: 

𝐺𝑃 =  𝑐𝑜𝑠−1

(

 
𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 + 

−2𝜋 − 𝑐𝑜𝑠−1(
− 𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

)+
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (80) 

(add 2π if   𝜑2 >  𝜑1 −  𝜋). 

For  𝜋 ≤  𝜑1 ≤
3𝜋

2
,    0 < 𝛽1 < 2𝜋,   0 ≤  𝜑2 ≤

𝜋

2
  with condition 𝜑2 <  𝜑1 −  𝜋: 
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𝐺𝑃 = −𝑐𝑜𝑠−1

(

 
− 𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 

−2𝜋 + 𝑐𝑜𝑠−1(
𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

)+
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (81) 

 (add 2π if   𝜑2 >  𝜑1 −  𝜋). 

For ≤  𝜑1 ≤
3𝜋

2
,    0 < 𝛽1 < 2𝜋,   

𝜋

2
≤  𝜑2 ≤  𝜋 : 

𝐺𝑃 = −𝑐𝑜𝑠−1

(

 
− 𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 

−𝑐𝑜𝑠−1(
𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

)+
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (82) 

For ≤  𝜑1 ≤
3𝜋

2
,    0 < 𝛽1 < 2𝜋,   𝜋 ≤  𝜑2 ≤ 

3𝜋

2
 : 

𝐺𝑃 = −𝑐𝑜𝑠−1

(

 
− 𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 

−𝜋 + 𝑐𝑜𝑠−1 (
− 𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

) +
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (83) 

For 𝜋 ≤  𝜑1 ≤
3𝜋

2
,    0 < 𝛽1 < 2𝜋,   

3𝜋

2
≤  𝜑2 ≤  2𝜋 : 

𝐺𝑃 = −𝑐𝑜𝑠−1

(

 
− 𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 



52 

 

−𝜋 − 𝑐𝑜𝑠−1 (
− 𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

) +
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (84) 

For  
3𝜋

2
≤  𝜑1 ≤ 2𝜋,    0 < 𝛽1 < 2𝜋,   0 ≤  𝜑2 ≤

𝜋

2
  : 

𝐺𝑃 = 𝑐𝑜𝑠−1

(

 
− 𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 

−2𝜋 + 𝑐𝑜𝑠−1(
𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

)+
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (85) 

For 
3𝜋

2
≤  𝜑1 ≤ 2𝜋,    0 < 𝛽1 < 2𝜋,

𝜋

2
≤  𝜑2 ≤  𝜋 , and  𝜑2 <  𝜑1 −  𝜋: 

𝐺𝑃 = 𝑐𝑜𝑠−1

(

 
− 𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 

−2𝜋 − 𝑐𝑜𝑠−1(
𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

)+
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (86) 

 (add 2π to above if  𝜑2 >  𝜑1 −  𝜋) 

For 
3𝜋

2
≤  𝜑1 ≤ 2𝜋,    0 < 𝛽1 < 2𝜋,   𝜋 ≤  𝜑2 ≤ 

3𝜋

2
 : 

𝐺𝑃 = 𝑐𝑜𝑠−1

(

 
− 𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 

−𝜋 + 𝑐𝑜𝑠−1 (
− 𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

) +
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (87) 

For 
3𝜋

2
≤  𝜑1 ≤ 2𝜋,    0 < 𝛽1 < 2𝜋,   

3𝜋

2
≤  𝜑2 ≤  2𝜋 : 
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𝐺𝑃 =  𝑐𝑜𝑠−1

(

 
− 𝑠𝑖𝑛 𝜑1

√1 − 𝑐𝑜𝑠2
𝛽1
2 𝑐𝑜𝑠

2𝜑1)

 +
𝛽1′

2
𝑐𝑜𝑠

𝛽1
2
𝑐𝑜𝑠 𝜑1 − 𝜋 

−𝑐𝑜𝑠−1(
− 𝑠𝑖𝑛 𝜑2

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑2

)+
𝛽2

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑2  (88) 

3.5 Calculation of dynamic phase  

General case: rotation axes in any direction  
For our most general paths, we assume the two rotation axes can be anywhere on 

the Bloch sphere. We also assume our initial (and final) endpoint of our path is on the x- 

axis, so that the initial basis states are along the ± x-axis: 

|𝜓+(𝑡 = 0) > =
1

√2
(|0 > +|1 >)    (89) 

|𝜓−(𝑡 = 0) > =
1

√2
(|0 > −|1 >)    (90) 

since the most general qubit is 

|𝜓+(𝑡 = 0) > = sin
𝜃

2
|0 > +𝑒−𝑖𝛼 cos

𝜃

2
|1 >  (91) 

The initial basis states |+> and |-> can be defined in the x-y plane by: 

| +>0 =
1

√2
(|0 > +𝑒−𝑖𝛼|1 >)    (92) 

| −>0 =
1

√2
(|0 > −𝑒−𝑖𝛼|1 >)    (93) 

where α is the angle to the x-axis and the polar basis states are chosen as 

 |0 > =  (
0
1
),                |1 > =  (

1
0
)                         (94) 
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Here |0> points along the south pole of the Bloch sphere, and |1> along the north pole. 

(This is in contrast to how |0> is usually represented as the north pole, and usually there 

is a + sign in the exponential above). 

The dynamic phase for the |+> basis state is: 

𝐷𝑃+ = −∫ < 𝜓+(𝑡 = 0
𝑡1

0

)|𝑈1
𝑡∗𝐻1𝑈1|𝜓+(𝑡 = 0) > 𝑑𝑡 + 

−∫ < 𝜓+(𝑡1
𝑇

𝑡1
)|𝑈2

𝑡∗𝐻2𝑈2|𝜓+(𝑡1) > 𝑑𝑡  (95) 

for both rotation segments.  

Each segment’s rotation operator is 

𝑈𝑛 = exp {−𝑖 
𝛽𝑛
′

2
𝜎 ∙ 𝑛̂}    (96) 

where 𝛽𝑛
′  is the angle amount of rotation around the 𝑛̂-axis. 

The rotation angle 𝛽𝑛
′  is related to the rotation duration and the Rabi frequency by: 

𝛽𝑛
′ = |Ω𝑛|𝜏      (95) 

In particular, for the first segment, 𝛽1
′ = |Ω1|𝜏, and the rotation operator is: 

𝑈1 = exp{−𝑖 𝐻1𝜏} = exp {−𝑖 𝐻1
𝛽1
′

|Ω1|
}   (96) 

The Hamiltonians for the two segments are: 

𝐻1 =
1

2
(−Ω0cos𝜑𝐿𝜎𝑥 −Ω0sin𝜑𝐿𝜎𝑦 + Δ𝜎𝑧) =

1

2
Ω⃑⃑⃑1 ∙ 𝜎𝑛  (97) 

𝐻2 = 
1

2
(−Ω02cos𝜑𝐿2𝜎𝑥 −Ω02sin𝜑𝐿2𝜎𝑦 + Δ2𝜎𝑧) =

1

2
Ω⃑⃑⃑2 ∙ 𝜎𝑛 (98) 

so that the two evolution operators are: 

𝑈1 = exp {−𝑖
𝛽1
′

2
(−

Ω0

|Ω1|
cos 𝜑𝐿𝜎𝑥 −

Ω0

|Ω1|
sin 𝜑𝐿𝜎𝑦 +

Δ

|Ω1|
𝜎𝑧)}  (99) 



55 

 

𝑈2 = exp {−𝑖
𝛽2
′

2
(−

Ω02

|Ω2|
cos 𝜑𝐿2𝜎𝑥 −

Ω02

|Ω2|
sin𝜑𝐿2𝜎𝑦 +

Δ2

|Ω2|
𝜎𝑧)}  (100) 

where |Ω1| =  √(Ω0)2 + Δ2 and|Ω2| =  √(Ω02)2 + (Δ2)2. 

The dynamic phase for the first segment is: 

𝐷𝑃+(1) =  −∫ < 𝜓+(𝑡 = 0)|𝑈1
𝑡∗𝐻1𝑈1|𝜓+(𝑡 = 0) > 𝑑𝑡

𝑡1

0
  (101) 

= −∫ < 𝜓+(𝑡 = 0)|𝐻1|𝜓+(𝑡 = 0) > 𝑑𝑡
𝑡1

0
   (102) 

since U and H commute. The dynamic phase for the first segment becomes: 

𝐷𝑃+(1) =  
𝛽1
′Ω0

2|Ω1|
cos 𝜑𝐿     (103) 

= 
Ω0

2
cos𝜑𝐿      (104) 

on setting τ = 1. 

The dynamic phase for the second segment is: 

𝐷𝑃+(2) =  −∫ < 𝜓+(𝑡1)|𝑈2
𝑡∗𝐻2𝑈2|𝜓+(𝑡1) > 𝑑𝑡

𝑇

𝑡1
  (105) 

= −∫ < 𝜓+(𝑡1)|𝐻2|𝜓+(𝑡1) > 𝑑𝑡
𝑇

𝑡1
   (106) 

where the state is: 

U1|ψ+(t =  0) > = |ψ+(t1) > = 

=
1

√2
[{cos

𝛽1
′

2
+ 𝑖𝑠𝑖𝑛

𝛽1
′

2

Ω0
|Ω1|

e𝑖𝜑𝐿 + 𝑖𝑠𝑖𝑛
𝛽1
′

2

Δ

|Ω1|
}|0 > 

+{cos
𝛽1
′

2
 + 𝑖𝑠𝑖𝑛

𝛽1
′

2

Ω0

|Ω1|
e−𝑖𝜑𝐿 − 𝑖𝑠𝑖𝑛

𝛽1
′

2

Δ

|Ω1|
}|1 >]  (107) 

This state can also be found from the known coordinates of the second endpoint: 

𝑛𝐸2 = (𝑛𝐸2𝑥, 𝑛𝐸2𝑦, 𝑛𝐸2𝑧) = (cos 𝛼 sin 𝜃, sin 𝛼 sin 𝜃 , cos 𝜃) (108) 

Where the polar and azimuthal angles 𝜃 and 𝛼 define the general qubit state: 
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|𝜓+(t1) > = sin
𝜃

2
|0 > +𝑒−𝑖𝛼 cos

𝜃

2
|1 > = 𝐶0|0 > +𝐶1|1 >  (109) 

𝐷𝑃+(2) = −∫ < 𝜓+(𝑡1)|𝐻2|𝜓+(𝑡1) > 𝑑𝑡
𝑇

𝑡1
   (110) 

= Ω02𝐶0{𝑅𝑒 (𝐶1) cos 𝜑𝐿2 − 𝐼𝑚(𝐶1)sin𝜑𝐿2} +
Δ2

2
{(𝐶0)

2 − 𝐶1
∗𝐶1} (111) 

on setting the time interval to 1, and using the fact 𝐶0 is  a real coefficient. The total 

dynamic phase for the loop is: 

𝐷𝑃+ = 𝐷𝑃+(1) + 𝐷𝑃+(2)      (112) 

Special case #1: first segment on great circle & rotation axes in x-y plane  
The basis states are taken to lie along the direction to the initial state position 

which is in the x-z plane. For a first segment on the great circle, we can assume the first 

rotation segment is in the x-z plane, so (α=φ=0): 

|𝜓+(𝑡 = 0) > = sin
𝜃

2
 |0 >  +  cos

𝜃

2
 |1 >   (113) 

|𝜓−(𝑡 = 0) > = sin
𝜃

2
 |0 >  −  cos

𝜃

2
 |1 >   (114) 

Here θ measures the angle from the z-axis, and  
𝜃

2
=
𝜋

4
−
𝛽1

4
 , where 𝛽1 measures the angle 

along the geodesic between the two endpoints. 

Each segment’s rotation operator is given by equation 96: 

 𝑈𝑛 = exp {−𝑖 
𝛽𝑛

2
𝜎 ∙ 𝑛̂}     (115) 

since in this special case, the evolution path is on the geodesic, so that 𝛽𝑛 = 𝛽𝑛
′ .  

For rotation axes in the x-y plane, there is no detuning, so that Δ = 0, and |Ω| =

Ω0, and  

𝜎 ∙ 𝑛̂ =  −(cos𝜑𝐿𝜎𝑥 +sin𝜑𝐿𝜎𝑦)     (116) 
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using the lab frame control parameter 𝜑𝐿. The first segment rotation axis is along the y-

axis, so that φ1 = π/2, so this element of the evolution operator becomes 𝜎 ∙ 𝑛 =  −𝜎𝑦. 

The first rotation operator is then 

U1 = exp {i
𝛽1

2
𝜎𝑦}  (lab frame)     (117) 

in the lab frame ( a rotation about the negative y-axis); but in the rotated frame (where the 

first segment is in the x-z plane) the rotation axis is:  𝑛̂1 = (cos𝜑1, sin𝜑1, 0) and the 

evolution operator is: 

U1 = exp {−i
𝛽1

2
𝜎𝑦}  (rotated frame)     (118) 

Therefore the first Hamiltonian is 

𝐻1 = 
1

2
Ω0𝜎𝑦       (119) 

in the rotated frame, since U1 = exp{−𝑖𝐻 𝑡}. 

The second segment has angle: 𝛽2
′ = |Ω2|𝜏. Assuming the second segment axis is 

also in the x-y plane, the second Hamiltonian is  

𝐻2 = 
1

2
Ω02(cos𝜑2 𝜎𝑥 + sin𝜑2 𝜎𝑦)     (120) 

With this, the second rotation operator becomes 

U2 = exp {−i
𝛽2
′

2
(cos 𝜑2𝜎𝑥 +sin𝜑2𝜎𝑦)}    (121) 

in the rotated frame. 

The first term is a rotation on the great circle, so the dynamic phase there is zero: 

DP+ (1) = 0.  The dynamic phase for the second segment is: 

𝐷𝑃+(2) =  −∫ < 𝜓+(𝑡1)|𝑈2
𝑡∗𝐻2𝑈2|𝜓+(𝑡1) > 𝑑𝑡

𝑇

𝑡1

= −∫
Ω02
2
𝑐𝑜𝑠𝜑2 cos

𝛽1
2
𝑑𝑡

𝑇

𝑡1
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= −
𝛽2
′

2
cos

𝛽1

2
𝑐𝑜𝑠𝜑2      (122) 

using 𝛽2
′ = |Ω2|𝜏. 

Special case #2: non- great circle first segment & rotation axes in x-y plane  
For non-great circle paths, our initial and final endpoints of the first segment are 

the same (we can assume they lie in the x-z plane). But instead of following the great 

circle between them, the first segment is a rotation around an axis an angle φ1 from the x-

axis.  We use the same initial states as above (equations 113-114). 

For the special case of the first rotation axis in x-y plane, the Hamiltonian for the 

first segment is: 

𝐻1 =
Ω0

2
(𝑐𝑜𝑠𝜑1𝜎𝑥 + 𝑠𝑖𝑛𝜑1𝜎𝑦)     (123) 

This is a constant Hamiltonian that commutes with the U operators (which 

cancel), so that the dynamic phase of the first segment is: 

 

= −
Ω0
2
∫ (𝑠𝑖𝑛𝛾 < 0| +  𝑐𝑜𝑠𝛾 < 1|)(𝑐𝑜𝑠𝜑1𝜎𝑥 + 𝑠𝑖𝑛𝜑1𝜎𝑦)
𝑡1

0

(𝑠𝑖𝑛𝛾|0 > + 𝑐𝑜𝑠𝛾|1 >)𝑑𝑡 

𝐷𝑃+(1) = −
𝛽1
′

2
cos

𝛽1

2
cos𝜑1     (124) 

using sin( 2𝛾) = sin(
𝜋

2
−
𝛽1

2
) = cos

𝛽1

2
. 

For the second segment, we have 

𝐻2 =
Ω02

2
(𝑐𝑜𝑠𝜑2𝜎𝑥 + 𝑠𝑖𝑛𝜑2𝜎𝑦)     (125) 

The dynamic phase for the second segment is 

 


1

0 111
)0(|*|)0()1(

t t

dttUHUtDP 



59 

 

𝐷𝑃+(2) = −∫ < 𝜓+(𝑡1

𝑇

𝑡1

)|𝑈2
𝑡∗𝐻2𝑈2|𝜓+(𝑡1) > 𝑑𝑡 

= −
𝛽2
′

2
cos

𝛽1

2
cos𝜑2      (126) 

Our final equations for the dynamic phase in the special case of non-great circle paths 

(keeping rotation axes in x-y plane): 

𝐷𝑃+(1) = −
𝛽1′

2
𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠𝜑1     (127) 

𝐷𝑃+(2) = −
𝛽2
′

2
 cos 

𝛽1

2
𝑐𝑜𝑠𝜑2     (128) 

for the first and second segments, respectively. The total dynamic phase of the evolution 

path is: 

𝐷𝑃+ = 𝐷𝑃+(1) + 𝐷𝑃+(2) = −
1

2
𝑐𝑜𝑠

𝛽1

2
(𝛽1
′𝑐𝑜𝑠𝜑1 + 𝛽2

′  𝑐𝑜𝑠𝜑2)   (129) 

where 𝛽1is the angle of rotation for the geodesic between the two endpoints of each 

segment, and 𝛽1
′and 𝛽2

′   are the angles of rotation for the two segments (evolution paths). 

 

 

3.6 Total phase (first segment on a great circle)  
The total phase is a sum of the geometric and dynamic phases: 

TP+ = GP+ + DP+      (130) 

The exact form of this equation depends on the quadrant each control parameter is in. 

Since the geometric phase is equal to minus half the solid angle, its range is (-2π, 0]. We 

use a range of total phase from [-π, 0], so that the dynamic phase range is [-π, 2π), but the 

range of the dynamic phase for a particular value of total phase (TP) is [TP, TP + π). 
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CHAPTER 4- THREE-SEGMENT PATHS 

In this chapter, we consider quantum gate operations that can be considered 3 

rotations of the qubit state around 3 axes, creating a closed loop on the Bloch sphere. In 

the three segment case, the 3N-2 lab frame control parameters are: Ω0 ,φL ,Δ, Ω02 ,φL2 ,Δ2, 

and φ3. The geometric phase is the sum of the geometric phases of the wedge each 

segment makes with its associated geodesic, plus a geometric phase from the spherical 

triangle made by the three unique geodesics between the three endpoints (see Figure 10). 

The first endpoint (starting point of first segment) is constrained to be on the lab 

frame x-axis: 

 𝑛̂E1 = (1,0,0) (131) 

since in general we can always rotate the first endpoint there. The second and third 

endpoints can be anywhere (except we exclude points 1, 2, and 3 coinciding, i.e. all β  

and β’ angles are prevented from being 0); the fourth endpoint (after the third rotation) 

must close the loop by coinciding with the first endpoint (starting point). With three 

segments, there is the possibility that segments cross each other, and the geometric phase 

can be zero if equal areas are traversed in opposite directions (resulting in dynamic gates; 

see Figure 47).  
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4.1 First segment 
The Rabi vector amplitude for the first segment is equal to the angle amount of the first 

rotation:  

 |Ω1| =  √(Ω0)2 + Δ2 = β1’ (132) 

where we have used β1’=| Ω1| τ, setting τ =1. The ranges are: 0 < β1’ < 2π;  and 0 ≤  φ𝐿 < 

2π. 

The Rabi vector is 

Ω̅1 = (−Ω0 cos𝜑𝐿 , −Ω0 sin𝜑𝐿 , Δ)   (133) 

The first axis of rotation is  

 𝑛̂1 =
1

|Ω|
(−Ω0cos φ𝐿 , −Ω0sin φ𝐿 , Δ)  (134) 

This axis becomes 𝑛̂1’ = (cos φ1, sin φ1, 0) in the primed (rotated) frame.  

The first segment U matrix is: 

𝑈1 = exp {−𝑖 
𝛽1
′

2
𝜎⃑ ∙ 𝑛̂}    (135) 

 = cos
𝛽1
′

2
 𝐼 −  𝑖

1

𝛽1
′ sin

𝛽1
′

2
{−Ω0 cos𝜑𝐿 𝜎𝑥− Ω0 sin𝜑𝐿 𝜎𝑦 + ∆𝜎𝑧}  (136) 

= (
cos

𝛽1
′

2
− 𝑖

∆

𝛽1
′ sin

𝛽1
′

2
𝑖
Ω0

𝛽1
′ sin

𝛽1
′

2
𝑒−𝑖𝜑𝐿

𝑖
Ω0

𝛽1
′ sin

𝛽1
′

2
𝑒𝑖𝜑𝐿 cos

𝛽1
′

2
+ 𝑖

∆

𝛽1
′ sin

𝛽1
′

2

)  (137) 

We can divide β1’ into smaller segments and put noise on the lab frame parameters to 

calculate the fidelity from the U matrix above. We need to now calculate β1 and φ1 in 

order to calculate the geometric phase due to the first segment’s wedge. 

The direction of the second endpoint of the first segment, nE2 is: 
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 𝑛̂E2 = 𝑅𝑛1(𝛽1
′) 𝑛̂E1= 𝑅𝑛1(𝛽1

′) (1,0,0) (138) 

where 

𝑅𝑛1(𝛽1
′) = 

[

cos 𝛽1
′ + 𝑛1𝑥

2 (1 − 𝑐𝑜𝑠𝛽1
′) 𝑛1𝑥𝑛1𝑦(1 − 𝑐𝑜𝑠𝛽1

′) − 𝑛1𝑧𝑠𝑖𝑛(𝛽1
′) 𝑛1𝑥𝑛1𝑧(1 − 𝑐𝑜𝑠𝛽1

′) + 𝑛1𝑦𝑠𝑖𝑛(𝛽1
′)

𝑛1𝑥𝑛1𝑦(1 − 𝑐𝑜𝑠𝛽1
′) + 𝑛1𝑧𝑠𝑖𝑛(𝛽1

′) cos𝛽1
′ + 𝑛1𝑦

2 (1 − 𝑐𝑜𝑠𝛽1
′) 𝑛1𝑦𝑛1𝑧(1 − 𝑐𝑜𝑠𝛽1

′)−𝑛1𝑥𝑠𝑖𝑛(𝛽1
′)

𝑛1𝑥𝑛1𝑧(1 − 𝑐𝑜𝑠𝛽1
′) − 𝑛1𝑦𝑠𝑖𝑛(𝛽1

′) 𝑛1𝑧𝑛1𝑦(1 − 𝑐𝑜𝑠𝛽1
′) + 𝑛1𝑥𝑠𝑖𝑛(𝛽1

′) cos𝛽1
′ + 𝑛1𝑧

2 (1 − 𝑐𝑜𝑠𝛽1
′)

] 

(139) 

as given by the Rodrigues rotation formula. The components of the second endpoint are 

found from the above. 

 Two endpoints define a unique geodesic (great circle segment) between them, 

which subtend an angle β1 given by: 

cos β1 = 𝑛̂𝐸1 ∙ 𝑛̂𝐸2  = 𝑛𝐸2𝑥 = cos 𝛽
1
′ + (

Ω0cos φ𝐿

𝛽1
′ )2 (1 − 𝑐𝑜𝑠𝛽

1
′ ) (140) 

so that 

β1 = 𝑐𝑜𝑠
−1 [cos 𝛽1

′ + (
Ω0cos φ𝐿
𝛽1
′ )

2

 (1 − 𝑐𝑜𝑠𝛽1
′)] 

= 𝑐𝑜𝑠−1𝑛𝐸2𝑥       (141) 

The above angle returns a value between 0 and π, taking the geodesic between the first 

two endpoints. A rotation of half of this angle from 𝑛̂E1 along the great circle towards 𝑛̂E2 

is the direction of the x’-axis, which in the lab frame coordinates is: 

 𝑥̂′ = 𝑅𝑛𝑔𝑐 (
𝛽1

2
) 𝑛̂𝐸1  (142) 

where 𝑛̂gc = 
𝑛̂𝐸1×𝑛̂𝐸2

𝑠𝑖𝑛𝛽1
= 𝑦̂′ =

1

𝑠𝑖𝑛𝛽1
(0,− n𝐸2𝑧 , n𝐸2𝑦) is the normal to the great circle 

formed by the first two endpoints. The resulting equations for x’ blow up in the antipodal 

case. 



63 

 

Antipodal case 
For the antipodal case, the two endpoints of the first segment are opposite: 

𝑛̂E2 = (-1,0,0)  (143) 

in lab frame (xyz) coordinates. The rotation angles are: 

β1 = β1
′ = 𝜋 (144) 

(although there are many non-antipodal cases where β1
′ = 𝜋, if β1 = 𝜋, then the 

endpoints are necessarily antipodal). The geodesic is chosen to coincide with the 

evolution path, so that: 

 𝑦̂′ = 𝑛̂1 (145) 

The x’-axis will be in the y-z plane, pointing halfway along the geodesic; the z’-axis will 

coincide with the lab frame’s x-axis. From x = y x z: 

𝑥̂′ = 𝑛̂1 × 𝑛̂𝐸1=  (0, n1𝑧, −n1𝑦)  (146) 

The angle between x’ and n1 is given by cos𝜑1 = 𝑥̂′ ∙ 𝑛̂1= 0, or: 

𝜑1 = 
𝜋

2
 (147) 

for the antipodal case. 

General case (non-antipodal) 
Now to find the rotated frame control parameter φ1, we find the angle between x’ and 

𝑛̂1 =
1

𝛽1
′ (−Ω0cos φ𝐿 , −Ω0sin φ𝐿 , Δ) : 

 cos𝜑1 = 𝑥
′
𝑥𝑛1𝑥 + 𝑥

′
𝑦𝑛1𝑦 + 𝑥

′
𝑧𝑛1𝑧 (148) 

or 

cos 𝜑1 =
−Ω0cos φ𝐿

𝛽1
′ {𝑐𝑜𝑠

𝛽1

2
  + [

(Ω0)
2sin2 φ𝐿+Δ

2

(𝛽1
′ )2

]
𝑠𝑖𝑛

𝛽1
2

𝑠𝑖𝑛𝛽1
(1 − 𝑐𝑜𝑠𝛽

1
′ )}      (149) 
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The above equation blows up if 𝛽1 =  𝜋 (antipodal case), besides for the 𝛽1
′ =  0 (no first 

segment rotation) that should also be avoided. To find sin 𝜑1, we solve for the z’-axis: 

𝑧̂′ = 𝑥̂′ × 𝑦̂′ = (𝑐𝑜𝑠
𝛽1

2
 , n𝐸2𝑦

𝑠𝑖𝑛
𝛽1
2

𝑠𝑖𝑛𝛽1
, n𝐸2𝑧

𝑠𝑖𝑛
𝛽1
2

𝑠𝑖𝑛𝛽1
 ) ×  

1

𝑠𝑖𝑛𝛽1
(0, − n𝐸2𝑧 , n𝐸2𝑦)    (150) 

𝑧̂′ sin𝜑1  

= (n𝐸2𝑦
𝑠𝑖𝑛

𝛽1
2

𝑠𝑖𝑛𝛽1
𝑛1𝑧 − n𝐸2𝑧

𝑠𝑖𝑛
𝛽1
2

𝑠𝑖𝑛𝛽1
𝑛1𝑦, 𝑛1𝑥n𝐸2𝑧

𝑠𝑖𝑛
𝛽1
2

𝑠𝑖𝑛𝛽1
− 𝑐𝑜𝑠

𝛽1

2
𝑛1𝑧, 𝑐𝑜𝑠

𝛽1

2
𝑛1𝑦 − 𝑛1𝑥n𝐸2𝑦

𝑠𝑖𝑛
𝛽1
2

𝑠𝑖𝑛𝛽1
)   

(151) 

From these components we have 3 equations to solve for sin 𝜑1. From the first equation 

for sin𝜑1  (which works in all but the antipodal case) and the equation for cos φ1, we can 

find the value of φ1: let cos φ1 = χ; if sin φ1 ≥ 0, then φ1 = cos -1 χ; else φ1 = 2π - cos -1 χ. 

This keeps φ1 in the full range [0,2π). This gives all the quantities needed to calculate the 

geometric phase of the first segment wedge. 

4.2 Second segment 
The basic form of the equations for the second segment match the first segment 

equations. The second segment’s U matrix is: 

 𝑈2 = (
cos

𝛽2
′

2
− 𝑖

∆2

𝛽2
′ sin

𝛽2
′

2
𝑖
Ω0

𝛽2
′ sin

𝛽2
′

2
𝑒−𝑖𝜑𝐿2

𝑖
Ω02

𝛽2
′ sin

𝛽2
′

2
𝑒𝑖𝜑𝐿2 cos

𝛽2
′

2
+ 𝑖

∆2

𝛽2
′ sin

𝛽2
′

2

)  (152) 

The second segment Rabi vector amplitude is equal to the angle amount of the 

second rotation:  

 |Ω2| =  √(Ω02)2 + Δ2
2 

= β2’ (153) 

where we have used β2’=| Ω2| τ, setting τ =1. The second axis of rotation is 
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 𝑛̂2 =
1

|Ω2|
(−Ω02cos φ𝐿2, −Ω02sin φ𝐿2, Δ2)  (154) 

This axis becomes 𝑛̂2’ = (cos φ2, sin φ2, 0) in the primed (rotated) frame.  

The direction of the third endpoint is: 

 𝑛̂E3 = 𝑅𝑛2(𝛽2
′) 𝑛̂E2 (155) 

 

Antipodal case 
For the antipodal case, the two endpoints of the second segment are opposite: 

𝑛̂E3 = -𝑛̂E2  (156) 

in lab frame (xyz) coordinates. The rotation angles are: 

β2 = β2
′ = 𝜋 (157) 

(although there are many non-antipodal cases where β1
′ = 𝜋, if β2 = 𝜋, then the 

endpoints are necessarily antipodal). The geodesic is chosen to coincide with the 

evolution path, so that: 

 𝑦̂′′ = 𝑛̂2     (158) 

The x’’-axis will be in the plane, pointing halfway along the geodesic; the z’’-axis will 

coincide with the lab frame’s nE2 axis. From 𝑥̂ = 𝑦̂ × 𝑧̂ : 

𝑥̂′′ = 𝑛̂2 × 𝑛̂𝐸2 (159) 

The angle between x’’ and n2 is given by cos 𝜑2 = 𝑥̂′′ ∙ 𝑛̂2= 0, or: 

𝜑2 = 
𝜋

2
 (160) 

for the antipodal case. 
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General case (non-antipodal) 
 The geodesic (great circle segment) between the second segment endpoints 

subtend an angle β2 given by: 

β2  = cos
−1(𝑛̂𝐸2 ∙ 𝑛̂𝐸3  )    (161) 

A rotation of half of this angle from 𝑛̂E2 along the great circle towards 𝑛̂E3 is the direction 

of the new x’’-axis, which in the lab frame coordinates is: 

 𝑥̂′′ = 𝑅𝑛𝑔𝑐 (
𝛽2

2
) 𝑛̂𝐸2  (162) 

where 𝑛̂gc = 
𝑛̂𝐸2×𝑛̂𝐸3

𝑠𝑖𝑛𝛽2
= 𝑦̂′′ is the normal to the great circle formed by the second and third 

endpoints. 

 𝑛̂𝑔𝑐 =
1

𝑠𝑖𝑛𝛽2
(n𝐸2𝑦n𝐸3𝑧 − n𝐸2𝑧n𝐸3𝑦, n𝐸2𝑧n𝐸3𝑥 − n𝐸2𝑥n𝐸3𝑧 , n𝐸2𝑥n𝐸3𝑦 − n𝐸2𝑦n𝐸3𝑥)   (163) 

From x-components: 

sin𝜑2 =
(𝑥̂′′×𝑛̂2)𝑥

𝑧̂′′𝑥
 (164) 

This is singular only if z’’ is in the y-z plane of the lab frame, which occurs if x’’ is on 

the negative x-axis; in this case, we can use y components or z components (atleast one 

component will be nonzero). Let cos φ2 = χ; if sin φ2 >= 0 , then φ2 = cos -1 χ; else φ2 = 2π 

- cos -1 χ. This keeps φ2 in the full range [0,2π).  

4.3 Third (closing) segment 
The only lab frame control parameter for the third segment is φ3, the angle of the 

third rotation axis n3 from the x’-axis, since this is all that is needed to close the loop. We 

want to calculate the associated lab frame parameters Ω03 ,φL3 , and Δ3 (and thereby β3′ ) 
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in order to use the U matrix; we also need to find β3 in order to calculate the geometric 

phase contribution GP3 from this segment’s wedge.  

From previous calculations, we know nE3 and nE1. We can calculate β3 from 

cos β3 = 𝑛̂𝐸1 ∙ 𝑛̂𝐸3  = 𝑛𝐸3𝑥  

β3 = cos
−1 𝑛𝐸3𝑥      (165) 

A rotation of β3/2  from 𝑛̂E3 along the great circle towards 𝑛̂E1 is the direction of the new 

x’’’-axis, which in the lab frame coordinates is: 

 𝑥̂′′′ = 𝑅𝑛𝑔𝑐 (
𝛽3

2
) 𝑛̂𝐸3  (166) 

where 𝑛̂gc = 
𝑛̂𝐸3×𝑛̂𝐸1

𝑠𝑖𝑛𝛽3
= 𝑦̂′′′ = 𝑛̂𝑔𝑐 =

1

𝑠𝑖𝑛𝛽3
(0, n𝐸3𝑧 , −n𝐸3𝑦). 

 

3rd segment antipodal case 
 

In this case 𝛽3 = 𝛽3
′ = 𝜋, and sin 𝛽3 = 0, so the above equation for y’’’ is singular. 

Unlike the other two segments, where we choose the geodesic to be along the evolution 

path in the antipodal case, here we are given φ3, the angle between  𝑛̂3 and x’’’ (both in 

the y-z plane, but there is ambiguity in their directions within this plane).  We choose y’’’ 

to point along the z-axis, so that x’’’ = (0,-1,0). 

The third axis of rotation is then found from the following rotation: 

𝑛̂3 = 𝑅𝑛𝐸3(𝜑3)𝑥̂′′′ (167) 
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General (non-antipodal) case 
 

To find the lab frame parameters, we need to first find the components of 

𝑛̂3 = 𝑅𝑧′′′(𝜑3)𝑥̂′′′ (168) 

Where the z’’’-axis is found from 𝑧̂′′′ = 𝑥̂′′′ × 𝑦̂′′′ : 

𝑧̂′′′ = (−x′′′𝑦
n𝐸3𝑦

𝑠𝑖𝑛𝛽3
− x′′′𝑧

n𝐸3𝑧

𝑠𝑖𝑛𝛽3
) 𝑖̂ +  x′′′𝑥

n𝐸3𝑦

𝑠𝑖𝑛𝛽3
𝑗̂ + x′′′𝑥

n𝐸3𝑧

𝑠𝑖𝑛𝛽3
𝑘̂      (169) 

The components of the third rotation axis are: 

n3𝑥 =cos𝜑3 cos
𝛽3
2
(𝑛𝐸3𝑥 + 2 s𝑖𝑛2

𝛽3
2
)                                                    (170) 

n3𝑦 = −[1+ 𝑛𝐸3𝑥(1− 𝑐𝑜𝑠𝜑3)]
n𝐸3𝑦𝑛𝐸3𝑥

2𝑐𝑜𝑠 (
𝛽3
2
)

+ 

+ [cos𝜑3+ 𝑛𝐸3𝑥(1 − 𝑐𝑜𝑠𝜑3)]n𝐸3𝑦cos
𝛽3
2
+ 𝑠𝑖𝑛(𝜑3)

n𝐸3𝑧
𝑠𝑖𝑛𝛽3

         (171) 

n3𝑧 =−[1 + 𝑛𝐸3𝑥(1 − 𝑐𝑜𝑠𝜑3)]
 n𝐸3𝑧𝑛𝐸3𝑥

2𝑐𝑜𝑠 (
𝛽3
2
)

+ 

+[cos𝜑3 + 𝑛𝐸3𝑥(1 − 𝑐𝑜𝑠𝜑3)]n𝐸3𝑧 cos
𝛽3
2
− 𝑠𝑖𝑛(𝜑3)

 n𝐸3𝑦
𝑠𝑖𝑛𝛽3

          (172) 

3rd segment angle of rotation 
  

The rotation angle of the third segment 𝛽3′ is found from the geometry of the third 

segment wedge: 

𝛽3
′ = 2 |tan−1 (

tan(𝛽3/2)

sin𝜑3
)|      , 0 ≤ 𝜑3 ≤ 𝜋                      (173) 

𝛽3
′ = 2 [𝜋 − |tan−1 (

tan(𝛽3/2)

sin𝜑3
)|]      , 𝜋 ≤ 𝜑3 < 2𝜋          (174) 

which matches the equations for 𝛽1′ found from the two-segments work. As a check, the 

following rotation should result in the x-axis: 
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𝑅𝑛3(𝛽3′)n𝐸3 = 𝑥̂ = (1,0,0)  (175) 

Where the rotation matrix is: 

𝑅𝑛3(𝛽3′) = 

[

cos𝛽3
′ + 𝑛3𝑥

2 (1 − 𝑐𝑜𝑠𝛽3
′) 𝑛3𝑥𝑛3𝑦(1 − 𝑐𝑜𝑠𝛽3

′) − 𝑛3𝑧𝑠𝑖𝑛(𝛽3
′) 𝑛3𝑥𝑛3𝑧(1 − 𝑐𝑜𝑠𝛽3

′) + 𝑛3𝑦𝑠𝑖𝑛(𝛽3
′)

𝑛3𝑥𝑛3𝑦(1 − 𝑐𝑜𝑠𝛽3
′) + 𝑛3𝑧𝑠𝑖𝑛(𝛽3

′) cos 𝛽3
′ + 𝑛3𝑦

2 (1 − 𝑐𝑜𝑠𝛽3
′) 𝑛3𝑦𝑛3𝑧(1 − 𝑐𝑜𝑠𝛽3

′)−𝑛3𝑥𝑠𝑖𝑛(𝛽3
′)

𝑛3𝑥𝑛3𝑧(1 − 𝑐𝑜𝑠𝛽3
′) − 𝑛3𝑦𝑠𝑖𝑛(𝛽3

′) 𝑛3𝑧𝑛3𝑦(1 − 𝑐𝑜𝑠𝛽3
′) + 𝑛3𝑥𝑠𝑖𝑛(𝛽3

′) cos 𝛽3
′ + 𝑛3𝑧

2 (1 − 𝑐𝑜𝑠𝛽3
′)

]   (176) 

 

Third segment lab frame control parameters 
The third segment Rabi vector amplitude is equal to the angle amount of the third 

rotation:  

 |Ω3| =  √(Ω03)2 + Δ3
2 

= β3’ (177) 

where we have used β3’=| Ω3| τ, setting τ =1. The third axis of rotation is 

 𝑛̂3 =
1

|Ω3|
(−Ω03cos φ𝐿3, −Ω03sin φ𝐿3, Δ3)  (178) 

The lab frame parameters Ω03 ,φL3 , and Δ3  are: 

 Ω03 = 𝛽3′√n3𝑥2 + n3𝑦2 (179) 

∆3= 𝛽3′n3𝑧 (180) 

cosφ𝐿3 = −
𝛽3′n3𝑥

Ω03
 (181) 

sinφ𝐿3 = −
𝛽3′n3𝑦

Ω03
 (182) 

If sinφ𝐿3 ≥ 0,  

φ𝐿3 = 𝑐𝑜𝑠
−1 (−

𝛽3′n3𝑥

Ω03
) (183) 

else 



70 

 

φ𝐿3 = 2 𝜋 −  𝑐𝑜𝑠
−1 (−

𝛽3′n3𝑥

Ω03
) (184) 

 The third segment’s U matrix is: 

 𝑈3 = (
cos

𝛽3
′

2
− 𝑖

∆3

𝛽3
′ sin

𝛽3
′

2
𝑖
Ω03

𝛽3
′ sin

𝛽3
′

2
𝑒−𝑖𝜑𝐿3

𝑖
Ω03

𝛽3
′ sin

𝛽3
′

2
𝑒𝑖𝜑𝐿3 cos

𝛽3
′

2
+ 𝑖

∆3

𝛽3
′ sin

𝛽3
′

2

)  (185) 

 

4.4 Geometric phase of segment wedges 
The segment wedges are loops made by an evolution segment in the direction of 

evolution, and the unique associated geodesic along the direction opposite to evolution 

direction. For the first segment wedge, the geometric phase GP1 is a function of β1, β1’, 

and φ1. Each wedge’s geometric phase follows from the geometric phase equations for 

the first segment of the two segments work, where the first segment is on the great circle, 

with a difference caused by going in the opposite direction of evolution. 

 The equations for the geometric phase of each wedge depends on the quadrant of 

the angle φ1 between the geodesic and the rotation axis: 

For  0 ≤  𝜑1 ≤
𝜋

2
: 

𝐺𝑃1 = −𝑐𝑜𝑠
−1 (

−𝑠𝑖𝑛 𝜑1

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑1

)+ (
𝛽1′

2
− 𝜋) 𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑1  (186) 

For  
𝜋

2
≤  𝜑1 ≤ 𝜋: 

𝐺𝑃1 = −2𝜋 + 𝑐𝑜𝑠
−1 (

−𝑠𝑖𝑛 𝜑1

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑1

)+ (
𝛽1′

2
− 𝜋) 𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑1    (187) 
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For  ≤  𝜑1 ≤
3𝜋

2
: 

𝐺𝑃1 = −𝜋 − 𝑐𝑜𝑠
−1(

𝑠𝑖𝑛 𝜑1

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑1

)+ (
𝛽1′

2
− 𝜋) 𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑1  (188) 

For 
3𝜋

2
≤  𝜑1 ≤ 2𝜋: 

𝐺𝑃1 = −𝜋 + 𝑐𝑜𝑠
−1(

𝑠𝑖𝑛 𝜑1

√1−𝑐𝑜𝑠2
𝛽1
2
𝑐𝑜𝑠2𝜑1

)+ (
𝛽1′

2
− 𝜋) 𝑐𝑜𝑠

𝛽1

2
𝑐𝑜𝑠 𝜑1  (189) 

For the second (third) segment wedge, the equations that follow apply for GP2 (and GP3) 

with the “1” subscripts replaced with “2” (or “3”). 

 

4.5 Geometric phase of the spherical triangle  
For the geometric phase contribution from the spherical triangle, we need the 

tangent vector to each of the three great circles, taken in the direction of evolution: τ1,τ2, 

and τ3; the spherical triangle angles A,B,C (at endpoints 1,2,3 respectively) are then:  

A = π - cos-1(τ3∙τ1); B = π - cos-1(τ1∙τ2); C = π -  cos-1(τ2∙τ3)      (190) 

since the tangent vectors to the great circles are unit vectors; τ3∙τ1 is evaluated at the first 

endpoint; τ1∙τ2 at the second endpoint; and τ2∙τ3 at the third endpoint. If the tangent of 

the segment coming into the endpoint (following evolution direction) is reversed so that it 

opposes the evolution direction, this equation becomes: 

A = cos-1(τ3∙τ1); B =  cos-1(τ1∙τ2); C =  cos-1(τ2∙τ3)   (191) 

The solid angle of the spherical triangle is then 

ΩΔ = A + B + C – π     (192) 
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And the geometric phase of the spherical triangle is: 

GPΔ = (±) *1/2 (A + B + C – π)    (193) 

where the (-) sign is for outward pointing vectors given by the right hand rule along the 

evolution of the three segments. The sign of the GP(triangle) is negative if   

nE3 ∙ (nE1 x nE2)  ≥  0 ,     (194) 

unless there are antipodal segment endpoints. 

In the case of an antipodal first segment (so that the second endpoint is at (-1,0,0), 

opposite to the first endpoint), the sign of the GP depends on the first rotation axis y’, and 

the location of the third endpoint. The GP sign is negative if: 

nE3 ∙ y’ ≥ 0  (𝛽1 =  𝜋)     (195) 

For an antipodal second segment (second and third endpoints opposite to each other), the 

GP sign is negative if: 

nE1 ∙ y’’ ≥  0  (𝛽2 =  𝜋)     (196) 

i.e., the x component of y’’ must be nonnegative: 

(y’’)x  ≥  0  (𝛽2 =  𝜋)      (197) 

For an antipodal third segment (so that third endpoint is at (-1,0,0)), the sign of the 

geometric phase depends on the third rotation axis, y’’’, and the location of the 2nd 

endpoint. The sign of the GP(triangle) is negative if 

 nE2 ∙ y’’’ ≥  0  (𝛽3 =  𝜋)     (198) 

The coordinates of a great circle in the x-z plane are: 

𝑠1 = (cos𝜑
′ , 0, sin𝜑′)     (199) 
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where 𝜑′ is measured from the x-axis in the z-axis direction. After rotating the great 

circle clockwise around the x-axis by angle γ until it coincides with the first segment, the 

great circle coordinates become: 

𝑠1 = (cos𝜑
′ , sin 𝜑′ sin 𝛾 , sin𝜑′ cos 𝛾)    (200) 

The tangent to the great circle is: 

𝜏1 = 
𝑑𝑠1

𝑑𝜑′
= (−sin𝜑′ , cos 𝜑′ sin 𝛾 , cos 𝜑′ cos 𝛾)   (201) 

If the first segment tangent is evaluated at the first endpoint 𝑛̂E1 = (1,0,0), then 𝜑′ = 0.   

𝜏1(𝑛𝐸1) = (0, sin 𝛾 , cos 𝛾)      (202) 

If we evaluate the great circle point’s coordinates at the second endpoint, then 𝜑′ = 𝛽1 

and: 

𝑠1 = (cos𝛽1 , sin 𝛽1 sin 𝛾 , sin 𝛽1 cos 𝛾) = 𝑛𝐸2  (203) 

so that  𝑛𝐸2𝑥 = cos 𝛽1; 𝑛𝐸2𝑦 = sin𝛽1 sin 𝛾 and 𝑛𝐸2𝑧 = sin𝛽1 cos 𝛾. The tangent to the 

first segment at the second endpoint becomes 

𝜏1(𝑛𝐸2) =  (− sin 𝛽1 ,
𝑛𝐸2𝑥 𝑛𝐸2𝑦 

sin𝛽1
,
𝑛𝐸2𝑥 𝑛𝐸2𝑧 

sin𝛽1
)    (204) 

pointing in the direction of evolution. At the first endpoint, the first segment tangent 

becomes: 

𝜏1(𝑛𝐸1) = (0,
𝑛𝐸2𝑦 

sin𝛽1
,
𝑛𝐸2𝑧 

sin𝛽1
)      (205) 

also pointing in the direction of evolution. 

Similarly, if we take another great circle in the x-z plane, and rotate it by a 

different angle γ3 clockwise around the x-axis until it coincides with the third segment, 

we obtain the third segment coordinates:  
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𝑠3 = (cos𝜑
′′′ , sin𝜑′′′ sin 𝛾3 , sin𝜑

′′′ cos 𝛾3)   (206) 

The tangent of the third segment is then: 

𝜏3 = 
𝑑𝑠3

𝑑𝜑′′′
= (−sin𝜑′′′ , cos𝜑′′′ sin 𝛾3 , cos 𝜑

′′′ cos 𝛾3)  (207) 

Evaluated at the third endpoint, the coordinates are: 

𝑠3 = (cos𝛽3 , sin 𝛽3 sin 𝛾3 , sin 𝛽3 cos 𝛾3) = 𝑛𝐸3   (208) 

and the third segment tangent at the third endpoint is: 

𝜏3(𝑛𝐸3) =  (− sin 𝛽3 ,
𝑛𝐸3𝑥 𝑛𝐸3𝑦 

sin𝛽3
,
𝑛𝐸3𝑥 𝑛𝐸3𝑧 

sin𝛽3
)    (209) 

This tangent points opposite to the evolution direction.  

At the first endpoint, 𝛽3 = 0, so that 

𝑠3 = (1,0,0) = 𝑛𝐸1      (210) 

The third segment tangent at the first endpoint is: 

𝜏3(𝑛𝐸1) =  (0, sin 𝛾3 , cos 𝛾3) = (0,
𝑛𝐸3𝑦 

sin𝛽3
,
𝑛𝐸3𝑧 

sin𝛽3
)   (211) 

which also points opposite to the evolution direction. If we now rotate the second 

endpoint onto the x-axis: 

𝑅−𝑦′(𝛽1)𝑛𝐸2 = (1,0,0)      (212) 

then we can use the same form of equations above to find the tangents at the second 

endpoint, by first rotating the first and third endpoint by the matrix 𝑅−𝑦′(𝛽1): 

𝑅−𝑦′(𝛽1)𝑛𝐸1 = (𝑛𝐸1𝑥 
(𝑟2), 𝑛𝐸1𝑦 

(𝑟2), 𝑛𝐸1𝑧 
(𝑟2))   (213) 

𝑅−𝑦′(𝛽1)𝑛𝐸3 = (𝑛𝐸3𝑥 
(𝑟2), 𝑛𝐸3𝑦 

(𝑟2), 𝑛𝐸3𝑧 
(𝑟2))   (214) 
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where the (r2) superscript signifies we have rotated the endpoint coordinates into the 

frame where the second endpoint is on the x-axis. We then have the following tangent 

equations: 

𝜏2(𝑛𝐸2, 𝑟2 𝑐𝑜𝑜𝑟𝑑𝑠) = (0,
𝑛𝐸3𝑦 

(𝑟2)

sin𝛽2
,
𝑛𝐸3𝑧 

(𝑟2)

sin𝛽2
)    (215) 

which points in the evolution direction, and 

𝜏1(𝑛𝐸2, 𝑟2 𝑐𝑜𝑜𝑟𝑑𝑠) =  (0,
𝑛𝐸1𝑦

(𝑟2)

sin𝛽1
,
𝑛𝐸1𝑧 

(𝑟2)

sin𝛽1
)    (216) 

which points opposite to evolution direction. 

Similarly, if we rotate the third endpoint onto the x-axis: 

𝑅𝑦′′′(𝛽3)𝑛𝐸3 = (1,0,0)      (217) 

And rotate the other endpoint by the same matrix: 

𝑅𝑦′′′(𝛽3)𝑛𝐸1 = (𝑛𝐸1𝑥 
(𝑟3), 𝑛𝐸1𝑦 

(𝑟3), 𝑛𝐸1𝑧 
(𝑟3))   (218) 

𝑅𝑦′′′(𝛽3)𝑛𝐸2 = (𝑛𝐸2𝑥 
(𝑟3), 𝑛𝐸2𝑦 

(𝑟3), 𝑛𝐸2𝑧 
(𝑟3))   (219) 

Where the (r3) superscript signifies we have rotated the endpoint coordinates into the 

frame where the third endpoint is on the x-axis. We then have the following tangent 

equations: 

𝜏3(𝑛𝐸3, 𝑟3 𝑐𝑜𝑜𝑟𝑑𝑠) = (0,
𝑛𝐸1𝑦 

(𝑟3)

sin𝛽3
,
𝑛𝐸1𝑧 

(𝑟3)

sin𝛽3
)    (220) 

in the evolution direction. 

𝜏2(𝑛𝐸3, 𝑟3 𝑐𝑜𝑜𝑟𝑑𝑠) =  (0,
𝑛𝐸2𝑦

(𝑟3)

sin𝛽2
,
𝑛𝐸2𝑧 

(𝑟3)

sin𝛽2
)    (221) 

opposite evolution direction. 
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For the special case of antipodal endpoints for a segment (any of the β’s equal to 

π), we choose the rule that the associated geodesic should coincide with the evolution 

path, so that GP = 0 for that segment’s wedge. The segment’s geodesic in this case is 

determined solely by the axis y’ (or y’’, y’’’) the evolution’s path rotates about. The 

tangent vectors of an antipodal segment are the same at both endpoints (flipping the 

direction of the second tangent); these tangent vectors may need to first be rotated into 

the same coordinates as the other tangent vector at the endpoint, in order to find the angle 

there. 

For example, in the case of antipodal endpoints for the first segment, β1 = β1’= π, 

and the tangent vector for the first segment at the first endpoint is the cross product of the 

rotation axis for the first segment (y’) and the coordinates of the first endpoint (nE1): 

𝜏1(𝑛𝐸1, 𝛽1 =  𝜋) =  𝑦′ × 𝑛𝐸1    (222) 

 in the direction of evolution. The tangent to the second segment at the second endpoint is 

the same (with evolution opposite to evolution), but the coordinates must be rotated into 

the r2 coordinates before taking the dot product with 𝜏2(𝑛𝐸2, 𝑟2 𝑐𝑜𝑜𝑟𝑑𝑠), in order to 

find angle B. 

For an antipodal third segment, the tangent is:  

𝜏3(𝑛𝐸1, 𝛽3 =  𝜋) =  𝑦′′′ × 𝑛𝐸3   (223) 

opposite to evolution direction. The third segment tangent at the third endpoint, 

𝜏3(𝑛𝐸3, 𝛽3 =  𝜋), is the same, but rotated around y’’’ by 𝛽3 to get into r3 coordinates; 

this tangent vector is in the evolution direction. 

For an antipodal second segment, the tangent is: 
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𝜏2(𝑛𝐸2, 𝛽2 =  𝜋, 𝑟2 𝑐𝑜𝑜𝑟𝑑𝑠) = 𝑅( 𝑦
′′ × 𝑛𝐸2)   (224) 

where R is a rotation around y’ by 𝛽1 to get into r2 coordinates; this vector is in direction 

of evolution. At the third endpoint, 𝜏2(𝑛𝐸3, 𝛽2 =  𝜋) must first be rotated back to lab 

frame coordinates, and then to the r3 coordinates; this tangent vector is opposite to the 

evolution direction. 

The full geometric phase of the three segments can now be calculated as: 

GP = GP1 + GP2 + GP3 + GPΔ   (225) 

If this value of GP is positive, we then use  

GP = GP – 2 π      (226) 

to keep the geometric phase in the range (-2π, 0]. 

4.6 Dynamic phase of the three segments  
The dynamic phase is a sum of these three-segment dynamic phases; the first two 

segments’ dynamic phases are calculated as before. For the third segment, we use the 

known coordinates of the third endpoint: 

𝑛𝐸3 = (𝑛𝐸3𝑥, 𝑛𝐸3𝑦, 𝑛𝐸3𝑧) = (cos 𝛼 sin 𝜃, sin 𝛼 sin 𝜃 , cos 𝜃) (227) 

Where the polar and azimuthal angles 𝜃 and 𝛼 define the general qubit state: 

|𝜓+(t2) > = sin
𝜃

2
|0 > +𝑒−𝑖𝛼 cos

𝜃

2
|1 >  

= 𝐶03|0 > +𝐶13|1 >     (228) 

To find this state in terms of the endpoint, we calculate: 

𝜃 = cos−1𝑛𝐸3𝑧     (229) 
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𝑒−𝑖𝛼 =
𝑛𝐸3𝑥

sin𝜃 
− 𝑖

𝑛𝐸3𝑦

sin𝜃 
     (230) 

setting 𝛼 = 0  if 𝜃 = 0 or π.  The third segment dynamic phase is:  

𝐷𝑃+(3) = −∫ < 𝜓+(𝑡2)|𝐻3|𝜓+(𝑡2) > 𝑑𝑡
𝑇

𝑡2
   (231) 

=
1

2
[Ω03{𝐶03

∗ 𝐶13 e
𝑖𝜑𝐿3 +𝐶13

∗ 𝐶03 e
−𝑖𝜑𝐿3} + Δ3(𝐶03

∗ 𝐶03 − 𝐶13
∗ 𝐶13)]  (232) 

= Ω03𝐶03{𝑅𝑒 (𝐶13) cos 𝜑𝐿3 − 𝐼𝑚(𝐶13)sin𝜑𝐿3} +
Δ3

2
{(𝐶03)

2 − 𝐶13
∗ 𝐶13} (233) 

on setting the time interval to 1. The total dynamic phase is: 𝐷𝑃+ = 𝐷𝑃+(1) + 𝐷𝑃+(2) +

𝐷𝑃+(3). 
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CHAPTER 5- TWO-SEGMENT ROTATION RESULTS 

This chapter contains the results of our research into the design of rotation paths 

for quantum gates, using two-segment rotations. We have calculated the dynamic, 

geometric and total phases for all possible two-segment rotations on the Bloch sphere. 

Purely geometric rotations can be built from rotations where β1’ (the angle 

amount of the first segment) is set to π (this forces the first segment unto a great circle), 

and the control variable φ2 is allowed to vary. In this case, β2’ (the angle amount of the 

second segment) is constrained to also be π; since both segments are on great circles, the 

dynamic phase vanishes. 

To build purely dynamic gates using two segments, we must use the paths where 

the both rotation axes are along the first endpoint (along the positive or negative x-axis). 

In this case, the two endpoints coincide and there is no loop.  The only other place where 

the geometric phase is zero for two-segment paths is along a retraced path, on which the 

dynamic phase is also zero. 

5.1 Geometric gates versus direct rotations 

Gaussian noise on phase 
When Gaussian noise was put on the phase control parameter (φL), the 2-segment 

composite rotations were seen to have much lower error rates than direct rotations. From 



80 

 

Figure 15, it can be seen that the highest fidelity 2-segment geometric gates performed 

much better than the direct rotations over the full spectrum of rotation angles. 

Our research showed that the design of the best paths may involve using a small 

Rabi frequency in the rotation. A correlation between small Rabi frequency and high 

fidelity was seen for all two-segment geometric gates (Figure 16). 

 

 

 

 
Figure 15- Error rate vs. rotation angle, Gaussian noise on φL. 
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Figure 16-Error rate vs. sum of the Rabi frequencies of both segments, for 2-segment geometric gates.  
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Figure 17-Range of error rate for geometric gates and direct rotations, over spectrum of phase noise level. 
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2-segment geometric gates over the direct rotation for higher rotation angles (Figure 18). 

Under this noise, there was the same correlation between high fidelity and small Rabi 

frequencies for the two-segment geometric gates (Figure 19). 

 

 

 

 

Figure 18-Error rate vs. rotation angle, 10% noise on Rabi frequency. 

 

 

 

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

0 0.5 1 1.5 2

Er
ro

r 
ra

te

Rotation angle (π)

Error rate vs. rotation angle
(10% Rabi frequency noise)

2 segment geometric gates

Direct rotation



84 

 

 

Figure 19-Error rate vs. sum of Rabi frequencies of both segments, with 10% Rabi frequency noise, for 2- 

segment geometric gates. 

 

 

 

 
Figure 20-Range of error rates, with different levels of Rabi frequency noise. 
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a lower error rate range than the direct rotation over the spectrum of noise levels (Figure 

20). 

Noise on both phase and Rabi frequency 
When noise was put on both the phase and Rabi frequency control parameters, the 

direct rotations were seen to perform almost as well (similar error rates) as the geometric 

gates for the lower half of the rotation angle spectrum; for the higher rotation angles, 

geometric gates performed much better than the direct rotations (on the order of 1E-6 

error rate instead of on the order or 1E-5; see Figure 21). Once again, there was a 

correlation between low error rate (high fidelity) and small Rabi frequency (Figure 22), 

showing that choosing small Rabi frequency for design of geometric gates is optimal for 

these two types of noise. 
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Figure 21-Error rate vs. rotation angle for combination noise: 10% Rabi frequency and 0.01 phase noise. 

 

 

  

 
 
Figure 22- Error rate vs. sum of Rabi frequencies on both segments for geometric gates, combination noise. 
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Bounds on geometric gates 
 From our data, we have found that there are both upper and lower bounds on the 

error rate of the geometric gates (Figure 23), so that increasing increment size when 

searching for geometric paths will not result in higher (or lower) fidelity geometric gates 

than found here.  This shows that our conclusions when comparing geometric gates to the 

direct rotations will not change based on a different set of chosen paths. 

 

 

 

 

 

Figure 23-Upper and lower bounds on geometric paths: a) 0.01 noise on phase control parameter, b) 10% noise 

on Rabi frequency, c) 0.01 phase and 10% Rabi frequency combination noise. 
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Figure 24- Fidelity vs. total phase for geometric gates of different Rabi frequency values. 
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Figure 25- Geometric gates, both with geometric phase = - π: a) one-segment gate; b) 2-segment gate: red = 1st 

segment; green = 2nd segment; both rotation axes n1 and n2 are on dashed line along z-axis. 

 

 

 

One of the simplest 2-segment geometric gates is formed by a rotation of π around 

the z-axis, followed by a rotation of π around the y-axis (see Figure 26a). To make this 

gate, the control parameters for the first segment would be Ω0 = 0, Δ = π, and φL = 

anything; for the second segment Ω02 = π,  Δ2 = 0 and φL2 = 1.5π; the angle between 

bisector of the geodesic and the second rotation axis is φ2 = 0. This gate cannot be made 

in the two-level atom system, since Ω0 = 0 means that the laser field would be turned off. 

However, this gate can be made in NMR, since setting Ω0 to 0 causes the first z-direction 

magnetic field to vanish, but the nonzero Δ represents a contribution from the second, 

rotating magnetic field.  
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Figure 26- Geometric gates, both with geometric phase = -0.5π: a) first rotation axis n1 has vanishing Rabi 

frequency; b) both paths mirrored in x-z plane. First segments are red; second segments are green. 

 

 

 

The angle between the two segments of the geometric gates is equal to the 

geometric phase of the gate. The geometric gates can be made so that both paths are 

mirrored in the x-z plane: if we choose φL =0.5π, and φL2 = 1.5π, and want to create a gate 

of total phase = - 0.5π for instance, then our other control parameters will be: Ω0 = Δ = 

Ω02 = Δ2 = 
𝜋

√2
,  and φ2 = 0 (see Figure 26b). This gate can be made by all of our 6 physical 

systems. 

Examples of our actual highest fidelity 2-geometric gates are shown in Figure 27, 

covering the whole range of total phase needed to create any rotation angle gate. 
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Figure 27-Two-segment geometric gates, showing geometric phase decreasing from 0 to –π (first segment (red), 

second segment (green); second segment of the first gate retraces the first segment). 

 

 

 

5.2 Hybrid gates 

Gaussian noise on phase 
The highest fidelity 2-segment gates across the rotation angle spectrum were 

hybrid gates; a comparison with geometric gates, with both under 0.01 phase noise, is in 

Figure 28. 
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Figure 28- Error rate vs. rotation angle, comparison of hybrid and geometric gates. 

 

 

 

Rabi frequency noise  
The highest fidelity 2-segment gates across the rotation angle spectrum were 

again hybrid gates under 10% random noise on the Rabi frequency (Figure 29), with an 

even more marked improvement over geometric gates. 
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Figure 29- Hybrid vs. geometric gates, for 2-segment rotations and 10% noise on the Rabi frequency. 
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Figure 30- Combination noise on 2-segment gates, 10% Rabi frequency noise and 0.01 phase noise. 
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Figure 31- Hybrid gate example: one-segment rotation around z-axis. 
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Figure 32-Top fidelity (hybrid) gates for total phase = 0 and -0.3 to  -0.6π (in -0.1π increments), 10% Rabi 

frequency noise. First segment (red), second segment (green); first rotation axis ends at blue dot, second at pink 

dot. 
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Figure 33- Top fidelity (hybrid) gates under 0.01 phase noise, for total phase = -0.1 π to -0.6π (in -0.1π 

increments). 
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5.3 Systematic error 

Phase noise 
The 2-segment gates and direct rotation performed virtually the same under 

systematic error on the phase noise, which was created by adding 0.001π to the ideal 

phase value on each segment (Figure 34). The hybrid gates performed better than the 

geometric gate under this systematic noise just at π rotation angle, corresponding to a 

total phase of - 
𝜋

2
. 

 

 

 

 

Figure 34-Systematic error, phase noise: a) comparison of hybrid and geometric gates; b) direct rotation vs. 

geometric gates. 
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Rabi frequency noise 
Under Rabi frequency 1% systematic error, the 2-segment geometric gates again 

had slightly higher error rates than the hybrid gates; the 2-segment gates had much better 

error rates than direct rotations over large rotation angles (Figure 35). 

 

 

 

  

Figure 35-Error rate vs. rotation angle, 10% systematic error on Rabi frequency: a) comparison of hybrid and 

geometric gates; b) comparison of direct rotation to 2-segment geometric gates. 
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CHAPTER 6- THREE-SEGMENT ROTATION RESULTS 

This section presents our data results when we create the gates for a given total 

phase using 3-segment rotations on the Bloch sphere. 

6.1 Noise on phase 
The 3-segment rotations were scanned in a small region of the control parameter 

space, assuming that there will be symmetries in the control parameter quadrants. Under 

0.01 phase noise, we found significant improvement in error rates for the highest fidelity 

3-segment (hybrid) gates compared to 2-segment (highest fidelity, hybrid) gates (Figure 

36), over the spectrum of rotation angles. The 3-segment hybrid gates again had lower 

error rates than the highest fidelity 3-segment geometric gates (Figure 37); 3-segment 

geometric gates performed better than the 2-segment geometric (Figure 38). 
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Figure 36-Comparison of 2- and 3-segment highest fidelity hybrid gates, under 0.01 phase noise. 

 

 

 

 

Figure 37- Comparison of 3-segment hybrid and geometric gates.  
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Figure 38-Comparison of 2- and 3-segment geometric gates. 

 

 

 

 There was again a correlation between small Rabi frequency and the highest 

fidelity gates for 3 segments (Figure 39). 

 

Figure 39-Error rate vs. sum of Rabi frequencies for 3 segments, using 0.01 phase noise. 
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6.2 Rabi frequency noise 
Just as in the 2-segment case, 3-segment hybrid gates have better error rates than 

geometric gates (Figure 40). When comparing the highest fidelity (hybrid) 2- and 3- 

segment gates under this noise, the 2-segment gates perform better for the lower half of 

rotation angles, and vice versa for the higher rotation angles (Figure 41). 

 

 

 

 

Figure 40- Error rate vs. rotation angle, 10% noise on Rabi frequency: comparison of hybrid and geometric 

gates for 3-segment rotations. 
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Figure 41- Comparison of 2- and 3-segment highest fidelity (hybrid) gates, with 10% noise on Rabi frequency. 

 

 

 

The correlation between small Rabi frequency (summed over all 3 segments) and 

a lower error rate again held in this case (Figure 42). 
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Figure 42- Correlation of small Rabi frequencies and error rate, 3-segment rotations and 10% Rabi frequency 

noise. 

  

 

 

6.3 Combination noise 
The 3-segment gates under a combination of 10% Rabi frequency and 0.01 phase 

noise are shown in Figure 43 and Figure 44, with basically the same features. The phase 

noise acts to lift the error rate of other gates compared to our 3-segment highest fidelity 

hybrid gates, whereas the Rabi frequency noise effectively shifts the error rate pattern so 

that the peak is at lower rotation angles. 
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Figure 43- Combination noise on 3 segments. 

 

 

 

 

 
Figure 44- Comparison of 2- and 3-segment gates under combination noise. 
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6.4 Systematic error 

Phase noise 
Unlike in the 2-segment case, the 3-segment rotations under 0.001π systematic 

phase error showed a significant improvement in error rates for hybrid gates compared to 

geometric gates, and for 3-segment hybrid gates compared to 2-segment hybrid gates 

(Figure 45). This may have to do with the fact we are placing the systematic error on each 

segment, but if there are more segments, there will be some gates that have the final 

endpoint less far from the initial endpoint under systematic noise, if some segments’ 

systematic noise partially compensate for the other segment noise. 

 

 

 

 

Figure 45- Systematic error of 0.001π on phase: a) comparison of 3-segment hybrid and geometric gates; b) 

comparison of 2- and 3-segment highest fidelity (hybrid) gates. 
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Rabi frequency noise 
The 3-segment gates with 1% systematic Rabi frequency noise showed the same 

trend as in the 2-segment case: the hybrid gates had lower error rates than the geometric 

gates, as well as the 2-segment maximum fidelity (hybrid) gates (Figure 46). 

 

 

 

   
Figure 46-Systematic error of 1% on Rabi frequency: a)comparison of 3-segment hybrid and geometric gates; b) 

comparison of 2- and 3-segment hybrid gates. 
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right side has a (+) geometric phase. If the areas (+) and (-) are equal, then the geometric 

phases cancel each other (since the counterclockwise path has negative geometric phase, 

and the clockwise has positive geometric phase), and the gate becomes a purely dynamic 

gate. 

 

 

 

   
Figure 47- a) Example of a 3-segment hybrid gate: first segment (red), second segment (green), third segment 

(blue); b) actual 3-segment gate: the geometric phase almost completely vanishes, making this an almost purely 

dynamic gate. 

 

 

 

Other highest fidelity 3-segment gates for a couple total phase values are shown 

in Figure 48; the paths tended to be very small rotations for lower absolute value total 

phase, and had larger enclosed geometric areas starting at total phase of -0.4π and for all 

larger absolute values.  For lower values of (absolute value) total phase the dynamic 

phase was almost equal to the total phase, with the geometric phase almost vanishing; 

this reversed for higher total phase values. 
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Figure 48- Highest fidelity 3-segment gates, 10% Rabi frequency noise: total phases shown are (l-r): -0.1 and -0.6 

π. 

 

 

 Examples of our highest fidelity three-segment geometric gates are in Figure 49.  

 

  
Figure 49- Three-segment geometric gates: a) total phase = -0.2 π; b)total phase = -0.5 π. 
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CHAPTER 7- CONCLUSIONS 

7.1 Highest fidelity gates from composite hybrid gates 
Our research has shown that hybrid gates have higher fidelity under random noise 

than geometric or dynamic gates. The composite (multiple segment) rotations had 

significantly higher fidelities than the direct (single segment) rotations. This was true for 

all types of random noise studied here, and for both two- and three-segment gates. 

For systematic error on the Rabi frequency, hybrid gates again have higher 

fidelity than geometric or dynamic gates, and 3-segment hybrid gates performed better 

than 2-segment hybrid gates. For 2 segments, systematic error on the phase produced 

virtually the same fidelities for the different types of gates. But at 3-segment phase 

systematic error, the hybrid gates have much higher fidelities than the 2-segment hybrid 

gates or the 3-segment geometric gates. Therefore, for large systematic error, it appears to 

be better to use a higher N hybrid gate. 

7.2 Improvements with 3 and higher segment paths 
Under phase noise, the maximum fidelity three-segment gates had higher 

fidelities than the maximum fidelity two-segment gates, which leads us to suspect that 

high N-segment rotations will lead to higher fidelities. 

However, under Rabi frequency noise, the 3-segment gates had higher fidelities 

only on the largest half of rotation angles, with 2-segment gates having higher maximum 

fidelities on the smaller half of rotation angles (Figure 41). In that figure, the form of the 
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error rate across the rotation angle spectrum is like an upside down V for both 2- and 3- 

segments, with the 3-segment peak shifted to left (at lower rotation angle). For further 

work, it would be interesting to see if this trend continues into higher N-segment 

rotations: if so, under this type of noise, the number of segments in the best designed path 

may depend on the rotation angle (i.e. total phase) of the particular gate. 

7.3 Small Rabi frequencies 
The highest fidelity paths tended to have very small Rabi frequencies. This was 

seen to be true across all different noise types and levels, and for both 2- and 3-segment 

rotations. The reason for this result is that the Rabi frequency multiplies the cosine and 

sine of the phase in the Rabi vector; if the Rabi frequency is small, then the phase noise is 

not amplified as it would be otherwise. And similarly, when the noise is on the Rabi 

frequency itself, if the Rabi frequency is small, then the percentage noise is also small. 

 

 



113 

 

APPENDIX A- MAZONKA’S EQUATIONS 

This appendix contains some of the key results needed from Mazonka (2011), 

which are used to derive the equations for two-segment rotations on the Bloch sphere. 

A conical surface is made by drawing a cone inside a sphere, with the cone’s apex 

at the sphere’s origin. The sphere can be projected onto the unit sphere. The intersection 

of the cone and the sphere forms a closed parametric curve, parameterized by 𝑙, which 

can be thought of as the length along the curve from the point where 𝑙=0. A curve on the 

sphere is given by 𝑠(𝑙), which is a vector from the origin to a point on the curve. The 

speed this point moves along the curve is given by 

𝜏 =  
𝑑𝑠

𝑑𝑙
       (234) 

 and the acceleration is given by 

𝑢⃑⃑ =  
𝑑2𝑠

𝑑𝑙2
      (235) 

These two vectors are not defined at corners between segments. 

We call δi the turn angle of corner i, which is the outside angle formed from the 

evolution path of two segments. Two tangent vectors are defined at the corner: one 

tangent to the 1st segment traversed (τ-), and one tangent to the 2nd segment traversed 

(τ+). These tangent vectors can be used to find the turn angle: 

tan δi = sin δi /cos δi = |τ+
i X τ –i |/ τ

+
I * τ –I  (236) 
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(taking the cross product of the tangent vectors and dividing by the dot product (*) of the 

tangent vectors gives the tangent of the turn angle), since by definition of the cross and 

dot products: 

τ+
i X τ –i = |τ+

i | |τ –i| sin δi 𝑛̂    (237) 

τ+
I * τ –i = |τ+

i | |τ –i| cos δi    (238) 

and solving for the turn angle: 

sin δi = |τ+
i X τ –i |/ (|τ

+
i | |τ –i|)    (239) 

cos δi = (τ
+

I * τ –i ) /(|τ
+

i | |τ –i|)    (240) 

Dividing the two above equations gives the equation above for the tangent of the turn 

angle. 

The equation for the solid angle of a conical surface is: 

Ω = 2𝜋 − ∑ 𝛿𝑖 − ∮𝑑𝑙√𝑢⃑⃑2 − (𝑠 ∙ 𝑢⃑⃑)2𝑖   (241) 

where the sum is over all “i” corners (outside angle of the traversed curves), and the line 

integral is along the closed curve except at corners. The integral term above vanishes 

along great circle, i.e. 

 ∮ 𝑑𝑙√𝑢⃑⃑2 − (𝑠 ∙ 𝑢⃑⃑)2 = 0    (242) 

If s is made of n great circles, then we have a spherical polygon, and the solid angle is 

Ω = 2𝜋 − ∑ 𝛿𝑖
𝑛
𝑖  = ∑ {(𝜋 − 𝛿𝑖

𝑛
𝑖 ) − (𝑛 − 2)𝜋}  (243) 

There are an infinite number of spherical polygons that give the same solid angle (and 

therefore the same geometric phase). 

 Another result used in our work is Girard’s Theorem for the area of a spherical 

triangle.  This is found by summing the angles, and subtracting π (where we have used 
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that the radius of the Bloch sphere = 1). The angle between 2 great circles was found 

from the angle between tangents to the great circles. For spherical polygons of N 

segments, the area is given by the sum of the angles, subtracted by (N-2) π. 
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APPENDIX B- GEOMETRIC PHASE 

Quantum geometric phase occurs when the quantum state vector evolves around a 

loop on a curved surface representing all the possible states. The final quantum state 

vector is then equal to the initial vector multiplied by a phase factor that includes a 

geometric phase depending only on the global geometry of the space. Whenever quantum 

system evolution leads to a geometric phase, the state vector in effect holds a memory of 

the evolution taken. By exploiting this memory, geometric phase can be used to construct 

quantum gates for quantum computation. 

Berry phase 
Berry was the first to discover quantum geometric phase in 1984. Berry’s phase 

requires adiabaticity, in which the evolution of the state is slow enough that the system 

stays in an eigenstate of the Hamiltonian. 

Berry’s phase occurs under the condition of slow evolution, so that the adiabatic 

theorem holds: a system initially in an eigenstate of the static Hamiltonian remains in an 

eigenstate of the Hamiltonian if the Hamiltonian is varied slowly. Using the Schrodinger 

equation, 

𝐻𝜓 = 𝑖ℏ
𝜕𝜓

𝜕𝑡
     (244) 

where H depends on parameters R: H = H(R(t)). The system is driven around a closed 

path in the parameter space by varying the parameters R in time. 
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The eigenvalue equation is 

 H(R)|n> = En (R)|n>      (245) 

where R = R(t) and |n> = |n(R(t))>are the instantaneous eigenstates of the Hamiltonian. 

The state evolves with both a dynamic phase and a geometric phase: 









  ))((|)}(exp{))'(('exp)(|

'

0

tRntitREdt
i

t n

t

n 


   (246) 

Inserting this expression for the state into the Schrodinger equation, we can solve for the 

geometric phase in terms of the eigenstates |n>. The final result is that the geometric 

phase is 

  dRRnRniC Rn )(|)()(
    (247) 

which shows that the geometric phase depends only on the geometry of the loop in 

parameter space (R-space), and is independent of time. 

This result can be extended to degenerate eigenstates |n(R)> by using Stokes 

theorem to eliminate the dependence on n| . The Berry phase becomes 

 
 n

n m
m nC

C dS
n H m m H n

E E
( ) Im

| | | |
  

      



 2
   (248) 

    

where dS is an element of area in parameter space. 

The special case of a two-level system with an evolution loop C close to a 

degeneracy at R = 0 has a simple form for the calculation of the Berry phase. If there are 

two degenerate states |+> and |->, both having energy E =0 at R = 0, then |+> and |-> 

replace |n> and |m> in equation (248). The Berry phases for the orthogonal states are 
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opposite: γ+(C) = - γ-(C). The standard Hamiltonian for this 2-level system with 

parameter vector R = (a, b, c) is 

H R
c a ib

a ib c

a b cX Y Z

( )

( )




 











  

1

2

1

2
  

    (249) 

where σX, σY, σZ are the Pauli matrices. The gradient of H is 

       H
H

a

H

b

H

c X Y Z












   

1

2

1

2
( )


  (250) 

and the energy eigenvalues are  

E+(R) = -E-(R) = ½ (a2 + b2 + c2)½ = ½ R  (251) 

For any two-level system, the Berry phase is given by 

γ+ = - ½ Θ      (252) 

where Θ is the solid angle enclosed by the curve that the parameter vector R traces out in 

parameter space, subtending the degeneracy or R = 0 point. This is the effect on the 

positive or up basis state; the negative or down basis state obtains a phase equal to + ½ Θ. 

Aharonov-Anandan phase 
Aharonov-Anandan (AA) phase is a nonadiabatic geometric phase; evolutions of 

the quantum state can occur quickly (unlike in the adiabatic, Berry phase). The possibility 

of creating fast quantum gate times makes AA phase more desirable for quantum 

computing than Berry phase. 

In contrast to Berry phase, where an eigenstate evolves adiabatically on a closed 

loop made in parameter space, the Aharonov-Anandan (AA) phase, or nonadiabatic 

geometric phase, occurs when a state vector makes a closed loop in the projective Hilbert 
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space. AA phase is critical for making high quality quantum gates, since the need for the 

slow-varying (adiabatic) condition is eliminated. 

As before with the Berry phase, the state evolution follows the Schrodinger 

equation, and the wavefunction at the end of the evolution is a phase factor times the 

initial wavefunction. The evolution of the state |ψ(t)> defines a curve C in the Hilbert 

space. The projection of this curve to the projected Hilbert space is a closed curve Ĉ . 

A phaseless state can be defined as 

 (t)| {-if(t)} exp  (t)~ |       (253) 

 where f(τ) –f(0) = φ = total phase, so that the phaseless state is cyclic:  )0(~|)(~|  t . 

Substituting the wavefunction in terms of the new phaseless wavefunction into the 

Schrodinger equation, we get 

 )(~||)(~)(||)(
1

t
dt

d
ittHt

dt

df



   (254) 

Removing the dynamical phase from the total phase results in the Aharonov-Anandan 

(AA) phase (geometric phase): 

dttHt 




0

)(||)(
1


    (255) 

Combining the above two equations, the AA phase becomes 

dt
dt

d
i 




0

~||~     (256) 

For 2-level systems such as a spin-1/2 particle, the projective Hilbert space is the Bloch 

sphere and the evolution of the state can be represented by a Bloch vector evolving on the 

Bloch sphere (see Figure 50). For a cyclic evolution, the tip of the state vector traces a 

closed loop on the sphere. The value of the AA phase is minus half of the solid angle 
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enclosed by the loop: 

2


      (257) 

 

 

 

 
Figure 50- Bloch sphere with state vector |ψ> undergoing cyclic evolution (in red), making a solid angle Θ = ½ π.   

 

 

 

In the example of Figure 50, the state vector is driven around a loop that subtends 1/8th 

the volume of the sphere. Since the solid angle of the entire sphere is 4π, the solid angle 

of this evolution is π/2. Therefore, the geometric phase is γ = -1/2 Θ = - π/4. 
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APPENDIX C- PUBLICATION ON GEOMETRIC GATES 
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