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ABSTRACT 

 

 
 

POPULATION DYNAMICS AND PHARMACEUTICAL CONTAMINATION IN STREAMS AND 
RIVERS ACROSS THE UNITED STATES 
 
Stephanie Gordon, M.S. 

 

George Mason University, 2019 

 

Thesis Director: Dr. Gregory D. Foster 

 

 

 

Pharmaceutical contamination of surface waters across the United States has become an 

issue of increasing concern and study. These compounds can negatively impact the health 

of aquatic species and present an exposure risk to other species and humans who interact 

with contaminated water or use them as a source of drinking water.  Pharmaceutical 

compounds and metabolites can enter streams from multiple sources including leaky 

sewer pipes, septic tanks, sewer overflow, and wastewater treatment plant effluent. 

Although human use is undoubtedly the main source of pharmaceutical loading to 

streams, stream contamination studies often focus on landscape point and non-point 

sources as it is difficult to geographically define populations affecting contamination in 

surface waters.  This study develops a method to identify and define human populations 

contributing to environmental water contamination and additionally uses previous 

sampling efforts to apply this method at three scales: national, regional, and local. The 



 
 

method developed is also used to understand the relationships between population 

demographics and socioeconomic factors with type and concentration of pharmaceuticals 

at each scale using Classification and Regression Tree (CART) analysis. Results indicate 

that at the national scale, income is an important variable in determining presence of a 

variety of pharmaceutical groups while at the regional scale age and gender variables 

were most important. Results at the local scale were not able to be generated with the 

data available.  The method presented and subsequent results may be useful in future 

study efforts to tailor sampling locations and lab efforts to pharmaceuticals of interest 

based on contributing populations. 
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INTRODUCTION AND BACKGROUND 

 

 
 

 

Contamination of surface waters across the United States has been an increasingly 

important issue and the focus of studies at multiple scales (Barnes et al., 2008; Batt, 

Kincaid, Kostich, Lazorchak, & Olsen, 2016; Focazio et al., 2008).  A national 

reconnaissance of pharmaceuticals and other anthropogenically sourced compounds in 

streams found that more than 80% of streams tested positive for contamination (Kolpin et 

al., 2002). In particular, pharmaceuticals in streams and rivers have been a target of 

interest as they have been observed to negatively impact aquatic species (Ramirez et al., 

2009), present a risk of exposure to species interacting with contaminated water and have 

even been detected in drinking water sources and tap water in households (Benotti et al., 

2009).  

Pharmaceutical compounds can enter surface waters through a  variety of 

pathways, the most well-known being discharge form wastewater treatment plants 

(WWTPs) that treat human waste and release pharmaceuticals and other organic waste 

compounds to stream water (Stackelberg et al., 2004). Suites of these compounds have 

been shown to persist downstream from sources (Barber et al., 2013), and can have 

negative effects on the downstream aquatic ecosystems (Sanchez et al., 2011). Not all 

releases of waste have undergone treatment and sewer systems can release untreated 
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water back into streams and river via combined sewer overflows (CSOs), which are a 

known source of wastewater pollutants and hormones (P. Phillips & Chalmers, 2009; P. 

J. Phillips et al., 2012). Additionally, leaking underground pipes can release untreated 

wastewater into the ground, allowing contaminant to flow back to streams through 

groundwater, and leaking or discharging septic tanks have been shown to be a source of 

contaminants far downgradient from their location (Carrara et al., 2008; Conn, Lowe, 

Drewes, Hoppe-Jones, & Tucholke, 2010; P. J. Phillips et al., 2015; Swartz et al., 2006).   

An important factor in the influence of sewer systems on water quality is the 

question of whether the underground sewer pipes are releasing contaminants and 

compounds into the groundwater. CSO outlets, WWTP effluents, and flooded retention 

ponds are an obvious source of contamination to surface waters. However, groundwater 

seepage is responsible for providing baseflow of streams (water flow that is not 

influenced by rainfall or overland flow after a precipitation event), and associated 

contaminants in the groundwater, particularly water-soluble contaminants, can be 

released into the surface waters (Fitzgerald, Roy, & Smith, 2015). Sewer pipes are one 

potential source as pipes deteriorate and leak with age. A study of groundwater in 

Germany found severe groundwater infiltration into the sewer pipes during high-pumping 

times as well as increased levels of contaminants in the groundwater under the sewer 

system, indicating that the leaky pipes were the dominant source of groundwater 

contamination in that area, despite the fact that the sewer system was only 30 years old 

(Eiswirth & Hötzl, 1997). In California, sites with a high probability of underground pipe 

failure based on a model including age and pipe material had high similarity score 
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between analysis of sewerage and surrounding groundwater samples, indicating that 

exfiltrating sewers were the likely source (Lee et al., 2015). Although an exact age for 

determining a leaky or potentially faulty sewer system is hard to pin-down, in the United 

States many major sewer systems were built following the end of World War II, and 

some of the oldest sewer systems dating back to the 1800s are still in use (Burian, Nix, 

Pitt, & Durrans, 2000; Evans, 2015). The US Department of Housing and Urban 

Development recommends inspecting and replacing home sewer pipes made of steel if 

they are anywhere from 20-50 years old, replacing copper piping, which came into 

widespread use in the 1930s, when they are about 50 years old (translating to the 1980s 

for most of the country), and replacing yellow brass around 40 years old (HUD, 2000).  

Other than the obvious outputs of pharmaceutical-laden water from combined sewer 

overflows, leaky sewer pipes and WWTP effluent, pharmaceuticals find a path to surface 

water and drinking water sources from leaking underground septic tanks. Bradley et al. 

(2016) found no significant difference in the pharmaceutical concentrations between sites 

with small WWTP discharges and no WWTP discharges, suggesting that sources other 

than direct WWTP effluent are responsible for the presence of pharmaceuticals in surface 

water. Further, anoxic zones around large septic tanks have been found to harbor similar 

levels of anthropogenic compounds to those inside the septic tanks, and some of these 

compounds have been found at elevated levels far downgradient of the septic system 

(Swartz et al., 2006). 

Although not every compound found in surface waters has been assessed for its 

potential to negatively impact human or aquatic populations, Sanderson et al. (2004) used 



4 
 

chemical modeling techniques and various physical activity factors of pharmaceutical 

compounds found in surface waters to rank pharmaceutical groups by potential 

environmental hazard level. From this study, cardiovascular, gastrointestinal, antiviral, 

anxiolytic sedatives, hypnotics and antipsychotics, corticosteroids, and thyroid 

pharmaceuticals were ranked as the most hazardous pharmaceutical classes. These 

pharmaceutical groups all exhibit high potential for ecotoxicity, bioaccumulation, and 

persistence in sewage sludge. In the aquatic environment, the presence of 

pharmaceuticals has been directly linked to a variety of negative impacts on benthic 

communities, aquatic vegetation and fish populations. These range from altered species 

dynamics stemming from altered endocrine system function in fish (Blazer et al., 2014;  

Blazer et al., 2011; Iwanowicz et al., 2016), to acute toxicity affecting survival or growth 

of benthic invertebrate populations (Dussault, Balakrishnan, Sverko, Solomon, & Sibley, 

2008). Some pharmaceutical compounds are shown to directly bioaccumulate through the 

aquatic food chain (Lagesson et al., 2016), which can affect other species including 

humans through the ingestion of contaminated food. However, the more important 

exposure factor to humans is the mere presence of pharmaceuticals in surface waters, to 

which they are directly exposed or use as drinking water (Deo & Halden, 2013; Furlong 

et al., 2017). 

Efforts to link human population presence and dynamics have generally focused 

on quantifying illicit drug use in an upstream population (Burgard, Banta-Green, & Field, 

2014), known as sewer or wastewater-based drug epidemiology. This method relies on 

using sewage influent (just before treatment at a WWTP) to assess drug use in upstream 
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communities. Studies often employ census data or a wastewater facility’s design capacity 

to assess the population size for a given sewer treatment area and draw conclusions about 

the use of certain substances within the population (O’Brien et al., 2014; Rico, Andrés-

Costa, & Picó, 2017). However, these studies usually estimate a proportion of population 

use, do not address a range of pharmaceutical types, and don’t seek to understand the 

demographic factors like age of the population, gender, race, or socioeconomic status, 

that could be influencing the presence of certain substances.  

Alternatively, stream contamination studies have generally focused on point and 

non-point landscape sources to understand the relationships between water quality 

endpoints and those sources (Ciparis, Iwanowicz, & Voshell, 2012; Osorio, Larrañaga, 

Aceña, Pérez, & Barceló, 2016; Veach & Bernot, 2011; Young, Iwanowicz, Sperry, & 

Blazer, 2014). Many of those studies also contain source data that links back to human 

waste presence, for example WWTPs or CSOs in a watershed. However, few studies 

address the influence of human populations on stream contamination in areas where a 

WWTP is not present. 

Previous reports have indicated that a potentially large source of pharmaceuticals 

found in septic and sewer effluent are the result of dumping or flushing of 

pharmaceuticals down the drain (Tong, Peake, & Braund, 2011). However, the studies 

reported in that review detailing this practice in the US were all conducted prior to 2007, 

when the first federal guidance to dispose of pharmaceutical in the trash was passed 

(Glassmeyer et al., 2009). Vatovec et al. (2016), in a study designed to understand 

pharmaceutical disposal practices and how shifting population dynamics alter 
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pharmaceutical contamination, concluded that the practice of flushing or dumping 

medications is uncommon, and unused medications were most likely to be disposed of in 

the trash as solid waste. The study expected to find a spike in pharmaceutical loads 

during move out, when students are assumed to dispose of any unwanted or unused 

medication, but the relatively unchanged overall concentration of total pharmaceuticals in 

the effluent over the 10-day period confirmed that flushing was not a regular disposal 

method. This study also found that during the move-out period, the concentrations of 

diabetes/ulcer medications, cardiovascular medications and anti-histamines all increased 

as the younger population left, and the older population became more prevalent. Thus, the 

other important finding in this study was that the age of population was most important 

factor in type of pharmaceuticals found in effluent, but not total loads.  

Additionally, it may seem obvious to simply use prescription rates as an indicator 

of potential environmental contamination. However, non-adherence to prescribed 

medications is widespread in the United States and is generally seen in people under-

using, rather over-using, prescribed medications (Nieuwlaat et al., 2014). According to 

Viswanathan et al., (2012), “Studies have consistently shown that 20 percent to 30 

percent of medication prescriptions are never filled, and that approximately 50 percent of 

medications for chronic disease are not taken as prescribed.” On top of that, people who 

do fill and take their medications usually only take half the prescribed amount (Nieuwlaat 

et al., 2014). 

While there is evidence that many of the landscape sources are tied back to human 

presence (the main sources being WWTPs, CSOs, impervious surface density, asphalt 
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and coal tar sealant (Bryer, Scoggins, & McClintock, 2010; Sackett et al., 2015), very 

few studies address the influence of population dynamics of people living in these areas 

on the concentration and range of contaminants found in water downstream. Wastewater 

treatment facilities discharging treated human waste are a proven source of anthropogenic 

contaminants in streams, however septic tanks, leaking pipes and other sewer outfalls 

have also been established as a source of organic wastewater contaminants to 

groundwater and surface waters (Swartz et al., 2006). As such, the inputs from people to 

all these systems should be assessed.  

This study will leverage the previous field work carried out by the Environmental 

Protection Agency (EPA), United States Geological Survey (USGS) and George Mason 

University (GMU) as part of larger water quality assessments. These studies represent 

sampling and pharmaceutical analysis at national, regional, and local scales and provide 

an avenue to develop methods to identify and analyze population dynamics in relation to 

surface water contamination. These studies were conducted to assess pharmaceutical 

concentration in surface waters and address a lack of data for pharmaceutical occurrences 

in streams and rivers across the United States. Similarly, this study seeks to address a 

lack of knowledge concerning the influence of population dynamics on pharmaceutical 

occurrences in rivers and streams. Specifically, answers to the question of what influence 

human population demographics (including age, gender and socioeconomic dynamics) 

have on pharmaceutical chemical presence and concentrations in streams are addressed. 

Therefore, this study creates a method to define the contributions of human populations 

to surface waters at three scales using different levels of data resolution. Additionally, 
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using this method and non-parametric statistics, this study also explores the relationships 

between demographic factors and pharmaceutical types and concentrations at each scale.   
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MATERIALS AND METHODS 

 

 

 

Study Areas and Pharmaceutical Data  

 

To understand human population-pharmaceutical contamination relationships at different 

scales, data were obtained from three different studies including a large, national scale 

study (Batt et al., 2016), regional headwater stream survey (Bradley et al., 2016), and 

detailed local sampling above and below three different wastewater treatment facilities 

(Foster et al., 2019; Arion Lehigh, personal communication) (Figure 1). Pharmaceutical 

and study area data for the National scale analysis were acquired from previously 

published work by Batt et al. (2016) which measured pharmaceutical concentrations at 

182 sites selected from the Environmental Protection Agency’s (EPA) 2008 and 2009 

National Rivers and Stream Assessment (EPA, 2016).  These sites were sampled one 

time each, between June 2008 and January 2010, and are primarily urban locations on 

larger order (>5th order) streams and rivers, about half of which were sampled 

downstream from a wastewater treatment plant. Samples were analyzed for a suite of 54 

active pharmaceutical ingredients (APIs) using LC-MS/MS.  Details of the study design 

and sampling methods are provided in Batt et al. (2016). Following the steps taken for 

statistical analysis in the original study, records marked as “non-detect” were replaced 

with ½ times the method detection limit value for each compound (Batt et al., 2016). 
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For the regional analysis, data was obtained for 59 study sites in the southeastern 

United States from Bradley et al. (2016). The sites cover a range of urban and rural 

landscapes, extending through high density urban areas in Atlanta Georgia, Greenville, 

South Carolina, Charlotte, North Carolina and Washington, DC.  Each site was sampled 

five times from Spring to early Summer of 2014. The mean value of the five samples was 

then calculated by compound for each site. Stream samples were analyzed for 108 

anthropogenic marker compounds using GCMS. A detailed description of sampling and 

analysis methods employed are available in Bradley et al. (2016). Many of the samples 

were recovered below the lab reporting limit (LRL) and were therefore reported at a 

censored value. In those cases, the new value was calculated as half the censored value 

reported, following previous guidelines wherein lab reporting levels are set at two times 

the long-term method detection level by the lab reporting the values (Childress et al., 

1999). 

At the local scale, George Mason University conducts annual sampling in 

conjunction with the Alexandria Renew Wastewater Treatment Facility in Alexandria, 

Virginia. Water samples were collected from Hunting Creek (Alexandria, VA) three to 

five times, with sampling occurring in spring, summer, and fall of 2018, and analyzed for 

91 pharmaceuticals and personal care products (PPCPs). Additionally in 2018, sites 

adjacent to two other wastewater treatment facilities, Arlington County WWTP and 

Noman Cole Jr. Pollution Control Plant, were also sampled and analyzed for PPCPs 

(Arion Leahigh, personal communication). Although samples in the above local scale 

studies were taken from the mainstem Potomac River, these sites were not used in this 
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study because detailed sewersheds were not available for all WWTPs upstream of the 

mainstem Potomac sites. The samples were analyzed using LC-MS/MS and censored 

values were replaced with ½ the method detection limit (MDL). Details on sampling and 

laboratory analytical methods are provided in Foster et al. (2019). The average value of 

PPCP compounds across samples above and below the outfall pipe were summed by 

pharmaceutical use group to be used for statistical analysis.  

For all studies, pharmaceutical compounds and metabolites were classified into 

broader use and type categories. Compounds identified as not representative of 

pharmaceutical use (aspartame, triclocarban, perfluorooctanoic acid), whose primary 

purpose was veterinary use (sulfadimethoxine, sulfamethazine, sulfaquinoxaline, 

sulfathiazole, enrofloxacin), identified as an herbicide or insecticide (DEET, atrazine, 

periponyl butoxide), or compounds with multiple primary treatment applications 

(clonidine) were removed. Remaining compounds were categorized based on their 

primary use, or if the compound was identified as a metabolite, that metabolite was 

categorized into the same group as the parent compound. Carisoprodol, a primary 

metabolite of meprobamate, is also separately prescribed as a muscle relaxant. Given the 

decline in meprobamate prescriptions since the 2010s (James, Nicholson, Hill, & Bearn, 

2016), carisoprodol was placed in the muscle relaxants category. The final groups for 

analysis were: antibiotics, anticholinergics, anticonvulsants, antidepressants, 

antidiabetics, antidiarrheals, antifungals, antihelmintics, antihistamines, antilipemics, 

antimetabolics, antivirals, anxiolytics, aromatase inhibitors, benzodiazepines, blood 

thinners, bronchodilators, cardiovasculars, corticosteroids, cough suppressants, diuretics, 
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hormones, illicit, muscle relaxants, opioids, opioid antagonists, pain relievers (non-

opioid), selective estrogen receptor modulators (SERM), stimulants, and stomach acid 

reducers (Appendix A).   

 

 

Figure 1. Map of study areas at the national (left), regional (bottom right), and local (top right) scale. 

 

 

 

Watersheds 

 

At the national scale, watersheds were available as part of the larger EPA effort to 

provide site and landscape data for aquatic surveys. Watersheds were downloaded for all 

sites included in the 2008-2009 EPA Rivers and Streams Assessment from the EPA 

National Aquatic Resources Survey data download page (https://www.epa.gov/national-

aquatic-resource-surveys/data-national-aquatic-resource-surveys), and were matched to 

https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys
https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys
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the sites used by Batt et al. (2016) using the unique identifier “SiteID”. Any watersheds 

whose boundaries extended beyond the political boundaries of the conterminous United 

States were removed, leaving 151 sites for further analysis (see Figure 1).  

At the regional scale, the latitude and longitude of each site was used as input into 

USGS StreamStats V4 web application (https://streamstatsags.cr.usgs.gov/streamstats/). 

The StreamStats application delineates watershed boundaries using digital elevation data 

from the USGS 3D elevation program processed to match high-resolution National 

Hydrography Dataset (NHD) streamlines (Ries et al., 2017). Watershed boundaries for 

regionals sites were downloaded as individual polygon shapefiles for each site.   

Watersheds for all sites at the local scale were also delineated and downloaded 

using the coordinates of the sampling location as input to the StreamStats application.  

Sewersheds 

 

At the national scale, sewersheds for individual wastewater treatment facilities were not 

available and contacting all WWTPs present in the 151 national watersheds was beyond 

the scope of this study. Instead, a surrogate sewer treatment area was developed using 

Tigerline shapefiles from the US Census Bureau (USCB). The Tigerline geographies 

representing urban areas, defined as “all territory, population, and housing units located 

within urbanized areas (UAs) and urban clusters (UCs)” (USCB, 2014) and the places 

boundary dataset which contain areas identified as “a city, town, village, or borough, 

[among] other legal descriptions” (USCB, 2014) were downloaded from the Tigerline 

FTP site to serve as areas likely treated by sewer, rather than septic, infrastructure. These 

https://streamstatsags.cr.usgs.gov/streamstats/
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were downloaded from the 2009 geographies to coincide with the sampling time frame of 

the study.  

Sewer treatment areas for the regional scale (Figure 2) were available from a 

variety of sources. For Virginia, direct sewer treatment areas were obtained from USGS, 

(Peter Claggett, personal communication) and for North Carolina from the North 

Carolina OneMap Geospatial Portal (http://data.nconemap.gov/). Data for sewer 

treatment areas for South Carolina and Georgia was unavailable at the time of the study. 

Instead, for South Carolina, boundaries of municipal areas obtained from South Carolina 

Department of Transportation download portal (http://info.scdot.org) and were combined 

with the Tigerline urban areas boundary dataset and the places boundary dataset 

downloaded for 2014 from the Tigerline FTP site. For the state of Georgia, very few 

datasets were available and sewer treatment areas were estimated using only the urban 

and place area boundaries. Together the urban, place, and municipal areas serve as a 

surrogate for potentially sewered areas throughout the states of Georgia and South 

Carolina. 

Sewer treatment areas for Alexandria Renew and Noman Cole Jr. WWTPs are 

available from the Fairfax County Government public works webpage 

(https://www.fairfaxcounty.gov/publicworks/wastewater/wastewater-treatment). Images 

were georeferenced to county boundaries using ArcMap 10.6.1 (ESRI, 2011) and sewer 

treatment areas were hand-delineated. Arlington County WWTP treatment area was also 

hand-delineated using maps from the Blue Plains WWTP (DC Water, 2016) along with 

the Fairfax County maps.  
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Wastewater Treatment Plants 

Wastewater treatment facilities were downloaded for the United states using the EPA 

Discharge Monitoring Report (DMR) pollutant loading tool 

(https://echo.epa.gov/tools/web-services/loading-tool). The EPA DMR includes annual 

reports from Clean Water Act permitted dischargers and includes a variety of facility 

types (EPA, n.d.). This was used so that the monitoring period could be specified to 

coincide with the sampling time frame. Because all the USCB data used for the national 

scale study is 2009, this was chosen as the monitoring period for the DMR pollutant 

loading tool as well. Points were downloaded as CSVs (comma-separated-value files) for 

each EPA region for the time period January 1 – December 31, 2009, using the search 

criteria 2-digit SIC code = 49 (electrical, oil and sanitary facilities). The files were joined 

and cleaned in R (R Core Team, 2017) to remove duplicate permit features and duplicate 

facilities. DMR facilities and DMR outfalls were displayed in ArcGIS using the facility 

latitude and longitude for facility locations, or for outfalls using the permit feature 

latitude and longitude. These points were clipped to the surrogate sewer areas and were 

cleaned using keywords to flag and remove records that were not related to water 

treatment services.1 At this point, the cleaned DMR facilities representing wastewater 

treatment (which here includes lagoons, CSOs, and various types of water pollution 

treatment facilities) were used to subdivide the surrogate sewer areas into individual areas 

of influence, roughly approximating the sewer treatment area for each facility. This was 

                                                           
1 Keywords: Oil, power, gas, electric, hydroelectric, nuclear, generat, energy, manufacture, manufacturing, asphalt, 

development, steam, LNG, landfill, desalination, FWSD, supply, TMDL, offshore, energy, well, zuni plant, disposal, 

recycling, dominion, station, pump 
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done using Thiessen Polygon function in ArcMap. Thiessen polygons can be used to 

apportion point coverage into a polygon layer where each polygon only contains one 

point. The polygons are created so that all location within a polygon are closer to the 

point within that polygon than any other point from the original point file (ESRI, 2019).  

In this case, the Thiessen polygons function as individual sewer treatment areas for 

individual WWTPs (Figure 2). 

 

 

Figure 2. Example of using surrogate sewer treatment areas at the regional scale (left) and the EPA DMR 

facilities (yellow points, right) to define individual sewer treatment areas for each facility (right). 
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Final Treatment Areas 

 

 

 

 

Figure 3. Flow chart describing how final study areas are determined for the A. national and B. regional 

scales. At the local scale, all study sites not on the mainstem of the Potomac River were kept.  

 

 

 

To define the total population and sources contributing to the sample sites, final treatment 

areas had to be created that capture both the sewersheds and watersheds upstream of each 

site.  

At the national and regional scales, a set of decisions were made to refine the final 

treatment areas based on sewer treatment areas and watersheds (Figure 3). At the national 

scale, the watersheds attributed to the study sites were large, on average encompassing 

about 297,000 square kilometers, with only one watershed below 500 square kilometers. 

As a result, the watersheds generally encompassed the entirety of the upstream 

urban/place areas that would include sewer populations. Watersheds identified as having 
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DMR outfalls were kept for final analysis. Any watersheds that had no DMR outfalls 

were only kept for further analysis if the watersheds encompassed an area that was less 

than 50% sewered, or, if they were 50% sewered but had no outfalls, the watershed was 

kept if the average median age of structures by census tract meant the structures were 

built before 1979. This follows the HUD guidelines and a previous study finding that 

infrastructure over ~ 30 years old is potentially leaking contaminants into groundwater 

and surface waters (Eisworth & Hötzl, 1997; HUD, 2000). Therefore, these final study 

areas represent watersheds where at least 50% of the population within it is contributing 

compounds to the sampled water. Following these rules (Figure 3A), only one site was 

removed from final analysis, leaving 150 sites for final statistical analysis. 

The regional scale analysis followed a similar set of rules for defining final 

treatment areas, with the exception that watersheds which contained a sewer outfall were 

merged with the sewershed for the associated facility to create a new final treatment area 

that encompasses the population contributing to stream contamination at that point from 

septic and sewer influences (Figure 3B, Figure 4). Otherwise if a watershed had no DMR 

outfalls, was less than 50% sewered or had structures more than 30 years old, the 

watershed was kept as the final treatment area. Following these rules, 11 watersheds were 

identified as containing a DMR outfall. Of these, two watersheds that contained DMR 

outfalls didn’t have any sewer treatment areas to associate with it as the sewer facilities 

were outside the municipal/urban/place boundaries. In total, nine watersheds have 

additional sewer treatment areas merged with the watershed for the final treatment area. 

Thirteen watersheds had no DMR outfall and an average median build date before 1984, 
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and were removed prior to statistical analysis, leaving 46 final treatment areas to define 

the upstream contributing populations.  

 

 

 
Figure 4. Example of merging the watershed (outlined in blue) and sewer treatment area to define a final 

treatment area (green) at the regional scale. The site shown is in Charlotte, North Carolina.  

 

 

 

At the local scale, watersheds for the sites above the WWTP outfalls were used to 

define the final populations, while sites below the outfalls were merged with the hand-

delineated sewersheds. If sites below the outfalls had almost identical final treatment 

areas, the sites were joined as the upstream contributing population were also almost 

identical. Upon closer inspection there are several DMR facilities within the boundary of 

each sewershed, however these are bus or rail terminals, auto shops or other types of 

regulated facilities and the only regularly discharging population treatment plants are the 

Noman Cole Jr. facility, Alexandra Renew, and Arlington County WWTP. Build date of 
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structures ranged from before 1939 to 2007, with the average build date being 1965, so 

all watersheds were kept for statistical analysis.  

Census Data  

Data for the census block groups was obtained from the Tigerline FTP download site 

(https://www.census.gov/cgi-bin/geo/shapefiles/index.php). Census block groups were 

downloaded as ESRI shapefiles for 2014. Population data was downloaded from the 

American Community Survey (ACS) download center 

(https://factfinder.census.gov/faces/nav/jsf/pages/download_center.xhtml) for four 

community characteristics which were thought to be potentially influential factors on the 

presence of pharmaceuticals in streams:  total population, sex by age, race, and income 

for the past 12 months. Median age of structures was also downloaded for use in defining 

and selecting final study areas for statistical analysis. All ACS data was downloaded from 

either the 2009 or 2014 5-year ACS2 estimates, to coincide with the stream sampling 

dates, and joined to the Tigerline blockgroup shapefiles in ArcMap by the GEOID field. 

Given the large number of census groups (n = 72), age groups and income brackets were 

simplified into 5 age ranges by male and female, representing percent of the total 

population, and 5 income ranges representing percent of total houses earning incomes 

within that range (Table 1). Race categories were also simplified into 6 categories; 

population estimates for people identified as Hispanic were not provided in ACS table 

B02001 and were not included in this study. Percent coverages of each census block that 

                                                           
2 ACS tables used: B01001 “Sex by Age”, B02001 “Race”, B19001 “Household Income in the Past 12 Months”, and 

B25035 “Median Year Structure Built”  
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fell into watersheds or sewer treatment area were calculated in ArcMap and used to 

determine total population, sex by age of residents (percent by age group), race (percent 

by race), average median income and average median age of housing structures for the 

study area. 

 ACS data for 2018 was not released at the time of the study for use at the local 

scale. However, population estimates for similar demographic categories were provided 

by Fairfax County GIS services (Katherine Miga, personal communication) using ESRI 

Business Analyst demographic estimates to provide annual estimates per block group. 

These estimates utilize the ACS census data in addition to postal records and other 

sources to estimate more precise populations at similar geographies (ESRI white paper). 

Categories were aggregated into groups resembling the ACS groups used at the larger 

scales (Table 1).  

 

 
Table 1. Final population categories for analysis. *Indicates values used only at the local scale. 

 

Final Population Categories 

 

Total Population (count) Percent Male Age 0 - 19 

Percent White Percent Male Age 20 - 49 

Percent Black  Percent Male Age 50 - 79 

Percent Native American  Percent Male over 80 

Percent Asian Percent Female Age 0 - 19 

Percent Hawaiian or Pacific Islander Percent Female Age 20 - 49 

Percent Other Race Percent Female Age 50 - 79 

Percent Male Percent Female over 80 

Percent Female Percent of Households Earning under 35k* 

Percent of Households Earning under 30k Percent of Households Earning 35k - 49k* 

Percent of Households Earning 30k - 60k Percent of Households Earning 50k - 99k* 

Percent of Households Earning 60k - 99k  
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Percent of Households Earning 100k to 150k  

Percent of Households Earning over 150k  

 

 

 

 

Statistical Methods 

Although the primary purpose of this paper is to establish a method by which aquatic 

contaminants can be attributed to upstream population demographics, an additional step 

was taken to understand the nature of these relationships with pharmaceutical types and 

concentrations at all three levels. Classification and Regression Trees (CART) analysis 

was used to develop models for each scale and response combination using the rpart 

package in R (Therneau, Atkinson, & Ripley, 2017).  CART is a method of analysis 

that’s particularly useful in the study of environmental data as it is designed to handle 

non-linear and missing values, which are often present in environmental data (De’ath & 

Fabricius, 2000). The output of a single tree is represented graphically by building down 

from the current mean value of the response data, with splits at significant explanatory 

variables. The primary split is the most important explanatory variable and subsequent 

data splits aim to partition the response variable into homogenous groups based on the 

mean value of the response variable (De’ath and Fabricius, 2000). Given the presence of 

outliers in the datasets (see Appendix A), an attempt was made to select variables to input 

into the CART models using the randomForest package in R (Liaw and Wiener, 2002) to 

build 1000 trees and select important features; however, this process did not change the 

variables selected by the CART trees and this method was deemed unnecessary for this 

study. The trees identify a threshold in the independent variable above and below which 
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you can expect a new higher or lower mean value of the response variable. CART trees 

can produce results with many levels and interior branches, allowing for a more nuanced 

understanding of the relationships with different values in the response variables. 

However, for this study only the relationships leading to the highest mean value of each 

pharmaceutical category are reported.  
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RESULTS 

 

 

 

 
Figure 5. Example of results from CART at the national scale with concentration (ng/L) of compounds 

identified as cardiovascular use as the response variable. The first variables at the top of the tree is the most 

important variable for splitting the response into a higher and lower mean value. The box on the bottom 

right (dark gray) indicates the highest mean concentration based on the threshold identified in the 

independent variable. The highest concentrations of cardiovasculars occur when percent of the population 

that is female age 20 – 49 is greater than 24%. The box on the bottom left (light gray) is the lowest mean 

concentration identified by following the splits back up to the primary split. Here the lowest mean value of 

cardiovascular compounds occurs when the population is comprised of < 24% females age 20 - 49 and 

percent of the population identified as Black is less than 11%.  

 

 

 

An example of the CART model results for national-scale antidepressants can be seen in 

Figure 5. The first variable indicated at the top of the tree is considered the most 

important in determining the relationship between demographics and concentration. The 

highest mean concentration of antidepressants is indicated along the outermost branch to 
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the right of the tree, while the lowest mean concentration is to the left. The highest 

concentrations are the focus of these results.  

 

Table 2. A) national and B) regional CART results for pharmaceutical groups and relationships with 

population demographics. The primary split is most important variable, additional splits that lead along 

branches to highest concentration of that pharmaceutical group are indicated in the fourth column after the 

direction and value of the primary split. Local results are not reported as there were too few samples to 

generate CART results. 

Pharmaceutical 

Group 

Number 

Unique 

Values Primary Split  

Relationship to Highest 

Concentration  

A. National    

Antibiotics 109 Percent Male age 50 - 79 < 14% 

Anticholinergics 2 Percent American Indian >= 6.9% 

Anticonvulsants 61 

Percent of households making 

30k - 59k < 21% 

Antidepressants 14 Percent Female age 20 - 49 >= 21% 

Antihistamines 2 

Percent of households making 

60k - 99k >= 29% 

Antilipemics 29 

Percent of households making 

100k - 150k >= 21% 

Benzodiazepines 4 Percent Black  < 0.16% 

Blood Thinners 3 Percent Female >= 51% 

Bronchodilators 3 Percent Black < 0.16% 

Cardiovasculars 105 

Percent of households making 

below 30k < 18%; Percent Male < 50% 

Corticosteroids 3 Percent Female >= 51% 

Diuretics 57 

Percent of households making 

100k - 150k 

>= 19%; Percent of households 

making 100k - 150k <20% 

Hormone 4 Total Population >= 6682 

Opioids 18 

Percent of households making 

100k - 150k >= 19%; Percent Asian < 1.5% 

Pain Relievers 18 Percent Other race  

< 2.3%; Percent Female age 20 - 

49>= 19% 

Stimulants 15 Percent White >= 96%; Percent Male >= 50% 

Stomach Acid 

Reducers 7 

Percent of households making 

100k - 150k 

>= 19%; Percent Hawaiian or 

Pacific Islander > 0.016% 

Total 

Pharmaceuticals 129 

Percent of households making 

below 30k 

< 18%; Percent of households 

making below 30k >= 14% 

B. Regional    

Antibiotics 19 Percent Female age 20 - 49 >= 24% 

Anticholinergics 1 NA NA 
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Anticonvulsants 26 Percent Female age 20 - 49 >= 24% 

Antidepressants 28 Percent Female age 20 - 49 >= 24% 

Antidiabetic 45 

Percent of households making 

over 150k >= 14% 

Antidiarrheals 1 NA NA 

Antifungals 15 Percent Female age 20 - 49 >= 24% 

Antihelmintics 17 

Percent of households making 

over 150k >= 19% 

Antihistamines 26 Percent Female age 20 - 49 >= 24% 

Antilipemics 14 

Percent of households making 

over 150k >= 10% 

Antimetabolics 9 Percent Black >= 35% 

Antivirals 25 Percent Female age 20 - 49 >= 24% 

Anxiolytics 10 

Percent of households making 

100k - 150k < 16%; Percent Male < 48% 

Aromatase 

Inhibitors 1 Removed Removed 

Benzodiazepines 25 Percent Black >= 35% 

Blood Thinners 3 Total Population < 2535; Total Population >= 2105 

Bronchodilators 10 Percent Male < 50%; Percent Other race < 4.7% 

Cardiovasculars 34 Percent Female age 20 - 49 >= 24% 

Corticosteroids 9 Total Population >= 2040 

Cough 

Suppressants 8 Percent Female age 20 - 49 >= 24% 

Diuretics 10 Percent Female age 20 - 49 >= 24% 

Hormones 4 Percent Other race >= 7.2%; Percent Asian < 5.9% 

Muscle Relaxants 25 Percent Female age 20 - 49 >= 24% 

Opioids 31 Percent Female age 20 - 49 >= 24% 

Pain Relievers 41 Percent Asian >= 8.5% 

Selective 

Estrogen Receptor 

Modulator 4 Percent Male 

< 49%; Percent Female over 80 >= 

1.2%; Percent of households 

making 30k - 59k >= 27 

Stimulants 46 Percent American Indian >= 0.47% 

Stomach Acid 

Reducers 24 Percent Black >= 50 % 

Total 

Pharmaceuticals 46 Percent Female age 20 - 49 >= 24% 

 

 

At the national scale, 18 regression tree models were produced, one for each 

pharmaceutical group and one for the total concentration of all pharmaceutical 



27 
 

compounds (Table 2A). Concentrations and ranges for each pharmaceutical category are 

shown in Figure 6. For eight of these trees, income factors were the most important 

variables. High concentrations of pharmaceuticals in the groups antihistamines, 

antilipemics, diuretics, opioids and stomach acid reducers were related to higher 

percentages of households earning higher incomes. Conversely, lower incomes brackets 

(below $60,000) showed a negative relationship with higher concentrations of 

anticonvulsants, cardiovasculars and total pharmaceutical concentration. Cardiovasculars, 

diuretics and opioids also exhibited a secondary split on the right side of the trees. The 

highest concentrations of cardiovascular compounds were seen when less than 18% of 

households were earning below 30k and less than 50% of the population was male.  

Diuretic concentrations exhibited a second split on the same variable, where the highest 

concentrations were found when that metric is between 19% and 20% of households 

making $100,000 – $150,000. The total concentration of all pharmaceutical compounds 

similarly showed two splits on the same variable, percent of households making below 

$30,000. The highest total pharmaceutical concentrations were between 14% and 18% of 

households earning below $30,000.  Opioid concentration was highest when percent of 

households earning $100,000 and $150,000 was greater than 19% and percent of the 

population identified as Asian is below 1.5%. For six of the trees, race was the most 

important factor, although there was no clear pattern among those results.  A higher 

percent in the American Indian population (> ~7%) was related to higher concentrations 

of anticholinergics, while a lower percent of the population identified as Black or Other 

race was related to higher concentrations of benzodiazepines, bronchodilators and non-
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opioid pain relievers. Non-opioid pain relievers were additionally split on percent of the 

population that is female age 20 – 49, where the highest concentrations were present 

when more than 19% of the population fell into that category. Stimulant concentrations 

were positively related to percent of the population identified as White (>96%) and 

percent of the population classified as male (50%). Antibiotics and antidepressants were 

the only two pharmaceutical categories where sex by age was the most important 

variable. Higher concentrations of antibiotics were inversely related to percent of the 

population that was male between 50 and 79 years old (< 14%). Antidepressants showed 

the opposite relationship, where higher concentrations of antidepressants were related to 

higher percent of females age 20 – 49 (>= 21%). Gender by itself was identified as the 

most important variable for blood thinners and corticosteroids, where the highest 

concentrations for both were seen when more than 51% of the population is female. 

Finally, only one pharmaceutical group was split on the total population in a study area: 

hormones. Higher hormone concentrations are related to population counts greater than 

6,682 people per treatment area.  
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Figure 6. Boxplots of pharmaceutical categories for the national scale showing range and potential outliers 

for each pharmaceutical category. 

 

 

 

At the regional scale, 27 regression trees were produced – concentrations of 

anticholinergics and antidiarrheals lacked variation in the recovered concentrations and 

no trees were able to be constructed for these two pharmaceutical groups (Table 2B; 

Figure 7). Percent of the population in the sex by age group ‘female age 20 – 49’ was the 

primary split for 12 of the CART models (antibiotics, anticonvulsants, antidepressants, 

antifungals, antihistamines, antivirals, cardiovasculars, cough suppressants, diuretics, 

muscle relaxants, opioids, and total pharmaceutical concentration), all of which exhibited 
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the same single split where more than 24% of the population in this age/gender bracket 

was related to higher concentrations.  

Income was the primary split for antidiabetics, antihelmintics, antilipemics, and 

anxiolytics. The first three exhibited a positive relationship with percent of households 

earning over $150,000, where higher concentrations were seen above 14%, 19% and 

10%, respectively. Anxiolytics showed the opposite relationship with percent of 

households earning between $100,000 - $150,000; the highest concentrations were seen 

below 16% and were additionally split on percent male, where less than 48% of the 

population was male resulted in the highest concentration of anxiolytics. Race was the 

primary predictor for six of the pharmaceutical groups: antimetabolics, benzodiazepines, 

hormones, pain relievers, stimulants and stomach acid reducers. Higher concentrations of 

benzodiazepines, antimetabolics and stomach acid reducers were related to percent black 

above 35%, 35% and 50%, respectively. The highest concentrations of hormones were 

reported at percent of the population identified as Other race greater than 7.2% and 

percent of the population identified as Asian below 5.9%. Pain relievers were highest 

when percent of the population identified as Asian was greater than 8.5%, and stimulant 

concentrations were highest when percent of the population identified as American 

Indian was greater than about half of a percent. For bronchodilators and selective 

estrogen receptor modulators (SERM), higher concentrations were identified when below 

about 50% of the population was male. Bronchodilators additionally were highest at low 

percent Other race (< 4.7%) and SERM was split on percent female over 80 years old (>= 

1.2%) and percent of households making $30,00 - $50,000 (>= 27%). Total population 
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was the most important variables for concentrations of blood thinners and corticosteroids, 

albeit showing the opposite relationships. The highest concentrations of blood thinners 

were indicated between 2,105 and 2,535 people per treatment area, while the highest 

concentrations of corticosteroids were related to populations greater than 2,040 people. 

Although a tree was generated for aromatase inhibitors, this category was like 

anticholinergics and antidiarrheals in that all reported recoveries were censored values 

and once replaced with ½ the lab reporting limit, there was no variation in the response 

variable. Because of this, these tree results removed from the results table (Table 2). 

 

Figure 7. Boxplots of pharmaceutical categories for the regional scale showing range and potential outliers 

for each pharmaceutical category. 
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There were not enough observations at the local scale to generate any CART 

results. Results for concentrations of the pharmaceutical categories used can be seen in 

Figure 8. 

 

 
Figure 8. Boxplots of pharmaceutical categories for the local scale showing range and potential outliers for 

each pharmaceutical category. 
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DISCUSSION 

 

 

The CART analyses yielded an understanding of the relationships between demographic 

factors such as age, gender, race and income with environmental pharmaceutical 

contamination and revealed interesting trends in demographic relationships. At the 

national scale, results indicated that income was the most important variable for almost 

half of the pharmaceutical categories measured. Considering cost of pharmaceuticals and 

affordability is an important deciding factor in whether people pick up or use 

prescriptions (Viswanathan et al., 2012), relationships indicating higher pharmaceutical 

concentrations in higher income brackets, where medication is likely easier to acquire, is 

not surprising. At the regional scale, three of the four categories where household income 

over $150,000/year was the most important variable showed the same positive 

relationship with higher concentrations. Following that, the highest total pharmaceutical 

concentrations were observed when a small percentage of people in the treatment area 

(between 14% and 18% of households) earn less than $30,000, putting the rest of 

households in a study area above that income threshold. Only anxiolytics, medicines used 

to reduce feelings of anxiety, showed the opposite relationship with higher income. For 

this study,  this category is comprised of a single non-benzodiazepine anxiolytic, 

meprobamate, whose use has been largely replaced by benzodiazepines (James et al., 
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2016). However, the cost of this compound over time has increased, and this relationship 

is puzzling compared to the other income-related outcomes.   

Other similarities between the national and regional scale results are limited to 

benzodiazepines, where percent Black was the most important variable. However, the 

relationships were contradictory. At the national scale, higher concentrations of 

benzodiazepines are found when a very small part of the population is Black. Previous 

studies support this, founding that minority groups are prescribed and use (African-

American women in particular) far fewer benzodiazepines than White populations (Cook 

et al., 2018; Hall et al., 2010). These results and studies are contradictory to the results at 

the regional scale which show the opposite relationship, where higher percent of the 

population that is Black is related to higher concentration of benzodiazepines. These 

results may be indicative of regional use patterns differencing in the southeast United 

States in this study versus previous studies conducted in New England (Cook et al., 2018; 

Hall et al., 2010).  

At the regional scale, percent of the population identified as Black was also the 

dominant predictor of antimetabolics and stomach acid reducers. Both showed a positive 

relationship with higher values. Antimetabolics here is comprised of  a single compound, 

methotrexate, which is used to treat various types of cancer as well as rheumatoid 

arthritis (Jolivet, Cowan, Curt, Clendeninn, & Chabner, 1983). According to the 

American Cancer Society (2019), “black males overall have the highest cancer incidence 

(549 per 100,000) and death (240) rates of the major racial/ethnic groups,” which may 

account for higher concentrations of cancer treatment drug in populations comprised of 
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higher percentages of black people. Stomach acid reducers in this study include several 

over the counter medications not tracked through prescriptions.  

Antibiotic concentrations at the national level were predicted by the percent of the 

population that was male aged 50 – 79. According to the CDC, the highest number of 

antibiotic prescriptions are written for children under two and people 65 and older (CDC, 

2017), but prescription rates for adults are extremely high, totaling 198 million antibiotic 

prescription in 2014 (CDC, 2017). These results may be indicative of a subset of the adult 

population ingesting more of these prescribed antibiotics than others.  

Anticholinergics serve the primary function of blocking acetylcholine activity in 

the brain. At the national scale, the only anticholinergic in this category is Benztropine, 

which is specifically used to treat Parkinson’s disease. However little information on 

prescription profiles are available for Benztropine, so the relationship with percent of the 

population that is Native American is difficult to clarify further.   

Four pharmaceutical groups were predicted by percent of the population either 

male or female: national scale blood thinners and corticosteroids, both higher in higher 

percent female populations, and regional scale bronchodilators and SERM, both lower in 

lower percent male populations. Corticosteroids here are comprised of both over the 

counter topical anti-inflammatory creams and nasal sprays as well as prescriptions and 

are difficult to relate to prescription rates as they can be used to treat a wide array of 

maladies. Blood thinners in this study is limited to Warfarin, which is prescribed to 

prevent or reduce blood clots. The relationship observed with bronchodilators follows the 

national statistics on asthma sufferers. According to the CDC, women make up 60% of 
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people with asthma (CDC, 2019) and people identified as non-Hispanic “Other” race 

make up only 8% of asthma sufferers. Bronchodilators exhibited a second split on Other 

race, where lower values are related to the highest concentrations of bronchodilators. The 

selective estrogen receptor modulators (SERM) group is comprised of Raloxifene and 

Tamoxifen, which are used to treat and prevent osteoporosis and to treat certain forms of 

breast cancer, respectively. This also follows the additional splits on the highest 

concentrations of SERMs, where higher percent of the population that is female over age 

80 is related to higher SERM concentrations, as older women are more likely to need 

treatment for osteoporosis and related issues.  

Finally, although percent of the population that is female between the age of 20 

and 49 was the most frequently selected variable across the regional pharmaceutical 

category models (n = 12), this was only shared as the primary predictor at the national 

level for the antidepressant category. Women overall are more likely to take 

antidepressants than men and according to the CDC, this number is highest for women 

between 40 and 59 years old (Pratt, Brody and Gu, 2011), an age group which is partially 

captured in the aggregated ACS age groups used in this study. Therefore, it is 

unsurprising that if more than about a quarter of the population falls in this age range, 

higher concentrations of antidepressants are found downstream. The repeated presence of 

the percent female age 20 – 49 variable at the regional scale may suggest that this group 

is related to use of a wide range of pharmaceutical types, or there may be some 

underlying bias in the data. However, at the regional scale, this group was not strongly 

correlated (Pearson’s |r > 0.7|) with any other demographic group except percent of the 
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population that is male between the age of 50 and 79, and no obvious distribution bias 

exists to support that idea. It is more likely that these repeat relationships are a result of 

the sampling locations in the regional scale study. A recent study analyzing prescription 

data for female patients over the course of 10 years (Melamed & Rzhetsky, 2018) found 

that the use of prescribed drugs is significantly more similar for counties located close 

together and for counties with similar demographics. In the same study, similar 

prescription patterns were observed in the southeast specifically for allergy and cold 

medicines, drugs for obesity related illnesses, and diabetes.  Given the smaller geographic 

range and clustering of sampling in central North Carolina, western South Carolina and 

northern Georgia at the regionals scale, the similarities in relationships may be due to the 

similarity in geographic factors. Melamed and Rzhetsky (2018) additionally reported that 

state-level influences, like healthcare plans, could impact drug use. The majority of final 

regional study sites were in Georgia (n = 17) and North Carolina (n = 19).  This may also 

account for the differences in CART models seen when compared to the national scale 

study, which had several sites where the final treatment area encompassed parts of 

multiple states.  

Caution should be used in interpreting the results of some of the CART models in 

this study. The values chosen at each split along a regression tree can be influenced by 

outliers in the response variable, and the generally low occurrences of pharmaceutical 

compounds at each scale resulted in a large number of values replaced with ½ the LRL or 

MDL for the national and regional studies. As such, sites where high pharmaceutical 

concentrations were able to be quantitated are in stark contrast to sites where the values 
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are ½ the LDL or MRL, and therefore may be controlling the relationships seen in the 

trees. The number of unique values per response variable is also reported (Table 2) as 

well as boxplots of pharmaceutical concentrations by type (Figure x). Because regression 

CART results can be influenced by outliers in the response variable, results with a low 

number of responses and large number of outliers, like hormones or blood thinners at the 

national scale, may not be as interpretable as the results seen in categories with fewer 

outliers.  

There are several ways that this study could be improved. First, there is a 

temporal offset between sampling time and census data available. The ACS 5-year 

estimates, although more precise than other annual census population summaries, are an 

aggregate of 60 months of values and may not accurately represent the population at the 

time of sampling. Additionally, transient populations in areas with large universities, 

hospitals or tourist attractions can alter the chemical profile of the sampled waters. For 

example, Washington DC saw over 22 million visitors in 2018 (Destination DC, 2018), 

and this visiting population, although it undoubtedly affects water quality, is not captured 

in the ACS estimates. Sites at the national scale had large upstream treatment areas, and 

as such could encompass a wide variety of influential locations like these. One way to 

potentially account for this population shift is to incorporate economic, tourism, 

commuter, work location, and institutional data from universities, tourist centers, high 

density corporate areas and specialist hospitals to refine estimates of populations present 

around and up to the time of sampling.  
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At the local scale, sites were sampled repeatedly over the course of the year, 

capturing spring, summer and fall. Therefore, the average of these values is a better 

approximation of the annual pharmaceutical presence at these locations and can be more 

justifiably attached to the ACS estimates than the national or regional scale results which 

were sampled one time, or over the course of a few weeks. Repeat sampling for the local 

sites and pharmaceutical compounds is planned for future years. Given additional years 

of population and pharmaceutical data, these sites should be used to refine the 

relationships at this scale and observe changes over time. Future studies aiming to 

understand population demographics and pharmaceutical contamination relationships 

should focus on repeat sampling, similar to the local study, or should focus on an easily 

monitored and quantifiable upstream population (e.g. Vatovec et al., 2016). 

Another potential way to improve the methods in this study is to address the 

accuracy of the individual sewer treatment areas at the national and regional scale. 

Although these were not used to develop final treatment areas at the national scale, it was 

observed that the sewer treatment areas were more realistic in some areas than others, 

particularly in the eastern versus western states. In states like Texas, Arizona, and New 

Mexico, the sewer treatment areas were unrealistically large, sometimes encompassing 

entire large cities for a single registered facility, whereas the same area in Maryland, 

Virginia, or North Carolina would be divided among dozens of facilities. The sewered 

areas that were available for Virginia at the local scale were irregular and did not follow 

any political, census, or geographic boundaries, therefore the thiessen polygons may be 

as a good an approximation as any to delineate facility treatment areas, however, the 
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facility size or design capacity could be taken into account to weight larger facilities more 

heavily, so they are given larger treatment areas.  

The ability and efficiency of a facility in removing contaminants from wastewater 

varies based on types and levels of treatment. Facilities with advanced treatment methods 

are most likely removing pharmaceutical contaminates in different amounts than facilities 

with fewer or less advanced treatment methods. It was beyond the scope of this study to 

compile information on treatment type, removal efficiencies and pharmaceutical 

degradation related to various removal practices, however this is a large missing piece in 

this and other stream contamination studies.  

Another factor that should be considered when interpreting these results is other 

potential sources of pharmaceuticals to streams. In cultivated areas, biosolids can be 

applied to the landscape to introduce nutrients into soils (Evanylo, 2009.). However, 

some pharmaceutical compounds are known to persist though biosolid preparation from 

sewage sludge (Chenxi, Spongberg, & Witter, 2008) and can therefore be an 

unintentional source of pharmaceuticals in streams (Ding, Zhang, Gu, Xagoraraki, & Li, 

2011). Animal agriculture is also a known source of pharmaceuticals as animal 

operations often administer hormones and antibiotics to large numbers of animals 

(Burkholder et al., 2007) and animal pharmaceuticals have been observed in streams 

adjacent to confined animal feeding operations (Bernot, Smith, & Frey, 2013). 

Finally, there are two major sources of pharmaceuticals that were not considered 

in this study that may not reflect human use: pharmaceutical formulation facilities and 

hospitals. The first is an obvious source as facilities that manufacture pharmaceutical 
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compounds generate waste in the process. Wastewater treatment plant effluent from 

facilities treating pharmaceutical manufacturing outflows showed 10 to 1000 times higher 

concentrations of some pharmaceutical compounds when compared to WWTPs not 

influenced by pharmaceutical manufacturing facilities(Phillips et al., 2010). Additionally, 

reporting on hospital methods indicates they these are in fact major sources of 

pharmaceuticals through disposal practices of flushing unused or overprescribed 

medicines, even those that are expired or spoiled (Mone, 2008; Scutti, 2018). 
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CONCLUSION  

 

 

The development of a method to identify populations contributing to environmental 

contamination is an important step in understanding the complex relationships between 

human presence and their impact on the environment. This study developed and 

implemented such a method to understand the relationships in terms of pharmaceutical 

contamination at three different scales, additionally illustrating how it could be adjusted 

based on scale and resolution of available data.  

Given what is known about the potential toxicity and negative effects 

pharmaceuticals can have on aquatic environments and species, these results add an 

important element in understanding the pipeline from human activity and pharmaceutical 

use to environmental endpoints. 

Additionally, the method and results revealed in this study can be used to improve 

future efforts. Laboratory analysis of samples for pharmaceutical compounds relies on 

prior selection of which compounds to analyze. By identifying the demographics of the 

population in a treatment area influencing surface water, a more refined targeted set of 

pharmaceutical compounds cane be identified prior to analysis. However, the results here 

may indicate that there are regional differences that should be considered when 

addressing population-pharmaceutical relationships. Given the tendency of prescription 
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practices to follow patterns within states and geographic regions, geographic range of 

sites should be considered before implementing this method. 
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APPENDIX A 

 

 

 

Table of compounds assessed in each study and their final pharmaceutical category.  

Study Compound Category 

GMU (2018) Phentermine Anorectic 

GMU (2018) Glipizide Antidiabetic 

Bradley et al. (2014) Glipizide  Antidiabetic 

GMU (2018) Azithromycin  Antibiotic 

GMU (2018) Ciprofloxacin Antibiotic 

GMU (2018) Penicillin G Antibiotic 

GMU (2018) Sulfamethoxazole Antibiotic 

GMU (2018) Tetracycline Antibiotic 

Bradley et al. (2014) Erythromycin  Antibiotic 

Bradley et al. (2014) Sulfamethizoleate Antibiotic 

Bradley et al. (2014) Sulfamethoxazole  Antibiotic 

Bradley et al. (2014) Trimethoprim  Antibiotic 

Batt et al. (2016) sulfamethoxazole Antibiotic 

Batt et al. (2016) trimethoprim Antibiotic 

GMU (2018) Benztropine Anticholinergic 

Bradley et al. (2014) Benztropine   Anticholinergic 

Batt et al. (2016) benztropine Anticholinergic 

GMU (2018) 10_11-Carbamazepine epoxide Anticonvulsant 

GMU (2018) Carbamazepine  Anticonvulsant 

Bradley et al. (2014) Carbamazepine  Anticonvulsant 

Bradley et al. (2014) Iminostilbene  Anticonvulsant 

Bradley et al. (2014) Phenytoin  Anticonvulsant 

Batt et al. (2016) carbamazepine Anticonvulsant 

GMU (2018) Amitriptyline  Antidepressant 

GMU (2018) Bupropion  Antidepressant 

GMU (2018) Desvenlafaxine Antidepressant 

GMU (2018) Escitalopram Antidepressant 

GMU (2018) Fluoxetine Antidepressant 

GMU (2018) Nortriptyline Antidepressant 

GMU (2018) Paroxetine Antidepressant 
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GMU (2018) Sertraline Antidepressant 

GMU (2018) Venlafaxine Antidepressant 

Bradley et al. (2014) Amitriptyline  Antidepressant 

Bradley et al. (2014) Amitriptyline-10-Hydroxy  Antidepressant 

Bradley et al. (2014) Bupropion  Antidepressant 

Bradley et al. (2014) Citalopram  Antidepressant 

Bradley et al. (2014) Desvenlafaxine Antidepressant 

Bradley et al. (2014) Duloxetine  Antidepressant 

Bradley et al. (2014) Fluoxetine   Antidepressant 

Bradley et al. (2014) Fluvoxamine  Antidepressant 

Bradley et al. (2014) Norfluoxetine  Antidepressant 

Bradley et al. (2014) Norsertraline  Antidepressant 

Bradley et al. (2014) Paroxetine  Antidepressant 

Bradley et al. (2014) Sertraline  Antidepressant 

Batt et al. (2016) 10-hydroxy-amitriptyline Antidepressant 

Batt et al. (2016) amitriptyline Antidepressant 

Batt et al. (2016) desmethylsertraline Antidepressant 

Batt et al. (2016) fluoxetine Antidepressant 

Batt et al. (2016) norfluoxetine Antidepressant 

Batt et al. (2016) norverapamil Antidepressant 

Batt et al. (2016) paroxetine Antidepressant 

Batt et al. (2016) sertraline Antidepressant 

GMU (2018) Meth- amphetamine Antidiabetic 

Bradley et al. (2014) Glyburide  Antidiabetic 

Bradley et al. (2014) Metformin  Antidiabetic 

Bradley et al. (2014) Sitagliptin  Antidiabetic 

Bradley et al. (2014) Loperamide  Anti-Diarrheal  

GMU (2018) Gabapentin Antiepileptic 

Bradley et al. (2014) Fluconazole  Antifungal  

Bradley et al. (2014) Ketoconazole  Antifungal  

Bradley et al. (2014) Thiabendazole  Anthelmintic 

GMU (2018) Diphenhydramine hydrochloride Antihistamine 

GMU (2018) Fexofenadine Antihistamine 

GMU (2018) Loratadine Antihistamine 

GMU (2018) Promethazine Antihistamine 

Bradley et al. (2014) Chlorpheniramine  Antihistamine 

Bradley et al. (2014) Diphenhydramine  Antihistamine 

Bradley et al. (2014) Fexofenadine  Antihistamine 

Bradley et al. (2014) Hydroxyzine  Antihistamine 

Bradley et al. (2014) Loratadine  Antihistamine 
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Bradley et al. (2014) Promethazine  Antihistamine 

Batt et al. (2016) promethazine Antihistamine 

GMU (2018) Bezafibrate Antilipemic 

Bradley et al. (2014) Ezetimibe   Antilipemic 

Bradley et al. (2014) Fenofibrate  Antilipemic 

Batt et al. (2016) gemfibrozil Antilipemic 

Batt et al. (2016) simvastatin Antilipemic 

Bradley et al. (2014) Methotrexate  Antimetabolite 

GMU (2018) Acyclovir  Antiviral 

Bradley et al. (2014) Abacavir  Antiviral 

Bradley et al. (2014) Acyclovir  Antiviral 

Bradley et al. (2014) Lamivudine  Antiviral 

Bradley et al. (2014) Nevirapine  Antiviral 

Bradley et al. (2014) Oseltamivir  Antiviral 

Bradley et al. (2014) Valacyclovir  Antiviral 

Bradley et al. (2014) Penciclovir  Antiviral  

Bradley et al. (2014) Meprobamate  Anxiolytic 

Bradley et al. (2014) Fadrozole  Aromatase Inhibitor 

GMU (2018) (±)-Lorazepam Benzodiazepine 

GMU (2018) Alprazolam  Benzodiazepine 

GMU (2018) Clonazepam Benzodiazepine 

GMU (2018) Diazepam  Benzodiazepine 

GMU (2018) Nitrazepam Benzodiazepine 

GMU (2018) Nordiazepam Benzodiazepine 

GMU (2018) Oxazepam Benzodiazepine 

GMU (2018) Temazepam Benzodiazepine 

Bradley et al. (2014) Alprazolam  Benzodiazepine 

Bradley et al. (2014) Diazepam  Benzodiazepine 

Bradley et al. (2014) Lorazepam  Benzodiazepine 

Bradley et al. (2014) Nitrazepam Benzodiazepine 

Bradley et al. (2014) Nordiazepam  Benzodiazepine 

Bradley et al. (2014) Oxazepam  Benzodiazepine 

Bradley et al. (2014) Temazepam  Benzodiazepine 

Batt et al. (2016) alprazolam Benzodiazepine 

GMU (2018) Warfarin Blood Thinner  

Bradley et al. (2014) Warfarin   Blood Thinner  

Batt et al. (2016) warfarin Blood Thinner  

GMU (2018) Albuterol  Bronchodilator 

GMU (2018) Formoterol Bronchodilator 

Bradley et al. (2014) Albuterol  Bronchodilator 
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Bradley et al. (2014) Theophylline  Bronchodilator 

Bradley et al. (2014) Tiotropium  Bronchodilator 

Batt et al. (2016) albuterol Bronchodilator 

GMU (2018) Atenolol  Cardiovascular 

GMU (2018) Atorvastatin Cardiovascular 

GMU (2018) Diltiazem Cardiovascular 

GMU (2018) Enalapril Cardiovascular 

GMU (2018) Lisinopril Cardiovascular 

GMU (2018) Metoprolol Cardiovascular 

GMU (2018) Nadolol Cardiovascular 

GMU (2018) Propranolol Cardiovascular 

GMU (2018) Verapamil Cardiovascular 

Bradley et al. (2014) Atenolol  Cardiovascular 

Bradley et al. (2014) Dehydronifedipine  Cardiovascular 

Bradley et al. (2014) Desmethyldiltiazem  Cardiovascular 

Bradley et al. (2014) Diltiazem  Cardiovascular 

Bradley et al. (2014) Metoprolol  Cardiovascular 

Bradley et al. (2014) Nadolol  Cardiovascular 

Bradley et al. (2014) Norverapamil  Cardiovascular 

Bradley et al. (2014) Pentoxifyllineate  Cardiovascular 

Bradley et al. (2014) Propranolol  Cardiovascular 

Bradley et al. (2014) Verapamil  Cardiovascular 

Batt et al. (2016) amlodipine Cardiovascular 

Batt et al. (2016) atenolol Cardiovascular 

Batt et al. (2016) atorvastatin Cardiovascular 

Batt et al. (2016) diltiazem Cardiovascular 

Batt et al. (2016) diltiazem-desmethyl Cardiovascular 

Batt et al. (2016) enalipril Cardiovascular 

Batt et al. (2016) metoprolol Cardiovascular 

Batt et al. (2016) propanolol Cardiovascular 

Batt et al. (2016) valsartan Cardiovascular 

Batt et al. (2016) verapamil Cardiovascular 

GMU (2018) Budesonide Corticosteroid 

Bradley et al. (2014) Betamethasone  Corticosteroid 

Bradley et al. (2014) Fluticasone propionate  Corticosteroid 

Bradley et al. (2014) Hydrocortisone  Corticosteroid 

Bradley et al. (2014) Prednisolone  Corticosteroid 

Bradley et al. (2014) Prednisone  Corticosteroid 

Batt et al. (2016) fluocinonide Corticosteroid 

Batt et al. (2016) fluticasone Corticosteroid 
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Batt et al. (2016) hydrocodone Corticosteroid 

Batt et al. (2016) hydrocortisone Corticosteroid 

Batt et al. (2016) prednisone Corticosteroid 

GMU (2018) Dextromethorphanan  Cough Suppressant 

Bradley et al. (2014) Dextromethorphanan  Cough Suppressant 

GMU (2018) Furosemide Diuretic 

GMU (2018) Hydrochlorothiazide Diuretic 

GMU (2018) Triamterene Diuretic 

Bradley et al. (2014) Triamterene  Diuretic 

Batt et al. (2016) furosemide Diuretic 

Batt et al. (2016) triamterene Diuretic 

Batt et al. (2016) hydrochlorthiazide Diuretic  

Bradley et al. (2014) Norethindrone  Hormone 

Batt et al. (2016) progesterone Hormone 

Batt et al. (2016) testosterone Hormone 

Batt et al. (2016) norethindrone Hormone  

GMU (2018) Flunitrazepam Illicit 

GMU (2018) MDA Illicit 

GMU (2018) MDEA Illicit 

GMU (2018) MDMA Illicit 

Bradley et al. (2014) Carisoprodol  Muscle Relaxant 

Bradley et al. (2014) Metaxalone  Muscle Relaxant 

Bradley et al. (2014) Methocarbamol  Muscle Relaxant 

GMU (2018) Buprenorphine Opioid 

GMU (2018) cis-Tramadol HCl Opioid 

GMU (2018) Codeine  Opioid 

GMU (2018) Fentanyl Opioid 

GMU (2018) Hydrocodone Opioid 

GMU (2018) Hydromorphone Opioid 

GMU (2018) Meperidine Opioid 

GMU (2018) Metformin Opioid 

GMU (2018) Methadone Opioid 

GMU (2018) Morphine Opioid 

GMU (2018) Oxymorphone Opioid 

GMU (2018) Propoxyphene Opioid 

Bradley et al. (2014) Codeine  Opioid 

Bradley et al. (2014) Hydrocodone  Opioid 

Bradley et al. (2014) Methadone  Opioid 

Bradley et al. (2014) Morphine   Opioid 

Bradley et al. (2014) Oxycodone  Opioid 
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Bradley et al. (2014) Propoxyphene  Opioid 

Bradley et al. (2014) Tramadol  Opioid 

Batt et al. (2016) oxycodone Opioid 

Batt et al. (2016) propoxyphene Opioid 

GMU (2018) Naloxone Opioid Antagonist 

GMU (2018) Naltrexone Opioid Antagonist 

GMU (2018) 2-Hydroxy- Ibuprofen Pain Reliever (non-opioid) 

GMU (2018) Celecoxib Pain Reliever (non-opioid) 

GMU (2018) Diclofenac Pain Reliever (non-opioid) 

GMU (2018) Naproxen Pain Reliever (non-opioid) 

Bradley et al. (2014) Acetaminophen  Pain Reliever (non-opioid) 

Bradley et al. (2014) Antipyrine  Pain Reliever (non-opioid) 

Bradley et al. (2014) Lidocaine  Pain Reliever (non-opioid) 

Bradley et al. (2014) Phenazopyridine  Pain Reliever (non-opioid) 

Batt et al. (2016) acetaminophen Pain Reliever (non-opioid) 

Batt et al. (2016) ibuprofen Pain Reliever (non-opioid) 

GMU (2018) Aspartame REMOVED 

GMU (2018) Atrazine Mercapturate REMOVED 

GMU (2018) Clonidine  REMOVED 

GMU (2018) DEET REMOVED 

GMU (2018) Enrofloxacin REMOVED 

GMU (2018) Perfluoro- octanoic Acid REMOVED 

GMU (2018) Sulfadi- methoxine REMOVED 

GMU (2018) Sulfamethazine REMOVED 

GMU (2018) Sulfa-quinoxaline REMOVED 

GMU (2018) Sulfathiazole REMOVED 

GMU (2018) Triclocarban REMOVED 

Bradley et al. (2014) Atrazine  REMOVED 

Bradley et al. (2014) Clonidine  REMOVED 

Bradley et al. (2014) Methyl-1H-benzotriazole  REMOVED 

Bradley et al. (2014) Piperonyl butoxide  REMOVED 

Bradley et al. (2014) Quinine  REMOVED 

Bradley et al. (2014) Sulfadimethoxine  REMOVED 

Batt et al. (2016) clonidine REMOVED 

Bradley et al. (2014) Raloxifene  SERM 

Bradley et al. (2014) Tamoxifen  SERM 

GMU (2018) 3’-Hydroxy cotinine Stimulant 

GMU (2018) Caffeine   Stimulant 

GMU (2018) Cotinine  Stimulant 

GMU (2018) Nicotine Stimulant 
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Bradley et al. (2014) Amphetamine   Stimulant 

Bradley et al. (2014) Caffeine   Stimulant 

Bradley et al. (2014) Cotinine  Stimulant 

Bradley et al. (2014) Nicotine  Stimulant 

Bradley et al. (2014) Phendimetrazine  Stimulant 

Bradley et al. (2014) Pseudoephedrine and Ephedrine  Stimulant 

Bradley et al. (2014) Xanthine-1,7-Dimethyl Stimulant 

Batt et al. (2016) amphetamine Stimulant 

GMU (2018) Cimetidine Stomach Acid Reducer 

GMU (2018) Ranitidine Stomach Acid Reducer 

Bradley et al. (2014) Cimetidine Stomach Acid Reducer 

Bradley et al. (2014) Famotidine  Stomach Acid Reducer 

Bradley et al. (2014) Omeprazole and Esomeprazole  Stomach Acid Reducer 

Bradley et al. (2014) Ranitidine   Stomach Acid Reducer 

Batt et al. (2016) ranitidine Stomach Acid Reducer 
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APPENDIX B 

 

 

 

A. National pharmaceutical concentrations in relation to higher income (above 

$60,000 median annual income) census tracts across the US. 
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B. Regional pharmaceutical concentrations in relation to census block groups with 

higher (>24%) percent of the population that is female between age 20 and 49. 
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