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Abstract

FROM LANGUAGE TO LOCATION USING MULTIPLE INSTANCE NEURAL NET-
WORKS

Sneha Nagpaul

George Mason University, 2018

Thesis Director: Dr. Huzefa Rangwala

Given the deluge of data caused by crowd generated content from social media web-

sites, the complexity of extracting information from has increased manifold. An important

characteristic of such text is its original location which can in turn be used to respond to

emergencies such as floods and crimes[1]. The patterns discovered by such geolocation of

social media related unstructured text can also be used commercially for targeted advertis-

ing and recommender systems[2][3][4]. This work deals with geolocating short texts from

social media that are labeled with a user’s information. However, instead of locating the

user who can be viewed as a collection of these texts, it focuses on locating each such text,

here a tweet. For this task, the problem is described within the multiple instance learning

framework and a novel approach using neural networks is designed which trains a tweet

level classifier using only user location labels. The model outperforms the state of the art

in multiple instance learning and provides significant scalability and speedup compared to

existing methods. Exceeding the Bag of Words models prevalent in prior geolocation re-

search, the intuitive tweet level neural network classifier discovers complex features such as

grammar and identifies name places without feature engineering[5][6].



Chapter 1: Introduction

Due to the growth in content generated by social media platforms, it is becoming increas-

ingly complex to distill information from this potential resource. A simple and useful

characteristic of the these data is the location of the content generator at a given time.

This information can be leveraged to encode events that are actionable for authorities such

as natural calamities and crimes [7][1]. Additionally, learning the location specific patterns

in this language can be used for commercial purposes such as targeted advertising, resource

allocation and recommender systems [2][3].However, only a small percentage of the gener-

ated content is geo-tagged and thus there exists a need to automate the process of inferring

location from the content itself.

It is often the case in real world scenarios that labeled information is available at an

aggregated level for a set of instances; however, knowledge distillation is required at a more

granular level. An example of a nefarious use of these methods could be if the outcome

of an election in an area is known, the probability of each of the voters’ choices could be

determined; thus, threatening their privacy [8]. However, a use case that furthers social

good can be found in medicine where given the genetic makeup and the occurrence of a

disease(label), individual genes can be held responsible and targeted for treatment and

diagnosis. In the language processing community, researchers have worked on the problem

that if the sentiment of a product or movie review is known, how this sentiment will be

propagated to the sentence or the word level [9]. The method that is proposed here can be

viewed as an application of the multiple instance framework. In this work, given discourse

from a certain region (aggregate level), the method will endeavor to transfer this regional

label to a language substructure like a phrase (disaggregate level).

Prior work on predicting location by using short social media text tries to classify sub-

stantially lengthy content using indicative words into regional groups. In particular, research
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has focused on location labels available for a user active on Twitter [5][10] using a body of

their tweets. This work identifies words pertaining to a certain region by using a Bag of

words model to process language; and thus distorts phrasal information in the language.

Viewing this problem within the multiple instance learning framework can help to solve

the geolocation problem at a granular level while preserving the structure of the text. In

this formulation each tweet can be regarded as an instance and each user can be regarded

as a group of tweets, or a bag. The multiple instance learning model then propagates the

label at the user level to each tweet which is most indicative of the users location.

Prior work in multiple instance learning makes strong assumptions about the member-

ship of instances inside a bag in order to train the classifier based on the bag label [11].

More recently, researchers have tried to relax this assumption by assuming that bag level

labels are simply an aggregation of instance level predictions [9]. However, even these re-

laxed methods rely on a similarity measure that requires training of deep neural networks

in order to learn meaningful embeddings for classification. This process can be subjective

and specific and, hence, can be viewed as de-facto feature engineering. A common issue

with prior approaches is the use of the similarity kernel which makes the methods hard to

scale as the size of the dataset grows.

In this work, the problem is set up as finding patterns of language that represent a

certain geographic location when aggregate level information is provided and needs to be

transferred to each instance to locate an individual tweet.

1.0.1 Contributions

In this work, a novel framework for Multiple Instance Learning is proposed using neural

networks which addresses some of the gaps from prior research in multiple instance learning

and geographic information retrieval. Thus, the proposed method makes the following

contributions:

1. Provides a framework for transferring bag labels to instance level predictions using a

representation learning framework which can accommodate any input directly without

1



the need to encode with embeddings trained from another neural network as in [9] or

kernel. This is a major contribution of the work since it eliminates the need for feature

engineering which is often subjective and case specific. The neural network learns the

latent space directly for the unlabeled data using the aggregated information labels.

2. The model is trained using gradient descent through an end-to-end trainable neural

network. Since the model training can work with batches, the proposed method scales

up easily in terms of memory requirements and provides a significant computational

speedup.

3. Relaxes assumptions about instance level memberships in bags, while providing a

flexible setting to train an instance level classifier. This increases applicability by

providing an intuitive architecture for finding instance level classifier which has the

flexibility to be replaced with any trainable neural network architecture depending

on the use case. This flexibility is also extended to how the instance level labels are

aggregated to form bag level labels.

The proposed model tests itself on a novel application for a geolocation task that clas-

sifies tweets as pertaining to a particular location and thus discovers language indicative of

a region.

1.0.2 Thesis Outline

The rest of this work is organized into 5 sections. Section 2 provides background and re-

lated research in fields of multiple instance learning and geolocating text while pointing

out to their contributions and gaps. Section 3 describes the method used to address the

shortcomings of existing research and goes into detail on model architecture and training

methods. Section 4 details the dataset, experimental setting and results and provides illus-

trative examples from the model. Section 5 concludes with a discussion and suggests future

directions.
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Chapter 2: Background and Related Work

Given this setup of the geolocation problem in this work, we discuss prior literature in

Multiple Instance learning which deals with transferring of labels from a broader to a finer

level and Geographic Information Retrieval which is used to map language to location in

general. Finally, a brief review of neural networks is provided that introduces the capability

of representation learning for discovering non-linear relationships in data without feature

engineering.

2.1 Multiple Instance Learning

Multiple Instance Learning refers to a class of learning methods that work with labeled

information at an aggregate level while trying to distill information at a disaggregate level.

This natural framework is prevalant in a variety of problems and has been employed in

solving content based image retrieval and classification [12], privacy related applications

[13], categorising texts [11] and recognising objects [14].

This framework was traditionally employed to explore the feature space for a supervised

learning problem, where many contenders of feature sets constituted the individual instances

for the original instance (the bag) but only one of those feature vectors was responsible for

the bag level labels [15]. Thus, the aggregation function was an OR relationship, wherein

negative bags had only negative instances and positive bags had at least one positive instance

[15]. This stringent assumption fails to generalize as soon as the use case moves away from

exploring potential features for a certain supervised learning problem. Additionally, the

main goal of this formulation was to infer bag level labels as opposed to exploring granularity

[15].
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In the context of locating a person from a tweet, someone belonging to a certain location

might travel and tweet about the destination. It is also possible that they might relocate and

absorb the linguistic style of the new region. Hence, the OR formulation is inappropriate

for the location use case as all tweets may not be indicative of region. There might be a

general language pattern to account for or travel which may result a negative bag to have

positive instances.

In order to relax this strong assumption, researchers have proposed other ways to link

instance level labels to higher level labels. A work by Xu and Frank posits that there is

equal contribution from all the constituents of a bag which are considered independent [16].

Zhou et al.[17] make the assumption that within a negative bag all instances are negative

and then use a semi supervised approach to classify further. In another generalisation

of the original aggregation, Weidmann et al.[18] classify bags based on the presence of a

collection of types of instances where a type is a concept which can be viewed as an at-

least-one-of-each formulation instead of an at-least-one-formulation. This would be akin to

engineering features and looking for their presence in the user. As a hypothetical example,

if they are health conscious and eat orgranic food and reference technology in their tweets

then we might want to classify them as a belonging to San Francisco. This formulation,

though intuitive, would require separate treatment of different datasets and would stand

on subjective assumptions made by the modeler as opposed to discovering patterns present

within the data.

A more pertinent body of work tries to shift focus from bag level to instance level pre-

dictions. In particular, Liu et al. [19], utilize this framework to identify key instances within

a bag i.e. those that are most relevant to the positively labeled bags using nearest neighbor

heuristics subject to various aggregation schemes. While this formulation is particularly

fitting to the geolocation use case, the combinatorial complexity for the nearest neighbor

based metrics and checking for various ways instances in the positive bags might have voted

towards the bag label make this approach unscalable.

4



Figure 2.1: Multiple Instance Learning Framework - In the traditional setting, the negative
bags(left) would only contain negative instances and the positive bags(right) would contain
at least one positive instance. This is the implication of the OR function constraint on the
instance level to bag level label transfer[15].

2.1.1 Single Instance Learning (SIL)

A naive way to tackle the problem is Single Instance Learning (SIL) which assumes that

every instance of a bag has the bags label [20]. This assumption is also equivalent to an

AND transfer relationship. This approach seems to match the framework of the problem

under consideration as it can be considered reasonable to assume that if one tweet is from

New York, the rest are as well. However, it doesnt take into account general phrases across

various places and thus could confuse the classifier due to additional noise in the dataset

[20].

2.1.2 Support Vector Machines for MIL

A more recent body of work harnesses the Support Vector Machine (SVM) framework while

maintaining the instance to bag label transfer relationship as the traditional OR [11] [15].

In their work Adrews et al. [11] propose MISVM models which train the parameters using

all possible combinations of instance and bag level labels to find the model that maximizes

the soft margin criterion. A kernel based formulation can be seen in Gartner et al. [21],

where vanilla support vector machines are deployed to work on the bag level directly. In
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computer vision related applications, researchers have attempted to find regions of interest

within an image by connection through instance level labels [22][23]. Sparse multi- instance

learning approaches are mentioned in [24] and transductive SVM’s [25] which explore viable

low density regions for placing the decision boundaries.

Thus, due to the presence of a kernel and testing for many possibilities, the complexity

of support vector machine based methods becomes intractable, rendering them unscalable

in terms of memory and computational resource needs. These drawbacks limit the use of

MISVM to relatively smaller datasets.

2.1.3 Group Instance Cost Function (GICF)

More recently, neural networks are being leveraged in order to address the rigidity of aggre-

gation functions[9]. The Group Instance Cost Function (GICF) method uses an adaptive

cost function that tries to find the parameters optimized for instance and bag level costs.

They achieve this using a two part approach wherein one part of the loss function assigns

labels that justify the instance-bag relationship and the other part assigns similar labels to

similar instances across bags. To achieve this GICF uses a similarity measure that deter-

mines differences among instances and bags.

GICF’s use of a similarity measure makes it a kernel based method like SVMs which

causes similar scalability issues. Another perspective on the similarity kernel is that there

are certain requirements for feature engineering before the model can process the bags and

instances. The generated feature vectors are then passed on to a training method with

the two-tier cost function to find a classifier at the bag level. Following this, the instances

can be treated by the classifier as a bag of one to be classified. While this method takes

into account modern deep learning architectures, it still requires designing of the similarity

measure which can be subjective and hence harder to generalize.

While GICF is the closest in terms of architecture to the work described in this pa-

per, there are a few more things to consider while comparing the proposed method to it;

particularly the problems these methods have originally tackled. GICF has been tested on
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sentiment data wherein the instances are sentences in a review and heavily share context.

In case of a bag of tweets, even though the tweets come from the same person, they have

no requirement to have been originated at the same time and share any context as is the

case with a paragraph of a review.

MISVM and related works use strong assumptions for instance membership and aggre-

gation functions. The work that relaxed these assumptions is GICF but requires hard to

train embedding vectors and similarity measures. Old works have focused on context heavy

instance bag combinations such as reviews. The proposed method will try to complement

the prior research by applying the framework within the constraints of geolocation of twitter

based dataset which consists of tweet instances that share the source but not the context

necessarily. Thus relaxing assumptions of membership and aggregation enough for the data

to be able to provide those patterns to the model.

2.2 Geographic Information Retrieval

Geographic Information Retrieval refers to a class of methods that deal with mapping

language to location [26]. General tasks include geolocating text, essentially predicting the

location for a given text and dialectology which deals with studying language patterns of

a certain geographical area. This work extends GIR literature as it endeavours to predict

the location of tweets.

2.2.1 Traditional Methods

The common theme in traditional GIR is an auxiliary dataset, called gazetteer, that maps

words to locations statically [26][27]. In addition to this gazetteer lookup, heuristic based

feature engineering methods such as term frequency analysis and pinpointing the positional

attributes of words are leveraged to accomplish this task. These methods were traditionally

used on regional applications due to the non-scalable nature of the gazetteer [28]. For

application at a larger scale to online datasets, a naive implementation of place name

detection followed by disambiguation was adopted to keep the size of the auxiliary dataset
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tractable [29].

2.2.2 Language Modeling

A scalable class of methods that modelled languages emerged as datasets became bigger and

more intractable towards the early 2010s [30]. Unsupervised learning methods such as topic

modelling were initially explored which are harder to scale [27]. To overcome the gazetteer

disadvantage and achieve larger scalability, supervised learning methods were used on the

datasets that are labelled with user level information [30]. In the context of this paper, they

deal with user level labels and require a string of tweets to geolocate on the bag level.

2.2.3 Neural Networks for GIR

With the emergence of deep learning and neural networks, recent work has focussed on

modelling language features with neural networks. Liu et al. [31] work at locating users

instead of language using feedforward neural networks. Another recent work, uses bag of

words representations which distorts structural language features of user documents for a

neural network to classify and find indicative words[5].

A shortcoming of these methods is that they require a considerable amount of informa-

tion even to geolocate at a bag level - they do not locate a tweet, they locate a user. Another

issue is the extensive use of the bag of words model which distorts structural information

in language that could be indicative of region. This work addresses both of these problems

by leveraging representation learning at a fine grained level with minimal preprocessing.

By generalising the design of the neural network, milNN also provides a framework to vary

architecture choices based on expected complexity without feature engineering.

2.3 Neural Networks and Deep Learning Primer

Machine learning has conventionally been a process where researchers try to transform raw

input data into an internal representation that is appropriate for a learning subsystem to
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consume in order to identify or classify patterns of interest [32]. Representation learning is a

class of methods that deal with automatically finding these internal representations in order

to perform machine learning tasks. Deep Learning is one kind of representation learning

method that deal with finding these features through a series of nonlinear transformations

on minimally processed input to discover representation that make the data suitable for

tasks like classification and detection [32].

A key feature of these methods is that there is minimal intervention with the data

before being fed to the model and there is no requirement for explicit feature engineering

from experts in a particular field. For example, a linguist need not be involved to work on

language related tasks. Hence, if the method was initially developed for english, it would

just as easily generalize to other formal languages such as chinese or french and informal

languages, such as those used on Twitter and Facebook and vice versa.

Another major advantage of deep learning over any methods that use feature engineering

is that if the usage changes in the future, the model will simply update itself based on the

newer pattern. This idea is known as concept drift, where the data inherently changes and

older patterns become obsolete [32]. In the case where a conventional machine learning

approach is being used, a new feature vector would need to be designed using considerable

subjectivity and time of a domain expert in order to accommodate such changes manually.

2.3.1 Multilayer Neural Networks and Back-propagation

A simple yet powerful application can be found in the popular feed forward neural networks

or multi layer perceptron (MLP) which map a fixed size input and to a fixed size output.

The intermediate layers are a series of nonlinear activations on affine transformations of the

inputs which are all trainable [32]. These intermediate weights are learned using backprop-

agation which is an application of the chain rule for composite functions wherein the error

is propagated backwards from the point where a label is available for a particular training

instance and a loss can be calculated and adjustments can be made at initial levels all the

way to the first layer where the input was fed into the network [33]. The direction of change
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of the intermediate weights is determined by calculating the gradient which is derivative of

the nonlinear transformation and the adjustment is made in the opposite direction of the

gradient.

While deep learning methods have been widely accepted by the computer vision com-

munity, this review will focus on how language related applications have benefited from the

neural network paradigm with exception of a few illustrative examples.

Due to the implications of the universal approximation theorem [34], a neural network

with a single hidden layer is capable of generalising any function given enough data and

time. While this theoretical results makes basic neural networks attractive, it is often

faster to explore exotic architectures to accomplish these tasks in reasonable time with data

restrictions. Hence, the rest of this section will discuss convolutional neural networks and

recurrent neural networks.

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks are a class of deep learning models that deal with spatial

correlations in the input [35][36]. The models involve sliding a filter on some structured

data that may have compositional structure and subsequently discovering motifs that may

be present throughout the raw structure. An example of such a structure is an image

that has two balls at opposite corners and a filter would detect the ball having strong local

similarity yet being able to occur in another part of the picture. This filter is a mathematical

convolution and was traditionally hand designed as a part of a feature engineering step

(eg. Edge detection). However, with neural networks, these filters are learned as trainable

weights which are shared within each feature map which is essentially the output of applying

the filter to the previous layer. The non linearity can be introduced as an activation on

the tensor generated as the feature map. While this formulation is intuitive and popular

in vision related applications, more recently they have shown to be useful with language

and sequence related tasks[37]. In these language related applications, the convolution can

be seen as a one dimensional window being slid over language substructures looking for
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patterns.

2.3.3 Distributed Representations of Words

When shifting focus from the vision application to lanaugage the input space changes con-

siderably. Now, as opposed to an image which is a tensor of numbers, symbols like words

and letters require a distinct point of view for being tackled by a neural network. It is help-

ful to understand this handling with the example of an experiment where given a sequence

of words the next word is the target for prediction as described in [38]. The input to this

model is a one hot encoded series of words that belong to the sequence. At the first layer,

every word in the series generates a pattern of activations or a word vector. This vector

is then mapped by subsequent layers to the output which is a large vector that includes

the probability of each of the words being next. While training, this model’s output is the

one hot encoded vector for the predicted word. While backpropagating from those errors, a

distributed representation is learned by the activations in the input layer. LeCun et al.[32]

talk of them as multiple micro-rules for symbols that the network automatically learns.

This can also be viewed as ’intuitive’ inference as opposed to logical inference that would

stem from rigid grammatical rules.

One such example of these distributed representation is the Word2Vec model[39]. In the

vector space, the word for king and queen appear closer whereas they would be far apart

in a lexicon. Thus moving away from rigid representations to those that share meaning

beyond fixes rules that need to manufactured by domain experts. Vector representations

appear widely in natural language processing literature to accomplish a multitude of tasks

[40][41][42][43][44][45][46]. Representations learned during training of a certain network can

be indicative of how the language/symbols relate to the task. For example, the earlier

experiment of predicting the next word provides spatial set up of language in the word

vectors. Another perspective for looking at these vectors (or embeddings) is as a language

model where the vector constitutes a particular word’s role and usage instructions in that

model’s space. Older work goes as far as N-gram type modeling which is a generalisation of
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a bag of words model where N = 1. Those models do not have the capabilities of modeling

relationships between words like the distributed representations do.

2.3.4 Recurrent Neural Networks

While MLPs and CNNs are successful neural network models, they exhibit rigidity in the

input they can take in that the input to these feed forward neural networks must be of a

constant length. Recurrent Neural Networks provide more flexibility to this input structure

as they process the input sequence by the element and maintain an internal state with

the information they have encountered [32]. A modification of RNNs build a longer context

into the state vectors called Long Short Term Memory Models [47]. LSTMs consist of gated

units that chose to remember or forget information at each time step. Thus, they are able

to maintain states with older information than vanilla RNNs. These methods have been

extensively employed in machine translation [45] along with processing other sequential

inputs.

In contrast to RNN’s which can be viewed as a deep feed forward neural networks with

all layers sharing the weights [32], the method proposed in this paper also has sharing of

weights, but in the width of the network rather than the depth.
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Chapter 3: Proposed Method

3.1 Problem Statement

Given a user Ui, a binary location label yi ∈ {0,1} where 1 denotes that the user is from a

particular city and 0 denotes otherwise, and a collection of unlabeled tweets tij, j= 1,2,...n

associated with this user, the task is then to devise two functions, 1) g(t) → y that labels

a new user, U as belonging to a certain city and 2) f(t)→ y which labels individual tweets

as belonging to the city under consideration by using only the Ui training labels.

3.2 Method Description

Figure 3.1: Multiple Instance Learning for Twitter- This figure shows how the Muliple
Instance Learning framework is mapped to the current problem. Each user is a bag and is
labeled negative or positive depending on whether they belong to a particular city. There
instances are not assumed to belonging to certain classes given user/bag level labels but
the aggregation function assumed here is and average.
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Hence, as Figure 3.1 describes, a user is a bag labelled with location as being positive to

belonging to a city or negative which the tweets form the instances in the multiple instance

learning setting which are devoid of labels at the training stage. Thus, an instance level

model is designed with trainable neural network components as though labels were available.

This model is them simply plugged into the architecture described in Figure 3.2 along with

an association function that can aggregate these labels to the bag level for loss discovery

and traning through gradient descent.

For a treatment of the problem as formulated here, a fully trainable neural network

architecture is proposed in this work and is called milNN. The model’s architecture is

described in Figures 3.2, 3.3 and 3.4.

Instance Level Classifier: (Fig. 3.3) The tweet classifier is an embedding layer followed

by a hidden layer that maps to a classifier. The model is regularized using dropout after

the hidden layer.

Bag Level classifier: (Fig. 3.4) This instance level classifier is then applied to N tweets

and the results are averaged to get the bag level labels. This ’average’ can be substituted

by any assumption given the complexity of the relationship.

Loss function and Training Method:(Fig. 3.2) The bag level loss is binary cross entropy

loss(Equation. 3.1) and it is back-propagated using Adam Optimizer [48] to learn the

weights of the network. Thus, the instance level classifier gets trained as a result of the bag

level losses being back-propagated.

L(ŷ, y) = − 1

N

N∑
i

[yilogŷi + (1− yi)log(1− ŷi)] (3.1)

3.3 Method Characteristics

Due to being fully embedded in the neural network and representation learning paradigm,

milNN doesnt have any explicit feature engineering requirements. Hence, it negates the
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Figure 3.2: Model Architecture - This general figure provides the framework for multiple
instance learning with neural network where instance level models feed their predictions
to a bag level aggregation layer and losses are subsequently back-propagated through the
network to learn the weights. In effect, all instance level models share weights and are
actually a single model being learned.

immeasurably time consuming and subjective involvement of a domain expert. Additionally,

it is equipped to handle any changes that might occur organically in the data as it veers

away from a rigid logic based paradigm.

As another point of improvement over kernel based methods prevalent in prior research,

milNN learns distributed representations which are implicit to a similarity measure in this

case. Moreover, it doesn’t require high compute and memory restrictions and can be learned

using stochastic gradient descent which is easy to parallelize.

Additionally, as described in the problem formulation there are no assumptions on the
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Figure 3.3: Instance Level Model - Consists of an embedding layer that learns a vector for
each word in the tweet which feeds into a fully connected layer before being classified as
belonging to the city or not. Dropout is added to regularize before the sigmoid activation.

membership proportions within the bag. The aggregation assumption of computer the

average is also not particularly stringent as the sigmoid layer doesn’t provide exact labels

for the instances, but rather a probability which is averages across all tweet classifications

for a user level label.

The architecture is also flexible and the model described here can be seen as one example

of the possibilities. Figure 3.2 describes a high level abstraction of the general idea of weights

being shared in a wide sense and all the constituent parts can be replaced to accommodate

the needs of the problem. This flexibility can be viewed as a use case level customization

as opposed to a dataset level customization which would be a feature engineering approach

that milNN avoids.
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Figure 3.4: Aggregation Model - This model takes instance level predictions and averages
them arithmetically to provide the bag level prediction which can be compared to labels
and provide a loss that can be back-propagated through the network.
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Chapter 4: Results and Evaluation

The following sections describe the dataset, the experimental setup with the hyperparame-

ters of the model and training details. It then goes on to describe the Accuracy, F-measure

and Running time comparisons of the various MIL architectures on the datasets to contrast

with milNN. Finally, illustrative examples of the milNNs performance are shown as relating

to the most indicative datasets.

4.1 Datasets

The datasets were created by reverse geocoding lat/long information from Twitter North

America dataset [49]. These latitude and longitude readings were recorded when the user

signed up location and subsequently tweets were recorded for this user. For use in this

work, the top cities in the data were split into 15 datasets of equal number of positive and

negative samples from the reverse geocoded dataset [49]. The negative samples for each

city were randomly selected from the rest of the dataset after stratified sampling from other

cities. Table 4.1 describes the number of training and testing instances in the respective

datasets. The New York City data is the biggest with 19000 total samples. Chicago, San

Francisco, Philadelphia, Washington DC and Toronto have more than 5000 examples and

hence the results related to these datasets carry more weight. The rest of the datasets also

have at least 2100 total users.

It is evident that there are some differentiating relationships that exist at the bag level

at least by observing the results of the Multinomial Naive Bayes Classifier which averages

at 70.3% accuracy. The highest accuracies being achieved on San Francisco, New York City

and Philadelphia out of the bigger datasets.

It is also interesting to observe the results of a Support Vector Classifier on the dataset

18



Figure 4.1: Datasets map - This figure indicates the cities under consideration in this work.
A color legend is included which will remain constant throughout this work for indicating
cities in figures that follow.

to see preliminary existence of nonlinear relationships that might be present in the dataset.

San Francisco and New York datasets perform better on this initial litmus test of non

linearity in language use. However, the Philadelphia data has a borderline classification

accuracy of about 50% using the Support vector classifier.

4.2 Experimental Setup

Instance level model: The tweets are preprocessed by changing URLs, @mentions, and

hashtags to a generic word for each. This choice was tested on datasets and while the

accuracy was comparable, the instance level results were drastically different. For instance

the model for San Francisco predicted 0.99633 for the words ”San Francisco” under the
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Table 4.1: Datasets - Among the bigger datasets are NYC and SF. Cities like Boston and
San Diego rank lower on the amount of tweets found in the dataset. It should be noted
that only half of the total are positive examples. The negative examples were compiled
randomly after stratified sampling from other cities.

City Train Test Total

Atlanta,GA 3531 883 4414
Austin,TX 2332 583 2915
Baltimore,MD 2159 541 2700
Boston,MA 1911 478 2389
Chicago,IL 6628 1658 8286
New Orleans,LA 2072 520 2592
New York City,NY 15200 3800 19000
Paradise,NV 2475 620 3095
Philadelphia,PA 4633 1159 5792
San Diego,CA 1960 492 2452
San Francisco,CA 6168 1542 7710
Seattle,WA 2680 670 3350
Toronto,Canada 4029 1008 5037
Washington,D.C. 4584 1148 5732
Weehawken,NJ 1756 440 2196

chosen model and 0.06842 under the model containing hashtags and mentions. Thus, this

preprocessing method was chosen so as to isolate language features from graph features of

the dataset. Subsequently the tweets are tokenized and the top 5000 vocabulary words are

henceforth considered in the modelling process. The tweet is then padded to a 20 word

maximum (16 being the average for a tweet with 140 characters) and then fed through an

embedding layer with 32 dimensions which is randomly initialized. Following this, there is

a single hidden layer with 100 nodes that process the various language level relationships

and feed the relu activations to the sigmoid layer for classification after adding a dropout

of 25% for regularization.

Bag level model: N is set to 10 and the outputs of the instance level models are averaged

at a higher layer for the bag level output. At this level binary cross entropy loss is calculated

using the bag level labels and back-propagated using the Adam optimizer. A batch size of

256 bags at a time is chosen and trained for 200 epochs with a learning rate of 0.0001. An

early stopping condition is included which breaks out of training when the loss of the epoch
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Table 4.2: Initial high level results on datasets: As a way to explore the capabilities of the
data, basic bag of words classifiers are explored to demonstrate existence of features within
the dataset. Multinomial Naive Bayes picks up frequency based capabilities, while Support
Vector Classifier tries to model non-linearities at the user level. While these methods show
high performance in some cases, they do not train any instance level classifiers.

City MNB SVC

Atlanta 0.7022 0.5005
Austin 0.7238 0.5026
Baltimore 0.7338 0.5009
Boston 0.6276 0.5000
Chicago 0.6701 0.5723
New Orleans 0.6731 0.5981
New York City 0.7076 0.5795
Paradise 0.6903 0.5016
Philadelphia 0.7092 0.5038
San Diego 0.6626 0.5671
San Francisco 0.7607 0.5797
Seattle 0.7388 0.6104
Toronto 0.7639 0.5009
Washington,D.C. 0.6760 0.5400
Weehawken 0.7114 0.5636

converges and waits for 5 iterations to confirm the convergence.

4.3 Exploring the Hyper-parameter space

As the hyper-parameter space in neural networks can be large, here we only consider the

implications changing of embedding dimensions and number of nodes in the dense layer of

the neural network. The batch size, epochs, stopping conditions, inputs, optimizers and

general architecture remain the same through these tests. The tests in this section were

conducted by extracting a 20% validation set from the training data.

For exploring the model architecture, choices for embedding space and number of dense

nodes was considered as shown in figure 4.2. While these choices reacted differently on

the 15 datasets, a general conclusion to be made was that the accuracy wasn’t particularly

sensitive to these choices. However, the running time1 was affected as the complexity in

1MacBook Pro (2016)- Processor: 2.9 GHz Intel Core i7 ; Memory: 16 GB 2133 MHz LPDDR3
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Table 4.3: Hyper-Parameter Accuracy(dense nodes/embedding dimension): This table
makes a case of higher complexity as the accuracy scores are bolder towards bigger em-
beddings and more nodes in the dense layers

City 50/32 100/10 100/32 100/50 150/32 200/32

Atlanta 0.6239 0.6169 0.6268 0.6197 0.6154 0.6204
Austin 0.6781 0.6642 0.6738 0.6899 0.6770 0.6835
Baltimore 0.6520 0.6206 0.6381 0.5000 0.6427 0.6473
Boston 0.6872 0.6649 0.6715 0.6780 0.6911 0.6793
Chicago 0.6377 0.6494 0.6460 0.6460 0.6411 0.6419
Houston 0.6010 0.5884 0.6225 0.6288 0.6338 0.6376
New Orleans 0.6630 0.6534 0.6667 0.6618 0.6679 0.6775
New York City 0.6956 0.6961 0.7030 0.6933 0.6992 0.6982
Paradise 0.6141 0.6000 0.6222 0.6141 0.6162 0.6172
Philadelphia 0.6625 0.6490 0.6398 0.6523 0.6436 0.6506
San Diego 0.6237 0.6301 0.6531 0.6620 0.6569 0.6441
San Francisco 0.7599 0.7534 0.7591 0.7616 0.7506 0.7612
Seattle 0.7239 0.7099 0.7192 0.7155 0.7155 0.7127
Toronto 0.7398 0.7354 0.7335 0.7522 0.7335 0.7410
Washington, D.C. 0.6599 0.6507 0.6545 0.6572 0.6490 0.6556
Weehawken 0.6538 0.6439 0.6496 0.6524 0.6524 0.6553

the model grew. As expected, the simplest model runs the fastest. However, a trade-off

needs to be considered between adding complexity in terms of dense layer nodes (and/or

embedding dimensions) and running time add on. As per figure 4.2 it was particularly

fruitful to move from 10 embedding dimensions to 32. However, not so much from 32 to

50. Additionally, the dense layer nodes seem to perform close to each other, perhaps due

to the regularization mechanism of dropout applied in the model which essentially reduces

all these models to an ensemble [50].

Thus, in order to be able to model complexity, the embedding dimension was chosen to

be 32, and 100 dense nodes were picked as the model seemed to have considerable slowing

down that couldn’t compensate with improvement in accuracy when moved to the choices

of 50 and 200 respectively.
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Table 4.4: Hyper-Parameter F-score(dense nodes/embedding dimension): Even though the
model is not particularly sensitive to the hyper-parameter changes here(all f-scores are
within a few decimal points of each other), the higher f-scores occur towards the right of
the table where the model is more complex

City 50/32 100/10 100/32 100/50 150/32 200/32

Atlanta 0.6242 0.6235 0.6312 0.6324 0.6091 0.6369
Austin 0.6725 0.6652 0.6800 0.6929 0.6753 0.6831
Baltimore 0.6725 0.6554 0.6329 0.6667 0.6419 0.6530
Boston 0.6948 0.6605 0.6693 0.6737 0.6974 0.6910
Chicago 0.6069 0.6197 0.6184 0.6130 0.6188 0.5963
Houston 0.6156 0.6110 0.6340 0.6278 0.6514 0.6479
New Orleans 0.6883 0.6742 0.6920 0.6796 0.6864 0.6942
New York City 0.6827 0.7012 0.6894 0.6824 0.6880 0.6908
Paradise 0.5901 0.5696 0.5978 0.5892 0.6000 0.6097
Philadelphia 0.6712 0.6625 0.6473 0.6646 0.6552 0.6564
San Diego 0.5564 0.5760 0.5988 0.6097 0.6084 0.5951
San Francisco 0.7564 0.7546 0.7556 0.7578 0.7476 0.7603
Seattle 0.7228 0.6989 0.7114 0.7120 0.7064 0.7027
Toronto 0.7380 0.7377 0.7340 0.7545 0.7360 0.7405
Washington, D.C. 0.6276 0.6309 0.6292 0.6275 0.6220 0.6376
Weehawken 0.6313 0.6006 0.6382 0.6422 0.6199 0.6409

Table 4.5: Hyper-Parameter Running Time(dense nodes/embedding dimension) : The sim-
ple model runs the fastest.

City 50/32 100/10 100/32 100/50 150/32 200/32

Atlanta 20.9 13.1 27.6 27.4 25.3 26.9
Austin 14.5 9.5 19.0 23.4 20.1 22.7
Baltimore 12.6 7.9 16.3 3.5 19.4 21.3
Boston 11.6 7.0 14.2 19.4 16.8 18.9
Chicago 28.6 22.8 29.8 37.9 37.6 34.6
Houston 11.4 7.4 14.4 19.7 20.4 21.7
NewOrleans 11.8 8.0 15.1 20.8 19.9 24.4
NewYorkCity 47.8 31.0 49.7 463.2 51.1 57.2
Paradise 14.0 10.1 18.1 29.7 20.9 20.5
Philadelphia 25.8 16.2 32.7 40.0 48.0 44.7
SanDiego 11.5 7.3 14.3 20.1 26.2 21.7
SanFrancisco 40.3 23.2 35.2 57.7 52.7 47.2
Seattle 20.0 10.0 19.5 29.4 26.2 30.8
Toronto 28.8 16.9 29.1 47.3 36.9 44.6
WashingtonDC 29.2 16.9 26.2 34.9 33.1 38.4
Weehawken 10.8 7.5 13.0 18.9 15.5 21.0
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Figure 4.2: Hyperparameter Comparison - In the above visual, size is the embedding size,
color is number of nodes in the dense layer, cities are labeled near the running time vs
accuracy point of each run. The running time is on the x-axis and accuracy is on the y-axis.
Here the upper left corner of the graph is better where the accuracy is high and running
time is low. Another characteristic that is observable is how the results of a particular model
might cluster together to demonstrate the robustness of the model given various different
datasets. On this count the lower embedding dimension (faster) models don’t impress as
accuracy remains low on many datasets and results seem more scattered. While the higher
embedding dimensions remedy the accuracy, they increase the running time.It is, however,
useful to notice that the difference in accuracy is insignificant compared to running times
as the models get more complex.
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4.4 Performance comparison with MIL methods

To judge the performance of milNN, it is compared with prior work in MIL namely SIL,

MISVM and GICF . Here, the metrics of interest - Accuracy and F measure are compared

and the running time comparison is given detailed treatment in the next section with this

context.

As per the results in Table 4.2 the classifier has a higher accuracy on the bigger San

Francisco and New York datasets. It outperforms all other methods on 14 of the 15 datasets

considered. For the exception, the Paradise, NV dataset is one of the smaller ones and

does better with the GICF approach. However, milNN outperforms GICF in the F score

calculation of results (Table 4.3).

milNN outperforms all other methods on 10 out of the 15 datasets under consideration

for the F measure. It loses to SIL on the Paradise and Washington DC datasets. Of

these, the DC dataset is bigger and on observation the proposed model comes within the

third decimal point while using a fraction of the time and still outperforms GICF by a

considerable margin, as it does for the Paradise data. The method loses to GICF on the

Atlanta, Baltimore and Philadelphia datasets; however, GICF takes longer to run and can’t

perform as well on the accuracy metric either. Additionally, it is worth noting that F scores

are not as consequential as accuracy given the balanced nature of the dataset.
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Table 4.6: Accuracy - milNN performs higher 14 of the 15 datasets under consideration.

City MISVM SIL GICF milNN

Atlanta 0.4990 0.5780 0.6025 0.6602
Austin 0.4970 0.6070 0.6501 0.7015
Baltimore 0.4990 0.5180 0.6248 0.6858
Boston 0.5000 0.5460 0.5774 0.6276
Chicago 0.5000 0.5760 0.6429 0.6502
New Orleans 0.5000 0.5230 0.6365 0.6962
New York City 0.5000 0.5740 0.6476 0.7024
Paradise 0.4980 0.6060 0.6629 0.6565
Philadelphia 0.4960 0.5190 0.6195 0.6644
San Diego 0.5000 0.6300 0.6504 0.6850
San Francisco 0.5000 0.6300 0.7322 0.7542
Seattle 0.5000 0.6210 0.6970 0.7269
Toronto 0.4990 0.6390 0.6895 0.7520
Washington,D.C. 0.5000 0.5740 0.6298 0.6437
Weehawken 0.5000 0.6160 0.6727 0.7000

Table 4.7: F measure - The proposed model outperforms on 10 of the 15 datasets under
consideration.

City MISVM SIL GICF milNN

Atlanta 0.0000 0.6900 0.6982 0.6568
Austin 0.0000 0.6650 0.6291 0.6848
Baltimore 0.0000 0.6560 0.6957 0.6816
Boston 0.0000 0.5820 0.5960 0.6130
Chicago 0.0000 0.5180 0.5163 0.6420
New Orleans 0.0000 0.6690 0.6976 0.7041
New York City 0.0000 0.6230 0.6349 0.6988
Paradise 0.0000 0.6510 0.6365 0.6468
Philadelphia 0.0000 0.6620 0.7006 0.6830
San Diego 0.0000 0.6080 0.6325 0.6548
San Francisco 0.0000 0.6980 0.7398 0.7603
Seattle 0.0000 0.6840 0.7112 0.7215
Toronto 0.0000 0.6810 0.7056 0.7485
Washington,D.C. 0.0000 0.6190 0.4910 0.6108
Weehawken 0.0000 0.6590 0.6588 0.6827
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4.5 Running Time Comparison

milNNs running time comparison provided a 15 out of 15 improvement in comparison to

the other methods. This underlines the guaranteed contribution of this work in terms of

speed and optimization. Another place the proposed model saves time is in its negation of

feature engineering and minimal preprocessing. However, these times can be quite arbitrary

based on what feature vector the domain experts (linguists in the current context) decide

to come up with and have not been documented here.

The GICF and milNN experiments were run on a consumer laptop2 and the MISVM and

SIL algorithms required a cluster with higher memory requirements3. Thus, the first two

methods have running times that are the upper bounds and would be considerably lower on

faster machines used on MISVM and SIL. Conversely, the MISVM and SIL running times

can be thought of as being at least this high on consumer computers.

The computational complexity could be observed in action for MISVM and SIL running

into hours of running on sampled instances. MISVM, even though theoretically superior

for MIL than SIL, learns nothing from the hours of training which is reflected in the 50%

accuracy across the datasets and zero F-score despite the longest running times. Perhaps

this can be attributed to the strong membership assumptions and OR aggregation function

which doesn’t apply to the current use case. Due to these results, MISVM is not considered

any more comparisons henceforth.

SIL does considerably well as the simplicity generalises to the user tweet relationship

of the dataset for geolocation. Even though, SIL finishes training faster than MISVM, the

method is still considerably slower that the neural network methods (GICF and milNN).

The method proposed in this paper, milNN, provides an average 450x speedup over MISVM,

over 70x speedup over SIL, and 4x speedup over GICF. While these numbers provide a high

level overview of the applicability of milNN, they are not weighted according to the size

of the datasets under consideration. The next two subsections consider this problem by

2MacBook Pro (2016)- Processor: 2.9 GHz Intel Core i7 ; Memory: 16 GB 2133 MHz LPDDR3
3Argo Research Cluster - Processor: 64 Core AMD Opteron; Memory: 512 GB(50 used)
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Table 4.8: Running Time - Consistent and significantly better performance is demonstrated
by the proposed method (milNN)

City MISVM 3 SIL 3 SIL 2 GICF 2 milNN2

Atlanta 38,799 3,031 - 106 38
Austin 21,304 3,072 - 81 34
Baltimore 27,069 3,030 - 69 35
Boston 19,166 2,724 - 60 28
Chicago 22,935 2,866 - 288 45
New Orleans 33,043 2,826 - 76 52
New York City 10,096 3,448 over 12 hours 822 85
Paradise 12,891 2,825 - 149 40
Philadelphia 14,453 3,320 - 212 52
San Diego 22,547 3,108 - 67 57
San Francisco 12,562 3,883 - 222 64
Seattle 17,088 3,738 - 143 41
Toronto 17,861 3,847 - 131 48
Washington,D.C. 21,026 2,790 - 193 42
Weehawken 9,460 1,894 - 63 29

looking at these run-times and comparing them with metrics by each dataset.

4.5.1 Running time vs Accuracy

While comparing running times to accuracy, in Figures 4.4 and 4.5, it is evident that

milNN outperforms all other methods. Even on the datasets where accuracy was lower than

others(Paradise), it is noticeable that the difference in accuracy is not as significant and the

speed up provided by milNN.Thus the gain in performance outweighs the insignificant loss

in accuracy for this particular dataset.

In Figure 4.3, it can be seen that the upper left corner of the graph is the more optimized

area where accuracy is high and running times are low.

Another interesting observation to be made in Figure 4.3 is that milNNs accuracy vs

running time scores are clustered together suggesting consistency and robustness of the

approach when faced with various datasets with different feature sets. Conversely, GICF

demonstrates a spread out scatter plot, indicating inconsistent performance across datasets.
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Figure 4.3: Accuracy vs Running Time by City - The results of the proposed model (+)
plus signs are consistently faster with GICF(�) squares being less reliable given diverse
requirements of datasets.
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4.5.2 Running time vs F measure

4.4 indicates a scatterplot that is particularly interesting as the method couldn’t outperform

every old method on this metric.

GICF points are towards the right and lower side of the this scatterplot. However,

they are both more scattered in terms of results with values below 0.6. This effect can be

observed most predominantly the Chicago and Washington DC datasets. This questions

the variability in these methods which is most probably an effect of feature engineering

requirements of different datasets.

milNN clearly wins as the results for all datasets remain clustered in the top left hand

corner of the graph which is the best quadrant to be in with high F scores and low running

times. All F scores are also greater than 0.6 and the scatterplot is fairly clustered together

which speaks to the robustness of the method.

Thus, after the comparison were made by extensive experiments on 15 datasets, the

proposed model demonstrated superior scalability and running time performance while also

being robust to the changing needs of various datasets.
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Figure 4.4: F measure vs Running Time by City - milNN’s results are consistently high
even in diverse datasets and the + signs cluster in the best area of the graph where running
times are low and metric is high.
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4.6 Illustrative Examples

Figure 4.5: Word Cloud for NYC - It can be seen that the the word cloud created has a
range of location names indicating the NYC users’ proclivity to tweet their location.

The following sections deal with the biggest and highest performing language geolocation

datasets - New York City and San Francisco.

The word cloud visual is created using all the test instance tweets that were classified to

be over 0.95 by the instance level classifier. Location entities were subsequently extracted

from these tweets using StandfordNER [51] and then weighted into a word cloud. High

level comparison of the SF word cloud to the NYC word cloud indicates that NYC tweets

mention various locations throughout the city more than SF tweets do. At the very least,

the models learned by these datasets tend to pick out more place name features for NYC

than SF. Hence, one would also expect there to be more language level features to be

discovered in the SF dataset given the high accuracy of the method on these tweets.

The structure of the following analysis is to go over examples of users that belong
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Figure 4.6: Word Cloud for SF - In contrast, the San Francisco word profile doesn’t consist
of as many place names as New York City and the model was able to determine higher level
language features from this data.
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to the city to analyse language patterns discovered by the model. Additionally the anti-

patterns are explored by analysing tweets from users that do not belong to New York and

SF respectively in order to discover how these cities don’t tweet. The tweets being classified

as mostly certain are colored green (prediction over 0.95), the undecided tweets are colored

orange (prediction between 0.4 and 0.6) and those that the models found definitely not

belonging to the particular city are colored red (prediction below 0.4). They will be referred

to as green, orange and red tweets respectively in the following analysis

4.6.1 New York City

User 1 We can clearly see that the model can figure out place names by itself that relate

to a particular location. It found Brooklyn, NYC, New York. In the second case, it actually

classified the tweet certainly as from New York because of multiple mentions of the name

of the city.

Another indicative example can be seen in the mention of bags being lost by United

Airlines. It is noteworthy that during the preprocessing phase, the hashtags and @mentions

were abstracted away from the model. This might be indicative of people thanking the

airlines for losing their baggage nationwide. Thus the model is not quite certain where the

tweet is from.

In this classic case where the bag level label doesn’t hold, the user is traveling to Dallas

and Chicago. The model caught this fact even though it did not have the label at the tweet

level.

User 2 This example is particularly indicative of someone in New York. The model clearly

catches the easy location names like Lincoln Tunnel and New York City with near certainty.

The more interesting nuances can be noticed in the tweets when the ”view is beautiful” (high

probability) vs when ”the beautiful view overlooks the ocean” (low probability). The model

realizes that even though NYC has views they don’t overlook the ocean. Another interesting

thing to note about this ocean tweet is the mention of the Hilton hotel. In the undecided
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Figure 4.7: New York Tweets: User 1 - For demonstration of location related entities in
high and low probability tweets.

orange tweet we can see how pervasive Hilton hotels are and they might not necessarily

be in any one place. However, with the mention of the ocean, the model decreases the

probability that the tweet is from New York.

Another cultural indication is seen in the last red tweet which signifies how the activity

of standing in line at Walmart is not common to New Yorkers as there are no Walmart

stores in city.

User 3 This is an interesting example as the user is not from New York City, but Ar-

lington, NY. The example is particularly illustrative as the user is near New York City and

frequently travels there. This is indicated in travel related tweets that are marked green by

the model despite the bag level label being not New York.

The model remains undecided about the cinema tweet mentioning The Twilight Saga

due to the movie being popular nationwide.
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Figure 4.8: New York Tweets : User 2 - For demonstrating nuanced place name recognition
with better context.

There are standard location related red examples that were captured at the end.
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Figure 4.9: Negative Example in New York City: User 3 - This user is from Arlington, NY
which is near the city and yet the model can distinguish when the user is tweeting from
within the city.
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4.6.2 San Francisco

San Francisco was the best performing model and the dataset was bigger indicating the

popularity of Twitter in SF. Thus, there were many interesting observations to be made from

the illustrative examples that went above and beyond catching direct location mentions in

individual tweets. The following examples illustrate, besides the obvious name place related

classifications, a proclivity to stick to english grammar even while being restricted to 140

characters by the people in this city.

Figure 4.10: Positive Example in San Francisco : User 1 - Place name recognition related
example for the SF instance level model

User 1 These are standard location names being caught by the model and are being

rightly classified. The undecided tweet looks generic enough to not have any indicative

pattern here. Hence, the model looks promising at this base level example.

User 2 However, sure enough, there is a mention of technology being labelled as green

for SF by the model. This is a particularly indicative of an SF tweets considering the model

did not have the explicit @mentions while prediction.

This users tweets also demonstrate the high level language features the model is capable
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Figure 4.11: Positive Example in San Francisco : User 2 - Demonstration of higher language
level features being learned by the model as it recognizes the better grammar choices in the
undecided tweet and increases the probability of belonging to SF.

of dealing with thus filling the gap of all prior bag of words related geolocation research.

The general tweet of wasting a morning at the bank is classified as though it could be from

anywhere and the model remains undecided. However, it quickly lowers the probability of

the tweet belonging to SF as soon as it notices the awkward grammar in the red instance

which is only a one character difference from the orange tweet. No locations have been

mentioned in either of these tweets. They don’t contain any hashtags or mentions either.

User 3 The model would be remiss if it didn’t capture the engineering and technology

culture in the Bay area particularly as it relates to Apple Inc. This user’s green tweets show

that ”Engineers love free food!” is certainly something that is indicative of San Francisco.

The Mac and iOS mentions in the other two tweets also classify high. However, the really

interesting tweet is the one that was classified red even though it mentions Apple by name.

It is clear that the user is visiting the Cupertino campus of the company as there was a

name tag provided. Hence, the model picked up on being away from San Francisco. This

is an example of travel related discrepancies caught by the model without any place being

mentioned.
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Figure 4.12: Positive Example in San Francisco : User 3 - Technology related jargon is
modeled high in SF social media as expected while qualifying these mentions with context.

User 4 This negative example is a clear indication of the SF population sticking to proper

grammar while tweeting as every tweet by this person has low probability and not one

of them has the correct sentence structure or spelling. The example that is particularly

indicative of this is where the user mentions ”technical issues” in a badly formed sentence

and still doesn’t receive any substantial probability for belonging to San Francisco.
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Figure 4.13: Negative Example in San Francisco :User 4 - This user belongs to Louisiana
and has poor grammar choices in tweets. This is picked up by the model even when the
word ’technical’ is mentioned which should have rated higher for being from SF.
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4.7 Insights from results

Thus, it was discovered after running extensive experiments on datasets from 15 locations

that even at it’s worst, the proposed architecture proved itself to run faster than the state

of the art. It outperformed older methods on most datasets on various metrics and saved

time by eliminating feature engineering and kernel design.

Subsequently, it demonstrated ability to capture different features in datasets that had

considerably different needs with New York City tweets being location heavy and San Fran-

cisco Tweets adhering to strict grammar even within the 140 character limit. The same

general model was able to cater to the needs of both datasets and successfully discovered

patterns that were indicative of the local language style.

Prior works have handled the missing instance level labels in various ways to evaluate

the instance level classification. Such labels might be intuitive where the use case is sen-

timent analysis [9], but they can be quite subjective for the geolocation modeling case as

the architecture doesn’t assume a particular characteristic associated with the cities under

consideration. For example, if a subset of the data were to be labeled where locations are

mentioned by name, it would only test the instance level model on being able to catch that

particular pattern and would fail on instances where other characteristics may be present

in the data like superior grammar usage. Another method for instance level classification

judging is presented in [7], where instances are triaged and classification on a bag level is

subsequently evaluated. If the bag level model trains better with the new selected instances,

then the instance level model is deemed to have discovered the underlying patterns in the

instances. While this approach might suit a paragraph based dataset (news, reviews), it

falls short for a collection of tweets as they share little context among each other in the

bag. Additionally, the neural network is constructed to model non-linear relationships in

the tweet level data which might not be caught at the bag level by a classifier. For example,

if this model of evaluation was to be considered and a Mulitnomial Naive Bayes classifier

was trained after triaging the tweets, instances that differ by a word would be considered to

bring the same value even though one might be grammatically incorrect due to the wrong
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word placement(eg. fig 4.11).
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Chapter 5: Discussion and Conclusion

To help deal with the information deluge caused by content generation on social media plat-

forms, this work focused on geo-locating tweets while working from user(set of tweets) level

location labels. This was accomplished by providing a framework consisting of an end to end

trainable neural network architecture for Multiple Instance Learning that helped transfer

user level location labels to individual instances of tweets. The method was subsequently

applied to datasets from 15 cities and was compared with state of the art approaches as well

as various architecture designs. The model outperformed earlier methods and proved to be

faster across all 15 datasets while eliminating the need for feature engineering by learning

representations. This was subsequently demonstrated using illustrative examples where the

model could identify place names and grammatical structure from short text.

Since the results heavily depend on the datasets, the models would need to retrain as

the social media data formats change. For example, tweets have recently been increased

from 140 character to 280. While this change can be accommodated by changing the words

per tweet assumption during tokenizing tweets, it would require an updated dataset for

training to catch the newer language patterns that might have emerged with the increased

character limit. Many other changes have occurred with twitter data since the publication

of the dataset in 2012 [49] used to construct the demonstrations in this work, such as urls,

photos, videos, quotes and @replies ceasing to be included in the 140 character limit [52].

5.1 Future Work

As the architecture is modular and various pieces can be substituted to cater to particular

dataset characteristics, many improvements can be made depending on the use case and

instance level relationships in the datasets.
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5.1.1 Transfer Learning

Any twitter related embeddings can serve as a starting point for the embedding based

classifier [53][39]. It would then be equipped with some idea of what tweets are like and

will retrain (or fine-tune) to serve the needs of the particular use case of geo-location.

The transfer learning approach will also generalize to other language based datasets

with their particular targets like sentiment analysis.

5.1.2 Multiple Classification

Instead of 15 datasets, if a dataset with multiple locations were to be treated, a simple

change from sigmoid to softmax layer classification will equip the model to deal with multiple

locations at once. This approach would require some exploration as the model might be

confused by similar place names in various cities(like ’Main Streets’) or high level language

patterns that are pervasive throughout the country. However, it might also be able to

contrast language patterns better given exact labels for each instance as opposed to City

X/not City X type labels.

5.1.3 Other instance level models

Depending on the complexity of the instance level data, a sequence model might be ap-

propriate for classification given the success of Recurrent Neural Networks with sequential

data [32]. This could be used to accommodate a variable number of instances per bag as

the current Multi Layer Perceptron model is limited to accepting a fixed number of inputs.

In fact, the instance level classifier can be substituted by any trainable architecture

including CNNs, ResNet blocks or other exotic architectures that might emerge, depending

on the requirements of the dataset.
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5.1.4 Exotic Aggregation Functions

While this work uses a basic average function to aggregate the instance level predictions to

the bag level, this relationship might not be as straightforward for other use cases particu-

larly if the instances are not relatively independent like tweets in each bag.

However, in this case it would be important to be careful so as to not interfere with the

instance level model extracting information as a non linear relationship would reduce the

instance level classifications to a spatial feature set generator.

5.1.5 Other Applications

Given the generality of the architecture, it can be leveraged to solve other Multiple Instance

Learning problems in medicine and genetic research. The embeddings model as employed

in milNN, would translate easily to any tag related feature set like language words that

can be embedded into a space and modeled. Since the model doesn’t use any pre-trained

embeddings like Word2Vec and starts with randomly initialized embeddings, it intuitively

translates to other use cases that don’t emerge from natural language applications. The

embeddings that would be learned by such a model could be invaluable in exploratory data

analysis of entities and their latent space.
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