
Modeling the Effects of Dehydration on Cellular Growth and Wound Repair


I. INTRODUCTION


     The impacts of dehydration on cellular 
growth have been studied, but not formed 
into a computational model that could 
inform medical treatments and in vitro 
experiments that involve growing tissue [1]-
[5]. Dehydration is defined as a reduction of 
the total concentration of water in the body, 
such that the body weight is reduced [6]. 
Acute and chronic forms of dehydration can 
cause a variety of symptoms [6],[7]. Mild to 
moderate dehydration is common in athletes 
and the elderly [4]. Both groups are also 
more likely than the average population to 
get injured [4],[8],[9]. A comprehensive and 
functioning model describing the impacts of 
dehydration on tissue growth could be used 
when studying and designing treatment 
plans for groups vulnerable to dehydration 
and to inform decisions on environments for 
growing cell cultures and tissue in vitro. The 
expected model will seek to combine, 
simplify, and modify two computational 
model: a continuum model and a partial 
differential equation model [1],[2],[3]. Due 
to the composition of the two computational 
models, which will act as a base for the 
combined or resulting model, the resulting 
computational model is a set of ordinary 
differential equations. The resulting model 
has the same limitations as the continuum 
model and the partial differential equation 
model. Any areas where the limitations of 
the two models overlap could be areas of 
concern, as any errors may be compounded. 
Physiologically, the final model references 
the known role of dehydration on 
inflammation [5],[10],[11], circulation [4],
[5], and the extracellular matrix [1],[2],[4]. 
The final model highlights and helps explain 

the differences between wound repair while 
the patient is healthy and while the patient is 
dehydrated, which is of medical significance 
as it could help inform medical opinions on 
wound care and as a factor in medical 
studies on wound repair [4],[5],[12],[13].


     This project is done via computational 
modeling, due to the unfeasibility and 
invasiveness of any other method. This 
project studies the movement and growth of 
living cells, which is difficult to study 
experimentally. Biopsies could be used, to a 
limited extent. However, in order to control 
for variables, such as medical conditions, 
lifestyle factors, and age, each subject would 
have to be biopsied multiple times. This still 
would not have perfect comparability, as the 
biopsy would be a slightly different area 
each time. Additionally, as the study 
involves wound repair, taking repeated 
biopsies of the area could slow the healing 
of the wound by damaging the scab or 
enlarging the wound itself. There are, to the 
knowledge of this paper, no scans that could 
be used over the course of the study that 
would provide the required information.  


     This model focuses on the impact of 
dehydration on wound repair, specifically 
seeking to determine the differences 
between wound repair in a healthy patient 
and wound repair in a dehydrated patient. 
Previous work on this subject includes two 
computational models. One model [1],[2] 
describes cell density by modeling the tissue 
as a compressible fluid in a two-dimensional 
continuum model with the extracellular 
matrix as a vector array. The final equation 
of which is shown in Equation 1. The 
continuum model simulates the intralayer 



elastic couplings, the adhesion of cells, the 
forces of the lamellipodia, and the rate of 
apoptosis and replacement of cells within a 
cell sheet. Specifically, the left side is the 
derivative of the cell density in terms of 
time. The first term on the right is the ratio 
of the residual bulk modulus to the adhesion 
of the epithelial cells (κ) multiplied by the 
change in cellular density (∆ρ). The second 
term is the growth factor of the equation 
(g(ρ)), which is a function of the cellular 
density. During cellular expansion there are 
four boundary conditions, shown in 
Appendix A. The variables are the same as 
in Equation 1; additionally, φ is a 
situationally defined constant and ρ0 is the 
initial cell density. The model and boundary 
conditions are based off a series of 
assumptions. The conditions are assumed to 
be steady state. The acceleration of each cell 
is assumed to be negligible compared to its 
velocity. The model assumes that the cell 
layer responds passively and instantaneously 
to any force acted on it. The model also 
assumes that ρ(x,0) is constant and the initial 
density is relative to the prestress created by 
the action of the lamellipod in the interior of 
the cell sheet at confluence [1],[2]. The 
second of the two computational models that 
is used as a base for the resulting model is 
not a continuum model, but a partial 
differential equation which is shown in 
Equation 3. The left side of the equation 
represents the cellular density derivative 
over time when the trajectories are always 
perpendicular to the surface. The terms on 
the right describe how the cells diffuse 
tangentially along a tissue surface that is not 
a straight vector, the influence of tangential 
velocities of individual cells and the 


(1) ∂ρ/∂t = κ∆ρ + g(ρ) 


(2)  g(ρ) = αρ(1 - ρ/ρk)


(3) (∂ρ/∂t)n = D(∂2/∂t2)ρ - ρunκ - ∂/∂l(ρ(vs + 
us))


tangential velocities over the tissue surface, 
the collective effect of cell crowding or cell 
spreading, and the rate of change of the 
number of cells present due to tissue 
synthesizing cells, respectively. The 
parameter D is a constant for diffusive flux, 
ρ symbolizes cellular density, un is the 
surface velocity’s tangential component, κ is 
the local mean curvature, vs is the individual 
cell’s tangential component, t is time, and l 
is the arc length. In addition to steady state 
assumptions, the partial differential equation 
model assumes that the initial cell density 
distribution and initial radius are arbitrary 
and subject to a boundary condition of ρ(-
π,t) = ρ(π,t). It is assumed that the cells are 
subject to a tangential cell velocity field that 
depends on the length of the cavity wall [3]. 
These two models will be combined with 
precedence given to the continuum model. 
The parameters already in the combined 
model will be modified to reflect how 
dehydration effects them based upon a 
literature review. Specifically, the cellular 
density decreases [14] and the adhesion 
constant increases [11], depending on the 
severity and duration of dehydration. In 
addition to these impacts, dehydration can 
reduce circulation [4],[5], prevents enough 
water from being absorbed into the 
extracellular matrix [4], increases 
inflammation [5],[11], decrease blood 
pressure [7], decreases the volume of plasma 
[6],[13] and increases the heart rate [12].The 
relationship between these changes and the 



modeled parameters has not been well 
defined in literature.


II. MATERIALS AND METHODS


     The project is done via computational 
modeling, specifically, a continuum model. 
The general pattern of cell density change 
within wound healing can be defined as cell 
spreading or cellular growth in terms of the 
literature. Figure 1 shows how dehydration 
impacts the physiology of the body based 
off of literature defined relationships. 
Literature defines this growth in terms of 
logarithmic growth and partial differential 
equations. The creation of the final 
mathematical model is shown in Figure 2. 
The final mathematical model is made up of 
a primary linear first order partial 
differential equation and four boundary 
equations. 


Figure 1:  The flow diagram showing how 
dehydration impacts the body and the model. 





Figure 2:  The flow diagram showing how the final 
mathematical model is derived. The equations are 
Equations 1, 2, 5, and 6.


     The equations are originally based off of 
two computational models, whose final 
equations are shown in Equations 1 and 3. 
The continuum model shown in Equation 1 
and 2 was used as the primary model and the 
secondary model, shown in Equation 3 was 
used to modify the continuum model. The 
original continuum model describes the 
main forces that control cell migration of a 
cell sheet. Specifically, the intralayer elastic 
couplings, the adhesion of cells, the forces 
of the lamellipodia, and the rate of apoptosis 
and replacement of cells [1],[2]. The 
secondary model describes how cells diffuse 
tangentially along a tissue surface that is not 
a straight vector, the influence of tangential 
velocities of individual cells and the 
tangential velocities over the tissue surface, 
the collective effect of cell crowding or cell 

Continuum Model [1]


∂ρ/∂t = κ∆ρ + αρ(1 - ρ/ρk)


Partial Derivative 
Model [3]


(∂ρ/∂t)n = D(∂2/∂t2)ρ - 
ρunκ - ∂/∂l(ρ(vs + us))


Combined Model without 
Dehydration Modifiers


∂ρ/∂t =(k/b)∆ρ + αρ(1 - 
ρ/ρk) + D▽s2 ρ - ▽s ρs


Combined Model with 
Dehydration Modifiers


∂ρ/∂t = βτ( (kβ/b)∆ρ + αρ(1 
- ρβτ/ρk) +   D▽s2 ρ - ▽s 
ρs)


Increased heart rate, 
decreased blood pressure, 
decreased extracellular 
matrix, decreased 
circulation

Increased epithelial 
adhesion, decreased 
cellular density

Dehydration

Factors are assumed to 
not influence the 
model or to overlap 
with modeled 
parameters

Decreased wound 
healing



spreading, and the rate of change of the 
number of cells present due to tissue 
synthesizing cells [3]. The additional factors 
of the secondary model are incorporated into 
the primary model by modifying the growth 
of the cellular density segment of the 
continuum model’s main equation. The 
growth segment is assumed to be Equation 2 
during cell-colony expansion, which would 
be present during wound repair [1],[2]. The 
equation is assumed to be logistical growth 
in this model during tissue growth. The 
parameter ρk is the limiting cell density and 
α is a situationally defined growth constant. 
This equation already has some factors that 
overlap with the factors of the secondary 
model, namely the rate of cell growth and 
apoptosis and ratio of the cell density and 
the limiting cell density. To simplify the 
final equation and prevent from 
overweighting these factors in the final 

equation, they are assumed to be analogous. 
Specifically, the factors from the continuum 
model that are assumed to be analogous to 
the partial differential equation model are, 
respectively, the rate of change of the 
number of cells present due to tissue 
synthesizing cells is assumed to be 
analogous to the rate of apoptosis and 
replacement of cells and collective effect of 
cell crowding or cell spreading is assumed 
to be analogous to the ratio of the cell 
density and the limiting cell density. The 
secondary model is not a continuum model, 
so it looks at the movement of individual 
cells and the surface area in two separate 
parameters [3]. The continuum model lumps 
these areas into the movement of the tissue 
as a whole [1],[2]. To allow for more direct 
comparability between the results of this 
model and the continuum model that serves 
as a base, the parameters for the cell and 

Figure 3: The simulation model for the parameters and the dehydration modifiers. The severity (bet) and duration (tau) modifiers are assigned a 

value of X, as this is changed in each simulation. The other values are from the continuum model [1],[2] and the partial differential model [3].




surface area will be lumped together. The 
additional factors were added to the 
equation. The final growth equation is 
shown in Equation 4. The parameters are the 
same with s being an additional parameter 
which is the surface that is used in the 
gradient. This becomes part of the combined 
model, shown in Equation 5 and 6. Equation 
5 has the residual bulk modulus (k) and 
cellular adhesion (b) combined into a 
constant, κ. Equation 6 elaborates to show 
the adhesion constant, which has been 
shown to be modified by the dehydration 
[1],[2],[3],[11]. The combined model uses 
the assumptions that both models used in 
their own creation, in addition to the ones 
stated. These assumptions keep the final 
equation and boundary conditions simple 
enough to model and analyze.


(4) g(ρ) = αρ(1 - ρ/ρk) + D▽s2 ρ - ▽s ρs


(5) ∂ρ/∂t = κ∆ρ + αρ(1 - ρ/ρk) + D▽s2 ρ - 
▽s ρs


(6) ∂ρ/∂t = (k/b)∆ρ + αρ(1 - ρ/ρk) + D▽s2 ρ 
- ▽s ρs


     The factor of dehydration was added to 
the combined model [1],[2],[3],[11],[14],
[15]. The literature review indicated how 
each of the parameters in the model changes 
in dehydrated conditions. Specifically, the 
cellular adhesion of the epithelial layer 
increases with dehydration [11] and cellular 
density decreases with time in and severity 
of dehydrated conditions [14]. Partially 
based on models for dehydration, the 
dehydration factors were added as 
dimensionless multiplied modifiers for the 
parameters [1],[2],[3],[15]. The equation is 
shown in Equation 7. Two dehydration 

modifiers were used to alter Equation 7. The 
parameters were modified solely by the 
severity of dehydration or by the severity 
and the duration of dehydration [11],[14]. 
Both modifiers are defined as being from 0 
to 1, with the lower bound being non-
inclusive. The severity modifier is labeled β. 
Α value of 1 is defined as normal hydration. 
A lower value is defined as some level of 
dehydration. The duration modifier is 
labeled as τ. A value of 1 is defined as no 
time spent dehydrated. A lower value is 
defined as some time spent dehydrated. For 
both modifiers, a value of 0 is assumed to be 
fatal. This approach assumes a direct and 
linear correlation that impacts the parameter 
with even the slightest dehydration and does 
not have a limit to how much it changes. 
Dehydration has been linked to other 
symptoms as well. Depending on severity 
and duration of dehydration it reduces 
circulation [4],[5], prevents enough water 
from being absorbed into the extracellular 
matrix [4], increases inflammation [5],[11], 
decrease blood pressure [7], decreases the 
volume of plasma [6],[13] and increases the 
heart rate [12]. The relationship between 
these changes and the modeled parameters 
has not been well defined [4],[6],[7],[11],
[12],[13]. This model assumes that the 
factors either do not impact the rate of 
wound repair or are described by the change 
in the parameters that are modeled. 


(7) ∂ρ/∂t = (kβ/b)(∆ρβτ) + αρβτ(1 - ρβτ/  

       ρk) + D▽s2 ρβτ - ▽s ρβτs


The final equation was translated to a 
SIMULINK model and MATLAB code. The 
general code for the input values is in 
Appendix H. The code allows the 
parameters to be easily changed and the 
output to be captured. All but the created 



dehydration modifiers are filled with test 
values from the two models the model is 
derived from and a literature review, as 
shown in Appendix H. This allows the 
model to be run and validated based on 
standard averages and general trends. 
Additionally, the boundary conditions was 
coded into the model [16],[17]. The 
SIMULINK model is shown in Figure 3. 
The model uses a node as the sink to capture 
the values in the code for analysis. The 
source used is a constant, as the model 
assumes that the internal cellular factors that 
dictate cell and tissue growth do not change 
as the wound heals. The model will be 

validated by using a set of literature values 
and various values of dehydration. The 
comparison of the different outputs should 
reveal that the rate of change of cellular 
density over time decreases and thus show a 
decline in the rate of wound healing as 
dehydration increases in severity and 
duration. The final model has six nodes to 
capture the model’s final results and to allow 
the analysis of the components of the model. 
There is one node for each of the four 
grouped segments of the equation that are 
combined via addition and subtraction to 
make the final model. There is also one node 
to look at the cellular density and one to 

Figure 4: The results of the model when run to model fully hydrated conditions. The tau and beta were both set to one. The other parameters are the 
test values declared in Appendix H. This is used as a control for the dehydrated simulations to be run against. It is also used to compare against the 
continuum and partial differential model to test the accuracy of the model. This model shows that cell crowding and elastic couplings components 
have the largest influence on the model. The rho value shows that the cellular density of this model is higher than expected.



observe the derivative of the cellular density 
in terms of time. 


III. RESULTS


     The simulation was tested in three ways 
in addition to a control. The control was to 
run the model at fully hydrated values. The 
first type of modification was changing the 
severity constant while keeping the duration 
constant at 1. The second type was changing 
the duration constant while keeping the 
severity constant at 1. The first two types 
were not based on anatomical values. 
Instead they were controlled attempts to 
model the impact of each variable on the 
model as a whole. The third type involved 
changing both parameters. These values 

were not based on experiments. Instead they 
were based on theoretical situations and 
assigned theoretical values. This created a 
possible source of error where any situations 
that were not anatomically possible could 
have created results that were not 
anatomically possible and did not reflect 
physiological relationships. Despite the lack 
of physiological relevance, the trials proved 
that the modifiers were influencing the 
model independently and the model 
produced a single type of output.


     The simulation at fully hydrated values is 
the closest to the models that were used to 
derive this model. The resulting lines all 
reach a visually steady state, with minor 
oscillations found when the data is 

Figure 5: The results of the model when run to evaluate the effects of changing the duration modifier. The beta was set to one, the tau was set to 0.9. 
The other parameters are the test values declared in Appendix H. The simulation shows the same pattern of decreasing values and slowed wound repair 
as Appendices B, D, and E. 




examined. The node that is attached to the 
part of the model that represents the elastic 
couplings between layers shows that the 
steady state is a large, positive value. Based 
on the simulations, no change smaller than a 
factor of ten has any notable effect. 
Comparatively to the other values, the 
elastic couplings have a large influence on 
the change of density over time. The part of 
the model that represents the effects of cell 
crowding and the synthesis and apoptosis of 
cells resulted in a large, negative value. Both 
of these factors having this level of 
influence makes sense with the continuum 
model, as they are some of the primary 
factors considered by the continuum model 
[1],[2]. Additionally, it has been indicated 
that dehydration increases adhesion forces, 
which would impact the influence of the 
elastic couplings, and decreases the overall 

cellular density, which would impact the 
grouped effect of cell crowding and cell 
synthesis [11]. The part of the model that 
represents tangential diffusion along non-
straight lines is a small, positive value at the 
steady state. Compared to the rest of the 
model, tangential diffusion has a small effect 
on the change of cell density over time. The 
part of the model that represents the 
tangential velocity of cells and tissue returns 
a medium, positive value at steady state. 
Tangential velocity appears to have less 
influence on the model than the elastic 
couplings or cell crowding, but notably 
more than the tangential diffusion. These 
factors were only considered by the partial 
differential equation model [3]. The steady 
state value of the cellular density, ρ, was 
approximately 2.3 * 104 cells/mm3. when 
rounded to accommodate for oscillations. 

Figure 6: The results of the model when run to simulate acute dehydration. The beta was set to 0.1, the tau was set to 0.9. The other parameters are the 
test values declared in Appendix H. This simulation shows that acute dehydration does not have the same level of impact as severe dehydration, but it 
does decrease the components. This indicates that wound healing would be slowed, but not significantly.




This is larger than the upper end of the 
cellular density found in the continuum 
model, which ranged from 1000 to 9000 
cells/mm3 [1],[2]. Mathematically, this 
difference is partially accounted for by the 
addition of the tangential diffusion along 
non-straight lines and the tangential velocity 
of cells and tissue. Generally, adding more 
elements makes models more accurate [2],
[15], but some factors may have been 
overweighted in the creation of this model 
due to unintentional overlap. 


     To test the behavior of the model and the 
influence of the individual modifiers, two 
sets of trials were run where one modifier 
was set to a value of 1 and the other was set 
to 0.1, 0.5, and 0.9. The severe value was 
chosen as the largest value that does not 
exceed one decimal place, the mild was 

chosen as the smallest value that does not 
exceed one decimal place, and moderate was 
chosen as the halfway point. There is no 
direct physiological correlation, however 
severe is assumed to be the most the human 
body can take before dying and mild is 
assumed to be the smallest amount of 
dehydration that will impact the body. All of 
these were physiologically unfeasible trials 
as they would involve either a person being 
some degree dehydrated while not having 
been dehydrated for any length of time or 
being dehydrated for some length of time 
while not suffering from dehydration. Both 
sets of trials maintained the same type of 
behavior that was exhibited in the fully 
hydrated simulation. For both sets of trials, 
the farther the dehydration constants got 
from fully hydrated values, the lower the 
eventual steady state values of the equations 

Figure 7: The results of the model when run to simulate severe dehydration during a long period of time. The beta was set to 0.1, the tau was set to 0.1. 
The other parameters are the test values declared in Appendix H. This simulation is slower to reach steady state than any other simulation. The change 
in the steady state values shows that the rate of wound healing would be slower than when fully hydrated, but faster than when acutely dehydrated.




were. This matches the expected trends from 
literature [4],[6],[7],[11],[12],[13]. The 
lowering of the modifiers, for the most part, 
produced similar behaviors and steady 
states, as shown in Appendices B, D, E, and 
Figure 5. When one modifier was set to 0.5, 
the differences were more apparent as 
shown in Appendices C and F. The trial 
where the duration modifier was set to 0.5 
showed larger values for all of the 
components of the equation than the trial 
where the severity modifier was set to 0.5.   


     There were three simulations where both 
modifiers were altered. The first modeled 
the subject during acute dehydration, severe 
in duration and short in time. For this 
situation, the severity modifier was set to 0.1 
and the duration modifier was set to 0.9. 
This is shown in Figure 6. The resulting 
cellular density was very similar to the fully 

hydrated value. The derivative of the 
cellular density in terms of time, the 
tangential diffusion along non-straight lines, 
the elastic couplings between layers, and the 
tangential velocity of cells and tissues were 
all decreased. The effect of cell crowding 
was increased to a less negative number. 
This may be because a section of tissue with 
lower cellular density has less issues with 
cell crowding. The second simulation was of 
the body during severe dehydration after a 
long period of time. For this situation, the 
severity and duration modifiers were set to 
0.1. This is shown in Figure 7. The 
modifiers significantly slowed the 
exponential curves, so it took until 
approximately 1.4 seconds to achieve the 
approximate steady state that the fully 
hydrated model achieved in approximately 
0.1 seconds. The modifiers also decreased 
all the values except the cell crowding, 

Figure 8: The results of the model when run to simulate moderate dehydration for a medium length of time. The beta was set to 0.5, the tau was set to 
0.5. The other parameters are the test values declared in Appendix H. This simulation’s values are show that the moderate dehydration would allow 
wound’s to repair faster than during severe or acute dehydration.




which increased, and the cellular density, 
which changed very little. The third 
simulation was of a person who had been 
moderately dehydrated for a medium length 
of time. This had both modifiers set to 0.5 
and is shown in Figure 8. The graphs show 
the same pattern as Figure 7, though not as 
severely. In both simulations where both 
modifiers were set to the same value, the 
cellular density did not drop significantly, 
which would have been expected with the 
established literature correlation. However, 
the derivative of the cellular density in terms 
of time did, which matches the slowed rate 
of wound healing that was predicted by 
literature [4],[5],[6],[7],[11],[12],[13]. 


     The model can be characterized as 
exponential. Each component exhibits either 
an exponential growth or decay curve. The 
curve that represents the cellular density, the 
tangential diffusion along non-straight lines, 
the effect of intralayer elastic couplings, and 
the effect of the tangential velocities of 
individual cells and the tissue as a whole are 
a growth curve. The grouped effect of cell 
crowding and cell synthesis and apoptosis is 
an exponential decay curve. The derivative 
of cellular density in terms of time is most 
closely characterized as a bi-exponential 
model. The initial spike is brief, then decays 
to a steady state value that is greater than the 
initial value, which is most clearly shown in 
Figure 7. Based on the resulting graphs 
when the modifiers are changed from fully 
hydrated values, the most effected segments 
are the grouped effect of cell crowding and 
the effect of cell synthesis and apoptosis and 
the tangential diffusion along non-straight 
lines. When the modifiers are altered 
enough, the curve delays and the peak seen 
in the final value widens.


IV. DISCUSSION AND SUMMARY


     The final model and its results 
demonstrate the impact of dehydration on 
otherwise healthy tissue growth. The relative 
influence of various factors of cellular 
growth were shown in the value of each 
factor during the fully hydrated simulation. 
Specifically, after the initial exponential 
curve the relationship of the steady state 
values can be used to determine a general 
relationship between the components of the 
equation and the final cellular density. While 
fully hydrated, intralayer elastic couplings 
are the largest factor that increases cell 
density, being to a power of nine. A 
correlation has been shown between higher 
cell density and higher elastic expression 
within tissue [18]. This does not guarantee 
that a higher elastic expression would 
indicate that the cell density should be 
higher there, but it suggests the possibility. 
The influence of the tangential diffusion of 
cells is comparatively small being only to a 
power of one [19]. The area chosen was 
chosen for mathematical simplicity, it is 
possible that a different surface area would 
change the level of influence of this factor. 
The grouped effect of cell crowding and cell 
synthesis and apoptosis to decrease cellular 
density has an approximately equivalent 
amount of effect as the elastic couplings, 
being to a power of negative nine. The 
nature of wound repair is likely the reason 
why this factor is so large. The need to 
replace cells would be increased, but the 
number of cells that had been damaged 
would also be increased. Dehydration 
reduces circulation, thus reducing the 
nutrients that would reach the cells, which 
could decrease the rate of cell synthesis [4]. 
Additionally, the process of wound healing 
has been shown to be contingent on cell 



movement and the shape of the cell 
groupings [19]. These combined factors 
together could cause the cell crowding 
component to decrease cell density by such 
a large amount. The influence of the 
tangential velocity of cells is the next most 
influential component to decrease the 
cellular density. Physiologically, it’s likely 
that the movement of the cells allows them 
to spread out and decrease the cellular 
density at any one point [19]. 
Mathematically, the cell crowding 
component and elastic forces appear to 
effectively cancel each other out in all of the 
simulations. This leaves the tangential 
diffusion and the tangential velocity to 
determine the change in cellular density. 


     The simulations that only change one of 
the dehydration modifiers were used to 
determine the relative level of influence of 
the two modifiers. The change of both 
factors independently produced the same 
general trends for the components of the 
equation. The effect of crowding became 
less negative. It is possible hydration, to 
some extent, disrupts the natural movement 
and shape changes that are necessary for a 
wound to repair itself [19]. Cellular 
adhesion increases with dehydration, which 
could change how the movement of cells 
and their extrusion [11],[20]. The value of 
tangential diffusion and tangential velocity 
decreased. Both are types of cell migration, 
so any factor that would impact cell 
movement would impact them both [20]. 
The same increase in cellular adhesion that 
could impact the effect cell crowding could 
impact the tangential diffusion and velocity 
components [11]. Additionally, dehydration 
decreases circulation, which reduces the 
amount of nutrients [4]. This could impact 
any cell movement. The value for the elastic 

couplings decreased. This could be due to 
the increase in adhesion forces or the 
possible correlation between cell density and 
elastic couplings [11],[18],[19]. While the 
same trends appearing with both individual 
simulations could indicate an error in the 
model, the correlation between the factors 
makes sense, as the factors both are 
indicative of the effect of dehydration and 
generally work in tandem. The correlation 
being due to a modeling error is less likely 
because of the differences between results. 
While when one value was set to 0.1 or 0.9 
the results were identical, they were not 
always. When the severity modifier was set 
to 0.5, both the cell crowding factor and the 
derivative of the cellular density had higher 
initial values and the rest of the factors has 
higher steady states than when the time 
constant was set to the same, as shown in 
Appendices C and F. This could indicate that 
the severity of dehydration is more 
important than the duration of dehydration. 


     The relative influence of the equation 
components on the change in cellular 
density due to dehydration can be examined 
by how much the factors change between 
fully hydrated values and when the 
modifiers are both set to 0.1, simulating 
severe dehydration. The cell crowding 
component and the elastic component 
changed by the largest factor. Both changed 
by a power of four, the cell crowding 
component becoming less negative and the 
elastic couplings component increasing. 
Mathematically, the two cancel each other 
out. Both the tangential diffusion and 
tangential velocity decreased by a power of 
two. 




     The results for the cellular density were 
unexpected. When the model was run with 
the dehydration modifiers set to fully 
hydrated values, the cellular density was 
higher than the upper end of the range found 
by the continuum model by approximately a 
power of ten [1],[2]. Whether this is due to a 
modeling error or a different set of initial 
conditions is unclear. When run to simulate 
dehydrated conditions, the cellular density 
did not change significantly between levels 
of dehydration. Dehydration has been 
determined to decrease the cellular density 
due to the change in circulation and 
diameter of blood vessels [14]. The minimal 
variance could be due to a modeling error. 
The model relies on a series of 
simplifications and assumptions. Either one 
could have been made incorrectly or 
multiple assumptions could have 
compounded an error. The model could also 
have some degree of truncation errors from 
the computation, which prevents the 
decrease from being as large. The model 
never reaches a full steady state, so the 
oscillations could hide a smaller decrease. 
Alternatively, no literature could be found 
that gives an exact range of possible human 
cellular densities, but it is possible that the 
cellular density can only change within 
certain parameters. 


     The results of the model provide some 
illumination on the differences between 
wound repair while hydrated and 
dehydrated. Previous work on this subject 
has shown the cellular density decreases and 
the adhesion constant increases, depending 
on the severity and duration of dehydration 
[11],[14]. In addition, dehydration can 
reduce circulation [4],[5], prevents enough 
water from being absorbed into the 
extracellular matrix [4], increases 

inflammation [5],[11], decrease blood 
pressure [7], decreases the volume of plasma 
[6],[13] and increases the heart rate [12], 
which creates an overall slower process for 
wound healing [1],[2]. This model suggests 
some of the ways that these factors influence 
and slow the rate of wound repair. By 
dividing the rate of wound repair into 
components the effect of the factors can be 
better observed and explained. The model 
shows that the severity of dehydration is 
more detrimental to the rate of wound repair 
than the duration of dehydration in some 
situations.


Future tests and simulations could further 
validate or be used to refine the model. One 
way would be to run a test under the 
conditions modeled and compare the end 
states of both tests. This would likely be 
unfeasible. The constants could be checked 
and standardized using the same method that 
the continuum model used, as shown in 
Appendix G. The method uses a set of 
equations that could be used to optimize the 
constants of the equation. Where zρ and zd 
is summed over all points and j begins at 
one. The goal would be to minimize z = zp + 
zd [1]. If similar models could be found a 
comparison could be used, similarly to how 
the simulation could be used with 
experimentally gathered data.
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APPENDIX A


APPENDIX B




Appendix B: The results of the model when run to 
evaluate the effects of changing the severity modifier. 
The tau was set to one, the beta was set to 0.1. The 
other parameters are the test values declared in 
Figure 3.


1) At the edge of the coverslip region, Neumann: 
∆ρ*n = 0 on an outer boundary


2) At the edge of the observable are, Dirichlet: ρ = 
eφρ0 on an outer boundary


3) Lamellipodia at wound edge; constant force per 
unit length; Dirichlet: ρ = eφρ0 on an inner 
boundary


4) At the moving edge: v*n = -κeφρ0-1 ∆ρn on an 



 

APPENDIX C




Appendix C: The results of the model when run to 
evaluate the effects of changing the severity modifier. 
The tau was set to one, the beta was set to 0.5. The 
other parameters are the test values declared in 
Appendix H.
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Appendix D: The results of the model when run to 
evaluate the effects of changing the severity modifier. 
The tau was set to one, the beta was set to 0.9. The 
other parameters are the test values declared in 
Appendix H.
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Appendix E: The results of the model when run to 
evaluate the effects of changing the duration 
modifier. The beta was set to one, the tau was set to 
0.1. The other parameters are the test values declared 
in Appendix H. 
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Appendix F: The results of the model when run to 
evaluate the effects of changing the duration 
modifier. The beta was set to one, the tau was set to 
0.5. The other parameters are the test values declared 
in Appendix H. 


APPENDIX G

zρ = ∑ρrmsj


zd = ∑drmsj



APPENDIX H


The below text is the full code. The colors of 
comments and other types were left in for 
readability.

clc;clear;

 

%Specify parameters

%parameter values would change 
depedning on exact sample being 
modeled

%values are test values based on 
literature research and assumption

kappa = 13700; % (micro*m)^2/h - 
residual bulk modulus/adhesion 
constant

rho_init = 0.004876; %cells/?m2

%rho = ; %cellular density - thing 
being found

%chng_rho = rho - rho_init; %change 
in cellular density - thing being 
found

al = 0.0913; %growth constant

rho_k = exp(1.158)*rho_init; 
%limiting cell density

D = 0.0001; %cellular diffusion 
constant - literature - assumed 
0.0001 for now

SX = 1; %gradient(rho); %surface 
gradient of rho - sample value 

 

%dehydration variables

%The variables would change in each 
simulation to model different

%situations with different levels 
of severity and durations of 
dehydrtation

bet = X; %start 1

tau = X; %start 1

 

%Simulate the model - unfinished 
psuedo-code

%The code will run the model, 
capture the output, and plot the 
output. 

a = sim('DehydratedWoundModel');

 

%the following plots all five 
outputs using simulation data 
inspector 

plot(a.yout);


APPENDIX I


Initial Equations to be combined to get 
Equation 7:


Continuum Model [1]: 

∂ρ/∂t = κ∆ρ + g(ρ) 

	 Where g(ρ) = αρ(1 - ρ/ρk)

Expanded: ∂ρ/∂t = κ∆ρ + αρ(1 - ρ/ρk)


Partial Derivative Model [3]: (∂ρ/∂t)n = 
D(∂2/∂t2)ρ - ρunκ - ∂/∂l(ρ(vs + us))

Expanded: (∂ρ/∂t)n = D▽s2 ρ − ▽s (ρ(vs + 
us)) - ρunκ + ρ(P – A)


Assumed equivalencies:


α = ρ(P – A)

ρ/ρk = ρunκ

vs + us = s


Combination process:


g(ρ) = αρ(1- ρ/ρk) + D▽s2 ρ − ▽s(ρ(s))

∂ρ/∂t = κ∆ρ + g(ρ) 


∂ρ/∂t = κ∆ρ + αρ(1- ρ/ρk) + D▽s2 ρ − ▽s 

(ρ(s))
κ = k/b


Combined Model without Dehydration 
Modifiers:

∂ρ/∂t =(k/b)∆ρ + αρ(1 - ρ/ρk) + D▽s2 ρ - 
▽s ρs


Combined Model with Modifiers:

∂ρ/∂t = βτ( (kβ/b)∆ρ + αρ(1 - ρβτ/ρk) +   
D▽s2 ρ - ▽s ρs)


Equation 7:

∂ρ/∂t = (kβ/b)(∆ρβτ) + αρβτ(1 - ρβτ/ρk) +   

         D▽s2 ρβτ - ▽s ρβτs


