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ABSTRACT

GEOMETRIC PHASE IN QUANTUM COMPUTATION
JT Thomas, Ph.D.
George Mason University, 2016

Dissertation Director: Dr. Ming Tian

A fundamental challenge of quantum computation is being able to scale up a large
number of high fidelity quantum gates while noise and error are affecting the gate’s
physical control parameters. This dissertation focuses on the fidelity of single-qubit
quantum gates constructed by a change in quantum geometric phase, while the control
parameters are affected by random noise and systematic error. A unified model of
geometric quantum computation is developed, in which a qubit state is controlled by a
composite Hamiltonian, resulting in a multiple-segment rotation of the quantum state and
allowing characterization of evolution paths depending on the associated geometric and
dynamic phase. The fidelity of the quantum gates in the presence of different noise error
is compared for purely geometric, hybrid (having both geometric and dynamic phase),
and conventional dynamic quantum gates built on single Hamiltonians. Results showed
hybrid quantum gates had the highest fidelities, followed by geometric gates, and

conventional dynamic gates had the lowest fidelities. In addition, there was indication in



some cases higher fidelities result from gates created from a larger number of segments in
the quantum state rotation. These results can be understood by the relation of the control
parameters with the evolution path geometry. By translating between control parameters,
our model can be applied to different systems for quantum computation, including: the
laser manipulation of a two-level atom, laser manipulation of trapped ions, nuclear
magnetic resonance, polarization states of photons, superconducting qubits in cavity

QED, and quantum dots.



CHAPTER 1- INTRODUCTION

Quantum computation enables exponentially faster algorithms than classical
computation, however, the fundamental challenge is being able to scale up. This includes
the ability to perform a large number of high fidelity quantum gate operations within the
coherence time of the qubit state, while noise is affecting the gate’s physical control
parameters. This dissertation focuses on the fidelity of quantum gates constructed by a
change in quantum geometric phase, while the control parameters are affected by random

and systematic noise.

1.1 Geometric quantum gates

Standard dynamic quantum gates are constructed by a control Hamiltonian
driving evolution of the qubit state. The performance of such a gate depends on both the
Hamiltonian and the evolution path, which is highly susceptible to noise affecting the
control Hamiltonian. An alternative approach is to utilize the change of quantum
geometric phase in a qubit state, which depends only on the area subtended by the
evolution path on the Bloch sphere (Figure 1), and is therefore suspected to naturally be

less affected by certain types of noise.



Figure 1- A quantum gate based on geometric phase: a) the geometric phase of the gate depends only on the area
A subtended by the evolution path; b) noise affecting the evolution path causes it to jitter, but the area A should
be preserved (from Filipp 2014).

The use of geometric phase change in specially designed Hamiltonians for
quantum gates has been researched in most major physical qubit systems, including solid
state atoms, nuclear magnetic resonance (NMR) systems, optical systems, trapped
ions/atoms, quantum dots, and superconducting qubits. However, there is a lack of either
experimental or theoretical proof of performance improvements in using geometric gates
instead of dynamics gates in the presence of noise. In order to solve this problem, a
systematic study of all possible geometric evolution paths and gate-driving Hamiltonians
is needed.

One complication to this study is that a geometric path is usually driven by a
composite Hamiltonian, which means searching a parameter space much larger than that
of a single Hamiltonian. Research specific to the six physical systems listed above has

also generated system-specific control parameters and formalism to describe geometric



gates and qubit evolution paths, making it difficult to study the intrinsic common
properties of the geometric phase in different quantum systems. The unified model
presented here focuses on these common geometric phase properties that are the
foundation for design, analysis, and optimization of geometric quantum gates.

The main objective of this dissertation is to develop a unified theoretical model
for quantum state manipulation in any general 2-level qubit through parametrization of
general driving Hamiltonians and their associated evolution operators. This model can be
used in designing and analyzing a set of universal quantum gates that are sufficient for
quantum computation. These quantum gates and their characteristics apply to any two-

level qubit systems.

Importance of the problem
This thesis focuses on three important aspects of the unified formalism for

geometric phase and geometric quantum computing (GQC): the fundamental study of
quantum physics; design of a quantum gate for GQC; and evaluation of robustness of
gates and improvement of gate performance.

Geometric phase is a general property of the evolution of quantum systems. A
unified formalism allows different physical systems to be analyzed on the same platform.
The common properties of the quantum state evolution and the driving Hamiltonian can
be summarized while the differences between the systems can be compared. The
evolution of any 2-level system can be described by a vector evolving in a 2-dimensional
Hilbert space (Bloch or Poincare sphere). The Hamiltonian can be defined by control

parameters that drive the state vector’s evolution.



Based on understanding of the state evolution, the quantum gate for a certain
manipulation of the qubit can be designed using the control parameters in the
Hamiltonian. A set of universal gates and the corresponding driving Hamiltonians will be
designed by purely geometric phase change. A unified formalism will meet the need to
quickly translate between the variables of the different systems so that the existing
designs and experimental implementations in different types of qubits will be analyzed
and used to develop efficient robust quantum gates that are applicable in other qubit
systems.

Different qubit systems used in GQC should share some common advantages
based on intrinsic fault tolerance that results from the global nature of geometric phase.
However, some quantum gates may work better in certain systems due to the different
realization of the driving Hamiltonian with system-specified physical variables. A unified
formalism will make it possible to compare the differences between systems and find the
advantages and disadvantages of particular systems for geometric quantum computation.
With a unified formalism, a generalized design and optimization can be more quickly
applied to various qubit systems.

An additional aspect of our study involved composite paths that were hybrid (part
dynamic, part geometric). Besides studying the unique property of geometric paths, our

model also allows us to explore these hybrid paths and their associated quantum gates.



1.2 Overview of the field
Our main thesis is the question of whether geometric gates have higher fidelity

under environmental noise than standard dynamic or hybrid gates; we also compare
whether composite rotation gates have higher fidelity than the standard direct, single
rotation gates. It is often stated in the literature that quantum gates built on geometric
phase are not as sensitive to random noise, since the gate depends only on the solid angle
subtended by the evolution path on the Bloch sphere, which should remain roughly the

same. However, this assumption has not yet been proven.

Zhu -Zanardi work.
Zhu-Zanardi (ZZ) (2005) gives support for the above assumption of geometric

quantum gates, by finding higher fidelities on geometric gates than dynamic gates, when
control parameters were varied to evolve between the two different types of gates. In the
ZZ scheme, a single completed loop direct rotation is made (see section 2.8 for definition
of direct rotations). The ZZ paths are a special (1-segment) case of our N-segments
(composite rotations) work.
ZZ use an NMR Hamiltonian:
H = %(wocos W0, + WeSinw 0, + w,0,)
where their control parameters are related to our model’s lab frame control parameters
(Qo, @1,4) by:
Wy =—8Q w=¢, w =A
The control parameters w, and w, are directly proportional to an external controllable
rotating magnetic field Bo and a constant magnetic field B; in the z-direction. ZZ apply a

random percentage noise multiplying the control parameters w, and w;.



Blais-Tremblay
On the other hand, Blais-Tremblay (2003) provide evidence against the

assumption of greater fidelity with geometric quantum gates. However, in their work, the
geometric gates are created by three-segment rotations and compared with the
conventional dynamic gates created from just a single rotation. The first and last
segments of the geometric gates are in the same direction, making this equivalent to a
two-segment rotation if the same noise is put on these segments. The geometric gate
paths are also restricted to lie on great circles, so that the hybrid paths (containing both

geometric and dynamic phases) of our work are not considered.

ETH Zurich
The Quantum Device Lab at ETH Zurich have experimentally compared

geometric gates based on Berry’s phase (adiabatic, cyclic geometric phase) with dynamic
gates and found an advantage to geometric gates (Berger 2013). The ETH Zurich team
used a microwave-driven superconducting two-level qubit, with noise modeled by
producing fluctuations of the control field. The noise-induced dephasing was measured
with a geometric contribution that only depended on how much the noise distorted the
path; the dynamic phase gates are path dependent and more affected by dephasing. In

contrast to this work, our work uses nonadiabatic geometric phase.

1.3 Methods

Research method
The main problem of our research was formulating a unified formalism of

geometric quantum computation on the Bloch sphere. This involved first studying each of

the main 2-level systems used in GQC research, and finding the qubits, Hamiltonian,



equation of motion, and control variables used in each system. A general notation of
variables has been chosen from the Bloch equation. A table has been made to translate
between this general formalism and the qubits, Hamiltonian, equation of motion, and

control variables used in each of the GQC approaches.

Dynamic phase elimination
An important issue in the construction of geometric quantum gates is the

elimination of the dynamic phase. This can be done in several ways, such as using the
spin echo technique, which involves traversing the evolution in the opposite direction, so
that the dynamic phases of the two segments cancel, whereas the geometric phases add.
Another method of handling the dynamic phase is to use the "unconventional GQC"
scheme (Zhu & Wang 2003), where instead of eliminating the dynamic phase, the
dynamic phase is kept proportional to the geometric phase.

The focus of this thesis for elimination of the dynamic phase will be to use
evolutions that stay on the great circles of the Bloch sphere. This has the advantage of
using fewer rotations than the spin echo technique, and also seems to be the most

straightforward realization of geometric quantum gates.

Construction of evolution paths
Our work first defined a generic two-level quantum particle as the physical qubit

of the unified formalism. The generic control Hamiltonian was parameterized, so that it
can be modeled as a dipole moment in an effective field. In the next step we designed
cyclic paths for a universal set of single qubit quantum gates on the Bloch sphere. The

idea is to specify a general cyclic path, so that by varying the control parameters, any



geometric phase can result, and thus any single qubit quantum gate can be constructed.
The next step of our study analyzed the fidelity of the gates against systematic and
random errors in the control parameters. Using this study of the fidelity of the gates, the
geometric paths were optimized for high fidelity gate operation. Finally, the general
model has been applied to existing physical qubit systems, to specify and analyze the

control parameters in each specific system.

N-segment method
We then extended our research to calculate the geometric and dynamic phases of

3,4, 10 and N segments. We calculated the geometric phase for N segments by using the
geometric phase formula for a spherical polygon and our 2-segment geometric phase
equations for the wedge each segment makes with its associated geodesic. This also
generalized our 2-segment rotations to rotation axes in any direction, by using the same
wedges and associated geodesic, and setting the spherical polygon to 0. Finally, we
calculated the dynamic phase for N segments by considering the general Hamiltonian for

each segment rotation, and how it operates on the qubit state along the x-axis.



CHAPTER 2- QUBIT THEORY

2.1 Introduction
This chapter explains the basic qubit theory of quantum information underlying

our work, including descriptions of qubit basis states, and how they are represented on
the Bloch and Poincare spheres; Pauli spin matrices, and how they are used to build the
evolution matrix and Hamiltonian H; and how the control parameters measured in the lab
are used to design the Hamiltonians. We briefly discuss how a universal set of gates can
be made. We show how this theory is applied to the notation of the 6 physical systems
considered here. We present general formulas for calculating the geometric and dynamic
phases of rotations, and use this to define direct and composite rotations, which are
compared later in our work. We describe the way noise is put on the control parameters
of the Hamiltonian, in order to measure the fidelity of our designed quantum gates.
Finally, this chapter introduces the application of our model to several other physical

systems.

2.2 Qubits on the Bloch sphere
A quantum state is completely defined (up to a global phase) by two angles: the

polar angle a and the azimuth angle B (see Figure 2). From our orthogonal basis states,

defined as:

p>= (1) 1> ()



the most general qubit state can be written as a superposition:
|1/J>=COS% |0 > +e"ﬁsin% 11> @)

or in matrix form

cos >
> = . 2
i e'f sin% @

The Bloch sphere is a two-dimensional unit sphere that represents all possible
states [y > of the qubit. The north and south poles of the Bloch sphere are taken to
represent the orthogonal states |0 > and |1 > respectively (for example, spin up and spin
down states); these usually form the computational basis states. Any two vectors pointing
in opposite directions represent a pair of orthogonal basis states; for example,

[ >= (10> +[1>) @
pointing along the positive x-axis, and

[ >= (10> —1>) )
along the negative x-axis. Each point on the Bloch sphere represents a distinct

superposition of the computational basis states |0 > and |1 >.

10



Figure 2- Bloch sphere with polar angle a and azimuth angle p locating the state (or Bloch vector) |y>.

The Bloch and Poincare spheres are similar, except that the poles of the Bloch
sphere are represented by up and down states, whereas the Poincare sphere’s poles are

defined by right and left polarizations of light beams.

2.3 Quantum gates and Pauli matrices
A guantum gate acting on the qubit state of Figure 2 will cause it to rotate to

another position on the Bloch sphere. For instance, the Pauli spin matrices operate on the
qubit basis states (defined in equation 1) as follows:
ox[0 >=[1> o,/0>=i]1>, 0,0>=]0>
o1 >=10> o1 >=—-il0>, o,1>=—[1> (6)

where

R (i S L B
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More complicated gates can be made from combinations of these Pauli matrices.

%)

Figure 3- Rotation of Bloch vector # around the Rabi vector Q on the Bloch sphere.

A quantum gate can also be considered a rotation around a rotation axis (see
Figure 3). The quantum state is represented by a Bloch vector r pointing to the position
(6,¢) on the Bloch sphere; during the operation of the quantum gate, this state is rotated
around the Rabi vector Q. In Cartesian coordinates, T is given by
r = (sin 0 cos @, sin 0 sin ¢, cos 0) (8)

The Bloch vector satisfies the Bloch equation:

12



=l

ar _ & r ©
a5
dt

where the Rabi vector is Q = (—Q cos @, —Q¢ sin ¢, A), which is a function of the
measurable control parameters Q,, ¢, and A. For instance, in a 2-level atom, these
control parameters are the Rabi frequency (£,), phase of the laser (¢;), and laser

detuning (4).

2.4 Evolution operator
A guantum gate acting on a qubit changes the orientation of the Bloch vector of

Figure 3. This is equivalent to a rotation around a given axis 71 by a given angle 8, made

by a rotation operator U(6,9):

U= e*R,(0) = e%exp {—i

N[ D

i 5} (10)
=ei“[cosgl—isin2(n o, +n,0,+n 0)] (11)

2 2 xYx yYy zVz
where i = (n,, n,,n,) is the rotation axis, ¢ = (o, g,, 0,) are the Pauli matrices, | is the

identity matrix, 0 is the rotation angle, and a is any real number making up a global

phase.

Any rotation around an arbitrary axis can be made by rotations around two non-
parallel axes in the x-y plane, where the rotation axis is defined by angle ¢ in

il = (cos ¢, sin ¢,0) . The operator simplifies to:

13



U(H,q)):cosgl—i-sing(coswo—X +singoy )
0 iy O
cos—  —ie’sin— (12)
2 2
0

o 0
—1e” sin— COS—
2 2

These operators with controllable variables 6 and ¢ are sufficient for achieving a
universal set of single qubit gates.
The basic rotation operator can be made through pure geometric phase change.

For a given pair of angles (6, ), eigenstates can be defined, such as:

vl el

which are represented by a pair of basis vectors parallel to the rotation axis (see Figure

4). The rotation operator drives the basis state |+>(,, around loop A. Every segment of the

loop is on a geodesic and the solid angle enclosed by the loop is the desired rotation angle

0. The basis state |+>w gains a geometric phase — g and turns into e*“9’2|+>¢. The basis
state |—>w with corresponding loop B is driven by the same rotation operator and gains an

opposite phase to become e''? |—>¢.

Under this operation a qubit in an arbitrary initial state |y >:( OJ turns into
G

0 .0
cos— ¢, —ie ™’ sin ¢,
2 2 (14)
—ie“"singcl+cosgc
2 2"
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This is equivalent to applying a rotation operator in equation 12 to the initial state. On
this geometric path the rotation operator is equivalent to
U@,p)=Ux!2,p+7!2)U (-7, p+7x12+01/2)U(x!2,0+7]2) (15)

where the three consecutive rotations on the right hand side are the geometric rotations.

N>

d
[
’
/I/
/
/
’
)

<>
1)

Figure 4- Effect of a geometric rotation U(0,p) on orthogonal states {|+>,|->}: [+> follows path A and |-> follows
path B, with rotation angle 6 and rotation axis 7.

2.5 Hamiltonian and control parameters
In order to design the rotation operator U, a Hamiltonian is first designed by

choosing the values of the physical lab control parameters, which in the 2-level atom
system are: Rabi frequency (Q,), laser phase (¢,), and laser detuning (A). The most
general Hamiltonian is:

H= %(—roos 9L0x —Qosing oy, + Ac,) = %ﬁ o (16)
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where the & are the Pauli matrices. The Rabi vector Q determines the direction of the

rotation axis by:

2 L{—QO cos @, —Qgsing; ,A} 17

ﬁ i
1Qn| Q]

where the Rabi vector amplitude is |Q,| = /(Q¢)? + AZ.
The rotation operator U is then derived from the Schrodinger equation:
0
lhE = Hl/) (18)

Solving for the wavefunction, we have:

i

Y(r) = e Wy, (19)
Therefore the rotation operator is

i

U= e #" (20)
where the Hamiltonian is constant over that segment. Setting z = 1 and A = 1, each

segment’s rotation operator is

The rotation angle B’ is related to the rotation duration and the amplitude of the Rabi
vector by:
B =19t (1)
so that the rotation operator becomes:
_ _i 5.4
U—exp{ Lo n} (22)

where B’ is the angle amount of rotation around the 7i-axis.
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The control parameters defined by the Hamiltonian are varied in our work to
design paths for rotations on the Bloch sphere, representing the operation of quantum
gates. For a 2-segment rotation, our control parameters are the Rabi frequency Qo, the lab
frame phase ¢, and the detuning A of the first segment’s Hamiltonian, and the rotated
frame control parameter ¢2, which is the angle between the bisector of the geodesic
between the two endpoints of the two segments and the second rotation axis. For N

segments, there are 3N-2 control parameters to vary to create all possible paths.

2.6 Universal set of gates
A universal set of gates can be made from a single qubit gate capable of any

phase, such as the single qubit rotation operator in equation 11, and an entangled two
qubit gate such as a CNOT or a controlled phase gate (Ekert 2000). These two types of
gates can be achieved through pure geometric phase change. Our work focuses on single
qubit gates, but the methods can be extended to two qubit gates as in Zhu & Zanardi
(2005).

For each of the different physical systems used to implement geometric quantum
gates, the actual control parameters/physical variables are different. For instance, in
NMR, the geometric quantum gates are controlled by the magnitude of the magnetic
field; in quantum dots, one of the control parameters is the energy band gap. There are
many other different physical variables that are used as control parameters, taking all the

different physical systems into account.
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2.7 Six physical systems for qubit construction
This section describes how the notations of the 6 physical systems under

consideration here fit in with the theory described above. We first describe how the
qubits are made in each system, what the control parameters are, and how they relate to

the control parameters of our model.

Laser manipulation of two-level atom
The two-level atom consists of an atom with two energy levels. By using laser

pulses, the state of the system can be put into a superposition of the ground and excited
state.
Geometric quantum computation can be realized by using a two-level atom driven
by a laser field (Tian 2004). In this system, the qubit
Y >= col0> +cq|1 > (23)
is formed with an atom by superimposing its two energy levels, a ground state |0 > and
an excited state |1 >. A laser tuned near the atomic resonant frequency manipulates the

state of the atom. The control Hamiltonian for the driving laser pulse is

Q, |
0 -— e
Hehl o 2 (24)
-—e" 0
2

where Qo is the Rabi frequency for an on-resonance laser, tuned in resonance with an
atom of atomic resonant frequency mo; and ¢ is the phase of the laser, given by the laser

electric field:
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E(t) = Qo(wo t + ¢) (25)
From this an equation can be found that constrains the Rabi frequency, the laser phase,
and the coefficients of the state vector.
The control parameters of this system are the Rabi vector , consisting of a Rabi

frequency Qo, the phase ¢, and the frequency detuning A of the laser field. From the
amplitude of the Rabi vector Q =,/Q?2 + A? and the time duration t of the laser pulse, we

can derive the pulse area, 0:

0=Qr< (26)
An operation on the Bloch sphere is then completely defined by the laser field. The
geometric phase in this system can be observed using a stimulated photon echo pulse.
Two driving pulses with a relative phase between them create a geometric phase that

creates a phase shift on the photon echo pulse.

Laser manipulation of trapped ions
This section is similar to the previous, except the qubits are now formed from

trapped ions. A proposal for using trapped ions is given by Duan(2001); see also Lemmer
(2013).

In trapped ion systems, a set of ions is confined in a linear Pauli trap and
manipulated by a laser. A scheme for nonadiabatic geometric quantum gates utilizing ion
traps is described in Li & Cen (2003). The qubits are made from ions with two energy

levels, |0> and |1>, separated by energy hwo. The laser field used to selectively address
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the states is given by E(z) = Eo cos (k- z— oLt + ¢ ), with wave vector K, the ion’s center
of mass coordinate z, laser frequency oL, and laser phase @.

The Hamiltonian for a single qubit gate is

H =% wo 0:+ o[c "exp{-ioLt + ip}+ o ‘exp{ioLt - ip}] (27)
where ® = Rabi frequency, and ¢ " is defined as [0> <1|; ¢ "= |1><0|; and 6, = |1> <]| -
|0> <0|. For two-qubit gates, there is an extra exponential term involving phonon
creation/annihilation operators.

The Hamiltonian for each ion in the rotating frame (which has angular velocity
w, €, )Is

H,=Q-o (28)
where ¢ = {ox ,0y ,0; }are the Pauli matrices and the effective magnetic field is Q = {®
cos @, ® sin @, ¥2 (0o — L) }.

During operation of the one-qubit gate, the state is rotated around the effective
magnetic field Q. The state is kept perpendicular to Q on the Bloch sphere, so that there
is no dynamic phase.

As an example, a state initially in the [+> state (pointing along the y-axis on the
Bloch sphere, to point A in Figure 5) is hit by a m-pulse with laser frequency ¢ set to 0,
and effective magnetic field Q1 = (0,0, 2 (0o — wL)). This causes the state to rotate to |->
(along the negative y-axis) to point B in Figure 5, along the path ACB. Another r-pulse
hits the ion with laser frequency ¢ set to mt, and effective magnetic field Q2 = (-o, 0, %2

(mo — wr)). This causes the state to rotate back to |+> along the path BDA.
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Figure 5- Evolution of the state vector on the Bloch sphere, keeping perpendicular to the effective magnetic field.
From Li & Cen (2003).

After this cyclic evolution, the |+> state acquires a geometric phase factor of
exp{iy} while the |-> state acquires the geometric phase factor exp{-iy}. The
nonadiabatic (AA) phase is

vy =4 arctan [2 ®/(wo — ©L)] (29)
Under this same gate, the states |0> and |1> rotate to
|0> - cos y|0> + sin y|1>
|1> = cos y|1> - sin y|0> (30)

and any arbitrary single qubit rotation can be made with this gate.

Nuclear magnetic resonance
The qubits in nuclear magnetic resonance (NMR) are built from precessing spins

in a rotating magnetic field. There is a constant magnetic field in the z direction which

creates the split two energy levels, and defines the resonant frequency w,. Another
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magnetic field rotates in the x-y plane with frequency w. At resonance, these two
frequencies match.

The qubit in nuclear magnetic resonance (NMR) is built from the two spin states
of a spin ¥ particle, with spin the state |0> representing spin aligned with an external
magnetic field, and |1> aligned against. The driving force is a rotating magnetic field in

the x-y plane.

In nonadiabatic GQC in NMR, parameters are varied in the Hamiltonian instead
of using rotating operations. The magnetic field is initially in the x-z plane, with polar
angle 0, and rotates with frequency w in the x-y plane. The Hamiltonian in this case is

given by
12 (w0cosw g1+ wOsinw oy+wloz) (31)

where the control parameters are related to our model by

guB, guB
‘Do:—To:—Qo' W= @, 001:—71:A (32)

and g is the gyromagnetic factor; p is the Bohr magneton.

Photon polarization/optical systems
In optical systems, qubits are created from the polarization of photons. In an

optical geometric phase experiment, unitary transformations are made on the polarization
state of photons (Simon 1988). The polarization of a plane light wave in the z direction is
determined by the complex-valued electric fields Ex and Ey, which form the polarization

vector E. The ratio Ex/Ey gives the projection space of polarization states. This space is
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the same as S?, the Poincare sphere (see Figure 6). The qubits for an optical geometric

gate are made from superpositions of orthogonal polarization states.

Figure 6- Polarization states on the Poincare sphere. (From Wang & Wu 2007).

The Poincare sphere contains all the possible polarization states. The poles represent the
states R and L, for the right- and left- circularized polarization states. A and A’ represent
the linear x- and y- polarizations. The unitary transformations in this experiment are 2x2
matrices, acting as rotations on the Poincare sphere. Quarter-wave plates produce the
rotations shown in Figure 6: the first /2 rotation around the axis OM, and the second n/2
rotation around the axis ON.

The basic experimental setup is a Michelson interferometer. Light from one arm
of the interferometer is used as a reference beam, to be recombined with light from the

other arm where a geometric phase occurs by using quarter wave plates. In Figure 7, the
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geometric phase can be varied by rotating the second quarter wave plate (QWP2). The
half wave plate HWP1 controls whether the incident beam is linearly polarized in the x-

or y-directions.

He - Ne
Laser

Figure 7- Experimental setup for observation of geometric phase in a Michelson interferometer. (From Wang &
Wu 2007)

The circuit shown in Figure 6 is traversed as ALBRA, by making the first quarter
wave plate (QWPI1) in arm m1 with the slow axis fixed at 6 = n/4. After traversing
QWHP1, the light, which was linearly polarized in the x-direction (so that its state was at A
on the Poincare sphere), is now left circularly polarized (at the point L on the Poincare
sphere). The second quarter wave plate, QWP2, is set to the angle 6 = 3n/4 + ¢, with
respect to the x-axis. The light emerges from QWP?2 at state B. It then hits the mirror and
reflects back into QWP2 in the opposite direction, taking the state to R. After going

through QWP1 again, it is back to state A.
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The solid angle subtended by this circuit is 4, where 2¢ is the angle between
points A and B. The Berry phase, or Pancharatnam phase in this case, is % the solid
angle, or equal to 2¢. The Berry phase is -2¢ for y-direction linearly polarized incident
light, and the circuit in Figure 6 is flipped to the opposite side of the Poincare sphere.
The evolution of the polarization vector E is given by

;td—E =iJ(2)E (33)
dz

where A is the wavelength of the laser and J(z) is the evolution matrix:

] (34)
£sin20 n-—&c0s20

n+ £€0s20 gsin26
‘]e(z) =

The angle 0 is the angle that the birefringent plate’s slow axis makes with the x-
axis, and n+ ¢ and n- € are the refractive indices for the slow and fast axes. Equation 33 is
similar to the Schrodinger equation, and the matrix J(z) is analogous to the Hamiltonian
for this system.

The control parameters for the optical geometric phase of this system are the
angle 0, set by QWP1; the orientation of HWP1 in determining the incident light beam
polarization; the refractive indices of the birefringent plates (which can be controlled by
the thickness of the plates); and the wavelength A of the laser.

Other optical geometric quantum computer schemes include an optical holonomic
qguantum computer (Pachos 2000). This proposal uses quantum optics devices such as
interferometers for two qubit interactions, and displacing and squeezing devices, which

achieve the one qubit rotations. The degenerate space of the Hamiltonian eigenstates
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needed for the holonomic quantum computation scheme is constructed from two

dimensional degenerate spaces of laser beams.

Superconducting qubits in cavity QED
This section describes the different superconducting qubits that can be created in

cavity/circuit QED using Josephson tunnel junctions.

Geometric quantum gates have been proposed using superconducting phase qubits
(Peng 2007). In this system, the qubit is formed from a Hamiltonian with 2 non-
degenerate, orthogonal energy states. The Hamiltonian is a product of the Pauli spin
matrices and the magnetic field B.

A superconducting Josephson junction nanocircuit has been proposed to observe
adiabatic geometric phase in a 2-level system in the Falci scheme (Falci 2000). This
scheme uses a Josephson junction nanocircuit made of a superconducting electron box
formed by an asymmetric SQUID, with a magnetic flux ® and applied gate voltage Vx.

For the Falci scheme, Josephson couplings E;: and Ej. of the junctions are much
smaller than the charging energy Ech. The temperature is kept much smaller than the
couplings. This is called the charging regime.

The Hamiltonian is
H(t)=E, (n-n,)*—E, (P)cos@-ca) (35)

where
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D
E,(®)=|(E,,—E,,) +4EE,, cosz(;qu] (36)
0
tang = cu " Eue tan(;r Ej (37)
EJl + EJ2 CI)0

and®, = 2% is the superconducting quantum of flux; n is the number of Cooper pairs; 6 is

the phase difference across the junction. The phase shift a(®) can be controlled in the
asymmetric SQUID. Other control parameters in the Hamiltonian are the applied gate
voltage Vx, which controls the offset charge 2eny; and the magnetic flux ® controls the
coupling Ey(®).

The quantum gates of the Falci scheme are based on charge qubits. The two
charge eigenstates n = 0, 1 create the basis {|0>,|1>}.

This system can be seen to be analogous to a spin in a magnetic field by using the

effective Hamiltonian
Hy=——B.co (38)

where
B =(E, cosa,-E, sina,E, (1-2n,)) (39)
and o are the Pauli matrices. Charging the system causes it to be coupled to the effective
magnetic field in the z direction. The Josephson junction coupling terms determine the
projection on the x-y plane.
To execute the closed loop that produces the geometric phase, the parameters
given by the applied gate voltage Vx and the magnetic flux ® are varied. This drives the

Hamiltonian Hg around a closed loop in the parameter space given by {B}. The
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geometric phase obtained is the Berry phase ys(®wm, Nxm), proportional to the solid angle
enclosed around the degeneracy B= 0. The offset charge nx (proportional to the applied
gate voltage V) is varied from nxm to %. The magnetic flux is varied from 0 to ®.
Varying these two parameters makes a closed loop in an ny-® diagram: ny is first varied
from nxm to 1/2, while keeping @ at 0; then @ is varied from 0 to ®m, while keeping ny at
Y%; ny is then varied back to nym while keeping ® constant. The circuit is then completed

by taking @ back to 0, while keeping nx constant.

Quantum dots
Quantum dots are made of semiconductor nanocrystals, which can be entangled to

form qubits. Voltages applied to the leads of quantum dots controls the number of
electrons in the quantum dot. Quantum information is stored in the spin states of single-
electron quantum dots (Kloeffel & Loss, 2012).

Quantum dots are another candidate for geometric quantum computation (Pei
2010). In quantum dot gates, small voltages are applied to the leads, so that the current
through the quantum dot is controlled. There can also be optical control of the quantum
dot, in which an oscillating magnetic field is generated by radio-frequency pulses. This
enables measurements of a single electron’s spin.

The rotation angle of the geometric rotation in this system depends on the ratio of
the Rabi frequency to the detuning. When this ratio goes to infinity, then the rotation
angle is m, and there is no dynamical phase contribution for this geometric rotation. Other

rotation angles lead to both a dynamical phase and a geometric phase.
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One approach of nonadiabatic geometric quantum computation using quantum
dots is given by the Yang-Zhu-Wang (YZW) scheme (Kai-Yu 2003). N quantum dots are
irradiated by laser light, with charges on each dot. An exciton can be produced by a dot,
and there can be interdot exchange of excitons. A qubit is made from the basis states
{|0>,|1>}, where |0> is the state without an exciton, and |1> is the single exciton state.

For a single qubit gate, the Hamiltonian consists of creation (and annihilation) operators

for electrons C;" (C;) and holesh" (h,) :
& N N . N
H(t) = EZ(c;ci ~hh )+EOY(ch )+ E 0 (he,) (40)
i=1 i=1 i=1
where ¢ is the energy band gap of the semiconductor dot, E(t) is the laser shape , and N is

the number of quantum dots.

This Hamiltonian can be written in terms of quasi-spin operators J, by making the
definitions J,, =¢/h",J, =hc,,J, = %(ci*ci —hhy):
H(t)=&), +E(t)J, +E"(t)J_ (41)
for a single quantum dot.
The incident laser pulse shape E(t) is given in terms of amplitude A and frequency
o : E(t) = A exp(iot). The single qubit Hamiltonian becomes a function of this amplitude

A and frequency o, the energy band gap ¢ of the semiconductor dots, and a set of X,Y,Z

quasi-Pauli operators:
H(t) = gz + Acos(wt) X + Asin(et)Y (42)

where {X=J. +J,Y =i(-J+ +J), Z=2 J;}.
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On the unit Bloch sphere, the incident laser pulse is the rotation field, and the
semiconductor energy gap is the constant z-direction field. Two orthogonal states |[y+>
evolve cyclically, and are a function of just the three parameters: laser amplitude A, laser
frequency w, and energy band gap €. These three parameters are combined into the
symbol

y = atan (2A/(e-m)) (43)

so that the two orthogonal states become:

7 >:cos%|0>+sin%|l>

(44)
ly_ >= —sin% |0 > +cos? |1>
2 2
The evolution operator acting on the two orthogonal states is
U (T) | Y, >= e | v, > (45)

after an amount of cyclic time © = 27/, so that the first orthogonal state, [y+> acquires a
+y phase, and the [y-> orthogonal states acquires a —y phase after that time 7.
For an initial state
|'¥i>=a, [y, >+a_|y_> (46)

the final state is [¥r> = U(y,y) |¥i>, where the evolution operator is

e" cos? %+e“7 sinzg isin ysiny
U(r.7)= _ _ (47)
isin ysi 7sin? £ 1o cos? £
ysiny e¥sin’ £ +e™ cos’ &

From this evolution operator, any single qubit geometric quantum gate can be

constructed, by controlling the three control variables in  (equation 43).
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2.8 Geometric and dynamic phases
Geometric phases in the quantum state of a system occur for any evolution of the

state; this evolution is represented by a path in Hilbert space (Abdumalikov 2013) (or as a
path on the Bloch sphere). Geometric phase depends only on the solid angle subtended on
the Bloch sphere, and for Abelian geometric phases, it is a real number.

When a Bloch vector makes a closed loop on the Bloch sphere, the geometric
phase for any two-level system is:

GP=-0/2 (48)
where O is the solid angle enclosed by the curve that the Bloch vector traces out on the
Bloch sphere.

The dynamic phase can be set to vanish if the evolution path of the Bloch vector r

is kept perpendicular to the Rabi vector Q. The dynamic phase is
DP = —= [ < (t = 0)|UtHU[y(t = 0) > dt (49)
which is a function of the Hamiltonian H, evolution operator U, the wavefunction vy, and

the time taken for the evolution. The total phase acquired by the quantum state after a

cyclical evolution is just the sum of the above geometric and dynamic phases.

2.9 Direct rotations versus composite (N-segment) rotations
In later chapters we present comparisons of direct (single) rotations versus

composite (N-segment, with N > 1) rotations. A direct rotation is represented here by a

single rotation of the quantum state around the x-axis of the Bloch sphere by an angle 6:

.6
Udirect(8) = e 2% (50)
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The total phase of this rotation is -6/2. Most standard quantum gate operations that do not
consider geometric phase are direct rotations. When a direct rotation gate operates on the
initial state of equation 4, which points in the x direction, there is no evolution path on
the Bloch sphere; the state is just rotated at the x-axis point (see Figure 8). There is no
solid angle subtended, and therefore no geometric phase: this gate is therefore a purely

dynamic gate.

i

Figure 8- Direct rotation around the x-axis, with initial state on x-axis.

In contrast, a composite rotation is made up of N segments or rotations, which

form a closed loop on the Bloch sphere. An example of a composite rotation is:

Ucomposite = Ry ()R, (m) (51)
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This gate is made by starting from the initial state of equation (4) on the x-axis, rotating
around the z-axis by m, so that the second endpoint is at the negative x-axis, and then

rotating around the y-axis by r to return to the x-axis (see Figure 26a). This makes a 2-
segment geometric gate of geometric phase — n/2; the angle between the segments is g =-

GP. This is equivalent to the above direct rotation gate if & = 7 there.

2.10 Geometric, dynamic and hybrid gates
Geometric gates have evolution paths only on geodesics, so that the dynamic

phase vanishes, and there is only a geometric phase. Dynamic gates have no enclosed
area on the Bloch sphere, so that the geometric phase vanishes, and there is only a
dynamic phase. The direct rotations of the previous section are an example of dynamic

gates. Hybrid gates have both a geometric and a dynamic phase.

2.11 Noise model
The control parameters that define our quantum gate designs are affected by both

systematic and random error. These types of noise can affect the fidelity of the designed
quantum gates.

Our phase noise is based on the phase diffusion model (Scully 1997), where there
is a Gaussian noise distribution on the phase of the laser (our control parameter 6,).

Noise is put on 8, on each of N time steps, in a random walk: taking the previous value
and adding a random value from the interval + 0—?\]1 to find the current value of the phase.

Figure 9 shows that the phase noise we used formed a Gaussian distribution.
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Gaussian noise distribution for 200 runs
(Noise interval =+/- 0.01/sqrt(1920))
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Figure 9-Gaussian noise distribution for random noise on the laser phase 8;, for N = 1920

Noise on the Rabi frequency control parameter is modeled as a random
percentage noise of the ideal value. For instance, for a 10% random noise, a random
number between 0.9 and 1.1 is multiplied with the ideal Rabi frequency value at each of
N time steps.

Systematic error was applied to the designed quantum gates by applying the same

types of noise, but in one single time step for each segment of the rotation.

2.12 Fidelity and error rate
The fidelity F of the paths is found by taking the trace of the ideal evolution

matrix U (calculated from the ideal control parameters) multiplied by the noisy U matrix

(= V), calculated with noise added to the control parameters (Thomas et. al. 2011):
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F =Tr|VUY|
(52)
Each of the paths are divided into N time steps, where noise is applied. The fidelity for

each path is averaged over 200 runs. Error rate is defined as 1- F.

2.13 Application of our unified model to the six physical systems
In this section, our unified model developed from the N-segments work is applied

by translating our control parameters into the control parameters of each of the six

physical systems studied here for creating qubits (see Table 1).
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Table 1 — Translation of unified model’s control parameters to system control parameters

System Qo oL A
2-Level
Atom Rabi frequency of laser Phase of the laser Laser detuning
Trapped Q d Wo-ML
lons =Rabi frequency of laser = laser phase where wo = resonant
frequency;
oL = laser frequency
NMR _ guBy [0 W —
@0 =T where phase ¢ where w = frequency
Proportional to the usually set to 0. of rotating B field;
strength of the rotating B constant z-direction B
field field given by
o = — guB,
! h
Photons -£ sin 20 £C0s 20
where ne = refractive
index of slow/fast axis; 0
= angle of birefringent
plate’s slow axis to x-axis
Cavity E; = coupling energy -al -Ech (1-2ny)
QED: = - phase shift (eq. where Ecnx = charging
charge 37) energy; offset charge =
qubits Nx = Vx/2e; Vx =
applied gate voltage
Quantum -A ) €/2
Dots A=amplitude of laser = = laser phase ¢ =energy band gap

pulse

of semiconductor dots
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CHAPTER 3- THEORY OF N-SEGMENT PATHS

For a closed loop of N segments or rotations, we are always left with a spherical
polygon formed by the geodesics between endpoints of segments, plus the associated
wedges formed by the evolution path and its associated geodesic (see Figure 10 for an N

= 3 example).

Figure 10- N= 3-segment path, with evolution paths (solid lines with arrows), and their associated geodesics
(dashed lines).

We consider fidelity results for special cases of two- and three-segment rotations,
as well as quantum gate operations that can be considered N rotations of the qubit state
around N axes, creating a closed loop on the Bloch sphere. In each case, the geometric

phase of the N-segments path is a sum of the geometric phase of the wedge made by each
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segment and the geodesic (great circle) between the two endpoints of that segment, plus a
geometric phase from the N polygon created from the geodesics between endpoints.

In the N segment case, we have N rotations given by 3N — 2 lab frame control
parameters: Qo , Qo2 ,.... QoN-1); OL ,PL2,...QOLN-1); A, A2, ...An-1); and on. The geometric
phase is again a sum of the geometric phase contributions from each segment’s wedge,
plus a geometric phase from the N-sided polygon formed by each of the segments’
associated geodesics:

GP = GP1 + GP2 +...+ GPn + GPn-polygon (53)

where GPn-polygon = %2 QN-polygon , and the solid angle is:
ON-polygon = (Angle 1) + (Angle 2) +....+ (Angle N) —(N-2)n (54)
where Angle 1 is the N-polygon’s angle associated with endpoint #1, etc; these angles are

found from the tangents to the great circles.

3.1 Two-segment paths
This section calculates the geometric, dynamic and total phase for all closed paths

on the Bloch sphere made of two segments, each lying on conic circles. By creating a set
of all possible rotations, showing that we can vary the total phase interval to coincide
with all possible rotation angles of the state vector, and varying the control parameters to
create purely dynamic or purely geometric phases, we then are able to compare the
fidelity of geometric phase and dynamic phase under noise. We consider the case of the

first segment lying on a great circle, and the more general case of non-great circle paths.
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We first show we can find a set of paths with total phase continuously varying for
a m interval, and that we can maximize the GP while simultaneously minimizing the DP
(and vice versa) over this same set of paths for each value of the total phase, by varying
the control parameters (in the first case, for the first segment on the great circle, these
control parameters are: the angle amount of the first rotation and the angle between the
rotation axes).

The reason for the requirement of a « interval total phase is as follows: a unitary

operator U for a rotation of the state vector by angle 3 around a rotation axis 7 is:

_ifs
U(B) =e 2" (55)

Or in matrix form, for the case that on =07 :

5
U,(B) = (e %) (56)

0 ez

so that basis vectors along the rotation (z) axis:
In, >= ((1)), In_ >= ((1)) (57)
become
Un(BIny > = e %n, > Un(B)In_ > = e'2in_ > 59
after rotation. In this case, the total phase TP = /2 = GP + DP where GP = geometric
phase and DP = dynamic phase. For example, a segment that makes a complete great

circle will have a dynamic phase that vanishes, and the geometric phase is minus one half

the solid angle: GP = -x; the total phase TP = - = /2. To cover any state vector rotation
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B between 0 and 2m, the total phase must be able to vary between 0 and & for the paths
selected.

The first segment is assumed to be a rotation on the great circle (we later consider
the case of non-great circle paths), in the x-z plane (so that a = (angle from x-axis) =0 in
prior calculations), and symmetrical about the equator (so that the angle from the z-axis
to the initial state position is equal to the angle from the negative z-axis to the final state
position after the first rotation). Therefore, the first rotation axis is the y-axis. The total
angle subtended by the first rotation is B1. Therefore, the angle made from the initial state
position to the x-axis is f1/2, and the angle from the z-axis to the initial state position is
/2 - Ba/2.

Our first control parameter is B1, and it can vary between 0 and 2 =, these two
extreme values being no first rotation at all. At values close to f1=0, the first rotation will
be just above the x-axis, and the first rotation will be very slight, ending just below the x-
axis; at values close to 1= 2 7, the initial state position is just above the negative x-axis,
and the first rotation goes almost all the way around the great circle in the x-z plane, to
end just below the negative x-axis.

The second segment closes the loop, and is a rotation about an axis that makes an
angle of ¢2 from the x-axis, assumed to be CCW from the x-axis if looking down the z-
axis. This angle @2 can vary from 0 to 2 r, where a value of 0 or 2 m would mean that the

second axis of rotation was along the x-axis. Our two control parameters are then 31 and

2.
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There are two easy ways to make all possible paths: If we fix B1, then the angle to
the second rotation axis, @2 can be varied along the equator to get all possible paths for
that value of B1, and we can make graphs of the phases for all values of B1. Similarly, we
can fix @2 and vary 1, making graphs of phases for all values of ¢2. Alternatively, we can
make a 3D map of the phases over both control parameters.

For the case of the first segment on a non-great circle path, there is an extra
control parameter: the angle ¢1 from the x-axis to the axis of rotation for the first
segment. The angle amount B1’ rotated around the 1% axis (¢1 from the x-axis) is already
given by endpoints defined by 1 (angle amount if you stayed on great circle of x-z

plane). Our set of control parameters are then @1, @2 and P1.

3.2 Geometry of the two segments
For the first rotation, if we look down the negative y-axis, we see an arc with

radius r (see Figure 11). Taking the top half (above the x-y equator) of the arc, the angle
the arc subtends is B1/2. We can construct a triangle by dropping a dotted line from the
initial state position down to the x-axis, kept perpendicular to the z-axis. The length of

this dotted line is labeled “z”. From the geometry, we have

sinﬁ ==y (59)
2 r
B _di_

cos— =—= d, (60)

using r = 1 for a unit Bloch sphere.
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Figure 11- First rotation segment (orange line) around the y-axis (into the paper), by the angle 1. The distance
d1 is from the origin to the perpendicular dotted line; di measures the minimum distance along the x-axis; the
dotted line measures the maximum height z.

Now to close the loop, the second rotation will be an arc on the Bloch sphere,

around an axis of rotation called the x”-axis (see Figure 12-Figure 14).
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Figure 12- Both rotations (first rotation = orange line; second rotation = green line). Both lines are traversed in
both directions. The orange dot is the initial (and final) state position on the Bloch sphere; directly behind it
would be the final state position of the first rotation segment.

From the geometry of Figure 12, we have

d . d d . r
Cos @, = d—j, sin @, = d_i’ cosf, = 73 =d;, sinf, = 72 =7, (61)

Using equation (60) for di, this becomes:
ds = cos (B1/2) cos ¢2 (62)
d2 = cos (B1/2) sin @2 (63)
So that the cone half apex angle 01 is given by:
cos 01= cos (B1/2) cos @2

r2=sin 01
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Figure 13- Both rotations seen looking down the x”-axis (second axis of rotation).

From Figure 13, we can define B2 (the angle of rotation around the second axis of
rotation) in terms of the two main control parameters (B1 and @2). Let a = (n- B2/2); from
figure 3, B2 = 2n- 20 = 2(n- o ). From the geometry of Figure 12Figure 13, we find that

T . . r .
cos @ = —cos 2 sin ®s , sina@ = = sin 22 (64)
2 2 T2 2

tan o = sin a /cos a= sin (B1/2) / (cos (B1/2) sin ¢2)
or
a = arctan[ tan (B1/2) / sin ¢2]
and we can solve for 32, the angle amount of the second rotation. Using 2 = 2(n- o ):

B2 = 2(m- arctan[ tan (B1/2) / sin ¢2]) (65)
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Also from Figure 13, we can determine r2 by the Pythagorean theorem:
r? = do? + 2

Substituting in prior equations, we have

sinf; = \/cosz %sinzq)z + sin? % (66)

The above equations have been calculated with the assumption that the following ranges

hold: 0< B, <m 0< ¢, <7m/2,0< 6, <m/2.

3.3 Calculation of geometric phase (first segment on great circle)
The geometric phase (GP) is minus one half the solid angle:

GP=—= (67)

To calculate the solid angle, we follow Mazonka (2011); see also appendix. We want to
calculate the solid angle that the cone associated with the second rotation segment makes,
but only up to the great circle on the x-z plane that the first rotation segment lies on (see

Figure 14).
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Figure 14- Both rotation segments, with the first segment (orange line) on a great circle in the x-z plane. The
second rotation segment (green line) is part of the first cone; this cone makes an angle 01 with the x”-axis; the
first rotation segment is along the plane of intersection of this cone with another cone making an angle of 62 with
its axis. (Figure adapted from Mazonka 2011).

Variables of Figure 14 :

0= half of apex angle of the 1% cone, associated with the second rotation
segment.

02 = half of apex angle of the 2" cone, which provides the 2 intersection points
where the 2" cone intersects with the 1 cone.

@2 = angle between the x and x” axes (2 rotation axes).

¢ = angle between the d, segment and the initial state position of the orange (1%)
segment.

o = angle between the axes of the two cones.

B = angle between the tangent to the great circle and the tangent to the second

rotation segment.
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r> = radius of the circle for the cone associated with the second rotation segment.
d2 = segment distance from the center of the 1% cone (of the second rotation
segment) to the midpoint of the line connecting the two endpoints of the great circle (first

rotation segment); this midpoint lies on the x-axis.

Solid angle of a conical surface
The solid angle of a general conical surface is then

Q=21 -Y;8; — pdlju? — (s - u)? (68)
(see Mazonka 2011 and appendix A for a proof of this). This assumes that the solid angle
subtended would be 27 (equivalent to a cone subtending one hemisphere) if there were no
sharp turns or cut off sections from a cone. The last two terms are corrections cut off

from this.

3.4 Calculation of geometric phase (non-great circle paths)
In this case, we keep the initial point and the endpoint of the first segment the

same (in the x-z plane). The second segment is the same (makes rotation of angle amount
B2 around axis making an angle ¢ to the x-axis), but the first segment now is another
conic curve of angle amount 1’ that rotates around an axis that makes an angle ¢z to the
x-axis (1, without the prime, still represents the angle amount between the initial point

and first segment endpoint (points 1 and 2), if we stayed on a great circle).

Summary of geometric phase calculations for all segment paths
The equations for calculating the geometric phase acquired by the quantum state

after evolving along the two-segment paths are listed below, given the range of the three

main rotated frame control parameters ¢;, £;, and ¢,. This is a set of 16 equations
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(equations 73-88)) if B, and ;' are used, where their values depend on the range of the

three main control parameters:

ForO<pf;<m 0< 9o, <m and m< B, < 2m, 1 < @, <2m:

B1
tan —
B1'=‘2 tan_1< 2)

sin @4

For0<p;<m n<@p;<2mand n<B; < 2m 0< o, <m:

B1
tan =+
sin @4

ForO<p;<m 0< ¢, <m and m<pB;, < 2m, n< @, <2m:

B1
tan™! <wn 7) }
sin @,

For0<p;<m n< @, <2mand<f; < 2m, 0< ¢, <m :

8
B2 = ‘ 2 tan™?! <mn71>

,31’=2{7T_

ﬁZZZ{TE—

sin @,

The geometric phase equations are then:

For0< ¢; <2, 0<pB<2m 0< ¢, <=
sin \ !
GP = —cos™?! L + '871605?1605 o1+
Jl - cosz%coszgolj
-1+ cos™! SIn 92 +52 00582 cos @,
1—COSZ%COSZ§02 2 2
Foro< ¢; <7, 0<B;<2m, -< @< 7!
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A sme )

GP = —cos + 2 cos 2 cos @1+

By 2 2
1 — cos? —cos ¥1
—m —cos™?! SIn ¢ + =2 ﬁ cosﬁcos ©, (74)
1—coszﬁlcosz<p2
For0 < ¢, g 0<py<2m < @, < 7”With condition ¢, < ¢, — m:
sin \
GP = —cos™! P + ﬁ—lcos—cos @+

\/1 — cos? &cos 2¢,

—2m + cos™! _sin @ + &cos&cos @, (75)
’1—cosz%cosz<p2 2
(add 2z if @, > @, — m).
T 3 .
For0 < (plgz, 0<ﬁ1<27l', 7S Q, < 2m:
sin !
GP = —cos™! P +ﬁ7lcos 5 Cos p1 +
\/1 — cos? %coszq)l
—cos™1 _sin ¢ +22 B cosﬁcos @, (76)
1—c052‘81c052<p2
Fog p,<m, 0<p,<2m 0< o, g:
sin \ !
GP = cos™! L + %cos%cos Q.+
\/1 - coszﬁcos <p1/
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_1 sin @, B2 51

—1 + cos + - cos = cos @, (77

For< ¢;<m 0<p<2m -< @< m:

sin
GP = cos-1 P1 +'871cos%cos @+
\/1 - cosz%coschl
7 — cos-1 Sin 92 + %cosﬁcos ®2 (78)
For >< ¢y <m, 0<p;<2m m< @ < 3711 :
sin
GP = cos 1 P1 +B—1cosﬁ—cos p,+

2 2
\J cosZ’B1 cos? goJ

B2 B1

-1 —Sin @2 +5-c0s = cos ¢, (79)

Forl< g, <m 0<p; <2m, 37”3 @, < 2m with condition ¢, < ¢, —

—2m + cos

sin
GP = cos—1 P1 +'871cos'i cos ¢, +
\/1 — cos? %coszgol
-2 — COS_l —Singa + —= ﬁ COS&COS (p (80)
1—coszBlc052<P2 2

(add 2z if @, > @, — ).

For 1 < <p1£37n, 0 <y <2m 0< ¢, < with condition ¢, < ¢; — 7

50



/ — sin ¢ Bi' B
+7cos?cos ¢4
\Jl —coszﬁcos 24

GP = —cos™!

- sin
—2m + cos™! £2 +=2 ﬁ cosﬁcos ©,

,1—coszﬁlcosz<p2

(add 2z if @, > @, — m).

3
For< ¢;<>, 0<B;<2m ~< ¢g,<m:

/ — sin ¢4 \ Bi' P
= —cos~ + €05 C0S ¢4
\ 1—c052—cos (pl/

—cos™1 i +ﬁ cosﬁcos ©
/1_0052ﬁ15052¢2
3 3
For< ¢; <=, 0<B;<2m m< @< =
— sin
GP = —cos™?! L + %cos > €0S 1
\/1 - cosz%coszq)l
—1 + cos™?! i & + &cos&cos @,
1—c052%c052<p2
Form < <pls37”, 0 < By < 2m, 37”3 p, < 2m:
— sin \
GP = —cos™1 L + %cos?cos ¢4
Jl - COSZ&COS gol/
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- - sin
—1 —cos™! £ + % cos ﬁ cos @,
1—coszﬁlcosz<p2

Vi

For < ¢, <2m, 0<f<2m 0< @, <=

— Sin @4 \ B1

+ —cosﬁ—cos ¢4

2 2
\/1 — cos? '6;1 cos? <p1/

GP = cos™?

sin
1 2 + B2 cos&cos ©,

—2m + cos” >
’1—coszﬁ1cosz<p2

For%ns ¢, < 2m, 0<,81<27r,§S ¢, < m,and @, < @1 — T

— sin
GP = cos 1 \ P + ﬁ?cos%cos ¢1

J —cos? 5L '81 cos2¢p,

-1 sin @, 4+ 5 B2 B1

—21m — cos S €05 —C0S ¢
,1—coszﬁlcosz(p2

(add 2 to above if @, > ¢, — m)

3m |

For%”s 01<2m, 0<pB;<2m m< 2=

Csingn ) B

1
+ —cos—cos ¢,

B 2 2
1 — cos? 7lcosz<p1

GP = cos™ 1

— —sin
1 $e + £ cosﬁcos ©,
231 2

coszqoz

—T + CcoS
1—cos

For=r< @ <2m, 0<py<2m, 2< @< 2m:
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/ —sin '
GP = cos™?! 2! + ﬁ—lcos&cos QL —T

2 2
\/1 — cos? &coszq)l

2

1 e % cos % cos @, (88)

1—cosz%cosz<p2

—Ccos~ +

3.5 Calculation of dynamic phase

General case: rotation axes in any direction
For our most general paths, we assume the two rotation axes can be anywhere on

the Bloch sphere. We also assume our initial (and final) endpoint of our path is on the x-

axis, so that the initial basis states are along the + x-axis:

[ (t=0) >==(|0> +[1>) (89)
(£ =0) >= (0> —|1>) (90)

since the most general qubit is
Y, (t =0) >=sin§|0 > +e‘i“cos§|1 > (91)

The initial basis states [+> and |-> can be defined in the x-y plane by:

| 4>, = %qo > +emi®|1 >) (92)
| —>0=2(10> —e7|1>) (93)

where a is the angle to the x-axis and the polar basis states are chosen as

[0 >= (2) 11>= ((1)) (94)
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Here |0> points along the south pole of the Bloch sphere, and |1> along the north pole.
(This is in contrast to how |0> is usually represented as the north pole, and usually there
IS a + sign in the exponential above).

The dynamic phase for the |+> basis state is:

ty
DP, = _f <YP,(t= 0)|Ult*HlU1|1/)+(t =0)>dt+
0

T *
- ftl < 1/J+(t1)|U2t H2U2|1/1+(t1) > dt (95)
for both rotation segments.

Each segment’s rotation operator is

!

—expl—i Phg g
U, = exp{ o n} (96)

where f3;, is the angle amount of rotation around the 7-axis.
The rotation angle f;, is related to the rotation duration and the Rabi frequency by:

Br = 1Qn]T (95)

In particular, for the first segment, g; = |Q,]|t, and the rotation operator is:

U, = exp{—i H 1} = exp{—i Hllg—il (96)
The Hamiltonians for the two segments are:
H; = %(—roos ©L0x —Qosing, 0, + Ad,) = %ﬁl " Op 97)
H, = %(—902‘305 P120x — Qo2Sin @ 50y, + Ayo,) = %ﬁz " Op (98)
so that the two evolution operators are:
U, = exp{—i% —%cos P10y —%sin @0y +|9Ajaz)} (99)
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By . Qo
U = exp{—i % (=2 coS Q1,05 — sm P20y + Uz)} (100)

Qo2
Q2] 1922

where [Q] = /(Qo)? + A% and|Q,] = /(Qp2)? + (42)2.

The dynamic phase for the first segment is:
DP,(1) = — [' <, (t = 0)|UF HyUs [, (t = 0) > dt (101)

= —[}7 <.t = 0)|Hily(t = 0) > dt (102)

since U and H commute. The dynamic phase for the first segment becomes:

DP,(1) = o= (103)
= % cos @, (104)
onsettingt=1
The dynamic phase for the second segment is:
DP.(2) = — [} <Y (tDIUS HUp i, (£) > it (105)
= — 1 <, () Ho |, (&) > dt (106)
where the state is:
Uil (t= 0) > = [Py (ty) >=
= v—l_[{cosﬁ— + lsm%m oL 4+ Lsm'%, |S§1I}|O >
+{cos + isin L lﬂ—‘l’le‘i"’L isin£1 IQA_I}ll >] (107)
This state can also be found from the known coordinates of the second endpoint:
Ngy = (nEZx, NE2y, nEZZ) = (cosa sin@,sinasin @, cos ) (108)

Where the polar and azimuthal angles 6 and a define the general qubit state:
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Y, (t) >= sing|0 > tel@ cosg|1 > = (y|0 > +C1|1 > (109)

T
DP,(2) = - ftl <Y, (E)[Ho |y (1) > dt (110)
. A .
= Qg2 CofRe (C1) cos @, — Im(Cy)sing,} + 72{(6'0)2 — C{C} (111)
on setting the time interval to 1, and using the fact C, is a real coefficient. The total

dynamic phase for the loop is:

DP, = DP,(1) 4+ DP,(2) (112)

Special case #1: first segment on great circle & rotation axes in x-y plane
The basis states are taken to lie along the direction to the initial state position

which is in the x-z plane. For a first segment on the great circle, we can assume the first

rotation segment is in the X-z plane, so (0=¢=0):

[ho(t=0)>=sinZ [0> + cos? [1> (113)
p-(t=0)>=sin> [0> — cosZ 1> (114)
Here 6 measures the angle from the z-axis, and g = %— % , Where ; measures the angle

along the geodesic between the two endpoints.

Each segment’s rotation operator is given by equation 96:
 Bn =
U, = exp {—l 0 n} (115)
since in this special case, the evolution path is on the geodesic, so that 8,, = Br,.

For rotation axes in the x-y plane, there is no detuning, so that A= 0, and |Q| =

Q,, and

— A

o-'n= —(cos QL0, + sin (pLay) (116)
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using the lab frame control parameter ¢, . The first segment rotation axis is along the y-
axis, so that @1 = 7/2, so this element of the evolution operator becomes 0 - n = —a,.
The first rotation operator is then

U, = exp{i%ay} (lab frame) (117)
in the lab frame ( a rotation about the negative y-axis); but in the rotated frame (where the

first segment is in the x-z plane) the rotation axis is: 7; = (cos ¢4, sin ¢4, 0) and the

evolution operator is:
U, = exp{—i%ay} (rotated frame) (118)

Therefore the first Hamiltonian is

1
H1 = Eﬂoo'y (119)
in the rotated frame, since U; = exp{—iH t}.
The second segment has angle: B; = |Q,|t. Assuming the second segment axis is

also in the x-y plane, the second Hamiltonian is

H, = %Qoz(cos @, 0y + sin @, gy) (120)
With this, the second rotation operator becomes

U, = exp{—i%é (cos @05 +sin@,0,,)} (121)
in the rotated frame.

The first term is a rotation on the great circle, so the dynamic phase there is zero:

DP. (1) = 0. The dynamic phase for the second segment is:
T T

tx ‘0‘02 Bl
DP,(2) = — | <y (t)IUFHUp|9p,(ty) > dt = — — €059 Cos?dt
t1 t1
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4
= —Bacosh

> ~ COSQ; (122)

using 5 = |Q;]t.

Special case #2: non- great circle first segment & rotation axes in x-y plane
For non-great circle paths, our initial and final endpoints of the first segment are

the same (we can assume they lie in the x-z plane). But instead of following the great
circle between them, the first segment is a rotation around an axis an angle @1 from the x-
axis. We use the same initial states as above (equations 113-114).

For the special case of the first rotation axis in x-y plane, the Hamiltonian for the

first segment is:

H; = % (cosp,0, + sing,0y) (123)

This is a constant Hamiltonian that commutes with the U operators (which
cancel), so that the dynamic phase of the first segment is:
DP, () =—[' <y, (t=0)|U, *HU, |y, (t=0)>dt
t1

Q
= —70 (siny < 0| + cosy < 1|)(COS(p10'x + Sin<p1cfy) (siny|0 > + cosy|1 >)dt
0

DP,(1) = —%cos%cos Q1 (124)
using sin( 2y) = sin(g — %) = cos %
For the second segment, we have
_ QOZ .
H, = — (cos@,0y + sing,o,) (125)

The dynamic phase for the second segment is
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T
PP == | < eV Uy ) > de

t1

!
= —Baosh
2 2

COS @ (126)
Our final equations for the dynamic phase in the special case of non-great circle paths

(keeping rotation axes in x-y plane):

DP,(1) = —%cos%coscpl (127)

DP,.(2) = — % cos % cosQ, (128)
for the first and second segments, respectively. The total dynamic phase of the evolution

path is:

DP, =DP,(1) + DP,(2) = —%cos% (Bicospq + By cosp,) (129)

where f3;is the angle of rotation for the geodesic between the two endpoints of each

segment, and B;and B, are the angles of rotation for the two segments (evolution paths).

3.6 Total phase (first segment on a great circle)
The total phase is a sum of the geometric and dynamic phases:

TP+ = GP+ + DP+ (130)
The exact form of this equation depends on the quadrant each control parameter is in.
Since the geometric phase is equal to minus half the solid angle, its range is (-2x, 0]. We
use a range of total phase from [-=, 0], so that the dynamic phase range is [-w, 27), but the

range of the dynamic phase for a particular value of total phase (TP) is [TP, TP + =).
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CHAPTER 4- THREE-SEGMENT PATHS

In this chapter, we consider quantum gate operations that can be considered 3
rotations of the qubit state around 3 axes, creating a closed loop on the Bloch sphere. In
the three segment case, the 3N-2 lab frame control parameters are: Qo ,oL,A, Qo2 ,¢L2,A2,
and @3. The geometric phase is the sum of the geometric phases of the wedge each
segment makes with its associated geodesic, plus a geometric phase from the spherical
triangle made by the three unique geodesics between the three endpoints (see Figure 10).

The first endpoint (starting point of first segment) is constrained to be on the lab
frame x-axis:

fier = (1,0,0) (131)
since in general we can always rotate the first endpoint there. The second and third
endpoints can be anywhere (except we exclude points 1, 2, and 3 coinciding, i.e. all
and B’ angles are prevented from being 0); the fourth endpoint (after the third rotation)
must close the loop by coinciding with the first endpoint (starting point). With three
segments, there is the possibility that segments cross each other, and the geometric phase
can be zero if equal areas are traversed in opposite directions (resulting in dynamic gates;

see Figure 47).
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4.1 First segment
The Rabi vector amplitude for the first segment is equal to the angle amount of the first

rotation:

1| = V( Q)2 + A2=r (132)
where we have used B1’=| Q| 7, setting t=1. The ranges are: 0 < 1’ <2x; and 0 < @, <
2m.

The Rabi vector is
Q, = (—Qqcos @, —Qgsing,, A) (133)
The first axis of rotation is

= ﬁ( Qycos @, —Qpsin @, A) (134)

This axis becomes 7i1’ = (cos @1, Sin @1, 0) in the primed (rotated) frame.

The first segment U matrix is:

U, = exp{—l a n} (135)
B1 B1 .
= cos— I — Lﬁ—sm—{ Qg cos @, 0,— Qo sing; 0y, + Ao, } (136)
1
cos lASHlB iQO sin= Bl e leL
_ 2 B1 B1
B Bl l(pL Bl Bl (137)
ﬁlsl COS—+Lﬁ1 in—=

We can divide B1” into smaller segments and put noise on the lab frame parameters to
calculate the fidelity from the U matrix above. We need to now calculate B1 and ¢ in
order to calculate the geometric phase due to the first segment’s wedge.

The direction of the second endpoint of the first segment, nez is:
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fie2 = Rp1 (B1) fie1= Ryq (By) (1,0,0) (138)
where

Ryq (BD =

cos B +nZ,. (1 — cosBy) Ny, (1 — cosPy) — nyzsin(By)  nyxng (1 — cospPy) + nyysin(By)
nlxnly(l - COS[?{) + nlein(ﬂ{) Cos ﬂ{ + n%y(l - COSB{) nlynlz(l - COS,B{)—nlel'n(,Blr)
NNz (1 — cosPy) — nyysin(By)  nyzngy, (1 — cospPy) + ny,sin(By) cos B +n2,(1 — cospy)

(139)

as given by the Rodrigues rotation formula. The components of the second endpoint are
found from the above.
Two endpoints define a unique geodesic (great circle segment) between them,

which subtend an angle B1 given by:

CoS Bl = ﬁEl ) ﬁ'EZ = Ngyx = COS ﬁll + (%)2 (1 - COSﬂ’l) (140)
1
so that
Qqcos @ 2
By = cos™|cosp; + (#) (1 — cospBy)
B1
=cos g,y (141)

The above angle returns a value between 0 and =, taking the geodesic between the first
two endpoints. A rotation of half of this angle from 71 along the great circle towards 7ig2

is the direction of the x’-axis, which in the lab frame coordinates is:

B1

X' = Ry, (7) i (142)

1

sinf31

A~ —_ ﬁE1XﬁE2 _al
where figc = g, Y =

(0, — ngz,,ng,y) is the normal to the great circle

formed by the first two endpoints. The resulting equations for x” blow up in the antipodal

case.
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Antipodal case
For the antipodal case, the two endpoints of the first segment are opposite:

fie2 = (-1,0,0) (143)
in lab frame (xyz) coordinates. The rotation angles are:

Bi=P1=m (144)
(although there are many non-antipodal cases where 8; = , if B; = m, then the
endpoints are necessarily antipodal). The geodesic is chosen to coincide with the
evolution path, so that:

y'= i (145)
The x’-axis will be in the y-z plane, pointing halfway along the geodesic; the z’-axis will
coincide with the lab frame’s x-axis. From X =y X z:
&' =1y X fig;= (0,ny,,—nyy) (146)
The angle between x” and ny is given by cos ¢, = X' - ;= 0, or:

o1 =3 (147)

for the antipodal case.

General case (non-antipodal)
Now to find the rotated frame control parameter ¢1, we find the angle between x” and

i = ;_}(_QOCOS @1, —Qosin @, A) :

cos @y = x'y gy + x'yngy, + x4, (148)

or

- B1
—Qpcos @, B (Qo)?sin? @y +A2] sin=- ,
cos @, = "T{cos71 + [ £ R sinﬁ21 (1-cosB))}  (149)
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The above equation blows up if ; = = (antipodal case), besides for the f; = 0 (no first

segment rotation) that should also be avoided. To find sin ¢,, we solve for the z’-axis:

n ,\ Ny ﬁ sm% sm% 1 0 150
2'=x = (cos— n —n n
Xy =( g2y g DE2z G sin/?l( » = Npz,Ngay)  (150)
2" sin @,
sin% sinﬁ sm% B1 B1 sin%
=(ngy, —2MNy, — Ngy, —=>TNq,, N1, N —cos—n —=Nqy — Ny, Ngyy, —=
E2Y g, 1z ~ NE2z Smﬁ 1y g2z G = €OS 55 Mz, COS Ty = Maxlp2y G

(151)
From these components we have 3 equations to solve for sin ¢,. From the first equation
for sin ¢; (which works in all but the antipodal case) and the equation for cos o1, we can
find the value of 1: let cos @1 = y; if sin 1> 0, then @1 = cos ™ y; else p1=2m - cos ™ .
This keeps o1 in the full range [0,2x). This gives all the quantities needed to calculate the

geometric phase of the first segment wedge.

4.2 Second segment
The basic form of the equations for the second segment match the first segment

equations. The second segment’s U matrix is:

4 A, Qg ;
cosﬁ2 lﬁ—smﬁ— Lﬁ—smﬁ e L2
U= | | B ’ ZB B (152)
[ —Zsin=2 g1 P2y 2 n=
B3 ﬁz

The second segment Rabi vector amplitude is equal to the angle amount of the

second rotation:

Q| = \/(902)2 + A% =P (153)

where we have used B2’=| Q2| 1, setting t =1. The second axis of rotation is
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. 1 .
n,; = 0l (—Q02€0S @12, —QppSin @5, 4;) (154)

This axis becomes 72’ = (cos @2, Sin @z, 0) in the primed (rotated) frame.
The direction of the third endpoint is:

fies = Ry2(By) fie2 (155)

Antipodal case
For the antipodal case, the two endpoints of the second segment are opposite:

flgs = -fig2 (156)
in lab frame (xyz) coordinates. The rotation angles are:

B,=PBy=m (157)
(although there are many non-antipodal cases where B; = , if B, = m, then the
endpoints are necessarily antipodal). The geodesic is chosen to coincide with the
evolution path, so that:

y' = M2 (158)

The x’’-axis will be in the plane, pointing halfway along the geodesic; the z’’-axis will
coincide with the lab frame’s nE2 axis. From X = y X Z :

" =17, X gy (159)

The angle between x’” and ny is given by cos ¢, = X'' - fi,= 0, or:
@2 =3 (160)

for the antipodal case.
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General case (non-antipodal)
The geodesic (great circle segment) between the second segment endpoints

subtend an angle B2 given by:
B, = cos™' (g, fgs ) (161)
A rotation of half of this angle from 7ig2 along the great circle towards 7ies is the direction

of the new x’’-axis, which in the lab frame coordinates is:

X' = Ry, (%) gy (162)

~ Aga XA
where Ngc = M

gy y'"is the normal to the great circle formed by the second and third
2

endpoints.

~ 1

Nge = Sing, (Np2yNE3; — N NEsy, N2 Mgy — NEaxNEss, NEaxNE3y — NgayNgsy) (163)

From x-components:

INTIN
_ (X XA)

sing, =-—
go Z”X

(164)
This is singular only if z’ is in the y-z plane of the lab frame, which occurs if x’” is on
the negative x-axis; in this case, we can use y components or z components (atleast one
component will be nonzero). Let cos ¢z = y; if sin g2>= 0, then @2 = cos 1 y; else g2=2n
- cos 1 y. This keeps ¢ in the full range [0,2m).
4.3 Third (closing) segment

The only lab frame control parameter for the third segment is 3, the angle of the

third rotation axis ns from the x’-axis, since this is all that is needed to close the loop. We

want to calculate the associated lab frame parameters Qos ,¢L3, and Az (and thereby 35" )
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in order to use the U matrix; we also need to find 5 in order to calculate the geometric
phase contribution GP3 from this segment’s wedge.
From previous calculations, we know nes and nez. We can calculate 353 from
cos Bz = flgy "Agz = Ng3yx
B3 = cos™! ngsy (165)
A rotation of 3;/2 from fiezalong the great circle towards 7ig; is the direction of the new

x’’’-axis, which in the lab frame coordinates is:

o _ ﬁ3 &
x, —_ Rngc (?) TlE3 (166)
A — ﬁE3XﬁE1 o — 1 —
where figc = sinfs Yy = Ny = Sing, (0,ng3y, nE3y)-

3rd segment antipodal case

In this case 3 = B3 = m, and sin B3 = 0, so the above equation for y’*’ is singular.
Unlike the other two segments, where we choose the geodesic to be along the evolution
path in the antipodal case, here we are given ¢, the angle between #i; and x’”’ (both in
the y-z plane, but there is ambiguity in their directions within this plane). We choose y’”’
to point along the z-axis, so that x”*” = (0,-1,0).

The third axis of rotation is then found from the following rotation:

i3 = Rpp3(@3)X"" (167)
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General (non-antipodal) case

To find the lab frame parameters, we need to first find the components of

fis = R, (p3)X"" (168)

i

Where the z’”’-axis is found from 2’ = """ x §""" :

2" = (— "y :ffﬁys -x", ;fﬁ) i+ x", :h’%j ”’x:ﬁ’%k (169)
The components of the third rotation axis are:
Nz, =CoS¢P4 cos% (nE3x + 2 sin? %) (170)
ngy = —[1 + npse(1 - cos(p3)] NE3yNEsx +

2 (%)

+ [cos@y + nga (1 — cos,)] nE3yCOS% + sin(@,) “E3z (171)

sinfi;
n
N3, = —[1 4 n5,(1 = cos@,)] Lnﬁmx
2cos (73)
1- B _si D3y 172
+[cos@; + nE3x( cos(p3)]n532 cos sm((p3) Sins (172)

3rd segment angle of rotation

The rotation angle of the third segment 5" is found from the geometry of the third

segment wedge:

p3 =2 |tan‘1 (MN ,0<@;<m (173)

sin @3 -

pi=2|r—|an? (22| m<gy <o am

sin @3
which matches the equations for 3,’ found from the two-segments work. As a check, the

following rotation should result in the x-axis:
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Where the rotation matrix is:

cos B3 +n, (1 — cosfy)

N3xN3y (1 — cosPs3) + nz,sin(Bs)

N3xN3,(1 = cosPz) — naysin(Bs)  nazngy (1 — cosPs) + naysin(Bs)

cos B3 + n3, (1 — cospPs)

Ru3(B3)ngs = £ = (1,0,0)

Ry3 (,83’) =

N3xN3y (1 — cosP3) — nz,sin(B3) n3xnz, (1 — cosPs) + ngysin(Bs)
n3yn3z(1 — cosf3)—nzxsin(B3) (176)
cos B3 +nZ,(1 — cosp3)

Third segment lab frame control parameters
The third segment Rabi vector amplitude is equal to the angle amount of the third

rotation:

where we have used B3’=| Q3] 1, setting t =1. The third axis of rotation is

|Q3] = J(Qo3)2 + A% =P

R 1 .
iz = — (—Qp3€08 @13, —Qp3Sin @ 3,43)

The lab frame parameters Qo3 ,pL3, and Az are:

If Sin (pL3 2 0,

else

— ! 2 2
Qo3 = Ps3 A/ 3" 13,

Az= ﬁ3,n32

_ ﬁ3ln3x

CoSs (‘pL3 - - _ﬂ
03

. ﬂ3’n3y

sSin (‘pL3 = — _,Q
03
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(178)
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(180)
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@3 =2m— cos™?! (— w) (184)

Qo3

The third segment’s U matrix is:
;A3 . B3 Q i
cosZ — L—?,’sm& Lﬂsmﬁ ~iPL3
_ 2 B3 2 B3
Us = ,8 ﬁ /3’ (185)
=eltLs By i%sinks
ﬁs B3

4.4 Geometric phase of segment wedges
The segment wedges are loops made by an evolution segment in the direction of

evolution, and the unique associated geodesic along the direction opposite to evolution
direction. For the first segment wedge, the geometric phase GP1 is a function of B, B1’,
and @1. Each wedge’s geometric phase follows from the geometric phase equations for
the first segment of the two segments work, where the first segment is on the great circle,
with a difference caused by going in the opposite direction of evolution.

The equations for the geometric phase of each wedge depends on the quadrant of

the angle @1 between the geodesic and the rotation axis:

For 0 < ¢, g
- _ -1 —sin @y Bt B1
GP; = —cos + |5 —m)coscos ¢, (186)
1—c052‘81c052<p1
For gs o, <m
— -1 —sin ¢4 Bi B1
GP; = —2m + cos + —~ — T )C0S=-COS @y (187)

/1—c05231c052¢1

70



3
For < ¢4 S;"'

GP, = —m —cos™! b + (% — n) cos%cos P01 (188)
1—cosz%cosz<p1
3n
For - S 91 21!
—_ -1 sin @1 @ _ &
GP; = —m + cos + (5 —m)cos=cos ¢, (189)

’l—cosz%coszq)l

For the second (third) segment wedge, the equations that follow apply for GP> (and GP3)

with the “1”” subscripts replaced with “2” (or “3”).

4.5 Geometric phase of the spherical triangle
For the geometric phase contribution from the spherical triangle, we need the

tangent vector to each of the three great circles, taken in the direction of evolution: 11,12,
and t3; the spherical triangle angles A,B,C (at endpoints 1,2,3 respectively) are then:

A =m-cost(tz11); B=m-cost(t1-12); C =m - cos(t213) (190)
since the tangent vectors to the great circles are unit vectors; t3-11 is evaluated at the first
endpoint; t1-12 at the second endpoint; and t2-13 at the third endpoint. If the tangent of
the segment coming into the endpoint (following evolution direction) is reversed so that it
opposes the evolution direction, this equation becomes:

A = cos(t311); B = cos(1112); C = cos™(t213) (191)
The solid angle of the spherical triangle is then

OA=A+B+C-nx (192)
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And the geometric phase of the spherical triangle is:

GPA=(x)*12(A+B+C-mn) (193)
where the (-) sign is for outward pointing vectors given by the right hand rule along the
evolution of the three segments. The sign of the GP(triangle) is negative if

nE3 - (nE1 xnE2) > 0, (194)
unless there are antipodal segment endpoints.

In the case of an antipodal first segment (so that the second endpoint is at (-1,0,0),
opposite to the first endpoint), the sign of the GP depends on the first rotation axis y’, and
the location of the third endpoint. The GP sign is negative if:

nE3-y’>0 (f; = m) (195)
For an antipodal second segment (second and third endpoints opposite to each other), the
GP sign is negative if:

nEl -y’ >0 (B, = n) (196)
i.e., the x component of y’” must be nonnegative:

) =0 (B, = m) (197)
For an antipodal third segment (so that third endpoint is at (-1,0,0)), the sign of the
geometric phase depends on the third rotation axis, y’**, and the location of the 2"
endpoint. The sign of the GP(triangle) is negative if

nE2-y’”’> 0 (f3 = m) (198)

The coordinates of a great circle in the x-z plane are:

s; = (cos¢',0,sin @") (199)
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where ¢’ is measured from the x-axis in the z-axis direction. After rotating the great
circle clockwise around the x-axis by angle y until it coincides with the first segment, the
great circle coordinates become:

s; = (cos @', sin @’ siny,sin ¢’ cosy) (200)
The tangent to the great circle is:
dsy
a0

=T (—sin¢’, cos ¢’ siny, cos ¢’ cosy) (201)

If the first segment tangent is evaluated at the first endpoint 7ie1 = (1,0,0), then ¢’ = 0.
7,(nE1) = (0,siny, cosy) (202)
If we evaluate the great circle point’s coordinates at the second endpoint, then ¢’ = f8;
and:
s; = (cos B;,sin By siny,sin f; cosy) = ng, (203)
so that ng,, = cospy; ngyy, = sinp; siny and ng,, = sinf; cosy. The tangent to the

first segment at the second endpoint becomes

. Ng2x NE n n
17,(nE2) = (—sin By, ::;B:y, Eszi’;;lzz) (204)

pointing in the direction of evolution. At the first endpoint, the first segment tangent

becomes:

7,(nE1) = (0,22 B2z (205)

sin By’ sin B,
also pointing in the direction of evolution.
Similarly, if we take another great circle in the x-z plane, and rotate it by a
different angle ys clockwise around the x-axis until it coincides with the third segment,

we obtain the third segment coordinates:
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s3 = (cos @'’ ,sin@"" sinys,sin@'’ cosys)
The tangent of the third segment is then:

ds . .
d(pf,, = (—sin¢"’,cos "' sinysz,cos "’ cosy;)

T3 =
Evaluated at the third endpoint, the coordinates are:

s3 = (cos B3, sin B3 sinys, sin B3 cosys) = ngs

and the third segment tangent at the third endpoint is:

. NE3xME3y MNE3x NE
73(nE3) = (—sinfs, S;B3y, 5319:1[3332)

This tangent points opposite to the evolution direction.
At the first endpoint, g5 = 0, so that
s3 = (1,0,0) = ngy
The third segment tangent at the first endpoint is:

NE3y  NE3z )
" sin B3’ sin B3

73(nE1) = (0,siny;,cosy3) = (0

which also points opposite to the evolution direction. If we now rotate the second

endpoint onto the x-axis:

R—y’(ﬁl)nEZ = (1,0,0)

then we can use the same form of equations above to find the tangents at the second

endpoint, by first rotating the first and third endpoint by the matrix R_,,/(8;):
R_y'(ﬁ1)nE1 = (Ng1x (r2), Ng1y 2, ngy, (rz))

R_y'(ﬁ1)n53 = (Ng3x (r2), Ng3y 2, ngs, (rz))
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where the (r2) superscript signifies we have rotated the endpoint coordinates into the
frame where the second endpoint is on the x-axis. We then have the following tangent

equations:

n (r2) n (r2)
7,(nE2,12 coords) = (0,—2 £z

sinB, ' sinf,

) (215)

which points in the evolution direction, and

nE1y(r2) ngyz "

T,(nE2, 12 coords) = (O, snp. " sinp. (216)
which points opposite to evolution direction.
Similarly, if we rotate the third endpoint onto the x-axis:
Ry (B3)ngs = (1,0,0) (217)
And rotate the other endpoint by the same matrix:
Ry (B3)ngr = (Mp1x (r3)'n51y T2, ngy, ) (218)
Rym(Bsdng; = (Mgax (T3)'n52y %), ngy, ) (219)

Where the (r3) superscript signifies we have rotated the endpoint coordinates into the
frame where the third endpoint is on the x-axis. We then have the following tangent
equations:

ng1y ™ ng,, 3

sinB; ' sinfs

T3(nE3,7r3 coords) = (0,

) (220)

in the evolution direction.

nEzy(rg) NE2z (r3)

sinfB, ' sinp,

T,(nE3,7r3 coords) = (0, (221)

opposite evolution direction.
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For the special case of antipodal endpoints for a segment (any of the B’s equal to
n), we choose the rule that the associated geodesic should coincide with the evolution
path, so that GP = 0 for that segment’s wedge. The segment’s geodesic in this case is

299

determined solely by the axis y’ (or y’’, y’””) the evolution’s path rotates about. The
tangent vectors of an antipodal segment are the same at both endpoints (flipping the
direction of the second tangent); these tangent vectors may need to first be rotated into
the same coordinates as the other tangent vector at the endpoint, in order to find the angle
there.

For example, in the case of antipodal endpoints for the first segment, f1 = f1’=m,
and the tangent vector for the first segment at the first endpoint is the cross product of the
rotation axis for the first segment (y’) and the coordinates of the first endpoint (nE1):

11 (MEL By = m) = ¥ Xng (222)
in the direction of evolution. The tangent to the second segment at the second endpoint is
the same (with evolution opposite to evolution), but the coordinates must be rotated into
the r2 coordinates before taking the dot product with t,(nE2,r2 coords), in order to
find angle B.

For an antipodal third segment, the tangent is:

T3(MEL B3 = m) = ¥ X ng; (223)
opposite to evolution direction. The third segment tangent at the third endpoint,
t3(nE3, 3 = m), is the same, but rotated around y’’’ by 5 to get into r3 coordinates;
this tangent vector is in the evolution direction.

For an antipodal second segment, the tangent is:
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T,(nE2, B, = m,r2 coords) = R(y" X ngy) (224)
where R is a rotation around y’ by f3; to get into r2 coordinates; this vector is in direction
of evolution. At the third endpoint, t,(nE3, f, = m) must first be rotated back to lab
frame coordinates, and then to the r3 coordinates; this tangent vector is opposite to the
evolution direction.

The full geometric phase of the three segments can now be calculated as:
GP = GP1 + GP2 + GP3 + GPa (225)
If this value of GP is positive, we then use
GP=GP-2n (226)

to keep the geometric phase in the range (-2x, 0].

4.6 Dynamic phase of the three segments
The dynamic phase is a sum of these three-segment dynamic phases; the first two

segments’ dynamic phases are calculated as before. For the third segment, we use the
known coordinates of the third endpoint:
gz = (Ng3x Nezy, Nesz) = (cosa sinf,sina sin b, cos 6) (227)

Where the polar and azimuthal angles 6 and a define the general qubit state:
0 . 6
[Yy(ty) > = sin§|0 > +e™ ¢ cos§|1 >

To find this state in terms of the endpoint, we calculate:

0 = cos ngs, (229)
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e-ia = DEsx _ ;IlE3y (230)

sinf  sing
settinga = 0 if & = 0 or m. The third segment dynamic phase is:

DP.(3) = — [, <P+ (t)|H3lh, () > dt (231)

= %[Qos{cgscm e'¥Ls 4 Cf3 Coz €13} + A3(Cg3Co3 — Ci3C13)] (232)

= Qg3Co3{Re (C13) cos ¢ 3 — Im(Cy3)sin g 3} + %{(603)2 — Ci3C13}  (233)

on setting the time interval to 1. The total dynamic phase is: DP, = DP,(1) + DP,(2) +

DP, (3).
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CHAPTER 5- TWO-SEGMENT ROTATION RESULTS

This chapter contains the results of our research into the design of rotation paths
for quantum gates, using two-segment rotations. We have calculated the dynamic,
geometric and total phases for all possible two-segment rotations on the Bloch sphere.

Purely geometric rotations can be built from rotations where B1’ (the angle
amount of the first segment) is set to « (this forces the first segment unto a great circle),
and the control variable 2 is allowed to vary. In this case, B2’ (the angle amount of the
second segment) is constrained to also be =; since both segments are on great circles, the
dynamic phase vanishes.

To build purely dynamic gates using two segments, we must use the paths where
the both rotation axes are along the first endpoint (along the positive or negative x-axis).
In this case, the two endpoints coincide and there is no loop. The only other place where
the geometric phase is zero for two-segment paths is along a retraced path, on which the

dynamic phase is also zero.

5.1 Geometric gates versus direct rotations

Gaussian noise on phase
When Gaussian noise was put on the phase control parameter (¢L), the 2-segment

composite rotations were seen to have much lower error rates than direct rotations. From
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Figure 15, it can be seen that the highest fidelity 2-segment geometric gates performed

much better than the direct rotations over the full spectrum of rotation angles.

Our research showed that the design of the best paths may involve using a small

Rabi frequency in the rotation. A correlation between small Rabi frequency and high

fidelity was seen for all two-segment geometric gates (Figure 16).
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Figure 15- Error rate vs. rotation angle, Gaussian noise on ¢..
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Figure 16-Error rate vs. sum of the Rabi frequencies of both segments, for 2-segment geometric gates.
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Figure 17-Range of error rate for geometric gates and direct rotations, over spectrum of phase noise level.

Geometric gates also had lower error rates than direct rotations across a range of
levels of phase noise (Figure 17). In the direct rotation case, the best error rate occurred
for total phase = 0; the worst occurred for total phase = - 0.7 n. For geometric gates, the
best error rate occurred for total phase = - 1.0 x; the worst occurred for total phase = - 0.5

.

Random percentage noise on Rabi frequency
In contrast to the phase noise plots, the direct rotations actually perform better

than the 2-segment geometric gates at the lower half of rotation angles when there is a

10% Rabi frequency noise, whereas there is a drastic improvement in error rates for the
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2-segment geometric gates over the direct rotation for higher rotation angles (Figure 18).
Under this noise, there was the same correlation between high fidelity and small Rabi

frequencies for the two-segment geometric gates (Figure 19).

Error rate vs. rotation angle
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Figure 18-Error rate vs. rotation angle, 10% noise on Rabi frequency.
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Error rate vs. Rabi frequency sum
(10% Rabi frequency noise)
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Figure 19-Error rate vs. sum of Rabi frequencies of both segments, with 10% Rabi frequency noise, for 2-
segment geometric gates.
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Figure 20-Range of error rates, with different levels of Rabi frequency noise.

The range of error rates for Rabi frequency noise on the paths were similar for

this noise model as for the noise on the phase, with the 2-segment geometric gates having
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a lower error rate range than the direct rotation over the spectrum of noise levels (Figure

20).

Noise on both phase and Rabi frequency
When noise was put on both the phase and Rabi frequency control parameters, the

direct rotations were seen to perform almost as well (similar error rates) as the geometric
gates for the lower half of the rotation angle spectrum; for the higher rotation angles,
geometric gates performed much better than the direct rotations (on the order of 1E-6
error rate instead of on the order or 1E-5; see Figure 21). Once again, there was a
correlation between low error rate (high fidelity) and small Rabi frequency (Figure 22),
showing that choosing small Rabi frequency for design of geometric gates is optimal for

these two types of noise.
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Error rate vs. rotation angle
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1.8E-05
1.6E-05 ®
o ©
1.4E-05 °
1.2E-05 ®
‘E 1.0E-05 [ ]
'g 3.0E-06 ° L 4 @ 2 segment geometric gates
w @ Direct rotation
6.0E-06 . *
°
4.0E-06 & S
2.0E-06 S .
0.0e+00 o & : : : L
0 0.5 Rotationlangle (m) 15 2

Figure 21-Error rate vs. rotation angle for combination noise: 10% Rabi frequency and 0.01 phase noise.
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Figure 22- Error rate vs. sum of Rabi frequencies on both segments for geometric gates, combination noise.
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Bounds on geometric gates
From our data, we have found that there are both upper and lower bounds on the

error rate of the geometric gates (Figure 23), so that increasing increment size when
searching for geometric paths will not result in higher (or lower) fidelity geometric gates
than found here. This shows that our conclusions when comparing geometric gates to the

direct rotations will not change based on a different set of chosen paths.

Bounds on geometric paths,

Bounds on geometric paths,
0.01 phase noise 8 paths,

10% Rabi frequency noise

Error Rate Error Rate

157

Rotation angle (r) Rotation angle ()
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Bounds on geometric paths,
10% Rabi frequency noise & 0.01 phase noise

Error Rate

Rotation angle ()

Qy(m)

Figure 23-Upper and lower bounds on geometric paths: a) 0.01 noise on phase control parameter, b) 10% noise
on Rabi frequency, c) 0.01 phase and 10% Rabi frequency combination noise.
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Fidelity vs. total phase
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Figure 24- Fidelity vs. total phase for geometric gates of different Rabi frequency values.

Each series in Figure 24 is in 0.1 & increments of the Rabi frequency. This shows that the
geometric phase is bounded: if we decrease the increment size that we scan the Rabi

frequency with, we expect the fidelities to fall between these curves.

Illustration of geometric and dynamic gates on the Bloch sphere
Since our initial endpoint is on the x-axis, both rotation axes for 1- and 2-segment

geometric gates will be in the y-z plane (so that the lab frame phases ¢L and @2 are 0.5 or
1.5 ). One-segment geometric gates are a full rotation (forming a great circle) around
any axis in the x-y plane; an equivalent two-segment geometric gate is shown in Figure
25. One-segment dynamic gates are rotations around the positive or negative x-axis, so
that there is no loop (just a point on the x-axis); these are also the only dynamic gates for

2 segments.
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@ = mmme -

Figure 25- Geometric gates, both with geometric phase = - a: a) one-segment gate; b) 2-segment gate: red = 1st
segment; green = 2nd segment; both rotation axes n1 and n; are on dashed line along z-axis.

One of the simplest 2-segment geometric gates is formed by a rotation of = around
the z-axis, followed by a rotation of & around the y-axis (see Figure 26a). To make this
gate, the control parameters for the first segment would be Qo =0, A =m, and L=
anything; for the second segment Qo2=m, A2=0 and @r2 = 1.57; the angle between
bisector of the geodesic and the second rotation axis is ¢2 = 0. This gate cannot be made
in the two-level atom system, since Qo = 0 means that the laser field would be turned off.
However, this gate can be made in NMR, since setting Qo to 0 causes the first z-direction
magnetic field to vanish, but the nonzero A represents a contribution from the second,

rotating magnetic field.
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Figure 26- Geometric gates, both with geometric phase = -0.5x: a) first rotation axis ni1 has vanishing Rabi
frequency; b) both paths mirrored in x-z plane. First segments are red; second segments are green.

The angle between the two segments of the geometric gates is equal to the
geometric phase of the gate. The geometric gates can be made so that both paths are
mirrored in the x-z plane: if we choose @.=0.57, and @2 = 1.5%, and want to create a gate

of total phase = - 0.5z for instance, then our other control parameters will be: Qo = A =

Qu=Ar=—

NG and @2 = 0 (see Figure 26b). This gate can be made by all of our 6 physical

systems.
Examples of our actual highest fidelity 2-geometric gates are shown in Figure 27,

covering the whole range of total phase needed to create any rotation angle gate.
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Figure 27-Two-segment geometric gates, showing geometric phase decreasing from 0 to —x (first segment (red),
second segment (green); second segment of the first gate retraces the first segment).

5.2 Hybrid gates

Gaussian noise on phase
The highest fidelity 2-segment gates across the rotation angle spectrum were

hybrid gates; a comparison with geometric gates, with both under 0.01 phase noise, is in

Figure 28.
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Error rate vs. rotation angle
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Figure 28- Error rate vs. rotation angle, comparison of hybrid and geometric gates.

Rabi frequency noise
The highest fidelity 2-segment gates across the rotation angle spectrum were

again hybrid gates under 10% random noise on the Rabi frequency (Figure 29), with an

even more marked improvement over geometric gates.
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Error rate vs. rotation angle
(10% Rabi frequency noise)
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Figure 29- Hybrid vs. geometric gates, for 2-segment rotations and 10% noise on the Rabi frequency.

Combination Rabi frequency and phase noise
When the Rabi frequency noise was combined with the phase noise on our 2-

segment gates, we found the hybrid gates to have slightly lower error rates (Figure 30).
This improvement seemed to be most similar to the noise only on Rabi frequency, atleast

for this noise level.

93



Error rate vs. rotation angle
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Figure 30- Combination noise on 2-segment gates, 10% Rabi frequency noise and 0.01 phase noise.

Illustration of 2-segment hybrid gates
An illustration of a 1-segment hybrid gates is in Figure 31; this rotation has both a

dynamic phase (since the evolution path is not on a great circle) and a geometric phase
(since the path encloses a solid angle). A 2-segment hybrid gate is similarly any 2-
segment rotation that has atleast 1 non-great circle segment. Examples of the top fidelity
(hybrid) gates with 10% Rabi frequency noise are shown in Figure 32; for the first half of
total phases (-0.1 = to -0.5 =) the geometric phase is almost 0, and the dynamic phase has
the largest contribution to the total phase; this flips for the second half of total phases (-
0.6 m to -1.0 «), where the geometric phase is a large contribution to the total phase.

Examples of the top fidelity gates with 0.01 phase noise are shown in Figure 33.
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Figure 31- Hybrid gate example: one-segment rotation around z-axis.
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Figure 32-Top fidelity (hybrid) gates for total phase = 0 and -0.3 to -0.6x (in -0.1z increments), 10% Rabi
frequency noise. First segment (red), second segment (green); first rotation axis ends at blue dot, second at pink
dot.
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Figure 33- Top fidelity (hybrid) gates under 0.01 phase noise, for total phase = -0.1 & to -0.6x (in -0.17
increments).
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5.3 Systematic error

Phase noise
The 2-segment gates and direct rotation performed virtually the same under

systematic error on the phase noise, which was created by adding 0.001x to the ideal
phase value on each segment (Figure 34). The hybrid gates performed better than the

geometric gate under this systematic noise just at  rotation angle, corresponding to a

total phase of - g

Error rate vs. rotation angle Error rate vs. rotation angle
(0.0017 phase systematic (0.0017 phase systematic
error error
6.0E-06 ) ® 2 segment ) ® 2 segment
5.0E-06 ° geometric gates 6.0E-06 geometric
(BN | i
% 4.0E-06 ° ® 2 segment @ 4518;82 ... gates
= 3.0E-06 ® ® hybrid gates b 3.0E 06 PY PY @ Direct rotation
S 2.0E-06 e
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Figure 34-Systematic error, phase noise: a) comparison of hybrid and geometric gates; b) direct rotation vs.
geometric gates.
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Rabi frequency noise
Under Rabi frequency 1% systematic error, the 2-segment geometric gates again

had slightly higher error rates than the hybrid gates; the 2-segment gates had much better

error rates than direct rotations over large rotation angles (Figure 35).
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Figure 35-Error rate vs. rotation angle, 10% systematic error on Rabi frequency: a) comparison of hybrid and
geometric gates; b) comparison of direct rotation to 2-segment geometric gates.
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CHAPTER 6- THREE-SEGMENT ROTATION RESULTS

This section presents our data results when we create the gates for a given total

phase using 3-segment rotations on the Bloch sphere.

6.1 Noise on phase
The 3-segment rotations were scanned in a small region of the control parameter

space, assuming that there will be symmetries in the control parameter quadrants. Under
0.01 phase noise, we found significant improvement in error rates for the highest fidelity
3-segment (hybrid) gates compared to 2-segment (highest fidelity, hybrid) gates (Figure
36), over the spectrum of rotation angles. The 3-segment hybrid gates again had lower
error rates than the highest fidelity 3-segment geometric gates (Figure 37); 3-segment

geometric gates performed better than the 2-segment geometric (Figure 38).
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Figure 36-Comparison of 2- and 3-segment highest fidelity hybrid gates, under 0.01 phase noise.
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Figure 37- Comparison of 3-segment hybrid and geometric gates.
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Error rate vs. rotation angle
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Figure 38-Comparison of 2- and 3-segment geometric gates.

There was again a correlation between small Rabi frequency and the highest

fidelity gates for 3 segments (Figure 39).
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Figure 39-Error rate vs. sum of Rabi frequencies for 3 segments, using 0.01 phase noise.
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6.2 Rabi frequency noise
Just as in the 2-segment case, 3-segment hybrid gates have better error rates than

geometric gates (Figure 40). When comparing the highest fidelity (hybrid) 2- and 3-
segment gates under this noise, the 2-segment gates perform better for the lower half of

rotation angles, and vice versa for the higher rotation angles (Figure 41).
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Figure 40- Error rate vs. rotation angle, 10% noise on Rabi frequency: comparison of hybrid and geometric
gates for 3-segment rotations.
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Error rate vs. rotation angle
(10% Rabi frequency noise)
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Figure 41- Comparison of 2- and 3-segment highest fidelity (hybrid) gates, with 10% noise on Rabi frequency.

The correlation between small Rabi frequency (summed over all 3 segments) and

a lower error rate again held in this case (Figure 42).
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Error rate vs. Rabi frequency sum
(3 segments, 10% Rabi freq. noise)
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Figure 42- Correlation of small Rabi frequencies and error rate, 3-segment rotations and 10% Rabi frequency
noise.

6.3 Combination noise
The 3-segment gates under a combination of 10% Rabi frequency and 0.01 phase

noise are shown in Figure 43 and Figure 44, with basically the same features. The phase
noise acts to lift the error rate of other gates compared to our 3-segment highest fidelity
hybrid gates, whereas the Rabi frequency noise effectively shifts the error rate pattern so

that the peak is at lower rotation angles.
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Error rate vs. rotation angle
(Combination 10% Rabi frequency & 0.01 phase noise)
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Figure 43- Combination noise on 3 segments.
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Figure 44- Comparison of 2- and 3-segment gates under combination noise.
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6.4 Systematic error

Phase noise
Unlike in the 2-segment case, the 3-segment rotations under 0.001x systematic

phase error showed a significant improvement in error rates for hybrid gates compared to
geometric gates, and for 3-segment hybrid gates compared to 2-segment hybrid gates
(Figure 45). This may have to do with the fact we are placing the systematic error on each
segment, but if there are more segments, there will be some gates that have the final
endpoint less far from the initial endpoint under systematic noise, if some segments’

systematic noise partially compensate for the other segment noise.
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Figure 45- Systematic error of 0.001z on phase: a) comparison of 3-segment hybrid and geometric gates; b)
comparison of 2- and 3-segment highest fidelity (hybrid) gates.
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Rabi frequency noise
The 3-segment gates with 1% systematic Rabi frequency noise showed the same

trend as in the 2-segment case: the hybrid gates had lower error rates than the geometric

gates, as well as the 2-segment maximum fidelity (hybrid) gates (Figure 46).
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Figure 46-Systematic error of 1% on Rabi frequency: a)comparison of 3-segment hybrid and geometric gates; b)
comparison of 2- and 3-segment hybrid gates.

6.5 Illustration of 3-segment hybrid, dynamic and geometric gates
A 3-segment geometric gate is illustrated in (Figure 50), which has a geometric

phase of - %- It is created by ag rotation around the z-axis, followed by ag rotation

around the x-axis, and finally a % rotation around the y-axis. Similarly, any N-segment

geometric gate can be made from N segments on great circles.
For 3 and higher segments, there is the possibility of paths that cross each other:
an example of a 3-segment hybrid gate is in Figure 47. The loop on the left side has a (-)

geometric phase due to the counterclockwise orientation of the segments; the loop on the
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right side has a (+) geometric phase. If the areas (+) and (-) are equal, then the geometric
phases cancel each other (since the counterclockwise path has negative geometric phase,
and the clockwise has positive geometric phase), and the gate becomes a purely dynamic

gate.

o

R j/,

Figure 47- a) Example of a 3-segment hybrid gate: first segment (red), second segment (green), third segment
(blue); b) actual 3-segment gate: the geometric phase almost completely vanishes, making this an almost purely
dynamic gate.

Other highest fidelity 3-segment gates for a couple total phase values are shown
in Figure 48; the paths tended to be very small rotations for lower absolute value total
phase, and had larger enclosed geometric areas starting at total phase of -0.4z and for all
larger absolute values. For lower values of (absolute value) total phase the dynamic
phase was almost equal to the total phase, with the geometric phase almost vanishing;

this reversed for higher total phase values.
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Figure 48- Highest fidelity 3-segment gates, 10% Rabi frequency noise: total phases shown are (I-r): -0.1 and -0.6
T.

Examples of our highest fidelity three-segment geometric gates are in Figure 49.
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Figure 49- Three-segment geometric gates: a) total phase = -0.2 xr; b)total phase = -0.5 =.
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CHAPTER 7- CONCLUSIONS

7.1 Highest fidelity gates from composite hybrid gates
Our research has shown that hybrid gates have higher fidelity under random noise

than geometric or dynamic gates. The composite (multiple segment) rotations had
significantly higher fidelities than the direct (single segment) rotations. This was true for
all types of random noise studied here, and for both two- and three-segment gates.

For systematic error on the Rabi frequency, hybrid gates again have higher
fidelity than geometric or dynamic gates, and 3-segment hybrid gates performed better
than 2-segment hybrid gates. For 2 segments, systematic error on the phase produced
virtually the same fidelities for the different types of gates. But at 3-segment phase
systematic error, the hybrid gates have much higher fidelities than the 2-segment hybrid
gates or the 3-segment geometric gates. Therefore, for large systematic error, it appears to

be better to use a higher N hybrid gate.

7.2 Improvements with 3 and higher segment paths
Under phase noise, the maximum fidelity three-segment gates had higher

fidelities than the maximum fidelity two-segment gates, which leads us to suspect that
high N-segment rotations will lead to higher fidelities.

However, under Rabi frequency noise, the 3-segment gates had higher fidelities
only on the largest half of rotation angles, with 2-segment gates having higher maximum

fidelities on the smaller half of rotation angles (Figure 41). In that figure, the form of the
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error rate across the rotation angle spectrum is like an upside down V for both 2- and 3-
segments, with the 3-segment peak shifted to left (at lower rotation angle). For further
work, it would be interesting to see if this trend continues into higher N-segment
rotations: if so, under this type of noise, the number of segments in the best designed path

may depend on the rotation angle (i.e. total phase) of the particular gate.

7.3 Small Rabi frequencies
The highest fidelity paths tended to have very small Rabi frequencies. This was

seen to be true across all different noise types and levels, and for both 2- and 3-segment
rotations. The reason for this result is that the Rabi frequency multiplies the cosine and
sine of the phase in the Rabi vector; if the Rabi frequency is small, then the phase noise is
not amplified as it would be otherwise. And similarly, when the noise is on the Rabi

frequency itself, if the Rabi frequency is small, then the percentage noise is also small.
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APPENDIX A- MAZONKA’S EQUATIONS

This appendix contains some of the key results needed from Mazonka (2011),
which are used to derive the equations for two-segment rotations on the Bloch sphere.

A conical surface is made by drawing a cone inside a sphere, with the cone’s apex
at the sphere’s origin. The sphere can be projected onto the unit sphere. The intersection
of the cone and the sphere forms a closed parametric curve, parameterized by [, which
can be thought of as the length along the curve from the point where [=0. A curve on the
sphere is given by s(1), which is a vector from the origin to a point on the curve. The

speed this point moves along the curve is given by

. ds

T= U (234)
and the acceleration is given by

—~ _ dzs

u = ﬁ (235)

These two vectors are not defined at corners between segments.

We call ¢i the turn angle of corner i, which is the outside angle formed from the
evolution path of two segments. Two tangent vectors are defined at the corner: one
tangent to the 1% segment traversed (t-), and one tangent to the 2" segment traversed
(t+). These tangent vectors can be used to find the turn angle:

tan 8i=sin dj /cos 6 =TT i X T i/ T * T (236)
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(taking the cross product of the tangent vectors and dividing by the dot product (*) of the

tangent vectors gives the tangent of the turn angle), since by definition of the cross and

dot products:
tiXti=t| [t i sin &i A (237)
T * 1= [t"i] [t 7i| cos di (238)
and solving for the turn angle:
sin &i =t i X T i/ (JT5i ] |t i) (239)
cos di= 1 * i) /A(IThi | |t i) (240)

Dividing the two above equations gives the equation above for the tangent of the turn
angle.
The equation for the solid angle of a conical surface is:

Q=2r—-Y,;6; — $dl\Ju? — (5-u)? (241)
where the sum is over all “i” corners (outside angle of the traversed curves), and the line
integral is along the closed curve except at corners. The integral term above vanishes
along great circle, i.e.

$dljuz—(5-u)?2=0 (242)
If s is made of n great circles, then we have a spherical polygon, and the solid angle is

Q=21 - 376 = XMH(m—6) — (n—2)m} (243)
There are an infinite number of spherical polygons that give the same solid angle (and
therefore the same geometric phase).
Another result used in our work is Girard’s Theorem for the area of a spherical

triangle. This is found by summing the angles, and subtracting = (where we have used
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that the radius of the Bloch sphere = 1). The angle between 2 great circles was found
from the angle between tangents to the great circles. For spherical polygons of N

segments, the area is given by the sum of the angles, subtracted by (N-2) .
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APPENDIX B- GEOMETRIC PHASE

Quantum geometric phase occurs when the quantum state vector evolves around a
loop on a curved surface representing all the possible states. The final quantum state
vector is then equal to the initial vector multiplied by a phase factor that includes a
geometric phase depending only on the global geometry of the space. Whenever quantum
system evolution leads to a geometric phase, the state vector in effect holds a memory of
the evolution taken. By exploiting this memory, geometric phase can be used to construct

quantum gates for quantum computation.

Berry phase
Berry was the first to discover quantum geometric phase in 1984. Berry’s phase

requires adiabaticity, in which the evolution of the state is slow enough that the system
stays in an eigenstate of the Hamiltonian.

Berry’s phase occurs under the condition of slow evolution, so that the adiabatic
theorem holds: a system initially in an eigenstate of the static Hamiltonian remains in an
eigenstate of the Hamiltonian if the Hamiltonian is varied slowly. Using the Schrodinger

equation,
_ 30U
HY = ih ” (244)
where H depends on parameters R: H = H(R(t)). The system is driven around a closed

path in the parameter space by varying the parameters R in time.
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The eigenvalue equation is
H(R)|n> = En (R)|n> (245)
where R = R(t) and |n> = |n(R(t))>are the instantaneous eigenstates of the Hamiltonian.
The state evolves with both a dynamic phase and a geometric phase:
b .
|y () >= exp[; j drE, (R(t'))} expfiz, (0} n(R(E) > (246)
Inserting this expression for the state into the Schrodinger equation, we can solve for the

geometric phase in terms of the eigenstates [n>. The final result is that the geometric

phase is

7.(C)= i§< n(R)| V;n(R) >-dR

(247)
which shows that the geometric phase depends only on the geometry of the loop in
parameter space (R-space), and is independent of time.

This result can be extended to degenerate eigenstates |[n(R)> by using Stokes
theorem to eliminate the dependence on|vn >. The Berry phase becomes
7n(C):—Im”dS-Z<n|VH|m>X<m|VH|n> (249)
¢

e (E,—En)°

where dS is an element of area in parameter space.
The special case of a two-level system with an evolution loop C close to a
degeneracy at R = 0 has a simple form for the calculation of the Berry phase. If there are

two degenerate states |+> and |->, both having energy E =0 at R = 0, then |+>and |->

replace |[n>and [m> in equation (248). The Berry phases for the orthogonal states are
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opposite: v+(C) = - y-(C). The standard Hamiltonian for this 2-level system with

parameter vector R = (a, b, ¢) is

H(R):%( c a—ibj

a+ib -c
. (249)
= E(aax +bo, +coy)
where ox, oy, oz are the Pauli matrices. The gradient of H is
VH=ﬁ+ﬁ+ﬁ=£(o—X+o—Y+az)=l& (250)
a &b & 2 2
and the energy eigenvalues are
E:(R)=-E(R)=% (% +b>+c?)”*=%R (251)
For any two-level system, the Berry phase is given by
Y+=-%0 (252)

where O is the solid angle enclosed by the curve that the parameter vector R traces out in
parameter space, subtending the degeneracy or R = 0 point. This is the effect on the

positive or up basis state; the negative or down basis state obtains a phase equal to + 2 ©.

Aharonov-Anandan phase
Aharonov-Anandan (AA) phase is a nonadiabatic geometric phase; evolutions of

the quantum state can occur quickly (unlike in the adiabatic, Berry phase). The possibility
of creating fast quantum gate times makes AA phase more desirable for quantum
computing than Berry phase.

In contrast to Berry phase, where an eigenstate evolves adiabatically on a closed
loop made in parameter space, the Aharonov-Anandan (AA) phase, or nonadiabatic

geometric phase, occurs when a state vector makes a closed loop in the projective Hilbert
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space. AA phase is critical for making high quality quantum gates, since the need for the
slow-varying (adiabatic) condition is eliminated.

As before with the Berry phase, the state evolution follows the Schrodinger
equation, and the wavefunction at the end of the evolution is a phase factor times the
initial wavefunction. The evolution of the state [y(t)> defines a curve C in the Hilbert
space. The projection of this curve to the projected Hilbert space is a closed curve C .

A phaseless state can be defined as

|y (1) >=exp{-if )} w(t) > (253)
where f(t) —f(0) = ¢ = total phase, so that the phaseless state is cyclic: |y (t) >=| 7 (0) >.
Substituting the wavefunction in terms of the new phaseless wavefunction into the
Schrodinger equation, we get

df 1 ~ .d o~
~S =2 <VOIH IV > - <FO1iL 170> (254

Removing the dynamical phase from the total phase results in the Aharonov-Anandan

(AA) phase (geometric phase):

r=g+ s [<wOIHIp® >t (255)
0

Combining the above two equations, the AA phase becomes

T - . d -
=|<y|i—|w >dt 256
y ! i1 (256)
For 2-level systems such as a spin-1/2 particle, the projective Hilbert space is the Bloch
sphere and the evolution of the state can be represented by a Bloch vector evolving on the
Bloch sphere (see Figure 50). For a cyclic evolution, the tip of the state vector traces a

closed loop on the sphere. The value of the AA phase is minus half of the solid angle
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enclosed by the loop:

-_° 257
4 > (257)

Figure 50- Bloch sphere with state vector |y> undergoing cyclic evolution (in red), making a solid angle ® = ' x.
In the example of Figure 50, the state vector is driven around a loop that subtends 1/8%"

the volume of the sphere. Since the solid angle of the entire sphere is 4w, the solid angle

of this evolution is n/2. Therefore, the geometric phase is y =-1/2 ® = - n/4.
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Under the condiion |f] << 1, we compare the simple
pulse operator in (8) and geometnc operator a (15). For the
fotation angle in the range of 0 < 6] < x, Fy > Fg bolds
true with the maximum Gdelily Fg = Fy =120 =0, and
the minimam Gdelity Fyg = Fe=1—3/° at 9] = =. The
comparison of (he two operaiors for kape detuning range is
preseated in Fig. 3. The fidefity difference Fy — Fy s plotted
1a Fig. 3(a). Fy from Eg. (14) and F,, from Eg. (7) averaged
over all solabion angles are plotied m Fg. 3(b). The results
show (hat the geometne operalor holds egual or hagher Bidelity
compued 1o the simple pulse operator aganst the frequency
detaning for all rotation angles.

The geometnic operator, bowever, s nol entirely immune
1o the sysiemalic efrors n the pulse asea and defuning: the
fidelity decreases when 3n enmor moreases. Two consequences
of a system emor are poncychic paths for the eigenvectors and
1o the small emror regime so thal the cvolution paihs for the
cigeaveciors |1), can still be approxamaied a5 closed koops.
As 2 result, the degradation of (he operation fidefity cansed
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dynamic phase. We calculated the dysamic phase accordmg
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states evolving from the mitzal staie |4), oo path A shown in
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Fig. 10b). Under small pulse area error, J¢| < 1, the dymamic
phise was calcukated 1o be
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Thes adds an extra angle 2 |y, ;| to the desired rotation.
Comparmg Egs. (13) and (16) reveals the refationship between
the idelnty degradation and the dynamic phase a5,

2 1—cos§ 2
(1 +oosf)[2-cos§]

The second term shows the fidefity decreases quadratically
with the dynamic phase cansed by the pulse area efror. A
fdelity of 100% is achseved for a pure geometric operator,
Mbamdym

meummw
ma um way. Under small error approxamation, we
calculated the dynamic phase as a fonction of the detuning
and (he rotalion angle as
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ROBUSTNESS OF SINGIE-QUBIT GROMETRIC GATE . ..

Comparmg e dyiaime phase o (18) and the idehty in
(15}, one can see the fdehity degrafation = foked o the
dynamic phase a5

2 i
Fy=1-= P 19
. Iz{m! l]!l (19}

which shows 2 similer relalionshipe the Gdelity degrades
quadratically with the dynamic phase caused by the Tregquency

detimmng.
“hhuﬂmw“hq.{lmuﬂmm

he pecmetnic path vields e bhghest fdetity.
W CONCLUSHIN

A Bloch rotation opersion hased on ponadishatic Abelian
peometre phase has been designed and analyeed osing a
seneral mode] for a two-leved qubat driven by a parameterired
Hamilionian. This operator is suflicienl 0 make a sel of
unnversal smgle-gquint gales by seitmg the parameters such as
ks srea, freguency, and phase of te effectrve contd ek
The fidelity of the seometric operator was analyred against
e systemalic crrors m the pube arca and e Treguency
An operator-hased fdehty defimbon was used 50
hest the fesnits s mdependent of the qubit state. The geo-
e Fokation operaiod was comijpared with the: conventiomnal
qﬁ-phd]'-:mmmlmwm

over the simple poise robon. The reason fior he degradation
of the geomeinc operation is thal the operator is mo longer
purcly goometric when the systomatic emmors n both palse anea
and frequency defumng canse ihe evolaion path o deviale
frwm e peometne palh. As 2 resaoil, the decrease in the
defity = relaled 0 2 noovanshing dynamic phase. Fariher
imestigaiion is peeded on the origan of the mbustness of the
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MM apHingt syslematic efors oompred wilh
the dynamic operator.

Smnce onr analysis i8 based on A generic nondegenembe
two-level gubil modiel, the method and resulls o this paper
are applicable o a vanely of physical qubil systems, such
= NME, sloms, wons, pholons, superconducting circuils, and
quantmm dots. The mode] 12 saitable for both sigbe-entity 2nd
ensemble qubits. When the inbomogeniely exists in the pulse
argaerror or e fregquency defuning n an ensemble, the lidelity
calcutation shoubd he sveraged over ihe entire ensemible. Geo-
mebric two-gubit gabes, such 2 controlled-not and controlied
phase gaies, can be analywed in a similar way by introdocing
aaqubil-gubal coupling temm o the driving Hamiliomian,

While conbrol errors thal can be paramederizaed
o effective pulse area and frequency defaning erors exisl
ummm:mmmmﬂmmmmm
Hamillonizn is egually important. Both the dynamic and
goomednc operators discussed in this paper can be stisdicd
through pemencal calculation of the delity acconding o
Eq. (3}, which is quile straightforeand. However, the resulls
will depend on the noise model, which could be quite diffenent
Tor (he parameteried effectve held in Blerenl physical
syshems amd needs Derther mvesigation.

O fesulls on systemalic effods are oblained for he
simplest peometric path driven by an on-resonance effective
held. More geometric paths can be desigoed by including
ofl-resomance [elds. For ihe practical purpose of achicving
maximal gale hdelity, the path desipn should be oplimized
apainst both systematic snd stochastic errors. The composition
of the sel of wniversal gates coald play an important mle as
well i ihe oplimizalion process.
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