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Abstract

IDENTIFICATION OF NOVEL EPIGENETIC BIOMARKERS FOR EARLY DETEC-
TION IN VARIOUS CANCER TYPES

Santosh Mahadevana Goud, PhD

George Mason University, 2017

Dissertation Chair: Dr. Serguei G. Popov

Epigenetic landscape of cancer cells undergoes profound and significant changes during

the development of human malignancies. In fact, global changes in the epigenetic land-

scape are a hallmark of cancer. Histone modifications and DNA methylation are prominent

among such changes. The genome undergoes a large-scale DNA methylation changes along-

side other alterations in a collective events of post-translational chromatin modifications

being observed. Such aberrant epigenetic changes have a high impact at various stages of

tumorigenesis. Identification of such epigenetic aberrations for their use as predictive and

prognostic biomarkers has been the focus of cancer genomics research recently. We have

selected five genes of interest (ITPKA, GDF15, BLCAP, PIWIL4 and DMRT1) based on

literature search and identified each of them as novel epigenetic biomarkers in certain can-

cer types. Such identified novel epigenetic methylation biomarker gene is subjected to SNV

identification by querying it against BioMuta and analyzing its relevant phenotypic effects.

BioMuta is a curated single-nucleotide variation (SNV) and disease association database.

Here, the variations are mapped to the genome/protein/gene. Such query helps to identify

variations and since the database is compiled from various sources through bio curation, it

paves ways for prioritizing variations for further experimental evaluations. Furthermore,



such identified epigenetic methylation biomarker gene is subjected to gene expression anal-

ysis by querying it against BioXpress database. BioXpress is a curated gene expression and

disease association database. Here, the expression levels are mapped to genes. BioXpress

is useful in identifying differences between expression levels in disease and normal pairs

and to discover differential expression for a gene. It also helps in identification of potential

biomarkers or pathways that lead to tumor formation or to explore the overall expression

of specific genes across multiple cancer types. Upon additional validations, these findings

on novel epigenetic methylation biomarker gene will possibly open new avenues in trans-

lation medicine and can be utilized as a novel prognostic biomarker for early stage cancer

detection.



Chapter 1: INTRODUCTION

1.1 Hypothesis, rationale, and specific aims

The literal meaning of the term epigenetics is in addition to changes in genetic sequence.

In other words, any process that has the capability to alter gene activity without any

accompanying changes in DNA sequence, leading to modifications that are transmitted to

daughter cells can be defined as an epigenetic change. However, it is been shown that

some epigenetic changes can be reversed. The exact definition and/or meaning of the term

epigenetic is still debatable and undergoing constant changes.

Epigenetic processes identified till date involves/ includes: methylation, acetylation,

phosphorylation, ubiquitylation and sumolyation. Epigenetic processes are natural and in

many cases are essential to normal organism functioning. However, in certain cases, it seems

to show some major adverse health and behavioral effects.

DNA methylation is a well-studied and well-documented epigenetic process. It involves

addition or removal of a methyl group (CH3), predominantly at sites where cytosine bases

occur consecutively. This event was first documented in 1983 and has been continuously

monitored and found in many disease and health disorders.

Chromatin modification is yet another epigenetic process. Chromatin is DNA and pro-

teins (histones) complex which is highly compacted into the nucleus. Chromatin complex is

modified by processes like acetylation (addition of acetyl groups), enzymes and certain RNAs

(micro and small interfering RNAs). These modifications can influence gene expression by

directly altering the chromatin structure. Highly compacted and condensed chromatin does

not allow expression, whereas unfolded or open chromatin structure is functional and allows

or facilitates gene expression to take place.
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Recent studies have shown a strong link between epigenetic processes and cancer. It

has now been established that epigenetic mechanisms and/or processes are one of the most

significant considerations in cancer research and accounts for one-third to one-half of known

genetic alterations.

This research has three specific aims:

Aim 1: To establish that, alteration or aberrations in DNA methylation and subsequent

gene expression, specifically in the promoter or regulatory region of the five genes of our

interest (ITPKA, GDF15, BLCAP, PIWIL4 and DMRT1) can be utilized to identify them

as Novel epigenetic methylation biomarkers and for their use in as predictive and prognostic

biomarkers in certain cancer types.

Our research goal is derived from the following established biological concept. Aberrant

DNA methylation is now established as a central/ key feature in carcinogenesis. It is

known to be responsible for defective gene expression, faulty condensation and chromosomal

instability. Also, it is a hallmark of cellular defenses acting to silence foreign DNA. Specific

DNA methylation patterns is often observed to correlate with clinical parameters (cancer

stage, survival time and chemotherapy resistance).

Secondly, it is now established that changes in methylation at specific CpG positions

in the human genome can turn genes on or off. This has been linked to a wide variety of

important normal and impaired molecular pathways. Therefore, DNA methylation is one

of the most significant and fertile platform for new biomarker discovery.

Thirdly, epigenetic processes amplify mutational effects and can pave way for disease

development and progression in the absence of any detectable relevant genetic changes.

Epigenetic pathways are susceptible and are affected by environmental stimuli and insults

to a greater extent compared to classical genetic pathways. It is known that certain cancers

have a CpG island methylator phenotype. These can arise early and can substantially drive

carcinogenesis forward. CpG island methylator phenotypes can vary in different malignan-

cies and may confer poor prognosis. Our five genes of interest (ITPKA, GDF15, BLCAP,
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PIWIL4 and DMRT1) that are shortlisted based on literature search will be primarily sub-

jected to novel DNA biomarker discovery strategy. Such discovery will give rise to new

opportunities for informed treatment decisions and survival prognosis, thus enabling more

personalized cancer therapy.

Aim 2: To identify Single Nucleotide Variations (SNVs) in the genes of our interest

(ITPKA, GDF15, BLCAP, PIWIL4 and DMRT1) and to identification of cancer driver genes

within our list of genes and exploring their implications in the cancer genomic perspective

and establishing their biological significance. To achieve this, each of the above mentioned

genes will be subjected to SNV identification by querying it against BioMuta database and

its subsequent phenotypic effects will be analyzed.

Our research goal is derived from the following established biological concept. Alter-

ations in genes which encodes for cellular signaling molecules, especially protein kinases,

can result in cancers. Sensitivity of drugs that target mutant kinases depends on the genetic

makeup of individual tumors. Therefore, mutational profiles of tumor DNA help prioritize

anti-cancer therapy and direct patient management.

Gene alterations are a common occurrence in cancer. One such alteration is Single

Nucleotide Variation (SNV). SNVs (also referred to as point mutations) results from a base

substitution at one nucleotide. Such a substitution may result in one of the following:

A change in the amino acid sequence of the encoded protein (missense mutation) or a

premature truncation of the protein (nonsense mutation).

Rapid progress in high-throughput sequencing technology has made it easy to identify

single nucleotide variants (SNVs) in the genome or exome. Such identification of SNVs have

far exceeded our capacity to experimentally validate their impact on disease phenotypes.

In this context, bioinformatics and computational methods that can predict the biological

impact of non-synonymous SNVs (nsSNVs) on protein function have attained very high

popularity. Methods are being developed to distinguish disease-related nsSNVs from neutral

polymorphisms. Also, the relevance of nonsynonymous somatic variants in cancer emergence

needs to be assessed. In principle, functional somatic mutations can only be a causative
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agent, provided they affect cancer driver genes, which upon mutation confer a distinct

selective advantage or a newly acquired capability to the cell.

Methylation biomarker discovery platform has benefited tremendously from the rapidly

developing sequencing technology in the last few years. Hundreds and thousands of varia-

tions are being associated with diseases from single studies.

We plan to identify SNVs in our selected genes of interest. For this purpose, we have

chosen BioMuta. BioMuta is a curated single-nucleotide variation (SNV) and disease as-

sociation database. Here, variations are mapped to the genome/protein/gene. Such query

helps to identify variations and since the database is compiled from various cancer centered

sources through bio curation, it paves ways for prioritizing variations for further experi-

mental evaluations. This will help in identification of cancer driver genes within our list of

genes and exploring their implications in the cancer genomic perspective and establishing

their biological significance.

Aim 3: To identify differences between expression levels in disease and normal pairs of

the five genes of our interest (ITPKA, GDF15, BLCAP, PIWIL4 and DMRT1) and also to

discover differential expression for a gene. To achieve this, each of the above mentioned genes

will be subjected to gene expression analysis by querying it against BioXpress database.

Our research goal is derived from the following established biological concept. Epigenet-

ics studies have shown that mechanisms associated or involving them provides an ”extra”

layer of transcriptional control that regulates how genes are expressed. Although such mech-

anisms are utmost essential in normal development and growth of cells, their abnormalities

are causative factors for cancer, genetic disorders, pediatric syndromes and auto-immune

diseases.

Epigenetic mechanisms exhibit two prominent features: DNA methylation and histone

modifications. DNA methylation and changes to histone proteins orchestrate DNA orga-

nization and gene expression. Histone-modifying enzymes are recruited for one of the two

purposes: either to ensure that a receptive DNA region is either accessible / available for
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transcription or that DNA is targeted for silencing. It is now established that active re-

gions of chromatin have unmethylated DNA and have high levels of acetylated histones,

whereas inactive regions of chromatin contain methylated DNA and deacetylated histones.

Therefore, it is now believed that an epigenetic tag is placed on targeted DNA, provid-

ing or marking it with a special status that specifically activates or silences genes. Also,

since epigenetic mechanisms are reversible, these reversible modifications ensure that spe-

cific genes can be expressed or silenced depending on specific developmental or biochemical

cues (hormone levels, dietary components or drug exposures).

Cancer development and progression involves a complex multistep process in which ge-

netic and epigenetic errors accumulate and transform a normal cell into an invasive or

metastatic tumor cell. It has been established that altered or aberrant DNA methylation

patterns have a direct influence or can change the expression of cancer-associated genes.

Additionally, it has been observed that DNA hypo methylation activates oncogenes and ini-

tiates chromosome instability, whereas DNA hyper methylation initiates silencing of tumor

suppressor genes. The incidence of hyper methylation, particularly in sporadic cancers,

varies with respect to the gene involved and the tumor type in which the event occurs.

Such epigenetic changes is utilized by the research community in investigating or molecular

diagnosis of a variety of cancers.

We aim to identify differences between expression levels in disease and normal pairs

of the five genes of our interest and also to discover differential expression for a gene.

We will achieve this by querying each of the above mentioned genes against BioXpress

database. BioXpress is a curated gene expression and disease association database where

the expression levels are mapped to genes. Such an investigation or query will also helps

in identification of potential biomarkers or pathways that lead to tumor formation or to

explore the overall expression of specific genes across multiple cancer types.
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1.2 Introduction to Epigenetics

Epigenetics are referred to those heritable alterations that are not associated with changes

in DNA sequence itself. Epigenetic modifications are sometimes referred to as molecular

tags. These tags include DNA methylation and histone modifications which can alter DNA

accessibility and chromatin structure. By doing so, they can regulate the patterns of gene

expression. Normal development and differentiation of distinct cell lineages in adult organ-

isms depend on precisely orchestrated normal gene regulation/expression mechanisms that

are still susceptible for epigenetic mechanisms. Such exogenous epigenetic influence can

result in environmental alterations of phenotype or patho-phenotypes. More importantly,

regulations of pluripotency genes are also regulated by epigenetic mechanisms. These genes

are inactivated during differentiation [1].

1.2.1 Introduction to Epigenetic Tags: their acquisition, maintenance,

and inheritance

Chromatin Domains

Heterochromatin: transcriptional inactive, densely packed nucleosomes.

Constitutive: highly repetitive DNA sequences, such as centromeric and telomeric do-

mains, hypoacetylated nucleosomes, H3K9me1

Facultative: includes silenced genes, such as inactive X chromosome or imprinted re-

gions, or transcriptionally repressed genes, hypoacetylated nucleosomes, H3K27me

Euchromatin: transcriptional permissive chromatin, less densely packed. Accessible to

nuclear factors and nuclear repressors, acetylated nucleosomes, H3K4me, H3L36me

Chromatin complex is chromosomal DNA and its associated proteins in nucleus [2].

Nucleosomes are usually referred to those units of DNA packaged around histone proteins

in chromatin. Normally, DNA of around 147bp in association with octomeric core of histone

proteins (two H3-H4 dimers of histone surrounded by two H2A-H2B dimers) are often

1histone methylation sites are listed in abbreviated forms, for example H3K9me, histone lysine 9 methy-
lation [2]
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Figure 1.1: Epigenetic tags and chromatin structure

referred to as a Nucleosome. The N-terminal histone tails are often observed protruding

into nuclear lumen from their respective nucleosomes. H1 histones are seen associating with

linker DNA found between the nucleosomes. Chromatin structure is strongly dependent on

nucleosome spacing. Chromatin structure is broadly divided into heterochromatin and

euchromatin (Table 1).

Transcriptional machinery depends on chromatin structure and gene accessibility for its

functioning and is regulated by both DNA and histone tail modifications (Figure 1.1) [2].

Chromosomal DNA is packaged around histone cores to form nucleosomes. Nucleosome

spacing in open structure that is accessible to nuclear factors is maintained, in part, by post-

translational modification of histone tails, including lysine acetylation and specific lysine

methylation. CpG dinucleotides are unequally distributed throughout chromosomal DNA,

and may be concentrated in regions called CpG islands that can overlap gene promoters.

Methylation of cytosine in CpG dinucleotides is overall associated with inactive, condensed
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states of the chromosome. Inactive chromatin is also maintained by specific histone lysine

modifications [2].

1.2.2 Epigenetic mechanism: DNA methylation

Previously it was believed that covalently attached methyl group at C5 position of cytosine

residues in CpG dinucleotide sequences (CpG or CpG islands) are the principle epigenetic

tags found in differentiated mammalian cells [3]. However, recent findings indicate that

even in undifferentiated stem cells, cytosines, other than those found in CpG sites can

be methylated as well. Such methylations of non-CpG cytosines have proved vital for

gene regulation in embryonic stem cells [4]. CpG methylation is observed to play a vital

role in imprinting and X-chromosome inactivation and is also found to be necessary for

transcription repression of transposons and repetitive elements [5]. CpG methylation can

also be involved in transcriptional gene silencing and thereby restricts the expression of

certain tissue-specific developmental genes and differentiation by suppressing them in non-

expressing cells.

CpG methylation follows a predictable pattern of changes during development. Also, in

early embryogenesis, methylation is nullified genome-wide and re-established in all except

CpG islands (high density in genome found to have CpG residues). These CpG islands

show consistency in being hypo methylated till late developmental stages and some of them

become methylated [6, 7]. CpG islands that are subsequently methylated at cytosine and

at other CpG dinucleotides are often associated with transcriptional repression, especially

when the methylation sites involves a promoter or a gene regulatory regions [6,7]. However,

DNA methylation may activate transcriptional repressors if it prevents binding or limits

expression. The degree to which methylation occurs in mammalian promoters is observed

in a small percentage of CpG dinucleotides and inhibits transcription in just a small genes

subset in differentiated cell types. Such repressed genes are usually germ-line specific which

may include pluripotency genes [8]. This suggests methylation is an important mechanism

in suppressing some key genes during differentiation.
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Transcription is suppressed by CpG methylation by multiple mechanisms. Mostly, the

methyl group at a specific CpG site may directly interfere or block DNA recognition and

as well as its binding to transcription factors. One such example involves the direct in-

hibition of transcriptional activation at GC-boxes by methylation. This excludes Sp1 and

Sp3 transcription factors binding in the context of promoter regions [9, 10]. Alternatively,

methylation can block nuclear factor, Hif1, in hypoxic conditions by inducing erythropoi-

etin transcription [11]. Furthermore, certain other factors may exhibit preferential binding

to methylated DNA and block access to transcription factors. Examples include MeCP2

and related protein families binding to methyl CpG and inducing transcriptional repres-

sion. This is achieved by recruitment of histone-modifying proteins like histone deacety-

lases (HDAC) [12]. Histone deacetylation further promotes condensation of chromatin and

thereby represses transcription [13,14]. Such mechanisms clearly indicates as to how DNA

methylation and histone modifications come together in function to contribute to gene tran-

scriptional on or off state, subject to epigenetic modifications.

DNA methyltransferase enzymes (DNMTs), are family of enzymes responsible for de

novo DNA methylation and its maintenance. During developmental embryogenesis, de

novo methylation is carried out by DNMT3A and DNMT3B [15]. Although, DNMT3A

and DNMT3B is indicted in maintaining methylation in certain cell types, the ubiquitously

expressed DNMT1 is primarily responsible for maintaining CpG methylation in most cell

types [16,17]. It is observed that alternative promoter induced transcription yields truncated

oocyte- specific DNMT1 isoform (DNMT1o) which is essential for early embryogenesis to

occur [18]. DNMT1 along with a complex can recognize a hemi-methylated DNA and

adds a methyl groups to the non-methylated daughter strand formed during replication

[19]. This is aided by the CpG base pairing which helps in reciprocal maintenance of

methylation in the next subsequent replication cycles. Such processes help in a non-genetic

trait (DNA methylation) being passed from cell to cell with associated contextual effects

on gene expression. By considering such evidences, we can come to an understanding that

methylation is a long-term, relatively stable, epigenetic trait whose effects help maintain
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cellular phenotypes.

1.2.3 DNA methylation and single nucleotide polymorphisms (SNPs) or

single nucleotide variations (SNVs)

SNPs may create CpG sites that can be potential targets for epigenetic modifications and

potential loss of such sites will inhibit DNA methylation. Polymorphism that yields CpG

in the promoter region of the gene NDUFB6 exhibits or provides a platform for cross-talk

between genetic and epigenetic regulation. NDUFB6 protein expression is suppressed in

Type 2 diabetes. This is a respiratory chain protein. In geriatric population, NDUFB6

expression and DNA methylation levels are inversely correlated. This infers the presence of

a CpG site conferring high risk for decreased expression along with associated disease risk,

compared to loss of this site [20]. These findings suggests that epigenetic modifications can

increase or influence complex diseases.

1.2.4 Biomarkers of genome instability and cancer epigenetics

Genetic and epigenetic alterations together constitute a multistep process leading to tumori-

genesis. Such a process drives somatic evolution from normal cells to malignant derivatives.

Researchers can take advantage of this fact by combining the genetic and epigenetic alter-

ations into biomarkers for risk assessment, early stage tumor detection, and accurate tumor

characterization for treatment. Application of mass sequencing has provided systematic

approaches to study cancer genomics. It has broadly led to identification of two platforms:

genome instability and epigenetics. Ability of cancer to develop, evolve, adapt and spread

through genetic and epigenetic lesions of varying sizes and quality. These include point

mutations, small insertions/deletions, large scale chromosomal rearrangements, whole chro-

mosome copy number alterations, predisposition or preferential allelic expression of cancer

risk alleles and processes that increase mutation rates in tumor. There also exists epige-

netic mechanisms that inhibit tumor adaptation. These include DNA methylation, histone
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modifications, remodeling of nucleosome, transcription factor activity, and small non cod-

ing RNAs. Two biggest challenges that remain elusive: 1) to interpret essentially different

signals (non-comparable) across numerous genes and summarize them into diagnostic value.

2) Identification of epigenetic processes that induces increased cancer rates due to increased

exposure of toxic environmental stress and pollution in an organisms developmental stages

[21].

1.2.5 Relationship between DNA methylation and Gene expression

It is generally found that housekeeping genes arbor non-methylated CpG islands which

are tightly associated with their promoter regions [22, 23]. As such genes are ubiquitously

expresses and also, autosomal CpG islands are non-methylated, housekeeping genes are

presumed to be regulated by DNA methylation. It is now established that relation between

DNA methylation and gene expression levels of tissue-specific genes is mostly that of inverse

correlation. In a recent study, majority of tissue specific genes exhibited a correlation

between hypo methylation of promoter region and gene activity. Also, CpG dinucleotides

showed weaker correlation throughout the gene body. Notably, de novo methylation of CpG

islands in tissue culture cells was observed in a widespread manner [22]. Since CpG islands

are non-methylated in normal tissues (in vivo) and associated with non-essential growth

genes in tissue culture, it suggests that methylation induced gene silencing is of selective

advantage for cell growth.

1.2.6 DNA methylation and Cancer

DNA methylation is often referred to addition of methyl groups to the 5 carbon at cytosine

residues that are preceding guanine nucleotides, which are linked together by phosphate

bonds (CpG) and by utilizing a methyl donor such as S-adenosylmethionine. Asymmetric

arrangement of CpG rich foci are found genome wide. They are clustered in short CpG

rich DNA sequences, often referred to as CpG islands and also in regions of large repetitive
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sequences such as centromeric repeats, retrotransposons etc [24,25]. CpG islands are specif-

ically targeted by DNA methyl transferases (DNMT) class of enzymes. Four DNMTs are

identified, DNMT 1, 2, and 3a and 3b [26]. DNA methylation often involves DNMT1 and

DNMT3. DNA methylation affects transcription directly by interfering with transcriptional

factor binding with target sites as observed in c-myc and other genes [27]. Alternatively,

methylated cytosine residues provides a docking platform for methylated DNA binding pro-

teins (MBD1, MBD2, MBD3, and Mecp2). These proteins are readily identified by histone

modifying enzymes like histone deacetylases (HDACs), responsible for repression of genes

[28–30]. Generally, it has been observed that a normal cell shows a characteristic pattern of

genome wide methylation, except for the CpG (cytosine-phosphate-guanine) islands, which

are found to be unmethylated [31]. Numerous triggering events or triggers in cancerous

cells leads to hypo methylation genome-wide, except for the CpG island promoters, which

undergo hyper methylation [32].

1.2.7 Hypo methylation and its role in Cancer

For tumorigenesis to occur, extensive hypo methylation is required at the repetitive se-

quences as this increases genomic instability due to chromosomal rearrangement [33]. Such

activation is aided by hypo methylation of retrotransposons, further leading to retrotranspo-

son translocation to other genomic regions that can potentially disturb genomic instability

[34]. Documented evidences include DNA hypo methylation responsible for activation of

Ras (growth promoting genes) and mammary serine protease inhibitor (MAPSIN) for gas-

tric carcinoma, S-100 in case of colonic cancer, melanoma-associated antigen (MAGE) in

melanoma [35]. DNA hypo methylation is also observed in loss of imprinting, growth factor

2 (IGF-2) in Wilms’ tumor [36] and colorectal cancer [37].
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1.2.8 Hyper methylation and its role in Cancer

Hyper methylation of CpG islands induces tumorigenesis by completely shutting down tu-

mor suppressor genes expression. This is in stark contrast to hypo methylation mecha-

nism. Such mechanism is achieved by directly involving tumor suppressor genes and also

by silencing of the associated tumor suppressor genes’ transcription factors and inhibiting

the expression of DNA repair genes. Documented evidence includes Rb promoter gene

(retinoblastoma associated tumor suppressor gene) hyper methylation. Here hyper methy-

lation of the CpG promoter island site silences tumor suppressor gene, thereby promoting

retinoblastoma malignancy [38]. Other examples includes genes such as p16 and BRCA1

which are silenced by hyper methylation [39]. These genes play a vital role in cellular ad-

hesion, apoptosis, and angiogenesis, involved in the cancer development and progression.

Alternatively, hyper methylation of CpG promoter regions induced silencing of transcrip-

tion factors leads to downstream target inactivation of the tumor suppressor genes. This

further leads to cancer cell propagation. Examples include RUNX3, GATA-4, and GATA-5

in esophageal, colorectal, and gastric cancers, respectively [40,41]. Furthermore, MLH1 and

BRCA1 (DNA repair genes) upon silencing tend to start accumulating other genetic lesions

leading to cancer progression. However, one elusive questions that persists as to how can se-

lective genes targeting by the DNA methylation machinery executed? Possible explanation

may include CpG island specific methylation is possibly guided by a nucleotide sequence

specific mechanism. This in turn, may direct the DNMTs to their respective genes that have

shown previous association with the oncogenic transcription factors. Documented example

includes PML-RAR fusion protein led abnormal hyper methylation, plus the specific target

promoter genes’ silencing observed in acute promyelocytic leukemia [42]. Also, in various

cancers, long DNA sequence stretches undergo methylation, leading to CpG island hyper

methylation as they fall under genomic regions that have potentially undergone large scale

epigenetic reprogramming [43]. A third possibility may involve histone marks that can play

a vital role in CpG island specific de novo DNA hyper methylation.
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1.3 TET Proteins and DNA methylation

Although hyper- and hypo methylation produces varyingly opposite results, they seem to

coexist in a single tumor. Also, they afflict different genomic regions by varying mecha-

nisms. It is highly likely that, hyper- and hypo methylation mechanisms can cross-talk or

interact at different levels and can possibly give rise to numerous cancer sub- phenotypes.

Additionally, DNA methylation is a reversible epigenetic process adding to the already

complex cancer genome. This opens up a plethora of modifications that can occur in cel-

lular environment, suggesting that DNA methylation might not be a stable but rather a

non-stable and susceptible chromatin modification. DNA methylation mapping in high

resolution (in both differentiated and pluripotent cells) has further increased the flexibil-

ity and complexity of DNA methylation. Such a flexible and highly complex mechanism

has to be supported by a highly efficient enzymatic system. This system might have the

capability to completely abolish or alter epigenetic modifications [44]. However, such a

hypothesis was proven to be wrong by the discovery or identification of ten-eleven translo-

cation (TET13) group of proteins. The origin of TET terminology is associated with a

recurrent chromosomal translocation (10; 11) (q22; q23). This is placed closely to mixed-

lineage leukemia or myeloid-lymphoid leukemia (MLL) gene with TET1 protein in a few

acute myelocytic leukemia (AML) patients. TET protein family are basically DNA hy-

droxylase that can convert 5-methyl cytosine (5mC) to 5-hydroxymethylcytosine (5hmC).

This, upon further oxidation, yields various oxidation products, like 5-formylcytosine (5fC)

and 5-carboxylcytosine (5caC), believed to be the vital DNA methylation intermediates

and in either active or passive form. It is also speculated that they might either prevent

or enhance attachment of methyl CpG binding domain (MBD) proteins. They might even

regulate recruitment of chromatin regulators. Furthermore, the genome wide distribution

of 5hmC indicated that 5hmC and TET proteins can possibly influence both transcriptional

activation and silencing [45].
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Table 1.1: DNMT inhibitors in cancer

Drug Therapeutic use Developmental stage
Nucleoside analogue

inhibitors

(1) 5-azacytidine
Myelodysplastic syndrome

Approved [United States-Food and Drug
Administration (US-FDA)]

Acute myeloid leukemia Phase 2
Solid tumors Phase 2

(2) Decitabine
Myelodysplastic syndrome Approved (US-FDA)
Acute myeloid leukemia Approved [European Commission (EC)]

(3) Zebularine
Solid tumors like breast, urinary

Preclinical
bladder, hepatocellular cancer

(4) SGI-110
Myelodysplastic syndrome Phase 1
Acute myeloid leukemia Phase 1

Solid tumors like bladder Preclinical
Nonnucleoside analogue

inhibitors
(1) Procainamide

Solid tumors like bladder,
Preclinical(2) Procaine

breast,prostate, cervix
(3) Epigallocatechin -3-gallate

(4) SGI-1027 Leukemia Preclinical

(5) Hydralazine
Breast cancer Phase 2

Ovarian cancer Phase 3

1.4 DNA methylation for therapeutic use

Hypo methylating agents have fast acquired the status of being the first epigenetic thera-

peutic agent, approved by the Food and Drug Administration (FDA).

Hypomethylating agents have proved to be effective against hematological malignancies.

They are highly effective Myelodysplastic syndrome (MDS) [46–50]. However, these hypo

methylating agents/DNMT inhibitors (DNMTi) are not effective against solid malignancies

[51, 52]. A possible reason for their failure could be the complex nature of solid tumors as

compared to hematological neoplasms [53]. Yet another reason for their inefficacy maybe

due to their slow rate of replication dependent incorporation of DNMTi inhibitors in solid

tumor cells. Also, these inhibitors are inactivated by cytidine deaminase enzyme. Also,

toxicity is an issue as DNMTi inhibitors are effective against hematological malignancies

at a higher dosage alone. However, it is now established that azacytidine, in phase 2 trial

has proven to be effective even in low dosage form [54]. This has paved a new path for

DNMTi inhibitor application against solid tumors and possibly new treatment regime. Yet

another new strategy to achieve gene demethylation is the use of small nonnucleoside DNMT

inhibitor molecules as indicated in Table 2. These molecules partially and competitively
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Figure 1.2: DNA methylation and complex diseases

inhibit DNMT1 and also decrease DNMTs affinity towards their substrate. This leads to

DNMT1 and hemi-methylated DNA to dissociate. In an another therapy approach using

azanucleosides in combination with standard nucleoside analogues like 5-fluorouracil have

exhibited excellent efficacy compared to DNMT inhibitors as these can reignite the dormant

or silenced pro-apoptic genes [55,56]. Also, HDAC inhibitors and DNMTi upon synergistic

usage, may yield superior results, thereby providing new treatment avenue [57–59]

1.5 Clinical perspective of aberrant methylation patterns in

cancer

Feinberg and Vogelstein, first reported the possible association between differences in DNA

methylation status to cancer [60] (Figure 1.2). Research since then, has accumulated a

wealth of information documenting aberrant DNA methylation in complex diseases.

Research focusing on DNA methylation and DNA methylation mapping techniques have
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provided a platform for translation of basic research to therapy/treatment regimes. Aber-

rant gene methylation has been observed in diseases such as colorectal cancer, Prader-Willi,

Angelman, Beckwith-Wiedmann syndromes and now part of routine detection diagnostics.

DNA methylation works in close harmony with histone modifications and chromatin struc-

ture, either building transcriptionally active or repressed chromatin [61–63]. The complex

cross-talk/ dynamics is currently the biggest challenge to be deciphered and aberrant DNA

methylation definitely impacts histone modifications and chromatin structure. Also, the

reversible effect of histone modifications and dysregulation of histone modifying proteins

can also influence DNA methylation patterns.

1.6 Discovery and detection of DNA methylation

A new platform in cancer diagnostics has arouse based on DNA methylation. This is due to

biomarker discovery for both diagnostic and prognostic use [64]. DNA methylation research

started with locus specific approach to a now genome-wide determination of methylome data

at a fine base pair resolution [65]. Methods or detection techniques for determining DNA

methylation are numerous, and selection of an appropriate technique depends largely on

the nature and number of samples, the purpose of investigation and expenses involved. The

three broad methodology or approaches that exists are: 1) methylation-specific restriction

enzyme digestion 2) Affinity purification of methylated DNA and 3) Bisulfite conversion

of DNA [65]. DNA subjected to investigation follow one of the two detection regimes: A

molecular genetic approach where in a single locus is analyzed using a PCR based anal-

ysis or a genome-wide investigation based on microarray technology, mass spectroscopy

or next generation sequencing analysis. DNA methylation detection started initially with

methylation-sensitive restriction enzymes and southern blotting, whereas today numerous

detection techniques are based on bisulfite conversion of DNA and subsequent PCR-based

method [65]. Bisulfite treatment technique usually demands a good pair of research hands

for conducting protocols, as it may lead to DNA degradation and unnecessary conversion
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Table 1.2: Commonly used techniques for locus specific DNA methylation determination
based on bisulfite sequencing with potential for translation into clinical practice.

Method Advantages Disadvantages
Need for two different pairs of primers, one for

Methylation specific Very sensitive. methylated DNA and one for non-methylated.
PCR (MSP-PCR) Cost-effective. Risk for false positive results if primer design

is not appropriate. Only qualitative.
Low rate of false positive results. Determination of methylated DNA only.

SMART-MSP High sensitivity. Closed tube technique Not suitable for detection of heterogeneous
low risk for sample contamination. methylation.

MethyLight

Very high analytical sensitivity. Only for detection of methylated DNA.
Low false positive rates. When samples with heterogeneous DNA
Closed tube technique methylation are analyzed it is only

low risk for sample contamination. semi-quantitative.
Useful for screening purposes

high throughput, inexpensive, fast. Information on methylation degree based
Methylation-sensitive high Real - time tracking of methylation on standard curve analysis semi-quantitative.

resolution melting (MS-HRM) status. Applicable also for small No information on specific sites of
amounts of DNA. Closed tube technique methylation patterns are hard to recognize.

low risk for sample contamination.
Sanger sequencing of Data on complete sequence composition. Only semi - quantitative. Low quality results
bisulfite treated DNA Relatively long sequence reads possible. at the beginning of the reads.

Pyrosequencing

Quantitative analysis of individual CpG
islands with real - time monitoring. Relatively short sequences (∼ 50 nucleotides)

Appropriate for degraded formalin-fixed, can be reliably analyzed.
paraffin - embedded (FFPE) samples.

Next generation
High throughput. Data on complete

Need for high-quality DNA.

sequencing
sequence reads genetic and

Relatively labor demanding.

epigenetic data. Quantitative.

Still associated with high costs.
Currently used applicable for research use
only. Purchase of an expensive instrument

is required.
Quantitative analysis, high throughput,

Investment into expensive instruments is
MassARRAY EpiTYPER applicable for heterogeneous DNA

required.
methylation patterns.

of methylated cytosines to thymines based on sensitive incubation time and protocols in-

volved. Hence, commercially available kits for bisulfite conversion of DNA isolated from

various sample types were developed and now in extensive usage [66].

DNA methylation detection analysis on specific locus requires the investigation region to

be ideally unmethylated in normal tissue and methylated in cancerous tissue or vice versa.

Also, yet another requirement requires the differentiation between the methylation levels

between the two statuses of the samples [67]. Pyrosequencing has emerged to be a popular

technique for locus specific methylation biomarkers method. This is most appropriate for

degraded formalin-fixed, paraffin-embedded (FFPE) samples that forms an integral and

important part of tissue bio-banks. Pyrosequencing yields quantitative analysis of each

CpG position [67]. High resolution melting (HRM) curve analysis is another fast emerging
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and robust method in DNA methylation detection. Methylation-sensitive HRM (MS-HRM)

curve analysis and quantitative real time PCR, such as SMART-MSP are widely used now

(Kristensen LS, et al., 2009). These techniques are sensitive and inexpensive, accompanied

by a good throughput and quantification, and are closed tubes techniques. Quantitative

real time PCR (SMART-MSP) has an advantage of minimizing the risk involved in sample

confusion and cross-contamination which is a very critical factor in clinical laboratory [67,

68].MS-HRM method has already been employed on small DNA samples and has proved

to be a sensitive and reliable for screening investigations [69]. The above two techniques

are found to be successful on FFPE tissues also [70]. However, to overcome the obstacle

of false positive results, well designed primers and very stringent annealing temperatures

are required. Also, these techniques are not well-suited for analyzing heterogeneous DNA

methylation patterns.

Matrix-assisted laser desorption ionization - time of flight (MALDI-TOF) is yet another

technique being considered for single locus analysis. Sequenom Inc. has recently developed

a very sensitive and high throughput assay MassARRAY EpiTYPER, enabling a quanti-

tative screening and differential methylation analysis in cancer samples [71]. Two other

commercial ventures, Roche 454 Genome Sequencer and Illumina Genome analyser are now

very popular for their usage of next generation sequencing platforms in research and most

likely to be validated and approved for clinical use [72]. They are now key players in cancer

genome-wide methylome determination that could result in determination of an array of

biomarkers of practical application. The arrays developed by these commercial ventures,

are now being subjected to testing thoroughly on larger sample cohorts by using a more

cost effective methodology. Currently, next-generation sequencing costs are too high for

large sample testing studies. Such studies have led to providing good fingerprints of cancer

methylomes that are highly helpful for classifying cancer subtypes. However, establishing

a safe cancer specific methylation signatures is nowhere near, as limited knowledge of func-

tional consequences of methylation aberrations, enormous number of discovered changes

and overlapping changes between different cancers, still pose an enormous challenge that
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needs to be overcome. Roche 454 system was a pioneer platform enabling a comprehen-

sive multi-sample, multi-gene, and ultra-deep sequencing of cancer DNA generating specific

methylation patterns. Adding to the high number of reads, and therefore detailed sequence

coverage, a significant advantage of this technology was simultaneous exploration of ge-

netic and epigenetic data at a genome-wide level [73]. The Infinium HumanMethylation

BeadChip microarray platform developed by Illumina is yet another platform allowing for

genome-wide methylome studies which has attained popularity. One of their array plat-

forms allowed for detection and analysis of 27,578 highly informative CpG islands located

within the proximal promoter regions [74]. A disadvantage to this analysis platform is

the requirement of high-quality DNA, which is not the most optimal for clinical setting

as the samples are mostly stored as FFPE. Furthermore, studies involving comparison of

fresh-frozen samples with FFPE showed their correlation of results between them was not

optimal [75]. Although, DNA methylation detection and analysis methods are numerous,

their applications for clinical diagnostic purposes are yet to overcome significant obstacles

like standardization of methods between laboratories, determination of reference standards,

and associated expenses involving the training of personnel and obtaining expensive new

equipment [67]. Key aspects that needs to be developed for DNA methylation techniques for

clinical setting are the ease of use, high throughput, preferably automation, applicability on

degraded DNA, cost-effectiveness, and should be able to provide quantitative methylation

data [67]. To add value to such development and in its favor is the fact that DNA methy-

lation is a stable covalent modification, present at single or multiple CpG sites, and can be

easily translated into highly robust and high throughput routine laboratory diagnostic tests

[76]. However, biomarker discovery and evaluation should be possible and readily accessible

diagnostic specimens, such as blood, urine, faeces or saliva for early stage detection of the

disease.
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Table 1.3: Overview of bladder cancer biomarkers.

Biomarker Sample Type
Diagnosis, treatment,

or prognosis
RUNX3 Tissue DNA methylation Diagnosis
RSPH9 Urine DNA methylation Diagnosis, prognosis

PCDH10, PCDH17 Urine DNA hypermethylation Treatment, prognosis
PCDH17, POU4F2 Urine DNA methylation All

TWIST1, NID2 Urine DNA methylation Diagnosis
CDH1, CDH13, RASSF1A, APC Urine DNA methylation Prognosis

RASSF1A, CDH1, TNFSR25, EDNRB, APC Urine DNA methylation Prognosis
H4K20 Tissue Histone modification Prognosis
KLF4 Urine Histone modification Treatment

H4K20me3 Tissue Expression level Prognosis
miR-422a-3p
miR-486-3p
miR-103a-3p Tissue (serum) Overexpression Prognosis
miR-27a-3p

miRNA-146a-5p Urine Overexpression Prognosis
miRNA-145 Urine Overexpression Prognosis

1.7 Current knowledge, advances and applications of DNA

methylation biomarkers in various cancers

1.7.1 DNA Methylation biomarkers in Urological Cancer

Urological cancer comprises of prostate, testis, kidney and bladder cancers. These cancers

are usually silenced in early stages and hence there is loss of early diagnosis and treatment.

Clinical biomarkers are scarce and existing ones are not specific or sensitive for applications.

However, detection of epigenetic conditions is easily accessed through urine samples.

1.7.2 Epigenetic biomarkers in bladder cancer

Current trend in bladder cancer diagnosis is mainly invasive. This is highly discomforting

to patients and only provides a generalized outcome for the subject. Noninvasive screening

and diagnosis is the need of the hour. Discovery of epigenetic biomarker will ease the

use or entirely erase the use of invasive methods and can also provide diagnostic value

at early stages for an effective treatment regime. RUNX3 gene, a tumor suppressor gene

shows a high level of methylation increase in bladder cancer in an analysis involving 124

tumor tissue samples, indicating a potential valued role for RUNX3 gene (Peng Wu., et
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Table 1.4: Overview of kidney cancer biomarkers

Biomarker Sample Type
Diagnosis, treatment,

or prognosis
Wnt family genes Tissue (Serum) DNA methylation Diagnosis, prognosis
VHL, RASSF1A Tissue DNA methylation Diagnosis

SMPD3, FBXW10 Tissue Hyper methylation Diagnosis
DAB2IP Tissue Methylation Prognosis

H3K4me2, H3K18Ac Tissue Histone modification Prognosis
hMOF Tissue Histone modification Diagnosis
HDAC Tissue Histone modification Treatment

miRNA-126 Tissue Downregulated Treatment
miR-146a-5p
miR-128a-3p Tissue Downregulated Prognosis
miR-17-5p

al., 2016). Recently, Yoon et al., discovered a prognostic indicator in patients with non-

muscle-invasive bladder cancer (NMIBC). Quantitative Pyrosequencing has revealed the

clinical significance of RSPH9 using 136 human bladder specimens (8 normal controls and

128 NMIBCs). From this study, it was concluded that RSPH9 methylation showed clinical

value for the assessment of disease recurrence and can be used as an independent prognostic

indicator in NMIBC patients. Furthermore, Lin and Luo et al., reported from their study,

that the hyper methylation of PCDH10 (50%,) and PCDH17 (52%,) was closely related

to the bladder cancer development and was an independent predictor with regards to the

cancer-specific survival time [77,78].

1.7.3 Epigenetic biomarkers in kidney cancer

Kidney cancer is reported to be the third most commonly occurring urological malignancy

in China. At present, there does not exist any tumor markers for clinical diagnosis of

renal cell carcinoma and to add to the complexity, clinical diagnosis of which depends on

imaging examination and precise diagnostic confirmation can be obtained after pathological

examination alone. Hauser et al., reported and demonstrated that, using tumor and serum

DNA, Wnt antagonist family genes could possibly be used as a biomarkers for diagnosis,

staging, and prognosis in kidney cancer. In this particular study, Hauser et al., adopted

methylation-specific PCR method to identify level of genes panels. This gene panel com-

prised of sFRP-1, sFRP-2, sFRP-4, sFRP-5, Wif-1, and Dkk-3 in 62 RCC samples and
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their corresponding normal renal tissue. Results showed that Wnt antagonist family genes

detection showed sensitivity of 79.0% and specificity of 75.8% Also, serum DNA signifi-

cantly correlated with tumor grade and stage [79]. It is also reported that certain genes

are highly specific for RCC patients in the level of DNA hyper methylation that includes

VHL (91%) and RASSF1A (93%) [80]. Similar to the above two studies, genes SMPD3 and

FBXW10, showed hyper methylation in ccRCC tissue samples as compared to paired nor-

mal tissues. However, upon 5-aza-2-deoxycytidine treatment, mRNA expression of SMPD3

and FBXW10 showed high levels of upregulation. Hence SMPD3 and FBXW10 genes can

be utilized as target for treatment or prognostic value [81]. Furthermore, it has been re-

cently reported that, DAB2IP, tumor suppressive gene, its CpG1 methylation is a practical

and repeatable biomarker for ccRCC that provides prognostic value and also complements

the present staging system. Also, they showed that there exists a relationship between

CpG methylation biomarker (DAB2IP CpG1) and poor overall survival in TCGA by py-

rosequencing quantitative methylation assay [82].

1.7.4 Epigenetic biomarkers in prostate cancer

Currently, the PSA test is a subject of increasing criticism, primarily due to potential

overtreatment and less comprehensive evaluation [83]. For prostate cancer, candidate

biomarkers is classified in few groups such as molecular class, soluble proteins DNA methy-

lation, mRNA and microRNA [84–86].

PCDH17 and TCF21 gene methylation quantification studies involving a total of 12

cancer cell lines and 318 clinical samples provided data revealing a sensitivity rate of 96%

for prostate cancer. High methylation exposure in prostate cancer cell lines was significantly

different from that of primary tumor tissues. Additionally, methylation levels showed sig-

nificantly lower levels in bladder and prostate non-tumorous tissues, providing a possible

evidence for potential cancer biomarkers [87, 88]. Also, diagnostic platform may be ex-

tended and covered by using gene panels including GSTP1/ARF/CDNK2A/MGMT and

GSTP1/APC/RARB2/RASSF1A for urine and GSTP1/PTGS2/RPRM/TIG1 for serum
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Table 1.5: Overview of prostate cancer biomarkers

Biomarker Sample Type
Diagnosis, treatment,

or prognosis
PCDh17, TCF21 Tissue DNA methylation Diagnosis

GSTP1, ARF, CDNK2A, MGMT Urine DNA methylation Diagnosis
GSTP1, APC, RARB2, RASSF1A Urine DNA methylation Diagnosis

GSTP1, PTGS2, RPRM, TIG1 Tissue (serum) DNA methylation Diagnosis
HOXB13 Tissue Overexpression Prognosis
ADAM19 Tissue Overexpression Treatment
SFRP1 Tissue Decreased expression Diagnosis, prognosis
PSF1 Tissue Overexpression Diagnosis, prognosis
EN2 Tissue, urine overexpression Diagnosis

SLC18A2 Tissue Downregulated Diagnosis
TRPM4 Tissue Overexpression Prognosis
SUX2 Tissue Downregulated Prognosis
XPO6 Tissue Overexpression Prognosis

samples.

In another study, HOXB13 showed overexpression during malignant progression of the

prostatic tissue. The study also revealed an important role in the pathogenesis of the

prostate gland and that it can be used as a novel biomarker for the prognosis of prostate

cancer [89]. ADAM19 (a disintegrin and metalloproteinase 19) is a transmembrane and

soluble protein which is linked to cell phenotype through cell adhesion and proteolysis. A

study involving special immune histochemical approach showed that ADAM19 protein lev-

els showed increased expression compared to normal prostate tissue during prostate cancer

biopsies [90]. It is also reported that expression of SFRP1 shows inverse correlation with the

Gleason score, survival rate and response for endocrine therapy expression, thus substanti-

ating it as a favorable predictive and prognostic biomarker [91]. Other study groups have

reported PSF1 expression in high-grade prostate cancer could be a potential biomarker to

identify patients for diagnosis [92]. Engrailed-2 (EN2) protein, a homeodomain-containing

transcription factor showed expression in prostate cancer. This protein is secreted in urine

and shows a high specificity and sensitivity values, adding value as a novel biomarker for

prostate cancer [93]. Downregulated protein like SLC18A2 and unregulated protein like

TRPM4 in prostate cancer, also show similar functions as EN2 proteins.
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1.7.5 Epigenetic biomarkers in testicular cancer

Recent reports have identified risk SNPs in testicular germ cell tumors (TGCT). High levels

or increased PDE11A, SPRY4, and BAK1 promoter methylation and decreased KITLG

promoter methylation in familial TGCT cases versus healthy male family controls was

used to diagnose TGCT in the early time [94, 95]. Other groups have reported that Long

Interspersed Nuclear Elements (LINE-1, retrotransposons) methylation may be gender-

specific, with a strong correlation between LINE-1 methylation levels associated with disease

risk (L. Mirabello, S.., et al., 2010). A knock down miR-199a-3p study, in a normal human

testicular cell line (HT) showed a marked elevation of DNMT3A2 (DNMT3A gene isoform 2)

mRNA and protein levels. In clinical studies, DNMT3A2 was significantly overexpressed in

malignant testicular tumor and showed inverse correlation with miR-199a-3p expression [96].

Methylation profiles of oncogenes in testicular cancer shows correlation with histological

types and cancer-specific genes. Furthermore, methylation analysis in a larger cohort is

necessary for deciphering the complexity of gene roles in testicular cancer development and

can shed light on its therapy, early detection, and disease monitoring [97].

1.7.6 Epigenetic biomarkers in gastric cancer

Gastric cancer (GC) and colorectal cancer (CRC), are the two most frequently occurring

gastrointestinal tract cancer. Genetic and Epigenetic factors control initiation and progres-

sion of GastroIntestinal Cancer (GIC). DNA methylation, specific histone modifications,

chromatin remodeling and noncoding RNA-mediated gene silencing, together comprise epi-

genetic changes and are potentially reversible and heritable [98].

Numerous gene show altered DNA methylation levels across the CRC genome. These

include the genes associated with the Wnt signal transduction pathway (APC, AXIN2,

DKK1, SFRP1, SFRP2 and WNT5A), DNA repair genes (MGMT, MLH1 and MLH2),

Cell-cycle related genes (CDKN2A) and RAS signaling genes (RASSF1A and RASSF1B)

[63,99]. It is determined that highest CGI hyper methylation frequency takes place in GC,
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using DNA methylation mapping [44,100]. It is reported that HOP homeobox methylation

can be used as a potential biomarker as it exhibited 84% of hyper methylated samples versus

10% of matched adjacent normal tissues [101]. It was also observed that, the expression of

ADAMTS9 (a disintegrin and metalloproteinase with thrombospondin motifs 9 and belong-

ing to ADAMTS family), was silenced in 75% of GC cell lines and inhibited the expression

of AKT/mTOR pathway genes. This is found to be due to promoter hyper methylation

[102].

Genes that are differentially methylated and can be detected in various body fluids, us-

ing can be of clinical relevance. They are useful, easily available and noninvasive biomarkers

for GIC. Methyl-BEAMing for the absolute quantification of methylated molecules in DNA

from plasma or fecal samples is one such method developed for identification of clinically

relevant DNA methylation biomarker [103, 104]. A pioneer study reported using blood-

based PCR tests to detect the presence of the methylated septin 9 gene in CRC patients

had a sensitivity and a specificity of nearly 90% [105]. Such an approach wherein, CRC

screening test via blood-based, using the methylated SEPT9 biomarker (septin 9), (encod-

ing a GTPase involved in dysfunctional cytoskeletal organization) specifically detects the

majority of CRCs at all stages and locations in the colorectal region. The test showed an

overall sensitivity of 90% and a specificity of 88% [106].

Likewise, stool-based test for detecting gene methylation that codes for vimentin, when

conducted with colonoscopy exhibits a degree of sensitivity for CRC that ranges from 40

to 80% [106]. Other stool-based tests developed for CRC diagnosis and to detect clinically

relevant hyper methylated genes are targeted towards those that encode for fibrillin-1, APC,

CDKN2A, MLH1, MGMT, SFRP1, SFRP2 and NDRG4. Their levels of sensitivity that

range from 60 to 80% [107,108]. Recent reports have indicated that TFPI2 is expressed in

almost all colorectal adenomas (97%, n = 56) and stage I to IV CRCs (99%, n = 115). Also,

DNA-based stool assays have been used from I-III CRC stages and showed a sensitivity of

76-89% and a specificity of 79-93%. This suggests that TFPI2 methylation levels in stool

DNA samples can be a potential noninvasive biomarker for the early screening of CRC [109].
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Table 1.6: Selected genes with promotor hyper methylation and their clinical correlations
in ovarian carcinomas

Genes Clinical correlations Ref(s).
RASSF1A Detection of OC 81, 82
BRCA1 Detection of OC; poor prognosis; improved chemotherapy response81, 83, 84

APC Serum/ascites diagnosis of OC 81, 83
MGMT Detection of OC; improved chemotheraphy response 83, 85
hMLH1 Poor prognosis; improved chemotheraphy response 86-88
HOXA9 Detection of OC 89
OPCML Detection of OC 90

SFRP-1, -2, -4, -5 Detection of OC; Cancer recurrence; Poor prognosis 91
FZD4, DVL1, NFATC3, ROCK1,

Poor prognosis 92
LRP5, AXIN1, and NKD1

FBXo32 Poor prognosis 93
HOXA11 Poor clinical outcome 94
FANCF Cisplatin resistance 95

Another research group have suggested that, rather than detecting a single methylated gene,

sensitivity of stool DNA testing when combined with a panel of different biomarkers for the

detection of CRCs showed an increase up to 92.3%. This combined screening approach

including the panel of methylated genes is under evaluation for improving sensitivity and

also specificity [110].

1.7.7 Epigenetic biomarkers in Ovarian Carcinoma

Ovarian carcinoma (OC) is reported to be the most lethal gynecological malignancy world-

wide. Most OCs fall under a category of high grade serous ovarian carcinomas (HGSOC).

Common diagnosis occur in advanced stages involving peritoneal dissemination and massive

ascites. Advanced OC patients survival rate is ∼30%, even after administered with stan-

dard combined therapy of debulking surgery and neoadjuvant chemotherapy of paclitaxel

and carboplatin [111]. Epigenetic biomarkers, particularly DNA methylations, have proven

to be highly beneficial in terms of clinical utility for detection/diagnosis, chemotherapy

response and prognosis in OC (Table 7)[111,112].

It has been reported that, epigenetic regulation of Wnt and Akt/mTOR pathways may

be utilized as biomarkers for prognosis and/or treatment response in OC [113]. In another

study, examination of promoter methylation at 302 loci in a panel of 137 Wnt pathway

genes in 111 screening cases and 61 validation cases showed that methylations at 7 loci
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(FZD4, DVL1, NFATC3, ROCK1, LRP5, AXIN1, and NKD1) were associated with poor

progression-free survival. Also, hypermethylations of DVL1 and NFATC3 responded very

poorly to platinum chemotherapy [114]. Also, hypermethylations of DVL1 and NFATC3

showed similar poor response to platinum chemotherapy. Additionally, subjects with pro-

gressive or stable disease had increased methylation levels compared to those with partial

or complete response. The same research group reported that, promoter methylations of

VEGFB, VEGFA, HDAC11, FANCA, E2F1, GPX4, PRDX2, RAD54L and RECQL4 were

associated with increased hazard of disease progression. This was independent from con-

ventional clinical prognostic factors both in the screening cohort (n=150) and the TCGA

validation cohort (n=311). Furthermore, methylations at VEGFB and GPX4 showed poor

response to chemotherapy [114]. Next, a diagnostic model was built using methylation pro-

file in the previous Wnt pathway and the methylations of NKD1, VEGFB and PRDX2,

from which, methylation index was calculated to identify two distinct prognostic groups.

Subjects with increased methylation index exhibited a very poor response to chemotherapy.

Studies have also been conducted using genome-wide identification of methylated biomark-

ers in OCs. A approach known as methylated DNA immunoprecipitation microarray

(MeDIP-chip) was able to identify 367 CpG islands specifically methylated in OC, com-

pared to normal ovaries [115]. 168 genes are reported to be epigenetically silenced (Nature

report. 2011; 474:609615). Three genes AMT, CCL21, and SPARCL1 exhibits promoter

hyper methylation in most cancers, including OC and may serve as biomarkers for the

presence of OC. Four subtypes was generated upon consensus clustering of methylations

across tumors, with valid prognostic differences. Genome wide associated studies (GWAS)

studies in OC have yielded methylation signatures associated with progression-free survival

[116, 117]. Methylation analysis across genome-wide can potentially identify biomarkers of

good prognostic value. 220 differentially methylated regions were identified, in tumor tissue

of patients with short vs. long progression-free survival (106 hypo- and 114 hyper methy-

lated regions) using genome-wide array analysis approach [118]. This was validated when

subjects harboring methylation at the CpG island of RUNX3/CAMK2N1 had a significantly
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lower progression free survival. Such identified biomarkers using genome screening needs to

be further investigated in large cohorts supplemented by good clinical documentation.

NOTE: A comprehensive coverage on the current status, discovery and development of

all cancer DNA methylation biomarker is beyond the scope of this dissertation work. An at-

tempt is made above to highlight the past, current and on-going discovery and development

of the same.

1.8 Need for DNA methylation biomarker discovery

DNA methylation biomarkers have currently advanced to diagnostic laboratories, partic-

ularly those which are being used for early stage cancer detections. Lack of standardized

methodologies and inconsistent reference standards for detection of valuable biomarkers

are the biggest challenges that needs to be overcome today. Inappropriate methodologies

involving inappropriate controls are leading to non-replicating results which is hampering

biomarker discovery and development. Quantitative DNA methylation detection is the need

of the hour and is critical in cases, where only small differences in methylation values de-

termine a diseased or disease-free state. Also, DNA methylation biomarkers in non-cancer

related disorders will greatly benefit from the valuable knowledge and results obtained from

cancer related studies.

1.9 Future prospects

Standardization of appropriate methods intended towards DNA methylation detection and

building reliable reference standards will accelerate the discovery as well as the development

of DNA methylation biomarkers for cancer and other disorders. Next generation sequencing

has added immense value in this direction, allowing for routine testing of DNA methylation

biomarker panels rather than the selective choice of individual biomarkers. This is greatly

helpful in cases where disease phenotype exists in quite heterogeneous state. Additionally,

genetic disease components will be revealed allowing the validation and strengthening of
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biomarker panels by combining genetic and DNA methylation biomarker panels [119]. Fu-

ture research will not only focus on detection of appropriate epi (genetic) biomarker panels

available for diseases or risk stratification but also to translate them into clinical actionable

information with substantial validation. Translational approach is utmost important in this

context as there is a risk of adverse psychological impacts among patients. There also exists

risk of those patients being disadvantaged by healthcare providers. However, those denied

for healthcare or affected patients can avail the knowledge to their benefit. This will allow

them to actively prevent or delay the early onset of certain diseases, upon early detection.
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Chapter 2: MATERIALS AND METHODS

2.1 The Cancer Genome Atlas (TCGA) overview

Overview on TCGA: The Cancer Genome Atlas (TCGA) is a public funded project. The

primary objective of this initiative is to discover and catalogue genomic alterations. These

catalogued data are used to create a comprehensive Atlas of cancer genomic profiles. To this

day, TCGA initiative has analyzed over 30 large cohorts of human tumors using large-scale

genome sequencing and integrated multi-dimensional analyses. Also, specific cancer type

studies and comprehensive pan-cancer analyses have been enriched from TCGA cancer

research initiative. The main goal of this TCGA cancer initiative is to provide publicly

available datasets in order to help improve diagnostic methods, treatment standards, and

finally to prevent cancer.

In 2005, The Cancer Genome Atlas (TCGA) and in 2008 the International Cancer

Genome Consortium (ICGC) were launched. These two main projects aims at accelerating

the comprehensive understanding of cancer genetics. This would be achieved through the

use of innovative genome analysis technologies and thus would help to generate new cancer

therapies, diagnostic methods, and preventive strategies. TCGA was set up in phases.

Aim of Phase 1 was to develop and test the research infrastructure which was based on

characterization of tumors with poor prognosis. This included brain, lung and ovarian

cancers. This was a 3-year pilot study. Phase 2 study started in 2009. The study expanded

to additional cancer types and covered 30 tumor types. The analysis was completed in 2014.
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Table 2.1: The Cancer Genome Atlas (TCGA) organization centers

Centre Name Centre Description Localization
Tissue Source Collection of the samples (blood and tissue from tumor https://tcgadata.nci.nih.gov/
Sites (TSSs) and normal controls) and clinical metadata from patients datareports/codeTablesReport.

(donors) Shipment of the annotated bio specimens to htm?codeTable=tissue%
Bio specimen Core Resources (BCR) 20source%20site

https://wiki.nci.nih.gov/display/TCGA/Tissue+Source+Site
Bio specimen Coordination of sample delivery and data collection, Research Institute at

Core cataloguing, processing, and verifying the quality and quantity Nationwide Children’s
Resource Isolation and distribution of RNA and DNA from Hospital in
(BCR) bio specimens to other institutions for genomic Columbus, Ohio

characterization and high-throughput sequencing
http://cancergenome.nih.gov/abouttcga/overview/howitworks/bcr

http://www.nationwidechildrens.org/biospecimen-core-resource-about-us
Genome High-throughput sequencing (data are available in TCGA Data Portal Broad Institute Sequencing

Sequencing or at NIH’s database of Genotype and Phenotype) Identification Platform in Cambridge Human Genome
Centers of the DNA alterations Sequencing Center, Baylor College of
(GSCS) http://cancergenome.nih.gov/abouttcga/overview/howitworks/ Medicine in Houston

sequencingcenters The Genome Institute at
Washington University

2.1.1 The Cancer Genome Atlas (TCGA) Data collection and Research

Network

TCGA is well-structured and is supported by cooperating centers which are responsible for

collection and sample processing. This is then followed by high-throughput sequencing and

sophisticated bioinformatics data analyses (Table 8) [120] (Figure 2.1).

The Cancer Genome Atlas (TCGA) organization centers

At first, various Tissue Source Sites (TSSs) collects the bio-specimen/samples (blood,

tissue etc.) from eligible cancer patients. It is then delivered to the Bio-specimen Core

Resource (BCR). The BCR then catalogues, processes and verifies the sample (quality and

quantity). It then submits clinical data and metadata to the Data Coordinating Cen-

ter (DCC). It also provides molecular analytes for the Genome Characterization Centers

(GCCs) and Genome Sequencing Centers (GSCs) for further genomic characterization and

high-throughput sequencing. At this point, sequence-related data are deposited with DCC.

The GCC also submits trace files, sequences and alignment mappings to NCIs Cancer

Genomics Hub (CGHub) secure repository. Such compiled data source is made publicly

available to the research community and Genomic Data Analysis Centers (GDACs). The

role of GDACs is to process new information, its analysis and provide visualization tools for
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Figure 2.1: The Cancer Genome Atlas (TCGA) Research Network Centers flowchart.

a wider audience. DCC also is a central management center for the entire data generated

by TCGA. DCC feeds the data into public free-access databases1 (TCGA Portal, NCBI’s

Trace Archive, CGHub).

1http://cancergenome.nih.gov/abouttcga/overview
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2.1.2 TCGA platform and data types.

TCGA has extensively used high-throughput technologies based on microarrays (to test nu-

cleic acids and proteins) and next-generation sequencing methods (for genome-wide analysis

of nucleic acids). Also, the TCGA research network structure is supported by centers that

utilizes different platforms to provide a comprehensive cancer genomics data. Some of

the applied methods includes: RNA sequencing (RNAseq), MicroRNA sequencing (miR-

NAseq), DNA sequencing (DNAseq), SNP-based platforms, Array-based DNA methylation

sequencing and Reverse-phase protein array (RPPA).

RNA sequencing (RNAseq): This is a high-throughput technology for transcrip-

tome (total RNA) profiling. This can obtain strand information with excellent precision.

RNAseq can quickly and efficiently identify and quantify novel transcripts, isoforms, com-

mon transcripts, gene fusions and non-coding RNAs from numerous samples, even if the

samples are of low quality grade [121]. TCGA utilizes Illumina system for transcriptome

analysis. Submitted data contains information pertaining to nucleotide sequence and gene

expression. RNA sequence alignment provides a comprehensive information including RNA

sequence coverage, sequence variants (like fusion genes), gene expression, exon and/or junc-

tion. dbGaP database2 from NCBI is the repository database for the actual sequence data

.

MicroRNA sequencing (miRNAseq): This is a RNA-seq method that utilizes mate-

rials enriched in small RNAs and will thus allow the identification and detection of specific

sets of short, noncoding RNAs (miRNAs). These miRNAs can regulate numerous genes

within and across diverse signaling pathways. Furthermore, miRNA-sequencing is useful

for defining tissue-specific miRNA expression profiles, their isoforms, relatedness to disease

and discovery of novel miRNAs [122–124].

DNA sequencing (DNAseq): This is a high-throughput method for identifying or

determining nucleotides in a DNA molecule. It provides valuable information about DNA

2https://wiki.nci.nih.gov/display/TCGA/RNASeq
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alterations, like insertions, deletions, polymorphism, copy number variations, mutation fre-

quencies or cellular events like viral infections. Genomic diversity across many cancer types

is catalogued by TCBGA using Sanger Sequencing technique at the TCGA Genome Se-

quencing Centers [125,126,126].

SNP-based platforms: These platforms are utilized for analysis of genome-wide struc-

tural variations across numerous cancer genomes. A wide pool of powerful genotypic tool

sets are made use of for this purpose. Single Nucleotide Polymorphisms (SNPs) detected

using an array-based detection includes platforms that can define SNP, CNV and loss of

LOH across multiple samples3 [127].

Array-based DNA methylation sequencing: This is a high-throughput, genome-

wide analysis of DNA methylation profiling. This provides changes in epigenetics in the

genome. The most common and the earliest alterations in cancer is abnormal profiles of

DNA methylation of CpG sites4 [128] and Illumina is the main platform utilized by TCGA

for DNA methylation assay. This platform ensures single-base-pair resolution, high accu-

racy, easy workflows and low DNA input requirements. Methylation profiling approaches or

methodologies are based on highly multiplexed genotyping of bisulphite-converted genomic

DNA. TCGA provides the DNA methylation data files which includes signal intensities

(both raw and normalized), confidence of detection, and calculated beta values for methy-

lated (M) and unmethylated probes5 (U).

Reverse-phase protein array (RPPA): This is a high-sensitivity, reproducible, high-

throughput, functional and quantitative proteomic method. This method can detect nano-

grams of proteins. This is used for large-scale protein expression profiling, biomarker dis-

covery and also for cancer diagnostics. RPPA is based on the antibody-based technique and

allows for analysis of more than 1000 samples at any given instance. It also includes 500 dif-

ferent antibodies at the same time. Protein arrays contains information pertaining to both

expression and concentration. TCGA submits protein array data to DCC. Such data also

3http://www.broadinstitute.org/collaboration/gcc/methods/technology
4http://res.illumina.com/documents/products/datasheets/datasheet dna methylation analysis.pdf
5https://wiki.nci.nih.gov/display/TCGA/DNA+methylation
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includes original images of protein arrays, its raw signals, relative protein concentrations

and normalized protein signals6.

Many data types (kinds or variety in data) can be obtained from each platform. These

include gene expression, exon expression, miRNA expression, copy number variation (CNV),

single nucleotide polymorphism (SNP), loss of heterozygosity (LOH), mutations, DNA

methylation, and also protein expression. Such data obtained are categorized not only

by data type but also by data levels. Raw, unnormalized data (Level 1), processed data

(Level 2) and segmented or interpreted data (Level 3) from each individual samples and

summarized data (level 4) is the data that refers to analysis across sample sets. Level 3

and 4 data is publicly available data, whereas Level 1 and 2 will need special permission for

accession7.

2.1.3 Analysis and visualization of TCGA data

Next-generation sequencing (NGS) and Array-based profiling yields vast amounts of diverse

data types. This provides a good platform for cancer genome analysis. Data interpretation

and visualization that involves integration and multi-dimensional data is utmost essential.

Hence, the need for advanced visualization tools has emerged quite drastically. Various

useful imaging tools and databases are now employed for cancer genome analysis8. This

includes:

The Cancer Imaging Archive, TCIA9: This was created by NCI to collect and

share numerous medical images of cancer (radiological imaging data), from TCGA cases for

public use. In short, it supports the imaging phenotype-genotype research [128].

Berkeley Morphometric Visualization and Quantification from H & E sec-

tions10: This is a repository for data pertaining to histology-based images of various tumor

6http://www.mdanderson.org/education-and-research/resources-for-professionals/scientific-

resources/core-facilities-and-services/functional-proteomics-rppa-core/index.html
7https://tcga-data.nci.nih.gov/tcga/tcgaDataType.jsp
8https://tcga-data.nci.nih.gov/tcga/tcgaAnalyticalTools.jsp
9http://www.cancerimagingarchive.net

10http://tcga.lbl.gov/biosig/tcgadownload.do
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samples of TCGA cases. This is supported by the Lawrence Berkeley National Laboratory

(Chang H., et al., 2013).

The Cancer Digital Slide Archive, CDSA11: This is an online tool built for the

purpose for viewing and annotating diagnostic and tissue slide images of various tumor

types from TCGA project. Its creators are Dr. David Gutman and Dr. Lee Cooper of

Emory University who have facilitated a broader access to TCGA data [129].

The Broad GDAC Firehose12: This was created by Broad Institute. It coordinates

the smooth flow of datasets in the order of terabyte-scale, thus providing a large amount of

different quantitative algorithms including GISTIC, MutSig, Clustering and Correlation 13.

The MD Anderson GDAC’s MBatch14: This platform is useful in identification

and quantification of the batch effects accompanying the TCGA data sets. This is in

accordance to hierarchical clustering and enriched PCA plots15.

Cancer Genome Workbench, CGWB16: This was developed by NCI, to provide

an integrative platform and also for displaying sample-level genomic and transcription al-

terations in various cancers. Major views on this platform are Integrated tracks view, Heat

map view and Bambino (Alignment viewer) [130].

UCSC Cancer Genomics Browser17: An important platform wherein users can

find an open-access, web-based tools developed and supported by USCS Cancer genomics

Group. This is used to visualize and analyze cancer genome combined with clinical data

by using genomic coordinate heat maps. The site provides interactive visual outputs of

genomic regions. This is supplemented with annotated cellular pathways and also allows

for quantitative analysis for all datasets and integrates with statistical tools also [131].

Integrative Genomics Viewer, IGV18: Freely available high-performance visualiza-

tion tool from Broad Institute. Its purpose is to provide interactive exploration of large,

11http://cancer.digitalslidearchive.net/
12https://confluence.broadinstitute.org/display/GDAC/Home
13http://www.broadinstitute.org/cancer/cga/Firehose
14http://bioinformatics.mdanderson.org/tcgabatcheffects
15https://wiki.nci.nih.gov/display/TCGA/MD+Anderson+GDAC+MBatch
16https://cgwb.nci.nih.gov/
17https://genome-cancer.soe.ucsc.edu/
18http://www.broadinstitute.org/igv
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heterogeneous, integrated data sets. IGV provides a platform for easy analysis of user-

friendly data or for those from IGV server and TCGA data too. It has coordinate-type

data that provides genome annotations with specific labels for viewing genomes.

The cBioPortal for Cancer Genomics19: This is offered by the Memorial Sloan-

Kettering Cancer Centre (MSKCC). It provides for the visualization, analysis, and download

of large-scale cancer genomics data sets. Also, it allows for interactive exploration of cus-

toms datasets. This is done by direct accession to OncoPrinter or MutationMapper web

tools. This site presently holds data from 69 cancer genome studies including data such

as DNA copy-number data, mRNA and miRNA expression data, mutations, RPPA data,

DNA methylation data, and limited clinical data related to survival. Visualization interface

involves networks, matrices as well as heat maps. This site highly compliments existing

tools from TCGA and ICGC data portals, IGV, USCS genome browser and also IntOGen

[132,133].

Regulome Explorer20: This portal allows for integrative exploration of relations or

associations between molecular features and clinical aspects of TCGA data. This allows

users to search and visualize data by applying suitable filters. The visualized data may

include either circular or linear genomic coordinates or networks. This explorer is supported

by the Center for Systems Analysis of the Cancer Regulome (CSACR), associated with the

TCGA initiative and also with the Institute for Systems Biology and The University of

Texas MD Anderson Cancer Center [134].

2.1.4 Data mining the vast TCGA resource.

Cancer types with data available via The Cancer Genome Atlas

All TCGA data is made publicly available and centralized at the TCGA data portal.

TCGA data has been utilized for various analysis, including a study to characterize the

genomic and molecular landscape of various cancer types and their respective analysis.

One such analysis includes that of exome sequencing, RNAseq and MiRNAseq across 12

19http://cbioportal.org
20http://explorer.cancerregulome.org/
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Table 2.2: Cancer types with data available via The Cancer Genome Atlas

Available Cancer Types # Cases Shipped by BCR*
Acute Myeloid Leukemia [LAML] 200
Adrenocortical carcinoma [ACC] 80

Bladder Urothelial Carcinoma [BLCA] 412
Brain Lower Grade Glioma [LGG] 516
Breast invasive carcinoma [BRCA] 1100

Cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC] 308
Cholangiocarcinoma [CHOL] 36

Colon adenocarcinoma [COAD] 461
Esophageal carcinoma [ESCA] 185
FFPE Pilot Phase II [FPPP] 38

Glioblastoma multiforme [GBM] 529
Head and Neck squamous cell carcinoma [HNSC] 528

Kidney Chromophobe [KICH] 66
Kidney renal clear cell carcinoma [KIRC] 536

Kidney renal papillary cell carcinoma [KIRP] 291
Liver hepatocellular carcinoma [LIHC] 377

Lung adenocarcinoma [LUAD] 521
Lung squamous cell carcinoma [LUSC] 510

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma [DLBC] 48
Mesothelioma [MESO] 87

Ovarian serous cystadenocarcinoma [OV] 586
Pancreatic adenocarcinoma [PAAD] 185

Pheochromocytoma and Paraganglioma [PCPG] 179
Prostate adenocarcinoma [PRAD] 498
Rectum adenocarcinoma [READ] 172

Sarcoma [SARC] 261
Skin Cutaneous Melanoma [SKCM] 470
Stomach adenocarcinoma [STAD] 445

Testicular Germ Cell Tumors [TGCT] 150
Thymoma [THYM] 124

Thyroid carcinoma [THCA] 507
Uterine Carcinosarcoma [UCS] 57

Uterine Corpus Endometrial Carcinoma [UCEC] 548
Uveal Melanoma [UVM] 80

*Excludes non-canonical cases

cancer types revealed 11 major subtypes and redefined three cancer types into one molecular

subgroup (Hoadley KA., et al., 2014). In another analysis, exome sequencing and RNAseq

data for six cancer types was used to discover neo-antigen expression and to predict patient

survival rates [135].

Data types for each cancer types include somatic mutation, copy number, gene expres-

sion, miRNA expression, DNA methylation, reverse protein phase array (RPPA) and clinical

information. As mentioned before, each data type has raw and processes data. Exceptions

to this rule though are for sequencing files from the exome sequencing, RNA sequencing

(RNAseq), microRNA sequencing (miRNAseq) and copy number, which require authoriza-

tion from the Cancer Genomics Hub (CGHub). Also, pipeline for analysis for each data
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type are provided in a text file. These contain a standard method for raw processing of

data and annotation. This allows for reproducibility in downstream analysis.

2.1.5 Analysis of TCGA data using publicly available web tools.

Web tools such as cBioportal, GDAC firehose Websites such as cBioportal [132], GDAC fire-

hose21, canEvolve [136], PROGgeneV2 [137], and the UCSC cancer browser [131] all provide

their own analysis and visualization tools for TCGA datasets canEvolve , PROGgeneV2 ,

and the UCSC cancer browser all provide their own analysis and visualization tools for

TCGA datasets (Table 10).

Web tools for TCGA analysis

cBioportal site contains >20 000 tumor samples from 89 cancer studies. Users can select

datasets and enter a gene list. This site is invaluable as it offers unique analysis pipeline

such as OncoPrint diagrams, MEMo (Mutual Exclusivity Modules) analysis, customizable

correlation plots, Kaplan-Meier plots, network analysis and integrative genomics viewer

integration. Oncoprint diagrams represent genomic alterations such as somatic mutations

and copy number alterations across sample sets. Users are able to detect visually the vi-

sually co-occurrence or mutual exclusivity of genomic alternations within a cohort. MEMo

analysis helps in identifies gene mutations, that share a common pathway and that exhibits

a mutually exclusive mutations pattern across a cohort [138]. Using cBioportal analysis of

RNAseq and RPPA data types can be done by setting z-score thresholds for identifying

significant genes and proteins, respectively. Cytoscape, a tool for network analysis integra-

tion allows for viewing gene networks and their corresponding interactions for the gene/s

of interest. Integrative genomics viewer (IGV), can be used for visualizing copy number

alterations (CNA), gene expression and mutations across all chromosomes genome-wide.

Annotated data can be preprocessed using GDAC firehose and provides correlations and

differential gene analysis in all data types. The firehose platform periodically updates new

TCGA cases and automates pipelines every four months. GDAC firehose includes unique

21http://gdac.broadinstitute.org
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analysis pipelines that include GISTIC2 (analysis of copy number data) [139] MutSig2

(analysis of mutation data) [140] and PARADIGM (analysis of copy number and RNAseq

data) [141]. GDAC site also correlates clinical data with miRNA, mRNA, RPPA, copy

number and DNA methylation datasets. Clustering analysis can be performed for data

types and molecular subtypes can be defined. This can then be correlated to clinical,

mutation and copy number data.

canEvolve site contains >10 000 tumor samples from 90 cancer studies, including 15

TCGA data sets. Users can select a database and can conduct multiple downstream analy-

sis including differential gene expression, miRNA expression, copy number analysis, regula-

tory network analysis using ARACNE, co-expression network analysis using WGCNA, gene

set enrichment analysis using the MSigDB 3.0 gene sets (Subramanian A., et al., 2005),

integrative gene expression and miRNA expression analysis using GemiNI, integrative gene

expression and copy number analysis using DR-Integrator, integrative genomic and gene ex-

pression analysis, integrative genomic and protein expression analysis and survival analysis.

canEvolve can also be used to query genes across multiple datasets. Users can select a pre-

defined gene list from KEGG or Biocarta pathway or a user-end gene list for interrogating

gene expression patterns within any given dataset.

PROGgene V2, second version of PROgene, contains >19 000 samples from 134 cohorts

in 21 cancer types. This tool provides for analysis on survival rates based on one gene or

ration between two genes. Survival plots are generated using gene signatures from KEGG,

Biocarta, GO, and Reactome databases. Covariate data like cancer stages can be adjusted

for survival plots. Also, unique feature of this site is that, users can upload their own data

here. Omics data is now gaining popularity as it does not require programming experi-

ence and hence this above mentioned feature will become increasingly important to help

comprehend as to how individual patient data compares with larger cohorts. UCSC cancer

browser like other tools provides for visualization and analysis for TCGA data. However, it

offers a unique interactive analysis of multiple datatypes for a cancer dataset. Cancer data

set can be selected to visualize gene expression or DNA methylation, stratified according
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to clinical parameters or another dataset. For instance, users can select a mutated genes

dataset and stratify according to clustering of miRNA and DNA methylation signatures,

allowing users to define cancer specific subgroups and also perform survival analysis. User

can also specify genes or gene signatures to visualize within a dataset. End user annotations

can be uploaded to clinical heat map for specific clustering analysis. New platforms like

Xena platform for visualization and integration with Galaxy is being introduced [142,143].

2.1.6 Future promise/perspective from TCGA.

TCGA has provided new insights into the molecular biology of cancer and into cancer ge-

nomics. Advances in bioinformatics tools and high-throughput technologies has highlighted

the intricate similarities and differences in the genomic architecture of cancer and its rele-

vant subtypes, which is publicly available. Immeasurable and invaluable data is now made

publicly available with regards to genetic and epigenetic profiles, highlighting candidate can-

cer biomarkers and drug targets. Also, personalized medicine can benefit immensely from

translation of cancer genomics into therapeutic prospects. On the bioinformatics front, it

is essential that the tools eliminate potential noise and improve upon resolution of analy-

sis, and identify or discover biomarkers or therapeutic targets from those refined data sets.

Such novel discoveries will aid in the medicine community in diagnosis, treatment and can-

cer prevention. Progress is being made analysis and disease knowledge resulting in advances

in medicine. Recent medical advances include a machine learning approach being taught

to an artificially intelligent computer WATSON in order to support doctors in diagnosing

patients22 23.

22http://www3.mdanderson.org/streams/FullVideoPlayer.cfm?xml=cfg%2FMoon-Shots-IBM-Watson-
2013

23http://www.ibm.com/smarterplanet/us/en/ibmwatson/index.html
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2.2 TCGA Data: Genomic Data Commons (GDC)

The TCGA Data Portal for data downloading or public access is no longer operational and

all TCGA data now resides at the Genomic Data Commons. GDC Data Model Compo-

nents can be represented as a graph containing nodes and edges. This is the data store

for the GDC. Critical relationship between projects, cases, clinical and molecular subdata

is maintained and linked precisely to the actual data file using unique identifiers. It is

based on the property graph model wherein nodes represent entities, edges between nodes

represent relationships between entities and finally, properties on both nodes and edges

represent additional data that describes entities and their relationships. Further, relation-

ships are encoded as edges of a given type which associates exactly two nodes. Properties

of relationships or nodes are actually sets of key-value pairs. Metadata are submitted by

external users and is extracted and loaded into the graph. Data representation provided

by other GDC components are derived from authoritative graph model. Files and archive

objects are not stored in the graph. They are stored in an external object store. Structure

of node/edge of the graph is depicted in (Figure 2.2)(Figure 2.3) GDC Data Model is a

centralized method of organization, wherein all data artifacts are ingested by the GDC.

Such a data model is designed to maintain data and metadata consistency, integrity, and

availability while accommodating the following:

• Bio-specimen , clinical, and cancer genomic data and metadata

• Multiple, disparate NCI ongoing projects

• Completely new, as yet unthought of projects

• Ongoing changes and technological progress

• Frequent and complex queries from both external users and internal administrators

To meet such stringent requirements, the design and implementation of the data model

leverages:
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• Flexible but robust graph-oriented data stores

• Indexed document stores for API and front end performance

• Ontology-based concept and data element definition

• Schema-based entity and relationship validation on loading

2.2.1 GDC: Data Types and Format.

Submitted Data:

DNA and RNA sequencing data is being accepted by GDC in both FASTQ (link is

external) and BAM (link is external) formats. Sequencing data is to be submitted with

accompanying metadata in either simple tab-separated values (TSV) or the JavaScript

Object Notation JSON format (link is external), or the latest version (currently 1.5) of the

SRA XML format. Clinical and bio-specimen data is to be submitted in either TSV or

JSON format, or as XML. This should be validated with respect to the latest version of

NCI Bio-specimen Core Resource XML Schema documents.

GDC: Data Types and Format: Submitted Data

Generated Data:

For every submitted sequence data (also BAM alignment files), the GDC generates

new alignments in BAM format using the latest human reference genome GRCh38 with

standard alignment pipelines. Using these standard alignments, the GDC generates high

level derived data which includes normal and tumor variant and mutation calls in VCF and

MAF formats, and gene and miRNA expression and splice junction quantification data in

TSV formats.

GDC: Data Types and Format: Generated Data

Imported Data: GDC also hosts and distributes previously generated data from The

Cancer Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective
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Figure 2.2: Graph Representation of the GDC Data Model
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Table 2.3: GDC: Data Types and Format: Generated Data

Entity Category Entity Name File Format File Metadata Template
Administrative Case – TSV, JSON

Biospecimen

Sample – TSV, JSON
Portion – TSV, JSON
Analyte – TSV, JSON
Aliquot – TSV, JSON

Read Group – TSV, JSON
Slide – TSV, JSON

Clinical

Demographic – TSV, JSON
Diagnosis – TSV, JSON
Exposure – TSV, JSON

Family History – TSV, JSON
Treatment – TSV, JSON

Data File

Analysis Metadata SRA XML, MAGE-TAB (SDRF, IDF) TSV, JSON
Biospecimen Supplement BCR XML, GDC-approved spreadsheet TSV, JSON

Clinical Supplement BCR XML, GDC-approved spreadsheet TSV, JSON
Experiment Metadata SRA XML TSV, JSON

Pathology Report PDF TSV, JSON
Run Metadata SRA XML TSV, JSON

Slide Image SVS TSV, JSON
Submitted Unaligned Reads FASTQ, BAM(link is external) TSV, JSON
Submitted Aligned Reads BAM(link is external) TSV, JSON

Treatments (TARGET), and other cancer initiative programs. Original sequence alignments

are stored in BAM format, and derived data files are stored and provided in their original

formats.

2.3 Methylation analysis and MExpress tool

DNA methylation is now established to be an integral aspect of cancer genomics. This

is also reported to have important associations with gene expression, sequence and copy

number variations [144]. Large datasets from TCGA is a validation platform with regards

to identifying novel biomarkers. It is becoming a standard tool for biomarker research.

Also, a significant feature in TCGA platform is the ability to correlate different data types.

Recent research has indicated that promoter DNA methylation can influence gene expression

and aberrant methylation is found in almost every cancer [145]. This ability for comparing

data types is extremely important for identifying novel DNA methylation biomarkers. In

view of such a valid, invaluable and vast platform of huge cancer datasets being available

for analysis, interactive data visualization tools are critical to understand, especially when
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Table 2.4: GDC: Data Types and Format: Imported Data

Data Type Data Subtype Format

Raw Sequencing data
Aligned Reads BAM(link is external)

Unaligned Reads FASTQ(link is external)
Coverage WIG WIGGLE(link is external)

Simple Nucleotide Variation

Genotypes TSV
Simple Germline Variation

MAF, VCFSimple Somatic Mutation
Simple Nucleotide Variation

Raw Microarray Data

Raw Intensities

TSV

CGH Array QC
Intensities Log2Ratio
Expression Control

Intensities
Normalized Intensities <

Probeset Summary
Methylation Array QC Metrics

Gene Expression

Gene Expression Quantification

TSV

miRNA Quantification
Isoform Expression Quantification

Exon Junction Quantification
Exon Quantification

Gene Expression Summary

Structural Rearrangement
Structural Germline Variation

VCF, FASTA
Structural Variation

DNA Methylation
Bisulfite Sequence Alignment BAM(link is external)

Methylation Beta Value TSV
Methylation Percentage

Clinical

Clinical Data XML
Biospecimen Data
Tissue Slide Image SVS
Diagnostic Image
Pathology Report PDF

Copy Number Variation

Copy Number Segmentation TSV
Copy Number Estimate

Copy Number Germline Variation <
LOH

Copy Number QC Metrics
Copy Number Variation

Normalized Copy Numbers
Copy Number Summary

Probeset Call

Protein Expression
Protein Expression Quantification TSV

Protein Expression Control

Other
Microsattelite Instability FSA

ABI Sequence Trace TR
Auxiliary Test

About the Data
Data Types and File Formats

Generated Data Types and File Formats
Imported Data Types and File Formats
Submitted Data Types and File Formats

Data Dictionary
Data Harmonization and Generation

Data Standards
Data Availability Matrix
Data Download Statistics
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Table 2.5: TCGA Data portal last status and updates

Available Cancer Types
# Cases Shipped# Cases withDate Last Updated

by BCR* Data* (mm/dd/yy)
Acute Myeloid Leukemia [LAML] 200 200 5/31/2016
Adrenocortical carcinoma [ACC] 80 80 5/31/2016

Bladder Urothelial Carcinoma [BLCA] 412 412 5/27/2016
Brain Lower Grade Glioma [LGG] 516 516 5/2/2016
Breast invasive carcinoma [BRCA] 1100 1097 5/31/2016

Cervical squamous cell carcinoma and
308 307 5/26/2016

endocervical adenocarcinoma [CESC]
Cholangiocarcinoma [CHOL] 36 36 5/31/2016

Colon adenocarcinoma [COAD] 461 461 5/27/2016
Esophageal carcinoma [ESCA] 185 185 5/31/2016
FFPE Pilot Phase II [FPPP] 38 38 4/28/2016

Glioblastoma multiforme [GBM] 529 528 5/27/2016
Head and Neck squamous cell carcinoma [HNSC] 528 528 5/3/2016

Kidney Chromophobe [KICH] 66 66 6/1/2016
Kidney renal clear cell carcinoma [KIRC] 536 536 5/27/2016

Kidney renal papillary cell carcinoma [KIRP] 291 291 5/31/2016
Liver hepatocellular carcinoma [LIHC] 377 377 6/2/2016

Lung adenocarcinoma [LUAD] 521 521 6/1/2016
Lung squamous cell carcinoma [LUSC] 510 504 5/26/2016

Lymphoid Neoplasm Diffuse Large B-cell
48 48 5/31/2016

Lymphoma [DLBC]
Mesothelioma [MESO] 87 87 4/8/2016

Ovarian serous cystadenocarcinoma [OV] 586 586 5/31/2016
Pancreatic adenocarcinoma [PAAD] 185 185 5/6/2016

Pheochromocytoma and Paraganglioma [PCPG] 179 179 5/3/2016
Prostate adenocarcinoma [PRAD] 498 498 5/31/2016
Rectum adenocarcinoma [READ] 172 171 6/1/2016

Sarcoma [SARC] 261 261 6/1/2016
Skin Cutaneous Melanoma [SKCM] 470 470 4/8/2016
Stomach adenocarcinoma [STAD] 445 443 5/26/2016

Testicular Germ Cell Tumors [TGCT] 150 150 6/2/2016
Thymoma [THYM] 124 124 5/31/2016

Thyroid carcinoma [THCA] 507 507 5/5/2016
Uterine Carcinosarcoma [UCS] 57 57 4/29/2016

Uterine Corpus Endometrial Carcinoma [UCEC] 548 548 6/2/2016
Uveal Melanoma [UVM] 80 80 4/29/2016

*Excludes non-canonical cases
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Figure 2.3: Genomic Data Commons Data portal Webpage

multiple samples and data types are to be compared and analyzed. Each visualization tools

that has been developed for TCGA data analysis, has focused on one or a more specific

research question and offers a wide variety of visualization output and analysis pipeline

[132, 132, 146, 147]. Although a wide variety of visualization output and analysis tools are

available, none of these tools are easy, fast and straightforward for usage and analysis.

MEXPRESS, a novel tool has been developed that is used in our study for TCGA data

analysis. This tool combines clinical, methylation and expression data. MEXPRESS, is a

powerful tool since users do not need any programming or bioinformatics expertise to use

the tool or in analyzing and identifying genes of interest or novel biomarkers in the TCGA

data. MEXPRESS is mainly utilized for simple, but quick querying and visualization of

clinical, expression and methylation data and also to determine relationship between the

TCGA datasets on a single-gene level. MEXPRESS has been designed along the lines of

graphical excellence described by Edward Tufte [148]. MEXPRESS tool designed in these

lines has demonstrated that such complex and multidimensional TCGA data is presented

in a clear, precise and efficient way for the end-user. Also, the user benefits from the fact

that, analysis and visualization from MEXPRESS is very easy to use and does not require

computational or bioinformatics expertise in any way. Thus, MEXPRESS, virtually does
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not have any learning curve or requires any formal training. Such ease of use have facilitated

researchers, particularly clinicians to get their results quickly, easily and effectively.

2.3.1 MEXPRESS: Implementation and Output visualization

MEXPRESS carries a key feature, that being simplicity. A visualization output plot is

created upon selecting a gene of interest and a cancer type and querying it. An example of

a visualization output is demonstrated below with its transcripts and any CpG islands that

are involved (Figure 2.4)(Figure 2.5).

A. In the default MEXPRESS output of the visualization plot, the samples are ordered

by their gene expression value. Here in this visualization plot, the Pearson Correlation co-

efficient value clearly demonstrates the negative correlation between GSTP1 expression and

promoter methylation. Tumor samples are observed to have lower GSTP1expression when

compared to normal samples. B. The visualization plot can also be ordered by another data

type, the Sample type. This output shows a clear difference in expression and methylation

between normal and tumor samples.

The visual output shows samples are ordered by breast cancer subtype. Results in-

dicate significant differences in expression and methylation. Also, HER2, estrogen and

progesterone receptor status indicates clear differences, between the different subtypes.

Gene expression data, methylation data and clinical data can be visualized and analyzed

at the same time using MEXPRESS. Each probe generates a methylation data indicated

in blue line plot (Infinium HumanMethylation 450 Microarray data) and is present next

to the gene (vertical downward arrow line). RNA-seq derived expression data is depicted

as a yellow line plot, while the grey line plot depicts the clinical data of the patients.

Significance of relation (P value or correlation coefficient) depending on the data types that

are compared (methylation, expression or clinical data) between each row is indicated on the
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Figure 2.4: Visualization of the TCGA data for GSTP1 in prostate adenocarcinoma using
MEXPRESS
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Figure 2.5: MEXPRESS view of the TCGA data for MLPH in breast invasive carcinoma

52



far right of the visual output. The selected sorter is also indicated in the plot. MEXPRESS

tool has the default sorter parameter set for expression. This means that samples or data

for samples are ordered by their expression values. MEXPRESS carries the flexibility of

changing the order by which the samples can be ordered. It can be called up or sorted using

clinical or methylation data types too. The tool will then query based upon the selected

sorter and samples are reordered with the relevant recalculated relationships or significance

values. The visual output can be saved and downloaded in PNG or SVG extension format.

2.4 MEXPRESS and TCGA Data

MEXPRESS, directly downloads TCGA data from its ftp (file transfer protocol). RNA-seq

v2 expression data from IlluminaHiSeq RNASeqV2 from Level 3 of TCGA, HumanMethy-

lation450 derived DNA methylation data from Level 3 and Biotab format derived clinical

patient and tumor sample data. MEXPRESS tool, which runs on Bash scripts on the

back-end Linux servers automatically checks the TCGA ftp site on a monthly basis. Such

updates are then identified and automatically updated to the MEXPRESS database. Also,

TCGA makes it publically available about cancer types which is also automatically updated

by MEXPRESS scripts. The tool is facilitated initially by the R scripts (R version 3.0.2).

These scripts are responsible for significant data processing and address issues like missing

values. It also facilitates the combination of different files into one upon identifying the

requirement, reformats data into relevant accessible types and to generate SQL scripts for

uploading the processed and also new data. MEXPRESS tool, does a log-transformation

on the RNA-seq data before such data is utilized for visualization plot. Also, only the most

relevant clinical parameters is utilized by the MEXPRESS plot to minimize data clutter

and for efficient data analysis.
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2.4.1 MEXPRESS and other data sources

MEXPRESS, greatly facilitates incorporation of novel data types (mutation, proteomic or

other omics data). MEXPRESS, can access UCSC cancer genome for various cancer sub-

types (normal, basal, luminal A, luminal B and Her2, in case of invasive carcinoma sample)

[149]. The tool can specifically access CpG data from the USCS table browser using the

following path: clade: Mammal, genome: Human, assembly: Feb. 2009 (GRCh37/hg19),

group: Regulation, track: CpG Islands, table: cpgIslandsExt [150]. MEXPRESS, can ac-

cess and obtain annotation data (exon or transcript) using Ensembl with the aid of BioMart

tool.

2.4.2 MEXPRESS and statistical analyses

Two main statistical tests that is incorporated in the tool are: Pearson correlation and

the non-parametric Wilcoxons rank-sum test. These tests are created using JavaScript.

Pearson correlation test mainly compares two data types which are at different levels such

as comparison of methylation and expression data. Non-parametric Wilcoxons rank-sum

test calculates the variable between two groups for which comparison is undertaken (for

example, difference in methylation with respect to gender). A false discovery rate correction

step is also incorporated in the tool [151].

2.4.3 Methods in Statistical Analysis

Pearson correlation Test

The Pearson product-moment correlation coefficient (or Pearson correlation coefficient,

for short) is a statistical measure of the strength of a linear association between two variables

and is denoted by r. It should be noted that, the symbol for Pearson’s correlation is ”” when

it is measured in the population and ”r” when it is measured in a sample. The difference

between Pearson product-moment correlation and the Pearson correlation coefficient can

be explained as follows. Basically, a Pearson product-moment correlation attempts to draw
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Table 2.6: Guidelines proposed to interpret Pearson’s correlation coefficient

Coefficient,r

Strength of Association Positive Negative
Small .1 to .3 -.1 to .3

Medium .3 to .5 -.3 to .5
Large .5 to .10 -.5 to 1.0

a line of best fit through the data of two variables, and the Pearson correlation coefficient,

r, indicates how far away all these data points are to this line of best fit (i.e., how well the

data points fit this new model/line of best fit).

Assigned values and its interpretation: The Pearson correlation coefficient, r, can take

a range of values from +1 to -1. A value of 0 indicates that there is no association between

the two variables. A value greater than 0 indicates a positive association; that is, as the

value of one variable increases, so does the value of the other variable. A value less than 0

indicates a negative association; that is, as the value of one variable increases, the value of

the other variable decreases.

Determination of strength association: The stronger the association of the two variables,

the closer the Pearson correlation coefficient, r, will be to either +1 or -1 depending on

whether the relationship is positive or negative, respectively. Achieving a value of +1 or -1

means that all your data points are included on the line of best fit there are no data points

that show any variation away from this line. Values for r between +1 and -1 (for example,

r = 0.8 or -0.4) indicate that there is variation around the line of best fit. The closer the

value of r to 0 the greater the variation around the line of best fit. (Table 2.6)

Variables used in this test: When using this statistical test, the two variables have to

be measured on either an interval or ratio scale. However, both variables do not need to be

measured on the same scale (e.g., one variable can be ratio and one can be interval).

Measuring the variables: Also, the two variables can be measured in entirely different

units. For example, you could correlate a person’s age with their blood sugar levels. Here,

the units are completely different; age is measured in years and blood sugar level measured

in mmol/L (a measure of concentration). Indeed, the calculations for Pearson’s correlation
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coefficient were designed such that the units of measurement do not affect the calculation.

This allows the correlation coefficient to be comparable and not influenced by the units of

the variables used.

Units of measurement for variables: The two variables can be measured in entirely

different units.

Dependent and independent variables: The Pearson product-moment correlation does

not take into consideration whether a variable has been classified as a dependent or inde-

pendent variable. It treats all variables equally.

Slope of the line: It is important to realize that the Pearson correlation coefficient, r,

does not represent the slope of the line of best fit. Therefore, if you get a Pearson correlation

coefficient of +1 this does not mean that for every unit increase in one variable there is a

unit increase in another. It simply means that there is no variation between the data points

and the line of best fit.

5 assumptions made in this test:

• The variables must be either interval or ratio measurements.

• The variables must be approximately normally distributed.

• There is a linear relationship between the two variables.

• Outliers are either kept to a minimum or are removed entirely.

• There is homoscedasticity of the data.

To detect a linear relationship: To test to see whether your two variables form a linear

relationship, the user needs to simply need to plot them on a graph (a scatterplot, for

example) and visually inspect the graph’s shape.

Pearson’s correlation determines the degree to which a relationship is linear. Put an-

other way, it determines whether there is a linear component of association between two

continuous variables. As such, linearity is not actually an assumption of Pearson’s correla-

tion. However, you would not normally want to pursue a Pearson’s correlation to determine

56



the strength and direction of a linear relationship when you already know the relationship

between your two variables is not linear. Instead, the relationship between your two vari-

ables might be better described by another statistical measure. For this reason, it is not

uncommon to view the relationship between your two variables in a scatterplot to see if

running a Pearson’s correlation is the best choice as a measure of association or whether

another measure would be better.

Wilcoxons rank-sum test

The Wilcoxon rank-sum test is a nonparametric alternative to the two-sample t-test

which is based solely on the order in which the observations from the two samples fall.

The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are

drawn from the same distribution. The alternative hypothesis is that values in one sample

are more likely to be larger than the values in the other sample. This test should be used

to compare two samples from continuous distributions. It does not handle ties between

measurements in x and y.

An alternative explanation would be as follows: A popular nonparametric test to com-

pare outcomes between two independent groups is the Mann Whitney U test. The Mann

Whitney U test, sometimes called the Mann Whitney Wilcoxon Test or the Wilcoxon Rank

Sum Test, is used to test whether two samples are likely to derive from the same population

(i.e., that the two populations have the same shape). Some investigators interpret this test

as comparing the medians between the two populations. Recall that the parametric test

compares the means (H0: 1=2) between independent groups.

In contrast, the null and two-sided research hypotheses for the nonparametric test are

stated as follows:

H0: The two populations are equal versus

H1: The two populations are not equal.

This test is often performed as a two-sided test and, thus, the research hypothesis

indicates that the populations are not equal as opposed to specifying directionality. A

one-sided research hypothesis is used if interest lies in detecting a positive or negative shift
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in one population as compared to the other. The procedure for the test involves pooling

the observations from the two samples into one combined sample, keeping track of which

sample each observation comes from, and then ranking lowest to highest from 1 to n1+n2,

respectively.

A common experiment design is to have a test and control conditions. A two sample

t-test would have been a good choice if the test and control groups are independent and

follow Normal distribution. If conditions are not met, nonparametric test methods are

needed. This section covers one such test, called Wilcoxon rank-sum test (equivalent to the

Mann-Whiney U-test) for two samples. The test is preferred when:

Comparing two samples.

• The two groups of data are independent

• The type of variable could be continuous or ordinal

• The data might not be normally distributed

Wilcoxon Rank Sum Test for Independent Samples:

When the requirements for the t-test for two independent samples are not satisfied, the

Wilcoxon Rank-Sum non-parametric test can often be used provided the two independent

samples are drawn from populations with an ordinal distribution.

For this test we use the following null hypothesis:

H0: the observations come from the same population

From a practical point of view, this implies:

H0: if one observation is made at random from each population (call them x0 and y0),

then the probability that x0 > y0 is the same as the probability that x0 < y0, and so the

populations for each sample have the same medians.

2.5 MEXPRESS as a visualization tool

MEXPRESS tool/site runs on Apache server. The back end database is accessed using PHP.

Interactive plots are created and statistical analysis is done by employing JavaScript, the
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jQuery JavaScript library (version 1.11.0), Ajax autocomplete for jQuery(version 1.2.10,

24) and the d3.js JavaScript library (version 3.0.6, 25). The visualization output from

SVG format can be converted into PNG format with the aid of Inkscape which is a freely

available vector graphics editor (26). MEXPRESS database is conceptually created using

MySQL database which contains the TCGA data for visualization and analysis. This forms

the main backbone of the tool. The way this tool functions is that PHP scripts handles all

the queries from the user which is then directed to the database, results then packaged in

JSON and sent back to the user. The entire code of MEXPRESS, is highly validated (back-

end, front-end and data processing) as it can be cloned or downloaded from this GitHub

repository27.

2.6 Gene query against BioMuta and BioXpress databases

BIOMUTA DATABASE

URL: http://hive.biochemistry.gwu.edu/tools/biomuta/index.php

CSR: http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr

HIVE: http://hive.biochemistry.gwu.edu

BioMuta, a database created with integrated sequence features, provides a framework for

both automated and manual curation and integration of cancer-related sequence features

for NGS analysis pipelines, was utilized (40- 42). Sequence feature information in BioMuta

is integrated from a variety of source such as Catalogue of Somatic Mutations in Cancer

(COSMIC), ClinVar, UniProtKB and biocuration of published data. BioMuta also contains

non-synonymous single-nucleotide variations (nsSNVs) identified from NGS data. The High-

performance Integrated Virtual Environment (HIVE) was created for handling petabytes

of data for storage, analysis, computing and curating NGS data and related metadata

support BioMuta too. Different algorithms were used to identify and tackle variations in

24https://github.com/devbridge/jQuery-Autocomplete
25http://d3js.org/
26http://www.inkscape.org/
27https://github.com/akoch8/mexpress

59



cancer data. We queried the five selected genes BLCAP, GDF15, PIWIL4, DMRT1 and

ITPKA against BioMuta for validating or supplementing the above mentioned MEXPRESS

study/results that identifies epigenetic alterations (methylation) affecting gene expression

in various cancers.

BIOXPRESS DATABASE

URL: http://hive.biochemistry.gwu.edu/tools/bioxpress

CSR: http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr

HIVE: http://hive.biochemistry.gwu.edu

BioXpress is a gene expression and cancer association database wherein expression lev-

els are mapped to genes using RNA-seq data obtained from TCGA, International Cancer

Genome Consortium, Expression Atlas and literature reviews. BioXpress encompasses ex-

pression data from 64 cancer types, 6361 patients and 17469 genes, of which 9513 genes

exhibit differential expression between tumor and normal samples. Data from RNA-seq

data repositories is supplemented with manual curation of cancer data from literature re-

views. Pan-cancer analysis is also facilitated by mapping cancer types to Disease Ontology

terms. BioXpress can be queried using HUGO Gene Nomenclature Committee gene sym-

bol, UniProtKB/RefSeq accession or by cancer types with specialized filters. This database

is invaluable in identifying cancer-related genes using a pre-computed downloadable file

containing differentially expressed genes in multiple cancers (43). Again, we queried the

five selected genes BLCAP, GDF15, PIWIL4, DMRT1 and ITPKA against BioXpress for

validating or supplementing the above mentioned MEXPRESS study/results that identifies

epigenetic alterations (methylation) affecting gene expression in various cancers .
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Chapter 3: RESULTS

3.1 MEXPRESS plot details

Mxpress, for our gene/s of interest when selected with a particular cancer type generates

the Mxpress data/plot. Here, the height of the orange line (expression data) represents the

logarithm of the level 3 RNA-sequencing data in TCGA (normalized RNASeqV2 values per

gene). The expression data forms the basis of the whole plot. This is because the samples

are ranked based on their expression value for the ITPKA gene selected. Samples with the

highest expression appear on the left side and the lowest on the right. In the panel below

the expression data, on the left hand side, the gene is designated by a solid orange line, the

CpG islands in green and the different transcripts in broken or dotted orange lines. The

arrow on the gene indicates its direction. If the arrow points down, the gene is located on

the + strand. If it points up, the gene lies on the - strand. Also, in this panel, to the right,

the Infinium 450k probes are linked to our gene of interest. The height of the blue lines

indicates the beta value for a probe. When there is no data available for a certain probe,

no line is plotted and instead it simply says ”no data”. Gaps in the line will indicate that

there was no methylation data for one or more samples. Similar to the expression data, the

samples are also ranked along the x axis (they are ordered based off our gene of interest

expression value). Thin blue lines connect the probes to their respective genomic locations.

When a user hovers over a methylation data, the plot will highlight the corresponding probe

on the left hand side and the name of the probe will also be shown. The user can fix the

highlighting of a probe by clicking on its data plot. Also, by clicking the same data plot

a second time will clear the highlighting. Hence, Mexpress is an invaluable tool to detect

clinical, methylation and expression data simultaneously and to detect the significance that

exist between these data sets.
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Common features of MEXPRESS result plot analysis

ITPKA gene when queried for BRCA in MEXPRESS, generates the above plot. On

the left hand top corner, ITPKA as a gene entry in entered. Here both HGNC symbols

and Ensembl gene IDs are recognized as valid entries. The plot demonstrates that the

samples are arranged from left to right, while the different data types (clinical, expression

and methylation) are arranged from the top to the bottom of the plot. On the resulting

plot, if users can hover over one of the methylation line plots will exhibit the ID of the

corresponding probe. Here users can click on a methylation line plot to fix the probe ID on

the figure. By clicking it again will enable users to remove the probe ID (or click another

methylation line plot). Users can also highlight the promoter probes by clicking the button

right above the legend. User can download the figure by simply clicking on the png or svg

button in the upper right corner. Users can emphasize the probes that are located in a

gene’s promoter region by clicking on the highlight promoter probes button. This will turn

the highlighting of the promoter probes on.

The expression data is represented by the yellow/orange line plot. The height of the

orange line represents the logarithm of the level 3 RNA-sequencing data in TCGA (normal-

ized RNASeqV2 values per gene). The expression data forms the basis of the whole plot,

because the samples are ranked based on their expression value for the gene that is selected

for query. Here, the resulting plot shows the highest expression on the left side and the

lowest on the right.

The methylation data is indicated by the blue line plot. On the left hand side, solid

orange vertical line indicates the gene, CpG islands are indicated using the solid vertical

green line and the different gene transcripts are indicated by the dotted/ broken orange

lines. The arrow on the gene indicates its direction. If the arrow points down, the gene is

located on the + strand. If it points up, the gene lies on the - strand.

On the right hand side, the Infinium 450k probes that are linked to the gene can be

observed. The height of the blue lines corresponds with the beta value for a probe. If data

is unavailable for a certain probe, no line is plotted and instead it simply says ”no data”.
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Gaps in the line indicate that there is no methylation data available for one or more amples.

Like the expression data, the samples are ranked along the x axis (they are ordered based

on their gene expression value). Thin blue lines on the plot, connect the probes to their

respective genomic locations. Users can hover over a methylation data plot to highlight

the corresponding probe on the left hand side and the name of the probe will be also be

showed. Users can fix the highlighting of a probe by clicking on its data plot. Clicking the

same data plot a second time will clear the highlighting. Once users have fixed a probe’s

highlighting by clicking on the data plot, users can click on the probe’s name to reveal the

probe’s genomic location and annotation.

The values on the far right of the plot represents the Pearson product-moment corre-

lation coefficient between the methylation values for a probe and the expression values. If

probes exhibit a strong negative correlation between methylation and expression, it indi-

cates that gene expression might be controlled through DNA methylation. The asterisks

gives an indication of the significance of the correlations.

The clinical data is represented using the grey line plot. For every cancer type, the most

appropriate relevant clinical parameters is extracted from TCGA. In order to represent all

the data as bar plots, some clinical parameters have been converted to numeric values. One

example is the pathologic stage where values such as Stage IIA and Stage IV were converted

to the values 2 and 4 respectively.

Labels/ names of different clinical parameters are listed on the left and the Pearson

product-moment correlation values or the p values for Wilcoxon rank-sum test can be found

on the right. If a clinical parameter contains only two levels (e.g. male or female) a p value

is calculated instead of a correlation coefficient. This p value indicates the difference in

expression between the two groups for this parameter. For the sample type parameter, the

expression is always compared between the normal and tumor samples.

As indicated before, the samples are sorted based on their expression value by default.

By clicking on the name of the annotation parameter that users are interested in, they can

rearrange the samples by the annotation that they selected. So if users, for example, like
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Figure 3.1: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer

to compare age to the expression and methylation of a certain gene or to the other clinical

parameters, they have to click on ”age at diagnosis” and the samples will be reordered.

3.1.1 BLCAP (bladder cancer associated protein) as a DNA methylation

biomarker gene

(Figure 3.1)(Figure 3.2)(Figure 3.3)

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer:

MEXPRESS plot for BLCAP gene expression for BLCA cancer reveals the following

details: A) there are quite a few probes with a strong negative correlation between methy-

lation and expression, indicating that BLCAP expression might be controlled through DNA

methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-

cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,

the expression is always compared between the normal and tumor samples. Here, it is clear

64



Figure 3.2: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer

Figure 3.3: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer
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Figure 3.4: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

that the normal samples tend to have a lower BLCAP expression than the tumor sam-

ples. C) Highlighted promoter probes plot data reveals that there are numerous, yet highly

significant negative correlation values between methylation and expression indicating that

the promoter region for BLCAP gene might be regulated through DNA methylation. Such

promoter probes are also found on the CpG island region (indicated in green color) indicat-

ing that DNA methylation has an effect on the CpG island region which can subsequently

influence BLCAP gene expression. When samples are ordered by expression, sample type

p= 6.02e-4 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p= 9.17e-4

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression us-

ing MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer: (Figure 3.4)(Fig-

ure 3.5)(Figure 3.6)

MEXPRESS plot for BLCAP gene expression for BRCA cancer reveals the following

details: A) there are numerous probes with a strong negative correlation between methyla-

tion and expression, indicating that BLCAP expression might be controlled through DNA
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Figure 3.5: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

Figure 3.6: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.7: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer

methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-

cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,

the expression is always compared between the normal and tumor samples. Here, it is clear

that the normal samples tend to have a higher BLCAP expression than the tumor sam-

ples. C) Highlighted promoter probes plot data reveals that there are numerous, yet highly

significant negative correlation values between methylation and expression indicating that

the promoter region for BLCAP gene might be regulated through DNA methylation. Such

promoter probes are also found on the CpG island region (indicated in green color) indicat-

ing that DNA methylation has an effect on the CpG island region which can subsequently

influence BLCAP gene expression. When samples are ordered by expression, sample type p

< 2.2e-16 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p < 2.2e-16

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer: (Figure 3.7)(Fig-

ure3.8)(Figure3.9)

MEXPRESS plot for BLCAP gene expression for COAD cancer reveals the following
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Figure 3.8: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer

Figure 3.9: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer
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details: A) there are more probes with a strong negative correlation as compared to strong

positive correlation probes between methylation and expression, indicating that BLCAP ex-

pression might be slightly controlled or influenced through DNA methylation. As the plot’s

legend explains, the asterisks gives an indication of the significance of the correlations. B)

As in all MEXPRESS plotting, for the sample type parameter, the expression is always

compared between the normal and tumor samples. Here, it is clear that the normal samples

tend to have a slightly lower BLCAP expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are numerous, yet highly significant negative

correlation values between methylation and expression indicating that the promoter region

for BLCAP gene might be regulated through DNA methylation. Such promoter probes are

also found on the CpG island region (indicated in green color) indicating that DNA methy-

lation has an effect on the CpG island region which can subsequently influence BLCAP

gene expression. When samples are ordered by expression, sample type p= 0.0562 When

samples are ordered by sample type i.e., difference in expression between normal and tumor

type p= 0.0687

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for CRAD (Colorectal Adeno Carcinoma) cancer: (Figure

3.10)(Figure3.11)(Figure3.12)

MEXPRESS plot for BLCAP gene expression for CRAD cancer reveals the following

details: A) there are more probes with a strong negative correlation as compared to the ones

with strong positive correlation probes between methylation and expression, indicating that

BLCAP expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower BLCAP expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are numerous, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for BLCAP
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Figure 3.10: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for CRAD (Colorectal Adeno Carcinoma)) cancer

Figure 3.11: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for CRAD (Colorectal Adeno Carcinoma)) cancer
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Figure 3.12: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for CRAD (Colorectal Adeno Carcinoma) cancer

gene might be regulated through DNA methylation. Such promoter probes are also found

on the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence BLCAP gene expression.

When samples are ordered by expression, sample type p= 0.023 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.0294

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer:

(Figure 3.13)(Figure3.14)(Figure3.15)

MEXPRESS plot for BLCAP gene expression for KIRC cancer reveals the following

details: A) there are numerous probes with a strong negative correlation between methyla-

tion and expression, indicating that BLCAP expression might be controlled through DNA

methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-

cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,

the expression is always compared between the normal and tumor samples. Here, it is clear

that the normal samples tend to have higher BLCAP expression than the tumor samples.
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Figure 3.13: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer

Figure 3.14: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer
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Figure 3.15: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer

C) Highlighted promoter probes plot data reveals that there are numerous, yet highly sig-

nificant negative correlation values between methylation and expression indicating that the

promoter region for BLCAP gene might be regulated through DNA methylation. Such pro-

moter probes are also found on the CpG island region (indicated in green color) indicating

that DNA methylation has an effect on the CpG island region which can subsequently in-

fluence BLCAP gene expression. When samples are ordered by expression, sample type p=

2.77e-10 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p= 1.36e-10

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer:

(Figure 3.16)(Figure3.17)(Figure3.18)

MEXPRESS plot for BLCAP gene expression for KIRP cancer reveals the following

details: A) there are numerous probes with a strong negative correlation between methyla-

tion and expression, indicating that BLCAP expression might be controlled through DNA
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Figure 3.16: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer

Figure 3.17: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer
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Figure 3.18: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer

methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-

cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,

the expression is always compared between the normal and tumor samples. Here, it is clear

that the normal samples tend to have slightly lower BLCAP expression than the tumor sam-

ples. C) Highlighted promoter probes plot data reveals that there are numerous, yet highly

significant negative correlation values between methylation and expression indicating that

the promoter region for BLCAP gene might be regulated through DNA methylation. Such

promoter probes are also found on the CpG island region (indicated in green color) indicat-

ing that DNA methylation has an effect on the CpG island region which can subsequently

influence BLCAP gene expression. When samples are ordered by expression, sample type

p= 0.246 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p= 0.179

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer: Figures (Figure

3.19)(Figure 3.20)(Figure 3.21)
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Figure 3.19: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer

Figure 3.20: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer
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Figure 3.21: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer

MEXPRESS plot for BLCAP gene expression for LUAD cancer reveals the following

details: A) there are numerous probes with a strong negative correlation between methyla-

tion and expression, indicating that BLCAP expression might be controlled through DNA

methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-

cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,

the expression is always compared between the normal and tumor samples. Here, it is clear

that the normal samples tend to have slightly lower BLCAP expression than the tumor sam-

ples. C) Highlighted promoter probes plot data reveals that there are numerous, yet highly

significant negative correlation values between methylation and expression indicating that

the promoter region for BLCAP gene might be regulated through DNA methylation. Such

promoter probes are also found on the CpG island region (indicated in green color) indicat-

ing that DNA methylation has an effect on the CpG island region which can subsequently

influence BLCAP gene expression. When samples are ordered by expression, sample type

p= 0.578 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p= 0.623 Analysis of BLCAP (Bladder Cancer Associated
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Figure 3.22: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

Protein) gene expression using MEXPRESS for LUSC (Lung Squamous Cell

Carcinoma) cancer:(Figure 3.22)(Figure3.23)(Figure3.24)

MEXPRESS plot for BLCAP gene expression for LUSC cancer reveals the following

details: A) there are numerous probes with a strong negative correlation between methyla-

tion and expression, indicating that BLCAP expression might be controlled through DNA

methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-

cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,

the expression is always compared between the normal and tumor samples. Here, it is clear

that the normal samples tend to have lower BLCAP expression than the tumor samples.

C) Highlighted promoter probes plot data reveals that there are numerous, yet highly sig-

nificant negative correlation values between methylation and expression indicating that the

promoter region for BLCAP gene might be regulated through DNA methylation. Such

promoter probes are also found on the CpG island region (indicated in green color) indicat-

ing that DNA methylation has an effect on the CpG island region which can subsequently

influence BLCAP gene expression. When samples are ordered by expression, sample type
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Figure 3.23: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) ) cancer

Figure 3.24: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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Figure 3.25: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

p= 0.0118 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p= 0.00128

3.2 GDF15 (Growth Differentiation Factor 15) as a DNA

methylation biomarker gene

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using

MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer: (Figure 3.25)(Fig-

ure3.26)(Figure3.27)

MEXPRESS plot for GDF15 gene expression for BRCA cancer reveals the following

details: A) there are more probes with a strong negative correlation as compared to the

ones with a strong positive correlation between methylation and expression, indicating that

GDF15 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to
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Figure 3.26: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

Figure 3.27: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.28: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer

have very lower GDF15 expression than the tumor samples. C) Highlighted promoter probes

plot data reveals that there are no probes being highlighted indicating that the promoter

region for GDF15 gene might NOT be involved in the regulation of GDF15 gene expression

through DNA methylation. Also, the promoter region is NOT involved in influencing the

methylation of CpG islands or its subsequent effect on GDF15 gene expression. When

samples are ordered by expression, sample type p= 2.09e-14 When samples are ordered by

sample type i.e., difference in expression between normal and tumor type p= 1.31e-13

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-

ing MEXPRESS for COAD (Colon Adeno Carcinoma) cancer: (Figure 3.28)(Fig-

ure3.29)(Figure3.30)

MEXPRESS plot for GDF15 gene expression for COAD cancer reveals the following

details: A) there are couple probes with a strong negative correlation between methylation

and expression, indicating that GDF15 expression might be controlled through DNA methy-

lation. As the plot’s legend explains, the asterisks gives an indication of the significance

of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the

expression is always compared between the normal and tumor samples. Here, it is clear that
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Figure 3.29: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer

Figure 3.30: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) ) cancer
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Figure 3.31: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer

the normal samples tend to have very lower GDF15 expression than the tumor samples. C)

Highlighted promoter probes plot data reveals that there are no probes being highlighted

indicating that the promoter region for GDF15 gene might NOT be involved in the reg-

ulation of GDF15 gene expression through DNA methylation. Also, the promoter region

is NOT involved in influencing the methylation of CpG islands or its subsequent effect on

GDF15 gene expression. When samples are ordered by expression, sample type p= 1.37e-9

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p= 6.62e-10

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-

ing MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer: (Figure

3.31)(Figure3.32)(Figure3.33)

MEXPRESS plot for GDF15 gene expression for CRAD cancer reveals the following

details: A) there are couple probes with a strong negative correlation between methylation

and expression, indicating that GDF15 expression might be controlled through DNA methy-

lation. As the plot’s legend explains, the asterisks gives an indication of the significance
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Figure 3.32: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer

Figure 3.33: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer
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Figure 3.34: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer

of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the

expression is always compared between the normal and tumor samples. Here, it is clear that

the normal samples tend to have very lower GDF15 expression than the tumor samples. C)

Highlighted promoter probes plot data reveals that there are no probes being highlighted

indicating that the promoter region for GDF15 gene might NOT be involved in the reg-

ulation of GDF15 gene expression through DNA methylation. Also, the promoter region

is NOT involved in influencing the methylation of CpG islands or its subsequent effect on

GDF15 gene expression. When samples are ordered by expression, sample type p= 5.38e-10

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p= 5.49e-10

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using

MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer: (Figure

3.34)(Figure3.35)(Figure3.36)

MEXPRESS plot for GDF15 gene expression for CESC cancer reveals the following de-

tails: A) there are couple probes with a strong negative correlation between methylation
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Figure 3.35: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer

Figure 3.36: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer
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Figure 3.37: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for ESCA (Esophageal Carcinoma) cancer

and expression, indicating that GDF15 expression might be controlled through DNA methy-

lation. As the plot’s legend explains, the asterisks gives an indication of the significance

of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the

expression is always compared between the normal and tumor samples. Here, it is clear that

the normal samples tend to have very lower GDF15 expression than the tumor samples. C)

Highlighted promoter probes plot data reveals that there are no probes being highlighted

indicating that the promoter region for GDF15 gene might NOT be involved in the reg-

ulation of GDF15 gene expression through DNA methylation. Also, the promoter region

is NOT involved in influencing the methylation of CpG islands or its subsequent effect on

GDF15 gene expression. When samples are ordered by expression, sample type p= 0.31

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p= 0.76

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-

ing MEXPRESS for ESCA (Esophageal Carcinoma) cancer: Figures 3.37 to

3.39(Figure 3.37)(Figure3.38)(Figure3.39)

89



Figure 3.38: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for ESCA (Esophageal Carcinoma) cancer

Figure 3.39: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for ESCA (Esophageal Carcinoma) cancer
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MEXPRESS plot for GDF15 gene expression for ESCA cancer reveals the following

details: A) there are more probes with a strong negative correlation as compared to the

ones with a strong positive correlations between methylation and expression, indicating that

GDF15 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have lower GDF15 expression than the tumor samples. C) Highlighted promoter probes

plot data reveals that there are no probes being highlighted indicating that the promoter

region for GDF15 gene might NOT be involved in the regulation of GDF15 gene expression

through DNA methylation. Also, the promoter region is NOT involved in influencing the

methylation of CpG islands or its subsequent effect on GDF15 gene expression. When

samples are ordered by expression, sample type p= 0.251 When samples are ordered by

sample type i.e., difference in expression between normal and tumor type p= 0.695

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-

ing MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) can-

cer:(Figure 3.40)(Figure3.41)(Figure3.42)

MEXPRESS plot for GDF15 gene expression for HNSC cancer reveals the following

details: A) there are more probes with a strong negative correlation as compared to the

ones with a strong positive correlations between methylation and expression, indicating that

GDF15 expression might be controlled through DNA methylation. As the plot’s legend ex-

plains, the asterisks gives an indication of the significance of the correlations. B) As in all

MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower GDF15 expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are no probes being highlighted indicating that the

promoter region for GDF15 gene might NOT be involved in the regulation of GDF15 gene
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Figure 3.40: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer

Figure 3.41: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer
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Figure 3.42: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer

expression through DNA methylation. Also, the promoter region is NOT involved in influ-

encing the methylation of CpG islands or its subsequent effect on GDF15 gene expression.

When samples are ordered by expression, sample type p= 0.475 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.482

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using

MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer: (Figure

3.43)(Figure3.44)(Figure3.45)

MEXPRESS plot for GDF15 gene expression for KIRP cancer reveals the following de-

tails: A) there are more probes with a strong negative correlation as compared to the ones

with a strong positive correlations between methylation and expression, indicating that

GDF15 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower GDF15 expression than the tumor samples. C) Highlighted promoter
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Figure 3.43: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer

Figure 3.44: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer
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Figure 3.45: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer

probes plot data reveals that there are no probes being highlighted indicating that the

promoter region for GDF15 gene might NOT be involved in the regulation of GDF15 gene

expression through DNA methylation. Also, the promoter region is NOT involved in influ-

encing the methylation of CpG islands or its subsequent effect on GDF15 gene expression.

When samples are ordered by expression, sample type p= 0.461 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.478

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-

ing MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer: (Figure

3.46)(Figure3.47)(Figure3.48)

MEXPRESS plot for GDF15 gene expression for LIHC cancer reveals the following

details: A) there are numerous strong negative correlation between methylation and ex-

pression, indicating that GDF15 expression might be controlled through DNA methylation.

As the plot’s legend explains, the asterisks gives an indication of the significance of the

correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the expres-

sion is always compared between the normal and tumor samples. Here, it is clear that the
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Figure 3.46: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer

Figure 3.47: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer
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Figure 3.48: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer

normal samples tend to have slightly lower GDF15 expression than the tumor samples. C)

Highlighted promoter probes plot data reveals that there are no probes being highlighted

indicating that the promoter region for GDF15 gene might NOT be involved in the reg-

ulation of GDF15 gene expression through DNA methylation. Also, the promoter region

is NOT involved in influencing the methylation of CpG islands or its subsequent effect on

GDF15 gene expression. When samples are ordered by expression, sample type p= 0.874

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p= 0.731

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-

ing MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer: (Figure 3.49)(Fig-

ure3.50)(Figure3.51)

MEXPRESS plot for GDF15 gene expression for LUAD cancer reveals the following

details: A) there are numerous strong negative correlation between methylation and ex-

pression, indicating that GDF15 expression might be controlled through DNA methylation.

As the plot’s legend explains, the asterisks gives an indication of the significance of the
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Figure 3.49: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer

Figure 3.50: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer
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Figure 3.51: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer

correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the ex-

pression is always compared between the normal and tumor samples. Here, it is clear that

the normal samples tend to have lower GDF15 expression than the tumor samples. C)

Highlighted promoter probes plot data reveals that there are no probes being highlighted

indicating that the promoter region for GDF15 gene might NOT be involved in the reg-

ulation of GDF15 gene expression through DNA methylation. Also, the promoter region

is NOT involved in influencing the methylation of CpG islands or its subsequent effect on

GDF15 gene expression. When samples are ordered by expression, sample type p= 0.00196

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p= 0.00436

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-

ing MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer: (Figure

3.52)(Figure3.53)(Figure3.54)

MEXPRESS plot for GDF15 gene expression for LUSC cancer reveals the following

details: A) there are numerous strong positive correlation as compared to the ones with

strong negative correlations between methylation and expression, indicating that GDF15
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Figure 3.52: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

Figure 3.53: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

100



Figure 3.54: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

expression might be controlled through DNA methylation. As the plot’s legend explains, the

asterisks gives an indication of the significance of the correlations. B) As in all MEXPRESS

plotting, for the sample type parameter, the expression is always compared between the

normal and tumor samples. Here, it is clear that the normal samples tend to have slightly

lower GDF15 expression than the tumor samples. C) Highlighted promoter probes plot data

reveals that there are no probes being highlighted indicating that the promoter region for

GDF15 gene might NOT be involved in the regulation of GDF15 gene expression through

DNA methylation. Also, the promoter region is NOT involved in influencing the methylation

of CpG islands or its subsequent effect on GDF15 gene expression. When samples are

ordered by expression, sample type p= 0.00692 When samples are ordered by sample type

i.e., difference in expression between normal and tumor type p= 0.00843

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using

MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer: Figures 3.55 to

3.57(Figure 3.55)(Figure3.56)(Figure3.57)

MEXPRESS plot for GDF15 gene expression for PRAD cancer reveals the following
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Figure 3.55: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer

Figure 3.56: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer
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Figure 3.57: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer

details: A) there are numerous strong negative correlation between methylation and ex-

pression, indicating that GDF15 expression might be controlled through DNA methylation.

As the plot’s legend explains, the asterisks gives an indication of the significance of the

correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the ex-

pression is always compared between the normal and tumor samples. Here, it is clear that

the normal samples tend to have lower GDF15 expression than the tumor samples. C)

Highlighted promoter probes plot data reveals that there are no probes being highlighted

indicating that the promoter region for GDF15 gene might NOT be involved in the reg-

ulation of GDF15 gene expression through DNA methylation. Also, the promoter region

is NOT involved in influencing the methylation of CpG islands or its subsequent effect on

GDF15 gene expression. When samples are ordered by expression, sample type p= 5.75e-9

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p= 7.2e-9

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using

MEXPRESS for THCA (Thyroid Carcinoma) cancer: (Figure 3.58)(Figure3.59)(Figure3.60)
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Figure 3.58: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer

Figure 3.59: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer
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Figure 3.60: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer

MEXPRESS plot for GDF15 gene expression for THCA cancer reveals the following de-

tails: A) there are more number of strong negative correlation values of probes as compared

to those of strong positive correlations, between methylation and expression, indicating that

GDF15 expression might be controlled through DNA methylation. As the plot’s legend ex-

plains, the asterisks gives an indication of the significance of the correlations. B) As in all

MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have significantly lower GDF15 expression than the tumor samples. C) Highlighted pro-

moter probes plot data reveals that there are no probes being highlighted indicating that

the promoter region for GDF15 gene might NOT be involved in the regulation of GDF15

gene expression through DNA methylation. Also, the promoter region is NOT involved in

influencing the methylation of CpG islands or its subsequent effect on GDF15 gene expres-

sion. When samples are ordered by expression, sample type p < 2.2e-16 When samples are

ordered by sample type i.e., difference in expression between normal and tumor type p <

2.2e-16
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Figure 3.61: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-

ing MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) can-

cer:(Figure 3.61)(Figure3.62)(Figure3.63)

MEXPRESS plot for GDF15 gene expression for UCEC cancer reveals the following

details: A) there are slightly more number of strong negative correlation values of probes

as compared to those of strong positive correlations, between methylation and expression,

indicating that GDF15 expression might be controlled through DNA methylation. As the

plot’s legend explains, the asterisks gives an indication of the significance of the correlations.

B) As in all MEXPRESS plotting, for the sample type parameter, the expression is always

compared between the normal and tumor samples. Here, it is clear that the normal samples

tend to have slightly lower GDF15 expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are no probes being highlighted indicating

that the promoter region for GDF15 gene might NOT be involved in the regulation of

GDF15 gene expression through DNA methylation. Also, the promoter region is NOT

involved in influencing the methylation of CpG islands or its subsequent effect on GDF15

gene expression. When samples are ordered by expression, sample type p= 4.82e-8 When
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Figure 3.62: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer

Figure 3.63: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer
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Figure 3.64: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer

samples are ordered by sample type i.e., difference in expression between normal and tumor

type p= 2.49e-6

3.3 PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) as

a DNA methylation biomarker gene

(Figure 3.64)(Figure 3.65)(Figure 3.66)

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer:

MEXPRESS plot for PIWIL4 gene expression for BLCA cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to
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Figure 3.65: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer

Figure 3.66: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer
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Figure 3.67: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

have lower PIWIL4 expression than the tumor samples. C) Highlighted promoter probes

plot data reveals that there are few, yet highly significant negative correlation values between

methylation and expression indicating that the promoter region for PIWIL4 gene might be

regulated through DNA methylation. Such promoter probes are also found on the CpG

island region (indicated in green color) indicating that DNA methylation has an effect on

the CpG island region which can subsequently influence PIWIL4 gene expression. When

samples are ordered by expression, sample type p= 0.00217 When samples are ordered by

sample type i.e., difference in expression between normal and tumor type p= 0.00944

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer:

(Figure 3.67)(Figure 3.68)(Figure 3.69)

MEXPRESS plot for PIWIL4 gene expression for BRCA cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in
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Figure 3.68: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

Figure 3.69: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.70: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have higher PIWIL4 expression than the tumor samples. C) Highlighted promoter probes

plot data reveals that there are numerous, yet highly significant negative correlation values

between methylation and expression indicating that the promoter region for PIWIL4 gene

might be regulated through DNA methylation. Such promoter probes are also found on the

CpG island region (indicated in green color) indicating that DNA methylation has an effect

on the CpG island region which can subsequently influence PIWIL4 gene expression. When

samples are ordered by expression, sample type p < 2.2e-16 When samples are ordered by

sample type i.e., difference in expression between normal and tumor type p < 2.2e-16

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma)

cancer:(Figure 3.70)(Figure 3.71)(Figure 3.72)

MEXPRESS plot for PIWIL4 gene expression for CESC cancer reveals the following de-

tails: A) there are more number of strong negative correlation values of probes as compared

to those of strong positive correlations, between methylation and expression, indicating that
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Figure 3.71: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer

Figure 3.72: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer
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Figure 3.73: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CHOL (Cholangio Carcinoma) cancer

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have significantly higher PIWIL4 expression than the tumor samples. C) Highlighted pro-

moter probes plot data reveals that there are few, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for PIWIL4

gene might be regulated through DNA methylation. Such promoter probes are also found

on the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence PIWIL4 gene expression.

When samples are ordered by expression, sample type p= 0.0362 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.078

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for CHOL (Cholangio Carcinoma) cancer:(Figure

3.73)(Figure 3.74)(Figure 3.75)

MEXPRESS plot for PIWIL4 gene expression for CHOL cancer reveals the following
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Figure 3.74: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CHOL (Cholangio Carcinoma) cancer

Figure 3.75: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CHOL (Cholangio Carcinoma) cancer
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details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have significantly lower PIWIL4 expression than the tumor samples. C) Highlighted pro-

moter probes plot data reveals that there are few, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for PIWIL4

gene might be regulated through DNA methylation. Such promoter probes are also found

on the CpG island region (indicated in green color) indicating that DNA methylation has

an effect on the CpG island region which can subsequently influence PIWIL4 gene expres-

sion. When samples are ordered by expression, sample type p= 1.06e-4 When samples are

ordered by sample type i.e., difference in expression between normal and tumor type p=

6.41e-5

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer:(Figure

3.76)(Figure 3.77)(Figure 3.78)

MEXPRESS plot for PIWIL4 gene expression for COAD cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are numerous, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for PIWIL4
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Figure 3.76: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer

Figure 3.77: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer
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Figure 3.78: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer

gene might be regulated through DNA methylation. Such promoter probes are also found

on the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence PIWIL4 gene expression.

When samples are ordered by expression, sample type p= 0.0363 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.0334

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) can-

cer:(Figure 3.79)(Figure 3.80)(Figure 3.81)

MEXPRESS plot for PIWIL4 gene expression for CRAD cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter
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Figure 3.79: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer

Figure 3.80: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer
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Figure 3.81: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer

probes plot data reveals that there are few, yet highly significant negative correlation values

between methylation and expression indicating that the promoter region for PIWIL4 gene

might be regulated through DNA methylation. Such promoter probes are also found on the

CpG island region (indicated in green color) indicating that DNA methylation has an effect

on the CpG island region which can subsequently influence PIWIL4 gene expression. When

samples are ordered by expression, sample type p= 0.0219 When samples are ordered by

sample type i.e., difference in expression between normal and tumor type p= 0.0206

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for ESCA (Esophageal Carcinoma) cancer:(Figure

3.82)(Figure 3.83)(Figure 3.84)

MEXPRESS plot for PIWIL4 gene expression for ESCA cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared
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Figure 3.82: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for ESCA (Esophageal Carcinoma) cancer

Figure 3.83: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for ESCA (Esophageal Carcinoma) cancer
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Figure 3.84: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for ESCA (Esophageal Carcinoma) cancer

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly higher PIWIL4 expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are few, yet highly significant negative correlation values

between methylation and expression indicating that the promoter region for PIWIL4 gene

might be regulated through DNA methylation. Such promoter probes are also found on

the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence PIWIL4 gene expression.

When samples are ordered by expression, sample type p= 0.491 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.887

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for HNSC (Head and Neck Squamous Cell Carci-

noma) cancer:(Figure 3.85)(Figure3.86)(Figure3.87)

MEXPRESS plot for PIWIL4 gene expression for HNSC cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
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Figure 3.85: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer

Figure 3.86: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer
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Figure 3.87: Analysis ofPIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are few, yet highly significant negative correlation values

between methylation and expression indicating that the promoter region for PIWIL4 gene

might be regulated through DNA methylation. Such promoter probes are also found on

the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence PIWIL4 gene expression.

When samples are ordered by expression, sample type p= 0.895 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.900

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma)

cancer:(Figure 3.88)(Figure3.89)(Figure3.90)

MEXPRESS plot for PIWIL4 gene expression for KIRC cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to
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Figure 3.88: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer

Figure 3.89: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer
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Figure 3.90: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have significantly lower PIWIL4 expression than the tumor samples. C) Highlighted pro-

moter probes plot data reveals that there are few, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for PIWIL4

gene might be regulated through DNA methylation. Such promoter probes are also found

on the CpG island region (indicated in green color) indicating that DNA methylation has

an effect on the CpG island region which can subsequently influence PIWIL4 gene expres-

sion. When samples are ordered by expression, sample type p= 1.68e-10 When samples are

ordered by sample type i.e., difference in expression between normal and tumor type p=

4.7e-10

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma)
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Figure 3.91: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer

cancer: (Figure 3.91)(Figure3.92)(Figure3.93)

MEXPRESS plot for PIWIL4 gene expression for KIRP cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are numerous, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for PIWIL4

gene might be regulated through DNA methylation. Such promoter probes are also found

on the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence PIWIL4 gene expression.

When samples are ordered by expression, sample type p = 0.283 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.327
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Figure 3.92: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer

Figure 3.93: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer
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Figure 3.94: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) can-

cer:(Figure 3.94)(Figure3.95)(Figure3.96)

MEXPRESS plot for PIWIL4 gene expression for LIHC cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are numerous, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for PIWIL4

gene might be regulated through DNA methylation. Such promoter probes are also found

on the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence PIWIL4 gene expression.
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Figure 3.95: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer

Figure 3.96: Analysis ofPIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer

130



Figure 3.97: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer

When samples are ordered by expression, sample type p= 0.126 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.118

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for UCEC (Uterine Corpus Endometrial Carci-

noma) cancer:(Figure 3.97)(Figure3.98)(Figure3.99)

MEXPRESS plot for PIWIL4 gene expression for UCEC cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to

those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly higher PIWIL4 expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are few, yet highly significant negative correlation values

between methylation and expression indicating that the promoter region for PIWIL4 gene

might be regulated through DNA methylation. Such promoter probes are also found on the
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Figure 3.98: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer

Figure 3.99: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer
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Figure 3.100: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

CpG island region (indicated in green color) indicating that DNA methylation has an effect

on the CpG island region which can subsequently influence PIWIL4 gene expression. When

samples are ordered by expression, sample type p= 5.92e-6 When samples are ordered by

sample type i.e., difference in expression between normal and tumor type p= 9.49e-4

3.4 DMRT1 (Doublesex and Mab-3 Related Transcription

Factor 1) as a DNA methylation biomarker gene

(Figure 3.100)(Figure3.101)(Figure3.102)

Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor

1) gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma)

cancer:

MEXPRESS plot for DMRT1 gene expression for BRCA cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared

to those of strong negative correlations, between methylation and expression, indicating

that DMRT1 expression might be controlled through DNA methylation. As the plot’s
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Figure 3.101: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

Figure 3.102: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.103: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

legend explains, the asterisks gives an indication of the significance of the correlations. B)

As in all MEXPRESS plotting, for the sample type parameter, the expression is always

compared between the normal and tumor samples. Here, it is clear that the normal samples

tend to have lower DMRT1 expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are few, yet highly significant negative correlation values

between methylation and expression indicating that the promoter region for DMRT1 gene

might be regulated through DNA methylation. Such promoter probes are also found on

the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence DMRT1 gene expression.

When samples are ordered by expression, sample type p= 0.119 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.105

Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma)

cancer:(Figure 3.103)(Figure3.104)(Figure3.105)

MEXPRESS plot for DMRT1 gene expression for LUSC cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared to
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Figure 3.104: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

Figure 3.105: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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those of strong negative correlations, between methylation and expression, indicating that

DMRT1 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have significantly lower DMRT1 expression than the tumor samples. C) Highlighted pro-

moter probes plot data reveals that there are few, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for DMRT1

gene might be regulated through DNA methylation. Such promoter probes are also found

on the CpG island region (indicated in green color) indicating that DNA methylation has

an effect on the CpG island region which can subsequently influence DMRT1 gene expres-

sion. When samples are ordered by expression, sample type p= 0.00639 When samples are

ordered by sample type i.e., difference in expression between normal and tumor type p=

0.00553

Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor

1) gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer:

(Figure 3.106)(Figure3.107)(Figure3.108)

MEXPRESS plot for DMRT1 gene expression for THCA cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared to

those of strong negative correlations, between methylation and expression, indicating that

DMRT1 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to

have significantly lower DMRT1 expression than the tumor samples. C) Highlighted pro-

moter probes plot data reveals that there are few, yet highly significant positive correlation

values between methylation and expression indicating that the promoter region for DMRT1

gene might be regulated through DNA methylation. Such promoter probes are also found

137



Figure 3.106: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer

Figure 3.107: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer
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Figure 3.108: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer

on the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence DMRT1 gene expression.

When samples are ordered by expression, sample type p= 0.168 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.178

Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor

1) gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial

Carcinoma) cancer:(Figure 3.109)(Figure3.110)(Figure3.111)

MEXPRESS plot for DMRT1 gene expression for UCEC cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared to

those of strong negative correlations, between methylation and expression, indicating that

DMRT1 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend

to have significantly lower DMRT1 expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are very few, yet highly significant positive
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Figure 3.109: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma)
cancer

Figure 3.110: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma)
cancer
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Figure 3.111: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma)
cancer

correlation values between methylation and expression indicating that the promoter region

for DMRT1 gene might be regulated through DNA methylation. Such promoter probes are

also found on the CpG island region (indicated in green color) indicating that DNA methy-

lation has an effect on the CpG island region which can subsequently influence DMRT1

gene expression. When samples are ordered by expression, sample type p= 3.04e-4 When

samples are ordered by sample type i.e., difference in expression between normal and tumor

type p= 0.00174

3.5 ITPKA (inositol-trisphosphate 3-kinase A) as a DNA

methylation biomarker gene

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using

MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer:(Figure 3.112)(Fig-

ure3.113)(Figure3.114)

MEXPRESS plot for ITPKA gene expression for BLCA cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared to
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Figure 3.112: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer

Figure 3.113: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer
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Figure 3.114: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer

those of strong negative correlations, between methylation and expression, indicating that

ITPKA expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend

to have significantly lower ITPKA expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are very few and slightly positive correlation

values between methylation and expression indicating that the promoter region for ITPKA

gene might or might not be regulated through DNA methylation. Such promoter probes

are also found on the CpG island region (indicated in green color) indicating that DNA

methylation has an effect on the CpG island region which can subsequently influence ITPKA

gene expression. When samples are ordered by expression, sample type p= 0.0609 When

samples are ordered by sample type i.e., difference in expression between normal and tumor

type p= 0.0996

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
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Figure 3.115: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer:(Figure 3.115)(Fig-

ure3.116)(Figure3.117)

MEXPRESS plot for ITPKA gene expression for BRCA cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared to

those of strong negative correlations, between methylation and expression, indicating that

ITPKA expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend

to have significantly lower ITPKA expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are just a couple of probes and slightly negative

correlation values between methylation and expression indicating that the promoter region

for ITPKA gene might or might not be regulated through DNA methylation. Such promoter

probes are also found on the CpG island region (indicated in green color) indicating that

DNA methylation has an effect on the CpG island region which can subsequently influence

ITPKA gene expression. When samples are ordered by expression, sample type p < 2.2e-16
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Figure 3.116: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

Figure 3.117: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.118: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p < 2.2e-16

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using

MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer:

(Figure 3.118)(Figure3.119)(Figure3.120)

MEXPRESS plot for ITPKA gene expression for HNSC cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared to

those of strong negative correlations, between methylation and expression, indicating that

ITPKA expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend

to have significantly lower ITPKA expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are just a couple of probes and low negative

correlation values between methylation and expression indicating that the promoter region

for ITPKA gene might or might not be regulated through DNA methylation. Such promoter
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Figure 3.119: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer

Figure 3.120: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer
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Figure 3.121: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer

probes are also found on the CpG island region (indicated in green color) indicating that

DNA methylation has an effect on the CpG island region which can subsequently influence

ITPKA gene expression. When samples are ordered by expression, sample type p = 6.46e-4

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p = 8.42e-4

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using

MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer:(Figure

3.121)(Figure3.122)(Figure3.123)

MEXPRESS plot for ITPKA gene expression for KIRC cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared to

those of strong negative correlations, between methylation and expression, indicating that

ITPKA expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend

to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
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Figure 3.122: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer

Figure 3.123: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer
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Figure 3.124: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer

promoter probes plot data reveals that there is just one probe with a low negative correlation

values between methylation and expression indicating that the promoter region for ITPKA

gene might or might not be regulated through DNA methylation. Such a promoter probe is

also found very close to CpG island region (indicated in green color) indicating that DNA

methylation might have an effect on the CpG island region which can subsequently influence

ITPKA gene expression. When samples are ordered by expression, sample type p = 9.47e-9

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p = 2.03e-8

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression us-

ing MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer:(Figure

3.124)(Figure3.125)(Figure3.126)

MEXPRESS plot for ITPKA gene expression for KIRP cancer reveals the following de-

tails: A) there are numerous strong positive correlation values of probes as compared to

those of strong negative correlations, between methylation and expression, indicating that

ITPKA expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in all
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Figure 3.125: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer

Figure 3.126: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer
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Figure 3.127: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer

MEXPRESS plotting, for the sample type parameter, the expression is always compared be-

tween the normal and tumor samples. Here, it is clear that the normal samples tend to have

significantly lower ITPKA expression than the tumor samples. C) Highlighted promoter

probes plot data reveals that there are few probes with very low negative correlation values

between methylation and expression indicating that the promoter region for ITPKA gene

might or might not be regulated through DNA methylation. Such a promoter probe is also

found in the CpG island region (indicated in green color) indicating that DNA methylation

might have an effect on the CpG island region which can subsequently influence ITPKA

gene expression. When samples are ordered by expression, sample type p = 3.84e-7 When

samples are ordered by sample type i.e., difference in expression between normal and tumor

type p = 1.94e-6

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using

MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer:(Figure 3.127)(Fig-

ure3.128)(Figure3.129)

MEXPRESS plot for ITPKA gene expression for LIHC cancer reveals the following de-

tails: A) there are a couple of strong negative correlation values of probes as compared to
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Figure 3.128: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer

Figure 3.129: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer
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those of strong positive correlations, between methylation and expression, indicating that

ITPKA expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As

in all MEXPRESS plotting, for the sample type parameter, the expression is always com-

pared between the normal and tumor samples. Here, it is clear that the normal samples

tend to have significantly lower ITPKA expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are couple probes with very low negative cor-

relation values between methylation and expression indicating that the promoter region for

ITPKA gene might or might not be regulated through DNA methylation. Such a promoter

probe is also found in the CpG island region (indicated in green color) indicating that DNA

methylation might have an effect on the CpG island region which can subsequently influ-

ence ITPKA gene expression. When samples are ordered by expression, sample type p =

2.53e-11 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p = 2.44e-11

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression us-

ing MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer:(Figure 3.130)(Fig-

ure3.131)(Figure3.132)

MEXPRESS plot for ITPKA gene expression for LUAD cancer reveals the following

details: A) there are a number of strong positive correlation values of probes as compared

to those of strong negative correlations, between methylation and expression, indicating

that ITPKA expression might be controlled through DNA methylation. As the plot’s leg-

end explains, the asterisks gives an indication of the significance of the correlations. B)

As in all MEXPRESS plotting, for the sample type parameter, the expression is always

compared between the normal and tumor samples. Here, it is clear that the normal samples

tend to have significantly lower ITPKA expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are couple probes with very low negative cor-

relation values between methylation and expression indicating that the promoter region for

ITPKA gene might or might not be regulated through DNA methylation. Such a promoter
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Figure 3.130: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer

Figure 3.131: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer
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Figure 3.132: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer

probe is also found in the CpG island region (indicated in green color) indicating that DNA

methylation might have an effect on the CpG island region which can subsequently influ-

ence ITPKA gene expression. When samples are ordered by expression, sample type p =

1.05e-10 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p = 2.52e-10

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression us-

ing MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer:(Figure

3.133)(Figure 3.134)(Figure 3.135)

MEXPRESS plot for ITPKA gene expression for LUSC cancer reveals the following

details: A) there are a number of strong positive correlation values of probes as compared

to those of strong negative correlations, between methylation and expression, indicating

that ITPKA expression might be controlled through DNA methylation. As the plot’s leg-

end explains, the asterisks gives an indication of the significance of the correlations. B)

As in all MEXPRESS plotting, for the sample type parameter, the expression is always

compared between the normal and tumor samples. Here, it is clear that the normal samples

tend to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
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Figure 3.133: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

Figure 3.134: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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Figure 3.135: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

promoter probes plot data reveals that there are couple probes with very low negative cor-

relation values between methylation and expression indicating that the promoter region for

ITPKA gene might or might not be regulated through DNA methylation. Such a promoter

probe is also found in the CpG island region (indicated in green color) indicating that DNA

methylation might have an effect on the CpG island region which can subsequently influence

ITPKA gene expression. When samples are ordered by expression, sample type p = 2.23e-5

When samples are ordered by sample type i.e., difference in expression between normal and

tumor type p = 7.77e-5

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression us-

ing MEXPRESS for THCA (Thyroid Carcinoma) cancer:(Figure 3.136)(Figure

3.137)(Figure 3.138)

MEXPRESS plot for ITPKA gene expression for THCA cancer reveals the following

details: A) there are a number of strong positive correlation values of probes as compared to

those of strong negative correlations, between methylation and expression, indicating that

ITPKA expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in
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Figure 3.136: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer

Figure 3.137: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer
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Figure 3.138: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer

all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend

to have significantly lower ITPKA expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are no probes with low correlation values

between methylation and expression indicating that the promoter region for ITPKA gene

might not be regulated through DNA methylation. Such a promoter probe is also not

found in the CpG island region (indicated in green color) indicating that DNA methylation

might not have an effect on the CpG island region which can subsequently influence ITPKA

gene expression. When samples are ordered by expression, sample type p < 2.2e-16 When

samples are ordered by sample type i.e., difference in expression between normal and tumor

type p = 5.33e-15

The below table is a comprehensive listing for the five gene analyzed using MEXPRESS

tool. The significance of the relation as determined by the p-value is listed in the above table

for each of the gene analyzed against 34 cancer types. The p-value so obtained is using the

default setting in MEXPRESS tool. These p-values are obtained when samples are ordered

by their expression values. Samples with the highest expression values are placed on the left
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Figure 3.139: Comprehensive Result Table of Gene analysis using MEXPRESS and their p-
or significance values (When samples are ordered by value of their expression i.e., by using
MEXPRESS default setting
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and those with the lowest expression values are placed at the right of the line plot (yellow

line). These expression values are the logarithm of the level3 RNASeqV2 values. These

RNASeq values are normalized values for a gene. It must be noted that the expression data

forms the basis of the whole plot, because the samples are ranked based on their expression

value for the gene we selected with the highest expression on the left side and the lowest

on the right. Sample size in the table indicates the number of samples or patients from

whom the samples were obtained. Most significant p-values are indicated in red, meaning

in these cancer types, the gene expression is highly influenced by the corresponding DNA

methylation either in their promoter or regulatory region. Samples can also be re-ordered

by sample type, which is always a measure of or which indicates the difference between

the expression values of normal vs tumor samples. The above table is an indication of

several hits or leads obtained in terms of the gene of our interest being considered as a

DNA methylation biomarker gene. (Figure 3.139)

Overall results of the five genes analyzed (Figure 3.140)(Figure 3.141)(Figure

3.142)(Figure 3.143)(Figure 3.144)(Figure 3.145)(Figure 3.146)(Figure 3.147)(Figure 3.148)(Fig-

ure 3.149)

Representative results of querying ITPKA gene Vs BioMuta and BioXpress

When ITPKA is queried against BioMuta, the results are indicated as follows: 66 pos-

sible singlenucleotide variations (SNVs) are identified for the ITPKA gene with the highest

number found for Urinary bladder cancer and Lung cancer. The tabular result indicates im-

portant information such as the chromosome number and position at which the SNV is found

and its possible phenotypic effect. Results also show that five of the 66 SNVs are nsSNVs

that affect functional sites (three gain of phosphorylation and two gain of glycosylation).

Fig 2B: Pie-chart representing different cancer types and the number of positions affected

by SNVs in them. Utility: BioMuta is a curated single-nucleotide variation (SNV) and dis-

ease association database. It is an important source of variations, particularly because the

variations are mapped to the genome/protein/gene. Such query helps to identify variations

and since the database is compiled from various sources through biocuration, it paves ways
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Figure 3.140: Overall analysis of BLCAP gene as a biomarker using MEXPRESS tool

Figure 3.141: Overall analysis of BLCAP gene as a biomarker using MEXPRESS tool
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Figure 3.142: Overall analysis of GDF15 gene as a biomarker using MEXPRESS tool
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Figure 3.143: Overall analysis of GDF15 gene as a biomarker using MEXPRESS tool

for prioritizing variations for further experimental validations (Figure 3.150)(Figure 3.151)

When ITPKA is queried against BioXpress, the results obtained are as follows: the

ITPKA gene is shown to be over-expressed in Thyroid Carcinoma (THCA), which validates

and confirms our findings from the MEXPRESS study. Our MEXPRESS study also reveals

that ITPKA exhibits epigenetic aberrations in other cancer types such as BRCA, COAD,

CRAD, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC and PRAD, which is also reproduced

here (clear differential expression observed) when queried against BioXpress. Fig3B: Pie-

chart representing different cancer types and the over-expression of ITPKA gene in percent.

Utility: BioXpress is a curated gene expression and disease association database where

the expression levels are mapped to genes. BioXpress is useful in identifying differences

between expression levels in disease and normal pairs and to discover differential expression

for a gene. It also helps in identification of potential biomarkers or pathways that lead

to tumor formation or to explore the overall expression of specific genes across multiple

cancer types. BioXpress can be queried using HGNC-approved gene symbols (HUGO Gene
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Figure 3.144: Overall analysis of PIWIL4 gene as a biomarker using MEXPRESS tool
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Figure 3.145: Overall analysis of PIWIL4 gene as a biomarker using MEXPRESS tool

Figure 3.146: Overall analysis of DMRT1 gene as a biomarker using MEXPRESS tool
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Figure 3.147: Overall analysis of DMRT1 gene as a biomarker using MEXPRESS tool

Figure 3.148: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool
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Figure 3.149: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool

Figure 3.150: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool
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Figure 3.151: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool

Nomenclature Committee), UniProtKB/Swiss-Prot accessions or RefSeq accessions. Genes

that are differentially expressed for a specific cancer type can also be retrieved. Also, all

data in BioXpress, including lists of genes that are significantly differentially expressed in

two or more cancer types, can be downloaded (Figure 3.152)(Figure 3.153)
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Figure 3.152: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool
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Figure 3.153: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool
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Chapter 4: DISCUSSION

ITPKA (inositol-trisphosphate 3-kinase A) as a novel DNA methylation biomarker

gene

ITPKA gene is known to regulate inositol phosphate metabolism by phosphorylation of

second messenger inositol 1,4,5-trisphosphate to Ins(1,3,4,5)P4. The activity of the inositol

1,4,5-trisphosphate 3-kinase is responsible for regulating the levels of a large number of

inositol polyphosphates that play a key role in cellular signaling. Both calcium/calmodulin

and protein phosphorylation mechanisms control its activity. It is also a substrate for the

cyclic AMP-dependent protein kinase, calcium/calmodulin- dependent protein kinase II,

and protein kinase C in vitro

Recent research findings have pointed out to ITPKA (inositol-trisphosphate 3-kinase

A), possibly being a novel DNA methylation biomarker for few cancer types. Yi-Wei

Wang.,et al.,2016 in a recent studies demonstrated that Inositol-trisphosphate 3-kinase A

gene (ITPKA) was identified as a potential oncogene and its distribution was found limited

in certain tissue. They also showed that ITPKA is up-regulated in its gene expression in

many cancers. Such an over-expressed ITPKA contributes to tumorigenesis in few cancers

like lung and breast cancers. ITPKA expression was also demonstrated to be regulated by

epigenetic DNA methylation. This was due to modulation of the SP1 transcription fac-

tor binding to ITPKA promoter region. Methylation levels were significantly different in

normal versus cancer conditions. Low methylation levels were found in normal tissue but

showed high methylation levels in malignant tumors. They finally demonstrated that, par-

ticular to lung cancer, ITPKA gene methylation appears foremost in situ carcinoma stage

and increases progressively after invasion. To summarize their findings, they have demon-

strated that ITPKA gene expression is upregulated in lung, breast and other cancer types.

Such overexpression ITPKA is shown to promote malignant transformation in vitro and in
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vivo. This is due to ITPKA expression is highly regulated by its gene body methylation.

It has been shown that numerous tumor suppressor genes have been silenced by epigenetic

modifications mainly through DNA methylation of gene promoter regions [152–156]. It is

speculated that promoter hyper methylation mainly acts as a repressor and that this epige-

netic change down-regulates gene expression. On the contrary, methylation of a gene body

is more prominent as compared to promoter hyper methylation and is seen to be observed

or responsible for increased gene expression [157]. However, the influence of methylation of

the gene body on its expression is very poorly understood. It has been speculated that gene

body methylation may possibly repress false intragenic transcription and therefore might

permit or ease the process of efficient transcriptional elongation[158]. However, majority

of the gene body methylation is observed to be associated with non-transcription initiation

sites. Gene body methylation may possibly influence gene expression by modulating or in-

terfering with transcription factor binding. This can directly alleviate gene expression [159].

It is has been reported from various sources that hyper methylation of the SP1-DNA can

directly inhibit the binding of SP1 [160–162]. This group has also given a possible expla-

nation saying that two SP1-DNA binding motifs are found in the ITPKA gene body CpG

island 2 region and hypothesized that these two SP1-DNA binding sites in the gene body

may serve as decoys to recruit and sequester SP1 from binding to the promoter. DNMT3B,

(DNA (Cytosine-5- )-Methyltransferase 3 Beta) upon its action, the fully methylated body

region turns refractory to SP1 binding. It thereby releases SP1 for promoter binding to

drive gene expression. Substantiative or validating experiment involving bisulfate sequenc-

ing analysis demonstrated that SP1 binding motifs in the gene body (13-16 CpG sites and

81-84 CpG sites within the 99 CpG sites in the CpG island 2 region) were seen to be hyper

methylated in high-ITPKA-expressing cells and hypo methylated in low ITPKA-expressing

cells (Supplemental Figure 1).

This suggests that methylation levels within SP1-DNA binding site in the ITPKA gene

body is highly correlated with its gene expression. SP1 binding motif 1 displayed a higher

and much significant difference in methylation levels between the high and low ITPKA
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expressing cell lines. This suggests that SP1 binding motif has an important role in methy-

lation regulated expression of ITPKA. Further studies on such mechanisms might reveal

clear insights into the regulation of gene expression by gene body methylation and onco-

genes identification, based on similar regulation mechanisms as observed involving ITPKA.

Transcription factors SP1 and RE1 which are silencing transcription factor (REST)/NRSF

have been investigated and are reported to bind to ITPKA promoter. Sp1 is positively and

REST/NRSF negatively regulate the gene expression of ITPKA [163].

After the demonstrated evidence showing that SP-1 mediated ITPKA expression is mod-

ulated by its gene body methylation, this group further questioned whether SP1 and REST

levels may have a role in the contribution of deregulated expression of ITPKA upon ma-

lignant transformation. This can be achieved by assessing the correlation between ITPKA

expression and the SP1 and REST expression using microarray analysis of lung cancer cell

lines, including 113 NSCLCs, 29 small cell lung cancers, and 59 HRECs. It was found that

expression level of SP1 and REST was not significant and that it played a very minor role

in regulating the ITPKA gene expression. The Pearson correlation coefficients of ITPKA

with SP1 and REST was 0.01 and -0.20 respectively.

In supplemental figure 2, investigation of the correlation of ITPKA methylation and its

gene expression was examined. Results showed that Spearman correlation coefficients in

SCC and ADC were not satisfactory (r 0.52 and 0.6). However, a trend of positive correla-

tion was observed between gene body methylation and expression. Investigation on whether

normal cells can infiltrate into tumor tissues and whether any other factors can dilute the

correlation or significance. Using data from genome wide analysis of DNA methylation pat-

terns, it has been demonstrated that the human secretin gene (SCT) promoter is frequently

hyper methylated in lung cancer [152]. It is seen that SCT is expressed at undetectable

levels in normal and malignant cells, irrespective of its promoter methylation status. Their

study validated SCT to be a lung cancer biomarker, although functional implications or

biological significance of SCT promoter methylation is far from being understood [152]. An

important finding from this study is that CpG Island 2 in ITPKA gene body is observed
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to be highly methylated in lung cancer and such ITPKA gene body methylation can be

utilized as an early biomarker for detection of lung cancer. Also, it has been demonstrated

that ITPKA gene body methylation promotes its expression, facilitating the development

of malignant phenotypes. Contrastingly to SCT, ITPKA methylation is associated with

gene expression and facilitates the malignant phenotype development. Also, since ITPKA

is overexpressed in multiple cancer types and drives tumorigenesis, this ITPKA gene may

serve as a potential therapeutic target agent.

In normal physiological conditions, ITPKA is highly expressed in neurons during brain

development and also in testis [164]. During normal brain development, brain cells consis-

tently display ITPKA gene body methylation at very high levels. Interestingly, placenta

demonstrates very high levels of ITPKA body methylation. Placental tissues like cytotro-

phoblast and syncytiotrophoblast, and the extravillous trophoblast cells carry the ability

to migrate, invade and remodel the maternal decidua and can develop a vascular supply

similar to cancer progression [165].

Numerous tumor suppressor genes and oncogenes play an important role in normal

placental development and the epigenetic program of the placenta exhibits similarities to

those of cancer cells [166,167]. These evidences points out to the fact that placenta is a self-

limited malignancy, further consolidating that ITPKA body methylation significantly higher

in malignant tumors and results in tumorigenesis. To summarize the above findings, it can

be said that deregulation of ITPKA plays an important role in pathogenesis of cancer. This

is due to the fact that highly specific and sensitive patterns of ITPKA expression and gene

body methylation is observed. ITPKA body methylation is not observed in nonmalignant

or normal lung cells. This appears at premalignant stages and will progressively increase

with cancer development. This clearly suggests that ITPKA can be utilized as a DNA

methylation biomarker for early lung and other cancer type detection.

Our study has complemented, supplemented and also validated ITPKA methylation and

expression correlation with respect to its being considered as a DNA methylation biomarker.

Our study has implicated ITPKA gene in eight cancer types (BLCA, BRCA, HNSC, KIRC,
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KIRP, LIHC, LUAD and LUSC). Of the eight cancer types mentioned above, ITPKA

genes potential use as a DNA methylation biomarker is shown as a novel hit by us in all

these eight cancer types. Detailed explanation regarding the molecular aspects or methy-

lation/expression correlation for each cancer type is beyond the scope of this dissertation

research. However, our results clearly establishes the direct or indirect relationship between

the two and this is complemented by the statistical data analysis and interpretation of the

same using MEXPRESS. Supplemental Table 1 shows a comparison of different tools for

the visualization of TCGA data.

GDF15 (growth differentiation factor 15) as a DNA methylation biomarker

gene

GDF15 gene is known to encode a secreted ligand of the TGF-beta (transforming growth

factor-beta) superfamily of proteins. Also, ligands of this superfamily bind to various TGF-

beta receptors. This leads to recruitment and activation of SMAD family transcription

factors that can regulate gene expression. The encoded preproprotein is proteolytically

processed to generate each subunit of the disulfide-linked homodimer. Such processed pro-

tein is expressed in a wide variety of cell types. This protein acts as a pleiotropic cytokine

and is involved in the stress response program of cells after cellular injury. Increased protein

levels are implicated in disease states such as tissue hypoxia, inflammation, acute injury

and oxidative stress.

In a study by Vera L. Costa., et al., 2010, an attempt to identify a list of novel epigenetic

methylation candidates for BLCA (bladder cancer) was undertaken using urine samples.

Gene expression microarray was used and analyzed with BLCA cell lines upon treatment

with 5-aza-2-deoxycytidine and trichostatin A as well as 26 tissue samples were also part of

this study design. Candidate genes methylation level were quantified in 4 BLCA cell lines,

50 BLCA tissues and 20 normal bladder mucosas (NBM) and urine sediments from BLCA

patients and 20 healthy donors, 19 renal cancer patients, and 20 prostate cancer patients.

Receiver operator characteristic (ROC) curve analysis was used to assess the diagnostic

performance of the gene panel. Results indicated that GDF15, HSPA2, TMEFF2, and VIM
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were identified as epigenetic biomarkers for BLCA. It was observed that methylation levels

of BLCA tissues were far higher than those of NBM (P < 0.001) and cancer specificity was

found to be (P < 0.001) in urine samples. GDF15, TMEFF2, and VIM was able to identify

BLCA tissues from a methylation panel list with 100% specificity and sensitivity. Using

the urine samples, methylation panel achieved a sensitivity of 94% and a 100% specificity

and an area under the curve of 0.975. Also, the compiled methylation panel could easily

differentiate BLCA between normal and renal or prostate cancer patients (sensitivity, 94%;

specificity, 90%). Therefore, Vera L. Costa., et al. 2010, showed that by using a genome-

wide approach, they were able to identify a novel epigenetic biomarker panel that can

be utilized for early and accurate detection of BLCA in urine samples with an additional

advantage of it being noninvasive.

Results pertaining to the methylation status of novel candidate genes in vitro and in

vivo showed the following: 21 of the DNA methylation candidate genes were analyzed by

MSP in BLCA cell lines. Among the candidate list the top 4 biomarkers which exhibited

hyper methylation in a minimum of 3 cell lines were selected for further validation. These

were the GDF15, HSPA2, TMEFF2, and VIM (Supplementary Table 2). Three of these

biomarkers were methylated in BLCA cells as compared to kidney and prostate cancer cell

lines, except for TMEFF2. GDF15 was found to be methylated at 64% in bladder tumors.

Also, quantitative analysis in methylation levels were significantly different in normal vs

cancer patients for all the above mentioned genes (MannWhitney, P < 0.001).

Our study has complemented, supplemented and also validated GDF15 methylation and

expression correlation with respect to its being considered as a DNA methylation biomarker.

Our study has implicated GDF15 gene in thirteen cancer types (BRCA, COAD, CRAD,

CESC, ESCA, HNSC, KIRP, LIHC, LUAD, LUSC, PRAD, THCA and UCEC). Of the

thirteen cancer types mentioned above, GDF15 genes potential use as a DNA methylation

biomarker is shown as a novel hit by us in nine cancer types (CRAD, CESC, ESCA, KIRP,

LIHC, LUAD, LUSC, THCA and UCEC). Detailed explanation regarding the molecular

aspects or methylation/expression correlation for each cancer type is beyond the scope of
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this dissertation research. However, our results clearly establishes the direct or inverse

relationship between the two and this is complemented by the statistical data analysis and

interpretation of the same using MEXPRESS.

BLCAP (bladder cancer associated protein) as a DNA methylation biomarker

gene

BLCAP gene is known to encode a protein that reduces cell growth by stimulating apop-

tosis. Multiple transcript variants encoding the same protein are identified which may be

the result of mechanisms like alternative splicing and the use of alternative promoters. This

gene is imprinted in brain. It is known that different transcript variants are expressed from

each parental allele. Also, transcript variants initiating from the upstream promoter are

expressed preferentially from the maternal allele, while transcript variants initiating down-

stream of the interspersed NNAT gene are expressed from the paternal allele. Transcripts

at this locus is known to undergo A to I editing, resulting in amino acid changes at three

positions in the N-terminus of the protein.

Jos M. A. Moreira., et al., 2009 generated and characterized antibodies that are able

to specifically recognize BLCAP. Also, they demonstrated that BLCAP localizes predomi-

nantly to the epithelial lining of the urinary bladder. BLCAP IHC staining pattern types

B and D are observed to be associated with benign/low grade and high grade invasive le-

sions respectively. They can be utilized as a diagnostic indicators irrespective of the fact

that type A and C staining patterns are not good classifiers. This is because they appear

ubiquitously in all grade and stages of cancer. Staining type A was prominently associ-

ated with poor disease-specific survival. 2D Western blot analysis of samples classified by

IHC as type A or B (Supplemental Figure 3, e and f respectively), showed increased im-

munoreactivity for BLCAp antigen observed by IHC. This corresponds to elevated protein

and both polypeptides expression levels (unmodified and modified forms; Fig. 3, e and f,

black and white arrows, respectively) is increased. These demonstrated data indicates the

loss of BLCAP expression is directly associated tumor progression. However, an increased

percentage of cells with high nuclear levels of BLCAP confers to poor prognosis. BLCAP is
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seen to be overexpressed in ∼20% of the cases examined and it is liked with poor survival.

This indicates that BLCAP expression does not carry good prognostic value. In cases of

invasive tumors, BLCAP expression offers an adverse patient outcome, especially with those

bearing tumors that have lost expression of BLCAP are better performers as compared to

those with tumors expressing BLCAP at any expression levels. (Supplemental Figure 7c,

pT2-4 tumors).

Loss of BLCAP expression was observed in both epithelial and vascular endothelial cells

indicates that this mechanism brings about a change in cellular microenvironment as com-

pared to being a process related to epithelial carcinogenesis. Multiple cancer types such as

cervical, renal, human tongue carcinoma and osteosarcoma exhibit differential expression of

BLCAP suggesting that micro environmental changes corresponding to differential expres-

sion of BLCAP, triggers this cellular response and is of general nature rather than being

tissue-specific [168–171,171,172].

In another study, it was examined the expression pattern of BLCA- 1 in tissues and

urine samples from bladder cancer patients and also from normal controls. This was done

by utilizing BLCA-1 sequence data to produce antibodies to this protein, which was further

used in immunoblot and ELISA. Their results indicated that BLCA-1 was detectable in

tissues from patients with bladder cancer but not detectable in normal adjacent areas of

bladder or in normal donor bladder tissue. This protein was also found in urine of patients

with bladder cancer using immunoblot and immunoassay. The cutoff optical density units

(absorbance value) was assigned as 0.025, BLCA-1 was detected in 20 of 25 urine samples

from patients with bladder cancer but in just 6 of 46 normal, high risk, prostate or renal

cancer samples tested. This results in a test with 80% sensitivity and 87% specificity.

BLCA-1 expression did not correlate with the tumor grade. This suggested that BLCA-1

is a urine based marker of bladder cancer and could be utilized as an early stage detection

for this disease.

Our study has complemented, supplemented and also validated BLCAP methylation and

expression correlation with respect to its being considered as a DNA methylation biomarker.
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Of particular importance is our finding that BLCAP gene expression is influenced by DNA

methylation and is detectable in seven cancer types (BRCA, COAD, CRAD, KIRC, KIRP,

LUAD AND LUSC). Thus, BLCAP gene can be utilized as an early stage DNA methylation

biomarker for these cancer types. Detailed explanation regarding the molecular aspects or

methylation/expression correlation for each cancer type is beyond the scope of this disser-

tation research. However, our results clearly establishes the direct or inverse relationship

between the two and this is complemented by the statistical data analysis and interpretation

of the same using MEXPRESS.

PIWIL4 (piwi like RNA-mediated gene silencing 4) as a DNA methylation

biomarker gene

PIWIL4 gene is known to play a central role during spermatogenesis. It achieves this by

repressing transposable elements and preventing their mobilization, which is essential for the

germline integrity. It acts via the piRNA metabolic process, which mediates the repression

of transposable elements during meiosis by forming complexes composed of piRNAs and

Piwi proteins and governs the methylation and subsequent repression of transposons. It

also binds to piRNAs directly (class of 24 to 30 nucleotide RNAs that are generated by

a Dicer-independent mechanism and are primarily derived from transposons) and other

repeated sequence elements. It is also known to associate with secondary piRNAs antisense

and PIWIL2/MILI is required for such association. The piRNA process acts upstream of

known mediators of DNA methylation. It participates in a piRNA amplification loop. In

addition to their role in transposable elements repression, piRNAs are probably involved in

other processes during meiosis such as translation regulation. They may be involved in the

chromatin-modifying pathway by inducing Lys-9 methylation of histone H3 at some loci.

Preethi Krishnan., et al., 2016, in their study were able to identify 8 non-redundant

piRNAs as a novel prognostic biomarkers for breast cancer. They also identified PIWI

genes as potential prognostic markers for breast cancer. PIWI genes are of 4 homologues

and PIWIL3 and PIWIL4 are observed to be associated with OS, and PIWIL3 alone is seen

to be associated with RFS (Supplemental figure 5). Not much information is available with
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regards to the clinical significance of PIWIL3 and PIWIL4. This study was in fact the first,

to report these genes to breast cancer prognosis. Further studies are required to validate

their prognostic role. This study group used a cohort with complete clinical annotation and

follow-up for long term, thereby validating piRNAs and PIWI genes to be a novel prognostic

markers for breast cancer.

In another study, investigation of the expression of PIWI genes was conducted in order

to determine the activity and potential prognostic role of the PIWI/piRNA pathway in

NSCLC. It was reported that PIWIL1 participates in the primary pathway and PIWIL2 and

PIWIL4 in the secondary pathway, both of which are active in NSCLC. The re-expression

of the PIWIL1 gene, which can be confirmed by immunohistochemistry, is related to poor

prognosis and is associated with a stem-cell signature. Furthermore, the downregulation of

PIWIL4 is also related to poor prognosis and is associated with lower methylation. Further

investigation in a larger cohort of patients is warranted to validate these findings and to

examine potential diagnostic and therapeutic approaches.

Our study has complemented, supplemented and also validated PIWIL4 methylation and

expression correlation with respect to its being considered as a DNA methylation biomarker.

PIWIL4 gene is observed to be involved in at-least twelve types of cancer (BLCA, BRCA,

CESC, CHOL, COAD, CRAD, ESCA, HNSC, KIRC, KIRP, LIHC and UCEC), wherein

the methylation probes correspond to negative values which are highly significant. Our

study has shown that PIWIL4 gene can be utilized as an early stage DNA methylation

biomarker for eleven of the above mentioned cancer types with HNSC being the exception.

Any efforts in attempting a detailed explanation regarding the molecular aspects or methy-

lation/expression correlation for each cancer type is beyond the scope of this dissertation

research. However, our results clearly establishes the direct or indirect relationship between

the two and this is complemented by the statistical data analysis and interpretation of the

same using MEXPRESS.

DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1) as a DNA

methylation biomarker gene
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Transcription factors play a very critical role in the early development process. It is

known that transcription factor plays a key role in male sex determination and differen-

tiation by controlling testis development and male germ cell proliferation. It also plays

a central role in spermatogonia by inhibiting meiosis in undifferentiated spermatogonia

and promoting mitosis, leading to spermatogonial development and allowing abundant and

continuous production of sperm. It acts both as a transcription repressor and activator:

prevents meiosis by restricting retinoic acid (RA)-dependent transcription and repressing

STRA8 expression and promotes spermatogonial development by activating spermatogonial

differentiation genes, such as SOHLH1. Also plays a key role in postnatal sex maintenance

by maintaining testis determination and preventing feminization: represses transcription of

female promoting genes such as FOXL2 and activates male-specific genes. They may act as

a tumor suppressor and also play a minor role in oogenesis

Spermatogonial stem cells (SSCs) are capable of acquiring pluripotency under specific

culture conditions. The frequency of pluripotent cell derivation, is however, very low. Also,

the mechanism of SSC reprogramming remains unknown. Seiji Takashima, et al., 2013, re-

ported the induction of global DNA hypo methylation in germline stem cells (GS) (cultured

SSCs) induces pluripotent cell derivation. GS cells seems to undergo apoptosis, when DNA

demethylation was triggered by Dnmt1 depletion. However, GS cells converted to embry-

onic stem (ES)-like cells accompanying the double knockdown of Dnmt1 and p53. DMRT1

is downregulated by this treatment. DMRT1 is a gene involved in sexual differentiation,

meiosis and pluripotency. DMRT1 depletion results in apoptosis of GS cells, however, a

combination of DMRT1 and p53 depletion can also induce pluripotency. Putative DMRT1

target genes upon undergoing functional screening and undergoing depletion will upregu-

late SoX2. SoX2 transfection up-regulates Oct4 and can produce pluripotent cells. This

conversion is enhanced by Oct1 depletion which suggests balance of Oct proteins maintains

SSC identity. These results suggest that SSC reprogramming on a spontaneous basis is

caused by unstable DNA methylation and that a DMRT1-SoX2 cascade is very important

for regulating pluripotency in SSCs.
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Our study has complemented, supplemented and also validated DMRT1 methylation and

expression correlation with respect to its being considered as a DNA methylation biomarker.

DMRT1 gene is observed to be involved in at-least four types of cancer (BRCA, LUSC,

THCA and UCEC), wherein the methylation probes correspond to negative values which

are highly significant. Our study has shown that DMRT1 gene can be utilized as an early

stage DNA methylation biomarker for all the four cancer types (BRCA, LUSC, THCA and

UCEC). Detailed explanation regarding the molecular aspects or methylation/expression

correlation for each cancer type is beyond the scope of this dissertation research. How-

ever, our results clearly establishes the direct or indirect relationship between the two and

this is complemented by the statistical data analysis and interpretation of the same using

MEXPRESS [173].

Query of ITPKA gene Vs BioMuta and BioXpress - A representative result

We queried the ITPKA gene against the BioMuta database to identify and evaluate

variations (both synonymous and non-synonymous) for any possible functional impact on

protein structure and functions. 66 SNVs are found when ITPKA gene is queried against

BioMuta. Of these 66 SNVs, five are nsSNVs that affect functional sites (three gain of

phosphorylation and two gain of glycosylation). The five nsSNVs identified were mapped

to functional sites that are obtained from UniProtKB sequence feature annotation. Precise

nucleotide positions at which the post-translational modifications (PTMs) and active and

binding sites are affected by nsSNVs were identified. In order to investigate whether certain

types of PTM or other functional sites are resistant to variations, P-values were calculated

in BioMuta, to estimate the significance between observed and expected numbers. Of the 66

SNVs, the majority of functional sites analyzed are protected from mutation (significantly

less observed variations than expected). Further studies need to be conducted as to why, in

certain cancer types, some of the functional sites appear to be less protected. The identified

variations were integrated into SNVDis. Effects of identified variations can be analyzed

as they are coupled with PolyPhen-based predictions and are included in the BioMuta

table. SNVDis is a useful application as it evaluates the distribution of nsSNVs on protein
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functional sites, domains and pathways at the entire proteome level. Such proteome-wide

analysis complements the functional impact analysis using methods such as PolyPhen and

SIFT, and similar algorithms. It should be noted that BioMuta is supported on the High-

performance Integrated Virtual Environment (HIVE). HIVE is a bio-computing operating

system serving as an ideal backbone to integrate modular software into a data analytics

backbone. In short, HIVE (High-performance Integrated Virtual Environment) is a bio-

computing environment for storing, analyzing, computing and curating huge genomic data

and associated metadata. Once again, such identified nsSNVs (from our computational

approach) and their relevant effects at the proteomic and cellular level need to be validated

by subsequent in-vitro studies.

We also queried ITPKA against the BioXpress database. When ITPKA gene is queried

using the HGNC-approved gene symbol or UniProt/RefSeq accession, BioXpress retrieves

three types of information: differential expression information (cancer vs. normal), tumor-

only expression data (where normal samples are not available) and baseline expression

information from normal human tissues (Illumina Human Body Map Project). Our research

primarily focuses on differential expression in normal vs cancer types. For the ITPKA gene

in THCA, over-expression is clearly observed from BioXpress results, there by validating

and reproducing the MEXPRESS study. In the default view, BioXpress provides expression

frequency (over- or under-expression) in the patients. Additionally, the number of patients

for a particular cancer type, P value and a variety of other information is available in the

table below which can be downloaded. Complete cancer names can be retrieved on clicking

the cancer abbreviations in the figure and additional details can be retrieved by clicking the

Table column description link. Data collected in BioXpress can be used to sort, filter and

further analyze the gene expression and to compare and contrast expression of genes across

many patients and cancer types. Such a computational approach wherein querying datasets

proves to be very useful in identifying expression levels between disease and normal pairs

leads to analysis of differential expression for a gene. Also, potential leads on biomarkers

or pathways involved in tumor formation can be identified and overall expression of specific
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genes across multiple cancer types can be conveniently studied.
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Chapter 5: CONCLUSION

The field of Oncogenomics (sub-field of genomics which characterizes cancer associated

genes) has three broad applications. To improve diagnosis (use molecular markers of gene

mutations for early cancer detection), prognosis (use markers of gene mutations to classify

cancers and predict their outcomes) and therapeutics (use gene mutations found in cancer

as targets of drug therapy). Oncogenomics is growing at an exponential rate with the

help of databases and datasets being created and available publically. Their value and

significance will continue to gain prominence. Such a rapid progress and implementation

creates a demand for developing intuitive and straightforward tools that enable researchers

to quickly analyze and visualize the data of interest. The Cancer Genome Atlas (TCGA)

is one such invaluable database. We have selected and used the MEXPRESS tool from a

list of methylation analysis tools based on its ease of use and the integrated visualization

of different data types over hundreds of samples from TCGA. Not only does this tool

help identify novel DNA methylation biomarker gene but also help in testing hypotheses

that concern the discovery of DNA methylation or expression-based biomarkers. We have

undertaken a set of five genes of interest based on literature search. BLCAP gene is observed

to be involved in at-least eight types of cancer (BLCA, BRCA, COAD, CRAD, KIRC,

KIRP, LUAD AND LUSC), wherein the methylation probes correspond to negative values

which are highly significant. In all these eight genes a strong negative correlation (between

methylation and expression) exists, indicating that the corresponding gene expression might

be controlled through DNA methylation. Of the eight cancer types mentioned above, six of

these cancer types (BRCA, COAD, CRAD, KIRP, LUAD AND LUSC) are novel hits and

have previously not found in literature or any research findings. GDF15 gene is observed

to be involved in at-least thirteen cancer types wherein the methylation probes correspond
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to negative values which are highly significant. These are (BRCA, COAD, CRAD, CESC,

ESCA, HNSC, KIRP, LIHC, LUAD, LUSC, PRAD, THCA and UCEC). We have shown

that, GDF15 gene can be potentially use as a DNA methylation biomarker in nine cancer

types as they showed either direct or inverse relation between DNA methylation and gene

expression. These nine cancer types are CRAD, CESC, ESCA, KIRP, LIHC, LUAD, LUSC,

THCA and UCEC. PIWIL4 gene is observed to be involved in at-least twelve types of cancer

(BLCA, BRCA, CESC, CHOL, COAD, CRAD, ESCA, HNSC, KIRC, KIRP, LIHC and

UCEC), wherein the methylation probes correspond to negative values which are highly

significant. Our study has shown that PIWIL4 gene can be utilized as an early stage DNA

methylation biomarker for eleven of the above mentioned cancer types with HNSC being

the exception. Our study has implicated ITPKA gene in eight cancer types (BLCA, BRCA,

HNSC, KIRC, KIRP, LIHC, LUAD and LUSC). Of the eight cancer types mentioned above,

ITPKA genes potential use as a DNA methylation biomarker is shown as a novel hit by us

in all these eight cancer types. Our study has implicated DMRT1 gene to be involved in

at-least four types of cancer (BRCA, LUSC, THCA and UCEC), wherein the methylation

probes correspond to negative values which are highly significant. We have also shown that

DMRT1 gene can be utilized as an early stage DNA methylation biomarker for all the four

cancer types (BRCA, LUSC, THCA and UCEC). Although our research has multiple novel

hits in terms of identifying novel DNA methylation biomarker genes, a greater challenge

still remains with regards to its clinical implementation and development. Never the less

our research is a first step in identification of novel DNA methylation biomarker genes using

a methylation tool that is easy to use with an added advantage of TCGA data visualization

involving clinical, gene expression and methylation data simultaneously for comparison.

188



Figure 5.1: A comparison of different tools for the visualization of TCGA data

LIST OF SUPPLEMENTAL TABLES

Supplemental Table 1

A comparison of different tools for the visualization of TCGA data. As illustrated by the

Additional file 1: Figures S1, S2, S3 and S4, there are obvious differences between existing

tools and MEXPRESS in both the data and the features these tools offer. This table

lists the most relevant of these differences, thereby highlighting some of the strengths and

weaknesses of each tool. (CGW Cancer Genomics Workbench, IGV Integrative Genomics

Viewer) (Figure 5.1)

CGW Cancer Genomics Workbench, IGV Integrative Genomics Viewer

Supplemental Table 2(Figure 5.2)
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Figure 5.2: Gene promoter methylation status analyzed using PCR

Supplemental Table 3, 4 and 5

Supplemental Table 3,4 and 5(Figure 5.3) (Figure 5.4) (Figure 5.5) COHCAP qual-

ity control metrics. (A) Dendrogram: the sample ID for each sample is shown in the den-

drogram representing the hierarchical clustering of the genome-wide beta values for each

sample. Sample IDs are colored based on the sample grouping (in this case, the parental

HCT116 strain is shown in blue and the mutant strain is shown in red). Notice that the

samples in each group cluster together. (B) Sample histogram: density distribution for

all the samples in a COHCAP project is shown in the histogram. Again, the color for
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Figure 5.3: COHCAP quality control metrics: Dendrogram
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Figure 5.4: COHCAP quality control metrics: Histogram
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Figure 5.5: COHCAP quality control metrics: PCA plot
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Figure 5.6: Box plot

each sample is determined by the sample grouping. Notice the strong bimodal distribution,

corresponding to methylated and unmethylated CpG sites. Sample statistics (median, top

quartile, bottom quartile, minimum and maximum) are provided in a text file. (C) Princi-

pal component analysis (PCA) plot: samples are plotted based on their coordinates defined

by the first two principal components. All the principal component values can be found in

a text file. Samples are colored based on sample grouping. Notice that the groups show

clear clustering from one another in the PCA plot.

Supplemental Table 6 Box plot and Scatter plot

Box plot: the average beta value for a normal sample is higher than the primary

sample, indicating that this CpG island (mapped to ESR1) shows decreased methylation

in breast tumors. The box plot shows the median, minimum, maximum and quartiles for

beta values for each group. This figure was produced using the Average by Island workflow.

(Figure 5.6)

Scatter plot: methylation levels of ESR1 are negatively correlated with RNA-Seq

expression levels. Individual samples are colored based on their sample grouping. This
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Figure 5.7: Scatter plot
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Figure 5.8: Integrative Genomics Viewer: Home page

figure was produced using the Average by Island workflow.(Figure 5.7)

Supplemental Table 7

Integrative Genomics Viewer

When you load genomic data, IGV displays the data in horizontal rows called tracks.

Typically, each track represents one sample or experiment. For each track, IGV displays

the track identifier, one or more attributes, and the data. When loading a data file, IGV

uses the file extension to determine the file format (see File Formats), the file format to

determine the data type (Table 1), and the data type to determine the track default display

options (Figure 5.8) (Figure 5.9) .
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Figure 5.9: Integrative Genomics Viewer: File format determination data type
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