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 Flooding is one of the major natural disasters around the globe with wide-

reaching impacts on the environment, economy, infrastructure, and human lives. In recent 

years, compound floods resulting from the co-occurrence of multiple flood drivers like 

riverine flow, storm surges, sea-level rise, and extreme rainfall have impacted several 

cities across the United States (US). Metropolitan areas, located in the coastal regions of 

the US, have become increasingly vulnerable to such flooding conditions due to their 

unique exposure to multiple flood hazards and population density, rapid urbanization, 

proximity to major rivers or lakes, and the probable risk of sea level rise. The goal of this 

study is to identify the major flood drivers impacting metropolitan areas in large tidal 

estuaries and to quantify their impacts on compound flooding. Washington, DC, and the 

surrounding communities in Maryland and Virginia is used as an example, because like 

many US coastal areas, it is often exposed to various flood hazards that overlap spatially 

and temporally, leading to the potential of compound flooding conditions. Results from 
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the historical data analysis (1931 to 2019) provided strong evidence that compound 

flooding in the region can be caused by a combination of storm surge or high coastal 

water levels, riverine flow, local wind, and urban runoff. These events had the highest 

duration and magnitude during the study period. Among the four Major flood events 

during this time, three were a result of compound flooding, and only one resulted from 

high riverine flow. Storm-surge driven coastal floods were more common in Washington, 

DC compared to river floods when the flood stages were either at Moderate or Minor 

stage. The local wind with speed above 5.5 m/s and urban runoff also plays a significant 

role impacting flood levels in the area. The variability in compound flooding extent and 

depth was also investigated using a 2D hydrodynamic model. Results suggested that 

locations around the study area can be locally divided into three zones based on the 

impact of flow and surges: highly riverine flow dominated upstream zone, transition zone 

with impact from both flow and surges, and coastal water level dominated lower zone. 

Flood depths during surge dominated events were significantly higher than flow 

dominated events, almost doubling in some locations towards downstream of the river. 

Small urban streams in the area were significantly impacted by flow, surge, and rainfall. 

Low gradient streams were more impacted by compound flooding compared to steep 

streams. Inundation results showed that cities like Washington, DC will face increased 

flooding in the long-term future because of sea level rise (SLR), particularly during surge 

dominated flood events. Finally, the comprehensive analysis of the compound flooding in 

the region has led to the development of a real-time flood forecast system for compound 

urban flooding.  The spatial and temporal distribution of flooding was significantly 
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captured by the forecast system. This study has provided scientific insights into the 

physical characteristics and spatial variability of the compound flooding in metropolitan 

areas along the estuaries and implemented the outcomes of historical data analysis for 

flood inundation modeling and developing a real-time forecast system for urban areas. 
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INTRODUCTION  

Flooding causes severe damage to the economy and human lives every year. 

Major freshwater flooding events in the US from 2004 to 2014 caused an average annual 

damage of $9 billion (National Academies of Sciences, 2019) and the second costliest 

hurricane, Sandy in 2012, resulted in between $78-$97 billion in damages (Kunz et al., 

2013). The dynamic coastal-estuarine regions are at the interface of multiple natural 

hazards like storm surges, tidal and riverine flooding, wind, and high precipitation. Such 

hazards can interact with each other and result in compound floods with significantly 

higher peaks than usual flooding events (Mortlock et al., 2018). Moreover, rapid 

urbanization, proximity to major rivers or lakes, risk of sea-level rise, and precipitation 

variability due to climate change can put further pressure on vulnerable coastal 

environments (Pasquier et al., 2018). While a significant dependence is not always 

existent between the compound flood drivers, it is highly uncertain how the climate can 

influence this complex non-linear relation in the future. The lack of adequate information 

on these interactions remains an important obstacle for decision-making (Pasquier et al., 

2018).   

Major floods in 2017 and 2018 are mostly remembered as coastal flooding events, 

but in many cases, intense rainfall and high storm surges resulted in compound flooding 

with higher peaks (University of Maryland and Texas A&M University, 2018). Few 
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studies have estimated the sensitivity of coastal regions to compound flooding (Pasquier 

et al., 2018; Paprotny et al., 2018). There has been considerable shifts in the pattern and 

intensity of flood that favor co-occurrence of high surges with high rainfall (Wahl et al., 

2015; Saleh et al., 2017; Zscheischler et al., 2018). A number of studies have investigated 

statistically the complex dependence structure between the variables of compound flood 

such as rainfall and storm surges (Zheng et al., 2013; Wahl et al., 2015; Paprotny et al., 

2018; Wu et al., 2018), river flow and storm surges (Svensson and Jones, 2002; Svensson 

and Jones, 2004; Kew et al., 2013; Paprotny et al., 2018; Sadegh et al., 2018; Hendry et 

al., 2019), and river flow and water level (Moftakhari et al., 2017; Bevacqua et al., 2019; 

Saleh et al., 2017; Mashriqui et al., 2014), and design discharge and sea level rise (Ward 

et al., 2018).  

In the last few decades, major urban flooding has impacted coastal cities around 

the world including New Orleans, Rio de Janeiro, Queensland, Yangon, and Mumbai (Jha 

et al., 2011). While urban flooding has been widely studied, comprehensive 

investigations on compound urban flood variability in metropolitan areas located near a 

tidal river is still not available. Coastal metropolitan cities like Chicago, Houston, 

Baltimore, New York City, and Washington, DC are subject to compound flooding due to 

high riverine flow, runoff from inland precipitation events, local wind, and surge-driven 

coastal inundation along the tidal rivers (National Academies of Sciences, 2019). Recent 

advances in computational hydraulic modeling has allowed researchers to explore the 

dependence between hydrological extremes through different modeling techniques 

(Pasquier et al., 2018). Simplified one-dimensional (1D) modeling tools (Oubennaceur et 
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al., 2018; Adams et al., 2018), advanced multi-dimensional (1D/2D/3D) models and 

coupled hydrological-hydraulic or hydrodynamic models are being applied for more 

detailed simulation of river-floodplain interactions (Patel et al., 2017; Finaud-Guyot et 

al., 2011; Mark et al., 2004). 

Investigating the propagation of compound floods into the inland areas of coastal 

and estuarine zones is extremely challenging due to the complex dynamics between 

hydrological and coastal processes, and the variation in meteorological drivers (Saleh et 

al., 2017; Dimitriadis et al., 2016). Advanced hydrodynamic models are being used to 

study the complex characteristics of flooding in the urban areas with multiple flood 

drivers (Barthélémy et al., 2018). National Weather Service (NWS) provides forecast on 

Potomac River flow, water level, and flash-flood events in the region (Mcenery et al., 

2005) through the Advanced Hydrologic Prediction Service (AHPS). AHPS also provides 

flood plain maps for some areas based on the flood levels in Washington, DC station. 

However, there is greater uncertainty on how the flood at this station will propagate into 

inland flooding (Couasnon et al., 2019), especially in a real-time forecast system. 

This study aims to provide reliable scientific information on the complex 

interactions of storm surge, wind, riverine flooding, sea-level rise, and runoff from high 

precipitation leading to compound flooding. The goal is to identify major flood drivers 

impacting the Washington, DC metropolitan area, quantify their impacts on compound 

flooding, and investigate how the compound flooding propagates into inland flooding. 

We assessed the variability of flood depth and extent resulting from different flood 

drivers, identified the hotspots of compound urban flooding, analyzed the compound 
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flood characteristics in the streams, and finally investigated the impact of sea-level rise 

and compound flood on the study area. The outcomes from this analysis were 

implemented in a hydraulic modeling framework for real-time urban flood forecast in the 

area. Studying compound flood variability in Washington, DC can be considered as part 

of a larger effort to explore the compound flooding along major rivers and large 

metropolitan cities. The science questions explored through this study are: 

 What are the major flood drivers that cause compound flooding in a river-

estuarine transition zone? What is the impact of each flood drivers in generating 

the compound flood peaks in the tidal river? 

 How does compound flooding in a tidal river impact the spatial and temporal 

variability of flooding in the urban areas? To what extent the compound flood 

drivers impact urban flooding? 

 Can an integrated state of the art modeling framework accurately forecast 

compound flooding conditions in real-time? 

Chapter 1 addresses the first research question by identifying the major flood 

drivers impacting the metropolitan areas of Washington, DC located in a large tidal 

estuary. The contribution of each driver to the flood levels at DC station has been 

quantified through a number of steps. Flooding in Washington, DC has been classified 

into different types based on the flood drivers associated in the flooding events. This 

study implemented analysis of historical observations for different flood drivers and its 

interaction during the period of 1931-2019. To further analyze the impact of certain flood 
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drivers, a hydrodynamic model was implemented to simulate flood conditions in 

Washington, DC.  

Chapter 2 comprises investigation of the spatial and temporal variability of the 

compound flooding in Washington, DC resulting from multiple flood drivers: riverine 

flow, coastal storm surges, and urban runoff. The impact of these flood drivers were 

estimated in different urban locations along the tidal Potomac River. Moreover, the 

propagation of flow and surge in the adjacent streams were investigated to identify the 

hotspots of compound urban flooding along the river and the streams. Finally, this study 

has investigated how sea-level rise can impact the flood prone areas in future. A 2D 

hydrodynamic model was implemented with a set of possible runoff, storm surges, and 

river discharges that can generate both extreme and non-extreme flood events.  

Chapter 3 presents the development and implications of a real-time system with 

2D hydrodynamic model along the tidal Potomac River to generate flood forecast for the 

rivers, streams, and inland urban areas. The system was tested for efficient and timely 

forecast for the region ahead of any severe flood event. Forecasted water levels and 

inland flood depths were validated by using information from different official and 

publicly available resources. The real-time system archives forecasted depths for a 

number of locations adjacent to the rivers and streams that are mostly impacted by 

compound flooding from coastal, riverine and runoff impacts. 
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1 COMPOUND URBAN FLOODING IN WASHINGTON, DC: A LOCAL 

APPROACH FOR STUDYING THE COMPOUND FLOOD 

CHARACTERISTICS IN LARGE METROPOLITAN AREAS ALONG 

TIDAL RIVERS  

Abstract: 

Flooding is one of the costliest natural hazards around the world and has 

significant social impacts in the United States (US). In recent years, the increasingly 

intense and more frequent floods in metropolitan areas, along large estuaries, have 

demonstrated the importance of understanding different flood drivers in river-estuarine 

transition zones. Predicting flood levels in real-time in tidal areas, where major rivers 

meet coastal and estuarine zones, is still challenging for operational forecasting. The goal 

of this study is to identify major flood drivers impacting the Washington DC area and to 

quantify their impacts on compound flooding. This study used the water levels at the 

Washington, DC station from the National Oceanic and Atmospheric Administration 

(NOAA) as a proxy to represent flooding in DC, and the surrounding communities in 

Maryland and Virginia. The region is often exposed to various flood hazards (high flow 

from major rivers, inland precipitation, and surge-driven coastal inundation) that overlap 

spatially and temporally, leading to the potential of compound flooding conditions.  

Results from the historical data analysis (1931 to 2019) provided strong evidence that 

compound flooding in this region can be caused by a combination of storm surge or high 

coastal water levels, riverine flow, local wind, and urban runoff. The co-occurrence of 
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multiple flood drivers resulted in compound flooding conditions that had the highest 

duration and magnitude during this period. Among the four Major flood events during 

this time, three were a result of compound flooding driven by a combination of riverine 

flow and coastal water levels and only one was a result of a riverine flow driven flood. 

However, storm-surge driven floods were more common in Washington, DC compared to 

riverine flow driven floods during this period for Moderate and Minor flood events. 

Moderate and Major flood stages were mainly the result of compound floods. Moreover, 

the local Southward and Northward winds with speed >5.5 m/s can significantly increase 

or decrease the water levels at Washington, DC, potentially playing a significant role 

impacting flood levels in the area. Finally, urban runoff also plays an important role 

impacting flood levels but only in certain conditions when impacts from wind and 

upstream flow or coastal water levels are negligible. While this study focused on the 

Washington, DC metropolitan region, it highlights the need to refine current forecast and 

design flood models in large estuaries by considering the potential complex interactions 

between different compound flood drivers that can be applicable to many large 

metropolitan areas located in tidal estuaries across the globe. 

1.1 Introduction  

Catastrophic flooding events challenge the global economy every year with 

widespread environmental, economic, and social consequences. Multiple compound 

flood events have impacted the US in recent years and the damages caused by the 

combined effects of storm surges and extreme rainfall during coastal storms have 

highlighted the importance of compound flooding studies (Van Oldenborgh et al., 2017). 
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Moreover, compound flood risk is comparatively higher for the Atlantic and Gulf coasts 

compared to the Pacific Coast, and such events have increased significantly over the past 

century at major coastal cities (Wahl et al., 2015; Aerts et al., 2013). For example, 

Hurricane Harvey, in 2017, demonstrated the destructive effects of compound flooding 

when precipitation and coastal flooding conditions occur at the same time or in quick 

succession (Saleh et al., 2017; Zscheischler et al., 2018). Hurricane Sandy, in 2012, 

caused widespread inland flooding in the New York City with the highest recorded storm 

surge in almost 300 years coinciding with high tide, high wind speeds, and waves 

(Zscheischler et al., 2018). Major floods in 2017 and 2018 (Hurricanes Florence, Harvey, 

Maria, and Irma) are mostly remembered as coastal flooding events, but in many cases, 

intense rainfall during the storms was the main cause of flooding (University of Maryland 

and Texas A&M University, 2018). Coastal cities, like Washington DC, will face 

flooding and subsequent environmental changes in future due to the sea level rise (Ayyub 

et al., 2012). 

Studies from regional to global scale have developed conceptual models for 

quantifying the risk of compound flooding events in the present and under future climate 

(Huong and Pathirana, 2013; Bevacqua et al., 2017; Paprotny et al., 2018; Ward et al., 

2018). Potential global hotspots under risk of compound flooding and its likelihood in 

Europe have been investigated by Paprotny et al. (2018) and Ridder et al. (2018). In the 

coastal areas of Netherlands, compound flooding occurs when storm surges prevent river 

discharge from flowing towards the open sea and, at the same time, high intensity 

precipitation inundates the urban areas (Van Den Hurk et al., 2015). A continental scale 
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study has considered the impacts of storm surges and river discharge based on its timing, 

joint statistical dependence, and return period (Couasnon et al., 2019) and found that this 

dependence is a result of the interactions between the synoptic weather systems and 

topography. Moftakhari et al. (2017) used a bivariate relation between riverine and 

coastal flooding conditions when either one of the factors was at its extreme state 

demonstrating how the dependence between these factors strongly influences the joint 

probability of flooding.  

Existing methods examined statistically the complex dependence structure 

between proxy variables of different flood hazard types such as rainfall and storm surges 

(Zheng et al., 2013; Wahl et al., 2015; Paprotny et al., 2018; Wu et al., 2018), river flow 

and storm surges (Svensson and Jones, 2002; Svensson and Jones, 2004; Kew et al., 

2013; Paprotny et al., 2018; Sadegh et al., 2018; Hendry et al., 2019), and river flow and 

water level (Moftakhari et al., 2017). Multiple studies have also analyzed the compound 

impact of tide and surge (e.g., Ikeuchi et al., 2017), design discharge and design sea level 

(Ward et al., 2018), and high sea-level and precipitation (Bevacqua et al., 2019). The 

statistical dependence between extreme rainfall events and storm surges has been 

demonstrated earlier (Van Den Hurk et al., 2015) and challenges remain to quantify its 

strength (Zheng et al., 2013). Fewer studies have investigated the sensitivity of coastal 

regions to compound flooding (Pasquier et al., 2018; Paprotny et al., 2018). No direct 

correlation between the compound flood drivers have been established so far, although 

numerous statistical methods have been suggested to quantify such compound events 

(Hao et al., 2018). Santiago-Collazo et al. (2019) reviewed the most recent studies on 
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extreme flood using compound inundation models and emphasized the need for the 

analysis of the complete interaction between storm surge, riverine flow, and rainfall 

induced runoff. 

The goal of this study is to identify major flood drivers impacting the 

Washington, DC metropolitan areas in tidal estuary of the Potomac River and to quantify 

their impacts on compound flooding. This study focused on Washington, DC and the 

surrounding communities because the region is impacted by various flood hazards that 

lead to compound flooding conditions and can serve as an example to many major 

metropolitan areas around the globe situated in large estuaries. Furthermore, the impacts 

of climate change-driven sea level rise will likely increase flood risk in the area (National 

Capital Planning Commission, 2008). The main flood drivers identified for this study are: 

riverine flow, coastal water levels (storm surge), urban runoff, and local winds. The 

approaches implemented in this study were mainly based on the analysis of historical 

observations of different flood drivers and its interactions. However, to further analyze 

the impact of wind speed and direction, the Delft3D Flexible Mesh model (Deltares, 

2019) was implemented to simulate flood conditions in Washington, DC. Furthermore, 

the methodology developed in this study can be applied to similar metropolitan areas 

located in the tidal regions across the globe which are affected by multiple flood drivers. 
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1.2 Methodology 

1.2.1 Study Area 

The Washington, DC Metropolitan Area is home to the capital of the US, several 

strategic Defense Bases, Federal offices, and headquarters of multiple international 

organizations. This area is currently highly urbanized and experienced significant flood-

induced losses throughout time, which demonstrate its vulnerability to flood hazards. For 

example, the Great Flood of 1889 inundated the areas along Rock Creek near 

Washington, DC (Johnson, 1889). Extreme flooding was observed at Alexandria and 

Washington, DC due to the Chesapeake-Potomac Hurricane of 1933 (Roth and Cobb, 

2001). Several low lying areas around the region including Haines Point, Navy Yard, and 

the Naval Air Station were inundated by the Great Potomac Flood of 1936 (National 

Weather Service, 2020a). High flood water reached the Jefferson Memorial during the 

Flood of 1942 (National Weather Service, 2020b). Little Falls and Rock Creek were 

flooded significantly during Hurricane Agnes in 1972 (National Weather Service, 2020b).  

The region (Figure 1) is located within the Chesapeake Bay Watershed along the 

upper tidal Potomac River, the Anacostia River and several urban and sub-urban 

watersheds such as the Rock Creek Park, Four Mile Run, Difficult Run and many others. 

The drainage area of the Anacostia River is 315 km
2
 and the Rock Creek is 160 km

2
, 

which are very small compared to the Potomac River drainage area of 30,000 km
2
 

(Huanxin et al., 1997). The tidal Potomac River has a total distance of approximately 

183km. This river flows downstream from Washington, DC and connects with the 

Chesapeake Bay at Lewisetta, VA. The Chesapeake Bay, the largest bay in the US, with 
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the length of 320 km, is a partially mixed estuary (Cho et al., 2012). The tides in the 

Potomac River originates from the Atlantic Ocean and propagates into the river through 

the Chesapeake Bay (Wang et al., 2015). The tidal Potomac River, from Indian Head, 

MD to Chain Bridge, VA, is about 50 km long and includes the Anacostia River, Tidal 

Basin, Washington Channel, Roosevelt Island Channel, Broad Creek, Dogue Creek, 

Piscataway Creek, Pohick Bay, Gunston Cove, and tidal inlets of Accotink Bay 

(Schaffranek, 1987). The tidal range near the entrance of the Potomac river from 

Chesapeake Bay is about 0.3 m and near Washington, DC is 0.8 m (The Great 

Chesapeake Bay Swim, 2019). 

Washington DC station is particularly an interesting site to study compound flood. 

Lewisetta geographically and hydraulically defines the boundary between the 

Chesapeake Bay and the Potomac River.  The tidal and surge propagation from Lewisetta 

(mouth of the Potomac River in the Chesapeake Bay) to the upstream is well studied 

(Mashriqui et al., 2014; Feng et al., 2017; Khalid and Ferreira, 2020). Moreover, 

Mashriqui et al.(2014) studied the effect of freshwater and coastal water events on 

Wisconsin Avenue (WA) and the DC station and found that the DC station has 

significantly greater tidal influence compared to the WA even though they are located in 

close proximity. Furthermore, wind and surge propagation from the Chesapeake Bay 

have optimal conditions to propagate water towards DC (Mashriqui et al., 2014). The 

study by Feng et al. (2017) showed that the annual peak at DC is temporally associated 

with the annual maximum upstream freshwater flow input or downstream water level or 

sometimes both. Moreover, Feng and Brubaker (2016) has concluded that using the DC 
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data as a proxy for the annual peaks at their Washington, DC inland site was a reasonable 

approach as it covers all the possible upstream and downstream events that cause the 

annual peak in the study site (Feng and Brubaker, 2016). 

1.2.2 Data Processing 

This study considered instantaneous, hourly and daily mean data of streamflow, 

water levels, and wind magnitude and direction at 10 meter height from 1931 to 2019. 

Historical streamflow data for flood analysis was collected from the United States 

Geological Survey (USGS, 2020), and the wind and water level data were collected from 

the National Oceanic and Atmospheric Administration’s Tides and Currents database 

(NOAA, 2020a). Rainfall data was collected from the National Centers for 

Environmental Information (NOAA, 2020b). In order to evaluate the effects of riverine-

driven flooding in the region, we defined the Little Falls Gage Station (USGS gage: 

01646500) flows at the Potomac River as a proxy for riverine flows. Flooding from the 

Anacostia River was only observed when the Potomac River was also flooded (National 

Capital Planning Commission, 2008). A report by (National Capital Planning 

Commission, 2008) has concluded that the Anacostia river flow is high during the events 

when Potomac River flow is also high. We have found similar results from our analysis 

as well. For example, the Northwest and Northeast Anacostia rivers had the maximum 

streamflow of 509 m
3
/s and 340 m

3
/s on Jun 22, 1972, the same date when the Potomac 

River flow was high due to flooding from hurricane Agnes. Appendix E (Figure E1) 

shows different events during which both Potomac and Anacostia River flow were high. 

Therefore, the Anacostia River flooding had no independent impact as a flood driver in 
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Washington, DC. However, we used the Anacostia River flow as an upstream boundary 

(USGS gage: 01651000 and 01649500) for the Delft3D FM model to simulate the water 

level in the full model domain.  

In order to evaluate the impacts of storms surges or coastal effects, we relied on a 

downstream boundary condition at Lewisetta, VA (NOAA station: 8635750) that would 

represent the influence of the coastal water levels from the Chesapeake Bay towards 

flooding in Washington, DC. Sewells Point (NOAA station: 8638610) water level data 

was also used as a proxy to complement the missing data at Lewisetta for the years of 

1931-1979. Sewells Point station is about 134 km downstream to Lewisetta (See details 

in Figure D2 of Appendix D). Studies also suggest that local winds can have an effect on 

water levels in the Potomac River (Mashriqui et al., 2014; Wang et al., 2015). Therefore, 

we relied on the Washington, DC station (NOAA station: 8594900) as a proxy for wind-

driven flooding in DC and collected water level (period: 1931-2019) and wind (period: 

2008-2019) data from this station. Moreover, the streamflow at Rock Creek (USGS gage: 

01648000) and rainfall at the Washington Reagan National Airport (COOP: 448906) 

were used to represent urban runoff driven flood conditions.   

There is only one station for wind data in Washington, DC, but it provides a 

reasonable proxy for the impact of wind on water levels. We analyzed the impact of wind 

collected from the DC station to the water level of the same station. Therefore, this 

minimizes the variability of wind impact on water level. Similarly, the rainfall is highly 

variable in the region. Moreover, the Potomac River watershed covers a significantly 

large area. While Little Falls flow includes the rainfall impact in the large upstream 
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watershed, there is still rainfall over the urban areas which contribute to inland flooding 

separately. In order to account for urban flooding, we selected one station at Rock Creek 

as a proxy to represent local rainfall generated urban flooding because the only rainfall 

station in the region, located at Reagan Airport, no longer provides observed data. The 

stream flows in Rock Creek and the other adjacent streams are presented in Figure B6 

(Appendix B). 

In this analysis, the station names were presented in short forms like Little 

Falls = LF, Washington, DC = DC, Lewisetta = LWT, Anacostia = ANA, Sewells 

Point = SWP, and Urban Runoff or Rock Creek = RC. The study area with the locations 

of the stations upstream and downstream of Washington, DC is shown in Figure 1. 

 

 

 

 
Figure 1 Study area with the locations for available data (UP1 = upstream boundary at Potomac River, UP2 = 

upstream boundary at Anacostia River, Runoff = urban Runoff boundary, and DOWN = downstream boundary 

at Lewisetta) 
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The data analysis was divided into three periods: a) 1991-2019 b) 1980-1990 and 

c) 1931-1979. Data for the most recent period (1991-2019) was available with the 

smallest recording interval time (15 minutes from the USGS and hourly from NOAA). 

On the other hand, from 1980 to 1990, the USGS data (LF flow) is only available on a 

daily average temporal scale and it was converted into daily maximum data. The 

converted dataset was validated against the LF flow from 1991-2018 with an agreement 

of R
2
 = 0.97. See Appendix D (Figure D1, D2, D3, and D4) for further details. R

2 

describe the degree of collinearity between datasets. The correlation coefficient, which 

ranges from −1 to 1, is an index of the degree of linear relationship between two observed 

and simulated. If correlation co-efficient (r) = 0, no linear relationship exists. If r = 1 or 

−1, a perfect positive or negative linear relationship exists. Similarly, R
2
 describes the 

proportion of the variance in measured data explained by the model. R
2
 ranges from 0 to 

1, with higher values indicating less error variance. Typically R
2 

values greater than 0.5 

are considered acceptable, indicating that the simulated data can significantly represent 

the observed values (Moriasi et al., 2007). 

In order to make the daily maximum water level at LWT consistent with the LF 

daily scale, the daily water levels were calculated for 1980-1990 from the hourly data. 

From hourly data of Lewisetta water level, we selected the maximum value from each 

day between 00 hours to 23 hours. A flowchart is presented to summarize the processing 

of the data in Appendix D (Figure D4). The dataset from 1931-1979 also only had daily 

maximums, except that SWP data was used as a proxy to missing LWT data. The proxy 

dataset was used after calibrating, validating (period 1991-2019),  and adjusting for 
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5 hours of time difference to correspond with the LWT observation, presenting a R
2 

value 

of ~0.7 (Appendix D). While the datasets from 1931-1979 were analyzed to understand 

the impact of flood drivers, these results are not presented in the figures. The data 

analysis mainly focused on the most recent 1980-2019 dataset as all the LWT, LF, and 

RC stations had available data.  

The National Weather Service (NWS) provides different flood stage values such 

as Action, Minor, Moderate, and Major at different stations across the nation (National 

Weather Service, 2020c), which were used to identify and classify flood levels at the DC 

station, as a proxy of flood levels in the DC region (Table 1). The levels displayed are 

station or point measurements by NWS. These station measurements also represent the 

same flood types in the surrounding area. If the stage at any station is equal to or above 

Action stage, it is identified to be at flood stage. A flood day was defined as a day in 

which daily maximum water levels at DC equaled or exceeded the NWS Action stage. On 

the other hand, flood event duration consisted of a number of days during which the DC 

station was flooded continuously above action stage, and therefore, the duration was 

variable.  

In this paper, water level exceeding the action stage is considered as flooding if 

no specified flood stage is mentioned. The areas impacted by compound flooding in the 

region, by definition are close to the tidal-riverine environment and are well represented 

with a proxy station such as the Washington, DC station. Water level in DC has been 

used by NWS (see Appendix E) as well to identify the flood inundation in the city. We 

used a similar approach where the flooding in DC area can be estimated by the water 
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level at DC station. In practice, a flood warning is issued when Moderate or Major 

flooding is expected during an event (NOAA, 2020c). In order to use a consistent unit 

system, the vertical datum was converted from NWS stages to NAVD88 stages, and the 

units from feet to meter for this study. Finally, a rating curve data from the USGS was 

used to convert LF and RC streamflow data into water levels (Equation D3, Appendix D) 

to compare with the NWS flood stages. 

 

 

 
Table 1 National Weather Service flood stage categories (NOAA, 2020c) 

Stations (Datum:NAVD88) Action Minor Moderate Major 

LF (stage m) 

Estimated (flow m
3
/s) 

1.52 

~ 610 

3.05 

3790 

3.66 

5100 

4.27 

6450 

DC (stage m) 0.7 0.85 1.19 1.7 

LWT  (stage m) 0.51 0.66 0.82 0.97 

 

 

 

1.2.3 Flood Types in Washington, DC 

The four flood drivers analyzed for this study are: riverine flow, coastal water 

level (storm surge), urban runoff, and local winds. In order to estimate the flooding 

potential of different flood drivers at the DC station, each flooding event in the historical 

period was classified as river flood, coastal flood, compound flood and other flood (to 

potentially include urban and wind-driven flooding).  The basic assumptions for our 

analysis were: 

i. River flood: DC flooded only due to high riverine flow from LF (LF>1.52m 

stage) and LWT was below Action stage; 
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ii. Coastal flood: DC flooded only due to high coastal water level from LWT 

(LWT> 0.51m stage) and  LF was below Action stage; 

iii. Compound flood: LWT, LF and DC were all flooded (LF > 1.52 m, 

LWT > 0.51 m stage) during the same event. The term ‘single-peak compound 

flood’ or here after ‘compound flood’ was used when the flooding event had only 

one peak resulting from both riverine flow and coastal water level for the 

duration of the event.  

iv. Multi-peak compound flood: a ‘compound flood’ event that had more than one 

significant flood peaks at the DC station during the same event, both from 

riverine flow and coastal water level over multiple days.   

v. Other flood: DC was flooded (DC > 0.7 m stage) but neither LF nor LWT 

flooded (LF < 1.52 m, LWT < 0.51 m stage).  

The sources of such flooding can be either runoff or wind. The runoff is actually a 

proxy of the rainfall-generated local urban runoff and represented by the streamflow in 

Rock Creek. Runoffs generated from nearby streams (smaller watershed) are termed as 

urban runoff in this study. Such runoff may not be always the contributing factors for 

flooding in DC. However, in some cases, when there is a high intensity rainfall within 

short period of time, the resulting runoff can be a dominant flood driver. Moreover, wind 

speed in certain directions can also contribute to flooding in DC by increasing the water 

level. For example, during the other flood in 2012, the DC peak was at the Minor stage 

but neither LF nor LWT could reach the Action stage. Such events are usually generated 

from wind or local runoff. 
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Examples of these four types of flooding (river, coastal, compound, and other) 

events are showed in Figure 2. During Hurricane Isabel in 2003, a Major coastal water 

level from LWT generated the first flood peak in DC. After few hours, DC started to 

reach flood stage again due to a high riverine flow that hit the station and generated two 

other peaks in the next two days. This event had three types of peaks: one Major flood 

peak from coastal water level, one Minor flood peak from riverine flow, and then a 

Moderate flood peak from both riverine flow and coastal water level. During the other 

flood in 2012, the DC peak was at the Minor stage but neither LF nor LWT could reach 

the Action stage. In some days, LF or LWT were above action stage but DC did not have 

any flooding. Such events were classified as no floods. Although our study did not focus 

on this category, such events helped to demonstrate the impact of flood drivers in 

reducing the peak at DC. 
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Figure 2 Different types of flooding in the study area (blue dotted line is flow at Little Falls, black dotted line is 

water level at Lewisetta and black firm line is water level at Washington, DC. Time is in UTC) 

 

 

 

Flooding events from different hurricanes were also classified based on these four 

types. Due to the unavailability of continuous hourly data, the hurricanes were analyzed 

for the period of 1991-2019. In the years 1994 and 2004, the stations had a large amount 

of missing data (Jan-Sep) and no significant flooding occurred during the last three 

months (Action flood of 0.82 m in 1994 and Minor flood of 1.04 m in 2004). Therefore, 

those years were excluded from the daily flood analysis.  

 

1.2.4 Impact of the Flood Drivers 

The contribution of each flood drivers at the DC station was evaluated 

considering multiple factors. Time lag between the DC peak and Lewisetta or Little Falls 

peak was estimated by plotting a large number of events. The duration of an event in DC 

was also estimated to define how long flood waters can stay in the area when a flooding 
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occurs either from a single driver or multiple drivers. Time lag was an important 

parameter in classifying the peak water level in DC. The time lags were measured for 336 

storms during 1931-2019 by calculating and analyzing the time of peak for the flow and 

water levels at different stations. It was observed that the peak at DC occurs 6-8 hours 

after the peaks at Lewisetta. However, the flow at Little Falls and water level at DC start 

to increase almost at the same time and decrease also at the same time, therefore time lag 

is zero for these two stations. A detailed method on time lag is added to the Appendix B 

(Figure B3 and Table B1). The flood components at different stations are presented in 

Figure 3, where ∆t is the time difference between the peaks at upstream riverine flow 

(LF) or downstream water levels (LWT or SWP) and the peaks at DC, ∆d is the total 

duration of an event in any station, and the ∆F values show the magnitude of the water 

level above the action stage. The main focus in this study was the ∆d and ∆F for DC, 

meaning the magnitude and duration of flood at DC. The value of ∆t between LF and DC 

is approximately 0 hours while between LWT and DC is 6-8 hours. The subscripts 

represent the station names (Little Falls - ∆Flf, Washington, DC- ∆Fdc, Lewisetta -∆Flwt, 

and Sewells Point - ∆Fswp). Water level peak at DC were presented as total water level 

(FDC or ∆Fdc + action stage) where, FDC = impact from LF + LWT+ other flood drivers.  
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Figure 3 Flood components at different stations (purple line shows streamflow and blue line shows water level) 

 

 

 

A bivariate probability distribution was generated using the riverine flow and 

coastal water levels data to identify the range of flow and water level that are more likely 

to coincide and cause flooding in DC. The two variables, flow in Little Falls and surge in 

Lewisetta are considered independent due to the low correlation (0.16) and lower R
2
 

(0.01) values between them (presented in Appendix C). Annual maximum flow at Little 

Falls and annual maximum water level at Lewisetta were used to generate a bivariate 

probability distribution. Annual maximum flow at a range between 0-10000m
3
/s with an 

interval of 1000m
3
/s and water level range of 0-2m with an interval of 0.2m was used to 

generate the probability distribution. Chi-square goodness-of-fit test was used to 

determine how well the data fits into normal distribution and the test decision h = 0 
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proved the data to have normal distribution at the 5% significance level. Correlation 

matrix may not provide a complete understanding of the interactions between the drivers 

(Moftakhari et al., 2017), it can still provide an understanding of the dependence between 

the drivers. However, a high correlation (0.91) between coastal water level and DC flood 

level was observed. Based on previous numerical studies  (Mashriqui et al., 2014; Feng 

and Brubaker, 2016;  Feng et al., 2017; Khalid and Ferreira, 2020) and our high 

correlation results, we have demonstrated that Lewisetta or coastal water level has 

significantly higher impact on DC flood level (dependent variable) than any other drivers. 

The independent variables or the flood drivers were weakly correlated (<0.35) and the R
2 

values are less than 0.1(Appendix C). A multivariate regression analysis (Table 2) was 

performed for estimating the relative contribution of the flood drivers (riverine flow, 

costal water level, urban runoff, and local wind speed and direction) to flooding at the 

DC station. We selected 336 storms from 1931-2019 and generated scatter plots for 

estimating the R
2
 values and also the correlation matrix. The time period for the 

regression analysis was 2008-2019 due to the availability of continuous wind data.  

 

 

 
Table 2 Regression Outputs 

Regression Statistics 

No. of Observations 336 

R Square 0.75 

Intercept 0.19 

Flood Drivers Coefficients 

LF 0.13 

LWT 0.91 
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The equation for estimating the contribution of each flood river is: 

Equation 1  

LF ∗ RF + LWT ∗ CF + RC ∗  UF + SPD ∗ WF + Intercept = FDC 
 

Equation 2  

LF ∗ 0.13 + LWT ∗ 0.91 + RC ∗  0.05 + SPD ∗ (  0.02)−
+ + 0.19 = FDC 

 where, RF = River factor, CF = Coastal factor, UF = Urban factor, WF = Wind 

Factor. The units of the drivers are meter for LWT, LF, and RC because flow is 

converted to water level using the rating curve equation for respective stations. Wind 

speed (SPD) unit is m/s. RF, CF, and UF has not unit. Unit of the Intercept is meter. 

Wind factor, WF is in seconds, so that (m/s)*s = m. 

1.2.5 Numerical Modeling of Wind Impacts at the Washington, DC Station  

Due to the short data record and complex changes in magnitude and direction of 

the wind in the region, it was difficult to isolate the impacts of wind forcing from the 

other flood drivers. Note that major wind-driven circulation in the Chesapeake Bay is 

already taken into account on the coastal water levels from LWT. However, the effects of 

local winds impacting water levels between LWT and the DC station are not captured 

when using the water levels in LWT as a proxy for coastal effects. Therefore, in order to 

expand the wind conditions observed in the shorter historical period and isolate its 

impact, a set of numerical model simulations were performed. The Potomac and 

Anacostia Rivers were modeled as unstructured numerical grids using Delft3D Flexible 

Mesh Suite (Deltares, 2019). The study area was divided into three reaches along the 

Potomac and the Anacostia River: Upper Potomac, Lower Potomac, and Lower 

Anacostia. Rock Creek was added as a tributary to the model. Therefore, the model had 
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four boundaries: Little Falls, Lewisetta, Anacostia, and Rock Creek. A Manning’s 

roughness coefficient of 0.015 was used for all the grids with a uniform viscosity value of 

10m
2
/s after calibrating the model. Detailed calibration on Manning’s n and horizontal 

diffusivity and viscosity are provided in Appendix A. The hydrodynamic model simulates 

water level only within the rivers. However, as mentioned earlier, information of this 

simulated water level can be translated to the inland inundation. Two observation stations 

were added to monitor the water level outputs. One was near Dahlgren, VA and the other 

one was at the Washington, DC gage location.  

The model was set-up with the upstream and downstream boundary conditions 

using streamflow and water level data respectively similar to the proposed study area. 

The highest maximum observed wind speed at Washington, DC station during the 

historical period (2008-2019) was approximately 15 m/s. However, maximum wind 

speed in the International Airport at Dulles and Reagan National Airport (location shown 

in (Figure 1) during 2000-2010 was approximately 30 m/s  (Lombardo and Ayyub, 

2015). Therefore, we used a maximum wind speed of 30 m/s for the model simulations. 

In this study, 30m/s speed is considered as the maximum range for model simulations to 

provide a high end margin. The airport stations mentioned in the study are close to the 

DC station. Also, we are not considering impact of wind directly to the urban 

environment; rather we only consider the impact of local winds on the DC water level, 

which is later translated to flood inundation in the urban area. This is a hypothetical 

evaluation to investigate the potential impacts of different local wind magnitudes and 

direction to the local flood levels. To provide further details, inland flood inundation 
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based on DC flood stages is presented in Figure E3 of Appendix E. Northward wind in 

the Potomac River can push the water downstream and Southward wind can push the 

water upstream (Wang and Elliott, 1978). Wang et al.(2015) also identified wind as a 

potential factor for Potomac River along with fresh water flows and tides. The most 

frequent wind speed in the station was 1-6 m/s, while the threshold for significant impact 

was 5.5 m/s. Therefore, the wind impact on flood levels at the DC station was 

investigated by forcing the model with 2, 4, 5, 10, 15 and 30 m/s wind in both North and 

South directions for other events only. In the next step, all the four types of flood (river, 

coastal, compound, and other) and no flood events were forced with 30 m/s wind speed 

to six directions for calculating the probable maximum change of DC peaks due to local 

wind effects. These simulations helped to estimate the dependency between the water 

level and wind speed at different speeds and directions.  

1.3 Results and Discussions  

1.3.1 Quantification of Flooding in Washington, DC  

1.3.1.1 Identifying Flood Days for Each Flood Types 

The Washington, DC Major floods in DC were not as common as the Moderate 

floods (Figure 4). It was evident that Moderate flooding can occur before and after Major 

flood days indicating the potential for higher peaks and longer flood duration. For 

example, a Major flood impacted the area in Nov 5
th

, 1985 while the previous day had a 

Moderate flooding. In the 62 days of Moderate flooding during 1980-2019, March had 

the maximum Moderate flood days. The highest number of moderate flood days was 
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observed in 2018 (14 days) and the second highest was in 2011 (9 days). As expected, the 

Action and Minor floods were more frequent but with lower impacts. 

 

 

 

 
Figure 4 Number of flood days in Washington, DC for each flood stage category  

 

 

 

The classification of the flood days per flood driver (river, coastal, compound, 

and other) is shown in Figure 5. This analysis demonstrates an increasing linear trend in 

the number of coastal flood days from 1980 to 2019, which can be correlated to the long-

term trend of increasing water levels in the Chesapeake Bay. For example, the SLR rate 

for Lewisetta is 0.0054 m/year with 95% confidence interval of +/- 0.00061 m/year 

(NOAA, 2020a). On the other hand, river flood days did not have any specific detectable 

increase over the years. The river flood days were higher during two of the Major flood 

years (1996 and 2003) and also in 1998 and 2018.  

A detailed analysis to identify the cause of other floods suggested that the urban 

runoff, wind speed, and direction provided significant contributions for the other flooding 

events. Few events were the product of urban runoff or higher streamflow from adjacent 

small streams. However, further analysis suggested that these events can cause 
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widespread urban flooding while not causing considerable impact in the DC river station. 

Dependence between surge and rainfall was studied by Paprotny et al. (2018) in areas 

close to the ocean and such dependence was evident along the coastlines of the United 

States (Wahl et al., 2015). Besides, precipitation and extreme winds can co-occur in some 

coastal areas (Zscheischler et al., 2018), which was evident during the runoff induced 

flood of June 2015. However, in local scale, high dependence was not present between 

surge and urban runoff in DC because of the spatial difference resulting from the 160km 

distance from the bay. Rainfall induced runoff was observed in Rock Creek 1-2 days 

before the surges from hurricanes Fran 1996 and Isabel 2003 because it was raining in 

DC region as well. However, the correlation of these variables was very low (0.01). 

Moreover, the combination of wind speed > 5.5 m/s and extreme rainfall induced urban 

runoff before and after coastal storms can contribute to flooding in DC.  

 

 

 

 
Figure 5 Classification of the DC flood days 
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1.3.1.2 Maximum Flood Potentials 

Flood events were ranked based on magnitude and duration as presented in Figure 

6. Major flooding in DC resulted mostly from compound flooding events. However, the 

river flow also had the potential to cause Major flooding in the National Capital Region 

in one event. Among the four Major events, three were compound flooding and the other 

one was a river flood. These four events caused widespread damage and are known as 

1985 Election Day flood, The Winter flood of January 1996, Hurricane Fran 1996, and 

Hurricane Isabel 2003. The blue bar above Major flood line in Figure 6 shows the river 

flood of 1996. The flood of Jan 1996 originated about two weeks before the event from 

snow melted increased river flow due to high temperature and rainfall (US National 

Weather Service Baltimore/Washington, 2020). This was a fully freshwater or river flood 

from upstream riverine flow and was equally damaging as the tidal flood of 1985. The 

Tidal Basin and Old Town Alexandria also experienced severe flooding during this event. 

There were 34 Moderate flood events with 23 compound floods, 9 coastal floods and 2 

river floods during 1980-2019. Total number of other flood events was 213 while the 

total number of river, coastal, and compound floods was 251. Among the eight Major 

floods from 1931-1979 (not shown in figure), three were river floods (Great Potomac 

Flood of 1936, Record Flood of 1942, and Hurricane Agnes in 1972). The other five 

events were compound events, including the Chesapeake-Potomac Hurricane of 1933 and 

Hurricane Hazel of 1954. Maximum duration during this time period was 11 days for 

compound flood, 10 days for river flood and 5 days for coastal flood. 
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The ascending order of flood duration shows that flood durations during 

compound events were significantly higher than river or coastal floods in DC. The 

highest five durations (13-22 days) were observed during compound and multi-peak 

compound flood events. A river flood in 2003 had the maximum duration of 12 days 

while for coastal event the maximum duration was 11.5 days in October 2013. The 

timing of the peak for each flood driver (Kew et al., 2013; Klerk et al., 2015; Wahl et al., 

2015; Moftakhari et al., 2017; Wu et al., 2018; Couasnon et al., 2019) or distance 

between the sources of those flood drivers (Zheng et al., 2013) can play important role in 

measuring the compound flood potential. The dependence between the flood drivers can 

be strongest when occurred simultaneously (Svensson and Jones, 2004). However, 

considering only the day of maximum peak can often underestimate the other peaks of 

the same event coming from multiple flood drivers in the consecutive days. The total 

duration of flood provided the scope to estimate the highest maximum flood potential at 

DC by allowing sufficient lag time for all the flood drivers to have their impacts on DC. 

This analysis showed that considering only the riverine flow or coastal water level 

independently would have underestimated the compound flood peaks and flood duration 

at DC during Hurricane Isabel, because the event was a combination of three different 

peaks from coastal and riverine water. Kumbier et al. (2018) suggested that ignoring the 

riverine flow in coastal areas can underestimate the flood extent by 30% and flood depth 

by 1.5m. A summary of the Major floods from 1931-2019 is presented in Table 3. 
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Figure 6 Flood magnitude and duration over the years (1980-2019) 
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Table 3 Major floods during 1931-2019 

Major Flood Events in DC DC WL (m)  Type 

Chesapeake-Potomac Hurricane 1933 2.60 Multi-peak Compound 

Great Potomac Flood of 1936 2.79 River 

Flood of 1937 2.22 Multi-peak Compound 

Record Flood of 1942 2.95 River 

Hazel 1954 1.93 Compound 

Hurricane Agnes 1972 2.22 River 

Flood of 1974  1.84 Compound 

Flood of 1979 1.76 Compound 

1985 Election Day floods 2.02 Multi-peak Compound 

The Winter Flood of January 1996 2.04 River 

Hurricane Fran 1996  2.06 Multi-peak Compound 

Hurricane Isabel 2003 2.73 Multi-peak Compound 

 

 

 

1.3.1.3 Flood Type Attributed to Flood Stages 

The relative number of different flood types for each flood stage is shown in 

Figure 7. Most of the Action stages at DC were attributed to the other flood types 

resulting either from local winds or urban runoff. Based on the detailed analysis, urban 

runoff and wind were the flood drivers that caused flooding in DC when neither LF nor 

LWT had any flood level. Therefore, these two drivers were attributed to the other 

flooding category in the area. The plot is shown in the Figure E2 in Appendix E. The 

floods when LWT<Action stage and LF<Action stage are flooding in DC that cannot not 

be explained by these two drivers. During those events, either runoff was high or wind 

direction was upward from Bay towards DC. Such Action stages were also generated by 

river and coastal floods but those were much less in number compared to the ones 

generated by wind and runoff. While Minor stages were mainly the result of coastal 

floods, some river and compound floods and very few other floods also brought Minor 

flood stages in DC. Moderate and Major flood stages were mainly the result of 
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compound floods. Although coastal floods could reach Moderate flood stage in the 

region, these did not show any potential for generating a Major flood stage. However, 

river flood alone did show the potential for such Major flood stage during this period. 

 

 

 

 
Figure 7 Relative number of different flood types in DC 

 

 

 

1.3.1.4 Relevance of Each Flood Components 

In order to understand the relevance of the flood drivers, different flood types and 

their magnitudes at LF, LWT and, DC are shown in Figure 8. The circles in this plot are 

not single events; rather they represent all the significant peaks of any event. For 

example, Isabel 2003 was a multi-peak compound flood; one peak was from coastal water 

level (LWT) and other peaks were from riverine flow (LF) and a combination of both. 

This event had three circles, indicating the relation between first peak at DC with LWT 

peak, the second peak at DC with LF peak and the third peak at DC with another LF and 

LWT peak. When LF and LWT were at Action stage, they generated an Action stage 
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flood at DC. It was also evident that, most of the time, floods from LF did not reach DC 

if LF was in Action stage and LWT was below the threshold value of 0.35m. The 

threshold range of 0.35 m-0.49 m water level at LWT had the potential to cause flooding 

in DC, although it was below Action stage (0.51 m) in LWT itself. Similarly, a threshold 

for the stage at upstream (LF) was estimated as 1.4 m, which can cause flooding in DC 

although LF is below Action stage (1.52 m). Therefore, several combinations of the 

threshold values and flood stages for the flood drivers can be attributed to the flooding in 

DC. Sadegh et al. (2018) and Ward et al. (2018) used an advanced statistical technique, 

copula based methods, for estimating the co-occurrence of flood drivers by using annual 

design discharge and water level.  

An Action stage water level at LWT can generate a Moderate flood at DC when 

high winds speed pushes water upstream. No such impact was observed on river flood at 

DC. Therefore, the wind impact was higher on tide dominated floods compared to flow 

dominated floods. Winds with speed >5.5 m/s can push water from the Potomac towards 

the Chesapeake Bay and reduce the water level in DC (Mashriqui et al., 2014b). For 

example, in the presence of a high Northward wind, Major flood stage at LWT created 

Minor floods at DC. The green circles in the light green shaded area above the Major 

flood line show such events. Other floods can be attributed to urban runoff or wind speed 

or in some cases threshold values of costal water level and riverine flow. Thus, by 

analyzing the relevance of the flood drivers, we could distinguish the situations favorable 

for Action, Minor, Moderate, or Major floods in DC.  Some of the major coastal flooding 

(in LWT) is shown as minor (in DC), because the water level was major in LWT but it 
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caused a minor flood in DC. This indicates that probably there was another flood driver 

reducing the impact of LWT water levels at DC by decreasing its peak. In later discussion 

in the manuscript (Figure E2 in Appendix E), we hypothesize that this is due to the local 

wind effects. We further demonstrate that the local wind can impact the water levels at 

the DC station by generating minor floods even though LWT water level is high enough 

to cause a major flooding. Similarly, wind direction and speed can change a water level 

below Action stage and increase to an Action or higher stage flood. Furthermore, we 

provided historical evidence from storms in the paper (Figure 13) in which these exact 

effects are observed. 

 

 

 

 
Figure 8 Relevance of each component to flooding in DC. Brown circles in the purple shaded area show the 

Major river flood peaks that resulted in Major peaks in DC. Brown circles in the pink region indicate Major 

compound flood peaks. In this region, an orange circle is a Moderate flood at DC resulting from both LF and 

LWT flood stages. The circles in the white region are the Other flood peaks. 
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1.3.1.5 Flooding during Hurricanes 

The Chesapeake Bay is often impacted by major flooding from the Atlantic 

hurricanes. A Category 2 hurricane, like hurricane Isabel in 2003, has the potential to 

cause severe damage to the region (Shen and Gong, 2009). Hurricanes of categories 4 and 

5 have almost doubled in both number and proportion in the period of 1970-2004 for all 

the ocean basins (Webster et al., 2005). Therefore, the hurricanes discussed in the 

previous sections, along with some additional events in this region, are also attributed to 

the different flood types. Among the 29 hurricanes considered in this study (Figure 9), 

one resulted in a river flood at DC (Arthur in 1996), seventeen hurricanes caused coastal 

floods and six caused compound floods. During hurricanes Irene, in 2011, and Floyd, in 

1999, the LWT station was above Major and Moderate flood stages (1.41 m and 0.83 m 

respectively) but the water level at DC was below flood stage causing a no flood 

condition. Again, during the river flood of 1996, riverine flow (LF) was at Major flood 

stage but coastal water level (LWT) was below Action stage. During the river flood, no 

wind impact was present to reduce the water level at DC; therefore, a major flood in LF 

generated a major flood in DC. Hurricane Ernesto, in 2006, brought a Moderate flood to 

DC from Major coastal waters (LWT), while the riverine flow (LF) was below Action 

stage. The negative impact of wind reduced the impact of coastal water level in this case. 

A detailed plot for all the events with LF, LWT, RC, and wind are presented in the 

Appendix E, Figure E2 for better understanding. Other types of floods were observed 

during hurricanes Bob in 1991 and Andrea in 2013. During hurricanes, surge-driven 

coastal water levels can travel to DC and increase the water level resulting in a coastal 
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flood. A study by Mashriqui et al.(2014) showed that storm surge is a dominant factor for 

flooding in DC during hurricanes. However, a river flood during a hurricane can also 

occur due to high rainfall associated with the hurricanes, which was the case for 

hurricane Arthur in 1996. High precipitation increased the flow in the Potomac and 

Anacostia Rivers and adjacent small streams and caused flooding in DC. In some cases, 

both high riverine flow and coastal water level generated compound floods like 

hurricanes Fran 1996, Isabel 2003, Cindy 2005, Hanna 2008, Sandy 2012, and Bonnie 

2016.  

 

 

 

 
Figure 9 Flood types during hurricanes in the region from 1980-2019 
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1.3.2 Implication of the Flood Drivers  

1.3.2.1 Impact of Each Flood Driver 

For this study, we focused mostly on the physical interaction and the local impact 

of upstream flow, downstream water level, wind, and urban runoff in the DC station. The 

regression analysis was done considering the water level at DC to be the dependent 

variable and LWT water level, LF flow, wind, and urban runoff as independent variables 

(Appendix C). The flood drivers showed correlation less than 0.35, which corresponds to 

weak correlation (Taylor, 1990). LF flow is independent of the local urban runoff in RC 

because the rainfall in Rock Creek is not the same that increases flow at LF. Moreover, 

LF flow is the contribution from the large Potomac River watershed. Although DC is 

considered a coastal city, the location is about 160km far from the coastal station at 

LWT. Therefore, a rainfall in DC does not necessarily mean a rainfall in LWT or vice 

versa. Moreover, surge from LWT does not travel up to LF which is a totally flow 

dominated station neither the LF flow reaches down to LWT. However, a rainfall in LWT 

is certainly correlated to the surges in LWT. Similarly, LF flow is dependent on the 

rainfall in Potomac watershed, but not the urban runoff at RC. The DC station is located 

between a fully flow dominated station at LF and a fully coastal dominated station at 

LWT and therefore presents an interesting location to study the impact from both. 

We use the term impact of flood drivers as the contribution of the drivers in terms 

of water level to DC flood peaks. Coefficients from the regression analysis were used to 

quantify the impact of each flood driver to the flooding in DC. The R
2
 value was 0.75 and 

the intercept was 0.19 (Table 2). The intercept in the equation is an expression of the 
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difference between the elevation of downstream and the upstream stations. Adding the 

0.19m depth makes the water level at upstream and downstream equivalent. For example, 

the action stage at Washington DC is 0.7m while the action stage at LWT is 0.51m which 

shows a difference of (0.7-0.51) = 0.19m. Coefficients from the regression analysis were 

named as: river factor = 0.13, coastal factor = 0.91, urban factor = 0.05, and wind 

factor = - 0.02 if wind at DC is going in downstream and 0.02 if the wind is coming to 

DC from Chesapeake Bay. For example, the impact of 30 m/s Southward wind can be 

calculated as: 30*wind factor = 30*0.02 = 0.6 m water level change in DC and an added 

intercept of 0.19 results in 0.6+0.19 = 0.79 m. The total water level at DC station (FDC) 

was a combination of the relative contribution from all of these flood drivers (Equation 

2). The results shown in Figure 10 are the expected change in the DC water level caused 

from a range of possible values of the flood drivers (from Equation 2) based on the 

historical data. 
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Figure 10 Impact of the individual flood drivers on the flood stage at DC station with added intercept value of 

0.19 

 

 

 

1.3.2.2 Impact of Sea-level Rise 

The maximum observed coastal water level at LWT was ~1.48 m during the 

historical period. However, based on the historical rates of sea-level rise (SLR) by 

NOAA for the LWT and DC station, mean sea-level increase of 0.54 m and 0.34 m 

respectively are expected for the next 100 years (NOAA, 2020a). The projected values of 

SLR are usually used to estimate increased flood consequences in the future, although the 

actual change in SLR might be different than the estimated values. By adding the SLR 

value, LWT water level can be expected to reach ~2 m for the same historical conditions 

in 2120. As this is a simplistic approach that uses projected values from NOAA, the 

predicted future impacts might not be accurate, but provides an indication on how the 
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increase in sea-level will impact the flood levels in DC. In order to evaluate these 

changes, the water level changes in DC due to the coastal water level of 0-2 m is 

calculated and shown as a black dashed line in Figure 11. One set of scatter plots (orange 

circles) represent the water level peaks at LWT and DC during historical coastal floods 

and the other set (green circles) represent the same peaks with DC and LWT sea level rise 

added to the values. A coastal water level of 2 m can generate 2*0.91 + 0.19 = 2.01 m 

water level in DC as calculated from the regression line. However, the green circles show 

that the water level at DC can be 1.95 m. This is because the dashed line is considering 

only the water level, while the green circles have impacts from other flood drivers 

associated with the historical values. 

 

 

 

 
Figure 11 Potential sea level rise impact on LWT and DC water level 
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1.3.2.3 Probability of Flooding from Upstream and Downstream Boundary 

In order to identify the likelihood of flooding in DC from different flood drivers, a 

bivariate probability distribution (Figure 12) was generated using the upstream riverine 

flow and downstream coastal water level. A multivariate probability in this study was 

disregarded because of the complex temporal variation of wind speed and direction. 

Moreover, urban runoff is rarely high enough (flash flood events) to make an impact on 

DC flooding alone. However, those events were not presented in Figure 6 because the 

urban runoff or wind only driven floods usually generate action stage floods and in some 

cases minor floods. There are more than 300 such events which will disrupt the visibility 

of the figure. So, all the flood events including other event numbers are shown in Figure 

7. The bivariate distribution showed that the probability of riverine flow being in the 

range of 1000-2000m
3
/s while water level in the range of 0.6-0.8 m is 0.02. The 

maximum probability was 0.09 when LF flow range was 3000-4000 m
3
/s and LWT water 

level range was 0.8-1.0 m (Table 4). Furthermore, it was observed that compound events 

such as hurricane Sandy 2012, Sep 2011 flood, and Mar 2010 flood had the three highest 

probabilities (0.09, 0.06, and 0.05 respectively). The flood of Sep 2011 was a Minor 

flood and the other two events were Moderate floods. River flood events like Jan 1996 

(flow 9000-1000 m
3
/s and water level 0.4-0.6 m) had the lowest probability of 1.77x10

-5
. 

The water level DCExp, calculated from Equation 2, shows the peak at DC to be expected 

when riverine flow and coastal water level are the dominant flood drivers without any 

wind or runoff. DCObs is the observed flood peak at the DC station. 
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Figure 12 Bivariate probability between LF (∆x = 1000) and LWT (∆y = 0.2) 

 

 

 
Table 4 Flood probabilities with different flood types and flood stage (table from image file) 

 
 

 

 

1.3.3 Simulation of Wind Effects on the Flooding in DC 

1.3.3.1 Wind Impact on DC Water Level 

The goal for the model simulation was to understand how the local winds can 

impact the water levels in DC during different flood events. The importance of winds on 

the water levels in tidal rivers is extremely variable and depends on the direction, 
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consistency, and duration of the wind speed (Schaffranek, 1987). Historically, wind 

speed was usually higher during the months of June, July, August, and September. 

Seasonal wind analysis showed that other flood types were more frequent in the months 

of Jul, Aug, and Sep when Southward wind was dominant, therefore impacting the water 

levels upwards. On the other hand, during Hurricane Irene in 2011, significantly high 

wind speed (>5.5 m/s), aligned in a consistent Northward direction pushed the water 

downstream, and therefore, the water levels at DC went below flood stage (Figure 13) 

even when water level at LWT was above action stage. The reverse scenario, that is, 

when winds pushed the water high enough to cause flooding in DC, while LWT and LF 

were below flood stage, was evident in Nov 2019. Similar scenarios in several other 

events were investigated over the years. As expected, the wind impact was higher when 

aligned directly towards North (N) or South (S) rather than at an angle (NNE ESE, ENE, 

SE, NE, WSW, SW, SSE, SSW, NNW, WNW, and NW).  
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Figure 13 Northward and Southward wind impacts on DC flooding  

 

 

 

1.3.3.2 Wind Impact on Other floods 

In order to further explore the impact of local winds on the water levels in DC, 

simulation outputs are shown with different wind speed scenarios (Figure 14) in which 

wind was the only dominating factor for flooding (other flood events). It was evident that 

LWT and LF water level thresholds and Southward wind of 15 m/s can cause Action 

stage flooding when wind is blowing for the duration of at least 15 hours. A 30 m/s 
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Southward wind with the same boundary conditions can cause Moderate flood stage. If 

the 30 m/s wind is forced for a shorter period of time (5 hours), the flood stage can reach 

only up to a Minor level. However, during the available historical records, high wind 

speeds (30 m/s S) blowing for over 15 hours were not observed in this region. The wind 

speeds of 2, 4, 5, and 10 m/s alone were not sufficient to cause flooding in DC when LF 

and LWT were below Action stage. 

 

 

 

 
Figure 14 Impact of wind speeds on DC water level during other floods considering duration of over 15 hours. 

 

 

 

1.3.3.3 Wind Impact on River, Coastal, and Compound Floods 

Impacts of local winds effects at the DC water levels varied during river, coastal, 

and compound events due to the constant (30 m/s) and consistent N, S, NE, NW, SE, and 

SW wind forcing. Among all the events, as expected, the highest impact was observed 
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from N and S winds, which is presented through the blue bars in Figure 15. For example, 

Hurricane Isabel, in 2003, had an observed peak of 2.73 m at the DC station. The 

simulated water level without local wind forcing was 1.7m. A 30 m/s Northward wind 

forcing decreased the simulated peak to 1.23 m and a Southward wind increased the 

simulated water level to 2.6 m. The results suggest that the historical wind speed was 

probably in a Southward direction as the simulated water level is close the observed value 

with Southward wind forcing (Note: no local wind data available for validation). 

Moreover, the peaks of coastal events, like hurricane Ernesto, and the maximum peaks of 

compound events, generated from coastal water level, like hurricanes Isabel and Sandy, 

were impacted more by the Southward and Northward wind compared to riverine flow 

dominated peaks.  The peak of Jan 1996 flood and the maximum peak of the compound 

flood during hurricane Fran in 1996 were less impacted in comparison to the above 

mentioned coastal peaks, as these peaks were dominated by riverine flow. During 

hurricane Irene in 2011, Northward wind played a significant role by reducing the water 

level up to 0.66 m compared to the ‘no wind’ scenario. The maximum impact, 1 m 

change in water level in both directions, was observed during other event in June 2013. 
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Figure 15 Changes in DC water level due to 30m/s wind during different types of flooding (colored bars 

represent observed water levels at DC) 

 

 

 

1.4 Conclusions 

Compound flooding occurs due to the coincidence of multiple flood drivers and 

can result in significantly higher peaks and longer duration than single flood driver 

induced events. The magnitude and duration of floods in DC can be attributed to the 

impacts from different flood drivers including riverine flow, coastal water level or storm 

surge, urban runoff and local wind. However, the interaction between these flood drivers 

is complex and required extensive data-driven analysis to estimate the contribution of 

each flood drivers on flood stages in DC. The flood events were classified as river flood, 

coastal flood, compound flood and other flood, based on the flood drivers associated with 

the flooding. Moreover, the flood days in DC were categorized as Action, Minor, 
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Moderate and Major flood days. During 1980-2019, four Major floods were observed in 

the DC station, three of which were compound floods (Nov 1985, hurricane Fran 1996 

and hurricane Isabel 2003) and the other one was a river flood (Jan 1996). The other 

floods were mostly the result of low water level and high wind speed leading to Action or 

Minor flooding. In few cases rainfall induced urban runoff events were responsible for 

floods in DC. Although Minor flood stages in DC were mainly generated by coastal 

floods, few river and compound floods could also generate such flood stage. However, 

Moderate and Major flood stages were mainly the result of compound floods.  

The maximum compound flood peak in DC was 2.73 m during hurricane Isabel in 

2003 and the maximum duration of compound floods were around 12-19 days. The 

highest five durations were observed during compound and multi-peak compound flood 

events. Moreover, LF had the maximum peak of approximately 10,000 m
3
/s during the 

river flood of Jan1996 while LWT had the highest peak of 1.48 m during hurricane 

Ernesto in 2006. Results suggested that the coastal water level at LWT alone had the 

highest potential to create flood conditions in DC, although it did not reach the Major 

flood stage during these events. In order to estimate the impact of individual flood 

drivers, coefficients from the multivariate regression of the flood drivers were used as 

factors along with an intercept of 0.19. The impact factors for the flood drivers were: 0.13 

for LF, 0.91 for LWT, 0.05 for RC, and 0.02 for wind speed. For example, a wind speed 

of 30 m/s can have a maximum impact of 30*0.02+0.19 = 0.79 m on water level at 

Washington, DC. Moreover, the interaction between storm surges and riverine flow along 

the Tidal Potomac River presented a complex scenario with the coincidence of high wind 
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speed towards North or South directions. Coastal water level dominated peaks for any 

events were impacted more by the wind compared to river dominated peaks at DC. Sea-

level rise can also have significant impact on the flood peak at DC by increased water 

levels in the Chesapeake Bay.  

The study has some limitations due to the need to interpolate datasets when some 

historical values were missing. Use of the interpolated data might impact the results. 

Moreover, we have used water level values from a proxy station as proxy which is 134km 

far from actual station. The differences in the tidal amplitude might introduce some 

uncertainty even after adjusting the data with regression analysis. The impact of wind 

was studied for shorter period (Jun, 2008 to Dec, 2019) compared to the other flood 

drivers. Wind data and urban runoff from one local station may have introduced bias due 

to the fact that wind and runoff are spatially variable. Furthermore, we have considered 

only one station for studying the compound flood characteristics which has the scope the 

generate uncertainty in the results. The flood drivers for the compound flooding in DC 

were considered independent based on the low correlation (<0.35) and R
2
 (<0.1) values. 

The weak correlation might have some impact which was ignored in this study. The 

advanced statistical technique like copula methods may be implemented in future for 

local flood studies like this to provide further understanding about the flood 

characteristics.  

This study has identified the major flood drivers impacting the Washington DC 

metropolitan area. The results demonstrate the importance to refine the current flood 

forecast and design models in large estuaries by considering the potential complex 
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interactions between the compound flood drivers: riverine flow, coastal water level, local 

wind and urban runoff.  Furthermore, it demonstrates the potential impacts of climate 

change-driven sea-level rise to the compound flooding in this metropolitan area. The 

approach implemented in this study was mainly based on the analysis of historical 

observations of different flood drivers and its interaction in DC. However, this 

methodology can be applied to similar metropolitan areas located in tidal regions, in 

order to identify flood drivers and estimate the contributions of those drivers towards 

urban flooding. The water level in DC, once estimated from the multivariate equation, 

can be translated into spatially variable inland water depth based on the flood inundation 

area provided by the NWS. This can also be a helpful tool to provide inland flood depth 

information during any flood event.  
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2 SPATIO-TEMPORAL VARIABILITY OF FLOODS RESULTING FROM 

MULTIPLE DRIVING MECHANISMS: AN ASSESSMENT ON THE 

URBANIZED WASHINGTON, DC METROPOLITAN REGION 

Abstract: 

Coastal and estuarine cities are vulnerable to compound flooding from multiple 

flood drivers, including high riverine flow, runoff from intense rainfall, and coastal storm 

surges. Spatial and temporal variability of the flooding extent and depth are driven by the 

complex interaction between these flood drivers, which often result in extremely high 

flooding over a longer period of time. While compound flooding hotspots can be 

identified and analyzed at the continental and regional scales, local-scale complexities 

play a major role in the interaction between the flood drivers. In this study, we 

investigated the spatio-temporal variability in inundation extent and depth due to 

compound flooding conditions in the Washington, DC metropolitan area using a two-

dimensional (2D) hydrodynamic model. Results suggest that locations around the study 

area can be locally divided into three zones based on the impact of riverine flow and 

surges: highly riverine flow dominated zone, the transition zone with impact from both 

flow and surges, and coastal surge dominated zone. Flood depths during surge dominated 

events were significantly higher than flow dominated events, almost doubling in some 

locations towards downstream of the river. Coastal flood duration was longer compared 

to the riverine or compound floods adjacent to the river. However, riverine flow and 
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surge was less relevant for the inundation in the urban areas compared to the rainfall 

induced runoff. While riverine flow and surge had a minor impact on the overall urban 

flooding of the National Capital Region, these drivers significantly impacted the regions 

along the main rivers and the small streams with its impacts propagating up to 8km 

upstream. This length or distance of influence depends on the slope of the streams, i.e., 

the distance was lower for steep streams and higher for low gradient streams. Results also 

showed that the region will face increased flooding in the long term future because of sea 

level rise (SLR), particularly during the surge dominated events. This study provided 

scientific insight into the spatially and temporally variable interaction of the compound 

flood drivers and the consequences of such flooding in the metropolitan areas like 

Washington, DC, located along the river-estuarine transition zones. 

2.1 Introduction 

Flooding is one of the most frequent natural disasters resulting in devastating 

impacts on the environment, societies, and economies around the world (Bhandari et al., 

2017; Ammar et al., 2020). The average annual cost of flood damages by coastal surges 

and inland flooding during 1980-2017 was approximately $4 billion in the US (NOAA, 

2018; Afshari et al., 2018). Compound flooding events, due to the simultaneous 

occurrence of multiple flood drivers (e.g. coastal storms, riverine flow, and urban runoff), 

can have significantly higher impacts than flooding from a single driver (Bevacqua et al., 

2019; Hu et al., 2019). The co-occurrence of multiple events can lead to extreme impacts 

even when the single drivers are not at their extreme state (IPCC, 2012; Bevacqua et al., 

2017; Zscheischler et al., 2018; Visser-Quinn et al., 2019;). For example, severe flooding 
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was caused by the joint occurrence of rainfall and coastal flooding during Hurricane Irene 

in 2011 (Liu and Smith, 2016) and by coastal surges and riverine flow during Hurricane 

Harvey in 2017 (Zscheischler et al., 2018) .  

Compound flooding in estuaries is driven by hydrological, oceanographic, and 

meteorological phenomena (Couasnon et al., 2019; Saleh et al., 2017; Bevacqua et al., 

2019). Coastal communities experiencing frequent hurricanes and tropical storms are 

usually subject to flooding from heavy inland rainfall and coastal storm surges (Resio and 

Westerink, 2008; Ray et al., 2011). Few studies have investigated the likelihood of 

compound flood events at the continental scale considering multiple variables (Huong 

and Pathirana, 2013; Bevacqua et al., 2017; Paprotny et al., 2018; Ward et al., 2018). 

Studies (Santiago-Collazo et al., 2019; Bilskie et al., 2014; Kumbier et al., 2018) showed 

that multivariate flood drivers have highly non-linear responses on output variables such 

as flood depth and flood extent (Serafin et al., 2019; Couasnon et al., 2019). Significant 

dependence has been found between extreme rainfall and storm surges (Svensson and 

Jones, 2002; Svensson and Jones, 2004; Zheng et al., 2013; Kumbier et al., 2018) and 

between storm tides and riverine flooding (IPCC, 2014; Leonard et al., 2014; Moftakhari 

et al., 2019) in estuarine environments. A study by Bevacqua et al. (2017) in Ravenna, 

Italy suggested that underestimating the dependence between the ocean and river levels 

may lead to an underestimation of actual flood risk by increasing the return period from 

20 years to 32 years.  

A major issue of flood risk management is the analysis of flood hazards 

(Blumenthal et al., 2018; Dhote et al., 2018) considering the present and future 
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conditions. Future climate projections indicate an increasing probability of compound 

floods along parts of the European (Bevacqua et al., 2019) and the US coasts (Wahl et al., 

2015) bringing additional challenges for the cities, their critical ecosystems, and the 

livelihoods (Cortès et al., 2019; Dickson et al., 2012). Accelerated sea-level rise (SLR) in 

the US East Coast, north of Cape Hatteras, will result in accelerated flooding (Ezer and 

Atkinson, 2014) and the flood risk will be greater under higher SLR and stream flow 

conditions (Feng and Brubaker, 2016). While the Intergovernmental Panel on Climate 

Change (IPCC) reported that the global average SLR during the 20
th

 century was 1.7 

mm/year  (ACSM Bulletin, 2008), local rates and resulting impacts can be much higher.  

Over the past decade, major hurricanes and extreme storm events have impacted 

several urban areas throughout the US. Metropolitan cities, like Washington, DC, that are 

concentrated along coastlines, are exposed to a diverse type of flood hazards which may 

overlap spatially and temporally (Depietri et al., 2018). Similar to New York City (NYC 

Emergency Management, 2015), Baltimore also experiences riverine, coastal, and inland 

flooding (National Academies of Sciences, 2019). On the other hand, Houston (from Gulf 

of Mexico) and Chicago (from Great lakes) are hit by coastal and inland flooding every 

year (National Academies of Sciences, 2019). While riverine and coastal floods are the 

major threats to communities across the US, urban floods can also cause billion-dollar 

losses every year (University of Maryland and Texas A&M University, 2018; Hecht and 

Vogel, 2020). Quantifying the actual compound flood impacts in estuarine urban areas 

presents challenges due to the complex mechanisms of the flood drivers. Compound 

flood hotspots can be identified from extreme flow and storm surge variables but there is 
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greater uncertainty on how the compound flood will propagate into inland flooding 

(Couasnon et al., 2019; Noh et al., 2016). Therefore, compound urban flooding needs to 

be studied and modeled locally due to its limited geographical extent and the physical 

interactions involved (Paprotny et al., 2018; Saleh et al., 2017).  

The objective of this study is to investigate the spatial and temporal variability of 

the compound urban flooding in Washington, DC resulting from multiple flood drivers: 

riverine flow, coastal storm surges, and urban rainfall/runoff. We assessed the impacts of 

the flood drivers in different urban locations along the tidal Potomac River, analyzed the 

flood characteristics of the adjacent small streams, identified the hotspots of compound 

urban flooding, explored how the compound flood propagates into inland flooding, and 

investigated the impact of sea-level rise on the study area. A 2D hydrodynamic model 

was used with a set of possible storm surges and river discharges that are representative 

of the low-probability high-impact (extreme events) and high-probability low-impact 

(non-extreme/frequent) flood events induced by riverine flow, coastal surges, rainfall or a 

combination of all these drivers. While the results are specific to the Washington, DC 

metropolitan region, it provides insights on other metropolitan areas along tidal estuaries; 

therefore, this scenario-based methodology can be used for the flood analysis of any 

coastal metropolitan cities based on the relevant flood drivers. 

2.2 Methodology 

A modeling framework was developed in this study focusing extensively on the 

compound urban flooding with multiple flood drivers. The Washington, DC metropolitan 

region is used as a study area representing coastal metropolitan cities in the US. We used 
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five main steps to construct the flood modeling: i) implementing a hydrodynamic model 

for the region ii) selecting historical extreme flood events to calibrate and validate the 

model iii) producing synthetic time series of riverine flow, surges, and design rainfall iv) 

generating a set of runoff data from rainfall depth, and v) scenario-based simulations 

representing a range of combinations of high and low flow and surges with rainfall 

induced runoff and SLR. Finally, the synthetic events were evaluated for investigating the 

spatio-temporal patterns of flood inundation extent, flood duration, and flood depth. 

2.2.1 Study Area 

The Washington, DC metropolitan region has experienced severe floods and 

losses in the past decades: the Great Flood of 1889, Chesapeake-Potomac Hurricane of 

1933, Great Potomac Flood of 1936, and Hurricane Agnes in 1972. The area is 

vulnerable to multiple future challenges like rapidly increasing population, climate 

change-driven sea level rise, increased runoff driven by imperviousness, and changing 

pattern of extreme rainfall due to climate change (Huong and Pathirana, 2013). This 

urbanized area is often affected by riverine flow, inland rainfall, and coastal storm surges. 

The topography varies widely in elevations ranging from sea level along the tidal 

Potomac and Anacostia Rivers, to approximately 414m above North American Vertical 

Datum of 1988 (Federal Emergency Management Agency, 2010). The urbanized portion 

of the area is centered on Washington, DC and includes Montgomery and Prince 

George’s County in Maryland, Fairfax County, Falls Church city, Arlington County, and 

Alexandria city in Virginia. Urban areas surrounding Washington, DC have expanded at 

a rate of ~22 km
2
 per year during 1973-1996, and even at a higher rate after that period 
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(Masek et al., 2000). Only about 19% of the area was found to be relatively undisturbed 

during 2010, which were mostly concentrated in the public parks, memorials, and 

national historic sites (Federal Emergency Management Agency, 2010).  

The Potomac River is located within the Mid-Atlantic region of the US and flows 

from the Potomac River Highlands (i.e., Allegheny Mountains of West Virginia and the 

hills of Virginia and Maryland) to the Chesapeake Bay, the largest bay in the US with a 

length of 320km (Cho et al., 2012). The drainage area of the Potomac River is 

approximately 30,000 km
2
, while that of  the Anacostia River is 315km

2
 and Rock Creek 

is 160km
2
 (Huanxin et al., 1997). The tides in the 183km long tidal Potomac River 

originates from the Atlantic Ocean and propagates into the river through the Chesapeake 

Bay (Wang et al., 2015). The study area is bounded by the Potomac River and its 

tributary, the Anacostia River, and includes several urban and sub-urban watersheds such 

as the Rock Creek Park, Four Mile Run, Cameron Run, Oxon Run and some other small 

watersheds (Figure 16) This area includes several historically important infrastructures, 

federal buildings, defense facilities,  monuments, and airports which are at high risk of 

flooding (Federal Emergency Management Agency, 2010). Figure 16 shows the study 

area, the streams inside the study area, and the important locations considered for flood 

depth analysis. Table 5 shows the name and ID of the locations selected within the study 

area. The streams considered in this study are located in three river reaches: i) Pimmit 

Run, Little Falls (LF) Branch, Gulf Branch, Donaldson Run, Windy Run, Spout Run, 

Maddox Branch, and Rock Creek along the Upper Potomac River reach, ii) Four Mile 

Run, Cameron Run, and Oxon Run along Lower Potomac River reach, and iii) Pope 
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Branch, Watts Branch, Hickey Run, Beaverdam Creek, Quincy Run, and Dueling Creek 

along Anacostia River reach. Besides these streams, Location ID-6 (Pentagon Lagoon) 

and ID-7 (Gravelly Point) are two water bodies near Washington DC which were also 

used to analyze the impact of flow and surges. A total of 11 important inland locations 

were mainly used for flood depth analysis along Potomac River starting from 

Georgetown Waterfront to National Harbor. One location at Navy Yard and one near 

Washington Channel were also considered for flood analysis.  

 

 

 

 
Figure 16 Study area with streams and different flooding location 
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Table 5 Flood location ID and location names 

ID Location ID Location 

1 Georgetown Waterfront 8 Ronald Reagan Airport 

2 Thomas Jeff Memorial 9 Old Town Alexandria 

3 East Potomac Park 10 National Harbor 

4 Haines Point 11 Dept. of Defense 

5 Potomac Park 12 Washington DC 

6 Pentagon Lagoon 13 Navy Yard 

7 Gravelly Point   

 

 

 

2.2.2 Model Setup 

This study implemented a 2D hydrodynamic flood model using the capabilities of 

the Hydrologic Engineering Center's (HEC) River Analysis System (HEC-RAS) for flood 

simulation in the locations around Potomac River. The hydraulic model, developed by the 

U.S. Army Corps of Engineers (USACE), has proved to be an efficient tool for flood 

modeling (Hicks and Peacock, 2005; Brunner et al., 2015; Cadavid et al., 2016; Quirogaa 

et al., 2016; Adams et al., 2018; Pasquier et al., 2018) and studying the interaction of 

riverine freshwater and coastal storm surges (Mashriqui et al., 2014; Feng and Brubaker, 

2016).  

2.2.2.1 Model Inputs 

The hydraulic properties of the model are based on the terrain data, roughness 

values, and land cover grids. A well-developed topo-bathy was used for the model setup. 

DEM from USGS and bathymetry from NOAA was combined to create a topo-bathy 

with varying resolution (1m to 200m) and the datum of North American Vertical Datum 
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of 1988 (NAVD88). In order to study the compound flooding effects, the model requires 

upstream and downstream boundary conditions, i.e., streamflow and water level data 

respectively for this study. In Figure 17, UP1 is the upstream boundary at Little Falls, 

DC, UP2 is the boundary at Anacostia River, and LOW is the downstream boundary near 

Alexandria, VA. Coastal water from the Atlantic Ocean enters the Potomac River near 

Lewsietta, VA, and then travels towards Washington, DC. The surge propagation from 

Lewisetta (mouth of the Potomac River in the Chesapeake Bay) to the upstream is studied 

widely (Mashriqui et al., 2014; Feng et al., 2017; Khalid and Ferreira, 2020). Moreover, 

Mashriqui et al. (2014) found that the Washington, DC station has significantly higher 

tidal influence compared to the other station at Wisconsin Avenue located in close 

proximity to DC. Wind and surge propagation from the Chesapeake Bay also have 

optimal conditions to propagate water towards DC (Mashriqui et al., 2014). Moreover, 

Feng and Brubaker (2016) concluded that using the DC station data as a proxy for the 

annual peaks at their Washington, DC inland site proved to be a reasonable approach as it 

covers all the possible upstream and downstream events that cause the annual peak in the 

study site (Feng and Brubaker, 2016).  

The major parameters associated with model simulations were channel roughness 

coefficient (Manning’s n), theta weighing factor (0.6), computational time steps (hourly), 

and the number of iterations (default). A spatially varying Land Use classification 

(MRLC, 2020) was used to generate Manning’s n grids. However, default Manning’s n 

values can be used for the cells with missing land cover types. Based on literature (Chow, 

1959; Bhandari et al., 2017), values of Manning’s n were set as shown in Table 6. The 
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hydraulic system was provided with rain on grid to simulate the effect of urban flooding 

in the region.  A hot start file was used to set the initial condition of the system for 

subsequent runs. The hot start simulation included running the model 15days prior to the 

event at 1hour interval. 

 

 

 

 
Figure 17 Model setup with (a) topo-bathy, (b) land cover, and (c) model grids 
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Table 6 Manning's n 

Land Cover Manning's n 
 

Land Cover Manning's n 

Barren Land Rock/Sand/Clay 0.025 Evergreen Forest 0.160 

Cultivated Crops 0.035 Grassland/Herbaceous 0.035 

Deciduous Forest 0.160 Mixed Forest 0.160 

Developed, High Intensity 0.150 Open Water 0.015 

Developed, Low Intensity 0.100 Pasture/Hay 0.030 

Developed, Medium Intensity 0.080 Shrub/Scrub 0.100 

Developed, Open Space 0.040 Woody Wetlands 0.120 

Emergent Herbaceous Wetlands 0.070   

 

 

 

2.2.2.2 Numerical Mesh and Model Domain 

The underlying terrain information available from the topo-bathy was used to 

generate the two-dimensional (2D) flow area. HEC-RAS 2D implements either the full 

2D Saint Venant equations or the 2D Diffusion Wave equations based on user needs and 

we selected the later equation for this study. In most of the flood analysis, 2D Diffusion 

Wave equation set works efficiently, runs faster, and are inherently more stable (USACE 

Hydrologic Engineering Center, 2016). Cells and cell face of the computational mesh are 

pre-processed to develop hydraulic property tables (elevation versus, wetted perimeter, 

area, and roughness) based on the terrain used in the modeling process. This property 

allows the use of larger computational cells, without losing the detail of the underlying 

terrain. A nominal grid size of 100m x 100m was used for the inland area (Figure 17). 

However, the water bodies (rivers, lakes, and some streams) in the study area were 

defined by breaklines. The mesh generation tools were enforced to align the 

computational cell faces along these lines. Cells around the breaklines and the 2D flow 

area boundary were irregular in shape to conform to the user specified break lines and 

boundary polygon. The mesh generation tools utilize the irregular boundary. Cell centers 
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are the points where water surface elevations are computed. The cell center does not 

necessarily correspond to the exact cell centroid (Brunner et al., 2015). The 

computational mesh controls the movement of water through the 2D flow area and the 

computational cell faces control the flow movement from cell to cell.  

 

2.2.2.3 Rainfall to Runoff  

The Soil Conservation Service (SCS) curve number (CN) method is one of the 

most common methods for estimating storm runoff in engineering design. It has been 

applied for runoff calculations ranging from small watersheds to comprehensive 

hydrologic models (Kim et al., 2002). CN is a dimensionless number ranging from 

minimum value of 0, when runoff = 0 to maximum of 100, when runoff = rainfall 

(USDA, 1986).  The Natural Resources Conservation Service (NRCS) provides runoff 

curve number tables depending on land cover types, hydrologic conditions and the soil 

group A, B, C, and D (Hernández-Guzmán and Ruiz-Luna, 2013). Land use data from 

National Land Cover Database 2011 (MRLC, 2020) and soil data from Natural Resources 

Conservation Service (NRCS, 2020) were used for the CN grid (Figure 18) generation in 

ArcGIS to estimate the runoff. Urbanization effects can be simulated by changing the CN 

to represent increased impervious area. The equation used for estimating runoff (mm) is 

as follows:  

Equation 3  

Q =
 (P − 0.2S)2

P + 0.8S
 ,       P > Ia 
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where, 𝑃 = Precipitation,  𝐼𝑎 = 0.2𝑆 = Initial abstraction, and S = Potential water 

retention after runoff begins. S depends on the soil capacity for water runoff or 

infiltration and is estimated based on the CN (Hernández-Guzmán and Ruiz-Luna, 2013): 

Equation 4  

S =
25400

CN
− 254 

                     

The 2D hydrodynamic model used in this study could only be forced with one 

uniform runoff grid for one watershed. Therefore, after generating the actual CN grid 

based on soil type and land cover, area averaged values of CN were generated to select 

relevant CN for the model simulation. Average or composite CN has been implemented 

in different studies (USDA, 1986; Reistetter and Russell, 2011) by assuming the 

percentages of impervious area. Based on the minimum value (blue box in Figure 18b) 

and maximum area coverage (yellow box in Figure 18b) of the averaged CN grid, we 

selected CN 65 and CN 85 for this study. The minimum and maximum CN values were 

used to represent a scenario with the highest and lowest runoff generation. The intent was 

to evaluate the influence of different drivers rather than precisely hindcast the historical 

events. However, we did not choose CN higher than 85 because a uniform value of such 

high CN will generate excessive runoff. 
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Figure 18 CN grid for the study area: (a) actual CN grid and b) area averaged CN grid 

 

 

 

2.2.3 Historical Data for the Hydrodynamic Model 

The hydrodynamic model was simulated with four historical events: Hurricanes 

Isabel 2003, Ernesto 2006, Sandy 2012, and the Flood of Jan 1996. Hurricane Ernesto 

was a coastal flood event driven only by storm surges coming from Lewisetta (LWT), 

while Jan 1996 flood was driven entirely by riverine flow from Little Falls (LF) station 

(Figure 19). Hurricanes Isabel 2003 and Sandy 2012 were compound flood events driven 

by riverine flow, coastal surges, and rainfall (Figure 20). Historical streamflow and water 
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level data were collected from the United States Geological Survey (USGS, 2017) and 

National Oceanic and Atmospheric Administration (NOAA, 2020a). Potomac River flow 

at LF gage station (USGS gage: 01646500) was used as UP1 boundary. We used the 

combined flow data from two Anacostia River stations at Northeast Anacostia (NE) and 

Northwest Anacostia (NW) as UP2 boundary (USGS gage: 01651000 and 01649500). In 

order to evaluate the impacts of storm surges or coastal effects, we relied on a 

downstream boundary condition at Alexandria (ALX), VA (USGS station: 0165258890) 

that would represent the influence of the coastal water levels from the Chesapeake Bay 

near Lewisetta, VA (NOAA station: 8635750) towards flooding in Washington, DC. 

Water level for DC was collected from another NOAA station (NOAA station: 8594900). 

Historical precipitation data was collected from National Climate Data Center (NCDC) at 

Washington Reagan National Airport, VA Station ID- COOP: 448906. Validation data 

for flood depths was collected from the NWS (National Weather Service, 2020c). 

Historical rainfall for Hurricanes Sandy, Isabel, Ernesto, and the Jan 1996 flood 

are presented in Figure 21. Intense rainfall was observed during Hurricane Isabel and the 

Jan 1996 flood with depths of approximately 160mm and 155mm respectively. 

Hurricanes Sandy and Ernesto had comparatively lower amount of rainfall, 70mm and 

20mm respectively. We used time series data of 15days for any flood events simulated in 

this study. For some events, the full time series at ALX was missing, where we estimated 

the time series based on peak values at Washington, DC. A regression equation (Eqn 5) 

was developed using ALX and DC peak water level from the historical observations 

during the period of 2010-2017. The regression equation showed an R
2
 value of 0.98. R

2 
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describes the degree of collinearity between simulated and measured data and ranges 

from 0 to 1. Estimated values with R
2
>0.5 significantly represents the observed values 

(Moriasi et al., 2007). Time lags between ALX and DC water level peaks were found to 

be approximately 15-20 minutes and that of LF and DC were less than 1 minute. Time 

lag between the rainfall event and rainfall induced flow in the streams were different for 

the streams. We considered the rainfall few hours before the surges and flow peaks to 

allow sufficient time for the catchment to accumulate the runoff. However, observed 

flood depth data was unavailable for the urban areas limiting the scope for validation of 

urban flood depths. We used the Advanced Hydrologic Prediction Service (AHPS) flood 

depths from NWS for the urban flood validation. AHPS or NWS inundation boundary 

covers 8.9 km of the tidal Potomac River and approximately 13.7 km of the Anacostia 

River along the western border of Washington, DC. The inland flood depths are based on 

the AHPS water level at Washington, DC recording station which are classified as 

Action, Minor, Moderate, and Major (National Weather Service, 2020c).   

Equation 5  

Y = 0.3X + 0.11 
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Figure 19 Riverine and coastal floods for historical simulations (blue dashed line = Little Falls (LF), blue firm 

line = Northeast Anacostia (NE), and purple line = Northwest Anacostia (NW) streamflow; black firm line = 

Alexandria (ALX) and black dashed line = Washington DC (DC) water level) 

 

 

 

 
Figure 20 Compound floods for historical simulations (blue dashed line = Little Falls (LF), blue firm line = 

Northeast Anacostia (NE), and purple line = Northwest Anacostia (NW) streamflow; black firm line = 

Alexandria (ALX) and black dashed line = Washington DC (DC) water level) 
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Figure 21 Historical rainfall depths for the four storms 

 

 

 

2.2.4 Synthetic Data for the Hydrodynamic Model 

In order to study the variability of compound flood in the region, flow, surge, and 

rainfall induced synthetic events were generated and forced into the hydrodynamic 

model. While this approach can have uncertainty in the magnitude, timing, and spatial 

distribution of the corresponding flood inundation outputs, it can provide a range of 

possible flooding variability expected in the region. Maximum riverine flow recorded in 

LF during 1980-2020 was 9,800m
3
/s and maximum water level in ALX was ~2.7m 

(Figure 22). A number of scenarios were developed based on these historical extremes 

and the usual non extreme values of flow and surges. For the synthetic events, 100-year, 

25-year and 5-year 6hour design rainfall duration were used to generate storm runoffs 

and implemented in the urban flood model. Runoffs were generated for each rainfall 

based on CN 65 and CN 85. The data set of 28 synthetic storms comprises the following 
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criteria: i) High Flow Low Surge - Riverine flood ii) Low Flow High Surge - Coastal 

flood iii) High Flow High Surge - Compound Flood iv) Low Flow Low Surge - Minor or 

No Flood. 

Each of the flooding scenarios was simulated with and without the design rainfall 

induced runoff. Therefore, the compound floods were of two types: compound flood from 

riverine flow and coastal surges and compound flood from riverine flow, coastal surges, 

and rainfall. The impact of flow, surges, and rainfall were analyzed along the rivers and 

also along the small streams. We also identified the distance towards the upstream 

boundary of local streams where the impact of surge and flow becomes negligible and 

runoff dominates the flooding. This length is referred hereafter as the distance of 

influence for surge and flow. In order to account for the effect of increased sea level, a 

0.34m SLR projected for the next 100 year was used in the model in addition to the 

existing surges downstream. The SLR value was obtained from NOAA Tides and 

Currents (NOAA, 2020a) for DC station and was used in the ALX station. 
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Figure 22 Synthetic storm inputs of flow, surges, and design rainfall 

 

 

 

2.2.5 Validation of Simulated Flood Events 

The model simulations were validated for historical storms based on the water 

level at the DC station and the inland flood depths at some specified locations near the 

Potomac River. These events were selected because the flood water during those events 

affected Washington, DC, The Tidal Basin, Old Town Alexandria, and the other 

surrounding areas. We considered uniform CN (either CN 65 or CN85) for the runoff in 

the full domain. The time series of simulated water levels had R
2
 values in the range of 

0.96-0.98 (Figure 23). R
2
 values greater than 0.5 are considered acceptable (Moriasi et 

al., 2007). Such high collinearity between the model and the observed results 

demonstrated the similarity between the meteorological and hydrological characteristics 

of downstream boundary at ALX and the station at DC.  
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The bias in the flood depth results from the CN 65 or CN 85 scenarios varied for 

different inland locations (Figure 24). However, most of the simulated maximum flood 

depths were within the range of NWS or AHPS flood depths. These flood depth layers 

(NWS, 2020) were developed for the Flood Inundation Map Library displayed in the 

NWS’s AHPS database. The flood depths represent potential flood extent for specific 

water levels as recorded at the Potomac River gages. These layers were created to 

correlate observed and forecasted flood levels with a visual representation of the areas 

impacted by floods. Depth grids for the inundation were simulated by USACE-Baltimore 

District. Flood depth locations were matched by selecting exactly the same point based 

on latitude and longitude. Results showed that urban flood depths with Curve Number 

(CN) 65 during Hurricanes Sandy and Ernesto were more representative of the flood 

depth provided by NWS. On the other hand, flood depths obtained from the CN 85 grid 

were more representative of the NWS flood depths for Hurricane Isabel and Jan 1996 

flood. The results can be attributed to the lower rainfall (less than 70mm) during 

Hurricanes Sandy and Ernesto and higher rainfall (more than 150mm) during Hurricanes 

Isabel and Jan 1996 flood. Flood depths in Hains Point and East Potomac Park were in 

good agreement with the NWS depth for all the four events because CNs could represent 

the less imperviousness of those areas. Flood depths in Reagan Airport, Navy Yard, and 

Department of Defense varied from NWS data due to the higher impervious area. 
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Figure 23 Validation of simulated water level at Washington DC station 

 

 

 

 
Figure 24 Validation of inland flood depth (NWS=National Weather Service simulated flood depth, CN65 = 

Depth using runoff scenario of CN 65, and CN85 = Depth using runoff scenario of CN 85) 
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2.3 Results and Discussions 

This study has assessed compound flood variability driven by multiple factors in 

spatial and temporal dimensions. Results from this study include analysis on i) how 

different locations in the metropolitan area adjacent to Potomac River experienced 

variability in flood depth and extent ii) variation of flood characteristics from upstream to 

downstream iii) impact of compound flood drivers on the urban streams drainage iii) 

identifying the hotspots of compound urban flooding both along the river banks and 

inland and iv) the impact of SLR scenario on compound flooding. Detailed outcomes of 

all the scenarios are discussed in this section. 

2.3.1 Flooding in the Metropolitan Area 

The flood maps derived from the 28 synthetic events provided an indication of the 

sensitivity of our study area to different types of flooding. Results demonstrated larger 

differences in flood extents and inundation depths considering the low flow and low 

surge scenario vs the high flow and high surge scenario (Figure 25). In addition, the 

simulation provided information on temporal variation of the flood events, which is 

another important parameter of urban flooding. It was observed that during the first ten 

days of the 15 day events, flood extent increased rapidly. As expected, the duration of 

flood also increased with the increase in CN or rainfall depth (Figure 26). Some of the 

highly urbanized areas and lakes within the study area had longer flood duration as 

shown within the yellow colored locations. It was observed that higher runoff (100-year 

rainfall) dominated flooding had longer duration than only flow or surge dominated 

flooding, mainly, due to the water trapped inland. The second highest duration was 
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observed during high surge induced floods (Figure 27). In this intertidal zone, high surge 

events with extreme precipitation and high river flows lead to increased flood severity 

and duration as concluded by the previous compound flood studies (Svensson and Jones, 

2002; Svensson and Jones, 2004). As suggested by Kundzewicz et al. (2019), our 

analysis also showed that the nature of flooding changes with increasing amplitude of 

rainfall induced runoff, as well as extreme riverine and coastal flooding. For instance, 

considering only coastal storm surges would have underestimated the flood extent by 

10% and average depth by up to 1.1m locally (Figure 28). A similar study (Kumbier et 

al., 2018) showed an underestimation of those outputs by 40% and 1.5m respectively. 

The total inundation area varied from about 50km
2
 to 175km

2
 depending on the flow, 

surges, and rainfall inputs. Although rainfall was the dominant factor for increased inland 

flood inundation, flow and surge plays an important role in increasing the flood depth 

close to the river. A high flow scenario inundates significantly less amount of area 

compared to the high surge scenario. In order to compare the increase in flood inundation 

area for each rainfall condition, low flow low surge scenario with no rainfall, 25-yr, 50-

yr, and 100-yr rainfall was each considered a base case scenario. The percent increase in 

area from the base case scenario (with no runoff) to high flow and high surge scenario 

(with no runoff) shows that inundation area depends significantly on coastal surges. 

Moreover, as the precipitation increases, the impact of compound flood and surge driven 

flood becomes very similar. With no runoff scenarios, the compound flood inundation is 

much higher than the flow dominated flood. Although we have used uniform runoff and 

synthetic flow or surge scenarios, the spatio-temporal variability results of this model 
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aligns with recent findings (Kumbier et al., 2018; Kundzewicz et al., 2019) on compound 

flood variability. 

 

 

 

 
Figure 25 Maximum flood depth using 25 year rainfall 

 

 

 

 
Figure 26 Total Flood Duration with 25 year 6 hour rainfall 
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Figure 27 Duration of different types of floods with no rainfall scenario (zoomed in near Tidal Basin) 

 

 

 

 
Figure 28 Total flood inundation area and the increase in flood inundation compared to low flow low surge 5, 25, 

and 100 year rainfall scenarios 
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2.3.2 Variation of Flood Characteristics from Upstream to Downstream   

Identifying the flood locations and understanding the flood characteristics in those 

locations are very important to support the flood management strategies in urban areas 

(Depietri et al., 2018). In this study, we analyzed the impact of flow and surge at different 

locations along the Potomac River as shown in (Figure 29) and (Figure 30). The flow 

dominated region extended up to John F Kennedy Center while moving from upstream to 

downstream (Figure 29a and Figure 30a). From Ohio Drive SW1 to the George 

Washington Parkway Lower point, surge started to become more important compared to 

flow (Figure 29b and Figure 30b). After the Ohio Drive SW1 location, surges became the 

dominating factor for flooding as we moved towards downstream. All the locations along 

the Lower Potomac River were highly influenced by surges (Figure 29(d,e) and Figure 

30(d,e)). In Old Town Alexandria and National Harbor, surge dominated flood depths 

were almost twice the flow dominated depths. Floods around Washington DC continued 

for several days affecting the important landmarks like the Seafood Market, Thomas 

Jefferson Memorial, Lincoln Memorial, Navy Yard, Reagan National Airport, Pentagon 

Parking, East Potomac Park, and East Potomac Golf Club and inundating other parts of 

this highly urbanized area. Flood depths in the urban locations adjacent to the Potomac 

River were not significantly sensitive to rainfall as shown in Figure 30 with no rainfall 

and 25-year rainfall results. From this analysis, we found that the study area can be 

divided into three zones: flow dominated upstream zones, flow and surge dominated 

transition zone, and surge dominated downstream zone. 
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Figure 29 Selected locations for flooding along Potomac River (blue points are highly dominated by flow, green 

points are dominated by either flow or surge, orange points are surge dominated, and red points are extremely 

sensitive to surge dominated floods) 
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Figure 30 Impact of flow and surge from upstream to downstream of Potomac River without and with 25-year 

rainfall 

 

 

 

Different flooding events in the same area can inundate different locations 

depending on the characteristics of the flood drivers. We selected two locations, Old 

Town Alexandria (ALX) and Reagan Airport (RR), with four points each (ALX1, ALX2, 

ALX3, and ALX4; RR1, RR2, RR3, and RR4) in order to analyze the variable impact of 
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flood drivers from river banks towards inland (Figure 31) maintaining the order of 

location numbers. It was found that the floods that threatened the city of Old Town 

Alexandria were mostly runoff induced floods towards inland (ALX3 or ALX4) with 

approximately 0m, 0.9m and 1.2m depth due to no rainfall, 25-year rainfall, and 100-year 

rainfall respectively, and surge induced floods close to the river with 3m (ALX1) and 2m 

(ALX2) depths based on any rainfall scenario ( 

Figure 32). This concludes that ALX1 and ALX2 were less impacted by rainfall 

depth, while ALX3 and ALX4 were significantly sensitive to any value of rainfall. The 

worst case was observed when high surge from downstream and high flow from upstream 

occurred together  around this developed area obstructing the urban water to flow 

towards the river, similar to the findings of compound flood impacts studied by Huong 

and Pathirana (2013). Another study also suggested similar outcomes with an additional 

high runoff trapped upstream due to high surges (Van Den Hurk et al., 2015). Rainfall 

had significant impacts on flooding in Reagan National Airport as well. Inland flooding 

was increased by rainfall to a greater extent, about 0.5m increase in maximum depth 

compared to no runoff scenario at RR3 and RR4. Without rainfall, surge was the 

dominating factor generating a depth of 0.75m at RR1 located near the river bank. 
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Figure 31 Flood depth locations towards inland 

 

 

 

 
Figure 32 Change due to the impact of rainfall, flow and surge at the inland locations 
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2.3.3 Impact of Compound Flood Drivers on the Urban Streams Drainage 

2.3.3.1 Impacts on Local Stream Water Levels 

We evaluated the impact of the flood drivers on the downstream water level of 

local streams which affects its drainage capacity during rain fall events in the urban 

watersheds. Few points were selected to investigate the impact of flood drivers on the 

mouth of the streams and small water bodies where the river connects. Rock Creek was 

one of the most important streams for flooding in the Washington, DC area as significant 

amount of the urban runoff drains into this stream throughout its length. Rock Creek was 

impacted both by flow and surges, flow being slightly more dominant. According to 

FEMA, Rock Creek can significantly inundate the surrounding areas with a 100-year 

design rainfall induced runoff (Federal Emergency Management Agency, 2010) which 

was evident form the results. The analysis on the small streams showed that riverine 

flood and compound flood had almost similar impact on the streams at the Upper 

Potomac River (upstream to Rock Creek), such as Pimmit Run (Figure 33), because the 

Potomac River near LF Pumping Station (USGS Station No. 01646500) is not influenced 

by tides. The other streams downstream of Rock Creek were highly dominated by coastal 

surges. The two points near Pentagon Lagoon and Gravelly Point were dominated by 

surges as well. Streams at Lower Potomac and Anacostia responded in the similar pattern 

during surge dominated events. 
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Figure 33 Water levels in streams with and without runoff 

 

 

 

2.3.3.2 Distance of Influence 

Riverine flow and coastal surges had a minor impact on the overall urban flooding 

of the National Capital Region. However, these drivers significantly impacted the regions 

along the main river and the small streams with its impacts propagating up to 8km 



87 

 

upstream for some small streams. If there is no rainfall, the flood depth will be zero at 

this point, irrespective of high or low flow and surge values. We analyzed the distance of 

influence for all the streams in the study area (Figure 34). The distance of influence was 

higher for the streams along Lower Potomac River. However, Rock Creek had the 

highest distance of influence among all the streams. The lowest distances of influence 

were found for the smaller streams around Upper Potomac River. As expected, the slope 

of the streams played a significant role in the distance of influence. Streams can be 

categorized based on the slopes (S): very steep (S > 0.1), steep (0.04 < S < 0.1), moderate 

gradient (0.02 < S <0.039), and low gradient (S < 0.02) streams (Rosgen, 1994). The 

streams that had lower distance of influence also had steeper slopes in the analysis 

(Figure 35). Those streams were the smallest in length among all the streams considered 

in this study. The distances of influence increased with the increase in rainfall, as the 

rainfall accumulated in the streams and transported the impact of riverine flow more 

towards upstream of the small streams.  

Detailed information about the streams is presented in Table 7. Rock Creek, Four 

Mile Run, Cameron Run, and Oxon Creek had higher distances of influence which were 

classified as low gradient streams. However, although many streams fall in the same 

classification, there are differences in the distance of influences based on the actual value 

of slope. For example, Rock Creek and Four Mile Run are both low gradient streams but 

the slope of Rock Creek (0.003m/m) is smaller than Four mile Run slope of 0.0074m/m. 

Therefore, Rock Creek had a higher distance of influence than Four Mile Run. This 
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analysis showed that the low gradient streams are more susceptible to the impacts of high 

flow and high surge on urban flooding. 

 

 

 

 
Figure 34 Distance of influence for surge and flow in the streams 
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Figure 35 Impact of stream slope on distance of influence 

 

 

 
Table 7 Stream properties with slope classification based on Rosgen (1994)  

 

Streams Length(km) Width(m) Slope(m/m) Slope type 

Pimmit Run 8.43 1.2 0.01 low gradient 

Gulf Branch 1.4 1.78 0.04 steep 

Donaldson Run 2.48 1.7 0.043 steep 

Windy Run 0.99 1.5 0.053 steep 

Spout Run 1.36 2.13 0.044 steep 

Rock Creek 15 25 0.003 low gradient 

Four Mile Run 14 93 0.0074 low gradient 

Cameron Run 5.34 43 0.002 low gradient 

Oxon Creek/Run 12.28 62 0.006 low gradient 

Hickey Run 1.51 15 0.0077 low gradient 

Watts Branch 7.66 33 0.0088 low gradient 

Dueling Creek 1.21 45 2.40E-05 low gradient 

Quincy Run 1.538 1 0.01 low gradient 

Beaverdam Creek 7.527 33 0.003 low gradient 
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2.3.4 Hotspots of Compound Flooding  

Most of the low-lying locations along the Potomac River are hotspots of 

compound flooding (Figure 36). In our study, the area between the Washington Channel 

and Ohio Drive Southwest, especially the Haines Point, East Potomac Park, and East 

Potomac Golf Course were highly exposed to the compound floods driven by the riverine 

flow and surges or riverine flow, surges, and rainfall. The low lying areas near Four Mile 

Run, Cameron Run, and Oxon Run were highly inundated by compound flooding events. 

Locations near Department of Defense and Anacostia Park also showed significant 

compound flooding. Moreover, some locations in the upstream area, close to Little Falls, 

were also inundated by compound floods. Without rainfall, locations only in the close 

proximity of the Potomac River and Anacostia River were flooded by compound flood 

drivers. When rainfall was forced in the model, small areas along the streams showed 

compound flooding depths as well, which can be found in (Figure 36b) with very small 

orange dots. These orange flooding locations were at the same distance where we 

estimated the distance of influence for different streams discussed previously and 

represents compound flood locations inundated due to river flow, coastal surge, and 

rainfall.  
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Figure 36 Locations of compound flood along the rivers and the streams 

 

 

 

2.3.5 Impact of Sea Level Rise on the Compound Flooding 

Washington, DC will face flooding, and eventual geographic changes in the long 

term because of increased sea level (Ayyub et al., 2012). Increase in minor flooding 

along the coasts of the US is also expected due to the SLR (Moftakhari et al., 2015). The 

highest impact of SLR was on the inundation area of Low Flow and High Surge Scenario 
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(5% increase) and the lowest impact was on the High Flow and Low Surge scenario with 

2% increase in inundation area (Figure 37). However, the increase in flood depth was 

only visible in the locations adjacent to the river. Model simulations with SLR showed 

that new locations around the Potomac River and Anacostia River will become 

vulnerable to flooding and areas that were already flooded in current scenarios may 

experience increase in both flood extent and depth (Figure 38). This is because the SLR 

will increase the flood depths in the surrounding areas. For example, a flood stage at DC, 

which is less than 0.7m (no flood), can increase to more than 0.7m leading to possible 

Action, Minor, Moderate, or Major floods. The red and orange points will be impacted 

the most due to SLR in all the four scenarios. Increased flood water from SLR and high 

surge can reach Little Falls, which is not impacted by surge at present. It was also 

observed that a low surge and high flow scenario, along with SLR, will have much less 

impact among all the scenarios. The reason could be that the increased depth throughout 

the river reduces frictional resistance, thereby reducing the water level slope and the 

water level as well (Orton et al., 2018). 
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Figure 37 Increase in inundation area due to SLR 
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Figure 38 Increase in flood depth due to SLR with no runoff 

 

 

 

2.4 Conclusions 

A larger part of the Washington DC metropolitan area is in floodplain areas of the 

tidal Potomac River, as are many of the tidal cities of the US. Furthermore, Washington 

DC is exposed to different hazards including coastal surges, riverine flow, and intense 

runoff due to rapid urbanization. The goal of this study was to assess compound flood 

variability in space and time driven by multiple factors. The results from our study 
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suggested that, in the highly urbanized DC area, inundation extent increased by 10% with 

high surges and flow. While flooding driven by a single variable (high surge or high 

flow) also caused flooding in the region, multiple factors associated with the event (i.e. 

compound scenario) increased the flood extent and water depth, in some cases doubling 

the inland flood depths. The dominating factors of the flood scenario helped to 

understand the flooding properties along the Potomac River: i) riverine flood impacted 

mostly in the upstream part of the river, ii) both riverine and coastal boundaries 

dominated the flood along the middle part of the river, and iii) the lower part was highly 

influenced by surge only. The area at the confluence between the Potomac and Anacostia 

Rivers was highly exposed to the compound floods driven by the riverine flow and surges 

or riverine flow, surges, and rainfall.  

Surge induced floods inundated most of the areas close to the Lower Potomac 

River. On the other hand, intense runoff generated greater flood inundation in the urban 

areas located far from the rivers but adjacent to the streams. Low gradient streams were 

mainly responsible for urban or inland compound flooding due to the impact of flow and 

surge being present at a longer distance from the stream mouth. High flow and surge did 

not have significant impact on the streams with steeper slopes mainly located on the 

Upper Potomac region. To incorporate the effects of climate change, 0.34m SLR were 

implemented on the model which showed that locations adjacent to the Potomac and 

Anacostia River banks will become more vulnerable to flooding, especially during high 

surge events, and some areas may even experience increase in both inundation extent and 

depth. 
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Few assumptions in the modeling and averaged inputs may lead to a relatively 

increased bias or uncertainty in the outcomes of this study. We estimated area averaged 

CN (CN 65 and CN 85) to generate uniform runoff for the study area, while accurate 

flood modeling requires a storm-runoff model and an inundation model to generate the 

area specific runoff as input. Furthermore, meteorological factors, such as the timing and 

distribution of rainfall, may cause change in actual streamflow along the modeled reach 

leading to variations in the water-surface elevations and inundation boundaries. However, 

the methodology and outcomes from this study can be implemented in other metropolitan 

areas to understand the flood variability in terms of depth and extent, stream flood 

characteristics during different events, and change in flood duration due to the change in 

flood drivers along the urban areas located along tidal rivers and estuaries.  
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3 REAL-TIME COMPOUND FLOOD FORECASTING IN URBANIZED 

AREAS OF THE WASHINGTON METROPOLITAN REGION 

Abstract 

Flooding is the most frequent natural disaster impacting the economy, 

environment, and societies. Like many coastal cities in the United States (US), extreme 

flooding in the Washington, DC metropolitan region is generated by the co-occurrence of 

multiple flood drivers such as riverine flow, coastal surges, and intense rainfall-induced 

runoff. This study has developed a compound urban flood forecast system based on a 2-

dimensional (2D) hydrodynamic model that incorporates all the flood drivers associated 

with flooding in the region. Forecasting the compound urban flood events encompasses 

the complex dynamics between the flood drivers in the urban watershed. Moreover, data 

scarcity on the urban flood depths and extents during extreme events is another challenge 

to validate the urban flood forecast system. Therefore, the forecasted flood depths and 

extents along the rivers and the adjacent areas are compared to the available information, 

videos, and photos from newspapers and social media. The use of such crowdsourced 

data has made it possible to validate any real-time forecasts in the urban locations of the 

study area. The system was run by forcing the model with the forecasted river flow and 

coastal water level from the Advanced Hydrologic Predictions Service (AHPS), flow 

from the National Water Model (NWM), and coastal water level from the Integrated 

Flood (iFLOOD) system, and precipitation dataset from High-Resolution Rapid Refresh 
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(HRRR) database. Multiple forecasts are generated for each location with the variable 

inputs of flow, surge, and runoff. The optimum flood depth is selected based on the 

characteristics of the location, i.e., whether the location is urbanized or not. This 

modeling framework has highlighted the importance of total water level forecast resulting 

from compound floods in large metropolitan areas like Washington, DC. The forecast 

methodology developed in this study can be used for other coastal cities located along 

major rivers and estuaries. 

3.1 Introduction 

Compound floods from multiple flood drivers bring substantial impacts to human 

lives and properties around the world. High runoff and surges can cause compound 

flooding in the low-lying coasts and estuaries (Bevacqua et al., 2020; Ben Daoued et al., 

2020; Fang et al., 2020). Storm surges alone are often the greatest threat to communities 

along the coasts of the US. Furthermore, these coastal areas are often prone to compound 

flood hazards from inland flow, rainfall, and sea-level rise (Wang et al., 2015;  

Kundzewicz et al., 2018). Hurricanes Isabel in 2003 (Sheng et al., 2010),  Joaquin in 

2015,  Matthew in 2016 (Ezer et al., 2017), and Harvey in 2017 (Thyng et al., 2020) 

demonstrated the unprecedented damage caused by compound floods in the coastal cities. 

In 2016, two flood events in Louisiana inundated the rural, coastal, and urban watersheds 

due to the combined impact from river, coast and urban runoff (Laska, 2020).  

Urbanization combined with rainfall, coastal surges, and riverine impact have 

increased the threat of large unprecedented floods in populated areas near coastal regions 

(Laudan et al., 2020). River floods increase water levels slowly after accumulating flood 
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water from the watershed, but urban floods are generated within small catchments 

leading to rapid and unpredictable flow (Kumbier et al., 2018; Laudan et al., 2020). 

However, flood modeling with only runoff, riverine flow or coastal surges can 

underestimate the compound flooding risk (Kumbier et al., 2018) in urban areas. Studies 

have performed global scale analysis of compound flooding from four types of flood 

drivers: surge-dominant, discharge-dominant, compound-dominant or insignificant 

drivers (Gallien et al., 2018; Eilander et al., 2020). Total water levels in the estuarine 

areas vary significantly due to the interaction of these variables which should be captured 

well  through the flood modeling tools (Gallien et al., 2018). Therefore, the compound 

urban flooding needs to be studied and modeled locally due to its limited geographical 

extent and the physical interactions involved (Paprotny et al., 2018; Saleh et al., 2017).  

An accurate and timely flood forecast system is an important tool to protect the 

people and infrastructures in flood-prone areas. National Weather Service (NWS) has 

adapted advanced techniques for simulating streamflow, flash-flood events, flood plain 

maps, and ensemble prediction for streamflow (Mcenery et al., 2005) through the 

Advanced Hydrologic Prediction Service (AHPS). However, there is greater uncertainty 

on how the compound flood will propagate into inland flooding (Couasnon et al., 2019), 

especially, in a real-time forecast system. An improved 1D or 2D model is needed to 

study the complex flooding in the urban areas (Barthélémy et al., 2018). Advanced multi-

dimensional (2D-3D) models have a higher accuracy rate but it comes with a cost of 

higher simulation time, input data, and computational expenses (Contreras et al., 2020), 

which is a limitation for regional or local scale study. 
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The predictive skill of a real-time forecast system needs to be evaluated for 

implementing in decision making strategies. Although urban flood data is not available 

officially, advanced technologies have provided public access on large number of 

observations shared through social media, online news sites, and newspapers on any 

flood incident. The hydraulic data, such as flood depth and extent, can be easily extracted 

from photos and videos produced by the citizens on social media (Le Coz et al., 2016). 

Few studies have already evaluated the use of crowdsourced data for model validation in 

the areas where data is unavailable (Allaire, 2016; Poblet et al., 2018; Wang et al., 2018; 

Ogie et al., 2019; Yagoub et al., 2020). 

The region along the tidal Potomac River is prone to riverine flooding like 1996 

January, coastal flooding like Ernesto 2006, and at times a combined flooding from both 

river and coast. Washington, DC and the surrounding areas of Maryland and Virginia are 

hit by multi-flood hazards every year. The non-linear relation between the flood drivers 

causes the total water level to rise to an unprecedented level and cause severe damages. 

Therefore, an efficient urban flood forecast system is required for the region with 

accurate information ahead of any severe flood event. Our study has developed a real-

time system with a 2D hydrodynamic model in the tidal Potomac River to generate 

forecast for the rivers, streams, and urban areas. The goal is to understand the physical 

characteristics of the flood drivers that generate compound flooding in the region and 

implement the outcomes for developing a real-time flood forecast system. 
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3.2 Methodology 

3.2.1 Study Area 

The study area is located at the junction of the Potomac and Anacostia rivers, and 

a small stream, the Rock Creek. Anacostia River is connected to the tidal Potomac River 

near Washington DC. Drainage area of the Anacostia River is 315 km
2
 and the Rock 

Creek is 160 km
2
 which are very small compared to the Potomac River drainage area of 

30,000 km
2
 (Huanxin et al., 1997). The upstream boundary begins at Little Falls, 

Washington DC and ends near Alexandria, VA. The tidal portion of the Potomac River 

includes Anacostia River, Roosevelt Island Channel, Washington Channel, Tidal Basin, 

Broad Creek, Piscataway Creek, Dogue Creek, Gunston Cove, Pohick Bay, and Accotink 

Bay tidal inlets (Schaffranek, 1987). There are several adjacent streams in the study area 

such as Pimmit Run, Rock Creek, Four Mile Run, Cameron Run, Oxon Run, Watts 

Branch, etc. The cities around Washington, DC are highly urbanized and experienced 

several flood over the years. The areas adjacent to Washington DC have extended at a 

higher rate (~22 km
2
 per year) after 1972 (Masek et al., 2000). It has multiple future 

challenges: dense population, old sewer system, location at the confluence of two major 

rivers, increased runoff driven by imperviousness, and changing pattern of extreme 

rainfall and sea level rise due to climate change (Huong and Pathirana, 2013). Study area 

for compound urban flooding includes the urbanized portion of the Washington, DC 

Metropolitan Area, Montgomery and Prince George’s county in Maryland, Fairfax 

county, Falls Church city, Arlington county, and Alexandria city in Virginia. Figure 39 

shows the study area with the surrounding streams and land use types.  
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Figure 39 Study area showing a) cities and counties and b) land use type and streams 

 

 

 

3.2.2 Model Setup 

Our flood forecast system is developed using the Hydrologic Engineering 

Center’s River Analysis System (HEC-RAS). This model allows 1D and 2D unsteady 

flow calculations for natural or constructed channels and the adjacent floodplain areas 

(Brunner, 2016). The upstream boundaries of the system are located in the flow 

dominated regions of Little Falls, DC and at the junction of Northwest and Northeast 
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Branch of Anacostia River. The downstream boundary is in a highly tide-dominated 

region at Alexandria, VA. A high resolution topo-bathy was generated for the model 

simulation using Digital Elevation Model (DEM) and NOAA Nautical Charts for the 

entire area along tidal Potomac River. The topo-bathy for our study area was then clipped 

from the entire topo-bathy. The DEMs were obtained from the United States Geological 

Survey (USGS, 2016), and the bathymetry data was collected from the NOAA Electronic 

Navigational Charts (ENC), a dataset prepared for supporting all types of marine 

navigation (NOAA, 2018b). NOAA ENC charts use tidal datum of mean lower low water 

(MLLW) and the DEM from USGS uses North American Vertical Datum of 1988 

(NAVD88). The ENC datum was converted from MLLW to NAVD88 for the full model 

domain. The combined topo-bathy is shown in Figure 40 and the model boundaries for 

our forecast system are presented in Figure 41. Manning’s roughness coefficient was 

estimated from literature (Bhandari et al., 2017), ranging from 0.015 to 0.16 depending 

on the land cover types shown in Figure 39. 
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Figure 40 Topo-bathy for 2D grid generation in ArcGIS (blue and pink: river bathymetry, green and brown: 

inland topography) 
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Figure 41 Model setup with a) 2D computational grids and b) CN grids 

 

 

 

3.2.3 Runoff Estimation 

The rainfall data was converted to runoff for generating forecasts using the Soil 

Conservation Service (SCS) curve number (CN) method, the most widely used method 

for predicting storm runoff. This method has been extensively applied in runoff 
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calculations for small watersheds and comprehensive hydrologic models (Kim et al., 

2002). CN is a dimensionless number ranging from 0 to 100. The value is 0 when 

runoff = 0 to 100 when runoff equals rainfall (USDA, 1986). Natural Resources 

Conservation Service (NRCS) provides runoff curve number tables depending on land 

cover types, hydrologic conditions, and the soil groups (Hernández-Guzmán & Ruiz-

Luna, 2013). Land use data from National Land Cover Database 2016 (Figure 39) and 

soil data from Natural Resources Conservation Service (NRCS) were used for the CN 

grid generation in ArcGIS. Average CN has been developed based on the methodology 

used for calculating composite CN (USDA, 1986; Reistetter and Russell, 2011) by 

assuming the percentages of impervious area. We selected CN 35, 65, 85, and 95 for 

runoff estimation in this study to consider flooding in both impervious and pervious 

areas.  

3.2.4 Observed Dataset and Forecast Boundaries 

3.2.4.1 Observed Data 

The proposed model was initially validated for the compound flood simulation 

with observed dataset (figure not shown). Observed streamflow and water level data were 

collected from the United States Geological Survey (USGS, 2017). Potomac River flow 

at Little Falls (LF) gage station (USGS gage: 01646500) and combined flow data from 

two Anacostia River stations at Northeast Anacostia (NE) and Northwest Anacostia 

(NW), i.e., USGS gages 01651000 and 01649500 respectively, were used as upstream 

boundaries. In order to evaluate the coastal effects, we used a downstream boundary 
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condition at Alexandria, VA (USGS station: 0165258890) to consider the influence of the 

coastal water levels from the Chesapeake Bay towards flooding in Washington, DC. 

3.2.4.2 Advanced Hydrologic Prediction Service (AHPS) 

The modeling system demonstrated in this research provides a 3-day flood 

forecast. Boundary conditions for flow and water level forecasts were collected from the 

NWS’s AHPS database (NOAA NWS, 2018). AHPS provides magnitude and probability 

of floods for several days in advance (National Weather Service, 2020c). Potomac River 

forecasts by AHPS are available at several river stations in the study area: Little Falls 

pump station (BRKM2), Washington Channel (WASD2), Wisconsin 

Avenue/Georgetown (GTND2), and Alexandria (AXTV2). Anacostia River does not 

have any AHPS forecast at present. In order to quantify the forecast at Anacostia River, 

we estimated a relation between the flow at Little Falls, DC station and Anacostia NE and 

Anacostia NW combined streamflow using the data during 2010-2019 which is shown in 

Figure 42. It was estimated that daily peak of Anacostia river flow is about 2-6% of 

Potomac River daily peaks. We calculated 2% and 6% from LF daily peaks and then 

estimated the average of these values to use as Anacostia boundary. 

3.2.4.3 National Water Model (NWM) 

A set of streamflow input data was collected from the National Water Model 

(NWM) medium range dataset (Office of Water Prediction, 2018). The NWM is a 

hydrologic model that simulates observed and forecasted streamflow over the continental 

US. The NWM simulates the water cycle using mathematical representation of the 

processes involved and counterparts the current hydrologic modeling. It provides 
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forecasts for more than 2.7 million river reaches  with very fine spatial and temporal 

resolution (Office of Water Prediction, 2018). National Water Model flow forecasts were 

evaluate by (Viterbo et al., 2020) during the flash flood event of May 2018 in Ellicott 

City, Maryland. This study has evaluated the HRRR precipitation data as an input to their 

forecast system across multiple spatial scales, from regional watershed-scale to local 

urban scale flooding. The forecast were evaluated by implementing the available footage 

from street cameras. For small watersheds, the NWM response was clearly linked to the 

meteorological forcing, but the response was very complex in larger basins (Viterbo et 

al., 2020). 

3.2.4.4 Integrated Flood (iFLOOD) 

Forecast from the recently developed iFlood guidance system was implemented in 

the downstream boundary of the model. iFLOOD is an operational real-time flood 

forecasting computational framework that integrates coastal and estuarine process in 

order to provide accurate water information. The system is based on a coupled surge-

wave (ADCIRC + SWAN) model and provides water level forecasts in the Chesapeake 

Bay for a lead-time of 84 h twice a day. It has been operational for several years and has 

been validated for daily weather and extreme weather flood forecasts that showed 

competing performance against other NOAA existing operational guidance systems 

(Khalid and Ferreira, 2020).  

3.2.4.5 High Resolution Rapid Refresh (HRRR) 

HRRR rainfall data was used to generate storm runoff in the model. HRRR is an 

hourly updated real-time atmospheric model with 3-km resolution (NOAA, 2020d). The 
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accuracy of HRRR forecasts were evaluated for few extreme storms in the US by 

comparing with gauge corrected Multi-Radar/Multi-Sensor products (Yue and 

Gebremichael, 2020). In this study, a good agreement was found between the forecasted 

and observed precipitation on an hourly basis. However, the forecasts underestimated 

rainfall for tropical storms, and produced almost unbiased estimates for the other storms. 

Forecasts captured the spatial pattern of hurricanes but produced more localized, high-

rain intensities compared to observation (Yue and Gebremichael, 2020). The unit for 

HRRR precipitation is kgm
-2

s
-1

 which is equal to 3,600 mm/hour. The data was converted 

to mm for implementing in this model.  

3.2.4.6 AHPS Depth Grids 

The model forecasts were validated by comparing with AHPS flood depth grids. 

AHPS grids provide inland flood depths based on the flood stages (Action, Minor, 

Moderate, and Major) at Washington, DC station. Minor flooding indicates there is 

possibility of some public threat. Moderate flooding may require evacuations of people to 

higher elevations, and Major flooding causes extensive inundations of structures and 

roads (National Weather Service, 2020c). AHPS inundation boundary includes 

approximately 8.9 km from the Main Stem Potomac River and approximately 13.7 km 

from the Anacostia River located along the western border of Washington, DC. The 

dataset is provided in raster format which has been reviewed in multiple steps to provide 

reliable depth values. LiDAR elevation data was used as the source to determine flood 

inundation level estimated by the constant tidal elevations used for mapping purposes. 

The Digital Elevation Model (DEM) used to generate the mapping products was 
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produced by the Army Geospatial Center and consists of a raster digital elevation model 

with a horizontal ground resolution of 1-meter (National Weather Service, 2020c). The 

downstream and upstream boundaries of our model are shown in Figure 43 and Figure 

44. The rainfall input is shown in Figure 45 and the overall model setup with the forecast 

boundaries are presented in Figure 46. The outputs from the proposed urban flood 

forecast model are flood depths, duration, and flood extent. 

 

 

 

 
 
Figure 42 Estimated streamflow forecast at Anacostia River boundary calculated from Little Falls (LF) flow (y 

axis in log scale and time in UTC; ANA 6%, ANA 2%, and ANA avg  are 6% and 2% of LF flow and average of 

the percentages respectively) 
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Figure 43 Water levels at downstream boundary of the proposed model obtained from observations (grey), 

forecasts at AHPS (pink) and iFLOOD (green). Grey shaded area indicates period with observed data 

 

 

 

 
Figure 44 Upstream streamflow boundaries and Little Falls (LF) and Anacostia (ANA) obtained from the 

National Water Model forecast 

 

 



112 

 

 
Figure 45 HRRR Precipitation forecast for August 04, 2020 (red box includes the study area) 

 

 

 

 
Figure 46 Multiple forecast inputs forced in the model 

 

 

 

3.3 Results and Discussions 

3.3.1 Forecast Validation 

The model was validated based on NWS’s AHPS forecasts at Washington, DC 

and Wisconsin Avenue stations, and the AHPS inland flood depth grids. We simulated 

recent water levels in DC from August 1, 2020 to August 7, 2020. There was a Minor 
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flooding in August 04 due to Hurricane Isaias (2020) and some Action stage flooding 

after August 05 in the region. 

3.3.1.1 Validation for Potomac River Flood Stage 

The forecast system outputs resulting from multiple inputs were compared to 

AHPS river forecasts to test the predictive skill of the model. In the figures of this 

section, three sets of outputs are presented: i) forecast from AHPS forced boundaries, ii) 

forecast from AHPS (downstream) and NWM (upstream) boundaries, and iii) forecast 

from iFlood (downstream) and NWM (upstream) boundaries. The water levels were 

simulated from August 06, two days after Hurricane Isaias. The simulated Action stage 

event was compared with AHPS forecasts at two stations (Washington, DC and 

Wisconsin Avenue); AHPS can be noted as the reference forecast for comparison (Figure 

47). The difference between AHPS forecast and the proposed model forecasts range 

between 0.05 m to 0.30 m for the peak water levels (Figure 47). The reasons for the 

difference between the forecasts can be attributed to: i) model parameters or input values, 

and ii) the assumption that AHPS forecasts are accurate. In reality, there can be a 

difference between the observation and AHPS forecasts. To confirm this, forecasts from 

the last 2 days of this simulation period were archived to compare with the observed data. 

AHPS forecast were not accurate at all the times during the events and the peaks differ 

between 0.00 and 0.20 m. The results obtained from our model simulations were better 

than the AHPS forecast during some events analyzed in the validation process, and a bias 

is noted when compared to AHPS forecast results, most likely due to differences in the 

model input. 
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Figure 47 Water level forecasts at Washington DC and Wisconsin Avenue for different model boundaries and 

compared with AHPS forecasts (reference forecast) 

 

 

 

3.3.1.2 Validation for Inland Flood Depth 

AHPS provides inundation boundary around Washington, DC based on the flood 

water levels at the DC station (Figure 48). Model forecasts were compared with the flood 

depths from AHPS inundation grids. Although the AHPS depths are not in real time, 
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those values can provide significant information on the range of flood depths to be 

expected during any Action, Minor, Moderate, or Major floods. River depths between the 

model forecast and AHPS inundation grids have significantly higher bias (1.2m). A high 

resolution bathymetry (from NOAA nautical chart) was used in our urban flood model; 

therefore, it could represent the river depth more accurately than the AHPS grids. 

However, the inland flood depth forecast was very similar to the AHPS grids with minor 

bias at some locations.  

There is no official source available to provide historical or real-time inland flood 

depths during different flood events. Therefore, we could not find any inland flood data 

for validating the model results. However, the available flood inundation and depth 

information from television and online news, newspapers, and social media photos 

proved to be good sources for the event validation. We simulated the recent flooding in 

DC, MD, and VA due to Hurricane Isaias on August 04, 2020. The storm moved 

northeast at approximately 44 km/h at 5 a.m. according to the NHC (National Hurricane 

Center, 2020). The winds and rain passed over the Washington, DC area during mid-

morning (Patch, 2020). The observed water levels and streamflow at the upstream and 

downstream boundaries during the Hurricane Isaias, and the water level at DC are shown 

in Figure 49. From Figure 49 it was clear that there was Action and Minor stage flooding 

during the storm. We archived our model results to validate with the observed flooding 

conditions around the DC metropolitan area. 

Newspapers and online news sources featured the flood event in the area. The 

flood depths at different locations could be determined from these photos. For example, 
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as shown from an online source in Figure 50(a) collected from Patch (2020), the Four 

Mile Run stream was full to its capacity which indicates that the Action stage (1.83 m) of 

the stream was exceeded at the location and areas nearby were flooded. Figure 50d shows 

that there was flooding in the adjacent trail of the stream. Moreover, from Figure 50(b) 

(NBC4 Washington, 2020) and Figure 50(c), it can be estimated that the flood depth in 

Old Town Alexandria streets was equivalent to ankle deep water. In addition, flood 

depths can be estimated by archiving photos with the height of the buildings inundated 

and later measuring the height physically. This will also help to delineate the boundary of 

the flooding around the area. Moreover, the twitter and facebook photos posted by the 

residents are very useful to estimate flood depths in any residential or commercial area.  
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Figure 48 AHPS inundation grids (a) and proposed model forecasts (b) 
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Figure 49 Observed boundaries during Hurricane Isaias 

 

 

 

 
Figure 50 Flooding during Isaias on August 04, 2020; (a) Four Mile Run near Arlington, (b) Old Town 

Alexandria, (c) Woodburn Road Fairfax, VA, and (d) Washington and Old Dominion Trail along Four Mile 

Run 
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3.3.2 Impact of the Compound Flood Drivers in the Model Forecast  

The forecasted results illustrated the effect of riverine flow, rainfall, and surges on 

inland flooding. Predicted inundation boundaries from our model provided valuable 

information on the flooding characteristics. Flooding near Washington, D.C. is caused by 

either tidal flooding from Chesapeake Bay, or flows from the upstream of Washington, 

D.C., or a combination of both. Riverine flow combined with high surges can also 

produce severe flooding in the region. However, the forecast on August 4, 2020 showed 

significant flooding in the region mainly due to rainfall (Figure 51). Coastal surge had 

some contribution to DC flooding and Little Falls flow was below Action stage of 1.52 m. 

Rainfall was the dominating factor for flooding which was evident from the forecast 

generated with and without rainfall showing significant difference in forecasted depths. 

NBC4 Washington reported several inches of rainfall and life-threatening flash flooding 

into the D.C. region (NBC4 Washington, 2020). The urban areas including Old Town 

Alexandria, Washington, DC, and Ellicott City was hit by flooding from this event. The 

forecasted flood duration was 1-3 days in the urban areas both with and without rain 

(Figure 52). The red colored region in the river boundary shows a duration of 4-5 days. 

Rainfall had significant impact on the duration of flooding in the urban areas located at 

the upstream. 
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Figure 51 Floodplain map for maximum inundation (a) without and (b) with rain 
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Figure 52 Forecasted flood duration (a) without and (b) with rain 

 

 

 

3.3.3 Stream Water Level Forecast 

The streams around Washington metropolitan region are also impacted by 

flooding from riverine flow, surges, and rainfall. The forecasts for the streams show very 

low to no flooding when rainfall is not considered. However, with even a small amount 

of rainfall, the stream forecasts show much higher water level. The Potomac River and 
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Anacostia River do not show such increase in water level due to rainfall. This indicates 

that rainfall is very important input for stream water level forecasts. Figure 53 shows 

water level forecasts in some of the streams in the area. In the forecasted period (August 

4-5, 2020) there was a rainfall of maximum 50 mm and the streams showed higher peaks 

and fluctuations in water level. During the observed period there was negligible amount 

of rainfall (1-2 mm), and only the tidal impact was visible in the stream. Among the 

streams in the figure, Pimmit Run is in a flow dominated region, Rock Creek in a 

compound flood dominated region, and the other streams are located in the tide 

dominated region. Therefore, the runoff impact from rainfall is more prominent in the 

Pimmit Run stream. It is difficult to estimate flooding condition in the streams. While the 

streams are at lower than Action stages, it may reach the threshold values to generate 

flooding condition. Data analysis during the period of 2007-2019 showed that Rock 

Creek has an Action stage of 1.83 m although it can generate flooding condition with 

higher than 0.6m water level as shown in Figure 54. Moreover, any rainfall event near 

DC has impact to all the streams although the impact varies in characteristics and 

quantity. Rock Creek can be represented as a proxy to the urban flooding condition 

because when Rock Creek shows elevated water level, the same is observed in the 

surrounding streams of the area (Figure 54). 
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Figure 53 Water levels in the small streams (vertical magenta line indicates start of forecast period) 

 

 

 

 
Figure 54 Historical water levels in the small streams (Threshold, Action, Minor, Moderate, and Major flood 

stages are for Rock Creek) 
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3.3.4 Forecast along the Potomac and Anacostia Rivers 

Several inland locations very close to the rivers were selected to analyze and 

compare the flood depth (Figure 55). Location ID and names of those locations are 

shown in Table 8. These locations are impacted by compound flooding from coastal, 

riverine, and runoff impacts (Figure 56). However, locations adjacent to the Potomac 

River are not impacted much by rainfall compared to the inland locations in the urban 

areas far from the rivers. Without rainfall, the tides or flow did not have much impact in 

the inland water depths during the observed period from August 01 to August 03 (Figure 

56). The impact of compound flood drivers varied on different locations In Reagan 

Airport and other locations close to the river, the rainfall did not have much impact. 

National Mall showed very high depth value when simulated with CN 85 because with 

such high CN, the area is assumed to be urban and the runoff is trapped in the area for a 

longer period. A single flood depth forecast is not sufficient to provide information on the 

flood events. Multiple simulations based on different runoff conditions are generated to 

provide an approximate flood depth value which is presented in the next section. 
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Figure 55 Flood depth analysis locations along the Potomac and Anacostia River 
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Table 8 Locations along the rivers 

ID Location ID Location 

0 Crest Lane3 22 Anacostia L1 

1 Clara Barton Pkwy2 23 Anacostia L2 

2 Canal Road4 24 Anacostia L3 

3 George Washington Pkwy311 25 Anacostia L4 

4 Canal Road1 26 Anacostia L5 

5 George Washington Pkwy211 27 Anacostia L6 

6 Palisades Park1 28 Anacostia L7 

7 George Washington Pkwy111 29 Anacostia L8 

8 Georgetown Waterfront1 30 Anacostia R1 

9 George Washington Pkwy2 31 Anacostia R2 

10 John F Kennedy Cntr1 32 Anacostia R3 

11 Ohio Drive SW1 33 Anacostia R4 

12 George Washington Pkwy7 34 Anacostia R5 

13 Ohio Drive SW5 35 Anacostia R6 

14 George Washington Pkwy10 36 Anacostia R7 

15 East Poto Park1 37 Anacostia R8 

16 Ronald Reagan Airport1 38 Tidal Basin2 

17 Bolling AFB1 39 Washington Channel2 

18 Marina Tower2 

  19 Smith Street1 

  20 Old Town Alx2 

  21 National Harbor2 

   

 

 

 
Figure 56 Flood depths near Potomac River with CN 85 (vertical magenta line indicates start of forecast time) 
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3.3.5 Multiple Forecasts from Variable Inputs 

The goal for multiple flood forecasts is to choose the best forecast for each 

location based on the characteristics of the area. For example, if an area is highly 

urbanized, a CN 95 forecast will be more appropriate while for a less urbanized area, the 

forecast with CN 35 or CN 65 is suitable. Multiple forecast lines have been generated by 

changing the model inputs: flow, water level, and rainfall-runoff. The forecast lines vary 

widely due to the change in the flood drivers, particularly, due to the rainfall variation. 

Change in CN does not have significant impact on the river water level. The most 

impacted areas with the rainfall are the urbanized areas in the region. The difference in 

inundation depth due to rainfall intensity (i.e., CN 35, CN 65, CN 85, and CN 95) is 

estimated to show how the peak flood varies based on rainfall induced runoff (Figure 57). 

CN 35 did not generate any urban flood, therefore not presented in the figures. 

The East Potomac Park location is a less urbanized area, and Old Town 

Alexandria is a highly urbanized area impacted by rainfall every year. These two 

locations are presented to provide an understanding on how the flood depth forecasts may 

vary due to the runoff input and the location types. Moreover, an urban location near 

Rock Creek is also selected to represent urban areas located far from the main rivers. The 

peak flood depths obtained by using CN 85 and CN 95 were very steep and went down 

abruptly compared to the ones representing CN 65. However, depths from CN 85 lines 

show that these are more representative of the flood depths observed in the urban areas 

like Old Town Alexandria. Urban floods are mostly small duration events which increase 

suddenly, like the steep increase for CN 85 or CN 95, and have the most destructive 
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impact within urban areas. According to the photos and information obtained from 

different online news portals, news channels, and social media, the water depth at Old 

Town Alexandria seems to be 0.30-0.6 m in the streets. The depths may vary from one 

location to another. Thus, a range of possible values should be indicated for the flood 

inundation while providing a forecast to stakeholders depending on the characteristics of 

the area. 

 

 

 

 
Figure 57 Flood depths from multiple forecast inputs 
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3.4 Conclusions 

This study has explored and generated a platform for automating simulations and 

forecast of river water levels, inland depths, and floodplain maps during compound 

flooding at a faster rate. The validated hydraulic system was capable of representing past 

events with some bias depending on the flood drivers associated and enhanced the 

scientific understanding of the interactions between the flood drivers in the river, stream, 

and inland locations. It has provided acceptable results ahead of storm events in the 

region with minimum time and computational use. Moreover, spatial and temporal 

distribution of flooding during the events was significantly captured by the model. 

Outcomes from this study demonstrated that it is critical to consider the interactions 

between the processes that lead to major flood from river flow at the upstream boundary, 

and coastal flooding from downstream boundary. The importance of accurate rainfall 

input is evident from the analysis because some urban areas are impacted by runoff only. 

The model has some limitations due to the use of CN for approximate estimation 

of runoff for the study area. Furthermore, the model parameters and inputs can also 

generate bias in the results. Biases in the results may occur partly due to the spatial 

resolution of the model and rainfall inputs. Existing models are not capable of providing 

reliable compound flood forecasts in coastal cities even though the compound urban 

flooding has been increasing rapidly. However, the relative contribution of each driving 

factor can be estimated in real-time through this system. Although the forecasts were not 

validated against observed flood records, the results were compared with available 

information from the local news and social media. This modeling approach can be used 



130 

 

in the coastal communities around the Washington, DC metropolitan area, and the 

application can be extended to other such areas around the globe.  

The forecasted results have provided an improved understanding of the urban 

flood processes which would be helpful for the decision-making processes in flood risk 

management. A number of urban areas have similar flooding problems and share similar 

hydrological properties as this study area. Although the study is developed for a specific 

area, the knowledge from the application of this system can be scaled up to a broader 

watershed scale analysis and forecast.  
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CONCLUSIONS 

Compound flooding results from the simultaneous occurrence of multiple flood 

drivers generating significantly higher peaks and longer durations when compared to 

single driver induced events. However, the interaction between these drivers is complex, 

and requires extensive local analysis based on their impact on the flood peaks and 

duration. The Washington, DC metropolitan region is exposed to compound flood 

hazards, as are many of the tidal cities of the US. This study has implemented a data 

driven analysis in DC from 1931 to 2019 to identify the major flood drivers, and 

investigated the spatial and temporal variability of flood depths and extents. We have also 

implemented a hydrodynamic model to generate flood forecast for this urban region 

based on the outcomes from the historical analysis. Results from this analysis have 

addressed the three science questions: 

 What are the major flood drivers that cause compound flooding in a river-

estuarine transition zone? What is the impact of each flood drivers in generating 

the compound flood peaks in the tidal river? 

The magnitude and duration of floods in DC can be attributed to the impacts from 

different flood drivers including riverine flow, coastal water level or storm surge, urban 

runoff and local wind. The flood events were classified as river, coastal, compound , and 

other flood. Moreover, the flood days in DC were categorized as Action, Minor, 
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Moderate and Major flood days. During 1980-2019, four Major floods were observed in 

the DC station, three of which were compound floods (Nov 1985, hurricane Fran 1996, 

and hurricane Isabel 2003) and the other one was a river flood (Jan 1996). The other 

floods were mostly the result of low water level and high wind speed leading to Action or 

Minor flooding. In few cases, rainfall induced urban runoff events were responsible for 

floods in DC. Moderate and Major flood stages were mainly the result of compound 

floods. Results suggested that the coastal water level at LWT alone had the highest 

potential to create flood conditions in DC. Moreover, wind speed and direction affected 

the interaction between storm surges and riverine flow along the Tidal Potomac River. 

Sea-level rise can also have significant impacts on the flood peak at DC, by increased 

water levels in the Chesapeake Bay. The results from this study emphasized the need to 

refine the current forecast models in large estuaries by considering the potential complex 

interactions between the compound flood drivers. 

 How does the compound flood in a tidal river propagate into the spatial and 

temporal variability of flooding in an urban area? To what extent the compound 

flood drivers impact urban flooding? 

This study assessed compound flood variability in space and time driven by 

multiple flood drivers based on 28 scenarios of high and low flow and surges along with 

multiple design rainfalls. While flooding driven by any single variable can cause 

extensive inundation in the region, multiple factors associated with an inundation can 

generate even higher flood extent and depth. The dominating drivers (flow, surge, or 

rainfall) of the synthetic events helped to understand the flooding properties along the 
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Potomac River: riverine flood impacted mostly in the upstream part of the river, both 

riverine and coastal boundaries dominated the flood along the middle part of the river, 

and the lower part was highly influenced by surge only. The area at the confluence 

between the Potomac and Anacostia Rivers was the most exposed area to the compound 

floods driven by the riverine flow and surges or riverine flow, surges, and rainfall. 

Intense runoff generated greater flood inundation in the urban areas located far from the 

rivers but adjacent to the streams. Low gradient streams are mainly responsible for urban 

or inland compound flooding due to the impact of flow and surge being present at a 

longer distance from the stream mouth. In the future, SLR will flood new locations in the 

area and the already exposed areas will experience increase in both inundation extent and 

depth. The methodology and outcomes from this study can be implemented to the other 

US metropolitan cities like NYC, Baltimore, Houston, and Chicago as well as any coastal 

cities around the world which are impacted by compound floods.  

 Can an integrated state of the art modeling framework accurately forecast 

compound flooding conditions in real-time? 

This study has implemented a prototype for a real-time flood forecast system 

including the impacts from all the flood drivers associated with the flooding in the urban 

areas of Washington, DC. The real-time system also provides flood levels in the small 

streams adjacent to the Potomac River. Flood depths from the inundation grids of the 

National Weather Service are compared with the results. There is no other significant 

data available to validate real-time urban flooding in the region. However, information 

from newspapers can be a good source to compare the inundated locations, flood depths, 
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and extents. This study is critical to improve the understanding of the processes that lead 

to compound flooding in urban areas. Flood simulations by either riverine flow or coastal 

water levels cannot fully demonstrate the risk of flooding for decision support systems in 

this coastal-estuarine region. The local floodplain managers and decision makers can be 

benefited from these tools and methodologies developed for estimating and predicting 

compound flood in the river, small streams, and also in urbanized areas.  

Single-hazard flooding analysis has become insufficient to account for extreme 

flooding events in estuarine urban areas. Compound events have a more devastating 

impact than their single-hazard equivalent, and pose higher threat to the low-lying areas 

prone to flooding every year. Furthermore, low probability or extreme flood peaks may 

be driven by events that are not extreme themselves. Therefore, local scale flood 

modeling and floodplain mapping in coastal urban environments with river flow, rainfall, 

and storm surge needs to be better understood and communicated. A detailed and 

comprehensive understanding of compound flood events at present and into the future 

will significantly increase communities’ preparedness and response. Therefore, this study 

will lead to better understanding and modeling of the underlying compound flood 

characteristics in the coastal cities which is of utmost importance to support policymakers 

in making informed decisions and implementing effective protection measures.  
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APPENDIX  

Appendix A - Model Calibration 

The Delft 3D hydrodynamic model was used in our study, which is capable to 

simulate hurricanes, storm surges, water levels, detailed flows and morphology and also 

model the interactions between those processes (Deltares, 2019). This modeling tool was 

used to simulate the water levels at DC by considering the impacts from riverine, coastal, 

estuarine, and urban environments. A topo-bathy was generated by using the Digital 

Elevation Maps (DEM) from USGS (USGS, 2020) and bathymetry from NOAA nautical 

chart elevations (NOAA, 2018) with varying resolution (1m near DC to 200m near LWT 

in downstream) and the datum of North American Vertical Datum of 1988 (NAVD88). 

The topo-bathy is shown in Figure A.The model grid were generated with the RGFGRID 

tool (Deltares, 2019) and had about 40,000 node elements. A curvilinear grid was 

iteratively generated by drawing splines. The study area boundary mainly consisted of the 

river bathymetry but extended towards land with some buffer zone. The land boundary 

was used for the model grid generation and to further improve the model, the grids were 

converted from regular to irregular structure; therefore, the grids were unstructured 

(Figure A). Unstructured grids allowed local grid refinement in areas with large 

horizontal gradient. Figure A shows the study area with the boundaries and observation 

stations (DC and Dahlgren or DAHL). 
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The most important parameter for the modeling was calibrating the roughness 

coefficient Manning’s n values. As suggested by previous flood modeling studies on the 

Potomac River (Mashriqui et al., 2014; (Wang et al., 2015) and the values from Chow 

(1959), a range of Manning’s n of 0.021 and 0.015 were initially selected for simulating 

the water level in the Potomac River. Figure  shows the water levels at DC and DAHL 

station with varying Manning’s n values from 0.01 to 0.1. As the manning’s n value 

increases from 0.015, the water level at DC loses its amplitude. However, in the 

downstream station at Dahlgren the impact of Manning’s n in not as high as in DC. The 

hydrodynamic model boundary was within the rivers and the banks and did not include 

any urban areas. Therefore, a uniform value of 0.015 was used finally for the Potomac 

and Anacostia River. The flood stage of DC station can be translated into the flood 

inundation in the surrounding areas as provided by the NWS.  

Other calibration parameters for the model were horizontal viscosity and 

diffusivity. These values were chosen such that they account for any coarse numerical 

grids. Delft3D was used in a study to simulate water level in a tidally influenced river, 

similar to our study area, with horizontal eddy viscosity of 10 m
2
s

−1
(Buschman et al., 

2010). As the modeling environment for this study was similar to our study, we used this 

value for our study. A report for the development of an Integrated Water Resources 

Management (IWRM) plan in Myanmar used horizontal eddy diffusivity of 20 m
2 

s
-1

 

(Deltares and TU Delft, 2016). However, the study area was different than our study; 

therefore, we tested the model with multiple diffusivity values (20, 40, and 60 m
2 

s
-1

) and 

the value of 20 m
2 

s
-1

 showed the best result (Figure ). The final model parameter values 
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were evaluated based on the bias and presented in Figure . The average bias in DC water 

level was 0.03m with n=0.015 and horizontal diffusivity of 20 m
2 

s
-1

; and bias was 0.07m 

with n=0.021 and horizontal diffusivity of 60 m
2 

s
-1

. The bias increases if Manning’s n 

are increased further from 0.015.  

 

 

 

 
Figure A1 Topo-bathy for mesh generation in Delft3D (blue and pink: river bathymetry, green and brown: 

inland topography) 
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Figure A2 Delft3D model setup with boundary conditions 

 

 

 

 
Figure A3 Manning's n calibration: Black line is observed and the colored lines are simulated water level with 

different Manning’s n 
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Figure A4 Model calibration for horizontal diffusivity (legend naming: viscosity_diffusivity): Black line is 

observed and the colored lines are simulated water level with different horizontal diffusivity 

 

 

 

 
Figure A5 Final evaluation of model parameter (Manning’s n_viscosity_diffusivity) 
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Appendix B - Compound Flood Drivers 

During a compound flood event, different flood drivers may co-occur and 

generate a higher peak and longer flood durations. In Figure B1, the cyan colored line is 

the urban runoff or Rock Creek streamflow. The LWT water level is below action stage 

but LF and RC are above flood stage which means this a river flood. 

 

 

 

 

Figure B1 Compound flood drivers in Washington DC (green dots indicate flooded points for different drivers, 

LF Reg Stage: calculated regression, RC UP = Rock Creek) 

 

 

 

There are few stations in between DC and LWT (Figure B2). However, as the 

previous studies suggested (Mashriqui et al., 2014; Feng et al., 2017; Khalid and Ferreira, 

2020), the coastal surge from LWT has a significant impact in DC flooding and therefore 

we selected DC for our study. However, other stations also have impact from upstream 

and downstream but the best location to study the impact from both is DC. The water 

from Lewisetta travels to DC through Dahlgren and Alexandria. However, while the tidal 
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amplitude in DC and Alexandria changes, the tidal pattern remains the same.  

Furthermore, the impact of local winds in DC and Alexandria is similar. On the other 

hand, any increase or decrease in water level at Lewisetta will result in similar changes in 

Dahlgren. Therefore, using Alexandria or Dahlgren for the analysis will not provide any 

additional information. Moreover, we use the Lewisetta water levels for our analysis 

because water from the Chesapeake Bay is directly impacting this location. Therefore, we 

can expect certain changes in DC due to the ocean or bay water, which can be captured 

by Lewisetta water level. 
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Figure B2 Water levels at different Potomac River stations in 2018 

 

 

 

The time lags were measured for more than 30 storms during 1931-2019 by 

calculating and analyzing the time of peak for the flow and water levels at different 

stations. The time difference were calculated as shown in Table B1 and also plotted to 

check the values manually (Figure B3). It was observed that the peak at DC occurs 6-8 

hours after the peaks at Lewisetta. However, the flow at Little Falls and water level at DC 
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start to increase almost at the same time and decrease also at the same time, therefore 

time lag is approximately zero for these two stations. 

 

 

 
Table B1 Time of peak at DC and LWT 

Storms DC Peak time DC LWT Peak time LWT 

DC time – LWT 

time (dd:hh:mm) 

Arthur 6/20/96 10:00 0.844601 6/20/96 4:00 0.433426 00:06:00 

Bertha 7/13/96 7:00 0.881482 7/13/96 1:00 0.551383 00:06:00 

Bonnie 6/4/16 7:00 0.887578 6/4/16 0:00 0.562356 00:07:00 

Dennis 9/6/99 4:00 1.114654 9/5/99 22:00 0.81534 00:06:00 

Helene 9/26/00 6:00 0.709574 9/26/00 0:00 0.545287 00:06:00 

Isabel 9/19/03 4:00 2.652674 9/18/03 20:00 1.430426 00:08:00 

Cindy 7/8/05 8:00 1.109472 7/8/05 2:00 0.678485 00:06:00 

Alberto 6/8/06 5:00 0.824484 6/7/06 22:00 0.543458 00:07:00 

Ernesto 9/2/06 1:00 1.56149 9/1/06 18:00 1.490472 00:07:00 

Irene 9/2/11 23:00 0.864718 8/27/11 22:00 1.131418 06:01:00 

Andrea 6/7/13 6:00 0.856488 6/7/13 0:00 0.470306 00:06:00 

Arthur 6/28/14 8:00 0.795528 6/28/14 2:00 0.535534 00:06:00 

Ana 5/3/15 7:00 0.756514 5/3/15 1:00 0.51755 00:06:00 

Claudette 7/17/15 8:00 0.920496 7/17/15 2:00 0.589483 00:06:00 

Hermine 9/3/16 21:00 0.975665 9/3/16 15:00 0.820522 00:06:00 

Julia 9/16/16 19:00 0.892454 9/16/16 13:00 0.613562 00:06:00 
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Figure B3 Time lags between the flood recording stations (blue lines for LWT peak and time, black line for DC 

peak and time) 

 

 

 

There was only one rain gage available in this area (Ronald Reagan Airport) 

which is no longer available. However, we used the flow in different small streams 

connected to Potomac River which are close to Washington, DC, to estimate the local 

rainfall driven runoff in those locations. The flow in these small streams are assumed 

independent (correlation<0.37) from the riverine flow from the large watershed of the 

Potomac River. Finally, we selected one small stream, Rock Creek, as a proxy to 

represent all the water coming from the local urban streams due to rainfall. The rainfall 

from Ronald Reagan airport and the flow from adjacent streams during the same rainfall 

event are shown in Figure B4, B5, and B6. Although rainfall is a spatially variable driver, 
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the figure shows that all the local streamflow stations and the rainfall gage usually are 

affected by the same rainfall event.  

 

 

 

 
Figure B4 Flows in the streams and rainfall at Ronald Reagan Airport in 2012 
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Figure B5 Flows in the streams and DC and rainfall at Ronald Reagan Airport in 2012 

 

 

 

 
Figure B6 Streamflow in during a rainfall event in 2010 
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Appendix C - Test of Independence 

For our study, DC water level is the dependent variable and all other variables are 

considered the independent variables. We generated correlation plots and scatter plots 

between each variable along with the R
2
 values. The correlation co-efficient values were 

less than 0.37 (Figure C1) which is a low or weak correlation (Taylor, 1990) and R
2
 

values were less than 0.1 (Figure C2) which shows that there is very weak or no 

collinearity among the variables and therefore, we assume these variables as independent. 

 

 

 

 
Figure C1 Independence: Correlation co-efficient(r) between the variables 
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Figure C2 Independence: R2 values between the variables 
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Appendix D - Data Availability and Pre-Processing 

Little Falls station does not have 15-min or hourly flow data before 1980. During 

1930-1980, the station only has daily average data. Therefore, we used the available daily 

average and 15-min data from 1990-2019 to generate a regression equation that would 

convert daily average to daily maximum values (Figure D1). 

 

 

 

 
Figure D1 Little Falls Mean to Max 

 

 

 
Equation D1  

𝑌 = 1.882𝑋 − 18.939     
                      

We used Sewells Point water level data as a proxy of LWT after calibrating and 

validating the available dataset. This is the only station that has available data with 

continuous time series for the study period and could represent the water level at 

Lewisetta with a R
2
 value of 0.7, which is typically considered acceptable (Moriasi et al., 

2007). We have collected historical data for both LWT and SWP when both of the 
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stations had available data (1980-2019). We generated a regression equation (Figure D2) 

to estimate LWT values from SWP values. After that, a 5 hour time lag was added to 

consider the timing difference between LWT and SWP peaks. The surge characteristics 

will be very different in DC than in Lewisetta or Sewells Point. However, tidal and surge 

propagation from Lewisetta (mouth of the Potomac River in the Chesapeake Bay) to 

upstream of the Potomac River is well studied (Mashriqui et al., 2014; Feng et al., 2017; 

Khalid and Ferreira, 2020).These studies demonstrate in details the propagation of both 

astronomical and storm tidal signals propagating upstream towards Washington DC. 

Astronomical tidal analyses along the tidal Potomac River also clearly demonstrated the 

tidal propagation from Lewisetta to Washington, DC. Lewisetta is actually the logical 

choice as it defines the boundary between the Chesapeake Bay and the Potomac River (as 

shown in the study area figure). Our goal is to investigate and quantify the impact of 

storm surges coming from Lewisetta (and therefore the Chesapeake Bay) on DC flood 

levels. This is indeed one of the objectives of the study and demonstrated in the results 

section. We believe that the results of the present study also support the selection of this 

station as a proxy for storm surge.  
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Figure D2 Sewells Point daily maximum water level and Lewisetta daily maximum water level from (2005-2019) 

 

 

 
Equation D2 

𝑌 = 0.5553𝑋 + 0.0323              
            

Validation was done by using the regression equation to generate LWT water 

level from SWP daily maximum water level during 1980 – 2004 (Figure D3). The focus 

was on determining the flood stages (Action, Minor, Moderate, and Major) correctly 

rather than estimating the actual flood peak. 

 

 

 

 
Figure D3 Validation of Sewells Point data to use as proxy of Lewisetta data  
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Daily max SWP to daily max LWT: 

LWT flood days from observed data:               550 days 

LWT flood days from regression equation:      552 days 

LWT Error mean:                                       -0.0072 days 

A flowchart is presented to summarize the processing of the data to use in the 

analysis (Figure D4). The flowchart shows which equations were used for calculating the 

missing values of each variable. Moreover, we used the daily maximum values of the 

drivers to analyze any event by selecting the peak from 24hours data for LWT, LF, and 

RC.  

 

 

 

 
Figure D4 Data pre-processing flow chart 

 

 

 

NWS provides flood stages for estimating the flood categories. However, LF does 

not have water level or stage data available for the whole study period. Therefore, we 

used rating curve data of LF station from USGS (https://waterwatch.usgs.gov/?id=mkrc) 

and converted the streamflow into water level (Figure D5). Although flow is the 

https://waterwatch.usgs.gov/?id=mkrc
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dominant flood river in DC, converting it into the stage helped to understand the flooding 

condition clearly based on NWS stages. The equation for the rating curve at LF is a 

polynomial 2
nd

 order equation: 

Equation D3 

𝑌 = −4𝑥10−9𝑋2 + 0.0005𝑋 + 1.2132        
 

 

 

 
Figure D5 USGS rating curve values for LF 

 

 

 

When all the interpolated datasets were processed, we tested the dataset against 

the daily maximum data from Washington DC as this station has available data for the 

full study period (Figure D6). The events peaks were captured significantly by those 

dataset as they could capture the flood stages of the historical storms. Figure D7 shows 

the data availability summary in the study area. 
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Figure D6 Interpolated dataset for historical storms 

 

 

 

 
Figure D7 Summary of data availability 
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Appendix E - Impact of the Flood Drivers in DC station and the Urban Areas 

The flood drivers considered in this study are riverine flow from Little Falls, 

coastal storm surges from Lewisetta, local wind at Washington, DC, and urban runoff 

from Rock Creek. Anacostia River is connected to the Potomac River and was used as a 

boundary for the model simulation. However, we did not consider the flow from 

Anacostia as an independent driver for flooding in Washington, DC. Anacostia river flow 

is high during the events when Potomac River flow is also high. For example, the 

Northwest and Northeast Anacostia rivers had the maximum streamflow of 509m
3
/s and 

340m
3
/s on Jun 22, 1972, the same event when the Potomac River flow was high due to 

flooding from hurricane Agnes. The figure (Figure E1) shows different events during 

which both Potomac and Anacostia River flow was high. Therefore, the Anacostia River 

flooding had no independent impact as a flood driver in Washington, DC. 

Flood events from 1980-2019 were plotted to study the impact of all the four 

flood drivers on those events. The events were initially plotted with LF and LWT to 

check the impact of flow and surges and presented in the manuscript. Therefore, runoff, 

wind direction, and wind speed along with LF flow and LWT water level were included 

in Figure E2. This figure provided significant information on the contribution of wind 

and runoff to generate floods in DC. When neither LF nor LWT showed high flow or 

surge, the floods were generated by the wind in upward arrow or the high urban runoff 

with yellow and orange colors. All these drivers will change the water level in DC and 

generate the total water level. A combined plot with all the relevant information were 

plotted to provide the comprehensive estimation of such impact or interaction. Without 
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the wind speed, direction, and rainfall impact it was not possible to compare the changes 

in flood peaks during different types of floods. Table E1 shows how NWS defines point 

measurement or flood water level at DC station in terms of flooding around the area:  

 

 

 

 
Figure E1 Flooding in Potomac and Anacostia Rivers 

 

 

 

 
Figure E2 Compound flood drivers and their impact on DC flooding 
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Table E1 NWS information for flood stage at DC and inundation locations around DC from image (NWS, 2020) 

 

 

 

 

A simulation from the model is presented to show how water level in DC station 

is considered as a representation of flooding inundation in DC. In this figure, a major 

flood with 5.77m means the flood stage at DC is 5.77m and the areas that will be 

inundated with such flood are colored in blue. The inundation map based on the flood 

stage in DC is shown in Figure E3 (NWS map area). 
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Figure E3 Flooding in Washington DC station and the surrounding area 

 

 

 

 
Figure E4 NWS flood inundation map (NWS, 2020) 
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