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Abstract

POLICY-CONTROLLED EMAIL SERVICES

Saket Kaushik, PhD

George Mason University, 2007

Dissertation Directors: Dr. Paul Ammann and Dr. Duminda Wijesekera

The context for this research proposal is an area of work that seeks to replace

the current state of access-control for email, in which an arbitrary message sender

enjoys unregulated “append” access to message recipient’s email mailbox, with a pol-

icy framework, in which each principal involved in a message exchange - namely the

sender, the sender’s service provider, the recipient’s service provider, and the recip-

ient, can articulate its interests for regulating access to resources under its control.

Though there exist a vast number of automatic control techniques to limit transmis-

sion of email messages, specifically, to stop unwanted messages reaching a recipient,

they are still prone to dropping some desirable messages. This often prompts recipi-

ents and other principals to relax the message acceptance requirements. This in turn

makes them easy targets for sending commercial or fraudulent mail. We propose a

novel scheme to overcome this handicap. Our scheme makes the transmission mech-

anism aware of the documentation required with a message to make it acceptable

downstream. For instance, if a recipient wishes to receive only those messages that

have a monetary guarantee, also known as a bond, then the transmission system must

be made aware of this fact so that desirable messages can satisfy this requirement.



Consequently, recipients and other principals can express and enforce precise accep-

tance requirements, through explicit policies, and gain control over their resources.

In addition to the problem of enforcing precise acceptance requirements in the

transmission process, there exists no means of flexibly combining available email-

control techniques tailored to the needs of a particular recipient or its service provider.

This is the primary reason for the inability to express requirements suited to a partic-

ular individual. For instance, currently it is not possible to state a requirement like

‘allow messages, initiated by a human sender affiliated with George Mason University,

even though the spam filter ranks them as possible spam’. In our view a policy-based

approach is well-suited to attain this objective. The use of these control-techniques

leads to significant deviation of behavior from what is prescribed in the current email

delivery protocol. In other words, the protocol lacks significantly in representing the

current delivery requirements. Clearly, it requires an overhaul to correspond to cur-

rent requirements and reduce ambiguities during protocol play; a goal that we propose

to research in this study.

We propose using constraint logic programming (CLP) to articulate and evaluate

different types of policies. This is because the way messages are constructed and

acceptance conditions are evaluated, a CLP approach seems a natural way to model

these operations. In addition, CLP approach promises to simplify the task of pro-

viding feedback for rejected messages, so that they can be revised and retransmitted.

Since declarative policies can describe control on a very high-level, we also propose

to study refinements of these high-level directives to protocol level actions.



Chapter 1: Introduction

1.1 Motivation

The current email system is designed to transfer messages from one host to one or

more hosts over the Internet in a reliable and robust manner. The unit of transmission

is a mail message that is initiated by the message sender. Messages are transmitted

asynchronously over a network through multiple hops till they reach their destination

– the recipient’s mailbox. The delivery infrastructure provides best effort delivery for

all messages [1]. For example, the system ensures adequate provisions to prevent loss

of messages, like multiple delivery attempts, etc.; and in the case of failure, the sender

is appropriately notified through error messages. For a message sender such provi-

sions are highly desirable. However, this is not an ideal scenario from the recipient’s

perspective. This is because any message initiated at anyone’s behest would appear

in the addressed recipient’s mailbox. This renders the system highly susceptible to

abuse by senders, making recipients easy targets of unwanted commercial messages.

Techniques for automatic identification (and hence removal) of unwanted messages

abound. These solutions try to remove ‘junk’ from the recipient’s mailbox, without

requiring any human intervention. In a majority of cases, the solutions require some

accompanying documentation, like monetary bond value or cryptographic signatures

or even proof of human initiation, to distinguish between wanted and unwanted mes-

sages. We provide a comprehensive review of prominent techniques in § 2. However,

1



most automatic classification techniques are fallible to dropping desirable messages.

Part of the reason is that senders are able to effectively mask their messages as ‘le-

gitimate’ communication making it difficult to automate the task of distinguishing

a legitimate message from an illegitimate one. Incorrect categorization of legitimate

messages as unwanted and subsequent prevention of transmission is termed as a false

positive. Consequently, neither the recipient nor the sender is informed of the loss of

communications.

To prevent losing messages in the above described manner, recipients often tend

make the acceptance criteria more permissive. For example, if a particular email filter

regularly drops important mail, then a recipient would tend to lower its sensitivity

rather than losing out on receiving important messages. Consequently, recipients fail

to use the full power of available control techniques. As a result, the recipient is

susceptible to receiving a large number of unwanted messages.

In this proposal we plan to investigate ways by which the above handicap can

be overcome. We propose to study a simple scheme of communicating feedback re-

garding rejected messages upstream. With feedback the delivery system can be made

aware of why a message was rejected. In other words, the transmission mechanism

is made aware of ways to change the accompanying documentation to get a message

accepted downstream. For example, if a recipient wishes to receive only bonded mes-

sages, the sender must be made aware of this fact to be able to send any messages to

the particular recipient. We assume that verifying the validity of accompanying docu-

mentation can be accomplished by the mechanism that consumes it. For example, the

reliability of bond accompanying a message must be possible through financial escrow

services. Of course, providing feedback for every rejected message runs the risk of

2



leaking private information upstream and in turn help malicious entities. Therefore,

in this research we develop ways through which feedback can be sanitized and still

be helpful in getting good messages through to the recipient.

Next we introduce the message transmission process in § 1.1.1. We follow it

with a characterization of the types of proposed control decisions and bring out their

research issues in 1.1.2 and 1.1.3. We also motivate the related sub-problems, like

privacy, refinement, etc., in 1.1.2, that require investigation as well. Next we define

the scope of this research, with a focus on the specific problems that we addressed.

1.1.1 A simple description of message delivery protocol

The current Internet mail system, or e-mail system, has three major components:

user-agents, mail servers that communicate using the Simple Mail Transfer Protocol

(SMTP) [1]. A typical message starts its journey from the sender’s user agent, travels

to the sender’s mail server, and then travels to the recipient’s mail server either

directly or through intermediate mail servers. At the recipient’s mail server it is

deposited in the recipient’s mailbox [2]. SMTP, defined in RFC 2821 [1] transfers

messages from the senders mail server to the recipients mail server. First, the SMTP

client (running on the sending mail server host) has TCP establish a connection on

port 25 to the SMTP server (running on the receiving mail server host). If the server

is down, the client tries again later. Once this connection is established, the server and

client perform some application-layer handshaking. During this handshaking phase,

the SMTP client indicates the email address of the sender and the email address of

the recipient. Next, the client sends the message. The client then repeats this process

over the same TCP connection if it has other messages to send to the server, otherwise

3



it instructs TCP to close the connection [2].

The current protocol definition constrains the receiving mail server, also known

as the server, to a slave of the sending mail server, also called the client. The client

issues commands (i.e., message related operations), which the server is obligated to

respect. Only in exceptional cases or failure can the server refuse to execute the issued

command. In such a case, the server is usually required to respond with a reason for

its inability to respect client’s command. Clearly, it’s this master-slave relationship

that needs to be revised for the server to gain control over its own resources. Existing

email-control techniques achieve this aim only to a limited extent. In our proposal,

we make a case for a more general and customizable control provided to servers. We

discuss this issue in more detail next.

1.1.2 The message acceptance decision

The decisions regarding accepting messages, relaying them or storing them in the

file-system can be viewed as access control decisions, where the decision maker al-

lows ‘append access’ to a particular resource, be it a file system or a message queue.

We term this problem of deciding on the acceptance of a message as the message

acceptance problem. In the current system, the decision is almost always a ‘yes’, i.e.,

accept, relay or file a message, whatever the case may be, except for the case where

email-control techniques reject a message from being appended to the recipient mail-

box. These control techniques are forms of attribute based access control mechanisms

designed to protect the recipient mailbox. However, those messages that do not or

cannot make into a mailbox waste network bandwidth and resources upstream. They

should ideally be dropped earlier in the transmission process or revised to satisfy

4



downstream email-control mechanisms. In this work we propose to generalize the

attribute based access control scheme and extend the protection to most network

resources through our policy-based control framework.

The primary task involved in solving the message acceptance problem is to decide

whether to transmit or accept a message at each hop. Because a number of techniques

are available to accomplish this task, we propose to leverage on them in solving the

message acceptance problem. However, each individual proposal approaches this

problem from a very narrow perspective. For example, a message bond technique [3]

only considers the monetary signalling and economic consequences whereas human

initiation tests [4] block machine-constructed messages. A recipient may choose to

use any one of the proposals or mix and match them to serve his or her needs.

For example, a recipient may choose digital signatures [5] for authentication with a

feature or pattern matching based approach [6] to gauge the information content and

so on. Currently there exists no means for combining, controlling and using various

techniques in tandem. The challenge here lies in bringing a majority of control-

techniques under a single umbrella. Although, some products combine a small subset

of available techniques [7], it is done in a rigid, non-extensible manner. By putting

the combination of various techniques under policy control, the proposed work will

correct this problem and enable all techniques to be combined in arbitrary ways that

are deemed appropriate at each site in the email network. In addition, generating

the composition of the policies as an explicit construct allows the sender to answer

questions such as “What attributes does a message need to receive a particular level

of service”, and the recipient to answer to questions such as “Given my privacy policy,

what sort of mail will I be able to receive from particular senders or classes of senders.”
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Policy feedback, Policy communication and Privacy

Currently, a message is sent out blindly in the hope that it is satisfactory to the

recipient and recipients have to sort through mail that, by and large, lacks useful tags

for differentiation. Better decisions regarding construction and transmission of mail

messages are enabled if pertinent information is pushed as near the sender of a mes-

sage as possible, modulo the privacy considerations of downstream principals. These

principals can then choose for authentication, reputation, bonding, or other services

consistent with the recipient’s requirements. Once the requirements for email delivery

are expressed in a policy language, that policy, or parts of it, can be communicated.

It can be published or otherwise made available upstream, enabling undesirable mes-

sages to be dropped at an earlier stage in the transmission route. For example, a

policy may specify that a message from a strongly authenticated business partner

will be accepted even if the message is ranked as likely spam by a Bayesian filter. If

this is known by his email service provider (ESP), a partner can be given the opportu-

nity to strongly authenticate. In this respect, the proposed approach differs markedly

from most existing techniques by letting up-stream agents know what they can do to

improve the likelihood that their messages reach their destination, whether it be us-

ing strong authentication, attaching a monetary bond, or improving their reputation.

The proposed study plans to develop policy feedback and policy communications to

share relevant information upstream.

Of course, not all such information is suitable for dissemination. For example,

knowing filtering rules could assist in transmitting fraudulent messages. Part of the

proposed research will develop techniques for automatically sanitizing policies in a

semantically sound and precise manner so they can be securely shared. Furthermore,
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simply by enforcing a given policy, information about that policy can be made ob-

servable. Research reported in this dissertation develops techniques for closing high-

bandwidth channels through which highly sensitive policy content could otherwise

become known. We look at one particular combination of using blacklists/whitelists

with message bonds. In this case, if the recipient requires messages to be bonded

with a certain monetary value whenever the message sender is on their blacklist, the

combination is subject to privacy leaks. This is because seizure of a bond can pro-

vide feedback to the sender that he or she is on the recipient’s blacklist. We assume

here that sender has a means to know how a message is accepted by a particular

recipient. We can easily argue that such a situation is possible because a sender can

send different types of messages, something akin to a dictionary attack, and find out

exactly how the recipient email system behaves. Similarly, if a recipient uses filtering

methods with message bonds or embedded custom URIs, again private information

about the filters, such as efficacy of the filter, can be leaked through bond seizure or

evidence of a visit to the web page.

Even though there are out of band channels for information leakage (like the

recipient telephoning the sender), when sensitive information is leaked through the

system itself, we term it as unsafe. When there is no possibility of leaking of sensitive

information through the system, it is termed as safe. The problem of designing a

system that is safe is termed as the privacy problem.

Policy refinement

Policy-based control permits separation of management and functionality concerns of

the email network. In principal, the behavior of a user agent or a mail server can be
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adapted without re-implementing its functionality. However, policy specifications and

their evaluations are expected to be expressed in a language that is at a higher level of

abstraction than the operational language of the email system. For example, a policy

evaluation can require that a particular message be ‘rejected’. However, the SMTP

implementations understand only SMTP commands and reply codes [1]. Enforcement

of the ‘reject’ decision requires translation to some protocol-level action or a system-

level call. In addition, the translated command has to be ascribed to a particular

principal, like a mail server, to be effected. Policy refinement is this translation process

that transforms higher level decisions to action items in the operational language of

the system. In summary, there are three principal objectives in a policy refinement

process [8]:

1. Determine the resources that are needed to satisfy requirements of the policy.

2. Translate high-level policies into operational policies that the system can en-

force.

3. Verify that the lower level policies actually meet the requirements specified by

the high-level policy.

Policy refinement specifications require a formal representation for objects, their

behavior and their organization. Along with the formalisms, a refinement technique

for resolving high-level goals into more concrete ones [8] is essential. To this end, we

propose to develop a formalism to model the behavior and organization of relevant

objects or actors and research on techniques for decomposing abstract requirements

into more concrete ones.
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1.1.3 The delivery prioritization problem

Solving the message acceptance problem to mitigate the problem of unwanted, an-

noying or fraudulent mail is essential. However, in spite of such a solution in place,

scenarios can emerge in which the solution is not sufficient to ensure that desired

messages reach the addressed recipients in time or reach them at all. As an example,

consider a scenario where a computer virus outbreak floods an email network with

a large number of infected messages. Because the current email system must either

deliver or reject all the messages in the order in which they are queued, messages

queued behind the large number of infected messages will get inordinately delayed.

This is because each message has to be processed in turn to decide if it should be

accepted, relayed or rejected. An email-bomb attack [9] is another scenario where a

large number of messages addressed to a recipient can cause delay or loss of services to

a particular recipient. Business requirements, like prioritizing CEO’s or stock broker’s

or paid customers messages, and fairness issues also require prioritization schemes to

be in place. Thus, the problem of prioritization of messages is separate from the

problem of message acceptance. We term this problem as the delivery prioritization

problem. In this proposal we plan to support message prioritization, however we don’t

subscribe or recommend any particular prioritization scheme.

1.1.4 Constraint logic programming approach

We propose to use a restricted form of constraint logic programming (CLP) language

to specify our policies. This approach has many benefits. It provides a concise, logical

specification of the messages that will receive mail service. It allows one to consider

messages that would hypothetically be accepted, without fully specifying the message.
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This will be very helpful in supporting negotiation of message fixes. It will also enable

one to examine the classes of messages that are accepted, either by a single policy or

by a composition of various policies in our framework. Furthermore, by using a logic

programming-based approach, we enable ourselves to adopt well-known techniques for

resolving conflicts between accept and reject directives in the policy, and to ensure

that the policy decides the disposition of all messages [10].

1.1.5 Pragmatic concerns

Apart from the basic technical requirements, practical issues also govern many design

issues. Due to a large number of installations of the current SMTP, a completely new

protocol replacing the current SMTP protocol is clearly infeasible for adoption. In

fact, the only hope for a new system to be adopted is in designing an incrementally

adoptable and backward compatible system that requires minimal changes to SMTP.

SMTP features, such as reliability and robustness, can be useful and could be ac-

commodated in the revision. It is unreasonable to expect a typical user to directly

write CLP policies. To aid the reader/users in formulating CLP policies, we present

example policies. In addition, related research by Fages [11] gives us hope that CLP

policies could be used by typical users. In this dissertation we pursue mechanisms

that can be designed such that adoption concerns are addressed.

1.2 The Thesis statement

“Policy controlled email services with sanitized feedback make it possi-

ble to securely reduce false positives in email control mechanisms while

accommodating current and future mechanisms for providing control and
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feedback and avoiding the need to replace current email infrastructure.”

1.3 Summary of claims

This dissertation proposal makes several claims. In this section we list them to provide

the base set of claims that we need to verify in the experimenting and testing phase.

Claim 1. With the proposed policy framework, most of the existing and future email-

control techniques can be supported, and used in combination.

Claim 2. With additional controls to reject or delay messages, downstream principals

in an email pipe will be able to reduce the bandwidth and number of unwanted messages

delivered to recipients.

Claim 3. If feedback is provided for rejected, but desirable, messages, it will lead to

less chances of loss of desirable communications.

Claim 4. If downstream acceptance preferences are made known upstream, it will

result in transmission of messages that have the required documentation for satisfying

downstream preferences.

Claim 5. Feedback for rejected messages and communicated policies can be sanitized

before transmission, such that they do not leak any sensitive information.

Claim 6. Policy evaluation, policy communication and policy feedback schemes can

be integrated into an extension of SMTP protocol.

1.4 Published work

Portions of the proposed study have been published in refereed conferences and work-

shops, and a mapping of claims to the publications is presented next.
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Policy Framework: Saket Kaushik, Paul Ammann, Duminda Wijesekera, William

Winsborough and Ronald Ritchey. A Policy Driven Approach to Email Services.

In Proceedings of IEEE 5th International Workshop on Policies for Distributed

Systems and Networks (Policy 2004), p: 169–178, New York, June 2004

• This paper presents a preliminary policy framework design for solving the

message acceptance decision problem. It includes discussions on the MSP,

SLAP and MRAP policies and simple extensions to SMTP protocol to

accommodate them.

Policies as module networks: Saket Kaushik, Duminda Wijesekera, William Wins-

borough and Paul Ammann. Distributed CLP clusters as a security policy

framework for email. In 1st international workshop on Applications of con-

straint satisfaction and programming to computer security (CPSec), (at CP

2005), pages 31–45, Barcelona, Spain.

• This paper presents a communication scheme where messages are con-

verted to logical predicates that are imported or exported between prin-

cipals. Message acceptance decision is implemented by a policy module

which evaluates the acceptance criteria against the imported predicates

and in-turn exports relevant predicates – downstream in the case of an

accept decision, and upstream in the case of a reject decision. This pa-

per also extends the policy framework to include policies for solving the

delivery prioritization problem.

Policy extensions to SMTP with PTIME evaluation: Saket Kaushik, William

Winsborough, Duminda Wijesekera and Paul Ammann. Email Feedback: A
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Policy-based Approach to Overcoming False Positives. In 3rd ACM Work-

shop on Formal Methods in Security Engineering: From Specifications to Code

(FMSE 2005), Fairfax, VA, U.S.A.

• This paper generalizes communication scheme to include transmission of

policies upstream to aid the process of ‘customizing’ messages for the in-

tended recipient. We show that under specific assumptions, the evaluation

of acceptance criteria can be completed in PTIME (polynomial in the

size of the policy). In addition, we relate the minimum possible changes

required in the SMTP state machine to accommodate the generalized com-

munication scheme.

Prevention of leakage of sensitive information: Saket Kaushik, William Wins-

borough, Duminda Wijesekera and Paul Ammann. Policy Transformations for

Preventing Leakage of Sensitive Information in Email Systems. In 20th Annual

IFIP WG 11.3 Working Conference on Data and Applications Security (DBSec

06), Sophia Antipolis, France.

• This paper analyzes several ways in which recepients’ sensitive information

be leaked to senders by specially crafted email messages. We present an

attacker model and develop a program transformation technique that can

be used to prevent leakage of sensitive information.

Secure WebMail: Saket Kaushik, Duminda Wijesekera and Paul Ammann. BPEL

Orchestration of Secure WebMail. In 2006 ACM Workshop on Secure Web

Services (SWS 2006), Fairfax VA, November 2006.
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• This paper presents an implementation profile for a secure Web Services

based Email system. We present the implementation details for achiev-

ing majority of SMTP use cases, while preventing several misuse cases

discussed in this thesis.

14



Chapter 2: Current Email Transmission Standards

2.1 Introduction to Email delivery

This chapter briefly reviews the process and the components of the current email

transmission infrastructure. We begin with a discussion of the structure of a mail

message. Next, we review the details of current SMTP protocol and sample SMTP

conversations. Following this discussion, we delve deeper into the working of SMTP

mail servers. Lastly, we illustrate typical SMTP Use Cases and Misuse Cases.

2.2 Messages and their structure

Much like its physical counterpart, an internet message or email consists of an enve-

lope and its contents (or the body of the message), as defined in RFC 2822 [12, 13].

However, email message envelopes contain much more information than the physical

mail envelopes. The main purpose of an envelope is to route a message from its source

to its destination. In addition, it may record information about its contents, like the

size of the objects, their relevance, urgency, type, etc. These additional attributes are

of immense use downstream, as will be shown later. Content portion of a message

comprises of objects to be delivered to the recipient. These objects are defined [14]

to be of specific types and are popularly known as MIME objects. For the rest of

this work we treat the content portion (with, possibly, multiple MIME objects) as a

single entity as the number of objects and their structure is not critical to our study.
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More details will be presented in chapter 4. However, the structure of the envelope

is of utmost importance to our study and we review it next.

2.2.1 Message Envelope

A message, envelope and contents included, is a sequence of ‘US-ASCII’ (ASCII)

characters. Contents that use characters outside the range of ASCII domain must

be encoded to an ASCII format at the source and decoded back into their native

format at the destination. An envelope consists of ‘header fields’ that are pairs of

‘field names’ names and ‘field values’. Field names themselves are drawn from a

standard, but extensible, set of names, while the domain of values is a finite domain

of sequence of ASCII characters. All the header fields together are referred to as the

message header or simply as the header. Header fields at times are loosely referred

to as the named header, e.g., ‘from header’ is a header field with ‘FROM’ as the field

name. An envelope is a ‘set’ of headers, but at times it may be a ‘multi-set’ or a

‘bag’ of headers. That is, some header fields may be repeated in the envelope. A

legal message must have the set of mandatory headers; it can also contain optional

headers. Content, or the body of the message is optional as well.

Syntactic details concerning the format of message headers is not critical for later

analysis, but, it is important to note that a special character sequence (‘CRLF’ – car-

riage return followed by a linefeed) is used to distinguish different parts of a message.

In other words, CRLF delimiters separate one header from another and the body of

the message. Number of header fields is not fixed, however certain header fields are

mandatory and must be present in a legal message. These fields include the following:

• from – maximum one occurrence per message.
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• orig-date – maximum one occurrence per message.

In addition, from the three fields: to, cc and bcc at least one should be present.

If present, maximum one occurrence per field is allowed. Many other options fields

can be present in a message, like, subject, message-id, etc. Informally, the from

field identifies the message sender’s email address, orig-date identifies the time of

message origination, to identifies the recipient’s email address, etc. Interested reader

is referred to RFC 2822 [12] for the complete semantics of header fields. For our

purposes, we assume the presence of following types of header fields (as explained in

RFC 2822).

Originator fields A set of header fields that identify the source or originator of

a message. This set usually contains the fields: from, sender or reply-to

headers.

Destination fields A set of header fields that identify the recipient(s) of the mes-

sage. This set usually contains the fields: to, cc or bcc headers.

Identification fields A set of headers that uniquely identify an email message cor-

respondence between the sender and the recipient. This set usually contains

the fields: message-id, in-reply-to, references, msg-id, etc., headers.

Informational fields These fields are optional and provide additional information

regarding the body of the message. Typically this set includes following headers:

subject, comments, keywords.

Optional fields Optional fields, as the name suggests, are optional and are currently

unspecified. They add flexibility of including information not covered in fields
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discussed above. Senders and recipients can chose to include fields understood

at either ends for additional information transfer.

The above description does not include fields of the type ‘trace fields’ and ‘resent

fields’ discussed in RFC 2822 because we don’t explicitly leverage on them in this

work. However, these fields are useful in the actual delivery of a message because of

two reasons. First, it is possible to make routing decisions based on the origin and

path taken by a message to reach a decision point. Secondly, in case of delivery failure

reverse paths are essential for informing the senders about the same. However, we

analyze the stated problems at a higher level than these low level details and assume

that required functionality is implicitly available. On the other hand, optional fields

play an important role for solving the problems earlier stated and we delve on them

in greater detail later. Next we discuss the current standards used for transmission

of messages over the Internet.

2.3 Simple Mail Transfer Protocol (SMTP)

Simple Mail Transfer Protocol, a.k.a., SMTP [1] is the default protocol used for email

transport. Its objective is to define standards for reliable and efficient delivery of mes-

sages between sending and receiving applications. Moreover, message transmission

is accomplished asynchronously (i.e., persistent asynchronous communication [15]),

and usually requires multiple hops [1], i.e., the message is routed through multiple

intermediate servers before finally reaching its destination.

RFC 2821 describes four participants involved in a message transmission in three

hop message transmission model as follows.
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Sender/File System The sender process/file system where the message originates.

SMTP Client Message is routed to a process that can engage in SMTP conversa-

tions with another process. This process is handed the responsibility of locating

the destination of the message and transmitting the message to the destination

domain. If message delivery fails, the SMTP Client is required to report it to

the Sender process/File System.

SMTP Server SMTP Server process receives messages delivered by SMTP Client

process. Client and Server are alternatively referred to as Mail Transfer Agents

(MTAs) and more generally as mail servers.

Recipient/File System The recipient process/file system where the message is fi-

nally delivered/stored.

Senders are free to deliver messages to the SMTP Client using a means other than

SMTP transmission. Common techniques include Web-based delivery, etc. Similarly,

other means, like Post Office Protocol [16] or Internet Message Access Protocol [17],

may be used by the SMTP Server to deliver an incoming message to the recipient. An

SMTP Client is expected to use the Domain Name Service (DNS) [18] to locate an

SMTP Server. Therefore, message transmission may be expected to be completed in

a single SMTP session between originating Client and destination Server. However,

some destination Servers may only be accessible through public gateways. Therefore,

RFC 2821 allows the possibility of more than three hops as described above. That is,

the SMTP Server may not be the final destination for the message and the message

may be handed over to another SMTP Server by the current SMTP Server (through

another SMTP conversation in which the current SMTP Server behaves as the SMTP
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Client). In addition to being transferred the responsibility of delivering the message,

the SMTP server is required to report delivery failure to the SMTP Client.

2.3.1 SMTP Transmission

An SMTP transmission between a SMTP Client and a SMTP Server is completed in

three phases: the handshake phase, the mail transaction phase and the termination

phase. SMTP transmission is initiated and dictated by the SMTP Client, with the

SMTP Server following with a standard reply to each standard SMTP command

issued by the Client. The Server is obliged to accept (i.e., obey) each command

issued by the Client whenever it can. That is, a Server can refuse a Client’s command

only in the cases of transient or fatal errors. SMTP sessions are torn down by the

Client, usually when it runs out of commands to issue. A simplified version of SMTP

transmission is shown in figure 2.1. The figure shows a session being initiated by the

Client and followed by the Server. There are four distinct parts shown here (instead of

three). The first part is where the Client initiates the handshake. After the handshake

the Client begins the mail transmission phase, composed of two subparts – header

transmission and body transmission. During a single SMTP session multiple message

transmissions are possible, i.e., header and body transmission phases can be repeated

multiple times. Lastly, after all messages have been processed (i.e., transmitted or

have transient or fatal errors), the Client initiates session termination phase. Because

multiple messages are processed in an SMTP session, they are required to be stateful

with both the mail servers maintaining a common view of the current state. For

complete syntax and semantics of the protocol, the reader is referred to RFC 2821 [1].
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Figure 2.1: SMTP ladder diagram

2.3.2 Mail Transfer Agents (MTAs)

Next we briefly illustrate the main functions of SMTP Client and SMTP servers that

take part in SMTP transmissions as described in figure 2.1. Pseudo code process 1

outlines SMTP Server’s state changes during message transmissions.

PROCESS 1: SMTP Server

1: state = not connected;

2: while true do

3: Wait for request from client; // initiation
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4: if request==‘EHLO’ AND state == not connected then

5: state =connected; // change state to connected

6: Send (250 OK) response; // acknowledge the state change

7: Wait for request;

8: else

9: state = not connected; // for all other commands maintain state

10: end if

11: if request==‘MAIL TO’ AND state == connected) then

12: state = received sender;

13: Send (250 OK) response;

14: Wait for request;

15: if request ==‘RCPT TO’ AND state == received sender then

16: state =received recipient;

17: Send (250 OK) response;

18: Wait for request;

19: end if

20: end if

21: if request == ‘DATA’ AND state == received recipient then

22: state = receiving data;

23: Send (334 Enter Mail) response;

24: Wait for request;

25: end if

26: if request ==‘CRLF’ AND state == receiving data then

27: state = received data;
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28: Send (250 OK) response;

29: Wait for request;

30: end if

31: if request ==‘QUIT’ AND state == received data then

32: state = not connected;

33: Send (221 Connection closing) response;

34: end if

35: end while

Process 1 above presents a simplified algorithm for the state changes maintained

by the SMTP Server. A similar algorithm for SMTP Client is presented below in

Process 2. Lines 4 – 8 (process 1) and lines 9 – 12 (process 2) show the handshake

phase between the Server and the Client. Lines 11 onwards (process 1) shows the state

changes at Server after an SMTP session (connection) has been set up by a Client.

These lines also show how a subservient Server responds to the Clients commands.

Note that the shown processes assume that the communicating party is error-free and

follows the protocol. This is the reason it does not check for out of order messages

or message replays. However, an actual implementation is more robust than the

one shown here. Lines 11 – 30 (process 1) and lines 19 onwards (process 2) show the

message transmission phase. While the rest of the listings show connection-tear down

phase.

Next we showcase the outline of SMTP Client (in process 2) that initiates and

drives a session with SMTP Server.

PROCESS 2: SMTP Client

1: while true do
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2: Wait to receive message from clients; // Message Queue initialization. (Network

service listening on port 25)

3: state = not connected;

4: if message received then

5: append to message queue;

6: end if

7: while message queue not empty do

8: message = message queue.next();

9: if state == not connected then

10: state = connecting;

11: Send HELO / EHLO to SMTP Server;

12: end if

13: Wait for response;

14: if response == (250 OK) then

15: state = send sender;

16: else

17: break;

18: end if

19: if state == send sender then

20: Send MAIL FROM: sender@domain.com;

21: end if

22: Wait for response;

23: if response == (250 OK) then

24: state = send recipient;
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25: else

26: remain in line 16;

27: end if

28: if state == send recipient then

29: Send RCPT TO: recipient@recipient.com;

30: end if

31: Wait for response;

32: if response == (250 OK) then

33: Send DATA;

34: else

35: remain in line 21;

36: end if

37: Wait for response;

38: if response == (354 ENTER MAIL) then

39: input message body;

40: state = data;

41: else

42: remain in line 25;

43: end if

44: if message body.end() then

45: Send CRLF;

46: end if

47: Wait for response;

48: if response == (250 OK) then
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49: go to line 5;

50: else

51: append message in message queue;

52: end if

53: end while

54: end while

Mail Transactions

In addition to a consistent view of messages transmitted in a session (as outlined

above), SMTP transmissions require basic recovery procedures from transmission

failures. Next, we list the two Use Cases enabled by the SMTP.

Use Case 1 Best effort transmission of a text message from a sender (the principal

actor) to a recipient (the secondary actor) through intermediate mail servers

(auxiliary actors).

Use Case 2 Reporting transmission failure to the sender.

A message transmission - composed of three logical steps, as discussed above – is

considered complete only if the message is routed to the recipient’s mailbox. The steps

are: from the sender to its MTA; from sender’s MTA to recipients’ MTA; and finally

from recipient’s MTA to the recipient’s mail box. Transmissions that include more

than three hops can be logically treated as three hops by grouping SMTP sessions

within sender and recipient domain as local delivery actions. Message transmission

may fail due to many failures, like unavailability of the recipient’s mailbox, or un-

available disc space, or network partitions, etc.; upon which the first point of failure
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detection is expected to generate an error message for the sender informing him or

her about the failure. Note that some failures may be detected during the hop from

sender’s MTA to the recipient’s MTA, in which case the sender’s MTA detects the

error. If failure, like, rejection of message by recipient’s policy, is discovered after

message data transmission or session termination, the recipient’s MTA is considered

the error detection point.

Specialization of Use Cases

Above two use cases can be specialized for a variety of message types and properties

of transmission channels. Standard use cases supported by SMTP implementations

are:

• Best-effort transmission of enhanced content including text and MIME mes-

sages [14].

• Enforcing security mechanisms such as transmitting authenticated message and

using encrypted channel.

• Best-effort transmission of message acknowledgements.

Best-effort relates to asynchronous transfer of messages across hosts on the inter-

net, because recipient process may not be active when the sender process contacts

them. In addition, SMTP extensions [19, 20] include commands and replies for source

authentication and negotiations for establishing a secure channel for synchronous

transmission. Finally, SMTP also facilitates delivery receipts in the form of another

email. These Use Cases are supported by functionality built into communicating

server processes.
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SMTP Extension Model

In order to adapt to changes in the environment and technology and add new func-

tionalities, new extensions to the existing SMTP specifications were introduced. But,

because of the large number of existing SMTP implementations, changes had to be

incremental for backward compatibility and ease of adoption. Consequently, a service

extension model was introduced with provisions for modifying the SMTP specifica-

tions such that updated Clients and Servers discover each other and transmit messages

using new extensions. For transmissions with older conforming implementations, an

extended Client or Server would revert back to the default protocol. This model

of extending the specifications is called the SMTP extension model and new services

added to the specification are called SMTP service extensions (like SMTP AUTH [19],

STARTTLS [20], etc.). We make use of this extension model later to incorporate our

solutions to the previously stated problems. In spite of the availability of many ex-

tensions SMTP infrastructures are susceptible to many misuses, discussed in next

section.

2.3.3 Misuse Cases

SMTP delivery is subject to many misuse cases, including loss of privacy and integrity

of content, receiving unsolicited commercial email (spam), email bombs [9], etc. Of

these misuses the main misuses that our design prevents are:

1. Violating integrity and leaking or altering content : Allowing unintended

mal-actors to read message contents and alter them. Even though service ex-

tensions [20] exist that allow mail servers to encrypt data sent over un-trusted

IP network, in reality, these are seldom used. This is because both the sending
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and receiving parties must agree to set up a secure channel. However, because

this requirement is optional, any one party disagreeing leads to transmission

of messages in plain text, thereby permitting the first misuse case to occur.

In our approach, we allow senders and recipients to mandate the use of secure

channels for communication in policies that are evaluated before, during and

after message transmissions.

2. Impersonating senders : Allowing mal-actors to impersonate others in a mail

message. As in the above case, although the SMTP AUTH extension [19] is

available to mail servers for authenticated communications, it has not helped in

preventing sender impersonations. There are several reasons for this deficiency.

First, email identities are cheap to come by [21] – thereby making it almost

impossible to ensure that communications involve known entities. Secondly,

use of SMTP AUTH requires prior exchange of secrets, which is not possible in

all implementations - thereby becoming a victim of the second misuse through

sender-address spoofing.

3. Email bombs : This is a variation of DoS attack on email networks, where mail

servers receive large number of messages, leading to denial of email service.

Just like other open services, email servers and email mailboxes are susceptible

to denial of service attacks. This is because mail servers cannot distinguish

between a good message and a bad message on their own. By the time human

input to prune messages arrives, it’s too late for any recovery to be possible.

4. Receiving undesirable email (spam) : Allowing undesirable email to reach

recipients’ mailbox. Current SMTP-like server designs result in being subjected

29



to this misuse case, where lack of recipient control over message delivery results

in receiving unwanted message in the mailbox. In other words, the protocol is

heavily biased towards senders and allows them to send any number of messages

any time to any recipient in the world, a fact exploited by bulk email senders

to send spam.

Recent attention to spam has resulted in some proposals to add automated recipi-

ent controls to the message flow pipeline including, providing feedback about rejected

messages [12]. A drawback of delivery controls is the inadvertent disclosure of ac-

ceptance criteria, that can now be used to defeat its purpose [13]. We also add this

misuse case to the list of standard misuse cases and propose a solution in Chapter 6

2.4 Chapter conclusion

In this chapter we reviewed the current email delivery mechanisms – internet mes-

sages, email delivery protocol and the process of message delivery. We reviewed the

basic Use Cases and the Misuse Cases that the current infrastructure is susceptible

to. In the following chapters we introduce, develop and design our solution to prevent

these Misuse Cases.
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Chapter 3: Email Control Policy Architecture

3.1 Introduction

While numerous proposals have been made to address the shortcomings of email, few

have seriously considered the problem from the foundational level of the SMTP pro-

tocol, which is precisely the aim of the work proposed here. To offset the bias towards

senders, we propose to empower each principal with partial control of the email pipe.

At any hop, the recipient of the hop can choose to drop, delay or transmit the mes-

sage through increased control. My proposal allows principals to flexibly express their

interests in policies, which govern their decisions during message transmission. ESPs

are well positioned to provide evaluations of particular messages, sender authenti-

cation, virus-scanning and their inclusion is necessary to model proposed economic

and reputation based approaches like [3, 22, 23, 24], etc. Primary principals provide

the raw data that these servers use to make their evaluations. Adjudication services

provide a third party mechanism for satisfying obligations that may be incurred as

the result of delivering a mail. For example, a sender or a senders ESP may post a

small bond as a guarantee for recipient satisfaction and seizure of a bond may require

adjudication by an escrow service. It is important to note that the interests of the

ESPs are separate from the interests of their clients. For example, a sending ESP with

a reputation for harboring misbehaving senders might lose well-behaved customers if

the Internet community as a whole treats all mail from the ESP with suspicion.
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Figure 3.1: Principals and Policies in a Policy-mediated Email Pipe

Figure 3.1 illustrates the principals and proposed policies in a trustworthy email

pipe, where messages are flowing from the left to the right. There are four principals

in an email exchange. In addition to the sender and the recipient, the remaining two

principals are the senders Email Service Provider (ESP), and the recipients ESP. In

current practice ESPs help email service scale to the vast numbers of senders and

recipients on the Internet. Each of the policies and acronyms introduced in figure 3.1

are discussed next.

There are six types of policies identified in figure 3.1 and summarized in table 3.1.

These policies are expected to support the technical requirements outlined in the
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previous section. Here we briefly argue how enforcing these policies can prevent

described Misuse Cases and facilitate all Use Cases. Following a messages journey

from source to the destination, we come across various policies that can affect message

delivery. At each decision point, we allow the principal to delay messages. This is

to support proposals like [25, 26, 27, 28], etc., which aim to slow down the rate of

unwanted messages reaching the destination. By allowing messages to be dropped

closer to the source, we achieve better resource utilization. For example, consider a

scenario where all emails must be stamped [29, 28, 24] to get delivered. With SPP

policy an SESP can check for postage and reject all unsatisfactory messages, and hence

recover bandwidth that would have been eventually lost. SLAP policies are designed

to enforce quality of service decisions, possibly to slow down or contain abusers as

proposed in [25, 28] or outright refuse connections, and consequently can address

Misuse Case 3, i.e., preventing email bombs. In addition, SLAP can use other novel

techniques like connections based on credentials or certificates of good behavior which

do not exist yet, thereby preventing Misuse Case 1 (violating integrity and altering

content) and Misuse Case 2 (Impersonating senders). MSP policy can flexibly express

a host of requirements like invoking collaborative spam filters [30], virus scans and

other collaborative anti-spam techniques. An MRAP on the other hand can invoke

specialized rules like bond thresholds [3], blacklists, whitelists, or personalized spam

filters [31]. In other words, MSP and MRAP policies prevent against Misuse Case

4 (Receiving undesirable messages). RPP allows prioritized delivery for RESP to

handle requirements like prioritizing corporate email messages over personal messages,

advertisements or virus-infected messages. The Sender’s Send Policy (SP) is included

to support and extend regulation techniques like [32], where senders mandate their
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ESPs to repair rejected messages automatically. Because each principal can express

their interests in a flexible manner involving all moving parts in the system, we claim

that our policies are adequate in expressing most of the desirable email policies.

Table 3.1: Control achieved through policies

Policy Author Provides/Expresses
SP Sender Instructions for refining messages
SPP SESP Egress filtering, refining messages, effecting delays
SLAP RESP Quality of service to SESP, connection filtering, delays
MSP RESP Message acceptance criteria, refining suggestions, delays
RPP RESP Ingress filtering, message delaying, prioritization
MRAP Recipient Individual acceptance criteria, message delaying

A key question is whether the policies outlined in the architecture can adequately

express the legitimate interests of the principals. We propose to approach this issue

by determining whether the services offered by other proposed extensions to email fit

under the umbrella provided by the proposed architecture. For example, a recipient

ESP might require Turing Tests for certain classes of mail, but these might be best

administered by the sending ESP during the evaluation of the SPP. In this example,

the proposed architecture needs to accommodate the efficient flow of one principals

requirements to software agents operating on behalf of another principal. Next we

discuss each policy in a little more detail.

3.2 Policy architecture

3.2.1 Sender’s Send Policy(SP)

Sender’s Send policy (SP) is a collection of preferences at the sender to deal with

undelivered messages. That is, senders can mandate their ESP to add ‘attributes’ to
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undelivered messages such that they are able to satisfy recipient’s message acceptance

policies (MSP and MRAP). Consider a scenario where the target recipient accepts

messages only if they are appropriately bonded [3]. If an important message from

sender is returned by recipient due to inadequate bond value, the sender may direct its

ESP to automatically increase the bond value, up to a maximum, to get the message

accepted. By specifying preferences for expected type of rejections, a sender can hope

to get important messages revised and delivered, automatically.
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Figure 3.2: SESP’s Postman Policy (SPP)

3.2.2 SESPs Postman Policy (SPP)

SPP reflects the interests of the SESP and specifies the SESPs mail transmission

requirements, such as giving priority to delivery of urgent messages from preferred

senders or to preferred email domains. Requirements also include handling virus

outbreaks appropriately; other circumstances may also justify application of filters to

outgoing mail, eg, [33] makes a case for applying extrusion filters to outgoing mail.

The SPP also controls the addition to the message of sender characterizations signed
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by the SESP to support two level authentication proposals like [34] and hence plays

a secondary role of an annotator and enabler for sender authentication. For example,

verified signatures can be added to senders emails. It also acts as a negotiator when

messages sent from its domain get rejected. Inputs to SPP include: sender attributes,

the number of enqueued messages from a given sender, sender email subdomain,

recipient email domain, message scan results, and the state of the environment.
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Query
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conditions at RESP
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Suggested changes

suggested changes
Policies used for computing  

Figure 3.3: Service Level Agreement Policy (SLAP)

3.2.3 Service Level Agreement Policy (SLAP)

Connection-level actions of an RESP are governed by its SLAP. The inputs to SLAP

include identity of the SESP, environmental conditions at the RESP, and the reputa-

tion of the SESP. This reputation is presumed to summarize past experiences RESP

has had in dealing with the SESP or experiences of third parties [35, 36]. The es-

sential requirement is that the reputation service characterizes the past behavior of

SESPs so that the SLAP can give preferential treatment to SESPs with long records

of favorable behavior, or no record of bad behavior. Relevant environmental con-

ditions might include work load at the RESP or virus alerts, etc. Together these
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inputs characterize the current SMTP session; based on them, the SLAP specifies

gross transmission scheduling. Candidate specifications include: send them now (“as

is”), delay them (“later”), and do not accept messages from this SESP (“never”).

In the most general case, however, this specification is itself a policy, called a Mes-

sage Scheduling Policy (MSP), discussed further in the next section, that considers

each message in turn, and determines whether and when it should be transmitted.

SLAPs are not necessarily shared between principals, so their format is potentially

organization-specific.

MSP Send Later

Send Now

Discard

Bounce

Bucket
Priority

Message

Figure 3.4: Message Scheduling Policy (MSP)

3.2.4 Message Scheduling Policy (MSP)

MSP is applied to each message awaiting transmission to determine whether and when

it should be sent from the SESP to the RESP. However, stopping unfit messages is

not its sole function, instead, it acts as an facilitator for delivery of messages that

either fit recipients preferences or can be improved by minor mutations, to satisfy

the recipients policy. The scheduling of a message depends on the characteristics of

the message and its sender, and any other criteria of interest to the recipients, like

reputations, bonds etc. We model each of the criterion as a predicate that takes a
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message and returns true if the message, its sender, or the SESP involved satisfies the

predicated characteristic; otherwise it returns false. Characteristics of interest can

include any the following:

• sender characterization: sender authentication and its means, reputation of

SESP, rate of sender activity etc.;

• Message characteristics: Content classification [34], message reputation [23],

monetary guarantees [3], score on spam filter [37], etc.

MSPs are are designed to flow. Its two types are: portable and local. The

difference lies in where the policy is evaluated. A portable MSP is transmitted from

the RESP to the SESP, which is trusted to apply the MSP to determine which

messages to transmit. A local MSP can be used when the recipient ESP wishes to

apply an MSP to the messages transmitted, but does not wish to entrust the SESP

with this task. In a local MSP application, the SESP transmits messages headers,

which the RESP then uses to evaluate the MSP on each waiting message. The RESP

then provides the SESP with instructions as to whether and when to transmit each of

the waiting messages. The format of local MSP is ESP-determined, whereas, because

it is evaluated remotely, the format of portable MSP must be universal. In either case,

the RESP has the capability to check whether its MSP was adhered to by the SESP,

and can send this information to reputation repositories for later use. As an example

consider the policy which states that messages that have been sent by authenticated

senders, and pass extrusion spam filters or virus scans, be allowed transmission. It

can also say that if the sender cannot be authenticated, then a reliable bond value

with a minimum monetary value is required for acceptance. As a result only those
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messages that satisfy the policy are accepted by the RESP.

3.2.5 RESPs Postman Policy (RPP)

RPP is analogous to SPP, though it reflects the interests of the RESP. It defines

priorities for delivery of inbound messages to mailboxes depending on characteristics

of the sender, the recipient, and the message itself. This enables messages to be

reordered so as to ensure that urgent or high-quality messages are delivered in a

timely way, even when many messages compete for delivery. It may also specify

message processing requirements such as virus scanning, and actions triggered, such

as notification to interested principals. For example, an ESP can define an RPP that

mandates preferential delivery of urgent messages from business partners, messages to

recipients that are preferred customers, bonded messages, and messages from highly

trusted SESPs that have vouched for them as being of high quality.
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Figure 3.5: Mailbox Resource Allocation Policy (MRAP)
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3.2.6 Mailbox Resource Allocation Policy (MRAP)

The Mailbox Resource Allocation Policy (MRAP) is specified by mail recipients and

controls the utilization of their mailbox folders. User mail-reception preferences are

captured and converted to MRAPs, which are evaluated by the recipient ESP as part

of the process of delivering a message to the user. The input to MRAP includes: the

complete message (including content); sender identity, characteristics, and reputation;

SESP identities and reputations; message attributes; mailbox state, etc. The result

of MRAP evaluation is either to discard or bounce the message, in which cases the

message is not delivered to the mailbox, or to assign a discrete category (i.e., a mailbox

folder) to route the message to. MRAPs can also flow, like the MSP policies, however,

MRAP communication is subject to tighter dissemination controls. This is because

MRAPs communications pose a greater risk in leaking private information.

3.2.7 Message Negotiation

Consider a scenario where a sender’s message is rejected due to a lack of monetary

guarantee [3]. If a sender really wants her message delivered, and is prepared to

make amends to it, can the delivery mechanism facilitate a change to her message

and get it delivered? Through the negotiation mechanism we provide such a facility

and hence support and improve upon similar proposals [38]. The sender clearly has

the largest interest in making messages meet their recipient’s policies. However, it is

entirely reasonable that a sender’s service provider would, as a result of the provider’s

contractual relationship with the sender, be prepared to act as the sender’s agent in

supplying the repairs, automatically. Given a message and a corresponding policy that

rejects that message in its current form, we would like to be able to find the most
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appropriate fix, if any, to enable that message to satisfy the policy. To the extent

allowed by privacy concerns, policies should be made available as close to the sender

as possible to maximize the chances of a successful repair. From a policy standpoint,

such negotiations take place between MSP, MRAP and SPP policies; though each

depends upon the end users preference policies to complete such a negotiation.

To implement this scheme in the extended SMTP protocol (e-SMTP), we need

to devise a mechanism for simple negotiations and define the semantics of message

rejection. Following chapters present a constraint logic programming based approach

to achieve the former goal. In essence, this is made possible by making a small

change in the semantics of accept or reject decisions. In the prior policy evaluations

only two possible outcomes are supported: Acceptance or Rejection of a mail message.

However, to allow message negotiation, a reject is interpreted in one of the two ways:

a temporary reject characterized by a set of fixes that may change the decision into an

accept; and a permanent reject characterized by an empty set (of fixes) that represents

the fact that the message cannot be repaired. Also, because the accept decision is valid

only for the current hop, it does not signify that the message will be delivered to the

recipient, and in this sense, its only a temporary accept. A final accept is authorized

only by the MRAP policy to the messages that are able to make it to that hop.

In summary, by allowing the possibility of temporary accept and reject decisions, we

introduce the possibility of message negotiation. From an implementation standpoint,

the key issue for negotiation mechanism is how to identify and evaluate efficiently

potential message modifications. We return to this in the next chapter.
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3.2.8 Privacy

One consideration that acts in opposition to the desire to negotiate in fixing messages

or making policy known upstream is the sensitivity of policy content. Information

used by the recipient or the RESP to decide whether a message is likely spam may

need to be protected from the sender or the SESP. Such sensitive information could

include, for example, blacklists, whitelists, and filtering rules. These examples can

be considered part of any policy that uses them. Private policy content creates a

trade-off between making policy content available upstream so as to enable unwanted

messages to be dropped or fixed as early as possible, and the need to protect sensitive

policy content. One measure that we support will transform the actual policy to

derive a related policy that makes no use of the sensitive portions of the original

policy. For example, a sensitive MSP can be transformed to obtain a sanitized MSP

that can be distributed to SESPs to enable them to filter the email they send to the

RESP. The sanitized MSP should be related to the original in the following sense:

it should accept any message that the original would accept under some definition

of the private portion of the policy. In this way, the sanitized MSP does as much

filtering of messages as is possible without knowing the private portion of the original

policy.

Using one strategy that we plan to support, the RESP accepts messages trans-

ferred to it by the SESP provided they satisfy the sanitized MSP. Then, after the

message is transferred, the RESP drops messages that do not satisfy the original

MSP. In some cases, we expect this to be considered adequate protection for the pri-

vate portions of the policy. However, the security guaranteed by dropping messages

will not be strong enough for some contexts.
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Because the mail system is highly automated, there is a potential for a great

deal of information about policy content to be leaked without direct transmission of

the policy’s representation. An attacker can simply send a large number of email

messages and observe the results in an effort to discern the policy. Therefore it

is particularly important that the amount of feedback available to the attacker be

limited. Here we are not so concerned with feedback that can be obtained by out of

band channels, like a recipient phoning a sender when a message is received. There is

little we can hope to do about such signals and their bandwidth is typically relatively

low. What we do aim to provide is a guarantee that the system itself will not signal

whether a message is accepted by a policy when that acceptance depends on private

information in the policy. In-band signals of concern includes email system events the

sender can observe, such as the seizure of a bond or the change in a public reputation

value. Thus, while previous work on the protection of sensitive policy content such

as the UniPro system [39] has tended to focus on controlling access to the direct

representation of the policy, we take an information-flow approach by ensuring that

there is no dependence of the systems observable behavior on private policy content.

3.3 Policy Composition and Implementation

The descriptions of policies in the previous section yield specifications for how best

to serve the interests of the various principals in an email exchange, but they say

nothing about how such policies can be implemented in an incremental way on top

of the current infrastructure for email - namely the SMTP. Such an implementation

poses many challenges in the heterogeneous world of the Internet. Figure 3.6 outlines

our basic approach to address this ambitious mapping. For simplicity, third parties
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such as reputation servers are not shown in the diagram.

The most critical aspect shown in the diagram is a replacement for SMTP, and is

labeled “Extended SMTP” in the diagram. The partial “ladder diagram” for extended

SMTP shows, at a very high level, the SESP authenticating itself to the RESP,

accepting an MSP Policy from the receiving MTA, and then sending, delaying, or

deleting messages as specified by the MSP. (Alternatively, the SESP could choose

to violate the MSP, which could damage its reputation.) Details of the proposed

extension to the ladder diagram will be presented later.

Figure 3.6 also shows the enforcement points of the remaining five policies. At

the policy level, the left to right axis shows the successive applications of policies to

messages. At the protocol level, the left to right axis shows the successive entities

responsible for implementing the policies. In particular, the Sending Postman Policy
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(SPP) and Sender’s Policy (SP) are implemented with an engine at the SESP. We

propose to encode the SLAP of the RESP - the policy that governs how a RESP treats

a particular SESP, in a SLAP configuration that efficiently provides an appropriate

MSP to the SESP. Because this function occurs during an execution of Extended

SMTP, there are severe performance constraints on its implementation.

Postman functions at the RESP, including virus scanning and other hygiene func-

tions can be carried out offline from the Extended SMTP protocol itself, thereby

simplifying the performance demands. The output of the RPP evaluation is a prior-

ity queue specifying the message delivery order. Unlike the current SMTP, the RPP

queue may intentionally delay certain messages for the purpose of allowing reputation

sources like [23, 40] to weigh in before scheduling the messages for delivery. Finally,

we envision most MRAP policies being cached at the RESP. As an aid for end users,

one strategy to author MRAP policies could be to profile the users’ preferences in

messages that gets automatically converted to an MRAP policies for use in future

message transmissions. More sophisticated MRAP policies specifically reflect specific

end user preferences and may be reserved for more advanced users.

3.4 Chapter conclusion

Designing adequately expressive policy languages, with adequate expressive power

with respect to authorization, liveness, and fairness, suitable for email application

is the primary research issue of this disseration. These features must be balanced

against the requirement that they be implemented efficiently. In the case of portable

MSP, we need to assess the efficiency and usability issues associated with designs:

one alternative would transmit actual policy rules; another transmits references to
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standard sets of pre-defined policy rules. Some combination of the two may also be

appropriate.

A semantics of policies and their compositions should define the behavior of the

pipe at a suitable level of abstraction. A precise semantics is necessary so that we

can articulate the correctness requirements for the distributed implementation of the

various policies and the composition of their effects. Specifically, each policy must

map directly to one or more implementation components at the protocol level that

enforce it. In addition, the effect on message transmission at the policy level of figure

3.6 should match the effect at the protocol level.

In this chapter, we elucidate several abstract requirements and high level concerns

while solving the delivery decision problem. Because parameterizing the behavior of

the network with policies, email transmission becomes more complex and must be

carefully engineered. Next several chapters are devoted to each of these concerns and

collectively solve the problems introduced in this thesis till now.
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Chapter 4: The Formal Model of Policies

4.1 Introduction

Sender bias in SMTP protocol is usually offset by using several types of email control

mechanisms at the receiving end. However, automatic enforcement of restrictions on

transmission of email messages presents a dilemma: the enforcer faces a risk of screen-

ing out desirable messages. This is partly because unwanted messages, also known

as spam, are increasingly being camouflaged as acceptable messages, thereby making

filtration difficult on the basis of content. Most of us are more tolerant of receiving

unwanted messages than of losing desired ones, forcing us to make the acceptance

criteria more permissive. Techniques for expressing desirability of messages abound,

and we discuss prominent ones in the related work section. With these techniques,

recipients and other principals, such as recipients’ email-service providers, can express

diverse criteria to define message acceptability. However, this is of little help to the

sender or their service providers, who may be unaware of how documentation can

be added to a message to make it acceptable downstream. We aim to address this

shortcoming.

In the simplest solution, downstream principals provide the sender with some sort

of feedback about message acceptance requirements. Consider, for example, a policy

that allows messages ranked as likely spam (by a Bayesian filter) may nonetheless

be delivered, provided a reliable third party authenticates the sender. By providing
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this feedback, say, as a policy advertisement or as a suggested change to a rejected

message, senders can be given the opportunity to adequately document their messages

so they are delivered. We call this process, of providing relevant feedback to senders

and their agents for modifying rejected messages and the subsequent modification of

rejected messages before retransmission, message refinement.

The mushrooming of techniques purporting to control the delivery of unwanted

messages presents both opportunities and challenges. Their increasing number bears

evidence to the fact that there are many different aspects to the email control problem.

Yet each individual solution tends to address only a part of the problem, like, Bayesian

filters [30] only consider keywords in the message content, while captcha tests [4] check

for human initiation only, etc. The current approach of designing a new system for

every new scheme is clearly impractical and unscalable. Moreover, there is a lack of

autonomy in combining different techniques to suit the needs of a particular site. A

basic challenge in this area is to design a general purpose system to combine, support,

and enforce any and all mechanisms within the SMTP [1] framework, the default mail

delivery protocol. Such a system is also a prerequisite to a scheme that provides a

generic way to help refine messages.

We examine the policy framework discussed in previous chapter, designed to ad-

dress this challenge. This flexible framework for specifying message acceptance crite-

ria enables most existing email control techniques to be used in concert. The frame-

work allows each principal involved in message transmission to express policies, be

they for relaying messages to the recipient, for storing them in the mailbox, or ex-

pressing ‘refinement’ preferences. Based on the message attributes and content, these

policies determine whether a message is delivered, dropped, or rejected, and in the
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latter case, whether changes are suggested to more adequately document the message.

For example, an acceptance policy can state that a message must satisfy one of the

following conditions to be acceptable: ‘has a low score on a Bayesian filter’; ‘has evi-

dence of human initiation’; ‘the message sender is trustworthy’. In this case, a message

is authorized for delivery to its destination only if it is accompanied by documenta-

tion that shows it satisfies one of the three criteria. Policies that use conjunctions

of requirements can also be expressed. For example, (mail-server-authenticated

= true) ∧ (reputation ≥ 70%) ∧ (bond ≥ 5) requires simultaneous satisfaction of

requirements involving multiple email-control mechanisms. In this case, the sending

email server must be authenticated and have a reputation value exceeding 70%, and

the message must be bonded, which enables the recipient to be financially compen-

sated after accepting a message if he subsequently so chooses. Each mechanism will

provide its own basis of verifying associated message documentation. This could ei-

ther be, for example, a distributed reputation system [41], a monetary guarantee [3]

or a digital certificate [5].

In our approach, feedback about rejected messages consists of suggestions about

how to correct the deficiencies in a rejected message so that the acceptance criteria

may be satisfied. Because email messages are transmitted in several hops, messages

can be rejected at any hop. (Indeed one of goal of our research is to enable undesirable

messages to be recognized as early in the transmission process as possible [42].) Feed-

back is generated at the hop at which the message is rejected, and is communicated

upstream. Details of this scheme are presented later in section § 4.3.

Confirming that an email address is valid by providing feedback for messages ad-

dressed to it can result in the recipient being targeted with more unwanted messages.
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Additionally, while it is our aim is to make it possible to specify policies that cannot

be satisfied by tricking the system, in practice providing feedback to malicious senders

may help them craft undesirable messages with better attributes, so that they will be

accepted. By putting the decision whether or not feedback is provided under policy

control, these risks can be minimized. In essence, policies can assess the trustworthi-

ness of transmitters, and decide how much information, if any, should be disclosed to

them by way of feedback.

Here we focus on policies that determine which messages are acceptable and how

unacceptable messages could be better documented so as to make them acceptable.

In the approach we investigate, policies are constraint logic programs (CLP). The use

of constraints is particularly helpful when providing feedback to senders and their

agents about messages that are rejected.

To provide a uniform view within the policy, we model several forms of message

documentation as headers on the message itself. These values must be made available

within the program that is the policy. In addition, system environment parameters,

such as system load, time of day, and security-alert status must be available.

The most straightforward means of making such values available is through pa-

rameters passed in through queries to the system. In this case, these values are taken

as parameters by the predicates that define the interface to the policy used by the

mail system. However, fully parameterizing these predicates with message header and

content, as well as system parameters, raises concerns about tractability of evalua-

tion, as well as privacy of system parameters. For example, a Bayesian spam classifier

assessing message content clearly depends on the message content for evaluation. We

model mechanisms such as this spam recognizer as predicates in our policies. In the
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fully parameterized approach, message content is a parameter to the spam-recognizer

predicate. In a top-down program evaluation, such as is used by Prolog, such a

predicate needs to be evaluated only for input parameters that are available when

the use of the predicate is reached during evaluation. However, top-down evaluation

can perform so many redundant steps that it becomes intractable. In a bottom-up

evaluation, these redundant steps can be avoided. Yet in this case all true atoms

constructed with the spam-recognizer predicate must be calculated, which, given the

number of possible messages, is clearly impractical.

While it may be possible to address these concerns in other ways1, the approach we

consider here models the assignment of values by defining special-purpose predicates

whose models correspond to the current message headers and content, and the current

system-parameter values. These values are then referenced in the policy definition

by using these special-purpose predicates. Thus, in the approach considered here,

evaluation of these predicate instances are with respect to attribute values extracted

from email headers. In other words, each message and system state determines a new

evaluation of the predicates. This approach leads to several interesting and attractive

results, which we develop here. It remains a matter of future work to complete an

assessment of whether this approach is the most attractive possible.

The use of policies for email control requires changes to the SMTP protocol.

In particular, email-control techniques that require various kinds of challenges to

be presented to a sender [26, 27, 4] are difficult to support in the current SMTP

protocol. As argued earlier, changes are essential to obviate the need for designing

1For example, it may be possible to use a hybrid approach to evaluation, which combines features

of top-down and bottom-up evaluation [43].
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many protocols layered over SMTP for supporting different mechanisms. We suggest

appropriate extensions to the current protocol to satisfy such requirements. Through

our extensions we also achieve the capability of advertising policies upstream, which

can further help the senders and their agents in screening messages for transmission.

More details are presented later in chapter 7.

In the rest of this chapter we present the following topics. We begin with a flex-

ible policy language for expressing email control criteria involving a majority of the

existing email control mechanisms. We identify a constraint domain which supports

requirements involving existing control mechanisms. Next, we provide a logical eval-

uation procedure for making email-delivery related decisions. We present what is to

the best of our knowledge the first tractability result for evaluation of normal CLP

programs in the identified constraint domain. Finally, we present a novel scheme for

refining messages to meet precise acceptance criteria. We design a PTIME algorithm

to find a suitable refinement to rejected messages, supporting our argument that it is

practical to be implemented efficiently in user’s email agents.

4.2 The Formal Model

Policies specify acceptance conditions on message headers and content. In § 4.2.1 we

provide the syntax of the MSP and MRAP policies, as their format is required to be

universal [42] to permit policy advertisement. Formats of other policies like SLAP

are domain dependent. In § 5.2.2 we introduce our scheme for policy application and

message refinement for rejected messages. Policies in our model are constraint logic

programs [44]. Next we provide the syntax of policies that can control and refine

messages.
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4.2.1 Syntax

The policy language we use is presented next.

Definition 1 (Constraint domain). Constraint domain we consider is the finite in-

teger domain that supports standard interpretations of the following symbols: =, 6=,

≤, ≥. We denote our constraint domain by R. In addition, the constraint domain

supports interpretation of minimize(G, E) predicates defined in [?].

We use elements ofR to implicitly encode all alphanumeric constants like sender@abc.com,

recipient@xyz.com, etc.

Definition 2 (Predicates). Predicate symbols not interpreted by the constraint do-

main are partitioned into the following sets:

Special Predicates (SP) Nullary predicate symbols accept, allow and disallow, and

8-ary predicates revise, rAllow, and rDisallow.

Environmental Predicates (EP) Unary predicates - atrbFrom, . . ., atrbSesp, systLoad,

systTime, primmy-crm, primvirusScan, primRepService, primlumosRep, primlumosPriority

and primpriorityServer.

User Defined Predicates (UP) Such as whitelist, blacklist, partner, etc. (We pro-

vide examples of how UP predicates are used later in this chapter).

The arity of revise, rAllow and rDisallow corresponds to the number of headers

supported (6) and two system environment variables. Predicates and their meanings

are summarized in table 4.1

Definition 3 (Term). A term is a variable or a constant.
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Table 4.1: Predicates

Predicate/ Arity Description

atrbX/1 Various environmental predicates created from message

headers
systY /1 Various environmental predicates created from current sys-

tem state
primZ/1 Various environmental predicates created from the evalua-

tion of primitive mechanisms
whitelist/1 User defined predicate indicating a trusted sender
blacklist/1 User defined predicate indicating a ‘blocked’ sender
partner/1 User defined predicate indicating a business partner
allow/0 User defined predicate for acceptance condition

disallow/0 User defined predicate for rejection conditions
accept/0 System defined predicate that determines the acceptance of

a message
rAllow/8 User defined predicate indicating desirable message at-

tributes
rDisallow/8 User defined predicate indicating undesirable message at-

tributes
revise/8 System defined predicate for computing revisions for satis-

fying downstream policies

Definition 4 (Atom and Literal). An atom is of the form q(t1,. . ., tn) where q is

a predicate symbol or a primitive constraint and t1,. . ., tn are terms. A literal is an

atom (called a positive literal) or its negation (called a negative literal).

Definition 5 (Constrained atom). A constrained atom is a pair, represented as

c|A [45], in which c is a solvable constraint [44], A is an atom, and fv(c) ⊆ fv(A),

where fv(·) yields the set of free variables occurring in its argument. The set of con-

strained atoms is denoted by B.
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Definition 6 (Clause, Fact and Rule). A clause is of the form H ← B where H is an

atom (called the head of the clause), and B is a list of literals (called the body of the

clause). A fact is a clause in which B is an empty list or a list of literals constructed

using constraint predicates. A clause is called a rule otherwise.

Definition 7 (CLP Program). A CLP program is a set of clauses constructed from

the terms and predicate symbols introduced above.

Definition 8 (Query). A query Q is a list of literals.

Definition 9 (Program dependency graph). Let P be a CLP program and V be the

set of predicate symbols occurring in P. The program dependency graph of P is the

pair 〈V, E〉, E ⊆ V ×V in which, given p, q ∈ V , (p, q) is in the edge set E if and only

if there is a clause H ← B in P, in which H is p and there is a literal in B constructed

using q. The edge (p, q) is labeled ‘+’ (called a positive reference) if the literal, q, is

positive, and ‘−’ (called a negative reference) otherwise.

Definition 10 (Stratified program). A program P is stratified if no edge labeled ‘−’

in the program dependency graph of P occurs in a cycle.

The predicates of any stratified program, P , can be partitioned into disjoint sets

called strata with the following property: there is a partial ordering of the resulting

set of sets of predicates in which each clause of P that defines a predicate in any given

stratum can only contain those predicates defined in the same or lower strata, to be

in the body of the clause; and allows negative literals in the body that are defined

in a lower strata. We abuse the terminology slightly by also using “stratum” when

referring to the set of clauses of P that define predicates in a given stratum.
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Policy definitions

MSP and MRAP policies could be shared among the communicating agents. We next

provide their syntax. The other policies like SLAP, SPP, SP and RPP, etc., are not

shared among the principals and hence their syntax need not be universal, and can be

implementation specific. We define the complete syntax of all policies we introduce,

in the next chapter.

Definition 11 (MSP & MRAP Policy). An MSP or an MRAP policy is a stratified

program with the following strata:

• Stratum 1: Definition of facts defining the predicates in EP.

• Stratum 2: Definitions of UP predicates.

• Stratum 3: Definition of SP predicates allow, disallow, rAllow and rDisallow.

Negative literals are allowed in the body, however they must be constructed using

Stratum 0 or Stratum 1 predicates.

• Stratum 4: This stratum consists of one clause: accept()← allow(), ¬disallow()

• Stratum 5: This stratum consists of one clause: revise(X̃) ← rAllow(X̃),

¬rDisallow(X̃)

UP predicates defined in the Stratum 2 of MSP and MRAP policies may invoke

negative literals in their bodies, however, the use of negation is restricted, in that,

the set of UP predicate definitions must be stratified. Also, Stratum 5 uses vectors

of variables as arguments of predicates. This is to capture information on predicates

that can be refined. For predicates in SP, the definitions of allow and disallow
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are written by the policy author. The definitions of rAllow and rDisallow are

constructed from these automatically. The definitions of predicates in UP are also

written by the policy author. The remaining two clauses of the policy are the same

in all policies.

4.2.2 Encoding emails into the constraint domain

In this section we show how we encode emails into our constraint domain. We begin

by encoding email headers, defined next.

Definition 12 (Headers). Reserved constants that refer to message attributes are

called headers.

For simplicity, we consider only the following headers: Mail From, To, Date,

X-SESP, X-Bond and X-Auth, represented by, respectively, From, To, Date, Sesp,

Bond and Auth. This list can be easily extended.

We use H to denote the set of facts derived from message headers, like from, to,

etc. We use M to denote the set of facts that define current state conditions and the

evaluation of the primitive mechanisms, such as bayesian filters, virus-scans, etc. H

and M define environmental predicates (EP), consequently, Stratum 1 in MSP and

MRAP policies is the union of H and M and are generated automatically using the

allowed EP predicates.

Just prior to policy evaluation, H is generated from a message by a preprocessor

in the following way. Create a fact for each message header by introducing a clause,

i.e., atrbHeaderi
(X) ← ci, where Headeri is a meta variable whose value is a header

name and ci is a primitive constraint on the variable X, constrained by the header

value, for example, a bond attribute in a message, such as X-Bond in [0, 3] USD,
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is encoded as: atrbBond(X) ← X ∈ [0,3]. Note that this requires a change in how

message headers are specified, however, we expect this change to affect only the X-

header specification, i.e., a new X-header X-Bond:in [0,3] USD would mean that

message is bonded with value in [0,3] interval and the unit of bond is U.S. Dollars.

Headers not used in the policy are ignored. For headers used in the policy, but not

present in the message or present but with no values specified, policy-defined default

facts are used.

M is generated as follows. Similar to the construction of header-facts inH, current

state conditions at the recipient side are also expressed as facts, i.e., systSysV ariable(X)

← ci. Corresponding to each instance of a primitive mechanism is a single predicate

defined by a single fact that provides the result produced by that mechanism instance

on implicitly specified input. For example, if a particular CRM filter [30] (my-crm),

when applied to the message, returns the score value 1, then there will be one fact

in M of the form primmy−crm(1). Note that the restricted way in which primitive

mechanisms are used ensures that all relevant values can be pre-computed prior to

evaluation, so there is no need to “call out” to the mechanism. This enables us to

use a bottom-up semantics for evaluation.

4.2.3 Semantics

We now present a fixpoint semantics for CLP programs that is PTIME complex,

hence tractable, for the constraint domain we use in our email policies. It constructs

the semantics as the least fixpoint of an immediate-consequence operator due to

Fages [45]. As usual, the domain of this operator is the set of interpretations. An

interpretation I is a pair 〈I+, I−〉, in which I+ and I− are disjoint sets of constrained
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atoms.

In the following definitions, we assume that clauses are in the following standard

form: H ← c | B1, . . . , Bm, Bm+1, . . . ,Bn, where B1, . . . , Bm are positive literals,

Bm+1, . . . , Bn are negative literals, c is a constraint, and, except in c, no variable

occurs more than once. We also assume for the present that the function QE(·)

satisfies QE(c) = {c} for any constraint c. In section 4.5 below, we replace this

trivial definition of QE(·) with a more interesting definition that performs quantifier

elimination.

Definition 13. (Immediate-consequence function [45])

TP (I)= 〈T+
P (I), T−

P (I)〉 in which:

T+
P (I) ={c′|p(X)∈B: there exist a p(X)← d|A1, . . .,Am,¬Am+1, . . .,¬An ∈ P with

local variables Y, ci|Ai ∈ I+ for i ∈ [1,m] and cj|Aj ∈ I− for j ∈ [m+1, n] such that

c= ∃Y(d∧∧n
i=ici) is satisfiable and c′ ∈ QE(c)} and

T−
P (I) ={c′ |p(X)∈B: p(X)← dk|Ak,1,. . .,Ak,mk

, ¬Ak,mk+1,. . ., ¬Ak,nk
for every clause

with head p ∈ P and local variables Yk, there exist ek,1|Ak,1,. . ., ek,mk
|Ak,mk

∈ I−

and ek,mk+1|Ak,mk+1, . . ., ek,nk
|Ak,nk

∈ I+, such that c=
∧

k∀Yk(¬ dk ∨
∨nk

i=iek,i) is

satisfiable and c′ ∈ QE(c)}

Definition 14. (Ordinal powers of TP )

TP ↑ 0 = ∅; TP ↑ β + 1 = TP (TP ↑ β); TP ↑ α =
⊔

β<α TP ↑ β, in which α is a limit

ordinal and
⊔

β<α TP ↑ β = 〈⋃β<α(TP ↑ β)+,
⋃

β<α(TP ↑ β)−〉.

This construction requires of the constraint domain (R) to be admissible, meaning

that for any constraint (atom or constant) c, there exist c1, . . . , cn such that R |=
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¬c ↔ ∨n
i=1 ci where c, and each ci are primary constraints [45]. This is true of R,

because the complement of any interval is a union of intervals.

Definition 15 (Query Evaluation). Given program P and letting I=TP (∅) ↑ ω, the

answer constraint for query Q is

σa =
∨{σ: Q = c|A1,. . .,Am,¬Am+1,. . .,¬An., where each Ai is a clause in P, cu|Au

∈ I+ for u ∈ [1,m] and cv|Av ∈ I− for v ∈ [m+1,n] such that R |= σ, in which σ=

c∧∧n
r=1cr}

Message delivery is determined by evaluating the query Q = accept(). If the

answer constraint for Q is equivalent to false, the message is rejected. Otherwise, it

is accepted for delivery.

Example 1. Policy evaluation without feedback. Consider a message with only three

headers:

From: sender@abc.com (final); To: recipient@xyz.com (final); X-Auth: ’Password’(final)

Keyword ‘final’ in the headers indicates that the header cannot be changed. It is ex-

plained in more detail in section 4.3. Consider a simple MSP:

allow() ← atrbAuth(XAuth), XAuth = ‘PKI ′

This policy accepts only strongly authenticated messages. The fact defining atrbAuth that

is constructed from the message is:

atrbAuth(XAuth) ← XAuth = ‘Password′.

Since authentication provided in the message is inconsistent with that required in the policy,

the accept() query fails, and the message is rejected.

60



Definition 16 (Projection). We denote the projection [44] of a constraint c onto a

set of variables V by proj(c,V).

4.3 Message refinement

Messages rejected in the above evaluation may still get accepted, provided some

changes are made to them. Consider a strict policy that requires all messages to

carry a monetary bond [3]. A sender may not know this requirement beforehand, and

therefore, killing (i.e., silently dropping) such a message, as shown earlier may cause

dropping a desirable message. A better solution is to provide feedback to facilitate

appropriate documentation to the message such that the evaluation policy can be

satisfied. In our design such changes can be automatically enforced – by applying the

sender’s SP (send policy) and SESP’s SPP (postman policy), where senders mandate

their ESP’s to some attributes to the message to satisfy the downstream policy. SESP

can indicate this capability in the message by identifying headers that can be refined,

i.e., headers that cannot by changed are marked ‘final’, all others can be refined.

The clause setsH andM used when computing message refinements are generated

as follows. for each header that is marked ‘final’, An atrb fact is created in the same

manner used when determining whether a message is accepted. These facts constitute

H; no facts are created for non-final headers. We modify the original M by removing

syst facts. This allows the value of environment variables to be set by the policy.

With this change, policy evaluation can, for instance, inform the sender that the

message is acceptable, but that transmission cannot be completed under current

system conditions. Further, it can suggest when to retry transmission of an unaltered

message. As before, facts in M are constructed using the prim predicates for each
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primitive mechanism that require final header values or the content of the message.

The clauses for the predicates rAllow and rDisallow are constructed from those

for allow and disallow as follows. First, the head of each rAllow and rDisallow clause

contains one variable for each header as well as two system variables. We add an

equality between each of the header variables and the variable that appears in the

body atom constructed with the atrb predicate for the same header. So given the

vector of variables X̃ in the head, we introduce Xi = Y where atrbHeaderi
(Y ) occurs

in the original clause. Having done this, we then remove from the body any atoms

constructed using atrbHeaderi
for each non-final header i. For the system variables, we

add an equality between each of these variables and the variable that appears in the

body atom constructed with the corresponding syst predicate.

Example 2. Policy evaluation with message refinement

Message rejected in previous example can be refined if marked as follows:

From: sender@abc.com (final); To: recipient@xyz.com (final); X-Auth: ’Password’;

Here the SESP indicates that authentication can be upgraded, if required. atrb and

prim facts are added to the policy as described earlier. We ignore syst predicates in the

following. The rAllow predicate definition is:

rAllow(XFrom, . . . , XAuth) ← XAuth = ’PKI’, atrbFrom(sender), atrbTo(recipient).

The query succeeds and σa is given by XAuth = ’PKI’ ∧ Xfrom = sender@ abc.com ∧

XTo=recipient@xyz.com. This means that the message is acceptable if it is strongly au-

thenticated. This result is made available to the SESP to refine the message, if desired.

¥
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4.3.1 Feasible refinements

Example 2 shows that if the SESP is incapable of providing a PKI based authen-

tication of the sender, then it cannot document that the message is based on the

feedback. Therefore, we allow a variation in the refining strategy to only provide

feasible feedback. In this variation, the SESP is allowed to enumerate or provide a

range values from which a solution must be selected. In example 2, the SESP can

change the message as follows:

From: sender@abc.com (final); To: recipient@xyz.com (final); X-Auth: Password [Bio-

metric, MAC-Address, IP-Address]

In this message, the SESP attaches a set of feasible values to the headers that

can be refined further such as to Biometric authentication, etc. In general, atrb facts

are constructed for all headers here, with ‘final’ headers each corresponding to a

single fact in H, and ‘non-final’ headers generating possibly multiple facts, or facts

containing constraints rather than exact values. Again, the query Q = revise(X̃) is

used, as in the previous case.

4.3.2 Selection of a suitable fix

The result of message refinement feedback generated by RESP is evaluated at the

SESP to choose an optimum upgrade as it may involve monetary, computational or

memory based costs. Next we present a simple distance based approach to select a

minimum cost upgrade. We assume that the upgrade costs for equational constraints

are available through a table lookup at the SESP. For interval constraints, if the new
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interval and current one intersect, the cost of upgrading is 0, otherwise, the cost as-

signed is the cost incurred to get an overlap between the two intervals. For example,

to upgrade bond from [0,3] to [5,8], the cost is 5-3=2, but for upgrading [0,6], to [5,8]

the cost is 0. We model upgrade costs through a function f that takes an original

header and a revised header and returns a cost for upgrade. Original header values

are available as a conjunction of unary constraints in the message, denoted by σb.

selectFix(~X, σb, σa, f):
Input : List of headers X̃
Input : Rejected message constraints σb

Input : Answer constraint, σa

Input : A cost function f specified by the SESP
Output : A minimum cost fix to message
Let p = 0; Dp = ∞
For all disjuncts dj in σa

dist = 0
For each Xi ∈ X̃

dist = dist + f (proj (σb, Xi), proj (dj , Xi))
If (dist < Dp) then

p = j, Dp = dist
return dp

4.3.3 Policy control over feedback

Providing feedback for all rejected messages may be risky, as it can possibly lead

to undesirable scenarios. The primary risk involves confirming the email identity of

a recipient to a bulk-email business. Moreover, feedback may lead to undesirable

messages getting through. We allow policies to suppress, or limit the amount of

feedback provided. Amount of feedback provided depends upon the trustworthiness

of senders or their SESPs. Based on the trust assessment, simple rules, modeled on

MSP or MRAP syntax, can be used to control feedback. Prior history, distributed

reputations, certificates, and other types of message documentation can be used to
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gauge the trustworthiness of principals.

4.4 Examples

In this section we present several example policies that show how to combine var-

ious email control mechanisms in our syntax. The policies we present are simple,

non-recursive definitions for allow and disallow predicates, that use various other

predicates. However, more complex policies, as deemed fit at a recipient domain, can

be expressed in our language.

To combine different email control mechanisms, we use a predicate, suitably

named, to make a ‘call’ to that mechanism. For example, blacklist(Xfrom), whitelist(Xfrom)

return true if Xfrom belongs to the respective list and false otherwise. Similarly,

blocklist(X, URL) models a call to a blocklist server like RBL [36], spamNet(M)

calls SpamNet [22] for message M, lumosRep(X), lumosPriority(M, P) for Lumos at-

tributes [34], rep(X, URL, Val) for general reputation services, crm(M, Index) [30] for

calls to a spam filter. Example 3 presents some sample combinatorial MSP policies,

where M denotes the complete message, and other predicates have usual meanings.

Example 3. Combinations of available mechanisms

1. Lists [46, 36] with Monetary Bonds [3]

allow() ← atrbfrom(X), whitelist(X). (4.1)

allow() ← atrbfrom(X1), atrbBond(X2), X2 ≥ 2,¬blacklist(X1). (4.2)

allow() ← atrbBond(X), X ≥ 10. (4.3)

disallow() ← atrbfrom(X), blocklist(X, ‘surbl.org′). (4.4)

65



2. Whitelist with CRM [30] filter

allow() ← primmy−crm(I), I ≤ 30. (4.5)

allow() ← atrbfrom(X), whitelist(X). (4.6)

3. Authentication with reputations

allow() ← atrbAuth(X), primRepService(V ), V ≥ 5, X = ‘PKI ′. (4.7)

allow() ← atrbAuth(X), primRepService(V ), V ∈ [5, 8], X = ‘PKI ′. (4.8)

4. Virus Scanning with Lumos [34] reputations

disallow() ← primvirusScan(‘Sobig.F ′). (4.9)

allow() ← primlumosRep(X), X ≥ b. (4.10)

5. Better service for partner domains

allow() ← atrbAuth(X1), atrbSesp(X2), partner(X2),

X1 = ‘Password′. (4.11)

allow() ← atrbAuth(X1), atrbSesp(X2), partner(X2),

X1 = ‘PKI ′. (4.12)

disallow() ← atrbSesp(X1), systCurrTime(X2), X2 ∈ [9, 12],

¬partner(X1). (4.13)
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6. Allowing only high priority and sufficiently bonded mail

disallow() ← primlumosPriority(X), X ≤ a1. (4.14)

disallow() ← primpriorityServer(X), X ≤ a2. (4.15)

disallow() ← atrbBond(X), X ≤ a3. (4.16)

Policy combining whitelist/blacklist/blocklist with message bonds is shown in

rules 4.1 through 4.4 in example 3 above. This policy accepts a message if the sender

is in the whitelist (4.1) it will also accept the message if the message is bonded (for

$2.00) and the sender is not on recipient’s blacklist (4.2) the policy also accepts a

message irrespective of whether the sender is blacklisted or not, provided the message

has sufficient bond value ($10.00 in this case) while the policy disallows messages

from any sender on the specified blocklist (4.4). Rules 4.5 and 4.6 show a policy that

combines mail filter (CRM [30]) with a whitelist. This policy is quite helpful if a

recipient does not wish to lose messages from whitelisted senders to the mail filter.

Rule 4.5 essentially states the threshold for filtration. Rule 4.6 states that irrespec-

tive of the filter score, if the sender is a trusted person (whitelisted), then allow the

message to go through. Rules 4.7 and 4.8 combine authentication criteria with sender

reputations and filter scores. For instance, rule 4.7 states that if the sender has been

strongly authenticated (‘PKI’ based authentication) and his/her reputation score is

greater than 5 (say), then accept the message. Rule 4.8 amends rule 4.7 by giving a

range of acceptable values for the reputation score. Rules 4.9 and 4.10 constitute a

policy that combines the result of virus scanning with Lumos [34] reputations. Rule

4.9 states that a message should be rejected if the virus scan results state that the
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message contains ‘Sobig.F’ virus. Rule 4.10 states that only accept messages that

have a Lumos reputation score of greater than a threshold (b). Rules 4.11 through

4.13 show how better service is made available to business partners. Rules 4.11 and

4.12 declare that partner SESPs can send messages from senders who are ‘password-

authenticated’ or strongly authenticated (using PKI based authentication), i.e., the

choice is left to the sending domain. Rule 4.13 states that only partner domain’s mail

servers can deliver mail between the hours of 9 am to 12 am. Finally, section 6 (rules

4.14 through 4.16) shows a stringent policy that allows very limited messages. Rule

4.14 states that all low priority messages (Lumos [34] priority less than a threshold,

say a) should be rejected. Similarly, rule 4.15 states that low priority messages (pri-

ority fixed by a separate priority server) should be rejected; while rule 4.16 states

that all messages with a bond value less than threshold (a3) be rejected.

4.5 Evaluation and Complexity

In this section we show that the bottom up evaluation semantics is tractable. Ad-

ditionally, the worst case time for computing σa and the worst case complexity for

selectFix is PTIME.

In order to bound the complexity of calculating TP ↑ ω we will eliminate quantifiers

in computed constraints, thereby limiting those constraints to ones that appear in

the policy. Therefore, we restrict TP to a smaller, but relevant subset, through an

alternate definition of QE introduced below. This will induce the definition of TP

that is used in the complexity results below.

Li and Mitchell [47] show that R is linearly decomposable, i.e., there exists a

set C′ of basic constraints about a variable for any set of constraints C about the
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same variable, such that the conjunction of any set of constraints in C ∪ C′ can

be represented by a disjunction of constraints in C′ and in which the size of C′ is

linearly bounded by the size of C. Because R admits the negation symbol, C′ in our

framework must be extended to include additional constraints to cover the entire

constraint domain. Although the language allows a large set of constraints C, only a

small subset is used in the evaluation. Hence, the size of the policy gives a stricter

bound on the size of C′, i.e., |C′|≤d|P|, for a constant d.

Lemma 1. Policy constraint domain admits existential quantifier elimination.

Proof sketch: This follows from a similar theorem in [47]. Consider an arbitrary ex-

istential constraint. Any two constraints in the same variable, are either inconsistent,

or the same (in C′). If inconsistent, the complete constraint is inconsistent, otherwise,

we can reduce the original constraint by retaining only one of them. Hence, the given

constraint can either be reduced to false or a set of unary constraints, each in a

different variable. We can simply drop the existentially quantified constraints. ¤

Lemma 2. Policy constraint domain admits universal quantifier elimination.

Proof sketch: Consider an arbitrary constraint c in DNF form, universally quantified

on some variables Yk. Consider proj (c, Yi)= cYi
. Each disjunct in cYi

is either false

and can be removed, or reducible to a single unary constraint. If cYi
is in R, by

sorting it’s disjuncts on lower bounds of intervals and inspecting adjacent pairs, it

can be verified that it “covers the entire domain” and hence is equivalent to true

thereby allowing us to drop ∀Yi from c; otherwise c is reduced to false. ¤

The worst case time to evaluate the proj function is PTIME due to the absence
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of function symbols [44]. Clearly, quantifier elimination reduction has PTIME com-

plexity. We redefine QE, such that it accepts any constraint in R as an argument,

calculates its quantifier free DNF form in PTIME and returns the set of it’s disjuncts.

Thus, number of constraints calculated by TP ↑ ω can be bounded.

Theorem 1. Assuming the number of variables in any literal in policy P is bounded

by a constant, K, the worst-case complexity for computing σa is |P|(d|P|)K, where d

is a constant.

Proof sketch: TP (I), and inductively TP ↑ ω, only compute constrained atoms

composed of atoms in the heads of clauses in the policy and constraints defined over

their variables. The number of atoms, NA, is bounded by the size of the policy,

NA≤|P|. If the size of the set of constraints is S, then NS, the number of constraints,

is less than or equal to SK . S is given by |C ′| ≤ d|P|. Hence, NA×NS ≤ |P|(d|P|)K

¤

As described earlier, the maximum number of headers that can be refined, |X|, is

negotiated between the SESP and RESP before the transmission of messages begin.

Hence, K, the maximum number of variables in any literal is fixed. Therefore, even

though K appears as an exponent in complexity analysis, the worst-case running time

is still PTIME.

Theorem 2. Worst case complexity for selectFix algorithm is PTIME. ¤
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4.6 Chapter conclusion

In this chapter, we have proposed a CLP based policy syntax and semantics to express

and enforce message acceptance preferences of the principals involved in email mes-

sage transmissions. Our modeling enables a principal to effectively combine existing

email control techniques to express diverse acceptance criteria, which can be precisely

enforced without the risk of losing desirable messages, assuming that the feedback

provided to a sender is utilized in refining rejected messages. This approach is a vast

improvement over the current practice where desirable messages are discarded if they

get flagged by spam filters. Though, in practice, an email message may use more than

three hops to reach its destination, we consider three logical hops, corresponding to

the control points. For the case when intermediate servers exist, several methods

can be employed. For example, only designated servers evaluate policies, while other

servers merely relay messages and policies in either direction, or, intermediate servers

play the role of the missing party, etc.

In later chapters, we propose extensions to the SMTP protocol that enable our

method to use most email control mechanisms, uniformly. Consequently, we are able

to support a policy-controlled policy disclosures. This complements the basic idea

of message refinement, by providing trusted senders an explicit criteria for message

acceptance. This risks in leaking private information, such as, content of ESP main-

tained blacklists, whitelists etc., but communicable policies can be sanitized before

they are communicated, as shown later. With out of band policy disclosures, concerns

over bandwidth required to transmit large policies can be addressed.

71



Chapter 5: A Formal Model for Generalized

Messages

5.1 Introduction

In this chapter we generalize the formal model introduced in the last chapter. The

aim here is to present an end to end logical model of message transmission, i.e., we

extend policy syntax to allow specification of all six policies introduced in chapter 3;

and show how policy evaluations can aid/prevent the delivery of desirable/undesirable

(resp.) messages. In other words, actions like selectFix, refine, reject, accept, etc.,

discussed previously will be formalized into a single logical framework. Intuitively,

the system that we describe here can be considered as a collection of constraint logic

programs that are to be run at appropriate agents. These clusters, called modules,

interact with each other by exporting and importing predicates (cf. Maher [48]),

just like traditional distributed systems export interfaces for invocation of imperative

procedures. The collection of these modules is called a module network, formalized

later. The overall logical framework is represented in figure 5.1).

Figure 5.1 pictures a module network comprising of four policies: SP, SPP(= SPP-

DM ∪ SPP-RM), MSP and MRAP. Each module shown interacts with other modules

by importing or exporting predicates. Each directed arrow identifies the source and

destination of the predicate that is identified by the arrow label(s). These interactions

are designed to provide the extended SMTP functionality, i.e., support for expressing
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apply()

apply()

selectFix()

1st Attempt
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apply()
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SPP

SPP

selectFix()

headers()

message()

headers()

message()

Figure 5.1: Interaction of policies for message transmission

email-control preferences, support for temporarily rejecting a message, support for

refining a message, and support for selecting appropriate option among the set of

ways to fix a temporarily rejected message. We don’t support policy advertisement

here for obvious reasons. The top-level query is ‘accept()’, which forms the interface to

the module network. A message is represented as a set of facts in the SPP-DM, SPP’s

delivery module. SPP-DM exports ‘message()’ and ‘header()’ predicates to MRAP

and MSP policies, respectively. MSP and MRAP can ‘accept()’ a message or reject it

by exporting ‘revise()’ predicate to SPP-RM, the revision module. SP’s ‘canChange()’

predicate indicates what changes can be applied. Using the ‘canChange()’ predicate,

SPP-RM computes an inexpensive revision, by using the ‘selectFix()’ predicate. The

revised message is then enqueued for retransmission. The ‘1st Attempt’ and ‘2nd

Attempt’ labels denote initial transmission and retransmission of a revised message

to emphasize the fact that the predicate communication graph is acyclic. In essence,

a re-attempt can be treated as a new message.
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5.2 Formal Model

5.2.1 Syntax

Logical elements like terms, constraints, etc., are usually defined (please refer to

chapter 4 definitions 1 –10); here we extend those definitions to generalize the formal

model.

Definition 17 (Predicates). Predicate symbols (described in tables 5.1, 5.2, and 5.3) are

partitioned into following sets:

• Required local predicates (RL) (See table 5.1)

• Import-Export predicates (IE) (See table 5.2)

• Optional local predicates (OL) (See table 5.3)

The intuitive meanings of predicates introduced in definition 17 are presented in

tables 5.1,5.2,5.3. Readers may wish to peruse the table as they read the definition

above.

Definition 18 (Clause, Fact, Rule). A clause is of the form H ← B where H is an

atom, and B is a list of literals. A clause is called a fact if B = λ (empty list), and a rule

otherwise.

Definition 19 (Policy Module). A policy module (or simply a module), MP , is a set

of clauses PP with three disjoint sets of predicates: the local predicates, LocP , the exported

predicates, ExpP , and the imported predicates ImpP . We require that the head of clauses in

PP be from LocP ∪ ExpP .
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Table 5.1: Required Local Predicates (RL)

Predicate/ Arity Description

allow/6 defines acceptance criteria; arguments correspond to header

values and delivery iteration
disallow/6 defines rejection criteria, same arguments as allow
rAllow/6 acceptable revised header tuples

rDisallow/6 unacceptable revised header tuples
Env/2 sets non-revisable header variable to the value given in the

message
checkEnv/6 collects header values in the original message
fixEnv/6 collects non-revisable header values

icost/4, cost/4 cost for revising a header H with having value R1 to new

value R2

total/13 total cost for revising headers
−→
R1 to

−→
R2

selectFix/6 computes a low-cost revision to a message
relay/7 defines criteria for relaying a message; arguments corre-

spond to header values, content and delivery iteration
norelay/7 defines criteria for dropping a message; same arguments as

relay
deliver/7 combines relay and norelay

canChange/2 permits change to header value
nHeader/2 associates header names with values

Next we define the policy modules that we construct using the above syntax. In

the following, we abuse the terminology at times and call an atom a predicate (to be

able to discuss predicates and their arguments).

Definition 20 (MSP policy module). An MSP policy module MMSP, is given by 〈ImpMSP,

ExpMSP,LocMSP,PMSP〉, in which ImpMSP= {header, nonFinal, sysV ari, primMechj}, ExpMSP={

accept, revise}, LocMSP={allow, disallow, rAllow, rDisallow, checkEnv, fixEnv, Env} ∪ OL

predicates and PMSP, a set of facts and stratified [49] rules, which has four strata:
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Table 5.2: Import-Export Predicates (IE)

Predicate/ Arity Description

accept/6 combines allow & disallow, with same arguments as allow
revise/12 combines rAllow & rDisallow
header/2 associates header names with original values
content/1 associates ‘content’ with message provided value
message/7 associates header names and ‘content’ with values
nonFinal/1 True if header can be revised
sysvar/2 associates system variable ‘var’ to current value
primmech/2 associates computation of ‘mech’ to the computed value

Table 5.3: Optional Local Predicates (OL) (Examples)

Predicate/ Arity Description

whitelist/1 True if argument is whitelisted
blacklist/1 True if argument is blacklisted
partner/1 True if argument is a partner

• Stratum 0: Definitions of RL predicates: checkEnv(
−→
X ), fixEnv(

−→
X ) and Env(X,Y),

where
−→
X = XFrom, . . ., XAuth. These are as follows:

checkEnv(
−→
X ) ← header(From,XFrom), header(To,XTo),

header(Date, XDate), header(Sesp,XSesp),

header(Bond, XBond), header(Auth,XAuth). (5.1)

fixEnv(
−→
X ) ← Env(From,XFrom), . . . , Env(Auth,XAuth) (5.2)

Env(H, XH) ← nonfinal(H) (5.3)

Env(H, XH) ← header(H, XH) (5.4)

• Stratum 1: Definitions of OL predicates
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• Stratum 2: Definition of following RL predicates: allow(
−→
X ), disallow(

−→
X ), rAllow(

−→
X )

and rDisallow(
−→
X ). In addition to Strata 0,1 predicates, most of IE predicates can be

used in the body of the defined rules, except content(X), message(
−→
X ), and primmech(X,

Y) predicates. As a further restriction, allow and disallow predicates cannot use fix-

Env or Env predicates. rAllow and rDisallow are constructed from allow and disallow

predicate definitions in the following manner. For each allow (resp., disallow) rule,

a rule with rAllow head (resp., rDisallow) is generated with checkEnv replaced by

fixEnv.

• Stratum 3: RL predicate accept, defined as, accept(
−→
X ) ← allow(

−→
X ), ¬disallow(

−→
X );

• Stratum 4: RL predicate revise, defined as, revise(
−→
X,
−→
Y ) ← checkEnv(

−→
X ), ¬accept(

−→
X ), rAllow(

−→
Y ), ¬ rDisallow(

−→
Y ).

Note that constraints do not occur in the rules (5.1– 5.4) as Env, checkEnv, and

fixEnv predicates are used to set up the environment, i.e., the values of headers

provided in the message. Constraints on variables are expressed in the rest of the

policy. Negation is used in a limited way, such as, in the definitions of system defined

predicates accept, deliver, or with allow and disallow, etc. Negation can be

used in OL predicates, provided some conditions are met. Primarily, OL predicate

definitions must be stratified according to the following restrictions (i) can positively

refer to atoms whose predicate symbols are defined in the same or lower OL strata,

and atoms in Stratum 0 (ii) can negatively refer to atoms whose predicate symbols

are defined in a lower OL strata and atoms in Stratum 0. The OL strata forms a

substrata of Stratum 1.

Definition 21 (MRAP policy module). An MRAP policy module, MMRAP is given by
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〈ImpMRAP, ExpMRAP,LocMRAP,PMRAP〉, where

1. ImpMRAP={ content, message} ∪ ImpMSP,

2. ExpMRAP= {accepta, revisea},

3. LocMRAP = {allowa, disallowa, rAllowa, rDisallowa, checkEnva,fixEnva,Enva} and

4. PMRAP is a set of stratified clauses, with the following strata (all Loc and Exp predi-

cates have been subscripted to prevent name collisions with MSP policy):

• Stratum 0: Definitions of RL predicates checkEnva(
−→
X ), fixEnva(

−→
X ) and Enva(X,Y),

as defined in the MSP stratum 0.

• Stratum 1: Definitions of OL predicates.

• Stratum 2: Definitions of the following RL predicates: allowa(
−→
X ), disallowa(

−→
X ),

rAllowa(
−→
X ) and rDisallowa(

−→
X ). All IE predicates can be used in the body of the

defined rules. MSP restrictions on use of fixEnva apply. rAllowa, rDisallowa are

constructed as shown in MSP stratum 2.

• Strata 3 and 4: RL predicate accepta(
−→
X ) (Stratum 3) and revisea(

−→
X,
−→
Y ) (Stratum

4), defined similar to the corresponding predicate definitions in MSP strata 3 and 4.

Definition 22 (SP policy module). SP policy module, MSP = 〈ImpSP, ExpSP,LocSP,PSP〉,

in which ImpSP =∅, ExpSP={ canChange}, LocSP =∅ and PSP, is a set of rules or facts

that define canChange(X,Y) clauses.

Definition 23 (SPP). SPP consists of two modules:
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SPP-DM: Delivery module Delivery module, MSPP-DM = 〈ImpSPP-DM, ExpSPP-DM, LocSPP-DM,

PSPP-DM〉, in which ImpSPP-DM={canChange}, ExpSPP-DM={header, content, mes-

sage, nonFinal}, LocSPP-DM={relay, norelay, deliver} and PSPP-DM, consists of fol-

lowing strata of rules:

• Stratum 0: Facts - header(X,Y), content(X) and nonFinal(X) and definition of

message(
−→
X , C) predicate: message(

−→
X, C)← header(From, XFrom), . . . , header(

Auth, XAuth), content(C); where
−→
X = XFrom, . . ., XAuth.

• Stratum 1: Definition of RL predicates relay(
−→
X , C) and norelay(

−→
X , C). Def-

initions can use IE predicates and lower strata predicates in the body.

• Stratum 2: Definition of SP predicate deliver(
−→
X , C), defined as, deliver(

−→
X, C)

← relay(
−→
X, C), ¬norelay(

−→
X,C)

SPP-RM Revision module Revision module, MSPP-RM=〈ImpSPP-RM,ExpSPP-RM,LocSPP-RM,PSPP-RM〉,

in which ImpSPP-RM={revise, revisea}, ExpSPP-RM= ∅, LocSPP-RM= {cost, icost, to-

tal, selectFix} and PSPP-RM, a set of rules that define selectFix(
−→
X ), total(

−→
X,

−→
Y, Z),

cost(H,X,Y,C) and icost(H,X,Y,C) predicates. The icost(H,X,Y,C) predicate is de-

fined by a collection of facts that define a cost C to change header value X to Y. The

predicates nHeader and cost are defined as (maxInt is the largest integer in FD):

cost(H, X, Y, C) ← canChange(H, Y ), icost(H, X, Y, C) (5.5)

cost(H, X, Y, maxInt) ← ¬canChange(H, Y ) (5.6)

nHeader(H, XH) ← selectF ix(XFrom, . . . , XH , . . . , XAuth) (5.7)

nHeader(H, XH) ← ¬selectF ix(XFrom, . . . , XH , . . . , XAuth),

nHeader(H,XH) (5.8)
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Definition 24 (Supporting modules). Supporting policy modules include the system

module, a four tuple: 〈∅, {sysvari}, ∅, Fs〉, and primitive mechanisms, which are given by

following forms of 4 tuples: 〈{header(h,Xh)}, {primmechi}, ∅, Fp〉.

The sets of clauses (Fs, etc.) in the supporting modules are essentially a set of

facts. In practice, these are constructed at evaluation time based on system envi-

ronment conditions. The number of supporting modules varies depending on the

predicates used in the MSP and the MRAP modules. We use a set SMn, to repre-

sent all the supporting modules whose predicates are imported by the MSP and the

MRAP modules.

Example 4 (MSP or MRAP policy module). Consider the Stratum 3:

allow(
−→
X ) ← checkEnv(

−→
X ), whitelist(XFrom). (5.9)

disallow(
−→
X ) ← checkEnv(

−→
X ), blacklist(XFrom). (5.10)

allow(
−→
X ) ← checkEnv(

−→
X ), XAuth = PKI. (5.11)

Rule 9 says that a message is acceptable if the sender is in the recipient’s whitelist. Rule 10

says that a message is unacceptable if the sender is found to be on the recipient’s blacklist.

Rule 11 says that a message is acceptable whenever the message has been strongly authen-

ticated. Together, the rules allow emails from senders who are whitelisted or who strongly

authenticate their messages, and block messages from blacklisted senders.

Example 5 (SP policy module).

canChange(Bond, C) ← C < 5 (5.12)

canChange(Auth, ‘PKI ′) ← (5.13)
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Rule 12 says that if required, a bond of value less than 5 can be applied to the outgoing mes-

sage. Similarly, fact 13 says that sender’s private key can be used to add digital signatures

or other forms of PKI based authentication.

Example 6 (SPP). A simple delivery module (SPP-DM):

relay(
−→
X,C) ← message(

−→
X,C),¬primNortan(C) (5.14)

relay(
−→
X,C) ← message(

−→
X,C),¬primcrm2(C, X), X < 0.3 (5.15)

Rule 14 says that if the message is found free of any virus, it can be delivered. Rule 15

states a message ranking low on the spam filter, can be delivered. Together the rules require

a message to undergo either a virus-scan or a filtering process to be allowed delivery.

A simple revision module (RM):

total(
−→
R1,

−→
R2,

−→
C ) ← revise(

−→
R1,

−→
R2), cost(From,R1,From, R2,From, C1), . . . ,

cost(Auth,R1,Auth, R2,Auth, C6) (5.16)

selectF ix(
−→
R2) ← minimize(total(

−→
R1,

−→
R2,

−→
C ), C1 + . . . + C6). (5.17)

Rule 16 shows how to calculate the costs to revise a message using the cost predicate and

vectors
−→
R1,

−→
R2 whose individual elements are R1,From, R2,From, etc. and Cj is the cost for

changing R1,j to R2,j. Also,
−→
C = C1,. . ., C6. Rule 17 calculates the minimum cost change

by minimizing the total cost of revision.

Definition 25 (System of policy modules). A system of policy modules, Γ, is given by

a finite set of policy modules, indexed by I. Thus Mi ranges over modules in Γ for i ∈ I. For

any i, j ∈ I, i 6= j, we have Loci ∩ Locj = ∅ ∧ Expi ∩ Expj = ∅. For such i, j we write i

@Γ j if Expi ∩ Impj 6= ∅. Letting @∗
Γ denote the transitive closure of @Γ, we require that ∀
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i ∈ I, i 6@∗
Γ i (irreflexivity), i.e., the relation @∗

Γ is a partial order.

Definition 26 (Complete system of policy modules). A system of policy modules is a

complete system of policy modules if ∀ i ∈ I Impi ⊂
⋃

j∈I∧j 6=i Expj

Theorem 1. A set of policy modules consisting of one of each policy module kinds:

SP, SPP-DM, SPP-RM, MSP, MRAP and SMn forms a complete system of policy

modules.

Proof: We give an informal proof to show that the set of policy modules Γ1 =

{MSP, MSPP-DM, MSPP-RM, MMSP, MMRAP} ∪ SMn satisfies all the criteria to be a

complete system of policy modules. Following properties can be ascertained in a

straightforward manner.

1. Firstly, for each pair of distinct policy modules Mi and Mj (i, j range over an

index I1 of Γ1), Loci ∩ Locj = ∅ ∧ Expi ∩ Expj = ∅ holds.

2. Secondly, the relation @Γ1 is irreflexive and transitive (i.e., the condition ∀ i ∈

I1, 6 ∃ k1,. . .,kn ∈ I1 such that i @∗
Γ1

i, can be easily verified).

3. Finally, to see the completeness property, we construct a set
⋃

j∈I1
Impj and

verify that
⋃

j∈I1
Impj ⊂

⋃
k∈I1

Expk. ¤

Notation 1 (System of email policy modules). A complete system of email policy mod-

ules is represented by Γem, which is given by the set {Mi,SMj | i ∈ I1 and j ∈ I2}, where

I1 = {SP, SPP-DM, SPP-RM, MSP, MRAP} and I2 = {1, . . ., k}, SM1,. . ., SMk ∈ SMn

and each Mi, SMj satisfies the appropriate definitions, 9 – 13, above. The combination of

these indices is represented by Iem = I1 ∪ I2.
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Theorem 2 (Stratification [49]). ∀ i ∈ I, the sets Pi and
⋃

i Pi are stratified.

Proof: Stratification for MSP may be obtained through the following level map-

ping [49, 50] `.

1. ` assigns imported predicate headers, nonFinal, primMechj
and systV ark

, to the

level 1.

2. Predicates checkEnv, fixEnv and Env are assigned the level 2;

3. 3 is assigned to all OL predicates;

4. 4 is assigned to the RL predicates defined in Stratum 2 of the policy;

5. 5 is assigned to accept and 6 to revise.

MRAP Stratification is obtained in a similar manner as above, with the addition of

message, content, primNortan and primcrm1 to level 1.

Following level mapping, `, assigns strata to SPP predicates as follows: 0 is as-

signed to header, content, nonFinal, and icost. Level 1 is assigned cost. Level 6

is assigned to the IE predicates revise, revisea and RL predicates total, selectFix;

nHeader is assigned the level 7; relay, norelay to 8 and deliver is assigned to level 9.

The level mapping for SP is trivial, with canChange being assigned the level 0.

Similarly, all predicates defined in SMn modules are assigned to 0. The level mapping

for
⋃

i Pi is simply the union of the level mappings for individual policies. ¤

5.2.2 Semantics

We use three-valued Kunen-Fitting (or Kripke-Kleene) [51] semantics, for interpreting

our CLP programs. We use constructive negation [52] as proposed by Fages [45]. We
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first repeat some standard definitions as they appear in [51] and are repeated in [53].

Definition 27 (P∗, TP and ΦP ↑ operators). Suppose P is a policy module, and let P∗

be all ground instances of clauses in P. We now define two and three valued truth lattices

to be 2 = 〈{T,F}, <2〉 and 3 = 〈{T,F,⊥} <3〉 respectively, where T, F and ⊥ are taken

to mean true, false and unknown truth values. Partial orderings <2 and <3 satisfy F <2

T and ⊥ <3 T, ⊥ <3 F respectively. A mapping V from the herbrand base of P to 2 or

(respectively 3) is said to be a two-valued (respectively a three-valued) valuation of P. Any

valuation is naturally extended to negative literals according to the following interpretation

of negation: ¬T = F, ¬F = T and ¬⊥ = ⊥. Also, α ∨ β = T if α = T or β = T; α ∨

β = F if α = F and β = F; and α ∨ β = ⊥ otherwise. ∨ extends pointwise to valuations.

Given a valuations Vl and Vi, the two and three valued immediate consequence operators

T Vi
P (Vl, Vi) and ΦVi

P (Vl, Vi) are defined as follows:

TVi
P (Vl,Vi): TVi

P (Vl,Vi) = W is defined as

• W(H) = T if there is a ground clause H← B in P∗ such that Vi(Bk) = T for all Bk ∈

B constructed using a predicate in ImpP and Vl(Bm) = T for all Bm ∈ B constructed

using predicates not in ImpP .

• W(H) = F otherwise.

ΦVi
P (Vl,Vi): ΦVi

P (Vl,Vi) = W is defined as

• W(H) = T if there is a ground clause H← B in P∗ such that Vi(Bk) = T for all Bk ∈

B constructed using a predicate in ImpP and Vl(Bm) = T for all Bm ∈ B constructed

using predicates not in ImpP .

• W(H) = F if for every ground clause H← B in P∗, Vi(Bk) = F for some Bk ∈ B

constructed using a predicate in ImpP or Vl(Bm) = F for some Bm ∈ B constructed
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using predicates not in ImpP .

• W(H) = ⊥ otherwise.

Now we define bottom-up semantics for both TP and ΦP , where Ψ stands for either of them

in the following:

• ΨVi
P ↑ (0) = Vfalse, where Vfalse assigns F (false) to all instantiated atoms.

• ΨVi
P ↑ (α + 1) = ΨVi

P (ΨVi
P ↑ (α), Vi) for every successor ordinal α.

• ΨVi
P ↑ (α) =

∨
β<α (ΨVi

P ↑ (β)) for limit ordinal α.

Definition 28 (Bottom-up semantics). Let Pi ∈ Γ be a policy module and Φ be the three

valued consequence operator as defined above. We let ΦVi
Pi
↑ (ω) be the semantics of P.

Definition 29 (Projection operator). Given a valuation V and a set of predicates P

such that V is defined over atoms constructed using predicates in P and possibly some

other predicates, projection V|P is the valuation defined over only atoms constructed using

predicates in P and having the same value as V on those atoms.

An example MSP Evaluation

Next we present a simple MSP policy module evaluation in an example.

Example 7. Policy module evaluation without feedback

Consider a message with only three headers:

Mail From: sender@abc.com (final); Rcpt To: recipient@xyz.com (final); X-Auth: ’Pass-

word’(final);

The Keyword ‘final’ in the headers indicates that they cannot be revised. We show
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the evaluation of the module described in example 4 next. We assume that the sender

does not belong to either the whitelist or the blacklist. In the ΦVi
PMSP

computation, pre-

sented in table 5.4, we omit the ‘@abc.com’ part in sender address, and predicates like

rAllow, rDisallow, revise and fixEnv. We use meta-variable −→x to refer to a tuple of con-

stants, i.e., header values. Also, we only show the whitelist/blacklist predicate instances

for sender@abc.com.

Table 5.4: ΦVi
PMSP

calculation for message acceptance

Ord W (H)=T W (H)=F
1 {cHeader(Auth,‘Password’),

cHeader(From, ‘sender’), . . . }

{whitelist(‘sender’), black-

list(‘sender’),. . . , nonFinal(Auth), nonFi-

nal(From),nonFinal(To)}
2 {cHeader(Auth,‘Password’),

cHeader(From, ‘sender’), . . . ,

checkEnv(−→x ) }

{whitelist(‘sender’), black-

list(‘sender’),. . . , nonFinal(Auth), . . . }

3 {cHeader(Auth,‘Password’),

cHeader(From, ‘sender’), . . . ,

checkEnv(−→x ) }

{allow(−→x ), disallow(−→x ),

whitelist(‘sender’), blacklist(‘sender’),. . . ,

nonFinal(Auth), . . . }
4 {cHeader(Auth,‘Password’),

cHeader(From, ‘sender’), . . . ,

checkEnv(−→x ) }

{ accept(−→x ), allow(−→x ), disallow(−→x ),

whitelist(‘sender’), blacklist(‘sender’),. . . ,

nonFinal(Auth), . . . }

The fixpoint is reached at ordinal 4. Since ΦVi
PMSP

↑ (4) cannot prove accept, the message

is rejected. The root cause is that the authentication provided in the message is inconsistent

with that required in the policy.
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Message revision

The messages rejected, as in example 7, may be desirable to the recipient, and should

not be dropped without letting the sender know why they were dropped. If this

information is provided to the SPP, it can appropriately revise an initially rejected

message and, thus, successfully deliver it. To do so, we require a minor change in

how messages are documented. Message headers are required to include a qualifier,

namely, ‘final’, for every header that cannot be revised. This indicates to the MSP

or the MRAP which headers can be revised. This documentation is captured by

the nonFinal(H) atom. Using the fixEnv(
−→
X ) atom in the definitions of constructed

predicates rAllow(
−→
X ) and rDisAllow(

−→
X ), policy-desired constraints can be captured

in revise predicate. Ground instances of revise are exported by the evaluating module

to indicate to the SPP, the desired documentation in a rejected message.

Example 8. Policy module evaluation with message revision

Message rejected in example 7 can be revised if marked as follows:

Mail From: sender@abc.com (final); Rcpt To: recipient@xyz.com (final); X-Auth: ’Pass-

word’;

Here the SESP indicates that authentication can be upgraded, if required. Next we show

the evaluation of the policy rules to revise this rejected message. The ΦVi
PMSP

computation

is presented in table 5.5. The fixpoint is reached at ordinal 5 and ΦVi
PMSP

↑ (5) proves a

revise(
−→
X ,

−→
Y ) atom.
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Table 5.5: ΦVi
PMSP

calculation for message revision

Ord W (H)=T W (H)=F

1 {nonFinal(Auth), cHeader(From,‘sender’),

cHeader(To,‘recipient’),

cHeader(Auth,‘Password’)}

{nonFinal(From), nonFinal(To), whitelist(sender), black-

list(sender), . . . }

2 {nonFinal(Auth), cHeader(From,‘sender’),

. . . , checkEnv(−→x ), Env(From,‘sender’),

Env(To,‘recipient’), Env(Auth, )}

{nonFinal(From), nonFinal(To), whitelist(sender), black-

list(sender), . . . }

3 {nonFinal(Auth), cHeader(From,‘sender’),

. . . , checkEnv(−→x ), Env(From,‘sender’), . . . ,

fixEnv(−→x )}

{allow(−→x ), disallow(−→x ), nonFinal(From), nonFinal(To),

whitelist(sender), blacklist(sender), . . . }

4 {nonFinal(Auth), cHeader(From,‘sender’),

. . . , checkEnv(−→x ), Env(From,‘sender’), . . . ,

fixEnv(−→x ), rAllow (−→x )}

{allow(−→x ), disallow(−→x ), nonFinal(From), nonFinal(To),

whitelist(sender), blacklist(sender), . . . , accept(−→x ), rDisallow

(−→x )}
5 {nonFinal(Auth), cHeader(From,‘sender’),

. . . , checkEnv(−→x ), Env(From,‘sender’), . . . ,

fixEnv(−→x ), rAllow (−→x ), revise (−→x ,−→y )}

{allow(−→x ), disallow(−→x ), nonFinal(From), nonFinal(To),

whitelist(sender), blacklist(sender), . . . , accept(−→x ), rDisallow

(−→x )}

5.3 Materialization Structure

Section 5.2 establishes stratification [49] of each local policy module and their union.

This essentially allows each delivery attempt being treated as a new message delivery.

Thus, for a single message delivery attempt, the module graph is acyclic, as required

in [48]. There can be many strategies for exporting predicates, like, for instance,

‘one-at-a-time’ transmission or ‘all-together’ transmission strategies. In our view, the

second approach can be more efficient in reducing communication overheads, and

hence we propose materializing exported predicates to support this strategy.

Definition 30 (Materialization Structure MS). The materialization structure, MSi,

of a module Mi is a valuation over atoms constructed using the Expi predicates.

88



Definition 31 (Correctness). Given a system of policy modules Γ indexed by I, a cor-

responding set of materialization structures also indexed by I, and ranged over by MSi,

is correct if ∀ i ∈ I MSi = ΦVi
Pi
↑ (ω) |Expi , where Vi =

⋃
j@Γi (MSj |Impi) (Here we

are viewing the function MSj as sets of pairs. In this way combine these functions whose

domains are disjoint).

Theorem 3 (Faithfulness and Adequacy). Given a complete system of policy modules

Γ, indexed by I, and a corresponding set of materialization structures also indexed by

I and ranged over by MS i,
⋃

i∈I MS i = Φ∅
P ↑ (ω) |Exp, where P =

⋃
j∈I Pj, Exp =

⋃
j∈I Expj.

Proof Strategy: The proof strategy of using induction over i would give the required

proof. ¤

Due to theorem 1, theorem 3 applies to the complete system of email policies,

which is significant for our application. The communication of imported-exported

predicates between modules is proposed through a materialization of individual (lo-

cal) modules. The evaluation of the next module, i.e., the module whose predeces-

sor(s) has (have) completed its (their) evaluation(s), depends upon the inputs from

predecessors. The significance of theorem 3 lies in the fact that it shows the correct-

ness of the ‘relative’ (local) evaluation scheme with respect to an evaluation scheme

with the possession of global knowledge.

5.4 Chapter conclusion

In this chapter we generalize the formal model for email policies to provide an end to

end formal representation of email messages and the participation of email delivery

89



agents in message transmission. Policies are presented as module networks, i.e., a

network of programs that can import or export predicates, (c.f. Maher [48]). Using

predicate import-export email delivery agents can transmit messages and feedback

regarding rejected messages.

90



Chapter 6: Privacy

6.1 Introduction

This chapter identifies undesirable side-effects of combining different email-control

mechanisms for protection from unwanted messages, namely, leakage of recipients’ pri-

vate information to message senders. The problem arises because some email-control

mechanisms like bonds [3], graph-turing tests [4], etc., inherently leak information.

We show how an attacker can guess recipient’s mail acceptance policy that utilizes

leaky mechanism in an effort to avoid unwanted mail.

Leakages can occur in many ways. For example, simple address harvesting attacks

can be constructed through the Simple Mail Transfer Protocol (SMTP [1]), easily. In

this attack, a malicious sender attempts delivery to a preconstructed list of possible

recipient addresses, and recipient mail server replies help her to identify which ad-

dresses are assigned to users [54]. Contrary to the SMTP protocol recommendations,

mail servers can prohibit such feedback, thus implementing a blanket protection pol-

icy against harvesting attacks. More fine-tuned, policy-based schemes for feedback

control are also possible.

Because email-control techniques in use at a mail server can send out of band

feedback with SMTP, controlling SMTP feedback to senders is not enough to protect

recipient’s private data. For example, graph-turing tests for ensuring human-initiation

of email messages [4] respond to incoming messages with a puzzle that can mostly be
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solved by humans. Senders can, thus, infer that mail address belongs to a real user

and being protected against unwanted mail. This signal also informs the sender that

the sent message was able to overcome the recipient’s Bayesian filters. This knowledge

can further help a malicious sender in propagating unwanted emails in future. Apart

from the efficacy of filter rules, a recipient or a domain may wish to protect a lot of

other private data, like their email behavior, the set of their email acquaintances, etc.

In this chapter, we identify two types of email-control mechanisms, viz., leaky

mechanisms like monetary bonds, acknowledgement receipts, etc., and sensitive mech-

anisms like white-lists, i.e., the set of senders from whom a recipient always accepts

emails, blacklists, i.e., the set of senders from whom the recipient does not wish to

receive messages, filters, etc. A leaky mechanism is defined as an email-control mech-

anism that, when used, informs the sender whether his or her message was accepted

by the recipient or not. Whereas, a sensitive mechanism is defined as an email con-

trol mechanism that uses recipient’s private information to decide whether to accept a

message or not, but does not disclose any information to the sender. However, if these

two types of mechanisms are used in combination, disclosure of recipient’s private in-

formation is possible. It is the objective of this chapter to prevent such disclosures.

Readers may be familiar with leakages due to well-crafted web addresses and images

embedded within a message that provide automatic acknowledgement receipts. Later

in this chapter we provide details on such leakages. Mechanisms like blacklists, filters,

etc., are sensitive because of the nature of the information they control and because

their knowledge can help a malicious sender to bypass the control they provide.

The abundance of email-control solutions and the need for automation of several
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aspects of user’s email agents have led to the use of policies that allow flexible con-

trol over the behavior of local email systems. Such policies are easily constructed

through end user input (e.g., simple user feedback allows Gmail to display or not

display embedded images, etc.) and through explicit administrator level policies,

leading to considerable automation of repetitive tasks. However, because the email

system is highly automated, there exists a potential for confidential information to be

leaked unintentionally. Even though it is not guaranteed that using a means to leak

information will reveal information, however, the probability of leakage of sensitive

information, when using leaky and sensitive mechanisms in combination, is non-zero.

In particular, schemes that allow sharing acceptance policies to stop undesirable mes-

sages earlier in the transmission process (see [55]) compound the problem. Armed

with this knowledge, an attacker can simply send a large volume of messages and

extract sensitive information from the behavior of the feedback channel.

Our model attacker assumes basic capabilities of computing unfold/fold transfor-

mations [56], computing Clark completion of predicate definitions, and the ability to

generate a large number of messages. In the worst case analysis, the attacker need

send only a O(n) number of message, where n is the size of the policy. Assuming that

the private data is not explicitly disclosed to the attacker, we suggest two program

transformation techniques: the necessary policy transformation and the sufficient

policy transformation that can be used in tandem to prevent leakages, while leakage

channels are still active. We show that these policies are semantically closest to the

original policy, while preventing leakages.
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6.1.1 Overview of our approach

A survey of recent proposals and initiatives for controlling unwanted messages give

sufficient evidence of an eventual move towards policy-controlled email systems. Ex-

isting implementations exhibit varied policy evaluation strategies, from complete se-

crecy (like silent dropping of messages identified as unwanted during Bayesian fil-

tering [30]) to requests for additional information (like human verification tests [4]).

Bringing all strategies under a single umbrella enables, both, sharing and hiding of

acceptance criteria. Clearly, sanitization of acceptance policies is a prerequisite to

communicating them upstream.

Our first step in policy sanitization is to distinguish leaky mechanisms and sen-

sitive information in the policy syntax. Next, we provide a syntactic transformation

of the original policy into two zero-information leakage policies and show that they

don’t leak protected information. The first transformation simply drops all references

to sensitive information. The resultant policy, called necessary policy, identifies a set

of criteria thus must be satisfied, assuming best case scenario with respect to sensi-

tive information. Similarly, the second transformation constructs a sufficient policy

that assumes worst case scenario with respect to sensitive information and identifies

messages that can still be accepted. The necessary policy can be shared without risk

of leakages, while sufficient policy is designed to be applied at only at the recipient

end – thereby achieving complete secrecy in policy evaluation.

Protection against disclosure is a standard problem that has been previously stud-

ied in many areas, for example, protection of sensitive information in database trans-

actions (Pfleeger [57], Chapter 6). We analyze the problem in the context of emails,

which is very different from other application domains where this problem has been
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studied. Next we survey some of the disclosure solutions and argue why they are

different from our domain.

6.2 Examples

We focus on automatic leakage of information through the email system. Several

types of information may be regarded as valuable by different classes of message

senders. For example, a large set of valid email users or the strength of message

filtering rules of an email domain would be valuable to bulk emailers. For these

and other reasons senders may want to know if their messages were read by the

recipient, even if the recipient does not wish to release an acknowledgment receipt.

We provide some basic examples below how the system could be manipulated to yield

such confirmations.

6.2.1 Direct disclosure

SMTP, the default email protocol, allows leakage of information, as discussed earlier.

In table 6.1 we list some of the reply codes that can be used for gaining confirmation of

valid/invalid email addresses and is an example of direct leakage. In addition, email-

control schemes using protocols layered on top of the SMTP protocol can also result

in leakage of information. For example, graph-turing tests [4] generate a human-

solvable challenge for incoming messages, and accept messages only if the answer is

correct. However, issuing a challenge confirms that the recipient address is in use.

As these disclosures are made through feedback provided in the protocol, they can

be prevented by modifying the behavior of SMTP state machine. In the rest of the

chapter, we assume that these disclosures can be prevented using policy-based control
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schemes for feedback control as discussed in previous chapters.

Table 6.1: Leakage through SMTP reply codes

Code Meaning Confirms
251 User not local; will forward to 〈email address〉 Forwarding address
450 Mailbox unavailable Invalid address
452 Insufficient system storage Valid address
550 Mailbox unavailable Invalid address
551 User not local; try 〈email address〉 Forwarding address
553 Mailbox name not allowed Invalid address

6.2.2 Disclosure through leaky mechanisms

Well-crafted URLs or images in a message are a prime example of how malicious

senders generate acknowledgement receipts without requiring any recipient action.

Such a message when viewed or the URL visited by the recipient can cause HTTP

requests to a web server that confirms that the recipient read the message. Prevention

of automatic acknowledgements is possible through policy based control over the

type of messages that can contain HTTP content. Though URLs and images don’t

qualify as a leaky mechanism (because they are not email-control mechanisms), similar

leakages are possible through other mechanisms. For example, bonds inherently leak

information irrespective of whether feedback is provided by the email system itself

or not. This is because seizure of bond causes monetary flow and therefore informs

the person posting that bond that the recipient read the message. This can help a

sender infer certain information about the recipient email system as well as recipient’s

private information. We characterize these leakages as follows:

• Confirmation of email address: Confirmation of email addresses is desired

(usually by bulk emailers) for increased ‘viewership’.
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• Leakage of sensitive information: Validity of address is known by sender;

additional private information, like contents of filter rules, reputation lists are

sought.

As an example of the second case, we consider a simple example next to illustrate the

basics of an attack.

Example 9 (Leakage through monetary bonds). Consider a simple recipient policy

that allows messages from people not on her blacklist if they attach a bond valued at least

at $ a; for all other users, a bond worth $ b (b > a) is required. Such a scenario is easily

foreseen as monetary signalling techniques ([24, 3, 58, 29], etc.) have recently been applied

(in various capacities) in real email networks. We represent this policy informally next. A

formal definition of syntax is presented later.

accept −if− some ‘allow’ rule is true and all ‘disallow’ rules are false (6.1)

allow −if− sender is not blacklisted and message is bonded with value a (6.2)

allow −if− for all other senders message is bonded with value b > a (6.3)

disallow −if− if message has an attachment with extension .scr (6.4)

Suppose a sender knows that the recipient is using a policy based on bond values and black-

lists. Further, because bond seizure confirms if a message was read, the sender can guess

values of a, b and whether a sender is on the recipient’s blacklist, and verify these guesses

by sending a large number of messages while observing the feedback channel. With this

information, the sender can easily verify if an email address he can send mail from is in

the recipient’s blacklist or not – by sending as little as only one email message with bond

of value $ c, c ∈ (a,b) attached. Assuming that the targeted recipient seizes bonds for all

commercial mail delivered, no seizure or seizure of bond will prove to the sender that he is
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not on the blacklist or not, respectively.

6.3 Formal Model

A formal model for a policy based decision on email acceptance was presented ear-

lier [55]. We next discuss a constraint logic programming (CLP) based syntax where

sensitive and leaky mechanisms are modeled by private and sensitive predicates,

respectively. In particular, we assume that each message is evaluated by a single

acceptance policy instead of multiple policies authored by different principals in an

email pipeline [55]. As our syntax is more general, it can be specialized to represent

any of the policies suggested earlier, or their composition.

6.3.1 Syntax

Logical elements like terms, constraints, etc., are usually defined (please refer to

chapter 4 definitions 1 –10). Here we define the sensitive and private predicates and

their transformations.

Definition 32 (Predicates). Predicate symbols are partitioned into three sets: RD, which

are the user defined predicates, RU , which are the system defined predicates, and RA is

the set of predicates that are guesses for predicates in RD. In particular, we assume that

predicate symbols allow and disallow ∈ RD and accept ∈ RU . .

Definition 33 (Private and Sensitive Predicates). Subsets of RD predicates, represented

by P and L, form the set of private and sensitive predicates, respectively.

Definition 34 (System-defined Predicates RU). RU predicates are further partitioned

into following sets:
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Mch For each predicate pi ∈ P, two predicate symbols, matchPi and matchNotPi of same

arity as pi, are reserved to be defined by the program. In addition for every predicate

Qj 6∈ P, the program reserves predicate symbols QjMatchPi and QjMatchNotPi

Pes For every predicate Q, such that Q 6∈ P, the program reserves a predicate symbol ‘pesQ’,

Q’s pessimistic version (defined in section 6.5).

Opt For every predicate Q, such that Q 6∈ P, the program reserves a predicate symbol

‘optQ’, Q’s optimistic version (defined in section 6.5).

Definition 35 (Atom and Literal). An atom is of the form q(t1, . . . , tn) where q is a

symbol from RD ∪RU∪ {=, 6=, ≤, ≥} and t1, . . . , tn are terms. A literal is an atom (called

a positive literal) or its negation (called a negative literal).

Definition 36 (Clause, Fact and Rule). A clause is of the form H ← B where H is

an atom, and B is a list of literals. A fact is a clause in which B is an empty list or a

list of literals with predicate symbols from the set {=, 6=, ≤, ≥}. A clause is called a rule

otherwise.

Definition 37 (CLP Program). A CLP Program (simply a program) is a set of clauses.

For a program Π and a predicate P, P ∝ Π if for any rule H ← B1,. . .,Bn in Π, P = Hθ or

P = Biθ (i ∈ [1,n]) for some θ.

Definition 38 (Message). A message is a set of facts

Definition 39 (Mail Acceptance Policy). A mail acceptance policy, or simply, a policy

is a pair Π = 〈ΠR, ΠD〉 where ΠR is a set of rules (ruleset) and ΠD is a set of facts. The

program ΠR is required to be stratified and contain definitions of top level predicate accept

and at least one of the predicates: allow, disallow. The predicate symbol accept is always
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defined as

accept(−−→msg) ← allow(−−→msg),¬disallow(−−→msg)

Here −−→msg tuple represents all the variables and their bindings derived from a mes-

sage, e.g., From, To, Time, Bond, etc., would all be included in the tuple. Predicates

other than allow, disallow may have single variables from −−→msg tuple as arguments.

6.3.2 Semantics

We reuse the three-valued semantics (with constructive negation) used in [55], and

chapters 4,5. A message is accepted if c| accept(−−→msg) ∈ T+
P ↑ ω where −−→msg is a

tuple of headers and content supplied in the message. The authors show that the

decision procedure using the presented semantics is complete [55]. Finally we define

the extension and Clark completion of a predicate as follows.

Definition 40 (Extension of a predicate). Extension of a predicate p is the set ext(p)

⊂ T+
P (I) such that each constrained atom in ext(p) is of the form c| p(−→x )

Definition 41 (Clark completion). Given a ruleset Π, each predicate p, p ∝ Π such

that for some rule π ∈ Π p(−→x ) = head(π), is associated with a logical formula as

follows. If there are n rules in Π:

p(−→x ) ← B1

...

p(−→x ) ← Bn
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then the formula associated with p is

∀−→x p(−→x ) ↔ ∃−→y1 B1

∨ ∃−→y2 B2

...

∨ ∃−→yn Bn

where −→yi is the set of variables in Bi except for variables in −→xi . If p 6= head(π) for

any π ∈ Π, then the formula associated is

∀−→x ¬p(−→x )

The collection of all such formulas is called the Clark completion of Π. We represent

the Clark completion of a predicate p by p∗

6.4 The Attacker Model

Next we define the attacker’s capabilities and model for leaking private information.

An attacker is constrained to legal runs of SMTP protocol. However, the attacker

is not restricted to gaining information from the SMTP protocol alone. There is

no restriction on the number of email messages an attacker can generate, and these

messages can be targeted to any recipient. For worst case analysis we make following

assumptions:

1. Policies used at an email domain may be known, e.g., use of blacklists, whitelists,

filters, etc. This is possible through explicit communication of portions of poli-

cies or through other means (like attacker knows about the victim’s policy by
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the virtue of being served by the same email service provider, say Hotmail,

Gmail etc.). In particular ΠR (rule set) may be known but not ΠD (set of facts)

that contain the definitions of private predicates.

2. By observing protocol runs alone an attacker cannot conclude if a message was

delivered. , i.e., recipient domain may indicate that the message was delivered,

without actually delivering the message. Confirmation of message acceptance

can be obtained from leaky mechanisms alone.

3. Recipient acts on every delivered message, like, seizes bond for unwanted mes-

sage, etc.

6.4.1 Capabilities

An attacker is assumed to possess a basic set of capabilities that help launch attacks

against recipient’s private information. For example, an attacker can compute Clark

completion of programs or compute ‘unfold/fold’ type transformations of normal CLP

programs that preserve the program semantics. Existing literature on unfold/fold

transformations show how to preserve different types of semantics by allowing specific

variations in their unfold/fold operations. For our normal (stratified) programs and

a three-valued semantics of programs, Sato’s [59] equivalence-preserving first-order

unfold/fold transformations are the best fit. Fages’ work on generalization of the

s-semantics approach to normal CLP programs and a fixpoint characterization of

Kunen’s semantics shows that Sato’s transformations can be easily supported in our

model. However, for simplicity, we describe unfold/fold transformations very briefly

here and for additional information, the reader is referred to the original papers [60,
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59, 56]. Given a set of rules Π = {π1, . . . , πn}, and the set P ={q | q ∝ Π}, an attacker

has following capabilities:

1. Capability of computing Clark completion: For all q ∈ P , the attacker

can compute q∗, q’s Clark completion with respect to P .

2. Capability of unfold transformation [60, 59, 56]: Given a rule πk: H ←

A, B, C where A, C ⊂ P and B ∈ P is a positive literal such that for some rule

πi and some θ where B = head(πi)θ, the attacker can transform πk to H ← A,

body(πi)θ, C (here head and body functions map a rule to the atom in its head

and literals in its body, respectively, where variables in πi and πk are renamed

apart. We represent the fully unfolded form of a program Π by Πω.

3. Capability of fold transformation [60, 59, 56]: Given a rule πk: H ← A,

B, C where A, B, C ⊂ P such that for some rule πi and some θ such that B =

body(πi)θ, the attacker can transform πk to H ← A, head(πi)θ, C

4. Capability of message generation: An attacker can generate any number

of messages.

The email policy attacker uncovers a subset of private predicates’ extension. The

security goal of this paper is to prevent an attacker from gaining access to recipient’s

private information. Computing Clark completion of program definitions, unfold/fold

transformations and sending messages are the assumed capabilities

An attack on extension of private predicate involves the sender sending messages

(sets of facts like the sender address, recipient address, time of transmission, bond

value, etc.) that contain specific values for arguments of a leaky predicate. These
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values are generated by analyzing the recipient’s policy. The attacker is made known

of the fact that c|accept(−→m) belongs to T+
P (I) or T−

P (I) through the signals received

from leaky mechanism. With these information, the attacker can construct ext(p′) ⊂

ext(p), where p is a private predicate and p′ ∈ RA.

6.4.2 Scripting an attack

Next we show how to attack using capabilities defined above.

1. Given a set of rules Π such that accept ∝ Π, the attacker computes Πω, the

fully unfolded form of Π (the head p of each fully unfolded rule is referred to as

pω). This operation yields clauses with acceptω heads, the fully unfolded form

of rules with accept as their head.

2. In the next step the attacker constructs the Clark completion of acceptω to yield

acceptω∗.

3. Using acceptω∗, the attacker can then generate guesses by analyzing the values

of leaky mechanism that can generate messages to verify her guess.

The unfold/fold transformation belongs to NP complexity class [61], as does the Clark

completion operation. Overall, the complexity of policy attack is NP.

Example 10. We provide the formal syntax of policy in example 9 and show how an attack

can be orchestrated against it. Here, blacklist is a private predicate, whose definition (or

extension) is hidden from the attacker and atrbbond is a leaky predicate. The rules (2), (3)
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and (4) from example 9 written in the above syntax are as follows:

allow(−→m) ← ¬blacklist(Y ), atrbbond(X), X ≥ 5

allow(−→m) ← blacklist(Y ), atrbbond(X), X ≥ 10

disallow(−→m) ← atrbext(‘.scr′)

Similarly, rule (1) in example 9 is encoded as:

accept(−→m) ← allow(−→m),¬disallow(−→m)

Using the unfolding capability, accept predicate definitions can be transformed to (for sim-

plicity, we ignore disallow clause):

accept(−→m) ← ¬blacklist(Y ), atrbbond(X), X ≥ 5

accept(−→m) ← blacklist(Y ), atrbbond(X), X ≥ 10

Next the attacker can compute Clark completion of accept definition:

∀−→m accept(−→m)∗ ↔ ∃Y1, X1 ¬blacklist(Y1), atrbbond(X1), X1 ≥ 5

∨

∃Y2, X2 blacklist(Y2), atrbbond(X2), X2 ≥ 10

An attacker is now in a position to guess parts of the extension of blacklist using following

rule:

blacklist′(Yg) ← ¬accept(−→m1), accept(−→m2), atrbbond(X1),

atrbbond(X2), X1 ∈ [5, 10], X2 > 10

Here blacklist′ ∈ RA, is defined by the attacker. The attacker can send two messages with

all facts same except the bond values. The first message (m1) is bonded with a value v ∈
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(5,10) and second one (m2) bonded with a value greater than 10. It is easy to see that if

Yg ∈ ext(blacklist), then the sender will get one negative and one positive verification –

c|accept(−→m1) ∈ T−P (I) and c|accept(−→m2) ∈ T+
P (I); otherwise both verifiers are positive.

6.5 Policy transformations for privacy

To prevent an attacker from deducing subsets of recipient maintained set(s) of private

information, we propose to transform the evaluation policy such that leakage signals

are rendered useless. There are two flavors of transformation that we propose: the

sufficient policy and the necessary policy transformation. Intuitively, the sufficient

policy should accept a message just in case the message is accepted by the original

policy under all possible definitions of the private predicates. On the other hand, the

necessary policy accepts a message for some definition of the private predicates in the

original policy, thereby ensuring that only messages satisfying the necessary policy

can satisfy the original policy. These policies are designed to be used in tandem,

i.e., single evaluation of original policy is replaced by the evaluation of necessary and

sufficient policies.

6.5.1 Transformation algorithm

Transformation algorithm is discussed next. Because only those rules that use private

literals in their bodies can leak private information, the algorithm applies to such rules

and leaves others unchanged. The transformation algorithm is shown in figure 6.1

and consists of two transformations for each rule containing sensitive predicates and

is described in detail next.

Figure 6.1 begins with a general Horn clause representation of rules in ΠR with
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meta-variables Qu, Qv and pk and −→m is the tuple of all variables used in ΠR. Qu(
−→y )

represents a non-sensitive literal at the uth position in a rule, and can also appear in

the head of the rule. The rule is shown to have v non-sensitive predicates in its body

and some sensitive predicates pk, for k ∈ [1, t
′
], each used positively mk times and

negatively nk times. In other words, recursive calls and multiple calls to the same

predicate may be made in a rule, i.e., Qu may be in [Q1, Qv] or Qu1 = Qu2 for u1, u2

∈ [1, v], u1 6= u2. However, Qu cannot make recursive calls to itself through negation

or include calls such that the program dependency graph includes negative cycles due

to the stratification. Also, each literal pk need not appear in the body of every clause

Qu, i.e., both mk and nk can be equal to zero.

As shown in the figure, each Qu definition is transformed to two related predicates,

viz., pesQu and optQu, where pesQu is the ‘pessimistic’ version of Qu, independent

of the definition of any private predicate used in the definition of Qu, and optQu is

the ‘optimistic’ version of Qu predicate, which holds for ‘some’ definition of private

predicates. More precisely, optQu will hold if there exists some definition of private

predicates used in the definition of Qu, such that Qu can be shown to hold in Π,

whereas pesQu will only hold if for all definitions of private predicates, Qu can be

shown to hold true in Π.

It must be noted that the algorithm, as presented, does not include the details of

how transformed and non transformed rules are linked. Suppose there is a predicate

Q(−→x ) in the body of a transformed clause that does not use any sensitive literals.

The transformation still renames it as pesQ(−→x ) whenever it is used positively, and

optQ(−→x ) when it is used negatively. However, the transformed versions of the defi-

nition of Q(−→x ) are not created since it does not use any sensitive predicates in the
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body. Hence we add two rules for each such predicate, which are, pesQ(−→x ) ← Q(−→x )

and optQ(−→x ) ← Q(−→x ). In example 11 we present a concrete example of this trans-

formation.

Example 11. Pessimistic and optimistic transformations.

Consider the ΠR definition of predicate trusted(x,. . .,z) that uses non sensitive predicates

professor(Profile), student(Profile) and bonded(B, minValue) and private predicate blacklist(XFrom)

defined in ΠD (ignore the distinction between ‘atrb’ and other predicates):

trusted(−→x ) ← professor(XFrom)

trusted(−→x ) ← student(XFrom),¬blacklist(XFrom)

trusted(−→x ) ← blacklist(XFrom), bonded(XX-Bnd, 5)

The optimistic and pessimistic forms of the predicate trusted in Πsuf are as follows. For

simplicity we retain the names of other predicates (i.e., student, professor, bonded are un-

changed), however, in reality, their pessimistic and optimistic versions coincide. Also,

we use trustedMB symbol for trustedMatchBlacklist and trustedMNB for trustedMatchNot-

Blacklist predicate due to space constraints:

pesTrusted(−→x ) ← professor(XFrom)

pesTrusted(−→x ) ← trustedMB(−→y1), trustedMNB(−→y2)

trustedMB(−→y1) ← student(XFrom)

trustedMNB(−→y2) ← bonded(XX-Bnd, 5)

optTrusted(−→x ) ← student(XFrom)

optTrusted(−→x ) ← bonded(XX-Bnd, 5)
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Computational Complexity We next relate the size of the transformed ruleset

to the size of the original ruleset. The algorithm distinguishes between two types of

clauses: those that use private predicates in their body and those that do not, referred

to as π1 and π2 respectively. Clauses that do not contain private predicates in the

body (i.e., the clauses in the π2 set) are preserved in their original form. However, in

the worst case scenario, atoms in the head of each such clause appears in at least one

clause that has sensitive predicates in the body. Therefore, for each such clause, two

additional clauses are required to ‘link’ the pessimistic and optimistic versions of the

predicate to the original definition. Therefore, the size of the set corresponding to π2

in ΠR in the transformed policy is 3× |π2|.

For the clauses in the set π1, the transformation algorithm can potentially con-

struct a much bigger set. First, for each clause in π1 optimistic and pessimistic

versions (Pes and Opt predicates) are created that contain Mch predicates. The

number of pessimistic clauses is equal to the number of distinct private predicates in

the body of the original clause, whereas only one optimistic predicate is constructed.

Next, for each new ‘Mch’ predicate introduced, a clause is added. Assuming that the

maximum number of distinct private predicates used in a clause in π1 is some number

η, the size of the transformed set is (2 × η + 1) × |π1|. Thus the complexity of the

algorithm is O(η × |ΠR|).

Necessary Policy

Intuitively, the necessary policy, Πnec, strips away sensitive predicates from the orig-

inal policy. The basic idea is to generate a policy where satisfaction requirements

are in terms of non-sensitive literals, while assuming the best possible scenario with

109



respect to the definition of sensitive predicates. This aim is achieved by the fol-

lowing definition of top-level accept predicate (acceptnec(
−−→msg) for clarity) and while

example 12 illustrates the basic idea:

acceptnec(−→m) ← optAllow(−→m),¬pesDisallow(−→m)

Example 12. [Illustration of necessary policy] Consider a ruleset ΠR where B1 and

B2 are a list of positive literals with no literal belonging to P. Hence their ‘opt’ and ‘pes’

versions coincide. Also, p ∈ P

allow(−−→msg) ← B1, p(X) (6.5)

allow(−−→msg) ← B2,¬p(X) (6.6)

Applying the necessary transformation we get:

acceptnec(−→m) ← optAllow(−→m),¬pesDisallow(−→m)

optAllow(−→m) ← B1

optAllow(−→m) ← B2

By unfolding and completing the definition of acceptnec we get (−→y1 and −→y2 are free variables

in B1 and B2 respectively)

∀−→m acceptω∗nec(
−→m) ↔ ∃−→y1 B1 ∨ ∃−→y2 B2

This policy accepts messages depending upon the clauses of the original policy, with the

change that sensitive predicate is dropped from rules 6.5,6.6
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Sufficient Policy

The basic idea behind this transformation is to syntactically match the uses of sen-

sitive literals in the body of rules with allow head, e.g., use pesAllow(−→m) in place of

allow(−→m). In other words, we wish to resolve away the uses of sensitive literals, akin

to the predicate elimination strategy proposed by Reiter [62]. The following top-level

predicate accept (acceptsuf for clarity) achieves this aim:

acceptsuf (−→m) ← pesAllow(−→m),¬optDisallow(−→m)

Example 13 (Illustration of sufficient policy). Consider the ruleset given by rules 6.5

and 6.6. The sufficient transformation of rules yields the following ruleset

acceptsuf (−→m) ← pesAllow(−→m),¬optDisallow(−→m)

pesAllow(−→m) ← matchP (X),matchNotP (X)

matchP (X,−→m) ← B1

matchNotP (X,−→m) ← B2

By unfolding and completing the definition of acceptsuf we get

∀−→m acceptω∗suf (−→m) ↔ ∃−→y1 ,
−→y2 B1, B2

This policy accepts messages that simultaneously satisfy the bodies of clauses 6.5 and 6.6,

with private predicate stripped off from the rules.

6.5.2 Syntactic Properties

The syntactic properties of necessary and sufficient policies essentially state that

the predicates identified as private in the original policy do not occur in transformed
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policies. These follow in a straightforward manner from the transformation algorithm.

Lemma 3. Given P ⊆ P such that if pi ∈ P and pi ∝ ΠR then pi 6∝ Πnec (resp. Πsuf )

where Πnec (resp. Πsuf ) is necessary (resp. sufficient) transformation of ΠR.

Corollory 1. Given P ⊆ P such that if pi ∈ P and pi ∝ ΠR then pω∗ or p do not occur in

Πω∗
nec (resp. Π∗suf ).

6.5.3 Semantic Properties

To prove how evaluation of Πnec and Πsuf instead of ΠR prevents sensitive leakages,

we need to show some semantic properties of the transformed rulesets. The program

corresponding to the original policy is represented by P, where P = ΠR ∪ΠD ∪M , in

which M is a set of message facts, ΠD is the set of private facts and ΠR is a ruleset. We

are interested in two forms of P for the purposes of the proof below. The first form is

one where we are interested in satisfaction of clauses in ΠR for all definitions of private

predicates (Πsuf ). The second form is one where we are interested in satisfaction of

the clauses in ΠR for some definition of the private predicates (Πnec). Assuming

ΠD contains only facts constructed from private predicates, we denote the program

corresponding to Πsuf by PS, where PS = Πsuf ∪M and the program corresponding

to Πnec by PN , where PN = Πnec ∪M . Both these programs are independent of the

definitions of the sensitive predicates.

We give a general relation between ‘optimistic’ and ‘pessimistic’ versions of a

literal and the literal in theorem 4. Next we proceed to define the relation between

the programmed policy ΠR ∪ ΠD and the generated policies Πsuf and Πnec.
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‘pesQ’, ‘optQ’ vs. ‘Q’ We begin by relating the satisfaction of ‘pessimistic’ and

‘optimistic’ versions to the satisfaction of the original predicate. Intuitively, this

means that whenever the pessimistic version of a predicate is true, then the original

predicate is also true, irrespective of the truth values of the sensitive predicates.

Similarly, ‘optimistic’ version being satisfied implies that there is a possible definition

of private predicates (in the set of program facts, ΠD), such that the original predicate

is satisfied.

Theorem 4. Given a program P = ΠR ∪ ΠD ∪ M , in which ΠR ∪ ΠD is a policy that

includes sensitive predicates p1 to pt defined in ΠD and M is a set of facts, any literal

pesQu(−→y ) in the program PS = Πsuf ∪M or PN = Πnec ∪M , apart from the accept(−−→msg)

atom, is satisfied if and only if for all definitions of p1, . . . , pt, Qu(−→y ) is satisfied in P,

and optQu(−→y ) is satisfied if and only if there exists some definition of p1, . . . , pt such that

Qu(−→y ) is satisfied.

Proof:

In all the three programs, Q(−→y ) is true if c |Q(−→y ) ∈ T+
P ↑ω. Because both PS and

PN have exactly similar definitions of all the literals except the accept(−−→msg) atom,

hence, in the rest of the proof, we only show the result for PS, and the same result

for PN is implied.

(⇒) We show the pesQu(
−→y ) part of the proof by induction on the steps of TPS

construction. The induction hypothesis has four parts. First part states that given

c | pk(
−→x ) ∈ T−

P ↑ α, c | Qu matchPk(
−→x ,−→m) ∈ T+

PS
↑ α entails c | Qu(

−→x ) ∈

T+
P ↑β for some β. Similarly, it states that given c | pk(

−→x ) ∈ T+
P ↑ α, c | Qu

matchNotPk(
−→x ,−→m) ∈ T+

PS
↑ α entails c | Qu(

−→x ) ∈ T+
P ↑ β for some β. The third

part states that c | optQu(
−→x ) ∈ T−

PS
↑ α entails c | Qu(

−→x ) ∈↑ β for some β and the
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fourth part states that c | pesQu(
−→x ) in T+

PS
↑ α entails c | Qu(

−→x ) ∈ T+
P ↑ β.

For the base case, T+
PS
↑ 0 = ∅, and the hypothesis trivially holds. For the suc-

cessor ordinals, we assume that the hypothesis holds, hence the atoms added in the

step α, i.e., c | QumatchPk(
−→x ,−→m), c | QumatchNotPk(

−→x ,−→m), c | pesQu(
−→x ) and

c | optQu(
−→x ) ∈ T+

PS
↑ α. Next consider T+

PS
↑ α+1. We wish to show that the

induction hypothesis holds for this step as well. First consider the general form of a

QumatchPk(
−→x ,−→m)θ atom that is added in this step:

QumatchPk(
−−−−→
xk

mk+j ,
−→m) ← pesQ1(−→y1), . . . , pesQo(−→yo),¬optQo+1(−−→yo+1), . . . ,

¬optQo+s(−−→yo+s), QumatchP1(−−→x1,1,
−→m), . . . ,

QumatchPk(−−−→xmk,k,
−→m), QumatchNotPk(−−−−−→xmk+1,k,

−→m),

. . . , QumatchNotPk(−−−−−−−−→xmk+(j−1),k,
−→m),

QumatchNotPk(−−−−−−−−→xmk+(j+1),k,
−→m), . . . ,

QumatchNotPt(−−−−−→xmt+nt,t,
−→m),−−→xi,k

′ 6= −−−−−→x
m
′
k+j,k′ ,

i ∈ [1,m
′
k], j ∈ [1, n

′
k], k

′ ∈ [1, t], c.

The above clause is derived from the following clause in Π:

Qu(−→x ) ← Q1(−→y1), . . . , Qo(−→yo),¬Qo+1(−−→yo+1), . . . ,¬Qo+s(−−→yo+s), p1(−−→x1,1), . . . ,

p1(−−−→xm1,1),¬p1(−−−−−→xm1+1,1), . . . ,¬p1(−−−−−→xm1+n1,1), . . . , pk(−−→x1,k), . . . ,

pk(−−−→xmk,k),¬pk(−−−−−→xmk+1,k), . . . ,¬pk(−−−−−−→xmk+nk,k), . . . , pt(−→x1,t), . . . ,

pt(−−→xmt,t),¬pt(−−−−→xmt+1,t), . . . ,¬pt(−−−−−→xmt+nt,t), c.
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We wish to show that this clause generates c | Qu(
−→x ) ∈ T+

P ↑ β for some β.

Because each pesQ constrained atom corresponding to the literal in the body of

QumatchPk(
−→x ,−→m) must be in T+

PS
↑ α and each optQ constrained atom in T−

PS
↑ α,

by inductive hypothesis each constrained atom of positive Q literal in the body of Qu

clause is in T+
P ↑ γ and each c.atom of negative literal is in T−

P ↑ γ (since membership

of entails membership of TP ). There are three cases to consider based on ΠD. In

the first case, if all pk literals in the body of Qu(
−→x ) evaluate to true, then c | Qu(

−→x )

∈ T+
P ↑ γ + 1 since the rest of the literals allow such a deduction, as shown in the

bottom-up semantics presented earlier. In the second case, if some c |pk(
−→xi,k) ∈ T−

P ↑γ,

i.e., if some sensitive literal used positively in Qu(
−→x ) definition is in T−

P , then the

corresponding constrained atom c |QumatchPk(
−→xi,k,

−→m), which must be in T+
PS
↑α,

entails c |Qu(
−→x ) ∈ T+

P ↑γ + 1 due to the inductive hypothesis. Similarly, in the third

case, if some negatively used literals c |pk(
−−−−→xmk+j,k) ∈ T+

P ↑γ+1, then the corresponding

c |QumatchNotPk(
−−−−→xmk+j,k,

−→m) constrained atom in T+
PS
↑γ entails c |Qu(

−→x ) ∈ T+
P ↑β.

Therefore, in every case it can be shown that c |Qu(
−→x ) ∈ T+

P ↑β.

It is straightforward to see that the second part of the inductive hypothesis can

be shown for c |QumatchNotPk(
−→x ,−→m) constrained atom added in T+

PS
under the

assumption that c |pk(
−→x ) ∈ T+

P ↑γ based on the proof of the first part. We show

the fourth part of the inductive hypothesis next. As every pesQ literal is defined as

pesQu(
−→x ) ← QumatchPk(

−→x ,−→m), QumatchNotPk(
−→x ,−→m) therefore, c |pesQu(

−→x ) in

TPS
↑α + 1 implies c |Qu(

−→x ) in T+
P ↑γ.

Lastly, we need to show the third part of the inductive hypothesis, i.e., c |optQu(
−→x )

∈ T−
PS
↑α + 1 entails c |Qu(

−→x ) ∈ ↑γ. Because c |optQu(
−→x ) is in T−

PS
↑α + 1, in all its
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definitions, constrained form of some literal in its body, by the virtue of its member-

ship of T−
PS
↑α, always prohibits c |optQu(

−→x ) literal’s addition to T+
PS
↑α + 1. By the

inductive hypothesis, it can be easily shown that either for some k ∈ [1, o], c |Qk(
−→xk)

∈ ↑γ or for some k ∈ [o, s], c |Qk(
−→xk) ∈ T+

P ↑γ for every clause defining Qu(
−→x ).

For the limit ordinal case, c |matchPk(
−→x ,−→m) ∈ T+

PS
↑α (respectively, constrained

atoms c | matchNotPk(
−→x ,−→m), c |pesQu(

−→x )) entails that the constrained atoms

c | matchPk(
−→x ,−→m) ∈ T+

PS
↑ β (respectively, c | matchNotPk(

−→x ,−→m), c | pesQu(
−→x ))

for some β < α, by construction. Also, c | optQu(
−→x ) ∈ T−

PS
↑ α entails c | optQu(

−→x )

∈ T−
PS
↑ β for some β < α, by construction. The inductive hypothesis now applies,

giving the desired result.

(⇐) Here we show that if c |Qu(
−→x ) ∈ T+

P ↑ω, it entails c |pesQu(
−→x ) ∈ T+

PS
↑ ω.

If there is a c |Qu(
−→x ) ∈ T+

P ↑ ω that does not contain any private literals in the

body, the desired result follows immediately, so we assume otherwise. Consider any

minimal collection of Qu(
−→x ) clauses in Π that together can be used to show c |Qu(

−→x )

∈ T+
P ↑ω. Consider an instance pa(

−→x1) of a pk atom occurring in some definition of

Qu(
−→x ) literal in this collection, say A, such that c |A ∈ T+

P ↑ω. We claim there

must be a clause, say B, in the collection which contains ¬pa(
−→x1) such that c |B ∈

T+
P ↑ω. To see this, we assume otherwise and show that A can be removed from the

collection without interfering with the collection’s ability to prove that c |Qu(
−→x ) ∈

T+
P ↑ω. This contradicts the assumption of minimality. The key observation in this

argument is that if in a set of clauses that do not contain the clause with pa(
−→x1)

there is no occurrence of the literal ¬pa(
−→x1), then those clauses show c |Qu(

−→x ) ∈

T+
PS

↑ ω for all definitions of private predicates such that they make pa(
−→x1) false
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without depending on the truthfulness of pa(
−→x1), and therefore we get the result for

all possible ΠR, i.e., c |Qu(
−→x ) ∈ T+

P ↑ω. The argument can be easily generalized for

a set of private literals pk occurring in Qu(
−→x ) clause’s body. Because pesQu(

−→x ) rule

in Πsuf is constructed by pairing corresponding matchP and matchNotP predicates

(i.e., matchPk(
−→xk,

−→m) and matchNotPk(
−→xk,

−→m)), it is straightforward to see that given

c |Qu(
−→x ) ∈ T+

P ↑ω, it entails c |pesQu(
−→x ) ∈ T+

PS
↑ ω. When there are additional uses

of pk, the argument can be repeated and the recursive definition of match atoms used

to show that additional clauses are incorporated into the derivation in Πsuf .

(⇒) For the optQu(
−→x ) part of the proof, we want to show that c |optQu(

−→x )

∈ T+
PS

↑ ω entails c |Qu(
−→y ) ∈ ↑ω. We again use induction on the steps of TPS

construction. The inductive hypothesis states that c |optQu(
−→x ) ∈ T+

PS
↑α entails

c |Qu(
−→x ) ∈ ↑β for some β. For the base case, TPS

↑0 = ∅, hence the hypothesis is

trivially satisfied. For the successor ordinals, we assume that the hypothesis holds for

any atoms added in the step α, i.e., c |optQu(
−→x ) ∈ T+

PS
↑α entails c |Qu(

−→x ) ∈ ↑β, for

some β. Next consider the α + 1 step and an c |optQu(
−→x ) added in the this step:

optQu(−→x ) ← optQ1(−→y1), . . . ,¬pesQo+s(−−→yo+s),−−→yi,k′ 6= −−−−−−→ym
k
′+j,k′ ,

i ∈ [1,mk
′ ], j ∈ [1, nk

′ ], k
′ ∈ [1, t′], c.
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This clause is derived from the following general clause in Π:

Qu(−→x ) ← Q1(−→y1), . . . , Qo(−→yo),¬Qo+1(−−→yo+1), . . . ,¬Qo+s(−−→yo+s), p1(−−→x1,1), . . . ,

p1(−−−→xm1,1),¬p1(−−−−−→xm1+1,1), . . . ,¬p1(−−−−−→xm1+n1,1), . . . , pk(−−→x1,k), . . . ,

pk(−−−→xmk,k),¬pk(−−−−−→xmk+1,k), . . . ,¬pk(−−−−−−→xmk+nk,k), . . . , pt(−→x1,t), . . . ,

pt(−−→xmt,t),¬pt(−−−−→xmt+1,t), . . . ,¬pt(−−−−−→xmt+nt,t), c.

As evident from above, all literals used positively (first o literals) are translated

to optQ in the body of optQu(
−→x ) and the rest s, i.e., those used negatively, are

translated to ¬pesQ in this clause’s body. Since each optQ literal in the body of

optQu(
−→x ) must belong to T+

PS
↑α for it to belong to T+

PS
↑α + 1, using the inductive

hypothesis, it can be shown that c |Q1(
−→y1) to c |Qo(

−→yo) ∈ ↑γ for some γ. Similarly, the

fact that c |optQu(
−→x ) ∈ T+

PS
↑α + 1, it entails that constrained atoms corresponding

to each pesQ literal in its body belong to T−
PS
↑α. Consider any one such atom, say

c |pesQo+j(
−→x ) ∈ T−

PS
↑α. As already shown, this entails that c |Qo+j(

−→x ) 6∈ T+
P ↑γ.

Hence, for some definition of private predicates, c |Qo+j(
−→x ) ∈ ↑γ. Finally, because

−−→yi,k
′ 6= −−−−−→ym

k
′+j,k

′ , i ∈ [1,mk
′ ], j ∈ [1, nk

′ ], k
′ ∈ [1, t′], for some definition of private

predicates pk′(
−−→yi,k

′ )θ ∈ ↑γ and pk′(
−−−−−→ym

k
′+j,k

′ )θ ∈ ↑γ. Hence, a ΠD can be constructed

such that Qu(
−→x )θ ∈ ↑γ + 1. Similarly, the limit ordinal case can be shown in a

straightforward manner.

(⇐) We show that c |Qu(
−→x ) ∈ ↑ω entails c |optQu(

−→x ) ∈ T+
PS
↑ ω by reversing

the arguments given above. We again use induction on the steps of construction.

The inductive hypothesis states that c |Qu(
−→x ) ∈ ↑α entails c |optQu(

−→x ) ∈ T+
PS
↑β for
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some β.

For the base case ↑0 = ∅, hence the hypothesis trivially holds. For successor

ordinals, we assume that the hypothesis holds for all atoms added to in the step α.

Next consider the step α +1 and a c |Qu(
−→x ) literal added in this step, whose general

form is as shown above. Because c |Qu(
−→x ) ∈ ↑α + 1, each literal used positively

in its body, i.e., the first o literals c |optQ1(
−→y1) to c |optQo(

−→yo) can be shown to

belong to T+
PS
↑γ, using the inductive hypothesis. Similarly, because the negatively

used literals in Qu(
−→x ) must belong to ↑α, they cannot be members of T+

P ↑α and hence

c |pesQo+j(
−−→yo+j) ∈ T−

PS
↑γ for j ∈ [1, s]. Finally, all the sensitive literals used positively,

(i.e., c |pk(
−−−→xmk,k)) must belong to ↑α and each sensitive literal used negatively, (i.e.,

c |pk(
−−−−→xmk+j,k)) must belong to ↑α for c |Qu(

−→x ) ∈ ↑α+1. Therefore, Xmk+j,k 6= Xmk,k

can now be shown. It is now straightforward to see that this entails c |optQu(
−→x ) ∈

T+
PS
↑γ+1. Similarly, the limit ordinal case can be shown in a straightforward manner.

¤

Relationship between ΠR, Πsuf and Πnec We relate the satisfaction of sufficient

policy and necessary policy to the satisfaction of original policy. That is, we wish to

show that the transformation algorithm generates ‘correct’ necessary and sufficient

policies. Informally, like the result above, the next results essentially state that

whenever sufficient policy is satisfied, the original policy is also satisfied, irrespective

of how the facts in ΠD are constructed. Similarly, satisfaction of necessary policy

means that there is one such way to define the facts in ΠD such that the original

policy will be satisfied. Hence, the relation between the Πsuf and ΠR and Πnec and

ΠR follows from the above theorem.
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In each program P , PS and PN , a message is accepted if c |accept(−−→msg) ∈ T+
P ↑ω,

c |acceptsuf (
−−→msg) ∈ T+

PS
↑ω and c |acceptnec(

−−→msg) ∈ T+
PN
↑ω respectively. Hence the

following corollaries hold.

Corollory 2. Given a message M, a policy ruleset ΠR, and a set of facts ΠD defining private

predicates (pk, k ∈ [1, t]) that occur in ΠR, c |accept(−→m) ∈ T+
P ↑ ω if c |acceptsuf (−→m) ∈

T+
PS
↑ ω.

Proof: The acceptsuf () clause in Πsuf is defined as

acceptsuf (
−→m) ← pesAllow(−→m),¬optDisallow(−→m)

It follows from theorem 4 that c |pesAllow(−→m) ∈ T+
PS
↑ ω if c | allow(−→m) ∈ T+

P ↑ω for

all definitions of private predicates. Also, c | optDisallow(−→m) ∈ T−
PS
↑ ω if and only

if c | disAllow(−→m) ∈ T−
P ↑ω for some definition, therefore, c |accept(−→m) ∈ T+

P ↑ω if

c |acceptsuf (
−→m) ∈ T+

PS
↑ ω ¤

Corollory 3. Given a message M, a policy ruleset ΠR, and a set of facts ΠD defining private

predicates (pk, k ∈ [1, t]) that occur in ΠR, c |acceptsuf (−→m) ∈ T+
PS
↑ ω if c |accept(−→m) ∈

T+
P ↑ ω for all possible definitions of predicates pk, k ∈ [1, t].

Proof: Follows from theorem 4 and the definition of the predicate acceptsuf ¤

Corollory 4. Given a message M, a policy ruleset ΠR, and a set of facts ΠD defining private

predicates (pk, k ∈ [1, t]) that occur in ΠR, c |acceptnec(−→m) ∈ T+
PN

↑ ω if c |accept(−→m) ∈

T+
P ↑ ω.

Proof: The acceptnec() clause in Πnec is defined as

acceptnec(
−→m) ← optAllow(−→m),¬pesDisallow(−→m)
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It follows from theorem 4 that c | optAllow(−→m) ∈ T+
PN
↑ ω if and only if c | allow(−→m) ∈

T+
P ↑ ω for some definition of private predicates. Also, c |pesDisallow(−→m) ∈ T−

PN
↑ ω

if and only if c | allow(−→m) ∈ T−
P ↑ ω for all definitions of private predicates, therefore,

c | acceptnec(
−→m) ∈ T+

PN
↑ ω if c | accept(−→m) ∈ T+

P ↑ω ¤

Semantic proximity of Πsuf and Πnec to the original policy In this section

we wish to show that the transformed policies are semantically closest to the original

policy. This is important because while it may always be possible to generate a ‘safe’

policy which is completely unrelated to a user’s policy, our transformation algorithm

generates ‘safe’ policies that are semantically closest to the original policy. Informally,

we prove below that there is no policy that is safe and semantically closer to the

original policy than our transformed policies.

To achieve the result explained above, we first define a dominance relation for

policies with respect to acceptance of messages by a policy. While keeping a message

fixed, the result of different policy applications on that message gives the following

dominance relation:

Definition 42 (Email Policy Dominance Relation). Relation on DΠ × DΠ is said to

be the email policy dominance relation, where DΠ is the domain of all policies, such

that an ordered pair 〈ΠX, ΠY 〉 ∈ if and only if for all messages, M, c|acceptX(−→m)

∈ T+
PX

↑ ω whenever c|acceptY (−→m) ∈ T+
PY

↑ ω, in which PX = ΠX ∪ M and PY =

ΠY ∪M . We represent the fact 〈ΠX ,ΠY 〉 ∈ by ΠXΠY .

We say that a policy A entails a policy B whenever A >Π B.

Proposition 1. Policy Dominance Relation on DΠ is a partial order.
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Proof: For all policies x, y and z, each of the following hold, and therefore the proof

follows:

• xx

• xy ∧ yx → x = y

• xy ∧ yz → xz ¤

Proposition 2. Πsuf >Π ΠR ∪ΠD where Πsuf is the sufficient transformation of ΠR

Proof: Follows from Corollary 3 ¤

Proposition 3. ΠR ∪ΠD >Π Πnec where Πnec is the necessary transformation of ΠR

Proof: Follows from Corollary 4 ¤

Theorem 5. Given a policy ruleset ΠR and a set of facts, ΠD defining private pred-

icates pk, k ∈ [1, t] that occur in ΠR and any message M, Πsuf , the sufficient trans-

formation of ΠR, is the least upper bound, under the policy dominance relation , that

entails ΠR ∪ ΠD, for all possible definitions of pk, k ∈ [1, t].

Proof: From proposition 2 – Πsuf (ΠR∪ ΠD) and from corollary 3 – if c|acceptsuf (
−→m)

∈ T+
PS
↑ ω then c|accept(−→m) ∈ T+

P ↑ ω for all possible definitions of pk, k ∈ [1, t]. To

show that Πsuf is the least such policy, we assume otherwise and give the proof by

contradiction. Assume there is a policy ΠX such that Πsuf >Π ΠX >Π ΠR ∪ΠD and

c|acceptX(−→m) ∈ T+
PX

↑ ω, where PX is the program PX ∪M , entails c|accept(−→m) ∈

T+
P ↑ ω for all possible definitions of private predicates (where P = ΠR ∪ ΠD ∪M).
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Consider a message M such that c|acceptX(−→m) ∈ T+
PX

↑ ω, and c|acceptsuf (
−→m)

6∈ T+
PS
↑ ω. Due to the entailment assumption above c|accept(−→m) ∈ T+

P ↑ ω for all

possible definitions of the private predicates. But from corollary 3 if c|accept(−→m)

∈ T+
P ↑ ω for all possible definitions of private predicates then c|acceptsuf (

−→m) ∈

T+
PS
↑ ω, which contradicts the assumption. ¤

Theorem 6. Given a policy ruleset ΠR and a set of facts, ΠD defining private pred-

icates pk, k ∈ [1, t] that occur in ΠR and any message M, Πnec, the necessary trans-

formation of ΠR, is the greatest lower bound, under the policy dominance relation ,

that is entailed by ΠR ∪ ΠD, for some definition of predicates pk, k ∈ [1, t].

Proof sketch:The proof follows from theorem 4 and corollary 4 following similar

arguments as in theorem 5 ¤

6.5.4 Protection achieved from transformed policies

Now that we have defined the relation of our transformed policies to the original policy,

we are ready to describe how these transformed policies achieve desired security goal

that is addressed in this chapter.

To describe the protection achieved from evaluating transformed policies instead

of the original policy, we compare following three cases of attacker knowledge.

1. Default: The attacker can compute Πω∗
R and verify if the constrained atoms

c|accept(−→m) ∈ T+
P ↑ ω or T−

P ↑ ω for different m.

2. Knowledge of transformations: The attacker is only allowed to know the

transformed policy completions Πω∗
nec and Πω∗

suf and can generate the verifiers,

viz., c|acceptnec(
−→m) and c|acceptsuf (

−→m) for different m.
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3. Original ruleset with Πnec, Πsuf verifiers: Attacker can compute Πω∗
R but

only generate the verifiers – c|acceptsuf (
−→m), c|acceptnec(

−→m) for different m.

In each case, the attacker may know either the original ruleset or the transformed

rules (Πnec and Πsuf ). Depending upon which policies are used to evaluate message

acceptance, the corresponding verifiers are generated. Hence, in the default case

the original policy is used to evaluate messages, whereas in the other two cases the

transformed policies are evaluated. These are formally proved next.

Theorem 7. It is possible to verify a guess of recipient’s policy through guessing

attacks if the attacker knows ΠR that includes leaky predicates and messages Mi,

i > 0 are accepted by the program ΠR ∪ ΠD ∪Mi

Proof: Because evaluations are carried out using ΠR∪ΠD∪Mi, leaky predicates will

make available verifiers c|accept(−→m) to the attacker. Since the attacker can compute

Πω∗
R , she can generate a sequence of messages to verify her guess. ¤

Theorem 8. If the attacker knows Πω∗
suf (resp. Πω∗

nec) and acceptance of messages is

decided by evaluation of Πsuf ∪ΠD∪Mi (resp. Πnec∪ΠD∪Mi), then it is not possible

to verify that g ∈ ext(p), where p ∈ P and ext(p) is its extension

Proof: Because private predicates defined in ΠD do not occur in rulesets Πnec and

Πsuf , they don’t occur in Πω∗
suf and Πω∗

nec. Therefore, with the sets Πω∗
suf and Πω∗

nec, the

attacker doesn’t have enough information to construct the definition of predicates in

RA from policy rulesets, and acceptance verifiers. ¤

Theorem 9. If the attacker knows ΠR and acceptance of messages is decided by

evaluation of Πsuf ∪ΠD ∪Mi (resp. Πnec ∪ΠD ∪Mi), then it is not possible to verify

that g ∈ ext(p), where p ∈ P and ext(p) is its extension
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Proof: With ΠR the attacker can construct rules that define a predicate p′ ∈ RA such

that ext(p′) ⊆ ext(p). However, these rules require verifiers generated from evaluation

of the ΠR ∪ΠD ∪M . Because p 6∝ Πsuf ∪M (and p 6∝ Πnec ∪M), therefore, verifiers

generated from the evaluation of this program is exactly the same for both the cases:

1. g ∈ ext(p)

2. g 6∈ ext(p)

Hence, the attacker does not get back the required verifiers to verify her guess. ¤

6.6 Chapter conclusion

In this chapter we identified an undesirable side effect of combining different email-

control mechanisms, namely, the leakage of sensitive information. Even though con-

fidentiality of sensitive information has been widely studied as a research problem,

it assumes a different form in the email context, because of the ease with which sen-

sitive information is leaked. We provide example scenarios where leakage is made

possible in two ways – using the message delivery protocol itself and using leakage

channels beyond the mail delivery protocol. Based on how these leakages may be

used by an attacker, we categorize them into two classes – automatic generation of

acknowledgement receipts for validating an email address and automatic generation

of acknowledgments for inferring private information about the recipient. As leak-

age channels beyond the control of the delivery protocol can’t be closed by modifying

email delivery protocol alone, preventing leakages is hard to achieve. In particular, we

investigate in detail the second class of attacks where a victim’s sensitive information

is leaked.
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We defined an attacker model for uncovering recipients’ sensitive information. In

the worst case scenario, we assume that the attacker knows recipient’s mail accep-

tance criteria, but not the sensitive information maintained by the recipient. With the

abilities of computing Clark completion of normal Horn clauses, unfold/fold transfor-

mations and generating messages, the attacker can mount attacks that leak sensitive

information. As a solution, we provide an algorithmic transformation which can san-

itize the combination of email-control mechanisms, so that the leakage is prevented.

We also show that the transformed policies that we generate are ‘closest’ semantically

to the original policy.

Here, we are not concerned with feedback obtained from out of band channels,

like recipient informing the sender through a telephone conversation. What we do

aim to provide is a guarantee that the system itself will not signal whether message

acceptance depended upon private information maintained at the recipient’s end. It is

possible to construct a hierarchy of mechanisms to control email delivery [55], where

our transformation can be supported through message evaluation at different levels.

For example, if all recipients in an email domain use the same sensitive predicate,

then that predicate can be pushed upstream, making it a global acceptance criteria,

thereby reducing it’s sensitivity. In our ongoing work, we are studying such techniques

to enhance our methodology.
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Qu(
−→
Yu): − Q1(

−→
Y1), . . . ,¬Qv(

−→
Yv), p1(

−−→
X1,1), . . . , p1(

−−−→
Xm1,1),¬p1(

−−−−−→
Xm1+1,1), . . . ,

¬p1(
−−−−−−→
Xm1+n1,1), . . . , pt′(

−−→
Xt′,1), . . . ,¬pt′(

−−−−−−−→
Xmt′+nt′ ,t′), c.

For each clause in ΠR as shown above, add following clauses, for each k and u, if not

already present: (with i ∈ [1,mk
′ ], j ∈ [1, nk

′ ] and k
′ ∈ [1, t′])

pesQu(
−→
Yu): −QumatchPt′(

−→
Xt′ ,

−→m), QumatchNotPt′(
−→
Xt′ ,

−→m).

QumatchPk(
−−−−→
Xmk+j ,

−→m): −pesQ1(
−→
Y1), . . . ,¬optQv(

−→
Yv), QumatchP1(

−−→
X1,1,

−→m), . . . ,

QumatchP1(
−−−→
Xm1,1,

−→m), . . . , QumatchPk(
−−→
X1,k,

−→m), . . . , QumatchPk(
−−−→
Xmk,k,

−→m),

QumatchNotPk(
−−−−−→
Xmk+1,k,

−→m), . . . , QumatchNotPk(
−−−−−−−−→
Xmk+(j−1),k,

−→m),

QumatchNotPk(
−−−−−−−−→
Xmk+(j+1),k,

−→m), . . . , QumatchNotPk(
−−−−−−→
Xmk+nk,k,

−→m), . . . ,

QumatchPt′(
−−→
X1,t′ ,

−→m), . . . , QumatchNotPt′(
−−−−−−−→
Xmt′+nt′ ,t′ ,

−→m),
−−→
Xi,k′ 6=

−−−−−−→
Xm

k
′+j,k′ , c.

QumatchNotPk(
−→
Xi,

−→m): −pesQ1(
−→
Y1), . . . ,¬optQv(

−→
Yv), QumatchP1(

−−→
X1,1,

−→m), . . . ,

QumatchP1(
−−−→
Xma,1,

−→m), . . . , QumatchPk(
−−→
X1,k,

−→m), . . . , QumatchPk(
−−−−→
Xi−1,k,

−→m),

QumatchPk(
−−−−→
Xi+1,k,

−→m), . . . , QumatchPk(
−−−→
Xmk,k,

−→m), QumatchNotPk(
−−−−−→
Xmk+1,k,

−→m), . . . ,

QumatchNotPk(
−−−−−−→
Xmk+nk,k,

−→m), . . . , QumatchPt′(
−−→
X1,t′ ,

−→m), . . . ,

QumatchNotPt′(
−−−−−−−→
Xmt′+nt′ ,t′ ,

−→m),
−−→
Xi,k′ 6=

−−−−−−→
Xm

k
′+j,k′ , c.

optQu(
−→
Yu): −optQ1(

−→
Y1), . . . ,¬pesQv(

−→
Yv),

−−→
Xi,k′ 6=

−−−−−−→
Xm

k
′+j,k′ , c.

Figure 6.1: Transformation algorithm
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Chapter 7: Extensions to SMTP

7.1 Introduction

In this chapter we exploit the SMTP extension model to incorporate additional service

models for supporting policy-driven message evaluations and message negotiations.

7.2 Extensions to SMTP

In this section we present the extensions to the SMTP protocol required to support our

scheme. The extensions we discuss incorporate our earlier proposal [42]. In addition

to the earlier extensions, we need extensions to help us advertise policies upstream, to

communicate an explicit criteria for message acceptance to the SESP or the sender.

This obviates the need to transmit messages to the RESP that can never satisfy the

transmitted policy. We assume a transaction model as described in RFC 2821 [1] and

that additional reply codes, for instance, 253,555, etc., can be used to communicate

new information, like sequence of exchanges to be used, message rejection, etc. In the

transaction model, the server initiating an SMTP session is called the SMTP client

and the second server is called the SMTP server. Accordingly, we refer to SESP by

the former and RESP by the later name in this section.
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7.2.1 Requirements

New requirements to support policy and feedback communication upstream are sum-

marized below. Our extensions are designed to address these new requirements:

• Support for communicating a policies and feedback for rejected message up-

stream on a per message basis. With this feature, recipient policies, i.e., MRAP,

can be advertised upstream, along with the MSP policy.

• Additional reply codes to denote temporary and permanent rejection of mes-

sages. Temporary reject means message refinement may reverse the reject de-

cision.

• Support for a graded scheme of policy communication and feedback control,

using the Service level agreement policy (SLAP).

The provision for upstream communications during SMTP handshake in [42] is

inadequate for the purpose of providing policies and feedback on a per message basis.

Clearly, at the time of the handshake, it cannot be known which recipients’ policies

to transmit. Abilities, characteristics, and interests of the diverse types of RESP’s

and SESP’s, as well as the trust between the communicators, may dictate the time

frequency, and the manner in which policy content is communicated by the RESP to

the SESP. Next we list the various schemes that can be employed by the disparate

mail servers on the internet:

T1: No policy or feedback communication.

T2: MSP policy advertisement and feedback, once per SMTP session.
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T3: MSP policy advertisement and feedback, on per session and per message basis.

T4: MSP, MRAP advertisement and feedback, where MSP and its feedback is shared

either on a per message basis, or once per session.

T5: MRAP advertisement and feedback.

SLAP
SESP

Identity

Information servers

Query

Internal state
conditions at RESP

Response

MSP

Polilcy communication

Suggested changes

suggested changes
Policies used for computing  

Figure 7.1: Service Level Agreement Policy (SLAP)

The choice of selecting between one of the above transmission schemes is entrusted

to SLAP. In other words, SLAP must first evaluate the trustworthiness of a sender

and its SESP and accordingly grant them the desired service level, as pictured in

figure 7.1. In summary, it not only selects the MSP policy for the session, but

also decides which policies to communicate, if any, and whether or not to provide

suggestions for refinement. For example, if the SESP is a known spammer, possibly

blacklisted, the SLAP can overrule any feedback in the form of policy advertisement

or suggested changes to rejected messages (i.e., T1). On the other extreme, when

communicating with a trusted SESP, SLAP may be most forthright in providing

useful feedback for message refinement (i.e., T4). In view of these additional controls

entrusted to it, the original SLAP characterization [42] has been extended here.
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7.2.2 Extensions

As proposed earlier [42], we invoke a new handshake command, namely SHLO, to

indicate the capability to support policy extensions to the SMTP protocol. One of

the parameters of SHLO message is the maximum number of attributes that can be

refined at a time. In the earlier work [42], presence or absence of MSP policy in the

extended handshake served as an indication to the client regarding which transmission

scheme was to be followed. With five possible alternatives possible in our approach,

the simplistic approach taken earlier needs to be extended. We use new reply codes,

described in table 7.1, for each transmission scheme for this purpose.

Table 7.1: Proposed additions to SMTP reply codes

SMTP phase Code Parameters/Significance

Handshake

253 None/No communication
254 MSP, once per session
255 MSP, per session and per message
256 MSP, per session and per message MSP; Per message

MRAP
257 None, per message MRAP

Transmission

258 MSP or MRAP/ Per message
259 None/ Response to challenge found incorrect
555 σa/ Temporary reject
556 None/ Permanent reject

New reply codes are introduced for use during the handshake, i.e., 253--257,

and can carry policy content as a parameter. Similarly, the transmission phase also

is extended with new reply codes, viz., 258– to communicate policy content; 259–

to indicate to the transmitter that its response to the supplied challenge was found

131



incorrect; 555– to reject a message with an answer constraint; and 556– a perma-

nent rejection code. In addition to the reply codes, the transmission phase requires

two additional commands to be introduced. First command is needed for the SMTP

client to respond to policy challenges, like turing tests [4], etc., and is named POLICY

RESPONSE. The second command indicates the readiness of the SMTP client to trans-

mit message headers. We name this command ALL HEADERS, and it contains as a

parameter, all the headers in the message being transmitted. These extensions will

be clear when we discuss the extended state machine in the next section.

7.2.3 Extended SMTP state machine

Extensions to reply codes and commands, introduced above, are used to extend the

SMTP client and server state machines. Next, we discuss the extensions to client

state machine in detail, and corresponding extensions to the server are implied. In

the figures shown below, each state (except those labeled R1, R2, R3, R4, R5),

represented by a box, implies that the client has issued a command, the label of the

box, and is waiting for the server’s response. Also, the figures picture faithful runs

of protocol, and therefore, we have dropped ‘503 Bad Sequence’ state transitions.

Extension to the SMTP handshake are discussed first.

Figure 7.2 pictures extensions to the client state machine for the extended SMTP

handshake phase. The client starts in the ‘Start’ state with a non-empty message

queue. It attempts connection to the SMTP server. A policy-enabled server replies

with a SHLO. To this message the client issues a SHLO along with other parameters, like

identity certificates, etc., and enters the ‘SHLO’ state. The server’s reply consists of a

code from the set– {253,254, 255,256,257} that indicates the transmission scheme
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Start
SHLO

SHLO R1

R2 R3 R4 R5

MSP MSP
254 255 256

MSP
257

253

Figure 7.2: Modified extended handshake

to follow and a parameter, like the MSP policy or the number of refinable headers, if

required. If MSP is communicated upstream, the SMTP client is expected to screen

out or refine messages in the transmission queue based on the transmitted policy, and

then change its state to denote the end of handshake phase. The corresponding states

at the client are denoted by ‘R1’, ‘R2’, ‘R3’, ‘R4’, and ‘R5’ and are discussed next.

The state ‘R1’ represents the beginning of ‘no feedback, no policy advertisement’

transmission scheme, i.e., T1. Essentially, this transmission scheme caters to clients

that cannot support policy-based evaluation, in other words, the transmission scheme

is identical to the current protocol. T1 could be used in cases where clients are policy-

enabled, but are not trusted by the server. However, policies can still be evaluated

at the server. If messages can’t satisfy the policies at server-end, this information is

not leaked to the client. The server simply drops rejected messages silently.

The state ‘R2’ represents the beginning of T2 transmission scheme, i.e., MSP

policy communication, once per session, and MSP feedback. An additional state

is required to verify portable MSP application in this machine. This state is the

‘All Headers’ state that denotes transmission of all message attributes prior to the
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R1 MAIL
FROM

RCPT
TO

DATA
QUIT

Start

250 OK

250 OK

354 Enter Mail

550 No such user

221 Transmit

250 OK

Figure 7.3: Transmission with no feedback.

transmission of the content. The server thus has an opportunity to verify if its MSP

policy was faithfully applied, and reject the message otherwise. We also permit the

use of ‘555 Denied’ reply, to allow for communicating suggestions to refine rejected

messages, in the case of local MSP evaluation. The state machine is pictured in

figure 7.4.

The state ‘R3’ represents beginning of T3 transmissions. In this case, MSP could

be used on a per message basis as well. For example, as a response to MAIL FROM

command, the SMTP server (i.e., RESP) can reply with a 258 message instead of the

usual 250 OK. The new reply code can carry an MSP policy, say, a memory bound

function challenge whose correct response is a proof of computational effort [26].

Hence, the figure 7.5, shows an additional state ‘Policy Response’ where the client

has sent a response to the MSP challenge and is waiting for its verification by the
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555/556 Denied

354 Enter Mail
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Figure 7.4: Transmission with MSP communicated on a per session basis.

server. The figure also shows that per message MSP scheme could be selectively

applied, thus sparing senders who are trusted by the server.

T4 transmissions, pictured in figure 7.6, begin in the state ‘R4’. R4 signifies

per-session MSP, per-message MSP and the message recipient’s MRAP based policy

communication and feedback. Compared to the state machine involving R3, R4 needs

two ‘Policy Response’ states, one for per message MSP and one for MRAP applica-

tion. A recipient’s MRAP can be communicated to the SMTP client when a message

addressed to the recipient is being transmitted. Sharing of MRAP can cause the

following: a) termination of transmission, because message or its refinements do not

satisfy MRAP; b) change of state to ‘All Headers’ since the message either satisfies the

MRAP or has been refined to meet its criteria; c) change of state to ‘Policy Response’

where MRAP challenge has been replied to. Also, the SMTP server can verify if its

per session MSP was faithfully applied, and prepare an appropriate response to the

client’s ‘All Headers’ state. Similarly, the server can also verify application of MRAP
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Figure 7.5: Transmission with MSP shared per session as well as on a per message

basis.

and respond with a reject decision (with a possibility of communicating suggestions

to refine it) to the client’s ‘Transmit’ state when a message is found unacceptable.

Finally, T5 scheme is represented by the state machine beginning with ‘R5’ and

is pictured in figure 7.7. R5 represents the state, in which the server decides to use

only the individual MRAP policies. Compared to state machine with R4, this one has

two less states because verification of session-based MSP and message-based MSP is

not required. All other state transitions are the same as those defined for R4 state

machine.

136



MAIL
FROM

QUIT

Start

250 OK258 MSP Policy
Response TO

RCPT

DATA
354 Enter Mail

550 No such user

Policy
Response

Policy
HEADERS

ALL 250 OK

259 Failed555/556 Denied

259 Failed

R4

250 OK

258 MRAP

250 OK

250 OK

221
Transmit

250 OK
555/556

258 MRAP

Policy Application

Figure 7.6: Transmission with MSP shared per session and per message and MRAP

shared on a per message basis.

MAIL
FROM

QUIT

Start

R5 RCPT
TO

250 OK

Policy
Response

259 Failed

250 OK

550 No such user

221

258 MRAP

258 MRAP

DATA

Policy Evaluation

Transmit

354 Enter Mail

250 OK
555/556 Denied

250 OK

Figure 7.7: Transmission where only MRAP is shared on a per message basis.
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Chapter 8: Securing Email by Design – A Web

Services-based Case Study

8.1 Introduction

In addition to fixing conventional email systems, several researchers have called for

secure replacements of email that satisfy current needs of the community. One such

line of works is WSEmail [63] that argues replacement of existing email systems with

a secure, web-services driven, email transmission network. The authors make their

case with support for additional functional requirements, like instant messaging, in

addition to protecting against several Misuse Cases.

In our view, a Web Services based email delivery service is an excellent choice

for a replacement system. This is partly because of the ease with which distributed

objects are accessed, allowing distributed support for solving the message acceptance

problem. In other words, such an approach fits well with our aim of correlating vari-

ous sources of information about incoming messages for making an effective decision

regarding its legitimacy. Secondly, it presents us with an opportunity to express func-

tional requirements in portable format that has a well-understood semantics. While

requirements can be expressed by technologically unsophisticated users, the abstract

descriptions can be shared, advertised or used in a machine independent manner.
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In this chapter we explore the Web Services driven email transmissions and con-

struct a secure, end-to-end design that is compared against functional and non-

functional requirements of SMTP networks. Given that conventional email and our

extensions can be used with mal-intent, we specify a collection of Misuse Cases that

are shown to be thwarted by our design. Example standard Use Cases and Misuse

Cases include the standard best-effort asynchronous delivery, preventing SPAM etc.;

we extend to giving the recipient more control over message acceptance without allow-

ing the misuse of inferring exact acceptance criteria. Our system, called WebMail, is a

collection of web services that are orchestrated using the Business Process Execution

Language (BPEL) [64].

In a similar effort, WSEmail [63] provides flexible means to communication, such

as, dynamically discovering and negotiating communication protocols such as in In-

stant Messaging (IM), etc. AMPol [65] extends WSEmail by separating policies from

delivery mechanisms, thereby achieving flexibility of operation. Our feedback-based

recipient controlled email framework (Chapter 4) extended traditional SMTP-based

email flows, thereby alleviating some annoying misuse cases of earlier systems. In this

work, we collect best of the two approaches, by designing a comprehensive web-based

solution using standard methods.

8.2 Use cases and Misuse cases

Next we relist the Use Cases and Misuse Cases for conventional SMTP systems. Our

aim here is to be able to support most functional requirements for adoptability and

ease of interfacing with existing systems, while preventing the Misuse Cases allowed by

the conventional networks. Known Use Cases enabled by conventional SMTP-based
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mail are as follows:

Use case 1 Best effort transmission of a text message from a sender (the principal

actor) to a recipient (the secondary actor) through intermediate mail servers

(auxiliary actors).

Use Case 2 Error reporting on transmission failure.

A message transmission - broken down into three logical steps, is considered com-

plete only if the message is routed to the recipient’s mailbox. The steps are: from

the sender to its email service providers (SESP); from SESP to recipients’ email ser-

vice provider (RESP); and finally from RESP to the recipient’s mail box. However,

physically, multiple mail servers may be involved and are subsumed under the log-

ical entities - SESP and RESP. Message transmission may not be complete due to

many failures, upon which the first point of failure detection is expected to inform

the sender using another email message.

Specialization of Use Cases Above two Use Cases can be specialized for a va-

riety of message types and properties of transmission channels. Standard use cases

supported by SMTP implementations are given below.

1. Best-effort transmission of enhanced content including text and MIME mes-

sages [14].

2. Enforcing security mechanisms such as transmitting authenticated message and

using encrypted channel.

3. Best-effort transmission of message acknowledgement receipts.
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Best-effort relates to asynchronous transfer of messages across hosts on the inter-

net, because recipient process may not be active when the sender process contacts

them. In addition, SMTP extensions [20, 19] include commands and replies for source

authentication and negotiations for establishing a secure channel for synchronous

transmission. Finally, SMTP also facilitates delivery receipts in the form of another

email. These Use Cases are supported by functionality built into communicating

server processes.

Email delivery is subject to many misuse cases. These include lack of authentica-

tion, loss of privacy and integrity of content, vulnerability to unsolicited commercial

email (spam), email bombs [9], etc., of which our design prevents the following:

1. Violating integrity and leaking or altering content: Allowing unintended mal-

actors to read message contents and alteration.

2. Impersonating senders : Allowing mal-actors to assume the identity of another

person in a mail message.

3. Email bombs: This is a variation of DoS attack on email networks, where mail

servers receive large number of messages, leading to denial of email service.

4. Receiving undesirable email (spam): Allowing undesirable email to reach recip-

ients’ mailbox.

Although the STARTTLS [20] command exists in SMTP, most email messages are

sent in clear-text over the wire, and stored as such at mail servers, thereby permitting

the first misuse case to occur. Similarly, although the SMTP AUTH [19] exists, it

requires prior exchange of secrets, which does not happen in most cases - thereby being
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subjected to the second misuse through sender-address spoofing. Current SMTP-like

server designs result in being subjected to the third misuse case, where lack of recipient

control over message delivery results in the last misuse case. Recent attention to spam

has resulted in some proposals to add automated recipient controls to the message

flow pipeline including, providing feedback about rejected messages [66]. A drawback

of delivery controls is the inadvertent disclosure of acceptance criteria, that can now

be used to defeat its purpose [67]. We also add this misuse case to the list of standard

misuse cases and propose a solution in later in this chapter.

8.3 Web Services for message transmission

In this section we begin with the basic technical details of our model. Three basic

components are considered for our specifications. First, we describe the types and

parts of messages that are exchanged between Web Services. Then, we specify var-

ious Web Services that constitute the WebMail family. Finally, we specify various

orchestrations of the WebMail family using BPEL process specifications.

Recall figure 3.1 (principals and policies in an email pipe) that details actors

involved in message delivery. There is a direct translation of each principal there to

a set of Web Services. That is, in a Web Services based message transmission, we

replace each actor by one or more Web Services. Together these Web Services form

a family, referred to as the WebMail family. Different orchestrations of these Web

Services provide many flavors of email transmissions. Here, we show how to achieve

these flavors. In effect, we show that earlier solutions for conventional systems can

be readily adapted for the Web Services environment and possibly improved upon.
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8.3.1 Message types

Table 8.1: Basic types of message elements

Type Name Primitive Type Example
MIME ASCII string Application/PDF
PKISignature ASCII String 463hfd47654
Message ID Long Int 239809832092
MType Character string Urgent, Personal, . . .
WantAck Boolean Yes/No
Number Positive Int 100
Nonce Positive Int 10000
Email Address ASCII string abc@xyz.com
Password ASCII string ******
Answer ASCII string Xy3

Message types define the protocol used for communication, i.e., service interfaces

are understood in terms of their input and output message. Here, we limit the types

of transported objects, however, our list is extensible and it is possible to include the

complete set of MIME[8] objects. Basic types are described in table 8.1, and complex

(i.e. structural) types are described in table 8.2. We give these type definitions for

completion. We don’t intend to leverage on their type structure in this chapter. Our

code (shown later) can be modified to be used with other typed structures as well.

For instance, several techniques use custom structures for ‘time’ or ‘credential’, etc.,

so we simply refer to them using an XML namespace element. Please note that we

use the characters ‘*’, ‘?’, and ‘+’ in the same sense of use as in BPEL manual [64],

i.e., .‘*’ means zero or more repetitions, ‘?’ meaning zero or one occurrence and ‘+’

means one or more repetitions.

Elements described in table 1 are expressed in Web Services Description Language

(WSDL) [7] in the syntax shown in figure 8.1 (we omit all the details here).
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<types>

<schema targetNS="uri1" xmlns="schema1">

<element name="Content" type="String">

</element>

.

.

<element name="Turing Test">

<complexType>

<all>

<element name="Image" type="Application/JPEG"/>

<element name="Answer" type="String"/>

</all>

</complexType>

</element>

</schema>

</types>

Figure 8.1: Basic Types in WSDL
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Table 8.2: Complex types of message elements

Type Name Type Structure Example
Time XmlNS=URI#Time 10:00 A.M EST
Key Pair Int × Int (53,97)
Credential XmlNS=URI#Cred Credential struct
Image XmlNS=URI#Jpeg JPEG struct
AObject Application/Type PDF file
Credential Chain Credential* Cred1,. . ., CredN
Currency Enum: $, £ $, £
Bond XmlNS=URI#Bond $3.5 Cred 1
Turing Test Image 10101. . .01,
Turing Test Reply Image × Answer (10101. . .01, xy3)
Content String?, AObject* ”Example”, Image

8.3.2 Messages

Message types (summarized in table 5) are described next. Structure of a mail mes-

sage is presented first. This message contains routing information, objects to be

transmitted and additional attributes that aid the delivery of the message. Message

attributes are used by downstream processes to make routing decisions [66]. Mail

messages are described in WSDL format in figure 8.2 . In the following listings char-

acter ’*’ signifies zero or more repetitions, ’?’ zero or one occurrence and ’+’ means

one or more repetitions.

In addition to mail messages, clients and servers transmit several other types of

message enable underlying communication protocols by informing the status of the

communication, properties of the transmission (QoS,) etc. (listed in table 8.3). Their

WSDL syntax is shown in figures 8.3, 8.4 and 8.5.

Message definitions in table 3 determine the application data or the payload for

the message communications. Table 4 defines protocol data exchanged for effectively
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<message name="MailMessage">

<part name="From" element="EmailAddress"/>+

<part name="To" element="EmailAddress"/>+

<part name="Date" element="Time"/>+

<part name="ID" element="Message ID"/>+

<part name="Surety" element="Bond"/>?

<part name="Pass" element="Password"/>*

<part name="Ack" element="WantAck"/>*

<part name="Sign" element="PKISignature"/>*

<part name="RTT reply" element="TuringTestReply"/>*

<part name="MType" element="String"/>?

<part name="Subject" element="String"/>?

<part name="Body" element="Content"/>?

</message>

Figure 8.2: WSDL mail message
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<message name="ReceiptNotice">

<part name="Date" element="Time"/>+

<part name="ID" element="MessageID"/>+

<part name="Sign" element="PKISignature"/>*

</message>

<message name="FailNotice">

<part name="Date" element="Time"/>+

<part name="ID" element="MessageID"/>+

<part name="Error" element="String"/>+

<part name="Sign" element="PKISignature"/>*

</message>

<message name="RejectNotice">

<part name="Date" element="Time"/>+

<part name="ID" element="MessageID"/>+

<part name="Eval Policy" element="Policy"/>+

<part name="Sign" element="PKISignature"/>*

</message>

<message name="RefinementMessage">

<part name="Date" element="Time"/>+

<part name="ID" element="MessageID"/>+

<part name="Sign" element="PKISignature"/>*

<part name="Surety" element="Bond"/>*

<part name="MType" element="String"/>?

<part name="RTT" element="TuringTest"/>*

<part name="Body" element="Content"/>*

</message>

Figure 8.3: WSDL Application Data
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Table 8.3: Types of messages

Message type Utility
Mail Message Message to be delivered
Receipt notice Notice of receipt and acceptance for delivery of a mail message
FailNotice Notice of delivery failure
RejectNotice Notice of delivery rejection
RefinementMessage Changes desired in a mail message
RefinementFailure Desired changes not possible
InformationMessage Third party message evaluations
MailIntent Indication of transmission intent
Service Level Accord QoS for invocations
AcceptancePolicy Acceptance rules advertisement
PKICertificate Proof of identity and data secrecy

completing the task at hand. In particular, Mail Intent, message expresses the intent

to send messages, SLA message is a response to mail intent message indicating num-

ber of messages allowed; while Acceptance Policy message states acceptable message

attributes.

8.3.3 WSEmail family of Web Services

Next, we design a family of Web Services that perform various tasks to aid delivery

of email messages. We list the set of externally callable methods for each principal

involved in message delivery.

Sender’s ESP (SESP) Sender’s email service provider is designed to receive mes-

sages, route them to the destination, examine and repair messages before send-

ing them, refine messages rejected by the RESP, etc.

1. SESPConnectPT
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<message name="RefinementFailure">

<part name="ID" element="MessageID"/>+

<part name="RError" element="String"/>+

</message>

<message name="InformationMessage">

<part name="Date" element="Time"/>+

<part name="ID" element="MessageID"/>+

<part name="Information" element="String"/>+

<part name="Sign" element="PKISignature"/>*

</message>

Figure 8.4: WSDL Application Data (contd.)

2. SESPReceiveMsgPT

3. SESPAuthPT

4. SESPDeliveryPT

5. SESPMsgCallbackPT

6. SESPImprovementPT

7. SESPVirusExaminationPT

8. SESPVirusRemovalPT

Sender Sender’s may need to expose a callback interface to receive rejection notices

or notices for improving messages

1. SenderMsgCallbackPT

2. SenderMsgRefinementPT

3. SenderPasswdCallbackPT
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<message name="MailIntent">

<part name="Date" element="Time"/>+

<part name="NoOfMsgs" element="Number"/>+

<part name="Sign" element="PKISignature"/>*

</message>

<message name="ServiceLevelAgreement ">

<part name="Date" element="Time"/>+

<part name="AllowedNo" element="Number"/>+

<part name="Sign" element="PKISignature"/>*

</message>

<message name="AcceptancePolicy">

<part name="Date" element="Time"/>*

<part name="Surety" element="Bond"/>*

<part name="Sign" element="PKISignature"/>*

<part name="RTTreply" element="TuringTest"/>*

<part name="MType" element="String"/>*

<part name="Body" element="Content"/>*

<part name="Sign" element="PKISignature"/>*

</message>

<message name="PKICertificate ">

<part name="Key" element="Credential"/>+

<part name="Session" element="Nonce"/>*

</message>

Figure 8.5: WSDL Control Data
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Recipient’s ESP (RESP) Recipient’s ESP provides the following set of services.

1. RESPHeloPT

2. RESP-TLSPT

3. RESPReceiveMsgPT

4. RESPVirusScanPT

5. RESPFilterPT

6. RESPControlPT

7. RESPSanitizationPT

8. RESPDeliveryPT

9. RESPStoragePT

10. RESPImprovementPT

Recipient A recipient need not expose any service; however, some recipients may

allow their service providers to “push” messages to the recipient’s host through

the following service

1. RReceiveMsgPT

In addition to services provided by the SESP and RESP, third party services may

be invoked during message transmission to check their desirability. Here we restrict

ourselves to two Web Services, though this list could easily be extended.

Third party services RESP may invoke a distributed checksum service to verify if

a message is a bulk message. Similarly, calls to escrow service to determine the

validity of attached bonds is also possible.
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1. CheckSumPT

2. BondVerificationPT

WSDL definitions of the Web Services, described above, are presented in fig-

ures 8.6, 8.7, 8.8, 8.9, 8.10, 8.11 and 8.12.

8.4 BPEL orchestration of WebMail

In this section, we begin with a basic set of synchronized Web Service invocations

for message delivery. We present their interfaces - synchronous or asynchronous - for

communication with other distributed processes. We illustrate typical activities, in

BPEL notation by Andrews, Curbera [64], et al. SESP is described in figure 2 and

RESP in figure 3, followed by their process descriptions (resp. listings 8 and 9). In

the BPEL process specifications (figures 8.13 and 8.17) of processes we assume that

< partnerLink > elements, identifying the roles of involved services, are already

specified. We omit namespace elements, variable declarations, etc., and depend on

the context for clarity.

8.4.1 SESP process specification

SESP process waits for messages from senders. Senders invoke SESP’s ReceiveMsgPT.

Once the message is received, two concurrent threads of execution begin, viz., scanning

the received message’s body for viruses and a UDDI query to locate the recipient’s

email service provider (RESP). If a message is found to be infected, the virus removal

process is run after the scan is completed. Next, the SESP invokes the HeloPT service

of the recipient to begin message delivery. Assuming that the RESP allows SESP to
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<portType name="SESPReceiveMsgPT">

<operation name="GetMessage">

<input message="Mail Message"/>

<output message="Receipt Notice"/>

<fault name="Fail" message="FailNotice"/>?

</operation>

</portType>

<portType name="SESPConnectPT">

<operation name="GetSLA">

<input message="MailMessage"/>

<output message=" IntentMessage"/>

<fault name="Fail" message="SLAFail"/>?

</operation>

</portType>

<portType name="SESPAuthPT">

<operation name="AUTH">

<output message="PKICertificate"/>

</operation>

</portType>

</portType> <portType name="SESPCallbackPT">

<operation name="MessageCallBack">

<input message="RefinementMessage"/>

</operation>

</portType>

Figure 8.6: WSDL portType specs for SESP services
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<portType name="SESPDeliveryPT">

<operation name="SendMessage">

<input message="MailMessage"/>

<output message="ReceiptNotice"/>

<fault name="Fail" message="FailNotice"/>?

</operation>

<portType name="SESPImprovementPT">

<operation name="Refinement">

<input message="RefinementMessage"/>

<output message="MailMessage"/>

<fault name="Fail" message="FailNotice"/>?

</operation>

</portType>

<portType name="SESPExaminationPT">

<operation name="VirusScan">

<input message="Mail Message"/>

<output message="Information Message"/>

</operation>

</portType>

Figure 8.7: WSDL portType specs for SESP services(contd.)
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<portType name="SESPVirusRemovalPT">

<operation name="VirusRemoval">

<input message="Mail Message"/>

<output message="Mail Message"/>

</operation>

</portType>

Figure 8.8: WSDL portType specs for SESP services(contd.)

transmit messages through a service level agreement (SLA), SESP invokes RESP’s

message receiving operation RecieveMsgPT.

Figures 8.13, 8.14, 8.15, 8.16 show a typical SESP process in BPEL syntax.

The code has four main blocks: headers and type declarations (figure 8.13), message

reception (figure 8.14); message preparation (figure 8.15); and message delivery (fig-

ure 8.16). The first part accepts messages from a sender, to be delivered to some

recipient. In addition, the SESP process allows its message callback service to re-

transmit an earlier rejected (but now revised) message. In other words, messages

rejected earlier, say for lack of authentication or other attributes desired by RESP,

are repaired with the help of this feedback loop. Next, each message enqueued for

delivery is subject to checks (like virus scan, etc.) to ensure good quality of each

message. Finally, the message is sent across to the RESP.

8.4.2 RESP process specification

Next, we define an RESP process that enforces a sample service level agreement

(SLA) and a reasonable message acceptance policy (AP), given (informal description)

in table 8.4.

155



<portType name="RESPHeloPT">

<operation name="SLAevaluation">

<input message=" MailIntent"/>

<output message="ServiceLevelAccord"/>

</operation>

</portType>

<portType name="RESP-TLSPT">

<operation name="STARTTLS">

<input message="PKICertificate"/>

<output message="PKICertificate"/>

</operation>

</portType>

<portType name="RESPReceiveMsgPT">

<operation name="GetMessage">

<input message="MailMessage"/>

<output message="ReceiptNotice"/>

<fault name="Fail" message="FailNotice"/>?

<fault name="Reject" message="RejectNotice"/>?

</operation>

</portType>

Figure 8.9: WSDL portType specs for RESP services
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<portType name="RESPVirusScanPT">

<operation name="VirusScan">

<input message="MailMessage"/>

<output message="InformationMessage"/>

</operation>

</portType>

<portType name="RESPFilterPT">

<operation name="BayesianFiltering">

<input message="MailMessage"/>

<output message="InformationMessage"/>

</operation>

</portType>

<portType name="RESPControlPT">

<operation name="SenderRep">

<input message="Sender"/>

<output message="InformationMessage"/>

</operation>

</portType>

<portType name="RESPSanitizationPT">

<operation name="Sanitization">

<input message="MailMessage"/>

<output message="MailMessage"/>

</operation>

</portType>

Figure 8.10: WSDL portType specs for RESP services(contd)
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<portType name="RESPDeliveryPT">

<operation name="SendMessage">

<input message="MailMessage"/>

<output message="ReceiptNotice"/>

<fault name="Fail" message="FailNotice"/>?

</operation>

</portType>

<portType name="RESPStoragePT">

<operation name="StoreMessage">

<input message="MailMessage"/>

<fault name="Fail" message="FailNotice"/>?

</operation>

</portType>

<portType name="RESPImprovementPT">

<operation name="RefineMsg">

<input message="MailMessage"/>

<output message="RefinementMsg"/>

<fault name="Fail" message="FailNotice"/>?

<fault name="Reject" message="RejectNotice"/>?

</operation>

</portType>

Figure 8.11: WSDL portType specs for RESP services(contd)
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<portType name="CheckSumPT">

<operation name="DCC">

<input message="MailMessage"/>

<output message="InformationMessage"/>

</operation>

</portType>

<portType name="bondVerificationPT">

<operation name="VerifyBond">

<input message="MailMessage"/>

<output message="InformationMessage"/>

</operation>

</portType>

Figure 8.12: WSDL portType specs for third party services

<process name="SESPProcess">

<partnerLinks>

<partnerLink name="transmission"

partnerLinkType=""

myRole="ReceiveMsgSrv" />

.

.

.

</partnerLinks>

<faultHandlers>

.

.

.

</faultHandlers>

Figure 8.13: Example SESP Process (part I)
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<sequence>

<flow>

<sequence> // New message from sender

<receive partnerLink="transmission"

portType="SESPReceiveMsgPT"

operation ="SendMessage" variable ="M">

</receive>

</sequence>

<sequence> // Refined message retransmission

<receive partnerLink="self-transmit"

portType="SESPReceiveMsgPT" operation ="SendMessage" variable ="M">

</receive>

</sequence>

<sequence> // Call back service

<receive partnerLink="RESP-SESP-CB">

portType=" SESPCallbackPT" operation="MessageCallback" variable="RefinementMsg">

</receive>

<invoke partnerLink="self">

portType=" SESPImprovementPT">

operation="MessageCallback" inputVariable="RefinementMsg" outputVariable="M">

<throw "FailureFault" faultVariable="RefinementMsg">

</invoke>

<reply partnerLink="self-transmit">

portType="SESPReceiveMsgPT" operation="SendMessage" variable="M">

</reply>

</sequence>

Figure 8.14: Example SESP Process (contd.) (part II)
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<flow> // message preparation

<links>

<link name="fix-deliver"/>

<link name="UDDI-resn">

</links>

<sequence>

<invoke partnerLink="scanner"

portType=" SESPExaminationPT"

operation=" VirusScan" inputVariable="M" outputVariable="result">

</invoke>

<switch>

<case condition="result=true">

<invoke partnerLink="scanner"

portType="SESPVirusRemovalPT"

operation="VirusRemoval" inputVariable="M" outputVariable="M">

<source linkName="fix-deliver" />

</invoke>

</case>

<otherwise>

<empty />

</otherwise>

</switch>

</sequence>

Figure 8.15: Example SESP Process (contd.) (part III)

161



<sequence> // where to send?

<invoke partnerLink="nameReslv" portType="UDDIService"

operation="GetAddress" inputVariable="From" outputVariable="IPAddress">

<source linkName="UDDI-resn" />

</invoke>

</sequence>

<sequence> // send message to RESP

<invoke partnerLink="outbound"

portType="SESPConnectPT" operation name="GetSLA"

inputVariable="M" outputVariable="SLA">

<target linkName="UDDI-resn" /> <target linkName="fix-deliver" />

</invoke>

<while condition="number &lt; SLA">

<flow>

<sequence>

<invoke partnerLink="destination" portType="SESPDeliveryPT"

operation name="SendMessage" inputVariable="M" outputVariable="R">

<catch "RejectionFault" faultVariable="RejectNotice">

<reply partnerLink="SenderCB">

portType=" SenderMsgCallbackPT" operation="Rejection" variable="RejectNotice">

</catch>

</invoke>

</sequence>

</while>

</sequence>

</flow>

</sequence>

</process>

Figure 8.16: Example SESP Process (contd.) (part IV)

162



Table 8.4: Acceptance Policy

SLA and AP policies

SLA
Allow 10 messages per connection
Allow Feedback for rejected messages

AP 1

Accept IF No virus/worm is attached
AND Filter allows receipt

OR
Distributed checksum allows receipt

AP 2
Accept IF No virus/worm is attached

AND Message bonded with value ≥ b
AND Bond is verified by an escrow service

As shown in figure 8.17, upon invocation of RESP’s RecieveMsgPT (”Get-Message”

operation) the message is transmitted to RESP. For each received message, the RESP

applies a message acceptance policy to accept or reject it. If the transmitted mail

fails to satisfy this policy, the RESP either throws a rejection notice or a refinement

message. The refinement message suggests changing some parts of the message that

may make it acceptable to the RESP. As a result, refinement activity may begin at

the SESP. Note that based on its own policy, an SESP may decide to ignore all ad-

vice, and consequently, the callback service interface may not be exposed (the current

strategy used by existing SMTP implementations). On the other extreme, if neither

party stops the refinement process, it may go on forever. Many such strategies have

been studied by researchers in other contexts (like automated trust negotiation [68],

etc.), and can be supported here. In the code presented next, we take the approach

of refining a message up to a specified number of times (5 here). This is because we

haven’t found the need yet for a more complex strategy.

The RESP process is made up of five main parts, as shown in figures 8.17, 8.18,

8.19, 8.20 and 8.21, viz, headers, types and supported faults (figure 8.17), message
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<process name="RESPProcess">

<partnerLinks>

<partnerLink name="ESPtransmission" partnerLinkType="" myRole="ReceiveMsgSrv" />

.

.

.

</partnerLinks>

<faultHandlers>

.

.

.

</faultHandlers>

<sequence>

// logic for generating SLA

<switch> // Evaluate SLA

<case condition="number &lt; 11">

<receive partnerLink="RESPtransmission"

portType="RESPReceiveMsgPT" operation ="GetMessage" variable ="M">

</receive>

Figure 8.17: Example RESP Process (part I)
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<flow> // Invoke concurrent processes

<links>

</links>

<sequence> // Virus scanning

<invoke partnerLink="scanner" portType="RESPExaminationPT"

operation=" VirusScan" inputVariable="M" outputVariable="result">

</invoke>

<switch>

<case condition="result=true">

<invoke partnerLink="scanner" portType="RESPVirusRemovalPT"

operation="VirusRemoval" inputVariable="M" outputVariable="M">

<source linkName="fixed" />

</invoke>

</case>

<otherwise>

<empty>

<source linkName="empty" />

</empty>

</otherwise>

</switch>

</sequence>

<sequence> // Distributed checksum

<invoke partnerLink="TPDCC"" portType="CheckSumPT"

operation=" DCC" inputVariable="M" outputVariable="checksumOK">

<source linkName="dcc-deliver" />

</invoke>

</sequence>

Figure 8.18: Example RESP Process (contd.) (part II)
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<sequence> // Verify bond

<invoke partnerLink="TPEscrow"" portType="bondVerificationPT"

operation="VerifyBond" inputVariable="M" outputVariable="verified">

<source linkName="bond-verify" />

</invoke>

</sequence>

<sequence> // Bayesian filtering

<invoke partnerLink="RESPFilter"" portType="RESPFilterPT"

operation="BayesianFiltering" inputVariable="M" outputVariable="filterOK">

<source linkName="filtering" />

</invoke>

</sequence>

</flow>

<!- enforcing acceptance policy -->

<sequence>

<switch>

<case condition="(fixed OR empty) AND (checksumOK OR filterOK))">

<invoke partnerLink="RESP-Recipient" portType="RESPStoragePT"

operation="StoreMessage" inputVariable="M"

<switch>

<case condition="Ack = YES" outputVariable="delivered">

</case>

<case condition="No space">

<throw "FailFault"> </case>

<otherwise> <empty /> </otherwise>

</switch>

</invoke>

</case>

Figure 8.19: Example RESP Process (contd.) (part III)
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<case condition="(fixed OR empty) AND (verified AND bond &gt; b)">

<invoke partnerLink="RESP-Recipient" portType="RESPStoragePT"

operation="StoreMessage" inputVariable="M"

<switch>

<case condition="Ack = YES">

outputVariable="delivered">

</case>

<case condition="No space">

<throw "FailFault">

</case>

<otherwise> <empty />

</otherwise>

</invoke>

</case>

<case condition="NOT fixed OR NOT (checksumOK AND filterOK)>

<throw "RejectionFault" faultVariable= "RejectionNotice">

</throw>

</case>

<otherwise>

<sequence>

<switch>

<case condition="history &gt; 5">

// 5: maximum invocations of improvement service

<invoke partnerLink="self" portType="RESPImprovementPT">

operation="RefineMsg" inputVariable="M" outputVariable="RefinementMsg">

// outputVariable stores M’s refinement history

</invoke>

Figure 8.20: Example RESP Process (contd.) (part IV)
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<reply partnerLink="RESP-SESP-CB" portType=" SESPCallbackPT">

operation="MessageCallback" Variable="RefinementMsg">

</reply>

</case>

<otherwise> <empty />

</otherwise>

</otherwise>

</switch>

</sequence>

</switch>

</sequence>

</process>

Figure 8.21: Example RESP Process (contd.) (part V)

reception from SESP (figure 8.18); invocation of helper services to estimate message

quality (figures 8.18 and 8.19); acceptance policy evaluation based on message quality

(figures 8.19 and 8.20) and finally, computing feedback for rejected messages (figure

8.21). The RESP waits for messages to arrive, and if the service level agreement is

satisfied, messages are accepted (as shown in the process listings). Next, the RESP

makes concurrent calls to several ‘helper’ services, like Bayesian filtering service, bond

verification service, distributed checksums, virus scans, etc., to estimate the quality

of incoming message. Once these processes terminate with an output, the RESP

process starts evaluating the message based on its acceptance policy. During this

stage a message may be accepted or rejected. Rejected messages may be returned to

the SESP with feedback on some hints usable for resubmission, if the sender decides

to do so (using the message improvement service).
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Example 14 (Message rejection by RESP). Assume a mail message (M) that con-

tains the following appropriately initialized parts: From, To, Date, ID, Subject and

Body. We make the following assumptions:

• M does not contain any attached virus/worm

• M is the only message in queue

• RESP’s SLA accepts 10 messages per connection, and provides feedback for

rejected messages.

• Acceptance policy requires that no virus be attached to a message, and either the

message has a bond (”Surety”) or satisfies the Bayesian filter.

• Message content may contain prohibited words.

According to the generic BPEL processes described, with the change that above

policy instead of the one shown in table 4 is evaluated, M will not be accepted for

delivery at the RESP (figures 8.19 and 8.20). This is because it fails to satisfy both

conditions - it doesn’t include a valid bond and it doesn’t satisfy the Bayesian filter

on account of the prohibited words in its body. As in figure 8.20, the RESP process

initiates a call to the message improvement service (to allow the sender to revise the

message). The content of the refinement message would include the following parts:

Date, ID, Sign, Surety and Body - the missing information that caused rejection.

Essentially, this response provides the sender acceptable values for the parts Date,

ID, Surety and Body. That is, the refinement message identifies the deficiencies in

M: no valid bond (or surety) and presence of prohibited words. Once made aware, the

sender may choose to alter the rejected message, so that it reaches its destination [66].
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Chapter 9: Related Work

9.1 Introduction

The main areas of research in the email environment are primarily restricted to solv-

ing the delivery decision problem. This is in response to the omnipresence of spam

or unsolicited commercial email witnessed by the majority of email users, as reported

by Dwork and Naor [27] and by Bass, Freyre et al. in [9]. The latter work mainly

points out the inadequacies of the current infrastructure through which malicious

senders or spammers can abuse it by sending spam. However, an important aspect of

the problem they present has been largely overlooked, namely, the delivery schedul-

ing problem wherein a sender can overwhelm the recipient mail system by sending a

large amount of mail messages. These articles [27, 9] lay the foundation of our study.

Other related work which have influenced the formulation and direction of this work

are classified into five broad genres: a) Laws and legislative procedures; b) Content

based filtering and text categorization solutions; c) Reputation and trust based so-

lutions; d) Economic solutions enforcing cost or memory resources and e) Network

based solutions. Next we present most significant related work in two broad classes:

The solutions which have been implemented and are a part of the current industry

practice and proposed solutions which have not yet been implemented. Within each

category we subclassify the approaches according to their genre and relate them to

our approach.
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9.1.1 Proposals

Legal Provisions

At one front of solutions against fraudulent email or spam are laws and legislative

provisions. Laws are essential and helpful but certainly not the silver bullet we have

been searching for, as summed up in [69]. The main limiting aspect of legal solu-

tions is that they are limited within their jurisdictions but spammer’s have global

reach. Hence spammers out of a country can break laws against spam without fear

of legal action. Several countries have drafted such laws (For example Can Spam act

in the United States etc.), however, the definition of spam and evidence of spam-

ming are issues of contention. Again, in the absence of international agreements,

such approaches will not have any major impact. Laws without technical support

can be worthless and ill-directed. Some techniques have been suggested to gather

credible evidence of spamming. Recently a project called ‘Project Honeypot’ [70] was

initiated, which claims to provide credible third party evidence against individuals

breaking the laws against spam. Email filters that screen out illegitimate mails can

also be used to gather evidence against spammers [71]. Investigators have pointed

out various techniques used by spammers as a means to further their illegitimate

activities [72]. Such initiatives are a step in the right direction and can be combined

with reputation or trust based solutions to protect the recipients against illegitimate

mail. In our approach, we provide means to consolidate such claims by providing

irrefutable evidence of the communication.
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Content based filtering and text categorization solutions

Content based filtering solutions try to parse the content of a message and determine

the probability of it being spam. Cohen’s work [73] was among the first to suggest

text categorization for automated filtering applicable in many applications, followed

by [74] for specific use in email applications. Since then a lot of approaches have been

put forth for filtering purposes, some of earlier ones are [75] using support vector

machines algorithm, LogitBoost algorithm[76] etc. Sahami, Dumais et al. [77] first

applied bayesian classification techniques to email filtering in a decision theoretic

framework and showed the efficacy of such filters. Naive Bayesian filters [78, 37]

provide a probability of the text classification decision and quantify the probabilities

of spam determination. Yerazunis presented a high performance technique called

sparse binary polynomial hashing [30], a generalization of the Bayesian method that

can match mutating phrases as well as single words. Chhabra, Yerazunis et al. [79]

also propose to use Markovian discrimination with variable neighborhood windows for

features in spam filtering. This is essentially the marriage of sparse binary polynomial

hashing with feature weighing and it is shown that much better filtering results have

been achieved. Other statistical approaches include Filtron [6] which uses machine

learning to construct effective personal anti-spam filters by better feature engineering;

study on support vector machines and random forests [80] show that they can result in

lower false positive rates than the naive bayesian spam filtering. Chhabra, Yerazunis

et al. [81] present a non-probabilistic statistical approach to spam filtering and have

achieved a higher success in reducing the error rates. In this context, the work by

Wittel and Wu [82] studied various attacks on statistical spam filters and shown

techniques that could be used against these filters. From our perspective, advances

172



in statistical filtering are extremely important and we leverage on their techniques to

design a comprehensive mechanism to approach the delivery decision problem. Our

research is orthogonal, or at best complementary to these proposals as we provide a

better infrastructural support for filtering in our approach.

We also cover here some of the non-statistical filtering methodologies proposed.

Rigoutsos and Huynh [83] propose a pattern matching algorithm based on the Teire-

sias pattern discovery algorithm for spam filtering. However, their algorithm has

not been tested against statistical spam filters. Kolcz et al. use a signature driven

algorithm in [84] to detect near-duplicate spam messages. The authors assume that

most spam messages are near-duplicates and hence the applicability of their proposal.

Leiba and Borenstein note in [85] that elimination of spam is impossible and the best

way to approach towards the spam problem is to use multiple solution types to fil-

ter spam messages. In fact, their approach is very close to our proposal to repair

the ailing email system and can be seen as one particular delivery mechanism M

determined by the set C, the sequence of spam reduction approaches suggested in

this paper. Gray and Haahr note in [31] that collaborative filtering is not ideal for

individual users and present a new architecture called CASSANDRA for personal-

ized collaborative spam filtering. This system tries to push back the filtering process

closer to the source, though still maintaining the properties that only legitimate mes-

sages (relevant to the user) are stopped. One of the distinguishing features of this

work is that unlike other filtering approaches, where messages are tagged as spam

without individual recipient’s opinion, this work does not make such assumptions.

With respect to our work, this approach is highly relevant and we leverage on their
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architecture and generalize it through our policy aggregation technique to be pre-

sented later. Yerazunis et al. suggest a unified model of filters in [86] independent of

the learning algorithm used. Such a technique would help benchmark spam filtration

technology in a standard way. A word stemming approach by Ahmed and Mithun is

proposed in [87] which attempts to discover stems of word mutations to increase the

efficacy of statistical filters. Similar to this approach, Oliver suggests in [88] use of

lexicographical distances to discover morphed expressions. In [89] Zdziarski suggests

the use of a ‘pre-filter’ called bayesian noise reduction to improve the data processing

of a statistical filtering approach.

Content based spam filtering is one of the most popular approach to solve the

delivery decision problem and has proved to be an effective approach against receiv-

ing unwanted email messages. However, one of its main drawbacks is the fact that

a mechanism determined by spam filters does not make an effective delivery mecha-

nism. Messages are stopped close to the destination and as a result, the bandwidth

utilization of the email system is reduced. In fact, since the use of spam filters, num-

ber of illegitimate mail messages have drastically increased to more than half of the

email bandwidth. The cost of handling these messages and transmitting them close

to the destination is borne by the infrastructure. It is clear that filters alone cannot

determine an effective delivery mechanism, and some additional properties must be

used so that unwanted messages are stopped as close to the source as possible.

Economic solutions

Economic solutions address the question of costs incurred in solving the delivery

decision problem. Allman in [90, 69] noted that spam filtration technology puts
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the complete burden of costs of the solution on the recipient and the recipient mail

system. He advocates designing solutions such that costs can be shared between

the recipients and the senders and thus mount an effective deterrent to unwanted

mail. In fact a mechanism based on this principal can potentially be an effective

mechanism if it stops messages close to the source. Information Asymmetry approach

by Loder et al. [3] describes a new paradigm for spam mitigation based on monetary

signalling, which aims to increase email costs primarily for senders who misuse the

email infrastructure. The paper builds on the concepts of interrupt rights [91] to do

so and can charge message senders money for recipient attention span, if the recipient

chooses so. For unwanted messages, a recipient can thus get compensated for his or

her time spent in dealing with the message. In their view, messages bonded above a

threshold reveal the confidence of the sender in the message content and can help a

recipient safely determine the utility of the message for him or her. With respect to

monetary transactions, they claim their scheme to be policy independent and is based

on configuring a minimum monetary threshold for attention span. This proposal is

an excellent technique for a proactive charge against spam as it aims to reduce the

bandwidth unwanted messages use up. In our work, we can accommodate message

bonds and allow them to be used with other delivery decision solutions. We achieve

this goal through a policy framework and hence our work is more general. Rui and Li

in [32] argue that differentiated surcharge mechanism using a combination of cost and

filtering approaches is better than bonds or filters alone. Instead of letting a recipient

choose a monetary threshold as proposed by Loder et al., the authors suggest using

filters on every mail message and the probability of it being spam determines the price

charged to the sender. Since they propose use of personalized spam filters, indirectly
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the recipient chooses varying levels of monetary costs levied on the senders, based

on the ‘spamminess’ of messages according to him or her. Empowering the user to

control quality of emails is great, but it may lead to abuse of the system by recipients.

Another paradigm for mail delivery is defined by Templeton in [29] and Kraut et al.

in [24]. They advocate a static fee for delivering mail, something akin to postage in

regular mail services. Hence, for every message a sender pays a nominal fee, and in

case of spammers, such a fee would amount to a large sum of money and hence will be

discouraged from generating large volumes of spam. These solutions can drastically

reduce spam bandwidth and could in turn make the spam filters extremely accurate

(due to low bandwidth of spam messages), but every one will have to bear the cost of

sending email and it is against the open internet flavor. In general, we would like the

email service not to punish legitimate users for misbehavior of others. However, it is

still an excellent means of addressing the delivery decision problem and we allow for

its use in our framework. In our framework, if a sender really wants to get through

and is ready to pay the price set by the receiver, will get through. A computational

counterpart of monetary schemes involves use of ‘puzzles’ or computation intensive

calculations [27] or memory based costs [26] to shift the computational burden of

costs resulting from spam to the senders. This solution is attractive because there is

a possibility of reducing unwanted messages without senders incurring monetary costs.

Balakrishnan and Karger in [25] suggest use of quota allocation and enforcement to

limit number of messages sent by a sender.
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Reputation and trust based solutions

Trust based solutions grant or deny delivery access to message requests based on

delivery rights. In the networking parlance, trust based systems, are said to use

whitelists and blacklists. A whitelist is a set of senders who are given the right to

deliver to the whitelist author’s mailbox, whereas blacklist is a set of senders from

whom the delivery right has been revoked. For senders not in either list, the delivery

right has not yet been granted or revoked, but must be earned by satisfying terms

or conditions set by the recipient. There are several issues involved in these types of

systems. First and foremost is establishing the identity of a sender without which the

access control system is unenforceable. Email sender authentication is not a trivial

task as identity spoofing is relatively easy. Several methods have been proposed to

get around the spoofing problem; we review some of these approaches next. Source

authentication using digital signatures for every email message has been suggested

in [5]. Although strong sender authentication would be helpful but the scalability of

this scheme is doubtful. Pretty Good Privacy (PGP) (email confidentiality/privacy

solution) was shown to falter because of scalability reasons, as large scale PKI de-

ployments are not scalable and web of trusts can be attacked by setting up malicious

web rings [92]. Also, the ease of spawning of new digital identities [21] in an open

environment such as internet is an important issue to be addressed. A weaker source

authentication scheme proposed by Boykin and RoyChowdhury [93] takes advantage

of the social networks to construct a list of trusted senders using depth of communi-

cation hierarchies. The authors only achieve limited success with this approach and

note that this technique alone is insufficient to catch all spam in email. Potentially

spammers and intruders can attack this system by monitoring clear text messages to
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gain unrestricted access to a mailbox. Here we also mention a network based solution

called SPF [94] that aims to solve the spoofing problem. We cover it in more detail

in the next section. In all, attempts are being made to provide sender authentica-

tion for email, such that trust based solutions can be used for the delivery decision

problem. Solving the spoofing problem is clearly not enough as shown by Watson in

[95]. He argues that given reliable sender authentication is available, policies based

on whitelists and blacklists can still be circumvented due to very large number of

email addresses as well as the ability to attain a new email address with much ease.

The second issue with trust based systems is the construction and revisions of

whitelists or blacklists, also known as ACLs, i.e., access control lists. The problem

is stated as follows: recipients must be able to state a set of conditions, which once

satisfied, allow a recipient to place their trust in the requesting party. Usually, re-

cipients are expected to construct ACL’s manually but new approaches have been

proposed to automate this process. Challenge Response solutions [4] which employ

passwords or captcha tests are one instance of such a proposal. The basis of this

test is that a human is involved in the loop, and hence can be trusted for sending a

legitimate message. Since a majority of spammers use automated programs to gen-

erate large volumes of messages when spewing out spam, the presence of a human

in the loop seems to be a reasonable reason to accept the message. Once senders

authenticate themselves, their email addresses are added to the recipient’s whitelist.

However, this solution is not error proof and potential attacks can be constructed by

eavesdropping and harvesting trusted senders for targeted recipients. Once a sender

is in a whitelist, he or she gets full access to the recipient’s mailbox, and hence the

vulnerability. Similarly, on failing to pass the test posed by a recipient may lead to
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the sender being accorded blacklisted status. It may be possible to cause denial of

email service to a particular sender for sending messages to a particular recipient by

engineering an attack that blacklists the sender in the recipient’s ACL. Therefore, use

of challenge response in isolation is unsatisfactory and needs to be combined with an

authentication mechanism for more stable results. The problem of maintenance or

revision of ACLs has not been explored by this technique.

Reputation based systems build trust through associations or referrals. Goldbeck

et al. in [35] suggest the use of a reputation based system which builds trust through

association. Their prototype system called TrustMail is very similar in approach to

[93] but instead of populating a whitelist or using the connection hierarchy, they

use user reputation ratings to determine the utility of mail messages. In a sense

they achieve ratings corresponding to whitelists (though dynamic in nature) and can

sort messages based on the aggregate reputation of the sender. This technique is

closely related to our approach where we aim to build reputation systems based on

associations or referrals depending upon requirements at the recipient end. Project

Lumos [34] is another reputation based system, which includes the notion of two-

level sender authentication supported by public reputation system, similar to what

our proposal assumes. Lumos is unique in the sense that they use predefined signals

as message headers to help the recipient solve the delivery decision problem. Message

characterizations by senders may include ‘Urgent’, ‘Official’, ‘Advertisement’ etc. and

the recipient can write filters to sort the received mail. Assertions by senders are

supported by a central public reputation network which collects complaints against

sender’s message characterizations and can be used to derive the trust level at the

recipient. The limitation of Lumos is that it is set up, at heart, to serve the interests
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of the large commercial bulk mailers. The idea is to register bulk emailers, require

them to respond to reports of abuse, and publish the corresponding reputations. If

Lumos really does make headway in the marketplace, our scheme would be easier to

implement, since we rely on the same notions of sender authentication. Also, Lumos

would be an excellent reputation service to include in our framework which is based on

distributed reputations. Other examples of proposed or existing reputation services

are Razor [40] and CloudMark [22], which aim to identify individual SPAM messages

through a collective effort, and SmartScreen [96], which is a Microsoft effort with the

same objective. Both Razor and SmartScreen would fit well with the approach that

we propose.

Network based solutions

We have categorized methods as network based if they depend heavily on network

studies. Some of the methods discussed under this genre may as well belong to one

or more genres discussed above and some works already discussed above reappear in

this section. We begin our survey with the work of Li et al. who propose to introduce

delays in the transport layer during mail transmission in [28] to slow down a spammer.

Authors contend that an early detection mechanism using spam filters can be used

to determine connections that should be delayed. By doing so, the delivery rate of

malicious senders can be significantly reduced, whereas the legitimate senders would

experience negligible delays. Thus by increasing the time to transfer a message,

TCP-damping increases the cost of sending messages to spammers. However, the

recipient mail system also pays an equivalent cost by allocating costly TCP sessions

to unwanted mail sessions. Though novel, we feel that this method needs more
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finesse. In our work, we use a similar approach to identify unwanted or low priority

mail delivery sessions and allow use of policies to restrict the number of messages

transferred in each such session, hence achieving almost similar results as presented

in this work.

Sender policy framework proposed by Wong [94], and earlier approaches like re-

verse DNS checks [97, 98] propose to solve the spoofing problem. They try to plug

the current vulnerability in the email infrastructure by which a sending mail system

is allowed to assume any mail domain name. In this approach, the originating IP-

address and the presented domain name are matched through reverse DNS queries

of MX (mail exchange) records. When the two match, the recipient mail system is

convinced of the identity of the sender, otherwise, the recipient can choose not to

trust the sender with their mail messages. A mechanism for sender authentication is

badly required for establishing trust between internet hosts, senders and recipients

and we leverage on this methodology heavily in our work.

Realtime Blackhole Lists (RBLs) [36] maintain a list of IP addresses which have

been used by spammers or sending mail systems to spew out spam. These lists serve

as a reputation service employed by recipient mail systems to evaluate amount of trust

in the communicating party. Spam URI Realtime blocklists (SURBL) [46] are used to

detect spam based on message body URIs. Unlike most other RBLs, SURBLs are not

used to block spam senders. Instead they allow recipients to block messages that have

spam hosts which are mentioned in message bodies. In our work, we allow the use of

reputation services of this nature to leverage on their work. Razor [40] or Cloudmark

[22] and Distributed Checksum Clearinghouse [23] similarly help stop near-duplicate

spam messages by maintaining a count of duplicates seen on the internet and flagging
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those which cross a threshold. In our approach we allow use of such IP and message

reputation services to be used while making the delivery authorization.

Clayton proposes to use extrusion detection for stopping spam in [33]. The pro-

posal is to use extrusion filters, similar to incoming mail filters at the service provider

level. If a large number of users use the same email gateway (more details in chapter

3), then potential spammers and captured machines can be stopped from spewing out

spam and thus protecting target victims of spam attacks. The mechanism resulting

from use of extrusion detection can stop messages closer to the source and prove to

be more effective than many other methods. Moreover, using extrusion detection

will also protect innocent boxes and domains from getting blocked by RBLs. In our

approach, we keep this requirement in mind and propose an architecture where such

filters can be employed.

Dai and Li in [38] present a new approach using third party mail arbiter to test

the sent message against a particular recipient’s preferences. If the message does not

meet the recipient’s criteria, the online service contacts senders and gives them a

reason for rejection of the message, in turn allowing the sender to fix or customize the

message for recipient’s preferences. This work is very similar to our approach where

we include the feedback mechanism in the current infrastructure itself, making the

use of third party redundant.

9.1.2 Current practices

Haskins and Nielson in [99] provide an excellent introduction to some of the products

used for filtering emails. Products covered are: ProcMail [100] and SpamAssassin [7]
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filtering extensions in Sendmail, Postfix and qmail; SMTPAUTH [19] and START-

TLS [20] configurations in Sendmail, Postfix and qmail; Distributed checksum fil-

tering solutions like Vipul’s Razor [40]and DCC [23]; bayesian filtering methods like

CRM114 [30], bogofilter [101] and ASSP [102]; email client filtering products POP-

File, Mozilla Messenger, Microsoft Outlook. Procmail can be configured to perform

actions based on patterns matched in header items as well as the body of a mail

message. Actions include filing, forwarding, and further processing. Typically it is

used when the desired anti-spam program requires it or when no other mechanisms

are available. For example, bogofilter and blacklists can be used within Procmail.

Spamassassin is a widely used interface to other anti-spam mechanisms as well as a

spam-classifier itself. Methods used in Spamassassin include message analysis(header

and body), bayesian filtering, distributed checksums, RBLs, automatic and manual

whitelisting/blacklisting. A natural descendent of static whitelists and blacklists are

blackhole lists (RBLs). Some of avaiilable RBL services are MAPS [103], Spam-

Cop [104] and Spamhaus [105]. RBLs can be easily integrated with the mail server

software. STARTTLS amd SMTPAUTH are extensions to the current mail system

to support strong authentication and are in use now. Market currently abounds in

bayesian filtering products, with more than 80 products mentioned in [99]. Academic

proposals like [30] are now included as bundled software packages in many anti-spam

solutions. CRM114 is reputed to be highly accurate as is the bogofilter. ASSP has a

very easy to configure GUI and hence a good choice. Email client filtering is more ac-

curate than collaborative filtering since it customizes filters for individual use. Many

such products are available for use.

Similar to a monetary and computational or memory based cost solutions, Internet
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Mail 2000 [106] software proposes to use sender memory resources for all unread mail

and hence reduce the amount of spam. Recipients receive mail notifications and

can choose to read or delete the message. However, it does not effectively solve the

delivery decision problem, but does stop messages at the source, thus improving the

bandwidth utilization.
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Chapter 10: Conclusion

Needs at one recipient mail system could be starkly different from another depending

upon the type of organization. For example, a university mail system may not be as

restrictive as a corporate mail system which in turn may have different requirement

than a defence organization. The abundance of solutions to protect against unwanted

mail messages provides ample choices for recipients to pick and choose from, to get a

combination which satisfies their particular needs. As noted above, anti-spam solu-

tions used in practice usually employ more than one anti-spam technique. However,

due to combination of methods, information leakage channels may arise, which can

lead to compromise of sensitive information. In this thesis we have provided a means

for picking and choosing the desired set of email-control techniques and using them

under a single umbrella. In addition, we provide a means to protect against inadver-

tent information leakages as well.

Other related work in the email domain, not directly related to delivery decision

problem, have also influenced this thesis. For example, Certified Email [107, 108,

109, 110, 111, 112, 113] mainly addresses the problem of confidentiality and fair

email exchanges involving a trusted third party. The problem space is not completely

disjoint with the spam problem, since monetary solutions will definitely need fair

exchange and protect senders against abuse by recipients. We hope to take advantage

of some results in these works in future work. Anonymous Email [114, 115, 116, 117,

118] is potentially a casualty of the quest to solve the delivery decision problem.
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Sender authentication is one of the preconditions to trust based solutions, but it

could increase the difficulty of legitimate uses of anonymous messages, such as whistle

blowing. Achieving strong anonymity is an extremely hard problem due to collusion

attacks and network monitoring capabilities. In any case, strong anonymity requires

a mechanism on top of the current mail delivery protocol and hence is orthogonal to

the current research proposal. Nonetheless, an interesting research direction is source

authenticated anonymous mail. Distributed Reputation Management Systems [119,

120, 121, 122, 41] are an indispensable tool to reward faithful principals and punish

malicious ones. An interesting future work would involve looking into both the local

and global beliefs about trustworthiness of a principal and how local beliefs can be

distributed using deception resilient algorithms (applicable to the email domain).

We believe we have sufficiently addressed the claims made in this thesis (see chap-

ter 1). Next we recap the claims in chapter 1 and the reason we come to the above

conclusion of addressing these claims. In claim 1 we say that a majority of the ex-

isting email-control techniques can be supported in our policy-based framework. We

show a Web-based implementation in chapter 8 that incorporates several email con-

trol techniques in a policy based framework to control email delivery. This framework

can be easily extended to include new email-control techniques in future (possibly).

Claims 2 and 6 state that feedback for email can be incorporated into email sys-

tems that will lead to reduced chances of losing desirable messages to email filtering.

Chapters 4,5,7 and 8 present the design and instrumentation of a feedback system

into conventional SMTP systems. In chapter 4 we show that with feedback system,

message refinement, policy-based email delivery and advertisement of downstream

policy requirements upstream, only messages that satisfy the downstream policy will
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get accepted downstream – this shows claim 3 and claim 4. Claim 5 says that down-

stream privacy leakages (upstream) can be prevented by sanitizing acceptance policies

before communicating them upstream. This claim is shown in chapter 6.
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