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Real-time low-power wireless monitoring are increasingly being used in applications

such as: Industrial Internet-of-Things, Smart City technologies, and critical infrastructure

monitoring. Creating a deadline driven scheduling while considering energy management

creates complex optimization problems. My research integrates energy saving mechanisms

with real-time scheduling for time critical WSNs to save energy while meeting the desired

quality of service requirements. I investigate and improve the energy consumption of real-

time wireless sensor network (WSN) protocols utilized in industrial control systems. My

contributions are in three distinct areas.

First, I focus on single cluster real-time WSNs specifically on improving time-slotted su-

perframe based techniques. The current wireless standards for Industrial Control Networks

(ICNs) employ static slots for their superframe structure. I study the concept of dynamic

readjustment of time-slots to minimize the overall energy consumption and combine real-

time performance with novel energy conservation methods by describing a set of dynamic

modulation scaling (DMS) based adaptive packet transmission scheduling algorithms that

reclaim unused slot times.



To support my reclaiming method in a wireless environment, I introduce a novel low-

power listening technique called Hybrid Low-Power Listening (HLPL) protocol. I evaluate

my algorithms using Castalia simulator against an oracle-based approach, and show that

my dynamic slot reclaiming approach, coupled with HLPL, can introduce substantial power

savings without sacrificing real-time support. In order to further expand applicability scope

of my solution, my dissertation work considers non-deterministic workloads. Next, I take a

deeper look into DMS and its effect on low power wireless communication. In recent years a

number of studies have suggested that DMS techniques can reduce energy consumption in

low-power wireless transmission technologies. These studies tend to rely on theoretical or

simulation DMS models to predict network performance metrics. However, there is little,

if any, work that is based upon empirically verified network performance outcomes using

DMS. My dissertation fills that gap. First, by using GNU Radio and SDR hardware I

show how to emulate DMS in low power wireless systems. Second, I measure the impact of

varying Signal-to-Noise levels on throughput and delivery rates for different DMS control

strategies. Third, I quantify the impact of distance by using DMS and finally, I measure

the impact of different elevations between sender and receiver on network performance. My

results provide an empirical basis for future work in this area.

For the third part, I investigate transmission scheduling of multi-hop time critical WSNs.

Previous work has shown that connection driven topology control has tremendous potential

to decrease energy consumption and/or latency [1–5]. DMS changes transmission energy

levels and has a direct impact on packet loss rate and propagation distance. However,

current work does not provide any multi-cluster communication solutions which incorporate

DMS into already managed transmission energy level control. I address this gap by first

formulating Mixed Integer Nonlinear Formulation (MINLP) of DMS enabled transmission

scheduling for deadline driven networks. Next, I present two polynomial time heuristics.

I compare them against the optimal solution by integrating the empirical measurements

obtained from my SDR tests and present how DMS can be applied to multi-hop WSNs to

save substantial amount of energy.



Chapter 1: Introduction

Wireless Sensor Network (WSN) is the network of autonomous sensor devices which are

distributed among a target area in order to sense and monitor physical and environmental

conditions. These devices, also called nodes, are typically capable of sensing sound, temper-

ature, humidity, and pressure. It is also possible to extend their capabilities to be tailored

for specific tasks. As a result, WSNs have vast application areas such as structural health

monitoring, intrusion detection, highway monitoring, smart grid monitoring, and power de-

livery systems monitoring [6, 7]. These nodes are typically expected to operate for a long

duration of time on AA batteries and hence have limited processing power and memory.

Industrial Control Networks are among the many application areas of Wireless Sen-

sor Networks. Industrial network automation systems were traditionally installed with

wires connecting communicating devices. Potential drawbacks to purely wired systems are

higher costs for cables and maintenance and inflexibility in terms of deploying new nodes

or reconfiguring existing systems. As a result industrial automation and control systems

are increasingly being supported by wireless networks [8]. Wireless industrial systems are

now appearing in application domains such as manufacturing, electrical generation, and

chemical refining [9], along with Smart City and environmental monitoring applications

[10]. Currently deployed industrial wireless protocols includes IEEE 802.15.4e, WIA-PA,

WirelessHART and ISA100.11a [11]. WirelessHART has been deployed by more than 24

thousand networks with at least 5 billion operating hours according to their website.

Low-power real-time wireless protocols typically work by organizing nodes in cluster or

star topologies, and sometimes in multi-hop topologies. Variations of time division multiple

access (TDMA) based scheduling for link access is the most widely used method to provide

real-time guarantees on WSN [12]. TDMA systems generally have a coordinator that is

1



in charge of distributing time slots to the nodes. Nodes in the system therefore share a

logical superframe that is divided into timeslots. Each node has a pre-assigned time slot

where it is allowed to transmit so that collisions are prevented. The work presented in

[12] concludes that TDMA improves the performance of basic CSMA/CA protocols. Most

current standards either use a fixed size or varying size but pre-computed slot lengths for

their superframes. This may lead to an inefficient or inflexible use of resources in the form

of unused timeslots, especially if the workload is not fully predictable.

First part of my dissertation studies dynamically readjusting time slot lengths in a su-

perframe as a method to reduce overall energy cost and provide tighter real-time guarantees

to address these issues. As noted, many existing protocols assume that the workload is fully

deterministic and known in advance, which is not the case for many newer applications that

can be supported by real-time wireless protocols [13]. My dissertation addresses these limi-

tations through the design and analysis of adaptive, superframe based techniques designed

to maintain real-time performance guarantees while minimizing expected energy consump-

tion. In order to accomplish this goal, I adopted a well-known and widely-studied technique

called Dynamic Modulation Scaling (DMS) [14, 15], also known as Adaptive Modulation.

DMS is a technique that exploits the trade off between time and energy consumption of

a given modulation level. Higher modulation levels consumes more energy to transmit

and receive the data but the transmission takes less time. It has been showed that DMS

technique leads to reduced energy consumptions [15]. It is also commonly used to increase

throughput in hostile and time varying wireless situations [16]. For instance, in tactical mil-

itary environments one current mobile handheld standard is called JTRS. Mobile handheld

radios such as the Harris AN/PRC-15 implement adaptive modulation within the JTRS

standard. For Low-Power and Lossy Networks, the TI CC1200 supports 2-FSK, 2-GFSK,

4-FSK, 4-GFSK, MSK, OOK modulation whereas CC2500 supports 2-FSK, 2-GFSK, MSK

and OO. The application of DMS within WSNs has been studied in [17–20].

The underlying idea of the first part of my dissertation is to assign each node a time slot

in order to meet their communication transmission deadlines, but allow them to proactively

2



wake up and determine if other nodes have transmitted all of their packets and no longer

require some portion of their time slots. If this is the case, a node can begin packet transmis-

sion before its scheduled time, and conserve energy by transmitting at reduced modulation

levels. In order to accomplish this, I designed a new low-power listening protocol called

Hybrid Low-Power Listening. The algorithmic and protocol challenge is to schedule packet

transmissions in a manner that reduces energy while maintaining real-time performance, as

compared to the traditional static TDMA approach.

Next, I investigate the application of DMS on time-critical multi-hop low-power net-

works. Multi-cluster star-topologies are among the most common deployment topologies

by ICNs for data aggregation. It has been shown that topology control has tremendous po-

tential to decrease energy consumption and/or latency. DMS changes transmission energy

levels and has a direct impact on packet loss rate and propagation distance. However, cur-

rent work in literature does not provide any multi-cluster communication solutions which

incorporate DMS into already managed transmission energy level control. To address this,

my dissertation invests the affect and applicability of DMS on multi-cluster/multi-hop net-

works. It has been shown that there exists a threshold distance d where DMS does not

function as expected for the lower values of d [21, 22]. This threshold value significantly

depends on hardware design specifically the underlying sensor node’s circuitry energy con-

sumption. However, this is as far as it goes in terms of understanding the effects of DMS

on transceiver distances. An empirical measurement on this subject as well as DMS based

energy, packet loss, distance aware routing protocol was yet to be developed.

Next in my dissertation, I look into incorporating DMS into multi-hop networks. The

first part of my work has focused on the superframe structure described in 802.15.4-2006

but a more recent amendment (802.15.4e-2012) has extended this structure tailored for

multi-hop network. The challenge comes from both interference aware scheduling as well

as incorporating DMS into this structure. Interference aware multi-hop scheduling has

been studied in literature and proven that a throughput optimal TDMA schedule is an

NP-complete problem even for linear topologies [23] and [21] proves that interference and

3



Figure 1.1: Slotframe structure.

energy aware speed assignment problem is NP-hard.

802.15.4e-2012 extend 802.15.4-2006 by including bi-directional communication and channel-

hopping. All hoping sequences are identified by an id. Each id refers to pseudo-randomly

shuffled list of all of the channels. This amendment also introduces slotframe concept as

depicted in Figure 1.1. Slotframe timeslots can be assigned to a specific pair of nodes to

communicate, unlike superframe which assigns time slots between nodes and the coordina-

tor. Usually these slots are selected to be long enough to exchange a data packet and an

ACK packet but allowed to be of shorter length. Timeslots, slotframe length and which

frequency to use is assigned by a higher layer. In Figure 1.1 Absolute Slot Number (ASN)

0 is assigned for node B to receive data from node A. It is possible to have multiple simul-

taneous slotframes (Figure 1.2) which may share the same nodes. The interference can be

handled in either the time or the frequency domain. My dissertation handles interference

in the time domain.

A new Low Latency Deterministic Networks (LLDN) superframe structure is also intro-

duced as shown in Figure 1.3. This new structure adds management time slots, directional

(uplink, downlink, bidirectional) time slots, retransmission time slots.

The new LLDN superframe combined with slotframe structure aims to extend the

802.15.4-2006 superframe structure for multi-hop/multi-cluster communication. The fre-

quency hopping and division needs to be adjusted such that interference and multi-hop

fading will be reduced. Uplink time slots allows a specific cluster to form a group and
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Figure 1.2: Multiple simultaneous slotframes.

transmit back to back followed by a group acknowledgement (GACK) where a single bit is

used to indicate the success of a group member’s transmission. Management time slots are

used to collect health reports from the network as well as to impose new rules on the net-

work by the network manager. The primary purpose of superframe is clock synchronization

among the nodes. It also contains information about the current operating mode and the

ACKs from previous superframe. Similar properties also exist in WirelessHART standard.

In addition to backup slots and frequency hopping, WirelessHART requires at least one

alternative routing path per node which may be utilized in case the a transmission fails in

primary and backup time slots. Time synchronization mechanisms of WirelessHART and

802.15.4e-2012 are extremely similar where each time slot has predefined TX and RX offset

values and the gap between expected arrival time of a packet and the actual arrival time

is used to synchronize sender and receiver clocks. My dissertation assumes the existence of

this time synchronization mechanism.

My dissertation integrates DMS into these real-time WSN protocols. Not only DMS

aware multi-hop routing is understudied, to my best knowledge, there does not exist any

protocol which considers the effect of the network topology and channel quality on the

applicability of DMS for multi-hop time critical low power networks. It is known that, the

effectiveness of DMS depends on the communication distance [21,22]. However, there does

not exist a work that takes effective modulation level ranges into account, possibly in a

network initialization phase, based on the communication distances. Moreover, the effect
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Figure 1.3: Low Latency Deterministic Network superframe.

of DMS on wireless interference is also not studied. As it was discussed previously, the key

components of a real-time WSN protocol is the time division and DMS will have an impact

on it. Increasing the transmission output power in order to use a higher modulation level

may increase the interference range of nodes and hence effect their co-schedulability.

The second part of my dissertation investigates these issues by conducting tests on

Software Defined Radios (SDRs). There does not exist a sensor node which has advanced

DMS capability. My goal is to fill the gap in the empirical analysis of DMS when applied

in the WSNs. In this domain, IEEE 802.15.4 is one of the standards that define physical

and data link layers for low-power networks. It is widely adopted by Wireless Sensor

Networks (WSNs). Despite its inherent potential for energy savings and hence increased

sustainability, DMS is not part of IEEE 802.15.4 and there does not exist any off-the-shelf

commercially available IEEE 802.15.4 compliant DMS-capable radio. This lack of available

hardware creates a bottleneck for moving forward with the applicability of DMS in low-

power networks. To solve this problem I have programmed Ettus B210 Software Defined

Radios according to IEEE 802.15.4 base-band, symboling rate, and samples per second

settings. I have obtained empirical results by varying Signal-to-Noise-Ratios (SNRs) for {2,

4, 8, 16} PSK and DPSK modulations and observed how the packet delivery rates (PDRs)

are affected inside a noise controlled environment. I have compared my observation with

existing general mathematical models. Next, I conducted various distance tests to get the

empirical measurements of how propagation distance affects PDR for DMS.
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Third and the last part of my dissertation consists of applying DMS to multi-hop time-

critical WSNs by using the empirical measurements from the second part of my dissertation.

Until now, no empirical measurements were available to understand how DMS would affect

parent node selection process for real-time multi-hop WSNs. This part of my dissertation

first presents the Mixed Integer Nonlinear Programming (MINLP) formulation of DMS en-

abled parent node selection process. The goal of this MINLP formulation is to minimize the

network’s overall energy consumption while satisfying a given deadline constraint. Later, I

explain how this MINLP formulation can be converted into Mixed Integer Linear Program-

ming (MILP). Generally speaking, MILP problems are known to be intractable. Hence for

the next step, I have developed two polynomial time heuristics and compared them against

the optimal solution.

My dissertation makes the following contributions. I first build a basic real-time su-

perframe model, and then use DMS to opportunistically save energy. I formulate the joint

real-time and energy minimization as an optimization problem under the assumption of a

workload that can only be known probabilistically. Since solving the optimization problem

may be computationally complex, I then propose a set of polynomial-time algorithms to

address the joint real-time energy optimization problem. To avoid excessive energy expen-

ditures during the times nodes proactively wake up to see if they can prematurely transmit,

I propose a novel Hybrid Low-Power Listening (HLPL) protocol. HLPL incorporates a new

technique called reverse-low-power listening (RLPL). RLPL is a twist on traditional low-

power listening (LPL) protocols, which are well-known methods used in low data rate duty

cycling wireless sensor networks [24]. LPL protocols yield significant energy savings. To my

best knowledge this is the first usage of a hybrid LPL technique in a joint TDMA-based

real-time energy savings protocol, as well as the first one that combines the beacon-enabled

superframe concept with low power listening. Next, I show how a signal recovery process

and DMS can be implemented on SDRs. I then show how PDR is affected by various

environmental conditions such as different SNRs, transceiver distances and elevation differ-

ences. I provide a detailed insight into how output power can be managed to achieve desired
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PDRs for low-power WSNs. This is the first work that has been done to provide empirical

measurements on the effect of DMS on WSNs. This is particularly important because the

applicability of these measurements is not for only this dissertation but for the future re-

searches on this domain as well. Lastly, I present the energy-optimal MINLP formulation of

DMS enabled parent node selection and propose two polynomial time heuristics. This work

is especially novel for its extended DMS model. The work in literature typically assumes

a discrete power level for each modulation level. My dissertation extends this model and

shows how power levels can be selected from a range for each modulation level according

to the given environmental conditions. My MINLP formulation computes the time-slot

assignment of the nodes and assigns a modulation level to use while the interference is han-

dled in the time-domain. Moreover, this interference aware scheduling takes the different

interference ranges and packet delivery rates per modulation level into account. Due to the

NP-hard nature of the problem [21], I propose two polynomial time heuristics and compare

them against the optimal solution in various network setups.

1.1 Road Map

This dissertation is organized as follows; in Chapter 2, I review current energy manage-

ment techniques widely used WSN domain in terms of communication and computation.

Moreover, I divide them into node level and inter-node level techniques. In Chapter 3, the

architectural model is explained, Section 3.1 of this chapter explains the architectural of my

single cluster model and Section 3.2 extends it to multi-hop networks. I present my dynamic

superframe concept coupled with my novel HLPL protocol for single hop cluster networks in

Section 4. Chapter 6 presents my empirical measurements of packet-delivery-rates of differ-

ent modulation levels in terms of various noise levels, elevation differences and transceiver

distances. In Chapter 7, I show how DMS can be applied to multi-hop real-time WSNs by

first presenting the optimal solution formulation and two polynomial time heuristics and

analyzing their performance by incorporating the data obtained from Chapter 6. Finally, I

conclude my dissertation in Chapter 9.
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Chapter 2: Background and Related Work

This chapter reviews the literature and provides the background information concerning my

research. Particularly, gives a comprehensive summary of MAC layer protocols and energy

management techniques widely used in WSN domain. I divide them into two categories

namely inter-node and node-level techniques to be discussed in Section 2.1 and Section 2.2

respectively.

2.1 Inter-node Power Management Techniques

My primary focus is industrial control protocols which generally incorporate time division

multiple access (TDMA) mechanisms. A beacon-enabled superframe technique is presented

as an amendment to IEEE 802.15.4 standards and is included in 802.15.4e [25]. Aimed at

supporting real-time industrial systems, 802.15.4e provides real-time guarantees for wireless

sensor networks (WSNs). This standard defines the contention-access-period, contention-

free-period and guaranteed-time-slot formats. This basic approach is incorporated in in-

dustrial standards such as WirelessHART, ISA 100.11a and WIA-PA [11,26].

WirelessHART made TDMA based scheduling an industrial standard using a formula-

tion similar to the approach presented in [25]. It defines a superframe as the organization of

fixed size time slots controlled by the network manager [26]. In order to avoid interference,

it uses a frequency hopping spread spectrum mechanism across the 16 channels of 2.4 GHz

ISM band [27]. ISA100.11a is another industrial standard for wireless networks. It also has

a similar superframe concept as WirelessHART [11]. WIA-PA is a widely adopted standard

for system architecture and communication protocols for wireless networks. WIA-PA uses

the beacon enabled superframe design as introduced in 802.15.4e [11]. In this dissertation,
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I use a generic beacon enabled superframe model that can be applied to any of these indus-

trial standards. These standards emphasize supporting real-time performance in wireless

networks. My work enhances these standards by adopting dynamic time slot allocation and

on-the-fly adjustment for the generic superframe structure. Moreover, I propose a novel

protocol called Hybrid Low-Power Listening (HLPL) as an efficient technique to eliminate

the impact of neighborhood for superframe structures by combining two seemingly contra-

dicting ideas such as superframe and low-power listening.

My work incorporates TDMA, CSMA, and Low Power Listening (LPL) MAC layer

protocols; hence, it can be categorized as a hybrid MAC layer protocol. Hybrid MAC-

layer approaches have been studied for a number of years [28]. Some well-known examples

are Z-MAC, HyMAC, H-MAC, ER-MAC, and Queue-MAC [29–33]. Z-MAC [29] uses a

randomized two-hop setup mechanism to avoid collisions where each node is assigned a

time slot. In the case of no transmission after a predefined time interval, the nodes can

start communicating using CSMA for the duration of the time slot. A hybrid bandwidth

aware mechanism is presented in [34]. The work in [35] used a Markov Decision Process in

a hybrid environment to resolve congestion issues and minimize energy consumption, while

other authors consider approaches for reducing queue length [36]. HyMAC combined TDMA

and FDMA where a base station assigns time slots and frequencies [30]. H-MAC is another

hybrid MAC protocol that combines CSMA with the Aloha protocol [31]. ER-MAC, on

the other hand, [32] reduces the energy consumption of Z-MAC by allowing CSMA in only

emergency situations. Queue-MAC [33] also combines TDMA with CSMA in conjunction

with variable slot length. In Queue-MAC, each node transmits its load to its parent which

in return adjusts the slot distribution in advance. One possible weakness in this protocol

is that it assumes the load of the nodes are known prior to their transmission, which is not

practical in many real life scenarios [13].

A more recent hybrid MAC protocol called MMSMAC is proposed in [37]. This protocol

operates in synchronous, asynchronous, and hybrid modes. MMSMAC groups the nodes

into clusters according to their per-hop distances to the cluster head. In synchronous
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mode, the nodes are grouped into odd or even based on their cluster numbers and work

in periodic active and sleep cycles. Only the nodes in active state are allowed to receive

or transmit data (one node can transmit during an active state per cluster). This mode

reduces energy consumption but increases delay. In asynchronous mode, the nodes compete

for the channel which reduces delay but increases energy consumption. In hybrid mode, the

nodes are set up just as synchronous mode but sensor nodes of the active cluster follow the

asynchronous operation mode. The hybrid mode’s performance is between asynchronous

and synchronous modes. Another recent hybrid MAC protocol is TAHMAC [38] which

combines CSMA/CA, TDMA, and FDMA. This protocol uses CSMA/CA for lower traffic

levels and TDMA/FDMA for high traffic and only TDMA for medium traffic. An adaptive

TDMA scheduling for multi-cluster networks is proposed in [39]. This system divides time

slots into three categories — IntraSend, InterComm, and IntraRecv — and requires each

node to know its interference information and workload. The adjustment of time-slots

are done accordingly and are static during the superframe interval. [40] also proposed a

distributed slot scheduling algorithm for hybrid CSMA-TDMA MAC layer. In this protocol,

each node randomly selects a slot from the available slots list then broadcasts its request to

own it. If no objection arises from a neighboring node, the slot is assigned. CSMA comes

into play during slot re-allotment process where the system tries to reduce the number of

allocated time slots. This re-allotment process may cause non-slot-owner nodes to collide

and hence, CSMA is used by non-owners for channel assessment.

My dissertation differs from the above through my introduction of the Hybrid Low-

Power Listening (HLPL) concept that allows efficient on-the-fly slot adjustments, even in the

presence of interference where the nodes may overhear each others’ communication, and my

use of Dynamic Modulation Scaling (DMS) to save energy while maintaining transmission

deadlines.

Low-power listening (LPL) is a commonly used MAC-layer protocol that reduces the

energy consumption caused by idle listening to the channel for an activity. In LPL, nodes

periodically wake up to detect the activities in the channel. LPL techniques are generally

11



categorized as either sender-initiated, receiver-initiated, or hybrid. Another classification

divides LPL protocols into synchronous or asynchronous solutions. The HLPL protocol

that I designed is a sender-initiated, asynchronous LPL and includes a new technique to

address high false-alert rates caused by overhearing observed traffic in the traditional LPL

protocol frameworks [41].

The current wisdom in these scenarios is to use either TDMA to give QoS guarantees or

LPL otherwise [42]. To my best knowledge, my work is the first to show that these can be

combined in order to give QoS guarantees such as real-time performance and energy saving.

Other energy conservation schemas include topology control, data management, and

mobility [1]. Topology control is a term used for both hierarchy imposing techniques and

for finding the optimal subset of the nodes which will ensure the connectivity. My focus will

be for the latter. Location-driven topology control protocols divides the network into grids

where every node within a grid can communicate with the neighboring grids. Then, a subset

of the nodes in a grid route the packets and the remaining nodes go to idle state. Data-

reduction approaches aims to reduce the amount of data being transmitted in a network.

These include data aggregation, data compression, and data prediction. In my research

data-prediction is of interest. In the first part of my work, I assume probabilistic work-

loads which is a stochastic approach to data prediction. This typically involves training of

probability density function [43]. Other data driven approaches include adaptive-sampling,

hierarchical sampling, and model-based active sampling for efficient data acquisition process.

Adaptive sampling aims to reduce the amount of data reported by examining the correlation

between current sample with the previously obtained ones. Hierarchical sampling typically

assumes multiple sensors where a low powered one is used to sample coarse-grained samples

and high powered sensors are activated in case of an event is detected. Lastly, model-based

active sampling combines data prediction with a computed model of data correlation.
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2.2 Node Level Power Management Techniques

This section provides an overview of power management techniques of hardware components

of the sensor motes. These techniques typically focus on reducing radio and CPU power

consumption. Such techniques further reduce the energy consumption in addition to the

network level energy aware protocols discussed in Section 2.1.

The basic Device Power Management (DPM) for WSNs started with exploiting active

and sleeping energy consumption. In most cases the devices can turn most its components

off and hence consume close to zero energy. However, there are two conditions to check.

First one is the transition energy consumption. Typically turning a hardware component on

requires significantly more power compared to its operating power level. Hence, there exists

a break-even point p where it only saves energy if the device hardware component is put to

sleep for more than p seconds. Several hardware components might also be linked such that

it may require to put all of them into sleep simultaneously. In that case, the break even

point needs to be calculated accordingly. Second one is the transition time consumption.

Typically putting a device into sleep is instant but requires a significant amount of time

to put it back to operating mode. This transition time needs be taken into account for

real-time scheduling. Furthermore, devices might have multiple sleep levels which have

different operating energy and transition energy/time consumption. Later advancement in

technology has led to development of hardware components with multiple operating power

levels. In WSN domain processor and radio typically have these capabilities.

Dynamic Voltage Scaling (DVS) is a well-studied energy management techniques appli-

cable to processing units. DVS is the ability to change a CPU’s supply voltage which leads

to a change in the power level. It exploits the trade-off between the execution frequency

(speed) vs execution time. By increasing (decreasing) the supply voltage, the frequency

and its corresponding power level increases (decreases) and the execution time decreases

(increases). For CMOS processors, power consumption is a convex function of voltage and

processing frequency and is applicable to both high and low power microprocessors [44].
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CMOS circuits have static and dynamic components where static is assumed to be constant

necessary to keep the basic circuits on . On the other hand, dynamic changes with the

supply voltage and consists of frequency dependent and independent subcomponents. It is

typically assumed that dynamic is the dominant source of energy consumption and scales

quadratically to the supply voltage E ∝ V 2 [45]. Increasing the computation time by reduc-

ing the frequency might lead to an increase of the frequency independent subcomponents’

energy consumption. As a result, depending on the ratio of the underlying system, there

may exist a threshold speed such that further reduction of speed may increase the overall

energy consumption. Hence, for each system energy efficient frequency fee needs to be cal-

culated which will represent the minimum frequency which further scaling will hurt overall

energy consumption.

My research focuses on communication power consumption which is the dominating

one. Transmitting a single bit of information is approximately equivalent to processing

a few thousand operations in a typical sensor node [46]. Zolertia Z1 motes which I have

used for my research is equipped with a CC2420 radio and a MSP430 microprocessor.

CC2420 draws 17.4mA when receiving and 18.8mA when transmitting whereas MSP430

draws 330µA current while active.

Similar energy conservation mechanisms of CPU are also applicable to radio modules.

Dynamic Modulation Scaling (DMS), Dynamic Code Scaling (DCS), and Dynamic Modu-

lation Code Scaling (DMCS) are among the widely used approaches [14,22]. I have applied

DMS in my research which is a mechanism to manage the number of bits carried per signal.

It requires higher energy to encode more bits in a single symbol and this increase in energy

depends on the underlying modulation technique that is used. As a result, the transmission

needs less symbol to transmit and hence reduces the transmission time. Similar to DVS,

DMS also has static and dynamic power consumption components and effectiveness of DMS

depends of static to dynamic ratio. Static component consumes energy independently from

the used modulation level and is necessary to keep the basic circuit components on. Trans-

mission power levels on the other hand are dynamic and can be manipulated by changing
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the modulation levels. For shorter transmission distances, sender can use lower transmission

output power for an error free communication which means less potential to save energy

using lower modulation levels. As a result, the range of modulation levels which successfully

preserves energy vs latency tradeoff depends on the underlying circuit architecture, modula-

tion schema used and transmission distance. One fundamental different between DMS and

DVS is the scheduling. Unlike DVS, DMS requires both communicating parties to agree on

a modulation level which introduces additional overhead and synchronization challenges. In

addition to that, computation task scheduling can take advantage of preemptive scheduling

whereas communication tasks cannot be preempted. Finally, DMS is more susceptible to

changing environmental conditions which effects the channel link quality.

The pioneering work presented in [14] led many researchers to consider DMS as an im-

portant leverage tool for low-power wireless communication. The authors presented the

underlying principals of DMS and demonstrated how it can be used as an energy man-

agement technique. Some of these techniques are presented in Section 3.1.1. In the same

paper, the authors also propose packet scheduling algorithms for real-time and non-real-time

communication using DMS.

The work in [47] proposes modulation optimization algorithms for MQAM and MFSK

schemas. The authors first break down the overall energy consumption of DMS into each

hardware component’s energy consumption and then analyze energy consumption per bit

for different modulation levels. This paper was also one of the first to point out that

the effectiveness of DMS depends on transmission distances. It has been shown that for

sufficiently large distances, the lowest modulation level is the most energy efficient. However,

for shorter distances this may not be the case, considering the increased weight of electronic

circuitry consumption compared to that of the wireless radio.

DMS has also been studied in Wireless Sensor Network (WSN) domain, and this is

the main focus of my dissertation. Authors in [48] studied integration of DMS into real-

time data gathering for tree-topology based WSNs. They proposed an offline optimization

algorithm as well as a distributed online algorithm for efficient modulation level assignments
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and their simulation results have shown up to 90% energy savings. However, the proposed

solutions were not applicable to TDMA-based protocols and assumed very minimal collision

detection delay with light-weight traffic scenarios.

The work in [49] also incorporated DMS into tree-topology based WSNs. The novelty of

the paper came from combining energy harvesting with optimal modulation level selection.

The authors proposed a centralized optimal as well as a distributed near-optimal solution.

The authors of [18] proposed a slack generation and reclamation mechanism for real-

time WSNs. They generated slack by analyzing data redundancies and by eliminating

redundant data transmissions which in return created slack time. They then used this slack

time to lower modulation levels to reduce energy consumption while meeting deadlines. The

same research group later formulated joint scheduling of computation and communication

tasks with DVS and DMS respectively as Mixed Integer Linear Programming Problem

in [21]. They also proposed a polynomial-time heuristic and compared it against the optimal

solution.

In [50], the authors applied DMS into cluster based WSNs with probabilistic workloads.

For this scenarios, they formulated an optimal modulation level assignment to minimize

overall energy consumption while meeting the deadlines. The same group later formu-

lated optimal modulation level assignment for cluster based topologies while taking energy

harvesting information into account. They have also proposed several polynomial-time

algorithms and compared against the optimal solution.

The above papers, while important, exhibit a number limitations. Most crucially, they

all assume discrete output power levels for given modulation levels. Although a higher

power level is necessary to increase the modulation levels, the distance and current noise

in the channel will also affect the exact output level which needs to be used for each pair

of transceivers. Next, the modulation schema that have been used in the performance

evaluations is primarily and mainly Quadrature Amplitude Modulation (QAM). However,

only 16QAM was recently added to IEEE 802.15.4-2015 standard. It is possible that the

selection of QAM in the vast majority of the DMS papers followed from the use of theoretical
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energy scaling equations in QAM in pioneering research articles [14,47] papers, coupled with

the absence of DMS capability in off-the-shelf commercially available low-power radios. In

Section 6.1, I show the real world test results and how they differ from what the generalized

mathematical formulas suggest.

IEEE 802.15.4 standard specifies many modulations for its physical layer, including

DSSS-OQPSK, MSK, FSK, ASK, GFSK, SUN-OFDM, and MPSK. More recently, at the

sub-GHZ level there are a number of commercially available radios starting to be offered

with support to different modulation methods. These include GFSK, FSK, OOK, and MSK

modulations [51]. Among this variety of modulations, only a few of them are commonly

available in commercial IEEE 802.15.4 compliant radios. For instance, one commercially

available data sheet shows that there are seven immediately or soon available IEEE 802.15.4

compliant radios listed in Texas Instruments CC radio series. All of the radios in this list

are using 2.4GHz band and DSSS-OQPSK modulation. On the Sub-1 GHz side, twenty

six currently or soon available radios are listed, which are not specified as IEEE 802.15.4

compliant but some of them can be used as one. These radios support GFSK, FSK, OOK,

and MSK modulations [51]. Microchip-Atmel has a total of thirty IEEE 802.15.4 complaint

radios listed with either 2.4GHz or Sub-1GHz base radios and which are all using DSSS-

OQPSK [52]. This dissertation aims to address this gap by presenting empirical results

obtained by using Software Defined Radios (SDRs) while complying with IEEE 802.15.4

specifications.

One important work currently exists in the literature is [53] which also uses SDR to ana-

lyze the impact of DMS however, in another domain namely Inter-Vehicle Communication.

This work has analyzed BPSK, QPSK, 16QAM, and 64QAM in 802.11p stack. The authors

reported the signal-to-noise ratios and corresponding packet-delivery-ratios for each modu-

lation schema used. These tests were set up according to IEEE 802.11p standard where the

underlying modulation is OFDM and the aforementioned modulation schemas are used as

modulation mapping.

Perhaps the most closely related work to the third and the last part of my dissertation
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is [21]. This paper studied DMS and DVS aware multi-hop scheduling. The authors first

formulated interference and energy aware joint scheduling problem (IEJS) and proved that it

is NP-hard by reducing Multiple Choice Knapsack Problem to IEJS. Although the solution

presented in [21] did not consider any specific real-time protocol, the solution is generic

enough that can be applied to both WirelessHART and 802.15.4e-2016. Here, the authors

then propose a heuristic by creating a mixed graph of the given network topology such that

the nodes that are within their interference range are connected with an undirected edge

and precedence constraint is represented with a directed edge. The heuristic continues by

scheduling the nodes with the larger depth nodes first and breaks the ties by giving priority

to the nodes with higher undirected edges. In this initial scheduling step, the heuristic only

assigns highest speed levels for both communication and computation. Due to the nature

of this scheduling, a gap between the given deadline and the end of all transmissions might

exist. This gap is utilized by lowering the computation frequencies and communication

modulation levels according to their energy gain values. Other similar approaches also exist

in literature [49]. My work differs from [21] because of the extended DMS model that I

use. The authors of [21] assumes same interference and communication range for every

modulation level. Also, each modulation level has a single discrete output power. I show

in my research that for every modulation level, there is a range of output power levels that

taken be chosen based on current noise and transceiver distances. More importantly, just

because nodea can talk to nodeb using modulation level m, that does not necessarily mean

that they will still be able to conduct a successful communication by using modulation

level m+ 1 given the power constraint of the hardware. Therefore, my research specifically

chooses output power levels based on low-power radio energy consumption characteristics

and limitations.
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2.3 Summary

I have summarized node and inter-node level energy management techniques commonly used

in wireless sensor networks. I have also stated the widely adopted wireless industrial con-

trol protocols. Inter-node level energy management techniques mostly based on duty cycling

where the nodes transit between idle and active states. Node level approaches focuses on

the hardware component energy management mostly by considering processing and commu-

nication units. These techniques include Dynamic Voltage Scaling, Dynamic Modulation

Scaling, and Dynamic Power Management, and Dynamic Coding Scaling. Among these

techniques, duty cycling, dynamic power management and dynamic modulation scaling are

used in my dissertation.
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Chapter 3: Architectural Model

My research is looking into power management techniques for deadline driven scenarios.

Specifically a shared deadline among the nodes where all the participating nodes of the

network has to be done communicating before the deadline reaches.

As explained in Chapter 2, power management techniques can be designed for either

node level and/or network level. My research combines both and design a cross-layer energy

management solution. My preliminary work can also be seen as a combination of node

and network layer where each node reduces its own energy consumption by lowering the

modulation levels. On the other hand, each node is aware of cluster wide communication

and opportunistically waiting for available slack time to claim under-utilized times.

My research primarily focuses on deadline driven, real-time communication systems.

Two options are in place here, either a node level or a cluster level deadline. As more

details are provided in Section 3.1, I focus on the applications where the nodes in a cluster

shares a deadline. However, the algorithms I have designed respects node level deadlines

and also applicable to those cases. This deadline is treated a hard deadline where every

communication and speed levels are chosen accordingly.

DMS is the energy/latency tuning knob in my research. My proposed communication

structure can be applied to other tuning knobs as well such as DVS. I have considered DMS

because communication is the dominating energy consumption in wireless sensor networks.

Transmitting one bit of information is estimated to be equivalent to a few thousand cycles

of computation [46].

20



Figure 3.1: The lay-out of superframe

3.1 Cluster Model

In the first part of my work, I consider probabilistic workload as opposed to determinis-

tic workloads. Designing algorithms for probabilistic workloads is more challenging and

typically require a run time solution whereas deterministic workloads often has an offline

solution which can be computed prior to the deployment of the network. Knowing the

probability distribution of the workload allows us to optimize expected energy consumption.

My cluster model focuses on nodes that form single-hop communication clusters. Each

node is assumed to periodically generate some number of packets that it must transmit by

a specific deadline. The actual number of packets changes over time, and is only known

probabilistically.

In order to meet these requirements I use a generic, beacon-enabled superframe archi-

tecture for real-time communication. I assume every node participating in the cluster can

directly communicate with the coordinator. I also assume every node only wants to talk

to and listen to the coordinator. This is a very realistic assumption because the main

application model of the WSN is to collect data and transmit to a base station. Most of

the routing protocols used by WSNs such as RPL [54] are mainly designed according to

this principle. The energy consumption of the coordinator is not a concern in my system

model, I assume the coordinator is a base station which has high computation power and

has unlimited power supply.
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Superframe architecture is shown in Figure 3.1. As seen, at the beginning of each

superframe the beacon is transmitted by the coordinator. The beacon contains management

information such as TDMA slot assignments, and is received by all the nodes in the cluster.

This is followed by a contention access period (CAP), allowing each node to talk to the

coordinator via CSMA. During this phase a node may send future workload information, or

may ask to join or leave the cluster. The contention free period (CFP) starts right after the

CAP. The CFP consists of a series of Guaranteed Time Slots (GTSs), which are assigned

to specific nodes. In order to provide real-time communication guarantees, each node is

assigned a number of GTSs equal to its worst-case traffic workload.

The coordinator manages GTS assignments to avoid collisions and provide real-time

guarantees. The CAP can be followed by an inactive period during which the nodes can

sleep. I assume that the coordinator manages the duty cycle and, without loss of gener-

ality, do not consider its impact in my work. Studies have shown that reducing collision

saves energy tremendously [12]. The end of superframe is a hard deadline where all the

communication has to be completed before the next superframe starts.

A traditional approach is to have a node sleep during the GTSs assigned to other

nodes. In this research, I introduce a Hybrid Low-Power Listening protocol that allows

nodes to proactively remain awake during time slots assigned to other nodes to attempt to

opportunistically transmit their packets at a reduced energy level.

3.1.1 Communication

I assume that each node is equipped with a DMS-enabled radio capable of dynamically

adjusting the modulation levels. I adopt the basic energy model presented in [14]. Specif-

ically, the radio power consumption is divided into two parts. The first is transmission

power, denoted as ps, and the second is electronic circuitry power, denoted as pe. These

values can be expressed as ps = Cs × φ(b)×Rs and pe = Ce ×Rs, respectively. Here, Rs is

the number of symbols transmitted per second and b is the modulation size. The values Ce

and Cs are radio-specific; but Cs can be affected by the current environmental conditions,
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Table 3.1: Scaling functions

Modulation scheme: 2b-QAM 2b-PSK 2b-PAM

φ(b) : 2b − 1 (sin Π
2b

)−2 22b−1
3

such as atmospheric noise, transmitter-receiver distance and temperature. In practice Ce

and Cs can both be approximated as constants. Finally φ(b) is the convex scaling function

of the modulation used, depending on the modulation scheme. For QAM, φ(b) function is

2b − 1 [14] for even modulation levels and a close approximation for odd modulation levels,

which shows the exponential increase in power consumption in terms of the modulation

level (pe is assumed to be constant). Table 3.1 shows the scaling function of PSK and PAM

modulations.

The transmission time, on the other hand, is 1
b×Rs

which decreases linearly in terms

of modulation level. As a result, the tradeoff of DMS becomes an exponential increase

(decrease) of transmission power with a linear decrease (increase) of transmission time for

QAM [14].

My HLPL protocol uses two schemes commonly used in asynchronous duty-cycled low-

power MAC protocols, namely low-power listening (LPL) and embedding information in

short preamble (physical layer) packets. A typical LPL protocol such as B-MAC [24] re-

quires a sender to transmit a long preamble. Receivers wake up, sense the preamble, and

stay awake to receive data. The duration of listening and sleeping schedules can be ad-

justed to, for example, maximize energy savings, maximize throughput, or minimize delay.

Protocols such as X-MAC [55] extend this idea by using shorter preambles with embedded

address information of the target node. The advantage of using preamble addressing is a

reduction in the number of bits that need to be transmitted and a flexible, user configurable

information that follows the preamble. X-MAC also showed embedding address information
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into preamble avoids the overhearing problem and saves energy on the non-target devices.

In order for the parties to successfully communicate, they need to agree on the mod-

ulation levels prior to the beginning of the transmission. In my communication model, I

achieved this goal by using link-layer preambles which is broadcasted by the coordinator

prior to each GTS. These preamble messages contain the address of the receiver and the

modulation levels for the communication. This way both the coordinator and the sender

can agree on the modulation levels. One other commonly used technique to achieve the

same goal is to use physical layer headers [56].

3.2 Multi-hop Model

In my data monitoring model, I assume there are 3 types of nodes; sensing-nodes, sense-

and-relay-nodes and a base-station. Sensing nodes are located on the edge of the network

whose only duty is to sense and report. Sense-and-relay-nodes, on the other hand, not only

sense the environment but also receive packets from sensing-nodes and forward it to other

sense-and-relay-nodes or to the base-station. Here sensing duty of sense-and-relay nodes is

optional. I also assume each node generates a constant amount of data after each sensing

operation. Base-station is the node which is the final destination for all the information

collected from the network. Sensing and sense-and-relay-nodes are assumed to be battery

powered whereas base-station has unlimited power supply. Moreover, I also assume each

node is equipped with a radio that supports {2, 4, 8} PSK modulations. The modulation

schema can be replaced with any other schemas as long as the PDR are known given

enviromental conditions.

My system model also assumes the application which is using this network is time-

critical which means there has to be a delay bound where all the sensed data from every

sensing-node needs to arrive to base-station within a specific delay bound depicted as D

in Figure 3.2. This effectively implies that each sensing-node’s packet generation rate, λ,

is 1/D. Also, the nodes are time-synchronized which is a viable assumption especially for

Wireless Industrial Control Networks running WirelessHART protocol due to its built in
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Figure 3.2: Delay bound

time synchronization mechanism. More importantly, optimization formulation presented

in Section 7.1 assumes we have a network such that the information of a set of parent

nodes to forward the packets given a node and a modulation level (potentially different for

each {2, 4, 8} PSK modulations) is known. Also, I assume the interference range given a

modulation level (once again different for each {2, 4, 8} PSK modulations) and the set of

nodes within that interference range is known. These are also viable assumptions due to

the all-knowing nature of Industrial Control Networks. WirelessHART for example requires

a centralized network manager who has the global information about each link quality

and network topology. Each node submits health reports every 15 minutes. These health

reports contain neighbor table with observed RSSI values as well as traffic rates, priorities

and deadlines [57]. It is network manager’s duty to compose a routing graph (offline)

according to these collected reports. In case of a change in topology or significant changes

in network link qualities, network manager is expected to recompute this routing graph.

Figure 3.3 shows an example network setup. Here {n1,n5} are sensing-nodes. {n2,

n3, n4, n6, n7} are sense-and-relay-nodes, n8 is the base-station. The arrows show the

directional links with a given modulation level. Please note that these interference ranges

are drawn as unit-disk models for ease of demonstration but this may not be the case for

real-world deployments. According to this setup, n1 can talk to n3 using modulation levels
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Figure 3.3: An example network. Each link has at least a predetermined PDR rate.

1 and 2. The Figure also shows the interference range of n1 for each modulation level. For

8PSK n1 has the interference range set of {n2}, for 4PSK {n2, n3}, for 2PSK {n2, n3, n4}.

Lastly, I would like to add that, it is possible to apply the same system model to multi-

cluster networks such that each sensing-node and sense-and-relay nodes can be replaced

with a cluster where a cluster head can report the aggregated sensing information from its

own cluster and forward it to other cluster heads.
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Chapter 4: Minimizing Expected Energy Consumption of

Time-Critical Cluster WSNs with Probabilistic Workloads

This chapter of my work focuses on 802.15.4 beacon enabled MAC layer protocol designed

for deadline driven applications and utilized the superframe structure discussed in Sec-

tion 3.1. This work addresses node level communication power management for nodes with

probabilistic workload. This approach requires to minimize expected energy consumption

where I assume probabilistic workload models are known.

To this aim, I first formulate the binary integer programming problem of computing

the optimal modulation levels given the workload probability distribution function which

minimizes the expected energy consumption while meeting the deadline. The solution to

this problem can be computed offline and outputs a speed scheduling solution. Under speed

scheduling, the nodes starts transmitting with low communication speeds and gradually

increases the current speed as the deadline approaches. Next, I propose dynamic superframe

structure where the guaranteed time slots (GTSs) can be adjusted online according to the

current communication workload. To this end, the nodes need to be aware of the current

communications on the channel which requires additional energy consumption. In order

to overcome and reduce this overhead, I present a new novel low power listening protocol

called Hybrid Low Power Listening.

By enabling HLPL, I design several online algorithms which outperforms the aforemen-

tioned optimal offline solution in certain cases. The evaluation of the dynamic superframe

technique and HLPL are done with both a custom built Matlab simulation and by using

Castalia framework of Omnet++ Simulator. Here, Castalia based results are presented.

Additional hardware based results are also included.
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4.1 Dynamic Superframe

The advantage of DMS is that the nodes can minimize overall energy consumption by using

lower modulation levels. The drawback is that lower modulation levels require longer periods

of time to transmit the same number of bits. In my environment this means that more GTSs

are required. I assume that the nodes can bound their worst-case workload in terms of the

number of packets to send, but the actual distribution is only known probabilistically. This

means that the nodes may send fewer packets then their worst case estimate. Hence, a node

might not use all of the GTSs assigned to it. It is therefore desirable to devise dynamic

algorithms capable of assigning these unused slots to other nodes. Further, it is possible

to use DMS techniques to extend transmission over unused slots, in order to reduce their

energy expenditures, as long as the deadlines are maintained. I call the extra time available

from unused slots ”slack time”.

Figure 4.1 shows how different algorithms may behave when slack time is available. I

can generalize these slack reallocation algorithms as static and dynamic. Assume the initial

GTS assignments are shown in the superframe labeled A. In this example node1 has been

assigned 3 packet-length GTS but it only transmits a single packet. Superframe B shows

what happens under the traditional static approach. The GTS assignments for node2 and

node3 do not change, and the available slack time remains un-utilized. The superframe C

shows a possible dynamic approach where these slots are reallocated to node2, which can

lower its modulation level but still meet the deadline. Another possible dynamic approach

is dynamic fair, shown in superframe D. In this case the slack could be allocated among

node2 and node3 equally. Detailed descriptions of these algorithms along with methods for

determining modulation levels for the new GTS distribution are provided in Section 7.3.

For dynamic algorithms to succeed, the nodes need to be aware when the currently

scheduled node prematurely finishes transmission. My approach works by having the coor-

dinator broadcast a relatively short preamble that contains the address of the next node

to transmit and the modulation levels that the node will use. Nodes hear this preamble by

using low-power listening. The selected node may in fact be granted permission to transmit
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Figure 4.1: Illustration of static and dynamic slack reallocation

Figure 4.2: Parameters of the Sleep-Listen Cycle

early using the available slack time.

Figure 4.2 shows the parameters of the listen-sleep cycle from the perspective of a single

node. Here δ shows the wait-duration before the node starts its low-power listening (LPL)

cycle. The node is entirely asleep during the period δ. Initial intuition is to set δ value to

zero which means the nodes will start performing LPL as soon as the CAP period ends to

ensure no preamble will be missed. As I will show in Section 7.3, performance improvements

can be achieved with a careful choice of a non-zero δ value. However, this is possible only

in the cases where I have a priori information about the packet workloads of the nodes. For

the LPL phase, I use parameters α and γ, referred to as the sleep-duration and listening-

duration, respectively. γ is the time during which the node is listening to the medium

whereas α is the time during which the node is in sleep mode.

The length of the coordinator’s preamble has to be greater than the LPL period of α+γ.

Lpreamble ≥ α+γ guarantees that the receiver will hear a portion of the preamble. However,
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Figure 4.3: Possible intersection of listening period and preamble

it does not guarantee that the receiver will listen to the preamble as a whole.

Figure 4.3 shows the possible intersections of the LPL period and preamble. Among

these three possibilities, the first one is desired, since the receiver receives the entire pream-

ble. In the second and third cases, the receiver will hear the preamble; however, it will not

know who the preamble is addressed to. As a result, the receiver will need to keep listening

even after the preamble message is over, in order to learn the address of the preamble.

This adds to the power consumption of the receiver. The coordinator needs to make sure

that after sending the preamble message, the intended node starts transmitting. If not,

the coordinator needs to re-send the preamble. I evaluate the effect of these parameters in

Section 5.

An additional problem exists in that the absence of transmission activity being detected

by a node does not necessarily mean that nodes are not transmitting in the cluster. Two

nodes may be entirely out of each others’ radio range. Another possibility is that a node

may be in another node’s interference range, but not its transmission range. This means

that a node can hear another node transmit but cannot decode the transmission. Also,

when a node is in the transmission range of another node, it overhears the communication.

However, nodes are only interested in transmissions from the coordinator. Listening to

the other nodes in addition to the coordinator increases the energy consumption. For my

scheme, the practical impact is that a node may not be able to hear another node that is

in the process of sending a packet to the coordinator, and therefore cannot tell if the slot
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is used or idle. Further, it may overhear the unintended communications with additional

energy cost. I refer to these issues as the neighborhood problem.

In order to overcome the neighborhood problem, I combine preamble addressing with

my newly defined hybrid-low-power listening (HLPL) protocol. As described earlier HLPL

is a combination of traditional low-power listening and a new scheme called reverse-low-

power listening (RLPL). On the receiver side, the node needs to decide which LPL mode it

needs to be in. In HLPL, if a node receives a preamble and learns that it is not scheduled

next and it senses any transmission during its first wake-up after this preamble, the node

goes into the RLPL (described below) stage. For non-zero wait-duration values, when the

node wakes up, it listens to the channel for a preamble. If it senses any transmission and

this transmission is not a preamble then the node goes into the RLPL stage. However, if

this transmission is a preamble that is not addressed to itself and if it does not hear any

transmission during its first wake-up after the preamble, it goes into the traditional LPL

stage.

For zero wait-duration values the nodes (except for the first scheduled node) start with

traditional LPL. During listening phases if they do not hear any transmission, they stay

in the tradition LPL stage. However, when a node senses a transmission after a preamble,

it goes into the RLPL stage. The logic behind this process is the fact that hearing a

transmission during the first wake-up right after the ”false” preamble indicates that there is

an interference since the sleep-duration is smaller than length of a single packet. If the node

does not hear any transmission after a preamble addressed to another node means there

is no interference. Meanwhile, the coordinator waits for sleep-duration amount of time

before it broadcasts the preamble, unlike in traditional LPL, where a sender broadcasts

the preamble as soon as the current node stopped transmitting. Waiting for sleep-duration

amount of time ensures that all the nodes that are in RLPL mode are currently in the

wait-for-preamble stage. Figure 4.4 shows the flow chart for HLPL.

RLPL differs from traditional LPL in its conditions to transit between listening and

sleeping stages. In RLPL when the node wakes-up and hears a transmission, it goes back
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Figure 4.4: The steps of HLPL

to sleep. However, if it does not hear any transmission, it starts listening, which is different

than the traditional low-power listening. In RLPL, this listening phase is called wait-for-

preamble stage. As explained, when a node stops transmitting, the coordinator waits for

sleep-duration amount of time before it broadcasts the preamble. Hence, wait-for-preamble

stage can last at most for the sleep-duration time. Wait-for-preamble guarantees that when

the coordinator broadcasts the preamble, the nodes will be listening to the channel.

The core idea of HLPL is to save energy when there is constant traffic in the network.

In the absence of this, HLPL behaves very similar to traditional LPL. Figure 4.5 aims to

clarify the difference between traditional LPL and RLPL during a constant traffic. Under

traditional LPL, the node wakes up periodically and tries to sense a transmission. Then it

stays awake long enough to conclude that the transmission is not from the coordinator. On

the other hand, under RLPL, the node first listens to the channel, realizes that it is not a

preamble, and goes to the RLPL stage. With RLPL, a node still periodically wakes up but

stays awake enough to detect that there is some transmission. If so, the node goes back
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Figure 4.5: Comparison of traditional LPL and RLPL

to the sleep mode. Otherwise, the RLPL stage concludes, and the node transitions to the

wait-for-preamble stage. It stays in that stage until it receives the preamble.

Neighborhood size creates a big overhead in my application due to the high frequency

of communication during a superframe. Low-power listening traditionally adopted to the

cases where the nodes need to listen the channel for a long duration of time where the

sample rate (packets/sec) of the system is low. A state-of-art low-power listening enabled

MAC protocol B-MAC [24] assumes the initial sampling rate for its performance evaluation

settings is 1/300 packets per second in its experiment settings. Low-power listening in

similar scenarios saves tremendous amount of energy compared to idle listening the channel

instead. However, a TDMA based superframe approach is typically adopted when the

network has high sample rate where it is almost certain that there will be many collisions

at any time in the duration of superframe. Typically a superframe has a full utilization

where there is always a node transmitting at any given time.

What is required in my case is that in the lights of what has been described in the previ-

ous paragraph, adopting traditional low-power listening into a superframe can be thought of

as combining two fundamentally contradicting ideas. As described previously, my proposed

dynamic algorithms need to know when the coordinator broadcasts an information-rich

preamble. In the presence of neighbors, when a node wakes up to check for a preamble it
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overhears the communication from its neighbors where it needs to listen to this communi-

cation up to two preamble times to make sure that it is not receiving a preamble. In an

environment where there is always two parties communicating, the overhead of overhearing

neighbors’ communication cancels out the energy saving that are obtained from dynamic

algorithms.

In RLPL, In this stage, whenever the node senses a transmission when it wakes up, it goes

back to sleep right away. However, when the node wakes up and there is no transmission, it

will go into wait-for-preamble stage and remain awake till it gets a preamble. In traditional

low-power listening, the coordinator was broadcasting the preamble as soon as the current

node stopped transmitting. However, in RLPL, the coordinator waits for sleep-duration

before it broadcasts the preamble. This ensures that all the nodes in the system is currently

in wait-for-preamble stage. The reason why this scheme is called reverse is because when

the node hears a transmission, it goes back to sleep and when the node does not hear any

transmission, it starts listening in contrast to traditional low-power listening.

Note that during the course of the superframe, the nodes have to use both traditional

and reverse low-power listening. The condition of hearing a transmission during the first

wake-up right after the ”false” preamble indicates that there is an interference since the

sleep-duration is smaller than length of a single packet. If the node does not hear any

transmission after the ”false” preamble that means there is no interference and it continues

with traditional low-power listening. Figure 4.4 shows the flow chart of the decision process

for reverse and traditional low-power listening.

4.2 Joint Deadline-Energy Optimization problem

Based upon the number of nodes, the real-time constraints, and the actual workload, the

question remains how to set the modulation levels to achieve all deadlines and conserve

energy. I now show how to formulate this question as an optimization problem.

Earlier research in DMS has shown that there exists a constant optimal modulation
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Table 4.1: List of symbols

symbol description

n Number of nodes
mi Upper limit on the number of packets nodei can send
D length of superframe
pi(k) Probability that nodei’s workload is k packets
yi(k) Probability that nodei sends k or more packets
bi(k) Modulation level used by nodei to send its kth packet
L Maximum transmission unit of the underlying

communication protocol in bits
tbit Time to send a bit
tsymbol Time to send a single symbol
Rs Symboling rate
bmin Minimum modulation level that a node can use
bmax Maximum modulation level that a node can use

βi,kl A binary indicator that equals 1 for the selected
modulation level l for nodei’s k

th packet
pe Power consumption of the electronic circuitry
ps Power consumption from transmission

level that minimizes the energy consumption while meeting all deadlines under determinis-

tic workloads [14]. However, the work in [58] observed that under probabilistic workloads,

this is not the case. Instead, the optimal solution to minimize the expected energy consump-

tion consists in transmitting the first packets at low speed (modulation), and increasing the

speed gradually for the subsequent packets when approaching the deadline. This is based

on the observation that in the more likely scenarios where the actual workload deviates

from the worst-case, low modulation levels are sufficient to meet the deadline while saving

significant energy. However, as more packets are transmitted, the modulation level is grad-

ually increased to meet the deadline. The framework to find the optimal modulation levels

given a deadline and probabilistic workload profile is called speed scheduling in [58] and I

also adopt this approach.

For my targeted applications each node has a varying communication workload deter-

mined by a known probabilistic distribution. The nodei can have from 1 to mi packets

to transmit in a given superframe. pi(k) represents the probability distribution function of
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nodei’s workload. Specifically, pi(k) denotes the probability that nodei will transmit exactly

k packets during a superframe.

The energy needed to transmit a single packet, epacket, is the product of time to send

a single bit (tbit), the length L of the maximum transmission unit (in bits), and the total

power (ps + pe). Moreover, tbit = 1
b.Rs

where b indicates the modulation level and Rs is

constant. A typical value for Rs is 62500 symbols/second for 802.15.4 [59]. By using the

radio power consumption formula, I get:

epacket = L · (ps + pe) · tbit =
L · (Cs · φ(b) + Ce)

b
(4.1)

Define yi(k) as the probability that node i will actually transmit the kth packet. Then

yi(k) =
∑mi

x=k pi(x). The total expected energy consumption is the sum of expected energy

consumption of n nodes:

eexpected =
n∑

i=1

mi∑
k=1

epacket · yi(k) (4.2)

By denoting the modulation level of the kth packet of the node i by bi(k), I obtain:

eexpected =
n∑

i=1

mi∑
k=1

L.yi(k)

bi(k)
.[Cs.φ(bi(k)) + Ce] (4.3)

Note that the kth packet of node i can potentially be transmitted with any of the discrete

modulation levels in the range [bmin, .., bmax]. Let βi,kl be a binary indicator variable ∈ {0, 1}

to represent whether the kth packet of node i is transmitted using the modulation level l

or not. Then an integer programming formulation to minimize the expected energy can be

obtained as:
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minimize

n∑
i=1

mi∑
k=1

bmax∑
l=bmin

βi,kl ·
L · yi(k)

bl
· [Cs · φ(bl) + Ce] (4.4a)

subject to

bmax∑
l=bmin

βi,kl = 1 ∀i, k (4.4b)

n∑
i=1

mi∑
k=1

bmax∑
l=bmin

βi,kl ·
L

bl.Rs
≤ D (4.4c)

βi,kl ∈ {0, 1} ∀i, k (4.4d)

The objective function gives the sum of the energy consumption of all the packets over

all the nodes, by considering their probability of being transmitted and all possible modu-

lation levels. The constraints (4.4b) and (4.4d) indicate that exactly one modulation level

will be assigned to each packet in the workload. The constraint (4.4c) enforces that all the

modulation levels must be selected in a way that all the transmissions will be completed

before the deadline (the end of the superframe). The selected modulation levels can only

be integer values where bmin ≤ bselected ≤ bmax. Hence, this formulation corresponds to an

Integer Programming problem where the main constraint is to complete the communica-

tion tasks before the deadline. Although integer programming problems are known to be

intractable in the general case, moderate-size instances can be solved using the existing

optimization tools such as CPLEX.

Recall that communication energy consumption has two components. The circuitry en-

ergy consumption increases with the communication time whereas the transmission energy

consumption decreases. As I keep decreasing modulation levels and increasing transmission

times, the circuitry energy consumption may dominate the transmission energy consump-

tion. The work done in [22][60] both verifies that for distances greater than 25 meters,

transmission energy consumption is the dominating factor. Hence, in my preliminary work
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I assumed that the distance between the communicating parties are greater than 25 me-

ters to better simulate the benefits of DMS. However, my preliminary work can easily be

extended for any distances by simply setting the first derivative of the radio energy con-

sumption function to zero and calculate the minimum modulation level that this scheme

works [58].
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Chapter 5: Performance Evaluation

5.1 Proposed Algorithms

Section 4.1 showed how static and dynamic algorithms may behave when slack time is

available. Section 4.2 showed how to optimally calculate the modulation levels to achieve

energy minimization and required performance. Now Iwill discuss the algorithms that

combine both.

Static

In this algorithm, assuming the worst-case workload (i.e., 10 packets) for every node, the

smallest possible modulation level with which the deadline can be met is assigned to all the

nodes in uniform manner statically. The modulation levels are precomputed and broad-

casted with the beacon message at the beginning of each superframe. The assigned mod-

ulation levels do not change for the duration of the superframe, even though the actual

workload of a node may deviate from the worst-case (i.e., slack is not reclaimed).

Static*

This is similar to Static algorithm in the sense that the modulation levels are computed

statically and slack is not reclaimed. However, instead of assigning a constant modulation

level to every node, the nodes use a speed schedule that gradually increases the modulation

levels by exploiting the probabilistic workload profile. This is computed by solving the

integer programming problem with the objective function given in Equation (4.4a). The

modulation levels are distributed with the beacon message.

Dynamic

This algorithm makes initial modulation level assignments as in Static but then dynamically

adjusts the modulation levels in order to take advantage of the available slack time after

the end of each node’s transmission and allows only the following node to reclaim this slack
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time by adaptively reducing the modulation level. At slack reclamation times, each node

uses the smallest feasible modulation level to use the duration of its originally allocated

slots and reclaimed slots. Recomputed modulated levels are distributed with the preamble

messages.

Dynamic*

This algorithm enables dynamic reclaiming of the unused slots by adaptively reducing the

modulation level at run-time. However, the initial modulation levels are computed using

Static* and the node that reclaims the slack uses the speed scheduling solution to re-assign

possibly different modulation levels to each of its packets. Recomputed modulated levels

are distributed with the preamble messages.

Dynamic f

The fair version of the Dynamic algorithm in the sense that the available slack time is

distributed evenly among all subsequent nodes rather than being assigned entirely to the

next node. The modulation levels of all the subsequent nodes are dynamically adjusted

after the end of each node’s transmission to the lowest feasible modulation level.

Static, Dynamic, and Dynamic f are polynomial-time algorithms. They only iterate over

each modulation level (from 2 to 8) once and select the minimum feasible one. Static* solves

the Binary-Integer Programming Problem introduced in Section 4.2 but it is executed offline

by the coordinator and only once unless the probability distribution changes. Dynamic*

also solves the same Binary Integer Problem but only for a single node. As a result, it

runs extremely fast due to small problem size and also due to known good performance of

Branch and Bound technique on Binary-Integer-Problems. In practice, a look-up table can

be constructed with the pre-computed modulation levels as a function of available slack.

Figure 5.1 shows an example of possible slack reclamation of dynamic algorithms. In

this example there are 5 nodes with maximum workload of 10 packets. Initially, each node

is assigned slots with total length equal to 10 packets with the modulation level b where

b > bmin. When it is node1’s turn, it sends 6 packets using modulation level b which yields

a slack time of four packets long. Dynamic and Dynamic* allocate this slack time to the
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Figure 5.1: An example for dynamic algorithms

next scheduled node, namely node2. Now, node2 has effectively additional slots, giving a

transmission time equal to 14 packets. However, node2 will transmit at most 10 packets so

it can reduce its modulation levels. In the case of Dynamic, node2 uses the lowest feasible

modulation, bD, where bD < b for each of its 10 probable packets. Dynamic* uses the

optimal modulation levels computed by solving Equation (4.4a) only for its probabilistic

workload and slot length. When it is node2’s turn, it ends up transmitting 5 packets implying

there is a slack time of 9 packets with modulation b. Similarly, Dynamic and Dynamic*

assign this slack time to the next scheduled node, namely node3. In the Dynamic case,

node3 uses the lowest feasible modulation level, bD′ , where bD′ ≤ bD ≤ b. node3 uses the

optimal solution computed for its own packets with its own deadline. In the Dynamic f case,

the 4-packet long slack time after node1’s transmission is distributed among node2, node3,

node4, and node5. These nodes have 11-packet long slack time with the modulation level b.

The lowest feasible modulation level, bDf
, that will meet with the deadline with 40 possible
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packets is computed where bDf
≤ b. After node2 stops transmitting, the 9-packet long slack

is distributed among node3, node4, and node5. The new lowest feasible modulation level

bD′
f

for all 30 possible packets to meet the deadline is computed where bD′
f
≤ bDf

< b.

5.2 Simulation Settings

To evaluate the performance of the several variants of the proposed algorithms (described

below) under different workload conditions, I simulated the system on Castalia framework

of Omnet++ simulator. I simulated a system with a coordinator and 10 nodes arranged in

star topology, and with communication range set to 30m. The work done in [21] shows that

DMS is effective for distances greater than 25 meters. Each node’s workload in a superframe

varies between 1 to 10 packets and is derived from a probability distribution. I assumed

DMS-capable systems (with QAM modulation) where the modulation levels can vary from

2 to 8.

The purpose of my simulation is to quantify, from an algorithmic perspective, the dif-

ference between DMS-aware and DMS-oblivious approaches in energy aware super-frame

management. In order to achieve this, I ran various simulations for different superframe

lengths (deadlines) to analyze how the energy consumption varies. Furthermore, I have

ran my proposed algorithms against an Oracle algorithm which is the yardstick algorithm

where the exact number of packets that each node will transmit is known in advance, at

the beginning of each superframe. As a result, it does not need to assume the worst-case

workload. Oracle does not require any LPL because it knows the exact time each node will

stop transmitting. Hence, the overhead of LPL is also omitted. Although it is not a feasible

algorithm in practice, it provides the minimum energy consumption that is theoretically

possible for a given experiment.

The minimum deadline D0 is assumed to be the superframe length necessary to allow

the transmission of the worst-case workload (10 packets) by each node at the maximum

modulation level, considered to be equal to 208 ms1. The actual deadline for a given

1As in low-power listening mode each node can miss up to 2 preambles before it can start transmitting,
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experiment is then computed as D = D0
load where the system’s load is in the range [0.1, 1.0].

For each load value, the simulator generated 600 workload instances for 10 nodes using

a uniform distribution function. I also repeated the experiments with Normal, Pareto and

Flipped-Pareto distributions for workload generation. Detailed simulation results for the

Uniform distribution and underline the trends and relative ordering of the schemes for the

remaining distributions will be presented.

Castalia is a high fidelity simulator with an advanced channel model that incorporates

log normal path loss with temporal variations [61]. It is not platform-specific which al-

lows reliable and realistic validation of wide range of algorithms and platforms [62]. The

packet loss is computed according to collisions as well as comparing the energy level of

the received packet to the noise power of the environment. My simulation implementation

complies with 802.15.4-2006 standard, and allows data transfer during CAP period where

nodes only use slotted CSMA/CA. In the slotted CSMA/CA, a node needs to wait for a

random backoff slots to transmit data packet but the acknowledgement packet does not

have to use slotted CSMA/CA. During the CFP period, the coordinator sends ACK pack-

ets after each successful data packet transfer. IEEE 802.15.4-2006 standard describes how

the superframe intervals must be calculated. The active + inactive period must be equal

to BaseSuperframeDuration = NumberOfSuperframeSlots × symbolTime. SymbolTime is

calculated as

1

physicalDataRate× 1000/physicalBitsPerSymbol

and then BeaconInterval is calculated as BaseSuperframeDuration × 2BeaconOrder. Here,

BeaconOrder is a constant and is equal to 6 in my simulations. The active portion of the

superframe is ActiveInterval = BaseSuperframeDuration × 2ActiveOrder. I have chosen 4 as

my ActiveOrder constant. Also, the number of time slots assigned to CAP period needs to

be specified in order for the CAP length to be calculated. I set the CAP period to 2 GTS

this duration as well as the transmission delay are included in D0 to ensure feasibility.
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long. The transition cost in terms of energy and delay between RX, TX, and Sleep states

are also included.

• MaximumNumberOfTries CAP = 4,

MaximumNumberOfTries CFP = 2,

guardTime = 1ms

• Clear Channel Assessment: IEEE 802.15.4-2006 specifies three modes of performing

CCA. Castalia’s radio module is built to provide Mode 1 which checks whether the

measured energy is above a threshold value or not. The default time duration to

measure the energy level is set to 0.000128 s which is independent of the radio that is

being used. The default value of energy threshold is -95 dBm.

• Transition costs: For the most part, I only consider the lightest sleep level which

consumes 0.5mW. The list of transition costs are; RX to TX = 32 mW, TX to RX

= 32 mW, RX to Sleep = 1.4 mW, Sleep to RX = 1.4 mW, TX to Sleep = 1.4 mW,

and Sleep to RX = 0.5 mW. Other sleep levels are also considered and reported in

Section 5.8.

• Transition delays: Once again only with the lightest sleeping mode the transition

delays are; RX to TX = 0.01 ms, TX to RX = 0.01 ms, RX to Sleep = 0.05 ms, Sleep

to RX = 0.194 ms, TX to Sleep = 0.05 ms, Sleep to RX = 0.194 ms are taken from

CC2420 radio.

• Modulation level parameters: DataRate(kbps) is calculated as symbolRate*bitsPerSymbol

where symbolRate is constant and 62500 for 2450 MHz radios such as CC2420. Band-

width, noiseBandwidth, noiseFloor, and Sensitivity values are taken from CC2420

radio and are 20 MHz, 194 MHz, -100 dBm, and -95 dBm respectively. TX dBm

levels which effects packet loss, CCA, and neighboring problem (see Section 4.1) are

5, 8, 11, 14, 17, 20, 23 dBm respective for modulation levels 2 to 8.

All the proposed algorithms run on the coordinator. The computed modulation levels are
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transmitted to the nodes using beacons and preambles. Hence, the computation overhead

at the nodes is minimal. I set the preamble size to 14 bytes, which includes a 1 byte for

sender address, a 1 byte for receiver address, 10 bytes for the calculated modulation levels,

and 2 bytes for the CRC footer. For the beacon messages, the generic 802.15.4 beacon

structure is adopted. Static, Static*, and Oracle algorithms uses 100 bytes for the assigned

modulation levels for each possible packet and an additional 10 bytes for time slot allocation

in GTS fields of the beacon message. Dynamic, Dynamic*, and Dynamic f algorithms use

10 bytes for the scheduling order, 10 bytes for the modulation levels for the first scheduled

node in the same field.

All the dynamic algorithms require same amount of signaling. Furthermore, the coordi-

nator is to use the maximum modulation level to broadcast the preamble. In my simulation

settings, the listening-duration γ = 0.000128 s and the sleep-duration α = tpreamble − γ. For

the Ce and Cs values described in Section 4.2, 15× 10−9 and 12× 10−9 Joules are selected,

respectively, and bmin = 2, bmax = 8, after [14, 58]. All the simulation results are presented

at 95% confidence level. In all the plots presented, the energy consumption values of various

schemes are normalized with respect to the energy consumption of Static at load = 1.0.

5.3 Analysis of the Ideal Case

This section evaluates the proposed algorithms’ ideal case performances. In ideal case, the

nodes have exact knowledge about the time at which they need to wake up, in advance.

The static algorithms can incorporate this information in the beacon message. For dynamic

algorithms the same beacon message structure is also assumed. Obviously ideal case is

not realistic and the need for low-power listening disappears. Still, the analysis of this

case reveals some important patterns because it points to the upper bounds on the energy

savings that each algorithm can provide with zero-overhead low-power listening.

Figure 5.2 shows the normalized energy consumption of the proposed algorithms. It is

observed that on higher load values the Dynamic, Dynamic*, and Dynamic f algorithms give
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Figure 5.2: Energy consumption in the ideal case.

Here, I assume dynamic algorithms hypothetically know the exact time they
need to wake up in order to start transmitting. Hence, LPL is not needed.

significant energy savings compared to Static and Static* algorithms. Moreover, Dynamic

and Dynamic* perform better than Dynamic f. However, at lower load values, the dynamic

algorithms provide only limited gains; this is because even the static algorithms are able to

assign low modulation levels when the system has ample time to finish the workload.

It is also seen that the energy consumption minimizes for the load value 0.625; for the

load values smaller than 0.625 the sleeping energy consumption becomes dominant and

for the load values greater than 0.625 the transmission and reception energy consumptions

becomes dominant.

5.4 Analysis of the effect of traditional LPL with no inter-

ference

This section shows the effect of low-power listening on the proposed algorithms. The ideal

case where the nodes know exactly when the previously scheduled node stops transmitting
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cannot be implemented in real-life scenarios. The nodes need to listen for a preamble from

the coordinator to see when they can start transmitting. One possibility is to use the

traditional low-power listening (without the HLPL enhancement described in Section 4.1)

and the results in this section consider this case, by further assuming that the cross-node

interference is negligible. In Section 5.5, I will re-analyze these settings within the HLPL

framework by considering the impact of the interference.

Figure 5.3a shows the normalized energy consumption of greedy low-power listening en-

abled algorithms. The compared algorithms are greedy in the sense that they use traditional

low-power listening with the wait-duration δ set to zero. Please recall that only Dynamic,

Dynamic*, and Dynamic f require low-power listening. The remaining algorithms have

pre-determined wake-up times. We can see that the dynamic algorithms perform poorly

compared to static algorithms when load ≤ 0.6. This is due to the fact that for lightly loaded

systems, the gain from dynamic reclamation of the slack times is offset by the additional

energy consumption due to energy overhead of traditional low-power listening activity. The

dynamic algorithms’ energy performance improves only when load approaches and exceeds

0.6 (this threshold is slightly larger for dynamic f ) – this is when the overhead of low-power

listening (necessary to implement the reclaiming mechanism) becomes reasonably low com-

pared to the gains of adaptive modulation downscaling at run-time. It is also observed

the energy consumption gap between dynamic algorithms becomes more significant where

Dynamic and Dynamic* performs very closely and outperforms Dynamic f.

Another possibility for the implementation of the traditional low-power listening in

these settings is to have each node wait for a time duration δ equal to the expected time

needed for the completion of the packet transmissions by the previous nodes. The idea is

to take advantage of the known probability distribution. Rather than letting nodes start

low-power listening as soon as the collision-avoidance-period starts, the nodes calculate the

expected number of packets that will be transmitted by the previously scheduled nodes

based on the known probability distribution function. I call this scheme smart-LPL. The

expected-number-of-packets before nodei can start to transmit is
∑i−1

k=1

∑ml
l=1 pk(l)× l. The
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(a) Energy consumption of greedy-LPL where
δ = 0

(b) Energy consumption of smart-LPL where
δ =expected-wait-time

Figure 5.3: Simulation results with no interference.

It is assumed each node node only hears the coordinator and none of its neighbors. Hence, the
neighborhood problem described in Section 4.1 hypothetically does not exist in this settings.

scheduling order is embedded into the beacon message. Two observations are in order here:

i) if the node starts low-power listening before its actual turn then the node spends more

energy for low-power listening but does not miss any of its slack time. However, if the

node wakes up after its turn starts then the node loses some portion of the given slack

time (the node could not reduce its modulation levels as much as it could have) but spends

less energy on low power listening. Hence, there is a trade-off between the gain from low-

power listening and loss from smaller slack times. ii) The modulation level assumed in

the calculation of the expected-wait-time for the previous nodes is another critical variable.

The nodes know the expected number of packets to be sent before their turn, but they

do not know what modulation levels have been used by the previous nodes (they cannot

accurately map the expected number of packets to the expected amount of waiting time).

In my simulation settings, the modulation level calculated by Static is used to compute the

expected-wait-time values.
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Figure 5.3b illustrates the normalized energy consumptions with smart-LPL. This anal-

ysis reveals that with smart-LPL, the energy consumption of the dynamic algorithms is

reduced compared to the greedy-LPL case. One important observation here is the effect

of low-power listening on the dynamic algorithms. The increased gap between dynamic

algorithms observed in Figure 5.3a becomes less significant in Figure 5.3b. This is a result

of two factors: i) shorter GTS slots means longer duration to listen for a preamble and

hence leads to higher overhead created by low-power listening; ii) For the case shown in

Figure 5.3b, the expected-wait-time values are calculated using the modulation level given

by the Static algorithm. However, higher ideal case performance implies that the previ-

ously scheduled nodes have used smaller modulation levels than initially computed. This

leads to less accuracy in predicting expected-wait-time and as a result, a longer duration

for traditional low-power listening. This is a crucial result that shows how dynamic mod-

ulation levels can affect low-power listening and becomes one of the fundamental reasons

necessitating the use of HLPL protocol.

5.5 Analysis of the impact of neighborhood/interference

In this section, the aim is to evaluate the effect of neighborhood/interference on traditional

low-power listening and also include my newly proposed HLPL in the comparison. In real

settings when a node wakes up to check for a preamble, it has to listen to its neighbors’

communications to make sure that the communication it is sensing is not a preamble. In

order for a node to make sure that it is not receiving a preamble, it may need to listen the

channel for up to two preamble transmission times as shown in Figure 4.3.

Figure 5.4a shows the normalized energy consumption with traditional low-power lis-

tening and possible interference. A striking observation is the significantly increased energy

consumption of the dynamic algorithms for most of the spectrum, due to the prohibitive

energy consumption of false alerts induced by the interference due to the naive applica-

tion of the traditional low-power listening framework. In this case, the nodes receive false

alerts from their neighbors and they need to verify the content of these transmissions. The
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length of preamble message is 14-byte long whereas the MTU of 802.15.4 is 127 bytes. This

indicates that even for a single packet with the highest modulation level, the node has to

consume an additional energy of listening up to 2/3 of a packet (which is 84 bytes) to see if

there is or there is not a preamble addressed to itself. In a neighborhood of size 4, this may

create and additional overhead up to 26 packets per node as can be seen from Figure 5.4a.

The overhead created by the interference also depends on the values used for sleep-

duration and preamble size. In my simulations, I have observed that larger sleep-duration

values tend to decrease the overhead induced by the interference. However, longer sleep-

duration has other consequences such as longer superframe lengths and larger losses in the

available slack times. In order to ensure the deadlines, the maximum time a node can miss

before it hears a preamble has to be accounted for. This maximum time needs to be added

to the minimum feasible superframe length to ensure the feasibility of the system. Longer

superframe lengths improve the performances of the static algorithms as well as those of

the dynamic ones so the gap between both classes of algorithms remains more or less the

same. Also, longer superframe lengths cause a larger delay between the two consecutive

turns of the same node.

Some optimal values of preamble length and sleep-duration values that will minimize

this overhead may exist. However, I believe even this minimized overhead it will still be

undesirable especially for lower utilization factors where offline algorithms perform well.

Finding this minimized overhead value is left as a future work.

Figure 5.4b shows the simulation results obtained after adopting greedy-HLPL. Com-

paring to Figure 5.4a, one can see the drastic energy savings provided by the greedy-HLPL.

Dynamic and Dynamic* outperform the Static algorithm for load values higher than 0.52.

For load value 0.6 and higher, It is observed that Dynamic and Dynamic* have less energy

consumption than Static*. Dynamic f outperforms Static* for load values roughly after

0.91. If we compare Figure 5.4b with Figure 5.3a, we can see that the performance of Dy-

namic and Dynamic* algorithms in the presence of interference is rather close to the one in

the no-interference case where Dynamic f results in a more significant increase. Figure 5.4c
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shows the normalized energy consumption of smart-HLPL when wait-duration is equal to

expected-wait-time. This case further reduces the overall energy consumption of dynamic

algorithms. In this case, Dynamic outperforms the static algorithms for load values roughly

larger than 0.45.

As it can be seen, HLPL successfully addresses the neighborhood/interference problems

and yields significant energy savings. Finally, the comparison of Figure 5.2 with Figure 5.4c

shows that the results of HLPL are reasonably close to the ideal case, showing the potential

of the framework.

5.6 Effect of different probability distribution functions

All the results presented so far were obtained under Uniform probability distribution for the

packet workload. The simulations are also repeated with Normal (µ = 5 and σ = 2), Pareto

and Flipped-Pareto distributions k = 10 (shape parameter), σ = 3 (scale parameter), and

θ = 10
3 (threshold value).

An important difference is in terms of the average energy consumption of different dis-

tributions. The simulation results show that the Pareto distribution has the lowest average

energy consumption followed by Normal, Uniform, and Flipped-Pareto distributions. This

is expected due to the fact that each distribution function has different expected workload

figures which are 3.22, 5.04, 5.5, 7.78 for Pareto, Normal, Uniform, and Flipped-Pareto

distributions, respectively.

Figure 5.5 shows the energy consumptions for each probability distribution function.

Several conclusions can be drawn here: i) Distribution functions had limited impact on the

results presented in previous sections; the ordering of the algorithms is still the same for

each of the tested probability distribution functions. ii) For all the cases analyzed in previ-

ous sections: the gap between the average energy consumption values of the algorithms got

smaller for Pareto case. The dynamic algorithms have performed very close for these load

values greater than 0.5. Fewer number of packets led to limited difference in transmission
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energy consumption. For similar reasons, this gap became larger for Flipped-pareto distri-

bution function. We can say that when the nodes have higher workloads, the performance

gaps between dynamic algorithms get larger and for the cases where the nodes have lower

workloads, the gap between Dynamic f and Dynamic* as well as the gap between Dynamic*

and Dynamic get smaller. iii) In the Pareto distribution case, Dynamic, Dynamic* and

Dynamic f outperformed Static* for the load value roughly 0.5. These values are slightly

lower than the results presented in previous sections.

5.7 Analysis of scalability

The scalability of HLPL in terms of number of nodes, and number of packets is analyzed.

For the number of nodes case, I have conducted simulations from 1 to 20 nodes each with

uniformly distributed workload of 10 packets and for the number of packets case, 10 nodes

with uniformly distributed 1 to 20 packets of probabilistic workload. Figures 5.6 and 5.7

show the scalability in terms of number of nodes and packets. The linear regression anal-

ysis shows that for all of the scheduling algorithms except Dynamic and Dynamic* in

Figures 5.7a- 5.7b, the average energy consumption grows linearly with respect to number

of nodes and number of packets where each of the regression analysis had an R-squared

value of 0.96 or higher. For the mentioned Dynamic and Dynamic* results, a 6th degree

polynomial regression had R-squares value of 9.95 or higher. The general ordering of the

algorithms has not changed in terms of number of nodes. However, I observed that Static*

outperforms Dynamic f for 14 packet workloads.

5.8 Impact of Radio Hardware Variations

This section discusses the effect of different values of radio unit power consumption. First a

series of experiments with sleeping-power consumption of 0mW and 3mW was run. In the

previously reported results, this value was set to 1.4mW. Figure 5.8 shows the effect of sleep
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power consumption with 10 nodes, maximum of 10 packets workload with uniform distribu-

tion. Figure 5.8a is the ideal case (described in Section 5.3) with sleep power consumption

is set to 0. Here, I observe a strict increase in energy consumption with increasing load

value. This result is different that the one shown in Figure 5.2 which has the minimum en-

ergy consumption at the load value of 0.625. This is because lower load values mean longer

superframe duration and hence increased energy consumption from sleeping. When we take

sleeping energy consumption out of the equation (recall that ideal case does not require

low-power-listening), higher load values strictly results in higher energy consumptions due

to higher modulation levels. Figure 5.8b shows the energy consumption with greedy-HLPL

when sleep power consumption is set to 0. Comparing this with Figure 5.4b, we see the en-

ergy consumption gap between the highest and the lowest load levels increases. Figure 5.8c

shows the case where sleep power consumption is set to 3 mW. The lowest load level results

in the highest energy consumption except for Static. For the other algorithms, the sleeping

energy consumption is higher than the energy savings from using lower modulation levels.

This case also shows that the Dynamic and Dynamic* outperforms static algorithms for

every load value which further emphasizes the effectiveness of HLPL.

Next, a set of experimented with CC2420 based power consumption values was con-

ducted. The results are presented in Figure 5.9. CC2420 only has a single modulation level

of 4, which consumes 62 mW. If we assume the same exponential increase of initial test

values, the transmission/reception power consumption can be estimated to be 15, 31, 62,

124, 248, 496, 992 mW for modulation levels 2, 3, 4, 5, 6, 7, 8 respectively. Figure 5.9a

shows the energy consumption results for greedy-HLPL. These settings shows using Static*

consumes less energy for every load value hence, the best option. This is due to the very

expensive clear channel assessment performed by the dynamic algorithms exceeding the

energy savings from lowering modulation levels. However, Figure 5.9b gives significantly

different results with smart-HLPL with only the lightest low-power-mode called idle. In this

mode, CC2420 turns off its frequency synthesizer and draws 426 µA of current. The results

showed that dynamic and dynamic* outperforms static* for load values of 0.8 or higher
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and dynamic f does so for the load value of roughly 0.9. Moreover, CC2420 has two more

low-power-modes namely power down and power off. In power down the crystal oscillator is

turned off in addition to frequency synthesizer and draws 20 µA of current, and in power

off the voltage regulator is also turned off with a total of 0.02 µA current draw. It takes

0.6 msec to transition from power off to power down and 1.0 msec from power down to idle.

I have assumed during these transitions there is a current draw equal to the level with the

higher current draw value. All the algorithms are adjusted to consider all low-power-modes

and put the nodes into the deepest one wherever expected-wait-time exceeds the respective

break-even point. The results shown in Figure 5.9c indicates a significant improvement.

The dynamic algorithms outperform the static ones for the load value of roughly 0.4 and

greater. This further shows the benefits of smart-HLPL.

5.9 Hardware Test Results

To analyze the packet loss probability in an actual deployment, I implemented an emulation

of DMS on Zolertia Z1 motes (that do not have DMS capability) using ContikiOS. Specifi-

cally, the transmission times that correspond to individual modulation levels are computed

by scaling the transmission time that corresponds to the maximum modulation level which

is 8. In general, the transmission time increases linearly with the modulation level, because

the time to send a single bit is 1
b×Rs

where b is the modulation size and Rs is a constant

denoting the number of symbols transmitted per second. Based on this relationship, the

packet loss rate is analyzed for different modulation levels in a series of experiments.

I have used 10 Z1 motes with a coordinator mote connected to a desktop computer

which formed a star topology. I have implemented the emulated version of proposed Static

and Static* algorithms on the conventional superframe structure as explained in Section 3.

At the beginning of each superframe, the coordinator broadcasts a beacon which has the

CAP start and end times. During the CAP, each node is allowed to request a GTS from

the coordinator by registering their workload probability. The coordinator then computes
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the modulation levels according to the corresponding static algorithm. These modulation

levels and GTS start and end times were embedded into the beacon of the next superframe

for every node. I have emulated the Normal probability distribution of the workload as

presented in Section 5.

I had to do minor adjustments to the superframe length that was used in my simulation

settings. I had to increase the superframe length for few milliseconds per node because the

following bullets were more severe than the Castalia simulation settings: (1) the recipient

time of superframe which acts as the basis for GTS start and end times were not exactly

the same for every node, (2) the hardware delay between sending consecutive packets, (3)

the timer skewness between motes. Hence, I had to wake the mote 2 ms before the start of

the next superframe.

It is expected to have low packet loss during CFP due to minimized collisions. In my

experiment, I have disabled the low-power listening for the coordinator mote. I aimed to

analyze the packet loss as a function of transmission time which varies with the modulation

level. In these experiments, retransmission during CFP is disabled and when the motes

did not receive an ACK after their transmission, they stopped transmitting. I observed

the probability of losing packet during CFP as 1.3%. Theoretically this ratio should be

the same for any modulation level since in DMS we increase the energy to noise ratio

according to the scaling function. However, I have observed a slight increase on the packet

loss at reduced modulation levels, which shows that increased transmission times have a

higher (and increasing) impact on the packet loss rate. The packet loss rates that are

observed at different modulation levels are summarized in Table 5.1. In case of a packet

loss, the motes add the missed packets into their future workload while making sure their

workload do not exceed maximum workload to ensure the feasibility. This fact does not

change the modulation levels for the static algorithms and the energy consumption increases

proportionally by the corresponding packet loss rate.

If we directly map transmission time into modulation levels, we can conclude that the

probability of losing a packet with modulation 8 is 1.3%, 7 is 1.34%, 6 is 1.4%, 5 is 1.48%, 4
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Table 5.1: Packet Loss Rate at Different Modulation Levels

Modulation Level 2 4 6 8

Packet Loss Rate 0.017 0.016 0.014 0.013

is 1.6%, 3 is 1.66%, and 2 is 1.717. Same formula applies to Static* but the increase in the

energy consumption is slightly less since it recomputes the modulation levels according

to new probability distribution. The effect of packet loss is different on the proposed

dynamic algorithms. When a packet loss occurs, the nodes has to update their workload

probability distribution just as the static algorithms which increases the energy consumption

for the current node. However, when a packet loss occurs the nodes stop transmitting which

increases the slack time of upcoming nodes. This will lead to reduced energy consumption

for the upcoming nodes. As a result, I do not expect packet loss to alter my results for

dynamic algorithms under these assumptions.

5.10 Conclusions

My preliminary work addressed the problem of ensuring real-time guarantees while minimiz-

ing the overall energy consumption in wireless sensor networks. I focused on cluster-oriented

superframe communication, the most widely adopted method for providing real-time guar-

antees in industrial wireless networks. Using Dynamic Modulation Scaling I studied static

and dynamic algorithms for reallocation of slack times of a superframe. I analyzed the effect

of interference and dynamic modulation levels on low-power listening. I also introduced a

new low-power listening protocol called hybrid-low-power listening (HLPL) in order to over-

come the interference problem caused by neighborhood. Using the Castalia Simulator, I

empirically assessed the performance improvements of DMS slack reclaiming and HLPL. My

experiments show that dynamic slot readjustment saves a significant amount of energy un-

der highly loaded systems. They also indicate that HLPL overcomes the interference caused

by other nodes in the cluster and significantly reduces the overall energy consumption of
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the system.
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(a) Energy consumption with greedy-LPL and in-
terference

(b) Energy consumption with greedy-HLPL and
interference where δ = 0

(c) Energy consumption with smart HLPL and
interference where δ = expected-wait-time

Figure 5.4: Impact of interference

58



(a) Flipped-Pareto distribution (b) Normal distribution

(c) Pareto Distribution

Figure 5.5: Energy consumption of smart-HLPL with different probability distribution
functions

59



(a) number of nodes smart-HLPL (b) number of nodes greedy-HLPL

Figure 5.6: Scalability in terms of number of nodes

(a) number of packets smart-HLPL (b) number of packets greedy-HLPL

Figure 5.7: Scalability in terms of number of packets
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(a) Ideal case with sleep power = 0 mW. (b) Greedy-HLPL with sleep power = 0 mW.

(c) Greedy-HLPL with sleep power = to 3
mW

Figure 5.8: The effect of sleep power consumption.
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(a) Greedy-HLPL with lightest sleep level (b) smart-HLPL with lightest sleep level

(c) smart-HLPL with multiple sleep-levels

Figure 5.9: Energy consumption with CC2420 based power consumption settings
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Chapter 6: A Software Defined Radio Analysis of the Impact

of Dynamic Modulation Scaling within Low Power Wireless

Systems

On the medium-to-low data rate applications, IEEE 802.15.4 is one of the standards that

define physical and data link layers for low-power networks. It is widely adopted by Wireless

Sensor Networks (WSNs). Despite its inherent potential for energy savings and hence

increased sustainability, DMS is not part of IEEE 802.15.4 and there does not exist any

off-the-shelf commercially available IEEE 802.15.4 compliant DMS-capable radio..

A detailed description of existing work on DMS is presented in Section 3.1.1. In partic-

ular, DMS has been the subject of several research articles in the Wireless Sensor Network

(WSN) domain. However, due to the lack of commercially available hardware, these evalu-

ations were typically conducted via simulation and/or using the pre-supposed closed-form

energy scaling formulas. My dissertation aims to fill the gap in the empirical anal-

ysis of DMS when applied in the WSN domain. I am particularly interested in

investigating the following question: Given a set of environmental conditions, modulation

techniques and power levels, how do the packet delivery rates change with DMS?

I have used the Ettus B210 Software Defined Radios [63] (SDRs) and configured them

according to the IEEE 802.15.4 base band, symboling rate, data rate and samples per sym-

bol settings. Working on this configuration, I make the following contributions. First, I

show how to emulate DMS in low-power networks using existing GNU Radio blocks and

SDR hardware. I also provide a detailed look into the signal recovery process which may

be used for future researchers to extend my work. The next three contributions model

various types of environmental transmission conditions which may affect wireless systems.

I vary the Signal-to-Noise-Ratios (SNRs) of channel within {2, 4, 8, 16}-PSK and DPSK
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modulations to assess how packet delivery rates (PDRs) change. This experiment gives a

detailed insight on how the output power can be managed to achieve the desired PDR.

These tests required a controlled noise environment with a noise generator, and therefore

was conducted using Faraday Cages. I compare my findings with what existing general the-

oretical models suggest. I conclude that the necessary energy increase is greater than what

the models suggest when I increase the modulation levels. Furthermore, I repeat the same

experiments with Differential-PSK and report a very significant increase in performance. I

then conduct a set of distance tests for {2, 4, 8}-DPSK and measured PDRs for distances

up to 100 meters. Distance tests are of utmost importance for multi-hop networks and

provide great insight on how it can be used to set up more energy- and/or latency-aware

topology control. Finally, I test the impact of elevation difference between transmitter and

receiver which is a common scenario for applications such as residential sensor monitoring,

where some nodes are placed on tall objects.

6.1 Experimental Methodology

Software Defined Radio (SDR) experiments are performed on the Ettus USRP B210 radio

[63]. SDRs differ from traditional radios by implementing various components such as

amplifiers, modulators/demodulator, filters on a software layer rather than hardware. This

offers higher configurability and flexibility.

The software I used is built using the GNU Radio, an open source platform that comes

with a number of reusable blocks. Figure 6.1 shows our transmitter and receiver imple-

mentation. PSK modulation and demodulation blocks were already implemented and are

explained below. The data source is a text file consisting of randomly generated ASCII

characters. The subsequent blocks shown in Figure 6.1 are needed to packetize the data

from the source file. I have chosen 128 bytes as the packet payload length in order to

comply with the IEEE 802.15.4 standard. Packetizing and tagging the input flow allow

the receiver to distinguish between data from noise and other communications. I have also
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Figure 6.1: Implementation of transmitter and receiver in GNURADIO

Figure 6.2: Steps of signal decoding

appended a 32-bit CRC to make sure we consider only successfully received packets after

the demodulation phase.

In general, in order to successfully demodulate a signal with PSK, there has to be a

signal recovery process preceding demodulation as demonstrated in Figure 6.2. The PSK

demodulation block already has signal recovery embedded in it with adjustable parame-

ters. However, it only outputs the demodulated data, not the recovered signal. For the

demonstration purposes, I have created a signal recovery process as described in [64].

Figure 6.3 shows the implementation of a signal recovery process with the existing

GNU Radio blocks and only one of the many possible techniques. Figure 6.4 shows the
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Figure 6.3: An example PSK signal recovery process

constellation display of QPSK-encoded signal before and after the recovery process. Here

Polyphase Clock Sync is used for timing recovery, inter-symbol-interference, and down-

sampling of sampling rate from 4 samples per second to 1 sample per second. The CMA

Equalizer block is used to react to multipath fading and as the final step the Costas Loop

block is used to correct phase and frequency offset. Even though this signal recovery process

could successfully lock the constellation points, it may have locked them with a 0, 90, 180

or 270 degrees difference, a problem going forward with demodulation. There are two ways

to fix this. The first is to have a predetermined access code and try each of the possible

phase difference to see which one decodes successfully. The second is to use Differential

PSK (DPSK) instead. DPSK only transmits the phase shift difference as reference to the

previously submitted signal. Hence, no matter what the phase difference between recovered

and transmitted signal is, the relative phase difference between consecutive phase shifts still

holds.

Before I present the results, I would like to elaborate more on my experience with the

aforementioned PSK demodulation block’s performance, as potential hints for future testbed

implementations. First, in order to have successful communication, I always had to start

the sender first and then the receiver; doing the the other way around with significant delays

prevented the receiver from recovering the signal. I have also observed that it is not always

advisable to set the transmitter and receiver channel gain values equally. In some cases,

especially for higher modulation levels, I have observed a lower receiver gain (compared to

the transmitter gain) yielded higher performance especially for noisy environments. Last but

not least, it is very helpful to set the PSK Demod block parameters as real-time configurable
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(a) Received signal

(b) Recovered signal

Figure 6.4: Constellation display of received QPSK signal before and after recovery process.

Figure 6.5: Faraday cage inside look
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Figure 6.6: Faraday cage outside look

variables which can be tested on the fly and adjusted accordingly for each modulation level

and current environmental conditions.

For my testing, I have configured our Ettus B210 Radios to use 915 MHz center frequency

and 62,5 ksymbol/second symbol rate. I have also used 4 samples/second which gave a total

of 250 kb/second data rate (for BPSK and QPSK 2 samples/second also worked well). The

915 MHz ISM band was chosen due to its higher output power levels compared to 2.4 GHz

center frequency with the same output amplifier gain.

My primary objective was to obtain empirical indicators for energy consumption at

different modulation levels. To achieve this, I have measured the necessary transmission

power output with different noise levels to establish reliable communication. In order to have

a noise-controlled environment and eliminate the effect of moving objects, I used Faraday

Cages shown in Figure 6.5.

I have used a total of three Ettus B210 SDRs, one sender, one receiver, one noise

generator. I have placed the sender and noise generator at equal distances from the receiver
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to make sure signal and noise powers are equally affected by the distance (Figure 6.5).

6.1.1 Experimental results

In this section I explain the experiment setup and present the results. Using these results,

I also provide some suggestions for future work in reliability and power management.

Signal-to-Noise-Ratio Testing

Most of the previous work involving DMS with low-power wireless communication tends

to assume constant energy output levels per each modulation level and does not take into

account the fact that output energy consumption can be controlled independent of the

modulation level adjustments, in particular by varying the output amplifier gain. To better

understand this issue, I have measured signal-to-noise-ratios (SNRs) of MPSK modulation

and the corresponding packet-delivery-rate (PDR), for a given modulation level by vary-

ing the amplifier gain. Here higher SNR values correspond to higher transmission power

consumption. My primary goal in this set of experiments is to analyze the energy increase

required to have a reliable communication with different modulation levels and various

output power levels using the MPSK modulation.

Each test involved sending 300KB of payload. In order to make sure the results were

minimally affected by my design, I created a control case by averaging how much data I

can decode without any noise using the second modulation level. Hence, I have compared

the amount of the data received to this control case value to compute the reported PDR

values. The control case was never able to receive all of the 300KB of data. The highest

I could decode was 99.9%. This is because the signal recovery process takes a while and

loses some of the initial data. This can be fixed by sending a data link layer preamble

before the data packets or creating a more robust and optimized demodulation process. I

believe the latter will be the case when DMS-compliant low-power radios are commercially

available. Each PDR point is averaged over 100 experiments. Lastly, I have adjusted the

noise level to at 10% of the maximum analog gain of Ettus B210 radios (max gain is 89.8
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Figure 6.7: SNR to PDR comparison of empirical measurements and theoretical calculations
for MPSK

dB) and adjusted transmission gains accordingly to create the desired SNR ratio. For the

SNR ratios greater than 10 times, I have reduced the noise level. The receiver gain values

varied across the different settings. Hence, the reported increases in transmission power are

only for the transmitter but a close approximation for the receiver.

Figure 6.7 shows the results obtained for {2, 4, 8, 16} PSK. In addition, I have also

plotted the theoretical values obtained for {4, 8, 16} PSK using the scaling function reported

in Table 3.1 by using 2PSK as the base case. We can see a marked difference between the

theoretical predictions and empirical measurements. In order to have at least an average

PDR of 99% 2PSK required an SNR of 4. For 4PSK, this value increased by a factor of 6

(to 12). However, the scaling function suggests only an increase of 4 times. 8PSK required

an SNR of 16, an increase of 5 times over 4PSK, which is also higher than what the scaling

function suggests. Unfortunately for 16PSK case, the best I could received was an average

of 33% PDR (I was unable to pass 35% even in the absence of noise). This may be due

to not having enough output power level and as well as low performance of signal recovery

process of built in PSK demodulation for higher constellation sizes also the noise generated

by the transmitting SDR and the internal noise of the receiving SDR’s hardware. However,

if we compare this 33% PDR value to 8PSK, a 2.5 times increase is observed, once again a
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Figure 6.8: SNR to PDR comparison of empirical measurements and theoretical calculations
for MDPSK

value lower than what the scaling function suggests.

Next, I repeated the same experiments with Differential-PSK (DPSK) modulation. It

has been shown that in communications over fading channels DPSK is preferable over PSK.

DPSK uses the previously transmitted symbol interval’s phase as a reference to decode

the current symbol interval. In channels with slow condition variations compared to the

symboling rate, DPSK gives good performance [65] [66].

Figure 6.8 validates the better performance of DPSK over PSK. The results of 2DPSK

and 2PSK were very close and both required an SNR value of 4 to have at least a 99%

delivery rate. The major difference is observed for {4, 8, 16} DSPK. 4DPSK achieved 99%

PDR for SNR = 5 and required roughly 1.25 times more output gain compared to 2DPSK.

This value was 6 for 4PSK. 8DPSK achieved the same PDR for of 12 which is 5 times

the output gain compared to 4DPSK. However, it only required 6 times the output gain

of 2DPSK. Lastly, 16DPSK also required 5 times more output gain compared to 8DPSK.

{4, 8, 16} DSPK all performed better than the theoretical PSK results as expected; 31%,

39%, 50% of the theoretical results, respectively. A final conclusion can be drawn from both

Figure 6.7 and 6.8; we can see that the scaling ratios between consecutive modulation levels

vary and are not a constant value.
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Translation from the results reported in Figure 6.7 and Figure 6.8 to the exact energy

consumption of an 802.15.4 compliant radio will depend on the hardware design (the con-

stants mentioned in Section 3.1.1), efficiency of the demodulation technique, as well as the

channel access algorithm. As with many wireless standards, the 802.15.4 data link layer has

two operating modes: The beacon mode and non-beacon mode. Beacon mode consists of

two phases; contention allowance period (CAP) and contention free period (CFP). During

CAP the nodes use slotted-CSMA to get an access to channel and in CFP the nodes have

guaranteed time slots where the nodes take turn for channel access in time division multiple

access fashion. Non-beacon mode is a simple CSMA access mechanism. For both cases the

nodes assess the current noise level in the channel before transmitting. Since our reported

results are based on SNR values, lower noise levels will require lower output power. How-

ever, the increase in power consumption between different modulation levels will remain

valid for a given noise level.

It is now time to give a real-world use case where reported SNR based energy con-

sumption is quite useful. Protocols for Wireless Industrial Control Networks (ICNs) such

as WirelessHART or ISA 100.11a require real-time packet delivery with application specific

packet delivery rate requirements. Wireless ICN protocols typically uses time-division-

multiple-access based channel access mechanism with primary and backup time slots for

reliability [25–27]. In an application where a 98% PDR is the goal, SNR-based output

power control provides a very fine tuned energy control mechanism. In this scenario rather

than aiming for 98% or above delivery rate with a single transmission, aiming for a lower

PDR rate and retransmitting in case of a packet loss may give a lower expected energy

consumption. For example, if we are aiming for at least a 98% PDR using 16DPSK, we

can either use an SNR value of 18 and transmit only once or use 15 (88% PDR) with a

retransmission if fails. In the latter, we will have to retransmit with a probability of 12%

which will give a total of 98.56% PDR. Using an SNR of 18 with a single transmission will

consume 1.78 times more energy as oppose to the expected energy consumption of using 15

with retransmission. Integrating DMS into this scenario gives the application the ability to
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not only fine tune its output power level but also take advantage of available transmission

delay. An application can use a lower modulation level as long as the time slot length is

large enough. Let us assume the primary time slot requires modulation level 16 whereas the

backup slot can compensate for 8 (twice as long). Once again aiming for 88% PDR in both

time slots for an expected PDR of 98% will consume 52% of a single transmission energy

consumption.

I also suggest a slightly different perspective to the application of DMS in the low-power

wireless domain. The primary focus of DMS-enabled low-power protocols has been energy

management, and DMS is utilized as a tradeoff between time and energy while keeping PDR

constant. In other words the goal is to manage output power while achieving the same PDR.

However, it is also possible to view DMS as a reliability mechanism that provides a tradeoff

between time and reliability. In other words, DMS can be used to keep the output power

constant while reducing the modulation level in order to achieve the same or higher PDR.

For example, let us assume we have a sensor mote which is currently using 8DPSK and

achieving 97% PDR with a SNR value of 11. Now assume that there is a sudden change

in channel condition which reduced our SNR value to 7. Instead of increasing the output

power to restore SNR value back to 11, the mote can decrease its modulation level to 4 and

still achieve 97% and above PDR while using the same output power level as long as the

latency requirements are not violated. Even in non-changing channel conditions where SNR

ratio is fairly constant, if the current quality-of-service requirements of the application-layer

protocol changes and requires a higher PDR, it is still achievable with the same transmission

power by decreasing the modulation level rather than increasing output gain. I believe this

type of DMS application is just as important and a viable direction for the future research

of DMS in low-power wireless networks.

Distance Testing

In the next set of experiments, I tested the PDR of M-DPSK in terms of distance. Distance

testing is important due to its impact on topology control. In wireless domains, topology
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Figure 6.9: The test area that was used for distance measurements. Sender and receiver
are 100 meters apart.

control is mainly used to find an optimal subset of the nodes in the network to ensure

connectivity. Notice that connectivity may have slightly different meaning in the low-

power domain, so here I am referring to the ability that each sensing node can successfully

communicate with the coordinator with or without using relay nodes. One important

advantage of this approach is that nodes can better manage their sleep schedules [1]. DMS

gives the ability to control the transmission distance without increasing the output power

consumption but with a penalty of increased transmission delay.

Figure 6.9 shows the picture of the test area. I chose this location because it was very

isolated and I measured very weak WiFi signals. Also, it allowed me to test up to 100

meters. The location of the receiver was chosen in such a way that the multi-path fading

was minimal and it was located in the exact same spot for each test. The location of the

sender was adjusted accordingly for each desired distance on a straight line.
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My first experiment was conducted in the 2.484-GHz center frequency with the same

parameters used for the SNR tests. Low-power radios such as CC2420 has 0dBm maximum

transmission power. Hence, my goal was to set my SDRs to use 0dBm output power as

well. However, SDR only allows us to configure its output amplifier gain (in dB) which

produces different absolute transmission power levels depending on the center frequency

being used. In order to get very accurate mapping of output amplifier gain to the absolute

transmission output power, spectrum analyzer and highly sensitive power monitors are

needed. I identified a forum post on the official National Instruments website by a SDR

Product Manager of the company, which provided their internal test results of mapping

amplifier gain to specific output power for different center frequencies using the Ettus B200

series SDRs [67]. According to their internal test results an amplifier gain between 61dB

and 75dB corresponds to 0dBm output power. In order to pinpoint a specific gain value

within this range, I have measured RSSI values with Zolertia Z1 motes set as sender and

receiver equipped with CC2420 radios transmitting at 0dBm. Next, I have repeated the

same test with the same Z1 receiver instead of Ettus B210 transmitter. An output gain of

70dB gave the closest RSSI values to match 0 dBm absolute transmission output power.

Figure 6.10 shows the results I obtained for {2, 4, 8} DPSK. I was unable to decode any

signal using 16DSPK with 70 dB output amplifier gain. The error bars seen on the graph

are 95% confidence levels. From these tests, I can conclude that increasing modulation

levels decreases PDR at a specific distance.

I then repeated the same test with the 915-MHz center frequency. National Instruments

internal tests indicate 70 dB amplifier gain corresponds to a little less than 10 dBm output

power. Similarly, Texas Instruments sub-1-Gig low power radios have around 10 dBm

maximum output power as oppose to 0 dBm of CC2420 2.4 GHz radio. As expected PDR

has increased for each modulation level for each distance value significantly. So much that

both 2 and 4 DPSK has maintained above 90% delivery rate for up to 100 meters. This

increase is due to aforementioned increase in the output power level. For a good measure

of comparison I ran tests with 915 MHz but this time with 60 dB amplifier gain. This gain
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Figure 6.10: Packet delivery rates of different modulation levels using 2.4 GHz center fre-
quency with 70dB output amplifier gain in terms of distance.

Figure 6.11: Packet delivery rates of different modulation levels using 915 MHz center
frequency with 70 dB output amplifier gain in terms of distance.
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Figure 6.12: Packet delivery rates of different modulation levels using 915 MHz center
frequency with 60 dB output amplifier gain in terms of distance.

value corresponded approximately to 0 dBm according to National Instruments internal

tests [67]. However, this time I did not have a sub-1gig radio to compare RSSI values.

I have observed similar but slightly better results compared to 2.4 GHz. This was likely

due to a combination of slightly higher output power level created by 60 dB gain 915 MHz

center frequency as oppose to 70 dB 2.4 GHz and lower free space propagation loss of 915

MHz band as oppose to 2.4 GHz band [68].

Lastly, I have expanded my distance testing to include wide variety of output amplifier

gain values. My optimization problem, as you will see later in Section 7.1, assumes the

energy consumption per modulation level, distance and output power level is known. In

order to set realistic parameters for my simulation setup, I have run these additional SDR

tests. These tests aim to find the PDR given a modulation level, sender-receiver distance and

output power level. To accomplish this, I have used various output power levels, specifically

-10, -7, -5, -3, -1, 0 dBm levels which CC2420 supports[69]. More precisely, I have set the
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Figure 6.13: 2DPSK packet delivery rate given a transmitter-receiver distance and an output
power level.

output and receiver amplifier gains to 60, 63, 65, 67, 69, 70 dB respectively to achieve the

desired power output levels using 2.485 GHz center frequency. Figures 6.13, 6.14, and 6.15

shows the obtained results for 2DPSK, 4DPSK, 8DPSK respectively. In these Figures, you

can see distance matrix on the x-axis, output power levels on z-axis and corresponding PDR

values on y-axis.

These results have important implications for topology control. Connection driven topol-

ogy control protocols such as Span [2], ASCENT [3] aim to find the minimum number of

relay nodes necessary to forward packets to the coordinator. The goal is to reduce the

number of active nodes and hence the number of hops. Lowering modulation level allows

approaches that work by enabling nodes to broaden their communication range while re-

ducing their energy consumption. As a result, these similar topology control protocols can

further reduce the number of active relay nodes. Assume an example where a sensing node
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Figure 6.14: 4DPSK packet delivery rate given a transmitter-receiver distance and an output
power level.

Figure 6.15: 8DPSK packet delivery rate given a transmitter-receiver distance and an output
power level.
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is 120 meters away from the coordinator and needs 2 relay nodes positioned 40 meters apart

to forward its packets using modulation level 4. According to our tests, reducing modula-

tion level to 2 will increase the reliable communication range up to 60 meters and only a

single relay node will be sufficient to forward the packets. Here, the total energy savings will

be the sum of energy saving from the sensing node, relay node and coordinator by reducing

their modulation levels and energy savings by putting a relay node into deep sleep, a figure

which is quite significant.

Elevation Testing

In my last set of experiments, I have measured PDR of {2, 4, 8} DPSK in terms of elevation

difference between sender and receiver. I have placed the sender outside of a building at

1.08m, 8.9m, and 13.6m high in reference to the receiver. The receiver is placed on the

ground level (slightly elevated). Figure 6.16 shows the tests area and Figure 6.17 shows

the height of the sender and the distance between sender and the receiver. In applications

such as residential automatic meter reading, it is possible for sender and receiver to have

elevation difference such as a transmitter can be placed on a current-meter higher of the

ground or an application where an elevated pipeline equipped with sensors broadcasting the

current pressure inside the pipe.

Figure 6.18 shows the PDR of {2, 4, 8} DPSK with 915 MHz center frequency and 60

dB output amplifier gain as I have used in Section 6.1.1. Some conclusions we draw can be

listed as follows: (i) Higher elevations cause higher packet loss for both 915 MHz and 2.484

GHz center frequency although 2.484 GHz center frequency with 70 dB output amplifier

gain had higher PDR for both 4 and 8 DPSK as shown in Figure 6.19. I should mention

here that I was using different antennas for 915 MHz and 2.484 GHz tests that are both

omni-directional vertical antennas (Ettus Research VERT900 and VERT2450 respectively).

Different antennas may have different polarization characteristics typically either vertical,

horizontal or circular in x-y axis. Elevation difference requires the signals to be transmitted

in the z axis where VERT900 and VERT2420 antennas likely to have different characteristics
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Figure 6.16: Test area that was used for elevation tests. Receiver is placed on the ground
and the sender is elevated.

Figure 6.17: The height of the sender and the distance of the sender from the receiver.
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Figure 6.18: Packet delivery rates of difference modulation levels using 915 MHz center
frequency with 60 dB output amplifier gain in terms of elevation difference.

Figure 6.19: Packet delivery rates of difference modulation levels using 2.484 GHz center
frequency with 70 dB output amplifier gain in terms of elevation difference.
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in this direction. (ii) 2DPSK seems to be not effected by the elevation difference with the

tested output gain values making it the best candidate for the aforementioned types of

applications. (iii) If we compare the results from Figures 6.18 and 6.19 with Figures 6.10

and 6.12, it shows us that elevation difference has a higher impact on PDR compared to

distance difference with the same elevation. Figures 6.10 and 6.12 indicates that all the

modulation levels have 80% or above PDR for distances up to 20 m ( with no elevation

difference) whereas when the transmitter is elevated 13.6m and placed 17.48 m apart from

the receiver, the PDR reduces dramatically for 4 and 8 DPSK as low as 54% and 28%

respectively.
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Chapter 7: DMS-enabled Multi-hop Topology Control for

Time Critical WSNs

This chapter aims to solve the problem of optimal interference aware time-slot allocation

for DMS-enabled, time-critical, multi-hop WSNs. I am particularly interested in answering

the following question: how does empirical measurements from Chapter 6 affect parent node

selection process for time critical multi-hop WSNs?

To answer this question, I first present the Mixed Integer Nonlinear Programming

(MINLP) formulation of the problem; a given a set of connections between nodes per modu-

lation level, choose a modulation level and a parent for each node to talk to while minimizing

the total network energy consumption given a maximum delay bound of when the base sta-

tion has to collect all the information from the network. The system model that I adapt

for this problem is explained in Section 3.2. This problem description assumes the links

between the nodes per modulation level are known, in other words, it assumes given a node,

let’s say nodea, the set of nodes that nodea can talk to using modulation levels 1, or 2,

or 3,... is known. These set of nodes per modulation level are not necessarily identical.

Generally speaking, MINLP problems are known to be intractable which led me to provide

two polynomial time heuristics. I have compared my heuristics against the optimal solution

using the simulation I built by incorporating the data I obtained from our Chapter 6.

In summary this chapter has the following contributions; i) I describe a new perspective

on how DMS can be applied to WSNs. The papers in literature typically assume discrete and

single power levels for each modulation level. While this is valid, it is very limited and not

necessarily the only valid model. It is possible to adjust power output levels independently

from the modulation levels that is used. To my best knowledge, this is the first work to

use this extended model in DMS enabled WSN domain. ii) I show the optimal MINLP
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formulation of DMS enabled parent node selection problem for time critical WSNs and iii)

I propose two polynomial time heuristics and compare them against the optimal solution.

7.1 Optimization Problem Formulation

Here, I present the optimization problem formulation of a given a network topology with

known potential parent nodes per modulation level, choose a parent and a modulation level

for each node while minimizing the total network energy consumption given a maximum

delay bound of when the base station has to collect all the information from the network.

Figure 7.1 gives an example case from a single node’s perspective, node4 in this case.

The arrows show the connection between nodes with possible modulation levels and corre-

sponding delay and energy consumption values. The goal is to find a path from node4 to

the base-station, denoted with b, bounded by 3t. There are three possible routes in this

case; r1 : n4 → n2 → n1 → b, r2 : n4 → n3 → b, and r3 : n4 → n1 → b. The lowest delay r1

can provide is 3t with 12e of corresponding total energy consumption. For r2 and r3, these

values are 4t with 2e and 3t with 5e respectively. Only r1 and r3 satisfies the given delay

bound where r3 has the lower corresponding energy consumption. Hence, in this example

n4 should use r3.

My optimization formulation finds these paths for each node and their transmission

start times such that the total energy consumption of the whole network is minimized while

the time it takes to collect data from each node is bound by the given deadline. Table 7.1 is

the list of the variables and their definitions used in our problem formulation. The integer

variables in our formulation are the βi,kl and Ii,k binary integer variables. The remaining

variables are real numbers (except for IRi
l which is a set). When βi,kl equal to 1, that means

node i will transmit to node k using modulation level l. The same notation is also used for

the remaining variables. The value of ei,kl might differ for each link even for the ones which

are using the same modulation level depending on the current noise level of the channel as

well as the distance between transmitter and the receiver. Energy consumption between
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Figure 7.1: Optimization problem demonstration from a single node’s perspective.

Table 7.1: The variables used in the problem formulation and their description.

ei,kl transmission plus computation energy consumption when
node i sends a packet to node k via modulation level l.

di,kl transmission and computation delay when
node i sends a packet to node k via modulation level l.

βi,kl binary integer variable to ensure node i only
picks a single parent node k to send its packets.

Si the time when node i starts transmitting.

Ei the time when node i stops transmitting.

Ii,k binary integer variable to ensure only node i or node k
is scheduled to transmit at any given time, never both.

n total number of nodes in the tree.

IRi
l modulation l interference range of node i.

D deadline constraint.

Q a very large number
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node i and all non-reachable nodes are set to ∞. Similarly, delay variable di,kl is also set to

∞ if node i cannot reach node k via modulation level k.

min.
n∑

i=1

n∑
k=1

bmax∑
l=bmin

βi,kl ei,kl (7.1a)

s.t.
n∑

k=1

bmax∑
l=bmin

βi,kl = 1 ∀i 6= k (7.1b)

βi,kl (Si + di,kl ) = βi,kl Ei ∀i, k, l (7.1c)

βi,kl Ei ≤ Sk ∀i, k, l (7.1d)

βi,kl Ei ≤ βi,kl (Sj + Ii,jQ) ∀i, k ∀j ∈ IRi
l (7.1e)

βi,kl Ej ≤ βi,kl (Si + (1− Ii,j)Q) ∀i, k ∀j ∈ IRi
l (7.1f)

βi,ki1 β
m,t
l2
Ei ≤ βi,ki1 β

m,t
l2

(Sm + Ii,mQ) ∀m 6∈ IRi
l1 ,∀k ∈ IRm

l2 (7.1g)

βi,ki1 β
m,t
l2
Em ≤ βi,ki1 β

m,t
l2

(Si + (1− Ii,m)Q) ∀m 6∈ IRi
l1 ,∀k ∈ IRm

l2 (7.1h)

Si ≥ 0 ∀i (7.1i)

Sbasestation ≤ D (7.1j)

βi,kl ∈ {0, 1} ∀i, k, l (7.1k)

Ii,k ∈ {0, 1} ∀i, k (7.1l)

Equation 7.1a is the objective function which is to minimize the total sum of each node’s

energy consumption. When βi,kl is 1, we sum the corresponding energy consumption of node

i transmitting to node k using modulation level l.

Constraint 7.1b forces each node to select a single modulation level and a parent node
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to transmit its data.

Constraint 7.1c sets the transmission end time of each node, Ei, to its transmission start

time plus transmission delay of the chosen parent and chosen modulation level. Ei is an

auxiliary variable to ease the readability of the formulation. When βi,kl is 1, the transmission

start time of node i (Si) plus the transmission delay of node i transmitting to node k using

modulation level l (di,kl ) equals to the transmission end time of node i.

Constraint 7.1d makes sure if node i chooses node j as its parent then node j can start

transmitting only after node i stops transmitting. If there are are multiple nodes who

transmits to node k, Sk has to be greater than the largest Ei value which implies that a

node can start transmitting only after all of its children stops transmitting. When βi,kl is

0, Sk has to be greater than or equal to 0 which is trivial.

Constraints 7.1e and 7.1f ensure the nodes which are interfering with each other do not

transmit simultaneously. More specifically, either the start time of node i is after the end

time of node j or the start time of node j is after the end time of node i. When βi,kl is 1,

for all the nodes which are in node i’s interference range of modulation level l the following

holds; Ei ≤ Sj + Ii,jQ and Ej ≤ Si + (1 − Ii,j)Q. If Ii,j equals to 1 then it becomes

Ei ≤ Sj +Q and Ej ≤ Si. Since Q is a very large number Ei ≤ ∞ is trivially satisfied and

node i is allowed to transmit only after node j stops transmitting. If Ii,j equals to 0 then

the constraints become Ei ≤ Sj and Ej ≤ Si+Q. The second constraint is trivially satisfied

again and node j is allowed to start transmitting only after node i stops transmitting.

Constraints 7.1g and 7.1h are to prevent collision due to hidden node problem. Even

though I have prevented interfering nodes from co-scheduling (Constraints 7.1e and 7.1f),

it is still possible to have colliding nodes. In Figure 7.2 nodes i and m are not within each

other’s interference range. However, if they were to transmit to nodes k and t respectively,

node k may not have been able to recover i’s signal since k is within interference range of m.

Hence, node k shouldn’t be scheduled to receive any packets while node m is transmitting.

When node i transmitting to node k and any node which node k is in its interference range is
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Figure 7.2: Hidden node scheduling problem.

also transmitting, the product βi,kl1 β
m,t
l2

becomes 1. Here I used two different variables for the

modulation levels l1 and l2 to emphasize that the nodes i and m might be using different

modulation levels and node k has to be in the interference range of node m’s currently

chosen modulation level l2. When this holds, the constraints becomes Ei ≤ Sm + Ii,mQ and

Em ≤ Si + (1− Ii,mQ). Using the same logic I have demonstrated for the Constraints 7.1e

and 7.1f, these conditions enforces either the transmission start time of node m to be after

node i’s transmission end time or vice versa.

The remaining constraints are straight forward. Constraint 7.1i is to make sure nodes

do not start transmitting prematurely whereas Constraint 7.1j is to enforce the deadline

which is to make sure base-station receives all the packets in at most D seconds. Lastly,

Constraints 7.1k and 7.1l defines the variable β and I as binary integers.
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7.2 Polynomial Time Heuristics

Generally, integer programming problems are known to be intractable, hence to evaluate

the performance of the optimization problem described in Section 7.1, I have designed two

polynomial time heuristics which are explained in this section. However, there are some

components which are shared by both and I wanted to explain these shared components

here first.

7.2.1 Finding the Minimum Delay Path

First shared step is finding the minimum delay path. This step involves running Dijkstra’s

shortest path algorithm from each node until the shortest path to the base-station is found.

I assigned the delay of each edge as its weight. Let’s call the total number of nodes in the

network including the base-station n, and the total number of modulation levels b. Com-

plexity of Dijkstra’s algorithm implemented with a binary heap is O(|E| + |V |log|V |)[70].

In my set up, the number of edges in the worst case is b · n2. Hence each Dijkstra’s algo-

rithm run is O(b · n2 + n log n). I run Dijkstra’s algorithm from each node so the total is

O(b · n3 + n2 log n). In practice O(b · n3 + n2 log n) is not a very tight bound. After a single

round of Dijkstra’s algorithm from a node, let’s call it nodea, the shortest paths of all the

nodes in nodea’s shortest path are also computed. Hence, there is no need to run Dijkstra’s

algorithm from these nodes. Nevertheless, the time complexity of this step is O(n3).

After the end of this process, each node now knows their shortest path parent and which

modulation level to use when sending to the base-station.

7.2.2 Interference Aware Ordering

The next shared step is interference aware ordering. This step aims to find a schedule

among all the nodes such that no interfering nodes will be co-scheduled as well as no parent

will be scheduled before its children. In order to accomplish this, I run a topological sort on

the directed-acyclic-graph (dag) generated after the first step described above. Topological
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sort of a dag is the ordering of its vertices such that if there is an edge (u, v), u appears

before v in the ordering. After the topological sort of the dag is known and I start assigning

orders to the nodes as the following. I initialize each node’s order to -1. Following the

topological sort, each node is assigned the first available order in the range [maximum

order of its children+1, maximum order among all the nodes in its interference range of

every modulation level and their minimum delay parents+1]. Moreover, when a node is

assigned an order, its parent node is also temporarily assigned the same order to prevent

interference due to hidden node. Topological sort makes sure no parent is scheduled before

its children and my ordering mechanism makes sure no interfering nodes are co-scheduled.

Time complexity of topological sort is O(|V |+ |E|), the worst case number of edges in our

setup is b · n2 where b is number of modulation levels and n is the number of nodes in the

network including the base-station. The time complexity of assigning orders is O(n2). All

together, the total time complexity of this step is O((b+ 1) · n2 + n) which is O(n2).

7.2.3 Computing Minimum Delay

The third and the last shared step is computing minimum delay. Since now we know each

node’s minimum delay parent, minimum delay modulation level and its order, in this step I

compute each node’s minimum delay such that the minimum time it takes for that node to

send its packet to the base-station. This is calculated by first computing time-slot lengths.

There are same number of time-slots as the maximum order value (the order of the base-

station). Each time slot length is equal to the maximum delay of the nodes which has

the same order as that time slot number. Minimum delay of a node is then computed by

summing up the time slot lengths from its order till (and including) the order of the node in

its shortest path which is directly connected to the base-station. The calculated minimum

delay of a node means this is the shortest time it would take for this node to send its packet

to the base-station according to the path and ordering chosen by the previous steps. The

time complexity of computing time slot lengths is O(n). Computing minimum delay of each

node can be done recursively such that mindelay(i) = sum of time slot lengths from i to
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its minimum delay parent p + mindelay(p). And if we memoize the previously computed

minimum delay values, each node is only visited once and hence the time complexity is

O(n). The total time complexity of this step is O(2n) which is O(n).

The total time complexity of all shared steps is O(b · n3 + n2 log n + (b + 1) · n2 + 3n)

where b is a constant and equals to the number of modulation levels and n is the number

of nodes in the network including the base-station. Hence, the total complexity is O(n3).

Next, I describe my heuristics.

7.2.4 Aggressive

My first heuristic starts with computing minimum delay of each node by following the steps

described in the beginning of this section. When given a maximum delay bound, a.k.a.

deadline, Aggressive first checks to make sure the minimum delay of each node is at least as

long as the deadline. If all the nodes can meet the deadline, it calculates the slack which is

the difference between the delay of node with the longest minimum delay and the deadline.

As long as the slack is large enough to compensate for the additional delay by a reduction

of a modulation level, the time-slot which has the most number of nodes with minimum

delay modulation levels greater than the lowest modulation level is chosen. The modulation

levels of these nodes are reduced by one level. The slack is then recomputed and the process

is repeated till we no longer have a large enough slack. Algorithm 1 is the pseudocode of

Aggressive for a clearer top down view.

Comparing minimum delay of each node against the deadline can be done in O(n)

time complexity. Finding the time-slot with the with the highest number of nodes with

modulation levels greater than bmin can be done in O(2n); first by going over the each

node and updating the corresponding time-slot information and then by iterating over the

time-slots to return the maximum. In the worst case each node will occupy a different

time-slot and hence it will take O(n) time. Lowering each node’s modulation level can also

be done in O(n) in the worst case which in when all the nodes share a single time-slot

and all are eligible for a modulation level reduction. The time complexity of computing
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for each node in the network do
Check if minimum delay ≤ deadline;

return no answer if the check is false;

end

slack = deadline - max of the min delays of each node;

while slack ≥ increase in delay by reducing modulation levels by one do
slot := most occupied time-slot by nodes with modulation levels greater than

bmin;

updated := false;

for node := nodes in slot do
if modulation level of node ¿ bmin then

reduce modulation level of node by one;

updated = true;

end

end

if updated is false then
break the while loop;

end

recompute min delays of the nodes;

slack = deadline - max of the min delays of each node;

end

Algorithm 1: The algorithm of Aggressive Heuristic

minimum delays of the nodes are explained in the third bullet of the shared steps explained

previously which is O(2n). The while loop can at most loop for (b − 1)n times since each

node can at most reduce its modulation level b − 1 times. Hence the total complexity of

Aggressive without the initial shared steps is O(5(b−1)n2 +n) if we include these steps the

time complexity becomes O(bn3 + n2 log n+ (6b− 4)n2 + 4n) which is O(n3).

7.2.5 Explorer

My second heuristic is an improved version of Aggressive where it also starts with computing

the minimum delay of each node by following the shared steps with one addition: while

I am running Dijkstra’s algorithm to compute the minimum delay paths, I also store the

cumulative energy consumption of each node. A node’s, let’s say nodea’s, cumulative
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energy consumption equals to the sum of each node’s individual energy consumption which

are on that nodea’s shortest path including nodea.

Using the collective information of both cumulative energy consumption and minimum

delay, the nodes now explores more options to forward their packets other than their min-

imum delay parents. Instead of aggressively forwarding packets to their minimum delay

parents, now the nodes look among all the nodes within its reach with higher order number

and picks the one with the (minimum cumulative energy consumption + energy to send to

it) among the nodes which have short enough (minimum delay + delay to send to it) value

to meet the deadline. Algorithm 2 shows the pseudocode of the Explorer Heuristic.

Explorer keeps track of each node’s individual deadline requirement separately. This

is because each node’s individual deadline will change according to the nodes’ individual

deadline which pick it as their parent. Algorithm 2 starts with initializing each node’s

individual deadline requirement to the given application’s deadline requirement. Then, it

proceeds node by node from the one with the smallest order to the largest. Let’s assume

Explorer currently picked nodei and will try to find a parent for it. The other nodes need

to satisfy two conditions to be qualified as a candidate; i) its order has to be greater than

the nodei’s, ii) its minimum delay has to be less than or equal to nodei’s individual delay.

By iterating over the nodes according to their orders and picking the nodes with greater

order ensures that the minimum delay computed initially still holds because the nodes with

greater order still has the potential to pick their minimum delay parents if necessary. Nodei

picks the node with the lowest cumulative energy consumption among the set of candidates,

let’s call this nodej . Next the individual delay of nodej has to be updated. Nodej now has

to be make sure it can delivery the packet in the worst case of (individual delay of nodei

- transmission delay from nodei sending to nodej by using the chosen modulation level).

Only updating the individual delay of nodej is not enough. Not only nodej but also all the

nodes with greater order than nodei’s has to have at least the individual delay of nodei.

This is because if any of the nodes with greater order than nodei’s, delivers its packet with

a longer delay than of nodei’s individual delay then there is a chance for nodei to miss the
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Input: deadline

initialize each node’s individual deadline to deadline;

initialize each order’s minimum requirement to deadline;

sorted := sort the nodes according to their order;

for i in sorted do
update i’s individual deadline requirement to the updated minimum delay

requirement from previous orders;

min := ∞;

for j within i’s reach per modulation level do
if j’s order > i’s order AND j’s minimum delay ≤ i’s individual deadline
AND j’s cumulative energy consumption + energy consumption from i to j

¡ min then
choose j;

choose modulation level;

update min;

end

end

update j’s individual deadline to MINIMUM of j’s individual deadline OR i’s

individual deadline - delay from i transmitting to j;

update the minimum requirement of the order (i’s order + 1) to MINIMUM of
minimum requirement of (i’s order + 1) OR i’s individual deadline - delay

from i transmitting to j;

end

recompute interference aware ordering;

recompute minimum delay;

if all the nodes meet deadline then
run Aggressive Heuristic with the new edges;

end

else
run Aggressive Heuristic with Dijkstra’s shortest path edges;

end

Algorithm 2: The algorithm of Explorer Heuristic
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deadline.

After Explorer picks a parent for each node, it recomputes the interference aware order-

ing with the new set of edges. Please recall that interference aware ordering was topological

sort based, now with the new set of edges, it is possible for a node to be a leaf node whereas

it was not according to initially computed shortest paths based on Dijkstra’s algorithm,

this has the potential to lower its minimum delay because now it does not have have to

wait for its children and grandchildren to finish before start transmitting. On the down

side, the nodes which has the same order with different minimum delay parents might now

be interfering if Explorer was to choose them the same parent. Because of the potential

changes in ordering, Explorer recomputes the orders and checks if the deadline is still met.

If so it runs the Aggressive Heuristic with the new edges chosen by Explorer. Otherwise,

the Aggressive Heuristic is run with the edges chosen by Dijkstra’s algorithm as if Explorer

did not even execute to begin with.

Sorting the nodes according to their orders take O(n log n) time. There can be at most

b(n − 1) nodes with the reach to be a parent candidate per node. Hence the for loop of

Algorithm 2 has the time complexity of O(n log n + bn(n − 1)). I have already discussed

the time complexity of interference aware ordering and computing minimum delay which

are O((b+ 1) · n2 + n) and O(2n) respectively. The time complexity of the last step which

is to run Aggressive Heuristic without the shared steps is O(5(b − 1)n2 + n) and the time

complexity of the shared steps were O(b · n3 + n2 log n + (b + 1) · n2 + 3n). altogether the

time complexity of Explorer becomes O(bn3 + n2 log n + 8bn2 − 3n2 + n log n + 7n) which

is O(n3).

7.3 Performance Evaluation

In order to evaluate the optimal solution and the heuristics, I have created a custom Java

simulator to simulate various network setups. The implementation of optimization problem

is done by using IBM ILOG CPLEX Optimization Studio libraries [71]. There is one
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detail I need to mention about the CPLEX implementation. In the MINLP formulation,

the Constraints 7.1c, 7.1e, 7.1f, 7.1g and 7.1h are not necessarily convex functions which

is a problem for the CPLEX software because CPLEX will throw an exception and stop

execution when faced with non-convex constraints. To overcome this issue and linearize

this formulation into a MILP form, I needed to create an additional auxiliary variable, z,

for each integer variable (β) and a continuous variable (S and E) product such that:

z ≤ deadline · β

z ≥ 0

z ≤ S

z ≥ S − deadline · (1− β)

Here is β is 0 then z ≤ 0 and z ≥ 0 forces z to be equal to 0. If β is 1 then z ≤ S and

z ≥ S forces z to be equal to S. This as a workaround that I needed to use for the CPLEX

implementation of the MILP problem.

7.3.1 Network Topology Setup

My simulation starts with the network topology setup process with the following parameters:

• x-y plane size: The size of x axis and the y axis of the setup area.

• number of nodes: The total number of nodes in the network in addition to the base

station.

• energy consumption: The energy consumption of each modulation level per transmit-

ter and receiver distance obtained from Figures 6.13, 6.14, and 6.15.

• delay: The time it takes to send a packet per modulation level.

• deadline factor: the percentage of the longest delay which is when each node is using

the lowest modulation level. For example when deadlinefactor is 0.6 that means the

delay bound D of the Constraint 7.1j is (number of nodes x lowest modulation level’s

delay x 0.6).
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I preset the location of the base-station and x,y positions for the remaining nodes are

randomly generated while making sure no two nodes are assigned the same coordinates.

Next step is to setup the connections. For each pair of nodes (including the base-station),

their straight line distance to each other is computed and the energy consumption for

this pair of nodes per each modulation level is assigned as the following; for each curve

that is plotted in Figures 6.13, 6.14, and 6.15, I have fitted the curves with 5th degree

polynomial trend-lines with the coefficient of determination values of 0.99 and above. I

have then assigned the corresponding output power levels while making sure there is at

least 75% PDR. This corresponds to the ei,kl parameter of my MINLP where the pair of

nodes are i and k and the modulation level is l. If this pair of nodes are unreachable for

a modulation level or has a PDR of less than 75%, the energy consumption and the delay

of that modulation level is assigned to infinity. Moreover, I have assumed the interference

range is 1.2 times of the communications range [72]. If after this process, there exists a

node such that it is not within the reach of any other node, then we reassign a new location

to that node, once again randomly. This process is repeated till every node is connected.

7.3.2 Results

In my first set of tests, I have placed the coordinator at the coordinate (0,0) and positioned

the remaining 10 nodes by following the procedure described in Section 7.3.1. Each data

point on Figures are the averaged results over 100 repetitions.

I have experimented with 250x250, 500x500, and 750x750 m2 areas with deadline factor

from 0.25 to 1. Figure 7.3 shows the total sum of each node’s power consumption (except

for the base-station) for a given deadline factor and the maximum size of the area which

the nodes are spread. It is seen that for each density level and deadline factor, there is a

strict ordering of power consumption as Optimal < Explorer < Aggressive except for when

the deadline factor equals 1. At this point, the deadline is large enough for all the nodes

to use the lowest modulation level to meet the deadline. Keen eyed readers must have

realized that Figure 7.3b is missing data points for deadline factor 0.25 and Figure 7.3c
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(a) area = 250x250 m2

(b) area = 500x500 m2

(c) area = 750x750 m2

Figure 7.3: Comparison of optimal solution against heuristics when the base-station is
placed at (0,0) with 10 nodes.
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is missing for 0.25 and 0.30. This shows that when the density of the network decreases,

it is harder to meet the shorter deadlines. If you recall our distance test results based on

various power output levels (Figures 6.10, 6.11, 6.12, 6.13, 6.14, 6.15), higher modulation

levels have lower successful communication ranges which forces sparse networks to use lower

modulation levels to stay connected which in turn increases transmission delay.

Another conclusion I need to derive from these Figures is the effect of network density.

Denser network decreases the Optimal’s as well as the Heuristics’ total power consumption

for tighter deadlines which is actually intuitive. Denser networks will have more potential

paths to choose from. In fact a network will preserve all of its potential paths if it was

to get squeezed. Why? Because any connection provided by any modulation level will still

remain valid when the distances between sender and receiver pairs are decreased. Perhaps,

there will even appear new potential paths. However, the co-schedulability of the nodes

will be effected due to the increased interference. Another observation is the performance

difference between my algorithms grows as the network gets more sparse. This also due to

decrease in the number of potential paths. Higher number of potential paths allows Optimal

solution to perform exhaustive search over more potential solutions. However, due to the

polynomial time nature of our Heuristics, Aggressive and Explorer does not benefit from

higher number of potential paths as much as Optimal does.

The rate of which the total power consumption decreases as the deadline factor increases

is not constant. We can see that there are slight reductions in total power consumption

when the deadline factor goes from 0.6 to 1 for all density levels. Although from the Figures

the line looks relatively flat, there are roughly 14%, 35%, and 42% reduction in power

consumption between deadline factors of 0.6 and 1 for Optimal, Explorer, and Aggressive

respectively for each case. My SDR based experimental results have indicated that the

power consumption difference between 2DPSK and 4DPSK is significantly lower than the

difference between 4DPSK and 8DPSK. Hence, the reduction in total power consumption

when more and more nodes are allowed to use 2DPSK rather than 4DPSK as the deadline

factor approaches 1 is less than that of when more and mode nodes are allowed to use 4DPSK
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as opposed to 8DPSK when the deadline factor approaches 0.5. This further emphasizes the

benefit of DMS on wide ranges of topologies for multi-hop networks and its relatively low

scarifies of additional power consumption for a significant reduction in total transmission

delay.

Similar traits are also observed when I repeat the tests but this time with the base-station

placed in the center of the grid as oppose to corner. Placing the base-station in the center

will reduce the average height of the tree and the nodes will have less hops to reach to it.

This in return will improve co-schedulability due to less number of nodes affected by parent-

children constraint (Section 7.1, Optimization Formulation 7.1, Constraint 7.1d). Since the

size of the area is kept the same, the co-schedulability due to interference constraints will

be unaffected (Section 7.1, Optimization Formulation 7.1, Constraints 7.1e 7.1f 7.1g 7.1h).

The results are shown in Figure 7.4. If we compare the results shown in Figures 7.3a to 7.4a,

7.3b to 7.4b, and 7.3c to 7.4c, we can see that total power consumption has been reduced

in each case. This is due to the improved co-schedulability as explained. Moreover, we can

see that as the network area increase, so does the total power consumption just as we have

seen in Figure 7.3.

Next, I have conducted tests by significantly reducing the test area by forcing the nodes

to be placed on a line with 250, 500, and 750 m length. Reducing the test area size to

1
250 , 1

500 , and 1
750 of the previous test areas substantially increased the interference and

reduced co-schedulability. Figure 7.5 shows the results. Once again I have observed that

as the network area gets larger, the total power consumption increases. The reason is the

reduced number of potential paths as we discussed previously. If we compare these results

with Figure 7.4, we can see that the power consumption in each case has increased, that

is for each area size and deadline factor. This comparison also gives us a good insight

into the co-schedulability performance of our heuristics. I observe that the performance

difference between our algorithms has increased as I reduced the test area size. This is due

to the suboptimal ordering mechanism used by our heuristics (See Section 7.2) which has a

negative impact on co-schedulability.
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(a) area = 250x250 m2

(b) area = 500x500 m2

(c) area = 750x750 m2

Figure 7.4: Comparison of optimal solution against heuristics when the base-station is
placed at the center with 10 nodes.
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(a) area = 250x1 m2

(b) area = 500x1 m2

(c) area = 750x1 m2

Figure 7.5: Comparison of optimal solution against heuristics when the base-station is
placed at (0,0) with 10 nodes.
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The interference model I have adapted in my dissertation is first and big step forward

towards a more realistic analysis of DMS on WSNs. In my interference model, each modula-

tion level has its own interference range which is 1.2 times of their real work communication

range measurements obtained from our SDR tests [72]. The work in literature typically

assumes equal interference ranges for different modulation levels. In order to see the effect

of my new interference model, I conducted the following test; 10 nodes plus the coordinator

placed at (0,0) on a 500x500 m2 area. The same layout used for generating Figure 7.3b.

However, this time the interference range of all the modulation levels equal to that of mod-

ulation level 1. In other words, 4DPSK and 8DPSK also has the same interference range of

2DPSK. This is a hypothetical assumption since the communication ranges of all the modu-

lation levels were kept the same. Figure 7.6 shows the results. On average there were 5.7%,

2.46%, and 4.11% increase on power consumption for Optimal, Aggressive, and Explorer

respectively when compared to the results shown in Figure 7.3b. The increase in power

consumption was more pronounced for smaller deadline factors. For the deadline factor of

0.35, the performance difference was 21.95%, 5.92%, and 19.52% for Optimal, Aggressive,

and Explorer respectively. This shows the significance of co-schedulability especially for

shorter deadlines.

I want to mention another observation from comparing Figures 7.3, 7.4, and 7.5. The

performance difference between these various tests becomes relatively smaller when the

deadline factor is 0.5 or more. For Optimal at deadline factor of 0.5, the difference between

the maximum and the minimum observed power consumption is 22%. This value is 33% and

37% for Explorer and Aggressive respectively. For the deadline factor of 0.6, these differences

shrink to 14%, 25%, and 35% for Optimal, Explorer, and Aggressive. The reason behind

this is the relatively close performance of 2DPSK and 4DPSK. At these deadline factors,

the nodes are dominantly using either 2DPSK or 4DPSK. The percentage of each changes

from case to case but the differences in these percentages create a relatively small difference

in performance.

To analyze the scalability of our algorithms, I have run a set of experiments with 5 to
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Figure 7.6: Comparison of optimal solution against heuristics when every modulation level
has the same interference range of modulation level 1. Area size is 500x500 m2 and network
size is 10 nodes plus the coordinator placed at (0,0).

Figure 7.7: Scalability analysis in terms of number of nodes in a 500x500 m2 area and the
coordinator is placed at the coordinates (0,0) with a deadline factor of 0.5.
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15 nodes in a 500x500 m2 area and a coordinator is placed at the coordinates (0,0) with a

deadline factor of 0.5. I chose 500x500 m2 and a deadline factor of 0.5 to have relatively

low computational load (smaller area sizes significantly increases the time optimal solution

is computed due to increased interference among nodes) and still have a connected network

(as the deadline factor decreases so does the connectivity of the network). I could only go

up to 15 nodes because after that point, I was unable to find an optimal solution even after

5 days of running. Figure 7.7 shows the results fitted with linear regression lines to each

algorithm. Coefficient of determination (R2) values of linear regression analysis were above

95% for all of the algorithms. This is a strong indication that the energy consumption of

the particular setup we had grows linearly in terms of number of nodes. Moreover, the

aims of the linear regression lines were also similar for the algorithms, 0.29, 0.26, and 0.22

for Aggressive, Explorer and Optimal respectively. That means although the performance

difference between the algorithms diverges as the number of nodes increases, it is with a

slow rate. So one can expect similar performances from all the algorithms as the number

of nodes increases.

106



Chapter 8: Compatibility of My Dissertation with the

Existing Real-Time WSN Protocols

The main contribution of my dissertation is the integration of DMS into real-time WSNs.

While I was doing so, I made sure that my research was generic enough to be tailored

individually for wide adopted existing real-time WSN protocols. In this chapter I am going

to give more details about how to do so.

Single cluster WSNs are setup such that the coordinator is within reach of every node

in the network without relaying on any other node to forward its packets typically as a

star topology. IEEE 802.15.4 defines this topology layout and other widely used protocols

such as Zigbee also adopts this model for its clusters [73]. The details of this topology is

explained in Section 3.1. My work on single clusters fits this model one to one as explained

in Chapter 4. More details need to be given for multi-hop/multi-cluster topologies.

8.1 Zigbee

Zigbee is an alliance which aims to connect a wide variety of devices to form a single

network. Its specifications are built on top of IEEE 802.15.4 standard and adds networking

and security layers. Network layer is of particular interest for the scope of this dissertation.

Figure 8.1 shows the Zigbee topology. There are three types of device annotated by

their first letters; coordinator, router, and end device. If I compare these devices with

the ones I used in my dissertation (See Architectural Model (Section 3.2), they correspond

to base-station, sense-and-relay nodes, and sensing-nodes respectively. Coordinator is the

root of the tree and is the most capable device of the network. The information about the

current condition in network is stored in this device. Router node’s duty is to forward the

packets it receives from end devices to the coordinator. It is also possible for end devices to
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Figure 8.1: Zigbee Network

be directly connected to the coordinator. End devices are low powered which the collects

information [74].

Each cluster you see in Figure 8.1 is an IEEE 802.15.4 network which may be configured

to beacon enabled mode. My work on cluster networks fits exactly here, Zigbee’s clusters

can use my dynamic superframe concept to save energy. If we remove the end devices

annotated by ’e’ from Figure 8.1, the network we left with can be directly applied to my

work on multi-cluster networks to have further energy savings.

8.2 WirelessHART

WirelessHART is one of the most widely used monitoring protocol for industrial control

networks. It based on Time Division Multiple Access mechanism and each device is time

synchronized. The physical layer is defined by IEEE 802.15.4 physical layer with frequency

hopping spread spectrum built on top.
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Figure 8.2: WirelessHART Network

Figure 8.2 shows the WirelessHART topology (the picture is borrowed from [27]). Field

devices in WirelessHART topology corresponds to sensing-and-relaying nodes of my Archi-

tectural Model (Section 3.2), routing device is be considered as a sensing-and-relaying node

which do not perform sensing operation. Adapter is needed to convert wired field devices

into wireless ones and handheld device is used for configuration, monitoring, and mainte-

nance of network nodes. Gateway device corresponds to the base-station of my model which

functions as a bridge between the network manager and the network. Network manager is a

centralized entity which is responsible for computing the scheduling for the nodes. Network

manager also constantly receives health data from the network such as RSSI values, current

packet loss rates, and list of neighbors etc. to maintain healthy time slots allocation for the

nodes.
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My work on multi-hop networks is a tool which can be used by the network managers

to compute routing tables and the time-slots for the nodes. However, a few modifications

need to be made for it to comply with the standard. First, WirelessHART has specific

requirements for each time-slot. Both transmitter and receiver have specific offset times

for clock synchronization and also to compensate for the delay of turning on radios at the

beginning of each time slot. An attempt of transmission is followed by another offset time

and an acknowledgment message. Moreover, each pair of transmitters are assigned back to

back time-slots in case the transmission fails during the first one [75]. The delay variable of

my optimal MILP formulation (See Section 7.1) needs to be computed according to these

constraints for each possible modulation level such that 2x(packet offset + time it takes to

send a packet using modulation level m + acknowledgement offset + time it takes to send

an ACK using modulation level m). Another requirement of WirelessHART protocol is

to assign primary and secondary parent nodes for each node to further increase reliability.

Primary nodes are the nodes chosen by the optimization problem presented in Section 7.1,

Equation 7.1. Network manager can choose the secondary parents by rerunning the optimal

formulation with a slight modification; whenever there is a term in the constraints in the

form of Xi,k
l (here X can be replaced with any of the variables used in the Equation), the

scope of k needs to changed to ∀k ∈ N − pi1 where N is the set of nodes in the network and

pi1 is the primary parent of node i.

8.3 IEEE 802.15.4-2015

At the time of writing this dissertation 2015 is the latest version of IEEE 802.15.4 standard.

This version preserves the beacon enabled single cluster model of 2006 version and adds new

support for multi-hop/multi-cluster networks. It resembles to Zigbee and WirelessHART

in many ways [76].

Single cluster model of IEEE 802.15.4-2015 matches one to one with the single cluster

model I adapted for my dissertation (see Section 3.1). Hence my dynamic superframe
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Figure 8.3: IEEE 802.15.4-2015 extended superframe structure as taken from the official
standard description.

structure (see Chapter 4) can be applied to IEEE 802.15.4-2015 single cluster networks

without a modification.

Multi-cluster network topology is similar to that of Zigbee, depicted in Figure 8.1. In

IEEE 802.15.4-2015 terminology, the node annotated as C is Super PAN Coordinator, R is

PAN Coordinator, and E as Device. Figure 8.3 shows the extended superframe for multi-

hop/multi-cluster networks called slotframe. We can see that now at any given time more

than one pair of transceivers can communicate simultaneously. For example during slot id

1, node 1 is transmitting to 3 while node 2 is transmitting to 4. The interference has to be

handled in time domain and/or frequency domain. My dissertation handles interference in

time domain and assumes the existence of frequency hoping to fight with multi-path fading.

However, extending my work to include frequency domain is also a rather important future

work.

The output of my optimization problem and heuristics (see Chapter 7) can be used to

create slotframe scheduling. The order value computed by my heuristics (see Section 7.2)
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Figure 8.4: How the Optimal Solution (see Section 7.1) might look like.

corresponds to slot id of slotframe. The nodes that have the same order will share the slot

with the same slot id. There is however, one minor change that needs to be done to my

optimization problem formulation (see Section 7.1) to be fully compatible with slotframe

concept. The optimal solution computes start and end times of each node’s transmission

times from a continuous range of values such that the optimal solution may look as Fig-

ure 8.4. However, IEEE 802.15.4-2015 wants the slots to start from a discrete set of values.

My heuristic solutions already satisfies such request since each node can only start after

all the nodes with lower order number stops transmitting. When we look at the example

shown in Figure 8.4, the orders of nodes will be such that 1 < 2 < 3 hence node 2 will

only be able to start transmitting after node 1 stops and node 3 will do the same after 2.

However, this is not necessarily the optimal solution.

Figure 8.5: After the Optimal Solution has edited to comply with IEEE 802.15.4-2015.

In order to fully comply with the standard, a new constraint such as Si ∈ {f0, f1, f2, ...., fn}

needs to be added to formulation where fx is the predefined start of xth slot. Moreover,

the slots has to be length of the transmission duration using the highest modulation level
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the system allows. If a node was to use a lower modulation level, it would have to require

multiple consecutive slots as shown in Figure 8.5.
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Chapter 9: Conclusion

Applicability of Dynamic Modulation Scaling (DMS) in low-power wireless systems, includ-

ing IEEE 802.15.4 networks, as an energy management technique has been widely studied

in literature and shown that DMS can achieve significant energy savings. In my dissertation

I have addressed the problem of applying DMS to real-time WSNs.

My research first addresses the problem of ensuring real-time guarantees while min-

imizing the overall energy consumption in wireless sensor networks. First, I focused on

cluster-oriented superframe communication, the most widely adopted method for providing

real-time guarantees in industrial wireless networks. Using Dynamic Modulation Scaling,

I studied static and dynamic algorithms for reallocation of slack times of a superframe.

I analyzed the effect of interference and dynamic modulation levels on low-power listen-

ing. I also introduced a new low-power listening protocol called hybrid-low-power listening

(HLPL) in order to overcome the interference problem caused by neighborhood. Using the

Castalia Simulator I assessed the performance improvements of DMS slack reclaiming and

HLPL. My experiments show that dynamic slot readjustment saves a significant amount

of energy under highly loaded systems. They also indicate that HLPL overcomes the in-

terference caused by other nodes in the cluster and significantly reduces the overall energy

consumption of the system.

Next, I have researched the application of DMS into multi-hop/multi-cluster real-time

WSNs. I first presented the Mixed Integer Nonlinear Programming (MINLP) formulation

of minimizing total network energy consumption while satisfying the deadline requirements

for a DMS enabled time critical network. This formulation picks the most energy efficient

parent node and a modulation level for each node in the network. I later showed how

to linearize this MINLP formulation to convert it into Mixed Integer Linear Programming
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(MILP) problem which is typically a requirement for problem solving engines such as IBM’s

CPLEX.

However, much the work that has been done so far lacks substantial empirical analysis

of DMS on Wireless Sensor Networks (WSNs). As a result, only a generalized mathematical

evaluation of DMS were available to the researchers. These evaluations were not enough

to for me to move forward with the solution to the problem I have formulated. Hence,

my dissertation addressed that gap and provided empirical results that can be used by

not just us but future researchers as a complement to currently available mathematical

techniques. To accomplished this, I used Ettus B210 Software Defined Radios (SDRs)

and configured them according to the 2015 IEEE 802.15.4 standard. I experimented with

various Signal-to-Noise-Ratios and corresponding Packet-Delivery-Rates for {2, 4, 8, 16}-

PSK as well as DPSK modulations. My results show that increasing PSK modulation levels

requires more transmission power increase compared to theoretical scaling functions (such

as those shown in [14]). On the other hand, DPSK requires significantly less power increase

compared to the same scaling function. I have also shown that the scaling ratios between

consecutive modulation levels are not equal. Next, I measured the PDRs for {2, 4, 8}-

DPSK for distances up to 100 meters. The results have shown that lower modulation levels

can achieve higher communication distances. I have also shown the performance difference

between 915 MHz and 2.484 GHz and observed 915 MHz has higher packet delivery rate

with the same output amplifier gain. Lastly, I have shown that elevation difference between

transmitter and receiver affects these results tremendously. 4-DPSK and 8-DPSK had as

low as 54% and 28% PDR for elevation difference of 11.6m and 17.48m apart. The same

modulations had 99% and 76% PDR respectively for distances up to 20 m with no elevation

difference.

Lastly, I designed two polynomial time heuristics and compared them against the optimal

solution obtained by CPLEX software. In order to have an accurate network model, I have

incorporated the empirical measurements obtained from my SDR tests into my custom

simulator. I ran various tests with different network area sizes and base-station locations and
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showed our polynomial time heuristics perform very closely to the optimal solution especially

for larger deadlines. I have also shown that there is relatively less energy consumption

penalty if the deadline of the system were to be halved that is if more and more nodes

needed to use 4DPSK rather than 2DPSK. However, as the deadline further reduced and

more nodes are required to use 8DPSK to meet the deadline, there is a significant increase

in total energy consumption.
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