
MACHINE LEARNING-BASED SOLUTIONS FOR SECURE
AND ENERGY-EFFICIENT COMPUTER SYSTEMS

by

Hossein Sayadi
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Electrical and Computer Engineering

Committee:

Dr. Houman Homayoun, Dissertation Director

Dr. Setareh Rafatirad, Co-director

Dr. Jim Jones, Committee Member

Dr. Avesta Sasan, Committee Member

Dr. Monson H. Hayes, Department Chair

Dr. Kenneth S. Ball, Dean, The Volgenau School
of Engineering

Date: Summer Semester 2019
George Mason University
Fairfax, VA

Machine Learning-Based Solutions for Secure and Energy-Efficient Computer
Systems

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Hossein Sayadi
Master of Science

Sharif University of Technology, 2014
Bachelor of Science

K. N. Toosi University of Technology, 2012

Director: Dr. Houman Homayoun, Associate Professor
Co-director: Dr. Setareh Rafatirad, Associate Professor

Department of Electrical and Computer Engineering

Summer Semester 2019
George Mason University

Fairfax, VA

Copyright c© 2019 by Hossein Sayadi
All Rights Reserved

ii

Dedication

This thesis is dedicated to my wife, Tahereh, who has been a constant source of
support and encouragement during the challenges of graduate school and life. This
work is further dedicated to my parents, who have always loved me unconditionally. I
am enormously grateful and indebted to them for their continuous love and support.

iii

Acknowledgments

First and foremost, I would like to take this opportunity to express my deepest grat-
itude from my supervisor Dr. Houman Homayoun for all his extensive guidance,
advice, and continuous support during my doctoral studies. In particular, I am truly
grateful to Houman for providing me valuable and insightful research opportunities,
for his patience and understanding throughout the thesis that has set an example of
excellence as a professional researcher and mentor for me. In addition, I would like
to thank my co-advisor Dr. Setareh Rafatirad for all her support and valuable advice
and feedbacks towards the completion of my thesis. I cannot thank Houman and
Setareh enough for all influential insights and valuable experiences that I have learnt
from them, for their attention to details and in-depth knowledge that has helped me
grow as a researcher, and for their encouragement, concern, and interest towards my
success.

I would also like to thank my other committee members, Dr. Avesta Sasan and Dr.
Jim Jones for their insightful comments and feedbacks which have helped me address
the research questions in a much broader aspect. Furthermore, I want to express my
gratitude from Dr. Paolo Costa for his time and support giving me valuable advice
and insights about my path towards the academic career.

My special gratitude to my family, particularly my Mom and Dad for their uncon-
ditional love and constant support. The holidays would have been so lonely without
them. I am enormously grateful and indebted to my lovely parents for their kindness,
dedication, and the education they offered me, and for having always supported me,
believed in me and encouraged me to pursue my life-long dreams and goals.

Last but not least, a heartfelt gratitude and appreciation go out to my lovely wife,
Tahereh, for all her love, constant support, understanding, and patience during the
challenges of graduate school and life. You have always been my constant source of
support and encouragement during all days and nights of research and hard work
in my academic education. You were always there caring for me making all the
stressful days and nights full of joy and memory. Tahereh, with out your unconditional
love, encouragement, and support my academic achievements and completion of this
research would not have been possible.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . x

Abstract . xiii

1 Introduction . 1

1.1 Ensemble Learning for Effective Run-Time

Hardware-Based Malware Detection 2

1.2 A Two-Stage Machine Learning-Based Approach for Run-Time Spe-

cialized Malware Detection . 4

1.3 Stealthy Malware Detection using Microarchitectural Features 6

1.4 Machine Learning-Based Approaches for Energy-Efficiency Prediction

in Heterogeneous Architectures . 7

2 Background and Related Work . 10

2.1 Hardware Performance Counter Registers 10

2.2 Machine Learning Techniques used for Malware Detection 11

2.2.1 Performance Evaluation Metrics 14

2.3 Comprehensive Analysis of State-of-the-Art 18

2.3.1 Hardware-Based Malware Detection 18

2.3.2 Energy-Efficient Heterogeneous Architectures 19

3 Ensemble Learning for Effective Run-Time Hardware-Based Malware De-

tection . 23

3.1 Ensemble Learning . 27

3.1.1 Boosting . 27

3.1.2 Bagging . 28

3.2 Proposed Run-Time Malware Detection 29

3.2.1 Experimental Setup and Data Collection 29

3.2.2 Feature Selection . 31

3.2.3 Training and Testing the Malware Detectors 32

v

3.3 Experimental Results and Evaluation 33

3.3.1 Detection Accuracy . 34

3.3.2 Classification Robustness . 35

3.3.3 Performance of Malware Detection 37

3.3.4 Hardware Implementation Results 39

4 2SMaRT Malware Detection Approach . 43

4.1 Motivation . 48

4.1.1 Malware Detection using HPCs Data 48

4.1.2 The Need for Specialized Malware Detectors and Per-class Anal-

ysis . 50

4.1.3 Impact of Number of HPCs on Malware Detection 51

4.2 Proposed Malware Detection Framework 52

4.2.1 Experimental Setup and Data Collection 52

4.2.2 Feature Reduction . 54

4.2.3 Overview of the Proposed Two-stage HMD 58

4.3 Experimental Results . 62

4.3.1 Evaluation Metrics . 62

4.3.2 Evaluation of Per-class Malware Detection 64

4.3.3 Evaluation of Malware Detection with Limited Available HPCs 67

5 Stealthy Malware Detection using Low-Level HPC Features 74

5.1 Background on Stealthy Malware Detection 77

5.1.1 Embedded Malware Detection 77

5.1.2 Time Series Classification . 78

5.2 Motivational Case Studies . 79

5.2.1 Challenge of Detecting Embedded Malware 79

5.2.2 Machine Learning for Hardware-Based Embedded Malware De-

tection . 80

5.3 Proposed Embedded Malware Detection Approach 81

5.3.1 Data Collection . 82

5.3.2 Feature Representation . 83

5.3.3 Embedded Malware Threat Models 84

5.3.4 Embedded Malware Data Generation 85

5.3.5 Overview of CHASE . 86

5.4 Experimental Results and Analysis 91

vi

5.4.1 Performance Evaluation Criteria 91

5.4.2 Evaluation of Proposed Approach 92

6 Scheduling Challenges in Heterogeneous Architectures 98

6.1 Machine Learning-based Approaches for Energy-Efficiency Prediction

in CCAs . 98

6.1.1 Motivation and Overview of our Approach 102

6.1.2 Experimental Setup and Methodology 104

6.1.3 Characterization Results . 105

6.1.4 Predictive Modeling . 113

6.1.5 Training the Predictor . 114

6.1.6 Prediction Phase . 117

6.1.7 Experimental Results . 118

6.2 Power Conversion Efficiency-Aware Mapping of Multithreaded Appli-

cations on HMPs . 124

6.2.1 Overview of PCE-Aware Scheduling 127

6.2.2 Experimental Setup and Methodology 129

6.2.3 Power Conversion Efficenicy Analysis 130

6.2.4 Proposed Scheduling Framework 133

6.2.5 Prediction Model for Energy-efficiency 136

6.2.6 Evaluation Results . 142

7 Conclusion . 146

A List of Publications . 148

Bibliography . 152

vii

List of Tables

Table Page

2.1 Evaluation metrics for performance of malware detection techniques . 16

3.1 Hardware performance counters in order of importance 33

3.2 AUC values for all general and ensemble detectors with varying number

of HPCs . 34

3.3 Hardware implementation results of various ML-based malware detectors 41

4.1 ML solutions with highest detection rate 51

4.2 Prominent top eight HPC features for each class of malware 57

4.3 F measure of 2SMaRT detectors with and without ensemble learning 65

4.4 Hardware implementation results of 2SMaRT 69

4.5 Average performance improvement of 2SMaRT with AdaBoost across

all four malware classes . 70

5.1 HPC features used for malware detection and their description 84

5.2 Evaluation results for validation set 93

5.3 AUC of testing set results for detecting various embedded malware . 94

5.4 Evaluation results for testing set for detection of various embedded

malware . 97

6.1 Architectural specification . 105

6.2 Optimal configurations with optimization target of EDP for different

architectures . 107

6.3 Optimal configurations in different parallel regions of radix and cholesky

applications for EDP optimization . 111

6.4 Optimal configurations in different parallel regions of fft and lu.cont

applications for EDP optimization . 112

6.5 ML classifiers used for prediction . 114

6.6 HPCs data used for training the classifiers 114

6.7 Hardware implementation reports of various ML classifiers 122

viii

6.8 Architectural specification . 129

6.9 PCE scenarios for little and big core VRs 130

6.10 Optimal configurations with optimization target EDP for full efficiency

PCE and large gap PCE model . 135

6.11 Average relative error . 142

ix

List of Figures

Figure Page

2.1 Confusion matrix layout for a machine learning classifier 17

3.1 Ensemble learning block diagrams a) AdaBoost, b) Bagging 27

3.2 The overview of the proposed run-time hardware-based malware de-

tection framework . 30

3.3 The functionality of ML-based malware detectors 32

3.4 Detection accuracy results (ACC) for various ML classifiers with vary-

ing number of HPCs . 35

3.5 The ROC curves for ML-based malware detectors 36

3.6 Performance results (ACC*AUC) for various ML classifiers with vary-

ing number of HPCs . 38

4.1 HPC traces of two different features (branch-instructions and branch

misses) for sample malware and normal programs 49

4.2 Case study for impact of #HPCs on HMD 51

4.3 The overview of the proposed hardware-assisted malware detection

framework . 53

4.4 Reduced HPC features after first level of reduction 56

4.5 2SMaRT overview, the proposed two-stage run-time hardware-assisted

malware detection approach . 58

4.6 Malware detection performance of 2SMaRT for various ML classifiers

across different malware classes . 66

4.7 Optimal F measure and AUC of run-time 2SMaRT compared with

offline HMD using all 44 HPCs . 72

4.8 Comparison of 2-stage 2SMaRT with single-stage HMDs: a) compari-

son with 1 stage MLR, b) comparison of 2SMaRT using only 4 features

with a recent HMD work . 73

x

5.1 Visualizing the complete benign and malware dataset using t-SNE al-

gorithm: a) malware spawned as separate thread b) malware embedded

inside benign applications . 80

5.2 HPC traces of benign and malware for branch-inst. 81

5.3 An overview of different steps of proposed malware detection framework 82

5.4 Overview of CHASE, the proposed embedded malware detection ap-

proach, and its contribution over prior HMD works 87

5.5 Case study for CHASE in detecting embedded malware 89

5.6 ROC Curve for Hybrid Embedded Malware detection 93

5.7 ROC Curve for Rootkit Embedded Malware detection 94

6.1 Tuning parameters influencing energy-efficiency in heterogeneous mul-

ticore architectures . 101

6.2 Optimal configurations in different parallel regions of an application . 102

6.3 An overview of our approach for predicting the optimal configuration

and scheduling the multithreaded application 104

6.4 Conceptual structure of a four core CCA 105

6.5 Execution Time and EDP of a) barnes, b) fmm, c) cholesky, d) radiosity

with various Core Types, Threads, Frequencies 106

6.6 Training process for machine learning predictive models 116

6.7 Energy-efficiency prediction and tuning parameters configuration . . . 117

6.8 The distribution of the optimal configurations for EDP for 8Base/4Composed

architecture . 120

6.9 The distribution of the optimal configurations for EDP for 4Base/2Composed

architecture . 120

6.10 Comparison of EDP prediction accuracy of ML classifiers 121

6.11 Accuracy/Area ratio comparison between ML predictors 122

6.12 An overview of the PCE-aware learning-based approach 128

6.13 The power-supply configurations for the experimental HMP 131

6.14 Energy-efficiency (in terms of EDP) of barnes for four different PCE

gaps between little and big cores: a) full efficiency, b) low, c) medium,

d) large . 132

6.15 Optimal core type selection for different power conversion efficiencies 136

xi

6.16 Quantile graphs for predictors: a) L2-Access, b) Branch miss prediction 138

6.17 Proposed PCE-aware scheduling scheme with energy-efficiency prediction139

6.18 Normalized energy-efficiency of applications on various scheduling schemes

relative to Oracle scheduling . 143

6.19 Average energy-efficiency results of different scheduling schemes with

respect to various PCE models . 145

xii

Abstract

MACHINE LEARNING-BASED SOLUTIONS FOR SECURE AND ENERGY-EFFICIENT
COMPUTER SYSTEMS

Hossein Sayadi, PhD

George Mason University, 2019

Dissertation Director: Dr. Houman Homayoun

Dissertation Co-director: Dr. Setareh Rafatirad

The ever-increasing complexity of modern computing systems results in the growth

of security vulnerabilities, making such systems appealing targets for increasingly so-

phisticated cyber attacks. The recent proliferation of computing devices in embedded

systems and Internet-of-Things domains has further exacerbated the impact of cyber

attacks calling for effective detection techniques. In this work, we attempt to describe

how Machine Learning (ML) techniques and applications run-time information at the

hardware-level can be effectively used to address major challenges of detecting emerg-

ing attacks. In response to the latency and inefficiencies of software-based malware

detection techniques, Hardware-assisted Malware Detection (HMD) has emerged as

a promising solution to enhance the security of computing systems. HMD techniques

rely on ML classifiers to detect patterns of malicious applications based on low-level

microarchitectural features captured by processors Hardware Performance Counters

(HPCs) during execution.

In this work, we propose effective machine learning-based approaches using low-

level HPC information to address the security and energy-efficiency challenges of

the modern computer systems. For the purpose of security enhancement, four key

challenges to realize an effective run-time hardware-assisted malware detection are

identified and addressed. These challenges include: 1) the type of key microarchi-

tectural events to capture at run-time which varies across various malware classes;

2) no unique ML classifier achieves high malware detection rate across various types

of malware; 3) the number of available HPC registers that can be monitored simul-

taneously is very limited in modern microprocessors; and 4) traditional ML-based

solutions fail to detect the malware accurately when the attack is embedded in a

benign application, as the microarchitectural data is polluted by both malware and

benign applications data. Our comprehensive analysis shows that all of these influ-

encing parameters highly depend on the class of malware and change across various

malware classes (Virus, Rootkit, Backdoor, and Trojan), i.e. the ML classifier and

the type of events to collect at run-time out of many microarchitectural events that

deliver the highest detection rate and performance, highly depend on the class of

malware. For each of these challenges, effective machine learning-based solutions are

proposed to accurately detect malware at run-time. The experimental results for

the proposed run-time HMD techniques show that the malware can be detected with

98.9% detection rate at run-time with limited available HPC resources, matching to

almost what can be achieved offline having access to all microarchitectural data.

Furthermore, for the last part of this research, in order to address the energy-

efficiency challenges, we focus on the suitability of deploying effective machine learn-

ing techniques on run-time HPC-based information for addressing the performance vs.

power consumption trade-offs and enhancing the energy-efficiency of modern hetero-

geneous multicore architectures. In overall, this research is primarily focused on de-

veloping highly accurate and complexity-aware machine learning-based solutions for

security and energy-efficiency enhancement of modern computer architectures based

on the application’s microarchitectural events captured at run-time.

As a result, the outcome of this research opens a path for computer architects

and embedded systems designers in making appropriate and efficient architectural

decisions for implementing future generation of computer systems, to most effectively

improve the performance of machine learning algorithms for different optimization

goals such as security and energy-efficiency of computer systems for emerging appli-

cations.

Chapter 1: Introduction

Electronic system security, trust and reliability has become an increasingly critical

area of concern for modern society [1–5]. Secure hardware systems, platforms, as well

as supply chains are critical to industry and government sectors such as national de-

fense, healthcare, transportation, and financial [6, 7]. Traditionally, authenticity and

integrity of data has been protected with various security protocol at the software

level with the underlying hardware assumed to be secure, and reliable. This assump-

tion however is no longer true with an increasing number of attacks reported on the

hardware. The ever-increasing complexity of modern computing systems has led into

the considerable evolution of security vulnerabilities, making such systems appealing

targets for sophisticated cyber attacks. With the advent of hardware vulnerabilities

and evolution of sophisticated cyber attacks, the attention of computer systems and

security researchers have shifted towards working on the Hardware Cybersecurity re-

search domain and improving the security of computer systems using the hardware

features and characteristics [1, 2, 8–12].

Methods of Machine Learning (ML), which build predictive models that general-

ize training data, have proven to be useful for detecting the behavior of applications

[1,13,14]. Machine learning techniques are used in a wide variety of applications, such

as computer vision, robotics, design space exploration, and performance evaluation

of computer systems where it is infeasible to develop an algorithm of specific instruc-

tions for performing the task [15,16]. Machine learning is basically closely related to

computational statistics, which focuses on making predictions using computers.

1

In this thesis, we primarily attempt to describe how machine learning techniques

and applications run-time information at the microarchitectural and hardware level

can be effectively deployed to address major challenges of security and energy-efficiency

improvement of modern computer systems. In particular, in this research we make use

of various machine learning techniques and applications run-time signatures left on

the underlying hardware for the purpose of secure and energy-efficient computer ar-

chitecture. To this aim, we propose effective machine learning-based solutions which

rely on the run-time traces collected from hardware events registers that are built

in modern microprocessors. In order to clearly highlight the scope and different

categories of research performed in this thesis, in following we briefly describe the

general overview of performed researches in this work that all will be presented in the

upcoming sections of this thesis.

1.1 Ensemble Learning for Effective Run-Time

Hardware-Based Malware Detection

Malware is a piece of program developed by cyber-attackers to perform various mali-

cious activities, such as destroying the data, stealing information, running destructive

or intrusive programs on devices to perform Denial-of-Service (DoS) attack, and gain-

ing root access without the consent of user [1,2,10,13,17–19]. Malware detection can

be simplified as a binary classification problem regardless of what detection method

is being used. Traditional malware detection approaches such as signature-based

detection and semantics-based anomaly detection are considered as software-based

solutions and incur significant computational overheads.

On the other hand, recent studies have demonstrated that malicious software

behavior can be differentiated from benign applications by classifying anomalies in

2

the low-level feature spaces such as microarchitectural events collected by Hardware

Performance Counter (HPC) registers [1, 2, 10, 13, 20–24]. As a result, malware de-

tection using HPCs microarchitectural events has emerged as a promising alternative

to traditional malware detection methods. As learning the underlying patterns of

these microarchitectural events can aid in detecting malware, machine learning (ML)

techniques are widely deployed for malware detection.

Recently, there has been a number of work on Hardware-based Malware Detection

(HMD) using HPCs information. However, these works performed a limited study

on malware classification accounting for the availability of a large number (e.g. 16

or 32) and diverse type of HPCs. While, modern processors in the high-performance

domain have a small number of HPCs (2 to 8), due to several reasons including the

design complexity and cost of concurrent monitoring of microarchitectural events [1,

25,26]. Due to deep pipelines, complex prefetchers, branch predictors, modern cache

design etc., HPCs implementation becomes a great challenge in terms of counting

multiple events and maintaining counter accuracy at the same time under speculative

execution [26]. Better accuracy requires better and more complex hardware design

hence increasing the number of counters with limited accuracy doesn’t appear to be

a good trade-off.

Therefore, collecting a variety of microarchitectural events, more than the number

of available HPCs, to achieve high accuracy using the general ML models presented

in prior work, requires running the application multiple times, since the hardware can

only count a small subset of events concurrently. This approach is not practical for

run-time detection of malware.

As the performance of malware detection depends on the type of ML classifier

applied and the number and type of HPC events used, in this work, we first illustrate

the impact of ML classifier type on malware detection accuracy and performance

3

and the effect of number of HPC events for malware detection. To achieve a high

accuracy across all studied general ML classifiers, of more than 80%, at least 16

hardware performance counters are required, which as discussed is not available in

modern processors, even in the high-performance domain, making run-time detection

of malware impractical using these methods. Therefore, a key challenge in making

the hardware-based malware detection a practical run-time solution is how to use

a limited number of HPCs available in a microprocessor (for instance 2 or 4) and

match the accuracy and performance of malware detection with the ones that can be

achieved by a larger number of HPC events (for instance 16 or 32).

In this work, we address this challenge by proposing effective ensemble learning

techniques to improve the accuracy and performance of the hardware-based malware

detectors and break the trade-off between accuracy/performance with respect to the

number of HPCs. We explore the effectiveness of ensemble learning models in 1)

reducing the number of required performance counters for implementing effective ML

classifiers for run-time malware detection and 2) improving the performance of weak

but low-cost classifiers in malware detection with a small number of HPCs.

1.2 A Two-Stage Machine Learning-Based Approach

for Run-Time Specialized Malware Detection

The ever-increasing complexity of modern computing systems results in the growth

of security vulnerabilities, making such systems appealing targets for increasingly

sophisticated attacks [2, 11, 12, 27]. The attackers take advantage of vulnerabilities

to compromise systems and deploy malicious activities. According to a 2018 McAfee

threats report [28], nearly 63 million new malware samples have been recorded in the

third quarter of 2018, an all-time highest number with an increase of more than 53%

4

from the second quarter of 2018. The recent proliferation of computing devices in

mobile and Internet-of-Things (IoT) domains further exacerbates the malware threats

calling for effective malware detection solutions.

While previous studies on hardware-assisted malware detection focus on one or

few general ML classifiers and limited classes of malware [20–23, 29–32], it is not

clear which of the ML models deliver the best results across various metrics includ-

ing the detection rate, performance, hardware design overheads as well as detection

delay across various classes of malware. In addition to the drawbacks of existing

approaches and non-portability concerns, in this section, we will identify and address

major challenges to realize an effective run-time hardware-assisted malware detection

including 1) determining the key microarchitectural events for effective malware de-

tection, 2) the right machine learning deployed for HMD, and 3) malware detection

with limited available HPC resources. For each of these challenges, effective machine

learning-based solutions are proposed to accurately detect malware at run-time.

The objective of this research is to improve the detection rate and performance

of malware detection for different malware classes using a limited number of microar-

chitectural events equal to the available number of HPCs that can be captured at

run-time. We propose a two-stage machine learning-based hardware-assisted mal-

ware detection approach, referred as 2SMaRT, to not only effectively distinguish the

malware from benign applications, but also to identify the class of malware at run-

time using proper low-level features and determine right machine learning model for

capturing the malware behavior.

5

1.3 Stealthy Malware Detection using Microarchi-

tectural Features

Alongside with the advancement in the hardware-based malware detection techniques,

malicious software attacks have continued to evolve in quantity and sophistication

during the past decade. Due to increasing complexity of malware attacks and finan-

cial motivations of attackers, malware trends are recently shifting towards a more

dangerous attacks namely as stealthy attacks [33,34]. Stealthy attack is a type of cy-

bersecurity attack in which the malicious code is hidden inside the benign application

for performing harmful purposes.

The main purpose of stealthy attacks is to remain undetected for a longer period

of time in the computing system. The longer the threat remains undiscovered the

more opportunity it has to compromise computers and/or steal information before

suitable detection mechanism can be deployed to protect against it. Stolfo et al.

discovered a new type of stealthy threat referred as embedded malware [33]. Under

this threat, the attacker embeds the malicious code or file inside a benign file on the

target host such that the benign and malicious applications are executed as a single

thread on the target system. It has been shown that traditional signature-based

antivirus applications are unable to detect embedded malware even when the exact

signature of malware is available in the detector database. Embedded malware is

potentially a serious security threat and accurate anomaly detection techniques must

be developed to mitigate it.

The existing studies on hardware-based malware detection have primarily assumed

that the malware is spawned as a separate thread while executing on the target

host. However, in real-world scenarios malicious programs attempt to hide themselves

within a benign application to bypass the detection mechanisms. Embedded malware

6

is a category of stealthy security threats that allows malicious code to be hidden

inside a benign application on the target host [35].

In response to the aforementioned challenges, in this research, we propose an effec-

tive time series machine learning-based approach, referred as CHASE, to accurately

detect the embedded malicious patterns inside the benign programs using only one

HPC feature (branch instruction). The main objective of this work is to accurately

detect the malicious application embedded inside the benign program using least

number of microarchitectural events (only one HPCs) in which the traditional ML-

based solutions are unable to detect them with even 8/16 features. Using an effective

feature reduction technique, we first identify the most prominent low-level feature for

embedded malware detection. Next, we propose a lightweight scalable time series-

based Fully Convolutional Neural Network (FCN) model that automatically identifies

potentially contaminated samples in HPC-based time series to distinguish the stealthy

malware at run-time using only branch instructions as the most significant HPC event.

1.4 Machine Learning-Based Approaches for Energy-

Efficiency Prediction in Heterogeneous Archi-

tectures

In this section, we examine the suitability of applying effective machine learning tech-

niques on captured run-time low-level information for addressing the performance vs.

power consumption trade-offs and enhancing the energy-efficiency of heterogeneous

multicore architectures. In particular, we show that hardware performance counter

information can be also effectively used for energy-efficiency prediction and scheduling

of multithreaded applications running on multicore heterogeneous architectures.

7

Heterogeneous Multicore Processors (HMPs) are primarily comprised of multiple

core types (small vs. big core architectures) with various performance and power

characteristics which offer the flexibility to assign each thread to a core that provides

the maximum energy-efficiency. Although this architecture provides more flexibility

for the running application to determine the optimal run-time settings that maximize

energy-efficiency, due to the interdependence of various tuning parameters such as the

type of core, run-time voltage and frequency, and the number of threads, the schedul-

ing becomes more challenging. More importantly, the impact of Power Conversion

Efficiency (PCE) of the On-Chip Voltage Regulators (OCVRs) is another important

parameter that makes it more challenging to schedule multithreaded applications on

HMPs [36–38].

In this research, first we investigate the scheduling challenges of multithreaded

applications on dynamic heterogeneous architectures. To this aim, we describe a

systematic machine learning-based approach to predict the right configurations for

running multithreaded workloads on the composite cores architecture. It achieves

this by developing a machine learning-based approach to predict core type, voltage

and frequency to maximize the energy-efficiency. Our predictor learns offline from

an extensive set of training multithreaded workloads. It is then applied to predict

the optimal processor configuration at run-time by considering of the multithreaded

applications characteristics and the optimization objective.

For this purpose, five well-known machine learning models are implemented for

energy-efficiency optimization and precisely compared in terms of accuracy and hard-

ware overhead to guide the scheduling decisions. The results show that while complex

machine learning models such as MultiLayerPerceptron are achieving higher accu-

racy, after evaluating their implementation overheads, they perform worst in terms of

power, accuracy/area and latency as compared to simpler but slightly less accurate

8

regression-based and tree-based classifiers.

Secondly, the importance of concurrent optimization and fine-tuning of the circuit

and architectural parameters for energy-efficient scheduling on HMPs is addressed

to harness the power of heterogeneity. In addition, the scheduling challenges for

multithreaded applications are investigated for HMP architectures that account for

the impact of power conversion efficiency. To this aim, a highly accurate learning-

based model is developed for energy-efficiency prediction to guide the scheduling

decision. Using the predictive model, we further develop a PCE-aware scheduling

scheme for effective mapping of multithreaded applications onto an HMP.

9

Chapter 2: Background and Related Work

In this section, we comprehensively explore the background and state-of-the-art works

on hardware performance counter and machine learning-based solutions for enhancing

the security and energy-efficiency of the modern computer computer systems.

2.1 Hardware Performance Counter Registers

Hardware Performance Counters (HPCs) are special purpose registers available in

modern microprocessors which keep track of different microarchitectural events [1,2,

9]. A variety of todays processor platforms such as Intel, ARM, and AMD include

HPC built-in registers on their processors. The main purpose of HPCs is to analyze

and tune architectural level performance of running applications [36,37,39–41]. HPC

registers are easily programmable across all platforms capable enough to keep track

various number of microarchitectural features such as cache memories access misses,

TLB hits misses, branch mispredictions, and core stalls of the chip [10,42,43].

The performance counters are often programmed to indicate an interrupt when a

counter overflows or even be set to start the counter from the desired value [44, 45].

The software handles these interrupts allowing programmers to analyze the hardware

resource utilization by their applications at run-time. While hardware performance

counters are finding their ways in various processor platforms from high-performance

to embedded, they are limited in the number of microarchitectural events that can

be captured simultaneously [1, 2, 13, 22, 29]. This is mainly due to limited number of

physical registers on the processor chip which are expensive to implement.

10

Recently, application areas of HPC are grown from mere performance analysis to

detecting firmware modification in Embedded Systems [23, 46], estimating computer

system performance, power and energy-efficiency [36–39, 42, 45, 47–51], and even de-

tection of malware [1, 2, 8, 10, 20, 27, 29, 31, 52]. The operating systems can program

the HPCs using control registers, called Performance Monitoring Counters (PMCs)

found in the Performance Monitoring Unit (PMU). These registers are known as

Model Specific Registers (MSRs) on Intel processors. User-space applications can

access the HPCs through software interfaces to PMUs and configure the HPCs using

the PMCs.

In this research, in order to improve the security of processors, we use HPCs in-

formation to construct a vector of microarchitectural events by profiling malware and

benign applications and feed the vector into various machine learning classifiers to

detect the behavior of application. We utilize the HPC registers to collect execution

traces for all available microarchitectural events by executing collected malware and

benign applications in an isolated environment. Our goal is to learn malware be-

havior with collected HPC of various applications (including malware and normal)

using supervised machine learning methods. Detailed performance counters collection

procedure is discussed in the next sections.

2.2 Machine Learning Techniques used for Mal-

ware Detection

Methods of machine learning, which build predictive models that generalize training

data, have proven to be useful for detecting malware. In this work, we propose effec-

tive machine learning-based solutions for improving the security of computer systems

in the context of hardware-supported malware detection which rely on the run-time

11

traces collected from HPCs. Demme et al. [20] showed the offline machine learning

effectiveness in classifying malware by learning from hardware performance counter

events. They indicated a high detection accuracy result for Android malware by ap-

plying complex ML algorithms like Artificial Neural Network (ANN). Although they

discussed implementing classifiers on hardware, they did not present any hardware

overhead results.

Supervised learning, in the context of machine learning, is a type of system in

which both input and desired output data are provided. Input and output data are

labeled for classification to provide a learning basis for inferring the data [13]. The

majority of practical machine learning uses supervised learning. Supervised learning

is basically applications in which the training data comprises examples of the input

vectors along with their corresponding target vectors. It is where we have input

variables and an output variable and an algorithm is used to learn the mapping

function from the input to the output. The goal is to approximate the mapping

function appropriately that when we have new input data, the output variables can

be estimated promptly for that data.

In this work, we have deployed various supervised machine learning classifiers

for malware detection. These machine learning classifiers consist of eight general

classifiers including Bayesian Network (BayesNet), an artificial neural network model

(MLP: MultiLayerPerceptron), two different rule-based algorithms (JRIP, OneR), a

tree-based learning technique namely J48 and REPTree, a Support Vector Machine

called SMO, and a Gradient Decent Optimization technique called SGD. We selected

these eleven classifiers for two primary reasons. First, they are from different branches

of machine learning methods; Bayesian network, neural network, decision tree, and

rule-based covering a diverse range of learning algorithms which are inclusive to model

both linear and non-linear problems. Second, the prediction model produced by these

12

learning algorithms is a binary classification model which is compatible with our

malware analysis and detection problem. We precisely compared and characterized

these ML classifiers in terms of detection performance (accuracy and area under the

curve), and hardware overhead. A brief description of each ML classifiers used in this

research is presented below:

Bayesian Network (BN): A class of probabilistic and statistic graphical model that

that aims to model conditional dependence and causation, by representing a set of

variables and conditional dependencies by edges in a directed graph.

Artificial Neural Network (ANN): Consists of units (neurons), arranged in layers,

which convert an input vector into some output. Each unit takes an input, applies

a (often nonlinear) function to it and then passes the output on to the next layer.

The original goal of the ANN approach was to solve problems in the same way that

a human brain would [14,48].

Decision Tree (DT): Sequential models, known as ”divide and conquer” algorithms,

which logically combine a sequence of simple tests where a numerical attribute is

compared against a threshold value or against a set of possible values. It is essentially

a flow chart like structure where each internal node denotes a test on an attribute

with each branch representing an outcome of the test and each leaf holding a class

label [14, 48].

Rule-Based Classification: Machine learning models that identify, learn, and evolve

a set of relational rules that collectively represent the knowledge captured by the

system.

Support Vector Machine (SVM): In machine learning domain, a Support Vector Ma-

chine (SVM) is a subset of supervised learning models which are discriminative clas-

sifiers formally defined by a separating hyperplane that examine the data used for

classification and regression analysis. In other words, given labeled training data, the

13

algorithm outputs an optimal hyperplane which categorizes new examples. In two

dimentional space this hyperplane is a line dividing a plane in two parts where in

each class lay in either side. SVMs can be efficiently deployed for both linear classi-

fication a non-linear classification. In addition, Stochastic Gradient Descent (SGD)

is a simple yet very efficient approach to discriminative learning of linear classifiers

under convex loss functions such as (linear) Support Vector Machines and Logistic

Regression.

Recently, SGD has received a significant consideration by the researchers in the

context of large-scale learning. SGD has been successfully applied to large-scale

and sparse machine learning problems often encountered in text classification and

natural language processing. The advantages of Stochastic Gradient Descent are

efficiency and ease of implementation, while it has disadvantages including being

sensitive to feature scaling and also requiring a number of hyperparameters such as

the regularization parameter and the number of iterations.

2.2.1 Performance Evaluation Metrics

Evaluating the performance of machine learning classifiers is an important step in im-

plementing effective ML-based optimization solutions for security and energy-efficiency

analysis (e.g. malware detection techniques). In the field of machine learning and

statistics, there exists variety of measures that can be deployed to evaluate the per-

formance of a ML-based detection method in order to show its detection accuracy.

The standard evaluation metrics used for performance analysis of malware detection

and classification are summarized in Table 2.1. In this section, we briefly describe

each evaluation metric.

In malware detection rate analysis, malicious applications samples are often con-

sidered as positive instances. As a result, the True Positive Rate (TPR) metric or

14

the hit rate, represents sensitivity that stands for the proportion of correctly iden-

tified positives. It is basically the rate of malware samples (i.e., positive instances)

correctly classified by the classification model. The True Negative Rate (TNR) also

represents specificity that measures the proportion of correctly identified negatives.

In addition, the False Positive Rate (FPR) is the rate of benign files (i.e., negative

instances) wrongly classified (i.e., misclassified as malware samples) [1, 2].

The F measure (F score) in machine learning is interpreted as a weighted average

of the precision (p) and recall (r). The precision is the proportion of the sum of

true positives versus the sum of positive instances and the recall is the proportion of

instances that are predicted positive of all the instances that are positive. F measure

is a more comprehensive evaluation metric over accuracy (percentage of correctly

classified samples) since it takes both the precision and the recall into consideration.

More importantly, F measure is also resilient to class imbalance in the dataset which

is the case in our experiments. The Detection Accuracy (ACC) measures the rate of

the correctly classified positive and negative samples [1, 2, 10,13].

Precision and recall are not adequate for showing the performance of detection

even contradictory to each other, because they do not include all the results and sam-

ples in their formula. F-score (i.e., F-measure) is then calculated based on precision

and recall in order to compensate this disadvantage. Receiver Operating Character-

istic (ROC) is a statistical plot that depicts a binary detection performance while

its discrimination threshold setting is changeable. The ROC space is evaluated by

considering FPR and TPR as x and y axes, respectively. It primarily assists in

determining trade-offs between TP and FP. Since TPR and FPR are equivalent to

sensitivity and (1-specificity) respectively, each prediction result represents one point

in the ROC space. The point in the upper left corner or coordinate (0, 1) of the ROC

curve stands for the best detection result, representing 100% sensitivity and 100%

15

Table (2.1) Evaluation metrics for performance of malware detection techniques

Evaluation Metric Description

True Positive Correct positive prediction

False Positive Incorrect positive prediction

True Negative Correct negative prediction

False Negative Incorrect negative prediction

Specificity: True Negative Rate (TNR) TNR = TN/(TN + FP)

False Positive Rate (FPR) FPR = FP/(FP + TN)

Precision P = TP/(FP + TN)

Recall: True Positive Rate (TPR) TPR = TP/(TP + FN)

F measure (F score) Fmeasure = 2× (Precision×Recall)/(Precision+Recall)

Detection Accuracy ACC = (TP + TN)/(TP + FP + TN + FN)

Error Rate ERR = (FP + FN)/(P +N)

Area Under the Curve (AUC) AUC =
∫ 1

0
TPR(x)dx =

∫ 1

0
P (A > τ(x))dx

specificity. An Area Under the Curve (AUC) is usually between 0.5-1.0, the bigger,

the better the detection is [1, 13]. Due to the fact that it is difficult to concurrently

meet with high precision and recall, we need to make a trade-off to balance both

metrics. As a result, F-measure is often used to indicate detection performance [2].

Confusion Matrix for ML Classifiers: In statistical machine learning domain,

a confusion matrix, is a specific table that represents the prediction performance of

a machine learning classifier. It comprised of two dimensions namely as ”actual”

and ”predicted”, and identical sets of ”classes” in both dimensions. Each row of

the confusion matrix represents the instances in a predicted class while each column

represents the instances in an actual class (or vice versa).

As shown in 2.1 a confusion matrix is formed from four outcomes produced as a

16

result of binary classification. A binary classifier predicts all data instances of a test

dataset as either positive or negative. This classification (or prediction) produces four

outcomes listed as follows:

True
Negatives

(TN)

True
Positives

(TP)

False
Negatives

(FN)

False
Positives

(FP)

Predicted Class

A
ct

u
al

 C
la

ss

Specificity

Precision
Sensitivity/
Recall

Figure (2.1) Confusion matrix layout for a machine learning classifier

• True Positive (TP): Correct positive prediction; e.g. malicious applications that

are correctly classified as malware

• False Positive (FP): Incorrect positive prediction; e.g. benign applications that

are incorrectly classified as malware

• True Negative (TN): Correct negative prediction; e.g. benign applications that

are correctly classified as benign

• False Negative (FN): Incorrect negative prediction; e.g. malicious applications

that are incorrectly classified as benign

17

2.3 Comprehensive Analysis of State-of-the-Art

2.3.1 Hardware-Based Malware Detection

In this section, we discuss the latest studies on malware detection techniques using

low-level hardware features. The work in [20] was the first study that proposed to use

HPC data for malware detection and demonstrated the effectiveness of using machine

learning models. Although they have discussed implementing classifiers on hardware,

they did not present any hardware overhead analysis results which are important as

they decide which ML classifier responds in real-time and performs most cost-efficient.

The hardware implementation overhead, particularly area and latency are important

as they decide which ML classifier responds in real-time, and performs most cost-

efficient. Also, the work has no discussion on main challenges to realize run-time

HMD highlighted in this work including limited number of HPCs, and high variance

in ML classifiers accuracy and performance across various classes of malware as well

as embedded HMD.

The works in [53] and [54] discussed the feasibility of unsupervised learning method

on low-level features to detect Return-Oriented Programming (ROP) and buffer over-

flow attacks by finding an anomaly in HPCs information. Although unsupervised

algorithms can be more effective in detecting new malware and attacker evolution,

they are complex in nature requiring more sophisticated analysis, resulting in complex

hardware implementations. Also, their software implementation is not an effective

solution to detect malware at run-time, due to large latency to compute the complex

algorithms.

In [21, 55], the authors used sub-semantic features to detect malware. Moreover,

they suggested changes in microprocessor pipeline to detect malware in truly real-

time nature. They discussed estimated latency and area utilization of Logistic and

18

ANN algorithm implementation for their architecture. However, our work is different

as it does not require any change in the processor pipeline. In [29], a single-stage ML-

based hardware-assisted malware detection is proposed, but requires 8 or more HPC

features to achieve higher accuracy and performance, which makes it less suitable for

online malware detection. The work in [31] collected HPC information to construct

support vector machine (SVM) detectors to identify malicious programs. However,

they did not discuss the per-class analysis as well as hardware overhead analysis of

deployed ML classifiers.

The works in [30] used logistic regression to classify malware into different types

and trained a specialized classifier for detecting each type. They further used ensem-

ble learning to improve the accuracy of logistic regression. In their ensemble learning

implementation, they limited their experiments on just combining classifiers. In ad-

dition, they have ignored to account for the impact of reducing the number of HPCs

on the performance of detectors and also have examined limited ML classifiers.

Collectively, prior works on hardware-assisted malware detection mostly focus on

a particular machine learning classifier and ignoring per-class analysis of malware.

Our work is different, given that for each class of malware, a unique ML classifier

gives the best results (across detection rate, performance, delay, and area metrics),

we thoroughly examined various general and ensemble learning-based malware detec-

tors using varying number of microarchitectural features in terms of detection rate,

robustness, performance, and hardware overheads for effective run-time harwdare-

based mawlare detection [1].

2.3.2 Energy-Efficient Heterogeneous Architectures

Heterogeneous Architectures. Heterogeneous multicore architectures refers to

computer systems that include more than one type of processors. Such systems gain

19

performance or energy efficiency not just by adding the same type of processors,

but by adding dissimilar coprocessors, usually incorporating specialized processing

capabilities to handle particular tasks [56–58]. The static heterogeneous architecture

in [59] enables efficient thread-to-core mapping and permits a change in the mapping

across phases of execution through thread migration. Prior research has shown that

the potential benefit of a static heterogeneous architecture is greater with fine-grained

thread migration than with coarse-grain migration [60].

In research [61], an Intel Xeon is integrated with an Atom processor. Code in-

strumentation is used at the function or loop level to schedule different phases of

the application on each processor. However, the separate core and memory subsys-

tems in static heterogeneous architectures incur power and performance overheads

for application migration, which makes dynamic mapping ineffective for fine-grained

migration.

Unlike static heterogeneous architecture where the number and type of cores are

fixed at run-time, dynamic heterogeneous architectures can be configured at run-

time [62]. This provides more opportunity to map an application to a core which

matches its resource needs more closely. Some of the first efforts to provide this kind

of heterogeneity include Core Fusion [63] and TFlex [60]. Composite cores proposed a

dynamic heterogeneous architecture where a big core can dynamically be decomposed

into a smaller core [64].

The work in [62] and [65] extended the concept of composite cores into 3D stacking

which enables fine-grain sharing of resources between cores on a stacked chip mul-

tiprocessor architecture. Their proposed architecture permits multiple smaller cores

to be composed together making a larger core, given the performance and energy

requirements of the running application. Previous work on dynamic heterogeneous

architecture and specifically on composite core, has mainly studied mapping of single

20

threaded applications. However, our work is different as it mainly focuses on multi-

threaded applications and how they would benefit from such architecture to maximize

the energy-efficiency.

Scheduling Challenges in Heterogeneous Architectures. As mentioned be-

fore, a main challenge for heterogeneous architectures is the mapping and scheduling

decision, which finds the most efficient application-to-core match at run-time. The

work in [59] and [66] address the problem of dynamic thread mapping in static het-

erogeneous many-core systems. Prior research aimed to maximize performance under

power constraints [56, 59, 66, 67]. Our work is different as it first targets dynamic

heterogeneous architectures where core size can be adapted at run-time, and second

it aims to maximize the energy-efficiency by reducing the EDP. It is important to

note that the power and performance of an application on different cores at various

frequencies must be known for proper mapping. Traditional designs suggest selecting

the best core based on a small sampling of applications on each core [68]. Other

techniques [56,64,67,69], estimate core performance and adapt the resources without

running applications on a particular core type using learning models.

The work in [70] and [64] provide a model for performance estimation on two

core types (i.e., big and little cores). The complexity of application mapping on

a heterogeneous architecture increases exponentially by increasing number of core

types and applications. While previous studies have mainly examined the advantages

of using single threaded applications, there is limited study on effectively mapping

multithreaded applications onto heterogeneous composite cores architecture. There

have been several studies on mapping multithreaded applications on homogeneous

architectures.

The work in [71] suggested a framework called Thread Reinforcer to determine

the appropriate number of threads for a multithreaded application on a homogeneous

21

architecture. It examines the mapping between number of threads and number of

cores to find the optimal or near optimal number of threads to minimize the execution

time.

The research in [70] proposed a scheduling method to predict application to core

mappings that enhances performance. Using profiling parameters, it estimates perfor-

mance and examines whether the workload needs to run on different core type. The

work in [59] proposed a mapping strategy for multithreaded applications on static

heterogeneous multicore architecture by initializing a maximum throughput mapping

and iteratively performing a thread swap on adjacent types of cores until the power

constraint is met.

The work in [56] took a closer look at joint optimization of voltage and frequency

as well as the microarchitecture. It proposed a platform, which is capable of scaling

resources, i.e., bandwidth, capacity, voltage, and frequency, based on single-threaded

application performance requirements at run-time while reducing EDP.

22

Chapter 3: Ensemble Learning for Effective

Run-Time Hardware-Based Malware Detection

Malware (Malicious Software) is a piece of code designed to perform various malicious

activities, such as destroying the data, stealing information, running destructive or

intrusive programs on devices to perform Denial-of-Service (DoS) attack, and gaining

root access without the consent of user [1,2,8,17]. Malware detection can be simplified

as a binary classification problem regardless of what detection method is being used

[1, 13]. It is basically envisioned as distinguishing whether the running application

has malicious intent or not.

Traditional malware detection approaches such as signature-based detection and

semantics-based anomaly detection are considered as software-based solutions and

incur significant computational overheads [1, 2, 13, 29]. In particular, these software-

based malware detection methods such as AV software primarily pose several draw-

backs. First, they rely on static signature-based detection in order to detect malicious

pattern of infected application. Such detection mechanism search for suspicious byte

patterns in the program, whereas an attacker can deceive AV software by program-

ming and crafting malware in such a way that its signature appears as a benign

software. Second, AV software are prone to exploits like any other software which

can ultimately compromise protection if exploited. Third, AV software tools are slow

and resource hungry. Conditions become even worse for metamorphic viruses, as

defective detection of such attacks is an NP-complete problem [72].

Recent studies on malware detection approaches have demonstrated that mal-

ware behavior can be differentiated from benign applications by classifying anomalies

23

in the low-level microarchitectural features spaces such as microarchitectural events

collected by Hardware Performance Counter (HPC) registers[1, 2, 9, 13]. HPCs are

CPU hardware registers that count hardware events such as instructions executed,

cache-misses suffered, or branches mispredicted.

Performance counters data have been extensively used to predict the power, per-

formance, and energy-efficiency of computing systems [10, 36–39], and recently drew

attentions to be used for detecting the malicious pattern of running applications to

improve the security of systems. Thus, malware detection using HPCs microarchitec-

tural events has emerged as a promising alternative to traditional malware detection

methods. As learning the underlying patterns of these microarchitectural events can

aid in detecting malware, machine learning techniques are widely deployed for mal-

ware detection. The HPC microarchitectural features are used to train ML-based

classifiers. In addition, such ML-based malware detection methods can be imple-

mented in microprocessor hardware with significantly low overhead as compared to

the software-based methods, as detection of anomaly inside the hardware is very fast

(few clock cycles) [1, 13].

Recently, there has been a number of work on hardware-based malware detection

using HPCs information [20–23,30,31,46,55]. However, these works performed a lim-

ited study on malware classification accounting for the availability of a large number

(e.g. 16 or 32) and diverse type of HPCs. While, modern processors in the high-

performance domain have a small number of HPCs (2 to 8), due to several reasons

including the design complexity and cost of concurrent monitoring of microarchitec-

tural events [1, 25, 26].

Due to deep pipelines, complex prefetchers, branch predictors, modern cache de-

sign etc., HPCs implementation becomes a great challenge in terms of counting mul-

tiple events and maintaining counter accuracy at the same time under speculative

24

execution [1, 25, 26]. Better accuracy requires better and more complex hardware

design hence increasing the number of counters with limited accuracy doesn’t appear

to be a good trade-off. Even modern Intel Xeon architectures houses only 4-6 perfor-

mance counters, compare to 2 in Pentium 4 and server class Intel Atom processor, for

the very same reason. For embedded mobile and IoT domains, the number of HPCs

that can be accessed simultaneously is even smaller.

Therefore, collecting a variety of microarchitectural events, more than the number

of available HPCs, to achieve high accuracy using the general ML models presented

in prior work, requires running the application multiple times, since the hardware can

only count a small subset of events concurrently. This approach is not practical for

run-time detection of malware. In addition, previous studies, mostly focus on specific

learning classifiers and limited types of malware. A quantitative comparison of these

studies indicates that there is no unique classifier that delivers the best results across

various metrics including performance (accuracy and robustness) and area overhead

as well as detection delay and various classes of malware.

As the performance of malware detection depends on the type of ML classifier

applied and the number and type of HPC events used, in this work, we first illustrate

the impact of ML classifier type on malware detection accuracy and performance

and the effect of number of HPC events for malware detection [1]. To achieve a

high accuracy across all studied general ML classifiers, of more than 80%, at least 16

hardware performance counters are required, which as discussed is not available in

modern processors, even in the high-performance domain, making run-time detection

of malware impractical using these methods. Therefore, a key challenge in making

the hardware-based malware detection a practical run-time solution is how to use

a limited number of HPCs available in a microprocessor (for instance 2 or 4) and

match the accuracy and performance of malware detection with the ones that can be

25

achieved by a larger number of HPC events (for instance 16 or 32).

In this work, we address this challenge by proposing ensemble learning techniques

to improve the accuracy and performance of the hardware-based malware detectors

and break the trade-off between accuracy/performance with respect to the number of

HPCs. We explore the effectiveness of ensemble learning models in 1) reducing the

number of required performance counters for implementing effective ML classifiers for

run-time malware detection and 2) improving the performance of weak but low-cost

classifiers in malware detection with a small number of HPCs.

This work proposes a machine learning-based solution to break this trade-off to

realize effective run-time detection of malware. We propose ensemble learning tech-

niques to improve the performance of the hardware-based malware detectors despite

using a very small number of microarchitectural events that are captured at run-time

by existing HPCs, eliminating the need to run an application several times. For this

purpose, eight robust machine learning models and two well-known ensemble learning

classifiers applied on all studied ML models (sixteen in total) are implemented for

malware detection and precisely compared and characterized in terms of detection ac-

curacy, robustness, performance (accuracyrobustness), and hardware overheads. The

experimental results show that the proposed ensemble learning-based malware detec-

tion with just 2 HPCs using ensemble technique outperforms standard classifiers with

8 HPCs by up to 17%. In addition, it can match the robustness and performance

of standard ML-based detectors with 16 HPCs while using only 4 HPCs allowing

effective run-time detection of malware.

26

3.1 Ensemble Learning

Ensemble learning is a branch of machine learning which is used to improve the ac-

curacy and performance of general ML classifiers by generating a set of base learners

and combining their outputs for final decision [1, 2, 13, 73]. It fully exploits com-

plementary information of different classifiers to improve the decision accuracy and

performance. The ensemble learning and joint decision procedure are widely used to

devise learning methods to achieve more accurate predictions and stronger general-

ization performance. In this work, we deploy and analyze the effectiveness of two

ensemble learning methods for efficient malware detection even with less number of

HPCs. These ensemble methods are briefly described in below:

Detector

X

Detector

X

Detector

X
..

Result 1 Result 2 Final Decion

W1 W2 Wn

C1 C2 Cn..

T1 T2 Tn

P1 P2 Pn

Classification Models

Predictions

Bootstrap Samples

Voting

Final Prediction

(a) (b)

Figure (3.1) Ensemble learning block diagrams a) AdaBoost, b) Bagging

3.1.1 Boosting

Boosting is one of the most commonly used ensemble learning methods for enhancing

the performance of ML algorithms. Adaptive Boosting, or in short AdaBoost [74],

is the first proposed implementation of this type of ensemble learners. Figure 3.1-a

illustrates the AdaBoost methodology. As shown, each base classifier is trained on a

27

weighted form of the training dataset in which the weights depend on the performance

of the previous base ML classifier.

Once all the base classifiers are trained, they will be combined to produce the

final classifier. Each training instance in the dataset is weighted and the weights

are updated based on the overall accuracy of the model and whether an instance was

classified correctly or not. Subsequent models are trained and added until a minimum

accuracy is achieved or no further improvement is possible. In this work, we applied

AdaBoost as a boosting learning technique on all studied general ML classifiers to

analyze its impact on the accuracy and performance improvement of hardware-based

malware detection [1, 13].

3.1.2 Bagging

Bagging, or Bootstrap Aggregation is an ensemble learning model that is used for

classification and regression problems. It is a statistical prediction technique where

a statistical value like a mean is estimated from multiple random samples of training

data which are drawn with replacement and used to train different ML models. Each

model is then exploited to make a prediction and the results are averaged to give a

more robust and generalized prediction.

Figure 3.1-b illustrates the overview of bagging model. Bagging is a technique that

is best used with models with low bias and high variance, in which the predictions

of base learners are highly dependent on the data from which they were trained.

Therefore, it is most suited for our purpose, given the wide variation in ML classifier

performance as we will show later in this work. The most used algorithm for bagging

that fits the requirement of high variance are decision trees [1, 74].

28

3.2 Proposed Run-Time Malware Detection

In this section, we present the details of our proposed run-time hardware-based mal-

ware detection approach.

3.2.1 Experimental Setup and Data Collection

This section provides the details of the experimental setup and data collection proce-

dure. We execute all applications on an Intel Xeon X5550 machine running Ubuntu

14.04 with Linux 4.4 Kernel and collect various HPCs data. This processor is based

on Intels Nehalem design, providing four performance counter registers. In order to

extract the HPC information, we use Perf tool available under Linux. Perf pro-

vides rich generalized abstractions over hardware specific capabilities. It exploits

perf-event-open function call in the background which can measure multiple events

simultaneously. We have executed more than 100 benign and malware applications for

HPC data collection. Benign applications include MiBench benchmark suite, Linux

system programs, browsers, text editors, and word processor. For malware applica-

tions, Linux malware is collected from virustotal.com. Malware applications include

Linux ELFs, python scripts, perl scripts, and bash scripts, which are created to per-

form malicious activities. After collecting microarchitectural events using Perf, we

use WEKA tool [75] for evaluating the accuracy and performance of various machine

learning classifiers.

Figure 3.2 depicts the overview of the proposed hardware-based malware detec-

tion approach and training the ML classifiers for predicting the malicious behavior

of applications. It is primarily composed of various stages including feature extrac-

tion, feature reduction, and ML classifiers (general and ensemble) implementation for

29

Training Applications
(Malware/Benign)

Feature
Extraction

Capturing
HPCs via
Perf Tool

Feature
Reduction

ML Binary
Classifiers

General vs. Ensemble Learners

Predictive
Models

Malware vs. Benign
Classification

Correlation Analysis &
Attribute Evaluation

Feature Scoring

1

2

Hardware Performance
Counters

1. General

2. AdaBoost

3. Bagging

BayesNet J48

JRip MLP

OneR REPTree

SGD SMO

Malware

Benign

Benign

Malware

Figure (3.2) The overview of the proposed run-time hardware-based malware detec-
tion framework

malware detection which will be discussed in more details in next sections. HPC infor-

mation is collected by executing all applications in Linux Containers (LXC) which is

an isolated environment [76]. LXC is an operating system level virtualization method

that shares the same kernel with the host operating system. In this work, LXC is

chosen over other commonly available virtual platforms such as VMWare or Virtual-

Box since it provides access to actual performance counters data instead of emulating

the HPC registers behavior.

We extracted 44 CPU events available under Perf tool. Since Intel Xeon has

only 4 counter registers available [77], we can only measure 4 events at a time. As

a result, multiple runs are required to fully capture all events. We divide 44 events

into 11 batches of 4 events and run each application 11 times at sampling time of

10ms to gather all microarchitectural events. Running malware inside the container

can contaminate the environment which may affect subsequent data collection. To

ensure that there is no contamination in collected data due to the previous run, the

container is destroyed after each run.

30

3.2.2 Feature Selection

Feature selection can be found in many areas of data mining such as classification,

clustering, association rules mining, and regression. Feature selection is primarily

considered as a process of selecting the most important subset of features from original

features space [1,2,10,78,79]. As the dimensionality of a data expands, the number of

features increases. Finding an optimal feature subset is typically intractable and many

problems related to feature selection have been shown to be NP-hard. Redundancy

of attributes is also an important point that needs to be accounted for. An attribute

may be considered as a redundant feature if it can be derived from another attribute

or set of attributes [39, 78].

As mentioned earlier, detecting malware using machine learning models requires

representing programs at low microarchitectural level. This process produces very

high dimensional dataset. Running ML algorithms with large HPCs would be complex

and slow. Besides, incorporating irrelevant features would result in lower accuracy

for the classifier [37,39,80]. Therefore, instead of accounting for all captured features,

irrelevant data is identified and removed using a feature reduction algorithm and a

subset of HPCs is selected that includes the most important features for classification.

The features are supplied to each learning algorithm and the learning algorithm at-

tempts to find a correlation between the feature values and the application behavior

to predict the malware or benign type.

As discussed, the key aspect of building an accurate detector is finding the right

features to characterize the input data. We started from 44 performance counters. As

shown in Figure 3.2, after feature extraction, the feature reduction process reduces

the number of low-level features. We first use Correlation Attribute Evaluation on our

training set under WEKA to monitor the most vital microarchitectural parameters

to capture application characteristics. Next, the features are scored based on their

31

importance and relevance to the target variable through the feature scoring process.

By applying the feature reduction method, the sixteen most related hardware per-

formance counters are determined and numbered in order of importance for malware

detection. These HPCs and their descriptions are listed in Table 1. They are included

in the general and ensemble learning prediction models as input parameters to clas-

sify the behavior of application as shown in Figure 3.3. The selected features include

HPCs representing pipeline front-end, pipeline back-end, cache subsystem, and main

memory behaviors influential in the performance of standard applications.

ML Classifier
General vs. Ensemble…

HPCs Vector:
[16/8/4/2] Inputs

Output Class:
Benign vs. Malware

Figure (3.3) The functionality of ML-based malware detectors

3.2.3 Training and Testing the Malware Detectors

In this section, we describe the details of training and testing the ML classifiers for

malware detection. Training involves profiling the incoming application with Perf

tool under Linux and extracting low-level feature values for each training program,

reducing the extracted features to the most vital performance counters, and develop-

ing a learning model from the training data. It is important to note that the input

variables in our classifiers are the HPCs extracted every 10ms interval from the run-

ning applications, and the output variable is the class (malware vs. benign) of an

application.

32

Table (3.1) Hardware performance counters in order of importance

Rank HPC Feature Description
1 branch instructions Number of branch instructions that are retired
2 branch loads Number of successful branches (Taken)
3 iTLB load misses Number of misses occurred in instruction TLB during load operations
4 dTLB load misses Number of misses occurred in data TLB during load operations
5 dTLB store misses Number of misses in data TLB during store operations
6 L1 dcache stores Number of stores instructions executed into L1 cache
7 cache misses Number of misses occurred in Last Level Cache (LLC)
8 node loads Number of successful load operations occurred into DRAM
9 dTLB stores Number of store operations occurred in data TLB
10 iTLB loads Number of load operations occurred in instruction TLB
11 L1 icache load misses Number of instruction misses occurred in L1 instructions cache
12 branch load misses Number of load branches that are mispredicted
13 branch misses Number of branches that are mispredicted
14 LLC store misses Number of misses occurred in L3 cache during store operation
15 node stores Number of successful store operations to DRAM
16 L1 dcache load-misses Number of misses occurred in L1 data cache during load operation

For each ML classifier, we construct the general and ensemble models (AdaBoost

and Bagging) to detect the malware. In order to validate each of the utilized ML

classifiers, a standard 70%-30% dataset split for training and testing is followed.

To ensure a non-biased splitting, 70% benign- 70% malware application for training

(known applications) and 30% benign-30% malware applications for testing (unknown

applications) are used.

3.3 Experimental Results and Evaluation

In this section, we present the evaluation results for different machine learning clas-

sifiers. We thoroughly compare these learning techniques in terms of the prediction

accuracy, robustness, performance, and the hardware implementation costs.

33

Table (3.2) AUC values for all general and ensemble detectors with varying number
of HPCs

Classifier 16HPC 8HPC 4HPC 4HPC-Boosted 4HPC-Bagging 2HPC 2HPC-Boosted 2HPC-Bagging
BayesNet 0.922 0.922 0.926 0.916 0.937 0.916 0.875 0.927
J48 0.876 0.876 0.81 0.936 0.852 0.81 0.925 0.817
JRip 0.857 0.857 0.81 0.88 0.932 0.81 0.932 0.883
MultiLperc. 0.902 0.902 0.888 0.923 0.865 0.901 0.931 0.872
OneR 0.81 0.81 0.81 0.897 0.869 0.81 0.898 0.869
REPTree 0.85 0.85 0.81 0.85 0.885 0.81 0.924 0.91
SGD 0.741 0.741 0.714 0.889 0.736 0.714 0.714 0.714
SMO 0.651 0.651 0.67 0.883 0.851 0.68 0.886 0.827

3.3.1 Detection Accuracy

To evaluate the detection accuracy of our malware classifiers, we calculate the percent-

age value of samples that are correctly classified. Figure 3.4 shows a comprehensive

accuracy comparison of various ML classifiers (general and ensemble) used for mal-

ware detection. We have implemented 8 general ML classifiers and two ensemble

learning techniques and calculated their accuracy in classifying malware and benign

applications. The accuracy of malware detection with different number of hardware

performance counters (16, 8, 4 and 2) are reported. Before feature reduction (16

HPCs), most ML classifiers perform well, mostly providing above 80% accuracy. Fea-

ture reduction has noticeable impact on the accuracy of several classifiers. However,

OneR classifiers perform well even after feature reduction. The reason that OneR

classifier is not affected by feature reduction and shows almost constant accuracy re-

sults is that it only selects one performance counter (branch-instructions) to predict

the malware behavior.

As can be seen in Figure 3.4, in some classifiers like BayesNet, JRip, OneR, REP-

Tree, and SMO by reducing the number of hardware performance counters to 2 or

4 and applying ensemble learning techniques, a higher or similar accuracy level to

8/16 HPC models is achieved. This interesting observation confirms the effective-

ness of using ensemble learning to boost the accuracy of classifiers. For instance, as

34

Figure (3.4) Detection accuracy results (ACC) for various ML classifiers with vary-
ing number of HPCs

shown, REPTree achieves close to 88% accuracy with 16 HPCs. However, we observe

that reducing the number of vital performance counters to 2 and applying AdaBoost

ensemble technique result in achieving almost the same 88% accuracy, as with 16

HPCs.

3.3.2 Classification Robustness

To evaluate the accuracy and robustness of ML classifiers in detecting malware, Re-

ceiver Operating Characteristics (ROC) graphs are used. As described earlier, the

ROC curve is produced by plotting the fraction of true positives versus the fraction

of false positives for a binary classifier as the threshold changes. The best possible

classifier would thus yield a point in the upper left corner or coordinate (0,1) of the

ROC space, representing 0% false positives and 100% true positives.

We use the Area Under the Curve (AUC) measure for ROC curve in the evalu-

ation process to examine the robustness of each ML classifier. The area under the

ROC curve corresponds to the probability of correctly identifying which application

is malware and which is benign. In other words, the AUC measure is more related

35

Figure (3.5) The ROC curves for ML-based malware detectors

to the robustness of the classifier. In this work, robustness term is referred to how

well the classifier distinguishes between binary malware and benign classes, for all

possible threshold values. The AUC value of the best possible classifier is equal to 1,

which means that we can find a discrimination threshold under which the classifier

obtains 0% false positives and 100% true positives.

Table 3.2 presents the list of the area under the ROC graphs values for each ML

general and ensemble classifier with varying number of HPCs. It primarily presents

the values for the ROC curves resulted from all comparisons between the general and

ensemble-based detectors. A higher AUC value means that the ROC graph is closer to

the optimal threshold and the classifier is performing better in terms of classification

of malware and benign applications. Area under the curve analysis provides valuable

insights to select possibly optimal ML classifiers suitable for malware detection and

to discard the suboptimal detectors.

Figure 3.5 depicts the ROC curves for two different ensemble learning models

and different number of performance counters. Due to space limitation, here we

present the ROC graphs for selected ML classifiers and show the impact of ensemble

learning techniques on AUC robustness. In Figure 3.5-a, the ROC graphs for 4 ML

36

classifiers improved by Bagging ensemble learner are shown which were developed

with 4 performance counters. As can be seen in this figure as well as Table 3.2, the

BayesNet and JRip classifiers have maximum AUC of 0.937 and 0.932, respectively,

delivering best robustness with only 4 performance counters. Figure 3.5-b represents

the AdaBoost technique effectiveness on two different detectors when reducing the

number of HPCs from 8 to 2. As shown, for each classifier boosting model significantly

improve the AUC of ROC curve making the ML classifier more effective in terms of

classification robustness.

3.3.3 Performance of Malware Detection

In order to evaluate and compare the performance of malware detectors, we con-

sider the product of accuracy and area under the ROC graph (ACC*AUC) as a

performance metric. This metric combines the impact of accuracy and robustness in

malware classification and concurrently accounts for both measures. We accounted

for performance as a final comparison metric across various ML classifiers since it is a

more comprehensive measure by considering both impacts of the detection accuracy

and AUC values. Figure 3.6 illustrates the ACC*AUC results of various ML classifiers

under a varying number of hardware performance counters.

As can be seen in the results, most of the classifiers such as JRip, J48, Multi-Layer

Perceptron (MLP), and SMO deliver higher performance when they are supplied

with 16 and 8 performance counters and by decreasing the number of performance

counters, the performance of general ML classifiers decreases showing the potential

for applying ensemble learning techniques to boost the accuracy and performance

with fewer performance counters.

For instance, in SMO classifier by reducing the number of performance counters

to 4 and 2 and applying AdaBoost ensemble technique, we achieve 16% and 17%

37

Figure (3.6) Performance results (ACC*AUC) for various ML classifiers with varying
number of HPCs

performance improvement, respectively. In REPtree classifier, 2HPC-Boosted detec-

tor is achieving 11% improvement in ACC*AUC measure as compared to the general

ML classifier with 8 performance counters. JRip classifier achieves 10% performance

improvement by applying boosting method and 7% improvement with Bagging tech-

nique with the use of only 4 performance counters compared to using 8 HPCs.

The results clearly confirm the effectiveness of using ensemble techniques for per-

formance improvement of ML classifiers with a lower number of HPCs for malware

detection. The key point here is that rather than extracting 16 or 8 hardware per-

formance counter which definitely impose significant implementation cost overhead

to the systems in terms of resource utilization and power consumption, it is more

effective to alternatively collect lower number of HPCs (four or two), depending on

the classifier type, and boost the performance of the ML classifier with one of the

ensemble learning approaches to improve the accuracy as well as the robustness of

malware detectors.

38

3.3.4 Hardware Implementation Results

The software implementation of ML classifiers for malware detection is slow in the

range of tens of milliseconds which is an order of magnitude higher than the latency

needed to capture the malware at run-time [29]. Therefore, in this work, we develop

a hardware implementation of the general and ensemble learning detectors. We use

Vivado HLS compiler to develop the HDL implementation of the classifiers and deploy

on Xilinx Virtex 7 FPGA. FPGA is a target in our study, as few modern micropro-

cessors have on-chip FPGAs available for programmable logic implementation. Such

arrangement makes it feasible to implement reprogrammable low-level malware de-

tection logic (ML model) which can detect malware by reading the CPU hardware

performance counters through shared memory bus [81].

When it comes to choosing the ML classifiers for hardware implementation, the

accuracy of an algorithm is not the only parameter in decision-making. Design area

and response time (latency) overhead of ML classifiers also plays a key role in selecting

the cost-efficient hardware solution [82–86]. While complex algorithms such as Neural

Networks can deliver high accuracy, they will also add significant overhead in terms

of hardware implementation cost. Also given their complexity, they can be slow in

detecting malware.

In order to compare hardware implementation costs, in Table 4.4, we report the

results for general classifiers using 8 HPCs and boosting ensemble method (AdaBoost)

applied on each classifier using 4 and 2 most important HPCs. Latency unit is repre-

sented in terms of the number of clock cycles (cycles @10 ns) required to classify input

vector. In order to compare the area overhead of the implemented hardware-based

ML classifiers, we consider the OpenSPARC (FPGA) implementation as reference

and calculate the area overhead relative the core size. The area is the total number

of utilized LUTs, FFs, and DSP units inside Virtex 7 FPGA. As can be seen from

39

Table 4.4, the Multi-Layer Perceptron algorithm, as expected, results in a significant

area and latency overhead, as compared to other learning methods.

The ensemble learning introduces area overhead for some classifiers. However, the

introduced overhead is less than 3% compared to the general ML classifiers using 8

HPCs for malware detection. In addition, in some other classifiers we observe that

by using ensemble learning with a lower number of performance counters, the area

overhead is significantly reduced, compared to the general classifiers using 8 HPCs.

For instance, as reported in the previous section, the Boosted-MLP with 2 HPCs gains

5% performance improvement, while as shown in Table 4.4, it interestingly shows

close to 19% area reduction in 2 HPC case and only 0.6% increase in 4 HPCs which

is negligible, as compared to the general detectors with 8 HPCs. Ensemble learning

algorithms generate models according to the data sets given and configuration of

the algorithm. We observe that some algorithms do not see reduction in area from 4

HPCs to 2 HPCs. This is because such algorithms generate same number and equally

complex models due to their nature. For instance, JRip-Boosted generates 10 models

with 4 HPCs and 10 models with 2 HPCs, hence it is not guaranteed that the area of

the 2 HPCs will be less than 4 HPCs. Because JRIP is a rule-based learning algorithm

and the area highly depends on how many rules are generated for each model and the

2 HPCs case may have more rules per model.

To the best of our knowledge, there has been no prior work available that discusses

the area costs for implementing ML classifiers as a function of HPCs. It can be argued

that the number of HPCs can be increased during design time. However, there are

several studies available such as [25,26,87] that discuss and justify the limited number

of HPCs due to complex microarchitecture of modern microprocessors. Because of

deeper pipelines, modern complex cache design and etc., implementing the hardware

performance counter registers becomes a challenge issue in terms of counting multiple

40

Table (3.3) Hardware implementation results of various ML-based malware detec-
tors

Model Used 8HPC 4HPC-Boosted 2HPC-Boosted
Classifier Latency Area Latency Area Latency Area

@10ns (%) @10ns (%) @10ns (%)
BayesNet 14 11.5 56 13.6 32 10.9

J48 9 3 67 4.3 35 4.1
SGD 34 4.3 87 6.3 51 5.1
JRip 4 2.5 56 5.3 37 8.2
MLP 302 61.1 591 61.7 201 42.2
OneR 1 2. 70 5.1 38 5

REPTree 39 2.9 60 3.9 30 3.7
SMO 34 4.3 87 6.3 51 5.1

microarchitectural low-level features and at the same time maintaining the accuracy,

while achieving higher accuracy requires better and more complex hardware design.

As a result, increasing the number of HPCs with limited accuracy doesn’t appear to be

a good trade-off. Compare to that, ensemble learning algorithm such as AdaBoost can

be easily implemented on the programmable logic present in modern heterogeneous

microprocessors. Clearly, the results show some trade-offs between the accuracy,

latency, and area overhead. Therefore, it is important to compare classifiers by taking

all of these parameters into consideration.

Concluding Remarks. Hardware-based detectors rely on machine learning classi-

fiers and use HPCs information at run-time. A comparison of recent works on ML-

based malware detectors shows that there is no unique general classifier that delivers

the best results in terms of performance (accuracy and robustness), area overhead as

well as detection delay across various types of malwares. In addition, prior studies

mostly relied on a large number of HPCs to gain high accuracy making them less

practical for run-time detection using very limited number of HPCs available in mod-

ern processors. In this paper, we showed a clear trade-off between the type and count

of HPCs and malware classifier performance. To achieve a high accuracy and perfor-

mance of more than 80% across all studied general ML classifiers, at least 16 HPCs

41

are required, far beyond 2-8 HPCs available in modern architectures. In response to

this challenge, this paper proposed using ensemble learning classifiers to boost the

performance of general ML classifiers such that by only using 2-4 HPCs they can

match the performance of 8-16 HPCs. The proposed ensemble classifiers are applied

on 8 general ML classifiers and the results are comprehensively evaluated in terms of

accuracy, robustness, performance, and hardware design overhead. The experimental

results show that in all studied cases, boosting techniques improves the performance

of malware detection classification by up to 17% while using a significantly lower num-

ber of performance counters. Given the implementation cost of on-chip HPCs and

their limited availability and accuracy, the results of this research will help in making

an architectural decision on the number and types of HPCs needed to implement in

future architectures, to most effectively improve the performance of ML classifiers for

detecting the malicious software.

42

Chapter 4: 2SMaRT Malware Detection Approach

The ever-increasing complexity of modern computing systems results in the growth

of security vulnerabilities, making such systems appealing targets for increasingly so-

phisticated attacks [2, 12, 86]. As discussed, one of the most common cyber attacks

are malicious software (malware) programs that are typically designed by cyber at-

tackers to compromise the security of the computing systems by infecting the systems

without the user authorization for serving harmful tasks such as stealing confidential

information, unauthorized data access, and disrupting essential services to carry out

financial fraud. According to a 2018 McAfee threats report [28], nearly 63 million new

malware samples have been recorded in the third quarter of 2018, an all-time highest

number with an increase of more than 53% from the second quarter of 2018. The

current evolving proliferation of computing sytsems in mobile and Internet-of-Things

(IoT) domains further exacerbates the security threats of malware attacks implying

the necessity of protecting legitimate users from these attacks and calling for effective

and low-cost malware detection approaches.

Existing traditional malware detection methods such as signature-based detection

[88–92] and semantics-based anomaly detection techniques [93–96] are considered as

software-based solutions that often incur significant computational overhead to the

computer system [18, 29], making them unfit for devices with limited available com-

puting and memory resources. Furthermore, the emergence of new malware threats

requires patching or updating the software-based malware detection solutions (such

as off-the-shelf anti-virus) that needs a vast amount of memory footprint and hard-

ware resources which is not feasible for emerging computing systems specially in

43

embedded mobile and Internet of Things (IoT) devices [3,8,10,97,98]. The emerging

embedded systems and IoT devices used in various computing domains ranging from

small mobile computing platforms to large scale IoT networks, which account for a

wide range of applications are often highly resource-constrained challenging the con-

ventional software-based methods traditionally deployed for detecting and containing

malware in general purpose computing systems. In addition to the complexity and

cost (computing and storage), the software-based malware detection methods mostly

rely on the static signature analysis of the running programs, requiring continuous

software update in the field to remain accurate in capturing emerging malware, which

is not affordable for embedded systems with limited computing and communication

bandwidth [1,2,10,22]. Moreover, most of these advanced analysis techniques are ar-

chitecture dependent i.e., dependent on the underlying hardware. Hence, this makes

the existing traditional software-based malware detection techniques hard to import

onto emerging embedded computing devices.

In response, Hardware-assisted Malware Detection (HMD) techniques by employ-

ing the underlying hardware-related information, have shown promising results re-

ducing the latency of malware detection process by order of magnitude with small

hardware cost [20, 31, 99]. Recent studies have shown that malware can be differen-

tiated from normal programs by classifying anomalies using Machine Learning (ML)

techniques in low-level microarchitectural feature spaces captured by Hardware Per-

formance Counters (HPCs) [20,29,46,53,54,99] to appropriately represent the appli-

cation behavior. Machine learning-based malware detectors can be implemented in

microprocessor hardware with significantly low overhead as compared to the software-

based methods, as detection inside the hardware is very fast (few clock cycles) [29].

The HPCs are a set of special-purpose registers built into modern microprocessors

44

to capture the trace of hardwareevents such as executed instructions, suffered cache-

misses, or mispredicted branches for a running program [24,32,46]. While HPCs have

been typically used for performance tuning of applications, in this work we leverage

HPCs information for security enhancement of the computer systems.

While previous studies on hardware-assisted malware detection focus on one or

few general ML classifiers and limited classes of malware [20–23, 29–32], it is not

clear which of the ML models deliver the best results across various metrics including

the detection rate, performance, hardware design overheads as well as detection delay

across various classes of malware. In addition to the drawbacks of existing approaches

and non-portability concerns, in this paper, we identified and addressed four major

challenges to realize an effective run-time hardware-assisted malware detection which

are described as follows:

Challenge 1 (C1): Determining Key Microarchitectural Features. Deter-

mining the most significant low-level microarchitectural features is an important step

for hardware-based malware detection due to three main reasons: a) As there exists

numerous microarchitectural events (for instance more than 100 in Intel Xeon) with

each of them representing a different functionality, collecting all of them leads to

data with high dimensionality [80,100]. b) Processing raw dataset involves computa-

tional complexity and induces delay [101]. In addition, as different microarchitectural

events are employed for various purposes, it is important to determine the most suit-

able events for malware detection. c) Due to different functionality of malware classes

which results in different impact on the underlying hardware events, it is crucial to

know which hardware events are more relevant to a given class of malware. The

challenge in specifying the non-trivial microarchitectural events is that these events

differ with respect to the class of application.

Challenge 2 (C2): The Right Machine Learning Model. We studied several

45

general ML classifiers to detect malware representing a diverse range of machine

learning algorithms such as neural networks, bayesian network, rule-based, tree-based,

and regression techniques. As observed in our experiments (see Table 4.1), no single

ML classifier model is the winner; i.e. achieves higher malware detection rate across all

studied malware classes. As we show in this work, this disparity of best ML solutions is

also observed across other evaluation metrics (robustness, detection performance, and

hardware implementation cost) making the detection and classification of malware

classes highly dependent on the type of the ML classifier deployed. In addition, not

knowing the malware type ahead of time, makes it a challenge to deploy the right

ML model for effective detection of malware at run-time.

Challenge 3 (C3): HMD with Limited Available HPCs. Prior works on HMD

have limited their studies on malware detection while accounting for the availability

of a large number (e.g. 16 or 32) and diverse type of events accessed at a time [20–22,

29,30]. However, modern microprocessors even in the high-performance domain have

limited number of HPC registers (2 to 8), due to the design complexity and cost of

concurrent monitoring of microarchitectural events [25,26,87]. Due to deep pipelines,

complex prefetchers, branch predictors, modern cache design etc., adding HPCs is

a challenge in terms of counting multiple events and maintaining counter accuracy

simultaneously under speculative execution [87]. Better detection rate requires better

and more complex hardware design, hence increasing the number of counters with

limited detection rate does not appear to be an efficient trade-off. For embedded

mobile and IoT domains, the number of HPCs that can be accessed concurrently is

even smaller. Therefore, utilizing a variety of microarchitectural events, more than the

number of available HPCs, to achieve high detection rate using the general ML models

presented in prior works, requires executing the application multiple times, since the

hardware can only count a small subset of events at once. This approach is not

46

practical for run-time detection of malware. Our experimental results show that the

malware detection rate is highly dependent on the number of microarchitectural events

deployed (see Figure 4.2) which provides unique opportunity to propose ensemble

learning-based HMD to enhance the performance of HMD and break the trade-off

between detection performance and the number of microarchitectural events.

The objective of this work is to improve the detection rate and performance of

malware detection for different malware classes using a limited number of microar-

chitectural events equal to the available number of HPCs that can be captured at

run-time. We propose a two-stage machine learning-based hardware-assisted mal-

ware detection approach, referred as 2SMaRT, to not only effectively distinguish the

malware from benign applications, but also to identify the class of malware at run-

time using proper low-level features and determine right machine learning model for

capturing the malware behavior. To the best of our knowledge, this is the first work

that considers major challenges involved in run-time hardware-assisted malware de-

tection and proposes a unified solution to address all of them. The key contributions

of this work are summarized as follows:

• To facilitate an efficient run-time malware detection by choosing an optimal set

of events captured from available HPCs, an effective feature reduction method

is introduced by exploiting the correlation between HPC features to determine

the most prominent microarchitectural events across various classes of malware

that can be employed for effective detection of each malware class.

• Based on the comprehensive analysis of different classes of malware, we propose

2SMaRT, a two-level specialized run-time malware detection framework which

comprised of a multiclass classification method to predict the malware classes

or benign applications in the first level, followed by effective specialized ML

47

classifiers for an efficient and highly accurate per-class malware detection in

the second level. The specialized malware detector is selected during run-time

based on the detection performance of HMD with respect to the malware class

and ML classifier.

• We further propose using an ensemble learning technique for HMD in the second

level of 2SMaRT to improve the detection rate and performance of malware

detection when using a limited number of features captured at run-time using

limited existing HPCs, eliminating the need to run an application multiple times

and matching to the detection rate that can be achieved offline.

• To quantify the effectiveness of each specialized malware detector, we precisely

compare malware detectors in terms of detection accuracy, robustness, per-

formance (accuracy× robustness), and hardware implementation overhead to

determine the most suited ML classifier per malware class for effective run-time

malware detection using 2SMaRT.

4.1 Motivation

In this section, we discuss the motivations for proposing a run-time malware detection

using microarchitectural features.

4.1.1 Malware Detection using HPCs Data

In this work, we deploy HPCs information to construct a vector of microarchitectural

features by profiling malware and benign applications. We take advantage of the HPC

registers to collect execution traces for various microarchitectural events by executing

malware and benign applications in an isolated environment (details will be discussed

48

0 50 100 150

0

10

20

30

40

of samples

co
u

n
te

r
v
a

lu
e

s

M
il

li
o

n
s

branch-instructions

Normal

0 50 100 150

0

5

10

15

20

25

30

of samples

co
u

n
te

r
v
a

lu
e

s

x
 1

0
0

0
0

branch-misses

Normal

0 50 100 150

0

10

20

30

40

of samples

co
u

n
te

r
v
a

lu
e

s
M

il
li

o
n

s

branch-instructions

Malware

0 50 100 150

0

5

10

15

20

25

30

of samples

co
u

n
te

r
v
a

lu
e

s

x
 1

0
0

0
0

branch-misses

Malware

Figure (4.1) HPC traces of two different features (branch-instructions and branch
misses) for sample malware and normal programs

in Section 4.2). The profiling process shows that if two different programs are executed

on a processor, they generate different performance counter traces providing unique

opportunity to detect the behavior of the running application. As an example, Figure

5.2 illustrates the trace of branch instructions and branch misses features for normal

and malware applications. As seen, the malware traces are significantly different

from benign applications for both features. Using this observation, malware can be

distinguished from normal applications by its different HPC values. Our goal in

this work is to learn malware behavior with the aid of supervised machine learning

methods based on microarchitectural features captured by limited number of available

HPCs from various applications. Unlike prior studies, the analysis given in this work

is focused on run-time HMD, as such we limit the number of microarchitectural events

49

to 4, which is equal to the maximum number of HPCs that can be simultaneously

read at run-time.

4.1.2 The Need for Specialized Malware Detectors and Per-

class Analysis

Specialized malware detectors are trained using the characteristics of a particular

malware class, whereas generalized detectors are trained with generic characteristics

obtained from malware applications belonging to different classes. As a case study

to highlight the importance of per-class analysis of malware and specialized malware

detection, Table 4.1 presents the ML classifiers that achieve the highest malware de-

tection rate in our experiments across different malware classes using various number

of HPCs (will be discussed in details in Section 4). Given the results, the follow-

ing observations can be made: a) depending on the class of malware (Trojan, Virus,

Rootkit, Backdoor), the type of ML classifier that performs best varies and there

exists no specific ML classifier with highest rate for all malware classes; and b) not

only does the ML classifier that performs best varies with the malware class, but

also varies with the number of HPCs used. For instance, with 16 HPCs, BayesNet

classifier achieves highest detection rate for Backdoor detection, but by reducing the

number of HPCs to 4, OneR outperforms BayesNet. The disparity of optimal ML

solutions across various classes of malware and varying number of HPC features im-

plies the necessity of per-class malware analysis and developing effective specialized

HMD for different classes of malware. Different behavior of each malware class allows

a specialized detector to more effectively perform the classification. In this work,

we implemented specialized detectors for four classes of malware including Backdoor,

Virus, Rootkit, and Trojan.

50

Table (4.1) ML solutions with highest detection rate

Malware Class 16HPCs 8HPCs 4HPCs

Trojan JRip JRip MLP

Virus OneR J48 MLP

Rootkit J48 J48 MLP

Backdoor BayesNet OneR OneR

60

70

80

90

100

BayesNet J48 JRip MLP OneR

De
te
ct
io
n	
pe

rfo
rm

an
ce
	(%

) 16HPC 8HPC 4HPC

Figure (4.2) Case study for impact of #HPCs on HMD

4.1.3 Impact of Number of HPCs on Malware Detection

Figure 4.2 depicts a case study to verify the impact of number of HPCs on malware

detection performance. As shown, a wide range of ML classifiers are employed and

performance of malware detectors are evaluated using various number of HPC fea-

tures. As the results show, with the increase in number of HPCs, the performance

of malware detectors improves. As mentioned earlier, as the number of HPCs are

limited in modern microprocessors, to perform an effective run-time malware detec-

tion, the number of microarchitectural events to capture should be equal to or less

than the number of HPCs that are available (can be read simultaneously). As such,

it is important to utilize fewer HPC events specially in IoT and embedded devices

in order to realize a run-time malware detection along with ensuring a high malware

detection performance. This eliminates the need to run the application multiple times

to capture the required HPC features to detect the malicious patterns.

51

4.2 Proposed Malware Detection Framework

This section presents the details of the proposed run-time hardware-assisted malware

detection approach.

4.2.1 Experimental Setup and Data Collection

The applications (both malware and benign) are executed on an Intel Xeon X5550

machine running Ubuntu 14.04 with Linux 4.4 Kernel. In order to extract the HPC

information, we deployed Perf tool available under Linux. Perf provides rich gener-

alized abstractions over hardware specific capabilitiesexploiting perf-event-open func-

tion call in the background which can measure multiple events simultaneously. We

executed more than 3000 benign and malware applications for HPC data collection.

Benign applications include MiBench [99] and SPEC2006 [102], Linux system pro-

grams, browsers, and text editors. For malware applications, Linux malware is col-

lected from virustotal.com [103] and virusshare.com [104]. Malware applications in-

clude Linux ELFs, python scripts, perl scripts, and bash scripts which are created

to perform malicious activities consisting of four classes of malware including 452

Backdoors, 350 Rootkits, 650 Viruses, and 1169 Trojans. The functionality of the

selected malware applications are as follows: Backdoor applications attempt to gain

remote access for the attacker and facilitates information leakage; Rootkits provide

the attackers with privilege even to modify the registers and authorized programs;

Trojans perform confidential information and passwords phishing; and Viruses that

are able to duplicate themselves to launch DoS attacks.

Figure 4.3 depicts the overview of the data collection process and proposed run-

time HMD framework. It is primarily composed of various stages including feature

52

Training Applications

Feature
Extraction

Capturing
HPCs via
Perf Tool

Feature
Reduction

ML Binary
Classifiers

General vs. Specialized
Detectors

Predictive
Models

Malware vs. Benign
ClassificationPrinciple Components

Analysis (PCA)

Attribute Evaluation1

2

Common vs. Custom
HPC Features

Malware

Benign

Benign

Malware

Backdoor

Virus

Trojan

Rootkit

Data Collection Process Malware Detection Process

MLR

Application
Class Prediction

Multiclass
ClassificationEvery

10ms

Figure (4.3) The overview of the proposed hardware-assisted malware detection
framework

extraction, feature reduction, and ML classifiers (general and ensemble) implemen-

tation which will be discussed in more details in this section. HPC information is

captured by executing all applications in Linux Containers (LXC) which is an isolated

environment [76]. LXC is chosen over other commonly available virtual platforms

such as VMWare or VirtualBox since it provides access to actual performance coun-

ters data instead of emulating HPCs. We extracted 44 CPU events available under

Perf tool. Since Intel Xeon has only 4 counter registers available [77], we can only

measure 4 events at a time. As a result, multiple runs are required to fully capture

all events. We divide 44 events into 11 batches of 4 events and run each application

11 times at sampling time of 10ms to gather all microarchitectural events. Running

malware inside the container can contaminate the environment which may negatively

impact subsequent data collection. As result, to ensure that there is no contamination

in the collected data due to previous run, the container is destroyed after each run.

After collecting microarchitectural events using Perf, we deploy WEKA tool [75] for

evaluating the detection rate and performance of various ML classifiers. In order to

validate each of the the utilized ML classifiers, a standard 60%-40% dataset split for

53

training and testing is followed.

Solution for C1: Key Microarchitectural Features

As discussed, detecting malware using ML models require representing programs

as low-level microarchitectural level which leads to a high-dimensional data processing

and involves high computational overheads and complexity [80, 105]. Furthermore,

incorporating irrelevant features would result in lower accuracy for the ML classi-

fiers[100,101]. On the other hand, as we show in this work, microarchitectural events

representing behavior of malware (and can be used to distinguish them from benign

applications) are varied across different classes of malware. This poses two research

questions. First, which low-level features are relevant to be employed to detect and

classify a class of malware? Second, how to perform feature reduction of collected

data to alleviate unnecessary computational overheads? As shown in Figure 4.2, by

reducing the number of HPCs used for training the ML classifiers, the performance

of malware detection greatly varies. In addition, as the number of HPCs that can

be concurrently captured at run-time are limited, an optimal set of features among

numerous possible HPC events needs to be determined and supplied to ML classifiers.

The ML-based detector attempts to find a correlation between the feature values and

the application behavior to predict the benign application or malware type.

4.2.2 Feature Reduction

In order to perform run-time malware detection with minimal overhead while reduc-

ing the learning time and avoiding multiple runs, we intend to identify a minimal

set of critical HPCs that can effectively represent the malware class behavior and are

feasible to collect in a single run even on low-end processors with few HPCs. To pre-

cisely examine the critical microarchitectural events, we propose a two-level feature

54

reduction approach. At the first level of reduction, we first manually and next algo-

rithmically remove less significant features. This reduces the number of events to 16,

as shown in Figure 4.4. At the second level, we propose using Principal Component

Analysis (PCA) to reduce the remaining features to the most vital microarchitectural

parameters to capture application characteristics. By applying the feature reduction

methods, 8 most related microarchitectural events are determined and numbered in

order of importance for malware detection. They are included in the malware detec-

tor models as input parameters. Next, we describe the details of the proposed feature

reduction method.

First Level: Attribute Evaluation

a) Manual Feature Reduction. We first analyze the events manually and exclude

events obviously not related to the target variable (malware behavior). Out of all 44

events, there are certain features provided by Linux kernel that are included as soft-

ware events under Perf. We exclude a total of 12 events from the final selected features

list. These events are alignment-faults, context-switches, cpu clock, cpu migrations,

emulation-faults, major-faults, dummy, minor-faults, page-faults, and task-clock. In

addition, events like cpu-cycles, and ref-cycles do not represent uniqueness in terms

of program phase. Thus, they are also excluded from the final list.

b) Algorithmic Feature Reduction. Following the manual approach, we deploy

Correlation Attribute Evaluation to rank 32 remaining features under WEKA. Cor-

relation evaluation algorithm calculates Pearson correlation between each attribute

and class as follows:

ρ(i) =
cov(Xi, C)√

(var(Xi)var(C))
(4.1)

where ρ is the Pearson correlation coefficient. Xi is an input dataset of any perfor-

mance counter event i. C is an output dataset contains different classes, ”Malware”

55

or ”No Malware” in our case. Value of i represents any feature out of 32 features

and cov(Xi; C) measures covariance between input dataset and output dataset. The

var(Xi) and var(C) also measure variance of both input and output dataset, respec-

tively. Equation 4.1 can be elaborated further as shown below:

ρ(i) =
n∑

k=1

(xk,i − x̄i)(ck − c̄)√∑n
k=1(xk,i − x̄i)2

∑n
k=1(ck − c̄)2

(4.2)

where k is the number of input values; x(k,i) is kth value in input dataset for feature

i; and ck is kth value in output dataset. The mean of input for feature i is denoted

by x̄i, and that for the output data by c̄. Based on the ranking of ρ, top 16 fea-

tures are selected for analysis. This algorithm finds correlation co-efficient for all

32 features as per above equation. We list top 16 features with the highest correla-

tion coefficient value. These reduced features are shown in Figure 4.4. in which the

branch-instruction has highest value of ρ than other features.

CPU TLB
L1

Cache

Last
Level
Cache
(LLC)

DRAM

Branch
Prediction

Unit
instructions
bus-cycles

branch-instructions

L1-dcache-load-misses
L1-dcache-loads
L1-dcache-stores

L1-icache-load-misses

LLC-loads
LLC-load-misses
cache-misses

cache-references

node-stores
node-loads

iTLB-load-misses

branch-misses
branch-loads

Figure (4.4) Reduced HPC features after first level of reduction

Second Level: PCA Analysis

For the second level of feature reduction, we apply PCA technique on the selected

56

Table (4.2) Prominent top eight HPC features for each class of malware

Rank Backdoor Trojan Virus Rootkit

1 branch-inst branch-inst branch-inst branch-inst
2 cache-ref cache-ref cache-ref cache-ref
3 branch-miss branch-miss branch-miss branch-miss
4 node-st node-st node-st node-st

5 branch-lds cache-miss LLC-lds cache-miss
6 L1-icache-ld-miss L1-icache-ld-miss L1-dcache-lds branch-lds
7 LLC-ld-miss LLC-ld-miss L1-dcache-st LLC-ld-miss
8 iTLB-ld-miss iTLB-ld-miss iTLB-ld-miss L1-dcache-st

16 HPC features from correlation analysis to select the top 8 features for detecting

each class of malware in a single run. PCA analysis allows us to monitor and deter-

mine the most vital and distinct microarchitectural parameters to extract application

characteristics [106]. PCA is a class of dimensionally reduction techniques that cap-

tures most of the data variation by rotating the original data to a new variable in

a new dimension, commonly known as the Principal Components (PC) [78, 79, 106]

that are uncorrelated to each other and are a linear combination of the original data.

We employ PCA to project our 16 original gathered features into a new dimensional

space to determine the most important features along different PC dimensions. As

a result, for each malware class, we reduced the features to 8 most significant HPCs

shown in Table 4.2 to capture the behavior of specific type of malware. The selected

features are then supplied to each ML-based malware detector as input parameters

for each malware class. These features include performance counters representing

pipeline front-end, pipeline back-end, cache subsystem, and main memory behaviors

and are influencing the performance of standard applications.

Solution for C2: Specialized HMD

57

4.2.3 Overview of the Proposed Two-stage HMD

In this section, we describe the details of 2SMaRT, the proposed two-stage run-

time malware detection approach. As shown in Figure 4.5, in the first stage, an

effective multiclass classification model is developed to estimate the type of the run-

ning application. Next, depending on the predicted application type, specialized

ML classifiers are chosen for HMD with highest detection performance using limited

number of events equal to available HPCs (only 4).

ML Binary
Classifiers

∑

∑

∑

In
p

u
ts

:
C

o
m

m
o

n
 H

P
C

s

Benign

Virus

Rootkit

Trojan

Backdoor

Phase 1: Application Type Prediction Phase 2: Effective Machine Learning Solution

1. Common Features→ 4HPCs

1.1. Ensemble →
4HPC-Boosted

Multinomial Logistic Regression

2. Custom Features→ 8HPCs
for the predicted malware class

Applying Ensemble Learning for
Detection with Limited #HPCs

Ranking Classifiers

1. F meaure
2. Robustness
3. Performance
4. HW Overhead

HPC1

HPC2

HPC3

HPC4

MLR

Virus ML
Detectors

Rootkit ML
Detectors

Trojan ML
Detectors

Backdoor ML
Detectors

Specialized HMD

.

.

.

Predicted class
in stage1: Virus

Neural Network →MLP

Decision Tree → J48

Rule-Based → Jrip

Bayesian→ BayesNet

Rule-Based→ OneR

Figure (4.5) 2SMaRT overview, the proposed two-stage run-time hardware-assisted
malware detection approach

Stage 1: Application Type Prediction. As each of the specialized detectors

is trained to classify a different class of malware, they are each answering a different

classification question. Initially, the system is unaware of existence of malware in

the application, as such the use of specialized detectors cannot be effective. By

analyzing the ML classifiers for malware detection across various malware classes, we

observe (details are presented in Section 5.4) that the detection rate and performance

of malware detectors are highly correlated to the class of malware (Virus, Trojan,

etc.) infecting the system. To address this challenge, we primarily convert the basic

binary malware classification into a multiclass problem, i.e. with more than two

58

possible discrete outcomes. For this purpose, we propose to predict the behavior of

the application (benign or a particular malware class) using a Multinomial Logistic

Regression (MLR) technique shown in Figure 4.5.

The MLR classifier is a generalized linear model that predicts the probability of

a discrete set of outcomes of categorically distributed dependent variable, given a set

of independent variables which makes it a suitable classifier for predicting the class of

applications. The MLR model is basically an extension of binary logistic regression

that allows for more than two categories of the outcome variable. In this work, the

output of MLR is corresponding to the set of feasible classes of applications including

5 individual classes, one for “benign” program and 4 malware classes namely “Virus”,

“Trojan”, “Rootkit”, and “Backdoor” classifying the four analyzed malware types.

The MLR model is trained using extensive set of HPCs data captured by running

various benign and malware programs. The inputs to the MLR consists of the top 4

low-level features shown in Table 4.2.

Let y denote the output of the MLR classifier, x denote the vector of input values,

and ϕ(x) denote a fixed nonlinear vector valued function of x. The probability of a

particular output c under the MLR model is presented in below:

Pr(y = c|X,W) =
exp(W T

c ϕ(x))∑c
c′ exp(W

T
c ϕ(x))

(4.3)

The variable Wc contains the weights associated with output c, and W is a vector

concatenating the weights across all outputs. Equation (4.3) maps a continuous

real-valued argument W T
c ϕ(x) to a probability y = c such that the probabilities

across all of the possible outputs {1, . . . , C} sum to 1. A positive weight Wck ∈ Wc

implies that a positive value on input ϕk(x) ∈ ϕ(x) increases the probability that

y = c, and likewise a negative weight implies a decrease in probability. The logistic

59

weights are estimated using training data, which in this case is an extensive set of

HPCs information gathered by running various benign and different type of malware

programs. During run-time, the probability of each class of application being executed

is calculated and the MLR then selects the class that achieves the highest probability.

The evaluation results of the proposed MLR model show that while the detection

rate for the MLR using all captured 16HPC features is shown to be 83%, lowering

the number of events to the 4 Common features does not reduce the detection rate

of the multiclass classifier noticeably and results in detection rate of close to 81%.

As a result, by using only 4HPCs the MLR model can predict the type of running

application.

Common vs. Custom Features: As can be seen in Table 4.2, after the fea-

ture reduction, 4 out of the 8 identified microarchitectural events are remained the

same across various classes of malware. These microarchitectural events are referred

as Common features. These features include branch instructions, cache references,

branch misses, and node-stores which provide a unique opportunity to identify the

class of malware ahead of time for unknown malware. Along with the Common fea-

tures, within each class of malware, we increase the number of HPCs from 4 to 8,

referred as Custom features, tuning the ML classifiers individually for the correspond-

ing malware class. To evaluate the effectiveness of the 2SMaRT at the second stage,

we implemented all ML classifiers using the 4 Common and the 8 Custom HPCs listed

in Table 4.2 for each malware class.

Stage 2: The Right Machine Learning Model. As observed previously,

using simple MLR classifier does not provide a high run-time malware detection

rate when using small number of microarchitectural events (equal to the number

of available HPCs). To address the challenge of run-time malware detection with

high detection rate and performance, we cascade a second stage of detection which

60

is using various type of ML techniques. These ML classifiers are chosen based on

the predicted class of malware by the MLR. As discussed earlier, the specialized ML

classifiers are the ML models trained with the dataset of a specific malware class rather

than with the data which comprises of patterns of all classes of malware. As seen

from Table 4.1, no unique classifier is the winner in detecting all classes of malware.

Thus, employing a specialized classifier which is the winner for the particular class

of malware enhances the malware detection performance. These ML classifiers are

shown in the second stage of Figure 4.5. The rationale for selecting these machine

learning models are: First, they are from different branches of ML; regression, neural

network, decision tree, rule-based, and ensemble learning covering a diverse range of

learning models which are inclusive to model both linear and non-linear problems.

Second, the prediction model produced by these learning algorithms can be a binary

classification model which is compatible with the malware detection problem. As a

result in 2SMaRT, when an application is running, the optimal set of HPC events are

obtained first. This is followed by prediction of the class of application (benign or one

of the classes of malware), based on which the customized ML classifier is utilized for

detecting and classifying the malware class.

Solution for C3: Improved Malware Detection with Limited Number of

Microarchitectural Events

Boosted-ML using Common HPCs. As discussed, today’s microprocessors have

limited number of HPCs that can be accessed simultaneously. To address the prob-

lem of utilizing only available HPCs i.e., even if it is less than what is deployed in

previous solutions, we propose to use ensemble learning on top of the two-stage HMD

framework. As depicted in Figure 4.5, in the second stage of 2SMaRT, we employ

ensemble learning on-top of the traditional ML classifiers to improve the detection

61

rate and performance of specialized classifiers using only 4HPCs to match the perfor-

mance of classifiers using Custom features (8HPCs). Ensemble learning is a branch

of machine learning used to improve the accuracy of general ML classifiers by gener-

ating a set of base learners and combining their outputs for final decision [107]. In

Boosted 2SMaRT, we deploy Adaptive Boosting (AdaBoost) to construct the final

classifier for run-time HMD. AdaBoost is one of the most commonly used ensemble

learning for enhancing the performance of ML algorithms. In AdaBoost, each base

classifier is trained on a weighted form of the training set in which the weights de-

pend on the performance of the previous base classifier [107]. Subsequent models are

trained and added until a minimum accuracy is achieved, or no further improvement

is possible. Once all the base classifiers are trained, they are combined to produce

the final classifier.

4.3 Experimental Results

In this section, we evaluate 2SMaRT across different malware classes in terms of

detection rate, classification robustness, performance, and hardware overhead.

4.3.1 Evaluation Metrics

To examine the effectiveness of 2SMaRT, we consider four important metrics includ-

ing detection rate (F measure), classification robustness, detection performance, and

hardware overhead. For evaluating the detection rate we calculate the F measure (F

score). F measure in machine learning is interpreted as a weighted average of the

precision (p) and recall (r) where an F measure reaches its best value at 1 and worst

62

at 0 which is formulated as follows:

FMeasure =
2× (precision×recall)
precision+ recall

(4.4)

As shown, F measure accounts for both the precision and the recall of the clas-

sification to compute the score. The precision is the proportion of the sum of true

positives versus the sum of positive instances and the recall is the proportion of in-

stances that are predicted positive of all the instances that are positive. F measure

is a more comprehensive evaluation metric compared with accuracy (percentage of

correctly classified samples), since it takes both the precision and the recall into con-

sideration. In malware detection applications, due to the level of desired security, it

is crucial to minimize the number of false positives and detect as many as possible

malware programs (positive cases). Hence, we weigh recall more. In other cases, we

may want to be really precise not considering any sample to be positive unless we

are definitely certain in which we weigh precision more. In addition to considering

both precision and recall, F measure is also resilient to class imbalance in the dataset

which is the case in our experiments.

F measure is not the sole factor to determine the efficacy of the malware detection

and classification. For a comprehensive evaluation, we further calculate the robustness

of classifiers with the aid of Area Under the ROC Curve (AUC). The AUC corresponds

to the probability of correctly recognizing malware and benign applications. In this

work, robustness is referred to how well the classifier distinguishes between binary

malware and benign classes, for all possible threshold values. The AUC value of the

best possible classifier is equal to 1, which means that we can find a discrimination

threshold under which the classifier obtains 0% false positives and 100% true positives.

Using the calculated AUC values, we define the product of F measure and robustness

63

(F×AUC) as the detection performance metric to combine the impact of F measure

detection rate and robustness (AUC) of malware detection and classification and

account for both evaluation metrics. The hardware overhead metrics will also be

discussed in next section. Due to space limitation, here we will show the F score,

detection performance (F×AUC), and hardware overhead analysis results.

4.3.2 Evaluation of Per-class Malware Detection

F Measure Evaluation: Table 4.3 presents the F score results of 2SMaRT across

different classes of malware and number of HPCs (16, 8, and 4 HPCs). The results

show that with the reduction in the number of HPC features used by ML classifiers,

the F measure for majority of cases also drops. Also, it can be validated that no

unique ML classifier achieves highest F score across all studied malware classes. Before

feature reduction (16HPCs), most ML classifiers perform well, mostly providing above

85% detection rate. Feature reduction has noticeable impact on the several classifiers.

However, OneR classifier performs well even after feature reduction. The reason that

OneR classifier is not affected by feature reduction and shows almost constant F

measure is that it only selects one HPC feature (branch instructions) to predict the

malware.

Malware Detection Performance: Figure 4.6 illustrates the performance results

of various ML classifiers in 2SMaRT using different number of HPC features. As

can be seen in the results, most of the classifiers such as JRip, J48, and BayesNet

deliver higher performance when supplied with 16 and 8 performance counters. For

Multi-Layer Perceptron (MLP), due to overfitting the performance is degraded in

some cases with the increase in the number of HPCs. However, techniques such as

dropout can be employed, but at the cost of additional overheads. Similar to detection

rate and robustness, the performance of OneR remains nearly invariant with number

64

Table (4.3) F measure of 2SMaRT detectors with and without ensemble learning

Class Backdoor Rootkit
#HPC 16 8 4 4-Boosted 16 8 4 4-Boosted

BayesNet 96.1 86.5 85.55 86.6 85.6 78.37 72.49 74.22
J48 86.7 79.6 80.4 85.5 94.6 87.7 85.75 91.2

JRip 90.5 90 87.8 87.6 84.1 82.5 80.8 91.5
MLP 94.4 92.4 89.5 90 82.9 82.35 93.8 79.8
OneR 94 94 94 93.8 73.2 73.2 73.18 85.99

Class Virus Trojan
#HPC 16 8 4 4-Boosted 16 8 4 4-Boosted

BayesNet 92.4 90.2 88 91.7 92.8 92.7 92.44 97.2
J48 94.7 94.5 93.2 96.5 98.8 98 93.2 97.3

JRip 93.6 93.1 93 93.9 98.9 98.2 93.3 94
MLP 68.1 67.6 94.7 95.4 98.6 96.7 98.9 98.9
OneR 97.1 90.2 89 94.8 92.7 92.7 92.7 92.7

of HPCs deployed. The proposed methodology achieves a performance of 77.3% on

average when employing 16HPCs but drops to 71.3% when using only 4HPCs (with

out ensemble learning) across all malware classes. The reduction is mostly due to the

impact of reduced robustness when utilizing less HPCs.

Hardware Overhead Analysis: When it comes to choosing the right ML classi-

fiers for hardware implementation, the detection rate is not the only factor for de-

cision making. Design overhead (e.g. implementation logic area) and response time

(latency) of ML classifiers also play a key role in selecting the cost-efficient HMD

solution. While complex algorithms such as neural networks can deliver high accu-

racy and detection rate, they will also add significant overhead in terms of hardware

implementation cost. Furthermore, given their complexity, they can be slow in de-

tecting malware. As the software implementation of malware detection is slow (range

of tens of milliseconds which is an order of magnitude higher than the latency needed

to capture malware at run-time [20, 29]), we develop a hardware implementation of

the 2SMaRT and analyze the associated overheads. We use Vivado HLS compiler

65

40

60

80

100

BayesNet J48 JRip MLP OneR

P
e

rf
o

rm
a

n
c
e

 (
%

)
Backdoor

16HPC 8HPC 4HPC 4HPC-Boosted

40

60

80

100

BayesNet J48 JRip MLP OneR

P
e

rf
o

rm
a

n
c
e

 (
%

)

Rootkit
16HPC 8HPC 4HPC 4HPC-Boosted

60

70

80

90

100

BayesNet J48 JRip MLP OneR

P
e

rf
o

rm
a

n
c
e

 (
%

)

Trojan
16HPC 8HPC 4HPC 4HPC-Boosted

40

60

80

100

BayesNet J48 JRip MLP OneR

P
e

rf
o

rm
a

n
c
e

 (
%

)

Virus
16HPC 8HPC 4HPC 4HPC-Boosted

40%

10%

9% 32%

30% 3%
37%

23%
6%

32%

44%

5%

6%

16% 17%

5%

7.5%
19%1%

31%
12%

5.5%

18%44%

32%

Figure (4.6) Malware detection performance of 2SMaRT for various ML classifiers
across different malware classes

to develop the HDL implementation of the ML classifiers for Xilinx Virtex 7 FPGA.

This analysis not only helps us to have an in-depth understanding of the complexity

of the proposed solutions in terms of number of logic gates (which can be similarly

proportional to an ASIC implementation), but also assists in assessing the design

implementation overhead and cost in a heterogeneous FPGA+CPU architecture. As

heterogeneous architectures have emerged in Cloud or even mobile environments,

FPGA facilitates implementing reprogrammable low-level malware detection logic

(ML model) that can detect malware by reading the CPU HPCs through a shared

memory bus.

In order to compare hardware implementation costs, in Table 4.4, we report the

results for general classifiers that use 8HPCs and 4HPCs for malware detection. La-

tency unit is represented in terms of the number of clock cycles (cycles @10 ns)

required to classify the input vector. In order to compare the area overhead of the

66

implemented hardware-based ML classifiers, we consider the OpenSPARC (FPGA)

implementation as reference and calculate the area overhead relative to the core size.

The area is the total number of utilized LUTs, FFs, and DSP units inside Virtex

7 FPGA. As can be seen from Table 4.4, the MLP algorithm, as expected, results

in a significant area and latency overhead, as compared to other learning methods.

Though the MLP achieves higher malware detection rate in many cases, the addi-

tional area overhead is around 30x compared to lightweight classifiers (OneR and

J48). However, with the reduction in the number of HPCs used for classification

from 8 to 4, the area decreases accordingly, as presented in Table 4.4.

4.3.3 Evaluation of Malware Detection with Limited Avail-

able HPCs

F Measure Evaluation: As observed in Table 4.3, for majority of the classifiers like

BayesNet, JRip, and OneR by reducing the number of HPCs to 4 and applying

ensemble learning techniques, a higher or similar detection rate to 8/16 HPCs-based

HMD is achieved. This confirms the effectiveness of using ensemble learning to boost

the F measure of ML classifiers. For instance, by applying AdaBoost on top of

the proposed HMD, we achieve up to 98.9% detection rate for MLP in Trojan and

almost 92% F score on an average across all other ML classifiers and malware classes

compensating the accuracy loss resulted from feature reduction from 16HPCs and

eliminating the need to run the application multiple times to capture the required

HPCs.

Malware Detection Performance: The per-class results in Figure 4.6 clearly con-

firm the effectiveness of using ensemble techniques for performance improvement of

67

ML models with low number of HPCs. The key point here is that rather than ex-

tracting 16 or 8 HPC events which imposes significant implementation cost overhead

to the system in terms of resource utilization, delay, and power consumption, in ad-

dition to requiring running application multiple times (as in each run only 4HPCs

can be captured), it is more effective to collect fewer HPCs (only 4), depending on

the ML classifier type, and boost the performance of the ML model with AdaBoost

ensemble learning to improve the detection rate as well as robustness of malware

detectors. It should be noted that the ensemble learning has a negative impact on

the strong and complex classifiers such as MLP and BayesNet, as ensemble learning

results in overfitting and non-convergence for such classifiers. For lightweight rule-

based and tree-based classifiers (OneR, JRip, and J48) ensemble learning provides

large improvement in performance. For instance, as shown, J48 in Backdoor class

achieves 70% and 45% performance with 16HPCs and 8HPCs, respectively. How-

ever, we observe that reducing the number of vital HPC features to 4 and applying

AdaBoost technique improves the detection performance to 84.64%.

The comprehensive analysis of the results across various ML models indicates

the effectiveness of 2SMaRT by deploying ensemble learning combined with the

lightweight classifiers such as JRip and J48 instead of non-boosted but costly ML

solutions (MLP and BayesNet). For instance, as seen from Figure 4.6-Virus, the

boosted tree-based (J48) and rule-based (OneR) ML classifiers when 4HPCs are used

result in 44% performance improvement compared to the same non-boosted ML solu-

tions. More importantly they outperform the performance of heavyweight MLP and

BayesNet algorithms both in boosted and non-boosted cases.

Hardware Overhead Analysis: As shown in Table 4.4, ensemble learning with

4HPCs introduces area overhead for some classifiers. However, the introduced over-

head is less than 3% compared to the general ML classifiers using 8HPCs. In addition,

68

Table (4.4) Hardware implementation results of 2SMaRT

Model Used 8HPC 4HPC 4HPC-Boosted

Classifier Latency Area Latency Area Latency Area
@10ns (%) @10ns (%) @10ns (%)

BayesNet 14 11.5 6 7.7 56 13.6

J48 9 3 3 0.93 67 4.3

JRip 4 2.5 2 0.26 56 5.3

MLP 302 61.1 102 43.2 591 61.7

OneR 1 2.1 1 0.49 70 5.1

in some other classifiers we observe that by using ensemble learning with 4HPCs,

the area overhead is significantly reduced, compared to the general classifiers using

8HPCs. Generally, ensemble learning generate models according to the data sets given

and configuration of the algorithm. For instance, as reported in the previous section,

the Boosted-MLP with 4HPCs gains 5.5% performance improvement for Virus, while

as shown in Table 4.4, it interestingly shows close to 18% area increase compared to

4HPC-based ML classifier.

The key observation considering all different aspects of evaluation is that the

AdaBoost ensemble learning aids to improve the performance of malware detection

despite employing limited number of HPCs, which makes it an ideal fit for mo-

bile and IoT-based systems. However, for large-scale systems which can simulta-

neously read large number of HPCs, and silicon area is not a constraint, the proposed

2SMaRT(non-boosted) with more HPCs can be employed for malware detection. To

the best of our knowledge, there has been no prior work available that discusses the

area cost for implementing ML classifiers as a function of HPCs. It can be argued

that the number of HPCs can be increased during design time. However, there are

several studies available such as [22, 25, 26, 87] that discuss and justify the limited

number of HPCs due to complex microarchitecture of modern microprocessors. Due

to deeper pipelines, complex prefetchers, modern cache design etc., implementing the

69

HPCs becomes a challenge in terms of counting multiple microarchitectural events

and concurrently maintaining counter accuracy under speculative execution. Higher

detection rate requires better and more complex hardware design. Thus, increasing

the number of counters with limited detection rate does not appear to be a good

trade-off. Compare to that, ensemble learning algorithm can be easily implemented

on the programmable logic present in modern heterogeneous microprocessors to ad-

dress the low accuracy and detection rate associated with limited number of available

HPCs.

Table (4.5) Average performance improvement of 2SMaRT with AdaBoost across
all four malware classes

ML Classifier 8HPC→4HPC-Boosted 4HPC→4HPC-Boosted

BayesNet -6.25% 1.51%

J48 31.25% 18.2%

JRip 10.1% 18.75%

MLP 3.75% -6.75%

OneR 24% 24%

Discussion: To qualitatively validate the efficacy of the 2SMaRT with and with-

out AdaBoost, we first present the average performance improvement results for all

studied malware classes in Table 4.5. The column ‘8HPC→4HPC-Boosted’ in Table

4.5 denotes the average performance improvement when employing 4HPCs associ-

ated with AdaBoost compared to general 8HPCs in the proposed 2SMaRT. It can

be observed that the detection performance with ensemble learning-based malware

detectors using only the 4 Common HPCs outperforms the performance achieved

when employing 8 or 4 HPCs without AdaBoost ensemble learning. However, a nega-

tive improvement is seen in the case of Neural Networks-based detector (MLP) when

AdaBoost is employed due to overfitting. As seen, 1.51%-31.25% performance im-

provement is achieved with 4HPC-boosted malware detection compared to 8HPCs in

70

which the tree-based JRip is achieving the highest improvement.

The results highlight the impact of deploying ensemble technique for performance

improvement of ML classifiers with a lower number of HPC events eliminating the

need for multiple runs of the same application to capture the required HPC data for

effective malware detection. Thus, it is more effective to alternatively collect lower

number of features (four), at lower power and performance cost to the system, and

boost the performance of the ML classifiers with AdaBoost while facilitating run-time

malware detection, given the availability of 4HPCs in the system.

2SMaRT vs. Ideal HMD: To evaluate the effectiveness of proposed run-time

HMD employing only few features, we compare the ML models in 2SMaRT with

an offline ideal HMD technique that uses all the 44 features for malware detection.

Figure 4.7 shows the F measure and the robustness (AUC) results for the offline and

proposed run-time malware detection along with the best ML solutions in each case.

As shown, only an F measure degradation of 1% is observed in 2SMaRT as compared

to the offline approach and nearly similar robustness is achieved for both offline and

run-time solutions. This confirms the effectiveness of the proposed HMD using only 4

available HPCs which has a performance close to an ideal offline detector that accesses

to all the 44 features.

2SMaRT vs. Single-Stage HMDs: Here, we present a comparison of detection

rate of 2SMaRT against traditional single-stage HMD. Figure 4.8-(a) depicts the

F measure results of HMD when utilized only first stage (represented as Stage1-

MLR) against using the proposed two-stage HMD that accurately detects the type of

malware ahead of time (referred as malware 4HPC Boosted). The number of HPCs

used for malware detection in Figure 4.8-(a) is the 4 Common features. As seen, using

only the first stage (MLR) has the lowest F score of 80%. However, in 2SMaRT by

using two levels of detection, the malware class is predicted ahead, and the proper

71

BayesNet, 99.8
MLP, 98.9 MLP, 98.9

BayesNet, 0.998 MLP, 0.99 OneR,JRip,J48, 0.99

0.84

0.88

0.92

0.96

1

80

85

90

95

100

105

Offline HMD 4HPC 4HPC-Boosted

A
U

C
 v

a
lu

e

F
 M

e
a

su
re

 V
a

lu
e

 (
%

)

Accuracy AUCF Measure

Figure (4.7) Optimal F measure and AUC of run-time 2SMaRT compared with
offline HMD using all 44 HPCs

ML classifier trained for corresponding class is employed which improves the F score

by up to 19%. This also signifies the advantage of 2SMaRT over prior single-stage

HMDs such as [29,30].

Furthermore, in Figure 4.8-(b) we compare 2SMaRT with a state-of-the-art single-

stage HMD proposed in a recent work [29]. We compare 2SMaRT with [29] since it

also employs different ML techniques using various number of HPCs to detect the

malicious pattern of applications. As seen, the 2SMaRT with only 4HPCs achieves

higher detection rate compared to [29] employing 4 and even 8 HPCs, due to the

effectiveness of the two-stage run-time 2SMaRT methodology. Given the results, on an

average close to 10%, and 9% improvement in detection rate is achieved with 2SMaRT

using 4HPCs with and without ensemble learning compared to [29] using the same

number of HPCs. In addition, interestingly the 2SMaRT with and without AdaBoost

technique using only the Common 4HPCs outperforms the malware detectors in [29]

with higher number of performance counters (8HPCs) by 9% and 8%, respectively.

Concluding Remarks. The proposed work outlines different challenges of run-time

HMD that have been ignored in the existing works. These challenges include: 1)

72

50

60

70

80

90

100

BayesNet J48 JRip MLP OneR

F
 M

e
a

s
u

re
 (

%
)

MLR Rootkit-4HPC-Boosted
Backdoor-4HPC-Boosted Trojan-4HPC-Boosted
Virus-4HPC-Boosted

70
75
80
85
90
95

100

BayesNet J48 JRip MLP OneR

F
 M

e
a

s
u

re
 (

%
)

[Patel et al.]-4 Features [Patel et al.]-8 Features
SpecialHMD (non-Boosted) SpecialHMD (Boosted)

(a) (b)

Figure (4.8) Comparison of 2-stage 2SMaRT with single-stage HMDs: a) comparison
with 1 stage MLR, b) comparison of 2SMaRT using only 4 features with a recent HMD
work

the type of key microarchitectural events to capture at run-time which varies across

various malware classes; 2) no unique ML classifiers achieves high malware detection

rate and performance across various types of malware; and 3) the number of microar-

chitectural events used by existing works are large, however, in reality the number of

HPCs that can be monitored simultaneously is very limited. In response, we propose

a multi-step solution of feature reduction by exploiting correlation between different

microarchitectural events. Further, to address per-class run-time malware detection,

2SMaRT is proposed that first predicts the malware behavior, followed by employing

a per-class specialized malware detector for improved detection performance. In addi-

tion, AdaBoost ensemble learning is cascaded as the last stage to address the challenge

of employing small number of microarchitectural events equal to the limited number

of available HPCs. 2SMaRT using only 4HPCs with a lightweight tree-based clas-

sifier (J48) boosted by AdaBoost improves the malware detection performance on

an average by 31.25% compared to the HMD with 8HPCs, at the cost of only 1.3%

additional area overhead.

73

Chapter 5: Stealthy Malware Detection using

Low-Level HPC Features

The increasing complexity of modern computing systems leads into the growth of se-

curity vulnerabilities, making such systems a unique target for sophisticated attacks.

Malware, a broad term for any type of malicious software, is a piece of code designed

by cyber attackers to infect the computing systems without the user consent serving

for harmful purposes such as stealing sensitive information, unauthorized data ac-

cess, and running intrusive programs on devices to perform Denial-of-Service (DoS)

attack [20, 91]. The rapid development of information technology has made malware

a serious threat to computer systems.Given the exceedingly challenging detection of

new variants of malicious applications, malware detection has become more crucial

in modern computing systems.

Traditional software-based malware detection techniques such as signature-based

and semantic-based methods [91, 95] mostly impose significant computational over-

head to the system and more importantly do not scale well. Furthermore, they are

unable to detect unknown threats making them unsuitable for devices with limited

available computing and memory resources. The emergence of new malware threats

requires patching or updating the software-based malware detection solutions (such as

off-the-shelf anti-virus) that needs a vast amount of memory and hardware resources

which is not feasible for emerging computing systems specially in embedded mobile

and IoT devices.

74

In order to address the traditional malware detection shortcomings, Hardware-

based Malware Detection (HMD), by employing low-level features captured by Hard-

ware Performance Counters (HPCs), have emerged as a promising solution [20, 21,

30,54]. HMD methods reduce the latency of detection process by order of magnitude

with small hardware overhead [54]. The HPCs are basically special-purpose registers

implemented into modern microprocessors to capture the trace of hardware-related

events such as executed instructions, suffered cache-misses, or mispredicted branches

for a running program [21, 29]. Recent studies on HMD have demonstrated that

malware can be differentiated from normal programs by classifying anomalies us-

ing Machine Learning (ML) techniques applied on HPC features. ML-based malware

classifiers can be implemented in microprocessor hardware with significantly low over-

head as compared to the software-based methods, as detection inside the hardware is

very fast (few clock cycles).

Malicious software attacks have continued to evolve in quantity and sophistica-

tion during the past decade. Due to ever-increasing complexity of malware attacks

and financial motivations of attackers, malware trends are recently shifting towards

stealthy attacks [33,34]. Stealthy attack is a type of cyber security attack in which the

malicious code is hidden inside the benign application for performing harmful pur-

poses [35]. An example of deploying stealthy malware is in document files in which

the malware is capable of indirectly invoking other applications or libraries on the

host as part of document rendering or editing.

The main purpose of stealthy attacks is to remain undetected for a longer period of

time in the computing system. The longer the threat remains undiscovered the more

opportunity it has to compromise computers and/or steal information before suitable

detection mechanism can be deployed to protect against it. Stolfo et al. discovered a

new type of stealthy threat referred as embedded malware [33,108]. Under this threat,

75

the attacker embeds the malicious code or file inside a benign file on the target host

such that the benign and malicious applications are executed as a single thread on

the target system. The traditional signature-based antivirus application have shown

to be ineffective in detecting embedded malware even when the exact signature of

malware is available in the detector database. Embedded malware is potentially a

serious security threat and accurate anomaly detection techniques must be developed

to mitigate it. In this paper, we primarily focus on detecting stealthy attacks where

malicious code is hidden inside the benign program, both executed as a single thread,

making the detection more challenging.

The existing studies on HMD have primarily assumed that the malware is spawned

as a separate thread while executing on the target host. However, in real-world

scenarios malicious programs attempt to hide themselves within a benign application

to bypass the detection mechanisms. In HMD methods the HPC data is directly

fed to a detector, therefore, for embedded malicious code hidden inside the benign

application, HPC data become contaminated, as the collected events include the

combined benign and malware microarchitectural events.

In addition to the challenge of detecting embedded malware, prior studies on

hardware-based malware detection performed limited study on malware classification

accounting for the availability of a large number (e.g. 8/16) and diverse type of HPCs

accessed at a time. However, today’s microprocessors, even in the high-performance

domain have limited number of HPC registers (2 to 8), due to several reasons including

the design complexity and cost of concurrent monitoring of microarchitectural events.

For embedded mobile and IoT domains, the number of HPCs that can be accessed

simultaneously is even smaller.

In response to the aforementioned challenges, in this work, we propose an effective

time series machine learning-based approach, referred as CHASE, to accurately detect

76

the embedded malicious patterns inside the benign programs using only one HPC

feature (branch instruction). To the best of our knowledge, this is the first work

that addresses the challenge of detecting stealthy/embedded malware using hardware

performance counters features at run-time.

The main objective of this work is to accurately detect the malicious application

embedded inside the benign program using least number of microarchitectural events

(only one HPCs) in which the traditional ML-based solutions are unable to detect

them with even 8/16 features. Using an effective feature reduction technique, we

first identify the most prominent low-level feature for embedded malware detection.

Next, we propose a lightweight scalable time series-based Fully Convolutional Neural

Network (FCN) model that automatically identifies potentially contaminated samples

in HPC-based time series to distinguish the stealthy malware at run-time using only

branch instructions as the most significant HPC event.

5.1 Background on Stealthy Malware Detection

5.1.1 Embedded Malware Detection

Stolfo et al. [33] proposed a new type of stealthy malicious attack referred as embed-

ded malware. They introduced a method referred as file-print analysis, in which they

calculated 1-gram byte distribution of a file and compared it to various models to

identify the file type among PDF and DOC files. However, their approach is not ca-

pable of identifying the exact location of the embedded malware making it unfeasible

for effective stealthy malware detection.

The work in [108] proposed static, and run-time dynamic methods for detecting

malware embedded in Word documents. In static analysis, they deployed an open

77

source application to decompose files and produced a similarity score for final classifi-

cation. In dynamic approach, they employed sandbox-based tests to check OS crashes

and unexpected changes to the underlying environment. However, it is acknowledged

by the authors that their approach is not practical to be used as an independent

malware detection scheme. The research in [109] used conditional markov n-grams to

detect embedded malware.They deployed entropy rate, to quantify changes in n-gram

distributions of a file and showed that the entropy rate gets significantly disturbed at

malware embedding locations indicating its robustness for embedded malware detc-

tion.

5.1.2 Time Series Classification

Time series classification approaches can be divided into two different types, shapelet-

based [110] and bag-of-pattern-based [111]. Shapelet-based approach attempts to

find the subsequences that are the most discriminating of classes and deploys them to

generate features for classification. They are comprehensible time series subsequences

which are in some sense maximally representative of a class [110]. The work in [112]

introduces a scalable algorithm to detect shapelets for classification. On the other

hand, bag-of-pattern-based approaches attempt to discretize time series into a bag

of symbols and deploy the distribution information for classification. The work in

[113] proposes an approach called Bag-of-SFA-Symbols in Vector Space (BOSS VS)

to efficiently classify time series. Li et al. [114] introduces a method named Bag-of-

Pattern Feature (BOPF) to classify time series in linear time complexity. It has been

shown that this approach can outperform the prior scalable time series classification

approaches such as [112,113].

Recently, several deep learning-based time series classification approaches are pro-

posed [115–118]. These approaches often utilized ML techniques such as convolution

78

neuron network and LSTM neuron network [119, 120] to extract the features from

time series. However, compared with scalable time series classification approaches,

these models often consist of large number of parameters incurring significant over-

head and computational complexity to the computer system. As a result, in order to

better evaluate and highlight the effectiveness of our proposed approach for embed-

ded malware detection, we compare it with state-of-the-art ML-based HMD solutions

as well as the BOPF approach as the most recent scalable time series classification

method.

5.2 Motivational Case Studies

This section describes the motivations and challenges of hardware-based embedded

malware detection using ML algorithms.

5.2.1 Challenge of Detecting Embedded Malware

Figure 5.1 illustrates the challenge of detecting embedded malware. Figure 5.1-(a)

visualizes the complete benign and malware HPC data (described in details in Section

4), when the malware spawned as a separate thread, via t-distributed Stochastic

Neighbor Embedding (t-SNE) algorithm [121], a widely used algorithm for visualizing

high dimensional data. As seen, the marginal area between malware and benign

program is large when malware spawned as a separate thread indicating that by using

traditional ML models (prior works) the malware can be easily detected. However, the

converted points of embedded malware data are mixed with each other in Figure 5.1-

(b) depicting the impact of embedding malcode inside benign applications. The figure

highlights the challenge of embedded malware detection indicating that due to the

dense distribution of malware, traditional classification approaches cannot achieve

79

Figure (5.1) Visualizing the complete benign and malware dataset using t-SNE al-
gorithm: a) malware spawned as separate thread b) malware embedded inside benign
applications

a high accuracy in detecting embedded malware. Indeed, by performing nearest

neighbor classifier in both complete and embedded malware dataset, the classifier

can get accuracy of 90% in detecting the malware as a separate thread. However, the

classifier only can achieve around 60% accuracy in embedded malware detection task

when the malicious code is hidden inside the normal program.

5.2.2 Machine Learning for Hardware-Based Embedded Mal-

ware Detection

As discussed, in this work we intend to employ HPCs information to identify the

behavior of running applications To verify the suitability of using HPCs for ML-based

malware detection, we executed malware and benign applications on an Intel Nehalem

architecture-based system as a case study to observe the behavioral patterns of HPCs.

The benign application is selected from MiBench benchmark suite and the malware

is a Backdoor application that can bypass the authentication process. The observed

HPC traces of branch instructions for malware and benign applications are presented

in Figure 5.2. The X-axis represents the time at which the HPC is monitored and the

Y-axis represents the branch instruction HPC values. The profiling process shows that

80

Figure (5.2) HPC traces of benign and malware for branch-inst.

if two different programs are executed on a processor, they generate relatively different

HPC traces, providing a unique opportunity to detect the behavior of application.

However, there exists an interesting observation in which if the malware is embedded

inside benign program from 0ms to 1000ms time intervals, there is a significantly

high possibility that the value of branch instructions for both benign and malware

become equal which can mislead the traditional ML-based detectors in distinguishing

the malicious behavior from benign applications highlighting the importance and

necessity of developing an effective approach to accurately detect embedded malware.

5.3 Proposed Embedded Malware Detection Ap-

proach

In this section, we describe the proposed machine learning-based approach for effective

hardware-based embedded malware detection. Figure 5.3 illustrates an overview of

different steps for the proposed HMD framework. As shown, it comprised of different

steps inclduing data collection and feature extraction, feature reduction, and the

proposed ML-based embedded malware detector (CHASE) each described in details

81

Training
Applications

Feature
Extraction

Feature
Reduction

Malware vs. Benign
Classification

Hardware Performance
Counter Features

Malware

Benign

Benign

Malware

Backdoor

Trojan

Rootkit

Hybrid
Attacks

Proposed Time Series-
based Approach

Threats Embedded Malware
Detector: CHASE

Figure (5.3) An overview of different steps of proposed malware detection framework

in following subsections.

5.3.1 Data Collection

In our experiments, the benign and malware applications are executed on an Intel

Xeon X5550 machine (4 HPC registers available) running Ubuntu 14.04 with Linux

4.4 Kernel and HPC features are captured using Perf tool available under Linux at

sampling time of 10ms. Perf provides rich generalized abstractions over hardware

specific capabilities. HPC-based profilers are currently built into almost every pop-

ular operating systems. Linux perf is a new implementation of performance counter

support for Linux which is based on the Linux kernel subsystem perf-event and pro-

vides users a set of commands to analyze performance and trace data.

We executed more than 3500 benign and malware applications for data col-

lection. Benign applications include MiBench and SPEC2006, Linux system pro-

grams, browsers, and text editors. Malware applications collected from virustotal and

virusshare include Linux ELFs and scripts created to perform malicious activities and

include 850 Backdoor, 640 Rootkit, and 1460 Trojan samples. HPC information is

collected by running applications in an isolated environment referred as Linux Con-

tainers (LXC) which as mentioned before unlike common virtual platforms provides

82

access to actual HPC data instead of emulating HPCs. In order to ensure that run-

ning malware inside the container does not affect the subsequent data collection by

contaminating the environment the container is destroyed after each run.

5.3.2 Feature Representation

Determining the most significant low-level features is an important step for effective

HMD. As there exists numerous microarchitectural events (for instance +100 in Intel

Xeon), each of them representing a different functionality, collecting all features leads

to a high dimensional data. Furthermore, processing raw dataset involves compu-

tational complexity and induces delay. As a result, we determine a minimal set of

critical HPCs that can effectively represent the application behavior and are feasible

to collect in a single run even on low-end processors with few HPCs. The top features

with the highest correlation coefficient value and their descriptions are shown in Table

5.1. These events have mixture of branch related events representing core behavior

and cache related events representing memory behavior. Next, we apply Principle

Component Analysis (PCA) to find the best HPCs suited for training the ML-based

malware detectors. We reduced the features to top 4 most significant HPCs to cap-

ture the behavior of specific class of malware. The feature reduction results indicate

that the identified prominent 4 HPCs are the same across various classes of malware

which include branch instructions, cache references, branch misses, and node-stores.

The proposed time series-based detection approach, CHASE, using only the most

significant HPC feature, branch instructions, is able to detect the embedded malware

inside benign application with high detection accuracy (will be discussed in details

in Section 5.4). Branch operations are one of the non-trivial events as most of the

malware [22] relies on branching operations for executing the malicious activity re-

vealing the behavior of most malwares. Also, branch related counters can be accessed

83

Table (5.1) HPC features used for malware detection and their description

HPC event Description
Branch instructions # branch instructions retired

Branch-misses # branches mispredicted
Cache misses # last level cache misses

Cache-references # last level cache references
L1-dcache-load-misses # cache lines brought into L1 data cache

L1-dcache-loads # retired memory load operations
L1-dcache-stores # cache lines into L3 cache from DRAM

node-loads # successful load operations to DRAM
node-stores # successful store operations to DRAM

LLC-load-misses # cache lines brought into L3 cache from DRAM
LLC-loads # successful memory load operations in L3

Branch-loads # successful branches

even in most of the low-end embedded and IoT devices, therefore making this type

of microarchitectural events appealing to use for malware detection. Furthermore, it

is hard to evade the branch instruction count due to the in-built exception handler

that notifies the user regarding the exception and terminates the program or it can

result in long stalls, eventually leading to termination of on-going executions.

5.3.3 Embedded Malware Threat Models

For modeling the embedded malware threats, we have considered persistent mali-

cious attacks which occur once in the benign application with notable amount of

duration attempting to infect the system. For the purpose of thorough analysis, we

deployed various malware types for embedding the malicious code inside the benign

application including Backdoor, Rootkit, Trojan, and Hybrid (Blended) attacks. For

per-class embedded malware analysis, malware traces, taken from one category of

malware, are randomly embedded inside the benign applications and the proposed

84

detection approach attempts to detect the malicious pattern. Furthermore, the Hy-

brid threat combines the behavior of all classes of malware and hides them in the

normal program. Persistent malicious codes are primarily a subset of Advanced Per-

sistent Threat (APT) which comprised of stealthy and continuous computer hacking

processes, mostly crafted to perform a specific malfunction activities. The purpose of

persistent attacks is to place custom malicious code in the running benign application

and remain undetected for the longest possible period. Persistent malware signifies

sophisticated techniques using malware to persistently exploit vulnerabilities in the

systems which usually targets either private organizations, states or both for business

or political motives. The hybrid malware in our work represents a more harmful type

of persistent threats in which the malicious samples are chosen from different classes

of malware to achieve more powerful attack functionality seeking to exploit more than

one system vulnerability.

5.3.4 Embedded Malware Data Generation

With capturing interval of 10ms for HPC features, in order to model the real world

applications scenario, we consider 5 sec. infected running application (benign appli-

cation infected by embedded malware). For this study, 10000 test experiments were

conducted in which malware appeared at a random time during run of a benign pro-

gram. For this purpose, given a set of recorded benign and malware HPC time series,

we randomly choose and concatenate multiple benign HPC time series to create a

3.75 sec. time series. Similarly, we then randomly choose and concatenate malware

HPC time series to create a 1.25 sec. complete malware time series. This malware

time series is the one that will embed into the created benign program. We randomly

insert this malware time series into the benign program to form a 5 sec. contami-

nated application time series. In the experiment, three different sets of data including

85

training, validation, and testing sets are created for evaluating the ML approaches.

Each one contains 10000 complete benign HPC time series and 10000 embedded mal-

ware HPC time series. Since attacker can deploy unseen malware program to attack

system, we create these three datasets with three groups of recorded malware HPC

time series (consists of 33%,33%,33% of whole recorded data, respectively).

5.3.5 Overview of CHASE

As discussed, prior works on HMD mainly assumed that the malware is executed as

a separate thread when infecting the system. This essentially means that the HPCs

data captured at run-time inserted to the classifier belongs only to malware program.

In real-world applications however, the malware can be embedded inside a benign

application, rather than spawning as a separate thread, producing a more harmful

attack. Therefore, the HPCs data captured at run-time could belong to both mal-

ware and benign applicationAs we will show in this work, this HPC data pollution

could result in degradation of traditional ML classifier performance. In response to

this challenge, we introduce CHASE malware detection framework which is based

on a lightweight Fully Convolutional Neural Network (FCN)-based time series clas-

sification. Primarily, the proposed FCN-based approach attempts to automatically

identify potentially contaminated intervals in HPC-based time series at run-time and

utilizes them to distinguish the embedded malware from benign applications.

The overview of CHASE and its comparison with prior works is described in Figure

5.4. Intuitively, the network is a simplified version of neural network inspired from

previous general convolutional neuron network-based time series classification models

[115,118]. As shown, our proposed solution in this work is based on the least number

of HPC features and targets detecting stealthy attacks that have been ignored in prior

studies on hardware-based malware detection (Figure 5.4-(a)). Furthermore, as seen

86

Applications Computer Systems

Laptop
Servers

...

......
This work: Malware embedded inside benign application

Prior works: Malware spawned as a
separate thread

Prior Works This Work

Detection using low-level features

Least number of HPCs (Only one)

Embedded Malware Detection

1-D Convolution
Layer

16

HPC-based Time
Series

BN+ReLu

1-D Convolution
Layer

2

BN+ReLu

Global Pooling

Softmax

Malware Detected using
Traditional ML Algorithms

Malware Detected with CHASE
Detection Framework

Benign

Malware

Input HPC Time Series
Size: 1×𝑁

Feature Maps o(1)
Size: 16×𝑁

Feature Maps o(2)
Size: 2×𝑁

Low Dimension Features o(3)

Fully connected Neuron Network (2×2)

(b)

(a)

Figure (5.4) Overview of CHASE, the proposed embedded malware detection ap-
proach, and its contribution over prior HMD works

in Figure 5.4-(b), the network is created by stacking two 1-D convolution layers with

16 and 2 kernels, respectively. The size of kernel in these two convolution layers is

2 and 3, respectively. These convolution layers aim at selecting the subsequence of

HPC time series for identifying the malware. Then a global average pooling layer is

applied to converts the output of the convolution layer into low dimension features.

These features are then fed into a fully connected neuron network to distinguish the

embedded malware from benign applications.

Concretely, given a time series of HPC x = x1, x2, . . . , xN , where N is the length

of the time series, in the first 1-D convolution layer, a output of kth kernel can be

computed by:

t
(1)
i,k =

∑
j∈1,2

wk,j,1xi+j−1 + b1 (5.1)

87

where 2-d vector [wk,1,1, wk,2,1] ∈ w is the weight of kth kernel and w = {wk,j,1|k =

1 . . . , 16, j = 1, 2} is a 16 × 2 matrix describes all weights of first layer. Given

t
(1)
k = [t

(1)
1,k, . . . , t

(1)
N,k], a batch normalization function, t

(2)
k = BN(t

(1)
k), and a ReLu

activation function,o
(1)
k = ReLu(t

(2)
k), are then applied. BN(.) is a function which

normalizes mean and variance of the t
(1)
k to 0 and 1, respectively and ReLu activation

function sets any negative value in t
(2)
k to 0. o

(1)
k is a N dimension feature map

generated from the kth kernel. We denote o(1) = [o
(1)
1 , . . . , o

(1)
16] as the output of the

convolution layer. Intuitively, convolution layer converts original time series of length

N into 16 different N dimensional feature map which capture different potential local

features used to classify the input data [118]. The o(1) is then fed into next convolution

layer with total number of kernels equal to 2. This layer summarizes o(1) into two

different feature maps which can be computed via:

t
(3)
i,k′ =

16∑
k=1

3∑
j=1

wk′,k,j,2o
(1)
i+j−1,k + b2 (5.2)

where the weight of all kernels is a 3-d tensor wk′,k,j,2 of size 2 × 16 × 3. For each

t
(3)
i , BN(.) and ReLu(.) functions are further applied and four feature maps (denoted

as o(2) = [o
(2)
1 , o

(2)
2]) are generated. Intuitively, stacking two convolution layers can

increase the ability of model to detect complicated features. [118], which can increase

the accuracy of the framework. Note that any positive value inside the o
(2)
1 , o

(2)
2

indicates the potential HPC intervals which can be used to determine whether the

input HPC time series contains an embedded malware. Similar to general convolution

neuron network structure [118], we then conduct a global average pooling step to

convert feature map o(2) into low dimension features. In particular, given a feature

88

Final Feature Maps

𝒐(𝟐)

Input HPC Time Series

[𝟎. 𝟐𝟔, 𝟎. 𝟑𝟐]Low Dimension Feature:

𝒐(𝟑)

𝒐𝟏
(𝟐)

𝒐𝟐
(𝟐)

[𝟎. 𝟎𝟎𝟏, 𝟎. 𝟗𝟗𝟗]Output:
𝒐

(Benign) (Malware)

Embedded
malware

Figure (5.5) Case study for CHASE in detecting embedded malware

map of o
(2)
k ∈ o(2), we deploy the average value of all elements inside o

(2)
k as the low

dimension feature. As a result, this step converts o(2) into a 2-d vector (denoted as

o(3)).

Finally, o(3) is fed into a fully connected neural network with softmax activation

function, a standard neuron network layer designed for classification [115, 118], for

detecting embedded malware:

o = Softmax(W To(3) + b3) (5.3)

where Softmax(x) = exi∑2
k=1 e

xk
. Eq. (3) first converts o(3) into a new 2-d real value

vector via linear transformation W To(3) + b3, where W is a 2 × 2 matrix and b3 is a

2×1 vector. Next, all elements in the vector is mapped to [0,1] via Softmax function.

The final output is a 2-d vector o = [o1, o2] which describes the possibility that the

89

time series is benign or infected by malware (See Figure 3(c)).

Suppose we denote all the weights and the output of network as Θ and Θ(x) =

[Θ1(x),Θ2(x)] respectively. Given an training dataset D and the network weights Θ,

we update Θ by minimizing the binary cross-entropy loss which can be computed by:

L =
∑

(xi,yi)∈D

−yi log(Θ1(xi))− (1− yi) log(Θ2(xi))) (5.4)

where xi and yi is the HPC time series and the associated ground true label of the

ith record in D. And yi ∈ {0, 1} indicates whether the time series is benign or contains

malware. Equation 5.4 can be minimized via standard back propagation algorithm, a

widely used model for training various types of neural networks[118][115]. It primarily

updates weights in neuron network by propagating the loss function value from the

output layer to the input layer and iteratively minimize the loss function for each

layers via gradient descent method. In this work, for each layer, the weights are

optimized via Adam optimizer [122], a stochastic gradient descent method used to

efficiently update weights of neuron network. In order to show the functionality of the

proposed CHASE approach in identifying the malware embedded inside the benign

program, a detection case study is presented in Figure 5.5. As shown, an HPC-based

time series is the input to the classifier which contains an embedded rootkit malware

(the embedded malware is highlighted in red). CHASE generates the two feature map

o
(2)
1 , o

(2)
2 via the proposed fully convolution neuron network. The o

(2)
1 and o

(2)
2 are then

categorized as a 2-d feature vector o(3) by calculating the simple average of all the

value in the feature map. In the given example, o(3) is equal to [0.26, 0.32]. This

2-d feature is then fed into a fully connected neuron network layer and the proposed

CHASE analyze the input HPC time series and attempts to find that whether the

90

input trace contains an embedded malware or not in which in this case it successfully

identified the embedded malware with significantly high probability (0.999).

We implement the CHASE framework via Pytorch deep learning library. For eval-

uating CHASE framework using accuracy and F-measure (will be described in Section

5.4.1), it determines whether the input time series contains embedded malware by

computing argmax(o). Different from previous models, the proposed framework has

small total number of kernels and layers which dramatically reduces the number of

parameters and the cost for detecting malware in new HPC time series. For instance,

in the latest neuron network introduced by [115], to classify a time series of length 500,

the classification model needs more than 150,000 parameters, whereas the CHASE

framework only contains 200 parameters. Having less parameters enhances the effi-

ciency of the framework. Furthermore, the framework deploys less kernels compared

with similar FCN-based classification model [118], which uses 3 convolution layers in

which each layer has 128, 256, and 128 kernels, respectively.

5.4 Experimental Results and Analysis

In this section, we evaluate the proposed embedded malware detection approach

across different attack types and evaluation metrics.

5.4.1 Performance Evaluation Criteria

In this work, CHASE framework is evaluated using precision, recall (a.k.a. sensitiv-

ity), F1-score, and detection accuracy (the overall rate of correctly classified samples).

As described earlier, in binary classification techniques, true positives (tp) refer to

the correctly classified/predicted positive samples, whereas true negatives (tn) are

the number of the correctly classified/predicted negative samples. False positives (fp)

91

indicate the incorrectly classified positive samples. Similarly, false negative (fn) met-

ric is the number of incorrectly classified negative samples. On one hand, the terms

positive and negative denote the classifier success, on the other hand true and false

determines whether or not the prediction is matched with the actual application class

(malware or benign).

The precision is the proportion of the sum of true positives versus the sum of

positive instances. For instance, it is the probability for a positive sample to be clas-

sified correctly. The recall is the proportion of instances that are predicted positive

and are also actually positive (i.e., tp) of all the instances that are positive. The

F1-score, also known as F-measure or F-score, is the weighted harmonic mean of the

precision and recall. F1-score reaches at its best value 1 and the worst score at 0.

Since detection accuracy is not the only metric to determine the performance of the

malware detection, we also evaluate CHASE using with the aid of Receiver Operat-

ing Characteristics (ROC) graphs. The ROC curve represents the fraction of true

positives versus the fraction of false positives for a binary classifier as the threshold

changes. We use the Area under the Curve (AUC) measure for ROC curves in the

evaluation process. The AUC corresponds to the probability of correctly identifying

malware and benign programs.

5.4.2 Evaluation of Proposed Approach

For the purpose of comprehensive evaluation, we compare our proposed approach

with both the recent general time series classification approaches and recent proposed

traditional machine learning-based HMD techniques. We studied two general time se-

ries classification methods including a nearest neighbour classifier (1-NN), a classical

time series classification method, and Bag-of-Pattern-Features (BOPF) [114] classi-

fier, which is the latest proposed scalable time series classification approach. Given

92

Table (5.2) Evaluation results for validation set

Type Precision Recall F-score Accuracy
Hybrid 0.85 0.893 0.876 0.868
Rookit 0.928 0.8844 0.9057 0.907
Trojan 0.912 0.8718 0.8917 0.894

Backdoor 0.8811 0.936 0.908 0.905
Average 0.892 0.896 0.8953 0.893

Figure (5.6) ROC Curve for Hybrid Embedded Malware detection

the input time series, 1-NN classifier will assign same class label to the input time

series based on the most similar observed time series in training set. The similarity is

measured by Euclidean distance. Bag-of-Pattern-Features (BOPF) based time series

classification approach is one of the recent fast time series classification algorithm.

BOPF has a very low time complexity compared with many existing time series clas-

sification approach and maintains a very high accuracy. Furthermore, we studied

JRip, J48, and Logistic Regression-based HMD that are representing the rule-based,

decision tree, and regression-based classifiers and have demonstrated high accuracy

for detecting malware (spawned as separate thread) in recent prior works [20–22,29].

Table 5.2 presents the evaluation results of malware detection for different classes

of embedded malware for validation set analysis. The results show that our proposed

lightweight two layer neural network-based solution can achieve average accuracy,

93

Figure (5.7) ROC Curve for Rootkit Embedded Malware detection

Table (5.3) AUC of testing set results for detecting various embedded malware

Method Type CHASE JRIP J48 LR 1NN BOPF
Hybrid 0.922 0.64 0.617 0.526 0.599 0.699
Rookit 0.979 0.77 0.62 0.497 0.541 0.526
Trojan 0.93 0.847 0.69 0.572 0.65 0.7859

Backdoor 0.913 0.731 0.537 0.507 0.603 0.676
Average 0.936 0.747 0.616 0.525 0.585 0.671

precision, recall and F-score of nearly 0.9 across all types of experimented embedded

malware only by using the most prominent HPC feature (branch instructions). This

makes the run-time detection of stealthy malware feasible which is primarily elimi-

nating the need to execute applications multiple times to capture various low-level

features suitable for malware detection.

Figure 5.6 and 5.7 illustrate the ROC graphs of the proposed approach compare

to state-of-the-art HMD and time series classification techniques for two types of

embedded malware, Hybrid and Rootkit. The correspondent AUC values for each

embedded malware category are further presented in Table 5.3. A higher AUC value

means that the ROC graph is closer to the optimal threshold and the classifier is

performing better in terms of identifying the stealthy mwalre and classification of

malware and benign applications. The ROC results clearly indicate the effectiveness

94

of the proposed approach in this work as compared with prior ML-based malware de-

tection and time series classification. As can be seen, our proposed approach, CHASE,

achieves an average AUC value of nearly 0.94 across all experimented categories of

embedded malware. Furthermore, CHASE significantly outperforms the traditional

ML algorithms used in recent prior HMD works, JRip, J48, and LR, by up to 0.41.,

and further outperforms tested time series classifications approaches by up to 0.35.

For the purpose of thorough analysis and comparison, Table 5.4 presents the

testing results of proposed light-weight embedded malaware detection approach in

comparison with state-of-the-art works on hardware-based malware detection and

time series classification. As seen, CHASE approach achieves highest accuracy and

F-score for detection of all four different types of embedded malware. Overall, CHASE

performance is outperforming the state-of-the-art HMD (e.g. Logistic Regression) by

up to 0.4 in accuracy and 0.41 in F-score indicating the effectiveness of the proposed

solution in detecting embedded malware.

Concluding Remarks. Malware detection at the hardware level has emerged re-

cently as a promising solution to improve the security of computing systems. The

existing works on hardware-based malware detection primarily assume that the mal-

ware is spawned as a separate thread. However, detecting stealthy attacks, malicious

code embedded in a benign application, is a significantly more challenging problem

in today’s computing systems, since the malware hides itself in the normal applica-

tion execution. In malware detection using low-level features, when the HPC data

is directly fed to a machine learning classifier, embedding malicious code inside the

benign applications leads to contamination of HPC information, as the collected fea-

tures combine benign and malware microarchitectural events together. In response,

in this work we proposed CHASE, a time series-based Fully Convolutional Neural

Network framework to effectively detect the embedded malicious code that is hidden

95

inside the benign applications. Our novel approach, using only the most significant

HPC, branch instructions, can detect the embedded malware with 94% detection per-

formance (Area Under the Curve) on average at run-time outperforming the detection

performance of state-of-the-art hardware-based malware detection methods by up to

41%.

96

Table (5.4) Evaluation results for testing set for detection of various embedded mal-
ware

Embedded Hybrid Malware
Method Precision Recall F-score Accuracy
CHASE 0.85 0.8303 0.8579 0.8869

JRip 0.627 0.583 0.604 0.618
J48 0.629 0.572 0.599 0.617
LR 0.52 0.494 0.507 0.518

BOPF 0.971 0.409 0.5761 0.6987
1NN 0.592 0.552 0.571 0.585

Embedded Rootkit Malware
CHASE 0.955 0.898 0.925 0.928

JRip 0.814 0.677 0.74 0.76
J48 0.657 0.531 0.588 0.627
LR 0.503 0.469 0.486 0.503

BOPF 0.6885 0.1008 0.1759 0.5276
1NN 0.549 0.461 0.501 0.543

Embedded Trojan Malware
CHASE 0.92 0.8164 0.861 0.87

JRip 0.844 0.784 0.813 0.819
J48 0.7 0.686 0.693 0.695
LR 0.556 0.548 0.552 0.554

BOPF 0.918 0.627 0.745 0.785
1NN 0.629 0.719 0.671 0.647

Embedded Backdoor Malware
CHASE 0.889 0.833 0.862 0.858

JRip 0.83 0.577 0.681 0.729
J48 0.595 0.312 0.409 0.549
LR 0.501 0.432 0.464 0.509

BOPF 0.9257 0.3836 0.5424 0.6764
1NN 0.622 0.495 0.551 0.582

97

Chapter 6: Scheduling Challenges in

Heterogeneous Architectures

In this section, we examine the suitability of applying effective machine learning

techniques on captured runtime hardware-based information for addressing the per-

formance vs. power consumption trade-offs and enhancing the energy-efficiency o

heterogeneous multicore architectures. In particular, we show that hardware perfor-

mance counter information can be effectively used for energy-efficiency prediction of

multithreaded applications running on multicore heterogeneous architectures.

6.1 Machine Learning-based Approaches for Energy-

Efficiency Prediction in CCAs

Heterogeneous multicores offer an effective solution to energy-efficient computing. To

unlock the potential of the heterogeneity, software applications must adapt to the vari-

ety of different processors and make good use of the underlying hardware by executing

workloads on the most appropriate core type. By running multithreaded applications

on heterogeneous architectures, each thread is able to run on a core that matches its

resource needs more closely than one-size-fits-all solution [62]. However, the effec-

tiveness of heterogeneous architectures significantly depends on the scheduling policy

and how efficiently we can allocate applications to the most appropriate processing

core [56, 59, 65]. Applying ineffective scheduling decisions can lead to performance

98

degradation and excess power consumption in such architecture [62–64, 123]. Com-

mercially available heterogeneous architectures include Intel Quick IA [124], ARMs

big.LITTLE [125], and Nvidia Tegra 3 that integrates a high performance big core

with a low power little core on a single chip.

Composite cores architectures can provide further benefits by allowing the system

to construct a right core for each running application. Several designs have been

proposed that provide some level of dynamic heterogeneity. These proposals include

Core Fusion [63], TFlex [60] and Composite Cores [62, 64]. In [62, 64] the concept of

composite cores is proposed where a big core architecture can be dynamically decom-

posed into a smaller little-core architecture. The authors in [62] adapted the concept

of composite cores in 3D by further enabling the core composition and decomposi-

tion at a low granularity of processor building blocks such as register file and load

and store queue. Their proposed architecture allows multiple smaller cores to be

composed together to build a larger core or vice versa, as needed.

While composite cores architecture provides more opportunity to construct the

right core for the running applications, it is making the scheduling a difficult prob-

lem. Previous studies have mainly examined the advantages of using single threaded

applications in CCAs [56, 62, 63, 65]. However, running multithreaded applications

on a CCA and composing ideal processor architecture for energy-efficiency is a more

challenging problem, considering the possible number of cores and threads and type

of core micro-architecture. Furthermore, the challenge of how many and what type of

core to compose for each multithreaded applications becomes even more complicated

considering the impact of tuning parameters on energy-efficiency.

The main challenge for scheduling is to effectively tune system, architecture and

application level parameters in CCA when running multithreaded applications. These

parameters that are critical to performance and power include core type, voltage/frequency

99

settings and the number of running threads. While there has been number of studies

on mapping applications to heterogeneous architectures, no solution has been devel-

oped for mapping multithreaded applications into composite cores with its unique

architecture. In addition, previous studies on mapping applications to multicore

architectures have focused primarily on 1) homogeneous architectures, 2) static het-

erogeneous architectures where the number and type of cores are fixed at design time,

and 3) configuring individual or a subgroup of tuning parameters at a time, such as

applications thread counts [68, 71, 101, 126], voltage/frequency [56, 65], or core type

[60,63,64,68,70,125] and they have ignored the interplay among all these parameters.

This study indicates that these parameters individually, while important, do not

make a truly optimum configuration to achieve the best energy-efficiency on a CCA.

The best configuration for a multithreaded application can be effectively found, only

when these parameters are jointly optimized. Figure 6.1 illustrates the tuning pa-

rameters influencing in scheduling decision in a CCA. In this section, we focus on

scheduling challenges by considering four tuning parameters including thread counts,

voltage/frequency, core type, and application behavior. And the impact of power

conversion efficiency on heterogeneous architectures will be discussed in details in

Section 6.2.

In this research, through methodical investigation of power and performance, and

comprehensive system and micro-architectural level analysis, we first characterize

multithreaded applications on CCA to understand the power and performance trade-

offs offered by various configuration parameters and to find how the interplay of these

parameters affects the energy-efficiency. Our study is focused on a CCA where many

little cores (base) can be configured into few big cores (composed) and vice versa. The

experimental results support that there is no unique solution for the best configuration

for different applications. Given the dispersed pattern of optimum configuration, we

100

Thread
Counts

Energy
Efficiency

Core Type
(big, little)

Operating
Voltage

/Frequency

Thread Count: [5, 9, 17,21]
Core Type: [4, 8, 11, 17, 18, 19]
Thread Count & Core Type: [9 , 17]
Voltage/Frequency & Core Type: [3, 10]
Application Behavior: [2, 3, 4, 5, 9, 11, ...]
Thread Count & Core Type & Voltage/Frequency
& Application Behavior [22, 23]

Thread Count & Core Type & Voltage/Frequency
& Application Behavior & Power Conversion
Efficiency

Prior Work

This WorkApplication
Behavior (I/O,

CPU, ...)

Power
Conversion
Efficiency

Figure (6.1) Tuning parameters influencing energy-efficiency in heterogeneous mul-
ticore architectures

develop various machine learning models to predict the energy-efficiency of parallel

regions, and guide scheduling and fine-tuning parameters to maximize the energy-

efficiency. As behavior of applications changes at run-time, we applied our prediction

and tuning method at a fine-grained level of individual parallel region within an

application.

We use five well-known machine learning models to build predictors based on

the knowledge extracted from an extensive set of hardware performance data which

are a good representative of application behavior for each parallel region within the

training phase. The models are then used at run-time to predict the optimal processor

configuration for each parallel region of a multithreaded workload to maximize the

energy-efficiency. We analyze the proposed machine learning-based models in terms

of their prediction accuracy, power overhead and implementation cost to understand

their cost effectiveness [37,40].

101

6.1.1 Motivation and Overview of our Approach

Multithreaded applications are comprised of number of parallel regions which are

separated by serial regions. In this work, we refer to these parallel regions as Re-

gion of Interest (ROI). In a homogeneous multicore architecture and for conventional

scheduling, all of these regions are processed on the same core type, same voltage and

frequency, and number of threads, though not all regions may have the same prefer-

ences. Some of these ROIs may benefit from different configurations than the others

to obtain the maximized energy-efficiency. As mentioned earlier, the main challenge

for scheduling is to effectively tune system, architecture and application level param-

eters in CCA for the entire application as well as the intermediate parallel regions to

achieve maximum energy-efficiency. In this work, similar to [62,65], we are assuming

that big cores (composed) are constructed by composing multiple little (base) cores.

Time

Optimal Configurations

ROI1 ROI2 ROI3

Base Core
2.4 GHz

8 threads

Composed Core
2.8 GHz

8 threads

Composed Core
2.4 GHz

8 threads

Time

Optimal Configurations

ROI1 ROI2 ROI3

Base Core
2.4 GHz

8 threads

Composed Core
2.8 GHz

8 threads

Composed Core
2.4 GHz

8 threads

Figure (6.2) Optimal configurations in different parallel regions of an application

Figure 6.2 illustrates an overview of optimal configurations for an application

selected from SPLASH-2 multithreaded benchmark suite with three parallel regions.

In each ROI the best possible configuration for core type, operating frequency and

thread counts that results in maximized energy-efficiency is specified. As can be seen,

ROI1 needs to be run on the base core with 2.4GHz frequency and 8 threads, whereas

for ROI2 in order to achieve the best energy-efficiency, we need to compose two

102

small cores to make a big core. Moreover, the optimal operating frequency increases

to 2.8GHz. The ability to accurately predict the optimal application, system and

even microarchitecture parameters and adapt them to achieve the maximum energy-

efficiency within different parallel regions of an application is the main motivation for

this work. We develop several machine learning-based approaches which are able to

predict the optimal setting of tuning parameters and change them to suit the specific

requirement of each parallel region within the multithreaded application.

Figure 6.3 depicts our three-stage approach for predicting the right core type and

application configuration when running a multithreaded application on composite

cores architecture. Our machine learning-based approach begins from extracting mi-

croarchitectural data (referred as feature extraction), from different parallel regions

of application to characterize the multithreaded workload. These data (or features)

include the hardware performance counter data, which are representative of applica-

tion behavior at run-time. Next, a machine learning-based predictor (that is built

off-line) takes in these features and predicts the best configuration settings for a given

parallel region.

For this purpose, we have implemented five well-known machine learning algo-

rithms and compare them in terms of accuracy, power and area overhead to find

to the most effective learning model which yields in optimized energy-efficiency. Fi-

nally, we configure the processor and schedule the application to run on the predicted

configuration. In this work, the metric that we use to characterize energy-efficiency

is the Energy Delay Product (EDP) which aims to balance performance and power

consumption. We construct and compare five predictors using the machine learning

algorithms described in the section V to guide the scheduling in a CCA.

103

Feature

Extraction

Multithreaded

Applications Feature Values
Processor Config.

(Core Type, Freq., #Threads

Predictor Scheduling

1 2 3

Figure (6.3) An overview of our approach for predicting the optimal configuration
and scheduling the multithreaded application

6.1.2 Experimental Setup and Methodology

This section provides the details of our experimental setup. We use Sniper [127] ver-

sion 6.1, a parallel, high speed and cycle-accurate x86 simulator for multicore systems.

McPAT [128] is integrated with Sniper and is used to obtain power consumption re-

sults. We study SPLASH-2 [129] and PARSEC [130] multithreaded benchmark suites

for simulation. For architectural simulation, we modeled a heterogeneous composite

cores architecture based on the recently proposed work in [60, 63]. Our study is fo-

cusing on a CCA where two little cores (base) can be configured into one big core

(composed) and vice versa. Figure 6.4 provides a conceptual overview of a four-core

CCA. In this paper, we investigate two baseline heterogeneous CCAs which consist of

multiple base and composed cores: 1) 8base/4comp, and 2) 4base/2comp. It is also

important to note that for benchmark simulation we applied the binding (one-thread-

per-core) model with threads == cores to maximize the performance of multithreaded

applications [70,71].

Table 6.1 shows the microarchitectural configuration of base (little) and composed

(big) core of CCA in our experiment. We collect performance counters data on each

architecture for characterization and drive the scheduling and mapping algorithms.

104

L2

Core

L1-D

L1-I

Core

L1-D

L1-I

Core

L1-D

L1-I

Core

L1-D

L1-I

Big (Composed)Little (Base)

Figure (6.4) Conceptual structure of a four core CCA

Table (6.1) Architectural specification

Microarch. Parameter Base Composed
Issue-Commit width 2 4
INT instruction queue 16 entries 32 entries
FP instruction queue 16 entries 32 entries
Reorder buffer 32 entries 64 entries
Branch penalty 7cyc 14cyc
iL1-dL1 Cache 16KB/4-way/2cyc 32KB/4-way/2cyc
L2 Cache 4MB/8-way/32cyc 4MB/8-way/32cyc

We use these data to extract and evaluate the actual behavior of applications (I/O,

CPU or memory intensive) for predicting energy-efficiency and assisting scheduling

decision.

6.1.3 Characterization Results

In this section, we evaluate the applications performance and energy-efficiency sensi-

tivity to tuning parameters of operating frequency, number of running threads, and

the choice of microarchitectures (base vs. composed) in heterogeneous composite

cores architecture. The studied parameters not only directly impact the power and

105

0.0E+0

2.0E+3

4.0E+3

6.0E+3

8.0E+3

1.0E+4

1.2E+4

1.4E+4

0

10

20

30

40

50

60

70

80

Base Composed Base Composed Base Composed

Thread 1 Thread 1 - Thread 4 Thread 2 - Thread 8 Thread 4

E
D

P
 (

J
.u

s
)

E
x
e

c
u

t
io

n
 T

im
e

 (
m

s
)

Thread/Core Type Configuration

a) barnes
F1.6 Exe F2 Exe F2.4 Exe F2.8 Exe
F1.6 EDP F2 EDP F2.4 EDP F2.8 EDP

Best Execution Time: 4 Threads, Composed Core

Best EDP: 8 Threads, Base Core, Frequency 2.8GHz

0.0E+0

5.0E+2

1.0E+3

1.5E+3

2.0E+3

2.5E+3

3.0E+3

3.5E+3

4.0E+3

0

5

10

15

20

25

30

35

Base Composed Base Composed Base Composed

Thread 1 Thread 1 - Thread 4 Thread 2 - Thread 8 Thread 4

E
D

P
 (

J
.u

s
)

E
x
e

c
u

t
io

n
 T

im
e

 (
m

s
)

Thread/Core Type Configuration

b) fmm
F1.6 Exe F2 Exe F2.4 Exe F2.8 Exe
F1.6 EDP F2 EDP F2.4 EDP F2.8 EDP

Best Execution Time: 4 Threads, Composed Core

Best EDP: 4 Threads, Composed Core, Frequency 2.4GHz

0.0E+0

1.0E+2

2.0E+2

3.0E+2

4.0E+2

5.0E+2

6.0E+2

7.0E+2

0

2

4

6

8

10

12

14

16

18

Base Composed Base Composed Base Composed

Thread 1 Thread 1 - Thread 4 Thread 2 - Thread 8 Thread 4

E
D

P
 (

J
.u

s
)

E
x
e

c
u

t
io

n
 T

im
e

 (
m

s
)

Thread/Core Type Configuration

c) cholesky
F1.6 Exe F2 Exe F2.4 Exe F2.8 Exe
F1.6 EDP F2 EDP F2.4 EDP F2.8 EDP

Best Execution Time: 4 Threads, Composed Core

Best EDP: 4 Threads, Composed Core, Frequency 2.4GHz

0.0E+0

5.0E+4

1.0E+5

1.5E+5

2.0E+5

2.5E+5

3.0E+5

0

50

100

150

200

250

300

350

400

Base Composed Base Composed Base Composed

Thread 1 Thread 1 - Thread 4 Thread 2 - Thread 8 Thread 4

E
D

P
 (

J
.u

s
)

E
x
e

c
u

t
io

n
 T

im
e

 (
m

s
)

Thread/Core Type Configuration

d) radiosity
F1.6 Exe F2 Exe F2.4 Exe F2.8 Exe
F1.6 EDP F2 EDP F2.4 EDP F2.8 EDP

Best Execution Time: 4 Threads, Composed Core

Best EDP: 8 Threads, Base Core, Frequency 2.4GHz

Figure (6.5) Execution Time and EDP of a) barnes, b) fmm, c) cholesky, d) radiosity
with various Core Types, Threads, Frequencies

performance of the processor, but they also influence one another. The optimal sys-

tem and microarchitecture configuration to maximize energy-efficiency varies based

on the characteristics of the application, which all together influence the best tuning

parameters. Therefore, it is essential to investigate the interplay of these parameters

to guide the optimal mapping and scheduling decision in CCA. These observations

form the basis for developing the prediction model presented in section V.

Note that the entire set of benchmark analysis results is quite extensive. There-

fore, due to space limitations we only present the results for a limited number of

representative benchmarks shown in Figure 6.5. This figure depicts the overall per-

formance in terms of execution time (represented as a bar graph) and EDP results

106

Table (6.2) Optimal configurations with optimization target of EDP for different
architectures

Benchmark
8Base/4Comp 4Base/2Comp
Best-base Best-composed

Var. (%)
Best-base Best-composed

Var. (%)
Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread

barnes 2.4 8 2.8 4 -444.8 2.8 4 2.8 2 -475.4
fmm 2.4 8 2.4 4 2.2 2.4 4 2.8 2 -2.9
cholesky 2.4 8 2 4 28 2.4 4 2.8 2 5.8
radix 2.8 8 2.8 4 -138.7 2.8 4 2.8 2 -236.2
radiosity 2.4 8 1.6 4 -102.8 2.4 4 1.6 2 -128.1
raytrace 2.4 5 2 4 -28.9 2.4 4 2.8 2 -152
fft 2 4 2 2 36.3 2 4 2 2 36.3
lu.cont 2.4 8 2.8 4 27.2 2 4 2 2 7.8
blackscholes 2.8 4 2.4 4 83.85 2.8 4 2.4 2 77.08
bodytrack 2 3 2 3 41.23 2 3 2 2 34.1
ferret 2 6 2 4 62.4 2 4 2 2 54.3

(represented as a line graph) for four different multithreaded benchmarks across dif-

ferent core types, frequencies and number of threads. In this section, first we discuss

the impact of changing each parameter on energy-efficiency and next we perform a

joint analysis to investigate the interplay of studied parameters and their influence

on energy-efficiency in heterogeneous CCA.

Frequency Sensitivity. All benchmarks were simulated using a baseline composed

core running with only a single thread. The operating frequency is swept from 1.6

GHz to 2. 8GHz with a step of 400MHz and the voltage is changed between 0.7,

0.8, 0.9, and 1V, respectively. As can be seen in Figure 6.5, some benchmarks are

very sensitive to changing the frequency. For instance, in fmm and cholesky reducing

the frequency almost linearly reduces the overall performance. Overall, as expected,

as the frequency increases, the performance increases accordingly. The EDP results

show that the higher frequency results in lower EDP.

The next observation is that increasing the number of threads interestingly re-

duces the sensitivity to frequency. In other words, increasing the number of running

threads increases the performance gain due to parallelization. Consequently, the over-

all performance as the number of threads increases is more influenced by the speedup

gain as a result of parallelism rather than operating at higher frequency. Moreover,

107

the results show that the base core is more sensitive to frequency scaling than the

composed cores. This is also an interesting observation as the composed core has

a large pipeline, allowing it to tolerate performance cost due to alterations in cache

access latency as a result of frequency scaling. Note that changing clock frequency

changes the number of cycles it takes for the processor to communicate with the

cache.

Core Type Sensitivity. In this section, the results are reported for a baseline

configuration with a core running a single thread at the highest frequency of 2.8

GHz and operating voltage of 1V. The changing parameter is the core type, which

varies between a base core and a composed core architecture. Core type demonstrates

constant behavior with regards to EDP. As shown in Figure 6.5, there is a clear gap

between the big composed and little base cores (in Thread1 and F2.8), with composed

core having lower EDP. In these cases, the performance benefits of the composed core

outweigh the energy savings of the base core.

Thread Counts Sensitivity. Finally, each benchmark is simulated with varying

number of threads. In this step, each simulation was performed at the same frequency

of 2.8 GHz and operating voltage of 1V, when changing the number of threads from

1 to 8. As shown in Figure 6.5 (2.8GHz cases with varying threads), increasing the

thread counts leads to better performance. Moreover, there is a large gap between the

EDP values of base and composed core at lower number of threads. Particularly, we

observe that by increasing the thread counts, the corresponding gap between different

core types diminishes and makes the base core competitive to the composed core in

terms of EDP.

Joint analysis of (Core Type, Frequency, Thread Count). To understand the

interplay among various tuning parameters and find the optimum configuration for

maximizing the energy-efficiency, in this section all permutations of the parameters

108

were simulated. We test four voltage/frequency settings on two core types and exe-

cute each multithreaded benchmark with 1 to 4 or 8 threads (depending on the core

type), where each thread is assigned to a single core. These results are illustrated in

Figure 6.5. Due to space limitations, we only demonstrate the results for 1, 4 and 8

running threads. Furthermore, the best evaluated execution time and EDP for each

application is shown in each figure.

As mentioned earlier, we examine two different heterogeneous CCAs consisting

of multiple base and composed cores: 1) 8base/4comp, and 2) 4base/2comp. Table

6.2 presents the optimal set of results for both architectures. This table includes

benchmarks name, followed by the best core configuration parameters (Core, Freq.,

Thread) in terms of EDP across base and composed cores. We have also calculated

the relative EDP variation for each benchmark, which indicates the relative difference

between energy-efficiency of the best configuration parameters in base and composed

cores. We quantify variation parameter V ar = (Base − best(EDP) − Composed −

best(EDP))/Base−best(EDP))×100. The Variation Parameter (Var) indicates whether

it is justified to compose cores. For this purpose, a variation threshold is defined that

decides what type of core architecture should be selected for executing the corre-

sponding multithreaded application more energy-efficiently.

The user-defined threshold can be adjusted based on the architecture and available

resources as well as the cost of core composition. Note that composing base cores

to a big composed core is not free and comes with power as well as core utilization

overhead. The core utilization overhead is in fact due to using additional cores to

build bigger cores. When cores are composed to build a bigger core, fewer cores will

be available for incoming or co-scheduled applications. In this work, we assume a

20% variation threshold. As a result, if the variation percentage between best-base

and best-composed architectures is found to be lower than 20%, we use the base core

109

for scheduling instead of composing to avoid power as well as core utilization costs.

As can be seen from Table 6.2, for most studied applications the best running

thread count is equal to the maximum available cores. For instance, barnes per-

forms with 2.4 GHz and 2.8 GHz on base and composed cores, respectively, while

the best number of running threads on these two architectures are equal to 8 and 4,

respectively. As shown, the variation for this application has negative value in some

cases, which indicates it is more energy as well as core-utilization efficient to run the

application on base core. Therefore, given that the variation value is lower than pre-

defined threshold, rather than running the application on costly big composed core,

we schedule the multithreaded application onto cost-effective little base core. From

these observations, we conclude that while we can obtain significant performance

gains, power and core utilization costs could be drastic when running application on

big composed core. As a result, in those cases we choose the little base core as the

optimal core configuration.

In order to perform a comprehensive EDP characterization of studied architec-

tures, we classified all possible configurations (core types and number of threads) into

four classes. The first two are Fully-Base and Fully-Composed configurations that are

referred to cases in which the lowest EDP is achieved with full utilization of the base

and composed core, respectively. In other words, the optimum number of threads is

equal to the maximum number of existing base/composed cores. On the other hand,

we use Partially-Base and Partially-Composed configurations when the best number

of threads is lower than maximum available cores.

Parallel Region Analysis. As explained before, multithreaded applications are

composed of a number of parallel sub-regions, which are separated by serial regions.

Considering the application behavior, not all ROIs may have the same performance

and power requirements. To illustrate the improvements offered by composite cores

110

Table (6.3) Optimal configurations in different parallel regions of radix and cholesky
applications for EDP optimization

radix
Region Core Type Freq. #Threads
1 base 2.8 8
2 comp 2.4 8
3 base 2.8 8
4 comp 2.8 7
cholesky
Region Core Type Freq. #Threads
1 base 2.8 1
2 base 2.4 8
3 comp 2.8 8

architectures, studied multithreaded benchmarks were modified to monitor the be-

havior of each parallel region within the application. Simulation markers were placed

at different sections of the benchmarks that would be simulated as individual parallel

regions. All simulations were then run again using all permutations of the configura-

tion parameters discussed earlier, including voltage/frequency, core type, and thread

counts. Due to space limitation in our paper, we only present simulation results from

parallel regions of four benchmarks which are reported in Table 6.3 and 6.4. Each

table shows the optimal configuration in terms of EDP for each of the ROIs listed

for a given benchmark. It can be clearly seen that every ROI within the application

does not benefit from the same configuration parameters.

In order to clarify this point, here we look at an example, the radix benchmark,

in more depth. Radix benchmark was instrumented with four individual sub-regions.

As results show, all four sub-regions have different set of configuration parameters

to achieve the best EDP. The core type varies between base and composed, and

the frequency varies between 2.8GHz and 2.4GHz. Also, the thread counts changes

between 7 and 8. This example demonstrates the importance of using right tuning

111

Table (6.4) Optimal configurations in different parallel regions of fft and lu.cont
applications for EDP optimization

fft
Region Core Type Freq. #Threads
1 base 2.8 8
2 comp 2.8 8
3 comp 2.8 1
4 comp 2.4 8
5 comp 2.8 8
lu.cont
Region Core Type Freq. #Threads
1 base 2.4 8
2 comp 2.8 8
3 comp 2.4 8

parameters for best EDP, not only for the entire multithreaded application, but also

even for each parallel region within the application.

Overall, the results show the importance of concurrent optimization at the appli-

cation, system and microarchitecture levels at coarse-gained level of application or

even fine-grained level of individual parallel regions within the application to maxi-

mize the energy-efficiency. The challenge is to develop a technique that automatically

determines the best configuration for any given multithreaded applications and op-

timization goal and perform the tuning at a fine-grained level of individual parallel

region within the application. In the next section, we will describe our proposed

approach using various machine learning models.

The diversity of optimum configurations across various applications and their par-

allel ROIs demonstrates that when running a given multithreaded workload on a

heterogeneous CCA, depending on the application and energy-efficiency optimization

metric, different configuration parameters (Core Type, V/Freq., Thread) lead to the

112

best energy-efficiency. The configuration also changes at run-time for each paral-

lel region within the application. In other words, experimental results support that

there is no unique solution as the best configuration across various parallel regions

of an application. This dispersed pattern of optimum results implies the necessity

of developing a prediction method to guide scheduling decision of multithreaded ap-

plications onto heterogeneous composite cores architecture in order to improve the

energy-efficiency.

6.1.4 Predictive Modeling

Recent studies have proposed linear regression modeling to predict the power and

performance of a processor at run-time. As mentioned earlier, in this work we im-

plement different machine learning models to estimate the EDP. Table 6.5 shows five

machine learning models that we use for predicting the best processor and application

configuration to deliver the lowest EDP. These models include least square median,

linear regression, Multi-layer Perceptron (an artificial neural network model), and two

decision tree techniques namely REPTree and M5Tree. We selected these five clas-

sifiers for two reasons. First, they are from three different types of machine learning

methods; regression, neural network, and decision tree, covering a diverse range of

learning algorithms which are inclusive to model both linear and non-linear problems.

Second, the prediction model produced by these learning algorithms is deterministic

which is compatible with our numerical target variable, EDP.

All of ML classifiers were implemented using WEKA machine learning toolkit

[75]. The inputs to our models are a set of features extracted from application pro-

filing at run-time. While these microarchitectural features are accessible through our

simulator infrastructure, in a real hardware, they are also accessible through hard-

ware performance counters. These architectural information used for differentiating

113

Table (6.5) ML classifiers used for prediction

ML Classifier Learning Type
LinearReg Regression
LeastSqMed Regression
MultiLayerPercep Neural Network
M5Tree Decision Tree
REPTree Decision Tree

Table (6.6) HPCs data used for training the classifiers

Category Hardware performance counter

Memory subsystem
L1 D-cache access, L1 D-cache miss, L1 I-cache access,
L1I- cache miss, L2 cache access, L2 cache miss, I-TLB miss, D-TLB miss

Instructions Integer instruction issue, Integer floating point issue
Branch Branch instruction, Branch misprediction

workloads behavior are listed in Table 6.6. The output of our models is the optimal

EDP that corresponds to the type of core to use for running the application, the

clock frequencies of the core and thread counts. The goal is to use these models to

find the best configuration parameters for individual parallel regions within an ap-

plication and understand how these parameters should be adapted at run-time in a

heterogeneous architecture. Developing and deploying these models include a 3-step

process for supervised machine learning as follows: (i) generating training data, (ii)

developing a predictive model, (iii) using the predictor at run-time for every parallel

region of the application.

6.1.5 Training the Predictor

Figure 6.6 depicts the process of training multithreaded applications to build a ma-

chine learning classifier for EDP prediction. Training involves finding the best pro-

cessor and application configuration and extracting feature values for each training

114

workload, reducing the extracted features to the most vital performance counters,

and developing a learning model from the training data. It is important to note that

the input variables in our classifiers are performance counters extracted from different

parallel regions of application, and the output variable is the EDP for a given set of

tuning parameters.

Generating Training Data. To derive the prediction model for energy-efficiency,

we need to develop a data set to train the prediction model. We applied our ML

classifiers on extensive set of SPLASH-2 and PARSEC multithreaded benchmark

suits. The studied multithreaded applications represent diverse compute, memory

and I/O intensity behavior. We exhaustively execute each training benchmark, with

different processor and application configurations and record the configuration with

lowest EDP. We have also collected the hardware performance data from 20 parallel

sub-regions of these applications and use them to build regression, neural network

and decision tree classifiers for predicting the EDP.

As mentioned earlier, the extracted features from each of the parallel ROIs ap-

propriately represent the application behavior during these execution phases. For

each parallel region within an application, we collect twelve hardware performance

counters data listed in Table 6.6 on all possible configurations of core types, volt-

age/frequency operating points and number of threads. We applied machine learning

models on the studied benchmarks using these performance counters and profiling in-

formation for predicting energy-efficiency. In order to validate each of our classifiers,

we applied the percentage split method to divide the dataset into two sets, using 70%

(known applications) of the data to train the model and 30% (unknown applications)

to simulate and test.

Developing Predictive Models. The features together with the processor con-

figuration are supplied to each learning algorithm. The learning algorithm attempts

115

Profiling

Runs

Feature

Extraction
L

e
a
r
n

i
n

g

A
l
g
o
r
it

h
m

s

Training

Applications

Feature Values

Optimal Processor Config. Predictive

Models

Figure (6.6) Training process for machine learning predictive models

to find a correlation from the feature values to the optimal configuration and pre-

dicts the energy-efficiency that corresponds to each configuration. As described in

previous section, our predictors are based on a number of features extracted from

the hardware performance counter attributes. One of the key aspects in building an

accurate predictor is finding the right features to characterize the input data. We

started from twelve performance counters that can be collected from parallel regions

of each multithreaded application.

These features include performance counters representing pipeline front-end, pipeline

back-end, cache subsystem, and main memory behaviors and are influential in the per-

formance of standard applications. As shown in Figure 6.6, after feature extraction

we use Principle Component Analysis (PCA) and correlation analysis on our training

set to monitor the most vital micro-architecture parameters to capture application

characteristics. By applying the attribute reduction method, we determine the four

most related performance counters including L1 D-cache access, L2 cache-access, L2

cache-miss and branch misprediction. These performance counters are included in

our model as input parameters.

116

Application Behavior Analysis:

 Performance Data Extraction

ML Predictor:

Prediction Phase

-Tuning Parameters Setting (Core Type, Freq., #Thread)

- Run application using the optimal configuration that

corresponds to the predicted EDP

EDP Prediction

(Core/Thread & Operating

Frequency Configurations)

Figure (6.7) Energy-efficiency prediction and tuning parameters configuration

6.1.6 Prediction Phase

Once we build our ML predictor, we deploy it for predicting the energy-efficiency of

various configurations. Figure 6.7 provides an overview of EDP prediction process

and tuning processor and application parameters using the trained machine learning

classifiers. This prediction model predicts continuous values representing EDP as a

function of performance counter inputs and tuning parameters, which is then used to

make the scheduling decisions at run-time.

In particular, in this phase we run a multithreaded application with the most

aggressive configuration setting where all tuning parameters are set at max (maximum

thread counts, highest frequency, and for composed core). It is important to note

that this would be the fastest way to collect run-time features of an application,

since this is done for most aggressive configuration that corresponds to the highest

performance. At run-time, we extract the hardware performance counters by profiling

the application for each parallel region.

The ML classifier then takes the key performance features and configuration set-

tings as inputs, and outputs the system energy-efficiency for each configuration. The

117

configuration corresponding to the lowest EDP is then used to tune and schedule

the application. Thus, at run-time, given an unknown application, the predictor can

predict the EDP of all possible configurations based on a single run data. The con-

figuration corresponding to the lowest estimated EDP is then selected for the run.

The predictive models by observing run-time behavior of a multithreaded application

running with a specific configuration, predicts the right configuration parameters to

achieve the maximum energy-efficiency. It is important to note that each predictor

can be simply trained for other objectives such as ED2P optimization.

6.1.7 Experimental Results

In this section, we present the evaluation results for our machine learning predictors.

We compare these learning techniques in terms of EDP prediction accuracy and hard-

ware implementation cost. As mentioned in previous section, in this work we focus

on analyzing two heterogeneous CCA consisting of 8base/4comp, and 4base/2comp

cores.

In order to perform a comprehensive EDP characterization of studied architec-

tures, we classified all possible configurations (core types and number of threads)

into four classes. The first two are Fully-Base and Fully-Composed configurations are

referred to cases in which the best energy-efficiency is achieved with full utilization

of the base and composed cores, respectively. In other words, the optimum number

of threads is equal to the maximum number of existing base/composed cores. On the

other hand, we use Partially-Base and Partially-Composed configurations when the

best number of threads is lower than maximum available cores.

Optimal Configurations. Figure 6.8 and 6.9 show the distribution of the optimal

configurations for two studied composite core architectures. It demonstrates how

the distribution of optimal configurations changes across all studied parallel regions

118

(for all studied applications). In both studied architectures, Fully-Base configuration

running at a medium frequency of 2.4 GHz yields the lowest EDP for a majority of

studied cases. However, composing cores yields the lowest EDP also for a noticeable

number of cases; 37.5% in 8Base/4Comp and 12.5% in 4Base/2Comp.

From Figure 6.8, we observe that overall 62.5% of studied cases benefit from

Fully-Base configuration which yields the lowest EDP. Moreover, as shown in Figure

6.9, for all studied cases in 4Base/2Comp architecture, no Partially-Composed or

Partially-Base configurations was selected as the optimum configuration; i.e. in this

architecture for maximum energy-efficiency, all cores, either base or composed, need

to be allocated to the running multithreaded application. Also, the optimal clock

frequency found to be lower than the maximum frequency for the majority of studied

cases in both architectures (more than 87.5%). This diagram shows the need to adapt

the microarchitecture and application settings to different multithreaded applications

for energy-efficiency optimization.

Overall, the results confirm a large disparity in the optimum configuration across a

large range of tuning parameters, highlighting the importance of developing a predic-

tive method. Also, as the number of base cores in the studied architecture increases,

the importance of composing cores to make a larger core is highlighted; more than

32% of studied cases in 8Base/4Comp vs. 12.5% in 4Base/2Comp are corresponding

to composite cores.

Prediction Accuracy. To evaluate the accuracy of our prediction model, we cal-

culate the value of relative mean absolute error defined as [(estimated value-actual

value)/actual value]100. This metric indicates the relative difference between the

predicted and observed maximum EDP. Figure 6.10 shows the energy-efficiency accu-

racy comparison of the machine learning classifiers used for predicting the EDP. As

shown, M5Tree achieves close to 94.5% accuracy and outperforms all other classifiers

119

12.5%

25%

50%

12.5%

0

10

20

30

40

50

60

Partially-Comp
Fr=2

Fully-Comp
Fr=2.4

Fully-Base
Fr=2.4

Fully-Base
Fr=2.8

P
ar

el
le

l R
eg

io
n

s
(%

)

Figure (6.8) The distribution of the optimal configurations for EDP for
8Base/4Composed architecture

12.5%

75%

12.5%

0

10

20

30

40

50

60

70

80

Fully-Comp
Fr=2

Fully-Base
Fr=2.4

Fully-Base
Fr=2.8

Pa
ra

lle
l r

eg
io

n
s

(%
)

Figure (6.9) The distribution of the optimal configurations for EDP for
4Base/2Composed architecture

in predicting the energy-efficiency. This tree-based classifier generates a decision list

for regression problems using separate-and-conquer process which results in highest

EDP accuracy.

Next are Perceptron, LinearReg and LeastSqMed predictors, respectively. We im-

plemented a multi-layer perceptron neural network with three layers which is capable

of numerical predictions, since neurons are isolated and region approximations can be

adjusted independently to each other. Finally, REPTree classifier shows the lowest

120

accuracy as compared to other learning models. REPTree is another fast decision

tree learning model, which builds a decision tree using information gain and variance.

This model only sorts values for numeric attributes once and missing values are dealt

with by splitting the corresponding instances into pieces which negatively impacts the

accuracy of predictor in our EDP prediction problem as compared to other models.

Figure (6.10) Comparison of EDP prediction accuracy of ML classifiers

Hardware Implementation. In this section, we discuss the hardware implemen-

tation of the machine learning classifiers. We use Vivado HLS compiler to develop

the HDL implementation of the classifiers and estimate the area, latency and power

overhead. When it comes to choosing machine learning classifiers for hardware imple-

mentation, accuracy of any algorithm is not the only parameter for decision-making.

Area, power and latency overhead of ML classifiers are also key factors in selecting

a cost-efficient machine learning classifier. While complex algorithms such as Neural

Networks can deliver high accuracy, they will also add significant overhead in terms of

hardware implementation. Also given their complexity, they might be slow in finding

the right configuration for scheduling. We are interested in analyzing these overheads

when implementing these machine-learning algorithms. A ML algorithm with high

121

Table (6.7) Hardware implementation reports of various ML classifiers

ML Algorithm Latency (cycles@10ns) Power (W) Area (LUTs+FFs+DSPs)
LinearReg 36 0.253 3071
LeastSqMed 46 0.267 3127
MultiLayerPercep. 116 0.52 20955
M5Tree 51 0.287 11120
REPTree 9 0.241 2532

accuracy, low area, low power consumption, and low latency is the ideal choice for

EDP prediction to guide the scheduling.

The latency, power and area results for implemented machine learning algorithms

are shown in Table 6.7. As can be seen, the MultiLayerPerceptron algorithm results

in significant area and latency overhead compare to other learning methods. REPtree

decision tree is the fastest algorithm compared to others but comes with the lowest

accuracy. M5Tree, another decision tree learning predictor, is the most accurate

predictor however it comes with significant area overhead. Clearly the results show

some trade-off between accuracy, latency, and area overhead.

Figure (6.11) Accuracy/Area ratio comparison between ML predictors

122

Therefore, it is important to compare classifiers by taking these parameters into

account. The metric of EDP accuracy over area is a fair ratio to compare the studied

predictors. This metric essentially indicates which learning algorithm is the most

accurate per unit of silicon area. We have shown results of Accuracy/Area in Figure

6.11. As can be seen in this figure, REPTree, LinearReg and LeastSqMed classifiers

are performing significantly better in terms of accuracy per area compared to highly

accurate but complex MultiLayerPerceptron and M5Tree.

In addition, if delay is a constraint, REPTree, LinearReg and LeastSqMed clas-

sifiers outperform the more complex MultiLayerPerceptron and M5Tree in terms of

latency. This is mainly because REPTree model doesn’t involve in complex floating-

point operations unlike others and instead, it involves in various conditional evalu-

ations. This helps REPTree to achieve lower power consumption as well. However,

this is not the case for every tree-based classifier. M5tree which is also a tree-based

classifier with higher power consumption has floating point operations. Out of all

classifiers, MultiLayerPerceptron performs worst in terms of power consumption and

latency mostly because of complex sigmoid function calculations. Comparing based

on Accuracy/Area ratio, the results show that REPTree is outperforming all other

learning algorithms.

Concluding Remarks. Scheduling multithreaded applications on composite cores

architectures is a challenging problem, given various optimization parameters. In this

paper, we respond to this challenge by developing a scheduling and tuning solution.

The space for tuning configuration parameters in a composite core architecture is

large, and our analysis indicates that there is no unique solution for the most energy-

efficient configuration for different multithreaded applications, calling for developing

a model to predict energy-efficiency for various tuning parameters. In response, we

present a systematic approach for energy-efficiency prediction using various machine

123

learning algorithms.

We develop five machine learning-based models for estimating energy-efficiency of

multithreaded applications in composite cores architecture. Our proposed ML-based

approach, takes hardware performance counters information at run-time from a mul-

tithreaded application, and it predicts the most energy-efficient configurations based

on run-time analysis and sets the number of threads and operating frequency. It also

decides whether to compose little cores into big cores. The results show significant

EDP prediction accuracy of as high as 94% across studied applications. We also com-

pared these algorithms in terms of accuracy, latency, power and area overhead. Our

results show that although using non-linear regression or neural network models such

as M5Tree or MultiLayerPerceptron provides more accurate EDP prediction com-

pared to simple regression or decision tree-based models, they significantly increase

complexity of the design in terms of power and area overhead.

6.2 Power Conversion Efficiency-Aware Mapping

of Multithreaded Applications on HMPs

Heterogeneous multicore processors offer significant advantages over homogeneous de-

signs in terms of both performance and power by executing workloads on the most

appropriate core type. By running multithreaded applications on a heterogeneous

architecture, each thread is able to run on a core that matches required resources

more closely than a one-size-fits-all solution [37, 60]. Commercially available hetero-

geneous architectures include Intel Quick IA [124] and ARMs big.LITTLE [125]that

integrates a high performance big core with a low power little core on a single chip.

Although heterogeneous architectures take advantage of variation in the application

characteristics at run-time to improve energy-efficiency, they create unique challenges

124

in the effective mapping of threads to cores. As the core configurations in HMPs be-

come more diverse, the task of effective programming becomes more difficult. In

other words, the effectiveness of heterogeneous architectures significantly depends

on the scheduling policy and how efficiently the application is assigned to the most

appropriate processing core [37,56,62,70,101].

As mentioned previously, prior studies have mainly examined the advantages of

using single threaded applications in HMPs. However, running multithreaded appli-

cations on HMPs and choosing the ideal processor architecture to optimize energy-

efficiency is a more challenging problem, that must consider the possible number of

cores and threads, type of core micro-architecture, and the potential to combine mul-

tiple core types. In addition, prior work have ignored power conversion efficiency as

a critical optimization parameter. In fact, unlike a homogeneous architecture, in an

HMP, the maximum load on cores varies significantly depending on the core type.

For instance, in an Exynos 5, the maximum power of big A15 is five times more

than little A7. Therefore, there is a difference in power conversion efficiency on big

and little cores for the same application that is critical for scheduling. For instance,

assume the same application executed on a big core and little core dissipates 1W and

0.9 W of power, respectively. Now consider a PCE of 90% and 70% for the big and

little cores, respectively.

The execution of the application now requires 1.1 W and 1.4W of power sup-

plied to the big and little cores, respectively, which implies a change in the most

efficient core type after accounting for PCE. Since power conversion efficiency is de-

pendent on the load (core type), it is shown in this paper that it is critical to account

for PCE when making scheduling decisions. The experimental results demonstrate

that PCE directly affects the choice of the right core type (big vs. little) optimize

energy-efficiency. In this work, an energy-efficient scheduling approach is proposed

125

that accounts for the interplay between various application and micro-architectural

tuning parameters with respect to the impact of on-chip power delivery on the energy-

efficiency of the HMP executing multithreaded programs. To the best knowledge of

the authors, there has been no prior effort to concurrently fine-tune the core type,

operating voltage/frequency, and application thread counts that also considers the im-

pact of the PCE of the voltage regulators on the optimization of the energy-efficiency

in an HMP.

Previous studies on mapping applications to multicore architectures have focused

primarily on 1) homogeneous architectures, and 2) configuring individual or a sub-

group of tuning parameters at a time, such as application thread counts,voltage/frequency,

core type, and have ignored the interplay among all parameters. In addition, the re-

cent studies in [1,36] attempt to examine the interplay among tuning parameters for

an HMP but have ignored the impact of PCE of voltage regulators.

This study indicates that tuning parameters individually, while important, do

not produce an optimized configuration that achieves the best energy-efficiency on

an HMP. The best configuration for a multithreaded application is effectively found,

only when tuning parameters are jointly optimized. Exploring the impact of on-chip

voltage regulator PCE on the energy-efficiency of an HMP running multithreaded

applications is an additional main contribution of this work. The key contributions

of this work are summarized as follows [38]:

• The interplay of tuning parameters on performance, power, and energy-efficiency

is evaluated for an HMP. The specific parameters at the micro-architecture, sys-

tem and application levels that are critical to performance as well as power and

energy-efficiency and are studied in this work are core type, voltage/frequency

settings and the running thread counts.

126

• The impact of power conversion efficiency of on-chip voltage regulators on the se-

lection of tuning parameters is investigated for maximizing the energy-efficiency.

Specifically, four different settings for PCE of VRs are implemented to examine

the effect of PCE on the energy-efficiency of multithreaded applications running

on the HMP. The results indicate that the energy-efficiency of the multithreaded

applications running on an HMP significantly depends on the power conversion

efficiency of the on-chip voltage regulators. In other words, depending on the

PCE of the on-chip VRs, instead of migrating to small cores, it can be more

energy-efficient to keep the application on a big core.

• A system level optimization technique is developed that is aware of the PCE of

the on-chip VRs. Based on conducted workload characterization and analysis of

the PCE, a machine learning-based model is proposed for predicting the energy-

efficiency of various configurations of the application, system, and architecture

level parameters to guide scheduling of multithreaded applications.

6.2.1 Overview of PCE-Aware Scheduling

The primary objective of this paper is to analyze the interplay of various tuning

parameters, (core type, voltage/frequency, number of threads) for running multi-

threaded applications on heterogeneous architectures and to highlight the importance

of accounting for the PCE of on-chip voltage regulators for each core type to assist

in scheduling decisions. An overview of the three-stage PCE-aware approach for pre-

dicting the right core type and application configuration is depicted in Figure 6.12.

The machine learning-based approach begins from extracting micro-architectural data

(referred as feature extraction) and the power and performance (execution time) char-

acteristics, to characterize the multithreaded workload, prepare the dataset for PCE

127

analysis, and train the prediction model. The extracted features include the hardware

performance counter data, which represent the application behavior at run-time.

Feature

Extraction

Multithreaded

Applications Feature Values Processor Config.

(Core Type, Freq., #Threads)

PCE

Analysis

Scheduling

1

2

3

PCE-aware EDP prediction

Predictor

Power vs. Performance

Values

Figure (6.12) An overview of the PCE-aware learning-based approach

Since PCE is dependent on voltage regulator design, the architecture of the big

and little cores, and the maximum load gap between the two, in this work, no spe-

cific assumption is made regarding the PCE of the big and little cores. Instead, all

possible scenarios representing various differences between the PCE of the big and

little cores are explored. Next, a comprehensive PCE analysis is performed by imple-

menting various PCE models for both big and little cores and evaluating the impact

of power conversion efficiency on the energy-efficiency of multithreaded applications.

Furthermore, a machine learning-based predictor (that is built off-line) accordingly

takes in feature data as well as the PCE of the regulator and predicts the best system

configuration for a given application. Finally, the processors are configured and the

application is scheduled to run on the predicted configuration.

128

Table (6.8) Architectural specification

Microarch. Parameter Little Core Big Core
Dispatch Width 2 4
Window Size 32 128
Levels of Cache 2 3
L1 I-Cache/Acc. Time 32KB, 8-way/4-cyc 32KB, 4-way/2-cyc
L1 D-Cache/Acc. Time 24KB, 6-way/4-cyc 32KB, 4-way/2cyc
L2-Cache/Acc. Time 1024KB/16-way/12- cyc 256KB/8-way/8cyc
L2-Shared Cores 2 1
L3 Cache - 8MB/16-way

6.2.2 Experimental Setup and Methodology

In this section details of the experimental setup are provided. Sniper [127] version

6.1, a parallel, high speed and cycle-accurate x86 simulator for multicore systems is

used for simulation. McPAT is integrated with Sniper and is used to obtain power

consumption of the cores. The SPLASH-2 [129] and PARSEC [130] multithreaded

benchmark suites are examined through simulation. For architectural simulation, a

big.LITTLE heterogeneous architecture is modeled. For the little core architecture,

a core similar to the Atom Silvermont is modeled and the big core is configured

with resources similar to the Xeon Gainestown. The Uncore event set of Silvermont

and the Intelligent Performance Counter of Gainestown are used to collect data for

characterization and drive the scheduling algorithm. The Energy Delay Product

(EDP) is used to characterize energy-efficiency, that aims to balance performance

and power consumption.

The micro-architectural configuration of the little and big core of the described

HMP is listed in Table 6.8. The examined HMP consists of 8 little and 4 big cores. It

is important to note that for benchmark simulation, the binding (one-thread-per-core)

model is applied with threads = cores to maximize the performance of multithreaded

applications [71].

129

Table (6.9) PCE scenarios for little and big core VRs

VRs PCE Models (Little Core vs. Big Core) PCE Little PCE Big
Full Efficiency 100% 100%
Low gap 60% 80%
Medium gap 40% 80%
Large gap 20% 80%

6.2.3 Power Conversion Efficenicy Analysis

In this section, the motivation to include the voltage regulator efficiency as one of

the tuning parameters influencing the energy-efficiency of the HMP is described. For

analyzing the efficiency of on-chip voltage regulators, per-core voltage regulation is

considered as shown in Figure 6.5. In the model, each core has a dedicated OCVR,

which is a flexible state of the art VR configuration that enables the system to set

the voltage and frequency for each core individually to address core-to-core process

variation [131, 132]. In addition, since the power management unit directly controls

the OCVRs, turning them on or off, a power gating circuit is not needed. The impact

of power conversion efficiency of the on-chip VRs on energy-efficiency of multithreaded

applications is demonstrated by implementing the PCE scenarios listed in Table 6.9.

The first case listed in Table 6.9 represents Full Efficient VRs. This is the ideal

scenario in which the power conversion efficiency of the little and big cores are assumed

to be 100%. The full efficiency case is used as a baseline for comparing the other PCE

models and evaluating the impact of OCVR efficiency on the EDP. For this purpose,

three different PCE sets are assigned to each OCVR with low, medium and large

gap between the little and big core. The values are chosen more accurately than the

baseline model represent the PCE of on-chip VRs and to effectively determine the

impact of PCE variation on the energy-efficiency of HMP.

130

An example depicting the EDP of the barnes application while considering differ-

ent on-chip VR models with varying PCE is shown in Figure 6.14. The VR models

are based on the 2-phase and 4-phase dc-dc buck converter models in [131]. In order

to effectively present the impact of voltage regulator PCE on the EDP in each case, in

this section, the EDP results for one of the studied frequencies (2.8 GHz) is chosen to

examine the gap between the energy-efficiency of the two cores for different per-core

PCE values.

Off-Chip

Regulator

OCVR1 OCVR2

Power supply

Big Core
Little

Core

On-Chip Regulators

Figure (6.13) The power-supply configurations for the experimental HMP

Note that changing the number of threads interestingly affects the impact of the

PCE on the energy-efficiency. As is seen from Figure 6.14-(a) and 6.14-(b), when the

number of running threads is low (less than 3), the PCE significantly impacts the

choice of selecting the more energy-efficient core as compared to the higher number

of threads. The results shown in Figure 6.14-(a) clearly indicate there is a large gap

between the energy-efficiency of little and big core when running the application with

lower number of threads. However, that is not the case with higher thread counts.

As the number of threads increases, the difference between the EDP of the little and

big core reduces which makes the big core more competitive with the little core in

131

E
D

P

Large PCE gap (d)

Thread

Medium PCE gap (c)

E
D

P

Thread

Full Efficiency (a)
E

D
P

Thread

Low PCE gap (b)

E
D

P

Thread

E
D

P

Large PCE
gap

E
D

P

Threa
d

E
D

P

 (d)

Thread

(a)

E
D

P

Thread

(c)

(b)

Thread Thread

Figure (6.14) Energy-efficiency (in terms of EDP) of barnes for four different PCE
gaps between little and big cores: a) full efficiency, b) low, c) medium, d) large

terms of energy-efficiency.

As shown in Figure 6.14-(b), it is assumed that there is a low gap between the

PCE of the little and big cores. The assumed Little-PCE is 60% and the Big-PCE

is 80%. As can be seen, even though the gap between the EDP of the little and

big cores is relatively smaller than the baseline case, where the PCE for both core

types is 100% (Figure 6.14-a), as the number of threads is changed accordingly, the

little core still outperforms the big core in terms of EDP delivering better energy-

efficiency. Therefore, when the gap between the PCE of the little and big cores is

relatively small, similar to the case when the PCE for both core types is 100%, it

is more energy-efficient to migrate from the big core to the little core and run the

132

application to achieve a lower EDP.

The EDP results for the scenario in which the PCE gap of the little and big core is

increased to 40% (medium PCE gap) is depicted in Figure 6.14-c. As is seen, the EDP

for the little core increases and overlaps with the EDP of the big core, indicating that

the two cores are almost as energy-efficient for PCE gap of 40%. In the last scenario,

the PCE gap between the little and big core VRs is further increased. As shown, for

large PCE gap, the big core outperforms the little core in terms of EDP. Therefore,

as the PCE gap increases, the selection of the little core is no longer optimal in terms

of EDP for running multithreaded applications.

The results of PCE analysis indicates that the most energy-efficient choice varies

depending on the PCE gap between the big and little cores and the best choice changes

compared to the case when the PCE is ignored. Also, as shown in Figure 6.14, the

number of threads along with the PCE gap determines the most efficient core. It is,

therefore, important to explore the impact of the power conversion efficiency of the

on-chip voltage regulators in an HMP to determine the optimal core configuration

that achieves the optimized EDP.

6.2.4 Proposed Scheduling Framework

Joint analysis of (Core Type, Freqeuncy, Thread Counts) with respect to

various PCE models. To understand the interplay among various tuning parame-

ters and determine the optimum configuration for maximizing the energy-efficiency,

all permutations of the parameters described in section III were analyzed. Four volt-

age/frequency settings were applied on two core types, while executing 11 applications

from the SPLASH2 and PARSEC benchmark suits with thread counts of up to 4 and

8.

The interplay among the tuning parameters were comprehensively investigated

133

with respect to each selected voltage regulator PCE model. Due to space limitations,

the optimal configurations that yield the optimal EDP for two corner cases are re-

ported which are the full efficiency and large PCE gap models listed in Table 6.10.

The relative EDP variation is also calculated for each benchmark, which indicates the

relative difference between energy-efficiency for the best configuration of parameters

in the little and big cores.

The variation parameter indicates whether to run the application on the little

core or big core. For this purpose, a variation threshold is defined that decides what

type of core architecture is best suited for executing the corresponding multithreaded

application more energy-efficiently. The user-defined threshold is adjusted based on

the architecture and available resources as well as the cost of migration. Note that

migrating applications from the little core to the big core or, vice versa, comes with

power as well as delay overhead.

In this work, a conservative implementation with a delay overhead of 10K cycles

is assumed, which is much longer than the overhead to flush the pipeline and copy

the content of private cache [56,70]. Moreover, a 20% variation threshold is assumed

to select the more energy-efficient core to run the multithreaded application. As a

result, if the percentage of variation between the best-little and best-big architectures

is found to be less than 20%, we use the little core for scheduling instead of the big

core to avoid migration overhead.

An important observation from the optimal configurations highlighted in Table

6.10 is that as the gap in PCE increases, the optimal configurations corresponding

to the best EDP show to occur more on the big core. The percentage of applications

executed on each of the two core types for the four PCE scenarios is shown in Figure

6.15. As shown, for the full efficiency model, the little core has a higher probability

of being the optimal configuration. However, as the PCE gap gradually increases,

134

Table (6.10) Optimal configurations with optimization target EDP for full efficiency
PCE and large gap PCE model

Benchmark
Full Efficiency Large PCE Gap
Best-Little Best-Big

Var. (%)
Best-Little Best-Big

Var. (%)
Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread

barnes 2.4 8 2.8 4 -444.8 2.4 8 2.8 4 -36.2
fmm 2.4 8 2.4 4 2.2 2.4 8 2.4 4 75.5
cholesky 2.4 8 2 4 28 2.4 8 2 4 77
radix 2.8 8 2.8 4 -138.7 2.8 8 2.8 4 40.3
radiosity 2.4 8 1.6 4 -102.8 2.4 8 1.6 4 49.3
raytrace 2.4 5 2 4 -28.9 2.4 5 2 4 67.7
fft 2 4 2 2 36.3 2 4 2 2 79.1
lu.cont 2.4 8 2.8 4 27.2 2.4 8 2.8 4 98.7
blackscholes 2.8 4 2.4 4 83.85 2.8 4 2.4 4 195.3
bodytrack 2 3 2 3 41.23 2 3 2 3 112.6
ferret 2 6 2 6 2.4 2 6 2 6 132.6

the energy-efficient core is shifted from the little to the big core. As a result, for the

large PCE gap model, as compared to the full efficient scheme, the possibility of the

big core being the more energy-efficient than the little core increases by 45%. The

reason is due to the significant increase in the EDP of the little core as compared to

the big core when the PCE gap between the two cores increases. As shown in Figure

6.15, close to 55% of the optimal configurations indicate that the little core is more

energy-efficient.

The number of optimal configurations reduces to less than 10% as the PCE gap

increases to 60%. Therefore, considering the PCE of the OCVRs in scheduling de-

cisions of multithreaded applications on HMPs is critical. In order to perform a

comprehensive EDP characterization of the studied architectures, all possible config-

urations (core types and number of threads) are categorized into four classes. The

first two are Fully-Little and Fully-Big configurations that refer to cases in which the

lowest EDP is achieved with full utilization of either the little or big core, respectively.

In other words, the optimum number of threads is equal to the maximum number of

existing little/big cores. On the other hand, Partially-Little and Partially-Big con-

figurations are utilized when the best number of threads is lower than the maximum

available cores.

135

The diversity of optimum configurations across various applications and on-chip

voltage regulator PCE scenarios demonstrates that when running a given multi-

threaded workload on an HMP, depending on the application and the PCE of the

OCVRs, different core configuration parameters (core type, voltage/frequency, num-

ber of threads) lead to the best energy-efficiency. The simulation results indicate that

the optimal configuration varies across the applications. The dispersed pattern of op-

timum results implies that there is a necessity of developing a prediction method to

guide scheduling decisions of unknown multithreaded applications in order to improve

the EDP of an HMP with respect to a given PCE of the OCVRs.

0

20

40

60

80

100

Full Efficiency Low PCE Medium PCE Large PCE

Little Big

45% increase

Figure (6.15) Optimal core type selection for different power conversion efficiencies

6.2.5 Prediction Model for Energy-efficiency

Model selection: Recent studies have proposed ordinary least squares regression

(OLSR) modeling to estimate the power and performance of a processor at run-time.

The results of this work indicate that OLSR is not the best suited algorithm for

performance and power estimation as outliers, particularly for heterogeneous archi-

tectures, mislead the model. In fact, various applications experience different phases

136

with different behavior. In addition, superscalar processors are complex, which makes

it difficult to develop a general model for estimation of power/performance. OLSR

models are highly sensitive to the outliers and potentially produce misleading results

as even a single point of data substantially impacts the regression efficiency.

As a result, in this research, based on a comprehensive characterization of various

applications, a more robust regression algorithm is evaluated in addition to OLSR, re-

ferred as the Quantile Linear Regression (QLR) model, to predict the energy-efficiency

for various configurations of the studied HMP. The primary advantage of QLR as com-

pared to OLSR is the robustness against outliers. The QLR model is useful to more

comprehensively analyze the relationship between variables and provides a richer clas-

sification of the data, allowing for a characterization of the impact of a covariate on

the entire distribution of target variables. For the QLR model, a specific quantile

of data is set instead of the mean value. The quantile is set to 0.1, which results in

minimizing the median of the error values.

Although the use of non-linear regression or neural network models potentially

provides a more accurate estimation of the energy-efficiency of an application, the

complexity of the design is increased, with a corresponding increase in hardware

complexity. The overhead in area, power and performance of implementing a linear

regression model in hardware is minimal and shown to be easily integrated into a core

[56]. The QLR model achieves higher accuracy as compared to OLSR. A comparison

between the derived coefficients of the two different predictors using ordinary linear

regression and quantile linear regression is shown in Figure 6.16. In the figure, the

black dotted line is the slope coefficient for the QLR and the red lines are the least

squares estimate for OLSR and the corresponding confidence interval. The lower and

upper quantiles are well beyond the least squares estimate. The effects of L2 cache

access and branch miss prediction vary over quantiles, and the magnitude of the effects

137

Figure (6.16) Quantile graphs for predictors: a) L2-Access, b) Branch miss predic-
tion

at various quantiles differs considerably from the OLSR coefficient, even in terms of

the confidence intervals around each coefficient (58% for the L2-access and 30% for

the branch miss predictor). Therefore, an ordinary least squares regression is not an

optimal solution to capture the actual behavior of applications when predicting the

energy-efficiency.

QLR derivation and training: To derive the prediction model for energy-efficiency,

the development of the training data set for the prediction model is required. Train-

ing involves finding the best processor and application configuration and extracting

feature values for each training workload, reducing the extracted features to the most

vital performance counters, and developing a learning model from the training data.

Note that the input variables in the developed classifiers are extracted performance

counter information from different training applications as well as the PCE value for

each on-chip voltage regulator, while the output variable is the EDP for a given set of

tuning parameters. Therefore, a subset (less than two third) of applications from the

SPLASH2 and PARSEC multithreaded benchmark suites is considered. The studied

138

Figure (6.17) Proposed PCE-aware scheduling scheme with energy-efficiency predic-
tion

applications represent diverse compute, memory and I/O intensity behavior. For each

benchmark, twelve pieces of hardware performance counter data are collected on all

possible configurations of core types, voltage/frequency operating points, and thread

counts.

Given the twelve hardware performance counters, Principle Component Analysis

(PCA) and correlation analysis are used on the training set to monitor the critical

micro-architecture parameters and capture application characteristics. By applying

the attribute reduction method, the four most related performance counters are de-

termined which include the L1 D-cache access, L2 cache-access, L2 cache-miss and

139

branch miss prediction. Since the primary purpose of the prediction model is to

predict energy-efficiency across various application, system and micro-architectural

parameters, the primary tuning parameters in must be considered in the model as

well. Therefore, along with the identified key performance counter parameters, three

tuning parameters (core type, frequency, threads) are included as input variables to

the model to enable predicting the EDP for each configuration that results when

changing the core type, operating frequency, and/or thread counts. After identifying

the four key hardware performance parameters and considering the tuning parame-

ters, the proposed PCE-aware energy-efficiency prediction model is formulated using

quantile linear regression as follows:

QLRM − PCE = β0 + (
4∑

i=1

βi+ Pi) + β5× CT + β6× f (6.1)

where β0 is the intercept, βi denotes the corresponding coefficients of the regression

model, Pi are extracted hardware performance counters, and QLRM-PCE is the es-

timated energy-efficiency (in terms of EDP) given the PCE of the on-chip voltage

regulators. In addition, the core/thread configurations are given by CT , and f rep-

resents the frequency on the corresponding core architecture. The βi coefficients can

be interpreted as the expected change in EDP per unit change in L1 D-cache access,

L2 cache-access, L2 cache-miss, branch misprediction, core/thread and frequency set-

ting. The model predicts continuous values representing the energy delay product as

a function of performance counter inputs and tuning parameters, which are then used

to make the scheduling decisions at run-time. During run-time, given an unknown

application, the QLR model predict the EDP of all possible configurations based on a

single set of executing data. The configuration corresponding to the lowest estimated

EDP is then selected for the run.

140

Energy-Efficient PCE-aware Scheduling Algorithm: An overview of the PCE-

aware scheduling scheme using the regression-based prediction model is provided in

Figure 6.17. As illustrated, the scheduling algorithm is split between an offline step

and an online step. In offline analysis, the prediction model is trained using quantile

linear regression, as described in section V-B. For the online tuning step, a multi-

threaded application is run with the most aggressive configuration settings, where

all tuning parameters are set to maximum (maximum number of threads, highest

frequency, and the big core). Next, date from the hardware performance counters is

extracted by profiling the multithreaded application, as it is running with the maxi-

mum configuration settings. The profiling stage is used for run-time characterization

and resource utilization of the applications.

The regression classifier takes the key performance counter parameters and con-

figuration settings as inputs, and outputs the system energy-efficiency for the given

configuration and given PCE. Note that the linear weights are estimated using the

training data set. Given the input configuration parameters during run-time, the

QLRM-PCE predicts the optimal energy-efficiency. The output resulting in the opti-

mal energy-efficiency and the corresponding new configuration is then chosen as the

current operating point at run-time. The predictive model, by observing the run-

time behavior of a multithreaded application running with a specific configuration,

predicts the right configuration of parameters that includes the number of threads,

operating voltage and frequency, and core type (big or little) to achieve the maximum

energy-efficiency for a given PCE. It is important to note that the QLRM-PCE can

be trained for other objectives such as ED2P optimization.

141

Table (6.11) Average relative error

Core/Thread Configurations
Freq. Full-Little Partial-Little Full-Big Partial-Big
2.8 GHz 10.5% 10.74% 11.69% 2.03%
2.4 GHz 22.49% 21.4% 4.67% 4.87%
2.0 GHz 1.9% 3.9% 1.74% 3.1%
1.6 GHz 3.35% 2.2% 3.6% 2.61%

6.2.6 Evaluation Results

In order to evaluate the accuracy of the prediction model, the value of the rela-

tive mean absolute error (RMAE) is calculated which is defined as (|estimated −

actual|)/((actual))100%. The RMAE metric indicates the relative difference between

the predicted and observed maximum energy-efficiency. To validate the QLRM-PCE

model, we applied percentage split method to divide the dataset into two sets, us-

ing 60% (known applications) of the data to train the model and 40% (unknown

applications) to simulate and evaluate.

The average relative errors of the QLRM-PCE are listed in Table 6.11. As shown,

all possible configurations of the 16 operating points consisting of various frequencies

and core/thread configurations are characterized. As shown, the proposed predic-

tion classifier is most accurate in estimating the energy-efficiency of the Fully-Big

and Fully-Little architectures, both operating at 2 GHz. In addition, the developed

learning model achieves an average error of 6.85% across all training data samples

and possible configurations.

The proposed classifier assists the scheduling decisions of multithreaded applica-

tions on an HMP that include choosing the core type, setting the operating voltage

and frequency, and adapting the number of running threads. The performance over-

head of implementing the QLRM-PCE in hardware and calculating values at each

142

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 E
ff

ic
ie

n
cy

Oracle QLRM Elastic-Core PAS PMS

Figure (6.18) Normalized energy-efficiency of applications on various scheduling
schemes relative to Oracle scheduling

interval is negligible. The power overhead of implementing the QLRM-PCE is 5uW,

which is further reduced by gating idle units during each interval. In order to evaluate

the efficiency of the prediction model, the following scheduling schemes are studied

for comparison:

- Oracle: This model is based on the heterogeneous architecture with an ideal

energy-efficiency predictor, where all future behavior of the application as well as the

power and performance for various configurations are known in advance. Since the

Oracle scheme provides the upper bound for energy-efficiency, it is used to normalize

and compare the other schemes.

- QLRM-PCE: This scheme is based on the proposed PCE-aware quantile linear

regression model to estimate the EDP for various core sizes, frequency/voltage points,

and number of threads for a given voltage regulator PCE.

- Elastic-Core [56]: This dynamic scheme proposed recently uses a linear regression

model to predict the power and performance of single-threaded applications as a

function of core type and frequency settings. However, unlike the model in this

paper, the impact of PCE is not accounted for. In addition, although Elastic-Core

143

does not account for the number of threads, the thread counts in this paper are set to

maximum values to better evaluate the model by fairly comparing it against a recent

dynamic scheduling solution.

- Performance Aggressive Scheduling (PAS): In this scheme, all tuning parameters

are set to maximum values to achieve the maximum performance. Therefore, each

application is executed on big cores operating at 2.8 GHz and with 4 threads.

- Power Minimized Scheduling (PMS): This scheduling scheme attempts to mini-

mize power consumption. The application is running on a little core and the frequency

and number of threads are set to minimum values.

The energy-efficiency of the studied applications normalized to the Oracle model

with a fully efficient VR is shown in Figure 6.18. The QLRM-PCE on average achieves

close to 95% efficiency as compared to the Oracle model. The QLRM-PCE has

improved energy-efficiency as compared to the Elastic-Core and PAS schemes by an

average of 10% and 30% across all benchmarks, respectively. The average energy-

efficiency of different scheduling schemes across various studied PCE gap models is

shown in Figure 6.19. By increasing the PCE gap, the energy-efficiency of the Elastic-

Core, PAS, and PMS scheduling schemes diminishes. For the largest PCE gap, the

proposed QLRM-PCE outperforms a state of the art solution, the Elastic-Core, in

energy-efficiency by 60%. The results verify the efficacy of the proposed prediction

model and the effectiveness of the proposed scheduling scheme to harness the power

of an HMP for enhanced energy-efficiency.

Concluding Remarks. Emerging heterogeneous multicore architectures are com-

plex processors with various tuning optimization knobs for improving performance

and energy-efficiency. Scheduling multithreaded applications in these architectures is

a challenging problem given the various optimization parameters at the application

144

Figure (6.19) Average energy-efficiency results of different scheduling schemes with
respect to various PCE models

(number of running threads), system (operating voltage and frequency), and architec-

ture (core type- big vs. little) levels. In addition, unlike homogeneous architectures,

the efficiency of on-chip voltage regulators and the power conversion efficiency gap

between the big and little cores in these architectures are critical parameters that

must be accounted for.

The interplay among the tuning parameters and the influence each has on the

energy-efficiency, make the scheduling and tuning of the application even more chal-

lenging. In this paper, a PCE-aware scheduling and tuning solution is developed

that highlights the importance of accounting for the PCE of big and little core to

find the appropriate core type that optimizes the EDP. A predictive model is devel-

oped for estimating the energy-efficiency of multithreaded applications. Based on the

predictive model, a scheduling scheme is developed for effective mapping of multi-

threaded applications to an HMP by setting the tuning parameters to maximize the

energy-efficiency. The results indicate that the proposed scheduling scheme achieves

on average close to 95% efficiency as compared to the Oracle scheduler.

145

Chapter 7: Conclusion

Hardware performance counter registers are built-in hardware units available in mod-

ern microprocessors that are designed to count low-level micro-architectural events

during the applications’ execution. Since HPC registers are already provided on-chip

in modern CPU architectures, they are assumed as an existing resource that can

be carefully deployed to improve the applications performance, power, and security

without incurring any additional hardware overhead to the computer system. While

cyber-attacks such as malicious software are increasing in number and sophistication,

the extensive majority of these attacks are still not able to perform much malicious ac-

tivity without leaving basic hardware signatures, such as missed branch predictions,

cache misses, etc. As a result, by considering the influential role of the run-time

underlying hardware events, this research have mainly investigated the applicabil-

ity of effective machine learning techniques for designing secure and energy-efficient

computer architectures using hardware performance counter-based profiles.

To realize a highly accurate run-time malware detection for the purpose of secu-

rity enhancement, this work identified various challenges associated with prior efforts

on hardware cybersecurity in the context of run-time hardware-assisted malware de-

tection. For a large database of malware and benign applications, we found that the

detection rate and performance of HMD highly depend on the number of available

HPCs, the type of microarchitectural events to monitor, the type of ML algorithm

to classify, and whether the malware spawns as a new thread or embeds in a running

benign application. In response to these challenges, we proposed complexity-effective

machine learning-based solutions to realize run-time and specialized HMD by taking

146

advantage of the low-level features of microprocessor i.e., HPC events to capture the

application behavior.

Furthermore, to highlight the importance of deploying low-level hardware features

for power and performance optimization, in this thesis we have discussed the suitabil-

ity of proposing effective machine learning-based solutions for enhancing the energy-

efficiency of heterogeneous multicore architectures by making use of applications’

run-time hardware-based information. In particular, we showed that how machine

learning and hardware performance counter information can be effectively deployed

for energy-efficiency prediction and scheduling of multithreaded applications running

on multicore heterogeneous computer systems. In overall, the outcome of this re-

search opens a path for computer designers and architects in making appropriate and

efficient architectural decisions for implementing future computer systems and pro-

cessors, to most effectively improve the performance of machine learning algorithms

for different optimization goals such as security and energy-efficiency of computer

systems for different emerging applications.

147

Appendix A: List of Publications

[DATE] H. Sayadi, H. Makrani, S. Manoj P D, T. Mohsenin, A. Sasan, S. Rafati-

rad, and H. Homayoun, 2SMaRT: A Two-Stage Machine Learning-Based Approach

for Run-Time Hardware-Assisted Malware Detection, in Proceedings of Design, Au-

tomation Test in Europe (DATE’19), Florence, Italy, 2019.

[DAC]. S. Manoj P D, S. Amberkar, S. Bhat, H. Sayadi, S. Rafatirad, and H.

Homayoun, Adversarial Attack on Microarchitectural Based Malware Detectors, to

appear in 56th ACM/IEEE Design Automation Conference (DAC’19), Las Vegas,

Nevada, 2019.

[DAC] H. Sayadi, Y. Gao, S. Rafatirad, J. Lin, and H. Homayoun, CHASE: A

Customized Time Series Machine Learning Approach for Hardware-Based Stealthy

Malware Detection, to appear in (Work-in-Progress Sessions) 56th ACM/IEEE De-

sign Automation Conference (DAC’19), Las Vegas, Nevada, 2019.

[DATE] S. Manoj P D, H. Sayadi, H. M. Makrani, C. Nowzari, S. Rafatirad, and

H. Homayoun, Lightweight Node-level Malware Detection and Network-level Malware

Confinement in IoT Networks, in Proceedings of Design, Automation Test in Europe

(DATE’19), Florence, Italy, 2019.

[FPL] H. Makrani, F. Farahmand, H. Sayadi, S. Rafatirad, and Houman Homay-

oun Pyramid: Machine Learning Framework to Estimate the Optimal Timing and

Resource Usage of a High-Level Synthesis Design in International Conference on Field-

Programmable Logic and Applications (FPL), 2019.

[GOMACTech] M. Taram, D. M. Tullsen, A. Venkat, H. Sayadi, H. Wang, S

Manoj P D, and H. Homayoun, Fast and Efficient Deployment of Security Defenses

148

via Context Sensitive Decoding, in Proceedings of the 44th Government Microcircuit

Applications and Critical Technology Conference (GOMACTech’19), March 2019.

[ASP-DAC] H. Makrani, H. Sayadi, T. Mohsenin, S. Rafatirad, A. Sasan, and H.

Homayoun, XPPE: Cross-Platform Performance Estimation of Hardware Accelerators

Using Machine Learning, in Proceedings of 24th IEEE/ACM Asia South Pacific

Design Automation Conference (ASP-DAC’19), Tokyo, Japan, January 2019.

[DAC] H. Sayadi, N. Patel, S. Manoj P D, A. Sasan, S. Rafatirad, and H. Homay-

oun, Ensemble Learning for Effective Run-Time Hardware-Based Malware Detection:

A Comprehensive Analysis and Classification, in Proceedings of 55th ACM/IEEE De-

sign Automation Conference (DAC’18), San Francisco, California, June 2018.

[ASP-DAC] H. Sayadi, D. Pathak, I. Savidis, and H. Homayoun, Power Con-

version Efficiency-Aware Mapping of Multithreaded Applications on Heterogeneous

Architectures: A Comprehensive Parameter Tuning, in Proceedings of IEEE/ACM

23rd Asia and South Pacific Design Automation Conference (ASP-DAC’18), South

Korea, January 22-25, 2018.

[CASES] F. Brasser, L. Davi, A. Dhavlle, T. Frassetto, S. Manoj P D, S. Rafatirad,

A. Sadeghi, A. Sasan, H. Sayadi, S. Zeitouni, and H. Homayoun, Special Session:

Advances and Throwbacks in Hardware-Assisted Security, in Proceedings of IEEE

International Conference on Compilers, Architectures and Synthesis for Embedded

Systems (CASES’18), Italy, October 2018.

[TrustCom] H. Sayadi, H. Makrani, S. Manoj P D, S. Rafatirad, and H. Homay-

oun, Customized Machine Learning-Based Hardware-Assisted Malware Detection in

Embedded Devices, in Proceedings of IEEE International Conference on Trust, Se-

curity and Privacy in Computing and Communications (TrustCom’18), New York,

149

August 2018.

[CF] H. Sayadi, S. Manoj P D, A. Houmansadr, S. Rafatirad, and H. Homayoun,

Comprehensive Assessment of Hardware-Supported Malware Detection Using Gen-

eral and Ensemble Learning, in Proceedings of ACM International Conference on

Computing Frontiers (CF’18), Italy, May 2018.

[SoCC] H. M. Makrani, H. Sayadi, D. Motwani, H. Wang, S. Rafatirad, and H.

Homayoun, Energy-aware and Machine Learning-based Resource Provisioning of In-

Memory Analytics on Cloud, in Proceedings of the ACM Symposium on Cloud Com-

puting (SoCC’18), California, 2018.

[CHEST] H. Sayadi, H. Homayoun, Adversary Resilient and Complexity-Aware

Runtime Malware Detection, in Workshop in Hardware and Embedded Systems Se-

curity and Trust (CHEST’18), Fairfax, Virginia, August 2018. (Poster Presentation)

[MEMSYS] H. Makrani, H. Sayadi, S. Rafatirad, and H. Homayoun, A Compre-

hensive Memory Analysis of Data Intensive Workloads on Server Class Architecture,

in ACM International Symposium on Memory Systems (MEMSYS’18), Washington

DC, 2018.

[ASAP] H. Makrani, H. Sayadi, S. Manoj P D, and H. Homayoun, Compres-

sive Sensing on Storage Data: An Effective Solution to Alleviate I/O Bottleneck

in Data-Intensive Workloads, in Proceedings of IEEE International Conference on

Application-specific Systems, Architectures and Processors (ASAP’18), Italy, 2018.

[ICCD] H. Sayadi, N. Patel, A. Sasan, and H. Homayoun, Machine Learning-

Based Approaches for Energy-Efficiency Prediction and Scheduling in Composite

Cores Architectures, in Proceedings of IEEE International Conference on Computer

150

Design (ICCD’17), Boston, MA, November 5-8, 2017. - Runner-up for Best Pa-

per Award - Selected as top ranked paper for publishing at IEEE Transactions on

Emerging Topics in Computing

[IGSC] H. Sayadi, H. Homayoun, Scheduling of Multithreaded Applications onto

Heterogeneous Composite Cores Architectures, in Proceedings of IEEE International

Green and Sustainable Computing Conference (IGSC’17), Orlando, Florida, October

23-25, 2017.

[DAC] H. Sayadi, H. Homayoun, Characterization and Scheduling of Multithreaded

Applications on Composite Cores Architectures in (Work-in-Progress Sessions) ACM/IEEE

Design Automation Conference (DAC’17), Austin, Texas, June 2017.

[IBM-ET] H. Sayadi, H. Homayoun, Comprehensive Analysis of Hardware-Based

Malware Detectors, in IBM/IEEE CAS EDS Emerging Technology Symposium (IBM-

ET’17), Thomas J. Watson Research Centre, Yorktown Heights, NY, October 2017.

(Poster Presentation)

[DFT] H. Sayadi, H. Farbeh, A. M. Monazzah, and S. Gh. Miremadi, A Data

Recomputation Approach for Reliability Improvement of Scratchpad Memory in Em-

bedded Systems, in Proceedings of IEEE International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology System (DFT’14), pp. 228-233, Ams-

terdam, Netherlands, October 2014.

151

Bibliography

[1] H. Sayadi, N. Patel, S. M. PD, A. Sasan, S. Rafatirad, and H. Homayoun,
“Ensemble learning for effective run-time hardware-based malware detection:
A comprehensive analysis and classification,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[2] H. Sayadi, H. M. Makrani, S. M. Pudukotai Dinakarrao, T. Mohsenin, A. Sasan,
S. Rafatirad, and H. Homayoun, “2smart: A two-stage machine learning-based
approach for run-time specialized hardware-assisted malware detection,” in
2019 Design, Automation Test in Europe Conference Exhibition (DATE), March
2019, pp. 728–733.

[3] H. Sayadi, H. Farbeh, A. M. H. Monazzah, and S. G. Miremadi, “A data re-
computation approach for reliability improvement of scratchpad memory in
embedded systems,” in 2014 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2014,
pp. 228–233.

[4] A. Mosenia and N. K. Jha, “A comprehensive study of security of internet-of-
things,” IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 4,
pp. 586–602, 2016.

[5] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Smt attack: Next gen-
eration attack on obfuscated circuits with capabilities and performance beyond
the sat attacks,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 97–122, 2019.

[6] A. M. Nia, S. Sur-Kolay, A. Raghunathan, and N. K. Jha, “Physiological infor-
mation leakage: A new frontier in health information security,” IEEE Transac-
tions on Emerging Topics in Computing, vol. 4, no. 3, pp. 321–334, 2015.

[7] A. Mosenia, S. Sur-Kolay, A. Raghunathan, and N. K. Jha, “Caba: Continuous
authentication based on bioaura,” IEEE Transactions on Computers, vol. 66,
no. 5, pp. 759–772, 2016.

[8] S. M. Pudukotai Dinakarrao, H. Sayadi, H. M. Makrani, C. Nowzari, S. Rafati-
rad, and H. Homayoun, “Lightweight node-level malware detection and
network-level malware confinement in iot networks,” in 2019 Design, Automa-
tion Test in Europe Conference Exhibition (DATE), March 2019, pp. 776–781.

152

[9] F. Brasser, L. Davi, A. Dhavlle, T. Frassetto, S. M. P. Dinakarrao, S. Rafati-
rad, A. Sadeghi, A. Sasan, H. Sayadi, S. Zeitouni, and H. Homayoun, “Special
session: Advances and throwbacks in hardware-assisted security,” in 2018 Inter-
national Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), Sep. 2018, pp. 1–10.

[10] H. Sayadi, H. M. Makrani, O. Randive, S. M. PD, S. Rafatirad, and H. Homay-
oun, “Customized machine learning-based hardware-assisted malware detec-
tion in embedded devices,” in 2018 17th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE). IEEE, 2018, pp. 1685–1688.

[11] K. Zamiri Azar, H. Mardani Kamali, H. Homayoun, and A. Sasan, “Threats
on logic locking: A decade later,” in Proceedings of the 2019 on Great Lakes
Symposium on VLSI, ser. GLSVLSI ’19. New York, NY, USA: ACM, 2019,
pp. 471–476. [Online]. Available: http://doi.acm.org/10.1145/3299874.3319495

[12] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-lock: Hard
distributions of sat instances for obfuscating circuits using fully configurable
logic and routing blocks,” in Proceedings of the 56th Annual Design Automation
Conference 2019, ser. DAC ’19. New York, NY, USA: ACM, 2019, pp.
89:1–89:6. [Online]. Available: http://doi.acm.org/10.1145/3316781.3317831

[13] H. Sayadi, A. R. S. SM PD, Houmansadr, and H. Homayoun, “Comprehensive
assessment of run-time hardware-supported malware detection using general
and ensemble learning,” in ACM International Conference on Computing Fron-
tiers, CF, 2018.

[14] K. Neshatpour, M. Malik, A. Sasan, S. Rafatirad, T. Mohsenin,
H. Ghasemzadeh, and H. Homayoun, “Energy-efficient acceleration of mapre-
duce applications using fpgas,” Journal of Parallel and Distributed Computing,
vol. 119, pp. 1–17, 2018.

[15] K. Neshatpour, H. Mohammadi Makrani, A. Sasan, and H. H. Has-
san Ghasemzadeh, Setareh Rafatirad, “Design space exploration for acceleration
of machine learning applications,” FCCM, 2018.

[16] K. Neshatpour, H. M. Makrani, A. Sasan, H. Ghasemzadeh, S. Rafatirad, and
H. Homayoun, “Architectural considerations for fpga acceleration of machine
learning applications in mapreduce,” in International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS), 2018.

[17] A. Bettany and M. Halsey, What Is Malware? Berkeley, CA: Apress, 2017,
pp. 1–8. [Online]. Available: https://doi.org/10.1007/978-1-4842-2607-0 1

153

http://doi.acm.org/10.1145/3299874.3319495
http://doi.acm.org/10.1145/3316781.3317831
https://doi.org/10.1007/978-1-4842-2607-0_1

[18] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware: from a
survey towards an established taxonomy,” Journal in Computer Virology, vol. 4,
no. 3, pp. 251–266, Aug 2008.

[19] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware detection
using data mining techniques,” ACM Computing Surveys, vol. 50, no. 3, pp.
1–40, 2017. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3101309.
3073559

[20] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan,
and S. Stolfo, “On the feasibility of online malware detection with performance
counters,” in Proceedings of the 40th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’13. ACM, 2013, pp. 559–570.

[21] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev,
“Malware-aware processors: A framework for efficient online malware detec-
tion,” in 2015 IEEE 21st International Symposium on High Performance Com-
puter Architecture (HPCA), Feb 2015, pp. 651–661.

[22] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On the detection
of kernel-level rootkits using hardware performance counters,” in Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’17. New York, NY, USA: ACM, 2017, pp. 483–493.
[Online]. Available: http://doi.acm.org/10.1145/3052973.3052999

[23] X. Wang and R. Karri, “Numchecker: Detecting kernel control-flow mod-
ifying rootkits by using hardware performance counters,” in 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), May 2013, pp. 1–7.

[24] M. Kazdagli, L. Huang, V. Reddi, and M. Tiwari, “Emma: New
platform to evaluate hardware-based mobile malware analyses,” CoRR, vol.
abs/1603.03086, 2016. [Online]. Available: http://arxiv.org/abs/1603.03086

[25] A. hardware performance counters a cost effective way for integrity checking of
programs, “Are hardware performance counters a cost effective way for integrity
checking of programs,” in Proceedings of the Sixth ACM Workshop on Scalable
Trusted Computing, ser. STC ’11. ACM, 2011, pp. 71–76.

[26] N. C. Doyle, E. Matthews, G. Holland, A. Fedorova, and L. Shannon, “Per-
formance impacts and limitations of hardware memory access trace collection,”
in Design, Automation Test in Europe Conference Exhibition (DATE), 2017,
March 2017, pp. 506–511.

[27] S. M. P. Dinakarrao, S. Amberkar, S. Bhat, A. Dhavlle, H. Sayadi,
A. Sasan, H. Homayoun, and S. Rafatirad, “Adversarial attack on
microarchitectural events based malware detectors,” in Proceedings of

154

http://dl.acm.org/citation.cfm?doid=3101309.3073559
http://dl.acm.org/citation.cfm?doid=3101309.3073559
http://doi.acm.org/10.1145/3052973.3052999
http://arxiv.org/abs/1603.03086

the 56th Annual Design Automation Conference 2019, ser. DAC ’19.
New York, NY, USA: ACM, 2019, pp. 164:1–164:6. [Online]. Available:
http://doi.acm.org/10.1145/3316781.3317762

[28] M. Labs, “Infographic: Mcafee labs threats report,” December 2018.

[29] N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based malware
detectors,” in Proceedings of the 54th Annual Design Automation Conference
2017, ser. DAC ’17. ACM, 2017, pp. 25:1–25:6.

[30] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and D. Pono-
marev, “Ensemble learning for low-level hardware-supported malware detec-
tion,” in Proceedings of the 18th International Symposium on Research in At-
tacks, Intrusions, and Defenses - Volume 9404, ser. RAID 2015. Springer-
Verlag New York, Inc., 2015, pp. 3–25.

[31] M. B. Bahador, M. Abadi, and A. Tajoddin, “Hpcmalhunter: Behavioral mal-
ware detection using hardware performance counters and singular value decom-
position,” in 2014 4th International Conference on Computer and Knowledge
Engineering (ICCKE), Oct 2014, pp. 703–708.

[32] X. Wang, S. Chai, M. Isnardi, S. Lim, and R. Karri, “Hardware performance
counter-based malware identification and detection with adaptive compressive
sensing,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 13, no. 1, pp. 3:1–3:23, Mar. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2857055

[33] S. J. Stolfo, K. Wang, and W.-J. Li, “Towards stealthy malware detection,”
in Malware Detection, M. Christodorescu, S. Jha, D. Maughan, D. Song, and
C. Wang, Eds. Boston, MA: Springer US, 2007, pp. 231–249.

[34] E. M. Rudd, A. Rozsa, M. Günther, and T. E. Boult, “A survey of stealth mal-
ware attacks, mitigation measures, and steps toward autonomous open world
solutions,” IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 1145–
1172, Secondquarter 2017.

[35] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Detection of stealthy malware ac-
tivities with traffic causality and scalable triggering relation discovery,” in ACM
Asia Conference on Computer and Communications security (ASIACCS’14),
2014.

[36] H. Sayadi and H. Homayoun, “Scheduling multithreaded applications onto het-
erogeneous composite cores architecture,” in Green and Sustainable Computing
Conference (IGSC), 2017 Eighth International. IEEE, 2017, pp. 1–8.

155

http://doi.acm.org/10.1145/3316781.3317762
http://doi.acm.org/10.1145/2857055

[37] H. Sayadi, N. Patel, A. Sasan, and H. Homayoun, “Machine learning-based
approaches for energy-efficiency prediction and scheduling in composite cores
architectures,” in 2017 IEEE International Conference on Computer Design
(ICCD), Nov 2017, pp. 129–136.

[38] H. Sayadi, D. Pathak, I. Savidis, and H. Homayoun, “Power conversion
efficiency-aware mapping of multithreaded applications on heterogeneous ar-
chitectures: A comprehensive parameter tuning,” in Design Automation Con-
ference (ASP-DAC), 2018 23rd Asia and South Pacific. IEEE, 2018, pp. 70–75.

[39] M. Malik, D. M. Tullsen, and H. Homayoun, “Co-locating and concurrent
fine-tuning mapreduce applications on microservers for energy efficiency,” in
2017 IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2017, pp. 22–31.

[40] H. Sayadi, “Energy-efficiency prediction of multithreaded workloads on het-
erogeneous composite cores architectures using machine learning techniques,”
arXiv preprint arXiv:1808.01728, 2018.

[41] H. M. Makrani, H. Sayadi, T. Mohsenin, A. Sasan, H. Homayoun et al., “Xppe:
cross-platform performance estimation of hardware accelerators using machine
learning,” in Proceedings of the 24th Asia and South Pacific Design Automation
Conference. ACM, 2019, pp. 727–732.

[42] H. M. Makrani and H. Homayoun, “Memory requirements of hadoop, spark,
and mpi based big data applications on commodity server class architectures,”
in Workload Characterization (IISWC), 2017 IEEE International Symposium
on. IEEE, 2017, pp. 112–113.

[43] H. M. Makrani, S. Tabatabaei, S. Rafatirad, and H. Homayoun, “Understanding
the role of memory subsystem on performance and energy-efficiency of hadoop
applications,” in Green and Sustainable Computing Conference (IGSC), 2017
Eighth International. IEEE, 2017, pp. 1–6.

[44] H. M. Makrani and H. Homayoun, “Mena: A memory navigator for modern
hardware in a scale-out environment,” in Workload Characterization (IISWC),
2017 IEEE International Symposium on. IEEE, 2017, pp. 2–11.

[45] H. M. Makrani, H. Sayadi, S. M. Pudukotai, S. Rafatirad, and H. Homayoun,
“A comprehensive memory analysis of data intensive workloads on server class
architecture,” in ACM International Symposium on Memory Systems (MEM-
SYS), 2018.

[46] X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri, “Confirm: Detect-
ing firmware modifications in embedded systems using hardware performance
counters,” in 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), Nov 2015, pp. 544–551.

156

[47] M. Malik, K. Neshatpour, T. Mohsenin, A. Sasan, and H. Homayoun, “Big
vs little core for energy-efficient hadoop computing,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017, pp.
1480–1485.

[48] K. Neshatpour, M. Malik, A. Sasan, S. Rafatirad, and H. Homayoun, “Hardware
accelerated mappers for hadoop mapreduce streaming,” IEEE Transactions on
Multi-Scale Computing Systems, 2018.

[49] H. M. Makrani, H. Sayadi, S. Manoj, S. Raftirad, and H. Homayoun, “Compres-
sive sensing on storage data: An effective solution to alleviate i/0 bottleneck
in data-intensive workloads,” in 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP). IEEE,
2018, pp. 1–8.

[50] H. M. Makrani, H. Sayadi, D. Motwani, H. Wang, S. Rafatirad, and H. Homay-
oun, “Energy-aware and machine learning-based resource provisioning of in-
memory analytics on cloud,” in Proceedings of the ACM Symposium on Cloud
Computing. ACM, 2018, pp. 517–517.

[51] M. Malik, S. Rafatirad, and H. Homayoun, “System and architecture level char-
acterization of big data applications on big and little core server architectures,”
ACM Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS), vol. 3, no. 3, p. 14, 2018.

[52] M. Kazdagli, V. J. Reddi, and M. Tiwari, “Quantifying and improving the
efficiency of hardware-based mobile malware detectors,” in The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-49.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 37:1–37:13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3195638.3195683

[53] A. Garcia-Serrano, “Anomaly detection for malware identification using
hardware performance counters,” CoRR, vol. abs/1508.07482, 2015. [Online].
Available: http://arxiv.org/abs/1508.07482

[54] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-based
malware detection using hardware features,” in International Workshop on Re-
cent Advances in Intrusion Detection, A. Stavrou, H. Bos, and G. Portokalidis,
Eds. Springer, 2014, pp. 109–129.

[55] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and
D. Ponomarev, “Hardware-based malware detection using low-level architec-
tural features,” IEEE Transactions on Computers, vol. 65, no. 11, pp. 3332–
3344, Nov 2016.

157

http://dl.acm.org/citation.cfm?id=3195638.3195683
http://arxiv.org/abs/1508.07482

[56] M. K. Tavana, M. H. Hajkazemi, D. Pathak, I. Savidis, and H. Homay-
oun, “Elasticcore: Enabling dynamic heterogeneity with joint core and volt-
age/frequency scaling,” in 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), June 2015, pp. 1–6.

[57] M. G. Moghaddam and C. Ababei, “Dynamic energy management for
chip multi-processors under performance constraints,” Microprocessors and
Microsystems - Embedded Hardware Design, vol. 54, pp. 1–13, 2017. [Online].
Available: https://doi.org/10.1016/j.micpro.2017.08.005

[58] ——, “Dynamic energy management for chip multi-processors under
performance constraints,” Microprocessors and Microsystems - Embedded
Hardware Design, vol. 54, pp. 1–13, 2017. [Online]. Available: https:
//doi.org/10.1016/j.micpro.2017.08.005

[59] G. Liu, J. Park, and D. Marculescu, “Dynamic thread mapping for high-
performance, power-efficient heterogeneous many-core systems,” in 2013 IEEE
31st International Conference on Computer Design (ICCD), Oct 2013, pp. 54–
61.

[60] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler, “Composable lightweight processors,” in 40th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
2007), Dec 2007, pp. 381–394.

[61] J. Cong and B. Yuan, “Energy-efficient scheduling on heterogeneous multi-
core architectures,” in Proceedings of the 2012 ACM/IEEE International
Symposium on Low Power Electronics and Design, ser. ISLPED ’12.
New York, NY, USA: ACM, 2012, pp. 345–350. [Online]. Available:
http://doi.acm.org/10.1145/2333660.2333737

[62] H. Homayoun, V. Kontorinis, A. Shayan, T. Lin, and D. M. Tullsen, “Dynami-
cally heterogeneous cores through 3d resource pooling,” in IEEE International
Symposium on High-Performance Comp Architecture, Feb 2012, pp. 1–12.

[63] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion:
Accommodating software diversity in chip multiprocessors,” in Proceedings
of the 34th Annual International Symposium on Computer Architecture, ser.
ISCA ’07. New York, NY, USA: ACM, 2007, pp. 186–197. [Online]. Available:
http://doi.acm.org/10.1145/1250662.1250686

[64] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F.
Wenisch, and S. Mahlke, “Composite cores: Pushing heterogeneity into a core,”
in 2012 45th Annual IEEE/ACM International Symposium on Microarchitec-
ture, Dec 2012, pp. 317–328.

158

https://doi.org/10.1016/j.micpro.2017.08.005
https://doi.org/10.1016/j.micpro.2017.08.005
https://doi.org/10.1016/j.micpro.2017.08.005
http://doi.acm.org/10.1145/2333660.2333737
http://doi.acm.org/10.1145/1250662.1250686

[65] V. Kontorinis, M. K. Tavana, M. H. Hajkazemi, D. M. Tullsen, and H. Homay-
oun, “Enabling dynamic heterogeneity through core-on-core stacking,” in 2014
51st ACM/EDAC/IEEE Design Automation Conference (DAC), June 2014, pp.
1–6.

[66] G. Liu, J. Park, and D. Marculescu, “Procrustes 1: Power constrained per-
formance improvement using extended maximize-then-swap algorithm,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, no. 10, pp. 1664–1676, 2015.

[67] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack cap: Adaptive
dvfs and thread packing under power caps,” in 2011 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Dec 2011, pp. 175–
185.

[68] M. Becchi and P. Crowley, “Dynamic thread assignment on heterogeneous
multiprocessor architectures,” in Proceedings of the 3rd Conference on
Computing Frontiers, ser. CF ’06. New York, NY, USA: ACM, 2006, pp.
29–40. [Online]. Available: http://doi.acm.org/10.1145/1128022.1128029

[69] J. F. Martinez and E. Ipek, “Dynamic multicore resource management: A ma-
chine learning approach,” IEEE Micro, vol. 29, no. 5, pp. 8–17, Sep. 2009.

[70] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, “Scheduling
heterogeneous multi-cores through performance impact estimation (pie),” in
2012 39th Annual International Symposium on Computer Architecture (ISCA),
June 2012, pp. 213–224.

[71] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan, “Thread reinforcer: Dynami-
cally determining number of threads via os level monitoring,” in 2011 IEEE
International Symposium on Workload Characterization (IISWC), Nov 2011,
pp. 116–125.

[72] D. Spinellis, “Reliable identification of bounded-length viruses is np-complete,”
IEEE Transactions on Information Theory, vol. 49, no. 1, pp. 280–284, Jan
2003.

[73] E. Aghaei and G. Serpen, “Ensemble classifier for misuse detection using n-
gram feature vectors through operating system call traces,” Journal of Hybrid
Intelligent Systems, 2017.

[74] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–
140, 1996.

[75] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The WEKA data mining software: An update,” ACM SIGKDD explorations
newsletter, vol. 11, no. 1, pp. 10–18, Nov 2009.

159

http://doi.acm.org/10.1145/1128022.1128029

[76] M. Helsely, “Lxc: Linux container tools,” in IBM developer works technical
library, 2009.

[77] Intel, “Intel 64 and ia-32 architectures software developer manual, volume 3b:
System programming guide,” 2016.

[78] G. Serpen and E. Aghaei, “Host-based misuse intrusion detection using pca
feature extraction and knn classification algorithms,” Intelligent Data Analysis,
vol. 22, no. 5, pp. 1101–1114, 2018.

[79] C. O. S. Sorzano, J. Vargas, and A. P. Montano, “A survey of dimensionality
reduction techniques,” ArXiv e-prints, Mar. 2014.

[80] G. Yan, N. Brown, and D. Kong, “Exploring discriminatory features for au-
tomated malware classification,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA’13), K. Rieck,
P. Stewin, and J.-P. Seifert, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 41–61.

[81] K. Neshatpour, M. Malik, and H. Homayoun, “Accelerating machine learning
kernel in hadoop using fpgas,” in 2015 15th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, May 2015, pp. 1151–1154.

[82] H. M. Kamali, K. Z. Azar, and S. Hessabi, “Ducnoc: A high-throughput fpga-
based noc simulator using dual-clock lightweight router micro-architecture,”
IEEE Transactions on Computers, vol. 67, no. 2, pp. 208–221, 2017.

[83] S. Rezaei, K. Kim, and E. Bozorgzadeh, “Scalable multi-queue data transfer
scheme for fpga-based multi-accelerators,” in 2018 IEEE 36th International
Conference on Computer Design (ICCD). IEEE, 2018, pp. 374–380.

[84] S. Rezaei, C. Hernandez-Calderon, S. Mirzamohammadi, E. Bozorgzadeh,
A. Veidenbaum, A. Nicolau, and M. J. Prather, “Data-rate-aware fpga-based
acceleration framework for streaming applications,” in 2016 International Con-
ference on ReConFigurable Computing and FPGAs (ReConFig), Nov 2016, pp.
1–6.

[85] H. Mardani Kamali and A. Sasan, “Much-swift: A high-throughput multi-core
hw/sw co-design k-means clustering architecture,” in Proceedings of the 2018
on Great Lakes Symposium on VLSI, ser. GLSVLSI ’18. ACM, 2018, pp.
459–462. [Online]. Available: http://doi.acm.org/10.1145/3194554.3194648

[86] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “Lut-lock: A
novel lut-based logic obfuscation for fpga-bitstream and asic-hardware protec-
tion,” in 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE, 2018, pp. 405–410.

160

http://doi.acm.org/10.1145/3194554.3194648

[87] B. Sprunt, “The basics of performance-monitoring hardware,” IEEE Micro,
vol. 22, no. 4, pp. 64–71, Jul 2002.

[88] K. Shen and et al., “Hardware counter driven on-the-fly request signatures,” in
Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XIII. ACM,
2008, pp. 189–200.

[89] M. Kayaalp and et al., “Scrap: Architecture for signature-based protection
from code reuse attacks,” in 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), Feb 2013, pp. 258–269.

[90] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-based
malware detection system for android,” in Proceedings of the 1st ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, ser.
SPSM ’11. New York, NY, USA: ACM, 2011, pp. 15–26. [Online]. Available:
http://doi.acm.org/10.1145/2046614.2046619

[91] A. A. Elhadi, M. Aizaini Maarof, and A. Hamza Osman, “Malware detection
based on hybrid signature behaviour application programming interface call
graph,” American Journal of Applied Sciences, vol. 9, no. 3, p. 283, 2012.

[92] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee, “Bothunter:
Detecting malware infection through ids-driven dialog correlation,” in
Proceedings of 16th USENIX Security Symposium on USENIX Security
Symposium, ser. SS’07. Berkeley, CA, USA: USENIX Association, 2007, pp.
12:1–12:16. [Online]. Available: http://dl.acm.org/citation.cfm?id=1362903.
1362915

[93] R. Sekar and et al., “A fast automaton-based method for detecting anomalous
program behaviors,” in Proceedings of the 2001 IEEE Symposium on Security
and Privacy, ser. SP ’01. Washington, DC, USA: IEEE Computer Society,
2001, pp. 144–.

[94] M. Christodorescu and et al., “Mining specifications of malicious behavior,” in
Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering, ser. ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp.
5–14.

[95] A. Moser and et al., “Limits of static analysis for malware detection,” in Twenty-
Third Annual Computer Security Applications Conference (ACSAC 2007), Dec
2007, pp. 421–430.

[96] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A semantics-based
approach to malware detection,” in Proceedings of the 34th Annual ACM

161

http://doi.acm.org/10.1145/2046614.2046619
http://dl.acm.org/citation.cfm?id=1362903.1362915
http://dl.acm.org/citation.cfm?id=1362903.1362915

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’07. New York, NY, USA: ACM, 2007, pp. 377–388. [Online].
Available: http://doi.acm.org/10.1145/1190216.1190270

[97] A. S. Gazafroudi, M. Shafie-khah, E. Heydarian-Forushani, A. Hajizadeh,
A. Heidari, J. M. Corchado, and J. P. Catalão, “Two-stage stochastic model for
the price-based domestic energy management problem,” International Journal
of Electrical Power & Energy Systems, vol. 112, pp. 404–416, 2019.

[98] A. S. Gazafroudi, F. Prieto-Castrillo, T. Pinto, and J. M. Corchado, “Energy
flexibility management in power distribution systems: Decentralized approach,”
in 2018 International Conference on Smart Energy Systems and Technologies
(SEST), Sep. 2018, pp. 1–6.

[99] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “Mibench: A free, commercially representative embedded benchmark
suite,” in Proceedings of the Fourth Annual IEEE International Workshop on
Workload Characterization. WWC-4 (Cat. No.01EX538), Dec 2001, pp. 3–14.

[100] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in Proceedings of the 20th international con-
ference on machine learning (ICML-03), 2003, pp. 856–863.

[101] H. Liu and H. Motoda, Feature selection for knowledge discovery and data min-
ing. Springer Science & Business Media, 2012, vol. 454.

[102] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput.
Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1186736.1186737

[103] V. intelligence service, “Virustotal intelligence service,” in
http://www.virustotal.com/intelligence/, April 2018.

[104] J. Roberts, “virusshare.com,” in http://www.virusshare.com/, April 2018.

[105] R. Duda, P. Hart, and D. Stork, Pattern Classification. John Wiley & Sons,
2001.

[106] S. Wold and et al., “Principal component analysis,” Chemometrics and
Intelligent Laboratory Systems, vol. 2, no. 1, pp. 37 – 52, 1987,
proceedings of the Multivariate Statistical Workshop for Geologists and
Geochemists. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0169743987800849

[107] Y. Freund and R. ESchapire, “A decision-theoretic generalization of on-line
learning and an application to boosting,” Journal of Computer and System
Sciences, vol. 55, no. 1, pp. 119–139, May 2002.

162

http://doi.acm.org/10.1145/1190216.1190270
http://doi.acm.org/10.1145/1186736.1186737
http://www.sciencedirect.com/science/article/pii/0169743987800849
http://www.sciencedirect.com/science/article/pii/0169743987800849

[108] W.-J. Li, S. Stolfo, A. Stavrou, E. Androulaki, and A. D. Keromytis, “A study
of malcode-bearing documents,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment(DIMVA’07). Berlin,
Heidelberg: Springer, 2007, pp. 231–250.

[109] M. Z. Shafiq, S. A. Khayam, and M. Farooq, “Embedded malware detection
using markov n-grams,” pp. 88–107, 2008.

[110] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data mining,”
in KDD’09. ACM, 2009, pp. 947–956.

[111] J. Lin and Y. Li, “Finding structural similarity in time series data using bag-
of-patterns representation,” in SSDBM’18. Springer, 2009, pp. 461–477.

[112] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algorithm for dis-
covering time series shapelets,” in proceedings of the 2013 SIAM International
Conference on Data Mining. SIAM, 2013, pp. 668–676.

[113] P. Schäfer, “Scalable time series classification,” Data Mining and Knowledge
Discovery, vol. 30, no. 5, pp. 1273–1298, 2016.

[114] X. Li and J. Lin, “Linear time complexity time series classification with bag-
of-pattern-features,” in ICDM’17, 2017, pp. 277–286.

[115] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “Lstm fully convolutional
networks for time series classification,” IEEE Access, vol. 6, pp. 1662–1669,
2017.

[116] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series classifica-
tion using multi-channels deep convolutional neural networks,” in International
Conference on Web-Age Information Management. Springer, 2014, pp. 298–
310.

[117] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining and
Knowledge Discovery, vol. 33, no. 4, pp. 917–963, Jul 2019. [Online]. Available:
https://doi.org/10.1007/s10618-019-00619-1

[118] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with
deep neural networks: A strong baseline,” in 2017 International joint conference
on neural networks (IJCNN). IEEE, 2017, pp. 1578–1585.

[119] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 3431–3440.

163

https://doi.org/10.1007/s10618-019-00619-1

[120] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[121] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[122] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[123] D. H. Albonesi, R. Balasubramonian, S. G. Dropsbo, S. Dwarkadas, E. G.
Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semeraro,
P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. Schuster, “Dynamically
tuning processor resources with adaptive processing,” Computer, vol. 36, no. 12,
pp. 49–58, Dec 2003.

[124] N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy, D. Koufaty, P. Brett,
A. Prabhakaran, L. Zhao, N. Ijih, S. Subhaschandra, S. Grover, X. Jiang, and
R. Iyer, “Quickia: Exploring heterogeneous architectures on real prototypes,” in
IEEE International Symposium on High-Performance Comp Architecture, Feb
2012, pp. 1–8.

[125] S. Kamdar and N. Kamdar, “big. little architecture: Heterogeneous multicore
processing,” International Journal of Computer Applications, vol. 119, no. 1,
2015.

[126] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded workload
performance,” in Proceedings. 31st Annual International Symposium on Com-
puter Architecture, 2004., June 2004, pp. 64–75.

[127] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Trans. Archit. Code
Optim., vol. 11, no. 3, pp. 28:1–28:25, Aug. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2629677

[128] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Dec 2009, pp. 469–
480.

[129] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2
programs: characterization and methodological considerations,” in Proceedings
22nd Annual International Symposium on Computer Architecture, June 1995,
pp. 24–36.

164

http://doi.acm.org/10.1145/2629677

[130] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings of
the 17th International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’08. New York, NY, USA: ACM, 2008, pp. 72–81.
[Online]. Available: http://doi.acm.org/10.1145/1454115.1454128

[131] D. Pathak, M. H. Hajkazemi, M. K. Tavana, H. Homayoun, and I. Savidis, “En-
ergy efficient on-chip power delivery with run-time voltage regulator clustering,”
in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), May
2016, pp. 1210–1213.

[132] H. Asghari-Moghaddam, H. R. Ghasemi, A. A. Sinkar, I. Paul, and N. S. Kim,
“Vr-scale: Runtime dynamic phase scaling of processor voltage regulators for
improving power efficiency,” in 2016 53nd ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), June 2016, pp. 1–6.

165

http://doi.acm.org/10.1145/1454115.1454128

Biography

Hossein Sayadi has been a Ph.D. student in Department of Electrical & Computer
Engineering at George Mason University, Fairfax, VA from 2015 to 2019. He was a
member of the Accelerated, Secure, and Energy-Efficient Computing Lab (ASEEC),
working under the supervision of Dr. Houman Homayoun. Hossein’s research interests
mainly lie in Computer Architecture, Hardware & Architecture Security, Malware De-
tection, Applied Machine Learning, Embedded Systems and IoT, and Energy-Efficient
Computing. He received his Master Degree in Computer Engineering (Computer Ar-
chitecture) in 2014 from Sharif University of Technology, Tehran, Iran, where he was
a member of Dependable Systems Laboratory (DSL). Furthermore, he obtained his
Bachelor Degree in Computer Engineering (Computer Hardware) from K. N. Toosi
University of Technology, Tehran, Iran in 2012.

166

	List of Tables
	List of Figures
	Abstract
	 Introduction
	Ensemble Learning for Effective Run-Time Hardware-Based Malware Detection
	A Two-Stage Machine Learning-Based Approach for Run-Time Specialized Malware Detection
	Stealthy Malware Detection using Microarchitectural Features
	Machine Learning-Based Approaches for Energy-Efficiency Prediction in Heterogeneous Architectures

	 Background and Related Work
	Hardware Performance Counter Registers
	Machine Learning Techniques used for Malware Detection
	Performance Evaluation Metrics

	Comprehensive Analysis of State-of-the-Art
	Hardware-Based Malware Detection
	Energy-Efficient Heterogeneous Architectures

	 Ensemble Learning for Effective Run-Time Hardware-Based Malware Detection
	Ensemble Learning
	Boosting
	Bagging

	Proposed Run-Time Malware Detection
	Experimental Setup and Data Collection
	Feature Selection
	Training and Testing the Malware Detectors

	Experimental Results and Evaluation
	Detection Accuracy
	Classification Robustness
	Performance of Malware Detection
	Hardware Implementation Results

	 2SMaRT Malware Detection Approach
	Motivation
	Malware Detection using HPCs Data
	The Need for Specialized Malware Detectors and Per-class Analysis
	Impact of Number of HPCs on Malware Detection

	Proposed Malware Detection Framework
	Experimental Setup and Data Collection
	Feature Reduction
	Overview of the Proposed Two-stage HMD

	Experimental Results
	Evaluation Metrics
	Evaluation of Per-class Malware Detection
	Evaluation of Malware Detection with Limited Available HPCs

	 Stealthy Malware Detection using Low-Level HPC Features
	Background on Stealthy Malware Detection
	Embedded Malware Detection
	Time Series Classification

	Motivational Case Studies
	Challenge of Detecting Embedded Malware
	Machine Learning for Hardware-Based Embedded Malware Detection

	Proposed Embedded Malware Detection Approach
	Data Collection
	Feature Representation
	Embedded Malware Threat Models
	Embedded Malware Data Generation
	Overview of CHASE

	Experimental Results and Analysis
	Performance Evaluation Criteria
	Evaluation of Proposed Approach

	 Scheduling Challenges in Heterogeneous Architectures
	Machine Learning-based Approaches for Energy-Efficiency Prediction in CCAs
	Motivation and Overview of our Approach
	Experimental Setup and Methodology
	Characterization Results
	Predictive Modeling
	Training the Predictor
	Prediction Phase
	Experimental Results

	Power Conversion Efficiency-Aware Mapping of Multithreaded Applications on HMPs
	Overview of PCE-Aware Scheduling
	Experimental Setup and Methodology
	Power Conversion Efficenicy Analysis
	Proposed Scheduling Framework
	Prediction Model for Energy-efficiency
	Evaluation Results

	 Conclusion
	 List of Publications

	Bibliography

