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1. BACKGROUND FOR THE THEORY

The goal of our research on plausible reasoning is to develop a formal system
based on Michalski’s variable—valued logic calculus (1980, 1883) that characterizes |
- different patterns of plausible inference humans use in reasoning asbout the world
(Polya, 1958; Collins, 1978a). OQur work attempts to formalize the plausible inferences
that frequently occur in people’s responses to questions for which they do not have
ready answers (Carbonell & Collins, 1973: Collins, 1978a,b; Collins, Warnock, Aiello, &
Miller, 1975). In this sense it is a mejor departure from formal logic, which represents
normative theories of reasoning. Being descriptively based, it includes a variety of
inference patterns that do not occur in formal logic—based theories. The central
goals of the theory are to discover recurring general patterns of plausible inferences

and to determine the parameters affecting the certainty of these inferences.

In order to analyze human plausible reasoning, Collins (1978b)} collected a large
number of people’s answers to everyday questions, some from teaching dialogues and
some from esking difficult questions to four subjects. These answers have the

following characteristics:

1. There are usually several different inference patterns used to answer any
question.

2. The same inference patterns recur in many different answers.
3. People weigh different evidence that bears on their conclusion.

4. People are more or less certain sbout their conclusion depending on the
certainty of their information {either from some outside securce or from
memory), the certainty of the inference patterns and associated parameters
used, and on whether different patterns lead to the same or opposite
conclusions.

The analysis of the answers attempts to account for the reasoning and the
conclusions drawn in terms of a taxonomy of plausible inference patterns. As will be
evident, this is an inferential analysis. To use Chomsky's (1965) felicitous terfns, we
are trying to construct a deep structure theory from the surface structure traces of

the reasoning process.



We will illustrate some of the characteristics of people’s answers, as well as some
of the inference patterns formulated in the theory with several transcripts. The first
transcript comes frem & teaching dialogue on South American geography (Carbonell &

Collins, 1873) (T stands for teacher and S for student):

T. There is some jungle in here (points to Venezuela) but this breaks into a

savanna around the Orinoco (points to the Llancs in Venezuela and Colombia).
S. Oh right, is that where they grow the coffee up there?

T. I don’t think that the savanna is used for growing coffee. The trouble is the
savanna has a rainy season and you can't count on rain in general. But I
don’t know. This area around Sao Peulo {in Brazil) is coffee region, and it is

sort of getting into the savannae region there.

In the protocol the teacher went through the following reasoning. Initially, the
teacher made a hedged no” response to the question for two reasons. First, the
teacher knew that coffee growing depends on a number of factors (e.g., rainfall,
temperature, soil, and terrain), and that savannas do not have the correct value for
growing coffee on at least one of those feu;_'t.nrs (i.e., reliable rainfall}). In the theory
this is an instance of the inference pattern called a derivation from e mutual
implication. Second, the teacher did not know that the Llanos was used for growing
coffee, which he implicitly teok as evidence against its being a coffee region. The
inference takes the form "I would know the Llenos produces coffee if it did, and I
don't know it, so probably it does not.” This is called a lack—~of—knowledge inference
(Collins et al., 1975; Gentner & Collins, 1982). This inference pattern is based on

knowledge about one’s own knowledge and hence is a meta—knowledge inference.

Then the teacher backed off his initial 'negative response, because he found
positive evidence. In particular, he thought the Brazilian savanna might overlap the
coffee growing region in Brazil around Sac Paulo, and therefore might produce coffee.

If the Brazilian savenna produces coffee, then by functional analogy (called a



sihﬁ,la,rity transform in our theory) the Llanos might. Hence, the teacher ended up

saying “I don’'t know,” even though his original conclusion was correct.

The teacher's answer exhibits a number of the important aspects of human
plausible reasoning. In generﬁl, a number of inference patterns are used together to
derive an answer. Some of these are inference chains where the premise-of one
inference draws on the conclusion of another inference. In other cases the inference
pat_terﬁs are triggered by independent sources of evidence. When there are different
sources of evidence, the subject weighs them together tc determine & conclusion asnd

the strength of belief in it.

It is elso apparent in this protocol how different pieces of information are found
over time. What appears to happen is .that the subject launches a search for relevant
information (Quillian, 1968; Collins & Loftus, 1975). As relevant pieces of information
are found {or are found to be missing), they trigger particular inferences. Which
inference pattern is applied is determined by the relation between the information
found and the question asked. For the question sbout growing coffee in the Llanos, if
the respondent knew that savannas are in general good for growing coffee, that would
trigger a deductive inference. If the respondent knew of a similar sevanna somewhere
that produced coffee, that would trigger an analogical inference. The search for
information is such that the most accessible information is found first, as by a marker

pessing or spreading activation algorithm (Charniak, 1982: Quillian, 1968).

In the protocol, the more accessible information asbout the unreliable rainfall in
savannas was found before the less accessible information about the coffee growing
region in Brazil and its relation to the Brazilian savanna. The order of finding
information reflects its decreasing accessibility as activation spreads through a
semantic network (Quillian, 1968). Relevant information is found by autonomous search
processes; and the particular information found determines what inferences are

triggered.

The next protocol illustrates a plausible deduction, called a specialization

transform in the theory (Q stands for gquestioner and R for respondent):

Q. Is Uruguay in the Andes Mountains?



R. I get mixed up on a lot of South American countries (pause}). I'm not even
sure. 1 forget where Uruguay is in South America. It's a good guess to say

that it’s in the Andes Mountains because a lot of the countries are.

The resﬁondent knew that the Andes are in most South American countries (v out
of 9 of the Spanish speaking countries). Since Uruguay is a fairly typical South
American country, he guesses that the Andes may be there too. He is wrong, but the
conclusion was quite pleausible. This example illustrates a specialization transform and
two of the certai'nty parameters associated with it : frequency (he knows the Andes

are in most countries), and fypicality (Uruguey is a typical South American country).

The third protocol illustrates another kind of plausible deduction, called =

derivation from mutual implication in the theory:

Q. Do you think they might grow rice in Florida?

R. Yeah, I guess they could, if there were an adequate fresh water supply.

Certainly e nice, big, warm, flat area.

The respondent knew that whether a place can grow rice depends on a number
of factors. He also knew that Florida had the correct values on at least two of these
factors (warm temperatures and flat terrain). He therefore inferred thet Florida could
grow rice if it_ had the correct value on the other factor he thought of (i.e., adequate
fresh water). He may or may not have been aware that rice growing also depends on
fertile soil, but he did not mention it here. Floride in fact does not produce rice in
any substantial amount, probably because the soil is not adequate. This protoco]
shows how people meke plausible inferences based on their epproximate knowledge
about what depends on what, and how the certainty of such inferences is a functicon of
the degree of dependency between the variable in question (rice) and the known

variables (i.e. terrain, climate, water).

The fourth protocol from a teaching dialegue illustrates a functionasl analogy,

called the similarity transform in the theory:



5. Is the Chaco the cattle country? I know the cattle country is down there

(referring to Argentina).

T. I think it's more sheep country. It's like western Texas, so in some sense I
guess it's cattle country. The cattle were originally in the Pampes, but not

S0 much anymore.

As in the first protocol, the respondent is.making a nunmber of plausible
inferences in answering this question, some of which lead to different conclusiqns.
First, he thinks that the Chaco is used for sheep raising, but there is some
uncertainty about the information retrieved, which leads to a hedged response. This
supports an implicit lack—of-knowledge inference (a meta—knowledge inference), that
takes the form “I don't know that it's cattle country, and I would know if it were (e.g.,
I know about sheep), so it probably is not cattle country.” But then the teacher
noted a similarity between the Chaco and western Texas, presumably in terms of the
functional determinants of cattle raising (e.g., climate, vegetation, terrain). This led
him to a very hedged affirmative response, based on a similarity transform. Finally
the teacher alluded to the fact that the Pampas is the place in Argentina known for
cattle, and the place the student most likely was thinking of. This ergues asgainst the
Chaco having cattle based on another meta—knowledge inference, a canfusability'
inference {Collins, 1978b): "The Chaco is confusable with the Pampas and the Pampas
has cattle, so the fact that there are cattle in Argentina cannot be teken as evidence
for cattle in the Chaco.” In answering this question, then, two patterns of plausible

inference led to a negative conclusion and one to a positive conclusion.

The fifth protocol illustrates hoth a similarily and a dissimilarity traonsform, and
more importantly, the distinction between inferences based on overall similarity and
those based on similarity with respect to the functional determinants of the property

in question.

Q. Can a goose guack?

R. No, a goose ~ well, its like a duck, but its not a duck.



It can honk, but to say it can quack. No, I think its
vocal cords are built differently. They have & beak

and e#eryth.ing, but no, it can't quack.

The similarity transform shows up in the phrases, "it's like @ duck” and "They
have a beak and everything” as well as the initial uncertainty about the negative
conclusion. It takes the form, “A duck quacks and goose ig like a duck with respect
to most features, so maybe a goose quacks”. The certainty of the inference depends

on the degree of similarity between ducks and geese.

But then two lines of negative inference led the ‘respondent to a negativé
conclusion. First there is a lack—of-knowledge inference implicit in the statement "It
can honk, but‘tu say it can quack.” She knew about geese honking but not about
their quacking. Therefore, she thought she would know about geese quacking, if in
fact they did quack.

The second line of negative inference '_(apparently found after she started
answering) is the dissimilarity inference evident when she says, "l think its vocal
cords are built differently”. The dissimilarity inference takes the form "Ducks quack,
geese are dissimilar to ducks with respect to vocal cords, and vocal cords determine
the sound an animal makes, so probably geese do not queck”. This inference was
enough to lead her to a strong "no”. Of course she knew nothing about the vocal
cords of ducks and geese, because they don’t have any. She was probably thinking of
the difference in the length of their necks. Our own hypothesis is that longer necks

resonate at lower frequencies and hence honking can be thought of as deep quacking'.

These five examples illustrate a number of aspects of human plausible reasoning
as it occurs in common discourse. They show how people bring different pieces of
knowiedge to bear on a question and how these pieces sometimes lead to the same
conclusion and sometimes to different conclusions. Often knowledge is found after the
respondent has started answering, so that the certainty of the answer seems to
change in midstream. The examples also show how people’s approximate functional
knowledge of what depends on what often comes to play in different inferences such

as deductions and analogies. Therefore these dependencies are a central part of the



core theory we have developed. We will return to these examples to illustrate how the
formal rules we have developed can be used to characterize different plausible

inferences seen in these examples.

In our development of the theory to date we have not tried to characterize all
the different types of plausible inferences that occur in the protoceols. In particular
we have not formalized the spatial and meta~knowledge inferences shown above. This
project presents a core system centered around the plausible deductions, analogies,
and inductions, seen most frequently in the protocols. In future work we plan to
extend this core system to encompass the other patterns of inference, such as spatial

‘and meta-knowledge inferences (Collins, 1978 a,b).



2. ASSUMPTIONS UNDERLYING THE THEORY

The theory assumes that a large part of human knowledge is represented in
structures, we call dynamic hierarchies, that are interconnected by traces. Each
hierarchy represents knowledge ebout a class of concepts arranged in & tree
structure according to some viewpeint. Traces represent paths linking nedes in
different hierarchies that record beliefs about the world. These beliefs can be
'recordéd by our senses or derived by inference. The theory presented here shows
that certain types of pleusible inferences can be viewed simply as periturbations of

traces in the knowledge structures.

The hierarchies are dynamic in that they are always being updated, modified or
expanded. In the core theory described here we distinguish between two basic kinds
of hierarchies, lype— and part-hierarchies (Collins and Quillian, 1972). A type-
hierarchy (also called an abstraction or is—-a hierarchy) is organized by the type
relatioln holding between connected nodes, or more precisely, between concepts
represented by the nodes. A pari-hierarchy is organized by the part—of relation
holding between connected nodes. Any given node may be a member of more than one

hierarchy. Each such hierarchy characterizes the node from a different viewpoint.

Nodes of a hierarchy may represent classes {(e.g., flowers), individusals (e.g., a
specific flower) or manifestations of individuals (e.g.. a specific flower Bt a given
moment). For the purpose of the theory, manifestations are treated just like

individuals or classes.

Figure 1 shows examples of type— and part—hierarchies. In the first four
examples {la,b,c,d), the Llanos is viewed from four different perspectives. These
perspectives are organizing principles of the hierarchies (Bobrow and Winograd, 1977).
The type-—hierarchy in figure la is organized according to the type of terrain. The
type of terrain can be mountainnus,d plateau, hilly, or plain, ete. The Llanos is
characterized as a'tyPe of plein, like the Chaco. The type-—hierarchy in figure 1b is
organized according to the geographical land type. It characterizes the Llanos as a
type of savanna, which is one of the major land types that geographers divide the
world inte, including rain forests, deserts, steppes, rMediterranean climates, mid-

latitude forests, etc. The part-hierarchy in figure 1c is organized according to



regions in South America: the Andes, Amazon Jungle, Llanos, Guiana Highlands, and
their subregions in different countries. The part—hierarchy in Figure 14 represents

South America broken down into countries and the subregions within each.

Insert Figure 1 here

The other three examples in Figure 1 are designed to illustrate how different
descriptors also are represented in hierarchies. Among colors there are green and
red. Among reds there are scarlet snd burgundy, and among scerlets there are bright
scariet and perhaps dull scarlet, ete. Color is a one-place descriptor applying to
objects, but feeling emotion is a two place descriptor where X (a person) feels the
emotion toward Y (any concept). In the emotion hierarchy there are many types of
emotions, among them love and hate, and there are different kinds of love, such as
romance, affection, motherly love, ete. In the weight hierarchy there are different
kinds of weight, such as human weight which in turn might be divided into birth
weight and adult weight. For birth weight one might think of 1 1b. &s a minimum, 15
lbs as a maximum, and 7 lbs as the norm. For the purposes of the theory these can
be thought of as different values of birth weight, just as red and green are different
values of color. These examples are not meant to show how people represent such
concepts, but to give an idea as to how the hierarchies can represent different kinds

of information.

As mentioned above, traces representl recordings of informetion within the
hierarchies. They are paths connecting the nodes of two or more hierarchies that
represent beliefs about the world. Figure 2 shows examples of traces representing the
beliefs that there are daffodils and roses- in England, and that John’s eyes are blue.
The traces can have annotations describing their origin, their frequency of use, the
certainty of belief in their correctness, and other information. The links denoting the
type and part relation in generalizatioﬁ hierarchies can elso be viewed as traces, but
for the purpose of theory we will distinguish them from other traces. The knowledge
organization described above includes various elements of semantic network structure
(Carbonell & Collins, 1973; Collins & Quillian, 1972; Quillian, 1968) end frame structure
(Bobrow & Winograd, 1977; Minsky, 1975: Schank & Abelson, 1977; Winograd, 1975).
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Insert Figure 2 here

Let us explain some of the elements of annotations of a trace. By the origin of
a trace we mean the information specifying whether the trace is & recording of a
sense observation, an assertion obtained from a source of information (e.g., another
person), or a statement derived through inference. Frequency of use or importance
(Carborall & Collins, 1973, Collins & Quillian 1972, Collins & Loftus 1975) represents
the ease of traversing a particular link, or the accessibility of one concept from

another. Certainty of belief is discussed in detail in the next section.

A trace may be a recording of information about one’s beliefs, or denote the
applicabdility relation between the nodes of different hierarchies. The applicability
relation between a node A and a node B states that node A can be used as s
descriptor of node B, i.e., that A can be used to characterize node B. We write such a
relation as & term

A(B)

For example, the node "color” in hierarchy le applies as a descriptor to node
“eyes” of hierarchy lh. This is denoted as “color(eves).” The node "eyes” can in turn
be applied as descriptor to the node, say, John, in some hierarchy describing people.

To express both relations we would write:

color(eyes(John))

A term A(B) can fake a value only from the set of subnodes of A, ie., the
descendants of the node A in the hierarchy. The set of subnodes which can actuelly
- be a value of term A(B) is called the domain of term A(B). Applying a descriptor to an
argumeni (node or a sequence of nodes) A produces a specific value characterizing the
arg.umént. This implies that only non—terminal nodes of & hierarchy can be
descriptors. For example, to state that the color of the eyes of John is blue, & trace
would be created that links John, color and blue as shown in Figure 2. To express

this formally, we write:

10
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color(eyes(John))=blue
In the theory such =&n expression is called a stafement.

The epplicability relation observes an important property. If it has been
observed that A in a type-hierarchy is applicable to B in a type—hierarchy, then we
can infer that A is applicable to any subnode of B, and that any supernocde of A is
applicable to B. For example, assume that the node "eyes" applies to "person”. One
can infer that also “organ” applies to “person” and that “eyes" applies to “woman.”
Part—hierarchies, for the most part, follow the same rules as type—hierarchies with
some restrictions, such as the fact that a descriptor applicqble to one node may not

always apply to a subnode (e.g. capital applies to states but not to cities).

It is important to mention .at this point that the applicability relation is learned
like any other relation. This relation does not act as @ "selection restriction”
assumed by some linguists. Its violation is not considered to be a semantic anomaly,
but rather as a new information to be made consistent with the existing knowledge
structures. For example, when one hears that "an idea is green,” then usually one

tries to make sense of it rather than reject it as an anomalous expression.

Figure 3 illustrates the fact that the hierarchies are p_artial orderings, and can
be differentiated or collapsed as appropriate for the purpose of drawing plausible
inferences. At a fairly early age children think of animals as coming in different
types: dogs, cats, fish, birds, etc. They don’t differentiate them much more than that.
When they get to school they may learn there are different basic types of animals,
such as f_ish,. birds, reptiles, mammals, and amphibians, and that dogs are cats are
types of mammals. Still later in biology this hierarchy might be differentiated much
more finely as in Figure 3c. But the early links are never lost; they are in fact used
all the time in reasoning about the world. For the purpose of the theory, therefore,
any hierarchy can be collapsed or differentiated as long es the partial orderings in

the hierarchy are maintained.

Insert Figure 3 here

11
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Table 1 shows hypothetical frame structures for a few concepts in someone's
memory (Collins & Quillian, 1972; Collins et al, 1975). These examples are not meant to
provide a detailed analysis of how concepts are represented, but rather to illustrate
how the statements shown in later examples can be constructed from a Memory
structure. In the example, type and part reletions form the basis for hierarchical
structures such as those shown in Figures 1 and 3. Flowers are represented as a
type of plant coming in at least four varieties (i.e. roses, etc.), having various parts,
various colors, and growing in all countries, Each descriptor (i.e. type/of, types,
parts, color, countries} might be further specified as to how it relates to the concept
flower (e.g., type/of is a biclogical class, colors are surface features of the petals,
countries are places where flowers are grown, etc). Daffodils, which are a particular
type of flower, provide further specification for each of the variables in the concept
of flowers. That is, they have petals and a stem, they come in yellow and -perhaps
other colers, and they are grown in at least England and the United States. The
frame for red is shown to illustrate how = color concept points back to various
objects which it describes. Finally let us stress that we have not concerned ourselves
with exactly how concepts are represented, but rather we have assumead they are

represented in a structure similar to these examples.

Insert Table 1 here

Any node in a hierarchy can potentially be a descriptor for a node in ancther
hierarchy. For example, if flower is in a hierarchy of things and England is in &
hierarchy of places, flower—type might be a descriptor for England. This produces a

statement of the form:

(1) flower—type (England)=fdaffodils, roses,....}

In (1)‘flower—type is a descriptor, England is an argument, flower—iype (England) is a
term, and daffodils and roses are references for the term. The brackets and dots
indicate that daffodils and roses are not assumed to be a complete set, although the
persen may not know other flowers of England. Any descriptor, as a node in a
hierarchy, can be further differentiated. For example, flowers can be differentiated
between naturally-growing flowers vs. flowers grown in greenhouses, or between

flowers sold vs. flowers grown, etc.  People make finer or less fine discriminations

12



Table 1

Hypothetical Frames in a Person’s Memory

flower
type/of =(plant)
types ={rose, daffodil, peony, bougainvillea sed}
parts ={petals, stem ...}
colors ={pink, yellow, white, red ...}

countries ={all countries}

daffodil
type/of =(flower)
parts ={petals, stem ...}
colors ={yellow ...}

countries ={England, United States ...}

red
type/of =(color)
types ={scarlet, burgundy ...}

flowers ={roses, tulips ...}

vehicles ={fire engines, London buses b



depending on their knowledge and purposes, and a theory of plausible reasoning must

accommodate these different degrees of discrimination.

Whether a particular descriptor applies to any argument depends on what
knowledge the person has. For example, it is not clear what red-type (England} might
mean because one probably doesn’t have knowledge in one’s deata base about the color
of England {though one might interpret the term as the color of any part of England,

such as the Union Jack and London buses).

Examples (2) to (8) below illustrate how different descriptors apply to different

concepts:

(2) England-part (daffodii)=jSouthern England.. .}

(3} daffodil-part (England)=§petcis, stem...}

(4) country—type (doffodi|s)=jtemperate countries...}
(5) daffodil-type (England)=fyellow daffodils...i

(6) England=type (daffodils)={England in the spring}
(7) love—type (John, Mary)=jaffection...}

(8) give~type (John, Mary, scarfl=fgift—giving...}

Examples (2) and (3) illustrate statements based on part hierarchies. In (2) the
descriptor selects the part of England where daffodils occur. In (3) the descriptor
selects the parts of daffodils that occur in England; presumably daffodil parts in
England are the same as daffodil parts anywhere in the world {(though perhaps Martian
daffodils are quite different). In (4) country—type applied to daffodils selects the
types of countries that have daffodils (i.e., temperate countries). Statement (4) could
have specified the particular countf*ies__ {e.g. England, France} that have daffodils, since
hierarchies can be collapsed as long as = partial order is maintained. In (5) daffodil-
type applied to England selects the different daffodil types found in England, of which
only one type is stored (i.e., yellow daffodils), though there may be others. In (6) we

show that when you take an instance like England and look at its subtypes vou get a

manifestation, in this case the manifestation(s) that have daffodils. Finally, (7) and (8)

13



~illustrate multiple place predicates describing John’s love of Mary, and John's giving a
scarf to Mary as a gift rather than loaning it or giving it away to get rid of it. These

examples show how different terms are evaluated within the theory.

These examples illustrate the most important assumptions we are making about
how human memory is organized and accessed for the purposes of making plausible
inferences. Further descriptions of our underlying assumptions about human memory
are given in earlier pepers {Cerbonell & Collins, 1973; Collins & Loftus, 1975; Collins &
Quillian, 1972; Collins, Warnock, Aiello & Miller, 1975).

14



3. PRIMITIVES IN THE CORE SYSTEM,

In the core system we have developed there is & set of primitives and & set of
besic inference rules. In this section we describe the primitives in the systen,

consisting of basic expressions, operators, and certainty parameters.

Table 2 shows the basic elements in the core system. Adrguments can be any
node in a hierarchy, or e function of one or more nodes such as Fido’s master or the
flag of England. Descriptors apply to arguments, and together they form a ferm, such
as breed (Fido). The reference for a term can be either a definite set of values such
as collie, or brown and white, or an indefinite set of values such as brown plﬁs other

colors {or possibly no other colors).

Insert Table 2 here

Statements consist of a term on the left of an equals sign and a reference on
the-right, together with a set of certainty parameters. Expressions (1) through (8)
above were all statements, without the certainty parameters specified. The operator
statements shown below in Table 3 are a special class of statements. The certeinty
parameters can be thought of as approximate numbers ranging between 0 and 1, but
we have represented them as verbal descriptions. In the example shown, ¥ refers to
how certain one is the statement is true, and 95 to the frequency that if something
i1s a bird it can fly. These certainty paraineters are all listed in Table 4, to be

discussed later.

The last two types of expressions represent functional dependencies between
different variables. Dependencies befween ferms represent the functional relationship
between two terms, such as betwebn. the averagé temperature of a place and the
latitude of the place. The dependency can be annotated to different degrees: it can
be unmarked meaning there exists some functional relation the two, it can be marked
with + or - indicating s monotonic increasing or decreasing relation, or it can be
further speciﬁed to any degree (e.g.,, a V-shaped function with 3 values specified).
For example, if one thinks that average temperature of a place in January varies

between about 85° at the equator and ~30° at the North Pole and + 30° at the South
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Table 2

Elements of Expressions

arguments a,, 8y, f(a,)
e.g., Fido, collie, fido’s master

descriptors d,, t:l‘2
e.g., breed, color

terms  di(a,). dy(ay). dy(d, (a,))
e.g., breed (Fido), color (collie), color (breed (Fido))

references ry (rpra), iry .4
e.g., collie, brown and white, brown Plus other colors

statements dy(ag)=r;: ¥, @
e.g., means of locomotion (bird)={flying...}: certain, high
frequency

dependencies between terms d1(a1}<—-->d2(f(a1)}: oL 8’ &

e.g., latitude (place} <~-~—> gverage temperature (place):
moderate, moderate, certain

implications between
statements d.,(a,}=r1<===>d2(f(a1})=r2: A, 3,
e.g., grain (place)={rice...} <===> rainfall (place)=heavy:
high, low, certain



Pole, this relation can be represented as a V-shaped function with values (—920°, 309,
(0°, 85°) end (90° -30°), where the first coordinate is latitude and the second
temperature. The ™ and A parameters specify the degree of constraint in the
dependency from latitude to temperature and from temperature to latitude,
respectively. In the letitude-—temperature example the degree of constraint is

moderate in both directions, as is discussed later.

Implications between statements relate particular values of functions such as the
latitude—temperature function above (e.g., latitude (place) = equator <=> average
temperature (place) = hot). The example shown in the table relates the grain of a
place being rice to the rainfall of the place being heavy (e.g., >40 in/year). Knowing
& place produces rice predicts that it will have heavy rainfall quite strongly, so that
A is high (though there are exceptions like Egypt where rice is grown by irrigation).
However the fact that the rainfall of s place is heavy (e.g., Oregon) only weakly
predicts that rice is grown, so & is low. In general mutual implications between

statements will be asymmetric in this way.

Table 3 illustrates the four operators in the core system and the kinds of
statements they occur in. The generalization and specialization operators go up and
down in a hierarchy, while the similarity and dissimilarity operators 20 between nodes
at the same level in a hierarchy. Associated with the GEN and SPEC operators there
is & typicality perameter T (Rosch, 1975; Smith & Medin, 1982), and with the SIM and
DIS operators there is a similarity parameter . There is also & dominance parameter
o associated with GEN and SPEC statements that specifies what proportion of the
superset, the subset actually comprises. Finally all the statements invelving operators

have a certainty parameter & associated with themn.

Insert Table 3 here

Typicality and similarity are always computed in some context which is denoted
by the CX variable. The first variable in the CX denotes & node in the argument
hierarchy specifying the range of arguments over which typicality or similarity are
computed. For GEN and SPEC this is always the superset specified in the statement

(e.g.. for chicken=SPEC (barnyard fowl), barnyard fowl is the superset over which
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Table 3

Operators

Generalization a’=GEN(a) in CX(a,D): &, ¥ 4

e.g., bird=GEN(chicken) in CX (birds, physical features):
certain, atypical, low dominance

Specialization a'=SPEC(a) in CX(a'.D): ¥ . &
e.g., chicken=SPEC(barnyard fowl) in CX (barnyard fowl,
food cost): certain, typicel, moderate dominance

Similarity a’'=SIM(a) in CX(A,D): ¥, T

e.g., ducks=SIM(geese) in CX(birds, all features): certain,
highly similar

Dissimilarity a'=DIS(a)} in CX(AD): &. O

e.g., ducks=DIS(geese) in CX(birds, neck length): certain,
fairly dissimilar



typicelity is computed, but for SIM and DIS it is the basic level category (Rosch 1975;
Smith & Medin, 1982) to which the two arguments belong that is the basiz for
computing similarity. Hence the similarity of ducks and geese would normally be

computed in the context of birds, which is their basic level category.

The second variable in the CX specifies the set of descriptors to be used in
comparing the two nodes with respect to typicelity or similarity. For example, one can
evaluate how typical chickens are ms birds with respect to their physical features,
with respect to all their features, or with respect to some particular feature such as
the cost of feeding them. Similarity and dissimilarity can also be computed with
respect to different features. As we discussed with respect to the fifth protocol
shown earlier, ducks and geese are quite similar when compared on all their features,
but they are dissimilar in neck length {which is relevant to determining the sound

they make). The procedure for computing typicality and similarity is described below.

Table 4 lists the certainty parameters we have identified so far that affect the
certainty of different plausible inferences. We will describe each of these parameters
In terms of the examples given above. The description is meant to specify our best

hypothesis about how people might compute these parameters.

Insert Table 4 here

The & and 2 parameters can best be introduced in terms of the example:
grain(place)={ricel...}<===>rainfa11(p1ace)=heavy. As we said, < would be high in such
case if a person thinks that most places that grow rice have heavy rainfall (say > 40
inches per year), whereas 8 would be low if he or she thinks there are many places
with heavy rainfall, that don’t produce rice. We can construct a hypothetical table
that represents this view in terms of a small sample of places and the frequencies with

which they have heavy rainfall and produce rice:

Rice No Rice Total
Heavy Rainfall 8 B 16
No Heavy Rainfall 4 20 ee
Total 10 28 38
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Table 4

Certainty Parameters

Likelihood that the right-hand side of a dependency or
implication is in a particular range given that the
left—hand side is in a particular renge.

Likelihood that the left-hand side of a dependency or
implication is in a particular range given that the
right—hand side is in a particular range.

Degree of certainty that a statement is true (i.e., degree
of belief).

ﬁegree of typicality of a subset within a set (e.g., robin
1s a typical bird and ostrich is an an atypical bird).

Degree of similarity of one set to eanother set.

Frequency of the reference in the domain of the descriptor
(e.g., above 90% of birds fly).

Dominance of a subset in a set (e.g., chickens are not dominant

among birds, but are dominant among barnyard fowl).



Given this table &L is simply the conditional probability thet a rice—-producing
place has heavy rainfall, in this case 8 of 10 or .8 and £ is the conditional probability
that a place with heavy rainfall produces rice, in this case 8 of 18 or .5. We don't
think that people actually construct such tables though they may consider & small
number of cases in computing rough estimates of ¢ andﬁ, as they do in using the

availability heuristic (Tversky & Kahnemean, 1873).

The «{ end 2 parameters for mutual dependencies can be constructed by an
extension of the procedure for mutual implications. Suppose one considers the
relationship of rainfall and grain growing as before, but instead as a mutual
dependency {i.e., grain (place) <~-> rainfall (place). For simplicilty we can present

the same hypothetical table in revised form:

Rice Wheat Corn Total
Heavy Rainfsall 8 6 2 18
Light Rainfall P 14 6 22
Total 10 20 B 38

Then « reflects the degree to which you can predict whether a place has heavy
or light rainfall, given the predominant grain grown in the place, which is quite high
(i.e., the prediction is correct in 28 or 38 cases or .7 assuming an optimal guessing
strategy). Similarly, ,8 reflects the degree to which you can predict whether they grow
rice, wheat, or corn, given the amount of rainfall (i.e., the prediction is correct in 22
of 38 cases or .6, assuming an optimal strategy of guessing wheat for light rainfall and
rice for heavy rainfall). This example mekes evident the fact that the o and
6 parameters reflect the way the dependency partitions the known cases in the

world.

The J parameter in Table 3 reflects the certainty or subjective likelihocod with
which a person believes any expression is true. ¢ can refleet different possible
sources of uncertainty. One source arises when people retrieve a fact from memory
and are uncertain they may be making =a memory confusion. Another basis for
uncertainty arises when they doubt the source from which they got the information.
Finally, if a piece of information derives from a plausible inference, there will be
uncertainty as to whether the conclusion is correct, and this uncertainty will
propagate to inferences dépendent on it. All these sources of uncertainty are

represented by the 3’parameter.
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Typicality (¥} and similarity (¢) can be thought of as the same parameter: in
the case of typicality it is computed between & subset and its superset, and in the
case of similarity it is computed between two subsets. We assume that any set (or
concept) is represented as a bundle of features (Collins & Quillian, 1972), and the
Tand ¢ parameters are computed by comparing the two concepts with respect to
those features specified by the descriptor variable in the context CX. For exaemple,
"chicken"” might be compared to "bird" with respect to size or with respect to all its
physical features to determine its typicality. For =& continuous variable like size,
typic'ality or similarity is determined by computing how close (normalized between 0
and 1) the two values are in the distribution of sizes for the class specified by the
context CX (e.g. birds). For discrete variables like "ability to fly”, the two concepts
either match or not {assigned either 1 or 0). Typicality or similarity are based on the
average score for all the features compared, weighted for their criteriality or

importance (Carbonell & Collins, 1973; Collins & Quillian, 1972).

Frequency (®) and dominance (d') reflect different ratios that affect the
certainty of plausible inferences in systematic ways, Frequency reflects the
proportion of members of the argument set that can be characterized by the reference
specified. It reflects what “Some” or "All" reflect in logic {e.g., "Some men have
arms“), but as a continuous variasble between 0 and 1. For the statement "means—of—
locomotion (birds)={flying...}," is the proportion of birds that fly to the total of =all
birds. The dominance of a subset within a set (4 ) applies only to generalization and
specialization statements. It reflects the proportion of members of the set that are
members of the subset specified in the statement. For example, chickens constitute a

high proportion of barnyard fowl, but not of birds in general.

This completes our summery of the primitives in the system. We wil now

describe the different plausible inference forms in the core system.
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4. TRANSFORMS ON STATEMENTS

The simplest class of inferences in the core theory are cealled transforms on
statements. If a person believes some statement, such as that the flowers growing in
England include daffodils and roses [i.e., flower-type{England}=idaffodils, roses...}],
there are eight transforms of the statement that allow plausible conclusions to be
drawn. These eight transforms can be thought of as perturbations of the statement
either with respect to the argument hierarchy (starting from England) or the
reference hierarchy (starting from daffodils and roses). The argument-based
transforms move up (using GEN), down (using SPEC), or sideways (using SIM or DIS) in
the argument hierarchy. Similarly the reference-based transforms move up, down, or
sideways in the reference hierarchy. Thus each of these transforms is a perturbation

in one of the two hierarchies.

Let us illustrate the eight transforms on statements in terms of hierarchies for
England and roses. Figure 4 shows a part hierarchy for Englend and a type hierarchy
for roses and daffodils that someone might have. If the person believes that,
"flower—type(England)={daffodils, roses...},” then Teble 5 shows eight conclusions that

the person might plausibly draw.

Insert Figure 4 and Table 5 here

The first GEN inference is that Europe as & whole grows daffodils and roses.
This may not be true: Daffodils and roses may be a peculiarity of England, but it is at
least plausible that daffodils and roses are widespread throughout Europe. Similarly,
for the SPEC relation it is a plausible inference that the county of Surrey in southern
Englend grows roses and daffodils. There is an implicit context (CX) in GEN and SPEC

transforms, that will be discussed later.

The SIM and DIS inferences are slso made In some context. In the case of the
argument—based transforms the context might be "countries of the world with respect
to the variable climate.” Holland is quite similar to England with respect to climate,
while Brazil is quite dissimilar. The variables over which the comparison is made may

be few or many, but people will make the comparison with respect to those variables
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(1)
(2)
(3)

(5)
(6)
(7}
(8)

GEN

SPEC

SIM

DIS

GEN

SPEC

SIM

DIS

Table 5

Eight Transforms on the Statement
"flower—type(England)={daffodils, roses...}"

Argument—based Transforms
flower—type(Europe)={daffodils, roses...}
flower—-type(Surrey)={daffodils, roses...}
flower—type(Holland)={daffodils, roses...}

flower—type(Brazil)#{daffodils, roses...}

Reference—based Transforms

flower—type(England)={temperate flowers...}
flower~type(England)={yellow roses...}
flower~type(England)={peonies...}

flower—type(England)#{bougainvilles...}



that they think are most relevant to the question (e.g., whether they grow daffodils in
Holland). That is, they base thejr inference on whatever mutual dependency most
constrains the descriptor in question. In this case the flowers grown in a place
depend highly on the climate of the place, but hardly at all on the longitude of the
place. Therefore climate is a reasonable veriable on which to make the comparison.
We will refer to this issue later when we talk about how different parameters affect

the certainty of any statement transform. |

The reference transforms are perhaps easiest to understand if you substitute &
fictional place like Ruritania for England, because cther inferences are not invoked so
easily. If one believes they grow daffodils and roses in Ruritania, then one might infer
they grow temperate flowers in general there, and yellow roses in particular. Ii is
also reasonable that they grow peonies there, since they are similar to roses and
daffodils as to the climates they grow in. But bougainvillea grows in more tropical
climates, so it is unlikely to grow in Ruritania (Ruritania is, after all, a small little
kingdom and unlikely to encompass different climates—-this is a supporting inference),

These examples should give a feel for how the transforms on statements are made.

4.1 Certainty Parameters Affecting Transforms on Statements

In this section we will discuss how different certainty parameters affect the

various transforms shown in Table 5.

Typicality. Typicality (¢) affects the ceriainty of any GEN or SPEC transform as

shown in Table 6. In argument—based transforms the more typical the subset is of the
set in the argument hierarchy, the more certain the inference. For example, in Table

9 inference (1) is more certain the more typical England is as part of Europe.

Insert Table € here

In making plausible inferences pecple compute typicality with respect to those
varmbles, such as climate, that they think flower growing depends on. Thus, if Surrey
1s thought to have a typical climate for England, and climate is thought to predict the

types of flowers grown in a Place, then the inference is more certain.
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Transforms
in Table 5

Argument-—
Based

Reference~
Based

Table 8

L |
Effects of Different Parameters on Statement Transforms

1 GEN

2 SPEC

3 SIM

4 DIS

3 GEN

8 SPEC

7 SIM

8 DIS

Parameters
[
+ 0 +
+ 0 4+
0 + +
0 - o+
+ 0 4
+ 0 +
0 + +
0 - +

P &
+ +
+ +
+ 0
- 0
+ 4+
+ +
+ 0
- 0

Target Node

Europe
Surrey

Holland

Breazil

Tropical Plants
Yellow Roses
Peonies

Bougainvillea

Note: As the value of the parameter increases, a + means it has
a positive effect on the certainty of the inference and
& — means it has a negative effect on the certainty of
the inference.



This example reveals the mutual dependency implicit in any statement transform.
The mutuel dependency relates the set of variables on which the typicality or
similarity judgment is made (e.g., clirgate or all variables) to the descriptor in question
(e.g., flower—~type). If the typicality judgment is made considering all variables {as
- when we said Surrey is a typical English county), the transform will be inherently less
certain because of the wéak dependency between most varisbles and any descriptor
such as flower—type. Therefore, it you know that Surrey is typical of England in
general, it leads to a less certain inference than if you know Surrey is typical of

England with respect to climate.

In & reference—based transform typicality works the same way, except that it is
computed with respect to the subset and its superset in the reference hierarchy. In
inference (5) in Table 5, the greater the typicality of daffodils and roses as temperate
plants, the more certain the inference. Similarly in the inference (6), the greater the
typicality of yellow roses as roses, the more certain the inference. Pink roses are
' more typical than yellow roses, and so they are even more likely to be found in
Englend (or Ruritania for that matter). Again the inference is more certain if

typicality is measured with respect to the climate in which the flowers are grown.

Similarity. Degree of similarity &) affects the certainty of any SIM or DIS

inference as shown in Table 6. Like typicality, similarity can be computed over all

variables or over a subset of variables (e.g., climate) that are particularly relevant.

Degree of similarity increases the certainty of SIM inferences and decreases the
certeinty of DIS inferences, as would be expected. In Table 5, therefore the inference
(3) that Holland has daffodils and roses is more certain the more similar Holland is to
Englend with respect to climate or whatever variables one thinks flowers are related
to. The inference (4) that Brazil does not have roses and daffodils is more certain
the less similar Brazil is to England. The inference {7) that England has peonies is
more certain, the greater the similarity of peonies to both daffodils and roses. The
inference (8) that England does not have bougainvillea is more certain, the less similar
bougainvillea is to daffodils and roses. More particularly bougainvillea is dissimilar in

theat it tends to grow in warmer climates than daffedils and roses.

‘Mutual Dependency. Every transform on a statement involves an implicit mutual
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depend.ency. The inference is always more certain the greater the dependency &x)
between the variables on which typicality or similarity are measured and the variable
in question as shown in Table 8. If climate were the variable used for measuring
typicality and similarity, the argument—based transforms would be more certain the
more the climate of a place constrains the flowers grown in the place. The mutual
dependency is slightly different for reference-~based transforms. They would be more
certain, the more the climate where flowers grow constrains the places where flowers

grow,

Frequency. The frequency (®) of the reference set within the domain of the

argument affects the certainty of all eight inferences, as shown in Table 8. For an
insteance, e.g. England, frequency with respect to the argument set only makes sensze
if you think of England as a set of small parts (say 10 miles square) and count the
frequency of parts that have daffodils and roses vs. those that do not. The more
frequent daffodils and roses are in the parts of England, then &ll but the DIS
inferences are more certain. For example, roses and daffodils are more likely to
occur in Holland or Surrey if they are very frequent in England. The two DIS
inferences go in the opposite direction. For example, the less frequent are daffodils
and roses in England, the more likely bougainvillea will be found there (though this is

a very weak inference).

Dominance. Dominance (£) affects GEN and SPEC inferences as is shown in Table

8. In all cases, the greater the dominance of the subset, the mﬁré certain the
inference. For example, for (2) if Surrey comprised most of England it would be &
more certain inference that it has daffodils and roses, than if it is a very small area
in England. Similarly for (8) if yellow roses were the most dominant kind of' roses,

they would be more likely found in England than if they are a rare type of rose.

4.2 Formal Representation of Transforms on Statements

Table 7 shows the formal representations we have developed for each of the
eight transforms on statements in terms of the variable—valued notation of Michalski
(1983). Most of the examples shown are from protccols we ha#e collected (Collins,
1978b), some of which appear in the first section of this paper. We will briefly

describe each of the examples.
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Insert Table 7 here

We can illustrate an argument—based transform or GEN with the inference that if
chickens have gizzards, then birds in general may have gizzards. The first premise,
represents the belief that chickens have gizzards: presumebly almost all chickens have
gizzards so the frequency (@) and the certainty (d¢°) arer high. The second premise
represents the belief that chickens are birds', and that they are typical with respect
to their biological characteristics. As we pointed out earlier, the subset dominance
(d) of chickens among birds is low. The third premise states that the interneal organs
of & bird depend highly on the biological characteristics of the bird. The conclusion
that birds have gizzards is fairly certain given the high values of the ecritical

variables.

The argument-based transform on SPEC is illustrated by an example from the
beginning of the paper where the respondent inferred that the Andes might be in
Uruguay. The respondent believed that the Andes are in most South American
countries, so frequency (@) was moderately high. With respect to the second premise,
Uruguay is a typical South American country, which increases the likelihood that the
Andes would be found there. But its low subset dominance {d) in terms of the
proportion of South America theat Uruguay comprises makes the inference less likely.
With respect to the third premise, the fact that Uruguay is typical of South American
countries in general only weakly predicts that it will include the Andes mounteins.
Allogether, the inference is fairly uncertain given the moderate frequency and the low

subset dominance of Uruguay.

We can illustrate the argument-based treansform on SIM with the Chaco protocol
from the beginning of the paper, where the respondent inferred that the Chaco might
produce cattle given that west Texas did. In the first premise, frequency (¢'),' which
reflects the degree to which different parts of west Texas have cattle, is high, which
makes the inference more likely. The second premise asserts that the Chaco is a least
moderately similar to west Texas in vegetation {(or whatever variables the respondent
‘had in mind). The third premise relates vegetation of a region to its livestock, which
i1s a strong relation, given that cattle will usually be raised where the vegetation will

Support them. The fourth premise merely establishes the fact that west Texas and
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Table 7

Formal Representations of Statement Transforms

(1) Argument—based transform on GEN

d(a)=r: K. ;@
a'=GEN(a) in CX (&’.D(a’): T, &, &
D{a’) <—-—---> d(a'):ot, &ny

dia’y=r: ¥=1 (&, €7, &, d,2.8)

Internal organ (chicken) = {gizzard ...}; ¥, =high, ¢ =high
- Birds = GEN {chicken) in CX (bird, bioclogical characteristics(birds)):
“C =high, &,=high, J =low
Biological characteristics (birds) <—-—-> internal organs {(birds):
A =high, ¥3=high

*———-——-—-.u-—-——q—-——n.u.——--—n--—-—-——_—.-.__—pq-——_.__"p_—h_—_“_-ub_—-—._——‘_—

(2) Argument-based transform on SPEC

d{a)=r: §,, ¢
a'=SPEC(a) in CX (a, D(a)): T.¥. &
D{a) <———-> d(a): =, 5

-_—_H___——-q_--h——*_-h——“__h_—_*—_—“——_-_----h*_-_*-___

dle)=r: ¥=f(%,.®d T f;,é-“.\'g}

Mountains(S.A. country) = {Andes ...} 3’.=high, @ =high,

Uruguay=SPEC(S.A. country)} in CX(S.A. country, characteristics(S.A. country)):
T =high, ¥, =high, dJ =low

Characteristics (S.A. country) <—-~—--> mountains (S.A. country):
A =moderate, ,=high

*—_h—-“_-—I-I—l———-l—_-—--l—-ﬂl-——l-llv-—-_—H-'——_—_lh-ll———-*-—&ﬂ-——*&-_—-_ﬁ—“-_—ﬁ-



(3) Argument-based transform on SIM

d(a) = r:§,, &

a’ = SIM (a) in CX (4, D(A)):T, &
D{A) <—~—~=> d{A): &, ¥,

a, &’ = SPEC (A):ffy, s

——_——.q-_————-r—-—--———_—;1—-—”—-__—-—_...-_-p..._—.....-_—._——._—_——u——-’r————q—-——_—m—

Livestock (West Texas) = {cattle ...}: ¥, =high, % =high
Chaco = SIM (West Texas) in CX (region, vegetation{region)):
§ =moderate, ¥, =moderate
Vegetation (region) <-——-> livestock (region): ol =high, %,=high
West Texas, Chaco = SPEC (region): .5;=high, ¥ =high

—-—n—u—-——a——-n-_—.-——q-p—--.u_—_——._—._——_-—.——..-..._—_—u...___.h_—.__.—.__-..—_—____

(4) Argument-—based transform on DIS

d{a) = r: ¥, P

a’ = DIS{a) in CX(A, D(a)): 0, &,
D(A) <—=-—> d{A): e, ¥

a, a' = SPEC(A): ¥, ¥s

__-.-..———.-...——p——-u-—-u-_—--—-'-—-——--——---n-—--l—-—-u--—.-—-——-——-——-————_1—.—-——-——-—-——._—

Sound (duck) = (quack): =high, =high

Goose = DIS (duck) in CX(bird, vocal cords (bird)):
=]ow, =moderate

Vocal cords (bird) <—-~-> sound (bird): =high, =low

Duck, goose = SPEC (bird): =high, =high

_-——.——q‘-——-—-——--—-—-i-——n-——-d——-——-.-.—-————.———-——_—-._—-_——_-—-——u-.-——pﬁ_-

Sound (goose)#quack: ¥=low



(5} Reference—based transform on GEN

d(a) = fr ..};: &,, P

r' = GEN (r) in €X(d, D{d)): T. ¥, ¢
D(d) <——-=> A(d}: X, ¥,

a = SPEC (A): &

———._..,..-n--—-———_..—n——'__————_---_—_-.-.-__.—.—..u_—_—_—_—.—,_——_—-————.._—_“_

Agricultural product (Honduras) = {bananas ...}:
§, =unknown, ¢ =high,

Tropical fruits = GEN (bananas) in CX(agricultural produects,
climate(agricultural products)): T=high, ¥ =high,d =low

Climate (agricultural products) <——--> Place (agricultural products):
oL=high, &, =high

Honduras = SPEC (place): &, =high

wh————-—-u—-———.---—-_———--.-.--—.—n..—_———-..__—_-._——-._-_—_“—_——.-_—.—.-——_

Agricultural products (Honduras)={tropical fruits...}: ¥ =moderate

(8) Reference—based transform on SPEC

d{a) = ir ..}; &, @

r' = SPEC (r) in CX(d, D(d)): T .4, &
D(d) <———-> A(d): ol , ¥,

a = SPEC (A): ¥y

_—--u*—_——_-tp-—————---———l-“———ld-_——"-_—_--*—---—_—-u_--—_——_

Minerals (South Africa) = {diamonds.'§ '. ¥, =hisk P higl

Industrial diamonds=SPEC{diamonds) in CX{minerals, characteristics(minerals)):
T =high, &, =high, { =high

Characteristics(minerals) <———~> Place (minerals):
ol=moderate, ¥, =high

South Africa = SPEC (place): é',r=high

-"—-----———-.q.-—_._-u————---———.__—_—“-._._———.———————*——__-Il-——n--—-—.u-u.——ﬁ_

Minerals (South Africa} = {industrial diamonds ...}: ¥ =high



(7) Reference—based transform on SIM

d(a) = ir.}: &, , &

r' = SIM (r) in CX{d, D{(d)): ¢, .
D(d) <—===-> A(d): &, ¥3

a = SPEC (A): Er‘*

*—_—___--_—m.—_“——l——-a-ﬁ.._—_—-_——_—_-—_-_—_ﬁ-——_—__——_—*—q_——“

d(a) = fr'.}: &= 1(5.,9,0.5.4,5,8)

Sound (wolf) = {howl...}: § =high, ¢ =high,
Bark = SIM (howl) in CX(sound, means of production(sound)):
& =high, ¥.=high
Means of production (sound) <---~> animal (sound): A =high, & =high
Wolf = SPEC (animal}:'b’*=high

m“——-—-—————-.-_——-u———--—-——--_——--———--——p_—.-._—_——u——_—_—u——_—_-——._—_

Sound (wolf) = {bark...}: ¥ =moderate

(B) Reference-—based transform on DIS

d(a) = {r..}: 0, ®
r' = DIS (r) in CX(d, D{d)): ¢, &,
D(d) <—=~=> A(d): &, X

——_———---—-—-—_—.ub—--——ﬂ——q———--—qq._—.-.._—-_—_.—.-——-._—-——p—_“-__—p—-——b_

d(a)# fr'..}: ¥ = (¥, 07,5, «, &, )

Color (Princess phones) = {white, pink, yellow...}: d, =high, ¢ =high
Black = DIS (white & pink & yellow) in CX{color, hue(color)):
¢ =low, &, =high
Hue {color} <———-> object (color): ch=low, &3 =high
Princess phone = SPEC (object):gq =high

_—“__—_-_—_-—-——-——ﬁ——#-_-“——__ﬂ-h-—“_-—-——*_—-——--—--—‘_*—*__



Chaco are regions, in support of the second and third premises. The conclusion is
only moderate in certainty, given our assumption of uncertainty about how similar the

Chaco and west Texas are.

To illustrate the argument-~based transform on DIS, we chose the example from
the protocol shown earlier as to whether a goose quacks. The first premise reflects
the respondent's belief that ducks quack, which was very certain. The second premise
states the belief'that ducks and geese are dissimilar in their vocal cords which the
respondent must have been at least a bit uncertain about (hence the low certainty
assigned to the statement). The third premise relates the sound a bird makes to its
vocal cords, which also must have been an uncerteain belief given that it is not true.
The certainty of the conclusion that geese do not quack should have been fairly low

(though other inferences led to the same conclusion in the actual protocol).

We have created an example to illustrate a reference—based transform on GEN,
since there are none in the protocols. The first premise asserts that Honduras
produces bananas among other things. Bananas are a fairly typicel tropical fruit in
terms of the climates where they are grown, as the second prenise states. The third
premise asserts that the climate appropriate for agriculturael products constrains the
places where they are grown fairly strongly. The conclusion follows with moderate
certainty that Honduras produces tropical fruits Iin generel, such as mangos and

coconuts.

We also created the example of a referenced—based transform on SPEC. The first
premise states that South Africa produces diamonds. Industrial diamonds are a kind
of low quality diamond (used in drills) and they must be fairly dominant (4 ) among
diemonds given their low quality, though they are not particularly typical of what we
think of as diamonds. Here is & case where high dominance compensates for low
typicality. The third premise is somewhat irrelevant since the typicality is low. But
the inference is quite certain given the high dominance of industrial diamocnds among

diamonds.

The example of a reference-based trensform on SIM is drawn from a protocol
where the respondent, when asked whether wolves could bark, inferred they probebly

could (Collins, 1978b). One of his inferences derived from the fact that he knew
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wolves could howl, with both high Irequency and certainty. He also thought that
barking was similar to howling in terms of the way the sound is produced {(a howl, as
it were, is a sustained bark). Further the animsls that make a paerticular sound
depend on the means of production of the sound, as the third premise states. It

follows then with at least moderate certainty that a wolf can bark.

The example of a reference—based transform in DIS is from a protocol where the
respondent was asked if there are black princess telephones (Collins, 1978b). The
respondent could remember seeing white, pink and yellow princess phones, as the first
premise states. Here the frequency (&) of these colors among those she had seen
seemed quite high, which counts against the possibility of black princess phones. The
second premise reflects the fact that black is guite dissimilar to those colors in Iterms
of hue. The third premise states that the object associated with a particular color
depends weakly (otis low) on the hue of that color (i.e., knowing the hue only
somewhat constrains the object). The conclusion that princess phones are not black

is uncertain given the low ol in the third premise.
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5. OTHER INFERENCES IN THE CORE THEORY

There are & number of other inference patterns in the core theory we have
developed. In this section we will give the formal representation for each of the other

inference patterns together with an example of each.

Teble B shows that two types of derivation from mutual implication that occurred
in the protocols shown at the beginning of the paper. The positive derivation
illustrates how multiple conditions were ANDed together (i.e., a warm climate, heavy
rainfall, and flat terrain) as predictors of rice growing. The belief that Florida has all
three leads to a prediction that rice will be grown there. In the actusal protocel the
respondent was unsure about rainfell in Florida, and so conecluded that rice would be
grown i there was enough rain (ie., Rainfall(Florida) = heavy <===>
Product(Florida) = {rice...}). This is a slight variation on the positive derivation that

can be represented as follows:

d,(a) = riAdy(a) = r, <==> d4(a) = ry i, &,
d(a’) =r,: & .5,

8’ = SPEC(a) : ¥,

dy(a’) = r, <==> d4(a’) = ry = (&, 8,974,7%;)

Insert Table 8 here

The negative derivation illustrates the fact that if any of the variables on one
side of a mutual implication that esre ANDed together do not have the appropriate
values, then you can conclude that the variable on the other side does not have the
velue assumed in the mutual implication. In the example, because the Llanos did not
have reliable reainfall, the respondent concluded that the Llanos probably did not
Preduce coffee. If variables are ORed together (e.g., either heavy rainfall or irrigation
are needed for growing rice) a different pattern holds: having one or the other

predicts rice is grown and having neither predicts no rice is grown.

Teble 8 shows the equivalent representations for derivations from mutuasl
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Table 8
Formal Representations of Derivations from Mutual Implicetion
Positive Derivation

d,(e) = ry <==> d,{a) = ry; & ,¥,
d,{a’) = r, - 3’2

a’ = SPEC{a) :d::

dy{a’) = r, : = {(X,¥, P8, ¥5)

Climate(place) = warm A Rainfall(place) = heavy N\ Terrain(place) = flat <==
Product(place) = f{rice..} : & = high, ¥, = certain |

Climate(Florida) = warm :@ = moderately high, & = certain

Rainfall(Florida) = heavy : ®,= moderate, §; = uncertain

Terrain(Florida) = flat 3= high, ¥ = certain

Florida = SPEC(place) : ¥: = certain

Product(Florida) = {rice...} : ¥ = uncertain

Negative Derivation

d,(8) = ry <==> dy{a) = ry & ¥,
d1(a’) # r, P &'2

8’ = SPEC(a) : &,

dy(e’} # 1y ¥= K5, P 5T

Rainfall{place) = reliable A\ climate(place) = subtropical <==
Product(place) = {coffee...} : & = moderate, 4, = certain

Rainfall(Llenos) # reliable : ¢ = high, ¥, = fairly certain

Llanos = SPEC{place) : ¥, = certain

Product(Llanos) # {coffee..} : ¥ = fairly certain




dependencies. It is impossible to draw a negative conclusion from a mutual
dependency, since it denotes how a whole range of values on one variable relates to a
range of values on another variable. But the inference patierns are different for

positive and negative dependencies, so we have separated them in the table.

Insert Table 9 here

The positive dependency represents the case where as one variable increases,
the other variable also increases. In the formal analysis we have denoted the entire
range of both variables by three values: high, medium, and low. When a positive
dependency holds, if the values of the first variable is high, medium, or low, the value
of the second variable will alse be high, medium, or low, respectively. This is the
weakest kind of derivation possible from & mutual dependency: In the example, if a
person knows that the temperature of air predicts the water holding capacity of air,
and he knows that temperature of the air outside is high, then he can infer that the
air outside could hold & lot of moisture. People make this kind of weak inference very
frequently in reasoning about such variables (Collins & Gentner, in press; Stevens &

Collins, 1980).

The pattern for the negative dependency is reversed: if the value of one variable
is high, the other is low, and vice versa. We have illustrated the derivation from a
negative dependency in terms of & more precise dependency between two variables. If
& person believes that the latitude of s place varies negatively (and linearly) with the
temperature of the place, and also that the average temperature is near 85 degrees at
the equator and 0 degrees at the poles, then he might conclude that a place like Lima,
Peru, that is about 10 degrees from the equator, has an average temperature of about
75 degrees. People have bof.h more and less precise notions of how variables interact,
and we have tried to preserve flexibility within our representation for handling these

different degrees of precision.

Table 10 shows two forms of a trangitive inference, one based on mutual
implication and the other based on mutual dependency. The example for mutuel
implication states that if a person believes an average temperature of B85 degrees
implies a place is equatorial, and that if a place is equatorial it will tend to have high

humidity, then he can infer that if the average temperature of a place is 85 degrees it
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Table 9
Formal Representations of Derivations from Mutual Dependenciés

Derivation from Positive Dependency

d,(a’) = high, medium, low : ¢, &,
a' = SPEC(a) : &4
dg{ﬂ') = high, medium, low : § = f(< &, ¢°_ J.,'FS)

Temperature{air) <—-+F-— > Water holding capacity(air) : o, = high, ¥, = certain
Temperature(air outside) = high : $ = high, ¥,= certain

Air outside = SPEC(air) : ¥.= certain

Water holding capacity{air outside} = high : ¥ = certain

Derivation from Negative Dependency

dy(a) <===-=> dy{a) : A, 3,

d,(e’} = high, medium, low : & &,

a' = SPEC{a) : &

dy(a’) = low, medium, high : ¥= f( ¥, &, &, %)

Abs. Val. Latitude(place) <—-T"——> Aver. Temperature(place): linear:
| 0°, 85% 90° 0% o= moderate, &, = certain

Abs. Val. Latitude(Lima Peru) = 10° ;b= high,§,= fairly certain

Lima Peru = SPEC(place) : & = certain

Aver. Temperature{Lima Peru) = 75% ¥ = moderately certain




will tend to have high humidity, and vice versa. This example illustrates the way
people confuse causality and diagnosticity in their understanding. If one were to
write the causel links for this example, it would probebly go from equatorial latitude
to high temperature to high humidity. But people do not systemetically make a
distinction between causal and diagnostic links, nor do they store things in such a
systematic order. For example, they may know that equatorial places, such as juﬁgles,
have high humidity and not link it explicitly to their high temperature. Thus, the
inference in this example derives a more direct link (temperature <==> humidity) from
8 less direct link (latitude <==> humidity). I also should be noted that the diagnostic
link in the first implication (temperature => latitude) may be more constraining than
the causal link (latitude => temperature). That is, there are probably more equatorial
Places where the average temperature is not 85 degrees {e.g. Ecuador), than places

where the temperature is 85 degrees but are not equatorial.

Insert Table 10 here

The example for a tranmsitivity inference on mutual dependency illustrates how
people reason about economics (Salter, 1983). Salter asked subjects questions, such
as what is the effect of an increase in interest rates on the inflation rate of @&
countiry. People gave him chains of inferences like the one shown: if interest rates
increase, then growth in the money supply will decrease, and that in turn will cause
the inflation rate to decrease (the latter is a positive relation). So an increase in
interest rates will lead to a decrease in the inflation rate. This kind of reasoning is a

major way that people construct new mutual inplications and dependencies.

Tables 11 and 12 show a set of transforms on mutual implications that follow the
same pattern as the transforms on statements in the previous section. Table 11 shows
four reference transforms that parallel the last four statement transforms shown in
Tables & and 7. {(In fact there is a gquite direct equivalence, because any statement
can be transformed into a mutual implication in the following way: Flowers (England)
= {daffodils...} goes into type(place) = England <==> flowers(place) = {daffodils...}, or
more generally, d(a) =r goes into type(A)=a <== d(A) = r.) We have represented the
three positive transforms (i.e. generalization, specialization, and similarity) in the rule
at the top, with the three alternatives shown (GEN, SPEC, and SIM) where they occur
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Table 10

Formal Representations of Transitivity Transforms

On Mutual Implication

d;(a) = ry <==>dy(a) =r, : <4, B, ¢,
d,(a) = r, <==> d.{a) = rs A, By Ko
d,(a) = ry <==> dg{a) = ry: d = f{a,,), B=£{§,8) ¥= H&1,)

Aver. Temperature(place) = 85° <==> Latitude(place)} = equatorial :
o, = high, 8= fairly high, ¢ = certain

Latitude(place) = equatorial <==> Abs. humidity(place) = high :
o{= high, B.= moderate, di= certain

Aver. Temperature(place) = B5° <==> Abs. Humidity(place) = high :
.= high, = low, &= certain

On Mutual Dependency

d,(a) <——> dy(a) : K, , B, ¥,
do(a) <——> ds(a) 1ot , By ¥x
dy(8) <-=> dy(a) : ol= f(=, =), B= £(B, B, ¥= (¥, &)

Interest rates{country) <—-> Money supply growth(country)}:
ol , = high, 48y = moderate, ¥, = certain

Money supply growth(country) <F=> Inflation rate(country):
A, = high, B, = high, d.= certain

Interest rates(country) <—==> Inflation rate {country):
<= high, B = low, ¢ = certain




in the rule. The typicality parametef (¥) is associated with the GEN &and SPEC
transforms, end the similarity parameter (¢ ) with the SIM transform. The example
omits the certainty parameters for simplicity. In English the example states the
following: given the belief that if = place is subtropical, it is likely to produce
oranges, this implies that if a place is subtropical, it is likely to produce citrus fruits
(a generalization), or naval oranges (a specialization), or grapefruit (2 similarity
transform). The dissimilarity transform at the bottom follows the same pattern: if you
think that subtropical places produce oranges, and apples are dissimilar to oranges
with respect to their growing conditions, then probably subtropical places do not

produce apples.

Insert Table 11 here

Table 12 shows the corresponding four types (i.e., GEN, SPEC, SIM, and DIS) of
argument transforms. These correspond to the first four statement transforms shown
in Tables 5 and 7. We illustrate the four with a demographic example: if one believes
that men who live in the tropics have a short life expectaency and that farmers are
typical of men in terms of their demographic charadteristics, then one can plausibly
infer that farmers have a short life expectancy if they live in the tropics. Similarly
one can infer that people in general and women (because they are similar to men in
their demographic characteristics) have short life expectancy in the tropics. Finally,
one might conclude that birds do not have a short life expectancy in the tropics, if

one thinks they are dissimilar to men in their demographic characteristics.

Insert Table 12 here

Table 13 shows the corresponding positive transforms for mutual dependencies,.
We have illustrated these with another example from economics: if one believes that
the business tax rate in a state negatively impacts the amount of investmént in the
state, then one might generalize this relationship to any governmental unit, or
particularize it to Illinois, or conclude that it would also apply to Canadian provinces.
- There is really no negative transform based on dissimilarity that corresponds to these
three positive transforms. For example, if one believes that communist countries are

quite dissimilar from states in their economics, the most one can conclude is that
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Table 11

Formal Representations of Reference Transforms on Mutual Implications
Positive Transforms

di(a) = ry <==>dy(a) = r, : &, &,
{GEN ¢
r'y = {SPEC} r, in CX(d,, D(d,)) : {g} &
{SIM 1}
D{dy) <——> Afd,) : &, , ¥y |
dy(a) = ry <==> dyla) = r'y : ¥= 14, 55530,y 1)

Climate(place) = subtropical <==> Fruit(place) = joranges...}

{Citrus fruitst {GEN } -

{Naval oranges} = {SPEC} (oranges) in CX (fruit, growing conditions(fruit))
{Grapefruit} {SIM 1§

Growing conditions(fruit) <—-> Place{fruit)

iCitrus fruit...}
Climate(place) = subtropical <==> Fruit(place) = {Naval oranges...}
{Grapefruit...}

Negative Transform

d,(a) =TIy <==> dg(ﬁ) =Ty P b:

r'y = DIS r, in CX (d,, D{d,)) : &, &

D(d,) <--> A(d,)) 1o, X5 |

d,(a) = r, <==> dy{a) # r', : ¥ = f(«, X, 0,8, %)

Climate(place) = subtropical <==> Fruit(place) = foranges...}
Apples = DIS(oranges) in CX (fruit, growing conditions (fruit))
Growing conditions{fruit) <——> Place (fruit)

Climate(place) = subtropical <==> Fruit(place) # japple...}




Table 12
Formal Representations of Argument Transforms on Mutueal Implications

Positive Transforms

d{a) = <==> d,(a) = Ty X, X,
§GEN }

8’ = {SPEC} (a) in CX (A.d4(4)) : | a”:’ f, Oy
§SIM }

E;LA) == dg(A) :N‘b \6‘5
d1(a) =r, <===> dz(&) =TIy . B‘= f(ﬂ.,ﬂ},g_:; d’udr @

Habitat(man) = tropics <==> Life expectancy (man) = short
§GEN } (farmer) |

Man = {SPEC} (person) in CX(people, demographic characteristics(people))
{SIM } (woman)

Demographic characteristics(people) <—~> life expectancy(people)

(farmer) (farmer)
Habitat (person) = tropics <==> life expectancy (person) = low
(woman) (woman)

Negative Transforms

d1(a,) = ry <==> dz(a) = Iy :ék1,3'1

&' = DIS(a) in CX(A, d5(4)) : ¢, &,

dy(A) <==> d,(4) :ely, ¥y

dy(a’) = <==>dy(a) = ¥: 1(x,,%,6,%,%, %)

Habitat(men) = tropics <==> life expectancy(man) = short
Man = DIS(bird) in CX(animals, demographic characteristics (animals))
Demographic cheracteristics(animals) <~—> life expectancy {animals)
Habitat{birds) = tropics<==3> life expectancy{birds) = low




there is no negative relation between the business tax rate (if there were one) and
the amount of investment; that is to say, no conclusion can be drawn. In such a case
we just omit the form from the theory, because the theory does not specify
conclusions that cannot be drawn. Similarly, there can be no reference iransforms on

mutual dependencies, because they do not involve a reference term.

Insert Table 13 here
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Table 13
Formal Representations of Argument Transforms on Mutual Dependencies

Positive Transforms

d,(a) <> d,(a) :dh , ¥

{GEN }
&' = {SPEC} (a) in CX (A, d5(a)) : { E}, &,
{SIM }
di(A) <—=> d.(A) :U‘uﬁ.}'
dy(a’) <EZ> dy{a) = #d 8, & 5., %)

Business tax rate (state) <——> Amount of investment (state})

{Government unit} = {GEN }

{Illinois { = {SPEC} (state) in CX(place, economics {place))

iProvince } = |SIM }

Economics(place) <—=> Amount of investment(place)
(government unit) (government unit)

Business tax rate (Illinois) <-=> Amount of investment (Hlinois)
(province) {province)




8. CONCLUSION

The difficulty in constructing a theory of plausible reasoning from analyzing
actual cases of human ressoning is that the theory is likely to be underconstirained.
That is to say, there may be many cases where people could employ a particular
reasoning pattern, but do not because of other constraints on its invocation. As it
stands now, the only constraints we place on the invocation of eny inference pattern
is that its premises be satisfied and that its certainty parameters not drive the
conclusion below some threshold level of certeinty., But there mey well be other

factors that constrain the invocation of any inference pattern.

In order to test out the core theory, we plan to build a computer system
incorporating the reasoning patterns derived from our analysis. We will then be able
to see what inferences the system draws given different knowledge bases. We plan to
evaluate the theory in a series of experiments comparing the system’'s reasoning to
that of expert human reasoners. To do this we will ask expert human reasoners,
working from well-specified, small knowledge bases to draw plausible conclusions from
each knowledge base and to estimate the certainty of each conclusion. These experts
will be asked to put aside; as best they can, other knowledge they may have about the

domain.

At the same time we will run the system on each small knowledge base to see
what plausible conclusions the system draws, and with how much certainty. For each
knowledge base, then we will have three different classes of inference: conclusions
both computer and experts draw, conclusions the computer draws but experts do not,
and conclusions experts draw that the computer does not draw. The two non-—
overlapping lists require different kinds of refinement to the theory. Where the
computer draws a conclusion experts do not, we will go to the experts to see if the
conclusion seems at all plausible to them. If not, then the set of inference rules must
- be modified to prevent such implausible conclusions from being drawn. Where experts
draw a conclusion that the computer does not, we will first have to ascertain if they
are drawing upon information the computer does not have. If not, then new inference
rules must be added tc the system to produce the conclusions that the human experts
drew. The modifications to the theory will be implemented in a new. version of the
system, and the whole process will recycle until a stable state is reached, where the

system and expert reasoners draw the same conclusions from new knowledge bases.
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