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Abstract

IMPLEMENTATION AND ASSESSMENT OF STRONG LOGIC ENCRYPTION TECH-
NIQUES

Shervin Roshanisefat, PhD

George Mason University, 2021

Dissertation Director: Dr. Avesta Sasan

The increasing cost of building, operating, managing, and maintaining state-of-the-

art silicon manufacturing facilities has pushed several stages of the semiconductor devices

manufacturing supply chain offshore. However, many of these offshore facilities are identified

as untrusted entities. Processing and fabrication of ICs in an untrusted supply chain pose a

number of challenging security threats such as IC overproduction, Trojan insertion, Reverse

Engineering, Intellectual Property (IP) theft, and counterfeiting.

To counter these threats, various hardware design-for-trust techniques have been pro-

posed. Logic obfuscation, as a proactive technique among these techniques, has been intro-

duced as a technique that obfuscates and conceals the functionality of IC/IP using additional

key inputs that are driven by an on-chip tamper-proof memory.

Shortly after introducing the primitive logic locking solutions, a very strong attack

based on the satisfiability solvers (SAT) was shown that could break all previously pro-

posed locking mechanisms in almost polynomial time. To thwart this attack, researchers

have investigated many directions, such as formulating locking solutions that significantly

increase the number of required SAT iterations, or formulating the locking solutions such

that it is not translatable to a SAT problem.



However, further investigations demonstrated that some of these locking techniques are

vulnerable to other types of attacks such as removal attacks, approximate attacks, bypass

attack, and Satisfiability Module Theories (SMT) attack. Besides, these techniques suffer

from very low output corruption. Hence, an inactivate IC behaves almost identical to an

unlocked IC except one or a few inputs.

For addressing these challenges, first, we will characterize the SAT attack, which shows

that how using different SAT solvers can produce different results with large deviations

which demonstrates that long execution time or high memory usage in one SAT solver may

not be a problem in another solver. Next, we discuss a branch of SAT-resilient methods

called cyclic locking and propose efficient methods to introduce feedbacks into a circuit in

a way that SAT and its improved versions for cyclic circuits could not find the correct key.

Then, we discuss a new branch of obfuscation techniques that tries to restrict access to the

scan chain and thus circumvent the SAT attack. In there, we discuss a new attack method

called unrolling SAT that potentially could be used for breaking obfuscated scan chains and

recover the protected design. Last, we propose an open source framework that replaces SAT

solvers with formal verification tools and could be used on a broader range of problems.



Chapter 1: Introduction

1.1 Why Hardware Obfuscation

Cost of building a new semiconductor fab was estimated to be US $5.0 billion in 2015,

with large recurring maintenance costs [1], and sharply increases as technology migrates

to smaller nodes. Due to the high cost of building, operating, managing, and maintaining

state-of-the-art silicon manufacturing facilities, many major U.S. high-tech companies have

been always fabless or went fabless in recent years. To reduce the fabrication cost, and for

economic feasibility, most of the manufacturing and fabrication is pushed offshore [1]. How-

ever, many offshore fabrication fabs are untrusted, which has raised concern over potential

attackers that include the manufacturers, with an intimate knowledge of the fabrication

process, the ability to modify and expand the design prior to production, and an unavoid-

able access to the fabricated chips during testing. Hence, fabrication in untrusted fabs has

introduced multiple forms of security threats from supply chain including that of overpro-

duction, Trojan insertion, Reverse Engineering (RE), Intellectual Property (IP) theft, and

counterfeiting [2].

Hardware obfuscation is the process of hiding the functionality of an IP by building

ambiguity or by implementing post-manufacturing means of control and programmability

into a netlist [3–5]. Gate camouflaging [6–8] and logic locking [9, 10] are two of the widely

explored obfuscation mechanisms for this purpose. A camouflaged gate is a gate that after

reverse engineering (using delayering and lithography) could be mapped to any member of

a possible set of gates or may look like one logic gate (e.g., AND), however, functionally

perform as another (e.g., XOR). In locking solutions, the functionality of a circuit is locked

using several key inputs such that only when a correct key is applied, the circuit resumes

its expected functionality. Otherwise, the correct function is hidden among many of the 2K

1



(K being the number of keys) circuit possibilities. The claim raised by such an obfuscation

scheme was that to break the obfuscation, an adversary needs to try a large number of

inputs and key combinations to extract the correct key, and the difficulty of this process

increases exponentially as the number of keys and primary inputs increases. Hence, if

enough gates are obfuscated, an adversary faces an unacceptably long time (claimed as

years to decades) to break the obfuscation scheme. Note that the availability of scan chains,

which is inserted following Design for Test (DFT) recommended flow, allows an adversary

to access combinational logic in each stage of a sequential circuit, load the desired input,

execute the stage for one cycle, and readout the output.

1.2 Challenges in Hardware Obfuscation

The validity and strength of the state-of-the-art logic locking solutions to protect IPs/ICs

against adversaries in the manufacturing supply chain was seriously challenged in recent

years after the introduction of the Boolean satisfiability attack (SAT-Attack) [11–14]. SAT

attack is an oracle-guided attack that requires access to the reverse engineered netlist and

also a working copy of the IC to apply and capture interesting I/O pairs from it. After

introduction of the SAT attack, researchers investigated a body of locking solutions with the

objective of resisting the SAT attack. The revelation of SAT attack redirected the attention

of the researchers to find harder obfuscation schemes that protect acyclic Boolean logic and

resist the SAT attack. These methods have targeted a number of weaknesses in the SAT

attack and could be categorized into three categories:

Weaker Distinguishing Inputs

Original SAT attack was powerful because it could iteratively rule out several wrong keys

and constrain the key space effectively by finding interesting inputs called distinguishing

inputs (DIP). The SARLock and Anti-SAT [15,16] logic locking methods were proposed to

mitigate this vulnerability. In a circuit protected by these solutions, a wrong key produces

2



a wrong output only for one input. This will restrict the SAT attack effectively since it

can only rule out one wrong key per iteration. Hence, a SAT attack will be reduced to a

Brute-force attack as it requires an exponential number of inquires to find the correct key. A

design protected by these mechanisms, regardless of the key used for its activation, behaves

very similar to the original design (except for one input). Hence, this group of obfuscation

solutions suffers from low output corruption. To increase the output corruption, they could

be augmented with other (output corruption oriented) obfuscation mechanisms. However,

by using approximate SAT attack [17] almost all key values for the augmented obfuscation

mechanism could be correctly identified.

Further research revealed that these obfuscation techniques are vulnerable to removal

[18], Bypass [19] and FALL [20] attacks. In a removal attack, these SAT hard blocks are

identified using Signal Probability Skew (SPS) attack [18] and removed. In Bypass attack

[19], an auxiliary circuit that recovers the wrong output in these locking schemes is created.

This attack identifies the input combinations that produce the wrong output for a wrong

key; then it adds a bypass circuit to flip the wrong output when that specific input is

applied. In FALL attacks, a functional analysis of the circuit will be performed and have

two stages. In the first stage, it analyses the functionality of the obfuscated circuit and

tries to identify the locking keys. If there was more than one candidate for the locking key,

it tries to use the SAT to find the correct locking key from a list of alternatives and using

simulations on the unlocked circuit.

Increasing Circuit-SAT Complexity

Another feature that makes the SAT attack powerful is the fast execution time of the

underlying SAT solver in solving the circuit SAT and extracting DIPs. For locking schemes

in this category, the netlist is designed in a way that translates to a large circuit-SAT with

possibly a SAT-hard portion and thus requires more time to solve. Cross-Lock [21] exploited

this vulnerability by adding cross-bars to the netlist and obfuscates circuit connections.

Equivalent circuit-SAT in this method requires large multiplexers and the symmetric nature

3



of this block will make it a SAT-hard problem [22–24]. Without any additional clauses, any

SAT solver requires a long execution time to find a single distinguishing input.

Netlists with camouflaged or memory-based blocks could also be used for this purpose.

For these blocks, an equivalent circuit should be used that replaces them. For blocks with

a large number of input and key ports, the equivalent circuit could be very large. This is

especially true in the case of a locked circuit with large LUTs. This could lead to a large

circuit-SAT with lots of SAT clauses. Recently, machine learning-based [25] and modeling-

based [26] attacks were proposed that could break these obfuscation techniques.

SAT Unsolvable Structures

SAT attack needs to translate the reverse-engineered netlist into CNF clauses to be able to

use the underlying SAT solver. Memory-blocks and Boolean gates could be easily translated

into CNF clauses using equivalent circuits and Tseitin [27] transformation. Boolean limita-

tion of SAT solvers could be used as a vulnerability to implement non-Boolean structures

to counter the SAT attack.

Delay Locking [28] is one of such methods. It uses key-gates to lock both the functionality

and the timing behavior of the obfuscated circuits. The logic aspect of the locking could be

easily translated to CNF, however, the behavioral (timing) aspect of circuit operation can

not be easily translated into a SAT friendly CNF. Hence, formulating a SAT attack on a

delay-locked netlist will produce a circuit of correct functionality, but the timing violations

will make the circuit malfunctioning. This method could potentially prevent overproduction

or any reuse of fabrication materials like masks, but it can not prevent reverse engineering

and IP-theft of the design. Also, an attack called TimingSAT [29] was later proposed to

break this obfuscation method.

1.3 Organization of the Report

The rest of this thesis is organized as follows. In chapter 2, we cover the background on

threat models and formal definition of the SAT attack. Then, in chapter 3, we evaluate

4



and benchmark the capabilities of SAT solvers when specifically dealing with hardware

obfuscation problem. It provides insights on capabilities and limitation of different classes of

SAT solvers, helping the researchers in choosing the most able SAT solver for evaluating the

effectiveness and hardness of their proposed obfuscation solutions and prevents researchers

from generalizing the failing result of a poor choice of SAT solver solution, to all SAT solvers.

Then, in chapter 4, we elaborate on the limitation of cyclic SAT attacks and our approach for

breaking/preventing these attacks. We introduce our techniques for building an exponential

relation between the number of feedbacks and the number of created cycles in a circuit. We

also introduce three mechanisms for building a cyclic Boolean function to further increase

the complexity of pre-processing in cyclic attacks. In chapter 5, we introduce DFSSD, a

novel logic locking solution for sequential and FSM circuits with a restricted (locked) access

to the scan chain. This technique is specifically designed to resist against sequential SAT

attacks based on bounded model checking. In chapter 6, we introduce RANE framework,

an open-source CAD-based toolbox for evaluating the security of logic locking mechanisms

that implement a unique interface to use formal verification tools without a need for any

translation or simplification. The RANE attack not only performs better compared to the

existing de-obfuscation attacks, but it can also receive the library-dependent logic-locked

circuits with no limitation in written, elaborated, or synthesized standard HDL, such as

Verilog. In chapter 7, we present our future research direction to sequential obfuscation

and discuss scan chain obfuscation and the new unrolling SAT attack.
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Chapter 2: Background on Threat Models and Boolean

Satisfiability Attacks

Logic locking is the process of hiding the functionality of a circuit by implementing post-

manufacturing means of programmability into the netlist. Logic locking has been widely

studied in the literature [5, 10, 15, 16, 22, 30–35], in which, the functionality of a circuit is

locked using two major techniques. It could be implemented as (1) a set of dedicated key

inputs, driven from a Tamper-Proof Memory (TPM), such that only when the correct key

is applied, the circuit resumes its expected (correct) functionality [5,9,10,15,16,22,30–37],

or (2) a set (sequence) of input patterns through PIs that requires to be traversed to lead

the state of the circuit to the normal (correct) mode [38–40].

2.1 Key-based Versus Key-less Locking

Fig. 2.1 depicts how both key-based and key-less logic locking techniques work. In key-

based logic locking shown in Fig. 2.1(a), there exist two sets of inputs, i.e., primary inputs

(PI) and key inputs (KI). In key-based logic locking, the key values are stored and initiated

in TPM. However, after reverse-engineering, the content of TPM will be wiped out, and

the adversary has to evaluate them as extra inputs to the circuit (KI). In key-less logic

locking, on the other hand, as depicted in Fig. 2.1(b), new state modes, such as obfuscation

mode and authentication mode, are added in the circuit’s FSM required to be traversed

using a specific set of PI patterns. For example, by applying patterns as pi1 → pi7 to

the PI of 2.1(b), the circuit will reach its normal (correct) initial state. In this case, there

exists no extra (dedicated) wires/inputs as the KI, which potentially could make the reverse

engineering attacks much harder for the adversary.
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(b) Key-less Example

Figure 2.1: Explicit Key-based vs. Implicit Sequence-based.

2.2 Restricted Versus Open Scan Chain Access

Over the last decade, numerous studies have evaluated and challenged the validity and ro-

bustness of existing logic locking techniques against different forms of attacks, especially

attacks on key-based logic locking techniques [3]. Depending on the threat models defined

for the attacks, these attacks could be categorized into different groups. One central as-

sumption in these threat models is the availability of the DFT infrastructure (i.e., scan

chain pins) for the adversaries [41]. When the access to the scan infrastructure is OPEN,

as shown in Fig. 2.2(a), the adversary would be able to have separate access to inputs/out-

puts of each combinational logic (CL), separately. By controlling the scan enable (SE), this

access could be achieved through the scan in (SI) and the scan out (SO). Assuming that

the access to the scan pins is OPEN, Boolean satisfiability (SAT)-based attack could break

most forms of the logic locking techniques in a matter of minutes [11,12].
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(b) BLOCKED Scan Chain

Figure 2.2: Scan availability in de-obfuscation attacks.

2.3 Boolean Satisfiability Attack

In the SAT attack, as illustrated in Fig. 2.3(a), the adversary first transforms each CL of

the reverse-engineered circuit to SAT circuit (SATC). Then, by building the miter circuit

(CL(pi,K1)⊕CL(pi,K2)), the adversary revokes the SAT solver to find pi which distinguish

between two keys (different outputs for K1, K2), called discriminating input pattern (DIP).

Then, this DIP will be queried on the oracle (through DFT), and the SI/SO constraint

for the CL will be stored back in the SAT solver, and the miter circuit would be solved

again in the next iteration. When the miter+constraints problem no longer has a satisfying

assignment in one iteration, the list of added constraints is a complete set that uniquely

characterizes a correct key. Finding a correct key is then straightforward. Any key that

satisfies this set of constraints is correct, and it could be found using a single query to the

SAT solver. With access to the scan pins and using this flow, the adversary would target

each CL separately and apply the combinational de-obfuscation attack.

Since the validity and strength of most logic locking techniques are undermined by

combinational SAT attacks, numerous studies show how the scan access could be limited to

avoid the feasibility of such attacks [4, 41–45]. When the scan chain access is BLOCKED,

as demonstrated in Fig. 2.2(b), the adversary’s access is limited to PI/PO, and she cannot
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(b) Sequential SAT Attack

Figure 2.3: Combinational SAT vs. sequential SAT attack.

build the SATC for each CL. However, even while the access to the circuit is limited to

PI/PO, the SAT solver could be used to model an attack on the sequential circuits as a

whole. The attack procedure on sequential circuits with no scan access is shown in Fig.

2.3(b). Similar to the SAT attack, it has an iterative structure for pruning the search

space. However, due to the restricted access to the internal registers, to formulate the

internal state, unfolding could be merged with the combinational SAT attack to extend it

for sequential circuits [46–48]. Hence, rather than finding a DIP in each iteration, it finds

a sequence of inputs denoted as discriminating input sequence (DIS) that can generate two

different outputs for two different keys. After finding each DIS, the miter+constraint will

be updated with a new constraint to ensure that the next onset of keys produces the same

output for previously found DIS. This process continues until no further DIS is found within

the given boundary.

Both combinational and sequential SAT-based de-obfuscation attacks could be applied

to key-based logic locking techniques, and they are not directly applicable to key-less logic

locking. The key-less logic locking was first introduced in HARPOON [38]. HARPOON

is a sequential logic locking technique that modifies the FSM of a circuit. In such key-less
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techniques, one or few extra sets (modes) of state, such as obfuscation mode or authentica-

tion mode as shown in Fig. 2.1(b), is merged with the original FSM of the circuit. In such

an FSM locking solution, a specific unlocking sequence is required (and applied in multiple

cycles) to drive the FSM from a locked state to reach the active FSM’s original initial state

[38, 49]. The target of an adversarial attack against such FSM locking solutions is to find

a sequence of input patterns in the result of which the initial state of the original FSM is

reached and IP is activated.

2.3.1 SAT Solvers and Circuit SAT Problem

The Boolean satisfiability for a Boolean function F (X1, X2, ..., Xn) is the problem of deter-

mining if there exists an assignment X̂ = (x1, x2, ..., xn)|x ∈ {0, 1}n, such that F (X̂) = 1.

Related to Boolean satisfiability, [50] proposed the Davis-Putnam (DP) algorithm, a de-

ductive approach based on iterative existential quantification by resolution, which justifies

if a satisfiable solution exists. [51] suggested a backtracking search mechanism, known as

Davis-Logemann-Loveland (DLL), that exhaustively searches for a satisfying assignment.

DLL is a depth-first search algorithm, with the added capability to derive the implication

graph of a Boolean logic, and upon detecting an unjustifiable scenario, backtracks to the

previous node in the search tree to explore other branches. [52] improved the DLL by means

of Conflict Driven Clause Learning (CDCL), capable of pruning the search space in result

of two fundamental changes to the DLL’s DFS search mechanism: (1) using the concept of

clause learning, where a conflicting scenario, reached after visiting a branch of search tree,

is converted into a conflict clause and is added to the list of input clauses and by changing

the backtracking mechanism to a non-chronological mechanism to speed up the discovery

of new conflict clauses. (2) adding the concept of restart to allow abandoning the current

search tree and to reconstruct a new one if the rate of discovery of conflict clauses is low.

The modern SAT solvers improved the efficiency of CDCL SAT solvers by using techniques

such as Boolean constraint propagation, two literal watching, modified decision heuristics,

and by implementing locality based search [53][54][55].
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2.3.2 Preparing Obfuscated Netlists for SAT Attack

A SAT solver takes a Boolean function in Conjunctive Normal Form (CNF) as input and

finds a valid assignment for input variables to satisfy the function. To attack an obfuscated

netlist using a SAT solver, a working copy of the chip and its obfuscated netlist is required.

The adversary can acquire the working chip after it is unlocked by the manufacturer and

shipped to the market and could gain access to the obfuscated netlist by means of RE. In

case of supply chain adversary, the obfuscated netlist is readily available to the attacker.

Then, the obfuscated netlist should be transformed into a circuit SAT problem. This process

is explained next.

Converting Obfuscated Gates to Key-Programmable Gates

Let us refer to the functional black-box copy of the obfuscated circuit as CF . The CF is used

to find the correct output for any given input. When using K keys, random assignment of

key could create at most 2K instances of a circuit. Similar argument applies to camouflaged

cells, where each of K camouflaged gates could assume one of the M different possibilities

(for simplicity, let us consider M = 2). Let us denote obfuscation scheme obtained by

means of using K keys or obfuscated gates by K-obfuscation. A circuit C with NX inputs

that is subjected to K-camouflaging could be represented with an equivalent CK circuit

with NX +K inputs. Let us denote the circuit C with input X and output Y by C(X,Y )

and its K-obfuscated netlist by C(X,K, Y ). If the correct set of keys K̂ = (k0, k1, ..., kK−1)

is applied to the obfuscated circuit, for every input the obfuscated circuit reduces to the

original circuit C(X, K̂, YK) , C(X,Y ).

For a SAT attack the key signals in C(X,K, Y ) should be available as input. Hence,

obfuscation cells should be represented as Key-Programmable Gate (KPG), where insertion

of the correct key converts them to the correct gate. The cells used for obfuscation could

be divided into two categories: (1) key-controlled gates [30][36] in which the key is an input

signal (e.g. XOR, MUX based obfuscation). (2) keyless-gates [10][8] where functionality is
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Figure 2.4: Converting a LUT to a KPG.

hidden in the ambiguous structure or by use of internal memory elements (e.g. camouflaged

gates and LUTs). When using key-controlled gates, the key is stored in an internal memory

or a burned fuse. Hence, in a reverse-engineered netlist the key inputs could be identified

by tracking their connectivity to memory/fuse elements. To prepare the C(X,K, Y ) netlist,

the memory/fuse element is removed and key inputs are connected to input port(s).

When using keyless-gates, the gate has to be transformed to a key-programmable gate

before invoking a SAT attack. For a L-input LUT, the number of functional possibilities is

22
L
. To build a KPG for a LUT, the circuit illustrated in Fig. 2.4 is deployed. The inputs

to the LUT are connected to the select lines of the S-MUX and keys are the select lines of

B-MUXes. Then, each key is connected to an input port adding 2L keys to the C(X,K, Y ).

A camouflaged cell relies on hiding the gate functionality by keeping the structure of

several gates similar. Even in the best camouflaging cells, the number of gate possibilities

is limited and it could be treated similarly to programmable cells, where the camouflaged

cell is replaced by a MUX and each of the gate possibilities is fed to a different input of the

MUX, while using the select lines of the MUX as key inputs that are routed to the input

pins of the C(X,K, Y ).
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with respect to a previously discovered DI. (e) SCKVC circuit for validating that both input keys are in

SCK set and produce the correct output for all previously discovered DIs. (f) SATC circuit for finding a
new DI.

Converting an Obfuscated Circuit Into a SAT Problem

Before invoking the SAT solver, every key input combination is considered as a candidate

key. Let’s denote the Set of Candidate Keys by SCK. If we can find an input xd, and two

distinct key values K1 and K2 in SCK such that C(xd,K1, Y1) 6= C(xd,K2, Y2), the input xd

is denoted as a Discriminating Input (DI) [11]. This is because the selected input has the

ability to prune the SCK and find at least one incorrect key that is removable from SCK.

In addition each time a new DI is found, the SCK search space for function FDI should be

updated. This could be achieved by forcing the FDI to check each pair of new keys K1 and

K2 against all previously founds DIs. A Complete-DI-set is a set of DI inputs that reduces

the SCK to the Set of Valid Keys (SVK). SCK reduces to SVK when we no longer can find

a DI using the updated FDI . At this point if a key is valid across the Complete-DI-Set, it

is the correct key for all other inputs [11].

In this chapter, as suggested in Fig. 2.5.b, a reverse-engineered netlist, where all obfus-

cated cells are replaced with KPG cells, is denoted by Key-Programmable Circuit (KPC).

To build the FDI , two copies of the KPC are used, their non-key inputs (X) are tied to-

gether, and their outputs are XORed. This circuit produces logic 1 when the output of two

instantiated KPCs for the same input X but different keys K1 and K2 are different. This

circuit, as suggested in Fig. 2.5.c is denoted as Key-Differentiating Circuit (KDC).

The candidate keys in the SCK are capable of producing the correct output for all DIs
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that have previously been discovered and tested on the KPC circuit. In order to test the

keys for one DI, the circuit in Fig. 2.5.d is instantiated. In this figure, FC is the working

copy of the chip, and its output is used for testing the correctness of both KPCs for a given

DI and two key values. This circuit is denoted as DI-Validation Circuit (DIVC). To test

the keys for all DIs, as illustrated in Fig. 2.5.e, the DIVC circuit is duplicated D times,

with D being the number of current DIs tested, and the output of all DIVC circuits ANDed

together. The resulting circuit is a validation circuit for SCK set denoted as SCKVC.

If two keys K1 and K2 produce the correct output for all previously tested DIs (SCKVC

evaluates to true), but produce different results for a new input Xtest, then Xtest is a DI

that further prunes the SCK. This, as illustrated in Fig. 2.5.f, could be tested by using an

AND gate at the output of SCKVC and KDC circuits. The resulting circuit forms a SAT

solvable circuit denoted by SATC. When SATC evaluates to true, the KDC has tested a

pair of keys K1 and K2 that produce two different results for an input Xtest, and SCKVC

circuit has confirmed that both K1 and K2 belong to SCK set. Hence, the input Xtest is

yet another DI. Each time a new DI is found, the SCKVC should be updated by adding

yet another DIVC circuit for testing the newly discovered DI. This process is continued

until SAT solver no longer finds a solution to the final SAT circuit. In this case, any key

remaining in the SCK set is a correct key for the circuit. On the SAT solver side, every time

the SAT solver is executed, it learns a new set of conflict clauses. It is essential to store
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Algorithm 1 SAT Attack on Obfuscated Circuits

1: KDC = C(X,K1, Y1) ∧ C(X,K2, Y2) ∧ (Y1 6= Y2);
2: SCKV C = 1;
3: SATC = KDC ∧ SCKV C
4: LCAC = 1
5: while ((XDI ,K1,K2, CC)← SATF (SATC) = T ) do
6: Yf ← CF (XDI);

7: DIV C = C(XDI ,K1, Yf ) ∧ C(XDI ,K2, Yf );
8: SCKV C = SCKV C ∧DIV C;
9: LCAC = LCAC ∧ CC

10: SATC = KDC ∧ SCKV C ∧ LCAC;

11: KeyGenCircuit = SCKV C ∧ (K1 = K2)
12: Key ← SATF (KeyGenCircuit)

the learned clauses and use them in the next invocation of the SAT solver to prevent SAT

solver from re-learning these clauses. Hence, as illustrated in Fig. 2.6, a Learned-Clause

Avoidance Circuit (LCAC) is added to the SATC to check for the occurrence of learned

conflict clauses.

2.3.3 SAT Attack Algorithm

The SAT attack, as illustrated in Algorithm 1, follows the SATC construction process

explained in section 2.3.2. In the first iteration, the SCKVC circuit does not contain any

logic, since there is no previously tested DI. Hence, it is set to 1 (true). The KDC circuit is

simply built based on its definition by using the equation in Fig. 2.5.c. The SATC circuit

is constructed by using an ANDing the KDC and SCKVC circuits. SATF function is a call

to SAT solver. Considering the to-be-assigned variables in SATC circuit are X, K1 and K2,

the SAT solvers return an assignment to these variables and a list of conflict clauses (CC)

learned during SAT execution. SATF return UNSAT if no such assignment exists. The

while loop is controlled by the return status of the SAT solver. In every pass through the

while loop, a new DI is found. Hence, the SATC circuit should be modified (lines 7-10).

The parts of SATC circuit that is updated are the SCKVC and LCAC. After finding each

DI, an additional DIVC is added to SCKVC to validate the keys generated in the next

invocation of SAT solver with respect to the newly found DI. In addition, the newly learned

CCs are added to LCAC. The CF is a call to the functional circuit that returns the correct
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Figure 2.7: SCK set reduces in each pass through the while loop in Algorithm 1 as a new DI is discovered
and is added to SATC circuit.

output for each newly found DI. Finally, the SATC circuit is formulated at line 10 for the

next invocation of SAT solver.

The while loop is executed until no other DI is found. At this point, any key in the SCK

set is a correct key. To obtain a correct key, the DIVC circuit is modified to take a single

key denoted as KeyGenCircuit. Hence, KeyGenCircuit has input K, and its output is valid

if K satisfy all previous constraints imposed by previously found DIs. A simple call to a

SAT solver at this point returns a correct key assignment. If the SAT solver does not return

a valid key, it means the obfuscation, locking, or camouflaging technique is invalid. Note

that the SAT attack in each iteration, as explained in Algorithm 1 and illustrated in Fig.

2.7, reduces the SCK by constraining the SATC with new clauses added to the SCKVC and

LCAC. But it does not explicitly check to find the keys in SCK.
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Chapter 3: Benchmarking the Capabilities and Limitations

of SAT Solvers in Defeating Obfuscation Schemes

Today, many off-the-shelf SAT solvers with various capabilities are freely and openly avail-

able, and each year many new and more capable solutions are being developed. Some of

the most efficient and most powerful SAT solvers are the winners of the International SAT

competition [56], where solvers participating in the competition are required to test the

performance of the proposed SAT solvers on a large number of SAT problems in various

categories. Different SAT solutions have offered widely varying performance dealing with

various SAT problems, illustrating that the choice of a SAT solver and its underlying fea-

tures could have a significant impact on the solver’s success and also on the time it takes

to solve a specific problem. In addition, different SAT solvers require various amounts of

memory resources, and assuming powerful SAT solvers may perform extremely poorly or

fail to find the solution for larger benchmarks, even if they may outperform other SAT

solvers for solving a large number of small SAT problems. In this chapter, we investigate

the limitations and capabilities of different classes of SAT solvers when specifically dealing

with the problem of circuit obfuscation.

3.1 Evaluated SAT Solvers and Obfuscation Techniques

The selected SAT solvers and obfuscation schemes are described next.

3.1.1 Studied SAT Solvers

MiniSat

This solver [53] is developed as a modifiable SAT solver with conflict-driven backtracking,

watched literals and dynamic variable ordering. Most of the later SAT solvers are a modified
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version of this solver. It could be used as a baseline for evaluating the effectiveness of added

features in other solvers for obfuscated circuit benchmarks.

Glucose

Glucose [54] is an extension of MiniSat code with a special focus on removing useless clauses

as soon as possible and a new restart scheme. It uses the idea of Literal Block Distance

(LBD) to estimate the quality of learned clauses. Other SAT solvers incorporated its restart

policies. This solver adapts itself according to four predefined outlier benchmark character-

istics, but in none of the tested benchmarks, default strategy has changed.

Lingeling

Lingeling [55] is based on the idea of interleaving search and pre-processing. It uses various

techniques to reduce the search space. Binary and ternary clauses are stored separately

from large clauses. Large clauses are kept using literal stacks and references to them are

simplified from pointers to stack position. Binary and ternary clauses are kept in occurrence

lists. Occurrence lists are defined using stacks and are referenced by stack position. It also

uses a modified version of restart mechanism used in Glucose. Number of variables and

clauses are also monitored during execution and the number of learned clauses is controlled

using their variance.

Maple (MiniSat/Glucose)

Maple SAT variants [57] use a new branching heuristic in place of Variable State Indepen-

dent Decaying Sum (VSIDS) called Learning Branching Heuristic (LRB). Two variants of

MapleSat are MapleMiniSat and MapleGlucose, respectively based on MiniSat and Glucose.

MapleGlucose uses LRB for 2500 seconds of the execution, and then switches to VSIDS. In

MapleMiniSat, VSIDS is replaced with LRB.
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CryptoMiniSat

CMSAT or CryptoMiniSat [58] is a SAT solver that compiled from SatELite, PrecoSat,

Glucose and MiniSat features. It has special mechanisms for XOR clause handling and

separates watch lists for binary clauses. It can detect distinct sub-problems in clause list

and try to solve them with sub-solvers.

3.1.2 Studied Obfuscation Techniques

A random obfuscation scheme was proposed by Roy et al. in [30]. In this scheme, which

is one of the earliest work on obfuscation, the XOR/XNOR gates are randomly inserted

in the netlist. We refer to this obfuscation as rnd. A major weakness of this scheme was

the ability of an attacker to sensitize the circuit, by application of carefully selected inputs,

and to propagate the obfuscation keys to the primary outputs of the circuit. Rajendran et

al. [31] proposed a more sophisticated obfuscation mechanism to avoid such sensitization

attacks by preventing insertion of isolated and mutable key-gates. We refer to this scheme

as dac12. An important metric in logic obfuscation is increasing the output corruption

when a wrong key is used. Rajendran et al. [59] proposed an obfuscation method that uses

fault propagation analysis to maximize Hamming distance between correct and incorrect

outputs when attacker applies a wrong key. They proposed two variants of their obfuscation

technique based on using XOR and MUX gates. We refer to these obfuscation schemes as

toc13xor and toc13mux. Wires with low controllability are susceptible to Trojan insertion.

To obfuscate the degree of controllability of wires in a netlist, in [60] Dupuis et al. tried

to minimize the wires with low controllability. This was achieved by inserting AND/OR

gates attempting to balance the signal probabilities. We refer to this obfuscation method

as iolts14.
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Figure 3.1: The difficulty of investigated obfuscation solutions across all SAT solvers. The execution time
reported is the sum of the execution times of all SAT solvers for finding the key at each reported obfuscation
overhead percentage point.

3.2 Experimental Results

3.2.1 Benchmarking Platform

For benchmarking of selected SAT solvers, we used a farm of 20 Dell Latitude-7010 desktops

equipped with Intel Core-i5 processor and 8GB of RAM. For fair comparison, and to reduce

the impact of of the operating system background processes, we dedicated one machine

to each SAT solver at a time, and installed Ubuntu Server 16.04.3 LTS operating system

in shell mode. We used the ISCAS-85 and MCNC benchmark suites in our study and

obfuscated each benchmark with {1%, 2%, 3%, 5%, 10% & 25%} area overhead. To account

for run-to-run variation in performance, we ran the SAT solver 15 times for each obfuscated

benchmark.

3.2.2 Results

Fig. 3.1 illustrates the difficulty of defeating each obfuscation method across all SAT solvers.

To generate this graph, the execution times for finding the keys to all obfuscated benchmarks

are added together at each obfuscation overhead percentage point. The figure illustrates

that the complexity of benchmarks obfuscated by dac12 is considerably higher than that

for all other investigated obfuscation schemes. We should also note that the time needed
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Figure 3.2: Total execution time of each SAT solver for finding the correct key for all benchmarks and all
obfuscation schemes except dac12 as a measure of solver strength for low-to-mid complexity problems.

for obfuscating a design using the dac12 methodology is considerably longer than the time

required by earlier obfuscation methods. The simulation results confirm that increasing the

controllability of internal signals, as done in iolts14, or increasing the output corruption, as

implemented in toc13, significantly reduces the strength of obfuscation scheme against SAT

attacks. Hence, obfuscation schemes that produce the lowest possible output corruption,

or reduce the controllability of internal signals pose a harder problem for SAT solvers.

However, please note that the aforementioned options for making the obfuscation problem

harder for SAT solvers is completely against the reasons why these obfuscation schemes were

introduced in the first place (high corruption for higher protection, and high controllability

for Trojan prevention).

For the rest of this chapter, we separate the discussion of dac12 and the other investi-

gated benchmarks as, depending on the percentage area overhead used for obfuscation, they

represent two groups of low-to-mid and mid-to-high complexity SAT problems. Note that

we have not used the SAT-hard obfuscation schemes such as SARLock [15] for two reasons.

First, they are prone to a simpler SPS attack for detection and removal of key-forming-

cones. Second, to study the effectiveness of SAT solvers, we deliberately chose to work with

medium to semi-difficult problems that are still solvable by SAT solvers in a reasonable

time, so that the execution time of SAT solvers is a measure of their efficiency. Otherwise,
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Figure 3.3: The execution time of SAT solvers for finding the correct key for all dac12 obfuscated benchmarks
as a measure of solver strength for mid-to-high complexity problems.

if the operation of SAT solvers is reduced to brute-force attacks by working on a non-SAT

or extreme SAT-hard problems, the execution time of all SAT solvers will be similar, as

they will run until they are timed out, or they exhaustively try all possible inputs, thus

reducing the SAT solver to a brute-force depth first search solver.

Fig. 3.2 (left) illustrates the ability of SAT solvers in defeating the obfuscation scheme

across all low-complexity obfuscation schemes (all obfuscation methods except dac12). As

illustrated in this figure, the relationship between execution time and area overhead is

exponential. However, note that the execution time grows at a very different pace for

different SAT solvers, leading to a significant difference in runtime at higher obfuscation

percentages. This is illustrated in Fig. 3.2 (right), where the runtime of SAT solvers under

study, benchmarked at 25%, is plotted. As shown in this figure, MapleGlucose, although not

the best SAT solver at smaller percentages, outperforms all other solvers by a considerable

margin for high percentages, to the point that its runtime is about 3x smaller than that

of CryptoMiniSat. Fig. 3.3 illustrates the ability of investigated SAT solvers to find the

key for the netlists obfuscated using dac12. As the obfuscation complexity increases, the

runtime of SAT solvers widely varies. In this experiment, a 24-hour limit was imposed on

the SAT solvers to break the obfuscated benchmarks. MapleGlucose outperformed all other
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Figure 3.4: Memory usage of each SAT solver across all benchmarks for each obfuscation percentage point
as a measure of solver efficiency.

SAT solvers in this experiment.

Fig. 3.4 illustrates the peak of the memory usage for each SAT solver across all bench-

marks and at each obfuscation area overhead percentage point. As illustrated in this figure,

Lingeling has the lowest memory requirements across all SAT solvers. Hence, it is the most

efficient solver in a memory constrained environment, or when the size and percentage of

obfuscation considerably increases. As illustrated in Fig. 3.2, Lingeling is also the fastest

solver at small obfuscation percentages. At the same time, the CryptoMiniSat is the most

memory demanding solver across all obfuscation overheads.

In our study, on average, dac12 produced the hardest obfuscation problems for all in-

vestigated SAT solvers. However, when it comes to individual benchmarks, we found a few

exceptions to this finding, which prevented us from generalizing the result. For example,

as illustrated in Fig. 3.5, the total execution time of all SAT solvers for finding keys to

benchmarks C2670 and C3540 (being a part of the ISCAS-85 benchmark suite) is com-

pared. The toc13xor obfuscation in circuit C3540 produces a much harder problem for SAT

solvers across different obfuscation overheads when compared to dac12, whereas in C2670

the behavior is reversed. Hence, the netlist characteristic (number of inputs, number of

gates, connectivity, topology, number of outputs) plays a significant role in the strength of

the applied obfuscation, suggesting the use of hybrid obfuscation methods to defend various
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netlists.

3.3 Discussion and Takeaways

When it comes to finding keys for a k-obfuscated circuit, the choice of the best SAT solver

depends on the netlist characteristics (number of inputs, number of gates, connectivity,

topology, number of outputs) and the level of difficulty of implemented obfuscation methods

and the available resources of the system executing the SAT solver.

Across the studied solvers, Lingeling provides acceptable performance for small k-obfuscation

problems and has the lowest overall memory demand. Our study reveals that Lingeling is

best suited for attacking small to midsize obfuscation problems, considering its shorter ex-

ecution time for these problems, or for attacking extremely large obfuscated circuits, due

to its memory efficiency in cases when other solvers become memory-bounded and thus

useless. The memory efficiency of Lingeling is the result of a special implementation of data

references for 64-bit machines with a specialized memory allocator and garbage collector.

MapleGlucose, a variation of MapleSat, although not as efficient as Lingeling at small to

midsize k-obfuscation problems, still provides the acceptably-good performance. However,
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in terms of runtime, it significantly outperforms other solvers for large and more difficult k-

obfuscation problems. Our investigation revealed that the hybrid branching heuristic used

in MapleGlucose proved to be its most useful feature for reducing the solver’s execution

time. The secondary feature that was observed to be helpful in reducing the MapleGlucose

execution time is using the restart policies in Glucose solver. MapleGlucose, however, may

not be suited for extremely large problems, as it may fail to execute in a memory-bounded

environment, as its memory demands grow faster than for Lingeling.

Our study revealed that the CryptoMiniSat has the worst performance for k-obfuscation,

both in terms of execution time, and memory efficiency. CryptoMiniSat incorporates many

interesting features and has proven to be powerful, especially for problems that could be

partitioned and solved by separate solvers, but the added features do not help with the

efficiency of the solver to deal with k-obfuscation problems.

We experimentally observed that, although different SAT solvers’ execution times for a

given k-obfuscation problems widely vary, their runtime tracks the obfuscation problems’

difficulty. Meaning, if a problem is made more challenging for one solver, it becomes more

challenging for all solvers. However, such relationship is not linear. This was especially

observed in dealing with the dac12 obfuscation method. Meaning, if a k-obfuscation problem

is hardened and SAT solver’s execution time is doubled, the problem may cause a much

higher or much lower increase in the execution time for another solver. Hence, the results

of one solver for a given k-obfuscation cannot be generalized across all SAT solvers.

Across various k-obfuscation methods studied in this chapter, dac12 proved to be gen-

erally the most difficult. The learned conflict clauses for a dac12 k-obfuscated circuit are

usually less constraining as they rely on a larger number of literals. This provides us with

a hint to design harder obfuscation problems by exploiting the SAT solver’s clause learning

behavior and enforcing mechanisms to increase the number of literals in the learned conflict

clauses. Such a defense not only reduces the solver’s ability to quickly prune the search

space but also increases the memory requirements of the solver for keeping longer clauses.

This leads to a faster increase in the size of less effective learned clauses and could degrade
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the solver in two different ways: (1) The solver memory requirement is pushed towards the

system memory bound, (2) the solver’s ability to shrink the size of learned clauses based

on identification of shorter and more effective (more pruning) clauses is reduced.

3.4 Conclusion

Our investigation revealed that the Glucose and Lingeling solvers are best suited for small

to midsize k-obfuscation problems, while MapleGlucose provides the best execution time for

large k-obfuscation problems. When dealing with extremely large k-obfuscation problems,

Lingeling again becomes the best choice due to its efficient and less memory demanding

database implementation. In terms of testing the hardness of k-obfuscation methods, es-

pecially for mid-to-hard size problems, we observed that the increase in the k-obfuscation

difficulty affects the runtime of each solver quite differently. Hence, although the increase

in difficulty could be verified by one SAT solver, a pace of the increase in difficulty is depen-

dent on the choice of a SAT solver and the results from one solver cannot be generalized.

Finally, from a defender’s perspective, the results of this benchmarking study suggest that

targeting the clause-learning process by means of k-obfuscation, to increase the size of each

learned conflict clause, directly affects the effectiveness of SAT solvers in pruning the search

space and is a possible promising area for further investigation.
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Chapter 4: SAT-hard Cyclic Logic Obfuscation

Cyclic obfuscation [32] is an approach that was considered as a defense mechanism against

SAT attacks. However, this technique was later broken by CycSAT attack [61]. CycSAT

added a pre-processing step to the original SAT attack for detection and avoidance of cycles

in the netlist before deploying an SAT attack. In this chapter, we illustrate that the pre-

processing step of CycSAT attack has to process a cycle avoidance condition for every cycle

in the netlist, otherwise, the subsequent SAT attack could get stuck in an infinite loop or

returns UNSAT. Hence, the runtime of the pre-processing step is linearly related to the

number of cycles in a netlist. Besides, we illustrate that the generation of a cycle avoidance

clause for a netlist of cyclic Boolean nature is far more time consuming than an acyclic

Boolean logic.

From this observation, we first propose several mechanisms for cyclification of a non-

cyclic Boolean netlist. Then, we propose two design techniques by which a linear increase

in the number of inserted feedbacks in a netlist would exponentially increase the number of

generated cycles. Since a successful SAT attack on a cyclic circuit requires the generation

of a per-cycle avoidance clause and considering that our proposed techniques make the

time it takes to generate such avoidance clauses an exponential function of the number of

inserted feedbacks, CycSAT attack faces exponential runtime at its processing step. Hence,

when deploying CycSAT, the complexity of the pre-processing of the resulting cyclic netlist

goes beyond a reasonable time limit. On the other hand, skipping the prepossessing result

in an unsuccessful SAT attack. Hence, cyclic obfuscation, when constructed using the

methodology proposed in this chapter, proves to be a strong defense against the SAT and

CycSAT attack.
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4.1 Previous Cyclic Methods

A method that could render SAT solvers ineffective is to invalidate the acyclic nature of

netlist by using cyclic logic obfuscation. Cyclic logic obfuscation was first proposed in [32]

whereby introducing feedbacks in the netlist, the netlist is no longer a Directed Acyclic

Graph (DAG). In their approach, each intentionally created cycle had more than one way to

be opened, making such cycle irreducible by structural analysis, claiming that the existence

of such a cycle breaks the original SAT attack in [11,12].

Attacks previously proposed for breaking logic locking solutions are not effective on

cyclically obfuscated circuits. The brute-force attack on obfuscated circuits (even those that

are not SAT-hard) will face exponential difficulty. The sensitization attack would not work

on cyclic circuits since key values control the multiplexers’ select line and the select values

can not be sensitized to output pins. The pure SAT attack does not work on cyclic circuits as

cycles could either trap the SAT solver or make it exit with an incorrect key, a problem that

also occurs in approximate SAT attacks (i.e., AppSAT); the approximate attacks address the

issue of separating the keys between SAT-hard and conventional obfuscation. Considering

that cyclic circuits trap the SAT solver, this group of attack is also would not work. Removal

and SPS attacks are aimed at detecting and removing point functions which are used as

a means of building SAT hard solutions in the DAG-based network. Considering that the

cyclic obfuscation does not use a point function, SPS and removal attacks are not applicable.

Cyclic obfuscation was later broken with introduction of cyclic (cycle-aware) attacks

in [61–63]. CycSAT was the first cyclic attack, details of which are shortly discussed. Later,

Chen [62] introduced an enhanced SAT-attack that considers structural cycles. From a

functional standpoint, this attack acts similar to the structural attack in CycSAT.

In CycSAT attack, before invoking the SAT solver, the netlist is checked for key condi-

tions that may result in the creation of cycles. These conditions are translated to a set of

cycle avoidance clauses and are added to the list of clauses that represent the circuit SAT

problem. The Algorithm 2 illustrates the flow of utilizing the cycle avoidance-clauses in
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Algorithm 2 CycSAT Attack on Cyclic Obfuscated Circuits

1: Find a set of feedback signals (w0, w1, ...wm);
2: Compute ”no structural path” formulas F (w0, w

′
0), ..., F (wm, w

′
m);

3: NC(K) = ∧mi=0F (wi, w
′
i)

4: C(X,K, Y ) = C(X,K, Y ) ∧NC(K)
5: SATcircuit = C(X,K1, Y1) ∧ C(X,K2, Y2) ∧ (Y1 6= Y2);
6: while ((XDI ,K1,K2)← SATF (SATcircuit) = T ) do
7: Yf ← CBlackBox(XDI);

8: DIV C = DIV C ∧ C(XDI ,K1, Yf ) ∧ C(XDI ,K2, Yf );
9: SATcircuit = SATcircuit ∧DIV C;

10: KeyGenCircuit = DIV C ∧ (K1 = K2)
11: Key ← SATF (KeyGenCircuit)

CycSAT.

In this algorithm, (w0, w1, ...wm) is a collection of feedback signals whose break will

make the encrypted circuit acyclic and w′i is a signal that feeds to wi before the break. The

function F (wi, j) is a function that construct the condition for having no structural path

between signal wi to signal j. The F (wi, j) is computed by starting from a feedback signal

wi and constructs a string of clauses that satisfy the following condition while traversing a

cycle:

F (wi, j) =
∧

l∈NK(j)

F (wi, l) ∨ bk(l, j) (4.1)

In this function, the NK(j) are the non-key inputs of signal j, and bk(l, j) is the con-

dition on the key assuring key does not affect j. This function is initiated with condition

F (wi, wi) = 0 and finishes after completing the loop. In this case, the condition for no

structural path is tested on all discovered feedback signals in line 3 of the algorithm.

Subsequently, Rezaie et al. proposed two solutions [64, 65] to counter CycSAT attack.

In the first solution [64], by adding hard cycles to the original netlist, they create a situation

that any traversal of the feedback signals will miss a cycle. Also, for this method, dependent

cycles are added to the original circuit such that two nested cycles should be closed to

create a working circuit. In the second solution [65], a method is introduced to create

cycles that behave non-combinational in unreachable states. However, in the next section,
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after providing further detail on these locking mechanisms, we illustrate that these solutions

are still vulnerable and by making a simple modification to CycSAT attack, they could be

easily broken.

Finding all cycles in a cyclic circuit (a requirement for CycSAT attack) is not an easy

task. Recently, Shen et al. introduced a new attack called BeSAT [63]. Authors of this

attack argue that “it is impossible to capture all cycles in any graph with any set of feedback

signals as done in CycSAT algorithm”. To address this problem, BeSAT first adds “no

structural path” (CycSAT-I) conditions for a “set of feedback signals”. This is similar to

the pre-processing step in CycSAT attack. Then, it performs SAT while monitoring the

behavior of the attack: during the DIP generation process, due to the missing NC clauses,

it is possible that solving the circuit-SAT problem results in repeated DIPs. Under the

original SAT attack, this could trap the attack in an infinite loop. In BeSAT, every new

DIP is compared with previous DIPs and if it was generated before, the algorithm uses it to

determine the stateful keyKs. BeSAT compares the output of the new DIP for the two found

keys with the oracle circuit. The output of the stateful key disagrees with the oracle circuit.

Then, the found stateful key will be explicitly banned by adding (K1 6= Ks ∧ K2 6= Ks)

condition to the circuit-SAT problem. After finding all DIPs and banning all stateful keys,

BeSAT begins pruning oscillating keys by employing ternary SAT.

4.2 Analyzing the Weaknesses of Cyclic Obfuscation

In this section, we first show that the nested cycles could not guarantee a secure cyclic

obfuscation. Furthermore, we propose a new attack mechanism to break the hard cycles.

Then, we investigate the weaknesses of CycSAT attack, according to which we propose a

new mechanism for cyclic obfuscation.

4.2.1 Breaking Nested Cycles

An obfuscation method that was previously proposed to counter CycSAT attack is the use

of nested cycles [64]. In this method, the original circuit is augmented with a pair of nested
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Figure 4.1: Cyclification with dependent cycles: (a) Original circuit, (b) cyclified with an auxiliary-circuit

that acts as a buffer, (c) Obfuscated auxiliary circuit, (d) auxiliary circuit with broken outer cycle, (e)
auxiliary circuit with broken inner cycle.

cycles such that for correct operation, both cycles should be closed. An example of such

a transformation is shown in Fig. 4.1.b for the original circuit in Fig. 4.1.a. After the

transformation, the nested cycles are a needed and valid part of the original circuit and

attempting to remove one or both cycles will affect the correct functionality of the circuit.

A designer may try to obfuscate these cycles using multiplexers as depicted in Fig. 4.1.c.

Direct application of structural CycSAT attack, as claimed by authors in [64] results in

breaking each of nested cycles separately, creating an oscillating and un-SAT-isfiable circuit.

However, as claimed earlier, we can still deploy a successful attack against this variant of

cyclic obfuscation using a simple modification to the pre-processing step of CycSAT attack.

For this purpose, during the pre-processing step, in addition to composing the ”no sensi-

tizable path” clauses (as proposed in [61]), we compose and include a new set of clauses that

consider ”reducibility” as an alternative option to opening the loops. In this picture, the

cycle could either be opened (using no sensitizable path clauses) or could be reduced using
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Algorithm 3 Generating RC Clauses for Dependent Cycles

1: procedure reduction attack(circuit K)
2: Find and sort all cycles in K by their length C = (c0, c1, ...cm);
3: for all ci in C do
4: RC(ci) = φ;

5: for all ci in C do
6: if IS COMB CYCLE(ci) == False then;
7: RC(ci) = RC(ci) ∨ opened(ci);
8: while cj ← next outer cycle do
9: sub circuit← sub-circuit of closed ci and cj ;

10: if IS COMB CYCLE(sub circuit) then
11: RC(ci) = RC(ci) ∨ (closed(ci) ∧ closed(cj));

12: RC(cj) = RC(cj) ∨ (closed(ci) ∧ closed(cj));

13: RC(K) = RC(K) ∧ RC(ci);

1: procedure is comb cycle(sub circuit S)
2: r, r′ ← input and output of auxiliary-circuit;
3: if SAT (Sopened ∧ (r 6= r′)) then
4: return False;
5: else
6: return True;

newly added reducible clauses. The reducible clauses are defined for possible dependent

cycles that implement specific functions between their inputs and outputs. These clauses

will be generated for each cycle by pairing it with matching outer cycles. The process of

generating the reducible clauses is captured in the Algorithm 3. The reduction attack pro-

cedure, first, sorts all cycles according to their length and then begins processing them from

the shortest to the longest cycle. For each cycle, it checks if the cycle is combinational if it is

not, it tries to find an outer cycle that makes its behavior combinational. In this algorithm,

the IS COMB CY CLE() validates if a sub-circuit containing a cycle is combinational or

not. For this purpose, the function disconnects the cycles by breaking the feedback into

two disconnected wire segments r and r′. Then by using a SAT solver, it checks if there

are any values for the wires that r 6= r′. If such a scenario was not found, it classifies the

sub-circuit as a combinational circuit. Otherwise, a non-combinational circuit, according

to which the necessary clauses are generated.

This algorithm could be applied to any netlist obfuscated using the auxiliary-circuit

such as the one in Fig. 4.1.c. This circuit has two cycles c1 ={X2} and c2 ={X1, X2}.
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Figure 4.2: An example for a circuit obfuscated with a hard cycle. Added Key-gates are shown in red, and
the original wires are shown with dotted lines.

The smallest cycle c1 is oscillating and oscillates when X1 output is 1 as shown in Fig.

4.1.d. By considering this cycle as closed and pairing it with its only outer cycle c2 we

will have RC(c1) = k′0 ∨ (k0 ∧ k1). The outer cycle c2 as shown in Fig. 4.1.e is also non-

combinational and the reducible clauses will be RC(c2) = k′1 ∨ (k0 ∧ k1). Thus, by closing

both cycles, as shown in Fig. 4.1.b it can be derived that r′ = r ⊕ r′ ⊕ r′ = r and the

circuit does act as a buffer with no oscillation. The reducible clause for this circuit will be

RC(K) = (k′0 ∨ (k0 ∧ k1)) ∧ (k′1 ∨ (k0 ∧ k1)) for closing both cycles or opening both cycles

since non of them has combinational behavior independently.

It should be noted that these auxiliary-circuits could be in the form of partially inter-

cepted cycles, where more than one outer cycle is partially intercepted with another outer

cycle. We acknowledge that for partially intercepted cycles, our proposed algorithm would

not work, and an alternative algorithm that generates the NC condition by considering the

partially intercepted combinational cycles is required.

4.2.2 Breaking Hard Cycles

Hard cycles were proposed in [64] to create a situation that any traversal of feedback signals

will miss a cycle. An example is shown in Fig. 4.2, where the original circuit consists of

gates U, V, W, and Z. In the obfuscated netlist, the gate U is connected to V and Z, and W

is connected to Z. By creating a hard cycle, new connections using AND gates have been

added. These new wires connect (V, W), (W, U) and (Z, U) and shown with thicker lines.
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Figure 4.3: (a) Original circuit (b) Flow diagram of the netlist (c) Obfuscated circuit.

Feedback sets for the new circuit are {V, W} and {Z, U}. Application of CycSAT attack

on this circuit misses the larger cycle {U, V, W, Z, U}, and the attack fails.

Hard cycles could be easily broken by modifying the mechanisms used for the compu-

tation of F (wi, j). The F (wi, j) could be computed in two ways: (i) traversing through

a cycle starting from wi until wi is visited again and ignoring the cycle break conditions

imposed by fanins of other nested cycles; or (ii) traversing through one cycle and adding the

cycle break conditions imposed by other nested cycle. As shown for the example in Fig. 4.2

and the next example, the first choice results in missing some ”no cycle” (NC) conditions,

leaving cycles in a design that could break the subsequent SAT attack. By choosing the

condition (ii), we show that it is possible to build the NC condition by visiting all cycles in

the netlist without missing any of the hard cycles. To better illustrate this concept, let us

provide a simple example.

For the obfuscated netlist in Fig. 4.3 and a topological sort from gate A, the edge E and

F are identified as feedbacks. When following rule (i), and after building the NC condition

we will have:
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1: F (F,A) = F (F, F ) ∨ bk(k1) = k′1
2: F (F, F ′) = F (F,A) ∨ bk(k2) = k′1 ∨ k2
3: F (E,C) = F (E,E) ∨ bk(k2) = k′2
4: F (E,E′) = F (E,C) ∨ bk(k3) = k′2 ∨ k′3
5: NC = F (F, F ′) ∧ F (E,E′) = (k′1 ∨ k2) ∧ (k′2 ∨ k′3)

The problem with this assignment is when (k1, k2, k3) = (1, 1, 0). In this case, the NC

condition is satisfied, however, the larger nested cycle {E,F,G,E} is not broken. Hence,

the NC condition would not resolve the cycles if nested or multi-path scenarios exist. In

this case, if the wrong key (k1, k2, k3) = (1, 1, 0) is chosen by SAT solver, it will enter a

loop. Depending on whether the cycle is oscillating or stateful, the SAT solver will either be

trapped in an infinite loop or will exit UNSAT. Note that this infinite loop happens during

the execution of the SAT solver and not during the topological sort used in the original

SAT attack proposed in [11,12].

To avoid the problem imposed by rule (i), we need to follow the rule (ii) where the key

contribution of all fanins in all stages are considered. When using rule (ii) for building the

NC condition for the same circuit we have:

1: F (F,A) = F (F, F ) ∨ bk(k1) = k′1
2: F (F, F ′) = (F (F,A) ∨ bk(k2)) ∧ (F (F,E) ∨ bk(k2)) = (k′1 ∨ k2) ∧ (k′1 ∨ k3 ∨ k′2)
3: F (E,C) = F (E,E) ∨ bk(k2) = k′2
4: F (E,E′) = (F (E,C) ∨ bk(k3)) ∧ (F (E,G) ∨ bk(k3)) = (k′2 ∨ k′3) ∧ (k′2 ∨ k′1 ∨ k3)
5: NC = F (C,C ′) ∧ F (E,E′) = (k′2 ∨ k′3) ∧ (k′1 ∨ k′2 ∨ k3) ∧ (k′1 ∨ k2).

By following the rule (ii), the previous assignment of keys (k1, k2, k3) = (1, 1, 0) will

no longer be a valid assignment, preventing the SAT solver from being stuck or exiting

with a wrong key. However, in this case, all cycles in the design have to be traversed and

conditioned. As a matter of fact, given the way the NC is formulated in [61], to derive the

”no structural path” condition, some of the combinational cycles (such as {E,F,G,E} in

Fig. 4.3) have been visited more than once. Hence, the number of times the key conditions

have to be generated is even larger than the number of cycles in a netlist.

The problem of visiting nested cycles more than once in CycSAT attack could be resolved

by a slight modification to CycSAT pre-processing step. In the modified attack, instead
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of applying rule (ii) on one-cycle-per feedback, we could apply the rule (i) on all cycles.

It is intuitive to see that both approaches produce the same NC clauses. For example,

in Fig. 4.3 when following condition (i), and traversing cycle {E,F,G,E}, the condition

(k′1 ∨ k′2 ∨ k3) is generated. Hence, by ANDing the generated condition to the two clauses

generated by applying the rule (i), the NC condition of rule (ii) is generated. However, in

this case, the combinational cycle {E,F,G,E} is only visited once. Even by considering

the improvement suggested in CycSAT formulation, it still requires visiting all cycles in a

netlist to compose the NC clauses. This necessity, as described in the next section, becomes

one of the key features which is used in this chapter to break CycSAT attack.

A different method of introducing complexity is by eliminating the DAG nature of

the original netlist and by transforming it into a Boolean cyclic function, which could be

represented using a Directed Cyclic Graph (DCG), before subjecting it to cyclic obfuscation.

If the original netlist is not a DAG, CycSAT pre-processing step has to build the NC

condition by checking for ”no sensitizable path” condition [61], instead of ”no structural

path” condition. The no sensitizable path condition from [61] is recited in equation 4.2:

F (wi, j) =
∧

l∈fanin(j)

F (wi, l) ∨ ns(l, j) (4.2)

The ”no sensitizable path” condition generates a clause for each multi-input gate in a

cycle. As a result, NC clauses are much longer and much weaker. Hence, adding even a

small number of feedbacks to such circuits (that have valid Boolean cycles) for obfuscation,

will significantly increase the size of the circuit-SAT problem, as the ”no sensitizable path”

condition has to be generated for all cycles. To illustrate the weaker and longer nature of

the NC clauses, the ”no sensitizable path condition” for the circuit in Fig. 4.3 is constructed

below:
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1: F (F,A) = F (F, F ) ∨ ns(F,A) = k′1
2: F (F,B) = F (F,A) ∨ ns(A,B) = k′1 ∨ x′2
3: F (F, F ′) = (F (F,B)∨ns(B,F ′))∧ (F (F,E)∨ns(E,F ′)) = (k′1∨x′2∨k2)∧ (k′1∨k3∨k′2)
4: F (E,C) = F (E,E) ∨ ns(E,C) = k′2
5: F (E,D) = F (E,C) ∨ ns(C,D) = k′2
6: F (E,E′) = (F (E,D)∨ns(D,E′))∧(F (E,G)∨ns(G,E′)) = (k′2∨k′3)∧(k′2∨k′1∨x′2∨k3)
7: NC = F (F, F ′)∧F (E,E′) = (k′1∨x′2∨k2)∧ (k′1∨k3∨k′2)∧ (k′2∨k′3)∧ (k′2∨k′1∨x′2∨k3)

4.3 SRCLock: The Proposed Cyclic Obfuscation

The issue with the original method of generating cycle avoidance (NC) clauses using CycSAT

was shown and discussed in section 4.1 using two simple examples in which traversal of

wires based on a single topological sort of gates resulted in a missing cycle. When using

the original CycSAT, because of the missing NC clauses for such cycles and due to the

randomness of assigned key and input values by the SAT solver, the SAT attack can be stuck

in an infinite loop or exit with a wrong key. The possibility of facing an oscillating or stateful

cycle greatly increases as the number of generated cycles in the design increases to a point

that majority of key-space (to be tested by SAT solver) could result in oscillating or stateful

cycles, vanishing the chances of a successful attack to unreasonably small probability. On

the other hand, attacks such as BeSAT [63] that can track the behavior of the SAT attack at

runtime, could detect oscillating or stateful scenarios (due to missing cycles in pre-processing

time) and eliminate the incorrect key. However, at runtime, the BeSAT eliminates one key

at a time. Hence, it is successful if such key combinations are small. In other words, the

BeSAT attack rune time is linearly dependent on the number of such keys. When such key

combinations is (exponentially) large (which is the case in our to-be-proposed obfuscation

solution), the BeSAT attack’s runtime becomes unacceptably large.

TNC =

N∑
i=1

tNC | N = 2m (4.3)

CycSAT pre-processing time is characterized in equation 4.3. As illustrated, the process-

ing time is linearly related to the number of discovered cycles N and the time for composing
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the NC condition tNC per cycle. Our approach for breaking CycSAT is to exponentially

increase the time needed for composing the NC condition in the pre-processing step of

CycSAT beyond acceptable. This is achieved by exponentially increasing the number of

cycles N in a design with respect to the number of inserted feedbacks m, and increasing the

time required for processing each cycle (tNC) by forcing the pre-processing step to consider

the ”no sensitizable path” condition instead of ”no structural path” condition. Next, we

provide two solutions for building an exponential relation between the number of feedbacks

and the number of generated cycles, and three solutions for converting an acyclic circuit to

a valid cyclic circuit.

4.3.1 Exponentially increasing the number of cycles in a netlist

In order to exponentially increase the number of cycles in a given netlist with respect to

the number of inserted feedbacks, we introduce two approaches: (1) building Super Cycles

(SC) and, (2) building Logarithmic Feedback Networks (LFN).

Building Super Cycles (SC)

The process of building a SC is illustrated in Fig. 4.4. Before that, let us first define a Micro

Cycle (MC). A MC is a cycle created by following the cycle creation conditions adopted

from [32], which are recited below:

MC Condition 1: Any created cycle has to be non-reducible,

MC Condition 2: At least n ≥ 2 edges in each small cycle have to be removable.

A reducible cycle has a single entry point. Hence, the depth-first-search (DFS) traversal

of a netlist that only contains reducible cycles is unique. This allows the reducible cycles to

be easily opened by removing a unique set of feedback edges which can be found efficiently

[32]. By having multiple entries into each MC, the non-reducible condition is satisfied,

forcing an adversary to use CycSAT pre-processing step to generate the necessary cycle

avoidance clauses before invoking the SAT solver. In graph theory, a strongly connected

graph is defined as a graph with at least one path between any two pairs of its vertices.
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Figure 4.4: Building a Super Cycle from 7 gate MC. (a) A path segment containing 7 gates, (b) building a

Micro Cycle, (c) building a SC by strongly connecting multiple MCs.

adopting from this definition, in our solution, a SC is defined as a strongly connected graph

of MCs. To substantially increase the number of generated cycles, in the last step of SC

generation, the edge density of the generated strongly connected graph is increased, creating

additional paths between MCs. The process of building a SC is summarized in Algorithm 4.

Both approaches use a switch to create a direct or cross connection between two points

which is shown in Fig. 4.5. Switch inputs will be defined by SC and LFN methods and a

in1 in2in2 in1

sel

out1 out2

key
sel

Figure 4.5: Switch structure.
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Algorithm 4 Steps for building a Super Cycle

1: Construct MCs in the fanin of smallest possible number of primary outputs.
2: Strongly connect all generated MCs (this, as illustrated in Fig. 4.4.b, is done by creating

a two-way connection between each newly created MC, and the existing SC).
3: Select signals in MCs (A, B, C, D in Fig. 4.4.c) that are not used for SC connectivity

and provide a two way path from them to unused edges in other MCs or random signals
in their fanin cone.

single key input will determine connections between input and output.

In this algorithm, the requirement of generating the MCs in the fanin of the small-

est number of primary outputs increases the likelihood of shared and/or connecting edges

between created MCs. By having all MCs strongly connected, we create the possibility

of larger combinational cycles. And finally, adding the random connections, increase the

density of the edges in the strongly connected graph, increasing the number of resulting

cycles. In the results section, we illustrate that the number of created cycles, generated

from following these steps as described in Algorithm 4, becomes an exponential function of

the number of inserted feedbacks.

Lemma. The lower bound on the number of cycles created when using SC is 2m, when

m is the number of inserted feedbacks.

Informal Proof. The proposed SC method adds two paths (from and to paths) to connect

each new cycle to the existing SC. This way, the new cycle could be added or not added

to any of the previously existing cycles. Hence, the addition of a new cycle at least double

the number of potential cycles. Note that the number of connecting edges between the new

cycle and the existing cycle could be more than one, resulting in an increase in the number

of cycles with a much higher rate. From this discussion, after inserting m feedbacks and

connecting them, at least 2m cycles will be created. �

Building Logarithmic Feedback Networks (LFN)

In this method, as illustrated in Fig. 4.6.a, several logic paths (preferably from the fanin

cone of a single primary output) are selected. Then, by breaking a wire in the midpoint of

each logic path, we create two smaller logic segments. The signal entering and the signal
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exiting each half segment is marked as its start point (SP) and endpoint (EP) respectively.

Then, the SP and EP of multiple such logic path segments are used to build a logarithmic

switching network (e.g., Omega, Butterfly, Benes, or Banyan network). When connecting

M number of EPs to M number of SPs, for Ms of power of 2, we need M(1 + log2(M))

multiplexers for a logarithmic network. In this case, when the correct key is applied, the

switching network is configured correctly, otherwise, invalid connectivity obfuscates the

netlist functionality.

Lemma. The lower bound on the number of cycles when using LFN is
∑m

l=1

(
m
l

)
(l − 1)!,

when m is the number of inserted feedbacks and l is the cycle size divided by 2.

Informal Proof. The proposed LFN is a special case of a complete bipartite graph that

contains no odd cycles. Suppose that SEij indicates a vertex from SPi to EPj . Simi-

larly, ESij indicates a vertex from EPi to SPj . For l = 2, the cycles are all paths from

a SP to its corresponding EP and return path {SEii, ESii}. If we start from SPi, the

second visited node is its EP (EPi). Since each EP is connected to all SPs, for interme-

diate nodes, we have all permutations as alternative possible paths. Cycles with l = 2,

have no intermediate node. So, there are
(
m
1

)
0! cycles when l = 2. For l = 4, the cy-

cles are paths like {SEii, ESij , SEjj , ESji}. There is only one intermediate node in cy-

cles when l = 4 resulting in
(
m
2

)
1! cycles. Similarly, for l = 6, the cycles are paths like

{SEii, ESij , SEjj , ESjk, SEkk, ESki}. Since, we have two intermediate nodes, j and k, we

should consider their permutation as a new cycle, i.e. {SEii, ESik, SEkk, ESkj , SEjj , ESji}.

So, for l = 6, we have
(
m
3

)
2!. With similar relation, for l = 8, we have

(
m
4

)
3! cycles. We

can extend this relation to all cycles with different length. The summation of these cycles

indicates the number of cycles in our logarithmic network, which is
∑m

l=1

(
m
l

)
(l − 1)!. �

Note that
∑m

l=1

(
m
l

)
(l−1)! is the lower bound of the number of simple and nested cycles

created by using the logarithmic network. The number of paths from each SP to each EP

could be more than 1, and there are possibilities of having a connection between SPs and

EPs of the different paths in the original circuit, increasing the number of cycle possibilities
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Figure 4.6: Building a logarithmic feedback network in which the number of cycles exponentially increase
with the number of feedbacks.

to a far larger number. Based on the lower bound formula, the number of created cycles

is O(
∑m

l=1

(
m
l

)
(l − 1)!) ≤ O(m!) = O(mm). Hence, there exists an exponential relation

between the number of inserted feedbacks and the number of resulting cycles in the netlist.

4.3.2 Building Cyclic Boolean Functions

A Boolean function does not need to be acyclic. Furthermore, it is possible to reduce the

number of gates in a circuit if a function could be implemented in its acyclic form [66–69].

For example, the work in [69] presents an n-input 2n-output positive unate Boolean function

which can be realized with 2n two-input gates when feedback is used but requires 3n − 2

gates if the feedback is not used. Hence, cyclification of a circuit in addition to forcing

CycSAT pre-processing step to consider the ”no sensitizable path”, could also remedy the

area overhead of introducing new gates for cyclic obfuscation. To cyclify a netlist and to

increase the tNC in Equation 4.3, we suggest three approaches: (1) Template-based cyclic-

function mapping, (2) Input-dependency based cycle generation and, (3) Node-merging
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Figure 4.7: 3-input Rivest circuit implementing six functions.

cycle generation.

Template-based cyclic-function mapping

In this approach, many small cyclic Boolean circuits are collected as templates in our ob-

fuscation library. Then, a netlist is scanned for opportunities (with and without logic

manipulation) to replace a cluster of logic gates with such templates. An example of such

feedback template is the circuit introduced in [69] where a special case of it (for 3 inputs)

is illustrated in Fig. 4.7. To introduce cycles, the circuit could be modified to introduce

at least one of the possible functions in this circuit. The candidate logic cluster is then

replaced by the template. To prevent template scanning and removal attacks, in a subse-

quent camouflaging step (using the gate and route obfuscation) the template will be hidden.

Note that many such templates could be made [66–69], and by not knowing the template

type and the camouflaged technique used to hide the connection, an attacker has no prior

information to identify and remove these templates.

Input-dependency based cycle generation

This method explores the correlations between signals that share common primary inputs

in their fanin cone. Considering N such signals in an arbitrary stage of a DAG, some of

the 2N inputs may never occur. For example, when tracking 4 signals A, B, C, and D in

Fig. 4.8, we may find that ABCD = {0010} could not occur. A SAT solver could be used
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Figure 4.8: Input-dependency based cycle generation flow. Due to correlation of intermediate signals, certain
signal combinations may never occur.

for finding the non-occurring input scenarios; This process is illustrated in Fig. 4.8, where

the logic clusters L2 and L3 are removed, and the 4 signals are ANDed together such that

for a certain case, for example, ABCD = 0010, the output of AND gate is evaluated to 1.

Then, this circuit is given to a SAT solver to find a satisfying input assignment. If SAT

solver returns UNSAT, this combination of input is chosen since it would never happen,

otherwise, a different combination is checked.

In the next step, we use a sequential element and tie the discovered non-occurring input

scenario to the state preserving input of the sequential element. For example, by using an

SR-latch in Fig. 4.9.a, If SR = 11 doesn’t happen, the Qnext is the inverse of input S.

Hence, we can build a circuit that ties the discovered non-occurring input scenario to the

SR = 11. For example, let’s assume wires A, B, C and D have a non-occurring combination

ABCD = 0010 and these signals construct the signal Y = A+B+CD. Fig 4.9.c illustrates

the signal Y reconstructed when the non-occurring combination of the inputs is tied to SR

input of the latch. After generating the cyclic logic, to hide the correlation between input

signals, the wire selection is obfuscated. Finally, the SR-latch feedback is obfuscated using

a set of multiplexers. This assures that CycSAT can only generate the correct NC clauses if
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Figure 4.9: Input-dependency-based cyclification of a Boolean function. (a) SR-latch (b) original circuit

(c) cyclified circuit when ABCD = 0010 is non-occurring. (d) obfuscated cyclified circuit using additional
random inputs E,F,G,H and M .

the ”no sensitizable path” condition is processed, otherwise, it breaks the SR-latch feedback

and invalidates the netlist.

Node-merging based cycle generation

The third approach for cyclification of a netlist is based on the work in [66] where the

logic implication is used to identify cyclifiable structure candidates directly, or to create

them aggressively in circuits. At its core, the work in [66] introduces active combinational

feedback cycles by merging two nodes in the original DAG. To check the validity of the

generated cyclic netlist, they use a SAT-based algorithm and validate whether the formed

cycles are combinational or not.
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Algorithm 5 Timing Aware Cyclic Obfuscation

1: procedure switch insertion(int required paths, circuit K)
2: largest cone ← output port with largest cone;
3: b = BFS(largest cone);
4: while (number of inserted feedbacks < required paths) do
5: tail ← pop(b);
6: if (slack(tail) > delay of a keygate and tail not marked) then
7: path ← DFS on tail considering slacks;
8: mark path as selected in the circuit;
9: add feedback to the path;

10: update the circuit’s timing using STA/EDA;

11: for (each selected path) do
12: for (each gate in the path) do
13: if (slack(gate) > delay of a multiplexer) then
14: disconnect gate output;
15: insert multiplexer;
16: connect gate and multiplexer based on SC/LFN;
17: update circuit timing using STA/EDA;

4.4 Timing Aware Cyclic Obfuscation

During logic locking, each modification to the original netlist affects the timing character-

istics of the original circuit. A timing oblivious obfuscation solution could result in changes

to the delay of one or more timing critical path(s) (via insertion of key gates), leading to

a slower design. In this section, we argue that our proposed obfuscation solution could be

designed to be timing-aware, minimizing (or removing) the impact of obfuscation on circuit

timing. This can be achieved by incorporating a simple static timing analysis (STA) in our

obfuscation procedure.

Our proposed solution for timing-aware cyclic obfuscation is presented in Algorithm

5. Both SC and LFN methods (supported in this algorithm) require selection of non-

overlapping logic paths in the circuit for intertwined cycle creation. In our solution, pre-

sented in Algorithm 5, we find these non-overlapping logic paths in the fan-in cone (FIC)

of a single primary output. The reason for selecting the logic paths in the same FIC is to

take advantage of existing connections between selected logic sub-paths when one sub-path

is in the FIC of at least one of the gates in the other sub-path. This condition results in

the generation of many additional cycles, on top of those generated by LFN or SC. This is

46



G5

G6
G3

G1 G7

G4G2

G9

G8

Figure 4.10: Selected paths for cyclic obfuscation in an output cone.

because each feedback could create a cycle when combined with each of path forward edges.

After selection of a logic sub-path and before committing to the insertion of a new switch,

the netlist is assessed for timing violation. If there is no violation, the cycle is generated

and the slack of affected timing paths are updated. Finally, the logic gates in the selected

sub-path are marked as used, removing them from future searches.

Our proposed algorithm selects new logic paths in the FIC of the selected primary

output until there are no more viable sub-paths. The algorithm could be modified to

continue finding new paths by selecting the next primary output candidate that has the

largest number of un-used gates.

4.5 Experimental Results

In this section, we analyze the effectiveness of our proposed defense against SAT, CycSAT,

and BeSAT attacks. For finding cycles in a netlist (after cyclic obfuscation), we implemented

the cycle identification algorithm proposed in [70] using C++. Considering that the source

code for BeSAT was not openly available, we implemented the BeSAT attack based on

the description in [63] using Yices SAT solver [71]. Our computational platform is a Dell

PowerEdge R620 equipped with Intel Xeon E5-2670 and 64GB of RAM. We used ISCAS-

85 benchmarks listed and described in Table 4.1 to evaluate our solution and to compare

it with the prior work. The timeout limit in our experiments is set to 10 hours: If an

experiment does not conclude within the timeout limit, its table entry is marked as “t/o”.
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Table 4.1: Description of ISCAS-85 circuits used in this chapter.

Circuit #Gates #PIs #POs Circuit #Gates #PIs #POs Circuit #Gates #PIs #POs

c432 160 36 7 c1355 546 41 32 c3540 1669 50 22
c499 202 41 32 c1908 880 33 25 c5315 2307 178 123
c880 383 60 26 c2670 1269 233 140 c7552 3513 207 108

Table 4.2: The number of cycles reported during CycSAT attack. The exponential fitting function is in form

of c = 2mX .

Circuit N=1 N=2 N=3 N=5 N=10 N=15 m

c432 3,384 23,879 4.6 ∗ 105 NiS NiS NiS 6.3
c499 10 331 1528 1.4 ∗ 106 NiS NiS 4.1
c880 67 1,601 1,903 5.0 ∗ 106 t/o t/o 4.5
c1355 59 636 5.7 ∗ 105 1.9 ∗ 109 t/o t/o 6.2
c1908 13 294 12,594 1.3 ∗ 107 t/o t/o 4.8
c2670 273 1,570 8,912 2.9 ∗ 105 t/o t/o 3.6
c3540 1,215 5,991 8.7 ∗ 105 4.9 ∗ 108 t/o t/o 5.8
c5315 162 4,869 6,650 1.2 ∗ 109 t/o t/o 6.0
c7552 11 124 1,558 2.6 ∗ 105 1.2 ∗ 109 t/o 3.0

In an experiment, if the netlist is too small for insertion of the number of required feedbacks,

its table entry is marked as “Netlist is Small (NiS)”.

4.5.1 Exponential Growth in The Number of Cycles

Cyclification Using Super Cycles (SC)

The number of cycles created in ISCAS-85 benchmarks, when using N=1, 2, 3, 5, 10, and

15 MCs of size 7 (i.e., 7 gates in a cycle) for building a SC is reported in Table 4.2. Using

curve fitting techniques, the number of cycles in each netlist is also reported as a function

of the number of feedbacks X, in form of 2mX , in which m is the netlist-specific exponential

acceleration factor. The minimum bound for m (according to the discussion in section 4.3.1)

when using SC is one. However, as reported in Table 4.2, the value of m is usually far larger

than one, meaning there would be a far larger number of cycles than that expected from

the SC-imposed minimum bound.
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Table 4.3: Percentage of area overhead for SC creation when using different number of MCs (N) of length 7.

Circuit
N=1 N=2 N=3 N=5 N=10 N=15 N=20

Area Overhead Percentages (%)

c432 7.50 13.75 20.00 NiS NiS NiS NiS
c499 5.94 10.89 15.84 25.74 NiS NiS NiS
c880 3.13 5.74 8.36 13.58 26.63 39.69 52.74
c1355 2.20 4.03 5.86 9.52 18.68 27.84 37.00
c1908 1.36 2.50 3.64 5.91 11.59 17.27 22.95
c2670 0.95 1.73 2.52 4.10 8.04 11.98 15.92
c3540 0.72 1.32 1.92 3.12 6.11 9.11 12.10
c5315 0.52 0.95 1.39 2.25 4.42 6.59 8.76
c7552 0.34 0.63 0.91 1.48 2.90 4.33 5.75

As illustrated in Table 4.2, increasing the number of feedbacks exponentially increases

the number of cycles, such that with only 15 feedbacks, the cycles in none of the netlists

could be counted in 10-hour limit. Note that, the designer can exponentially increase

CycSAT attack’s pre-processing time, by linearly increasing the number of feedbacks. For

executions resulted in timeout, we also confirmed that initiating CycSAT with incomplete

NC clauses traps the SAT solver in an infinite loop. Hence, the attacker can not complete

the pre-processing in a reasonable time, and incomplete pre-processing traps the subsequent

invocation of the SAT solver. The area overhead for building the SC in terms of the number

of switches depends on the number of MCs and the number of gates in each MC. The area

overhead for having various numbers of MCs of 7 gates when building a SC is reported in

Table 4.3.

Cyclification using Logarithmic Feedback Networks (LFN)

As discussed and proved in section 4.3.1, the lower bound on the number of generated cycles,

when the LFN method for cyclification flow is adopted, is an exponential function of the

number of feedbacks. Furthermore, similar to SC, the edge density of the original netlist

may substantially increase the number of created cycles. This is because of the gates with

fan-outs greater than one in selected logic path segments. If the output of a gate in the

LFN is connected to the input(s) of another gate(s) in the same network, the resulting net
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Table 4.4: Number of cycles reported during CycSAT attack using LFN method. N is the number of selected
paths for creating LFN.

N=2 N=4 N=8 N=16 N=32

Lower Bound 3 24 16072 3.8× 1012 2.3× 1032

c432 26,578 NiS NiS NiS NiS
c499 192 278,577 1.3× 1010 t/o NiS
c880 8,836 4.5× 108 t/o t/o NiS
c1355 8.3× 106 t/o t/o t/o NiS
c1908 8.4× 107 t/o t/o t/o t/o
c2670 1.2× 107 t/o t/o t/o t/o
c3540 8.5× 109 t/o t/o t/o t/o
c5315 1.2× 109 t/o t/o t/o t/o
c7552 2.9× 109 t/o t/o t/o t/o

counts as an additional forward path. Then, each forward path could be matched with a

feedback, resulting in an additional cycle. Considering that path segments are selected from

the FIC of the same primary output, there exist many such connections (forward edges),

resulting in the generation of a far larger number of cycles than the guaranteed minimum

bound expected from using LFN. To illustrate this, both the number of created cycles

for each benchmark and the theoretical lower bound (calculated using
∑N

l=1

(
N
l

)
(l − 1)! as

proved in section 4.3.1) is reported in Table 4.4. As illustrated, for most of the obfuscated

benchmarks with a LFN larger than 4, cycle enumeration results in timeout after 10 hours

due to the exponential number of created cycles. This indicates an exponential runtime at

the CycSAT pre-processing stage. The area overhead for creating LFNs of different sizes

(different number of input paths) is reported in Table 4.5. Note that in both SC and LFN,

the area overhead scales with the number of inserted feedbacks and not the size of the

circuit. Hence, the area overhead is smaller in larger circuits.

Capturing the power overhead of cyclic obfuscation is more involved. The leakage com-

ponent of power overhead is a function of the area overhead of the obfuscation solution, and

threshold voltage (VT) of inserted multiplexers. Using a high-VT switch cell reduces the

leakage impact, however, it introduces additional delay [72]. In a simple implementation

where standard cells are selected from a single VT, the increase in the leakage power is
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Table 4.5: Percentage of area overhead for an inserted LFN for different number of selected paths (N).

Circuit
N=2 N=4 N=8 N=16 N=32

Area Overhead Percentages (%)

c432 5.00 NiS NiS NiS NiS
c499 3.96 11.88 27.72 79.21 NiS
c880 2.09 6.27 14.62 41.78 NiS
c1355 1.47 4.40 10.26 29.30 NiS
c1908 0.91 2.73 6.36 18.18 43.64
c2670 0.63 1.89 4.41 12.61 30.26
c3540 0.48 1.44 3.36 9.59 23.01
c5315 0.35 1.04 2.43 6.94 16.64
c7552 0.23 0.68 1.59 4.55 10.93

Table 4.6: The power overhead of SC and LFN of size N=16.

Circuit
SC (N=16) LFN (N=16)

Switching (%) Leakage (%) Switching (%) Leakage (%)

c432 NiS NiS NiS NiS
c499 NiS NiS 212.64 75.13
c880 38.09 44.85 56.67 38.82
c1355 12.79 32.77 13.26 24.6
c1908 8.42 19.1 13.38 15.66
c2670 14.14 15.96 13.17 12.32
c3540 8.76 10.79 3.86 8.88
c5315 5.75 8.51 6.13 6.7
c7552 2.88 5.78 7.79 4.4

similar to the increase in the area. The dynamic power consumption, on the other hand,

depends on the switching activity of the inserted switches. After proper activation, the

switching activity of the inserted multiplexers depends on the toggling rate of the correct

input net to the multiplexer. The net toggling activity, in turn, depends on the level of

controllability of that net and the probable input scenario to the netlist. The power con-

sumption of both the LFN and SC-based solutions of size N=16 is provided in Table 4.6.

However, note that the power consumption could improve (at the expense of timing and

security) by modifying the SC or LFN algorithm to choose nets with small toggling rate to

reduce the overhead of dynamic power consumption.
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Table 4.7: SAT attack, CycSAT, and BeSAT execution time.

Circuit
N=2 N=2 + SR-L=10 N=15 + SR-L=10

SAT #CyclesCycSAT-I SAT #Cycles CycSAT-ICycSAT-II BeSAT SAT#CyclesCycSAT-ICycSAT-IIBeSAT

c432 Inf 23,879 2.56s Inf 1.65× 105 UNSAT 11.69s 35.48s Inf t/o UNSAT t/o t/o
c499 0.56s 236 0.10s Inf 397 UNSAT 0.11s 0.79s Inf t/o UNSAT t/o t/o
c880 Inf 1,601 0.24s Inf 7.87× 106 UNSAT 793.12s t/o Inf t/o UNSAT t/o t/o
c1355 Inf 636 0.12s Inf 5.00× 105 UNSAT 53.21s 134.56s Inf t/o UNSAT t/o t/o
c1908 0.28s 294 0.10s Inf 6,467 UNSAT 0.73s 170.74s Inf t/o UNSAT t/o t/o
c2670 Inf 1,570 0.23s Inf 7,412 UNSAT 0.92s 17.22s Inf t/o UNSAT t/o t/o
c3540 Inf 5,991 0.75s Inf 6,026 UNSAT 0.75s 22.67s Inf t/o UNSAT t/o t/o
c5315 Inf 4,869 0.61s Inf 2.59× 105 UNSAT 26.04s 370.08s Inf t/o UNSAT t/o t/o
c7552 Inf 124 0.189s Inf 164 UNSAT 0.19s 18.30s Inf t/o UNSAT t/o t/o

4.5.2 SAT, CycSAT and BeSAT Resilience

Table 4.7 captures the result of SAT, CycSAT, and BeSAT attacks on ISCAS-85 benchmarks

that are obfuscated using our proposed solution. For generating the data in this table, we

prepared three sets of obfuscated benchmarks. The first set of benchmarks is obfuscated

with only two MCs using the SC approach for obfuscation method. This group of obfuscated

benchmarks represents cyclification with a small number of dummy cycles, with no real

cycles. The netlists in the second set, are first obfuscated using 10 SR-latches (by using the

input-dependency based obfuscation as described in section 4.3.2) and then are cyclified by

inserting two MCs. The second group represents the case where there are some real cycles

in the design, while the total number of cycles is still small. The third group is similar to

the second group, however, the number of inserted MCs is increased to 15. It represents

obfuscated solutions with both real and exponentially large number of dummy cycles. The

results of running SAT, CycSAT, and BeSAT is captured in Table 4.7. For c432 and c499,

generating large number of MCs (15) was not possible, hence, the largest number of possible

MCs were used in the generation of SC.

The first group introduces a small number of removable cycles. As reported in Table 4.7,

even the existence of simple cycles traps the original SAT attack in an infinite loop in most

cases (except for two benchmarks that SAT solver luckily chooses a sequence of inputs that

avoid or exit the trap). However, CycSAT, when uses the ”no structural path” condition
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(CycSAT-I) for generating the cycle avoidance clauses, easily breaks all obfuscated netlists.

As illustrated in this table and predicted in Equation 4.3, CycSAT runtime (which includes

the runtime for both pre-processing step and SAT solver’s invocation) almost linearly varies

with the number of cycles in each netlist.

For the second group, where the original circuit is also cyclified (using real cycles), the

usage of CycSAT-I returns UNSAT as it produces NC clauses that breaks the real Boolean

cycles. However, when CycSAT uses the ”no sensitizable path” conditions (CycSAT-II), it

breaks the obfuscation in all cases. Most notable in this data is the increase in the runtime of

CycSAT attack (when compared to the first group) as the time it takes to compose the NC

condition for each cycle based on ”no sensitizable path” condition is longer. This validates

the impact of logic cyclification on the runtime of CycSAT attack. Another attack possibility

is BeSAT attack. However, the BeSAT attack should be slightly modified: considering that

the design contains real Boolean cycles, the “no sensitizable path” condition (instead of

“no structural path” in the BeSAT attack as described in [63]) should be used for the

generation of the NC clauses. Hence, the attack could be carried by generating a set of NC

clauses (given a deadline) and then use BeSAT to attack the obfuscation and recover from

oscillating and stateful cycle conditions. To model this attack, we set “no sensitizable path”

pre-processing deadline to 2 hours, and BeSAT attack time to 8 hours (total of 10 hours

attack time). As shown for “N=2+SR-L=10”, all but one benchmark was successful and in

general, BeSAT underperform compared to CycSAT-II attack. This is because there exists

a small number of cycles, and both CycSAT-II and BeSAT have found and conditioned

all cycles, however, BeSAT due to the runtime monitoring of DIPs is slower compared to

CycSAT-II attack.

Finally, for the third group, where the number of inserted feedbacks is increased to

15, all three attacks fail. The CycSAT-I is not applicable, as it will open real cycles,

resulting in netlist malfunction, and even if pre-processing of this attack finishes (which

does not) it will exit as UNSAT. The CycSAT-II fails as it can not finish the pre-processing

on time. Note that by increasing the number of feedbacks, the designer can easily and
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exponentially increase the required pre-processing time unreasonably long. The remaining

attack possibility is the BeSAT attack. In this case, the pre-processing of NC clauses is

carried until the time limit (2 hours) and then BeSAT attack is carried out. Note that in

this condition, the BeSAT starts the SAT attack with a partial set of clauses generated in

the pre-processing step. However, as illustrated in Table 4.7, BeSAT will reach the deadline

after invalidating 100s of thousands of keys. This is when there exist millions (or larger)

other keys that cause oscillating behavior which BeSAT has not yet examined and pruned

(one at a time) in the time limit.

As explained previously, BeSAT only works when the number of undetected cycles (and

un-conditioned keys) is small. The BeSAT attack is slow and eliminates one-incorrect-key

at a time. This is when, in our proposed obfuscation solution, there exists an exponentially

large number of invalid keys even after partial pre-processing: As a part of our obfuscation

solution (and to create real cycles), we are using (diffused) SR-latches. To prevent stateful

behavior, through careful input-logic section (as described in section 4.3.2), we ensure that

the value of SR input can not evaluate to 11 (condition for statefulness). For this purpose,

the input logic cone to S and R input is constructed by exploiting the interdependency

of selected wires in the netlist. However, the selection of inputs is further hidden through

routing obfuscation. In this case, only with the application of the correct key, the inter-

dependence of the input wires will render the SR-latch non-stateful (by skipping the 11

input). Let’s assume S = g(K1, X) and R = f(K2, X), where the g and f are the logic

representing the input cone of S and R input to the SR-latch, K1 and K2 are the key gates

in the fan-in cone of S and R, and the X is the choice of primary input. In this scenario,

any choice of K1, K2 and X that could make the SR = 11 will result in a stateful circuit.

From this analysis, the worst-case scenario for BeSAT is a function of the size of primary

input X, and key selection K1 and K2 for which the wire S and R evaluate to 1, which is an

exponential function of the key-length K = (K1
⋂
K2). Considering that our solution builds

a strongly-connected graph, the FIC of S and R could span to all the key-gates. Hence,

the number of invalid keys that should be banned is exponentially large. Considering this
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discussion, and for a large number of key combinations that should be banned (one at a

time), as shown in the results for “N=15+SR-L=10”, BeSAT attack does not work against

our proposed solution.

4.5.3 SAT, CycSAT and BeSAT Resiliency of Previous Methods

In this section, we study the effectiveness of previously proposed cyclic logic solutions and

compare them with our proposed solution. To attack the prior art solutions we use the

modified CycSAT attack as described and formulated in section 4.2.2 of this chapter. The

modified CycSAT attack works similar to the original CycSAT attack, however, instead of

composing the NC clauses per detected feedback, it composes the NC clauses per detected

cycle.

The original cyclic locking method was introduced in [32] where authors proposed in-

serting multiplexers in the circuit to create cycles. This obfuscation solution attempts to

create irreducible cycles. This method can only create dummy cycles as it does not affect

the DAG nature of a combinational netlist and is referenced in this chapter as glsvlsi17. The

second method discussed here [64] considers CycSAT attack and tries to defeat CycSAT-I

using an auxiliary-circuit. This method was discussed in section 4.2.1. By adding the pro-

posed auxiliary-circuits to a design, real cycles are formed, converting the DAG nature of

the netlist to a DCG. The netlist is then augmented with additional dummy cycles (similar

to the glsvlsi17 method), making the netlist to contain both real and dummy cycles. In this

chapter, we use the name date18 to refer to this cyclic obfuscation solution.

To assess the effectiveness of prior art solutions, we modeled each of the glsvlsi17 and

date18 to obfuscate the ISCAS-85 benchmarks. To compare the evaluation results of prior

art to that of our proposed solution (in Table 4.7), the glsvlsi17 method is implemented

using 15 randomly selected feedbacks of length 7, while the benchmarks prepared using

date18 solution are obfuscated using the same number of feedbacks (15) and 10 real cycles

(for DAG to DCG transformation), implemented using the auxiliary-circuit as described

in [64]. For smaller benchmarks, where insertion of this many feedbacks was not feasible,
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Table 4.8: SAT attack, modified CycSAT, and BeSAT results for evaluation of glsvlsi17 method.

Circuit #Cycles
SAT CycSAT-I BeSAT

Time Iteration Time Iteration Time Banned

c432 32 t/o - 0.02 1 0.45 0
c499 282 t/o - 0.05 1 0.88 0
c880 36 1.35 61 0.13 15 3.59 0
c1355 t/o t/o - t/o - 7220.83 3
c1908 1,625 t/o - 0.95 83 8.44 0
c2670 129 t/o - 2.26 19 55.11 0
c3540 606 0.63 41 0.70 14 10.03 0
c5315 4,216 1.7 33 1.19 45 32.75 0
c7552 1,117 2.35 105 1.77 73 43.24 0

we have inserted the largest feasible number of feedbacks. To show the effectiveness of

our solution in increasing the runtime of the CycSAT pre-processing step, we have also

evaluated the number of generated cycles for each of the prior cyclic obfuscation (glsvlsi17

and date18) solutions.

Table 4.8 captures our evaluation results for glsvlsi17 when attacked using SAT, CycSAT-

I, and BeSAT. As expected the success of SAT attack on selected benchmarks is random,

as generated cycles could trap the SAT solver. Note that by increasing the number of

feedbacks, the chances of trapping the SAT solver increases. CycSAT-I breaks the obfus-

cation and finds the key to all but one obfuscated benchmark. For c1355, cycles could not

be processed within the 10-hour time limit, and the attack is timed out. But this case is

a great showcase to see the power of BeSAT. As expected, BeSAT could also break this

obfuscation. Considering that the pre-processing for most of the benchmarks could be done

in less than 2-hours, and all cycles could be found for such small obfuscations, the number

of banned keys for all cases but one is zero. For this reason and for the additional overhead

of runtime monitoring of SAT execution time, the BeSAT takes longer than CycSAT-I. The

only interesting scenario is for c1355, where the CycSAT-I is timed out and can not finish

the pre-processing of all cycles. In this case, the incomplete set of NC s is used in BeSAT,

and with only 3 banned keys, BeSAT skips the traps and finds the correct key. Note that

the reason why BeSAT does work is that the number of oscillating keys generated in this
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Table 4.9: Evaluating date18 obfuscation against SAT, CycSAT and BeSAT.

Circuit #Cycles
SAT CycSAT-I CycSAT-II BeSAT

Time Iteration Time Iteration Time Iteration Time Banned

c432 62 t/o - 0.02 UNSAT 0.3 18 9.19 0
c499 1,157 t/o - 0.06 UNSAT 0.14 18 2.00 0
c880 56 t/o - 0.04 UNSAT 0.31 23 5.11 0
c1355 t/o t/o - t/o - t/o - 7268.77 12
c1908 1,645 1.99 144 0.02 UNSAT 0.88 68 205.02 0
c2670 149 t/o - 0.03 UNSAT 0.53 41 10.53 0
c3540 626 6.49 187 0.1 UNSAT 1.53 37 18.19 0
c5315 4,236 t/o - 0.05 UNSAT 2.06 60 30.45 0
c7552 1,137 t/o - 0.08 UNSAT 1.9 31 40.75 0

obfuscation solution is small. This is unlike our proposed solution that there exists an ex-

ponentially large number of such keys, and if given to BeSAT, they have to be eliminated

one at a time.

Table 4.9 captures evaluation results for date18 method. Aware of the shortcomings of

glsvlsi17, the date18 solution was proposed as a CycSAT-resistant obfuscation solution. The

proposed auxiliary-circuit by itself has a minimal impact on the number of cycles. However,

this method is expected to have a larger number of stateful cycles, and when the original

SAT attack used there are higher chances for trapping the SAT solver in an infinite loop.

The results in Table 4.9 support this hypothesis, as only two benchmarks are successfully

attacked using the base SAT attack. When attacked using CycSAT-I, the date18 solution

remains resistant as the pre-processing step of CycSAT-I incorrectly opens the real cycles

during NC clause generation. However, when the modified CycSAT-II attack, as described

in section 4.2, is deployed, could easily break all instances of obfuscated solutions except

c1355 (that could not be pre-processed in a reasonable time for having a very large number

of cycles). However, in the case of BeSAT and after limiting the pre-processing time to

two hours, the key for c1355 could be recovered in 68.77s after 2 hours of NC clause

generation. Other benchmarks that previously was broken by CycSAT-II is also broken by

BeSAT with zero banned keys since the generated NC clauses cover all undesirable cycle

conditions. Note that for this attack, the NC clauses for BeSAT are generated using the
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“no sensitizable path” condition, otherwise the attack will return as UNSAT.

Comparing the glsvlsi17 and date18 data in Tables 4.8 and 4.9 with that of our pro-

posed solution in Table 4.7 illustrate the effectiveness of our solution: none of the obfuscated

netlists using our solution could be broken by SAT, CycSAT-I, CycSAT-II, or BeSAT (orig-

inal and modified) attacks, as it includes a solution to trap both the SAT solver and pre-

processing step of CycSAT/BeSAT. Note that, when deploying SAT or CycSAT attack to

break glsvlsi17 or date18, the runtime, in addition to the number of inserted feedbacks, also

depends on the selection of feedbacks. Hence, a random selection of feedbacks in glsvlsi17

and date18 results in considerable variation in the attack time. Therefore, these solutions,

unlike our proposed solution, can not guarantee a monotonic increase in the runtime of the

attack as the number of randomly selected feedbacks increases. Note that in our solution,

the runtime is dominated by CycSAT’s or BeSAT’s pre-processing step, and this runtime

is linearly dependent on the number of cycles, and the number of cycles is an exponential

function of the number of inserted feedbacks. Hence, we can guarantee a monotonic increase

in the overall runtime of the attack against our proposed solution as the number of inserted

feedbacks increases.

4.5.4 Timing Aware Cyclification

As described in section 4.4, inserting logic gates in timing-critical paths would increase the

critical path of the netlist resulting in a performance penalty. To minimize the performance

penalty to the extent possible, we proposed a timing aware cyclic obfuscation flow in section

4.4. This solution would only affect the timing if it can no longer use non-critical timing

paths for feedback insertion.

Table 4.10 captures the result of our proposed timing aware cyclic obfuscation when

allowing 0% and 5% delay overhead for cyclic obfuscation. Using this delay constraint,

the algorithm tries to insert the maximum number of feasible feedbacks in each benchmark

using the SC solution proposed in section 4.3.1. In this table, we have provided a measure

of the maximum number of MCs that could be implemented in each benchmark for building
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Table 4.10: Timing-aware obfuscation results for the Super Cycle method.

Circuit
Slack = 5% Slack = 0%

#Cycles SAT(s) #Keys #MCs #Cycles SAT(s) #Keys #MCs Area %

c432 303,476 0.14 15 2 NiS NiS NiS NiS NiS
c499 NiS NiS NiS NiS NiS NiS NiS NiS NiS
c880 t/o t/o 95 18 t/o 0.23 51 12 26.63
c1355 t/o t/o 109 23 2,766 0.55 25 8 9.16
c1908 t/o t/o 187 38 t/o t/o 111 24 25.23
c2670 t/o t/o 335 70 t/o t/o 244 53 38.46
c3540 t/o t/o 378 75 t/o t/o 274 57 32.83
c5315 t/o t/o 448 110 t/o t/o 446 95 38.66
c7552 t/o t/o 729 183 t/o t/o 632 158 35.98

a strongly connected graph before running out of usable gates. The key count is the sum of

the number of key values needed for managing the MCs and the number of key values needed

for managing the additional multiplexers (used for creating outgoing edges from internal

gates in each MC). As illustrated, the maximum number of MCs and key values is a function

of the netlist size and the acceptable delay overhead. Note that in larger benchmarks, even

without incurring a time penalty we can insert a large number of MCs, pushing CycSAT

attack to be trapped in its pre-processing step until timeout. In addition, note that with

10 MCs, our C++ implementation of pre-processor can not finish counting the number of

generated cycles, and according to SC and LFN lemmas proved in sections 4.3.1 and 4.3.1,

the number of generated cycles exponentially grows with each added feedback. Hence, we

can make the attack-time unreasonably long with no or limited timing impact.

The number of MCs and the number of gates in each MC (e.g., cycle length) could affect

the number of created cycles and defines the SAT resiliency of the circuit. Parameters like

targeted frequency and area overheads should also be considered during cyclic obfuscation.

However, this could create a trade-off on how SAT-resilient a circuit is versus how efficiently

it could be implemented.
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4.6 Conclusion

In this chapter, we proposed a new mean of cyclic obfuscation that is immune to SAT, Cyc-

SAT and BeSAT attacks. To make the pre-processing step of CycSAT and BeSAT attacks

ineffective, we proposed two mechanisms (SC and LFN) for exponentially increasing the

number of generated cycles with respect to the number of inserted feedbacks. In addition,

we proposed three mechanisms to cyclify the circuit with real cycles (Cyclic Boolean Logic).

The addition of real cycles forces an attacker to generate the “no sensitizable path” con-

ditions during the pre-processing step of CycSAT or BeSAT attacks, which is considerably

more time consuming than “no structural path” generation. The exponential increase in the

number of feedbacks prevents the attacker from generating NC conditions for all cycles in

a reasonable amount of time. This breaks CycSAT attack. The BeSAT attack can proceed

to its SAT stage with an incomplete set of NC clauses, however, it has to ban remaining

invalid keys one at a time, and there exists an exponentially large number of such keys.

Hence, it also fails to break the proposed solution.
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Chapter 5: A Strong Obfuscation Solution for Circuits with

Restricted Access to Scan Chain

The original SAT attack was only applicable to the combinational circuits. However, the

existence of the scan chain, allows an adversary to treat the FSM and sequential circuits as

a combinational circuit; using the scan chain, the attacker to load desired input into scan

registers, carry the attack for one cycle, and readout the output through the scan chain.

Hence, to prevent SAT attack on obfuscated sequential and FSM solutions, various means

for restricting access to the scan chain [37,42,43] was investigated. In this approach, which

is illustrated in Fig. 5.1, an obfuscation solution is constructed using two key values: (1) a

key for obfuscating the functional logic, and (2) a key for obfuscating the scan chain.

5.1 New Structures for SAT Resiliency

Restricting access to (or locking of) the scan chain, however, did not stop the researchers

from developing variants of SAT attack solution capable of attacking an obfuscated circuit.

Lack of access to the scan chain was addressed in [46] by changing the attack model to find

a sequence of inputs (rather than a single input) resulting in incorrect output. This attack,

so-called unrolling-based SAT (UB-SAT) attack, expands the given FSM in time to be able

to find a sequence of distinguishing inputs.

To defend against UB-SAT and model checker based attacks in design with restricted

access to the scan chain, in this chapter, we introduce a new obfuscation solution denoted

as Deep Faults and Shallow State Duality (DFSSD). The DSFFD obfuscation scheme ex-

ploits the weaknesses of the existing attacks in obfuscating FSM and sequential circuits and

prevents these attacks from satisfying their early exit conditions, forcing them to become

unbounded. To build the DFSSD solution, we propose a combination of two concepts:
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Figure 5.1: An obfuscated IC with restricted access to scan chain. In such circuit, there are two separate
keys: one for unlocking the scan chain (for test), and one for unlocking the function.

(1) Encrypting Deep Faults (DF), the discovery of which requires specific traversal pat-

terns with a large enough depth that cannot be reached by bounded model checkers or

unrolling based SAT attacks. (2) Encoding Shallow State Duality (SSD), in which

by implementing key-controlled duplicate states, the early termination conditions of the

UB-SAT are violated.

As described earlier, limiting access to the scan chain removes the ability of the attacker

to deploy a pure SAT attack on the combinational logic between internal scan registers,

and has to revert to the weaker variant of SAT attacks such as UB-SAT (working with

only primary input and primary output). Following is a short background on Scan chain

obfuscation and proposed attack solutions for de-obfuscating such solutions.

5.2 Securing Scan Chain Structure

Several methods have been recently proposed in the literature to obfuscate the scan chains [73–

75]. To secure the test and debug operations, [42] proposed a design-for-security (DFS) flow

that deploys a structure, denoted as Secure Cell (SC). However, SC was compromised via
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the shift-and-leak attack [43]. Another early attempt in this domain was the Encrypt Flip-

Flop (EFF) [73] scheme. In EFF the output of each scan flop is obfuscated based on a key

value such that either the Q or Qbar output is propagated in the scan chain, and accord-

ingly, the scan-in sequence is also modified. The EFF was also tackled by the ScanSAT

attack [48]. Later, the SeqL obfuscation scheme [75] extended the EFF by separating scan

chain keys from the logic locking keys, and by creating functional isolation through lock-

ing a subset of flip-flop inputs and scan-output pairs. The Dynamically Obfuscated Scan

(DOS) [74] scheme obfuscates the scan chain while periodically changing the obfuscation

key during the test process. Assuming a hard to break scan chain obfuscation, the pure

SAT attack could be no longer applied. Hence, an attacker should resort to SAT attack

variants designed for attacking scan-access restricted obfuscation solutions by only relying

on controllability (observability) of primary inputs (outputs).

5.3 Deobfuscation Methods Without Scan Chain Access

El Massad et al. [46] extended the SAT attack to circuits with no scan chain access, propos-

ing an attack that only required access to the primary input/outputs of an activated chip.

The attack procedure is shown in Algorithm 6. Similar to the SAT attack, it has an it-

erative process for pruning the search space. However, due to the restricted access to the

internal registers, rather than finding a Discriminating Input (in each iteration), it finds a

sequence of inputs X denoted as Discriminating Input Sequence (XDIS) that can generate

two different outputs for the same input sequence for two different keys. In this algorithm,

C(X,K, Y ) refers to the obfuscated circuit producing output sequence Y using input se-

quence X and key vector K, and CBlackBox(X) refers to the output sequence of the activated

circuit for the same input sequence. After transforming the obfuscated circuit to a circuit

SAT (Model) problem, the attack instantiates a Bounded Model Checker (BMC) to find

the XDIS . After the discovery of each XDIS , the Model is updated with a new condition

to make sure that the next onset of keys, that will be discovered in the subsequent attack
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Algorithm 6 Sequential Attack on Obfuscated Circuits

1: b = initial boundary, Terminated = False;
2: Model = C(X,K1, Y1) ∧ C(X,K2, Y2) ∧ (Y1 6= Y2);
3: while not Terminated do
4: while (XDIS ,K1,K2)← BMC(Model, b) = T do
5: Yf ← CBlackBox(XDI);

6: Model = ∧ C(XDIS ,K1, Yf ) ∧ C(XDIS ,K2, Yf );

7: if UC(Model, b) ∨CE(Model, b) ∨UMC(Model) then
8: Terminated;

9: b = b+ boundary step;

iterations, produce the same output for previously discovered XDIS . This process continues

until no further XDIS is found within the boundary of b.

After reaching the boundary, the algorithm checks three criteria to determine if the

attack can be terminated:

(1) Unique Completion (UC): This criterion checks for the uniqueness of the key.

If there is only a single key that satisfying all previous DISes, the attack is terminated.

(2) Combinational Equivalence (CE): If there is more than one key that agrees

with all previously found XDIS , the attack checks the combinational equivalency of the

remaining keys. In this step, the input/output of FFs are considered as pseudo primary

outputs/inputs allowing the attacker to treat the circuit as combinational. The resulting

circuit is subjected to a SAT attack, and if the SAT solver fails to find a different output

or next state for two different keys, it concludes that all remaining keys are correct and the

attack terminates.

(3) Unbounded Model Check (UMC): If UC and CE fail, the attack checks the

existence of a DIS for the remaining keys using an unbounded model checker. This is an

exhaustive search with no limitation on bound (or the number of unrolls). If no DIS is

discovered, the existing set of DIS is a complete set, and the attack terminates. Otherwise,

the bound is increased and previous steps are repeated. The original implementation of this

attack [46] uses NuSMV as the model checker and is not scalable for larger circuits. Shamsi

et al. improved this attack via implementing several tweaks in the attack procedure [47].

The practicality of UB-SAT attack (proposed in [46]) is grounded on the use of a fast
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bounded model checker (BMC) [76] and the implementation of early termination strategies

to avoid the exhaustive search. This allows the attacker to avoid using time-consuming

and exhaustive unbounded model checking runs for the discovery of DISes and to find

the obfuscation key in a reasonable time. For having an effective obfuscation technique

against this attack, we need an obfuscation solution that 1) prevent the UC and CE early

termination, and 2) pushes the required bound for a BMC solver to an unreasonably large

bound (which is defined at design time), resulting in unreasonable attack time against the

proposed obfuscation solution. These two objectives are the future direction of our research.

5.4 Proposed Methods

The practicality of UB-SAT attack (proposed in [46]) is grounded on the use of a fast

bounded model checker (BMC) [76] and the implementation of early termination strategies

to avoid the exhaustive search. This allows the attacker to avoid using time-consuming

and exhaustive unbounded model checking runs for the discovery of DISes and to find the

obfuscation key in a reasonable time. In this section, we describe an obfuscation solution

that 1) prevent the UC and CE early termination, and 2) pushes the required bound for a

BMC solver to an unreasonably large bound (which is defined at design time), resulting in

unreasonable attack time against the proposed obfuscation solution.

5.4.1 Shallow State Duality

The first termination criterion (UC) relies on the uniqueness of the key and it fails if there

is more than one valid key for the obfuscated circuit. In the sequential attack proposed

in [46], UC was the main termination criterion for most of the benchmarks. For the second

termination criteria (CE), successful termination relies on the equality of all next state and

output values for remaining candidate keys for all input and state combinations.

Our proposed solution for breaking both UC and CE termination checks is simply adding

duplicate key controlled, yet valid states such that more than one valid key exists. We refer
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Algorithm 7 Extracting an unreachable state with minimum hamming distance from a
reachable state
1: boundary = limit, i = 1, hd = 1
2: Model = Ccomb(X,S,O, Snext) ∧ Ccomb(X1, Sinit, O1, S1)
3: while true do
4: A = (∀(S,X),∃Surs, Snext 6= Surs) ∧ (HD(Surs, Si) == hd)
5: if (Si−1, Si, Surs)← QBF (Model ∧A) = T then
6: return Si−1, Si, Surs

7: else if i < boundary then
8: i = i+ 1
9: Model = ∧ Ccomb(Xi, Si−1, Oi, Si)

10: else if i == boundary and hd < output width then
11: i = 1, hd = hd+ 1

to this scheme as Shallow State Duality (SSD). This concept is illustrated in Fig. 5.2. In

this example, the original FSM has five Reachable States (RS) and three Un-Reachable

States (URS). In the modified FSM, the unreachable states are used to replicate three of

the existing states such that the transition to the original or replicated state is controlled

by a key. In this example, all the replicated states produce the same outputs as the original

state and key bits are correct for both values of 0 and 1, although, it might not be the case

in a different implementation. Therefore, the UC check fails as more than one correct key

exists. In addition, in the CE check, the input to the registers is considered as a primary

output. Hence, for duplicated states, two different key values do not generate the same

output as they do not reach the same state. Note that the SSD is not a form of obfuscation

as multiple keys are correct keys and it should be combined with our obfuscation solution

which is described next. However, it is an effective and low-overhead technique to prevent

early termination of the UB-SAT attack and its variants.

The duplicate states can be added during the state encoding (design time) or after

logic synthesis (physical design time). Fig. 5.2 shows an example of a state transition graph

encoded with duplicated states at design time. The circuit functionality remains unchanged

while the circuit has 24 = 16 correct keys.

For adding duplicate states to a synthesize netlist, we first need to find a few unreachable

states (Surs). The Algorithm 7 describes our approach for finding such states using a

quantified Boolean formula (QBF) solver. To minimize the logic (overhead) needed for
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Figure 5.2: (a) Original state transition graph, (b) Modified state transition graph with duplicate states

(shallow state duality).

encoding the duplicate states, we search for Surs with minimum hamming distance (HD)

from one of reachable (existing) states. In this Algorithm, inputs, states, outputs, and next

states are defined as X, S, O, and Snext, respectively, and Ccomb refers to the combinational

representation of the original circuit in which the input/output of FFs are considered as

pseudo primary outputs/inputs (similar to CE check in UB-SAT attack).

After initializing the boundary limit and defining the desired hamming distance (e.g.

hd=1), a model consisting of two Ccomb instances is created. To find a Surs, one instance

of Ccomb is used as Ccomb(X,S,O, Snext) with for-all condition on its primary inputs (X)

and current states (S) to generate all the outputs (O) and next states (Snext) that could be

produced by the Ccomb. By assuming Snext 6= Surs, the QBF solver will attempt to find a

set of values for Surs that is not a part of the generated Snext. Then, to select a URS from

the set of Surs that has a hamming distance of hd from a RS, another instance of Ccomb as

Ccomb(X1, Sinit, O1, S1) is used. In the QBF solver, this instance produces RSes (S1) that

are reachable from the initial state (Sinit). Any URS in Surs with HD of one from the S1
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could be considered as the answer. If such a URS was not found, a new copy of Ccomb as

Ccomb(X2, S1, O2, S2) is added to the model to produce RSes that are reachable from the

initial state in two cycles. If necessary, this unrolling continues until the boundary limit to

check Surs with all RSes reachable in i cycles. When a URS is found, it is added to the

netlist by adding the logic to make the transition between the URS and the original states

based on the key value. The URS will produce the same output as the original RS it was

duplicated from and will transition to the same next state(s) (or the duplicate of the next

states).

5.4.2 Deep Faults

The sequential attack [46] relies on a bounded search space for finding a discriminating in-

put sequence XDIS , and it keeps increasing the boundary if the termination checks fail. The

XDIS is a sequence of inputs, each forces a transition to a new state until a discriminating

state is reached, where a discriminating state refers to a state whose output is different for

the same input with two different keys (a DIP condition). This state traversal (based on

XDIS) will not include any other discriminating state transition or repeated state. Such

a discriminating state could only be found if the shortest state traversal path from the ini-

tial state to that state is shallower than the boundary condition (the number of transitions)

specified when invoking the BMC solver.

The traversal depth of a sequential/FSM circuit is defined as the maximum number

of state traversals (starting from initial state) where no state is visited twice. However,

the sequential/FSM circuits may have a limited traversal depth [77]. This makes a BMC

a plausible attack for finding all possible DIS in such circuits, as all states can be visited

within a reasonably small bound. Our solution to protect against BMC formulated attack

(e.g., [46]) is to increase the traversal depth of the FSM/sequential circuits and push the

impact of wrong keys into deep states beyond reach of the BMC (with reasonable bound).

This makes the discovery of such DIS unreasonably time consuming. We refer to such faults

as deep faults.
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Figure 5.3: Implementation of Deep Fault (DF) obfuscation for a 011 detector. The protected pattern

include the counter (C1C0) FFs, and the (S1S0) state FFs. The state transition graph of the circuit is
shown in the middle right.

Our obfuscation methodology for creating Deep Faults (DF) is described via the ex-

ample shown in Fig. 5.3. The circuit targeted for obfuscation is a simple ‘0-1-1’ input

sequence detector. As illustrated, the DF is implemented by adding 1) a tracer circuit, 2) a

flip circuit, and 3) a recovery circuit to the original circuit. The tracer, as described earlier,

is a function-modified counter or a LSFR that changes its state each time a triggering event

is observed. The triggering events can be selected state transitions, state visits, or simply

the rising edge of the clock. For simplicity, in Fig. 4, the triggering event is the clock and

the tracer is a 2-bit counter. The flip circuit toggles the value of a single primary output of

the original circuit when a protected pattern is observed. The protected pattern is a prede-

fined pattern generated by combining selected state registers (from the original design) and

tracer’s state register. In Fig. 5.3, the flip circuit is shown as a four-input AND gate that

fires when the protected ’10,11’ pattern for ’S1S0, C1C0’ is observed. The last component

of the Deep Fault obfuscation is the recovery circuit that toggles the output signal when

the inserted obfuscation key agrees with the protected pattern. Hence, when the correct

key is applied (1011 in this case), the previously flipped output related to the protected
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Table 5.1: Truth table for the 011 detector obfuscated using a two-bit counter.

S1S2C1C2 Y K0K1K2K3K4K5K6K7K8K9K10K11K12K13K14K15

0000 X 7 X X X X X X X X X X X X X X X
0001 X X 7 X X X X X X X X X X X X X X
0010 X X X 7 X X X X X X X X X X X X X
0011 X X X X 7 X X X X X X X X X X X X
0100 X X X X X 7 X X X X X X X X X X X
0101 X X X X X X 7 X X X X X X X X X X
0110 X X X X X X X 7 X X X X X X X X X
0111 X X X X X X X X 7 X X X X X X X X
1000 X X X X X X X X X 7 X X X X X X X
1001 X X X X X X X X X X 7 X X X X X X
1010 X X X X X X X X X X X 7 X X X X X
1011 X 7 7 7 7 7 7 7 7 7 7 7 X 7 7 7 7
11xx S=11 is unreachable

pattern will flip back (recovered) by the recovery circuit, however, insertion of a wrong key

will result in flipping a correct output.

Table 5.1 shows the truth table of the circuit in Fig. 5.3 for all key-combinations. In

this circuit, when the DF is subjected to UB-SAT attack, each input can only rule out

a single wrong key. Thereby, the pruning power of each discovered DIS is very limited,

and the correct key is found only when the protected input is tested. This concept is

similar to obfuscation solutions using point functions (e.g. SARLock [15] and Anti-SAT

[16]). However, there is a fundamental difference. In point functions, the adversary uses a

random input, and although the average case or worse case attack time is an exponential

function of the key size, the attacker can potentially discover the correct key with a single

lucky attempt. However, in deep faults, the discovery of DISes is conditioned on the tracer

state, which cannot be directly controlled by input. Hence, it can guarantee a minimum

bound on the number of required DISes before the discovery of the fault, which is at least

equal to the number of cycles needed for the tracer to reach the fault generation state.

This is a necessary condition for the generation of the fault, but it is not enough. For the

fault to occur, the selection of state registers of the circuit that are included as a part of

a protected pattern should also reach the fault generating pattern. Hence, the number of
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Figure 5.4: Deep faults mechanism for an always-on counter.

required DISes, which is equal to the number of cycles to reach the protected pattern, can

be far larger.

The lower bound for finding the protected pattern could be defined based on the tracer

event counting mechanism. For simplicity, let’s assume a counter is used as the tracer

circuit.

Lemma 1. The bound requirement for a BMC solver to find the protected pattern of a

deep fault which is implemented using a simple clocked counter is C = 2w where w is width

of the counter.

Proof. The protected pattern consists of two parts: 1) w bits of tracer (counter) register

bits, and s bits of state registers. As illustrated in Fig. 5.4, the portion of protected pattern

implemented by counter is reached every C = 2w cycles. However, the state transition does

not have a predefined traversal order, and the fault is only generated when the protected

pattern (state-tracer) is observed. If the s bits of state registers, that are selected for

inclusion in the protected pattern, do not take the needed value to build the protected

pattern at cycle C, the fault is not generated. The next viable cycle for reaching the

protected pattern will be at 2 × C or in general at N × C. Hence, the minimum bound

requirement for a BMC attack to discover the fault is C = 2w. �

Lemma 2. The bound requirement for a BMC solver to find the protected pattern for
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Figure 5.5: Deep faults mechanism for transition-triggered counter.

a deep fault which is implemented using a tracer that counts a selected state transition

is M + C × L + Q, where M is the shortest path to reach the selected state transition

from the initial state, C = 2w, w is width of the counter, L is the shortest sequence of

state transitions to visit the selected triggering transition twice (shortest cycle including

the triggering transition), and Q is the number of state transitions to reach a state whose

encoding completes the protected pattern signature.

Proof. As shown in Fig. 5.5, the tracer only counts up if a specified state transition

occurs. It takes at least M cycles for the first triggering event to occur. After this transition,

the shortest sequence of transition that could result in a count-up is L, where the state

transition is repeated. The number of times the triggering state transition should be visited

is C = 2w times. After M + (C × L) cycles, the tracer portion of the protected pattern

is ready for fault generation. However, we still need another Q cycles to reach a state

whose encoding completes the protected pattern. If the target state could not be met in

M + (C×L) +Q cycles, it might need to repeat (C ∗L) for N times to be able to reach the

target state. So the number needed cycles for generating the deep fault is M+N(C×L)+Q.

The lower bound of required cycles (equal to the number of DIS) occurs at N = 1, thus the
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Figure 5.6: Cycle by cycle DIS discovery for the 011 detector of Fig. 5.3, which is obfuscated using DF with
a 2-bit counter. The deep fault is discovered when the deep state representing the protected state (shown

in green) is reached.

minimum required BMC bound for the discovery of fault is M + (C × L) +Q. �

Fig. 5.6 shows the result of the UB-SAT attack on the 011 detector of Fig. 5.3. With a

2-bit counter, according to Lemma 1, the BMC min-bound of discovering faults is 22 = 4.

As expected, in each cycle at least one fault is discovered, while the deep fault is discovered

at the expected boundary of 4.

5.4.3 Preventing the Removal of the Tracer

A simple mechanism to implement the DF-tracer is using a counter. However, counters

can be easily identified by structural analysis [78] as they have well-defined structure and

are loosely connected to the rest of the circuit. Note that, for implementing the DF, the

exact counter behavior is not needed; We only need a tracer circuit for tracking cycles or

events. Hence, we can use an event tracking LFSR (i.e. where LFSR state is updated

based on a state transition) or a function-modified (with different encoding) counter to

implement the tracer. The repetition period of LFSR (number of non-repeated LSFR state

values) would serve as the depth that the fault could be delayed. In addition, to prevent
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Figure 5.7: Camouflaged (Covert) gates and non-occurring states could be used for merging the two strongly-

connected graphs of state and counter FFs. a) DF circuit, b) DF circuit hidden by covert gates, c) DF circuit

hidden by building dummy logic from non-occurring signal combinations, d) a covert gate implementation

with dummy input, e) non-occurring signal used for implementing dummy logic.

the attacker from structural analysis using asynchronous signals, the enable/rest signal of

the tracer circuit should not be separated from the rest of the circuit. furthermore, the

tracer could be designed to exhibit a pseudo-counter behaviour such that the update of the

tracer’s different register state values relies on both the existing tracer register values and

other registers selected from the sequential circuit or FSM.

With the changes discussed earlier, the inserted tracer (modified-counter or LFSR) can

not be functionally identified. However, it is still prone to detection by structural analysis

of the data flow graph. As Fig. 5.7.(a) shows, the tracer is still loosely connected to the
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rest of circuit. To resolve this issue, the data flow graph of the obfuscated circuit should

be modified such that tracer circuit can not be easily isolated. In other words, the tracer’s

registers’ values should be also in the input logic cone of the other FFs. However, this

should not affect the functionality of the tracer. One solution for modifying the data flow

graph, as illustrated in Fig. 5.7.(b) is through the usage of Covert Gates [79]. These gates

have dummy inputs, connected to always on or always off transistors, that don’t affect

the gates’ function. In practice, the gates in the logic cone of the state registers can be

replaced by Covert gates, and the tracer registers’ output can be connected to the dummy

inputs of the covert gates. With this change, without modifying the circuit functionality,

the tracer circuit will be strongly connected to the rest of the circuit when the data flow

graph is extracted. The covert gates can be also used to bring additional dummy inputs

from the state machine or sequential circuit to tracer without affecting its functionality.

The problem with this method is that it can only protect the design against adversaries

attempting to fully reverse engineer an existing ASIC, and it does not protect the IP against

an untrusted manufacturing facility. In fact, the manufacturing facility has access to the

layout represented via the GDSII file. Hence, the Covert gates are not hidden from the

foundry.

To protect against adversarial reverse engineering at untrusted foundries, one can also

utilize non-occurring signal combinations in the netlist for building dummy connections

to/from the tracer circuit. As Fig. 5.7 shows, the non-occurring signal combinations can be

found using a QBF solver [5] and utilized to design an always-zero (or one) signal combined

from counter FFs and signals in input cone of other state FFs.

5.5 Experimental Results

We have implemented the UB-SAT attack using Yices SMT solver by creating the com-

binational equivalent circuit and unrolling it for finding DISes and checking UC and CE

terminations. For UMC termination, we have used SuperProve from Berkeley ABC package

[80]. The experiments were performed on an Intel Core i5 with 64GB RAM.
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Table 5.2: Experimental results for deep faults.

Circuit

Circuit Info Deep Faults

URS count from [81] DF3 DF4 DF5 DF7

FF PI PO URS D/S Time Term D/S Time Term D/S Time Term D/S Time Term

s344 15 9 11 9,536 29/8 39 UC 56/16 139 UC 119/32 2849 UC - TO -
s382 21 3 6 2,073,412 17/48 9393 UMC - TO - - TO - - TO -
s386 6 7 7 51 8/8 9 UC 29/16 45 UC 70/32 482 UC - TO -
s526 21 3 6 1,695,692 27/16 463 UMC 49/32 1580 UMC 92/64 4684 UMC - TO -
s713 19 35 23 517,625 15/8 28 UC 53/16 317 UC - TO - - TO -
s832 5 18 19 7 32/16 86 UC 44/16 148 UC 99/32 2549 UC - TO -
s838 32 34 1 > 230 20/72 1096 UC 43/80 2194 UC - TO - - TO -
s1196 18 14 14 259,492 27/8 77 UC 64/16 377 UC 135/32 3146 UC - TO -
s1423 74 17 5 > 272 8/8 26 UC 49/16 2924 UC - TO - - TO -
s1494 6 8 19 16 21/8 46 UC 78/16 369 UC 187/32 4333 UC - TO -
s5378 179 35 49 > 2176 42/8 1653 UC - TO - - TO - - TO -
s9234 211 36 39 > 2227 - TO - - TO - - TO - - TO -
s38584 1426 38 304 > 21449 8/8 1293 UC - TO - - TO - - TO -

Table 5.2 captures the results of attacking circuits, which are obfuscated using deep

faults with varying counter widths (3, 4, 5, and 7 bits). The first few columns of the

table describe the characteristics of these benchmarks in terms of number of flip-flops (FF),

number of primary I/O (PI and PO), and number of unreachable states (URS) according to

[81]. In this table DFw represent a DF obfuscation, constructed using a counter of width w.

For each obfuscated circuit, number of discovered DISes, and the number of inputs in the

last DIS (its length) is reported as D/S. The maximum attack time is set to eight hours.

Attacks that take longer are reported as TO. From this table, following observations are

made: 1) the number of discovered DISes grow exponentially with respect to the size of

the counter. This is consistent with the Lemma 1: at each cycle we can produce at least

1 DIS until the protected pattern (which in this case is encoded using the highest value of

the counter) is reached. Hence, we should at least have 2w DISes. 2) The size of the largest

input sequence (S) in which the deep fault is discovered is N × 2w (N being an integer).

This is consistent with Lemma 1, where the protected pattern could be potentially (but

not necessarily) observed at every N×2w cycles; 3) the runtime of the attack increases

exponentially as the depth of DF tracer circuit (counter) increases; and 4) when the circuit
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Table 5.3: Experimental results for shallow state duality (SSD) and combined (DFSSD) methods.

Circuit

Shallow State Duality DFSSD

SSD SSD + DF5 SSD + DF7

D/S Time Term D/S Time Term D/S Time Term

s344 0 9 UMC 115/32 5231 UMC - TO -
s382 0 5 UMC - TO - - TO -
s386 0 6 UMC 65/32 1232 UMC - TO -
s526 0 5 UMC 90/64 4676 UMC - TO -
s713 0 223 UMC - TO - - TO -
s832 0 12 UMC - TO - - TO -
s838 - TO - - TO - - TO -
s1196 0 12 UMC - TO - - TO -
s1423 - TO - - TO - - TO -
s1494 0 15 UMC - TO - - TO -
s5378 0 65 UMC - TO - - TO -
s9234 0 3065 UMC - TO - - TO -
s38584 - TO - - TO - - TO -

is solely protected by DF, the UC termination is the most reoccurring termination strategy.

Table 5.3 also captures the results of attacking the ISCAS’89 benchmarks when encoded

using duplicated states (SSD) and protected using a combination of both techniques (DF-

SSD). The SSD column of Table 5.3 captures the result of UB-SAT attack against circuits

protected only by Shallow State Duality. As expected, when UB-SAT is deployed against a

SSD encoded circuit, the UC And CE termination strategies become useless. As reported,

for all SSD-encoded benchmarks, either the attack is terminated by UMC or prematurely

terminated for lack of memory resources.

The last two columns of Table 5.3, capture the impact of combining the DF and SSD

(DFSSD) which is the main solution proposed in this chapter. The DFSSD combines the

best feature of the two solutions. The SSD prevents early UC and CE termination, while

the DF pushes the faults down into deep states, resulting in an exponential increase in the

number of required DISes and the attack time with respect to the counter size. Note that

by preventing the UC and CE terminations, and by forcing the attack to UMC termination

check in every iteration, the SSD+DF5 has considerably larger runtime compared to DF5.
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5.6 Conclusion

In this chapter, we proposed DFSSD, an obfuscation solution for FSM and sequential circuits

with restricted (locked) access to the scan chain. The DFSSD deployed two mechanisms,

specifically designed to resist against BMC-based attacks such as UB-SAT: 1) it uses shal-

low state duality to prevent early termination of such attacks by invalidating the unique

completion and combinational equivalence checks, forcing the attack to rely on exhaustive

and time-consuming UMC for assessing the attack’s termination condition; 2) it injects

fault into deep and hard to reach (by a BMC) states. The DFSSD allows the designer to

precisely control the depth of the fault at design time using a low overhead circuit solution

and make the attack time unreasonably long.
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Chapter 6: RANE Framework

Over the recent years, many de-obfuscation attacks subvert the trustworthiness of logic

locking. In particular, Boolean satisfiability (SAT)-based attack and its derivatives show

how well-formulated attack models could break the existing logic locking techniques [3]

with fast convergence. Depending on the assumptions of the threat models used in de-

obfuscation attacks, these attacks may be able to target the combinational parts of the

circuit, separately through the design-for-test (DFT) infrastructure (i.e., scan chain pins)

[11–14, 17, 19, 20, 25, 61], or they have to target the sequential circuit as a whole (through

PI/PO) [46–48,82]. Nevertheless, many of these attacks have been developed over the basic

capabilities of different solvers that have lots of limitations, making them less practical on

real applications. For instance, almost all open-source de-obfuscation attack tools [11,14,47,

83] receive the locked circuit in Bench or translated and remapped Verilog format, converted

by open-source synthesis tools like ABC and Yosys [84,85]. So, many real applications with

complex macros require a heavy library-dependent conversion and simplification before

exploiting these attacks. In many cases, these attacks fail to evaluate the robustness of

existing logic locking techniques in such scenarios.

In this chapter, we introduce a unified Reverse Assessment of Netlist Encryption (RANE),

as an open-source CAD-based toolbox for evaluating the security of different logic locking

techniques. Unlike the existing open-source de-obfuscation tools on logic locking, RANE

has been developed based on a unified framework with a unique interface to exploit the

capability/scalability of formal verification tools for different stages of the attack. The

RANE framework allows the users to exploit any formal verification tool, either open-

source or commercial, such as Cadence JasperGold, Synopsys Formality, SymbiYosys, etc.

The establishment of such formal verification tools allows RANE to support circuits written,
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elaborated, synthesized in standard HDL, like Verilog, with no limitation on the technol-

ogy library used for the design/implementation. The flexibility and deployability of formal

verification tools also allow us to model different threat models in RANE. With more con-

centration on sequential-based attacks on logic locking, in this chapter, we will evaluate

the capability/performance of RANE on FOUR different case studies: (1) an oracle-less

attack on key-less (implicit key) sequence-based logic locking (HARPOON), (2) An oracle-

guided attack on HARPOON, (3) An oracle-guided attack on sequential logic locking (scan

is BLOCKED), and (4) An oracle-guided attack on combinational logic locking (scan is

OPEN). We also demonstrate how the RANE framework could be extended to support any

form of de-obfuscation attack that relied on formal verification tools.

6.1 Proposed Attack Framework: RANE

The existing attack frameworks on logic locking with available source codes are developed by

exploiting pre-compiled Binary and modulo theory solvers that accept the netlists in Bench,

which is a minimal language for the description of hardware [11, 14, 47]. This requirement

introduces a burden for modeling and assessing logic locking as all complex structures

have to be re-synthesized and expressed in the simplest logic structures compatible by the

solver. For instance, a 2-bit Full Adder (FA) in acceptable Bench format is depicted in Fig.

6.1 and its corresponding Verilog format demonstrated in Fig. 6.2. As illustrated, the

FAs, although available in the standard cell library, cannot be interpreted by the solver’s

native macros and have to be translated to basic logic gates/macros. Problems become

more complicated when complex standard syntax declarations such as vectors, inouts, and

aliasing are used. More precisely, the limitations faced during the modeling of a complex

netlist in simplified Bench format include (1) limited availability of available macros with

inherent support only for the description of basic gates, (2) static syntax declaration for

available macros with no possibility of extension, (3) requirement for having/writing a

dedicated parser for such format that is library- and language-dependent, (4) incompatibility
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1 INPUT(a[0])

2 INPUT(a[1])

3 INPUT(b[0])

4 INPUT(b[1])

5 INPUT(cin)

6

7 OUTPUT(s[0])

8 OUTPUT(s[1])

9

10 OUTPUT(cout)

7 s[0] = XOR(a[0], b[0], cin)

8 cout_01 = AND(a[0], b[0])

9 cout_02 = AND(a[0], cin)

10 cout_03 = AND(b[0], cin)

11 cout_0 = OR(cout_01 , cout_02 , cout_03)

12 s[1] = XOR(a[1], b[1], cout_0)

13 cout_11 = AND(a[1], b[1])

14 cout_12 = AND(a[1], cout_0)

15 cout_13 = AND(b[1], cout_0)

16 cout = OR(cout_11 , cout_12 , cout_13)

Figure 6.1: Acceptable BENCH format in existing and available SAT and sequential SAT attacks’ source codes
[11,47] for a 2-bit FA.

1 ‘timescale 1ns / 1ps

2 ///////////////////////

3 // Lib.v

4 ///////////////////////

5 module FA_1bit (

6 input a,

7 input b,

8 input cin ,

9 output s,

10 output cout );

11

12 assign {cout ,s} = a + b

13 + cin;

14 endmodule

1 ‘timescale 1ns / 1ps

2 ///////////////////////

3 // Top.v

4 ///////////////////////

5 module FA_2bit(

6 input [1:0] a, b,

7 input cin ,

8 output [1:0] sum ,

9 output carry );

10 FA_1bit s0(a[0], b[0], cin ,

11 sum[0], cr0 ) );

12 FA_1bit s1(a[1], b[1], cr0 ,

13 sum[1], carry ) );

14 endmodule

Figure 6.2: Standard Verilog format acceptable by RANE for a 2-bit FA.

with many standard syntax declarations, like vector, inout, aliasing, etc. The complexity

involved in building a translator and having to model and account for these complexities

significantly raises the bar for the application of the existing attacks.

To overcome this shortcoming, we propose RANE as a CAD-based toolbox for evalu-

ating the security of logic locking that applies to a much broader set of applications and

circuits. By exploiting open-source toolkits for design analysis and code generation of RTL

designs written in standard HDLs, RANE supports parsing and analyzing circuits written,

elaborated, or synthesized in standard HDL, such as Verilog. This also allows us to use for-

mal verification tools for the de-obfuscation modeling instead of using pre-compiled solvers
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as the core of de-obfuscation. The usage of formal verification tools allows RANE to be

extended based on the inherent features of these formal tools. Besides, the RANE applica-

bility is seamlessly improved as formal tools are revised and upgraded to parse and interact

with new libraries and complex macros without having to do any additional translation or

modeling.

6.1.1 RANE Framework

Fig. 6.3(a) shows the overview of the RANE framework. In the RANE framework, we pro-

vide two different solutions: (1) a formal-based interface through Pyverilog generator, and

(2) a pre-compiled static-model tool using PySMT generator. In the first solution, we use

Pyverilog [86] as the open-source HDL analyzer for code parsing, static analysis, and code

translation. Pyverilog framework is captured in Fig. 6.3(b). The parser, dataflow analyzer,

control-flow analyzer, and Verilog code generator are the four major features in Pyverilog.

Pyverilog also provides a dataflow and control-flow graph visualizer for interpreting the

hardware. In RANE, we implement and integrate different interfaces to support different

verification and solver tools. As demonstrated in Fig. 6.3(a), by getting the benefit of

Pyverilog, Cadence JasperGold and SymbiYosys are integrated as the formal tools. Also,

using Pyverilog, any model like miter circuit, equivalency check, etc., could be generated

using behavioral Verilog code, making the model generation for de-obfuscation much eas-

ier. RANE also supports features like exporting/importing constraints, automated cycle

pre-processing, and Verilog-based attack model generation.

6.1.2 RANE Application

For the second solution, we implement and integrate an interface for embedding PySMT

into the RANE framework. PySMT is a solver-agnostic library for fast prototyping of

satisfiability modulo theory (SMT)-based algorithms. As demonstrated in Fig. 6.3(c), by

using different APIs, PySMT provides the possibility of invoking well-known SMT solvers,

such as Z3 [87], Yices[88], and Boolector[89]. By integrating the PySMT framework, similar
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Figure 6.3: RANE overall framework.
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to the existing de-obfuscation attack tools, it could be engaged on Bench and remapped

Verilog files over pre-compiled solvers.

Using this framework, RANE can model different threat models on logic locking and

formulate various attacks with much less effort than the existing de-obfuscation attack tools.

In the following section, we will evaluate the application of RANE on FOUR different case

studies: (1) oracle-less attack on HARPOON, in which HARPOON is the key-less FSM

logic locking, (2) oracle-guided attack on HARPOON, (3) oracle-guided attack on

sequential logic locking, in which random-based logic locking is engaged, and as an

assumption of the threat model, the scan chain accessibility is BLOCKED, and (4) oracle-

guided attack on combinational logic locking, in which random-based logic locking is

engaged, and the scan chain accessibility is OPEN.

Case Study 1: Oracle-less Attack on HARPOON

In this case study, we assume that the adversary might have only a single working copy of

the chip. They can first apply a sequence of input patterns, and by observing the outputs,

they can build a database of such I/O pairs. Alternatively, the I/O pair also could be

obtained by the adversary at the foundry from the pre-generated functional test patterns

or post-layout verification test1. Then, by reverse-engineering the chip or having access to

the layout at the foundry, the netlist could be extracted. We refer to this attack model as

bronze model. The adversary in this model does not have access to the scan chain. By using

this threat model, the de-obfuscation attack on HARPOON could be accomplished in two

main steps: (1) Finding the initial value of FFs (init state), e.g., S0 in Fig. 2.1(b), such

that if the init state initializes the circuit, it would produce the same output if the input

patterns are applied to the oracle; (2) Formulating the formal verification problem to find

the correct sequence of input patterns, allowing us to reach the previously found init state,

referred to as unlocking sequence. For example, in Fig. 2.1(b), pi1 → pi7 is the unlocking

sequence to reach the init state.

1Since HARPOON is a key-less logic locking, functional test patterns or post-layout verification tests
could be used to build and extend the database of I/O pair.
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Figure 6.4: Oracle-Less Attack Model on HARPOON.

Fig. 6.4 shows the oracle-less attack model on HARPOON based on the bronze threat

model. For the first step of the attack, i.e., formulating secret 1 of Fig. 6.4, the init state is

considered as the key. Then, by applying the I/O sequences from the pre-built database to

the (unrolled) combinational equivalent (CE) netlist2, i.e. InP0 → (CE0), InP1 → (CE1),

etc., constraining that the output values (YInP0, YInP1, etc.) must match with oracle

outputs, the init state could be found by formal tool. After formulating the secret 1, then

the second step will be formulated for finding the unlocking sequence, i.e. finding secret 2

of Fig. 6.4. In this step, unlocking sequence is the key, i.e., US0:m−1, and with constraining

that state of the circuit that must reach the valid init state, the formal tool integrated with

the RANE framework could find the unlocking sequence. Algorithm 8 also illustrates the

flow of this case study in the RANE framework. It consists of three steps: (1) formulating

of secret 1, (2) formulating of secret 2, and (3) invoking the formal tool for finding both

secrets. Note that all unrolling steps are implicitly done by the formal tool.

It is worth mentioning that if the adversary aims to ONLY reverse engineer the chip,

formulating and performing part 1 and part 3 of the Algorithm 8 would be enough. Af-

ter finding the init state, the adversary could then insert their own scan chain into the

reverse-engineered netlist to provide the possibility of loading the proper init state to the

2all CEis/CEi
us are the same each represents the combinational equivalent of the locked netlist. Each

CEis/CEi
us is implicitly generated for one cycle by the formal tool.
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Algorithm 8 Oracle-less Attack Model on HARPOON using RANE

—————– Formulating of Secret 1 (init state) —————–
1: Get an I/O sequence ({InP0, YInP0}, ..., {InPb−1, YInPb−1}) from CBlackBox;

2: Model ← CE(InP0, Ŝinit, YInP0, Ŝ1) ∧|I/O|i=1 CE(InPi, Ŝi, YInPi, Ŝi+1);

———— Formulating of Secret 2 (unlocking sequence) ————

3: Model ∧ = CE0
u(US0, Srst, YUS0, SUS1);

4: i← 1;
———— Invoking the Formal Tool: Finding Secret 1, 2 ————

5: while Formal(Model ∧ (SUSi = Ŝinit))→ Fail do

6: Model ∧ = CEi
u(USi, SUSi, Yi, SUSi+1);

7: i← i+ 1;

8: return Formal(Model ∧ (SUSi = Ŝinit)) . {init state, unlocking sequence}

FFs, bypassing the need to go through the second step for finding the unlocking sequence.

Furthermore, assuming that for the pre-built I/O pairs, there exists multiple init states

satisfying the formal mode, and each init state could be reached via a unique unlocking

sequence, formulating and solving both steps together will automatically constrain finding

the valid init state whose unlocking sequence is the shortest one. This case study in RANE

is the first of its kind in de-obfuscation attacks that target key-less logic locking techniques

like HARPOON with no need for oracle. In our experimental results, we show how the

success rate of this model depends on the length/size of I/O pairs available in the pre-built

database and the size of the unlocking sequence (numbers of obfuscation/authentication

FSMs). Note that since the adversary’s capability is limited to only using the available and

pre-built sequence of I/O pairs, the existing combinational/sequential SAT can not be used

for this attack. This is because the solver can no longer constrain the input patterns freely.

But this attack could be easily modeled and carried by RANE.

Case Study 2: Oracle-guided Attack on HARPOON

In this case study, we target the same logic locking technique evaluated in case study 1,

i.e., HARPOON. We assume that the adversary has access to the reverse-engineered netlist

and the functional chip (oracle). Other assumptions are the same as the threat model of

case study 1. Fig. 6.5 illustrates this attack model on HARPOON. Similar to case study

1, it could be done in two steps, i.e., finding init state (secret 1) and finding the unlocking
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Figure 6.5: Oracle-Guided Attack Model on HARPOON.

sequence (secret 2). However, these two steps will be accomplished in sequence. Regarding

the first step (secret 1), since the oracle is available for the adversary, the generation of the

sequence for finding the init state will be done by the formal tool. Similarly, all unrolling

operations will be done implicitly in this case study. The availability of the oracle also allows

us to expand the number of sequences from one to many (InP11:a, InP21:b, ..., InPN1:z).

Unlike the attack model in case study 1, since the adversary’s capability is not limited to a

fixed I/O pair database, this model’s success rate does not depend on the length/size of the

sequences. Algorithm 9 depicts the flow of case study 2. Note that unlike case study 1 that

finds both secrets at once, in this case, multiple formal tool invocation will be accomplished

for finding secret 1 followed by finding secret 2.

Since formal tool is employed for finding the DISes, the termination condition would be

adopted from conventional sequential SAT attack [46]: (1) Unique Completion (UC):

This criterion checks for the uniqueness of the secret. If there is only a single secret that

satisfying the defined constraints, the attack is terminated. (2) Combinational Equiva-

lence (CE): If there is more than one secret that agrees with the constraints, the attack
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Algorithm 9 Oracle-guided Attack Model on HARPOON using RANE

—————– Finding Secret 1 (init state) —————–
1: Model← Cseq(X,Sinit1, Y1) ∧ Cseq(X,Sinit2, Y2);

2: while !UC(Model) ∧ !CE(Model) ∧ !UMC(Model) do
3: DISi ← Formal(Model ∧ (Y1 6= Y2));
4: Yi ← CBlackBox(DISi);
5: Model ∧ = Cseq(DISi, Sinit1, Yi) ∧ Cseq(DISi, Sinit2, Yi);

—————– Finding Secret 2 (unlocking sequence) —————–

6: Model ∧ = CE0
u(US0, Srst, YUS0, SUS1);

7: i← 1;

8: while Formal(Model ∧ (SUSi = Ŝinit))→ Fail do

9: Model ∧ = CEi
u(USi, SUSi, Yi, SUSi+1);

10: i← i+ 1;

11: return Formal(Model ∧ (SUSi = Ŝinit)) . {init state, unlocking sequence}

checks the combinational equivalency of the remaining secrets. In this step, the input/out-

put of FFs is considered as pseudo primary outputs/inputs allowing the attacker to treat

the circuit as combinational. The resulting circuit is subjected to an SAT attack. If the

SAT solver fails to find a different output or next state for two different secrets, it concludes

that all remaining secrets are correct, and the attack terminates. (3) Unbounded Model

Check (UMC): If UC and CE fail, the attack checks the existence of a satisfying assign-

ment for the remaining secrets using an unbounded model checker. This is an exhaustive

search with no limitation on bound.

Case Study 3: Oracle-guided Attack on Sequential Logic Locking

RANE attack could also be used for breaking conventional key-based logic locking solutions,

such as random logic locking (RLL) [30], or strong logic locking (SLL) [31] applied on the

sequential circuit, where access to the scan chain is BLOCKED. In this case study, we

target to model the conventional SAT-based sequential de-obfuscation attack, shown in

Fig. 2.3(b). The adversary has access to the PI/PO of the oracle and reverse-engineered

locked netlist. Unlike the existing sequential de-obfuscation attacks [46,47] that handle the

unrolling explicitly by the framework, RANE could accomplish it both implicitly handled

by the formal verification tool encapsulated in the RANE framework or explicitly by the

defined attack model. Also, supporting Verilog in the RANE framework allows us to get
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Algorithm 10 Oracle-guided Attack Model on Logic Locking with BLOCKED scan chain
(Sequential Logic Locking) using RANE

1: Model = Cseq(X,K1, Y1) ∧ Cseq(X,K2, Y2);

2: while !UC(Model) ∧ !CE(Model) ∧ !UMC(Model) do
3: Xdis ← Formal(Model ∧ (Y1 6= Y2));
4: Yf ← CBlackBox(Xdis);

5: Model ∧ = Cseq(Xdis,K1, Yf ) ∧ Cseq(Xdis,K2, Yf );

6: return Formal(Model) . Return Correct Key

the benefit of behavioral Verilog helping to build any model with much less effort.

The support of implicit unrolling provides the RANE framework to use any of the avail-

able either open-source or commercial verification tools. Hence, RANE can get the benefit

of the scalability, stability, and adaptability of these tools to handle a much richer set of

input formats, handle a wider range of gates3. This is the main aim of the RANE framework

that be easily adaptable in any flow, without the need for input format translation, remap-

ping, Decoding, re-synthesis. Algorithm 10 shows the flow of case study 3 in the RANE

framework with implicit unrolling. As demonstrated, the attack formulation is first initi-

ated using the miter circuit (XORed double-circuit). Then, per each iteration, the formal

tool looks for a DIS and two keys that produce different outputs for that DIS. In the next

iterations, the previously found DISes must match with the oracle, and the attack model

termination conditions will be checked when no more DIS is found. As shown, unrolling

operations for finding DISes are not formulated in the model (implicit unrolling), and it

will be handled automatically by the formal tool.

Case Study 4: Oracle-guided Attack on Combinational Logic Locking

In this case study, RANE emulates the most well known SAT-based attack on logic locking

proposed by Subramanyan et al. [11], which is oracle-guided on logic lockings with OPEN

3Formal tools could support any type of macros defined in the standard cell library, as opposed to very
limited basic gates available in Bench format (used in the existing sequential de-obfuscation attack, i.e.,

KC2).
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Algorithm 11 Oracle-guided Attack Model on Logic Locking with OPEN scan chain
(Combinational Logic Locking) using RANE

1: Model = Ccomb lock(X,K1, Y1) ∧ Ccomb lock(X,K2, Y2);
2: while Formal(Model ∧ (Y1 6= Y2)) do
3: Xdip ← Formal(Model);

4: Yf ← CBlackBox(Xdip);

5: Model ∧ = Ccomb lock(Xdip,K1, Yf ) ∧ Ccomb lock(Xdip,K2, Yf );

6: return Formal(Model) . Return Correct Key

scan chain access, referred to as SAT-based combinational de-obfuscation attack. As demon-

strated in Algorithm 11, in the SAT-based combinational de-obfuscation attack, a (distin-

guishing) miter circuit needs to be built as miter ≡ Ccomb lock(X,K1) 6= Ccomb lock(X,K2)

for any arbitrary locked combinational logic Ccomb lock. Based on the miter circuit, the for-

mal tool will be invoked and will return a DIP that produces different outputs for two dif-

ferent keys. Then, this DIP is queried on the oracle, CBlackBox, eval← CBlackBox(Xdip) and

the I/O-constraint for the equivalency check, Ccomb lock(Xdip,K1) = Ccomb lock(Xdip,K2) =

eval will be added as a new constraint to the formal tool, and after this update, the miter

circuit would be solved again. When the miter + constraints problem has no satisfying

assignment (no more DIP), it could identify the correct key.

From the formal tool perspective in RANE, the formulation of both key-based oracle-

guided combinational and sequential de-obfuscation attacks are very similar. The only

difference is that for the attack model on the sequential circuits, the formal tool looks for

DIS (with implicit unrolling), but in the model on the combinational circuit, finding DIP

is the main objective of the formal tool.

6.2 Experimental Results

With exploiting packages like PySMT [90] and Pyverilog [86], the proposed RANE frame-

work has been implemented in Python3. The current version of the RANE framework,

available in [91], has been built over different formal verification tools configurable by the
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Table 6.1: Description of ISCAS-85/89* circuits.

Circuit #Gates #PIs #POs Circuit #Gates #PIs #POs Circuit #Gates #PIs #POs

c432 160 36 7 c1355 546 41 32 c3540 1,669 50 22
c499 202 41 32 c1908 880 33 25 c5315 2,307 178 123
c880 383 60 26 c2670 1,269 233 140 c7552 3,513 207 108

Circuit #FFs #PIs #POs Circuit #FFs #PIs #POs Circuit #FFs #PIs #POs

s344 15 9 11 s832 5 18 19 s5378 179 35 49
s382 21 3 6 s838 32 34 1 s13207 638 62 152
s386 6 7 7 s1196 18 14 14 s15850 534 77 150
s526 21 3 6 s1423 74 17 5 s35932 1,728 35 320
s713 19 35 23 s1494 6 8 19 s38584 1,426 38 304

*s9234 MUST be ignored since it has some FFs that have no path to POs.

users, including Cadence JasperGold as the commercial formal verification tool and Sym-

biYosys as a formal open-source tool. The formal tools are responsible for major operations

of attack modeling, such as unrolling, building miter, finding sequences, DIPs, and DISes.

In this chapter, the experiments are accomplished using the open-source SymbiYosys for-

mal verification engine4. We evaluate and verify the feasibility/performance of the RANE

framework, based on all FOUR case studies previously discussed in Section 6.1.2, on a set

of ISCAS-{85/89} benchmark circuits, as listed in Table 6.1. For sequential-based exper-

iments, i.e., case studies 1, 2, and 3, since the circuits have a sequential depth of fewer

than 100 cycles, with skipping UMC check, the boundary/depth is set to 100 cycles. The

integration of PySMT and SymbiYosys allows RANE to get the benefit of different solvers.

In the experiments, and based on our observation to get the most benefit, we use Yices for

case studies 1 and 2, and the best performance achieved by Boolector, MathSAT, or Yices

for case studies 3 and 4. All experiments are carried on ARGO cluster computing [92] as

a computing cluster equipped with Intel Xeon E5-2670, with 16 core CPUs and 512GB of

RAM.

Table 6.2 demonstrates the performance of the RANE framework when it is configured

4To facilitate re-producing the results by the community and remove the dependency on commercial
tools, the results are generated on available open-source tools. Our preliminary investigation shows that
the results could improve significantly (in terms of runtime and memory) when a commercial tool, such as
Cadence JasperGold, is configured as the utilized formal method tool.

91



Table 6.2: RANE performance in Case Study 1 - Oracle-less on HARPOON.

Circuit
{3, 18}∗ {5, 30} {10, 60} {20, 120}

time #I/O time #I/O time #I/O time #I/O

s344 4 20 4 30 5 60 22 120
s382 1 20 - - 4 60 172 120
s386 4 20 5 30 7 60 22 120
s526 -+ - - - - - - -
s713 5 20 6 30 8 60 23 120
s832 5 20 5 30 - - - -
s838 - - 3 30 6 60 22 120
s1169 6 50 20 230 8 60 - -
s1423 4 30 10 110 11 100 65 120
s1494 224 20 226 30 249 60 1,468 120
s5378 6 20 7 30 15 60 76 120
s13207 15 20 22 30 56 60 246 120
s15850 - - 18 30 40 60 - -
s35932 - - 53 30 111 60 - -
s38417 72 50 - - - - - -
s38584 49 20 108 60 - - 1,117 120
∗{number of obfuscation/authentication FSMs, The length of unlocking sequence}
time: in Seconds #I/O: number of input/output patterns
+Failed to find the correct init state by using 3,000 I/O pairs.

for case study 1, in which the circuits are locked with HARPOON [38]. When the circuit’s

state is in obfuscation/authentication modes, random POs are selected to be corrupted.

We also used random input patterns to build the database of I/O pairs for this case study.

In this experiment, the number of authentication/obfuscation FSMs (unlocking sequence

size) is swept. As shown, for different circuits, with a different number of obfuscation FSMs

(different unlocking sequence sizes), the threat model defined in case study 1 can retrieve

the secrets with a small number of I/Os.

Since the output of this model is based on a limited set of pre-built I/O pairs, this

threat model cannot guarantee the uniqueness of the init state (secret 1) generated by the

framework. However, increasing the size of I/O pairs, or applying different sets of random

I/O pairs, results in restricting the different {secret 1, secret 2} possibilities that match with

the oracle pre-generated I/O pairs. In this experiment, we limit the size of the pre-built

I/O database to 3,000 cycles and by using this size, our observation shows that, on average,
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Table 6.3: RANE performance in Case Study 2 - Oracle-guided on HARPOON.

Circuit
{3, 18}∗ {5, 30} {10, 60} {20, 120}

time size time size time size time size

s344 3+1 1/2 5+2 3/4 11+9 4/4 20+98 7/4
s382 8,484+107 107/44 8,101+218 93/44 4,449+398 65/67 to to
s386 3+1 3/3 12+3 11/4 30+9 12/4 100+195 15/4
s526 1,644+28 59/44 17,749+275 129/44 2,677+275 48/50 6,4441+to 48/49
s713 102+3 7/8 144+6 9/10 496+17 9/10 1,322+619 43/6
s832 10+2 7/10 6+2 4/5 59+23 17/11 34+113 12/13
s838 3,175+82 45/66 293+29 43/4 701+140 63/6 4,319+3,742 112/18
s1196 67+10 13/15 45+4 10/11 79+42 14/15 79+148 11/13
s1423 26,300+556 157/16 to - to - to -
s1494 11+3 9/6 12+5 7/8 41+36 13/18 26+99 9/5
s5378 323+8 26/9 532+67 34/10 722+148 32/9 1,840+829 34/9
s13207 68,817+2,839 74/29 77,102+3,772 73/29 to - mem -
s15850 to - to - to - to -
s35932 1,167+1,189 21/7 1,234+1,815 22/7 mem - mem -
s38417 mem - mem - mem - mem -
s38584 mem - mem - mem - mem -
∗{number of obfuscation/authentication FSMs, The length of unlocking sequence}
time: in Seconds timeout (to): 24 hours size: #DISes/Depth mem: Out of memory

for 73.4% of the cases in Table 6.2, the extracted secrets are the correct expected ones.

Note that, since this model generates the attack model once (without iterative structure)5,

increasing the number of I/O pairs does not affect the execution time significantly (almost

linearly w.r.t. the number of I/O pairs).

Table 6.3 depicts the performance of the RANE framework on the same logic locking

technique, i.e., HARPOON6, but in this case (case study 2), we assumed that the oracle is

available. In this case, the formal tool can generate different DISes for finding init state.

Unlike case study 1, finding the unlocking sequence (secret 2) will be started when the

init state (secret 1) is found. Hence, in this experiment, the execution time of the RANE

framework is divided into two parts, t1 + t2, in which t1 is the RANE execution time for

finding the secret 1, and t2 is the time required to find secret 2. The size indicates the

5The model defined in Fig. 6.4 will be generated at once. The attack process will be accomplished for
two secrets simultaneously. It will find the init state (secret 1) and the unlocking sequence (secret 2) at
once.

6The same locked circuits are used for the experiments on case studies 1 and 2.
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Table 6.4: RANE performance in Case Study 3 - Oracle-guided on Random-based Sequential Logic Locking.

Circuit RANE KC2 (neos) [47]

key size 100 150 200 250 300 100 150 200 250 300

s344 5 7 n/a n/a n/a 1 5 n/a n/a n/a
s386 6 30 n/a n/a n/a 3 27 n/a n/a n/a
s832 11 40 196 504 n/a 3 50 644 5,771 n/a
s1196 4 14 9 15 70 1 5 4 10 82
s1494 20 31 69 310 511 3 10 18 63 144

key size 10 20 30 40 50 10 20 30 40 50

s382 6 183 to to to 68 246 to to to
s526 15 4,932 to to to to to to to to
s713 2 2 1 2 3 0 0 0 0 1
s838 12 211 to 16 to 53 to to to to
s1423 7 21 921 to to 10 77 9,041 to to
s5378 16 14 62 25 28 8 10 40 7 9

s13207 779 817 784 820 839 2,840 3,686 2,881 2,790 2,414
s15850 772 738 767 735 921 688 490 507 703 795
s35932 895 660 985 850 811 777 882 3,576 1,095 8,056
s38417 5,571 6,036 6,287 to to to to to to to
s38584 to to to to to to to to to to

time: in Seconds timeout (to): 4 hrs n/a: Circuits are too small for that key size
KC2 is executed with different configurations, and the best performance is reported.

attack model size in terms of {#DISes/Depth}. This experiment reveals one of the biggest

limitations of unrolling-based attacks. The problem size will be grown in two dimensions:

(1) increasing the number of DISes, (2) increasing the depth of unrolling. Thus, for larger

circuits, this model faces a larger execution time. For cases with the memory bound,

switching to commercial formal tools, e.g. Cadence JasperGold, will resolve the issue.

Table 6.4 shows the performance of the RANE framework in case study 3. In this

case, we assume the (XOR-based) key gates are inserted at random places, the access to

the scan chain is BLOCKED, and the attack model evaluates the circuit as a whole. To

provide comparative results, we engage the PySMT generator for building the model for this

case study. The unrolling has been accomplished statically/explicitly, and similar to KC2

(neos), the locked circuits are in Bench format. In this experiment, the best performance

achieved by Boolector, MathSAT, and Yices has been reported [89]. As demonstrated, with
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Table 6.5: RANE performance in Case Study 4 - Oracle-guided on Combinational Logic Locking.

Circuit RANE SAT (sld) [11]

overhead %5 %10 %25 %50 %5 %10 %25 %50

c432 1 1 1 1 0 0 0 0
c499 0 1 1 2 0 2 2 12
c880 0 1 2 7 0 0 1 4
c1355 1 2 8 107 0 1 7 169
c1908 1 2 20 689 1 2 21 377
c2670 1 to to to to to to to
c3540 2 4 9 201 4 2 6 122
c5315 7 45 to 9,804 5 20 to to
c7552 44 2,227 to to 43 to to to

time: in Seconds timeout (to): 4 hrs

outperforming KC2 (neos) [47] for larger circuits, the RANE framework promises better

scalability. Note that, since KC2 (neos) is a pre-compiled C++ platform, it outperforms

RANE for the smaller circuits7.

Table 6.5 compares the performance of the RANE framework, once it models case study

4 using PySMT generator, with the conventional SAT attack on combinational logic locking

by Subramanyan et al. [11]. Similarly, since the conventional SAT attack has been deployed

using a compiled binary file and uses a pre-compiled SAT solver, it outperforms the RANE

framework in some parts of the experiment. However, for larger circuits, we observe that

the RANE framework can outperform the conventional SAT attack by reconfiguring it to

use the most suitable SAT solver for each circuit.

6.3 Conclusion

In this chapter, we introduced the Reversal Assessment of Netlist Encryption (RANE) At-

tack, an open-source framework for evaluating the security of logic locking techniques. The

RANE framework integrates packages like Pyverilog and PySMT with formal verification

tools to support circuits described in standard languages, like Verilog. We evaluated the

effectiveness of the RANE framework on FOUR different case studies. We illustrated how

7compared to RANE, KC2 provides faster parsing/solving on the small circuits.
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the RANE attack could model different de-obfuscation attacks with much less effort. We

also demonstrated how the RANE attack could use either a golden chip as a reference or a

set of pre-recorded I/Os for the unlocking process. Moreover, we also illustrated how the

RANE framework could formulate the first attack model on key-less FSM obfuscation solu-

tions. Our experimental results show that the high scalability of formal tools allows RANE

to outperform the existing de-obfuscation attacks on larger circuits while eliminating the

shortcomings of prior art de-obfuscation solutions for dealing with translation and modeling

of complex structures.
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Chapter 7: Conclusion and Future Work

7.1 Future Work

RANE, introduced in chapter 6, integrates formal verification tools with packages like Pyver-

ilog and PySMT to provide rich extensibility, deployability, scalability, and performance,

especially compared to the existing pre-compiled and optimized but static de-obfuscation

attacks:

1. Almost all attacks with much more capabilities and assumptions can be modeled using

the RANE framework. For instance, the uncommon usage of latches for latch-based

or clock-gated logic locking techniques [93] requires a troublesome and hard-to-be-

achieved transition to be acceptable by the existing attacks. However, RANE can

support a much more comprehensive range of digital building blocks and macros with

full support on standard library cells.

2. The futuristic support of different features/capabilities in formal tools could be easily

engaged in the RANE framework. For instance, the support of range equivalent

circuits in the formal tools will allow us to formulate a much more scalable attack

model on sequential logic locking. Range equivalent circuits are compressed circuits

representing the circuit’s τ th unroll, accepting inputs and generating outputs in the

range of the τ th unroll circuit. Although the concept of range equivalent circuits is an

open research problem, the RANE framework can support and engage such features

once the formal tools support it.

3. Parallelism could be engaged much more appropriately when CAD formal tools are in

place. For instance, the joint Cadence and AWS proof-of-concept for utilizing various

97



degrees of parallelism using JasperGold on AWS (JAWS) show how verification could

achieve huge speed-up on parallel computing systems [94].

7.2 Conclusion

Logic obfuscation is a fast-changing field of research. Through its short period from its

inception in 2008 until now, numerous promising solutions were proposed, but, almost all

of these defensive mechanisms later were broken by a variant of SAT attack or structural

analysis. By providing this framework, we tried to make the evaluation of the future meth-

ods easier and to assist the hardware security community to move from a direct SAT solver

interface to a more high-level interface using formal verification tools.
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[53] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Int. Conf. on theory and
applications of satisfiability testing, 2003, pp. 502–518.

[54] G. Audemard and L. Simon, “Glucose and Syrup in the SAT Race 2015,” SAT Race,
2015.

[55] A. Biere, “Lingeling, Plingeling and Treengeling Entering the SAT Competition 2013,”
Proceedings of SAT Competition, vol. 2013, 2013.

[56] T. Balyo, M. J. Heule, and M. Jarvisalo, “Proceedings of SAT Competition 2017:
Solver and Benchmark Descriptions,” 2017.

[57] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning Rate Based Branching
Heuristic for SAT Solvers,” in Int. Conf. on Theory and Applications of Satisfiability
Testing. Springer, 2016, pp. 123–140.

[58] M. Soos, K. Nohl, and C. Castelluccia, “CryptoMiniSat,” SAT Race solver descriptions,
2010.

[59] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri,
“Fault Analysis-Based Logic Encryption,” IEEE Trans. on Computers, vol. 64, no. 2,
pp. 410–424, Feb 2015.

[60] S. Dupuis, P. S. Ba, G. D. Natale, M. L. Flottes, and B. Rouzeyre, “A Novel Hardware
Logic Encryption Technique for Thwarting Illegal Overproduction and Hardware Tro-
jans,” in 2014 IEEE 20th Int. On-Line Testing Symposium (IOLTS), July 2014, pp.
49–54.

103



[61] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-based Attack on Cyclic Logic Encryp-
tions,” in IEEE Int. Conf. on Computer-Aided Design, 2017, pp. 49–56.

[62] Y.-C. Chen, “Enhancements to SAT Attack: Speedup and Breaking Cyclic Logic En-
cryption,” ACM Trans. Des. Autom. Electron. Syst., vol. 23, no. 4, May 2018.

[63] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “BeSAT: Behavioral SAT-
based Attack on Cyclic Logic Encryption,” in Proceedings of the 24th Asia and South
Pacific Design Automation Conference. ACM, 2019, pp. 657–662.

[64] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic locking and memristor-based
obfuscation against cycsat and inside foundry attacks,” in Design, Automation Test in
Europe Conference Exhibition (DATE), March 2018, pp. 85–90.

[65] A. Rezaei, Y. Li, Y. Shen, S. Kong, and H. Zhou, “CycSAT-unresolvable Cyclic Logic
Encryption Using Unreachable States,” in Proceedings of the 24th Asia and South
Pacific Design Automation Conference. ACM, 2019, pp. 358–363.

[66] J. H. Chen, Y. C. Chen, W. C. Weng, C. Y. Huang, and C. Y. Wang, “Synthesis
and verification of cyclic combinational circuits,” in IEEE Int’l System-on-Chip Conf.
(SOCC), 2015, pp. 257–262.

[67] V. Agarwal, N. Kankani, R. Rao, S. Bhardwaj, and J. Wang, “An efficient combina-
tionality check technique for the synthesis of cyclic combinational circuits,” in Proc. of
the ASP-DAC, 2005, pp. 212–215.

[68] M. D. Riedel and J. Bruck, “The synthesis of cyclic combinational circuits,” in Proc.
2003. Design Automation Conf., 2003, pp. 163–168.

[69] R. L. Rivest, “The Necessity of Feedback in Minimal Monotone Combinational Cir-
cuits,” IEEE TC, vol. 26, no. 6, pp. 606–607, 1977.

[70] K. A. Hawick and H. A. James, “Enumerating Circuits and Loops in Graphs with
Self-Arcs and Multiple-Arcs.” in FCS, 2008, pp. 14–20.

[71] B. Dutertre, “Yices 2.2,” in Computer Aided Verification. Springer, 2014, pp. 737–744.

[72] A. Vakil, H. Homayoun, and A. Sasan, “IR-ATA: IR Annotated Timing Analysis, a
Flow for Closing the Loop Between PDN Design, IR Analysis & Timing Closure,” in
Proceedings of the 24th Asia and South Pacific Design Automation Conference. ACM,
2019, pp. 152–159.

[73] R. Karmakar, S. Chatopadhyay, and R. Kapur, “Encrypt Flip-Flop: A Novel Logic
Encryption Technique For Sequential Circuits,” 2018.

[74] X. Wang, D. Zhang, M. He, D. Su, and M. Tehranipoor, “Secure Scan and Test Using
Obfuscation Throughout Supply Chain,” IEEE Tran. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 9, Sep. 2018.

[75] S. Potluri, A. Kumar, and A. Aysu, “SeqL: SAT-attack Resilient Sequential Locking,”
IACR Cryptology ePrint Archive, vol. 2019, p. 656, 2019.

104
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