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Abstract

SELF-SIMILAR SPIN IMAGES FOR POINT CLOUD MATCHING

Daniel Pulido, PhD

George Mason University, 2017

Dissertation Director: Dr. Anthony Stefanidis

The rapid growth of Light Detection And Ranging (Lidar) technologies that collect,

process, and disseminate 3D point clouds have allowed for increasingly accurate spatial

modeling and analysis of the real world. Lidar sensors can generate massive 3D point

clouds of a collection area that provide highly detailed spatial and radiometric informa-

tion. However, a Lidar collection can be expensive and time consuming. Simultaneously,

the growth of crowdsourced Web 2.0 data (e.g., Flickr, OpenStreetMap) have provided re-

searchers with a wealth of freely available data sources that cover a variety of geographic

areas. Crowdsourced data can be of varying quality and density. In addition, since it is

typically not collected as part of a dedicated experiment but rather volunteered, when and

where the data is collected is arbitrary. The integration of these two sources of geoinfor-

mation can provide researchers the ability to generate products and derive intelligence that

mitigate their respective disadvantages and combine their advantages.

Therefore, this research will address the problem of fusing two point clouds from po-

tentially different sources. Specifically, we will consider two problems: scale matching and

feature matching. Scale matching consists of computing feature metrics of each point cloud

and analyzing their distributions to determine scale differences. Feature matching consists

of defining local descriptors that are invariant to common dataset distortions (e.g., rotation



and translation). Additionally, after matching the point clouds they can be registered and

processed further (e.g., change detection).

The objective of this research is to develop novel methods to fuse and enhance two point

clouds from potentially disparate sources (e.g., Lidar and crowdsourced Web 2.0 datasets).

The scope of this research is to investigate both scale and feature matching between two

point clouds. The specific focus of this research will be in developing a novel local descriptor

based on the concept of self-similarity to aid in the scale and feature matching steps.

An open problem in fusion is how best to extract features from two point clouds and

then perform feature-based matching. The proposed approach for this matching step is

the use of local self-similarity as an invariant measure to match features. In particular,

the proposed approach is to combine the concept of local self-similarity with a well-known

feature descriptor, Spin Images, and thereby define “Self-Similar Spin Images”. This

approach is then extended to the case of matching two points clouds in very different

coordinate systems (e.g., a geo-referenced Lidar point cloud and stereo-image derived point

cloud without geo-referencing). The use of Self-Similar Spin Images is again applied to

address this problem by introducing a “Self-Similar Keyscale” that matches the spatial

scales of two point clouds.

Another open problem is how best to detect changes in content between two point

clouds. A method is proposed to find changes between two point clouds by analyzing the

order statistics of the nearest neighbors between the two clouds, and thereby define the

“Nearest Neighbor Order Statistic” method. Note that the well-known Hausdorff

distance is a special case as being just the maximum order statistic. Therefore, by studying

the entire histogram of these nearest neighbors it is expected to yield a more robust method

to detect points that are present in one cloud but not the other. This approach is applied

at multiple resolutions. Therefore, changes detected at the coarsest level will yield large

missing targets and at finer levels will yield smaller targets.



Chapter 1: Introduction

1.1 Motivation and Problem Statement

The fusion of multi-source data sets is a problem of fundamental importance in the geospa-

tial sciences. Its central role in data processing is due to a number of reasons.

1. The rapid growth of available data from a variety of new technologies provides re-

searchers with a wealth of new intelligence to exploit.

2. The fusion of disparate data sets is also a necessity since no single sensor’s data can

capture all of the relevant characteristics of a given scene.

3. The varying availability of data sources requires combining those that are available.

4. Fusing data sets is often an a priori design decision and not just a posteriori ne-

cessity. For instance, the fusion of satellite images via pansharpening is part of the

design of sensors like QuickBird and IKONOS. Otherwise, developing high resolution

multispectral sensors would be cost and mission prohibited.

Two areas that have experienced considerable growth recently in the amount of data

available to the public are 3D Lidar point clouds and crowdsourced Web 2.0 data. The

former is usually the product of a collection organized by a government, commercial, or

academic entity. The latter is usually the result of volunteers or amateurs posting data

to an online site for the purposes of solving a specific problem (e.g., OpenStreetMap) or

for entertainment (e.g., Flickr). The fusion of these two data sources can help solve nu-

merous scientific problems. As with all fusion problems, each data source comes with its

own advantages and disadvantages. The goal of data fusion is to mitigate their respective

disadvantages.

1



Lidar data commonly comes in the form of a 3D point cloud. It has a number of

advantages including high resolution, spatial accuracy, and point density. However, it has

a number of disadvantages such as having limited availability in some areas, it requires

specialized and expensive equipment, and planning and conducting a collection can be time

consuming.

Alternatively, crowdsourced Web 2.0 data comes in a variety of formats such as images,

GIS, or text. It also has a number of advantages. For instance, for a user it is generally free.

In addition, it is becoming increasingly available. With much of this data being collected

and delivered with mobile devices, online crowdsourced content is often updated at a more

frequent pace. As a result, it lends itself to extraction of the newer content via change

detection and fusing the new content to other sources (e.g., out-dated or legacy Lidar point

clouds). However, as a consequence of crowdsourced data being provided by volunteers and

amateurs it can be inaccurate. Also, by virtue of being volunteered it may not always be

reliable in both quality and availability.

Figure 1.1: Fusion of Point Cloud and Web 2.0 data.

These two disparate sources are ideal candidates for data fusion. Combining the pre-

cision and accuracy of Lidar data with the ubiquity of crowdsourced imagery can provide

a fused product with the best of both sources. However, the fusion of these two sources

provides a number of technical challenges. The following summarize the challenges of fusing

2



Lidar 3D point clouds and unstructured images:

• Differing modalities. Lidar point clouds and imagery are two vastly different modal-

ities. Selecting an appropriate local descriptor to detect corresponding features be-

tween a set of unstructured 3D spatial points and a correspond 2D raster image is a

difficult task that can greatly impact any registration or fusion tasks.

• Scale Mismatch. Crowdsourced imagery often have limited associated geoinforma-

tion. If no geographic information is available then fusing will require aligning two

data sets at very different scales. One source will be in a geographic coordinate sys-

tem (the Lidar point cloud) and the other can be in a relative coordinate system (the

imagery).

• Scene Changes. Differing collection times between the Lidar and imagery can lead

to changes in scene content. While this provides an opportunity for extracting new

content it also introduces errors during registration.

• Point Density. Lidar point clouds and stereo-image derived point clouds can have

very different spatial point densities. This can have profound effects on the local

descriptors used to characterize features.

• Computational Load. A single Lidar point cloud can be very large consisting of

millions to billions of points. Therefore, processing a file that large can present a

significant computational load.

• User Interaction. Many approaches that address the above issues often require

some user interaction. It is desirable to limit user intervention in the fusion process

as this interaction will often be dependent on the user’s training and experience.

These challenges are still unresolved and active areas of research. This dissertation is

motivated by finding robust techniques to address the first three of these technical chal-

lenges. The issues of computational load and user interaction are not addressed in this

work.
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Using a self-similarity based metric that is less sensitive to modality changes will address

the differing modalities challenge presented. The development of a Self-Similar Keyscale

scale matching approach will address the scale mismatch challenge presented. Finally, the

proposed Nearest Neighbor Order Statistics change detection algorithm will address the

scene change challenge discussed above.

1.2 Statement of Research Objectives

This research will develop novel methods to robustly and automatically detect scale differ-

ences between two point clouds and match their corresponding features in order to spatially

register them. To mitigate the various sources of misalignment errors between point clouds -

such as differing modalities, scale mismatch, and scene changes - this dissertation focuses on

exploiting the property of local self-similarity in developing its matching feature descriptor.

Therefore, this work has the following research objectives:

1. Develop a feature-driven, point cloud registration approach using a local self-similarity

based local descriptor referred to as “Self-Similar Spin Images”. This approach

combines the robustness of local self-similarity based metrics with the descriptive

power of spin images.

2. Develop a feature-driven, point cloud scale matching approach that exploits Self-

Similar Spin Images by introducing the “Self-Similar Keyscale”. This approach

combines the robustness of local self-similarity based metrics introduced by using

Self-Similar Spin Images with the automated exploratory power of the Principal Com-

ponents based method of keyscales to detect changes in scale between two 3D point

clouds.

3. Develop an approach to detect changes between two point clouds by introducing the

method of “Nearest Neighbor Order Statistics”. This approach combines the

robustness of a dataset’s order statistics with the power of graph based clustering

methods.
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1.3 Hypothesis

The statement of research objectives described in the previous section leads to the following

hypothesis for this dissertation:

By combining the invariant properties of local self-similarity based metrics with the de-

scriptive power of spin images and incorporating them into a single feature descriptor,

this will lead to a robust spatial and scale matching process.

This approach can lead to an improved state-of-the-art in point cloud matching while

mitigating many of the sources of point cloud misalignment.

1.4 Intended Audience

This intended audience of this dissertation are researchers from the geospatial, remote

sensing, geographic information systems, and computer vision communities. In addition,

the results obtained from this research will be of particular value to scientists interested in

3D point cloud matching and change detection.

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 presents a technical background to the

concepts presented in this dissertation as well as a review of the relevant related work

in the scientific literature. Chapter 3 introduces the concept of local self-similarity and its

application to point cloud registration and scale matching. Chapter 4 presents the detection

of changes between two point clouds. Chapter 5 provides a summary of the experiments

performed to validate the proposed algorithms and their results. Chapter 6 presents the

conclusions drawn from the performed experiments and a summary of potential future areas

of research to build upon this work. Finally, the appendices contain the details of all the

experimental results obtained.
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Chapter 2: Background and Related Works

2.1 Overview

This section summarizes the relevant research in the related areas addressed in this disser-

tation. The problem of geospatial data fusion is a varied and challenging area. Fusing data

sources requires taking two or more products that are, usually, in very different formats and

come from very different sensors. Consequently, before combining them requires some pre-

processing that aligns the two data into a common frame. This frame varies from problem to

problem but it can be a common coordinate system, spectral space, or some other abstract

reference frame from which the data’s primitive elements can be compared. The relevant

scientific research reviewed for this dissertation is divided into the three main problems

addressed - point cloud registration, point cloud scale matching, and change detection.

2.2 Single Image-to-Point Cloud Registration

A precursor to registering a 3D point cloud to another 3D point cloud is the problem of

registering a single 2D image to a 3D Lidar point cloud [1–5]. The problem usually consists

of projecting the 2D raster pixels and the 3D Lidar points into a common reference frame

and then extracting and identifying matching features. These matching features define

a registration transformation between the two data sets. For instance, registration of a

point cloud to overhead imagery was demonstrated by [6] as depicted in Figure 2.1. In

this approach the authors compute the optimal alignment using an objective function that

matches 3D points to image edges and imposes free space constraints based on the visibility

of points in each camera.

Similarly, in [7] aerial imagery was registered with untextured Lidar. Their approach
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Figure 2.1: Alignment of Point Cloud to Overhead Image. c© 2009.

involved starting with a course registration using Global Positioning System (GPS) param-

eters and the vanishing points of vertical lines to estimate camera properties. Then their

registration is refined (see Figure 2.2) by finding 2D orthogonal corners from lines extracted

in the Aerial Image and DSM. These corners are matched and a registration refinement is

computed.

(a) Extracted lines from Lidar DSM (b) Extracted lines from Aerial Image

Figure 2.2: Lines extracted from Lidar and Imagery are processed to form 2D orthogonal
corners then matched. c© 2008.

In a related problem, the authors in [8] detailed an approach to perform automatic

alignment of a point cloud to a Digital Surface Model (DSM) raster image (see Figure 2.3).
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Their approach involved three steps where, first, GPS information of the DSM is used to

generate an approximate geo-referencing. Then, a course registration is performed between

the SfM model and the DSM by exploiting available GPS information. Lastly, a refined

registration is performed by projecting the point cloud points onto the DSM and computing

a best height map alignment using a normalized cross-correlation.

(a) Overlay of SfM model to DSM (b) Oblique view of SfM model to DSM overlay

Figure 2.3: Alignment of SfM to high resolution DSM shows detailed features like steel
wires perfectly aligned. c© 2011.

Accurate point cloud registration using geographic data was presented in [9] and depicted

in Figure 2.4. This approach required matching data from very different modalities - a 3D

point cloud derived from a Lidar sensor and a vector data. Their approach involved building

a SfM point cloud from unstructured Internet photos (e.g., Flickr geotagged images); then

estimating the gravity vector of the scene using vanishing points; estimating the current

position, heading, and scale using geotags; then they perform a fine registration using ICP

with the SfM point cloud and nearby Google Earth 3D buildings or Google Street View

images.

The authors in [10] presented another method to register a panoramic sequence of images

to a point cloud. Their approach involved integrating the SfM bundle adjustment with an

ICP registration by sequentially performing ICP on portions of the SfM trajectories then

updating camera properties using a bundle adjustment. This improved system performs an
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Figure 2.4: Overview of SfM to GIS registration: (a) unordered Internet photos (b) SfM
reconstruction of scene (c) geographic data such as Google Earth 3D models. (d) Alignment
of SfM point cloud with geographic data. c© 2013.

accurate coarse registration and then SIFT interest point matches then can easily be added

to update and refine the registration.

The above works focus on extracting feature components such as lines, corners, and

facets and then matching them to similar components in the target point cloud. Using

primitives like lines, corners, and facets has the drawback that they are ubiquitous elements

found through out many scenes and matching them can because ambiguous and lead to very

sensitive algorithms. In addition, they all assume either exact or approximate knowledge

of the dataset scale differences. It is for this reason that a more robust method that

analyzes local self-similarity patterns in data sets that can match complex objects with

simple representations of the same objects was chosen for this research.

While the concept of self-similarity is prominent in fractal theory, and has been applied

to computing spatial dimensionality and radar sensor designs, its application to image and

point cloud matching is relatively recent. The use of self-similarity has been exploited as a

feature descriptor in a number of applications such as imagery and video registration [11],

detecting deformable shapes [12], and interest point detection [13]. The authors in [14]
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exploit self-similarity based feature descriptors to match multi-modal images as shown in

Figure 2.5.

Figure 2.5: Alignment of Aerial Image to Lidar Depth Image. c© 2011.

The notion of local self-similarity is based on the idea of identifying local geometric

patterns across data sources regardless of modality. Finding similar features across data

sets is described in [11] as follows, “the local internal layouts of self-similarities are shared

by these images, even though the patterns generating those self-similarities are not shared by

those images”. That is, by examining how the structure near a feature is self-similar, that

self-similarity will also appear in similar features in other data sources. To demonstrate

the technique, the authors were able to match objects in an image (e.g. a human figure)

to hand-drawn templates (e.g., a stick figure drawing of a human pose) as shown in Figure

2.6.

Specifically, the local self-similarity is computed as a correlation surface using a particu-

lar local descriptor (e.g., pixel intensity) for a given neighborhood of pixels. This correlation

surface is then transformed into a binned log-polar representation to account for local spa-

tial affine deformations as shown in Figure 2.7. This descriptor is constructed in a manner
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Figure 2.6: Self-similarity based matching of figure sketches with images of people striking
poses similar to those in the sketch figures. c© 2007.

to ensure it provides a compact representation, mitigates against spatial distortions as well

as local non-rigid deformations.

The application of local self-similarity to match features in images is used to register

a 2D image to a Lidar point cloud. The approach projects the Lidar point cloud onto the

image plane to generate a range depth map. Features are then extracted and matched

from the 2D image and the corresponding range depth map using the Local Self-Similarity

approach described in [15] where the similarity function measures similarity in the pixel

values and their spatial gradients whereas previous applications ignored spatial gradients

to match features. Therefore, this approach assumes that the image to be registered is

geo-referenced but its geoinformation needs to be adjusted.

2.3 Point Cloud-to-Point Cloud Registration

To better understand the process of matching and registering two point clouds, and better

organize the existing literature contributions, this process is broken down into the following

basic steps.

1. Feature Detection. Due to the large number of points in most Lidar point clouds

computing any local descriptor to perform feature matching will be computationally

prohibitive. Therefore, feature detection is performed so that descriptors are only
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Figure 2.7: Descriptor creation process. (a) Image based matching computes a local corre-
lation surface at detected feature points and then converts it to a log-polar representation.
(b) Video based matching similar to the image case except the correlation and descriptors
are volumes. c© 2007.

computed at a subset of points.

2. Scale Matching. The extracted features are then used to determine the character-

istic scale of each point cloud and then the scale of the target point cloud is scaled to

match the reference point cloud. Matching the scale between the two point clouds is

addressed in Section 2.4.

3. Feature Matching. The extracted features are then matched by computing local

descriptors and comparing them to find corresponding points between the two point

clouds. This step assumes that the feature descriptor are at the same scale and

therefore comparable.
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4. Registration. Once corresponding features have been identified, the two point clouds

can be registered using the matched features to compute a coarse registration followed

by a fine registration.

Each of these steps are themselves challenging areas of research, however, only the Scale

Matching and Feature Matching aspects will be addressed in this proposed research.

The relevant related work in the literature of all of these areas is discussed in the following

sections.

2.3.1 Feature Detection

Matching point clouds can be computationally infeasible if the matching is performed for

every point in the cloud since even modestly sized point clouds can contain millions of

points, and often contain billions. Point clouds must typically be preprocessed to identify

points that represent unique features in the scene. Therefore, a feature detector is needed

to identify these feature points. This has two advantages. One, the computational load in

computing local descriptors is decreased. Two, processing points that are not deemed to be

unique likely do not contribute additional descriptor information. For instance, points on

the corner of a building are typically identified as feature points by most feature detectors

because they identify the geometric extents of the underlying building. However, points on a

flat surface of a building will likely provide redundant information that add little descriptive

information - as all the nearby points would have similar descriptors. Therefore, selecting

a robust and computationally efficient feature extractor is crucial in pre-processing a point

cloud. For example, extraction of local features in a dataset has a wide range of applications

including stereo image matching [16], [17]; object recognition [18], [19]; texture recognition

[20], [21]; image retrieval [21], [22]; and category recognition [23], [24], [25], [26].

Table 2.1 provides a list of the feature detectors reviewed and a brief summary of their

properties and reference document. The descriptors can be broadly divided into three

categories 1) differential operator based descriptors (Harris points, Harris-Laplace regions,

Hessian-Laplace regions, Harris-Affine regions, Hessian-Affine regions, Harris-3D) which are
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contrasted in [27], 2) Kernel based descriptors (Heat Kernel) which are compared in [28],

and 3) Mesh based descriptors (Salient Points, Mesh-DoG, Mesh SIFT, and Mesh-Scale

DoG) which are tested in [29].

Table 2.1: List of feature detectors, their properties, and reference document.

Descriptor Property Reference

Maximum of Principle Curvature Rotation and scale invariance [15]

Harris points Rotation invariance [30]

Harris-Laplace regions Rotation and scale invariance [21]

Hessian-Laplace regions Rotation and scale invariance [19]

Harris-Affine regions Affine transformation invariance [31]

Hessian-Affine regions Affine transformation invariance [32]

Harris-3D Rotation and scale invariance [33]

Heat Kernel Isometric transformation invariance [34]

Salient Point Perceptually-inspired [35]

Mesh-DoG Rotation and scale invariance [36]

Mesh-Scale DoG Rotation and scale invariance [36]

Mesh SIFT Rotation and scale invariance [37]

The feature detector selected for this dissertation is the “Maximum of Principle Cur-

vature” (MoPC) method as it provides a robust and stable locator of interest regions as

described by [15]. Figure 2.8 provides an example of feature points extracted. The example

shows many of the locally flat areas not being extracted and only extracting points where

considerable curvature occur. The MoPC method generates a minimum and maximum scale

based on a characteristic size of the point cloud (i.e., its diameter). Intermediate scales are

computed such that the ratio between sequential scales are constant. Then, a point in the

cloud is a considered a feature point if its local principal curvature is a local maxima within

a local neighborhood in space and adjacent scales.
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Figure 2.8: An example of MoPC feature extraction. The size and color of each feature
point indicates the various scales at which the feature points were detected. c© 2012.

2.3.2 Feature Matching

Local self-similarity has recently been applied as a local feature descriptor for 3D point cloud

matching by Huang [15]. Their approach exploits the local self-similarity of geometric prop-

erties of point clouds, principally the local surface normal. Figure 2.9 shows an example of

matching features of a human point cloud subjected to a rotation and scale transformation.

The process of building the self-similarity surface and matching the features is similar to

the process used in this dissertation and described in Section 3.3 and Section 3.5 except the

authors in [15] used the local normal as the metric used to build the correlation surface.

In addition, the authors include other point cloud attributes such as intensity in defining

their self-similarity descriptor. This approach is adopted and extended in this research by

incorporating a more descriptive point cloud descriptor, Spin Images [38], into the local

self-similarity framework.
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(a) Matching with a rotation transformation. (b) Matching with a scale transformation.

Figure 2.9: Feature matching for a human point cloud using local self-similarity. c© 2012.

2.3.3 Registration

While point cloud registration is not specifically researched in this dissertation, there are

many aspects in choosing a registration method that can greatly affect the estimated so-

lution. Often, registration techniques have two phases - a coarse adjustment followed by

a refinement. The coarse adjustment can follow a standard approach, as in [39], where

feature points are extracted and matched between two points and then the coordinates of

the matched points are used within a data fitting process to estimate the parameters of

some model (e.g., affine transformation) as shown in Figure 2.10.

Alternatively, a global approach can be used where local features are not extracted and

instead a global model is used to estimate parameters of some spatial model. For instance,

in [40] the authors exploited a global representation of range scans known as Extended

Gaussian Images (EGI) to find the global rotation between two point clouds. Figure 2.11

shows an example of globally aligning two rabbit point clouds that have very little overlap.

The standard approach to a refinement registering of two point clouds is the Iterative

Closest Point (ICP) method [41–46]. This approach seeks to iteratively minimize the dis-

tance between nearest neighbors of two point clouds. There are many variations on the

basic ICP algorithm. The basic difference between these different implementations is what

primitive feature to use when computing nearest neighbors (i.e., the point cloud points,
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Figure 2.10: Point Cloud coarse adjustment based on extracted feature points. c© 2012.

planes, or some other object). The ICP technique has also been extended to incorporate

scale invariance in [47].

However, the solution provided by ICP can frequently correspond to a local minimum

if the initial coarse adjustment is not sufficiently close to the true solution. As such, in this

dissertation only a coarse adjustment is performed by computing the affine transformation

parameters based on the matched features and the refinement step is not considered. This

was done because the goal of this research is to evaluate the effectiveness of the matching

process and not the complexities introduced by the refinement.

2.4 Scale Matching

A central processing task before two datasets are matched is to ensure that they are com-

parable. In the context of 3D point clouds this usually means that the two point clouds are

spatially at the same scale. The process of scale matching usually takes one of two forms,

either the scale is detected and one of the datasets are scaled to match the other or features
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Figure 2.11: Coarse rotation adjustment estimated using EGI. Despite the little overlap
between the two halves of the point cloud the method was able to align them. c© 2006.

are extracted from the datasets in a scale-invariant manner.

In the 2D case the author in [48] examines the source images in scale space to correct

for scale variations and matching the images by analyzing their scale pyramids. In [49]

the author uses a scale-space representations of interest points and their descriptors to

match and adjust the images to the same scale. This method relied on generating a scale

representation of the high-resolution image and performing a one-to-many image matching

solution. Figure 2.12 shows an example of the feature points identified between a low

resolution to high resolution image using this method.

Another 2D approach used in [50] is to detect lines in a scale invariant manner by

detecting them as local extrema in the scale-space while the author in [51] developed the

well-known SIFT method that detects local features in a scale-invariant manner.

For the 3D case of matching point clouds similar approaches have been suggested. In

[52] a 3D extension of the SIFT descriptor was proposed known as LD-SIFT. Figure 2.13

provides an example of matching a point cloud with this descriptor as compared to the

standard Spin Image descriptor and clearly shows the susceptibility of the Spin Image

descriptor to have false matches versus the more robust LD-SIFT approach. The LD-SIFT
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(a) Low resolution image (b) High resolution image

Figure 2.12: Matching low and high resolution images with scale differences. c© 2004.

descriptor “utilizes the DoG detector ... to detect the interest vertices and estimate the local

scale, whereas the descriptor is computed by representing the vicinity of the interest vertex

... as a depth map.” Similarly, in [53] a rotational projection statistics (RoPS) multi-scale

representation of features is used to perform object recognition in a scale invariant manner.

A different approach is to directly detect the scales between two point clouds. In [54] the

authors compute the keyscale of a point cloud that is an optimal scale that best captures

point cloud feature descriptors as shown in Figure 2.14. In this approach the authors exploit

the fact that for spin images with small bin widths all objects look like a plane and for large

bin widths all objects look like a point. Therefore, there must be an optimal bin width

size which is its keyscale. It is then hypothesized that the ratio between two point clouds’

keyscales is the scale mismatch between them. Similarly, the authors in [47] indirectly

use the keyscale concept by directly incorporating it into the standard ICP registration

algorithm. It is this keyscale method that is adopted and extended in this dissertation.
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(a) Matching point cloud with spin images (b) Matching point cloud with LD-SIFT

Figure 2.13: Matching point clouds using conventional descriptor like spin images, which is
clearly susceptible to false matches, versus the the more robust LD-SIFT method. c© 2012

2.5 Change Detection

While co-registering two datasets is itself a challenging task, the goal of co-registering is

usually to then perform some subsequent task, such as fusion, to combine the corresponding

data points and their attributes in some manner. For example, fusing oblique imagery with

augmented aerial Lidar was a presented in [55]. Fusing is not limited to combining data

sources from a single sensor modality or capture time. The authors in [56] address the

problem of multi-modal and multi-temporal data fusion. One precursor to fusion is often

change detection. That is, in order to inject one data source with information from another

one must first identify those parts of the data set that are new. The authors in [57] provide

a method to detect changes in images and video by using a probabilistic inference model

that searches for regions in a test image that can not be composed from regions of reference

images. Figure 2.15 provides an example of a region that cannot be composed from the

reference image regions and is therefore flagged as unlikely.

Change detection in a 3D environment can also be performed from 2D imagery as

detailed in [58]. Performing change detection between two point clouds can be done in a

variety of manners but most approach the problem as depicted in Figure 2.16 where there is

a reference point cloud, a target point cloud, and a distance or similarity metric is computed
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Figure 2.14: Point cloud scale matching using their keyscales - which is the optimal spin
image bin width at the minimum of the their PCA contribution rate curves. c© 2010.

between them that highlights points in the target that are farthest from any point in the

reference.

For example, detecting changes from a ground Lidar sensor is presented in [59]. This

approach seeks to create a spatial representation of the point cloud and then computes

simple distance metrics through this representation. In particular, the authors use a octree

representation of the input points clouds and then compute simple distance metrics between

the points in corresponding octree cells. One of the distance metrics the authors use is the

Hausdorff distance which computes the largest distance between any two points between

the two point clouds. The approach to change detection utilized in this dissertation, as
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(a) Person walking. (b) Person running. (c) Person crawling.

Figure 2.15: Example of detecting of changes in a target (c) image against a database of
reference images, (a) and (b) using a probabilistic inference model that searches for regions
in a test image that can not be composed from regions of reference images. c© 2005.

(a) Reference (b) Target (c) Highlighted changes

Figure 2.16: Example change detection between a reference (a) and target (b) point cloud
using a distance metric. The highlighted changes (c) spotlight the two missing buildings.

described in Chapter 4, is similar to this approach but exploits a more robust method to

highlight changes and then extends it to actually merge the detected changed points and

clusters them into objects.

22



Chapter 3: Local Self-Similarity based Matching

3.1 Overview

The local self-similarity approach was extended from 2D images to 3D point clouds in

[15] by selecting a simple geometric descriptor, the surface normal, to generate the needed

correlation surfaces for a given neighborhood of points. The authors also incorporated

multiple descriptors in building the self-similarity correlation surface such as curvature and

intensity. Figure 3.1 depicts a sample point cloud with a local self-similarity surface of its

normals [15].

Figure 3.1: Self-similarity surface of normals. The brighter a point is, the more similar its
normal is to the normal at the center point. c© 2012.

In this dissertation, the application of local self-similarity to 3D point features is used

to match their respective point clouds in both scale and space and then register the clouds.

The proposed approach extracts Self-Similar Spin Image descriptors, as defined in 3.3 and
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presented in [60], at feature locations for both points clouds. The extracted Self-Similar

Spin Images are then analyzed using a PCA analysis to compute the Self-Similar Keyscale

metric, as described in Section 3.4 and presented in [60], of each point cloud in order to

determine their relative scale differences. Once the two point clouds are scale matched,

Self-Similar Spin Images that are deemed to be matches define a transformation between

the two point clouds. This transformation is used to register them, as defined in 3.5. This

research will only consider affine transformations.

3.2 Spin Images

A central issue in computer vision how to recognize 3D objects. This problem is complicated

by the fact that 3D objects are often unstructured (e.g., point clouds). That is, unlike other

datasets like 2D raster imagery there is no inherent structure to exploit. This problem is

addressed by Spin Images [38] which provide a local representation of an object. Spin

Images have proven to be a powerful and robust method to match two point clouds. It

is this robustness that is utilized in this research. By incorporating this method of object

recognition within the self-similarity framework it is expected that an even more powerful

point cloud matching method will be created.

A Spin Image is just what it sounds like, a local image that is generated by spinning

about a point’s local normal. The spinning builds a histogram-like image that measure’s the

local distribution of points. The collection of all (or enough) Spin Images for a 3D object

can be used to match it with another. Because this approach requires generating an image

for each point this can be computationally intensive for large point clouds. Therefore, we

limit computing Spin Images to only points that are deemed to be of interest by a feature

detector. Otherwise, most spin images will be redundant and not provide any additional

useful information. For example, all the Spin Images on a flat roof will look very similar

and will likely match all flat surfaces. Therefore, a Spin Image representation of a point

cloud is computed as described in Algorithm 3.1:
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Algorithm 3.1 Spin Image

1: Define C = Point Cloud, F = Feature Points, w = Spin Image Width, b = Bin Size.

2: for f ∈ F do

3: Define a local coordinate system such that:

Origin is at the feature point f .

ẑ is the local normal unit vector.

x̂ and ŷ define the local tangent plane.

4: Let N = {p| ‖p− f‖C ≤ w} be all points within a box of width w

‖·‖C is the Chebyshev metric

5: Initialize the Spin Image Sf [i, j] as a 2D array of dimensions w
b by w

b .

6: for n ∈ N do

7: Let α =
√
‖p− f‖2 + |ẑ · (n− f)|2

8: Let β = ẑ · (n− f)

9: Let i = b
w
2
−β
b c

10: Let j = bαb c

11: Increment Sf [i, j] = Sf [i, j] + 1
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3.3 Self-Similar Spin Images

As described in Section 2.2, the self-similarity framework introduced in [11] and summarized

in Figure 2.7 computes an attribute (e.g., local normal) for a data point (e.g., 2D pixel or

3D point) and its neighbors. This attribute is then compared against those neighboring

attributes using some comparator metric (e.g., correlation) and then normalized. This

collection of comparison values defines the self-similarity descriptor.

It is expected that by using a more powerful descriptor within the self-similarity frame-

work that in turn a more robust method of feature matching can be achieved. In particular,

using a well established robust descriptor such as Spin Images, instead of just the local

normal, can provide a more descriptive correlation surface. Therefore, computing a “Self-

Similar Spin Image” proceeds as described in Algorithm 3.2:

Figure 3.2: Descriptor local coordinate system and quantization

This spherical correlation surface is the desired feature descriptor that can be compared

against other features in other points clouds to find a match. Figure 3.3 presents six radial

slices of the descriptor. For the testing used in this dissertation the number of bins in the
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Algorithm 3.2 Self-Similar Spin Image

1: Define C = Point Cloud, F = Feature Points, R = Neighborhood Size.

2: for f ∈ F do

3: Let N = {p| ‖p− f‖ ≤ R} be all points within a radius of R (Figure 3.2)

4: Compute a Spin Image Sn for every point within this neighborhood n ∈ N .

5: Compute the similarity metric, Mf,n = correlation(Sf , Sn)

This metric is the correlation between the vectorized Spin Images.

6: Define a spherical coordinate system as defined in Figure 3.2 such that:

Origin is at the feature point f .

X axis is the local principal direction.

Z axis is the local normal.

Y axis is the cross product of Z and X to define a right-handed coordinate system.

7: Spherically bin this neighborhood with a given latitude/longitude/range resolution.

8: Assign each bin the average similarity metric Mf,n within that bin.

9: The values in this correlation surface are then normalized to the range [0, 1].

radial, longitude, and latitude directions are six, eight, and six, respectively.
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Figure 3.3: Example Self-Similar Spin Image descriptor displayed as six radial slices.

3.4 Self-Similar Keyscale

In order for the above descriptor to be truly scale-invariant the size of the spherical neigh-

borhood must be determined. In the approach described in [15] the size of this neighborhood

was empirically chosen to be four times “the detected scale at which the principal curvature

reaches its local maxima”. However, for this method to be scale-invariant and independent

of user-interaction a method must be devised to determined the scale at which the point

cloud descriptors should be computed. To determine this characteristic size of the point

cloud we extend the technique introduced by Tamaki (et al) [54].

The technique relies on computing a “keyscale”, which is a characteristic scale by which

if two point clouds are scaled by the ratio of their respective keyscales then the point clouds

can be matched. A point cloud’s keyscale is computed by performing a Principal Component

Analysis (PCA) of its Spin Images over a range of scales and finding the scale that yields

the minimum cumulative contribution rate. The motivation behind this technique is that

for both very small scales and very large scales all Spin Images will tend to look the same,
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either all representing a plane or a point, respectively. Therefore, it is conjectured that

there is an optimal scale in between. Computing the “Keyscale” of a point cloud proceeds

as described in Algorithm 3.3:

Algorithm 3.3 Keyscale

1: Define F = Feature Points.

2: Let Rmin and Rmax be the minimum and maximum spherical neighborhood sizes.

3: Let T be the set of neighborhood sizes to be tested in the range [Rmin, Rmax] such that

the ratio of sequential scales are equal.

4: for R ∈ T do

5: for f ∈ F do

6: Compute Spin Image Sf with a neighborhood size R

7: Vectorize each Sf and compute the PCA decomposition of all Sf

8: Compute the cumulative contribution rates of the PCA bands

9: Let Rkeyscale be the value of R that minimizes the cumulative contribution rate of the

first principal component.

For example, Figure 3.4a and Figure 3.4b show a sample point cloud and the same cloud

scaled by a factor of 10, respectively. The PCA scores for both point clouds are displayed

in 3.4c and Figure 3.4d, respectively. The keyscale for the original ant point cloud is found

to be 6.55 and for the scaled point cloud is 65.5 which yields a keyscale ratio of 10.
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(a) Ant point cloud. (b) Ant point cloud scaled 10x.

(c) Keyscale of (a) computed at 6.55. (d) Keyscale of (b) computed at 65.5.

Figure 3.4: Example of point clouds with extracted feature points (a) and (b) and their
keyscales computed from their PCA scores minimum (c) and (d). The ratio of their keyscales
is 10 which correctly matches their relative scale.

In this research we extend this approach to compute the keyscale of a point cloud by

performing this multi-scale PCA analysis on the Self-Similar Spin Images and not just
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the Spin Images. By applying this scale matching technique to a local descriptor that

captures the self-similarity of local geometric patterns instead of simply the distribution

of neighboring points it is expected that this will provide a more robust scale detector.

Therefore, computing the “Self-Similar Keyscale” of a point cloud proceeds as described

in Algorithm 3.4:

Algorithm 3.4 Self-Similar Keyscale

1: Define F = Feature Points.

2: Let Rmin and Rmax be the minimum and maximum spherical neighborhood sizes.

3: Let T be the set of neighborhood sizes to be tested in the range [Rmin, Rmax] such that

the ratio of sequential scales are equal.

4: for R ∈ T do

5: for f ∈ F do

6: Compute Self-Similar Spin Image Sf with a neighborhood size R

7: Vectorize each Sf and compute the PCA decomposition of all Sf

8: Compute the cumulative contribution rates of the PCA bands

9: Let Rkeyscale be the value of R that maximizes the cumulative contribution rate of the

first principal component.

The values for Rmin and Rmax must be selected. For this dissertation they are selected

as multiples of a characteristic size of the point cloud. Specifically, we use the ε, the average

nearest neighbor distance of all points in the point cloud, as the characteristic size and we
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use Rmin = ε and Rmax = 20 ∗ ε.

Figure 3.5a shows an example of the PCA scores and the highlighted keyscale found

at the curve maximum. It should be noted that unlike the standard keyscale approach

introduced in [54] the keyscale is not the minimum of the PCA rate curve but for Self-

Similar Keyscale it is the maximum. The motivation behind this approach is similar to

that of the keyscale approach in [54], whereas values of R that are either too small or too

large will yield similar flat spin images and so an optimal value in between is expected.

(a) Keyscale of Figure 3.4a computed at 14.74. (b) Keyscale of 3.4b computed at 147.4.

Figure 3.5: Example of self-similar keyscales computed from their PCA scores maximum
(a) and (b). The ratio of their keyscales is 10 which correctly matches their relative scale.

3.5 Point Cloud Registration

In order to register two point clouds and find the corresponding transformation that will

align them, we first detect features in both clouds as described in 2.3.1. Then for each

detected feature we compute their Self-Similar Spin Images described in 3.3. These descrip-

tors are then analyzed to compute their Self-Similar Keyscale described in 3.4. The point
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clouds are then scaled to match their relative keyscales.

The scaled point clouds feature descriptors are compared by computing the correlation

coefficient between the two surfaces. Descriptors are considered a match if they satisfy the

Nearest Neighbor Distance Ratio (NNDR) where a feature x in point cloud X matches a

point y1 in point cloud Y if it satisfies the criteria

correlation(x, y1)

correlation(x, y2)
< threshold (3.1)

where y1 and y2 are the first and second nearest neighbors to x. The threshold was found

to be fairly insensitive and was empirically found to be 0.75.

Algorithm 3.5 Self-Similarity based Registration

1: for i ∈ {1, 2} do

2: Let Pi = ith point cloud

3: Compute the feature point set Fi of Pi using MoPC

4: Compute the Self-Similar Spin Images Si at each point in Fi

5: Compute the Self-Similar Keyscale ki of Pi

6: Match scales by rescaling P2 to match the scale of P1 using their keyscales, P2 ← k1
k2
P2

7: Compute En,m = ||s1,n − s2,m|| the Euclidean distance between all feature descriptors

in s1,n ∈ S1 and s2,m ∈ S2

8: Compute feature matches by keeping those (n,m) pairs that match the NNDR criteria

9: Compute the affine transformation between matched features using RANSAC method.
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Finally, to mitigate against false alarms distorting the rigid body and scale transforma-

tion computed we use the RANSAC method to detect and remove outliers from the match

feature points. The non-outliers matched points are used to compute the final affine trans-

formation between the point clouds. This matching process will yield a coarse registration

and get the two clouds close to each other. The entire self-similarity based registration

process is outlined in Algorithm 3.5.
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Chapter 4: Point Cloud Change Detection

4.1 Overview of Change Detection

A variety of techniques have been proposed to perform change detection between point

clouds. Using a point cloud derived Depth Map has been applied to change detection com-

puting a DEM for each point cloud and then finding significant changes in depth between

the maps [61]. Change detection has also been performed directly on the 3D point cloud

points themselves [59] by using an octree representation of the point cloud and then com-

puting distance metrics between the point in each octree cell. Distance metrics considered

were average distance and the Hausdorff distance.

4.2 Nearest Neighbor Order Statistics

Human analysts are able to visually detect changes between points clouds with relative ease,

see Figure 4.1a and Figure 4.1b. Therefore, it seems appropriate to develop an approach

to detecting changes between two point clouds by modeling it after the visual cues that

humans use when noticing changes. When detecting a change between two co-registered

point clouds a human is observing that there are points in one point cloud that are far from

any points in the other cloud. However, they are also making a relative judgment about

the distribution of distances between those points. If there are many points at the same

relative distance from points in the other cloud then they are less likely to classify those

points as a change. Instead, they will dismiss that as a translation bias in the data and not

a change.
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(a) Reference Point Cloud (b) Target Point Cloud

Figure 4.1: Buildings in reference that are missing in target are highlighted red.

Therefore, any method that detects changes should also account for this spatial distri-

bution of points. Lastly, humans are also capable of making such evaluations at different

scales in the data. For example, the number of points needed to classify a change as being a

new building in the scene need not be the same as to classify them as a new car. Therefore,

applying algorithm parameters and thresholds that detect changes at one scale can fail to

detect changes in another.

The approach developed in this dissertation is similar in spirit to that presented in [59]

but exploits a more robust metric to detect changes and a different spatial representation

of the point clouds. In particular, the point clouds are spatially represented by a voxel

representation at multiple resolutions and then at each resolution level a histogram is com-

puted of all nearest neighbor distances between the two clouds. These histograms are then

analyzed to detect changes. It is expected that since non-changes are the norm in a scene

then these histograms will be heavily unimodal and changes will be found in the tails of the

histogram.

With these motivations in mind we propose the “Nearest Neighbor Order Statis-

tics” method for change detection. The method takes as input a pair of point clouds,
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computes a multi-level voxelization of the space enclosing the clouds, the distances between

point clouds in each voxel are analyzed and thresholded, the thresholded points are then

segmented to form clusters of objects. These clustered objects are the detected changes

between the clouds. This process computes these changes as described in Algorithm 4.1.

Therefore, at the largest voxel there is one histogram. Thresholded points will corre-

spond to the largest possible new targets that are in P2 but not in P1. Thresholded points

at smaller voxels correspond to smaller and smaller new targets. It should be noted that

the Hausdorff distance [59] used to detect changes is just a special case of this approach.

The Hausdorff distance is the maximum of the nearest neighbor distances computed.

(a) Reference-to-Target distance histogram. (b) Two clusters detected using NNOS approach.

Figure 4.2: The histogram thresholded (in red) is computed using the triangle method.
Right mode corresponds to missing buildings and left mode is the persistent background.
Two clusters of changes are detected between reference and target point clouds using min-
cut segmentation.

Finally, the threshold value applied to the nearest neighbor histograms must still be

determined. Since change detection by definition assumes that most of the data under

consideration is part of the background and only a small fraction of the scene changes, the

changes to be detected will correspond to small perturbations in the histogram tail. This

research uses the triangle method, where a line is formed between the histogram peak
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and the maximum bin (which forms a triangle with the x and y axis) and the perpendicular

distance is computed between each bin and the formed line. The histogram bin with the

largest distance is the threshold (see Figure 4.2a). Using this threshold leads to the desired

clusters (see Figure 4.2b).
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Algorithm 4.1 Nearest Neighbor Order Statistics Change Detection

1: Let P1 and P2 be two co-registered point clouds

2: The largest possible voxel is constructed (i.e., the bounding box of the entire data set).

3: Point clouds are voxelized at the next resolution level such that each voxel from the

previous level is subdivided into 8 equal voxels with their sides reduced in half.

4: This process of producing smaller voxels by powers of 2 is continued for N levels.

5: At each level, every voxel is processed to compute the nearest neighbor in P2 for every

point in P1.

6: For each voxel a histogram is computed of these nearest neighbor distances.

7: The nearest neighbor histograms are then thresholded (see Figure 4.2a). Any points

with a nearest neighbor distance greater than the threshold are considered changes.

8: To mitigate against false alarms, the smallest allowed voxel should be much larger (i.e.,

an order of magnitude) than the smallest allowable object size.

9: Segment detected points into connected sets using a graph min-cut segmentation

10: Discard connected sets of points that are smaller than some smallest allowable object

size
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Chapter 5: Experiments

To evaluate the performance of the proposed algorithms three categories of experiments

are performed as listed in Table 5.1. The purpose of the Scale Matching experiments in

Section 5.2 is to evaluate the ability of detecting the scale difference between a reference

and target point cloud. Specifically, the reference point cloud has been manually modified

by a Rotation/Scale/Translation (RST) transformation that contains a scale component

that is to be computed using the Self-Similar Keyscale approach defined in Section 3.4.

The purpose of the Feature Matching experiments in Section 5.3 is to evaluate the ability

to spatially match the features of a reference and target point cloud. As in the Scale

Matching experiments, the reference point cloud has been manually modified by a RST

transformation that must be computed using the Self-Similar Spin Image approach defined

in 3.3. The purpose of the Change Detection experiments in Section 5.4 is to evaluate the

ability to find objects missing in a point cloud that are present in another. The reference

point cloud has been manually modified to remove a series of objects to create the target

point cloud. The missing objects are located using the Nearest Neighbors Order Statistics

approach defined in 4.2.

Table 5.1: Break down of experiment algorithms tested

Category Algorithm

Scale Matching Self-Similar Keyscale

Feature Matching Self-Similar Spin Images

Change Detection Nearest Neighbor Order Statistics
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5.1 Test Data

The feature matching and scale matching methods developed in Section 3.3 and Section

3.4, respectively, will be tested against model point cloud datasets described in Table 5.2

and shown in Figure 5.1a through 5.1d and actual Lidar described in Table 5.3 and shown

in Figure 5.2a through 5.2d. In addition, to test the proposed and baseline methods for

robustness against a wide range of terrains, a set of twenty five Lidar point clouds were also

tested. This robustness test set are presented in the Appendix.

Table 5.2: Model point clouds for testing feature and scale matching.

Name Type Description

Ant Model Small sample

Beethoven Model Large sample

Chopper Model Complex sample

Turbine Model Medium sample

Table 5.3: Lidar point clouds for testing feature and scale matching.

Name Type Description

PC-SMALL Lidar Small-sized features

PC-MEDIUM Lidar Medium-sized features

PC-LARGE Lidar Large-sized features

PC-MIX Lidar Mix-sized features

The change detection method developed in Section 4.2 will be tested against actual

Lidar datasets described in Table 5.4 and shown in Figure 5.3a through Figure 5.3e.

For the experiments, the test point clouds are transformed using a variety of transfor-

mations to test the limits of the proposed algorithms. The transformations and the labels

used to identify them are described in Table 5.5.
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(a) Ant (b) Beethoven

(c) Chopper (d) Turbine

Figure 5.1: Model point clouds.

5.2 Scale Matching

For the scale matching experiments the test point clouds were tested using the S10 trans-

formation. The figures presented in this section represent the nominal results observed. For

the full set of results see the Appendix.

The scale matching step described in Section 3.4 requires computing a PC analysis of

the local descriptors (Self-Similar Spin Images for the proposed method and Spin Images

for the baseline) for all extracted features over multiple scales. This yields a point cloud’s

keyscale which is defined by the authors in [54] as “the scale that gives the minimum of
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(a) PC-SMALL (b) PC-MEDIUM

(c) PC-LARGE (d) PC-MIX

Figure 5.2: Lidar point clouds.

cumulative contribution rate of PCA at a specific dimension of eigenspace”.

However, initial experiments using the model point clouds (Figure 5.4a and 5.4b) showed

that using the minimum to define the keyscale proved valid only for the baseline algorithm

using Spin Images. For the proposed algorithm using Self-Similar Spin Images the maximum

needed to be computed. Therefore, a more general definition for a point cloud’s keyscale

would be “the scale that gives the extremum of cumulative contribution rate of PCA at a

specific dimension of eigenspace”.

The experiments for the Lidar point clouds showed similar results for the proposed
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Table 5.4: Point clouds for testing change detection.

Name Type Description

PC-REFERENCE Lidar Reference used for change detection

PC-TARGET-1 Lidar Reference with 2 buildings manually removed

PC-TARGET-2 Lidar Reference with 3 buildings manually removed

PC-TARGET-3 Lidar Reference with 4 buildings manually removed

PC-TARGET-4 Lidar Reference with 5 buildings manually removed

Table 5.5: List of transformations applied to test point clouds

Label Rotation Scale Translation

Y180 180 degree about Y None None

S10 None 10 None

RST -45 degree rotation about Y 2 Maximum point cloud dimension

algorithm as shown in Figure 5.5a and Figure 5.5b. However, for the baseline algorithm the

PC analysis curves did not have any local minimums. Therefore, a keyscale could not be

found. The curves clearly have a global minimum but this is an unreliable metric since it

is arbitrarily dependent on the minimum scale chosen for the computation.

Finally, in order to evaluate and compare the performance of the proposed and baseline

methods for a wide range of terrains and misalignment transformations they were tested

against the robustness test set. The results presented in Table 5.6 show both the baseline

and proposed did a good job of estimating the scale for the simplest transformations S10

and Y180 with errors ranging from 0.21% to 1.64%. However, in both cases the proposed

method still reduced the error over that of the baseline by 67.42% for S10 and 68.83% for

Y180. For the more complex RST transformation the proposed method, with an error of

1.86%, outperformed the baseline method, with an error of 14.41%, again reducing the error

by 87.10%. Finally, the proposed method not only reduced the average error in estimating

scale differences over the baseline method for all test cases but it also had a smaller standard
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(a) PC-REFERENCE

(b) PC-TARGET-1 (c) PC-TARGET-2

(d) PC-TARGET-3 (e) PC-TARGET-4

Figure 5.3: Lidar change detection point clouds.
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(a) Ant PCA scores. Baseline keyscale found at 6.55
and proposed keyscale found at 14.74.

(b) Ant (S10) PC scores. Baseline keyscale found
at 65.5 and proposed keyscale found at 147.4.

(c) Ant matched to Ant (S10) with baseline method(d) Ant matched to Ant (S10) with proposed
method

Figure 5.4: The scale difference between the Ant point cloud and its scaled version was
detected by both the baseline and proposed method. The ratio of keyscales for both the
baseline and proposed methods yields 10.

deviation over the entire robustness test cases.

5.3 Feature Matching

For the feature matching experiments the test point clouds were tested using the RST

transformation. The figures presented in this section represent the nominal results observed.

For the full set of results see the Appendix.
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(a) PC #3 PC scores. Baseline keyscale not found
and proposed keyscale found at 17.38.

(b) PC #3 (S10) PC scores. Baseline keyscale not
found and proposed keyscale found at 173.8.

(c) PC #3 matched to PC #3 (S10) with self-similar
spin images.

Figure 5.5: The scale difference between the Ant point cloud and its scaled version was
detected by the proposed method but not the baseline method. The ratio of the keyscale
for proposed method curves yields the correct scale difference of 10. The baseline method
did not have any local minimums and therefore did not yield a keyscale.

The feature matching and registration step described in Section 3.5 requires computing a

local descriptor (Self-Similar Spin Images for the proposed method and Spin Images for the

baseline) for all extracted features, matching them, and then estimating the transformation.

Figure 5.6a and Figure 5.6b show the extracted feature points for the Beethoven point cloud

and its transformed point cloud, respectively.

The resulting matched features are shown in Figure 5.7a and 5.7b. Table 5.7 provides
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Table 5.6: Results of performing scale matching on the robustness dataset.

Case Algorithm Truth Avg Std Error (%) Improvement (%)

S10 Proposed 10 9.98 0.11 0.21 67.42

S10 Baseline 10 10.06 0.25 0.64 -

Y180 Proposed 1 1.01 0.03 0.51 68.83

Y180 Baseline 1 0.98 0.07 1.64 -

RST Proposed 2 1.96 0.24 1.86 87.10

RST Baseline 2 1.71 0.41 14.41 -

(a) Beethoven feature points (b) Beethoven (RST) feature points

Figure 5.6: The feature points identified using the MoPC metric for the point cloud in (a)
and its transformed version (b).

the transformation parameters estimated from these matched feature points as well as the

true parameter values. The results show that the proposed method was able to correctly

estimate the rotation, scale, and translation parameters (total error of 7.7831e-07%) while

the baseline correctly estimated the rotation angle only but not the scale or translation

parameters (total error of 15.33%). Figure 5.8a and Figure 5.8b show the extracted feature

points for the one of the Lidar point clouds and its transformed point cloud, respectively.

The resulting matched features are shown in Figure 5.9a and 5.9b. Table 5.8 provides

the transformation parameters estimated from these matched feature points as well as the
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(a) Beethoven matches with baseline method (b) Beethoven matches with proposed method

Figure 5.7: The Beethoven point clouds matched using the feature points for the baseline
method (a) and proposed method (b).

(a) PC-SMALL Features (b) PC-SMALL (RST) Features

Figure 5.8: The feature points identified using the MoPC metric for the point cloud in (a)
and its transformed version (b).

true parameter values. The results show that the proposed method was able to provide a

better estimate (total error of 3.29%) for the rotation, scale, and translation parameters

than the baseline method (total error of 27.94%).

Finally, in order to evaluate and compare the performance of the proposed and baseline

49



Table 5.7: Transformation parameters estimated using the baseline and proposed methods.
The proposed method correctly estimated the RST parameters. The baseline method did
not.

Parameter Truth Baseline Error (%) Proposed Error (%)

Rotation Angle -45 -45 0 -45 0

Rotation Axis X 0 0 0 0 0

Rotation Axis Y 1 1 0 1 0

Rotation Axis Z 0 0 0 0 0

Scale 2.0 1.75 -12.50 2.0 0

Translation X -11.5751 -13.1363 13.49 -11.5750 -0.00086

Translation Y -11.5751 -13.1981 14.02 -11.5750 -0.00086

Translation Z -11.5751 -13.0410 12.66 -11.5750 -0.00086

Total Error - - 15.33 - 7.7831e-07

(a) PC-SMALL matches with baseline method (b) PC-SMALL matches with proposed method

Figure 5.9: The PC-SMALL point clouds matched using the feature points for the baseline
method (a) and proposed method (b).

methods for a wide range of terrains and misalignment transformations they were tested

against the robustness test set. The results presented in Table 5.9 show both the baseline

and proposed did an very good job of estimating the misalignment transformation for the

simplest transformations S10 and Y180 with trivial errors ranging from 2.60E-11% to 1.72E-

10%. For the more complex RST transformation the proposed method, with an error of
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Table 5.8: Transformation parameters estimated using the baseline and proposed methods.
The proposed method provides a better estimate for the RST parameters than does the
baseline method.

Parameter Truth Baseline Error (%) Proposed Error (%)

Rotation Angle -45 -44.8346 -0.3675 -44.8147 -0.4119

Rotation Axis X 0 -0.0040 - -0.0053 -

Rotation Axis Y 1 0.9998 -0.0230 0.9997 -0.0287

Rotation Axis Z 0 0.0211 - 0.0234 -

Scale 2.0 1.7778 -11.1111 2.0 0

Translation X -249 -322.8787 29.6702 -255.8789 2.7626

Translation Y -249 -224.4231 -9.8703 -259.3456 4.1549

Translation Z -249 -340.3450 36.6847 -255.7538 2.7124

Total Error - - 27.9366 - 3.2885

18.92%, outperformed the baseline method, with an error of 33.23%, reducing the error by

43.08%. Finally, the proposed method not only reduced the average error in estimating

scale differences over the baseline method but it also had a smaller standard deviation over

the all the test cases.

Table 5.9: Results of performing feature matching on the robustness dataset.

Case Algorithm Error (%) Std (%) Improvement (%)

S10 Proposed 1.72E-10 5.47E-11 -4.39

S10 Baseline 1.64E-10 5.37E-11 -

Y180 Proposed 2.60E-11 2.84E-11 9.74

Y180 Baseline 2.88E-11 3.10E-11 -

RST Proposed 18.92 17.59 43.08

RST Baseline 33.23 29.94 -

Lastly, a sensitivity study was performed in order to assess the performance of the

proposed method when subjected to non-homogeneous transformations, like a distortion in

the height of the data. To perform this study all LIDAR datasets were reduced in height

for a range of scales and the alignment error computed. The first study reduced only the
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heights of the buildings by scale factors of 10%, 25%, 50%, 75%, and 90% and left all other

dimensions unaltered (see Figure 5.10).

(a) No height reduction. (b) 25% height reduction.

(c) 50% height reduction. (d) 75% height reduction.

Figure 5.10: Example Lidar (PC-LARGE) being reduced in height for a range of scales.

The proposed method proved to be very stable for large distortions up to a 75% reduction

(see Figure 5.11). The method’s sensitivity begins to show at a 90% reduction, which is

quite large and a rather unrealistically large distortion to be found in any real dataset.

However, the overall alignment errors are trivially small, on the order of 10−8.

52



Figure 5.11: Minimum, average, and maximum alignment error over all 25 Lidar datasets
for the proposed method over a range of height-only reductions. The errors were stable and
trivially small up to 75% and began to grow at 90%.

Therefore, the same sensitivity was performed using the same reductions in height but

the RST transformation was also applied (see Figure 5.12). Similarly, the proposed method

was very stable for large distortions up to a 75% reduction and grew unstable at a 90%

reduction level which, again, is quite large. These sensitivity errors only begin to grow when

buildings are shrunk so much that the terrain and the buildings become ambiguous.
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Figure 5.12: Minimum, average, and maximum alignment error over all 25 Lidar datasets
for the proposed method over a range of height reductions combined with the RST trans-
formation. The errors were stable up to 75% and began to grow at 90%.

5.4 Change Detection

For the change detection experiments the reference point cloud, see Figure 5.3a, was tested

against a series of similar point clouds of the same location but various buildings missing.

The figures presented in this section represent the nominal results observed. For the full

set of results see the Appendix.

The change detection step described in Section 4.2 requires building voxels of two regis-

tered point clouds, computing the nearest neighbor distance between the two point clouds

for each point in each voxel, building histograms of these distances, thresholding them, and
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(a) PC-REFERENCE (b) PC-TARGET-1

Figure 5.13: 2D projections of the reference and first target point clouds. There are two
missing building in the upper left of the target point cloud.

the segmenting the outliers into clusters. Figure 5.13a and Figure 5.13b show 2D projec-

tions of the reference point cloud and the first target point cloud. Figure 5.14a through

Figure 5.14d present the clustering results for all the target point clouds after the outliers

are clustered using a graph min-cut algorithm. The results show the correct number of

buildings identified for each test case.

Note, initial inspection for the cases presented in Figure 5.14c and Figure 5.14d would

appear that the clustering generated an extra building. However, for both of these cases the

building on the lower right has a portion of its rooftop with a significant drop in altitude.

A subsequent cluster merging step may be needed to address these issues.
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(a) PC-TARGET-1 (b) PC-TARGET-2

(c) PC-TARGET-3 (d) PC-TARGET-4

Figure 5.14: Clusters found for each target point cloud’s outliers using the graph min-cut
algorithm. The extra cluster found in (c) and (d) is from a sharp change in altitude from
the building.
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Chapter 6: Conclusions and Future Work

6.1 Overview

Given the need to match misaligned 3D point clouds in a variety of fields, this dissertation

developed an automated method to align two point clouds with both spatial and scale

misalignments. The misalignment between point clouds comes from a variety of sources

such as differing modalities, coordinate mismatches, variations in scenery, and changes in

point densities. Using different modalities (e.g., Lidar and stereo-imagery) to extract the

point clouds can lead to challenges in defining a feature descriptor that can be meaningfully

compared despite the underlying data coming from very different datasets. Mismatches

between the coordinate systems can lead to both spatial and scale differences if, for example,

a Lidar point cloud is geo-registered but a stereo-imagery derived point cloud is not then

one cloud will be in physical units while the other is not. Variations in scenery will clearly

cause problems when content in one cloud is not be present in the other and can therefore

lead to false alarms and missed features. Changes in point density can lead to differences

in the feature descriptor used to match features and can lead to them not being similar

enough to match.

Therefore, to overcome many of these problems, this dissertation proposed using a self-

similarity based feature descriptor as the basis of its matching process because it can identify

local patterns regardless of how they are generated. Combining this property with a robust

local metric like spin images leads to a robust feature descriptor introduced Self-Similar Spin

Images. Moreover, the distribution of these new descriptors was then analyzed in order to

match any scale difference between point clouds by defining a Self-Similar Keyscale for

each cloud. Finally, once two point clouds have been matched in space and scale they can

be compared. As an example of processing matched clouds, this dissertation introduced a
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change detection solution that compares the distances between nearest neighbors between

the two clouds referred to as the Nearest Neighbor Order Statistic method. The proposed

solutions were tested in three sets of experiments - Scale Matching, Feature Matching, and

Change Detection.

6.2 Scale Matching

The Scale Matching experiments evaluated the ability to detect scale differences between a

reference point cloud and a target point cloud that was manually modified by magnification

in scale. The scale component was computed using the Self-Similar Keyscale approach. The

robustness test set of Lidar point clouds were tested by applying the S10 transformation

(magnifying them by a scale of 10x) and detecting the change using both the proposed and

baseline methods.

This initial test was performed to focus on the scale matching and keep other distortions

constant. The mean scale change detected using the proposed method was 9.98 and using

the baseline method was 10.06. While both methods did a good job detecting the correct

scale difference the proposed method reduced the error in detecting the scale difference by

a factor of 67%. In addition, the same data set was modified using the RST transformation

(that had a scale change of 2). In this case, the mean scale change for the proposed

and baseline methods were 1.96 and 1.71, respectively. In this case of a more complex

misalignment the proposed did a superior job of detecting the scale difference and reduced

the detection error by 87%. Lastly, the simplest transformation Y180 (a rotation about the

y-axis by 180 degrees) had a scale change of 1. In this case, the mean scale change for the

proposed and baseline methods were 1.005 and 0.983, respectively. In this case of a simple

misalignment the proposed did a superior job of detecting the scale difference and reduced

the detection error by 69%. In all cases, the proposed method was able to detect the scale

change between two point clouds and outperformed the baseline method.

Therefore, for the problem of scale matching the proposed method Self-Similar Keyscales

was able to accurately match the scales of the test cases over a variety of point cloud types.
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In particular, the proposed method was able to outperform its baseline counterpart by

exploiting a more powerful spin image descriptor within the self-similar framework.

6.3 Feature Matching

The Feature Matching experiments evaluated the ability to match corresponding features

between point clouds and use them to compute the complete misalignment transformation.

The features were matched using the Self-Similar Spin Image approach. The same robust-

ness test set of Lidar point clouds were tested by applying the same three transformations -

S10, RST, and Y180. The methods were evaluated by computing the position error result-

ing from the estimated transformation for a randoms sample of points within the reference

point cloud.

The simplest transformations Y180 and S10, where only a single parameter was dis-

torted, yielded similar results with both methods able to recover the transformation param-

eter. The mean percentage error for the Y180 case were 2.60E-11% and 2.88E-11% for the

proposed and baseline method, respectively. The mean percentage error for the S10 case

were 1.72E-10% and 1.64E-10% for the proposed and baseline method, respectively. Lastly,

for the more complex RST transformation, the mean percentage error for the RST case were

18.92% and 33.23% for the proposed and baseline method, respectively. In this case of a

more complex misalignment the proposed did a superior job of detecting the transformation

and reduced the alignment error by 43%. In all cases, the proposed method was able to

detect the transformation change between two point clouds and performed as well or better

than the baseline method.

Therefore, for the problem of feature matching the proposed method of Self-Similar

Spin Images was able to accurately match the features of the test cases over a variety of

point cloud types. In particular, the proposed method was able to outperform its baseline

counterpart by exploiting a more powerful spin image descriptor within the self-similar

framework.
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6.4 Change Detection

The Change Detection experiments were performed to provide an example application

of processing two point clouds aligned using the self-similar based feature matching and

registration described in Algorithm 3.5. The experiments evaluated the proposed NNOS

method’s ability to detect points (present in one cloud but not in the other) and then cluster

them together. A reference point cloud was compared with four target point clouds which

had two, three, four, then five buildings missing. The proposed method was able to detect

all missing buildings in all cases. In addition, it was able to detect a significant roof height

change in one building and clustered them separately.

6.5 Future Work

Future work on the Self-Similar Spin Image can incorporate additional metrics into the

similarity descriptor in addition to spin images. Potential candidates for additional metrics

are the local normal, the local curvature, and photometric intensity. These additional

metrics can be combined using a linear combination with prescribed weights to yield a

unified similarity [15]. The construction of the similarity surface and its application to

feature matching would then follow as detailed in this dissertation.

Another area of new research can be a follow on to the previous proposal of defining a

new descriptor by adding new similarity metrics to spin images. Once new metrics have been

added and a new descriptor defined then this will also yield a new Self-Similar Keyscale. The

same PCA analysis can then be applied to this new descriptor to detect scale differences. In

addition, future work can include studying alternative methods of exploratory data analysis

other than PCA to analyze the distribution of feature descriptors such as Factor Analysis,

Canonical Correlation Analysis, or Independent Component Analysis.
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Appendix A: Robustness Test Set

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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(j) (k) (l)

(m) (n) (o)

(p) (q) (r)
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(s) (t) (u)

(v) (w) (x)

(y)

Figure A.1: Set of Lidar point clouds used for robustness testing. The data sets were
selected from an urban area in Denver that covered a variety of building shapes, heights, as
well as flat terrains.
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Appendix B: Scale Matching Results

(a) Beethoven PCA scores. Baseline keyscale
found at 2.33 and proposed keyscale found at
5.65.

(b) Beethoven (S10) PC scores. Baseline
keyscale found at 23.3 and proposed keyscale
found at 53.19.

(c) Beethoven matched to Beethoven (S10)
with baseline method

(d) Beethoven matched to Beethoven (S10)
with proposed method

Figure B.1: The scale difference between the Beethoven point cloud and its scaled version
was detected by the baseline method and approximately by the proposed method. The
ratio of keyscale for the baseline method yielded 10 and for the proposed method was 9.41.
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(a) Chopper PCA scores. Both the baseline
and proposed keyscale found at 48.01.

(b) Chopper (S10) PC scores. Both the base-
line and proposed keyscale found at 480.1.

(c) Chopper matched to Chopper (S10) with
baseline method

(d) Chopper matched to Chopper (S10) with
proposed method

Figure B.2: The scale difference between the Chopper point cloud and its scaled version
was detected by both the baseline and proposed methods. The ratio of keyscales for both
yields 10.
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(a) Turbine PCA scores. Baseline keyscale
found at 0.897 and proposed keyscale found
at 1.046090.

(b) Turbine (S10) PC scores. Baseline
keyscale found at 8.97 and proposed keyscale
found at 10.460897.

(c) Turbine matched to Beethoven (S10) with
baseline method

(d) Turbine matched to Beethoven (S10) with
proposed method

Figure B.3: The scale difference between the Turbine point cloud and its scaled version was
detected by the baseline method and approximately by the proposed method. The ratio of
keyscales for the baseline method yielded 10 and the proposed method was 9.41.
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(a) PC #4 PC scores. Baseline keyscale not
found and proposed keyscale found at 31.09.

(b) PC #4 (RST) PC scores. Baseline
keyscale not found and proposed keyscale
found at 62.18.

(c) PC #4 matched to PC #4 (RST) with proposed
method

Figure B.4: The scale difference between the PC #4 point cloud and its scaled version was
detected only by the proposed method which yielded a ratio of keyscales of 2. The baseline
method did not have any local minimums.
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Appendix C: Feature Matching Results

(a) Ant Features

(b) Ant (RST) Features

Figure C.1: Feature points detected using MoPC for Ant (a) and its RST version (b).
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(a) Ant matches with baseline method

(b) Ant matches with proposed method

Figure C.2: Initial matched features are shown for Ant (a) and its RST version (b). Outlier
matches are then removed using NNDR and then an affine alignment is calculated.
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(a) Chopper Features

(b) Chopper (RST) Features

Figure C.3: Feature points detected using MoPC for Chopper (a) and its RST version (b).
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(a) Chopper matches with baseline method

(b) Chopper matches with proposed method

Figure C.4: Initial matched features are shown for Chopper (a) and its RST version (b).
Outlier matches are then removed using NNDR and then an affine alignment is calculated.
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(a) Turbine Features

(b) Turbine (RST) Features

Figure C.5: Feature points detected using MoPC for Turbine (a) and its RST version (b).
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(a) Turbine matches with baseline method

(b) Turbine matches with proposed method

Figure C.6: Initial matched features are shown for Turbine (a) and its RST version (b).
Outlier matches are then removed using NNDR and then an affine alignment is calculated.
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(a) PC-LARGE Features

(b) PC-LARGE (RST) Features

Figure C.7: Feature points detected using MoPC for PC-LARGE (a) and its RST version
(b).
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(a) PC-LARGE matches with baseline method

(b) PC-LARGE matches with proposed method

Figure C.8: Initial matched features are shown for PC-LARGE (a) and its RST version (b).
Outlier matches are then removed using NNDR and then an affine alignment is calculated.
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Appendix D: Change Detection Results

(a) PC-TARGET-2 point cloud

(b) PC-REFERENCE with PC-TARGET-2
changes highlighted

(c) PC-TARGET-2 clusters

Figure D.1: 2D projections of the PC-TARGET-2 point cloud, the expected changes, and
the detected clusters of outliers. There are three missing buildings along the left side of the
point cloud.
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(a) PC-TARGET-3 point cloud

(b) PC-REFERENCE with PC-TARGET-3
changes highlighted

(c) PC-TARGET-3 clusters

Figure D.2: 2D projections of the PC-TARGET-3 point cloud, the expected changes, and
the detected clusters of outliers. There are four missing buildings along the left and bottom
side of the point cloud.
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(a) PC-TARGET-4 point cloud

(b) PC-REFERENCE with PC-TARGET-4
changes highlighted

(c) PC-TARGET-4 clusters

Figure D.3: 2D projections of the PC-TARGET-4 point cloud, the expected changes, and
the detected clusters of outliers. There are five missing buildings along the left, bottom,
and upper right side of the point cloud.
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Appendix E: Publication

The following paper, “Mining Large Point Clouds for Feature Matching of LIDAR

Datasets using Self-Similarity”, was presented at the International Conference on Data

Mining (DMIN’17) on July 17, 2017 at Las Vegas, Nevada (ISBN 1-60132-453-7, CSREA

Press). It presents a summary of the results detailed in this dissertation for the Self-Similar

Spin Image based feature matching algorithm and the Self-Similar Keyscale based scale

matching algorithm.
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Abstract – LIDAR captured point cloud datasets are another 

type of big data. Mining such large point clouds for feature 

selection to perform point cloud matching is a problem of 

fundamental importance for the geospatial sciences. Standard 

approaches to point cloud matching face a number of 

challenges including datasets that exhibit spatial and scale 

variations. This paper proposes a novel 3D feature descriptor, 

referred to as “Self-Similar Spin Images”, that provides a 

robust method to perform spatial matching of point clouds by 

combining the robustness of local self-similarity with the 

descriptive power of spin images. This descriptor is used to 

detect the scale difference between point clouds by introducing 

the “Self-Similar Keyscale” metric. The proposed method was 

tested with model and LIDAR datasets. 

Keywords: lidar; matching; self-similarity; spin-images; scale 

 

1 Introduction 

  The rapid growth of Light Detection And Ranging 

(LIDAR) technologies that collect, process, and disseminate 

3D point clouds have allowed for increasingly accurate spatial 

modeling and analysis of the real world. With millions of 

points captured per square kilometer, a typical tile of LIDAR 

data is often of a size of few GBs, and the processing of such 

datasets represents challenges commonly associated with big 

data. 

LIDAR sensors can generate massive 3D point clouds that 

provide highly detailed spatial information of an area of 

interest. Fusing such point clouds allows the generation of 

broad coverage products that mitigate the particular 

disadvantages of individual point clouds (e.g. uneven point 

distribution, small area coverage) and combine their 

advantages (high accuracy potential). However, this fusion of 

point clouds collected from a variety of sources can prove 

challenging.  

Pairwise point cloud fusion requires pre-processing to align the 

two data into a common frame. This common frame may vary 

from problem to problem, and it can be a common coordinate 

system, spectral space, or some other abstract reference frame 

from which the data's features can be compared. A common 

drawback of such alignment methods is that they often assume 

knowledge of scale differences in the data. In order to address 

this challenge, in this paper we present a novel approach to 

mine features in large point clouds and then use such features 

to identify scale differences among two point clouds that are to 

be fused.  

1.1 Self-Similarity 

 Our approach is based on the concept of self-similarity as 

it can be used to detect prominent features in a point cloud 

dataset. While self-similarity has featured prominently in 

fractal theory, and has been applied to computing spatial 

dimensionality and radar sensor designs, its application to 

image and point cloud matching is relatively recent. The use of 

self-similarity has been exploited as a feature descriptor for 

imagery and video registration [1], detecting deformable 

shapes [2], and interest point detection [3]. The authors in [4] 

exploit a self-similarity based feature descriptor to match multi-

modal images. In [1], the authors used self-similarity to match 

objects in an image to hand-drawn templates. Self-similarity 

was exploited in [5] to match a 2D image to a LIDAR point 

cloud by using pixel intensities and spatial gradients. Local 

self-similarity has recently been applied as a local feature 

descriptor for 3D point cloud matching by Huang [5]. Their 

approach exploits the local self-similarity of geometric 

properties of point clouds, principally the local surface normal. 

In this paper we advance this approach to incorporate Spin 

Images, a far more descriptive point cloud feature descriptor 

than the simple local normal metric used in [5]. 

1.2 Scale Detection 

 A second component of our approach relates to the 

assessment of scale variations between two datasets that are to 

be fused, to ensure that they are indeed comparable ([6], [7], 

[8]). In [9] a 3D extension of the well-known SIFT descriptor 

was proposed known as LD-SIFT. Similarly, in [10] a 

rotational projection statistics (RoPS) multi-scale 

representation of features is used to perform object recognition 

in a scale invariant manner. An entirely different approach is to 

directly detect the scales between two point clouds. In [11] the 

authors compute a characteristic length for a point cloud, 

referred to as its “keyscale”, that is an optimal scale that best 

captures point cloud feature descriptors. In our work we extend 

this keyscale-based process by incorporating self-similar Spin 
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Images, a more descriptive feature descriptor than the standard 

Spin Image used in [11]. 

1.3 Study Description 

 This study will address the problem of matching two 

point clouds from potentially different sources. Specifically, we 

will consider two problems: scale matching and feature 

matching. Scale matching consists of computing feature metrics 

of each point cloud and analyzing their distributions to 

determine scale differences. Feature matching consists of 

defining local descriptors that are invariant to common dataset 

distortions (e.g., rotation and translation). 

In Section 2 we present the application of local self-similarity 

to matching point cloud features and the detection of pairwise 

scale differences. In Section 3 we present experimental results 

of our proposed approach, and its comparison to a baseline 

method with model and LIDAR data sets. Finally, Section 4 

draws conclusions based on the experimental results. 

2 Local Self-Similarity Matching 

2.1 Introduction 

 The notion of local self-similarity is based on the idea of 

identifying local geometric patterns across data sources 

regardless of modality. Finding similar features across data sets 

is based on the notion that “local internal layouts of self-

similarities are shared by these images, even though the 

patterns generating those self-similarities are not shared by 

those images” [1]. That is, by examining how the structure near 

a feature is self-similar, that self-similarity will also appear in 

similar features in other data sources. To demonstrate the 

technique, the authors in [1] were able to match human figures 

in an image to a hand-drawn stick figures of a human pose. 

Specifically, local self-similarity is computed as a correlation 

surface using a particular local descriptor (e.g., pixel intensity) 

for a given neighborhood of pixels. This correlation surface is 

then transformed into a binned log-polar representation to 

account for local spatial affine deformations. This descriptor is 

constructed in a manner to ensure it provides a compact 

representation and mitigates against spatial distortions as well 

as local non-rigid deformations. 

The local self-similarity approach was extended from 2D 

images to 3D point clouds in [5] by selecting a simple 

geometric descriptor, the surface normal, to generate the 

needed correlation surfaces for a given neighborhood of points. 

The authors also incorporated multiple descriptors in building 

the self-similarity correlation surface such as curvature and 

intensity. 

In this study, the application of local self-similarity to 3D point 

features is used to match their respective point clouds in both 

scale and space. The proposed approach extracts “Self-Similar 

Spin Image” (SSSI) descriptors, as defined in Section 2.2 at 

feature locations for both point clouds. The extracted SSSIs are 

then analyzed using a PCA analysis to compute the “Self-

Similar Keyscale” (SSK) metric, as described in Section 2.3, of 

each point cloud in order to determine their relative scale 

differences. Once the two point clouds are scale matched, 

SSSIs that are deemed to be matches define a transformation 

between the two point clouds which can be used to register 

them. 

Finally, for massive point clouds it can be computationally 

infeasible to attempt to match every point. Therefore, point 

clouds must typically be preprocessed using a feature detector 

to identify points that represent unique features in the scene. 

The feature detectors in the scientific literature include Harris 

points [12], Heat Kernels [13], and Mesh SIFT [14], among 

others. However, the feature detector selected for this study is 

the “Maximum of Principle Curvature” (MoPC) method as it 

provides a robust and stable locator of interest regions invariant 

to rotations and local affine distortions [5]. Figure 1 provides 

an example of feature points extracted using MoPC. 

 

Figure 1: MoPC feature extraction. The marker sizes are 

proportional to the scale at which the feature was detected. 

2.2 Self-Similar Spin Images 

 The self-similarity framework introduced in [1] computes 

an attribute (e.g., local normal) for a data point (e.g., 2D pixel 

or 3D point) and its neighbors. This attribute is then compared 

against those neighboring attributes using some comparator 

metric (e.g., correlation) and then normalized. This collection 

of comparison values defines the self-similarity descriptor. 

In this study, it is shown that by using a more powerful 

descriptor within the self-similarity framework we achieve a 

more robust method of feature matching. In particular, using a 

well-established robust descriptor such as Spin Images, instead 

of just the local normal, can provide a more descriptive 

correlation surface. The basic approach is to define a 

neighborhood near each detected feature point, then compute 

and compare the Spin Image of the feature point against the 

Spin Image of its neighbors. The comparison is performed by 

computing a correlation coefficient and then using their values 

to build a spherical correlation surface. 

Therefore, a SSSI is computed follows: 
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a) Define C=Point Cloud, F = Feature Points, and R = 

Neighborhood Size. 

b) Let f ∈ F be an extracted feature point 

c) Let N = {p | ||p-f|| ≤ R} be a spherical neighborhood of 

radius R about the feature point that includes all points 

within that radius (Figure 2) 

d) Compute a Spin Image Sn for every point within this 

neighborhood n ∈ N. 

e) Compare the Spin Image of the feature point Sf to every 

other point's Spin Image in the neighborhood Sn by using a 

similarity metric, the correlation coefficient, M(fn)  = 

correlation(Sf, Sn). 

f) Define a spherical coordinate system as defined in Figure 

2 with the origin set at the feature point, the X axis is the 

local principal direction, the Z axis is the local normal, 

and Y axis is the cross product of Z and X to define a 

right-handed coordinate system. 

g) The neighborhood is then spherically binned and each bin 

is given the value of the average similarity metric M(fn) 

within that bin. 

h) The values in this correlation surface are then normalized 

to have a maximum of one. 

 

Figure 2: Descriptor local coordinate system and quantization 

(left). The highlighted region depicts a spherical bin. Example 

radial slices of the corresponding descriptor (right). 

This spherical correlation surface is the desired feature 

descriptor that can be compared against other features in other 

point clouds to find a match. Figure 2 also presents six radial 

slices of the descriptor. For the testing used in this study the 

number of bins in the radial, longitude, and latitude directions 

are six, eight, and six, respectively. 

2.3 Self-Similar Keyscale 

 In order for the above descriptor to be truly scale-

invariant the size of the spherical neighborhood must be 

determined. In the approach described in [5] the size of this 

neighborhood was empirically chosen to be four times “the 

detected scale at which the principal curvature reaches its local 

maxima”. However, for this method to be scale-invariant and 

minimize user-interaction a method must be devised to 

determine the scale at which the point cloud descriptors should 

be computed. To determine this characteristic size of the point 

cloud we extend the technique introduced by Tamaki (et al) 

[11]. 

The technique relies on computing a “keyscale”, which is a 

characteristic scale by which if two point clouds are scaled by 

the ratio of their respective keyscales then the point clouds can 

be matched. A point cloud's keyscale is computed by 

performing a Principal Component Analysis (PCA) of its Spin 

Images over a range of scales and finding the scale that yields 

the minimum cumulative contribution rate. The motivation 

behind this technique is that for both very small scales and very 

large scales all Spin Images will tend to look the same, either 

all representing a plane or a point, respectively. Therefore, it is 

conjectured that there is an optimal scale in between. 

For example, Figure 3 shows a sample point cloud and the 

same cloud scaled by a factor of 10. The PCA scores for the 

principal component of both point clouds are displayed in 

Figure 4. The keyscale for the original Ant point cloud is found 

to be 6.55 and for the scaled point cloud is 65.5 which yields a 

keyscale ratio of 10. 

 

Figure 3: Sample point cloud (left) and its 10x scaled version 

(right) with their respective extracted features using MoPC. 

 

Figure 4: The keyscales of the sample point cloud (left) and its 

10x scaled version (right) computed from its PCA score. 

In this research we extend this approach to compute the 

keyscale of a point cloud by performing this multi-scale PCA 

analysis on the SSSIs. By applying this scale matching 

technique to a local descriptor that captures the self-similarity 

of local geometric patterns instead of simply the distribution of 

neighboring points it is shown that this will provide a more 

robust scale detector. The basic approach is to compute the 

SSSI of every feature point for a range of scales and then a 

perform PCA analysis. The extrema of the principal component 

yields the keyscale. To compute the SSK: 

a) Let Rmin and Rmax be minimum and maximum spherical 

neighborhood sizes, respectively. 
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b) Let T be the set of neighborhood sizes to be tested in the 

range [Rmin, Rmax] such that the ratio of sequential scales 

are equal. 

c) Let R ∈ T and compute the spin image Sf for every feature 

point f ∈ F with a neighborhood size R. 

d) Vectorize each Sf and compute the PCA decomposition of 

all Sf. 

e) Compute the cumulative contribution rates of the PCA 

bands 

f) Repeat for all values of R in T 

g) Compute the value of R that maximizes the cumulative 

contribution rate of the first principal component. 

The values for Rmin and Rmax must be selected. However, they 

can be readily chosen based on a characteristic size of the point 

cloud such that the keyscale algorithm is insensitive to their 

values. Specifically, we use, ε, the average nearest neighbor 

distance of all points in the point cloud, as the characteristic 

size and we set Rmin = ε and Rmax = 20ε. 

Figure 5 shows an example of the PCA scores and the 

highlighted keyscale found at the curve maximum. It should be 

noted that unlike the standard keyscale approach introduced in 

[11] the keyscale is not the minimum of the PCA rate curve but 

for SSK it is the maximum. 

 

Figure 5: The keyscales of the sample point cloud (left) and its 

10x scaled version (right) computed from its PCA score. 

The motivation behind this approach is similar to that of the 

keyscale approach in [11], whereas values of R that are either 

too small or too large will yield similar flat spin images and so 

an optimal value in between is expected. 

3 Results 

3.1 Overview 

 To evaluate the performance of the proposed algorithms 

two categories of experiments are performed: Scale Matching 

and Feature Matching. The purpose of the Scale Matching 

experiments in Section 3.3 is to evaluate the ability of detecting 

the scale differences between a reference and target point 

cloud. Specifically, the reference and target point clouds differ 

by a Rotation/Scale/Translation (RST) transformation that 

contains a scale component that is to be computed using the 

SSK approach defined in Section 2.3. The proposed SSK 

approach will be compared against the baseline Keyscale 

approach described in [11]. The purpose of the Feature 

Matching experiments in Section 3.4 is to evaluate the ability 

to spatially match the features of a reference and target point 

cloud. As in the Scale Matching experiments, the reference and 

target point clouds differ by a RST transformation that must be 

computed using the SSSI approach defined in Section 2.2. The 

proposed SSSI approach will be compared against the baseline 

Self-Similar approach described in [5]. 

3.2 Test Data 

 The feature and scale matching methods developed in 

Section 2.2 and Section 2.3, respectively, were tested against 

model and LIDAR datasets presented in Figure 6. These 

datasets were acquired from online academic and government 

sources (see the Appendix). 

 

Figure 6: Test Model Point Clouds (Ant, Beethoven, Chopper) 

and LIDAR (SMALL, LARGE, MIX). 

The test data provides a set of point clouds with a varying 

range of complexity. The model point clouds provide simpler 

simulated datasets with well-defined feature points. The 

LIDAR point clouds provide a more realistic data set with the 

types of typical features found in urban scenes. In addition, to 

test the proposed and baseline methods for robustness against a 

wide range of terrains, a set of twenty five LIDAR point clouds 

were also tested. This robustness test set are presented in the 

Appendix. The model point clouds contain between 1 and 10 

thousand points while the LIDAR point clouds contain 

approximately 3.5 million points. 

Table 1: List of transformations applied to test point clouds. 

Label Rotation Scale Translation 

Y180 180 deg. about Y None None 

S10 None 10 None 

RST -45 deg. about Y 2 Max dimension 

For the experiments, the test point clouds are transformed using 

a variety of transformations to test the limits of the proposed 

algorithms. The transformations and the labels used to identify 

them are described in Table 1. 

3.3 Scale Matching 

 For the scale matching experiments the test point clouds 

were initially tested using the S10 transformation. The scale 
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matching step described in Section 2.3 requires computing a 

PC analysis of the local descriptors (SSSIs for the proposed 

method and Self-Similar Normals for the baseline) for all 

extracted features over multiple scales. This yields a point 

cloud's keyscale which is defined by the authors in [11] as “the 

scale that gives the minimum of cumulative contribution rate of 

PCA at a specific dimension of eigenspace”. 

However, initial experiments using the model point clouds 

(Figure 7 and Figure 8) showed that using the minimum to 

define the keyscale proved valid only for the baseline 

algorithm. For the proposed algorithm using SSSIs the 

maximum needed to be computed. 

 

Figure 7: The Ant PCA scores (left) show the baseline keyscale 

at 6.55 and the proposed keyscale at 14.74 while the respective 

keyscales for Ant (S10) PC scores (right) were 65.5 and 147.4. 

 

Figure 8: The scale difference between the point cloud (left) 

and its scaled version (right) was detected by both methods. 

Therefore, a more general definition for a point cloud's 

keyscale would be “the scale that gives the extremum of 

cumulative contribution rate of PCA at a specific dimension of 

eigenspace”. 

 

Figure 9: The ratio of the keyscale for the proposed method 

(23.66 to 236.6) curves yields the correct scale of 10. The 

baseline method did not yield a keyscale. 

Initial experiments for the LIDAR point clouds showed similar 

results for the proposed algorithm as shown in Figure 9 and 

Figure 10. However, for the baseline algorithm the PC analysis 

curves did not have any local minimums regardless of scales 

selected and, therefore, a keyscale could not be found. 

 

Figure 10: The scale difference between the point cloud and its 

scaled version was detected only by the proposed method. 

Table 2 present the results of performing scale matching on the 

test dataset. For the simpler model point clouds both the 

baseline and proposed methods performed well, with the 

proposed method providing a slightly better estimate of the 

scale mismatch. For the realistic LIDAR point clouds the 

baseline method was unable to estimate the scale for any of the 

point clouds since there was no local minimum in their 

keyscale curves regardless of the scale ranges tested. 

Table 2: Results of performing the scale matching tests. 

Point 

Cloud 
Baseline Proposed Error 

Improve-

ment (%) 

Ant 10 10 0 0 

Beethoven 9.41 10 0.59 5.9 

Chopper 10 10 0 0 

SMALL N/A 10 N/A N/A 

LARGE N/A 10 N/A N/A 

MIX N/A 10 N/A N/A 

While the initial tests for the baseline method proved it unable 

to detect the scale difference between the reference and target 

LIDAR point clouds, tests with the robustness test set showed 

it able to detect scale difference of some but not all datasets. 

Table 3: Results of scale matching on the robustness dataset. 

Case Algorithm Truth Avg Std 
Error 

(%) 

S10 Proposed 10 9.98 0.11 0.21 

S10 Baseline 10 10.06 0.25 0.64 

Y180 Proposed 1 1.01 0.03 0.51 

Y180 Baseline 1 0.98 0.07 1.64 

RST Proposed 2 1.96 0.24 1.86 

RST Baseline 2 1.71 0.41 14.41 

Finally, in order to evaluate and compare the performance of 

the proposed and baseline methods for a wide range of terrains 

and misalignment transformations they were tested against the 

robustness test set. The results presented in Table 3 show both 
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the baseline and proposed did a good job of estimating the 

scale for the simplest transformations S10 and Y180 with 

errors ranging from 0.21% to 1.64%. However, in both cases 

the proposed method still reduced the error over that of the 

baseline by 67.42% for S10 and 68.83% for Y180. For the 

more complex RST transformation the proposed method, with 

an error of 1.86%, outperformed the baseline method, with an 

error of 14.41%, again reducing the error by 87.10%. 

3.4 Feature Matching 

 For the feature matching experiments the test point clouds 

were tested using the RST transformation. The feature 

matching step described in Section 2 requires detecting feature 

points (using the MoPC method), computing a local descriptor 

for all extracted features (SSSIs for the proposed method and 

Self-Similar Normal for the baseline), and matching them 

(using the Nearest Neighbor Distance Ratio method). The 

baseline and proposed methods were evaluated by comparing 

their accuracy in estimating the transformation between the 

reference and target point cloud.  

Figure 11 shows the extracted feature points for one of the 

LIDAR point clouds and its transformed point cloud that were 

matched. 

 

Figure 11: The point cloud and its RST version were matched 

using the the baseline (left) and proposed method (right). 

Table 4: Estimated transformation parameters using both 

methods for the SMALL LIDAR point cloud. 

Parameter Truth Baseline 
Error 

(%) 
Proposed 

Error 

(%) 

Angle -45 -44.83 -0.37 -44.81 -0.42 

X-axis 0 -0.004 - -0.01 - 

Y-axis 1 0.99 -0.02 0.99 -0.03 

Z-axis 0 0.02 - 0.02 - 

Scale 2.0 1.78 -11.1 2.0 0 

X-offset -249 -322.87 29.67 -255.88 2.76 

Y-offset -249 -224.42 -9.87 -259.35 4.15 

Z-offset -249 -340.34 36.68 -255.75 2.71 

Error - - 27.94 - 3.29 

Table 4 provides the transformation parameters estimated from 

the matched feature points as well as the true parameter values. 

The results show that the proposed method was able to provide 

a better estimate (total error of 3.29%) for the rotation, scale, 

and translation parameters than the baseline method (total error 

of 27.94%). 

Table 5 presents the total registration error of performing 

feature matching on the test dataset. For both the simpler model 

and LIDAR point clouds the proposed methods outperformed 

the baseline method providing a significantly better estimate of 

the transformation mismatch with a median improvement of 

88%. 

Table 5: Total registration error of feature matching. 

Point Cloud Baseline Proposed Improvement (%) 

Ant 5.11 4.97 -2.79 

Beethoven 15.53 0.00 -100.00 

Chopper 80.33 27.90 -65.27 

SMALL 27.94 3.29 -88.23 

LARGE 54.87 6.67 -87.84 

MIX 28.88 0.61 -97.89 

Finally, in order to evaluate and compare the performance of 

the proposed and baseline methods for a wide range of terrains 

and misalignment transformations they were tested against the 

robustness test set. The results presented in Table 6 show both 

the baseline and proposed methods did a very good job of 

estimating the misalignment transformation for the simplest 

transformations, S10 and Y180, with trivial errors ranging from 

2.6E-11% to 1.7E-10%. For the more complex RST 

transformation the proposed method, with an error of 18.92%, 

outperformed the baseline method, with an error of 33.23%, 

reducing the error by 43.08%. 

Table 6: Registration errors (%) matching the robustness sets. 

Case Algorithm Error Stdev Improvement 

S10 Proposed 1.7E-10 5.5E-11 -4.39 

S10 Baseline 1.6E-10 5.4E-11 - 

Y180 Proposed 2.6E-11 2.8E-11 9.74 

Y180 Baseline 2.9E-11 3.1E-11 - 

RST Proposed 18.92 17.59 43.08 

RST Baseline 33.23 29.94 - 

In conclusion, the Scale Matching experiments showed the 

proposed method outperformed the baseline method by 

reducing the error in detecting the scale difference by a factor 

of 67% to 87%. The Feature Matching experiments showed the 

proposed method outperformed the baseline method by 

reducing the alignment error by up to 43%. 

4 Conclusions 

 Given the need to mine large 3D point clouds in a variety 

of fields, this study developed a promising method to align two 

point clouds with spatial and scale misalignments that only 

requires processing a subset of the data. To overcome many of 

the common problems in matching point clouds, this study 

proposed using a self-similarity based feature descriptor as the 

basis of its matching process because it can identify local 
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patterns regardless of how they are generated. Combining this 

property with a powerful local metric like spin images leads to 

a robust new feature descriptor:  Self-Similar Spin Images. 

The distribution of these new descriptors was then analyzed in 

order to match scale differences between point clouds by 

defining a Self-Similar Keyscale for each cloud. For both 

feature and scale matching the proposed methods were able to 

accurately match the features and scales of the test cases over a 

variety of point cloud types. In particular, the proposed 

methods were able to outperform their baseline counterparts by 

exploiting a more powerful spin image descriptor within the 

self-similarity framework. 

Future work on the SSSI method can incorporate additional 

metrics into the similarity descriptor in addition to spin images. 

Potential candidates for additional metrics are the local normal, 

the local curvature, and photometric intensity. Once new 

metrics have been added and a new descriptor defined then this 

will also yield a new SSK. 

5 Appendix 

 The model point clouds are available online at: 

http://people.sc.fsu.edu/~jburkardt/data/ply/ply.html. 

The LIDAR point clouds are available online at: 

https://earthexplorer.usgs.gov. 

 

Figure 12: A sample of 6 of the 25 LIDAR point clouds used 

for robustness testing. The data sets were selected from an 

urban area in Denver that covered a variety of terrains. 
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