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Big Data becomes increasingly important in almost many scientific domains, especially 

in geographic science where hundreds to millions of sensors are collecting data of the 

Earth continuously (Whitehouse News 2012). The data are managed and served through 

various Geospatial Cyberinfrastructure (GCI) components worldwide, and many GCI 

components are also developed to help discover and utilize the widely geographically 

dispersed data. In the Internet Era, users expect to receive responses in seconds for the 

discovery and it is a big challenge to achieve it with a proper index. For example, the R-

tree (Guttman 1984) leverages spatial relationship among features and is widely used in 

spatial DataBase Management Systems (DBMSs) and different R-tree variants have been 

proposed to 1) improve data retrieval performance, 2) support temporal indexing, and 3) 

utilize multiple computers for indexing. However, it is hard to meet the seconds 

expectation because little research has included spatiotemporal patterns of user queries. 
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Traditionally, user behavior has rarely been considered in a spatial index and only one 

single index is used to support all users from different regions at different times. I 

propose a Predefined Multiple Indices Mechanism (PMIM) to support global user queries 

by predefining different indices for different categories of users who have similar query 

patterns. Access Possibility R-tree (APR-tree) is proposed to build an index based on 

spatiotemporal patterns of user queries. The new spatiotemporal indexing strategy 

provides a potential solution to leverage Big spatial Data indexing and enable seconds 

response to global users. Using metadata in the GEOSS Clearinghouse as an example, I 

conducted a series of performance experiments for PMIM implemented using APR-tree. 

Experiment results indicate that new indexing mechanism outperforms a regular R*-tree. 
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CHAPTER 1 INTRODUCTION 
 

 

 

 The rapid advancement of Earth observation technologies dramatically increases 

our capability in acquiring geospatial data. This explosive growth of data is also referred 

as data intensity or Big Data. The intergovernmental Group on Earth Observations (GEO) 

proposed Global Earth Observation System of Systems (GEOSS) Common Infrastructure 

to leverage the discovery, access, and usage of the Big Earth observation Data. The 

GEOSS Clearinghouse is the engine that drives the entire infrastructure by providing 

access to the descriptions of resources and search engine (Liu et al., 2011). By July 31, 

2012, 29 catalogues and 167K metadata had been registered into the GEOSS 

Clearinghouse for sharing among over 140 countries (Huang et al., 2010). As a global 

operational system, the GEOSS Clearinghouse is required to provide high-speed 

metadata retrieval for global users. It is a big challenge to respond in seconds to users 

who are widely distributed in different world regions at different times. For example, 

users from high access density areas may receive very slow response at access rush 

hours. In addition, with the increasing number of metadata registered, query response 

time will increase linearly if no optimization were taken (Sardadi et al., 2008). Managing 

a massive number of spatial features and performing high-speed queries are also big 

challenges for the GEOSS Clearinghouse operation.  
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A spatial index is one of the most efficient mechanisms to improve the 

performance of spatial feature management and data retrieval. The R-tree (Guttman 

1984) is one of the most popular spatial indices. Improvements and optimizations have 

been conducted for the R-tree and resulted in the R+-tree (Sellis, Roussopoulos, and 

Faloutsos 1987), the R*-tree (Beckmann et al., 1990) and the Hilbert R-tree (Kamel and 

FaJoutsos 1994). These R-tree variants use different principles with different goals to 

optimize the R-tree. The R-tree family is widely used in spatial DBMSs such as Oracle 

Spatial, PostgresSQL, Informix, and others (Korthuri, Ravada, and Abugov 2002; 

Informix 2003; Kothuri et al., 2008; PostGIS 2011).  Spatial features of the metadata in 

the GEOSS Clearinghouse are indexed using the R-tree supported by PostgresSQL. It 

takes 1-3 seconds to retrieve hundreds of metadata in a 1GB network supported by a 

server with 4 CPU cores and 16GB memory. Even if the traditional spatial index 

mechanism is adopted, query performance is still a big issue when the number of features 

increases to millions and billions. Moreover, current indexing solutions do not consider 

the spatiotemporal distribution of users and their behavior, which may significantly 

change the strategy for indexing features. For example, intensive queries against a 

specific region at a specific time window should be considered in the indexing process. A 

better index could be designed using spatiotemporal patterns of user queries. An index 

considering the spatiotemporal patterns of users are needed to index massive number of 

spatial features and support global users.  

In this thesis, I propose a Predefined Multiple Indices Mechanism (PMIM) 

integrating the spatiotemporal patterns to support global user queries. In the PMIM, 
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different indices are predefined and stored at an index store. Each index is specially 

designed for one category of users who have similar query patterns. Different indices will 

be distributed at different locations based on the spatiotemporal distribution of users. And 

the entire PMIM will support different categories of users from different regions at 

different times. Finally, users will be supported by a proper index to speed up the data 

retrieval process. In the PMIM, the construction of each index will consider 

spatiotemporal patterns of user queries. A new index structure, Access Possibility R-tree 

(APR-tree), is proposed to build an R-tree based index using the access possibility of 

features. Spatiotemporal patterns of user queries are identified by studying the historical 

user behavior in the GEOSS Clearinghouse. The new spatiotemporal indexing 

mechanism can be used to support GEOSS Clearinghouse, GCI (Yang et al., 2010) 

components, Spatial DBMSs, and to address Big Earth observation Data management. 
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CHAPTER 2 LITERATURE REVIEW  
 

 

 

2.1 The R-tree Algorithm Optimizations 

 The R-tree (Guttman 1984) extended the B-tree from one dimension to multi-

dimension for static features. In the R-tree, spatial features are reorganized into different 

levels of entries based on their spatial relationship to support high-speed data retrieval. 

Generally, the process of constructing an R-tree is the process of inserting all features 

into the tree. This process includes 1) choosing a leaf-node to insert a feature based on 

the spatial relationship and 2) splitting a node and adjusting the tree when this node has 

too many features. Therefore, the key to optimize the R-tree is to choose the right node to 

insert and to reasonably split and adjust the tree.  

Early research on the R-tree focused on local optimizations. For example, the R+-

tree (Sellis and Faloutsos 1987) is a variation to the R-tree that the tree does not have 

overlapped nodes. However, good choice of each insertion does not mean a good choice 

for the entire R-tree construction. To achieve a good optimization in the entire 

construction process, some insertions have to be compromised. The R*-tree (Beckman et 

al., 1990) considers both local and global optimizations. Locally, the R*-tree adds 

multiple spatial factors to insert features. Beside the size of spatial overlap area, 

perimeters of feature, minimum bounding rectangle (MBR) and dead-zone area are also 

involved in the insertion process. Globally, a forced reinsert strategy is conducted. Before 
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splitting nodes, current level node structure will be examined and reorganized to 

postpone the split process as needed. The Hilbert R-tree, proposed by Kamel and 

Faloutsos (1993), adopts another optimization aspect. They used a “2D-c” method to sort 

MBR according to Hilbert value. This method maps spatial data from multi-dimension to 

one dimension. The Hilbert-tree yields up to 28% saving over the R*-tree according to 

experiments (Kamel and Faloutsos 1993).  

The R-tree and its optimizations allow overlap of features and MBR, therefore, 

multiple query traces is unavoidable. With the increasing number of spatial features 

indexed, MBR overlap area increases, which significantly affects the performance of the 

data retrieval. With fixed features, inserting these features in different orders will 

construct very different R-trees. The key for the R-tree optimization is to put dynamically 

changeable spatial features to the right place in the tree structure. It requires finding the 

right organization of each level of nodes for insertions and deletions of features. 

Optimized algorithms were adopted by considering more spatial factors and reorganizing 

the tree structure frequently, but these optimized algorithms significantly increase the 

time complexity of constructing an R-tree. 

2.2 Distributed Indexing 

 Distributed indexing technologies leverage high performance spatial indexing by 

utilizing parallel computational resources. Kamel and Faloutsos (1992) proposed a 

strategy to process the R-tree in parallel. Their approach is a hardware related 

architecture consisting only one processor with several disks attached to it. Therefore, 

nodes of the R-tree are stored in distributed disks and only one processor is used for 
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indexing. Wang et al., (1999) proposed an R-tree searching algorithm on Distributed 

Shared Virtual Memory (DSVM). This algorithm utilizes both distributed processors and 

disks. Also, they extended their parallel algorithm from one workstation with multi-

processors to multiple workstations. Experiment was conducted based on Shusseuo 

which provides global persistent object management on DSVM (Wang et al., 1999). The 

Master-Client R-tree (Schnitzer and Leutenegger 1999) is a distributed R-tree structure in 

a shared nothing environment. In a Master-Client R-tree, nodes are stored in different 

machines. One dedicated machine that stores non-leaf nodes of the tree is the master 

server while leaf nodes are stored in client nodes.  Client nodes also maintain complete 

R-tree structures for the portion of data assigned to it. Because both master and client 

nodes have complete R-tree structures, the entire distributed tree has redundant 

information. According to experiments, this redundant storage only adds 1% space 

overhead based on several synthetic and real data sets. MapReduce (Dean and Ghemawat 

2008) provides a programming model that can be used to implement complex parallel 

processes. This model is used by Cary et al., (2009) to construct distributed R-tree. But a 

recent result shows no significant improvement when using MapReduce to construct 

distributed R-tree (Akdogan et al., 2010). The operations of the R-tree need cross-node 

communications, which is very time-consuming in a distributed system. Therefore, it is 

necessary to control and scale down the complexity of problem before leveraging large 

scale computing resources. 
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2.3 Spatiotemporal Indexing 

 Tayeb, Ulusoy, and Wolfson (1998) proposed a variant of the quad-tree (Samet 

1984) to solve the problem of indexing dynamic point based on the idea of future 

movement prediction. This structure can only be used to index one dimension features. 

RT-tree (Xu, Han and Lu 1990) treats time as a new attribute in addition to a regular R-

tree. Start and end times are added to spatial features. The main concern to RT-tree is 

spatial query, and temporal query is considered as a secondary issue. Since time 

dimension is stored as an attribute in R-tree structure, RT-tree support spatial queries 

almost as fast as a regular R-tree but time slice queries is inefficient.  Theodoridis, 

Vazirgiannis and Sellis (1996) treat time as the third dimension in addition to spatial 

dimensions and utilize 3D R-tree to index multimedia applications. 3D R-tree treats 

temporal queries as important as spatial queries by extending the R-tree from two 

dimensions to three dimensions. However, 3D R-tree is inefficient in storage. Saltenis et 

al., (2000) proposed the TPR-tree, which extends the R*-tree indexing strategy to handle 

moving features. The indexed features and entries are augmented with velocity vectors. A 

snapshot of the index can be calculated for any query. The TPR*-tree (Tao, Papadias, and 

Sun 2003) adopts the same structure as TPR-tree but using new insertion and deletion 

algorithms that significantly improves the updating and query performance.  

Spatiotemporal indexing structures combine the spatial index with temporal 

index. Distributed indexing technologies utilize distributed computing resources for the 

indexing process. Space and time are indexed using different principles with different 

goals. However, spatiotemporal thinking, which integrates space and time equally, has 
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not been considered. The construction of indices needs to consider spatiotemporal 

principles that govern the evolution of physical and social phenomena (Yang et al., 

2011a), which can be described as features. Also, spatiotemporal indexing algorithms can 

be improved by considering the spatiotemporal pattern of index accesses. In this paper, I 

study the spatiotemporal patterns of user behavior and extend the R-tree indexing 

algorithm based on the patterns of index accesses. The PMIM and the APR-tree are 

proposed to build different indices for different categories of users with each category of 

users having similar spatiotemporal patterns.  
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CHAPTER 3 METHODOLOGIES  

 

 
  

3.1 Predefined Multiple Indices Mechanism (PMIM) 

GCIs, Spatial DBMSs and related applications (e.g. GEOSS Clearinghouse) are 

usually replicated and distributed at multiple locations to balance the load from different 

regions. For example, multiple instances of an application should be deployed at different 

locations by considering the distributions of end users, data services and computing 

resources (Yang et al., 2011b). The GEOSS Clearinghouse is a global spatial metadata 

catalog which enables the sharing of Earth observation data among over 140 countries. It 

is important to distribute the GEOSS Clearinghouse at different locations over the world. 

The cloud computing provides an ideal platform to implement the distribution of GEOSS 

Clearinghouse replications. For example, Windows Azure and Amazon EC2 enable users 

to create a replication at all the locations shown in Figure 1. Multiple instances of 

GEOSS Clearinghouse can be distributed in different regions to support the queries from 

global user. However, simply replicating the application has many problems. For 

example, GEOSS Clearinghouse supports eight languages and we need to consider the 

local language when deploying a new instance at that location. In addition, users from 

different regions at different times may have very different demands and query patterns. 

Simply replicating the spatial index cannot best support different users. Therefore, I 
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propose the PMIM to support users who are dynamically distributed in different regions 

at different times.  

 

 

 

 
 

 

Figure 1 GEOSS Clearinghouse can be distributed in different regions with the help 

of cloud computing services 

 

 

 

The single index mechanism uses only one index file to support spatial queries 

from all users (Figure 2). Different index files can be created and accessed but the content 

of these index files are the same. This mechanism does not consider the heterogeneity of 

user behavior. The optimization of this single index is very limited because it should 

support all different queries from different users. Instead of utilizing one single index, 

multiple-indices can be predefined to support different categories of users. Figure 3 

illustrates a scenario of using PMIM. In this mechanism, Spatial DBMSs predefine and 
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maintain different categories of indices. Each index is specially designed for one category 

of users who have similar query behavior. For example, most users in Category One are 

from Western Europe and they query Europe data intensively during the Europe daytime. 

A specially designed index can be predefined to support users from Category One. And 

this specially designed index will support faster data retrieval process than the original 

single index. The entire PMIM will outperform the single index mechanism. 

 

 

 

 
 

 

Figure 2 All Users use the same context of index in a Spatial DBMSs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

 

 

Spatial 

DBMSs

...

Index Index Index...
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Figure 3 PMIM to support different categories of users 

 

 

 

3.2 Index Life Cycle and Maintenance Costs  

In the PMIM, multiple indices are created and stored in the index store, which 

will increase the maintenance costs of spatial DBMSs because the updating of increasing 

number of indices. Therefore, we need to comprehensively consider the index 

maintenance costs and index usage rate in an index life cycle. Figure 4 shows the life 

cycle of the PMIM. Multiple indices are stored in the index store. Users will use these 

indices for high-speed data retrieval. At the same time, the Index manager collects user 

behavior information and user feedbacks to analyze index access patterns. Index 

rebuilding events will trigger the index updating process. Indices in index store will be 

updated when triggered by events. Finally, users use the updated indices for data 

retrieval.   
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Users

Users

Usage

Feedback

Index 

Manager

Rebuild Index

…

 

Figure 4 Life cycle of an index in PMIM 

 

 

 

In the index life cycle, both index usage and index updating require significant 

computational resources. Since multiple indices are used, the PMIM can enhance index 

usage by supporting faster data retrieval, but with a higher maintenance cost. A good 

index updating mechanism can largely decrease the index maintenance costs and the 

system delay. But the maintenance may become unaffordable when too many updates are 

conducted. We need to consider the scale of data, index usage rate, updating frequency 

requirement, performance requirement and also the computational capability to balance 

the improvements for retrieval and maintenance cost. For example, we do not want to 

maintain an index in the PMIM if the index usage rate is very low.  
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3.3 User Behavior Identification Using Spatiotemporal Principles 

Since PMIM is based on different categories of users and each category of users 

have similar query behavior. I made three assumptions: 1) Users have different behavior 

across space and time, 2) User behavior can be identified and categorized, and 3) User 

query patterns are predictable when user behavior is identified. Generally, user behavior 

is affected by spatiotemporal principles that govern the relationships of phenomena 

(Yang et al., 2011a). For example, closer things are more related than those farther away 

measured by spatiotemporal dimensions (Klemm 2006). User behavior is expected to 

have the following patterns: 

 Local interests: Users who come from similar locations may tend to query the 

data that have similar characteristics. Users from a specific area may demand the 

data related to this area. For example, users from the United States may query the 

data related to the United States rather than the data related to other regions. 

 Temporal concentration: Users who are very active in a specific time window 

may tend to query the data that have similar characteristics. For example, users 

who are very active in the morning may tend to query the weather data.  

 Background factors: Users who have similar personal background tend to have 

similar query behavior. For example, Geologist may tend to query regions 

involving the lithosphere. 

 Combined pattern: A comprehensive pattern that combines spatial, temporal and 

other factors of user behavior, data, applications and GCIs.  
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To identify user behavior patterns, I study the historical user behavior of the 

GEOSS Clearinghouse. The spatiotemporal patterns of user behavior are analyzed in 

three steps: 

Step1: Data collection includes collecting user accesses in certain time period. 

We maintained rich operational information in the GEOSS Clearinghouse log files. We 

can retrieve from the log files the user behavior information including the access IP and 

time, spatial and keyword-based search parameters, search results, data access page 

language and others. The volume of the log file is approximately 88 gigabyte from Dec 

22
th

 2010 to Jan 30
th

 2012.  

Step2: Data preprocessing extracts and reorganizes the information related to 

user behavior. Related information that can be directly extracted from the log file 

includes:  

a) Access IP 

b) Access Time 

c) Session ID 

d) Operation Type (including main page access, search, CSW, metadata access and 

others) 

e) Search parameters 

e1) text parameters 

e2) spatial parameters 



 

16 

 

The longitude, latitude, country and city of an accessing IP are parsed using IP 

parsing web service
1
. All the information are imported into a MYSQL database. Table 1 

shows the design of the database table. 

 

 

Table 1 Table design for storing log information 

 

Field Name Data Type Description  

Id INT Primary key 

Ip VARCHAR(50)  

Lon FLOAT Longitude of IP 

Lat FLOAT Latitude of IP 

City VARCHAR(100) City of IP 

Country VARCHAR(100) Country of IP 

Time VARCHAR(50) The time of access in a day 

Date VARCHAR(50) The date of access 

sessionID VARCHAR(80) Access session 

accessType VARCHAR(100) Operation type 

textWords text Text parameter of a query 

Ifspatial boolean If or not a spatial query 

spatialType VARCHAR(80) Spatial query type (e.g. 

intersect, within) 

West FLOAT Query bounding box 

East FLOAT Query bounding box 

North FLOAT Query bounding box 

South FLOAT Query bounding box 

 

 

 

Step3: Data analysis can be used to identify user behavior patterns. Spatially, 

user behavior from different regions is analyzed to identify the distribution, density and 

pattern of user queries. A simple analysis is to visualize the distribution of users and 

request density that query against a specific topic or region. For example, the users can be 

                                                 
1
 api.ipinfodb.com 
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classified and visualized according to their spatial distribution. Also, user behavior can be 

aggregated at different spatial scales. For example, users from a specific continent, 

country or city can be aggregated as one group. In this case, diversity can be visualized 

according to different spatial scales.  

Temporal analysis is used to identify patterns of user behavior across time.  A 

simple way is to visualize the change of the search density across time. Figure 5 shows an 

example of visualizing the change of the search density with a keyword “public health” 

from 2004 to 2011. The first pattern can be found is that a hot event will significantly 

increase the search behavior against this event in a very short time. For example, health 

emergency in United States 2009 cased a dramatic increase of search behavior against 

“public health”. An index and mechanism that specifically optimized for this event 

should be built for the intensive usage in this short time. The second pattern is that the 

frequency of search behavior against a specific topic increases and decreases periodically. 

For example, at the end of each year, the frequency of search against “public health” 

drops.  

 

 

 
 

Figure 5 Visualization of the change of “public health” search from 2004 to 2011  

from Google Trends 
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User behavior in spatial DBMSs has both spatial and temporal patterns and user 

behavior analysis should consider both space and time. Ginsberg et al., (2009) estimated 

the current level of weekly influenza activity in each region of the United States by 

analyzing the search behavior of users. Since both space and time are variables, a 

traditional visualization method cannot present the dynamic change of user behavior 

across both space and time. One solution is to aggregate spatial and temporal attributes. 

For example, all user behaviors in January are considered as one behavior group, then 

presents the changes in each month. But this method put the importance of spatial over 

temporal aspect by cutting continuous time into different pieces. Another solution is to 

present user behavior using animation. User access can be reformatted into .KML and 

visualized in Google Earth. In this case, categorization of space and time can be avoided. 

Besides the accesses, the user query itself also has spatial and temporal attributes. Figure 

6 could present relationships between user locations, time, query regions and query 

keywords. However, both spatial attributes and temporal attributes have to be aggregated.  
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Figure 6 relation between user locations, time and interested regions and  

 

topics 

 

 

 

3.4 Indexing with Known and Predicted Query 

After user behavior and user query patterns are identified, we can design a new 

indexing strategy using the patterns. In the single index mechanism, index builder 

assumes that user queries are unknown. This single index needs to support all different 

queries. Therefore, the optimization of this single index is very limited. If a user query is 

predictable, the indexing strategy can be changed and the “best index” can be built for 

this known query. Figure 7 illustrates the change of indexing strategy with predictable 

query. Figure 7A shows a regular indexing process when a user spatial query is unknown. 
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Features F1, F2 and F3 are indexed into Node 1 (N1) and features F4, F5 and F6 are 

indexed into Node 2 (N2) because of the shorter spatial distance. This index can reduce 

I/O by tracing features using the tree structure instead of looping through all features. But 

we can build a better index if a user’s spatial query is predictable. In Figure 7 B, a user 

query is to access feature F5, which is put in a single node. A more effective indexing 

structure is to separate queried features from other features and avoid the overlapping of 

nodes. This index can minimize I/O cost. 

 

 

F1

F2

F3

F4

F6

F5

1
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1 2
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F4
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N

N

N

N
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F3 F4F2F1 F6F5F3 F4

 
 

 

Figure 7 Spatial features and their index without and with predictable queries 

 

 

 



 

21 

 

Predictable feature access patterns can be utilized to optimize the indexing 

structure and algorithm. Figure 8 shows an example of an indexing strategy based on 

feature access prediction. Traditionally, features F1, F2 and F3, features F4, F5 and F6 

are indexed into the same node because of the shorter spatial distance (Figure 8A). In 

Figure 8B, the access possibility of each feature is predicted based on user query patterns 

and each feature has different access possibilities. Figure 8B shows that feature F4 and 

F5 have very high possibility to be accessed. Features F4 and F5 can be indexed into 

node 1 (N1) and A, B, C and F can be indexed into the other node (N2). By using this 

index structure, features with high access possibility can be separated from features with 

low access features so that high access features can be put into computer cache. The 

index with access possibility (Figure 8B) outperforms the original index (Figure 8A) with 

this given query pattern. Different indices can be built for different user query patterns by 

using the PMIM proposed in 3.1. 
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Figure 8 Spatial features and their index with (B) and without (A) predicted access  

frequency 

 

 

 

3.5 Access Possibility R-Tree (APR-tree)  

3.5.1 To implement the new index strategy introduced in 3.4, I designed and proposed 

APR-tree. APR-tree introduces an access possibility of features and nodes in 

addition to the structure and algorithm of the regular R-tree.APR-tree Structure 

In the APR-tree, a new attribute is added to the structure of the regular R-tree. For 

each feature and data node, the access possibility of each feature will be considered when 

building the tree. The value of access possibility is calculated according to the 
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spatiotemporal patterns of user queries in the past and this value could be updated at 

certain frequency when more user behavior data are analyzed. For non-leaf nodes, the 

access possibility is also added as a new attribute. The access possibility of a non-leaf 

node represents the possibility that user will access features that belongs to this node. 

This value is an aggregation of access possibility value of leaf nodes or non-leaf nodes 

that belong to a certain node (Figure 9). By using this structure, the access possibility of 

leaf nodes and non-leaf nodes can be easily retrieved. 
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Figure 9 Tree structure of APR-tree 

 

 

 

3.5.2 APR-tree Algorithm 

Since APR-tree extends the regular R-tree data structure by adding access 

possibility as a new attribute, the R-tree algorithm needs to be extended. A regular R-tree 

algorithm includes tree sub-algorithms: Insertion, Deletion and Split. Each sub-algorithm 

includes several sub-operations. These sub-algorithms and sub-operations need several 
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inputs such as dimension size, maximum number of entries in one node (M value) and the 

bounding boxes of features. However, features are grouped merely according to spatial 

prosperities such as proximity. The access pattern of index is not considered. In the APR-

tree, the access possibility will be the second factor that affects all the sub-algorithms and 

sub-operations related to space partition (Figure 10). For example, Figure 11 shows the 

“ChooseLeaf” algorithm in the APR-tree. The “ChooseLeaf” algorithm chooses a proper 

node to insert a new feature which is a key process in the R-tree construction. In the 

regular R-tree, a new feature is inserted to the node that can minimize the enlargement 

area of features and nodes. In the APR-tree, features and nodes with high access 

possibility tend to be inserted into the same nodes. And the access possibility of features 

and nodes will be calculated. Since two factors are used, the enlargement area and 

enlargement access possibility should be normalized. A comprehensive score will be 

calculated and the best Leaf for insertion will be chosen. Using the same method, the 

access possibility is added to the other sub-algorithms and sub-operations such as 

Quadratic Split, AdjustTree and others. 
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Figure 10 APR-tree algorithms and operations are affected by both spatial  

 

relationship and access possibility of features and nodes 

 

 

 

 
 

Figure 11 Extended ChooseLeaf algorithm based on access possibility 
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3.6 Index Updating Mechanism 

The R-tree is a dynamic index structure (Guttman 1984). However, the R-tree 

updating process is still time-consuming, especially in a large scale spatial database. 

Currently, many spatial DBMSs and GCI components update their spatial index as soon 

as a feature is registered or removed. This updating mechanism is inefficient and will 

cause slow response when updating. A routine updating mechanism is needed for large 

spatial Database. Currently, we consider different rules for a routine updating mechanism. 

For example, the index will be updated according to time dimension or user patterns. 

More specific, an index can be updated every month, day, hour or every 100 new features 

are inserted. Different rules of routine updating mechanisms are widely used in different 

spatial DBMSs. However, almost no index updating mechanism considers spatiotemporal 

principle. For example, we can identify the user query patterns in a region to analyze the 

best time window for updating. This time period should be long enough to finish the 

index updating process and has a low access density. For natural disaster or other hot 

events, the spatial index needs to be updated instantly. For some specific topic related 

data (e.g. natural disaster data), the index need to be updated and optimized in real time 

to support fast response. This updating mechanism is critical to emergency response for 

saving lives. 
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CHAPTER 4 INDEXING ARCHITECTURE 
 

 

 

4.1 Architecture and Components 

I designed a new indexing architecture based on the PMIM and the APR-tree 

(Figure 12). An index extension module, index store and index log are added to 

traditional Spatial DBMSs architecture. Red arrows represent the traditional interaction 

between access client, spatial DBMSs and spatial data resources. Gray arrows represent 

the new interaction between these components in new architecture. The index extension 

module includes search processor and index manager. The search processor performs fast 

spatial data retrieving and the index manager handles the management and construction 

of multiple indices. Important components include: 

 User parser parses the information of an access. This component parses and 

provides user location, access time and user background information. This 

information is used as an input for index chooser component. 

 Index chooser helps user choose a proper index to perform high-speed data 

retrieving. The mechanism of choosing a proper index is based on user behavior 

patterns. Also, this mechanism is continually adjusted with more user behavior 

patterns analyzed. 
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 Log parser provides historical system information. Historical user and system 

information can be retrieved by parsing the database log file. Information parsed 

by log parser include a) location, time and background information of historical 

user, b) spatial query parameters, c) query result, and d) time-consumed. These 

information are used as input of user prediction model and the trigger for index 

updating.  

 User prediction module discovers and predicts user behavior patterns. Historical 

user behavior information are parsed by log parser and imported into the user 

prediction module. User behavior patterns will be analyzed and user query 

patterns can be simulated by existing models (Akaike 1974; Fred 1986; Ajzen 

1991; Venkatesh and Fred 2000). User prediction model is also continually 

adjusted to make more accurate predictions with more user behavior patterns 

analyzed. 

 Index Trigger & Builder constructs new spatial index for the index store. The 

index trigger initiates an index construction process. New user behavior pattern 

and slow data retrieval process are two important triggers to this process. Instead 

of using the traditional R-tree construction algorithm, index builder builds APR-

tree based on user behavior patterns.  

 Indexes Store stores predefined indices. Each index is specially optimized for 

one group of users who have similar query patterns.  

 Log stores historical user and system operation information. Log file is the input 

of the log parser component. 
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Figure 12 Architecture of the optimized index system 

 

 

4.2 Workflows 

Figure 13 illustrates the workflow of data retrieval process: 1) user information 

(e.g. location, time and background) are parsed by User Parser. 2) The index chooser 

selects a proper index for this user, based on user information from User Parser. 3) The 

selected index will be used to support high-speed data retrieval and results will be 

returned to users. 4) The summary information of this query will be stored into Database 

Log. 

 

 

 



 

30 

 

Spatial DBMSIndex Extension Module Access Client

Clinet Search Processor

2.user identify

User Parser Index Chooser Index Store

3.user infor

Spatial DB DB Log

4.request index id

5.index id
6.index id

7.spatial query

8.request index

9.index

10.result list

11.result list
12.query sumary input

1. spatial query

 
 

Figure 13 Spatial query workflow 

 

 

 

Figure 14 shows the workflow for an index construction process: 1) the index 

manager is continuously evaluating the system performance. 2) The Index Trigger & 

Builder builds a new index when necessary. 3) The Database Log is pulled out and parsed 

by log parser. 4) User prediction model identifies user behavior patterns based on log 

information and spatiotemporal principles. 5) Finally, a new APR-tree is constructed and 

input to the index store. To update an index file when inserting new feature, current user 

behavior patterns need to be pulled out from user prediction model and this feature will 

be inserted to the APR-tree based on the feature access possibility. 
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 Figure 14 Indexing workflow 
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CHAPTER 5 EXPERIMENT & RESULT 
 

 

 

5.1 Identified Spatiotemporal Patterns of Users Behavior 

Based on the historical user behavior of the GEOSS Clearinghouse, different 

spatiotemporal patterns of user access are identified. From Dec 22
th

 2010 to Jan 30
th

 

2012, a total number of 1,681, 604 user accesses and 505, 720 user queries have been 

recorded. The query protocols include OGC: CSW, RSS and queries from end users. 

Based on the user behavior identification methods introduced in section 3.3, identified 

spatiotemporal patterns include:  

 High Access Density Regions: The GEOSS Clearinghouse has high access 

density from specific regions. Figure 15 illustrates the global distribution of end 

user request density and the density of global population. Large proportions of 

users came from the United States and Europe. Generally, regions that have high 

population densities tend to generate more accesses. More GEOSS Clearinghouse 

instances should be deployed in high access density regions. Also, the distribution 

of indices in the PMIM should consider this spatial pattern. 
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Figure 15 Population densities and end user distribution of the GEOSS 

 

Clearinghouse (based on logN, N is access number) 

 

 

 

 
 

Figure 16 Bounding boxes of spatial queries from Europe users 
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 Local Interests: Users from similar locations tend to query similar data. For 

example, users from a specific region tend to query the data related to this region. 

Figure 16 shows the bounding boxes of spatial queries from European users. The 

bounding boxes concentrate on European regions. European users tend to query 

and access data that are spatially closer to their location. 

 

 

 

 
 

Figure 17 Accumulated access of the GEOSS Clearinghouse at 4:00 A.M., 4:00 P.M.  

 

and 8:00 P.M. 

 

 

 

 Periodical Accesses & Access Time Windows: The access density increases and 

decreases periodically in each day. In most regions, day time tend to generate 

more user queries than night time. Afternoon and morning are two access rush 

hours. Figure 17 shows three screenshots of an animation presenting the access 

density aggregated by counties in 24 hours. Three screenshots represent the 

accumulated user accesses at 4:00 A.M., 4:00 P.M. and 8:00 P.M. (Eastern 

Standard Time). Generally, the user request frequency increases from 4:00 a.m. to 
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4:00 p.m. at local time while the access density drops after sunset. In some 

regions (e.g. Australia and New Zealand), about 80% of the total requests are 

generated at day time. More computing resources need to be utilized at day time 

especially at access rush hours. The index updating time window needs to include 

this periodical access pattern in different regions. 

 Spike on demand: A hot event triggers a significant growth of the public 

interests in a specific topic. The query density for this topic may increase 

significantly in a very short time. Figure 18 shows the query frequency for the 

keyword “earthquake” in 2011. The query frequency increase significantly in 

October. The earthquake in Van, Turkey may have contributed to this significant 

increase. This 7.2 magnitude earthquake killed more than 600 people on October 

23th. In the geographic science domain, hot events are usually related to natural 

disasters such as earthquakes, floods, hurricanes and others. Different from 

regular hot events, fast response is critical for natural disasters related queries, 

because it is important for emergency responses. A specially designed index is 

needed for intensive queries and fast responses. Also, the spatial index needs real-

time updating instead of routine updating. 
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Figure 18 The number of queries with the keyword “earthquake” in 2011 

 

 

 

5.2 Performance Experiment 

5.2.1 Experiment Data and Environment 

167K metadata records in the GEOSS Clearinghouse are used as experiment data. 

Another 350 k metadata are simulated. The text contents of simulated data are 

replications. But I randomly shift the bounding box of each simulated data from -10 to 10 

degree to make sure the spatial features are not duplicated. I ran the performance 

comparison on local desktop with the Window 7 Operation System. The CPU is Intel 

Q8300 with 8 cores and 2.5GHz. The RAM is 4 GB and the storage seeking speed is 

7200 rpm. The regular R*-tree and APR-tree are implemented using java based on the 
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code provided by Dimitris Papadias from Hong Kong University of Science and 

Technology (HKUST)
2
. 

5.2.2 PMIM vs. R*-tree 

Based on the new indexing strategy, I implemented the PMIM to build three 

ARP-trees for users from the United States, Europe and China. The weight of access 

possibility is 0.5 which means that access possibility has the same importance as the 

spatial factor. The maximum number of entries in one node (M value) is 125. In each 

region, 50 users are simulated and each user performs 10 queries according to their 

interests. The query performance is tested using different number of features. The same 

number of features are also indexed using the regular R*-tree for comparison. Figure 19 

shows the query response time of 500 queries from different regions with different 

feature number. The PMIM outperforms the R*-tree in almost all three regions with 

different number of indexed features. But the performance improvement is not significant 

especially when the number of indexed features are 10 k and 60 k. Queries in the United 

States consume more computing time than other two regions, because the United States 

contains more features. 

                                                 
2
 http://www.rtreeportal.org/code.html 
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Figure 19 Query performance of PMIM vs. R*-trees with different number of  

 

indexed features 

 

 

 

5.2.3 APR-tree Query Performance with Different Weights of Access Possibility 

Since two factors (access possibility and spatial properties) are used to build an 

APR-tree, these two factors need to be normalized and weighted. In this experiment, five 

APR-trees are built using five different weights of access possibility. The M value is 125 

and the number of indexed features is 160k. A regular R*-tree is built using the same 

configuration for comparison. Figure 20 shows the response time of 500 queries for five 

APR-trees with different access possibility weights. The APR-tree outperforms the R*-

tree when the weight of access possibility is less than 0.7. The query response time 

increases when the weight of access possibility is too high or too low. A larger weight of 

possibility increases the preservation of feature access but decrease the spatial 
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discrimination capabilities of the index. The APR-tree may have worse performance than 

the regular R*-tree if the weight of the access possibility is high. A weight of 0.5 is a 

good balance of weight for the experiment data. 

 

 

 

 
 

Figure 20 Query performance of APR-tree with different access possibility weights 

 

 

 

5.2.4 APR-tree with Different M Values 

The maximum number of entries in one node (M value) is an important parameter 

in R-tree-based index structure by changing the height and width of the tree. Five APR-

trees are built using five different M values. The weight of access possibility is 0.5. And 

the number of indexed features is 160k. Five regular R*-trees are built using the same M 

values as APR-trees for comparison. Figure 21 shows the response time of 500 queries 
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for five APR-trees with different M values. The APR-tree outperforms the R*-tree when 

the M value is larger than 15. The query response time increases when a node has a too 

large or too small number of entries. When M is too low, the APR-tree may have worse 

performance than the regular R*-tree. The best M value usually depends on the 

computing environment and experiment data. The number 125 is a good balance of M 

values for this experiment data and computing configuration. 

 

 

 

 
 

Figure 21 Query performance of APR-tree with different M values 
 

 

 

5.2.5 Performance Experiment for Index Life Cycle 

The PMIM leverages multiple indices to support different categories of users. 

Since index updating is a time-consuming process and increasing number of indices 
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needs to be updated, the PMIM will significantly increase the index maintenance costs. 

To simulate the index life cycle using the PMIM, we designed an experiment scenario 

based on the operation of the GEOSS Clearinghouse. In this scenario, I implemented the 

PMIM to build three different indices for users from the United States, Europe and China. 

The number of indexed features in the GEOSS Clearinghouse is 167k. I adopt daily 

routine index updating mechanism, and it normally takes about 4.622 seconds to update 

the index. Since three indices (United States, Europe and China) are built, the updating 

cost will be increased by 3 times in an updating cycle. For the APR-tree construction, I 

used 0.5 for the weight of access possibility and 125 for M value. I assume three different 

indices are distributed at the United States, Europe and China respectively, and users 

from each region use the index in that region for queries.  User query frequencies in three 

different regions are calculated according to historical user access data. The United States, 

Europe and China took 15.5%, 66% and 0.15% of the total accesses. Also, I assume the 

user prediction module can successfully predict 80% of the user queries. Successfully 

predicted user queries can be supported by PMIM and will have different levels of 

performance gains according to different regions. Based on the aforementioned indexing 

configuration and assumptions, I explored the tradeoff between PMIM maintenance cost 

and performance improvement in the index life cycle. 
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Figure 22 Tradeoff between PMIM maintenance cost and performance  

 

improvement in the index life cycle 

 

 

 

Figure 22 shows the performance gains of the PMIM and the index maintenance 

cost with different frequencies of user access. By using the PMIM, users will have 

different levels of query performance improvements in three different regions. 

Performance improvements per query are 0.0013, 0.00077 and 0.0013 seconds 

respectively for users from the United States, Europe and China. However, PMIM needs 

9.24 more seconds to update three indices per day. Therefore, there is a tradeoff between 
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maintenance cost and performance improvement. Here, we introduced a new parameter 

called B value. B value equals the total time of performance improvement minus the 

extra index updating time. When a daily index access number is less than 10k, the B 

value is less than 0, which means performance improvement is less than extra 

maintenance cost. When index usage rate is low, the PMIM may cost extra time and 

computational resources. When daily index access is larger than 15k, the B value is large 

than 0 and increase significantly with the increase of the daily access frequency. The 

PMIM will save more time and computational resources for the GEOSS Clearinghouse 

when index usage rate is high. For example, when the daily access frequency is 100k, the 

PMIM will save up to 62 seconds’ computational resources.  

According to historical data, different regions have different index access 

frequencies. The GEOSS Clearinghouse should maintain a new index for high access 

frequency regions. For example, the user access from Europe take 66% of the total 

accesses and maintaining a European index will be beneficial when the user access is 

larger than 10k per day. While the United States needs 15k daily accesses to maintain a 

local index although this local index have more performance improvement than Europe. 

China only takes 0.15% of the total accesses and maintaining the index in China is a 

burden to the GEOSS Clearinghouse in this experiment. Although multiple indices in the 

PMIM can support faster data retrieval process, we need to evaluate both query 

performance improvement and maintenance cost according to different regions and time 

when using the new indexing mechanism. 
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CHAPTER 6 CONCLUSION 
 

 

 

In this thesis, I propose a new indexing strategy to address the challenges of 

global data discovery by global users. This indexing strategy considers both space and 

time in that: 

 The Predefined Multiple Indices Mechanism (PMIM) considers the 

spatiotemporal pattern of user queries. It predefines and maintains different 

indices and each index is special designed for one category of users who have 

similar spatiotemporal behavior. This specially designed index can perform faster 

data retrieval process compared to a regular spatial index for one specific category 

of users. And the PMIM will perform higher speed data retrieval for different 

categories of users. 

 The Access Possibility R-tree (APR-tree) implement an R-tree based spatial 

index using access possibility of features. The APR-tree extends the structure and 

algorithm of a regular R-tree by adding the access possibility of features as a new 

attribute in tree structure and a new factor in space partition algorithm.  

 

In order to study the spatiotemporal patterns of user behavior, historical user 

query behavior is extracted and parsed from the GOESS Clearinghouse log file. User 

behavior is analyzed and represented. The user behavior patterns include local interests, 
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intensive access regions or time windows, periodic accesses and others. Based on these 

patterns, metadata in the GEOSS Clearinghouse are indexed by the APR-tree using the 

PMIM. Performance experiments indicate that the new spatiotemporal indexing 

mechanism generally outperforms the regular R*-tree based on different M value and 

access frequency weight. However, we need to consider the balance of performance 

improvement and index maintenance cost. Nevertheless this indexing mechanism gives a 

potential indexing solution that can support global users and index large amounts of 

spatial features.  

More research and advancements in relevant fields could greatly enhance the 

spatiotemporal indexing and my future works include the following research aspects:  

 User query modeling/ prediction plays a key role in the proposed indexing 

mechanism because PMIM is trying to predefine multiple APR-trees based on 

prediction. In this paper, I collected and parsed historical user behavior data 

from the log file of the GEOSS Clearinghouse. Spatiotemporal patterns of user 

behavior are analyzed and represented. The prediction of feature access 

possibilities are calculated manually. To implement proposed indexing 

mechanism in the operation the GEOSS Clearinghouse, we need a user 

prediction model that can automatically model and predict user queries. The 

regression and multiple regression models can simulate the linear relationship 

between dependent variables and independent variables. In this case, user query 

results will be the dependent variables while user access location, time and other 

factors will be the independent variables. However, user behavior prediction is a 
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complex process and we cannot make comprehensive simulation and prediction 

by only historical behavior data. We may need to simulate the process of user 

decision. The technology acceptance model (TAM) (Fred 1986) and the theory 

of planned behavior (TPB) (Ajzen 1991) are two important models that predict 

an individual’s intention in an information system (IS).  

 Database Caching is to save frequently-used data into the computer cache. 

Usually, cached data are stored into computer memory. Using a database cache 

can reduce disk access, computational usage and most important reduce the time 

of data retrieval. Suppose 100 users in the GEOSS Clearinghouse are all making 

the same query, database caching mechanism can increase efficiency 

enormously by saving query results or parts of query process into the memory 

so that the computer does not have to repeat the entire query process 100 times. 

However, database caching costs large memory size. Therefore, we need to 

consider how many data and what kind of data should be cached. Normally, we 

preserve certain volume of lately frequently-used query result sets into the cache. 

But with limited volume of memory size, we can only maintain a small number 

of result sets if each result set has large number of data. One solution is that 

database cache can store only parts of the intermediate result in the index query 

process instead of storing the entire query result set. For example, we could 

store the tree node that has high access frequency (e.g. the “N2” node in figure 7) 

into cache instead of the entire result set. In this case, we do not have to repeat 

the process of accessing some nodes. Moreover, data with high access 
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frequency in the past may not have high access frequency at current and next 

time window. As discussed in 5.1, user queries in spatial DBMSs have different 

patterns and users may frequently access certain dataset periodically. More 

specifically, users may frequently access similar dataset at certain time windows 

of the day, week or month. This pattern requires us to change the cache data 

according to the time period.  

 Extensible indexing framework: By using extensible indexing framework, a 

spatial index can be implemented in commercial and open source DBMSs. 

Extensible indexing frameworks provide templates of indexing structure for the 

implementation. For example, Generalized Search Trees (Hellerstein, Naughton 

and Pfeffer 1995) is an extensible indexing framework to support balanced trees 

(e.g. the B-tree and the R-tree). PostgreSQL uses the Generalized Search Trees 

for the implementation of spatial indexing extensions. Commercial databases 

also use different indexing frameworks such as IBM DB2 Spatial Extender and 

Microsoft SQL Server 2008 Spatial Module. In this research, the 

implementation of the new indexing structure did not use indexing framework. 

With the same index structure (R*-tree), the PostgreSQL outperforms our 

implementation that did not use the indexing framework. Also, the query 

performances of different index structures based on our implementation are 

relatively unstable. The java environment might be a potential reason. Therefore, 

it is critical to implement the new indexing strategy based on extensible 

indexing frameworks.  
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 Spatial Cloud Computing (SCC): SCC provides dynamically scalable and 

often virtualized resources over the Internet to support geospatial science and 

applications (Yang et al., 2011b). SCC is a convenient platform to distribute 

predefined indices to different regions (Figure 1). As a computing and data 

intensive application, spatiotemporal indexing could leverage a large computing 

and storage pool provided by SCC. In addition, certain patterns of user behavior 

in an index, such as hot events and sudden increase of access rate, can be 

handled by the elastic computing capacity provided by SCC.  
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