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Abstract

SENSING STRATEGIES FOR OPPORTUNISTIC SPECTRUM ACCESS IN COGNI-
TIVE RADIO NETWORKS

Nazanin Rastegardoost

George Mason University, 2015

Thesis Director: Dr. Bijan Jabbari

In this thesis, we address an important issue in opportunistic spectrum sensing, dealing

with medium access strategies in decentralized cognitive radio networks. Specifically, our

focus is on MAC layer channel selection schemes for efficient discovery and allocation of

spectrum opportunities. Opportunistic Spectrum Access (OSA) is developed as a dynamic

resource allocation model to efficiently utilize the scarce resource of wireless spectrum. Par-

ticularly, low-priority Secondary Users (SUs) are allowed to share the spectrum with licensed

Primary Users (PUs) in an opportunistic non-intrusive manner, such that no interference

will be introduced to the PUs. This involves spectrum sensing, where SUs monitor the

activity of PUs to identify and further utilize the idle bands, whenever no primary activity

is detected.

Recognizing hardware restrictions and the overhead caused by central infrastructure, we

assume SUs have no prior knowledge about primary activity and channel state information.

In this uncertain environment, secondary nodes that are cognitive devices have to distribu-

tively learn the primary activity parameters at the same time as sensing the spectrum for

accessing idle bands. The goal is to maximize secondary network spectral utilization while

minimizing interference introduced to the primary. This is where exploration versus



exploitation dilemma arises in search for a balance between choosing empirically best

channel while investigating other channels for potential opportunities. Moreover, competi-

tion should also be dealt with in order to prevent collision when multiple secondary users

in the network intend to access the same channel.

In this thesis, after introducing the concept of OSA for dynamic resource allocation,

and discussing relevant existing work in the literature, we consider the problem of spectrum

sensing and arising issues in a fading environment. Collaborative spectrum sensing is then

addressed as a method to combat undesired fading effects. Afterwards, MAC layer sensing

and channel selection problem is considered. First, by modeling the problem as a multi-

armed bandit, a sub-optimal channel selection algorithm referred to as modified-myopic

strategy is proposed for the single-user scenario. Providing analysis and simulation results,

we will show efficient as well as timely performance of our method compared to other

strategies in the literature. Next, taking advantage of generalized Carrier Sense Multiple

Access-Collision Avoidance (CSMA-CA) technique, we extend our algorithm to design a

fair and low-complexity asymptotically optimal access strategy in the multi-user scenario.

Analyses and simulation results are provided to evaluate the performance in dense as well as

sparse networks. As a result, maximal network utilization, fairly distributed among users,

is achievable in high-density decentralized network.



Chapter 1: Introduction

1.1 Motivation

In the past decade, there has been a dramatic growing demand for wireless spectrum due

to the advances in wireless technology and increasing number of spectrum-hungry services

and applications such as video steaming. Studies assert that the amount of IP addresses

allocated to wireless networks will roughly be increased by a factor of 100 by 2020 [1].

However, the wireless spectrum is a limited natural resource, which according to the Fixed

Spectrum Allocation (FSA) policy that Federal Communication Commission (FCC) has

enforced, is statically allocated to the license owners. That being said, scarcity of wireless

bands is an ineluctable fact.

On the other hand, studies reveal that licensed spectrum resources are being under-

utilized [2]. In fact, even more restricting than the spectrum scarcity, is the fact that there

are so many vacant bands spread in the spectrum, , also known as spectrum holes. This

fact reveals the inefficiency of the FSA policy as well as the inevitable need to overcome the

spectrum under-utilization.

To this end, Dynamic Spectrum Access (DSA) has been introduced and approved by

FCC as a promising spectrum management policy towards reforming the wireless spectrum.

Several dynamic spectrum access strategies have been introduced, among which we can

name spectrum commons. In spectrum commons, the wireless spectrum is open for peer

users to share in a centralized or distributed fashion. IEEE 802.11 technology (WiFi) is a

very well known spectrum sharing method, where the unlicensed industrial, scientific, and

medical (ISM) radio band is open for wireless services to operate in.

Another important access model derived from DSA is Spectrum Overlay, or namely

Opportunistic Spectrum Access (OSA)[3]. In OSA, the licensed spectrum is open for a group
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of unlicensed secondary users to share with license owners, also known as primary users, in

a hierarchical non-intrusive manner. More specifically, secondary users in a given location

and a given time, identify and further exploit the local and instantaneous transmission

opportunities (spectrum holes, aka white spaces) by monitoring the activity of the primary

users. The importance of OSA appears in not constraining the transmission power of

secondary users. However, they are still confined to avoid interfering the primary users’

activity.

Opportunistic Spectrum Access, consists of three basic tasks:

1. Spectrum opportunity identification; to explore and detect idle frequency bands that

are dynamic in time and space.

2. Spectrum opportunity exploitation; to utilize the identified idle bands discovered in

previous phase. This task might take place using a scalable waveform unit, which

makes the communication possible over a given frequency and a given bandwidth.

3. Regulatory policy; to make sure secondary user is compatible with legacy system.

Cognitive Radio, inclusive of software-defined radio, is the key technology for realization

of opportunistic spectrum access. Promoted by Dr. Joseph Mitola in 1998, Cognitive

Radio is defined by FCC as a radio capable of changing its transmitter parameters based

on interaction with its environment. This interaction may involve active negotiation or

communications with other spectrum users and/or passive sensing and decision making

within the radio [4]. Further, Haykin defines Cognitive Radio in 2005 in this way [5]:

Cognitive radio is an intelligent wireless communication system that is aware of its sur-

rounding environment (i.e., outside world), and uses the methodology of understanding-by-

building to learn from the environment and adapt its internal states to statistical variations

in the incoming RF stimuli by making corresponding changes in certain operating param-

eters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time, with

two primary objectives in mind:

2



• highly reliable communications whenever and wherever needed;

• efficient utilization of the radio spectrum.

A cognitive radio network consists of two groups: the primary (licensees) network oper-

ating in a certain band, and the secondary network consisting of a group of cognitive radio

users. Both networks may be equipped with integrated infrastructure to control their activ-

ities through a base station or not. Also, the secondary users can access both the licensed

and unlicensed spectrum bands. Thus, there are three types of spectrum access available

for secondary users: cognitive radio network access– secondary users can access their own

base station, cognitive radio ad hoc access– ad hoc communication between cognitive users,

and primary network access– accessing the primary base station through licensed spectrum

[6]. Figure 1.1 shows the structure of a cognitive radio network.

In addition, cognitive radio also has to deal with challenges such as interference avoid-

ance, QoS awareness, and seamless communication. The main functionalities required for

the cognitive users to address these challenges in OSA technology may be expressed as

follows [6]:

• Spectrum sensing : monitoring activity of the primary users in the surrounding RF

bands to identify spectrum availability, i.e., to detect spectrum holes.

• Spectrum decision: allocating channels based on the availability results.

• Spectrum sharing : coordinating spectrum access among multiple cognitive users in

the network to avoid collision.

• Spectrum mobility : vacate and seamlessly switch the channel once the primary user

appears.

Cognitive radio tasks are not fully separated. Mainly, efficient opportunistic access

requires intensive interaction across physical (PHY) layer and medium access control (MAC)

layer.

3



Figure 1.1: Cognitive radio network architecture [7].

1.2 Problem Statement

Throughout this thesis we consider a secondary user, and further generalize to a secondary

network consists ofK cognitive radios, who opportunistically access to the licensed spectrum

of a primary network with N orthognal channels. The channels may be frequency bands

with certain bandwidth, or code division multiple access (CDMA) spreading codes, or a

set of orthogonal frequency division multiplexing (OFDM) sub-carriers. Nevertheless, we

assume there is no cross-talking between channels, so that primary signal in one channel will

not affect sensing results in another channel. Also, secondary transmission in one channel

will not disturb transmissions in other channels.
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Figure 1.2: LTE resource block [8].

We consider a synchronous time-slotted system for both primary and secondary net-

works. Under these terms and conditions, Long Term Evolution (LTE) system offers an

appropriate framework due to its properties resulting from resource blocks structure, i.e. be-

ing well partitioned in time and frequency as shown in figure 1.2. Also, employing OFDM in

LTE is another advantage, due to the carrier aggregation feature which makes transmission

over non-contiguous frequency bands possible [2].

There have been numerous studies about physical layer aspects of spectrum sensing,

from detection methods (energy detection, matched filtering, feature estimation, etc. [9])
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to imperfect sensing [10]. However, MAC sensing which is the subject of this thesis, and re-

sponsible for scheduling the timings and orders, and is crucial for spectrum sensing/access,

has been less discussed in the literature [11]. Essentially, prior to the actual sensing proce-

dure, channel selection problem comes into the picture. Cognitive radios cannot sense all

the channels in the spectrum and must decide which channel to attempt sensing in advance.

It is of importance to note that the channel selection strategy is independent of the detection

method. However, as the definition of cognitive radio implies, the observations and sensing

results from physical layer, like primary user activity ratio and sensing accuracy, are passed

to the MAC layer to be used in the scheduling process for access and next sensing round.

As mentioned before, cognitive users cannot sense/access all the channels at the same

time. We assume that the secondary users are able to sense/access only one channel at

a time slot. This assumption might be further extended to the case where the secondary

users are capable of sensing/accessing multiple channels simultaneously, however, it would

require multiple antennas and introduces complexity on the secondary user’s part, as well

as causing sever interference among the antennas [11].

Since cognitive users can only sense one channel in a time slot, they need to decide

which one to attempt sensing so as to find more spectrum holes and thus maximize their

spectral utilization. The fact that secondary users do not have full knowledge of the primary

activities, makes this process even more challenging. Thus, cognitive users have to perform

two tasks simultaneously:

• Sense the channels to exploit transmission opportunities,

• Explore channels to estimate their availability statistics using the sensing results.

Here stems a trade-off between exploring the availability statistics of different channels,

and exploiting the most likely transmission opportunity based on previous observations.

Moreover, in a decentralized cognitive radio network where there is a possibility that mul-

tiple secondary users select the same channel to sense/access, problem of competition also

arises. Therefore, a securing MAC protocol for scheduling access and fair allocation of

6



resources is essential to maximize the network utilization.

In this thesis, after reviewing the radio channel characteristics in chapter two, we will

first discuss the physical layer aspects of spectrum sensing and analyze the effect of multi-

path fading and shadowing, as well as collaboration in spectrum sensing in chapter three.

Next, in chapter four, we will consider the MAC layer sensing and scheduling module,

along with proposing our modified-myopic scheme for single-user case, which will further

be extended to multi-user case. Analyses as well as simulation results will be provided

to demonstrate the efficiency of our strategy compared to other schemes in the literature.

finally, in chapter five, we will conclude our work and provide future research topics.

1.3 Background and Related Work

The problem of spectrum sensing for cognitive radio has been widely studied in the literature

from different perspectives [9], [12],[13]. According to [9], spectrum sensing is one of the most

essential components of cognitive radio, based on which the quality of service of the primary

system is secured by minimizing the interference introduced to primary signal. Different

methods of detection are discussed, such as energy detection, feature detection, and blind

detection [9], [14]. Although in the presence of white Gaussian noise, the appropriate

process of signal detection is matched filtering, yet, with little knowledge about signal

structure and statistics, it seems appropriate to use a basic energy detector for determining

the presence of a signal [15]. However, due to fading channels, imperfect sensing may result

in missed detection and false alarm errors when using energy detection. Collaborative

spectrum sensing is proposed in [10] to combat the effect of shadowing and fading. Extensive

studies exist on cooperative spectrum sensing, whether distributed or centralized, discussing

different signal models, fusion rules, or performance issues such as sensing-throughput trade-

off [16–18].

MAC sensing and channel selection problem have also been studied frequently in the

literature. A very recent and complete classification for MAC protocols in cognitive radio

networks is provided in [19]. General discussion as well as broad references are given to
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answer questions such as: how to model and learn PU channels activity, or how to coordinate

sensing to target most appropriate channel sets, how to do multiple access, etc. In this thesis,

however, we will address this question: how to simultaneously learn and use channel

availability information to strike a maximum and fair network utilization?

Several studies have been attracted to the above problem in different frameworks. For

instance, a decentralized cognitive MAC protocol has been proposed for ad hoc networks

based on the theory of partially observable Markov decision process, which integrates phys-

ical layer spectrum sensing with MAC layer access design to optimize the performance

of secondary users [20]. Channel allocation to multiple users in cognitive radio network

has been formulated as a combinatorial multi-armed bandit to present a matching-learning

algorithm that maximizes the expected sum throughput, taking into account that each sec-

ondary user sees different primary behavior on a channel due to geographical dispersion

[21]. In [22], a general framework for decentralized policies with unknown reward statistics

is established using multi-armed bandit. Problem of cognitive medium access has also been

addressed in [23], where optimal as well as low-complexity protocols are proposed based

on the result of UCB algorithm for multi-armed bandit problem [24], to strike a balance

between exploration and exploitation in competitive environments. Considering the explo-

ration/exploitation dilemma, and the simplicity of myopic sensing strategy [25], we designed

a sub-optimal access strategy for single-user scenario without prior information about pri-

mary activity in [26]. Extension of [26] to an ad hoc network with multiple secondary users

is given in [27].
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Chapter 2: Radio Channel Overview

2.1 Introduction

Reliable high-speed communication is a challenging task in wireless radio environment. In

addition to noise, interference, and large power losses, randomness is also an impediment

in the wireless channel. In fact, as a result of user mobility and environment dynamics,

wireless channel is unpredictably varying over time. In general, the effects of a typical

wireless channel are categorized into two types based on the received power variation over

distance: large-scale effects and small-scale effects [28]. Large-scale effects include pathloss

and shadowing, whereas small-scale effect is known as multipath fading. The large as well

as small-scale effects of wireless channel on the signal power are shown in figure 2.1. In the

following sections we review and model these wireless channel characteristics.

2.2 Large-scale Effects

Pathloss is caused by power dissipation in the radiated signal over the transmit-receive

distance, which happens over long distances (100-1000 m). Shadowing, on the other hand,

is caused by the obstacles in the propagation path that attenuate signal power through

absorption, reflection, scattering, and diffraction, which result in power variation on the

order of the obstacle size [28]. This is why pathloss and shadowing are referred to as

large-scale propagation effects.

2.2.1 Pathloss

Consider signal st to be transmitted with power Pt in the wireless channel. The major dis-

sipation that the received signal sr faces is caused by pathloss over long distances. Pathloss

9



Figure 2.1: Effects of radio channel on the signal power: pathloss, shadowing, and multipath
fading versus distance [28].

LP relates the received signal power Pr to the transmit signal power Pt in the following

way:

Pr = Pt
GrGt
LP

(2.1)

where Gt and Gr are transmit and receive antenna gains, respectively. The received

signal to noise ratio (SNR) then equals to:

SNR =
Pr
PN

=
Pt.Gt.Gr
N0.B.LP

(2.2)

where N0 is the noise power spectral density, and B is the bandwidth. Assuming unity

antenna gains, the SNR can be found as follows:

SNR =
Pt

σ2
NLP

(2.3)

where σ2
N = N0B is the AWGN noise variance.
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Pathloss LP is the deterministic component of power loss that signal faces, and may be

modeled in different ways. The most common and simplest pathloss model is the free-space

model. Assuming the signal is transmitted through free space to a receiver at distance

d, without any obstacles in the space, it will propagate along a straight line, known as

line-of-sight (LOS). In the free-space model, pathloss is given by Friis’s formula:

LP =

(
4πd

λc

)2

=

(
4πfcd

c

)2
(2.4)

where λc is the signal wavelength, fc is the carrier frequency, and c is the speed of light

in free space. As equation (2.4) implies, pathloss increases proportional to the squared of

distance d and frequency fc, which means we have even more power loss in high frequencies.

The two-ray channel model is a more realistic model, where in addition to the LOS path,

a reflected path is also considered in free space propagation. In this model, the two received

signals along the two paths will add constructively or destructively, and the pathloss will

be found as follows:

LP =
1

4

(
4πfcd

c

)2

 1

sin

(
2πfchbhm

cd

)


2

≈
(

d2

hbhm

)2

,

(2.5)

approximation valid for d� hb, hm, where hb and hm are transmit and receive antenna

heights, respectively. As implied in equation (2.5), pathloss is proportional to d4 in typical

urban areas. Note that the received power falls dramatically for values of d at which the
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sine function equals zero, i.e.

2πfchbhm
cd

= nπ

⇒d =
2hbhm
nλc

.

(2.6)

for integer values of n.

The path-gain (inverse of pathloss) in dB is depicted in figure 2.2 for a two-ray as

well as four-ray model, where in addition to the ground, a wall (vertical reflector) is also

considered in the propagation environment. For this simulation, the transmitter and receiver

antenna heights are respectively considered 30m and 2m, the carrier frequency fc is assumed

900MHz, and thus, the signal wavelength is λc ' 0.33cm. The distances at which nulls

happen are visible in this figure, implying the large-scale effect of pathloss.

There are also several empirical models for pathloss, one of which is Okumura-Hata

model given as follows:

LP (dB) = A+B log10(d) (2.7)

where for urban environments, we have

A =69.55 + 26.16 log10(fc)− 13.82 log10(hb)− a(hm)

B =44.9− 6.55 log10(hb)

a(hb) =(1.1 log10(fc)− 0.7)hm − (1.56 log10(fc)− 0.8).

(2.8)

However, often a simpler pathloss model that emphasizes the dependence on distance

suffices:
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Figure 2.2: Path-gain vs. distance for two-ray as well as four-ray model (with a vertical
reflector in addition to the ground) at frequency fc = 900MHz.

LP = K

(
d

d0

)γ
(2.9)

or equivalently in dB:

LP (dB) = 10 log10(K) + 10γ log10(
d

d0
). (2.10)

where frequency dependence, antenna gains, and geometry are absorbed in K, d0 is a

reference distance and the model is valid for d > d0, and γ is the pathloss exponent, usually

between 3 and 5.
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2.2.2 Shadowing

The pathloss models described in the previous section, are deterministic models depending

on the distance, frequency, and environment. However, shadowing or shadow fading is the

random component of pathloss which describes random fluctuations due to obstructions.

Therefore, pathloss becomes a random variable ΨdB, with mean equal to LP (dB). The

commonly used model is log-normal shadowing, according to which ΨdB in logarithmic scale

is modeled as a Gaussian random variable with mean LP (dB) and standard deviation σΨ,dB,

which describes variation around deterministic part of pathloss, LP (dB), with common values

4dB-10dB.

2.3 Small-scale Effects

In spite of pathloss and shadowing effects which cause signal power variations over relatively

long distances, wireless channel also introduces variations over very short distances, on the

order of the signal wavelength, referred to as small-scale propagation effects, visible in

figure 2.1. Small-scale effects are caused by constructive and destructive addition of signals

received from multiple paths in the propagation environment, known as multipath fading,

as well as time-varying nature of channel.

2.3.1 Multipath Fading

Multiple replicas of the signal, with different delays, phase shifts, and attenuations are

received from different paths. Thus, the baseband equivalent of multipath channel impulse

response may be found as follows:

h(t) =

K∑
k=1

ake
jφke−j2πfcτkδ(t− τk) (2.11)

where ak is the path attenuation, τk is the path delay, and φk is the phase shift along

path k caused by delay τk. From equation (2.11), channel frequency response may be given
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as follows:

H(f) =
K∑
k=1

ake
jφke−j2πfcτke−j2πfτk

=

K∑
k=1

ake
jφke−j2π(fc−f)τk

(2.12)

Therefor, for any frequency f , the frequency response is a sum of complex numbers.

When these terms add destructively, the frequency response is very small or even zero at

that frequency. These nulls in the channel’s frequency response are typical for wireless

communications and are referred to as frequency-selective fading.

In general, multipath leads to signal distortion, and is equivalent to undesired filtering.

It is especially bad for wideband signals, where signal bandwidth, BW , is relatively larger

than the channel coherence bandwidth, Bc. Coherence bandwidth of a multipath channel

is the statistical measurement of the range of frequencies over which the channel frequency

response can be considered approximately constant, or in other words, two frequencies of

a signal are likely to experience comparable amplitude fading. The inverse of coherence

bandwidth is known as time delay spread, Td '
1

Bc
, which is defined as the time delay

between the arrival of the first received signal component (LOS) and the last received

signal component associated with a single transmitted pulse, and is typically about a few

µsec in urban environments. A wideband signal in time domain, has duration Ts '
1

BW

relatively short.

However, for narrowband signals where BW � Bc or equivalently Ts � Td, different

frequency components do not experience much variations in the frequency response of the

channel. In fact, frequency components of a narrowband signal are likely to be filtered the

same way, so the received signal looks like the transmitted signal, and is not distorted. This

is known as flat fading which is simpler to deal with in communications systems.
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2.3.2 Time-variability

Beyond mutipath fading, a second characteristic of wireless communication channels is

their time-variability, which is mainly due to users mobility. In particular, as a mobile

user changes its position by
−→
∆d, the length of k-th path increases by

−→
∆d cos(ψk), where

ψk denotes the angle between the direction of the mobile user and the k-th incoming ray.

Consequently, characteristics of each propagation path changes correspondingly.

The change in path gain ak which decays inversely proportional to the square of distance,

ak ∼ d−2
k , is generally small enough to be negligible. However, the change in delay τk which

is equal to |
−→
∆d|/c, is not negligible, since it gets multiplied by the carrier frequency, fc, to

produce phase shifts. Consequently, the phase change arising from the movement is equal

to:

∆φk =− 2πfc/c|
−→
∆d| cos(ψk)

=− 2π|
−→
∆d|/λc cos(ψk).

(2.13)

These phase changes are significant and lead to changes in the channel properties over

short time scales, known as fast fading. If mobile is moving with constant velocity v, then

we have |
−→
∆d| = vt. Consequently, the phase change for the k-th path according to equation

(2.13) becomes

∆φk(t) =− 2πv/λc cos(ψk)t

=− 2πv/c.fc cos(ψk)t.

(2.14)

We can see that due to mobility, the phase becomes a linear function of time t. Hence,
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Figure 2.3: An example of time-varying impulse response of wireless channel [29]

along this path, the signal experiences a frequency shift fd,k = v/c.fc cos(ψk). This fre-

quency shift is called Doppler shift. Each path experiences a different Doppler shift, all of

which together create a Doppler Spectrum. Maximum Doppler shift is denoted by fd.

The time over which the channel remains approximately constant is called the coherence

time of the channel Tc, which is approximately equal to the inverse of maximum Doppler

shift, Tc '
1

fd
. If the signal duration Ts is relatively smaller than the coherence time, i.e.

Ts � Tc, or equivalently, BW � fd, the channel may be considered constant and is said to

be slow-fading, which is of more interest in communications systems.

2.4 Statistical Characterization of Channel

A statistical model that captures the important features of the wireless channel, i.e. multi-

path and time-varying nature of the channel, is desirable. The time-varying descriptions of

channel are functions of two decoupled parameters: time t that indicates when the channel

was observed, and frequency f or delay τ that reflects the time since the input was applied.

The time-varying impulse response of a wireless channel is denoted by h(t, τ) which is a

complex value, as shown in figure 2.3 received signal is found by r(t) =
∫
h(t, τ)s(t− τ)dτ .
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The power-delay profile is defined as the average power in the impulse response over delay

τ , which can be found as follows:

Ψh(τ) =
1

K + 1

K∑
k=0

|h(tk, τ)|2. (2.15)

The power-delay profile given in equation (2.15) captures both time varying and statis-

tics of multipath effects of the channel. The underlying physical model assumes a large

number of propagation paths associated with delay τ . Therefore, according to the central

limit theorem, h(t, τ) at a given delay τ is modeled as a complex Gaussian random variable.

If the LOS ray is present, then the mean is zero, otherwise the mean is non-zero. Hence,

the phase of the channel gain is uniformly distributed, and the magnitude of the channel

gain, |h(t, τ)|, has a Rayleigh distribution for zero-mean case, and Ricean distribution for

non-zero-mean case. In the former case, the power-delay profile, which is proportional to

the square of channel magnitude |h|2, is exponentially distributed. A channel with this

specifications is called Rayleigh fading channel

The RMS delay spread of the channel, as defined previously by Td '
1

Bc
, may also be

found exactly using the power-delay profile as follows:

T 2
d =

∫ ∞
0

Ψ
(n)
h (τ)τ2dτ −

(∫ ∞
0

Ψ
(n)
h (τ)τdτ

)2

(2.16)

where

Ψ
(n)
h (τ) = Ψh(τ)

/∫ ∞
0

Ψh(τ)dτ. (2.17)

In general, for simpler implementation purposes, narrowband signals are used so as

to avoid frequency-selective fading and intersymbol interference. For wideband commu-

nications systems, different methods of diversity are employed to overcome fading, which
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introduce overheads such as channel estimation and equalization to the devices. Also, in

mobile communications systems, fast-fading models are not of interest, since the channel

impulse response varies over the transmission time. As a matter of fact, for flat-fading and

slow-fading communications, a signal with duration Ts and bandwidth BW is desirable such

that Td � Ts � Tc, or equivalently in the frequency domain, fd � BW � Bc, as in OFDM

systems.

2.5 Conclusion

In this chapter, an extensive overview of the wireless propagation environment was provided.

Channel characteristics were studied, and statistical models were addressed as well. The

concepts of pathloss, shadowing, and Rayleigh fading were thoroughly investigated, and

required conditions were given for flat and slow fading communications. These assumptions

hold throughout what follows in this thesis.

19



Chapter 3: Spectrum Sensing

3.1 Introduction

Due to the growing demand for spectrum and high data rate communications in wireless

services and applications, spectrum scarcity is becoming an inevitable issue. Although

it truly prevents the interference among users, but studies reveals the inefficiency of the

current static spectrum access policy. Cognitive radio technology, as a potential platform

to implement the Dynamic Spectrum Access (DSA), has captured the interest of researchers

in recent years. In this technology, intelligent radios are capable of sensing the spectrum,

that is monitoring the activity of primary users to identify and further utilize idle bands-

also known as white spaces- when no primary signal is detected.

Two major concerns in cognitive radio are first identification of white spaces, and next,

efficiently using these resources. Identification can be done whether by negotiated or by

opportunistic approach [30]. In the former, an inter medium channel provides the signaling

between primary and secondary users, which requires direct interaction among them, and

thus results in extensive overhead for terminals. Here we focus on opportunistic spectrum

access, where secondary nodes directly sense the spectrum. Spectrum sensing can also

be carried out using a dedicated sensor network, however it would require extra effort for

handling and maintenance, which is out of the interest of this thesis.

It is very important in direct spectrum sensing, which is the subject of opportunistic

spectrum access, that the secondary activities do not disturb the high-priority primary traf-

fic. In other words, no serious interference may occur while secondaries are coexisting with

the primary users.
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Figure 3.1: Hidden terminal problem [7].

Evidently, spectrum sensing is the first and most essential step for the realization of

cognitive radio technology. For implementing sensing module, energy detector appears to be

the common and feasible choice. In fact, matched filter followed by a threshold comparator

is the optimal detector when the structure of primary signal is known and in the presence

of Gaussian noise [10]. However, this type of coherent detector requires synchronization,

which results in extra complexity in secondary terminals. Moreover, known structure of

primary signal might not always be the case. Therefor, a general-purpose energy detector

is more desirable.

Nevertheless, the performance of energy detector is deeply affected for hidden terminal

nodes, as depicted in figure 3.1. In particular, when secondary users experience signal

attenuation due to path loss, it will no longer be easy for them to distinguish between a

white space and a deep fade. In addition, multipath fading and shadowing also introduce

randomness to the signal which makes detection problem even harder. This may result in

harmful interference to the primary user on one extreme, or low utilization on the other

extreme.
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Figure 3.2: Block diagram of an energy detector.

Indeed, while some secondary nodes may be suffering from deep fade, some others

may be receiving strong primary signal, and thus have a better detection. Here arises

the idea of collaboration among secondary users towards detecting the primary signal.

In fact, a group of secondary users cooperate with each other by sharing their sensing

information, so as to combat the effect of channel loss and randomness in the decision

process. Collaborative spectrum sensing helps reducing the uncertainty of secondary users

in detecting the primary signal. This is similar to the approach applied in Wireless Regional

Area Network (WRAN) IEEE 802.22 where all Customer Premises Equipments (CPEs)

perform a fast sensing algorithm using energy detector and then all the results are gathered

at the 802.22 Base Station (BS) which makes the final decision [30].

In this chapter we will discuss physical-layer aspects of spectrum sensing and collabora-

tion towards detection and identification of idle bands. We will analyze the performance of

spectrum sensing using energy detector in fading environments and will further investigate

the result of collaboration. Comparison will be provided between local and collaborative

sensing. Effect of the number of collaborating users as well will be discussed.

3.2 System Model

Consider an ad hoc cognitive radio network consisted of n secondary users, looking for

opportunistic access to the spectrum bands of a primary system. We assume all SUs are

using energy detector with common parameters as shown in figure 3.2. The input signal

x(t) is first shaped using a bandpass filter to specify the bandwidth W , next, the output is

squared to measure the signal power, followed by an integrator to determine the energy of

the received signal during the observation interval T . Finally, the output of the integrator
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Y , is passed through a threshold device to be compared with the threshold λ, in order to

decide whether the signal is present or not.

Basically, the received signal at the input of energy detector can be written as follows:

x(t) =

 n(t) H0

hs(t) + n(t) H1

(3.1)

where s(t) is the primary signal, n(t) is additive white Gaussian noise (AWGN), and

h is the channel amplitude gain. Essentially, our mission is to decide between the two

hypotheses H0 and H1. H0 denotes the absence of PU signal in the target channel, and

thus an idle band and transmission opportunity for SU, whereas H1 indicates the presence

of primary signal in the band.

Our decision statistic, Y , is the output of the integrator, representing the signal energy

within bandwidth W and during the time interval T . Let m = TW and suppose it is an

integer value for simplicity. It can be shown that Y has a chi-square distribution as follows

[10]:

Y ∼

 χ2
2m H0

χ2
2m(2γ) H1

(3.2)

where γ is the signal to noise ratio (SNR) of the received signal, and χ2
2m and χ2

2m(2γ)

are central and non-central chi-square distribution, respectively, each with 2m degrees of

freedom, and the latter with a non-centrality parameter of 2γ.

In order to make the final decision, Y is compared to threshold λ, and the detection

result is given as follows:

Ĥ =

 H0 Y < λ

H1 Y ≥ λ
(3.3)
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Assuming a static channel without any multipath or shadowing effect, the value h and

thus, SNR γ will be deterministic. We define two probabilities to evaluate the performance of

a detector; probability of detection and probability of false alarm. The higher the probability

of detection, the better the primary users are protected. However, from secondary users

perspective, the lower the probability of false alarm, the more chances the channel can be

reused when it is idle, and therefore, the higher the achievable throughput for the secondary

network [18]. In the subsequent sections we will analyze and evaluate the performance of

secondary users both in local and collaborative environments.

3.3 Local Spectrum Sensing

Consider a single SU trying to identify an idle band using the energy detector discussed

above. The probability that secondary user detects the primary signal given that PU is

present, is called probability of detection, which in a non-fading environment, is given as

follows [10]:

Pd = Pr{Y > λ|H1} = Qm(
√

2γ,
√
λ) (3.4)

where Qm(·, ·) is the generalized Marcum Q-function given as follows:

Qm(a, b) =

∫ ∞
b

xm

am−1
e
−
x2 + a2

2 Im−1(ax)dx. (3.5)

In equation (3.5) a and b are non-negative real numbers, and m is a positive integer.

Also, Im−1(·) is the modified Bessel function of the first kind and of order m− 1.

Probability of missed detection is then defined as the probability that the PU is present,

but SU fails to detect it, as given by

Pm = 1− Pd = Pr{Y < λ|H1} (3.6)
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False alarm is defined as the probability that SU detects primary signal while there is

no PU present in the band. This happens when the threshold is low enough for noise to

be mistaken as primary signal. In a non-fading environment, probability of false alarm is

given as follows [10]:

Pf = Pr{Y > λ|H0} = Γ(λ/2,m) (3.7)

where Γ(·, ·) is the upper incomplete Gamma function given by

Γ(x,m) =

∫∞
x e−ttm−1dt

Γ(m)
(3.8)

and Γ(m) is the complete Gamma function as follows:

Γ(m) =

∫ ∞
0

e−ttm−1dt. (3.9)

Our performance measures are the probabilities of false alarm and missed detection

which have fundamental trade-off, which is controllable through threshold λ and sensing

duration. If we are interested in reducing the probability of missed detection so as to

minimize the interference introduced to the primary signal present in the band, we need to

increase the sensitivity of the detector by lowering the threshold λ. On the other hand, in

order to decrease probability of false alarm, which results in higher utilization, the threshold

needs to be high enough for noise not to be mistaken by primary signal.

This problem is known as the sensing-throughput trade-off, which has been widely ad-

dressed in the literature. In [18] the problem of designing sensing duration is studied to

maximize the achievable secondary network throughput, under the constraint that the pri-

mary user is sufficiently protected.

Now consider channel randomness and fading characteristics. In this case, h and conse-

quently γ are randomly varying. Under this circumstances, since Pd is a function of SNR γ,
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it needs to be integrated over all possible values, as follows. However, Pf will not change.

Pd =

∫
Qm(
√

2x,
√
λ)fγ(x)dx (3.10)

where fγ(x) is the probability density function of SNR under fading.

In the following we will study the performance of the system under multipath fading

and shadowing channels.

3.3.1 Rayleigh Fading Channel

Consider a flat Rayleigh slow fading model, where the signal duration is relatively shorter

than the coherence time. As discussed in the previous chapter, due to multipath effect

in a wireless environment, channel gain h is normally distributed. Evidently, |h| and |h|2

can be shown to have Rayleigh and exponential distributions, respectively. A channel with

these characteristics is known as Rayleigh fading channel. In this case, the received SNR,

γ =
P |h|2

σ2
, is also exponentially distributed with mean γ̄, where P is the primary transmit

power, and σ2 is the AWGN noise variance, and the probability density function of SNR is

given as follows:

fγ(x) =
1

γ̄
e−x/γ̄ . (3.11)

Hence, we can derive the following relationship by substituting in equation (3.10) [10]:

Pd = e−λ/2
m−2∑
k=0

1

k!

(
λ

2

)k
+

(
1 + γ̄

γ̄

)m−1

×

(
e−λ/2(1+γ̄) − e−λ/2

m−2∑
k=0

1

k!

(
λγ̄

2(1 + γ̄)

)k)
.

(3.12)

Simulation result of local opportunistic spectrum access using energy detector with
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Figure 3.3: Complementary receiver operating characteristic (ROC) in Rayleigh fading
(γ̄ = 10dB) and AWGN channels using energy detector withm = TW = 5 in local detection.

m = TW = 5 is depicted in figure 3.3, in AWGN as well as Rayleigh fading channels with

average received SNR γ̄ = 10dB.

Clearly, Rayleigh fading degrades the performance of energy detector by introducing

randomness, and gives rise to the probabilities of missed detection and false alarm. It can

be observed in figure 3.3 that for a given Pm, i.e. a certain level of PU protection, Pf

is increased, which means less spectral utilization compared to the AWGN channel. For

instance, with Pm = 0.01, it requires Pf to go from 0.35 in AWGN to 0.9 in Rayleigh fading,

which is a significant utility loss.

3.3.2 Log-Normal Shadowing Channel

The signal in wireless environment may also experience large scale shadowing, which in fact

consists of distance dependent path-loss with random variations due to obstacles. Typically,

log-normal shadowing model is used, where the received power and thus SNR in dB scale

follow a normal distribution with average γ̄ and variance σ2
dB. Therefore in linear scale, the
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Figure 3.4: ROC in log-normal shadowing (γ̄ = 10dB) and AWGN channels using energy
detector with m = TW = 5 in local detection.

distribution is called log-normal, with probability density function given as:

fγ(x) =
10/ln10

xσdB
√

2π
e
−

(10 log10 x− γ̄)2

2σ2
dB (3.13)

In this case, we cannot find a closed form solution for Pd and it may be evaluated

numerically. Simulation result of local sensing using the same energy detector as discussed

in previous section, is depicted in figure 3.4 in AWGN as well as log-normal shadowing

channels with γ̄ = 10dB and different values od dB-spread, σdB.

Figure 3.4 shows how shadowing degrades the performance of energy detector and gives

rise to the probabilities of missed detection and false alarm compared to the AWGN channel.

It may also be observed that in denser shadowing environments with higher dB-spread, it

is even more difficult to sense the spectrum and the error increase.
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3.4 Collaborative Spectrum Sensing

In order to combat the effect of multipath fading and shadowing, collaborative spectrum

sensing is proposed where a group of secondary users share their sensing information to make

a collaborative decision about the presence of primary signal. Suppose there are n secondary

nodes cooperating in the cognitive network for detection, and further assume all nodes use

energy detectors and experience independent identically distributed fading. According to

likelihood ratio test (LRT), it is optimum for each node to individually sense the spectrum

using a specific energy detector with corresponding threshold λk for k = 1, 2, . . . , n, which

are not necessarily equal [10]. However, for simplicity we assume common detector structure

with threshold λ.

There exist several studies in the literature to optimize collaborative spectrum sensing

in different criteria. Distributive collaboration is carried out using a fusion rule known as

OR-rule, or 1-out-of-n rule, such that each user receives n− 1 hard decisions from all other

users, i.e. one bit indicating either H0 or H1. Each user then updates its decision in this

way that it decides H1 if at least one out of the total n nodes reports H1 [10]. Here, in

the symmetric case, probabilities of detection and false alarm for the collaborative network

denoted by Qd and Qf respectively, are defined as follows:

Qd = 1− (1− Pd)n (3.14)

Qf = 1− (1− Pf )n (3.15)

where Pd and Pf are the local probabilities of detection and false alarm for each of the

secondary nodes. Equations (3.14) and (3.15) show that collaboration increases probabilities

of detection and false alarm with number of cooperating users n. However, we will show

that the overall performance will be improved.

Figures 3.5 and 3.6 illustrate the effect of collaboration on spectrum sensing under

Rayleigh fading and log-normal shadowing respectively. The ROC curves for different num-

bers of collaborative users, n, is depicted as well as AWGN local case for comparison.
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Figure 3.5: ROC in Rayleigh fading (γ̄ = 10dB) and AWGN channels using energy detector
with m = TW = 5 in collaborative detection with different number of users n.

Assume average SNR of γ̄ = 10dB and m = 5, and dB-spread of σdB = 6dB for the

log-normal case.

Case n = 1 is equivalent to local sensing without collaboration, which is illustrated to

perform the worst. However, as expected, increasing n results in improved sensing. For

large enough n, we can even outperform the AWGN channel. This is due to the fact that

for n large enough, there would be higher chance to have at least one user with a good

channel better than average non-fading AWGN. This way, we have been able to cancel the

undesired effect of fading and shadowing on spectrum sensing by collaboration, and the cost

is the signaling overhead as well as delay introduced for collaboration.

3.5 Conclusion

In fading environments, a secondary user may not be able to distinguish between an idle

band and a deep fade. However, since other users in the network may have better channels,
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Figure 3.6: ROC in log-normal shadowing (γ̄ = 10dB, σdB = 6dB) and AWGN channels
using energy detector with m = TW = 5 in collaborative detection with different number
of users n.

collaboration is proposed to improve the overall sensing performance of the network.

In this chapter, we studied the effect of Rayleigh fading and log-normal shadowing on

spectrum sensing using energy detectors, and showed how collaboration can improve the

performance. Our simulation results demonstrate that sensing results enhance significantly

as the number of collaborative users increases, such that with large enough number of

collaborative users, it is even possible to outperform the AWGN channel.
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Chapter 4: Spectrum Access Strategies

4.1 Introduction

In spectrum overlay systems, or namely, opportunistic spectrum access (OSA) model, sec-

ondary users (SUs) are allowed to dynamically share the spectrum in a hierarchical way

with primary users (PUs, or licensees), who are recognized for under-utilizing the scare

resource of wireless spectrum [3]. For this purpose, cognitive radios (CRs) that are context-

aware intelligent devices capable of learning and adapting to their wireless environment,

are employed as low-priority secondary users. Specifically, SUs monitor the activity of PUs

by sensing the spectrum bands to identify and further utilize transmission opportunities,

also known as white spaces, whenever the PUs are idle.

Definite functionalities are defined for CRs for the realization of spectrum overlay: spec-

trum sensing, spectrum decision, spectrum sharing, and spectrum mobility [6]. In this chap-

ter, we mainly focus on spectrum decision as well as sharing tasks in an ad hoc cognitive

radio network. Due to the overhead introduced by centralized coordination, distributed

channel allocation and sharing is typically preferred [12]. We consider single-hop commu-

nication within secondary nodes or with their base station without any central coordinator

or dedicated control channel.

Cognitive radio tasks are not fully detached, and efficient opportunistic access requires

intensive interaction across physical and medium access control (MAC) layers. Essentially,

based on the results of detection module (typically energy detector) from physical layer,

SUs should decide which channels to attempt sensing in future to maximize their spectral

utilization. This is a medium access problem for scheduling sensing order, also known as

channel selection or access strategy. Especially in our case of study, where secondary nodes
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distributively require opportunistic access to the spectrum, a securing MAC policy that

avoids collision among secondary and primary transmissions is vital.

It is of essence for the SUs not to interfere with the high-priority time-variant primary

traffic. Moreover, it is practically impossible for SUs to keep track of all available bands

contiguously, because of the hardware constraints. The fact that SUs are not aware of

primary activities in all channels, makes the medium access problem more challenging.

In this uncertain environment, the only solution for the cognitive users, as the definition

implies, is to learn the traffic information online. Particularly, SUs need to take into account

the activity statistics of PUs at the same time as sensing the spectrum, to improve their

decisions towards efficient channel selection which will result in higher utilization.

In this chapter, we will first discuss our system model. Next, we will study the access

strategies and propose our algorithm for single and multiple user scenarios. And finally, we

will conclude this chapter by examining our simulation results. The results of this chapter

are presented in [27] as well.

4.2 System Model

Consider a decentralized ad hoc network with K cognitive secondary users, exploring the

licensed spectrum for transmission opportunities for single-hop communication, whenever

no primary activity is detected. We assume the available spectrum consists of N orthogonal

frequency channels with equal bandwidth B, such that cross-channel interference is negli-

gible. We also consider a time-slotted system to make synchronization among all nodes

feasible. The system model is depicted in figure 4.1. LTE resource blocks as shown in

figure 1.2 offer a fit model for this purpose both in frequency and time domains criteria.

In addition, OFDM modulation employed in LTE is an appropriate candidate for OSA,

because of carrier aggregation feature which provides SUs with possibility to transmit over

non-contiguous bands [2].

Further, we consider an observation block of T time slots, over which primary activity

statistics in all channels are invariant. Depending on the application, short or long block
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Figure 4.1: Channel availability model.

varying traffic assumption is sufficiently suitable. Information about the value of T is easily

available to SUs by observing the PU activity.

Let i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , T} represent channel and time indices respec-

tively. We define ψi(j) to indicate state of channel i at time slot j as follows:

ψi(j) =

 1 idle channel

0 busy channel
(4.1)

In fact, channel i at each time slot is either idle, with probability θi, which is constant

over observation block of T time slots, or busy with probability 1−θi. This information is the

sensing results, provided by the detection module from physical layer. Note that different

criteria such as channel gain and capacity, sensing errors, etc. might also be considered

when making this hard decision to report to the scheduling module. For now we assume

the sensing results to be error-free. Effect of false alarm and missed detection errors will be

discussed later.
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Assuming independent state transitions, ψi(1), ψi(2), . . . , ψi(T ) will become independent

identically distributed Bernoulli random variables with parameter θi. The problem may also

be generalized to Markovian process [20],[11]. Since θ = {θ1, . . . , θN} are consistent during

T , availability percentage of channel i given θi during the block of observation, φi, would

be distributed as follows:

φi ∼ Binomial(T, θi). (4.2)

As for the cognitive users, they tend to explore the channels to identify and further

exploit idle bands, so as to maximize their utilization. Trivially, SUs would rather reach

out for channels with higher probability of being free, because they are more likely idle,

which would lead to further transmission opportunities and spectral usage. However, the

problem arises when SUs are unaware of the PU’s traffic statistics, specifically, availability

probabilities, and need to estimate those values θ̂ = {θ̂1, . . . , θ̂N} at the same time as

sensing.

On the other hand, we consider SUs being capable of sensing/accessing a single channel

at a time slot. Sensing/accessing multiple channels simultaneously requires multiple anten-

nas which will introduce sever interference and complexity on SU part. In this situation,

it is essential for SUs to select the best possible channel for sensing and further accessing

to boost their throughput. However, they also have to consider learning purpose in the

scheduling process, in order to recognize potential opportunities in any of the frequency

bands. A trade-off arises here between exploration and exploitation in channel selection

process [23]. Should SU choose the channel that believes, according to current information,

is more likely available, or should it go for the one with few observations, to improve its

estimations? Moreover, how should collision be avoided when multiple SUs select the same

channel? These are the question we will be addressing in next section.
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4.3 Access Strategies

A low-complexity solution is desired for the above distributed access problem with unknown

parameters to guarantee maximum possible network throughput. Optimal solution can be

derived for the cognitive medium access problem using a Bayesian framework [23], however

it suffers from computational complexity that grows exponentially with T . Here, we will

develop low-complexity sub-optimum strategies for distributed access. First, we consider a

single cognitive user case and establish a solution to strike a balance between exploration

and exploitation, then, recognizing a cognitive ad hoc network of multiple users, we will

take into account the multiple access and competition problem as well.

4.3.1 Single-User Scenario

Consider a single secondary user looking for opportunistic access among N frequency chan-

nels, each with bandwidth B and unknown availability probability of θi, i = 1, 2, . . . , N .

The goal for SU is to maximize its average throughput, which is defined as the expected

number of transmitted packets over an observation block of T . Given that SU selects chan-

nel σj ∈ {1, 2, . . . , N} at time slot j, and that channel σj is free, maximum of B packets

can be transmitted in that time slot. Let δi(j) be the probability that SU selects channel i

at time slot j. Using equation (4.1), we can express the throughput for SU as follows:
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W =IE


T∑

j=1

B
N∑

σj=1

ψσj(j)


=

T∑
j=1

B

N∑
σj=1

IE
{
ψσj(j)

}

=B
T∑
j=1

N∑
σj=1

Pr{ψσj = 1}

=B
T∑
j=1

N∑
σj=1

θσj

=B

T∑
j=1

N∑
i=1

θiδi(j).

(4.3)

From equation (4.3) it is perceived that maximum throughput is achievable if SU se-

lects the channel with highest availability probability θmax at each time slot. This is also

intuitively valid that SU selects the most likely available channel (best channel) which is

more probably idle. This method is known as myopic strategy. In case of known θ that SU

recognizes the best channel, maximum possible throughput is achieved, which is equal to:

Wmax =
T∑
j=1

Bθmax

=TBθmax.

(4.4)

However, in case of unknown θ, there is no guarantee for the myopic strategy to con-

verge to the optimal solution. In this case, SU has no means but to make decision based

on its estimations, i.e. θ̂. As discussed previously, here SU faces a challenge known as
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Table 4.1: The proposed Modified-Myopic channel selection strategy

1. Initializing to meet the consistency requirement:

Spend the first NdlnT e time slots on sensing all channels uniformly, i.e.
dlnT e times on each channel, where d.e denotes the ceiling integer. Form

vectors Xi, Yi, and θ̂i for i = 1, 2, . . . , N where

θ̂i(j) = Xi(j)/Yi(j). (4.6)

2. Channel selection:

At time slot j for j = NdlnT e+1, . . . , T select channel i to sense, where

i = argmax
i
θ̂i(j). (4.7)

3. Updating:

After sensing channel i, update the values of Xi(j), Yi(j), as well as

θ̂i(j) according to (4.6).

exploration/exploration trade-off; whether to choose the channel which believes is best by

far, or the ones with few observations and potential opportunities? Modeling this problem

as a multi-armed bandit, the answer is found as follows: a strategy is consistent– meaning

that it can strike a balance in the exploration/exploitation problem; if its throughput loss

compared to the optimal situation grows at least logarithmically in the number of trials

[24]. For strategy Γ, throughput loss using equations (4.3) and (4.4) is given as follows:

L(θ,Γ) =Wmax −W

=TBθmax −B
T∑
j=1

N∑
i=1

θiδi(j).

(4.5)

In order for strategy Γ to be consistent, it is required that L(θ,Γ) ∼ O(lnT ). This con-

dition may be interpreted that SU needs to take at least O(lnT ) samples from each channel

to guarantee the probability estimates will converge to the actual availability probabilities,
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Table 4.2: The order optimal strategy proposed in Rule 1 [23]

1. Initializing:
At the beginning of each block, sense each channel
once.

2. After the initialization period, the cognitive user

obtains an estimate θ̂ at the beginning of time slot j,

given by θ̂i(j) = Xi(j)/Yi(j), and assign an index

Λi(j) = θ̂i(j) +
√

2lnj/Yi(j) (4.8)

to the ith channel. The cognitive user chooses the
channel with the largest value of Λi(j) to sense at time
slot j. After each sensing, the cognitive user updates
X and Y .

and thus, best decisions in channel selection can be made. Therefore, the myopic strategy

is not consistent.

Based on this conclusion, we propose modified-myopic channel selection scheme. Let

Yi = {Yi(1), . . . , Yi(T )} and Xi = {Xi(1), . . . , Xi(T )} be two vectors representing the

number of times that SU has sampled channel i and the number of times channel i is

sensed to be free up to time slot j, respectively. The strategy works as given in Table 4.1.

Order-optimal single-index strategy given as Rule 1 in [23] is also given in Table 4.2.

4.3.2 Multi-User Scenario

In this section, we assume the presence of K cognitive users in the secondary network,

distributively searching the spectrum consisted of N frequency channels for transmission

opportunities, when there is no coordination or prior information about channel availabili-

ties. In addition to exploration/exploitation challenge, the medium access problem in this

scenario faces another challenge: competition. Specifically, all SUs in the network should

explore the channels and estimate their availabilities to make optimal decision in channel

selection, and also deal with the multiple user competition. As a matter of fact, in order for

the secondary user to access the spectrum, not only no primary activity should be detected,
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but also it needs to be free of secondary activity from competing cognitive users as well,

otherwise collision occurs.

In this scenario, it is not optimal anymore, neither from a network point of view, nor

from each SU’s perspective, to access the most likely available (best) channel. The reason is

access would become too competitive that probability of collision increases, while potential

opportunities in other spectrum bands are being wasted.

A decentralized strategy is required for scheduling spectrum sensing/access for all sec-

ondary users in the network, such as to maximize total network utilization while splitting

the opportunities fairly among all secondary users. In fact, the strategy should guaranty

an equilibrium state with maximal reward for users, such that deviation from the strategy

would result in throughput loss, and thus all individual users would follow the rule.

In case multiple SUs select the same channel, we employ a generalized Carrier Sense

Multiple Access-Collision Avoidance (CSMA-CA) protocol similar to what is used in IEEE

802.11 standard, as follows.

Consider Ki(j) ∈ {1, 2, . . . ,K} SUs deciding to access channel i at time slot j. They

sense this channel individually, and if it is sensed to be busy with primary activity, they

lean back and wait until next time slot to start channel selection and sensing over again.

Otherwise, if no primary activity is detected, each of k ∈ Ki(j) users waits a random time

according to exponential back-off mechanism, and senses the channel again. As a result, the

secondary user whose back-off time happens to be the minimum will win the competition

and gains access to the channel to transmit in the remainder of the time slot.

Priorities and other factors may be considered in generating back-off time as well, how-

ever, for a symmetric fair decentralized access, exponential distribution with common pa-

rameter is of interest. Let Tki(j) be the random waiting time generated for user k who

decides to sense/access channel i at time slot j. Assume the distribution is exponential

with parameter λk

Tki(j) ∼ Exponential(λk) (4.9)
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truncated to the time slot duration, for all k ∈ Ki(j). Here we consider symmetric case

λ1 = . . . = λK = λ for fairness. We may want to optimize the value of λ, however, that

topic is out of the focus of this paper.

We can show that user k with back-off time Tki(j) wins the competition over channel i,

given it is idle, at time slot j with probability

λk

/Ki(j)∑
l=1

λl = 1/Ki(j), (4.10)

which implies equal chance to access an idle band.

Assume user k selects channel i at each time slot with probability pk,i. An optimal

symmetric solution as well as asymptotically optimal low-complexity medium access strat-

egy is given in [23]. At this moment, consider the case with known θ for simplicity. The

problem can be modeled as a non-cooperative game where SUs are the players who want

to maximize their reward (expected throughput). The asymptotic solution is then achieved

for the Nash equilibrium for K →∞ if

pk,i =θi

/ N∑
l=1

θl

=pi

(4.11)

for k = 1, 2, . . . ,K, that is the normalized availability of channel i. This implies that

on average, piK users select channel i at each time slot. In this situation, each user has

probability τk to transmit at each time slot, where
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τk =

N∑
i=1

piθi
1

piK

=
N∑
i=1

θi

/
K

(4.12)

which indicates fair division of opportunities among all SUs. We can show that if any

SU deviates from this rule, it will have a less chance for transmission [23]. Assume user k

deviates from the strategy and chooses a channel differently, e.g. channel i′. Therefore, the

number of users sensing channel i′ will be equal to pi′K + 1, and the probability that user

k gains the access to the channel is reduced as follows:

τ ′k =
θi′

pi′K + 1
<

θi′

pi′K
= τk. (4.13)

Therefore, following this strategy, secondary users have no motivation to diverge from

the rule, and thus, fair and systematic performance is guaranteed.

Under this circumstances, total network throughput can be found using equations (4.3)

and (4.12) as follows:

WNet =
K∑
k=1

T∑
j=1

B
N∑
i=1

τk,i(j)

=TB

K∑
k=1

∑N
i=1 θi
K

=TB

N∑
i=1

θi.

(4.14)

Now consider the case of unknown θ. Adopting the above results to govern the competi-

tion, and the modified-myopic scheme to take care of the exploration/exploitation problem
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Table 4.3: The proposed medium access strategy

1. Initializing to meet the consistency requirement:

All users spend the first NdlnT e time slots on sensing all channels uni-
formly, i.e. dlnT e times on each channel. User k then forms vectors

Xk,i, Yk,i, and θ̂k,i for k = 1, 2, . . . ,K and i = 1, 2, . . . , N where

θ̂k,i(j) = Xk,i(j)/Yk,i(j). (4.15)

2. Channel selection:

At time slot j for j = NdlnT e + 1, . . . , T , user k selects channel i to
sense with probability

pk,i(j) = θ̂k,i(j)
/ N∑

i=1

θ̂k,i(j). (4.16)

3. Updating:

After sensing, user k updates the values of Xk,i(j), Yk,i(j), as well as

θ̂k,i(j) according to (4.15).

simultaneously, we propose our low-complexity, consistent, and fair access strategy, which

maximizes the total network throughput as given in Table 4.3. Table 4.4 also summarizes

the algorithm of Rule 3 given in [23].

4.4 Effect of Sensing Error

Even though sensing errors, happening due to fading environments as discussed in chapter

two, affect the performance of cognitive radio significantly, however, they do not change

the medium access policy. We only need to briefly modify the availability estimations

considering the sensing errors.

Let η denote the tolerable missed detection error for the primary, i.e. the probability

that PU is present in the band but SU fails to detect it. Also, let µ be the probability that

channel is sensed to be occupied, while it is actually idle, or namely, false alarm probability.

Considering these two sensing errors, the probability that channel i is sensed to be free
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Table 4.4: The low-complexity asymptotically optimal strategy given in Rule 3 [23]

1. Initializing:
Each user k maintains the following two vectors: Xk,
which records the number of time slots in which user
k has sensed each channel to be free; and Y k, which
records the number of time slots in which user k
has sensed each channel. At the beginning of each
block, user k senses each channel once, and transmits
through this channel if the channel is free and it wins
the competition. Also, set Xk,i = 1, regardless of the
sensing result of this stage.

2. at the beginning of time slot j, user k estimates θ̂i
as

θ̂i(j) = Xk,i(j)/Yk,i(j) (4.17)

and chooses each channel i = {1, . . . , N} with proba-
bility

θ̂i(j)
/ N∑

i=1

θ̂i(j). (4.18)

After each sensing, Xk and Y k are updated.

is equal to (1 − µ)θi + η(1 − θi). Thus, the availability of channel i can be modeled as a

binomial random variable with parameter (1− µ)θi + η(1− θi), which actually is the value

that the ratio Xi/Yi converges to. Therefore, equations (4.6) and (4.15) in Table 4.1 and

Table 4.3 should be replaced with equation (4.19) as follows, but the rest of the algorithms

holds the same [23].

θ̂i(j) =
Xi(j)/Yi(j)− η

1− η − µ
(4.19)

4.5 Performance Analysis and Simulation Results

For simulation purposes, we assume N = 20 frequency channels with normalized bandwidth,

such that B = 1 packet can be transmitted per time slot, over an observation block of T =

10000 time slots. We further consider a moderately congested primary network, with average
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Figure 4.2: Performance comparison of the proposed modified-myopic scheme vs. order-
optimal strategy.

of 60% availability, to generate random θ for all channels, i.e. θ = 0.6. In our simulations,

the highest availability probability turns out to be θmax = 0.76, and
∑N

i=1 θi = 11.42. Note

that the performance is evaluated assuming sensing results reported from detection module

to be error-free, however effect of sensing errors is also depicted for the single user scenario

in figure 4.3

4.5.1 Single-User Analysis

In the single-user scenario where SU identifies the best channel shortly after the initialization

period, considering the Binomial distribution of channel availability percentage given in

equation (4.2), and the fact that T is large enough, we can approximate the highest expected

throughput by Tθmax based on central limit theorem (which is compatible with equation

(4.4) as well). Consequently, the highest achievable time-normalized expected throughput

would converge to θmax = 0.76.
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Figure 4.3: Performance comparison of proposed modified-myopic scheme under perfect and
imperfect sensing, with probabilities of missed detection and false alarm equal to 0.01 and
0.05, respectively.

Figure 4.2 shows the performance of modified-myopic strategy compared to the order-

optimal strategy of Rule 1 proposed in [23]. We can observe that our proposed modified-

myopic strategy outperforms the order-optimal strategy and saturates at the maximum

possible gain shortly after initialization period, whereas the order-optimal strategy does

not even reach 90% of the maximum gain. This is a significant achievement especially in

applications with fast variations of primary activity that T cannot be considered as large.

The reason is mainly that we do not waste time slots on exploring channels which we may

not be interested in, and that by taking appropriately sufficient samples, we obtain fairly

accurate estimates of channel availabilities shortly after the initialization period.

Figure 4.3 demonstrates how sensing errors introduced by fading environment degrade

the performance of secondary as compared to perfect sensing results. In the given situation,

with missed detection probability of η = 0.01 and false alarm probability of µ = 0.05, the
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Figure 4.4: Performance comparison of the proposed multiple access strategy vs. Rule 3
from network perspective for K = 200 SUs.

degradation is not significantly destructive though, only 6.8%.

4.5.2 Multi-User Analysis

For the multi-user scenario, we first consider a dense network with K � N , next, we

simulate a sparse network where K ≤ N .

Dense Network

In a dense cognitive radio network, since K is large enough, based on asymptotic result of

equation (4.14), we expect the highest time-normalized expected throughput of the network

to converge to WNet,max =
∑N

i=1 θi = 11.42.

Performance of a dense network with K = 200 secondary users and N = 20 channels

with the same θ as generated before, is depicted in figure 4.4 to compare our proposed access
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Figure 4.5: Secondary users’ utilization for K = 200.

strategy to the Rule 3 algorithm given in [23]. Time-normalized expected throughput of

the network is normalized with respect to the maximum value WNet,max = 11.42 for better

demonstration. The efficiency of our proposed approach is inevitable, which converges to

the maximum possible gain.

Figure 4.5 shows the final expected throughput of each of K = 200 secondary users in

the network. Since K is large and the algorithm is symmetric, the theoretical expected

throughput of each user is WNet,max/K = 0.057. We can see that there is almost no

noticeable variations in the gain distribution among users. Additionally, our algorithm

performance is significantly close to theory, with mean 0.053 and standard deviation 0.0022.

It is important to note that in dense networks, the utilization from a network point

of view is maximal, cost for which is the overhead of CSMA-CA method. However, from

secondary user’s point of view, small throughput is achievable due to intense competition.
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Sparse Network

In sparse situation, since K is not large enough, we cannot expect the asymptotic algorithm

to work effectively. In fact, since there are few cognitive users in the network compared to

the number of channels, and since each user is capable of accessing a single channel at a

time, not all the opportunities in the entire spectrum are discovered and utilized. In other

words, there are more supplies than demands, as opposed to the dense network situation.

This is why network utilization is not as high in sparse networks. Yet, system overhead is

lower, also each secondary user gains higher throughput compared to dense situation.

Noting that an opportunity in channel i is exploited if at least one user selects that

channel; the total expected throughput of the sparse network may be formulated as follows:

WNet,s =
T∑
j=1

B
N∑
i=1

θiPr{Ki(j) > 0}

=

T∑
j=1

B

N∑
i=1

θi(1− (1− pi)K)

=TB
N∑
i=1

θi

1−

(
1− θi∑N

l=1 θl

)K .

(4.20)

For simulation purpose, we consider K = 8 users and N = 20 frequency channels

with the same θ as before. From equation (4.20), theoretical expected throughput of the

network will be equal to WNet,s = 3.93. Figure 4.6 demonstrates expected throughput of

the network normalized to the maximum (WNet,max = 11.42) for our proposed algorithm

compared to the Rule 3 in a sparse network. In figure 4.7, final expected throughput of

each user is depicted for both strategies. Each user’s throughput theoretically is equal to

WNet,s/K = 0.49. Using proposed modified-myopic scheme, average user’s throughput is

equal to 0.39 with standard deviation 0.0015. As we expected, each SU gains considerably

higher throughput compared to the dense network situation.
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Figure 4.6: Performance comparison of the proposed multiple access strategy vs. Rule 3
from network perspective for K = 8 SUs.

4.6 Conclusion

Channel selection problem for opportunistic spectrum access in decentralized cognitive radio

networks was studied in this chapter. First, we considered a single-user scenario. Recog-

nizing the exploration/exploitation challenge in scheduling spectrum sensing without prior

information about primary activity and channel avilabilities, we designed a low-complexity

sub-optimal access algorithm, referred to as modified-myopic strategy to maximize spec-

tral utilization while confining interference introduced to the primary network. Next, for

a multi-user scenario, we took into account the competition that arises in the multiple ac-

cess problem as well. Combining our modified-myopic strategy with generalized CSMA-CA

protocol, we proposed a fair distributed access algorithm to maximize network utilization.

Analysis as well as simulation results were provided to prove the efficiency of our work,

compared to the existing solutions in the literature.
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Figure 4.7: Secondary users’ utilization for K = 8.
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Chapter 5: Summary, Contributions, and Future Work

5.1 Summary and Contributions

This thesis addressed the problem of spectrum sensing and medium access in cognitive radio

networks. First, we introduced the concept of opportunistic spectrum access and cognitive

radio networks, and gave an extensive overview on the wireless propagation environment.

With the background given in chapters one and two, the physical-layer spectrum sensing

and issues with energy detection were studied in chapter three, where sensing-throughput

trade-off was discussed. Collaborative spectrum sensing was also studied as the solution to

overcome undesired fading effect. Next, MAC-layer sensing was discussed in chapter four.

A sub-optimal channel selection referred to as modified-myopic scheme was first proposed

based on the multi-armed bandit problem for a single-user scenario without prior informa-

tion about PU activity. Next, we modeled the multiple access problem as a non-cooperative

game where secondary users were players who intended to maximize their expected reward

(throughput). Based on the resulting Nash equilibrium, and the modified-myopic strat-

egy given above, a low-complexity asymptotically optimal distributed access strategy was

proposed for a decentralized cognitive radio network using Carrier Sense Multiple Access-

Collision Avoidance (CSMA-CA) technique.

Analyses and simulation results using MATLAB were provided to demonstrate the ef-

ficiency of our proposed algorithms. The modified-myopic scheme was shown to perform

optimally and conclude in a timely manner, which is a significant privilege in applications

such as LTE mobile, where the time-invariant period of the primary cannot be considered

lengthy. In fact, the modified-myopic scheme was able to achieve the maximum highest

expected throughput approximately in 10% of the observation block, whereas the order-

optimal strategy could not even reach 90% of the maximum throughput in the whole block
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of observation. Thereafter, our proposed multiple access strategy in the multi-user case was

shown to perform asymptotically optimal, especially in a dense network situation that we

were able to achieve maximum possible expected throughput, which was fairly distributed

among all users. Although, due to the CSMA-CA protocol overhead and back-off time

delay, it took longer for the algorithm to converge compared to the single-user scenario and

Rule 3– reached 90% of the utilization in almost 20% of the observation block.

5.2 Future Work

We can briefly summarize our future work as follows:

• In chapter 3 for the multi-user scenario, we used a generalized CSMA-CA protocol

with exponential back-off mechanism. However, the practical way to implement this

is to employ binary exponential back-off mechanism as used in IEEE 802.11 standard,

where the waiting times are quantized in range [0, CW − 1], where CW is the con-

tention window size. This will cause probability of SUs colliding to arise, which we

have to contemplate in our analysis and simulation.

• In order to avoid hardware complexity on SU’s part, we assumed SUs are capable of

sensing/accessing a single channel at a time. However, with the advanced antenna

technologies that nowadays secondary users might be equipped with, we have to take

into account simultaneous sensing/accessing as well.

• The main contribution of our work will be in designing a joint cross-layer medium

access and routing algorithm for multi-hop ad hoc networks, where we have cognitive

users scattered in a geographical area with multiple primary networks operating in a

cellular fashion as depicted in figure 5.1.
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Figure 5.1: Multi-hop ad hoc cognitive radio network [31].
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