IDENTIFICATION OF NOVEL EPIGENETIC BIOMARKERS FOR EARLY
DETECTION IN VARIOUS CANCER TYPES

by

Santosh Mahadevana Goud
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
In Partial fulfillment of
The Requirements for the Degree
of
Doctor of Philosophy
Biosciences

Committee:

Dr. Serguei G. Popov, Dissertation Chair

Dr. Raja Mazumder, Committee Member

Dr. Alessandra Luchini, Committee Member

Dr. Barney Bishop, Committee Member

Dr. Tosif Vaisman, Department Chair

Dr. Donna M. Fox, Associate Dean, Office of

Student Affairs and Special Programs, College
of Science

Dr. Peggy Agouris, Dean, School of
Systems Biology

Date: Spring Semester 2017

George Mason University
Fairfax, VA




Identification of Novel Epigenetic Biomarkers for early detection in various Cancer types

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Santosh Mahadevana Goud
Master of Science
University of Hartford, USA, 2007
Bachelor of Science
Bangalore University - Bangalore, India, 1999

Dissertation Chair: Dr. Serguei G. Popov
Department of School of Systems Biology

Spring Semester 2017
George Mason University
Fairfax, VA



Copyright (© 2017 by Santosh Mahadevana Goud
All Rights Reserved

ii



Dedication

This research effort is dedicated to my parents Mr. Mahadevana Goud, Mrs. Shashi Rekha
Goud and to my sister Mrs. Seema Maregoudra.

iii



Acknowledgments

This work was supported, in part, by my Pre-Doctoral Graduate Teaching Fellowship Award
from the Department of Biology.

I would like to thank my mentors, Dr. Raja Mazumder and Dr. Serguei G. Popov. Their
patience and guidance has helped me become a more thoughtful and analytical researcher. 1
would like to thank my thesis committee members, Dr. Bishop Barney and Dr. Alessandra
Luchini for their invaluable support as well. I have greatly benefited from every interaction
with my committee, be it advice on a particular analysis or about research direction. Their
help has been my guiding light towards being a better researcher.

I would like to thank my parents, Mr. Mahadevana Goud and Mrs. Shashi Rekha Goud,
my sister, Mrs. Seema Maregoudra, my brother-in-law Mr. Rakesh Wastrad, my mentor,
Mr. Rashid Gill, my friends, particularly John Rodriguez, Azad Naik and co-workers for
their support, interactions and invaluable moral guidance.

v



Table of Contents

(1.2 Introduction to Epigenetics| . . . . . . . ... ...

Page
viii
ix

XX

v

[1.2.1 Introduction to Epigenetic Tags: their acquisition, maintenance, and |
inheritancel . . . . .. ... 6

[1.2.2  Epigenetic mechanism: DNA methylation| . . . . ... ... ...... 8
[1.2.3  DNA methylation and single nucleotide polymorphisms (SNPs) or |
single nucleotide variations (SNVs)| . . . .. ... ... ... ... ... 10

[1.2.4  Biomarkers of genome instability and cancer epigenetics|. . . . . . . . 10
[1.2.5 Relationship between DNA methylation and Gene expression| 11
[1.2.6  DNA methylation and Cancer| . . . . . ... ... ... ... ... ... 11
[1.2.7  Hypo methylation and its role in Cancer| . . . . . . . . ... ... ... 12
[1.2.8  Hyper methylation and its role in Cancer| . . .. ... ... ... ... 13

(1.3 TET Proteins and DNA methylation| . . . .. ... ... ... .. ...... 14
(1.4 DNA methylation for therapeuticuse| . . . . .. ... ... ... ... ..... 15
[1.5 Clinical perspective of aberrant methylation patterns in cancer|. . . . . . .. 16
[1.6 Discovery and detection of DNA methylation| . . .. ... ... ... ... .. 17
[1.7  Current knowledge, advances and applications of DNA methylation biomark- |
[ ersinvariouscancersl. . . ... ... ... ... .. ... 21
[1.7.1  DNA Methylation biomarkers in Urological Cancer|. . . . . .. .. .. 21
[1.7.2  Epigenetic biomarkers in bladder cancer| . . . . . ... ... ... ... 21
[1.7.3  Epigenetic biomarkers in kidney cancer|. . . . . . ... ... ... ... 22
[1.7.4  Epigenetic biomarkers in prostate cancer|. . . . . ... ... ... ... 23
[1.7.5  Epigenetic biomarkers in testicular cancer| . . . . .. . ... ... ... 25
[1.7.6  Epigenetic biomarkers in gastric cancer|. . . . . . ... ... ... 25



[1.7.7  Epigenetic biomarkers in Ovarian Carcinoma] . . . . . .. ... .. .. 27

[1.8 Need for DNA methylation biomarker discovery| . . . . . ... ... ... ... 29
[1.9  Future prospects| . . . . . . . .. . 29

2 MATERIALS AND METHODS 31
[2.1 The Cancer Genome Atlas (TCGA) overview| . . ... ... .......... 31
[2.1.1 The Cancer Genome Atlas (TCGA) Data collection and Research [

| Networkl . . . . . . . o 32
2.1.2  TCGA platiorm and data types. | . . . ... ... ... ... ... ... 34

[2.1.3  Analysis and visualization of TCGA datal . . .. ... ... ... ... 36

[2.1.4  Data mining the vast TCGA resource.| . . . . . ... ... ... .... 38

[2.1.5  Analysis of TCGA data using publicly available web tools.| . . . . . . 40

[2.1.6 ~ Future promise/perspective from TCGA.| . ... ... ... ... ... 42

2.2 TCGA Data: Genomic Data Commons (GDC)| . ... ... ..... ... .. 43
2.2.1  GDC: Data Types and Format.| . . . . ... ... ... ... ... ... 44

[2.3  Methylation analysis and MExpress tooll . . . . ... ... ... ... ..... 46
2.3.1 MEXPRESS: Implementation and Output visualization| . . . . . . .. 50

2.4 MEXPRESS and TCGA Data |l 53

54

54

54

58

59

61

3.1 plot details|. . . . . . . ... 61
[3.1.1 BLCAP (bladder cancer associated protein) as a DNA methylation |

| biomarker gene| . . . . ... L. 64
[3.2  GDF15 (Growth Differentiation Factor 15) as a DNA methylation biomarker [
........................................... 81
(3.3 PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) as a DNA methylation |

| blomarker genel . . . . ... L e 108
(3.4 DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1) as a DNA [

| methylation biomarker gene|. . . . . . ..o o oo 133
(3.5 ITPKA (inositol-trisphosphate 3-kinase A) as a DNA methylation biomarker |
........................................... 141

vi



vii



List of Tables

Table Page

[1.2  Commonly used techniques for locus specitic DNA methylation determination |

based on bisulfite sequencing with potential for translation into clinical practice.| 18

(.3 Overview of bladder cancer biomarkers). . . .. ... ......... ... .. 21
[1.4  Overview of kidney cancer biomarkers|. . . . . . ... ... ... ... ..... 22
[1.5 Overview of prostate cancer biomarkers|. . . . . . ... ... .. ... ..... 24

[1.6 Selected genes with promotor hyper methylation and their clinical correla- |

[ tions in ovarian carcinomasl . . . . . . . v v v e e e e e e e e e e e e 27
[2.1 The Cancer Genome Atlas (TCGA) organization centers|. . . . . . ... ... 32
[2.2  Cancer types with data available via The Cancer Genome Atlas| . . .. . .. 39
2.3 GDC: Data Types and Format: Generated Data] . . ... ... ... ... .. 46
2.4  GDC: Data Types and Format: Imported Data] . . . ... ... ... ... .. 47
2.5 TCGA Data portal last status and updates| . .. ... ... ... ... .... 48
[2.6  Guidelines proposed to interpret Pearson’s correlation coefficient | . . . . . . 55

viii



List of Figures

Figure Page
(1.1 Epigenetic tags and chromatin structure] . . . . .. ... ... ... ... 7
(1.2 DNA methylation and complex diseases|. . . . . ... ... ... ... ..... 16
[2.1 The Cancer Genome Atlas (TCGA) Research Network Centers flowchart. | . 33
[2.2  Graph Representation of the GDC Data Model| . . . .. ... ... ... ... 45
[2.3  Genomic Data Commons Data portal Webpage . . . . . ... ... ... ... 49
[2.4  Visualization of the TCGA data for GSTP1 in prostate adenocarcinoma using |

| MEXPRESS . . o o o 51
5 MEXPRESS the TCGA data for MLPIH o] | 59
[3.1 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |

| using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer| . . . . 64
[3.2  Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [

| using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer| . . . . 65
[3.3 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [

| using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer| . . . . 65
[3.4 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |

| using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer| . . . . . . 66
[3.5  Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [

| using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer| . . . . . . 67
[3.6 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |

| using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer| . . . . . . 67
[3.7 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |

| using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer| . . . . . . . 68
[3.8  Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [

| using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer| . . . . . . . 69
[3.9  Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |

| using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer| . . . . . . . 69

ix



[3.10 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [
using MEXPRESS for CRAD (Colorectal Adeno Carcinoma)) cancer| . . . . 71
[3.11 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |
using MEXPRESS for CRAD (Colorectal Adeno Carcinoma)) cancer|{ . . . . 71
[3.12 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [
using MEXPRESS for CRAD (Colorectal Adeno Carcinoma) cancer|. . . . . 72
[3.13 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [
using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer| . 73
[3.14 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |
using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer| . 73
[3.15 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [
using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer| . 74

B.16

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer| 75

B17

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer| 75

318

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer| 76

[3.19 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |
using MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer|. . . . . . .. 7
[3.20 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |
using MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer|. . . . . . . . 7
[3.21 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [
using MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer| . . . . . . . . 78
[3.22 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |
using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer{ . . . 79
[3.23 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression |
using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) ) cancer| . . 80
[3.24 Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression [
using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer| . . . 80
[3.25 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer|. . . . . . .. .. 81




[3.26 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer|. . . . . .. ... 82
[3.27 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer|. . . . . . .. . . 82
[3.28 Analysis of GDF'15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer|. . . . . ... ... 83
[3.29 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer|. . . . . . .. ... 84
[3.30 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for COAD (Colon Adeno Carcinoma) ) cancer| . . . . . .. ... 84
[3.31 Analysis of GDF'15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer| . . ... .. 85
[3.32 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer| . . .. . .. 86
[3.33 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer| . . .. . . . 86
[3.34 Analysis of GDF'15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer| . . . . . 87
[3.35 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer| . . . . . 88
[3.36 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer| . . . . . 88
[3.37 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for ESCA (Esophageal Carcinoma) cancer| . . . ... ...... 89
[3.38 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for ESCA (Esophageal Carcinoma) cancer| . . . ... ...... 90
[3.39 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for ESCA (Esophageal Carcinoma) cancer| . . . .. .. ..... 90
[3.40 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer| 92
[3.41 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer| 92

xi



[3.42 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer| 93
[3.43 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer| . . 94
[3.44 Analysis of GDF'15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer| . . 94
[3.45 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer| . . 95
[3.46 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer| . . . . . . 96
[3.47 Analysis of GDF'15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer| . . . . . . 96
[3.48 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer| . . . . . . 97
[3.49 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer| . .. ........ 98
[3.50 Analysis of GDF'15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer| . .. ........ 98
[3.51 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer| . . . ... ... .. 99
[3.52 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer{. . . . . . . 100
[3.53 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer|. . . . . . . 100
[3.54 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer{. . . . . . . 101
[3.55 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer| . . .. .. ... 102
[3.56 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer| . .. ... ... 102
[3.57 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer| . ... ... .. 103

xii



[3.58 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for THCA (Thyroid Carcinoma) cancer| . . . . . .. .. .. ... 104
[3.59 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for THCA (Thyroid Carcinoma) cancer| . . . . . .. .. ... .. 104
[3.60 Analysis of GDF'15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for THCA (Thyroid Carcinoma) cancer| . . . . . . .. ...... 105
[3.61 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer| . . 106
[3.62 Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using |
MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer|. . 107
[3.63 Analysis of GDF'15 (Growth Differentiation Factor 15) gene expression using [
MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer|. . 107

B.64

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer|108

B.65

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer|109

3.66

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer{109

B.67

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer| .

110

B.68

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer| .

3.69

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer| .

B.70

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma)

CANCET]. . . . . e e e e e e e

B71

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma)

CANCET]. . . . o o e e e e e e e

B2

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma)

CANCET]. . . . . . e e e e e e e




[3.73 Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex- [
pression using MEXPRESS for CHOL (Cholangio Carcinoma) cancer| . . . . 114
[3.74 Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex- |
pression using MEXPRESS for CHOL (Cholangio Carcinoma) cancer| . . . . 115
[3.75 Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex- [
pression using MEXPRESS for CHOL (Cholangio Carcinoma) cancer|{ . . . . 115
[3.76 Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex- [
pression using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer| . . 117
[3.77 Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex- |
pression using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer| . . 117
[3.78 Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex- [
pression using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer| . . 118

B.79

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer{119

3.0

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer|119

381

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer(120

3.82

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for ESCA (Esophageal Carcinoma) cancer| . . .

121

383

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for ESCA (Esophageal Carcinoma) cancer| . . .

121

B34

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for ESCA (Esophageal Carcinoma) cancer| . . .

122

B85

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for HNSC (Head and Neck Squamous Cell Car-

cinoma) cancer|

[3.36

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for HNSC (Head and Neck Squamous Cell Car-

cinoma) cancer|

Xiv



337

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for HNSC (Head and Neck Squamous Cell Car-

CINOMA) CANCEL| . . o o v vt v et e e et e e e e

[3.88

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma)

CANCET]. . . . . e e e e e

3.89

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma)

CANCET]. . . . . o e e e e e

3.90

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma)

CANCET]. . . . o o e e e e e e e e

B.01

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-

sion using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma)

CANCET]. . . . . . e e e e e e e

3.92

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-

sion using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma)

CANCET]. . . . . e e e

3.93

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-

sion using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma)

CANCET]. . . . . o e e e e e

B.97

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer{l129

3.95

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer{130

3.96

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-

sion using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer| .

130

B.97

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-

sion using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma)

CANCET]. . . . o e e e e e e

3.98

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-

sion using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma)

CANCET]. . . . o o e e e e e e e

XV



[3.99 Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-

sion using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma)

CANCET]. . . . . e e e e

[3.100Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma)

CANCET]. . . . . o e e e e e e

[3.101 Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma)

CANCET]. . . . . o e e e e e e

[3.102Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma)

CANCET]. . . . . . e e e e e e e

[3.103Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carci-

NOMA) CALCEI| .« . v v v v vt et e e e e e e

[3.104Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carci-

NOMA) CANCEI| .« . v v v vt et e e e e e

[3.105Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carci-

NOMA) CALCEI| .« . v v v v vt et e e e e e e

[3.106 Analysis of DMRT'1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer.

[3.107Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer|.

[3.108 Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer|.

[3.109 Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial

Carcinoma) CANCEI| . . . . . v vt v vttt e e

[3.110Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial

Carcinoma) CANCEI| . . . . . v v v v vt it

xvi



[3.111Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial

Carcinoma) CANCEI| . . . . . v vt v vttt e e e e 141
[3.112Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer{. . . . . . . . 142
[3.113Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer{. . . . . . . . 142
[3.114 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer|. . . . . . . . 143
[3.115Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer|. . . . . ... .. 144
[3.116 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer|. . . . . ... .. 145
[3.117Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer|. . . . . ... .. 145
[3.118 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer| 146
[3.119Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer| 147
[3.120Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer| 147
[3.121 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer| . ... 148
[3.122 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer| . ... 149
[3.123 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer| . ... 149
[3.124 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer| . . . . . 150
[3.125 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer| . . . . . 151

xvii



[3.126 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using

MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer| . . . . . 151
[3.127 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer| . . . . . . . 152
[3.128 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer| . . . . . . . 153
[3.129 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer| . . . . . . . 153
[3.130Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer| . .. ........ 155
[3.131 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer| . .. ........ 155
[3.132Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer| . . . ... .. ... 156
[3.133 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer{. . . . . . . 157
[3.134 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer|. . . . . . . 157
[3.135Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer{. . . . . . . 158
[3.136 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for THCA (Thyroid Carcinoma) cancer| . . . . . . .. ...... 159
[3.137Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using [
MEXPRESS for THCA (Thyroid Carcinoma) cancer| . . . . . . .. ...... 159
[3.138 Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using |
MEXPRESS for THCA (Thyroid Carcinoma) cancer| . . . . . .. .. ... .. 160
[3.139Comprehensive Result Table of Gene analysis using MEXPRESS and their p- |
or significance values (When samples are ordered by value of their expression |
1.e., by using MEXPRESS default setting|. . .. ... ... ... ........ 161
[3.1400verall analysis of BLCAP gene as a biomarker using MEXPRESS tool| 163
[3.141Overall analysis of BLCAP gene as a biomarker using MEXPRESS tool| 163
[3.1420verall analysis of GDF15 gene as a biomarker using MEXPRESS tool| . . . 164

Xviil



[3.1430verall analysis of GDF15 gene as a biomarker using MEXPRESS tool[ . . . 165

[3.144Overall analysis of PIWIL4 gene as a biomarker using MEXPRESS tool| . . 166
[3.1450verall analysis ot PIWIL4 gene as a biomarker using MEXPRESS tooll . . 167
[3.1460verall analysis of DMRI'1 gene as a biomarker using MEXPRESS tooll . . 167
[3.1470Overall analysis of DMRI'1 gene as a biomarker using MEXPRESS tool| . . 168
[3.1480verall analysis of ITPKA gene as a biomarker using MEXPRESS tool|. . . 168
[3.1490verall analysis of [TPKA gene as a biomarker using MEXPRESS tool[. . . 169
[3.1500verall analysis of [TPKA gene as a biomarker using MEXPRESS tool[. . . 169
[3.151Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool|. . . 170
[3.1520verall analysis of [ TPKA gene as a biomarker using MEXPRESS tool|. . . 171
[3.1530verall analysis of [ITPKA gene as a biomarker using MEXPRESS tool[. . . 172
[5.1 A comparison of different tools for the visualization of TCGA datal . . . .. 189
[5.2  Gene promoter methylation status analyzed using PCR| . . . ... ... ... 190
.3 COHCAP quality control metrics: Dendrogram| . . . . ... ... .. ... .. 191
.4 COHCAP quality control metrics: Histogram| . . . ... ... ... ... ... 192
.5 COHCAP quality control metrics: PCA plot|. . . . .. .. ... ... ..... 193
0.6 Box plot] . . . . . 194
[6.7 Scatter plot| . . . ... 195
[>.8 Integrative Genomics Viewer: Home page|. . . . . . . . ... . ... ... ... 196
[5.9 Integrative Genomics Viewer: File format determination data type|. . . . . . 197

Xix



Abstract

IDENTIFICATION OF NOVEL EPIGENETIC BIOMARKERS FOR EARLY DETEC-
TION IN VARIOUS CANCER TYPES

Santosh Mahadevana Goud, PhD
George Mason University, 2017

Dissertation Chair: Dr. Serguei G. Popov

Epigenetic landscape of cancer cells undergoes profound and significant changes during
the development of human malignancies. In fact, global changes in the epigenetic land-
scape are a hallmark of cancer. Histone modifications and DNA methylation are prominent
among such changes. The genome undergoes a large-scale DNA methylation changes along-
side other alterations in a collective events of post-translational chromatin modifications
being observed. Such aberrant epigenetic changes have a high impact at various stages of
tumorigenesis. Identification of such epigenetic aberrations for their use as predictive and
prognostic biomarkers has been the focus of cancer genomics research recently. We have
selected five genes of interest (ITPKA, GDF15, BLCAP, PIWIL4 and DMRT1) based on
literature search and identified each of them as novel epigenetic biomarkers in certain can-
cer types. Such identified novel epigenetic methylation biomarker gene is subjected to SNV
identification by querying it against BioMuta and analyzing its relevant phenotypic effects.
BioMuta is a curated single-nucleotide variation (SNV) and disease association database.
Here, the variations are mapped to the genome/protein/gene. Such query helps to identify
variations and since the database is compiled from various sources through bio curation, it

paves ways for prioritizing variations for further experimental evaluations. Furthermore,



such identified epigenetic methylation biomarker gene is subjected to gene expression anal-
ysis by querying it against BioXpress database. BioXpress is a curated gene expression and
disease association database. Here, the expression levels are mapped to genes. BioXpress
is useful in identifying differences between expression levels in disease and normal pairs
and to discover differential expression for a gene. It also helps in identification of potential
biomarkers or pathways that lead to tumor formation or to explore the overall expression
of specific genes across multiple cancer types. Upon additional validations, these findings
on novel epigenetic methylation biomarker gene will possibly open new avenues in trans-
lation medicine and can be utilized as a novel prognostic biomarker for early stage cancer

detection.



Chapter 1: INTRODUCTION

1.1 Hypothesis, rationale, and specific aims

The literal meaning of the term epigenetics is in addition to changes in genetic sequence.
In other words, any process that has the capability to alter gene activity without any
accompanying changes in DNA sequence, leading to modifications that are transmitted to
daughter cells can be defined as an epigenetic change. However, it is been shown that
some epigenetic changes can be reversed. The exact definition and/or meaning of the term
epigenetic is still debatable and undergoing constant changes.

Epigenetic processes identified till date involves/ includes: methylation, acetylation,
phosphorylation, ubiquitylation and sumolyation. Epigenetic processes are natural and in
many cases are essential to normal organism functioning. However, in certain cases, it seems
to show some major adverse health and behavioral effects.

DNA methylation is a well-studied and well-documented epigenetic process. It involves
addition or removal of a methyl group (CH3), predominantly at sites where cytosine bases
occur consecutively. This event was first documented in 1983 and has been continuously
monitored and found in many disease and health disorders.

Chromatin modification is yet another epigenetic process. Chromatin is DNA and pro-
teins (histones) complex which is highly compacted into the nucleus. Chromatin complex is
modified by processes like acetylation (addition of acetyl groups), enzymes and certain RNAs
(micro and small interfering RNAs). These modifications can influence gene expression by
directly altering the chromatin structure. Highly compacted and condensed chromatin does
not allow expression, whereas unfolded or open chromatin structure is functional and allows

or facilitates gene expression to take place.



Recent studies have shown a strong link between epigenetic processes and cancer. It
has now been established that epigenetic mechanisms and/or processes are one of the most
significant considerations in cancer research and accounts for one-third to one-half of known
genetic alterations.

This research has three specific aims:

Aim 1: To establish that, alteration or aberrations in DNA methylation and subsequent
gene expression, specifically in the promoter or regulatory region of the five genes of our
interest (ITPKA, GDF15, BLCAP, PIWIL4 and DMRT1) can be utilized to identify them
as Novel epigenetic methylation biomarkers and for their use in as predictive and prognostic
biomarkers in certain cancer types.

Our research goal is derived from the following established biological concept. Aberrant
DNA methylation is now established as a central/ key feature in carcinogenesis. It is
known to be responsible for defective gene expression, faulty condensation and chromosomal
instability. Also, it is a hallmark of cellular defenses acting to silence foreign DNA. Specific
DNA methylation patterns is often observed to correlate with clinical parameters (cancer
stage, survival time and chemotherapy resistance).

Secondly, it is now established that changes in methylation at specific CpG positions
in the human genome can turn genes on or off. This has been linked to a wide variety of
important normal and impaired molecular pathways. Therefore, DNA methylation is one
of the most significant and fertile platform for new biomarker discovery.

Thirdly, epigenetic processes amplify mutational effects and can pave way for disease
development and progression in the absence of any detectable relevant genetic changes.
Epigenetic pathways are susceptible and are affected by environmental stimuli and insults
to a greater extent compared to classical genetic pathways. It is known that certain cancers
have a CpG island methylator phenotype. These can arise early and can substantially drive
carcinogenesis forward. CpG island methylator phenotypes can vary in different malignan-

cies and may confer poor prognosis. Our five genes of interest (ITPKA, GDF15, BLCAP,



PIWIL4 and DMRT1) that are shortlisted based on literature search will be primarily sub-
jected to novel DNA biomarker discovery strategy. Such discovery will give rise to new
opportunities for informed treatment decisions and survival prognosis, thus enabling more
personalized cancer therapy.

Aim 2: To identify Single Nucleotide Variations (SNVs) in the genes of our interest
(ITPKA, GDF15, BLCAP, PIWIL4 and DMRT1) and to identification of cancer driver genes
within our list of genes and exploring their implications in the cancer genomic perspective
and establishing their biological significance. To achieve this, each of the above mentioned
genes will be subjected to SNV identification by querying it against BioMuta database and
its subsequent phenotypic effects will be analyzed.

Our research goal is derived from the following established biological concept. Alter-
ations in genes which encodes for cellular signaling molecules, especially protein kinases,
can result in cancers. Sensitivity of drugs that target mutant kinases depends on the genetic
makeup of individual tumors. Therefore, mutational profiles of tumor DNA help prioritize
anti-cancer therapy and direct patient management.

Gene alterations are a common occurrence in cancer. One such alteration is Single
Nucleotide Variation (SNV). SNVs (also referred to as point mutations) results from a base
substitution at one nucleotide. Such a substitution may result in one of the following:
A change in the amino acid sequence of the encoded protein (missense mutation) or a
premature truncation of the protein (nonsense mutation).

Rapid progress in high-throughput sequencing technology has made it easy to identify
single nucleotide variants (SN'Vs) in the genome or exome. Such identification of SNVs have
far exceeded our capacity to experimentally validate their impact on disease phenotypes.
In this context, bioinformatics and computational methods that can predict the biological
impact of non-synonymous SNVs (nsSNVs) on protein function have attained very high
popularity. Methods are being developed to distinguish disease-related nsSNVs from neutral
polymorphisms. Also, the relevance of nonsynonymous somatic variants in cancer emergence

needs to be assessed. In principle, functional somatic mutations can only be a causative



agent, provided they affect cancer driver genes, which upon mutation confer a distinct
selective advantage or a newly acquired capability to the cell.

Methylation biomarker discovery platform has benefited tremendously from the rapidly
developing sequencing technology in the last few years. Hundreds and thousands of varia-
tions are being associated with diseases from single studies.

We plan to identify SNVs in our selected genes of interest. For this purpose, we have
chosen BioMuta. BioMuta is a curated single-nucleotide variation (SNV) and disease as-
sociation database. Here, variations are mapped to the genome/protein/gene. Such query
helps to identify variations and since the database is compiled from various cancer centered
sources through bio curation, it paves ways for prioritizing variations for further experi-
mental evaluations. This will help in identification of cancer driver genes within our list of
genes and exploring their implications in the cancer genomic perspective and establishing
their biological significance.

Aim 3: To identify differences between expression levels in disease and normal pairs of
the five genes of our interest (ITPKA, GDF15, BLCAP, PIWIL4 and DMRT1) and also to
discover differential expression for a gene. To achieve this, each of the above mentioned genes
will be subjected to gene expression analysis by querying it against BioXpress database.

Our research goal is derived from the following established biological concept. Epigenet-
ics studies have shown that mechanisms associated or involving them provides an ”extra”
layer of transcriptional control that regulates how genes are expressed. Although such mech-
anisms are utmost essential in normal development and growth of cells, their abnormalities
are causative factors for cancer, genetic disorders, pediatric syndromes and auto-immune
diseases.

Epigenetic mechanisms exhibit two prominent features: DNA methylation and histone
modifications. DNA methylation and changes to histone proteins orchestrate DNA orga-
nization and gene expression. Histone-modifying enzymes are recruited for one of the two

purposes: either to ensure that a receptive DNA region is either accessible / available for



transcription or that DNA is targeted for silencing. It is now established that active re-
gions of chromatin have unmethylated DNA and have high levels of acetylated histones,
whereas inactive regions of chromatin contain methylated DNA and deacetylated histones.
Therefore, it is now believed that an epigenetic tag is placed on targeted DNA, provid-
ing or marking it with a special status that specifically activates or silences genes. Also,
since epigenetic mechanisms are reversible, these reversible modifications ensure that spe-
cific genes can be expressed or silenced depending on specific developmental or biochemical
cues (hormone levels, dietary components or drug exposures).

Cancer development and progression involves a complex multistep process in which ge-
netic and epigenetic errors accumulate and transform a normal cell into an invasive or
metastatic tumor cell. It has been established that altered or aberrant DNA methylation
patterns have a direct influence or can change the expression of cancer-associated genes.
Additionally, it has been observed that DNA hypo methylation activates oncogenes and ini-
tiates chromosome instability, whereas DNA hyper methylation initiates silencing of tumor
suppressor genes. The incidence of hyper methylation, particularly in sporadic cancers,
varies with respect to the gene involved and the tumor type in which the event occurs.
Such epigenetic changes is utilized by the research community in investigating or molecular
diagnosis of a variety of cancers.

We aim to identify differences between expression levels in disease and normal pairs
of the five genes of our interest and also to discover differential expression for a gene.
We will achieve this by querying each of the above mentioned genes against BioXpress
database. BioXpress is a curated gene expression and disease association database where
the expression levels are mapped to genes. Such an investigation or query will also helps
in identification of potential biomarkers or pathways that lead to tumor formation or to

explore the overall expression of specific genes across multiple cancer types.



1.2 Introduction to Epigenetics

Epigenetics are referred to those heritable alterations that are not associated with changes
in DNA sequence itself. Epigenetic modifications are sometimes referred to as molecular
tags. These tags include DNA methylation and histone modifications which can alter DNA
accessibility and chromatin structure. By doing so, they can regulate the patterns of gene
expression. Normal development and differentiation of distinct cell lineages in adult organ-
isms depend on precisely orchestrated normal gene regulation/expression mechanisms that
are still susceptible for epigenetic mechanisms. Such exogenous epigenetic influence can
result in environmental alterations of phenotype or patho-phenotypes. More importantly,
regulations of pluripotency genes are also regulated by epigenetic mechanisms. These genes

are inactivated during differentiation [1].

1.2.1 Introduction to Epigenetic Tags: their acquisition, maintenance,

and inheritance

Chromatin Domains

Heterochromatin: transcriptional inactive, densely packed nucleosomes.

Constitutive: highly repetitive DNA sequences, such as centromeric and telomeric do-
mains, hypoacetylated nucleosomes, H3K9md|

Facultative: includes silenced genes, such as inactive X chromosome or imprinted re-
gions, or transcriptionally repressed genes, hypoacetylated nucleosomes, H3K27me

Euchromatin: transcriptional permissive chromatin, less densely packed. Accessible to
nuclear factors and nuclear repressors, acetylated nucleosomes, H3K4me, H3L36me

Chromatin complex is chromosomal DNA and its associated proteins in nucleus [2].
Nucleosomes are usually referred to those units of DNA packaged around histone proteins
in chromatin. Normally, DNA of around 147bp in association with octomeric core of histone

proteins (two H3-H4 dimers of histone surrounded by two H2A-H2B dimers) are often

lhistone methylation sites are listed in abbreviated forms, for example H3K9me, histone lysine 9 methy-
lation [2]
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Figure 1.1: Epigenetic tags and chromatin structure

referred to as a Nucleosome. The N-terminal histone tails are often observed protruding
into nuclear lumen from their respective nucleosomes. H1 histones are seen associating with
linker DNA found between the nucleosomes. Chromatin structure is strongly dependent on
nucleosome spacing. Chromatin structure is broadly divided into heterochromatin and
euchromatin (Table 1).

Transcriptional machinery depends on chromatin structure and gene accessibility for its
functioning and is regulated by both DNA and histone tail modifications (Figure .

Chromosomal DNA is packaged around histone cores to form nucleosomes. Nucleosome
spacing in open structure that is accessible to nuclear factors is maintained, in part, by post-
translational modification of histone tails, including lysine acetylation and specific lysine
methylation. CpG dinucleotides are unequally distributed throughout chromosomal DNA,
and may be concentrated in regions called CpG islands that can overlap gene promoters.

Methylation of cytosine in CpG dinucleotides is overall associated with inactive, condensed



states of the chromosome. Inactive chromatin is also maintained by specific histone lysine

modifications [2].

1.2.2 Epigenetic mechanism: DNA methylation

Previously it was believed that covalently attached methyl group at C5 position of cytosine
residues in CpG dinucleotide sequences (CpG or CpG islands) are the principle epigenetic
tags found in differentiated mammalian cells [3]. However, recent findings indicate that
even in undifferentiated stem cells, cytosines, other than those found in CpG sites can
be methylated as well. Such methylations of non-CpG cytosines have proved vital for
gene regulation in embryonic stem cells [4]. CpG methylation is observed to play a vital
role in imprinting and X-chromosome inactivation and is also found to be necessary for
transcription repression of transposons and repetitive elements [5]. CpG methylation can
also be involved in transcriptional gene silencing and thereby restricts the expression of
certain tissue-specific developmental genes and differentiation by suppressing them in non-
expressing cells.

CpG methylation follows a predictable pattern of changes during development. Also, in
early embryogenesis, methylation is nullified genome-wide and re-established in all except
CpG islands (high density in genome found to have CpG residues). These CpG islands
show consistency in being hypo methylated till late developmental stages and some of them
become methylated [6,7]. CpG islands that are subsequently methylated at cytosine and
at other CpG dinucleotides are often associated with transcriptional repression, especially
when the methylation sites involves a promoter or a gene regulatory regions [6,/7]. However,
DNA methylation may activate transcriptional repressors if it prevents binding or limits
expression. The degree to which methylation occurs in mammalian promoters is observed
in a small percentage of CpG dinucleotides and inhibits transcription in just a small genes
subset in differentiated cell types. Such repressed genes are usually germ-line specific which
may include pluripotency genes [§]. This suggests methylation is an important mechanism

in suppressing some key genes during differentiation.



Transcription is suppressed by CpG methylation by multiple mechanisms. Mostly, the
methyl group at a specific CpG site may directly interfere or block DNA recognition and
as well as its binding to transcription factors. One such example involves the direct in-
hibition of transcriptional activation at GC-boxes by methylation. This excludes Spl and
Sp3 transcription factors binding in the context of promoter regions [9}/10]. Alternatively,
methylation can block nuclear factor, Hifl, in hypoxic conditions by inducing erythropoi-
etin transcription [11]. Furthermore, certain other factors may exhibit preferential binding
to methylated DNA and block access to transcription factors. Examples include MeCP2
and related protein families binding to methyl CpG and inducing transcriptional repres-
sion. This is achieved by recruitment of histone-modifying proteins like histone deacety-
lases (HDAC) [12]|. Histone deacetylation further promotes condensation of chromatin and
thereby represses transcription [13,14]. Such mechanisms clearly indicates as to how DNA
methylation and histone modifications come together in function to contribute to gene tran-
scriptional on or off state, subject to epigenetic modifications.

DNA methyltransferase enzymes (DNMTs), are family of enzymes responsible for de
novo DNA methylation and its maintenance. During developmental embryogenesis, de
novo methylation is carried out by DNMT3A and DNMT3B |[15]. Although, DNMT3A
and DNMTS3B is indicted in maintaining methylation in certain cell types, the ubiquitously
expressed DNMT1 is primarily responsible for maintaining CpG methylation in most cell
types [16417]. It is observed that alternative promoter induced transcription yields truncated
oocyte- specific DNMT1 isoform (DNMT1o) which is essential for early embryogenesis to
occur [18]. DNMT1 along with a complex can recognize a hemi-methylated DNA and
adds a methyl groups to the non-methylated daughter strand formed during replication
[19]. This is aided by the CpG base pairing which helps in reciprocal maintenance of
methylation in the next subsequent replication cycles. Such processes help in a non-genetic
trait (DNA methylation) being passed from cell to cell with associated contextual effects
on gene expression. By considering such evidences, we can come to an understanding that

methylation is a long-term, relatively stable, epigenetic trait whose effects help maintain



cellular phenotypes.

1.2.3 DNA methylation and single nucleotide polymorphisms (SNPs) or

single nucleotide variations (SNVs)

SNPs may create CpG sites that can be potential targets for epigenetic modifications and
potential loss of such sites will inhibit DNA methylation. Polymorphism that yields CpG
in the promoter region of the gene NDUFB6 exhibits or provides a platform for cross-talk
between genetic and epigenetic regulation. NDUFB6 protein expression is suppressed in
Type 2 diabetes. This is a respiratory chain protein. In geriatric population, NDUFB6
expression and DNA methylation levels are inversely correlated. This infers the presence of
a CpG site conferring high risk for decreased expression along with associated disease risk,
compared to loss of this site [20]. These findings suggests that epigenetic modifications can

increase or influence complex diseases.

1.2.4 Biomarkers of genome instability and cancer epigenetics

Genetic and epigenetic alterations together constitute a multistep process leading to tumori-
genesis. Such a process drives somatic evolution from normal cells to malignant derivatives.
Researchers can take advantage of this fact by combining the genetic and epigenetic alter-
ations into biomarkers for risk assessment, early stage tumor detection, and accurate tumor
characterization for treatment. Application of mass sequencing has provided systematic
approaches to study cancer genomics. It has broadly led to identification of two platforms:
genome instability and epigenetics. Ability of cancer to develop, evolve, adapt and spread
through genetic and epigenetic lesions of varying sizes and quality. These include point
mutations, small insertions/deletions, large scale chromosomal rearrangements, whole chro-
mosome copy number alterations, predisposition or preferential allelic expression of cancer
risk alleles and processes that increase mutation rates in tumor. There also exists epige-

netic mechanisms that inhibit tumor adaptation. These include DNA methylation, histone

10



modifications, remodeling of nucleosome, transcription factor activity, and small non cod-
ing RNAs. Two biggest challenges that remain elusive: 1) to interpret essentially different
signals (non-comparable) across numerous genes and summarize them into diagnostic value.
2) Identification of epigenetic processes that induces increased cancer rates due to increased

exposure of toxic environmental stress and pollution in an organisms developmental stages

1].

1.2.5 Relationship between DNA methylation and Gene expression

It is generally found that housekeeping genes arbor non-methylated CpG islands which
are tightly associated with their promoter regions [22,23]. As such genes are ubiquitously
expresses and also, autosomal CpG islands are non-methylated, housekeeping genes are
presumed to be regulated by DNA methylation. It is now established that relation between
DNA methylation and gene expression levels of tissue-specific genes is mostly that of inverse
correlation. In a recent study, majority of tissue specific genes exhibited a correlation
between hypo methylation of promoter region and gene activity. Also, CpG dinucleotides
showed weaker correlation throughout the gene body. Notably, de novo methylation of CpG
islands in tissue culture cells was observed in a widespread manner [22]. Since CpG islands
are non-methylated in normal tissues (in vivo) and associated with non-essential growth
genes in tissue culture, it suggests that methylation induced gene silencing is of selective

advantage for cell growth.

1.2.6 DNA methylation and Cancer

DNA methylation is often referred to addition of methyl groups to the 5 carbon at cytosine
residues that are preceding guanine nucleotides, which are linked together by phosphate
bonds (CpG) and by utilizing a methyl donor such as S-adenosylmethionine. Asymmetric
arrangement of CpG rich foci are found genome wide. They are clustered in short CpG

rich DNA sequences, often referred to as CpG islands and also in regions of large repetitive
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sequences such as centromeric repeats, retrotransposons etc [24,25]. CpG islands are specif-
ically targeted by DNA methyl transferases (DNMT) class of enzymes. Four DNMTs are
identified, DNMT 1, 2, and 3a and 3b [26[. DNA methylation often involves DNMT1 and
DNMT3. DNA methylation affects transcription directly by interfering with transcriptional
factor binding with target sites as observed in c-myc and other genes [27]. Alternatively,
methylated cytosine residues provides a docking platform for methylated DNA binding pro-
teins (MBD1, MBD2, MBD3, and Mecp2). These proteins are readily identified by histone
modifying enzymes like histone deacetylases (HDACS), responsible for repression of genes
[28-30]. Generally, it has been observed that a normal cell shows a characteristic pattern of
genome wide methylation, except for the CpG (cytosine-phosphate-guanine) islands, which
are found to be unmethylated [31]. Numerous triggering events or triggers in cancerous
cells leads to hypo methylation genome-wide, except for the CpG island promoters, which

undergo hyper methylation [32].

1.2.7 Hypo methylation and its role in Cancer

For tumorigenesis to occur, extensive hypo methylation is required at the repetitive se-
quences as this increases genomic instability due to chromosomal rearrangement |33]. Such
activation is aided by hypo methylation of retrotransposons, further leading to retrotranspo-
son translocation to other genomic regions that can potentially disturb genomic instability
[34]. Documented evidences include DNA hypo methylation responsible for activation of
Ras (growth promoting genes) and mammary serine protease inhibitor (MAPSIN) for gas-
tric carcinoma, S-100 in case of colonic cancer, melanoma-associated antigen (MAGE) in
melanoma [35]. DNA hypo methylation is also observed in loss of imprinting, growth factor

2 (IGF-2) in Wilms’ tumor [36] and colorectal cancer [37].
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1.2.8 Hyper methylation and its role in Cancer

Hyper methylation of CpG islands induces tumorigenesis by completely shutting down tu-
mor suppressor genes expression. This is in stark contrast to hypo methylation mecha-
nism. Such mechanism is achieved by directly involving tumor suppressor genes and also
by silencing of the associated tumor suppressor genes’ transcription factors and inhibiting
the expression of DNA repair genes. Documented evidence includes Rb promoter gene
(retinoblastoma associated tumor suppressor gene) hyper methylation. Here hyper methy-
lation of the CpG promoter island site silences tumor suppressor gene, thereby promoting
retinoblastoma malignancy [38]. Other examples includes genes such as p16 and BRCA1
which are silenced by hyper methylation [39]. These genes play a vital role in cellular ad-
hesion, apoptosis, and angiogenesis, involved in the cancer development and progression.
Alternatively, hyper methylation of CpG promoter regions induced silencing of transcrip-
tion factors leads to downstream target inactivation of the tumor suppressor genes. This
further leads to cancer cell propagation. Examples include RUNX3, GATA-4, and GATA-5
in esophageal, colorectal, and gastric cancers, respectively [40,41]. Furthermore, MLH1 and
BRCA1 (DNA repair genes) upon silencing tend to start accumulating other genetic lesions
leading to cancer progression. However, one elusive questions that persists as to how can se-
lective genes targeting by the DNA methylation machinery executed? Possible explanation
may include CpG island specific methylation is possibly guided by a nucleotide sequence
specific mechanism. This in turn, may direct the DNMT's to their respective genes that have
shown previous association with the oncogenic transcription factors. Documented example
includes PML-RAR fusion protein led abnormal hyper methylation, plus the specific target
promoter genes’ silencing observed in acute promyelocytic leukemia [42]. Also, in various
cancers, long DNA sequence stretches undergo methylation, leading to CpG island hyper
methylation as they fall under genomic regions that have potentially undergone large scale
epigenetic reprogramming [43]. A third possibility may involve histone marks that can play

a vital role in CpG island specific de novo DNA hyper methylation.
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1.3 TET Proteins and DNA methylation

Although hyper- and hypo methylation produces varyingly opposite results, they seem to
coexist in a single tumor. Also, they afflict different genomic regions by varying mecha-
nisms. It is highly likely that, hyper- and hypo methylation mechanisms can cross-talk or
interact at different levels and can possibly give rise to numerous cancer sub- phenotypes.
Additionally, DNA methylation is a reversible epigenetic process adding to the already
complex cancer genome. This opens up a plethora of modifications that can occur in cel-
lular environment, suggesting that DNA methylation might not be a stable but rather a
non-stable and susceptible chromatin modification. DNA methylation mapping in high
resolution (in both differentiated and pluripotent cells) has further increased the flexibil-
ity and complexity of DNA methylation. Such a flexible and highly complex mechanism
has to be supported by a highly efficient enzymatic system. This system might have the
capability to completely abolish or alter epigenetic modifications [44]. However, such a
hypothesis was proven to be wrong by the discovery or identification of ten-eleven translo-
cation (TET13) group of proteins. The origin of TET terminology is associated with a
recurrent chromosomal translocation (10; 11) (q22; q23). This is placed closely to mixed-
lineage leukemia or myeloid-lymphoid leukemia (MLL) gene with TET1 protein in a few
acute myelocytic leukemia (AML) patients. TET protein family are basically DNA hy-
droxylase that can convert 5-methyl cytosine (5mC) to 5-hydroxymethylcytosine (5hmC).
This, upon further oxidation, yields various oxidation products, like 5-formylcytosine (5fC)
and 5-carboxylcytosine (5caC), believed to be the vital DNA methylation intermediates
and in either active or passive form. It is also speculated that they might either prevent
or enhance attachment of methyl CpG binding domain (MBD) proteins. They might even
regulate recruitment of chromatin regulators. Furthermore, the genome wide distribution
of 5hmC indicated that 5hmC and TET proteins can possibly influence both transcriptional

activation and silencing [45].
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Table 1.1: DNMT inhibitors in cancer

Drug Therapeutic use Developmental stage
Nucleoside analogue
inhibitors

Approved [United States-Food and Drug

Myelodysplastic syndrome Administration (US-FDA)]

(1) 5-azacytidine

Acute myeloid leukemia Phase 2
Solid tumors Phase 2
o Myelodysplastic syndrome Approved (US-FDA)
(2) Decitabine Acute myeloid leukemia Approved [European Commission (EC)]

Solid tumors like breast, urinary]

(3) Zebularine bladder, hepatocellular cancer Preclinical
Myelodysplastic syndrome Phase 1
(4) SGI-110 Acute myeloid leukemia Phase 1
Solid tumors like bladder Preclinical
Nonnucleoside analogue
inhibitors
) Procamz%mlde Solid tumors like bladder, ..
(2) Procaine breast.prostate. cervix Preclinical
(3) Epigallocatechin -3-gallate] P ’
(4) SGI-1027 Leukemia Preclinical
. Breast cancer Phase 2
(5) Hydralazine Ovarian cancer Phase 3

1.4 DNA methylation for therapeutic use

Hypo methylating agents have fast acquired the status of being the first epigenetic thera-
peutic agent, approved by the Food and Drug Administration (FDA).

Hypomethylating agents have proved to be effective against hematological malignancies.
They are highly effective Myelodysplastic syndrome (MDS) [46-50]. However, these hypo
methylating agents/DNMT inhibitors (DNMTi) are not effective against solid malignancies
[51.[52]. A possible reason for their failure could be the complex nature of solid tumors as
compared to hematological neoplasms [53]. Yet another reason for their inefficacy maybe
due to their slow rate of replication dependent incorporation of DNMTi inhibitors in solid
tumor cells. Also, these inhibitors are inactivated by cytidine deaminase enzyme. Also,
toxicity is an issue as DNMTi inhibitors are effective against hematological malignancies
at a higher dosage alone. However, it is now established that azacytidine, in phase 2 trial
has proven to be effective even in low dosage form [54]. This has paved a new path for
DNMTi inhibitor application against solid tumors and possibly new treatment regime. Yet
another new strategy to achieve gene demethylation is the use of small nonnucleoside DNMT

inhibitor molecules as indicated in Table 2. These molecules partially and competitively
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Figure 1.2: DNA methylation and complex diseases

inhibit DNMT1 and also decrease DNMTs affinity towards their substrate. This leads to
DNMT1 and hemi-methylated DNA to dissociate. In an another therapy approach using
azanucleosides in combination with standard nucleoside analogues like 5-fluorouracil have
exhibited excellent efficacy compared to DNMT inhibitors as these can reignite the dormant
or silenced pro-apoptic genes . Also, HDAC inhibitors and DNMTi upon synergistic

usage, may yield superior results, thereby providing new treatment avenue [57-59)

1.5 Clinical perspective of aberrant methylation patterns in

cancer
Feinberg and Vogelstein, first reported the possible association between differences in DNA
methylation status to cancer (Figure [1.2)). Research since then, has accumulated a

wealth of information documenting aberrant DNA methylation in complex diseases.

Research focusing on DNA methylation and DNA methylation mapping techniques have
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provided a platform for translation of basic research to therapy/treatment regimes. Aber-
rant gene methylation has been observed in diseases such as colorectal cancer, Prader-Willi,
Angelman, Beckwith-Wiedmann syndromes and now part of routine detection diagnostics.
DNA methylation works in close harmony with histone modifications and chromatin struc-
ture, either building transcriptionally active or repressed chromatin [61-63]. The complex
cross-talk/ dynamics is currently the biggest challenge to be deciphered and aberrant DNA
methylation definitely impacts histone modifications and chromatin structure. Also, the
reversible effect of histone modifications and dysregulation of histone modifying proteins

can also influence DNA methylation patterns.

1.6 Discovery and detection of DNA methylation

A new platform in cancer diagnostics has arouse based on DNA methylation. This is due to
biomarker discovery for both diagnostic and prognostic use [64]. DNA methylation research
started with locus specific approach to a now genome-wide determination of methylome data
at a fine base pair resolution [65]. Methods or detection techniques for determining DNA
methylation are numerous, and selection of an appropriate technique depends largely on
the nature and number of samples, the purpose of investigation and expenses involved. The
three broad methodology or approaches that exists are: 1) methylation-specific restriction
enzyme digestion 2) Affinity purification of methylated DNA and 3) Bisulfite conversion
of DNA [65]. DNA subjected to investigation follow one of the two detection regimes: A
molecular genetic approach where in a single locus is analyzed using a PCR based anal-
ysis or a genome-wide investigation based on microarray technology, mass spectroscopy
or next generation sequencing analysis. DNA methylation detection started initially with
methylation-sensitive restriction enzymes and southern blotting, whereas today numerous
detection techniques are based on bisulfite conversion of DNA and subsequent PCR-based
method [65]. Bisulfite treatment technique usually demands a good pair of research hands

for conducting protocols, as it may lead to DNA degradation and unnecessary conversion
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Table 1.2: Commonly used techniques for locus specific DNA methylation determination
based on bisulfite sequencing with potential for translation into clinical practice.

Method Advantages Disadvantages
INeed for two different pairs of primers, one for|
Methylation specific Very sensitive. methylated DNA and one for non-methylated.
PCR (MSP-PCR) Cost-effective. Risk for false positive results if primer design
is not appropriate. Only qualitative.
Low rate of false positive results. Determination of methylated DNA only.
SMART-MSP High sensitivity. Closed tube technique | Not suitable for detection of heterogeneous
low risk for sample contamination. methylation.
Very high analytical sensitivity. Only for detection of methylated DNA.
MethyLight Low false positive rates. When samples with heterogeneous DNA
Closed tube technique methylation are analyzed it is only
low risk for sample contamination. semi-quantitative.
Useful for screening purposes
high throughput, inexpensive, fast. Information on methylation degree based
Methylation-sensitive high Real - time tracking of methylation |on standard curve analysis semi-quantitative.
resolution melting (MS-HRM) status. Applicable also for small No information on specific sites of

amounts of DNA. Closed tube technique | methylation patterns are hard to recognize.
low risk for sample contamination.

Sanger sequencing of Data on complete sequence composition.| Only semi - quantitative. Low quality results
bisulfite treated DNA Relatively long sequence reads possible. at the beginning of the reads.
Quantitative analysis of individual CpG
Pyrosequencing islands with real - time monitoring. Relatively short sequences (~ 50 nucleotides)
Appropriate for degraded formalin-fixed, can be reliably analyzed.

paraffin - embedded (FFPE) samples.

Need for high-quality DNA.
Relatively labor demanding.

Still associated with high costs.
Currently used applicable for research use
only. Purchase of an expensive instrument

is required.

High throughput. Data on complete
sequence reads genetic and
epigenetic data. Quantitative.

Next generation
sequencing

Quantitative analysis, high throughput,
MassARRAY EpiTYPER applicable for heterogeneous DNA
methylation patterns.

Investment into expensive instruments is
required.

of methylated cytosines to thymines based on sensitive incubation time and protocols in-
volved. Hence, commercially available kits for bisulfite conversion of DNA isolated from
various sample types were developed and now in extensive usage [66].

DNA methylation detection analysis on specific locus requires the investigation region to
be ideally unmethylated in normal tissue and methylated in cancerous tissue or vice versa.
Also, yet another requirement requires the differentiation between the methylation levels
between the two statuses of the samples [67]. Pyrosequencing has emerged to be a popular
technique for locus specific methylation biomarkers method. This is most appropriate for
degraded formalin-fixed, paraffin-embedded (FFPE) samples that forms an integral and
important part of tissue bio-banks. Pyrosequencing yields quantitative analysis of each

CpG position [67]. High resolution melting (HRM) curve analysis is another fast emerging
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and robust method in DNA methylation detection. Methylation-sensitive HRM (MS-HRM)
curve analysis and quantitative real time PCR, such as SMART-MSP are widely used now
(Kristensen LS, et al., 2009). These techniques are sensitive and inexpensive, accompanied
by a good throughput and quantification, and are closed tubes techniques. Quantitative
real time PCR (SMART-MSP) has an advantage of minimizing the risk involved in sample
confusion and cross-contamination which is a very critical factor in clinical laboratory [67,
68].MS-HRM method has already been employed on small DNA samples and has proved
to be a sensitive and reliable for screening investigations [69]. The above two techniques
are found to be successful on FFPE tissues also [70]. However, to overcome the obstacle
of false positive results, well designed primers and very stringent annealing temperatures
are required. Also, these techniques are not well-suited for analyzing heterogeneous DNA
methylation patterns.

Matrix-assisted laser desorption ionization - time of flight (MALDI-TOF) is yet another
technique being considered for single locus analysis. Sequenom Inc. has recently developed
a very sensitive and high throughput assay MassARRAY EpiTYPER, enabling a quanti-
tative screening and differential methylation analysis in cancer samples [71]. Two other
commercial ventures, Roche 454 Genome Sequencer and Illumina Genome analyser are now
very popular for their usage of next generation sequencing platforms in research and most
likely to be validated and approved for clinical use [72]. They are now key players in cancer
genome-wide methylome determination that could result in determination of an array of
biomarkers of practical application. The arrays developed by these commercial ventures,
are now being subjected to testing thoroughly on larger sample cohorts by using a more
cost effective methodology. Currently, next-generation sequencing costs are too high for
large sample testing studies. Such studies have led to providing good fingerprints of cancer
methylomes that are highly helpful for classifying cancer subtypes. However, establishing
a safe cancer specific methylation signatures is nowhere near, as limited knowledge of func-
tional consequences of methylation aberrations, enormous number of discovered changes

and overlapping changes between different cancers, still pose an enormous challenge that

19



needs to be overcome. Roche 454 system was a pioneer platform enabling a comprehen-
sive multi-sample, multi-gene, and ultra-deep sequencing of cancer DNA generating specific
methylation patterns. Adding to the high number of reads, and therefore detailed sequence
coverage, a significant advantage of this technology was simultaneous exploration of ge-
netic and epigenetic data at a genome-wide level [73]. The Infinium HumanMethylation
BeadChip microarray platform developed by Illumina is yet another platform allowing for
genome-wide methylome studies which has attained popularity. One of their array plat-
forms allowed for detection and analysis of 27,578 highly informative CpG islands located
within the proximal promoter regions [74]. A disadvantage to this analysis platform is
the requirement of high-quality DNA, which is not the most optimal for clinical setting
as the samples are mostly stored as FFPE. Furthermore, studies involving comparison of
fresh-frozen samples with FFPE showed their correlation of results between them was not
optimal [75]. Although, DNA methylation detection and analysis methods are numerous,
their applications for clinical diagnostic purposes are yet to overcome significant obstacles
like standardization of methods between laboratories, determination of reference standards,
and associated expenses involving the training of personnel and obtaining expensive new
equipment [67]. Key aspects that needs to be developed for DNA methylation techniques for
clinical setting are the ease of use, high throughput, preferably automation, applicability on
degraded DNA, cost-effectiveness, and should be able to provide quantitative methylation
data [67]. To add value to such development and in its favor is the fact that DNA methy-
lation is a stable covalent modification, present at single or multiple CpG sites, and can be
easily translated into highly robust and high throughput routine laboratory diagnostic tests
[76]. However, biomarker discovery and evaluation should be possible and readily accessible
diagnostic specimens, such as blood, urine, faeces or saliva for early stage detection of the

disease.

20



Table 1.3: Overview of bladder cancer biomarkers.

Biomarker Sample Type Diagnosis, treat.ment,
or prognosis
RUNX3 Tissue DNA methylation Diagnosis
RSPH9 Urine DNA methylation Diagnosis, prognosis
PCDH10, PCDH17 Urine DNA hypermethylation| Treatment, prognosis
PCDH17, POU4F2 Urine DNA methylation All
TWIST1, NID2 Urine DNA methylation Diagnosis
CDH1, CDH13, RASSF1A, APC Urine DNA methylation Prognosis
RASSF1A, CDH1, TNFSR25, EDNRB, APC| Urine DNA methylation Prognosis
H4K20 Tissue Histone modification Prognosis
KLF4 Urine Histone modification Treatment
H4K20me3 Tissue Expression level Prognosis
miR-422a-3p
miR-486-3p
miR-103a-3p Tissue (serum) Overexpression Prognosis
miR-27a-3p
miRNA-146a-5p Urine Overexpression Prognosis
miRNA-145 Urine Overexpression Prognosis

1.7 Current knowledge, advances and applications of DNA

methylation biomarkers in various cancers

1.7.1 DNA Methylation biomarkers in Urological Cancer

Urological cancer comprises of prostate, testis, kidney and bladder cancers. These cancers
are usually silenced in early stages and hence there is loss of early diagnosis and treatment.
Clinical biomarkers are scarce and existing ones are not specific or sensitive for applications.

However, detection of epigenetic conditions is easily accessed through urine samples.

1.7.2 Epigenetic biomarkers in bladder cancer

Current trend in bladder cancer diagnosis is mainly invasive. This is highly discomforting
to patients and only provides a generalized outcome for the subject. Noninvasive screening
and diagnosis is the need of the hour. Discovery of epigenetic biomarker will ease the
use or entirely erase the use of invasive methods and can also provide diagnostic value
at early stages for an effective treatment regime. RUNX3 gene, a tumor suppressor gene
shows a high level of methylation increase in bladder cancer in an analysis involving 124

tumor tissue samples, indicating a potential valued role for RUNX3 gene (Peng Wu., et
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Table 1.4: Overview of kidney cancer biomarkers

Biomarker Sample Type Diagnosis, treat.ment’
or prognosis
Wnt family genes [Tissue (Serum)| DNA methylation | Diagnosis, prognosis
VHL, RASSF1A Tissue DNA methylation Diagnosis
SMPD3, FBXW10 Tissue Hyper methylation Diagnosis
DAB2IP Tissue Methylation Prognosis
H3K4me2, H3K18A¢ Tissue IHistone modification| Prognosis
hMOF Tissue Histone modification| Diagnosis
HDAC Tissue Histone modification| Treatment
miRNA-126 Tissue Downregulated Treatment
miR-146a-5p
miR~128a-3p Tissue Downregulated Prognosis
miR-17-5p

al., 2016). Recently, Yoon et al., discovered a prognostic indicator in patients with non-
muscle-invasive bladder cancer (NMIBC). Quantitative Pyrosequencing has revealed the
clinical significance of RSPH9 using 136 human bladder specimens (8 normal controls and
128 NMIBCs). From this study, it was concluded that RSPH9 methylation showed clinical
value for the assessment of disease recurrence and can be used as an independent prognostic
indicator in NMIBC patients. Furthermore, Lin and Luo et al., reported from their study,
that the hyper methylation of PCDH10 (50%,) and PCDH17 (52%,) was closely related
to the bladder cancer development and was an independent predictor with regards to the

cancer-specific survival time [77.[78].

1.7.3 Epigenetic biomarkers in kidney cancer

Kidney cancer is reported to be the third most commonly occurring urological malignancy
in China. At present, there does not exist any tumor markers for clinical diagnosis of
renal cell carcinoma and to add to the complexity, clinical diagnosis of which depends on
imaging examination and precise diagnostic confirmation can be obtained after pathological
examination alone. Hauser et al., reported and demonstrated that, using tumor and serum
DNA, Wnt antagonist family genes could possibly be used as a biomarkers for diagnosis,
staging, and prognosis in kidney cancer. In this particular study, Hauser et al., adopted
methylation-specific PCR method to identify level of genes panels. This gene panel com-
prised of sFRP-1, sFRP-2, sFRP-4, sFRP-5, Wif-1, and Dkk-3 in 62 RCC samples and
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their corresponding normal renal tissue. Results showed that Wnt antagonist family genes
detection showed sensitivity of 79.0% and specificity of 75.8% Also, serum DNA signifi-
cantly correlated with tumor grade and stage [79]. It is also reported that certain genes
are highly specific for RCC patients in the level of DNA hyper methylation that includes
VHL (91%) and RASSF1A (93%) [80]. Similar to the above two studies, genes SMPD3 and
FBXW10, showed hyper methylation in ccRCC tissue samples as compared to paired nor-
mal tissues. However, upon 5-aza-2-deoxycytidine treatment, mRNA expression of SMPD3
and FBXW10 showed high levels of upregulation. Hence SMPD3 and FBXW10 genes can
be utilized as target for treatment or prognostic value [81]. Furthermore, it has been re-
cently reported that, DAB2IP, tumor suppressive gene, its CpG1 methylation is a practical
and repeatable biomarker for ccRCC that provides prognostic value and also complements
the present staging system. Also, they showed that there exists a relationship between
CpG methylation biomarker (DAB2IP CpGl) and poor overall survival in TCGA by py-

rosequencing quantitative methylation assay [82].

1.7.4 Epigenetic biomarkers in prostate cancer

Currently, the PSA test is a subject of increasing criticism, primarily due to potential
overtreatment and less comprehensive evaluation [83]. For prostate cancer, candidate
biomarkers is classified in few groups such as molecular class, soluble proteins DNA methy-
lation, mRNA and microRNA [84-86].

PCDH17 and TCF21 gene methylation quantification studies involving a total of 12
cancer cell lines and 318 clinical samples provided data revealing a sensitivity rate of 96%
for prostate cancer. High methylation exposure in prostate cancer cell lines was significantly
different from that of primary tumor tissues. Additionally, methylation levels showed sig-
nificantly lower levels in bladder and prostate non-tumorous tissues, providing a possible
evidence for potential cancer biomarkers [87,88]. Also, diagnostic platform may be ex-
tended and covered by using gene panels including GSTP1/ARF/CDNK2A/MGMT and

GSTP1/APC/RARB2/RASSF1A for urine and GSTP1/PTGS2/RPRM/TIG1 for serum
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Table 1.5: Overview of prostate cancer biomarkers

Biomarker Sample Type Diagnosis, treat.ment,
or prognosis

PCDh17, TCF21 Tissue DNA methylation Diagnosis
GSTP1, ARF, CDNK2A, MGMT Urine DNA methylation Diagnosis
GSTP1, APC, RARB2, RASSF1A| Urine DNA methylation Diagnosis
GSTP1, PTGS2, RPRM, TIG1 [Tissue (serum) DNA methylation Diagnosis
HOXB13 Tissue Overexpression Prognosis
ADAM19 Tissue Overexpression Treatment

SFRP1 Tissue IDecreased expression| Diagnosis, prognosis

PSF1 Tissue Overexpression Diagnosis, prognosis
EN2 Tissue, urine overexpression Diagnosis
SLC18A2 Tissue Downregulated Diagnosis
TRPM4 Tissue Overexpression Prognosis
SUX2 Tissue Downregulated Prognosis
XPO6 Tissue Overexpression Prognosis

samples.

In another study, HOXB13 showed overexpression during malignant progression of the
prostatic tissue. The study also revealed an important role in the pathogenesis of the
prostate gland and that it can be used as a novel biomarker for the prognosis of prostate
cancer [89]. ADAM19 (a disintegrin and metalloproteinase 19) is a transmembrane and
soluble protein which is linked to cell phenotype through cell adhesion and proteolysis. A
study involving special immune histochemical approach showed that ADAM19 protein lev-
els showed increased expression compared to normal prostate tissue during prostate cancer
biopsies [90]. It is also reported that expression of SFRP1 shows inverse correlation with the
Gleason score, survival rate and response for endocrine therapy expression, thus substanti-
ating it as a favorable predictive and prognostic biomarker [91]. Other study groups have
reported PSF1 expression in high-grade prostate cancer could be a potential biomarker to
identify patients for diagnosis [92]. Engrailed-2 (EN2) protein, a homeodomain-containing
transcription factor showed expression in prostate cancer. This protein is secreted in urine
and shows a high specificity and sensitivity values, adding value as a novel biomarker for
prostate cancer [93]. Downregulated protein like SLC18A2 and unregulated protein like

TRPM4 in prostate cancer, also show similar functions as EN2 proteins.
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1.7.5 Epigenetic biomarkers in testicular cancer

Recent reports have identified risk SNPs in testicular germ cell tumors (TGCT). High levels
or increased PDE11A, SPRY4, and BAK1 promoter methylation and decreased KITLG
promoter methylation in familial TGCT cases versus healthy male family controls was
used to diagnose TGCT in the early time [94,95]. Other groups have reported that Long
Interspersed Nuclear Elements (LINE-1, retrotransposons) methylation may be gender-
specific, with a strong correlation between LINE-1 methylation levels associated with disease
risk (L. Mirabello, S.., et al., 2010). A knock down miR-199a-3p study, in a normal human
testicular cell line (HT) showed a marked elevation of DNMT3A2 (DNMT3A gene isoform 2)
mRNA and protein levels. In clinical studies, DNMT3A2 was significantly overexpressed in
malignant testicular tumor and showed inverse correlation with miR-199a-3p expression [96].
Methylation profiles of oncogenes in testicular cancer shows correlation with histological
types and cancer-specific genes. Furthermore, methylation analysis in a larger cohort is
necessary for deciphering the complexity of gene roles in testicular cancer development and

can shed light on its therapy, early detection, and disease monitoring [97].

1.7.6 Epigenetic biomarkers in gastric cancer

Gastric cancer (GC) and colorectal cancer (CRC), are the two most frequently occurring
gastrointestinal tract cancer. Genetic and Epigenetic factors control initiation and progres-
sion of Gastrolntestinal Cancer (GIC). DNA methylation, specific histone modifications,
chromatin remodeling and noncoding RNA-mediated gene silencing, together comprise epi-
genetic changes and are potentially reversible and heritable [98].

Numerous gene show altered DNA methylation levels across the CRC genome. These
include the genes associated with the Wnt signal transduction pathway (APC, AXIN2,
DKK1, SFRP1, SFRP2 and WNT5A), DNA repair genes (MGMT, MLH1 and MLH2),
Cell-cycle related genes (CDKN2A) and RAS signaling genes (RASSF1A and RASSF1B)

[63,99]. It is determined that highest CGI hyper methylation frequency takes place in GC,
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using DNA methylation mapping [441[100]. It is reported that HOP homeobox methylation
can be used as a potential biomarker as it exhibited 84% of hyper methylated samples versus
10% of matched adjacent normal tissues [101]. It was also observed that, the expression of
ADAMTS9 (a disintegrin and metalloproteinase with thrombospondin motifs 9 and belong-
ing to ADAMTS family), was silenced in 75% of GC cell lines and inhibited the expression
of AKT/mTOR pathway genes. This is found to be due to promoter hyper methylation
[102).

Genes that are differentially methylated and can be detected in various body fluids, us-
ing can be of clinical relevance. They are useful, easily available and noninvasive biomarkers
for GIC. Methyl-BEAMing for the absolute quantification of methylated molecules in DNA
from plasma or fecal samples is one such method developed for identification of clinically
relevant DNA methylation biomarker [103],/104]. A pioneer study reported using blood-
based PCR tests to detect the presence of the methylated septin 9 gene in CRC patients
had a sensitivity and a specificity of nearly 90% [105]. Such an approach wherein, CRC
screening test via blood-based, using the methylated SEPT9 biomarker (septin 9), (encod-
ing a GTPase involved in dysfunctional cytoskeletal organization) specifically detects the
majority of CRCs at all stages and locations in the colorectal region. The test showed an
overall sensitivity of 90% and a specificity of 88% [106].

Likewise, stool-based test for detecting gene methylation that codes for vimentin, when
conducted with colonoscopy exhibits a degree of sensitivity for CRC that ranges from 40
to 80% [106]. Other stool-based tests developed for CRC diagnosis and to detect clinically
relevant hyper methylated genes are targeted towards those that encode for fibrillin-1, APC,
CDKN2A, MLH1, MGMT, SFRP1, SFRP2 and NDRG4. Their levels of sensitivity that
range from 60 to 80% [107.,{108]. Recent reports have indicated that TFPI2 is expressed in
almost all colorectal adenomas (97%, n = 56) and stage I to IV CRCs (99%, n = 115). Also,
DNA-based stool assays have been used from I-III CRC stages and showed a sensitivity of
76-89% and a specificity of 79-93%. This suggests that TFPI2 methylation levels in stool

DNA samples can be a potential noninvasive biomarker for the early screening of CRC [109).
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Table 1.6: Selected genes with promotor hyper methylation and their clinical correlations
in ovarian carcinomas

Genes Clinical correlations Ref(s).
RASSF1A Detection of OC 81, 82
BRCA1 IDetection of OC; poor prognosis; improved chemotherapy responsef81, 83, 84
APC Serum/ascites diagnosis of OC 81, 83
MGMT Detection of OC; improved chemotheraphy response 83, 85
hMLH1 Poor prognosis; improved chemotheraphy response 86-88
HOXA9 Detection of OC 89
OPCML Detection of OC 90
SFRP-1, -2, -4, -5 Detection of OC; Cancer recurrence; Poor prognosis 91
IFZD4, DVL1, NFATC3, ROCK1, Poor prognosis 92
LRP5, AXIN1, and NKD1
FBXo032 Poor prognosis 93
HOXA11 Poor clinical outcome 94
FANCF Cisplatin resistance 95

Another research group have suggested that, rather than detecting a single methylated gene,
sensitivity of stool DNA testing when combined with a panel of different biomarkers for the
detection of CRCs showed an increase up to 92.3%. This combined screening approach
including the panel of methylated genes is under evaluation for improving sensitivity and

also specificity [110].

1.7.7 Epigenetic biomarkers in Ovarian Carcinoma

Ovarian carcinoma (OC) is reported to be the most lethal gynecological malignancy world-
wide. Most OCs fall under a category of high grade serous ovarian carcinomas (HGSOC).
Common diagnosis occur in advanced stages involving peritoneal dissemination and massive
ascites. Advanced OC patients survival rate is ~30%, even after administered with stan-
dard combined therapy of debulking surgery and neoadjuvant chemotherapy of paclitaxel
and carboplatin [111]. Epigenetic biomarkers, particularly DNA methylations, have proven
to be highly beneficial in terms of clinical utility for detection/diagnosis, chemotherapy
response and prognosis in OC (Table 7)[111}{112].

It has been reported that, epigenetic regulation of Wnt and Akt/mTOR pathways may
be utilized as biomarkers for prognosis and/or treatment response in OC [113]. In another
study, examination of promoter methylation at 302 loci in a panel of 137 Wnt pathway

genes in 111 screening cases and 61 validation cases showed that methylations at 7 loci
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(FZD4, DVL1, NFATC3, ROCK1, LRP5, AXIN1, and NKD1) were associated with poor
progression-free survival. Also, hypermethylations of DVL1 and NFATC3 responded very
poorly to platinum chemotherapy [114]. Also, hypermethylations of DVL1 and NFATC3
showed similar poor response to platinum chemotherapy. Additionally, subjects with pro-
gressive or stable disease had increased methylation levels compared to those with partial
or complete response. The same research group reported that, promoter methylations of
VEGFB, VEGFA, HDAC11, FANCA, E2F1, GPX4, PRDX2, RAD54L. and RECQL4 were
associated with increased hazard of disease progression. This was independent from con-
ventional clinical prognostic factors both in the screening cohort (n=150) and the TCGA
validation cohort (n=311). Furthermore, methylations at VEGFB and GPX4 showed poor
response to chemotherapy [114]. Next, a diagnostic model was built using methylation pro-
file in the previous Wnt pathway and the methylations of NKD1, VEGFB and PRDX2,
from which, methylation index was calculated to identify two distinct prognostic groups.
Subjects with increased methylation index exhibited a very poor response to chemotherapy.
Studies have also been conducted using genome-wide identification of methylated biomark-
ers in OCs. A approach known as methylated DNA immunoprecipitation microarray
(MeDIP-chip) was able to identify 367 CpG islands specifically methylated in OC, com-
pared to normal ovaries [115]. 168 genes are reported to be epigenetically silenced (Nature
report. 2011; 474:609615). Three genes AMT, CCL21, and SPARCL1 exhibits promoter
hyper methylation in most cancers, including OC and may serve as biomarkers for the
presence of OC. Four subtypes was generated upon consensus clustering of methylations
across tumors, with valid prognostic differences. Genome wide associated studies (GWAS)
studies in OC have yielded methylation signatures associated with progression-free survival
[116/117]. Methylation analysis across genome-wide can potentially identify biomarkers of
good prognostic value. 220 differentially methylated regions were identified, in tumor tissue
of patients with short vs. long progression-free survival (106 hypo- and 114 hyper methy-
lated regions) using genome-wide array analysis approach [118]. This was validated when

subjects harboring methylation at the CpG island of RUNX3/CAMK2N1 had a significantly
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lower progression free survival. Such identified biomarkers using genome screening needs to
be further investigated in large cohorts supplemented by good clinical documentation.
NOTE: A comprehensive coverage on the current status, discovery and development of
all cancer DNA methylation biomarker is beyond the scope of this dissertation work. An at-
tempt is made above to highlight the past, current and on-going discovery and development

of the same.

1.8 Need for DNA methylation biomarker discovery

DNA methylation biomarkers have currently advanced to diagnostic laboratories, partic-
ularly those which are being used for early stage cancer detections. Lack of standardized
methodologies and inconsistent reference standards for detection of valuable biomarkers
are the biggest challenges that needs to be overcome today. Inappropriate methodologies
involving inappropriate controls are leading to non-replicating results which is hampering
biomarker discovery and development. Quantitative DNA methylation detection is the need
of the hour and is critical in cases, where only small differences in methylation values de-
termine a diseased or disease-free state. Also, DNA methylation biomarkers in non-cancer
related disorders will greatly benefit from the valuable knowledge and results obtained from

cancer related studies.

1.9 Future prospects

Standardization of appropriate methods intended towards DNA methylation detection and
building reliable reference standards will accelerate the discovery as well as the development
of DNA methylation biomarkers for cancer and other disorders. Next generation sequencing
has added immense value in this direction, allowing for routine testing of DNA methylation
biomarker panels rather than the selective choice of individual biomarkers. This is greatly
helpful in cases where disease phenotype exists in quite heterogeneous state. Additionally,

genetic disease components will be revealed allowing the validation and strengthening of

29



biomarker panels by combining genetic and DNA methylation biomarker panels [119]. Fu-
ture research will not only focus on detection of appropriate epi (genetic) biomarker panels
available for diseases or risk stratification but also to translate them into clinical actionable
information with substantial validation. Translational approach is utmost important in this
context as there is a risk of adverse psychological impacts among patients. There also exists
risk of those patients being disadvantaged by healthcare providers. However, those denied
for healthcare or affected patients can avail the knowledge to their benefit. This will allow

them to actively prevent or delay the early onset of certain diseases, upon early detection.
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Chapter 2: MATERIALS AND METHODS

2.1 The Cancer Genome Atlas (TCGA) overview

Overview on TCGA: The Cancer Genome Atlas (TCGA) is a public funded project. The
primary objective of this initiative is to discover and catalogue genomic alterations. These
catalogued data are used to create a comprehensive Atlas of cancer genomic profiles. To this
day, TCGA initiative has analyzed over 30 large cohorts of human tumors using large-scale
genome sequencing and integrated multi-dimensional analyses. Also, specific cancer type
studies and comprehensive pan-cancer analyses have been enriched from TCGA cancer
research initiative. The main goal of this TCGA cancer initiative is to provide publicly
available datasets in order to help improve diagnostic methods, treatment standards, and
finally to prevent cancer.

In 2005, The Cancer Genome Atlas (TCGA) and in 2008 the International Cancer
Genome Consortium (ICGC) were launched. These two main projects aims at accelerating
the comprehensive understanding of cancer genetics. This would be achieved through the
use of innovative genome analysis technologies and thus would help to generate new cancer
therapies, diagnostic methods, and preventive strategies. TCGA was set up in phases.
Aim of Phase 1 was to develop and test the research infrastructure which was based on
characterization of tumors with poor prognosis. This included brain, lung and ovarian
cancers. This was a 3-year pilot study. Phase 2 study started in 2009. The study expanded

to additional cancer types and covered 30 tumor types. The analysis was completed in 2014.
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Table 2.1: The Cancer Genome Atlas (TCGA) organization centers

Centre Name

Centre Description

Localization

Tissue Source
Sites (TSSs)

Collection of the samples (blood and tissue from tumor
and normal controls) and clinical metadata from patients
(donors) Shipment of the annotated bio specimens to
Bio specimen Core Resources (BCR)
https://wiki.nci.nih.gov/display /TCGA /Tissue+Source+Site

https://tcgadata.nci.nih.gov/
datareports/codeTablesReport.
htm?codeTable=tissue%
20source%20site

Bio specimen

Coordination of sample delivery and data collection,

Research Institute at

sequencingcenters

Core cataloguing, processing, and verifying the quality and quantity Nationwide Children’s
Resource Isolation and distribution of RNA and DNA from Hospital in

(BCR) bio specimens to other institutions for genomic Columbus, Ohio

characterization and high-throughput sequencing
http://cancergenome.nih.gov/abouttcga/overview /howitworks/ber
http://www.nationwidechildrens.org/biospecimen-core-resource-about-us
Genome High-throughput sequencing (data are available in TCGA Data Portal Broad Institute Sequencing
Sequencing or at NIH’s database of Genotype and Phenotype) Identification Platform in Cambridge Human Genome

Centers of the DNA alterations Sequencing Center, Baylor College of
(GSCS) http://cancergenome.nih.gov/abouttcga/overview /howitworks/ Medicine in Houston

The Genome Institute at
‘Washington University

2.1.1 The Cancer Genome Atlas (TCGA) Data collection and Research

Network

TCGA is well-structured and is supported by cooperating centers which are responsible for
collection and sample processing. This is then followed by high-throughput sequencing and
sophisticated bioinformatics data analyses (Table 8) [120] (Figure [2.1)).

The Cancer Genome Atlas (TCGA) organization centers

At first, various Tissue Source Sites (TSSs) collects the bio-specimen/samples (blood,
tissue etc.) from eligible cancer patients. It is then delivered to the Bio-specimen Core
Resource (BCR). The BCR then catalogues, processes and verifies the sample (quality and
quantity). It then submits clinical data and metadata to the Data Coordinating Cen-
ter (DCC). It also provides molecular analytes for the Genome Characterization Centers
(GCCs) and Genome Sequencing Centers (GSCs) for further genomic characterization and
high-throughput sequencing. At this point, sequence-related data are deposited with DCC.
The GCC also submits trace files, sequences and alignment mappings to NCIs Cancer
Genomics Hub (CGHub) secure repository. Such compiled data source is made publicly
available to the research community and Genomic Data Analysis Centers (GDACs). The

role of GDAC:s is to process new information, its analysis and provide visualization tools for
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TSSs
Clinical Tissue samples collection
metadata and
collection Preliminary pathology review
BCR
Clinical Pathology review
metadata and
collection Molecular analyte isolation and QC

GSCs
DCC
Standarization data formats and validation submitted data
Central provider of TCGA data
CGHub GDACs

Research Community

GCCs

NCl and
NHGRI team

Figure 2.1: The Cancer Genome Atlas (TCGA) Research Network Centers flowchart.

a wider audience. DCC also is a central management center for the entire data generated

by TCGA. DCC feeds the data into public free-access database&ﬂ (TCGA Portal, NCBI’s

Trace Archive, CGHub).

"http://cancergenome.nih.gov/abouttcga/overview
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2.1.2 TCGA platform and data types.

TCGA has extensively used high-throughput technologies based on microarrays (to test nu-
cleic acids and proteins) and next-generation sequencing methods (for genome-wide analysis
of nucleic acids). Also, the TCGA research network structure is supported by centers that
utilizes different platforms to provide a comprehensive cancer genomics data. Some of
the applied methods includes: RNA sequencing (RNAseq), MicroRNA sequencing (miR-
NAseq), DNA sequencing (DNAseq), SNP-based platforms, Array-based DNA methylation
sequencing and Reverse-phase protein array (RPPA).

RNA sequencing (RNAseq): This is a high-throughput technology for transcrip-
tome (total RNA) profiling. This can obtain strand information with excellent precision.
RNAseq can quickly and efficiently identify and quantify novel transcripts, isoforms, com-
mon transcripts, gene fusions and non-coding RNAs from numerous samples, even if the
samples are of low quality grade [121]. TCGA utilizes Illumina system for transcriptome
analysis. Submitted data contains information pertaining to nucleotide sequence and gene
expression. RNA sequence alignment provides a comprehensive information including RNA
sequence coverage, sequence variants (like fusion genes), gene expression, exon and/or junc-

tion. dbGaP databasd?] from NCBI is the repository database for the actual sequence data

MicroRNA sequencing (miRNAseq): This is a RNA-seq method that utilizes mate-
rials enriched in small RNAs and will thus allow the identification and detection of specific
sets of short, noncoding RNAs (miRNAs). These miRNAs can regulate numerous genes
within and across diverse signaling pathways. Furthermore, miRNA-sequencing is useful
for defining tissue-specific miRNA expression profiles, their isoforms, relatedness to disease
and discovery of novel miRNAs [122-124].

DNA sequencing (DNAseq): This is a high-throughput method for identifying or

determining nucleotides in a DNA molecule. It provides valuable information about DNA

2https://wiki.nci.nih.gov/display/ TCGA /RNASeq
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alterations, like insertions, deletions, polymorphism, copy number variations, mutation fre-
quencies or cellular events like viral infections. Genomic diversity across many cancer types
is catalogued by TCBGA using Sanger Sequencing technique at the TCGA Genome Se-
quencing Centers [125||126/126].

SNP-based platforms: These platforms are utilized for analysis of genome-wide struc-
tural variations across numerous cancer genomes. A wide pool of powerful genotypic tool
sets are made use of for this purpose. Single Nucleotide Polymorphisms (SNPs) detected
using an array-based detection includes platforms that can define SNP, CNV and loss of
LOH across multiple samples| [127].

Array-based DNA methylation sequencing: This is a high-throughput, genome-
wide analysis of DNA methylation profiling. This provides changes in epigenetics in the
genome. The most common and the earliest alterations in cancer is abnormal profiles of
DNA methylation of CpG siteq!] [128] and Illumina is the main platform utilized by TCGA
for DNA methylation assay. This platform ensures single-base-pair resolution, high accu-
racy, easy workflows and low DNA input requirements. Methylation profiling approaches or
methodologies are based on highly multiplexed genotyping of bisulphite-converted genomic
DNA. TCGA provides the DNA methylation data files which includes signal intensities
(both raw and normalized), confidence of detection, and calculated beta values for methy-
lated (M) and unmethylated probes’| (U).

Reverse-phase protein array (RPPA): This is a high-sensitivity, reproducible, high-
throughput, functional and quantitative proteomic method. This method can detect nano-
grams of proteins. This is used for large-scale protein expression profiling, biomarker dis-
covery and also for cancer diagnostics. RPPA is based on the antibody-based technique and
allows for analysis of more than 1000 samples at any given instance. It also includes 500 dif-
ferent antibodies at the same time. Protein arrays contains information pertaining to both

expression and concentration. TCGA submits protein array data to DCC. Such data also

3http:/ /www.broadinstitute.org/collaboration/gcc/methods/technology
*http://res.illumina.com/documents/products/datasheets/datasheet_dna_methylation_analysis.pdf
Shttps://wiki.nci.nih.gov/display /TCGA /DNA+methylation
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includes original images of protein arrays, its raw signals, relative protein concentrations
and normalized protein signald’}

Many data types (kinds or variety in data) can be obtained from each platform. These
include gene expression, exon expression, miRNA expression, copy number variation (CNV),
single nucleotide polymorphism (SNP), loss of heterozygosity (LOH), mutations, DNA
methylation, and also protein expression. Such data obtained are categorized not only
by data type but also by data levels. Raw, unnormalized data (Level 1), processed data
(Level 2) and segmented or interpreted data (Level 3) from each individual samples and
summarized data (level 4) is the data that refers to analysis across sample sets. Level 3
and 4 data is publicly available data, whereas Level 1 and 2 will need special permission for

accession}

2.1.3 Analysis and visualization of TCGA data

Next-generation sequencing (NGS) and Array-based profiling yields vast amounts of diverse
data types. This provides a good platform for cancer genome analysis. Data interpretation
and visualization that involves integration and multi-dimensional data is utmost essential.
Hence, the need for advanced visualization tools has emerged quite drastically. Various
useful imaging tools and databases are now employed for cancer genome analysif] This
includes:

The Cancer Imaging Archive, TCIAP} This was created by NCI to collect and
share numerous medical images of cancer (radiological imaging data), from TCGA cases for
public use. In short, it supports the imaging phenotype-genotype research [128].

Berkeley Morphometric Visualization and Quantification from H & E sec-

tiong™} This is a repository for data pertaining to histology-based images of various tumor

Shttp://www.mdanderson.org/education-and-research /resources-for-professionals /scientific-
resources/core-facilities-and-services/functional-proteomics-rppa-core/index.html

"https://tcga-data.nci.nih.gov/tcga/tcgaDataType.jsp

Shttps://tcga-data.nci.nih.gov/tcga/tcgaAnalytical Tools.jsp

http://www.cancerimagingarchive.net

Yhttp://tcga.lbl.gov/biosig/tcgadownload.do
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samples of TCGA cases. This is supported by the Lawrence Berkeley National Laboratory
(Chang H., et al., 2013).

The Cancer Digital Slide Archive, CDSA['} This is an online tool built for the
purpose for viewing and annotating diagnostic and tissue slide images of various tumor
types from TCGA project. Its creators are Dr. David Gutman and Dr. Lee Cooper of
Emory University who have facilitated a broader access to TCGA data [129].

The Broad GDAC Firehosd? This was created by Broad Institute. It coordinates
the smooth flow of datasets in the order of terabyte-scale, thus providing a large amount of
different quantitative algorithms including GISTIC, MutSig, Clustering and Correlation [}

The MD Anderson GDAC’s MBatch™ This platform is useful in identification
and quantification of the batch effects accompanying the TCGA data sets. This is in
accordance to hierarchical clustering and enriched PCA plotq™]

Cancer Genome Workbench, CGWB[%t This was developed by NCI, to provide
an integrative platform and also for displaying sample-level genomic and transcription al-
terations in various cancers. Major views on this platform are Integrated tracks view, Heat
map view and Bambino (Alignment viewer) [130].

UCSC Cancer Genomics Browser"t An important platform wherein users can
find an open-access, web-based tools developed and supported by USCS Cancer genomics
Group. This is used to visualize and analyze cancer genome combined with clinical data
by using genomic coordinate heat maps. The site provides interactive visual outputs of
genomic regions. This is supplemented with annotated cellular pathways and also allows
for quantitative analysis for all datasets and integrates with statistical tools also [131].

Integrative Genomics Viewer, IGV[';: Freely available high-performance visualiza-

tion tool from Broad Institute. Its purpose is to provide interactive exploration of large,

Hhttp: //cancer.digitalslidearchive.net/
2https://confluence.broadinstitute.org/display /GDAC /Home
Yhttp://www.broadinstitute.org/cancer/cga/Firehose

Y http:/ /bicinformatics.mdanderson.org/tcgabatcheffects
Yhttps://wiki.nci.nih.gov /display /TCGA/MD4Anderson+GDACHMBatch
Yhttps://cgwb.nci.nih.gov/

"https://genome-cancer.soe.ucsc.edu,/

Bhttp://www.broadinstitute.org/igyv
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heterogeneous, integrated data sets. IGV provides a platform for easy analysis of user-
friendly data or for those from IGV server and TCGA data too. It has coordinate-type
data that provides genome annotations with specific labels for viewing genomes.

The cBioPortal for Cancer Genomicg”t This is offered by the Memorial Sloan-
Kettering Cancer Centre (MSKCC). It provides for the visualization, analysis, and download
of large-scale cancer genomics data sets. Also, it allows for interactive exploration of cus-
toms datasets. This is done by direct accession to OncoPrinter or MutationMapper web
tools. This site presently holds data from 69 cancer genome studies including data such
as DNA copy-number data, mRNA and miRNA expression data, mutations, RPPA data,
DNA methylation data, and limited clinical data related to survival. Visualization interface
involves networks, matrices as well as heat maps. This site highly compliments existing
tools from TCGA and ICGC data portals, IGV, USCS genome browser and also IntOGen
[132,[133].

Regulome Explorer’’t This portal allows for integrative exploration of relations or
associations between molecular features and clinical aspects of TCGA data. This allows
users to search and visualize data by applying suitable filters. The visualized data may
include either circular or linear genomic coordinates or networks. This explorer is supported
by the Center for Systems Analysis of the Cancer Regulome (CSACR), associated with the
TCGA initiative and also with the Institute for Systems Biology and The University of

Texas MD Anderson Cancer Center |134].

2.1.4 Data mining the vast TCGA resource.

Cancer types with data available via The Cancer Genome Atlas

All TCGA data is made publicly available and centralized at the TCGA data portal.
TCGA data has been utilized for various analysis, including a study to characterize the
genomic and molecular landscape of various cancer types and their respective analysis.

One such analysis includes that of exome sequencing, RNAseq and MiRNAseq across 12

9http://cbioportal.org
2Ohttp://explorer.cancerregulome.org/
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Table 2.2: Cancer types with data available via The Cancer Genome Atlas

Available Cancer Types

# Cases Shipped by BCR¥*

Acute Myeloid Leukemia [LAML)]
Adrenocortical carcinoma [ACC]
Bladder Urothelial Carcinoma [BLCA]
Brain Lower Grade Glioma [LGG]
Breast invasive carcinoma [BRCA]

Cholangiocarcinoma [CHOL)]
Colon adenocarcinoma [COAD]
Esophageal carcinoma [ESCA]
FFPE Pilot Phase II [FPPP]
Glioblastoma multiforme [GBM]
Head and Neck squamous cell carcinoma [HNSC]
Kidney Chromophobe [KICH]

Kidney renal clear cell carcinoma [KIRC]
Kidney renal papillary cell carcinoma [KIRP]
Liver hepatocellular carcinoma [LIHC]|
Lung adenocarcinoma [LUAD]

Lung squamous cell carcinoma [LUSC]
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma [DLBC]
Mesothelioma [MESO]

Ovarian serous cystadenocarcinoma [OV]
Pancreatic adenocarcinoma [PAAD]
Pheochromocytoma and Paraganglioma [PCPG]
Prostate adenocarcinoma [PRAD]
Rectum adenocarcinoma [READ]
Sarcoma [SARC]

Skin Cutaneous Melanoma [SKCM]
Stomach adenocarcinoma [STAD]
Testicular Germ Cell Tumors [TGCT]
Thymoma [THYM)]

Thyroid carcinoma [THCA]

Uterine Carcinosarcoma [UCS]

Uterine Corpus Endometrial Carcinoma [UCEC]
Uveal Melanoma [UVM]

Cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC]

200
80
412
516
1100
308
36
461
185
38
529
528
66
536
291
377
521
510
48
87
586
185
179
498
172
261
470
445
150
124
507
57
548
80

*Excludes non-canonical cases

cancer types revealed 11 major subtypes and redefined three cancer types into one molecular
subgroup (Hoadley KA., et al., 2014). In another analysis, exome sequencing and RNAseq

data for six cancer types was used to discover neo-antigen expression and to predict patient

survival rates [135].

Data types for each cancer types include somatic mutation, copy number, gene expres-
sion, miRNA expression, DNA methylation, reverse protein phase array (RPPA) and clinical
information. As mentioned before, each data type has raw and processes data. Exceptions
to this rule though are for sequencing files from the exome sequencing, RNA sequencing
(RNAseq), microRNA sequencing (miRNAseq) and copy number, which require authoriza-

tion from the Cancer Genomics Hub (CGHub). Also, pipeline for analysis for each data
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type are provided in a text file. These contain a standard method for raw processing of

data and annotation. This allows for reproducibility in downstream analysis.

2.1.5 Analysis of TCGA data using publicly available web tools.

Web tools such as cBioportal, GDAC firehose Websites such as cBioportal [132], GDAC fire-
hose] canEvolve [136], PROGgeneV2 [137], and the UCSC cancer browser [131] all provide
their own analysis and visualization tools for TCGA datasets canEvolve , PROGgeneV2 |
and the UCSC cancer browser all provide their own analysis and visualization tools for
TCGA datasets (Table 10).

Web tools for TCGA analysis

cBioportal site contains >20 000 tumor samples from 89 cancer studies. Users can select
datasets and enter a gene list. This site is invaluable as it offers unique analysis pipeline
such as OncoPrint diagrams, MEMo (Mutual Exclusivity Modules) analysis, customizable
correlation plots, Kaplan-Meier plots, network analysis and integrative genomics viewer
integration. Oncoprint diagrams represent genomic alterations such as somatic mutations
and copy number alterations across sample sets. Users are able to detect visually the vi-
sually co-occurrence or mutual exclusivity of genomic alternations within a cohort. MEMo
analysis helps in identifies gene mutations, that share a common pathway and that exhibits
a mutually exclusive mutations pattern across a cohort [138]. Using cBioportal analysis of
RNAseq and RPPA data types can be done by setting z-score thresholds for identifying
significant genes and proteins, respectively. Cytoscape, a tool for network analysis integra-
tion allows for viewing gene networks and their corresponding interactions for the gene/s
of interest. Integrative genomics viewer (IGV), can be used for visualizing copy number
alterations (CNA), gene expression and mutations across all chromosomes genome-wide.

Annotated data can be preprocessed using GDAC firehose and provides correlations and
differential gene analysis in all data types. The firehose platform periodically updates new

TCGA cases and automates pipelines every four months. GDAC firehose includes unique

2http://gdac.broadinstitute.org
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analysis pipelines that include GISTIC2 (analysis of copy number data) [139] MutSig2
(analysis of mutation data) [140] and PARADIGM (analysis of copy number and RNAseq
data) [141]. GDAC site also correlates clinical data with miRNA, mRNA, RPPA, copy
number and DNA methylation datasets. Clustering analysis can be performed for data
types and molecular subtypes can be defined. This can then be correlated to clinical,
mutation and copy number data.

canEvolve site contains >10 000 tumor samples from 90 cancer studies, including 15
TCGA data sets. Users can select a database and can conduct multiple downstream analy-
sis including differential gene expression, miRNA expression, copy number analysis, regula-
tory network analysis using ARACNE, co-expression network analysis using WGCNA, gene
set enrichment analysis using the MSigDB 3.0 gene sets (Subramanian A., et al., 2005),
integrative gene expression and miRNA expression analysis using GemiNI, integrative gene
expression and copy number analysis using DR-Integrator, integrative genomic and gene ex-
pression analysis, integrative genomic and protein expression analysis and survival analysis.
canEvolve can also be used to query genes across multiple datasets. Users can select a pre-
defined gene list from KEGG or Biocarta pathway or a user-end gene list for interrogating
gene expression patterns within any given dataset.

PROGgene V2, second version of PROgene, contains >19 000 samples from 134 cohorts
in 21 cancer types. This tool provides for analysis on survival rates based on one gene or
ration between two genes. Survival plots are generated using gene signatures from KEGG,
Biocarta, GO, and Reactome databases. Covariate data like cancer stages can be adjusted
for survival plots. Also, unique feature of this site is that, users can upload their own data
here. Omics data is now gaining popularity as it does not require programming experi-
ence and hence this above mentioned feature will become increasingly important to help
comprehend as to how individual patient data compares with larger cohorts. UCSC cancer
browser like other tools provides for visualization and analysis for TCGA data. However, it
offers a unique interactive analysis of multiple datatypes for a cancer dataset. Cancer data

set can be selected to visualize gene expression or DNA methylation, stratified according
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to clinical parameters or another dataset. For instance, users can select a mutated genes
dataset and stratify according to clustering of miRNA and DNA methylation signatures,
allowing users to define cancer specific subgroups and also perform survival analysis. User
can also specify genes or gene signatures to visualize within a dataset. End user annotations
can be uploaded to clinical heat map for specific clustering analysis. New platforms like

Xena platform for visualization and integration with Galaxy is being introduced [142}|143].

2.1.6 Future promise/perspective from TCGA.

TCGA has provided new insights into the molecular biology of cancer and into cancer ge-
nomics. Advances in bioinformatics tools and high-throughput technologies has highlighted
the intricate similarities and differences in the genomic architecture of cancer and its rele-
vant subtypes, which is publicly available. Immeasurable and invaluable data is now made
publicly available with regards to genetic and epigenetic profiles, highlighting candidate can-
cer biomarkers and drug targets. Also, personalized medicine can benefit immensely from
translation of cancer genomics into therapeutic prospects. On the bioinformatics front, it
is essential that the tools eliminate potential noise and improve upon resolution of analy-
sis, and identify or discover biomarkers or therapeutic targets from those refined data sets.
Such novel discoveries will aid in the medicine community in diagnosis, treatment and can-
cer prevention. Progress is being made analysis and disease knowledge resulting in advances
in medicine. Recent medical advances include a machine learning approach being taught

to an artificially intelligent computer WATSON in order to support doctors in diagnosing

patient{™|[]

http:/ /www3.mdanderson.org/streams/FullVideoPlayer.cfm?xml=cfg%2FMoon-Shots-IBM-Watson-
2013
http://www.ibm.com/smarterplanet /us/en/ibmwatson /index.html
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2.2 TCGA Data: Genomic Data Commons (GDC)

The TCGA Data Portal for data downloading or public access is no longer operational and
all TCGA data now resides at the Genomic Data Commons. GDC Data Model Compo-
nents can be represented as a graph containing nodes and edges. This is the data store
for the GDC. Critical relationship between projects, cases, clinical and molecular subdata
is maintained and linked precisely to the actual data file using unique identifiers. It is
based on the property graph model wherein nodes represent entities, edges between nodes
represent relationships between entities and finally, properties on both nodes and edges
represent additional data that describes entities and their relationships. Further, relation-
ships are encoded as edges of a given type which associates exactly two nodes. Properties
of relationships or nodes are actually sets of key-value pairs. Metadata are submitted by
external users and is extracted and loaded into the graph. Data representation provided
by other GDC components are derived from authoritative graph model. Files and archive
objects are not stored in the graph. They are stored in an external object store. Structure
of node/edge of the graph is depicted in (Figure [2.2))(Figure GDC Data Model is a
centralized method of organization, wherein all data artifacts are ingested by the GDC.
Such a data model is designed to maintain data and metadata consistency, integrity, and

availability while accommodating the following:

e Bio-specimen , clinical, and cancer genomic data and metadata

Multiple, disparate NCI ongoing projects

Completely new, as yet unthought of projects

Ongoing changes and technological progress

Frequent and complex queries from both external users and internal administrators

To meet such stringent requirements, the design and implementation of the data model

leverages:
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Flexible but robust graph-oriented data stores

Indexed document stores for API and front end performance

Ontology-based concept and data element definition

Schema-based entity and relationship validation on loading

2.2.1 GDC: Data Types and Format.

Submitted Data:

DNA and RNA sequencing data is being accepted by GDC in both FASTQ (link is
external) and BAM (link is external) formats. Sequencing data is to be submitted with
accompanying metadata in either simple tab-separated values (TSV) or the JavaScript
Object Notation JSON format (link is external), or the latest version (currently 1.5) of the
SRA XML format. Clinical and bio-specimen data is to be submitted in either TSV or
JSON format, or as XML. This should be validated with respect to the latest version of
NCI Bio-specimen Core Resource XML Schema documents.

GDC: Data Types and Format: Submitted Data

Generated Data:

For every submitted sequence data (also BAM alignment files), the GDC generates
new alignments in BAM format using the latest human reference genome GRCh38 with
standard alignment pipelines. Using these standard alignments, the GDC generates high
level derived data which includes normal and tumor variant and mutation calls in VCF and
MAF formats, and gene and miRNA expression and splice junction quantification data in
TSV formats.

GDC: Data Types and Format: Generated Data

Imported Data: GDC also hosts and distributes previously generated data from The

Cancer Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective
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Table 2.3: GDC: Data Types and Format: Generated Data

Entity Category Entity Name File Format File Metadata Template|
Administrative Case — TSV, JSON
Sample - TSV, JSON
Portion - TSV, JSON
Biospecimen Analyte - TSV, JSON
Aliquot - TSV, JSON
Read Group — TSV, JSON
Slide - TSV, JSON
Demographic - TSV, JSON
Diagnosis - TSV, JSON
Clinical Exposure - TSV, JSON
Family History - TSV, JSON
Treatment - TSV, JSON
Analysis Metadata SRA XML, MAGE-TAB (SDRF, IDF) TSV, JSON
Biospecimen Supplement [BCR XML, GDC-approved spreadsheet TSV, JSON
Clinical Supplement BCR XML, GDC-approved spreadsheet] TSV, JSON
Experiment Metadata SRA XML TSV, JSON
Data File Pathology Report PDF TSV, JSON
Run Metadata SRA XML TSV, JSON
Slide Image SVS TSV, JSON
Submitted Unaligned Reads FASTQ, BAM(link is external) TSV, JSON
Submitted Aligned Reads BAM(link is external) TSV, JSON

Treatments (TARGET), and other cancer initiative programs. Original sequence alignments
are stored in BAM format, and derived data files are stored and provided in their original

formats.

2.3 Methylation analysis and MExpress tool

DNA methylation is now established to be an integral aspect of cancer genomics. This
is also reported to have important associations with gene expression, sequence and copy
number variations [144]. Large datasets from TCGA is a validation platform with regards
to identifying novel biomarkers. It is becoming a standard tool for biomarker research.
Also, a significant feature in TCGA platform is the ability to correlate different data types.
Recent research has indicated that promoter DNA methylation can influence gene expression
and aberrant methylation is found in almost every cancer [145]. This ability for comparing
data types is extremely important for identifying novel DNA methylation biomarkers. In
view of such a valid, invaluable and vast platform of huge cancer datasets being available

for analysis, interactive data visualization tools are critical to understand, especially when
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Table 2.4: GDC: Data Types and Format: Imported Data

Data Type Data Subtype Format
Aligned Reads BAM(link is external)
Raw Sequencing data Unaligned Reads FASTQ(link is external)
Coverage WIG WIGGLE(link is external)
Genotypes TSV
. . L Simple Germline Variation
Simple Nucleotide Variation SimI;)le Somatic Mutation MAF, VCF
Simple Nucleotide Variation
Raw Intensities
CGH Array QC
Intensities Log2Ratio
Raw Microarray Data Expresswnh Qontrol TSV
Intensities
Normalized Intensities <
Probeset Summary
Methylation Array QC Metrics
Gene Expression Quantification
miRNA Quantification
. Isoform Expression Quantification
Gene Expression Exon JurIl)ction Ql?antiﬁcation TSV
Exon Quantification
Gene Expression Summary
Structural Rearrangement Structural Germhn(? Yarlatlon VCF, FASTA
Structural Variation
Bisulfite Sequence Alignment BAM(link is external)
DNA Methylation Methylation Beta Value TSV
Methylation Percentage
Clinical Data XML
Biospecimen Data
Clinical Tissue Slide Image SVS
Diagnostic Image
Pathology Report PDF
Copy Number Segmentation TSV
Copy Number Estimate
Copy Number Germline Variation <
LOH
Copy Number Variation Copy Number QC Metrics
Copy Number Variation
Normalized Copy Numbers
Copy Number Summary
Probeset Call
. . Protein Expression Quantification TSV
Protein Expression Protein%xpressi?n Control
Microsattelite Instability FSA
Other ABI Sequence Trace TR
Auxiliary Test
About the Data
Data Types and File Formats
Generated Data Types and File Formats|
Imported Data Types and File Formats
Submitted Data Types and File Formats
Data Dictionary
Data Harmonization and Generation
Data Standards
Data Availability Matrix
Data Download Statistics
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Table 2.5: TCGA Data portal last status and updates

Available Cancer Types

# Cases Shipped

# Cases with|

Date Last Updated|

by BCR* Data* (mm/dd/yy)
Acute Myeloid Leukermia [LAML] 200 200 5/31/2016
Adrenocortical carcinoma [ACC] 80 80 5/31/2016
Bladder Urothelial Carcinoma [BLCA] 412 412 5/27/2016
Brain Lower Grade Glioma [LGG] 516 516 5/2/2016
Breast invasive carcinoma [BRCA] 1100 1097 5/31/2016
Cervical squamous cell carcinoma and
endocervical adenocarcinoma [CESC] 308 307 5/26/2016
Cholangiocarcinoma [CHOL)] 36 36 5/31/2016
Colon adenocarcinoma [COAD] 461 461 5/27/2016
Esophageal carcinoma [ESCA] 185 185 5/31/2016
FFPE Pilot Phase II [FPPP] 38 38 4/28/2016
Glioblastoma multiforme [GBM)] 529 528 5/27/2016
Head and Neck squamous cell carcinoma [HNSC] 528 528 5/3/2016
Kidney Chromophobe [KICH] 66 66 6/1/2016
Kidney renal clear cell carcinoma [KIRC] 536 536 5/27/2016
Kidney renal papillary cell carcinoma [KIRP] 291 291 5/31/2016
Liver hepatocellular carcinoma [LIHC]| 377 377 6/2/2016
Lung adenocarcinoma [LUAD] 521 521 6/1/2016
Lung squamous cell carcinoma [LUSC] 510 504 5/26/2016
Lymphoid Neoplasm Diffuse Large B-cell
Lymohoma [DLBC] 48 48 5/31/2016
Mesothelioma [MESO] 87 87 4/8/2016
Ovarian serous cystadenocarcinoma [OV] 586 586 5/31/2016
Pancreatic adenocarcinoma [PAAD] 185 185 5/6/2016
Pheochromocytoma and Paraganglioma [PCPG] 179 179 5/3/2016
Prostate adenocarcinoma [PRAD 498 498 5/31/2016
Rectum adenocarcinoma [READ] 172 171 6/1/2016
Sarcoma [SARC] 261 261 6/1/2016
Skin Cutaneous Melanoma [SKCM] 470 470 4/8/2016
Stomach adenocarcinoma [STAD] 445 443 5/26/2016
Testicular Germ Cell Tumors [TGCT] 150 150 6/2/2016
Thymoma [THYM] 124 124 5/31/2016
Thyroid carcinoma [THCA] 507 507 5/5/2016
Uterine Carcinosarcoma [UCS] 57 57 4/29/2016
Uterine Corpus Endometrial Carcinoma [UCEC] 548 548 6/2/2016
Uveal Melanoma [UVM] 80 80 1/29/2016

*Excludes non-canonical cases
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Figure 2.3: Genomic Data Commons Data portal Webpage

multiple samples and data types are to be compared and analyzed. Each visualization tools
that has been developed for TCGA data analysis, has focused on one or a more specific

research question and offers a wide variety of visualization output and analysis pipeline

[132,132,/146,|147]. Although a wide variety of visualization output and analysis tools are

available, none of these tools are easy, fast and straightforward for usage and analysis.
MEXPRESS, a novel tool has been developed that is used in our study for TCGA data
analysis. This tool combines clinical, methylation and expression data. MEXPRESS, is a
powerful tool since users do not need any programming or bioinformatics expertise to use
the tool or in analyzing and identifying genes of interest or novel biomarkers in the TCGA
data. MEXPRESS is mainly utilized for simple, but quick querying and visualization of
clinical, expression and methylation data and also to determine relationship between the
TCGA datasets on a single-gene level. MEXPRESS has been designed along the lines of
graphical excellence described by Edward Tufte . MEXPRESS tool designed in these
lines has demonstrated that such complex and multidimensional TCGA data is presented
in a clear, precise and efficient way for the end-user. Also, the user benefits from the fact
that, analysis and visualization from MEXPRESS is very easy to use and does not require
computational or bioinformatics expertise in any way. Thus, MEXPRESS, virtually does
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not have any learning curve or requires any formal training. Such ease of use have facilitated

researchers, particularly clinicians to get their results quickly, easily and effectively.

2.3.1 MEXPRESS: Implementation and Output visualization

MEXPRESS carries a key feature, that being simplicity. A visualization output plot is
created upon selecting a gene of interest and a cancer type and querying it. An example of

a visualization output is demonstrated below with its transcripts and any CpG islands that

are involved (Figure [2.4) (Figure [2.5).

A. In the default MEXPRESS output of the visualization plot, the samples are ordered
by their gene expression value. Here in this visualization plot, the Pearson Correlation co-
efficient value clearly demonstrates the negative correlation between GSTP1 expression and
promoter methylation. Tumor samples are observed to have lower GSTPlexpression when
compared to normal samples. B. The visualization plot can also be ordered by another data
type, the Sample type. This output shows a clear difference in expression and methylation

between normal and tumor samples.

The visual output shows samples are ordered by breast cancer subtype. Results in-
dicate significant differences in expression and methylation. Also, HER2, estrogen and
progesterone receptor status indicates clear differences, between the different subtypes.

Gene expression data, methylation data and clinical data can be visualized and analyzed
at the same time using MEXPRESS. Each probe generates a methylation data indicated
in blue line plot (Infinium HumanMethylation 450 Microarray data) and is present next
to the gene (vertical downward arrow line). RNA-seq derived expression data is depicted
as a yellow line plot, while the grey line plot depicts the clinical data of the patients.
Significance of relation (P value or correlation coefficient) depending on the data types that

are compared (methylation, expression or clinical data) between each row is indicated on the
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far right of the visual output. The selected sorter is also indicated in the plot. MEXPRESS
tool has the default sorter parameter set for expression. This means that samples or data
for samples are ordered by their expression values. MEXPRESS carries the flexibility of
changing the order by which the samples can be ordered. It can be called up or sorted using
clinical or methylation data types too. The tool will then query based upon the selected
sorter and samples are reordered with the relevant recalculated relationships or significance

values. The visual output can be saved and downloaded in PNG or SVG extension format.

2.4 MEXPRESS and TCGA Data

MEXPRESS, directly downloads TCGA data from its ftp (file transfer protocol). RNA-seq
v2 expression data from IlluminaHiSeq_ RNASeqV2 from Level 3 of TCGA, HumanMethy-
lation450 derived DNA methylation data from Level 3 and Biotab format derived clinical
patient and tumor sample data. MEXPRESS tool, which runs on Bash scripts on the
back-end Linux servers automatically checks the TCGA ftp site on a monthly basis. Such
updates are then identified and automatically updated to the MEXPRESS database. Also,
TCGA makes it publically available about cancer types which is also automatically updated
by MEXPRESS scripts. The tool is facilitated initially by the R scripts (R version 3.0.2).
These scripts are responsible for significant data processing and address issues like missing
values. It also facilitates the combination of different files into one upon identifying the
requirement, reformats data into relevant accessible types and to generate SQL scripts for
uploading the processed and also new data. MEXPRESS tool, does a log-transformation
on the RNA-seq data before such data is utilized for visualization plot. Also, only the most
relevant clinical parameters is utilized by the MEXPRESS plot to minimize data clutter

and for efficient data analysis.
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2.4.1 MEXPRESS and other data sources

MEXPRESS, greatly facilitates incorporation of novel data types (mutation, proteomic or
other omics data). MEXPRESS, can access UCSC cancer genome for various cancer sub-
types (normal, basal, luminal A, luminal B and Her2, in case of invasive carcinoma sample)
[149]. The tool can specifically access CpG data from the USCS table browser using the
following path: clade: Mammal, genome: Human, assembly: Feb. 2009 (GRCh37/hgl9),
group: Regulation, track: CpG Islands, table: cpglslandsExt [150]. MEXPRESS, can ac-
cess and obtain annotation data (exon or transcript) using Ensembl with the aid of BioMart

tool.

2.4.2 MEXPRESS and statistical analyses

Two main statistical tests that is incorporated in the tool are: Pearson correlation and
the non-parametric Wilcoxons rank-sum test. These tests are created using JavaScript.
Pearson correlation test mainly compares two data types which are at different levels such
as comparison of methylation and expression data. Non-parametric Wilcoxons rank-sum
test calculates the variable between two groups for which comparison is undertaken (for
example, difference in methylation with respect to gender). A false discovery rate correction

step is also incorporated in the tool [151].

2.4.3 Methods in Statistical Analysis

Pearson correlation Test
The Pearson product-moment correlation coefficient (or Pearson correlation coefficient,

for short) is a statistical measure of the strength of a linear association between two variables

79

and is denoted by r. It should be noted that, the symbol for Pearson’s correlation is ”” when

”1” when it is measured in a sample. The difference

it is measured in the population and
between Pearson product-moment correlation and the Pearson correlation coefficient can

be explained as follows. Basically, a Pearson product-moment correlation attempts to draw
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Table 2.6: Guidelines proposed to interpret Pearson’s correlation coeflicient

Coeflicient,r

Strength of Association | Positive | Negative
Small dto.3 | -1to.3
Medium Bto.b | -3to.b

Large Hto .10 | -.5t0 1.0

a line of best fit through the data of two variables, and the Pearson correlation coefficient,
r, indicates how far away all these data points are to this line of best fit (i.e., how well the
data points fit this new model/line of best fit).

Assigned values and its interpretation: The Pearson correlation coefficient, r, can take
a range of values from +1 to -1. A value of 0 indicates that there is no association between
the two variables. A value greater than 0 indicates a positive association; that is, as the
value of one variable increases, so does the value of the other variable. A value less than 0
indicates a negative association; that is, as the value of one variable increases, the value of
the other variable decreases.

Determination of strength association: The stronger the association of the two variables,
the closer the Pearson correlation coefficient, r, will be to either +1 or -1 depending on
whether the relationship is positive or negative, respectively. Achieving a value of +1 or -1
means that all your data points are included on the line of best fit there are no data points
that show any variation away from this line. Values for r between +1 and -1 (for example,
r = 0.8 or -0.4) indicate that there is variation around the line of best fit. The closer the
value of r to 0 the greater the variation around the line of best fit. (Table

Variables used in this test: When using this statistical test, the two variables have to
be measured on either an interval or ratio scale. However, both variables do not need to be
measured on the same scale (e.g., one variable can be ratio and one can be interval).

Measuring the variables: Also, the two variables can be measured in entirely different
units. For example, you could correlate a person’s age with their blood sugar levels. Here,
the units are completely different; age is measured in years and blood sugar level measured

in mmol/L (a measure of concentration). Indeed, the calculations for Pearson’s correlation
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coefficient were designed such that the units of measurement do not affect the calculation.
This allows the correlation coefficient to be comparable and not influenced by the units of
the variables used.

Units of measurement for variables: The two variables can be measured in entirely
different units.

Dependent and independent variables: The Pearson product-moment correlation does
not take into consideration whether a variable has been classified as a dependent or inde-
pendent variable. It treats all variables equally.

Slope of the line: It is important to realize that the Pearson correlation coefficient, r,
does not represent the slope of the line of best fit. Therefore, if you get a Pearson correlation
coeflicient of +1 this does not mean that for every unit increase in one variable there is a
unit increase in another. It simply means that there is no variation between the data points
and the line of best fit.

5 assumptions made in this test:

The variables must be either interval or ratio measurements.

The variables must be approximately normally distributed.

There is a linear relationship between the two variables.

Outliers are either kept to a minimum or are removed entirely.

There is homoscedasticity of the data.

To detect a linear relationship: To test to see whether your two variables form a linear
relationship, the user needs to simply need to plot them on a graph (a scatterplot, for
example) and visually inspect the graph’s shape.

Pearson’s correlation determines the degree to which a relationship is linear. Put an-
other way, it determines whether there is a linear component of association between two
continuous variables. As such, linearity is not actually an assumption of Pearson’s correla-

tion. However, you would not normally want to pursue a Pearson’s correlation to determine
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the strength and direction of a linear relationship when you already know the relationship
between your two variables is not linear. Instead, the relationship between your two vari-
ables might be better described by another statistical measure. For this reason, it is not
uncommon to view the relationship between your two variables in a scatterplot to see if
running a Pearson’s correlation is the best choice as a measure of association or whether
another measure would be better.

Wilcoxons rank-sum test

The Wilcoxon rank-sum test is a nonparametric alternative to the two-sample t-test
which is based solely on the order in which the observations from the two samples fall.
The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are
drawn from the same distribution. The alternative hypothesis is that values in one sample
are more likely to be larger than the values in the other sample. This test should be used
to compare two samples from continuous distributions. It does not handle ties between
measurements in x and y.

An alternative explanation would be as follows: A popular nonparametric test to com-
pare outcomes between two independent groups is the Mann Whitney U test. The Mann
Whitney U test, sometimes called the Mann Whitney Wilcoxon Test or the Wilcoxon Rank
Sum Test, is used to test whether two samples are likely to derive from the same population
(i.e., that the two populations have the same shape). Some investigators interpret this test
as comparing the medians between the two populations. Recall that the parametric test
compares the means (HO: 1=2) between independent groups.

In contrast, the null and two-sided research hypotheses for the nonparametric test are
stated as follows:

HO: The two populations are equal versus

H1: The two populations are not equal.

This test is often performed as a two-sided test and, thus, the research hypothesis
indicates that the populations are not equal as opposed to specifying directionality. A

one-sided research hypothesis is used if interest lies in detecting a positive or negative shift
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in one population as compared to the other. The procedure for the test involves pooling
the observations from the two samples into one combined sample, keeping track of which
sample each observation comes from, and then ranking lowest to highest from 1 to n1+n2,
respectively.

A common experiment design is to have a test and control conditions. A two sample
t-test would have been a good choice if the test and control groups are independent and
follow Normal distribution. If conditions are not met, nonparametric test methods are
needed. This section covers one such test, called Wilcoxon rank-sum test (equivalent to the
Mann-Whiney U-test) for two samples. The test is preferred when:

Comparing two samples.

e The two groups of data are independent
e The type of variable could be continuous or ordinal

e The data might not be normally distributed

Wilcoxon Rank Sum Test for Independent Samples:

When the requirements for the t-test for two independent samples are not satisfied, the
Wilcoxon Rank-Sum non-parametric test can often be used provided the two independent
samples are drawn from populations with an ordinal distribution.

For this test we use the following null hypothesis:

HO: the observations come from the same population

From a practical point of view, this implies:

HO: if one observation is made at random from each population (call them x0 and y0),
then the probability that x0 > y0 is the same as the probability that x0 < y0, and so the

populations for each sample have the same medians.

2.5 MEXPRESS as a visualization tool

MEXPRESS tool/site runs on Apache server. The back end database is accessed using PHP.

Interactive plots are created and statistical analysis is done by employing JavaScript, the
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jQuery JavaScript library (version 1.11.0), Ajax autocomplete for jQuery(version 1.2.10,
E[) and the d3.js JavaScript library (version 3.0.6, E]) The visualization output from
SVG format can be converted into PNG format with the aid of Inkscape which is a freely
available vector graphics editor @ MEXPRESS database is conceptually created using
MySQL database which contains the TCGA data for visualization and analysis. This forms
the main backbone of the tool. The way this tool functions is that PHP scripts handles all
the queries from the user which is then directed to the database, results then packaged in

JSON and sent back to the user. The entire code of MEXPRESS, is highly validated (back-

end, front-end and data processing) as it can be cloned or downloaded from this GitHub

repository@

2.6 Gene query against BioMuta and BioXpress databases

BIOMUTA DATABASE

URL: http://hive.biochemistry.gwu.edu/tools /biomuta/index.php

CSR: hitp://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr

HIVE: http://hive.biochemistry.guu.edu

BioMuta, a database created with integrated sequence features, provides a framework for
both automated and manual curation and integration of cancer-related sequence features
for NGS analysis pipelines, was utilized (40- 42). Sequence feature information in BioMuta
is integrated from a variety of source such as Catalogue of Somatic Mutations in Cancer
(COSMIC), ClinVar, UniProtKB and biocuration of published data. BioMuta also contains
non-synonymous single-nucleotide variations (nsSNVs) identified from NGS data. The High-
performance Integrated Virtual Environment (HIVE) was created for handling petabytes
of data for storage, analysis, computing and curating NGS data and related metadata

support BioMuta too. Different algorithms were used to identify and tackle variations in

2 https://github.com/devbridge/jQuery-Autocomplete
Zhttp://d3js.org/

26http:/ /www.inkscape.org/
2Thttps://github.com/akoch8/mexpress
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cancer data. We queried the five selected genes BLCAP, GDF15, PIWIL4, DMRT1 and
ITPKA against BioMuta for validating or supplementing the above mentioned MEXPRESS
study /results that identifies epigenetic alterations (methylation) affecting gene expression
in various cancers.

BIOXPRESS DATABASE
URL: http://hive.biochemistry.gwu.edu/tools /bioxpress
CSR: hitp://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr
HIVE: http://hive.biochemistry.gwu.edu
BioXpress is a gene expression and cancer association database wherein expression lev-
els are mapped to genes using RNA-seq data obtained from TCGA, International Cancer
Genome Consortium, Expression Atlas and literature reviews. BioXpress encompasses ex-
pression data from 64 cancer types, 6361 patients and 17469 genes, of which 9513 genes
exhibit differential expression between tumor and normal samples. Data from RNA-seq
data repositories is supplemented with manual curation of cancer data from literature re-
views. Pan-cancer analysis is also facilitated by mapping cancer types to Disease Ontology
terms. BioXpress can be queried using HUGO Gene Nomenclature Committee gene sym-
bol, UniProtKB/RefSeq accession or by cancer types with specialized filters. This database
is invaluable in identifying cancer-related genes using a pre-computed downloadable file
containing differentially expressed genes in multiple cancers (43). Again, we queried the
five selected genes BLCAP, GDF15, PIWIL4, DMRT1 and ITPKA against BioXpress for
validating or supplementing the above mentioned MEXPRESS study /results that identifies

epigenetic alterations (methylation) affecting gene expression in various cancers .
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Chapter 3: RESULTS

3.1 MEXPRESS plot details

Mxpress, for our gene/s of interest when selected with a particular cancer type generates
the Mxpress data/plot. Here, the height of the orange line (expression data) represents the
logarithm of the level 3 RNA-sequencing data in TCGA (normalized RNASeqV2 values per
gene). The expression data forms the basis of the whole plot. This is because the samples
are ranked based on their expression value for the ITPKA gene selected. Samples with the
highest expression appear on the left side and the lowest on the right. In the panel below
the expression data, on the left hand side, the gene is designated by a solid orange line, the
CpG islands in green and the different transcripts in broken or dotted orange lines. The
arrow on the gene indicates its direction. If the arrow points down, the gene is located on
the + strand. If it points up, the gene lies on the - strand. Also, in this panel, to the right,
the Infinium 450k probes are linked to our gene of interest. The height of the blue lines
indicates the beta value for a probe. When there is no data available for a certain probe,
no line is plotted and instead it simply says "no data”. Gaps in the line will indicate that
there was no methylation data for one or more samples. Similar to the expression data, the
samples are also ranked along the x axis (they are ordered based off our gene of interest
expression value). Thin blue lines connect the probes to their respective genomic locations.
When a user hovers over a methylation data, the plot will highlight the corresponding probe
on the left hand side and the name of the probe will also be shown. The user can fix the
highlighting of a probe by clicking on its data plot. Also, by clicking the same data plot
a second time will clear the highlighting. Hence, Mexpress is an invaluable tool to detect
clinical, methylation and expression data simultaneously and to detect the significance that

exist between these data sets.
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Common features of MEXPRESS result plot analysis

ITPKA gene when queried for BRCA in MEXPRESS, generates the above plot. On
the left hand top corner, ITPKA as a gene entry in entered. Here both HGNC symbols
and Ensembl gene IDs are recognized as valid entries. The plot demonstrates that the
samples are arranged from left to right, while the different data types (clinical, expression
and methylation) are arranged from the top to the bottom of the plot. On the resulting
plot, if users can hover over one of the methylation line plots will exhibit the ID of the
corresponding probe. Here users can click on a methylation line plot to fix the probe ID on
the figure. By clicking it again will enable users to remove the probe ID (or click another
methylation line plot). Users can also highlight the promoter probes by clicking the button
right above the legend. User can download the figure by simply clicking on the png or svg
button in the upper right corner. Users can emphasize the probes that are located in a
gene’s promoter region by clicking on the highlight promoter probes button. This will turn
the highlighting of the promoter probes on.

The expression data is represented by the yellow/orange line plot. The height of the
orange line represents the logarithm of the level 3 RNA-sequencing data in TCGA (normal-
ized RNASeqV2 values per gene). The expression data forms the basis of the whole plot,
because the samples are ranked based on their expression value for the gene that is selected
for query. Here, the resulting plot shows the highest expression on the left side and the
lowest on the right.

The methylation data is indicated by the blue line plot. On the left hand side, solid
orange vertical line indicates the gene, CpG islands are indicated using the solid vertical
green line and the different gene transcripts are indicated by the dotted/ broken orange
lines. The arrow on the gene indicates its direction. If the arrow points down, the gene is
located on the + strand. If it points up, the gene lies on the - strand.

On the right hand side, the Infinium 450k probes that are linked to the gene can be
observed. The height of the blue lines corresponds with the beta value for a probe. If data

is unavailable for a certain probe, no line is plotted and instead it simply says "no data”.
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Gaps in the line indicate that there is no methylation data available for one or more amples.

Like the expression data, the samples are ranked along the x axis (they are ordered based
on their gene expression value). Thin blue lines on the plot, connect the probes to their
respective genomic locations. Users can hover over a methylation data plot to highlight
the corresponding probe on the left hand side and the name of the probe will be also be
showed. Users can fix the highlighting of a probe by clicking on its data plot. Clicking the
same data plot a second time will clear the highlighting. Once users have fixed a probe’s
highlighting by clicking on the data plot, users can click on the probe’s name to reveal the
probe’s genomic location and annotation.

The values on the far right of the plot represents the Pearson product-moment corre-
lation coefficient between the methylation values for a probe and the expression values. If
probes exhibit a strong negative correlation between methylation and expression, it indi-
cates that gene expression might be controlled through DNA methylation. The asterisks
gives an indication of the significance of the correlations.

The clinical data is represented using the grey line plot. For every cancer type, the most
appropriate relevant clinical parameters is extracted from TCGA. In order to represent all
the data as bar plots, some clinical parameters have been converted to numeric values. One
example is the pathologic stage where values such as Stage ITA and Stage IV were converted
to the values 2 and 4 respectively.

Labels/ names of different clinical parameters are listed on the left and the Pearson
product-moment correlation values or the p values for Wilcoxon rank-sum test can be found
on the right. If a clinical parameter contains only two levels (e.g. male or female) a p value
is calculated instead of a correlation coefficient. This p value indicates the difference in
expression between the two groups for this parameter. For the sample type parameter, the
expression is always compared between the normal and tumor samples.

As indicated before, the samples are sorted based on their expression value by default.
By clicking on the name of the annotation parameter that users are interested in, they can

rearrange the samples by the annotation that they selected. So if users, for example, like
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Figure 3.1: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer

to compare age to the expression and methylation of a certain gene or to the other clinical

parameters, they have to click on ”age at diagnosis” and the samples will be reordered.

3.1.1 BLCAP (bladder cancer associated protein) as a DNA methylation

biomarker gene

(Figure Figure (Figure

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer:
MEXPRESS plot for BLCAP gene expression for BLCA cancer reveals the following
details: A) there are quite a few probes with a strong negative correlation between methy-
lation and expression, indicating that BLCAP expression might be controlled through DNA
methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-
cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,

the expression is always compared between the normal and tumor samples. Here, it is clear
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Figure 3.2: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer
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Figure 3.3: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer
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Figure 3.4: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

that the normal samples tend to have a lower BLCAP expression than the tumor sam-
ples. C) Highlighted promoter probes plot data reveals that there are numerous, yet highly
significant negative correlation values between methylation and expression indicating that
the promoter region for BLCAP gene might be regulated through DNA methylation. Such
promoter probes are also found on the CpG island region (indicated in green color) indicat-
ing that DNA methylation has an effect on the CpG island region which can subsequently
influence BLCAP gene expression. When samples are ordered by expression, sample type
p= 6.02e-4 When samples are ordered by sample type i.e., difference in expression between
normal and tumor type p= 9.17e-4

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression us-
ing MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer: (Figure[3.4)(Fig-
ure (Figure

MEXPRESS plot for BLCAP gene expression for BRCA cancer reveals the following
details: A) there are numerous probes with a strong negative correlation between methyla-

tion and expression, indicating that BLCAP expression might be controlled through DNA
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Figure 3.5: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.6: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.7: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer

methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-
cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,
the expression is always compared between the normal and tumor samples. Here, it is clear
that the normal samples tend to have a higher BLCAP expression than the tumor sam-
ples. C) Highlighted promoter probes plot data reveals that there are numerous, yet highly
significant negative correlation values between methylation and expression indicating that
the promoter region for BLCAP gene might be regulated through DNA methylation. Such
promoter probes are also found on the CpG island region (indicated in green color) indicat-
ing that DNA methylation has an effect on the CpG island region which can subsequently
influence BLCAP gene expression. When samples are ordered by expression, sample type p
< 2.2e-16 When samples are ordered by sample type i.e., difference in expression between
normal and tumor type p < 2.2e-16

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression
using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer: (Figure[3.7)(Fig-
ure3.g)) (Figurd3.9)

MEXPRESS plot for BLCAP gene expression for COAD cancer reveals the following
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Figure 3.9: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer
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details: A) there are more probes with a strong negative correlation as compared to strong
positive correlation probes between methylation and expression, indicating that BLCAP ex-
pression might be slightly controlled or influenced through DNA methylation. As the plot’s
legend explains, the asterisks gives an indication of the significance of the correlations. B)
As in all MEXPRESS plotting, for the sample type parameter, the expression is always
compared between the normal and tumor samples. Here, it is clear that the normal samples
tend to have a slightly lower BLCAP expression than the tumor samples. C) Highlighted
promoter probes plot data reveals that there are numerous, yet highly significant negative
correlation values between methylation and expression indicating that the promoter region
for BLCAP gene might be regulated through DNA methylation. Such promoter probes are
also found on the CpG island region (indicated in green color) indicating that DNA methy-
lation has an effect on the CpG island region which can subsequently influence BLCAP
gene expression. When samples are ordered by expression, sample type p= 0.0562 When
samples are ordered by sample type i.e., difference in expression between normal and tumor
type p= 0.0687

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression
using MEXPRESS for CRAD (Colorectal Adeno Carcinoma) cancer: (Figure
(Figurd3.11))(Figurd3.12))

MEXPRESS plot for BLCAP gene expression for CRAD cancer reveals the following
details: A) there are more probes with a strong negative correlation as compared to the ones
with strong positive correlation probes between methylation and expression, indicating that
BLCAP expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have slightly lower BLCAP expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are numerous, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for BLCAP
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Figure 3.10: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for CRAD (Colorectal Adeno Carcinoma)) cancer
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Figure 3.11: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for CRAD (Colorectal Adeno Carcinoma)) cancer
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Figure 3.12: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for CRAD (Colorectal Adeno Carcinoma) cancer

gene might be regulated through DNA methylation. Such promoter probes are also found
on the CpG island region (indicated in green color) indicating that DNA methylation has an
effect on the CpG island region which can subsequently influence BLCAP gene expression.
When samples are ordered by expression, sample type p= 0.023 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.0294

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression
using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer:
(Figure (Figurd3.14) (Figurd3.15)

MEXPRESS plot for BLCAP gene expression for KIRC cancer reveals the following
details: A) there are numerous probes with a strong negative correlation between methyla-
tion and expression, indicating that BLCAP expression might be controlled through DNA
methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-
cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,
the expression is always compared between the normal and tumor samples. Here, it is clear

that the normal samples tend to have higher BLCAP expression than the tumor samples.
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Figure 3.13: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer
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Figure 3.14: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer
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Figure 3.15: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer

C) Highlighted promoter probes plot data reveals that there are numerous, yet highly sig-
nificant negative correlation values between methylation and expression indicating that the
promoter region for BLCAP gene might be regulated through DNA methylation. Such pro-
moter probes are also found on the CpG island region (indicated in green color) indicating
that DNA methylation has an effect on the CpG island region which can subsequently in-
fluence BLCAP gene expression. When samples are ordered by expression, sample type p=
2.77e-10 When samples are ordered by sample type i.e., difference in expression between
normal and tumor type p= 1.36e-10

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression
using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer:
(Figure (Figurd3.17) (Figurd3.18)

MEXPRESS plot for BLCAP gene expression for KIRP cancer reveals the following
details: A) there are numerous probes with a strong negative correlation between methyla-

tion and expression, indicating that BLCAP expression might be controlled through DNA
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Figure 3.16: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer
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Figure 3.17: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer
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Figure 3.18: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer

methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-
cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,
the expression is always compared between the normal and tumor samples. Here, it is clear
that the normal samples tend to have slightly lower BLCAP expression than the tumor sam-
ples. C) Highlighted promoter probes plot data reveals that there are numerous, yet highly
significant negative correlation values between methylation and expression indicating that
the promoter region for BLCAP gene might be regulated through DNA methylation. Such
promoter probes are also found on the CpG island region (indicated in green color) indicat-
ing that DNA methylation has an effect on the CpG island region which can subsequently
influence BLCAP gene expression. When samples are ordered by expression, sample type
p= 0.246 When samples are ordered by sample type i.e., difference in expression between
normal and tumor type p= 0.179

Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression

using MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer: Figures (Figure
5.10) (Figure B-20) (Figure B21]
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Figure 3.19: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer
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Figure 3.20: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
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Figure 3.21: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer

MEXPRESS plot for BLCAP gene expression for LUAD cancer reveals the following
details: A) there are numerous probes with a strong negative correlation between methyla-
tion and expression, indicating that BLCAP expression might be controlled through DNA
methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-
cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,
the expression is always compared between the normal and tumor samples. Here, it is clear
that the normal samples tend to have slightly lower BLCAP expression than the tumor sam-
ples. C) Highlighted promoter probes plot data reveals that there are numerous, yet highly
significant negative correlation values between methylation and expression indicating that
the promoter region for BLCAP gene might be regulated through DNA methylation. Such
promoter probes are also found on the CpG island region (indicated in green color) indicat-
ing that DNA methylation has an effect on the CpG island region which can subsequently
influence BLCAP gene expression. When samples are ordered by expression, sample type
p= 0.578 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p= 0.623 Analysis of BLCAP (Bladder Cancer Associated
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Figure 3.22: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

Protein) gene expression using MEXPRESS for LUSC (Lung Squamous Cell
Carcinoma) cancer:(Figure (Figurd3.23) (Figurd3.24)

MEXPRESS plot for BLCAP gene expression for LUSC cancer reveals the following
details: A) there are numerous probes with a strong negative correlation between methyla-
tion and expression, indicating that BLCAP expression might be controlled through DNA
methylation. As the plot’s legend explains, the asterisks gives an indication of the signifi-
cance of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter,
the expression is always compared between the normal and tumor samples. Here, it is clear
that the normal samples tend to have lower BLCAP expression than the tumor samples.
C) Highlighted promoter probes plot data reveals that there are numerous, yet highly sig-
nificant negative correlation values between methylation and expression indicating that the
promoter region for BLCAP gene might be regulated through DNA methylation. Such
promoter probes are also found on the CpG island region (indicated in green color) indicat-
ing that DNA methylation has an effect on the CpG island region which can subsequently

influence BLCAP gene expression. When samples are ordered by expression, sample type
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Figure 3.23: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) ) cancer
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Figure 3.24: Analysis of BLCAP (Bladder Cancer Associated Protein) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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Figure 3.25: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

p= 0.0118 When samples are ordered by sample type i.e., difference in expression between

normal and tumor type p= 0.00128

3.2 GDF15 (Growth Differentiation Factor 15) as a DNA

methylation biomarker gene

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer: (Figure [3.25)(Fig-
ure3.26)) (Figurd3.27)

MEXPRESS plot for GDF15 gene expression for BRCA cancer reveals the following
details: A) there are more probes with a strong negative correlation as compared to the
ones with a strong positive correlation between methylation and expression, indicating that
GDF15 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
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Figure 3.26: Analysis of GDF15 (Growth Differentiation Factor 15) gene

expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.27: Analysis of GDF15 (Growth Differentiation Factor 15) gene

expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.28: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer

have very lower GDF15 expression than the tumor samples. C) Highlighted promoter probes
plot data reveals that there are no probes being highlighted indicating that the promoter
region for GDF15 gene might NOT be involved in the regulation of GDF15 gene expression
through DNA methylation. Also, the promoter region is NOT involved in influencing the
methylation of CpG islands or its subsequent effect on GDF15 gene expression. When
samples are ordered by expression, sample type p= 2.09e-14 When samples are ordered by
sample type i.e., difference in expression between normal and tumor type p= 1.31e-13

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-
ing MEXPRESS for COAD (Colon Adeno Carcinoma) cancer: (Figure [3.28)(Fig-
ure3.29)) (Figurd3.30)

MEXPRESS plot for GDF15 gene expression for COAD cancer reveals the following
details: A) there are couple probes with a strong negative correlation between methylation
and expression, indicating that GDF15 expression might be controlled through DNA methy-
lation. As the plot’s legend explains, the asterisks gives an indication of the significance
of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the

expression is always compared between the normal and tumor samples. Here, it is clear that
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Figure 3.29: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) cancer
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Figure 3.30: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for COAD (Colon Adeno Carcinoma) ) cancer
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Figure 3.31: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer

the normal samples tend to have very lower GDF15 expression than the tumor samples. C)
Highlighted promoter probes plot data reveals that there are no probes being highlighted
indicating that the promoter region for GDF15 gene might NOT be involved in the reg-
ulation of GDF15 gene expression through DNA methylation. Also, the promoter region
is NOT involved in influencing the methylation of CpG islands or its subsequent effect on
GDF15 gene expression. When samples are ordered by expression, sample type p= 1.37e-9
When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p= 6.62e-10

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-
ing MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer: (Figure
3.31) (Figurd3.32) (Figurd3.33)

MEXPRESS plot for GDF15 gene expression for CRAD cancer reveals the following
details: A) there are couple probes with a strong negative correlation between methylation
and expression, indicating that GDF15 expression might be controlled through DNA methy-

lation. As the plot’s legend explains, the asterisks gives an indication of the significance
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Figure 3.32: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer
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Figure 3.33: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer
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Figure 3.34: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer

of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the
expression is always compared between the normal and tumor samples. Here, it is clear that
the normal samples tend to have very lower GDF15 expression than the tumor samples. C)
Highlighted promoter probes plot data reveals that there are no probes being highlighted
indicating that the promoter region for GDF15 gene might NOT be involved in the reg-
ulation of GDF15 gene expression through DNA methylation. Also, the promoter region
is NOT involved in influencing the methylation of CpG islands or its subsequent effect on
GDF15 gene expression. When samples are ordered by expression, sample type p= 5.38e-10
When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p= 5.49e-10

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer: (Figure
(Figurd3.35) (Figurd3.36)

MEXPRESS plot for GDF15 gene expression for CESC cancer reveals the following de-

tails: A) there are couple probes with a strong negative correlation between methylation
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Figure 3.35: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer
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Figure 3.36: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer
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Figure 3.37: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for ESCA (Esophageal Carcinoma) cancer

and expression, indicating that GDF15 expression might be controlled through DNA methy-
lation. As the plot’s legend explains, the asterisks gives an indication of the significance
of the correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the
expression is always compared between the normal and tumor samples. Here, it is clear that
the normal samples tend to have very lower GDF15 expression than the tumor samples. C)
Highlighted promoter probes plot data reveals that there are no probes being highlighted
indicating that the promoter region for GDF15 gene might NOT be involved in the reg-
ulation of GDF15 gene expression through DNA methylation. Also, the promoter region
is NOT involved in influencing the methylation of CpG islands or its subsequent effect on
GDF15 gene expression. When samples are ordered by expression, sample type p= 0.31
When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p= 0.76

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-

ing MEXPRESS for ESCA (Esophageal Carcinoma) cancer: Figures 3.37 to
3.39(Figure [3.37)) (Figure3.38) (Figurd3.39))
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Figure 3.38: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for ESCA (Esophageal Carcinoma) cancer
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Figure 3.39: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for ESCA (Esophageal Carcinoma) cancer
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MEXPRESS plot for GDF15 gene expression for ESCA cancer reveals the following
details: A) there are more probes with a strong negative correlation as compared to the
ones with a strong positive correlations between methylation and expression, indicating that
GDF15 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have lower GDF15 expression than the tumor samples. C) Highlighted promoter probes
plot data reveals that there are no probes being highlighted indicating that the promoter
region for GDF15 gene might NOT be involved in the regulation of GDF15 gene expression
through DNA methylation. Also, the promoter region is NOT involved in influencing the
methylation of CpG islands or its subsequent effect on GDF15 gene expression. When
samples are ordered by expression, sample type p= 0.251 When samples are ordered by
sample type i.e., difference in expression between normal and tumor type p= 0.695

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-
ing MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) can-
cer:(Figure (Figurd3.41)) (Figurd3.42))

MEXPRESS plot for GDF15 gene expression for HNSC cancer reveals the following
details: A) there are more probes with a strong negative correlation as compared to the
ones with a strong positive correlations between methylation and expression, indicating that
GDF15 expression might be controlled through DNA methylation. As the plot’s legend ex-
plains, the asterisks gives an indication of the significance of the correlations. B) As in all
MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have slightly lower GDF15 expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are no probes being highlighted indicating that the

promoter region for GDF15 gene might NOT be involved in the regulation of GDF15 gene
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Figure 3.40: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer
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Figure 3.41: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression

using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer
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Figure 3.42: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer

expression through DNA methylation. Also, the promoter region is NOT involved in influ-
encing the methylation of CpG islands or its subsequent effect on GDF15 gene expression.
When samples are ordered by expression, sample type p= 0.475 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.482

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer: (Figure
(Figurd3.44) (Figurd3.45)

MEXPRESS plot for GDF15 gene expression for KIRP cancer reveals the following de-
tails: A) there are more probes with a strong negative correlation as compared to the ones
with a strong positive correlations between methylation and expression, indicating that
GDF15 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower GDF15 expression than the tumor samples. C) Highlighted promoter
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Figure 3.43: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer
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Figure 3.44: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer
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Figure 3.45: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer

probes plot data reveals that there are no probes being highlighted indicating that the
promoter region for GDF15 gene might NOT be involved in the regulation of GDF15 gene
expression through DNA methylation. Also, the promoter region is NOT involved in influ-
encing the methylation of CpG islands or its subsequent effect on GDF15 gene expression.
When samples are ordered by expression, sample type p= 0.461 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.478

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-
ing MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer: (Figure
3.46)) (Figurd3.47)) (Figurd3.48))

MEXPRESS plot for GDF15 gene expression for LIHC cancer reveals the following
details: A) there are numerous strong negative correlation between methylation and ex-
pression, indicating that GDF15 expression might be controlled through DNA methylation.
As the plot’s legend explains, the asterisks gives an indication of the significance of the
correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the expres-

sion is always compared between the normal and tumor samples. Here, it is clear that the
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Figure 3.46: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer
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Figure 3.47: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer
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Figure 3.48: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LIHC (Liver Hepato Cellular Carcinoma) cancer

normal samples tend to have slightly lower GDF15 expression than the tumor samples. C)
Highlighted promoter probes plot data reveals that there are no probes being highlighted
indicating that the promoter region for GDF15 gene might NOT be involved in the reg-
ulation of GDF15 gene expression through DNA methylation. Also, the promoter region
is NOT involved in influencing the methylation of CpG islands or its subsequent effect on
GDF15 gene expression. When samples are ordered by expression, sample type p= 0.874
When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p= 0.731

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-
ing MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer: (Figure [3.49)(Fig-
urd3.50)) (Figurd3.51))

MEXPRESS plot for GDF15 gene expression for LUAD cancer reveals the following
details: A) there are numerous strong negative correlation between methylation and ex-
pression, indicating that GDF15 expression might be controlled through DNA methylation.

As the plot’s legend explains, the asterisks gives an indication of the significance of the
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Figure 3.49: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer
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Figure 3.50: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer
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Figure 3.51: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer

correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the ex-
pression is always compared between the normal and tumor samples. Here, it is clear that
the normal samples tend to have lower GDF15 expression than the tumor samples. C)
Highlighted promoter probes plot data reveals that there are no probes being highlighted
indicating that the promoter region for GDF15 gene might NOT be involved in the reg-
ulation of GDF15 gene expression through DNA methylation. Also, the promoter region
is NOT involved in influencing the methylation of CpG islands or its subsequent effect on
GDF15 gene expression. When samples are ordered by expression, sample type p= 0.00196
When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p= 0.00436

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-
ing MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer: (Figure
(Figurd3.53) (Figurd3.54)

MEXPRESS plot for GDF15 gene expression for LUSC cancer reveals the following
details: A) there are numerous strong positive correlation as compared to the ones with

strong negative correlations between methylation and expression, indicating that GDF15
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Figure 3.52: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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Figure 3.53: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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Figure 3.54: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

expression might be controlled through DNA methylation. As the plot’s legend explains, the
asterisks gives an indication of the significance of the correlations. B) As in all MEXPRESS
plotting, for the sample type parameter, the expression is always compared between the
normal and tumor samples. Here, it is clear that the normal samples tend to have slightly
lower GDF15 expression than the tumor samples. C) Highlighted promoter probes plot data
reveals that there are no probes being highlighted indicating that the promoter region for
GDF15 gene might NOT be involved in the regulation of GDF15 gene expression through
DNA methylation. Also, the promoter region is NOT involved in influencing the methylation
of CpG islands or its subsequent effect on GDF15 gene expression. When samples are
ordered by expression, sample type p= 0.00692 When samples are ordered by sample type
i.e., difference in expression between normal and tumor type p= 0.00843

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer: Figures 3.55 to
3.57(Figure (Figurd3.56)) (Figurd3.57)

MEXPRESS plot for GDF15 gene expression for PRAD cancer reveals the following

101



MEXPRESS

Enter a gene symbol or Ensembl id:  GDF15 ENSG00000130513 chr19:18 485,541-18,409,986.

GDF15 ighight promoter probes
Select a TCGA data source: annotation  data statistics. sample type
st oo 6 2016 1 gene. RNAseq2 fog2) p Wiosonrarkcsum et | prmry sl umor
transcript | infinium 450k  sold issue normal

= A ICpGisland | slidelciinical data metastatic
OV ovaran serous cystadenoc: g
PAAD  pancreatica
PCPG  pheochromocyioma and para
PRAD  prostate adenocarcinoma
a :
I I Ll [RR I I I e e
» expression e
SKCM  skin cutaneous carcinoma
" ERRRNRY - - o210 -
STAD  stomach adenocarcinoma
TGCT  testicular aerm cell fimar, it
L
plot L
O R S T
R -

533 samples selected

T VS P O Uy A TG Yo S W WU ST oy ST TRV W Py v
AR netenrdmsiaataniontiin atheladoimtiroumtbnadatotndanabinieonstiia o hatimtionm Mo A
bl et Iiodteintiiosac odochctnd

hectssdomtttetochone,
MMMWMMWMWWWMWWWWWWW
. sl A data 4
A A A ) B

o P Ty T P e o e e e o P e ¥

Figure 3.55: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer
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Figure 3.56: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer
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Figure 3.57: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for PRAD (Prostate Adeno Carcinoma) cancer

details: A) there are numerous strong negative correlation between methylation and ex-
pression, indicating that GDF15 expression might be controlled through DNA methylation.
As the plot’s legend explains, the asterisks gives an indication of the significance of the
correlations. B) As in all MEXPRESS plotting, for the sample type parameter, the ex-
pression is always compared between the normal and tumor samples. Here, it is clear that
the normal samples tend to have lower GDF15 expression than the tumor samples. C)
Highlighted promoter probes plot data reveals that there are no probes being highlighted
indicating that the promoter region for GDF15 gene might NOT be involved in the reg-
ulation of GDF15 gene expression through DNA methylation. Also, the promoter region
is NOT involved in influencing the methylation of CpG islands or its subsequent effect on
GDF15 gene expression. When samples are ordered by expression, sample type p= 5.75e-9
When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p= 7.2e-9

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer: (Figure[3.58) (Figurd3.59) (Figurd3.60)
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Figure 3.58: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer
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Figure 3.59: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer
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Figure 3.60: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer

MEXPRESS plot for GDF15 gene expression for THCA cancer reveals the following de-
tails: A) there are more number of strong negative correlation values of probes as compared
to those of strong positive correlations, between methylation and expression, indicating that
GDF15 expression might be controlled through DNA methylation. As the plot’s legend ex-
plains, the asterisks gives an indication of the significance of the correlations. B) As in all
MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have significantly lower GDF15 expression than the tumor samples. C) Highlighted pro-
moter probes plot data reveals that there are no probes being highlighted indicating that
the promoter region for GDF15 gene might NOT be involved in the regulation of GDF15
gene expression through DNA methylation. Also, the promoter region is NOT involved in
influencing the methylation of CpG islands or its subsequent effect on GDF15 gene expres-
sion. When samples are ordered by expression, sample type p < 2.2e-16 When samples are
ordered by sample type i.e., difference in expression between normal and tumor type p <

2.2e-16
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Figure 3.61: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer

Analysis of GDF15 (Growth Differentiation Factor 15) gene expression us-
ing MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) can-
cer:(Figure (Figurd3.62) (Figurd3.63)

MEXPRESS plot for GDF15 gene expression for UCEC cancer reveals the following
details: A) there are slightly more number of strong negative correlation values of probes
as compared to those of strong positive correlations, between methylation and expression,
indicating that GDF15 expression might be controlled through DNA methylation. As the
plot’s legend explains, the asterisks gives an indication of the significance of the correlations.
B) As in all MEXPRESS plotting, for the sample type parameter, the expression is always
compared between the normal and tumor samples. Here, it is clear that the normal samples
tend to have slightly lower GDF15 expression than the tumor samples. C) Highlighted
promoter probes plot data reveals that there are no probes being highlighted indicating
that the promoter region for GDF15 gene might NOT be involved in the regulation of
GDF15 gene expression through DNA methylation. Also, the promoter region is NOT
involved in influencing the methylation of CpG islands or its subsequent effect on GDF15

gene expression. When samples are ordered by expression, sample type p= 4.82e-8 When
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Figure 3.62: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer
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Figure 3.63: Analysis of GDF15 (Growth Differentiation Factor 15) gene expression using
MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer
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Figure 3.64: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer

samples are ordered by sample type i.e., difference in expression between normal and tumor

type p= 2.49e-6

3.3 PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) as

a DNA methylation biomarker gene

(Figure (Figure [3.65)) (Figure

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer:

MEXPRESS plot for PIWIL4 gene expression for BLCA cancer reveals the following
details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared

between the normal and tumor samples. Here, it is clear that the normal samples tend to
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Figure 3.65: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer
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Figure 3.66: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer
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Figure 3.67: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

have lower PIWIL4 expression than the tumor samples. C) Highlighted promoter probes
plot data reveals that there are few, yet highly significant negative correlation values between
methylation and expression indicating that the promoter region for PIWIL4 gene might be
regulated through DNA methylation. Such promoter probes are also found on the CpG
island region (indicated in green color) indicating that DNA methylation has an effect on
the CpG island region which can subsequently influence PIWIL4 gene expression. When
samples are ordered by expression, sample type p= 0.00217 When samples are ordered by
sample type i.e., difference in expression between normal and tumor type p= 0.00944

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer:
(Figure (Figure [3.68) (Figure

MEXPRESS plot for PIWIL4 gene expression for BRCA cancer reveals the following
details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in
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Figure 3.68: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.69: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.70: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer

all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have higher PIWIL4 expression than the tumor samples. C) Highlighted promoter probes
plot data reveals that there are numerous, yet highly significant negative correlation values
between methylation and expression indicating that the promoter region for PIWIL4 gene
might be regulated through DNA methylation. Such promoter probes are also found on the
CpG island region (indicated in green color) indicating that DNA methylation has an effect
on the CpG island region which can subsequently influence PIWIL4 gene expression. When
samples are ordered by expression, sample type p < 2.2e-16 When samples are ordered by
sample type i.e., difference in expression between normal and tumor type p < 2.2e-16

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma)
cancer:(Figure (Figure [3.71) (Figure

MEXPRESS plot for PIWIL4 gene expression for CESC cancer reveals the following de-
tails: A) there are more number of strong negative correlation values of probes as compared

to those of strong positive correlations, between methylation and expression, indicating that
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Figure 3.71: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer
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Figure 3.72: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CESC (Cervical Squamous Cell Carcinoma) cancer
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Figure 3.73: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CHOL (Cholangio Carcinoma) cancer

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have significantly higher PIWIL4 expression than the tumor samples. C) Highlighted pro-
moter probes plot data reveals that there are few, yet highly significant negative correlation
values between methylation and expression indicating that the promoter region for PIWIL4
gene might be regulated through DNA methylation. Such promoter probes are also found
on the CpG island region (indicated in green color) indicating that DNA methylation has an
effect on the CpG island region which can subsequently influence PIWIL4 gene expression.
When samples are ordered by expression, sample type p= 0.0362 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.078
Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for CHOL (Cholangio Carcinoma) cancer:(Figure

(Figure [3.74) (Figure

MEXPRESS plot for PIWIL4 gene expression for CHOL cancer reveals the following
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Figure 3.74: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CHOL (Cholangio Carcinoma) cancer
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Figure 3.75: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CHOL (Cholangio Carcinoma) cancer
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details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have significantly lower PIWIL4 expression than the tumor samples. C) Highlighted pro-
moter probes plot data reveals that there are few, yet highly significant negative correlation
values between methylation and expression indicating that the promoter region for PIWIL4
gene might be regulated through DNA methylation. Such promoter probes are also found
on the CpG island region (indicated in green color) indicating that DNA methylation has
an effect on the CpG island region which can subsequently influence PIWIL4 gene expres-
sion. When samples are ordered by expression, sample type p= 1.06e-4 When samples are
ordered by sample type i.e., difference in expression between normal and tumor type p=
6.41e-5

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer:(Figure
(Figure (Figure

MEXPRESS plot for PIWIL4 gene expression for COAD cancer reveals the following
details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are numerous, yet highly significant negative correlation

values between methylation and expression indicating that the promoter region for PIWIL4

116



MEXPRESS

Enter a gene symbol or Ensembl id:  PIWIL4 ENSGO0000134627 chri1:04,277.006-04,354.587 E3
PIWIL4

Hghight pro
Select a TCGA data source: annotation  data gender  statistics sample type
I gene RNA-seqv2(log2) |female  p Wilcoron rank-sumtest | primary soid tumor
transcript | infinium 450K male P = 0.0 | soidtissue normal
1 CpG island T
missing data 2+t p < 0.001 metastatic

h
relatives w

» expression [T

299 samples selected

Figure 3.76: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer
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Figure 3.77: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer
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Figure 3.78: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for COAD (Colon Adeno Carcinoma) cancer

gene might be regulated through DNA methylation. Such promoter probes are also found
on the CpG island region (indicated in green color) indicating that DNA methylation has an
effect on the CpG island region which can subsequently influence PIWIL4 gene expression.
When samples are ordered by expression, sample type p= 0.0363 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.0334

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) can-
cer:(Figure (Figure (Figure

MEXPRESS plot for PIWIL4 gene expression for CRAD cancer reveals the following
details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to

have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter
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Figure 3.79: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer
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Figure 3.80: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer
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Figure 3.81: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for CRAD (Colo Rectal Adeno Carcinoma) cancer

probes plot data reveals that there are few, yet highly significant negative correlation values
between methylation and expression indicating that the promoter region for PIWIL4 gene
might be regulated through DNA methylation. Such promoter probes are also found on the
CpG island region (indicated in green color) indicating that DNA methylation has an effect
on the CpG island region which can subsequently influence PIWIL4 gene expression. When
samples are ordered by expression, sample type p= 0.0219 When samples are ordered by
sample type i.e., difference in expression between normal and tumor type p= 0.0206

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for ESCA (Esophageal Carcinoma) cancer:(Figure
(Figure [3.83) (Figure

MEXPRESS plot for PIWIL4 gene expression for ESCA cancer reveals the following
details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in

all MEXPRESS plotting, for the sample type parameter, the expression is always compared
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Figure 3.82: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for ESCA (Esophageal Carcinoma) cancer

m

Enter a gene symbol or Ensembl id:  PIWIL4 ENSG00000134627 chri1:94.277.006-94,354,587 E3

FWILY ighignt promoter probes
annotation  data gender  statistcs sample type
Igene RNAseq 2 (log2) |female b Wilcoxon rank-sumest | soid issue nomal
wanscript | infium 450k male PC0.08 DE0.05 | metastitc
ocoricalcarcnoma A 1 CpGistand | sidelcinicaldata = Paarson coration primary soid tumor
missing data s p <o

der urothelial carcinoma

breastinvasive carcinoma

CRAD  colorectal adenocarcinoma

mErang nmnn [LL AR R -
DLBC  difuse farge 8 cell ymphoma > sample type I
e P VI VN DV V- SOVe U TSy S Y VS SN G SV S S e PSR S § B S S W e Se Y b S e
ESCA esopnagealcardnoma v o
g S S
et e e it e N TN & RO N AT e 6 S e e
906526620 DR
plot =

194 samples selocted

———
= PO V S~ -

et A0 NPV NNV Wy " v

ST Y G

SO T SN

- v vy vy

vovvy

[ o MA\. 46 A4, VYV VW N

Figure 3.83: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for ESCA (Esophageal Carcinoma) cancer
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Figure 3.84: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for ESCA (Esophageal Carcinoma) cancer

between the normal and tumor samples. Here, it is clear that the normal samples tend to
have slightly higher PTIWIL4 expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are few, yet highly significant negative correlation values
between methylation and expression indicating that the promoter region for PIWIL4 gene
might be regulated through DNA methylation. Such promoter probes are also found on
the CpG island region (indicated in green color) indicating that DNA methylation has an
effect on the CpG island region which can subsequently influence PIWIL4 gene expression.
When samples are ordered by expression, sample type p= 0.491 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.887

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for HNSC (Head and Neck Squamous Cell Carci-
noma) cancer:(Figure [3.85)) (Figurd3.86)) (Figurd3.87)

MEXPRESS plot for PIWIL4 gene expression for HNSC cancer reveals the following
details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that

PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
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Figure 3.85: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer
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Figure 3.86: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer
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Figure 3.87: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer

explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are few, yet highly significant negative correlation values
between methylation and expression indicating that the promoter region for PIWIL4 gene
might be regulated through DNA methylation. Such promoter probes are also found on
the CpG island region (indicated in green color) indicating that DNA methylation has an
effect on the CpG island region which can subsequently influence PIWIL4 gene expression.
When samples are ordered by expression, sample type p= 0.895 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.900

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma)
cancer:(Figure [3.88) (Figurd3.89) (Figurd3.90)

MEXPRESS plot for PIWIL4 gene expression for KIRC cancer reveals the following

details: A) there are numerous strong negative correlation values of probes as compared to
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Figure 3.88: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer
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Figure 3.89: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer
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Figure 3.90: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer

those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have significantly lower PIWIL4 expression than the tumor samples. C) Highlighted pro-
moter probes plot data reveals that there are few, yet highly significant negative correlation
values between methylation and expression indicating that the promoter region for PIWIL4
gene might be regulated through DNA methylation. Such promoter probes are also found
on the CpG island region (indicated in green color) indicating that DNA methylation has
an effect on the CpG island region which can subsequently influence PIWIL4 gene expres-
sion. When samples are ordered by expression, sample type p= 1.68e-10 When samples are
ordered by sample type i.e., difference in expression between normal and tumor type p=
4.7e-10

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-

pression using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma)
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Figure 3.91: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer

cancer: (Figure [3.91) (Figurd3.92)) (Figurd3.93)

MEXPRESS plot for PIWIL4 gene expression for KIRP cancer reveals the following
details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are numerous, yet highly significant negative correlation
values between methylation and expression indicating that the promoter region for PIWIL4
gene might be regulated through DNA methylation. Such promoter probes are also found
on the CpG island region (indicated in green color) indicating that DNA methylation has an
effect on the CpG island region which can subsequently influence PIWIL4 gene expression.
When samples are ordered by expression, sample type p = 0.283 When samples are ordered

by sample type i.e., difference in expression between normal and tumor type p= 0.327
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Figure 3.92: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer
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Figure 3.93: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for KIRP (Kidney Renal Papillary Cell Carcinoma) cancer
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Figure 3.94: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) can-
cer:(Figure (Figurd3.95) (Figurd3.96))

MEXPRESS plot for PIWIL4 gene expression for LIHC cancer reveals the following
details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have slightly lower PIWIL4 expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are numerous, yet highly significant negative correlation
values between methylation and expression indicating that the promoter region for PIWIL4
gene might be regulated through DNA methylation. Such promoter probes are also found
on the CpG island region (indicated in green color) indicating that DNA methylation has an

effect on the CpG island region which can subsequently influence PIWIL4 gene expression.
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Figure 3.95: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer
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Figure 3.96: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer
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Figure 3.97: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer

When samples are ordered by expression, sample type p= 0.126 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.118

Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene ex-
pression using MEXPRESS for UCEC (Uterine Corpus Endometrial Carci-
noma) cancer:(Figure (Figurd3.98) (Figurd3.99)

MEXPRESS plot for PIWIL4 gene expression for UCEC cancer reveals the following
details: A) there are numerous strong negative correlation values of probes as compared to
those of strong positive correlations, between methylation and expression, indicating that
PIWIL4 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have slightly higher PIWIL4 expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are few, yet highly significant negative correlation values
between methylation and expression indicating that the promoter region for PIWIL4 gene

might be regulated through DNA methylation. Such promoter probes are also found on the
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Figure 3.98: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer
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Figure 3.99: Analysis of PIWIL4 (Piwi Like RNA-Mediated Gene Silencing 4) gene expres-
sion using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma) cancer
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Figure 3.100: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

CpG island region (indicated in green color) indicating that DNA methylation has an effect
on the CpG island region which can subsequently influence PIWIL4 gene expression. When
samples are ordered by expression, sample type p= 5.92e-6 When samples are ordered by

sample type i.e., difference in expression between normal and tumor type p= 9.49e-4

3.4 DMRT1 (Doublesex and Mab-3 Related Transcription

Factor 1) as a DNA methylation biomarker gene

(Figure (Figurd3.101)) (Figurd3.102))

Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor
1) gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma)
cancer:

MEXPRESS plot for DMRT1 gene expression for BRCA cancer reveals the following
details: A) there are numerous strong positive correlation values of probes as compared
to those of strong negative correlations, between methylation and expression, indicating

that DMRT1 expression might be controlled through DNA methylation. As the plot’s
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Figure 3.101: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.102: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.103: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

legend explains, the asterisks gives an indication of the significance of the correlations. B)
As in all MEXPRESS plotting, for the sample type parameter, the expression is always
compared between the normal and tumor samples. Here, it is clear that the normal samples
tend to have lower DMRT'1 expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are few, yet highly significant negative correlation values
between methylation and expression indicating that the promoter region for DMRT1 gene
might be regulated through DNA methylation. Such promoter probes are also found on
the CpG island region (indicated in green color) indicating that DNA methylation has an
effect on the CpG island region which can subsequently influence DMRT1 gene expression.
When samples are ordered by expression, sample type p= 0.119 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.105

Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma)
cancer:(Figure (Figurd3.104) (Figure3.105))

MEXPRESS plot for DMRT1 gene expression for LUSC cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared to
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Figure 3.104: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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Figure 3.105: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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those of strong negative correlations, between methylation and expression, indicating that
DMRT1 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have significantly lower DMRT1 expression than the tumor samples. C) Highlighted pro-
moter probes plot data reveals that there are few, yet highly significant negative correlation
values between methylation and expression indicating that the promoter region for DMRT'1
gene might be regulated through DNA methylation. Such promoter probes are also found
on the CpG island region (indicated in green color) indicating that DNA methylation has
an effect on the CpG island region which can subsequently influence DMRT1 gene expres-
sion. When samples are ordered by expression, sample type p= 0.00639 When samples are
ordered by sample type i.e., difference in expression between normal and tumor type p=
0.00553

Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor
1) gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer:
(Figure (Figurd3.107) (Figurd3.108))

MEXPRESS plot for DMRT1 gene expression for THCA cancer reveals the following
details: A) there are numerous strong positive correlation values of probes as compared to
those of strong negative correlations, between methylation and expression, indicating that
DMRT1 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend to
have significantly lower DMRT1 expression than the tumor samples. C) Highlighted pro-
moter probes plot data reveals that there are few, yet highly significant positive correlation
values between methylation and expression indicating that the promoter region for DMRT'1

gene might be regulated through DNA methylation. Such promoter probes are also found
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Figure 3.107:

Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription

gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer
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Figure 3.108: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for THCA (Thyroid Carcinoma) cancer

on the CpG island region (indicated in green color) indicating that DNA methylation has an
effect on the CpG island region which can subsequently influence DMRT1 gene expression.
When samples are ordered by expression, sample type p= 0.168 When samples are ordered
by sample type i.e., difference in expression between normal and tumor type p= 0.178

Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor
1) gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial
Carcinoma) cancer:(Figure (Figurd3.110) (Figurd3.111))

MEXPRESS plot for DMRT1 gene expression for UCEC cancer reveals the following
details: A) there are numerous strong positive correlation values of probes as compared to
those of strong negative correlations, between methylation and expression, indicating that
DMRT1 expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend
to have significantly lower DMRT1 expression than the tumor samples. C) Highlighted

promoter probes plot data reveals that there are very few, yet highly significant positive
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Figure 3.109: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma)
cancer
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Figure 3.110: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)

gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma)
cancer
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Figure 3.111: Analysis of DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1)
gene expression using MEXPRESS for UCEC (Uterine Corpus Endometrial Carcinoma)

cancer

correlation values between methylation and expression indicating that the promoter region
for DMRT1 gene might be regulated through DNA methylation. Such promoter probes are
also found on the CpG island region (indicated in green color) indicating that DNA methy-
lation has an effect on the CpG island region which can subsequently influence DMRT'1
gene expression. When samples are ordered by expression, sample type p= 3.04e-4 When
samples are ordered by sample type i.e., difference in expression between normal and tumor

type p= 0.00174

3.5 ITPKA (inositol-trisphosphate 3-kinase A) as a DNA

methylation biomarker gene

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer:(Figure|3.112)) (Fig-

urg3.113) (Figurd3.114))
MEXPRESS plot for ITPKA gene expression for BLCA cancer reveals the following

details: A) there are numerous strong positive correlation values of probes as compared to
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Figure 3.112: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer
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Figure 3.113: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer
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Figure 3.114: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BLCA (Bladder Urothelial Carcinoma) cancer

those of strong negative correlations, between methylation and expression, indicating that
ITPKA expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend
to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
promoter probes plot data reveals that there are very few and slightly positive correlation
values between methylation and expression indicating that the promoter region for ITPKA
gene might or might not be regulated through DNA methylation. Such promoter probes
are also found on the CpG island region (indicated in green color) indicating that DNA
methylation has an effect on the CpG island region which can subsequently influence ITPKA
gene expression. When samples are ordered by expression, sample type p= 0.0609 When
samples are ordered by sample type i.e., difference in expression between normal and tumor
type p= 0.0996

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
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Figure 3.115: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer

MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer:(Figure |3.115))(Fig-
urd3.116)) (Figurd3.117)

MEXPRESS plot for ITPKA gene expression for BRCA cancer reveals the following
details: A) there are numerous strong positive correlation values of probes as compared to
those of strong negative correlations, between methylation and expression, indicating that
ITPKA expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend
to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
promoter probes plot data reveals that there are just a couple of probes and slightly negative
correlation values between methylation and expression indicating that the promoter region
for ITPKA gene might or might not be regulated through DNA methylation. Such promoter
probes are also found on the CpG island region (indicated in green color) indicating that
DNA methylation has an effect on the CpG island region which can subsequently influence

ITPKA gene expression. When samples are ordered by expression, sample type p < 2.2e-16
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Figure 3.116: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.117: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for BRCA (Breast Invasive Carcinoma) cancer
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Figure 3.118: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer

When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p < 2.2e-16

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer:
(Figure (Figurd3.119) (Figure3.120)

MEXPRESS plot for ITPKA gene expression for HNSC cancer reveals the following
details: A) there are numerous strong positive correlation values of probes as compared to
those of strong negative correlations, between methylation and expression, indicating that
ITPKA expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend
to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
promoter probes plot data reveals that there are just a couple of probes and low negative
correlation values between methylation and expression indicating that the promoter region

for ITPKA gene might or might not be regulated through DNA methylation. Such promoter
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Figure 3.119: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer
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Figure 3.120: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for HNSC (Head and Neck Squamous Cell Carcinoma) cancer
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Figure 3.121: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer

probes are also found on the CpG island region (indicated in green color) indicating that
DNA methylation has an effect on the CpG island region which can subsequently influence
ITPKA gene expression. When samples are ordered by expression, sample type p = 6.46e-4
When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p = 8.42e-4

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer:(Figure
3.121)) (Figurd3.122) (Figurd3.123))

MEXPRESS plot for ITPKA gene expression for KIRC cancer reveals the following
details: A) there are numerous strong positive correlation values of probes as compared to
those of strong negative correlations, between methylation and expression, indicating that
ITPKA expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend

to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
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Figure 3.122: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer
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Figure 3.123: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRC (Kidney Renal Clear Cell Carcinoma) cancer
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Figure 3.124: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer

promoter probes plot data reveals that there is just one probe with a low negative correlation
values between methylation and expression indicating that the promoter region for ITPKA
gene might or might not be regulated through DNA methylation. Such a promoter probe is
also found very close to CpG island region (indicated in green color) indicating that DNA
methylation might have an effect on the CpG island region which can subsequently influence
ITPKA gene expression. When samples are ordered by expression, sample type p = 9.47e-9
When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p = 2.03e-8

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression us-
ing MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer:(Figure
(Figurd3.125)) (Figurd3.126)

MEXPRESS plot for ITPKA gene expression for KIRP cancer reveals the following de-
tails: A) there are numerous strong positive correlation values of probes as compared to
those of strong negative correlations, between methylation and expression, indicating that
ITPKA expression might be controlled through DNA methylation. As the plot’s legend

explains, the asterisks gives an indication of the significance of the correlations. B) As in all
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Figure 3.125: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer
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Figure 3.126: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for KIRP (Kidney Renal Papillary Carcinoma) cancer
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Figure 3.127: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer

MEXPRESS plotting, for the sample type parameter, the expression is always compared be-
tween the normal and tumor samples. Here, it is clear that the normal samples tend to have
significantly lower ITPKA expression than the tumor samples. C) Highlighted promoter
probes plot data reveals that there are few probes with very low negative correlation values
between methylation and expression indicating that the promoter region for ITPKA gene
might or might not be regulated through DNA methylation. Such a promoter probe is also
found in the CpG island region (indicated in green color) indicating that DNA methylation
might have an effect on the CpG island region which can subsequently influence ITPKA
gene expression. When samples are ordered by expression, sample type p = 3.84e-7 When
samples are ordered by sample type i.e., difference in expression between normal and tumor
type p = 1.94e-6

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer:(Figure[3.127) (Fig-
urd3.128)) (Figurd3.129)

MEXPRESS plot for ITPKA gene expression for LIHC cancer reveals the following de-

tails: A) there are a couple of strong negative correlation values of probes as compared to
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Figure 3.128: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer
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Figure 3.129: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LIHC (Liver Hepatocellular Carcinoma) cancer
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those of strong positive correlations, between methylation and expression, indicating that
ITPKA expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As
in all MEXPRESS plotting, for the sample type parameter, the expression is always com-
pared between the normal and tumor samples. Here, it is clear that the normal samples
tend to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
promoter probes plot data reveals that there are couple probes with very low negative cor-
relation values between methylation and expression indicating that the promoter region for
ITPKA gene might or might not be regulated through DNA methylation. Such a promoter
probe is also found in the CpG island region (indicated in green color) indicating that DNA
methylation might have an effect on the CpG island region which can subsequently influ-
ence ITPKA gene expression. When samples are ordered by expression, sample type p =
2.53e-11 When samples are ordered by sample type i.e., difference in expression between
normal and tumor type p = 2.44e-11

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression us-
ing MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer:(Figure [3.130) (Fig-
urd3.131) (Figurd3.132)

MEXPRESS plot for ITPKA gene expression for LUAD cancer reveals the following
details: A) there are a number of strong positive correlation values of probes as compared
to those of strong negative correlations, between methylation and expression, indicating
that ITPKA expression might be controlled through DNA methylation. As the plot’s leg-
end explains, the asterisks gives an indication of the significance of the correlations. B)
As in all MEXPRESS plotting, for the sample type parameter, the expression is always
compared between the normal and tumor samples. Here, it is clear that the normal samples
tend to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
promoter probes plot data reveals that there are couple probes with very low negative cor-
relation values between methylation and expression indicating that the promoter region for

ITPKA gene might or might not be regulated through DNA methylation. Such a promoter
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Figure 3.130: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer
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Figure 3.131: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer
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Figure 3.132: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUAD (Lung Adeno Carcinoma) cancer

probe is also found in the CpG island region (indicated in green color) indicating that DNA
methylation might have an effect on the CpG island region which can subsequently influ-
ence ITPKA gene expression. When samples are ordered by expression, sample type p =
1.05e-10 When samples are ordered by sample type i.e., difference in expression between
normal and tumor type p = 2.52e-10

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression us-
ing MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer:(Figure
3.133)) (Figure (Figure

MEXPRESS plot for ITPKA gene expression for LUSC cancer reveals the following
details: A) there are a number of strong positive correlation values of probes as compared
to those of strong negative correlations, between methylation and expression, indicating
that ITPKA expression might be controlled through DNA methylation. As the plot’s leg-
end explains, the asterisks gives an indication of the significance of the correlations. B)
As in all MEXPRESS plotting, for the sample type parameter, the expression is always
compared between the normal and tumor samples. Here, it is clear that the normal samples

tend to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
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Figure 3.133: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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Figure 3.134: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer
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Figure 3.135: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for LUSC (Lung Squamous Cell Carcinoma) cancer

promoter probes plot data reveals that there are couple probes with very low negative cor-
relation values between methylation and expression indicating that the promoter region for
ITPKA gene might or might not be regulated through DNA methylation. Such a promoter
probe is also found in the CpG island region (indicated in green color) indicating that DNA
methylation might have an effect on the CpG island region which can subsequently influence
ITPKA gene expression. When samples are ordered by expression, sample type p = 2.23e-5
When samples are ordered by sample type i.e., difference in expression between normal and
tumor type p = 7.77e-5

Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression us-
ing MEXPRESS for THCA (Thyroid Carcinoma) cancer:(Figure [3.136) (Figure
3.137)) (Figure

MEXPRESS plot for ITPKA gene expression for THCA cancer reveals the following
details: A) there are a number of strong positive correlation values of probes as compared to
those of strong negative correlations, between methylation and expression, indicating that
ITPKA expression might be controlled through DNA methylation. As the plot’s legend
explains, the asterisks gives an indication of the significance of the correlations. B) As in
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Figure 3.136: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer
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Figure 3.137: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer
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Figure 3.138: Analysis of ITPKA (inositol-trisphosphate 3-kinase A) gene expression using
MEXPRESS for THCA (Thyroid Carcinoma) cancer

all MEXPRESS plotting, for the sample type parameter, the expression is always compared
between the normal and tumor samples. Here, it is clear that the normal samples tend
to have significantly lower ITPKA expression than the tumor samples. C) Highlighted
promoter probes plot data reveals that there are no probes with low correlation values
between methylation and expression indicating that the promoter region for ITPKA gene
might not be regulated through DNA methylation. Such a promoter probe is also not
found in the CpG island region (indicated in green color) indicating that DNA methylation
might not have an effect on the CpG island region which can subsequently influence ITPKA
gene expression. When samples are ordered by expression, sample type p < 2.2e-16 When
samples are ordered by sample type i.e., difference in expression between normal and tumor
type p = 5.33e-15

The below table is a comprehensive listing for the five gene analyzed using MEXPRESS
tool. The significance of the relation as determined by the p-value is listed in the above table
for each of the gene analyzed against 34 cancer types. The p-value so obtained is using the
default setting in MEXPRESS tool. These p-values are obtained when samples are ordered

by their expression values. Samples with the highest expression values are placed on the left
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Figure 3.139: Comprehensive Result Table of Gene analysis using MEXPRESS and their p-
or significance values (When samples are ordered by value of their expression i.e., by using
MEXPRESS default setting
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and those with the lowest expression values are placed at the right of the line plot (yellow
line). These expression values are the logarithm of the level3 RNASeqV2 values. These
RNASeq values are normalized values for a gene. It must be noted that the expression data
forms the basis of the whole plot, because the samples are ranked based on their expression
value for the gene we selected with the highest expression on the left side and the lowest
on the right. Sample size in the table indicates the number of samples or patients from
whom the samples were obtained. Most significant p-values are indicated in red, meaning
in these cancer types, the gene expression is highly influenced by the corresponding DNA
methylation either in their promoter or regulatory region. Samples can also be re-ordered
by sample type, which is always a measure of or which indicates the difference between
the expression values of normal vs tumor samples. The above table is an indication of
several hits or leads obtained in terms of the gene of our interest being considered as a

DNA methylation biomarker gene. (Figure

Overall results of the five genes analyzed (Figure [3.140))(Figure [3.141))(Figure
3.142)) (Figure (Figure (Figure (Figure (Figure (Figure (Fig-
ure

Representative results of querying ITPKA gene Vs BioMuta and BioXpress

When ITPKA is queried against BioMuta, the results are indicated as follows: 66 pos-
sible singlenucleotide variations (SNVs) are identified for the ITPKA gene with the highest
number found for Urinary bladder cancer and Lung cancer. The tabular result indicates im-
portant information such as the chromosome number and position at which the SNV is found
and its possible phenotypic effect. Results also show that five of the 66 SNVs are nsSNVs
that affect functional sites (three gain of phosphorylation and two gain of glycosylation).
Fig 2B: Pie-chart representing different cancer types and the number of positions affected
by SNVs in them. Utility: BioMuta is a curated single-nucleotide variation (SNV) and dis-
ease association database. It is an important source of variations, particularly because the
variations are mapped to the genome/protein/gene. Such query helps to identify variations

and since the database is compiled from various sources through biocuration, it paves ways
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Cancer p-values: p-values: Majority of | Significance | CpG island

Type Samples Samples correlation | of present in
ordered by | ordered by | values of | relationship | promoter
expression | Sample methylation region
values type probes

BLCA 6.02e-4 9.17e-4 Negative * ok ok Yes

BRCA <2.2e-16 <2.2e-16 Negative Ll Yes

COAD 0.0562 0.0687 Negative kiR Yes

CRAD 0.023 0.0249 Negative * ok ok Yes

KIRC 2.77e-10 1.36e-10 Negative * k% Yes

KIRP 0.246 0.179 Negative * ok ok Yes

LUAD 0.578 0.623 Negative * k% Yes

LUSC 0.00118 0.00128 Negative XXk Yes

Figure 3.140: Overall analysis of BLCAP gene as a biomarker using MEXPRESS tool
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Figure 3.141: Overall analysis of BLCAP gene as a biomarker using MEXPRESS tool
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Cancer p-values: p-values: Majority of | Significance | CpG island

Type Samples Samples correlation | of present in
ordered by | ordered by | values of | relationship | promoter
expression | Sample methylation region
values type probes

BRCA 2.09e-14 1.31e-13 Negative * k% No

COAD 1.37e-9 6.62e-10 Negative * k% No

CRAD 5.38e-10 5.49e-10 Negative * % No

CESC 0.31 0.76 Negative * % No

ESCA 0.251 0.695 Negative * % No

HNSC 0.475 0.482 Negative * ok ok No

KIRP 0.461 0.478 Negative * kK No

LIHC 0.874 0.731 Negative * k% No

LUAD 0.00196 0.00436 Negative * ok ok No

LUSC 0.00692 0.00843 Positive * ko No

PRAD 5.75e-9 7.2e-9 Negative * k% No

THCA <2.2e-16 <2.2e-16 Negative L No

UCEC 4.82e-8 2.49e-6 Negative * % No

Figure 3.142: Overall analysis of GDF15 gene as a biomarker using MEXPRESS tool
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Figure 3.143: Overall analysis of GDF15 gene as a biomarker using MEXPRESS tool

for prioritizing variations for further experimental validations (Figure (Figure

When ITPKA is queried against BioXpress, the results obtained are as follows: the
ITPKA gene is shown to be over-expressed in Thyroid Carcinoma (THCA), which validates
and confirms our findings from the MEXPRESS study. Our MEXPRESS study also reveals
that ITPKA exhibits epigenetic aberrations in other cancer types such as BRCA, COAD,
CRAD, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC and PRAD, which is also reproduced
here (clear differential expression observed) when queried against BioXpress. Fig3B: Pie-
chart representing different cancer types and the over-expression of ITPKA gene in percent.
Utility: BioXpress is a curated gene expression and disease association database where
the expression levels are mapped to genes. BioXpress is useful in identifying differences
between expression levels in disease and normal pairs and to discover differential expression
for a gene. It also helps in identification of potential biomarkers or pathways that lead
to tumor formation or to explore the overall expression of specific genes across multiple

cancer types. BioXpress can be queried using HGNC-approved gene symbols (HUGO Gene
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Cancer p-values: p-values: Majority of | Significance | CpG island

Type Samples Samples correlation | of present in
ordered by | ordered by | values of | relationship | promoter
expression | Sample methylation region
values type probes

BLCA 0.00217 0.00944 Negative * %% Yes

BRCA <2.2e-16 <2.2e-16 Negative S Yes

CESC 0.0362 0.078 Negative * k& Yes

CHOL 1.06e-4 6.41e-5 Negative * % Yes

COAD 0.0363 0.0334 Negative *E X Yes

CRAD 0.0219 0.0206 Negative * % % Yes

ESCA 0.491 0.887 Negative * % Yes

HNSC 0.895 0.900 Negative * k¥ Yes

KIRC 1.68e-10 4.7e-10 Negative * ok ok Yes

KIRP 0.283 0.327 Negative * k& Yes

LIHC 0.126 0.118 Negative * %k Yes

UCEC 5.92e-6 9.49e-4 Negative * % Yes

Figure 3.144: Overall analysis of PIWIL4 gene
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Figure 3.145: Overall analysis of PIWIL4 gene as a biomarker using MEXPRESS tool
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Cancer p-values: p-values: Majority of | Significance | CpG island

Type Samples Samples correlation | of present in
ordered by | ordered by | values of | relationship | promoter
expression | Sample methylation region
values type probes

BRCA 0.119 0.105 Positive * kK Yes

LUSC 0.00639 0.00553 Positive * kK Yes

THCA 0.168 0.178 Positive * kK Yes

UCEC 3.04e-4 0.00174 Positive * % Yes

Figure 3.146: Overall analysis of DMRT1 gene as a biomarker using MEXPRESS tool
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Figure 3.147: Overall
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Cancer p-values: p-values: Majority of | Significance | CpG island

Type Samples Samples correlation | of present in
ordered by | ordered by | values of | relationship | promoter
expression | Sample methylation region
values type probes

BLCA 0.0609 0.0996 Positive * % % Yes

BRCA <2.2e-16 <2.2e-16 Positive * & % Yes

HNSC 6.46e-4 8.42e-4 Positive * kK Yes

KIRC 9.47e-9 2.03e-8 Positive * k% Yes

KIRP 3.84e-7 1.94e-6 Positive * k% Yes

LIHC 2.53e-11 2.44e-11 Negative * k% Yes

LUAD 1.05e-10 2.52e-10 Positive HE Yes

LUSC 2.23e-5 7.77e-56 Positive * k% Yes

Figure 3.148: Overall analysis of ITPKA gene
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Figure 3.149: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool
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66 Results for ITPKA in BioMuta v3.0

ProtkBAC Gene  RefSeq Acce chromosome pos Pos(N) RefN) Var(D) Pos(a)| Reftdd Var(X) Polyphen  PMID ase Ontology  Source  Protein functional site  Status  Comment
P23677 | ITPKA |NM_00.. |chris4178.. | 187 | G | A | 63 | G | R |probably.. |2262.. |DOID:4150/Ski...|cosMIE 2 M - A
w3077 | mRa WMo |chrisatze. | 259 | G | T | &7 | E | x - |+ |oomi7e3 /e | cosmc| [ [
Fasor | MPKA |NML0D.. |chrisatze.. |29 | G | T | @7 | E | x s - oomarea/pe. | cac s =
v23677 | PKA |NML0O.. |chriséizs.. | 341 | T | € | 114 | L | P | benign - o324 /Lu.. | cosmic : su =
v23677 | A |NML00.. |chrisa17s.. | 457 | G | T | 153 | v | L |possbly.. | - |DOD4362/Ce.. | TooA . =
723677 | KA [NM.00 |cheisa17o. | 493 | A | C | 165 | N | W | benign |2289. |DOID219/Col.. | cosMc su u
v23677 | PKA [NML00.. |chis:i7o. | 520 | € | T | 177 | P | s |possibly - |Do:263/xid.. |cosMic|  GainlGlycosylation M ™
P23677 | TPKA [NML0O.. |etrisatze.. | 529 | € | T | 177 | P | 5 |possibly - Do:2s3/Kid.. | Tooa GainlGlycosylation | =
v23077 | TPKA |NMLOO.. |chrisatze.. | 557 | A | T | 185 | ¥ | F |probably.. | - | DOID:A324/Lu.. |coSMIC 5 [T |

w3677 | s |NML00.. |chrisar7e.. | 557 | A | T | 185 | Y | F | probably - oom132¢ /L. |mos . | =
P236577 | MPKA [NML0O.. |chrlS4170. | 557 | A | T | 185 | Y | F | probably - |oois24 /L. | rccc 2 rs =
723677 | TPKA [NMLoO.. |chris4i7o.. | 557 | A | T |18 | Y | F | probaby - |omiiz2s /. | Tooa E c =
V23677 | e |NWL00.. |chris4r7s. | 665 | T | o | 222 | L | R |pobably.. | - |DOID1324/Lu. | cosMiC| s w | =
w3677 | mea |NM_00.. |chrisa17e. | oes | T | © | 222 | L | R | probaby - oom1326 /L. oo . c =
won72 | ove lwwon loomsarza | wm | o | o loon | o | o | Dou Ioonsissazn lcoser _ w =i

Figure 3.150: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool
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Figure 3.151: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool

Nomenclature Committee), UniProtKB/Swiss-Prot accessions or RefSeq accessions. Genes
that are differentially expressed for a specific cancer type can also be retrieved. Also, all

data in BioXpress, including lists of genes that are significantly differentially expressed in

two or more cancer types, can be downloaded (Figure [3.152)(Figure [3.153)
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ITPKA Expression Profile =

Cancer Type Description

100
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918 Resuhs for ITPKA in Differential Expression

UnifrotKEAC  RefSeq  Geme log2faldChang: p_value  adjusted p_value Significant Exprecsion CancerType | iPatiemis Freq(sigh)  SamplelD  DataSource PMID | Freq(up¥) Freq{Down)
P23677 | NPOD2.. | TPKA 6.07 278805 3.50E03 Yes up | DOID3STI_. 51 400 |TCGA-DDAIEC | RNASeqvl | - 780 = ~
P23677 | NP_OD2.. | MTPKA 266 LB | 677E02 Yes Down |DOID:I0SL. | 31 1000 | TCCA-ER-6457 | ANASeqVl | - 4233 =
P23677 | NP_OD2.. | TPKA 10.04 214808 | 1.94E05 ez Up | DOID:263 128 5.56 | TCCACZ-546% | RNASeaVl | - 86.11 =
P23677 | NP_OD2.. | TPKA 5.67 107804 | 1.86E02 ez Up | DOIDI324.. 108 20.82 | TCOAS5-6982 | RNASeaVl | - 02.08 =
P23677 | NPOD2.. | MTPKA 6.20 168504 | 6.84E02 Yes Up |DOIDA324_.| 108 2082 | TCGA-50-5932 | RNASeqVl | - o208 =
P23677 | NP_OD2.. | TPKA 714 245604 | S41ED2 Yes Up |DOIDA324_.| 108 2082 | TCGA-91-6836 | RNASeqVl | - o208 =
P23677 | NP_OD2.. | MTPKA 7.85 80804 B4IED2 Yes up |DODABIZ_.| 118 354 | TCOA-BH-ADBZ | RNASeqVl | - o460 =
P23677 | NPOD2.. | ITPKA 146 960E0S | B.60ED3 Yes Up |DOID:IZ24_| 108 29.82 | TCGA-44-6777 | RNASeqVl | - s2.98 =
P23677 | NPOD2.. | MTPKA 812 792804 | SEIED2 Yes up | DOID:10S3. Ell 1000 |TCGAHU-AS.. | RNASeqVl | - 2333 =
P23677 | NPOO2.. | TPKA 6.0 742E04 | 5.54E02 Yes up | DOID:10S3. Ell 1000 | TCGAIN-7806 | RNASequl | - 2333 =
P23677 | NP_OD2.. | MTPKA INF 286803 0.83E02 ez Up | DOID:263 128 556 | TCCAB24610 | RNASeaVl | - 8611 =
P23677 | NP_OD2.. | TPKA 5.67 204804 | 5.20E02 ez Up | DOIDI324_.. 108 20.82 | TCCA49-6743 | RNASeaVl | - 0208 =
P23677 | NP_OD2.. | TPKA 5.81 130802 E.04E02 Yes Up | DOIDI324_.. 108 20.82 | TCCA-50-5033 | RNASeaVl | - 02.08 o

Figure 3.152: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool
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ITPKA Over-Expression Profile Expression in percent
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Figure 3.153: Overall analysis of ITPKA gene as a biomarker using MEXPRESS tool
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Chapter 4: DISCUSSION

ITPKA (inositol-trisphosphate 3-kinase A) as a novel DN A methylation biomarker
gene

ITPKA gene is known to regulate inositol phosphate metabolism by phosphorylation of
second messenger inositol 1,4,5-trisphosphate to Ins(1,3,4,5)P4. The activity of the inositol
1,4,5-trisphosphate 3-kinase is responsible for regulating the levels of a large number of
inositol polyphosphates that play a key role in cellular signaling. Both calcium /calmodulin
and protein phosphorylation mechanisms control its activity. It is also a substrate for the
cyclic AMP-dependent protein kinase, calcium/calmodulin- dependent protein kinase II,
and protein kinase C in vitro

Recent research findings have pointed out to ITPKA (inositol-trisphosphate 3-kinase
A), possibly being a novel DNA methylation biomarker for few cancer types. Yi-Wei
Wang..et al.,2016 in a recent studies demonstrated that Inositol-trisphosphate 3-kinase A
gene (ITPKA) was identified as a potential oncogene and its distribution was found limited
in certain tissue. They also showed that ITPKA is up-regulated in its gene expression in
many cancers. Such an over-expressed ITPKA contributes to tumorigenesis in few cancers
like lung and breast cancers. ITPKA expression was also demonstrated to be regulated by
epigenetic DNA methylation. This was due to modulation of the SP1 transcription fac-
tor binding to ITPKA promoter region. Methylation levels were significantly different in
normal versus cancer conditions. Low methylation levels were found in normal tissue but
showed high methylation levels in malignant tumors. They finally demonstrated that, par-
ticular to lung cancer, ITPKA gene methylation appears foremost in situ carcinoma stage
and increases progressively after invasion. To summarize their findings, they have demon-
strated that ITPKA gene expression is upregulated in lung, breast and other cancer types.

Such overexpression ITPKA is shown to promote malignant transformation in vitro and in
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vivo. This is due to ITPKA expression is highly regulated by its gene body methylation.
It has been shown that numerous tumor suppressor genes have been silenced by epigenetic
modifications mainly through DNA methylation of gene promoter regions [152H156]. It is
speculated that promoter hyper methylation mainly acts as a repressor and that this epige-
netic change down-regulates gene expression. On the contrary, methylation of a gene body
is more prominent as compared to promoter hyper methylation and is seen to be observed
or respounsible for increased gene expression [157]. However, the influence of methylation of
the gene body on its expression is very poorly understood. It has been speculated that gene
body methylation may possibly repress false intragenic transcription and therefore might
permit or ease the process of efficient transcriptional elongation|158]. However, majority
of the gene body methylation is observed to be associated with non-transcription initiation
sites. Gene body methylation may possibly influence gene expression by modulating or in-
terfering with transcription factor binding. This can directly alleviate gene expression [159].
It is has been reported from various sources that hyper methylation of the SP1-DNA can
directly inhibit the binding of SP1 [160-162]. This group has also given a possible expla-
nation saying that two SP1-DNA binding motifs are found in the ITPKA gene body CpG
island 2 region and hypothesized that these two SP1-DNA binding sites in the gene body
may serve as decoys to recruit and sequester SP1 from binding to the promoter. DNMT3B,
(DNA (Cytosine-5- )-Methyltransferase 3 Beta) upon its action, the fully methylated body
region turns refractory to SP1 binding. It thereby releases SP1 for promoter binding to
drive gene expression. Substantiative or validating experiment involving bisulfate sequenc-
ing analysis demonstrated that SP1 binding motifs in the gene body (13-16 CpG sites and
81-84 CpG sites within the 99 CpG sites in the CpG island 2 region) were seen to be hyper
methylated in high-ITPKA-expressing cells and hypo methylated in low ITPKA-expressing
cells (Supplemental Figure 1).

This suggests that methylation levels within SP1-DNA binding site in the ITPKA gene
body is highly correlated with its gene expression. SP1 binding motif 1 displayed a higher

and much significant difference in methylation levels between the high and low ITPKA
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expressing cell lines. This suggests that SP1 binding motif has an important role in methy-
lation regulated expression of ITPKA. Further studies on such mechanisms might reveal
clear insights into the regulation of gene expression by gene body methylation and onco-
genes identification, based on similar regulation mechanisms as observed involving ITPKA.
Transcription factors SP1 and RE1 which are silencing transcription factor (REST)/NRSF
have been investigated and are reported to bind to ITPKA promoter. Spl is positively and
REST/NRSF negatively regulate the gene expression of ITPKA [163].

After the demonstrated evidence showing that SP-1 mediated ITPKA expression is mod-
ulated by its gene body methylation, this group further questioned whether SP1 and REST
levels may have a role in the contribution of deregulated expression of ITPKA upon ma-
lignant transformation. This can be achieved by assessing the correlation between ITPKA
expression and the SP1 and REST expression using microarray analysis of lung cancer cell
lines, including 113 NSCLCs, 29 small cell lung cancers, and 59 HRECs. It was found that
expression level of SP1 and REST was not significant and that it played a very minor role
in regulating the ITPKA gene expression. The Pearson correlation coefficients of ITPKA
with SP1 and REST was 0.01 and -0.20 respectively.

In supplemental figure 2, investigation of the correlation of ITPKA methylation and its
gene expression was examined. Results showed that Spearman correlation coefficients in
SCC and ADC were not satisfactory (r 0.52 and 0.6). However, a trend of positive correla-
tion was observed between gene body methylation and expression. Investigation on whether
normal cells can infiltrate into tumor tissues and whether any other factors can dilute the
correlation or significance. Using data from genome wide analysis of DNA methylation pat-
terns, it has been demonstrated that the human secretin gene (SCT) promoter is frequently
hyper methylated in lung cancer [152]. It is seen that SCT is expressed at undetectable
levels in normal and malignant cells, irrespective of its promoter methylation status. Their
study validated SCT to be a lung cancer biomarker, although functional implications or
biological significance of SCT promoter methylation is far from being understood [152]. An

important finding from this study is that CpG Island 2 in ITPKA gene body is observed
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to be highly methylated in lung cancer and such ITPKA gene body methylation can be
utilized as an early biomarker for detection of lung cancer. Also, it has been demonstrated
that ITPKA gene body methylation promotes its expression, facilitating the development
of malignant phenotypes. Contrastingly to SCT, ITPKA methylation is associated with
gene expression and facilitates the malignant phenotype development. Also, since ITPKA
is overexpressed in multiple cancer types and drives tumorigenesis, this ITPKA gene may
serve as a potential therapeutic target agent.

In normal physiological conditions, ITPKA is highly expressed in neurons during brain
development and also in testis [164]. During normal brain development, brain cells consis-
tently display ITPKA gene body methylation at very high levels. Interestingly, placenta
demonstrates very high levels of ITPKA body methylation. Placental tissues like cytotro-
phoblast and syncytiotrophoblast, and the extravillous trophoblast cells carry the ability
to migrate, invade and remodel the maternal decidua and can develop a vascular supply
similar to cancer progression [165].

Numerous tumor suppressor genes and oncogenes play an important role in normal
placental development and the epigenetic program of the placenta exhibits similarities to
those of cancer cells [166,167]. These evidences points out to the fact that placenta is a self-
limited malignancy, further consolidating that ITPKA body methylation significantly higher
in malignant tumors and results in tumorigenesis. To summarize the above findings, it can
be said that deregulation of ITPKA plays an important role in pathogenesis of cancer. This
is due to the fact that highly specific and sensitive patterns of ITPKA expression and gene
body methylation is observed. ITPKA body methylation is not observed in nonmalignant
or normal lung cells. This appears at premalignant stages and will progressively increase
with cancer development. This clearly suggests that ITPKA can be utilized as a DNA
methylation biomarker for early lung and other cancer type detection.

Our study has complemented, supplemented and also validated ITPKA methylation and
expression correlation with respect to its being considered as a DNA methylation biomarker.

Our study has implicated ITPKA gene in eight cancer types (BLCA, BRCA, HNSC, KIRC,
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KIRP, LIHC, LUAD and LUSC). Of the eight cancer types mentioned above, ITPKA
genes potential use as a DNA methylation biomarker is shown as a novel hit by us in all
these eight cancer types. Detailed explanation regarding the molecular aspects or methy-
lation/expression correlation for each cancer type is beyond the scope of this dissertation
research. However, our results clearly establishes the direct or indirect relationship between
the two and this is complemented by the statistical data analysis and interpretation of the
same using MEXPRESS. Supplemental Table 1 shows a comparison of different tools for
the visualization of TCGA data.

GDF15 (growth differentiation factor 15) as a DNA methylation biomarker
gene

GDF15 gene is known to encode a secreted ligand of the TGF-beta (transforming growth
factor-beta) superfamily of proteins. Also, ligands of this superfamily bind to various TGF-
beta receptors. This leads to recruitment and activation of SMAD family transcription
factors that can regulate gene expression. The encoded preproprotein is proteolytically
processed to generate each subunit of the disulfide-linked homodimer. Such processed pro-
tein is expressed in a wide variety of cell types. This protein acts as a pleiotropic cytokine
and is involved in the stress response program of cells after cellular injury. Increased protein
levels are implicated in disease states such as tissue hypoxia, inflammation, acute injury
and oxidative stress.

In a study by Vera L. Costa., et al., 2010, an attempt to identify a list of novel epigenetic
methylation candidates for BLCA (bladder cancer) was undertaken using urine samples.
Gene expression microarray was used and analyzed with BLCA cell lines upon treatment
with 5-aza-2-deoxycytidine and trichostatin A as well as 26 tissue samples were also part of
this study design. Candidate genes methylation level were quantified in 4 BLCA cell lines,
50 BLCA tissues and 20 normal bladder mucosas (NBM) and urine sediments from BLCA
patients and 20 healthy donors, 19 renal cancer patients, and 20 prostate cancer patients.
Receiver operator characteristic (ROC) curve analysis was used to assess the diagnostic

performance of the gene panel. Results indicated that GDF15, HSPA2, TMEFF2, and VIM
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were identified as epigenetic biomarkers for BLCA. It was observed that methylation levels
of BLCA tissues were far higher than those of NBM (P < 0.001) and cancer specificity was
found to be (P < 0.001) in urine samples. GDF15, TMEFF2, and VIM was able to identify
BLCA tissues from a methylation panel list with 100% specificity and sensitivity. Using
the urine samples, methylation panel achieved a sensitivity of 94% and a 100% specificity
and an area under the curve of 0.975. Also, the compiled methylation panel could easily
differentiate BLCA between normal and renal or prostate cancer patients (sensitivity, 94%:;
specificity, 90%). Therefore, Vera L. Costa., et al. 2010, showed that by using a genome-
wide approach, they were able to identify a novel epigenetic biomarker panel that can
be utilized for early and accurate detection of BLCA in urine samples with an additional
advantage of it being noninvasive.

Results pertaining to the methylation status of novel candidate genes in vitro and in
vivo showed the following: 21 of the DNA methylation candidate genes were analyzed by
MSP in BLCA cell lines. Among the candidate list the top 4 biomarkers which exhibited
hyper methylation in a minimum of 3 cell lines were selected for further validation. These
were the GDF15, HSPA2, TMEFF2, and VIM (Supplementary Table 2). Three of these
biomarkers were methylated in BLCA cells as compared to kidney and prostate cancer cell
lines, except for TMEFF2. GDF15 was found to be methylated at 64% in bladder tumors.
Also, quantitative analysis in methylation levels were significantly different in normal vs
cancer patients for all the above mentioned genes (MannWhitney, P < 0.001).

Our study has complemented, supplemented and also validated GDF15 methylation and
expression correlation with respect to its being considered as a DNA methylation biomarker.
Our study has implicated GDF15 gene in thirteen cancer types (BRCA, COAD, CRAD,
CESC, ESCA, HNSC, KIRP, LIHC, LUAD, LUSC, PRAD, THCA and UCEC). Of the
thirteen cancer types mentioned above, GDF15 genes potential use as a DNA methylation
biomarker is shown as a novel hit by us in nine cancer types (CRAD, CESC, ESCA, KIRP,
LIHC, LUAD, LUSC, THCA and UCEC). Detailed explanation regarding the molecular

aspects or methylation/expression correlation for each cancer type is beyond the scope of
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this dissertation research. However, our results clearly establishes the direct or inverse
relationship between the two and this is complemented by the statistical data analysis and
interpretation of the same using MEXPRESS.

BLCAP (bladder cancer associated protein) as a DNA methylation biomarker
gene

BLCAP gene is known to encode a protein that reduces cell growth by stimulating apop-
tosis. Multiple transcript variants encoding the same protein are identified which may be
the result of mechanisms like alternative splicing and the use of alternative promoters. This
gene is imprinted in brain. It is known that different transcript variants are expressed from
each parental allele. Also, transcript variants initiating from the upstream promoter are
expressed preferentially from the maternal allele, while transcript variants initiating down-
stream of the interspersed NNAT gene are expressed from the paternal allele. Transcripts
at this locus is known to undergo A to I editing, resulting in amino acid changes at three
positions in the N-terminus of the protein.

Jos M. A. Moreira., et al., 2009 generated and characterized antibodies that are able
to specifically recognize BLCAP. Also, they demonstrated that BLCAP localizes predomi-
nantly to the epithelial lining of the urinary bladder. BLCAP THC staining pattern types
B and D are observed to be associated with benign/low grade and high grade invasive le-
sions respectively. They can be utilized as a diagnostic indicators irrespective of the fact
that type A and C staining patterns are not good classifiers. This is because they appear
ubiquitously in all grade and stages of cancer. Staining type A was prominently associ-
ated with poor disease-specific survival. 2D Western blot analysis of samples classified by
IHC as type A or B (Supplemental Figure 3, e and f respectively), showed increased im-
munoreactivity for BLCAp antigen observed by IHC. This corresponds to elevated protein
and both polypeptides expression levels (unmodified and modified forms; Fig. 3, e and f,
black and white arrows, respectively) is increased. These demonstrated data indicates the
loss of BLCAP expression is directly associated tumor progression. However, an increased

percentage of cells with high nuclear levels of BLCAP confers to poor prognosis. BLCAP is
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seen to be overexpressed in ~20% of the cases examined and it is liked with poor survival.
This indicates that BLCAP expression does not carry good prognostic value. In cases of
invasive tumors, BLCAP expression offers an adverse patient outcome, especially with those
bearing tumors that have lost expression of BLCAP are better performers as compared to
those with tumors expressing BLCAP at any expression levels. (Supplemental Figure 7c,
pT2-4 tumors).

Loss of BLCAP expression was observed in both epithelial and vascular endothelial cells
indicates that this mechanism brings about a change in cellular microenvironment as com-
pared to being a process related to epithelial carcinogenesis. Multiple cancer types such as
cervical, renal, human tongue carcinoma and osteosarcoma exhibit differential expression of
BLCAP suggesting that micro environmental changes corresponding to differential expres-
sion of BLCAP, triggers this cellular response and is of general nature rather than being
tissue-specific |[168H171}/171,/172).

In another study, it was examined the expression pattern of BLCA- 1 in tissues and
urine samples from bladder cancer patients and also from normal controls. This was done
by utilizing BLCA-1 sequence data to produce antibodies to this protein, which was further
used in immunoblot and ELISA. Their results indicated that BLCA-1 was detectable in
tissues from patients with bladder cancer but not detectable in normal adjacent areas of
bladder or in normal donor bladder tissue. This protein was also found in urine of patients
with bladder cancer using immunoblot and immunoassay. The cutoff optical density units
(absorbance value) was assigned as 0.025, BLCA-1 was detected in 20 of 25 urine samples
from patients with bladder cancer but in just 6 of 46 normal, high risk, prostate or renal
cancer samples tested. This results in a test with 80% sensitivity and 87% specificity.
BLCA-1 expression did not correlate with the tumor grade. This suggested that BLCA-1
is a urine based marker of bladder cancer and could be utilized as an early stage detection
for this disease.

Our study has complemented, supplemented and also validated BLCAP methylation and

expression correlation with respect to its being considered as a DNA methylation biomarker.
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Of particular importance is our finding that BLCAP gene expression is influenced by DNA
methylation and is detectable in seven cancer types (BRCA, COAD, CRAD, KIRC, KIRP,
LUAD AND LUSC). Thus, BLCAP gene can be utilized as an early stage DNA methylation
biomarker for these cancer types. Detailed explanation regarding the molecular aspects or
methylation/expression correlation for each cancer type is beyond the scope of this disser-
tation research. However, our results clearly establishes the direct or inverse relationship
between the two and this is complemented by the statistical data analysis and interpretation
of the same using MEXPRESS.

PIWIL4 (piwi like RN A-mediated gene silencing 4) as a DNA methylation
biomarker gene

PIWIL4 gene is known to play a central role during spermatogenesis. It achieves this by
repressing transposable elements and preventing their mobilization, which is essential for the
germline integrity. It acts via the piRNA metabolic process, which mediates the repression
of transposable elements during meiosis by forming complexes composed of piRNAs and
Piwi proteins and governs the methylation and subsequent repression of transposons. It
also binds to piRNAs directly (class of 24 to 30 nucleotide RNAs that are generated by
a Dicer-independent mechanism and are primarily derived from transposons) and other
repeated sequence elements. It is also known to associate with secondary piRNAs antisense
and PIWIL2/MILI is required for such association. The piRNA process acts upstream of
known mediators of DNA methylation. It participates in a piRNA amplification loop. In
addition to their role in transposable elements repression, piRNAs are probably involved in
other processes during meiosis such as translation regulation. They may be involved in the
chromatin-modifying pathway by inducing Lys-9 methylation of histone H3 at some loci.

Preethi Krishnan., et al., 2016, in their study were able to identify 8 non-redundant
piRNAs as a novel prognostic biomarkers for breast cancer. They also identified PIWI
genes as potential prognostic markers for breast cancer. PIWI genes are of 4 homologues
and PIWIL3 and PIWIL4 are observed to be associated with OS, and PIWIL3 alone is seen

to be associated with RFS (Supplemental figure 5). Not much information is available with

181



regards to the clinical significance of PIWIL3 and PIWIL4. This study was in fact the first,
to report these genes to breast cancer prognosis. Further studies are required to validate
their prognostic role. This study group used a cohort with complete clinical annotation and
follow-up for long term, thereby validating piRNAs and PIWI genes to be a novel prognostic
markers for breast cancer.

In another study, investigation of the expression of PIWI genes was conducted in order
to determine the activity and potential prognostic role of the PIWI/piRNA pathway in
NSCLC. It was reported that PIWIL1 participates in the primary pathway and PIWIL2 and
PIWILA4 in the secondary pathway, both of which are active in NSCLC. The re-expression
of the PIWIL1 gene, which can be confirmed by immunohistochemistry, is related to poor
prognosis and is associated with a stem-cell signature. Furthermore, the downregulation of
PIWILA is also related to poor prognosis and is associated with lower methylation. Further
investigation in a larger cohort of patients is warranted to validate these findings and to
examine potential diagnostic and therapeutic approaches.

Our study has complemented, supplemented and also validated PIWIL4 methylation and
expression correlation with respect to its being considered as a DNA methylation biomarker.
PIWILA4 gene is observed to be involved in at-least twelve types of cancer (BLCA, BRCA,
CESC, CHOL, COAD, CRAD, ESCA, HNSC, KIRC, KIRP, LIHC and UCEC), wherein
the methylation probes correspond to negative values which are highly significant. Our
study has shown that PIWIL4 gene can be utilized as an early stage DNA methylation
biomarker for eleven of the above mentioned cancer types with HNSC being the exception.
Any efforts in attempting a detailed explanation regarding the molecular aspects or methy-
lation/expression correlation for each cancer type is beyond the scope of this dissertation
research. However, our results clearly establishes the direct or indirect relationship between
the two and this is complemented by the statistical data analysis and interpretation of the
same using MEXPRESS.

DMRT1 (Doublesex and Mab-3 Related Transcription Factor 1) as a DNA

methylation biomarker gene
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Transcription factors play a very critical role in the early development process. It is
known that transcription factor plays a key role in male sex determination and differen-
tiation by controlling testis development and male germ cell proliferation. It also plays
a central role in spermatogonia by inhibiting meiosis in undifferentiated spermatogonia
and promoting mitosis, leading to spermatogonial development and allowing abundant and
continuous production of sperm. It acts both as a transcription repressor and activator:
prevents meiosis by restricting retinoic acid (RA)-dependent transcription and repressing
STRAS expression and promotes spermatogonial development by activating spermatogonial
differentiation genes, such as SOHLH1. Also plays a key role in postnatal sex maintenance
by maintaining testis determination and preventing feminization: represses transcription of
female promoting genes such as FOXL2 and activates male-specific genes. They may act as
a tumor suppressor and also play a minor role in oogenesis

Spermatogonial stem cells (SSCs) are capable of acquiring pluripotency under specific
culture conditions. The frequency of pluripotent cell derivation, is however, very low. Also,
the mechanism of SSC reprogramming remains unknown. Seiji Takashima, et al., 2013, re-
ported the induction of global DNA hypo methylation in germline stem cells (GS) (cultured
SSCs) induces pluripotent cell derivation. GS cells seems to undergo apoptosis, when DNA
demethylation was triggered by Dnmtl depletion. However, GS cells converted to embry-
onic stem (ES)-like cells accompanying the double knockdown of Dnmt1 and p53. DMRT1
is downregulated by this treatment. DMRT1 is a gene involved in sexual differentiation,
meiosis and pluripotency. DMRT1 depletion results in apoptosis of GS cells, however, a
combination of DMRT1 and p53 depletion can also induce pluripotency. Putative DMRT1
target genes upon undergoing functional screening and undergoing depletion will upregu-
late SoX2. SoX2 transfection up-regulates Oct4 and can produce pluripotent cells. This
conversion is enhanced by Oct1 depletion which suggests balance of Oct proteins maintains
SSC identity. These results suggest that SSC reprogramming on a spontaneous basis is
caused by unstable DNA methylation and that a DMRT1-SoX2 cascade is very important

for regulating pluripotency in SSCs.
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Our study has complemented, supplemented and also validated DMRT1 methylation and
expression correlation with respect to its being considered as a DNA methylation biomarker.
DMRT1 gene is observed to be involved in at-least four types of cancer (BRCA, LUSC,
THCA and UCEC), wherein the methylation probes correspond to negative values which
are highly significant. Our study has shown that DMRT1 gene can be utilized as an early
stage DNA methylation biomarker for all the four cancer types (BRCA, LUSC, THCA and
UCEC). Detailed explanation regarding the molecular aspects or methylation/expression
correlation for each cancer type is beyond the scope of this dissertation research. How-
ever, our results clearly establishes the direct or indirect relationship between the two and
this is complemented by the statistical data analysis and interpretation of the same using
MEXPRESS [173].

Query of ITPKA gene Vs BioMuta and BioXpress - A representative result

We queried the ITPKA gene against the BioMuta database to identify and evaluate
variations (both synonymous and non-synonymous) for any possible functional impact on
protein structure and functions. 66 SNVs are found when ITPKA gene is queried against
BioMuta. Of these 66 SNVs, five are nsSNVs that affect functional sites (three gain of
phosphorylation and two gain of glycosylation). The five nsSNVs identified were mapped
to functional sites that are obtained from UniProtKB sequence feature annotation. Precise
nucleotide positions at which the post-translational modifications (PTMs) and active and
binding sites are affected by nsSNVs were identified. In order to investigate whether certain
types of PTM or other functional sites are resistant to variations, P-values were calculated
in BioMuta, to estimate the significance between observed and expected numbers. Of the 66
SNVs, the majority of functional sites analyzed are protected from mutation (significantly
less observed variations than expected). Further studies need to be conducted as to why, in
certain cancer types, some of the functional sites appear to be less protected. The identified
variations were integrated into SNVDis. Effects of identified variations can be analyzed
as they are coupled with PolyPhen-based predictions and are included in the BioMuta

table. SNVDis is a useful application as it evaluates the distribution of nsSNVs on protein
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functional sites, domains and pathways at the entire proteome level. Such proteome-wide
analysis complements the functional impact analysis using methods such as PolyPhen and
SIFT, and similar algorithms. It should be noted that BioMuta is supported on the High-
performance Integrated Virtual Environment (HIVE). HIVE is a bio-computing operating
system serving as an ideal backbone to integrate modular software into a data analytics
backbone. In short, HIVE (High-performance Integrated Virtual Environment) is a bio-
computing environment for storing, analyzing, computing and curating huge genomic data
and associated metadata. Once again, such identified nsSNVs (from our computational
approach) and their relevant effects at the proteomic and cellular level need to be validated
by subsequent in-vitro studies.

We also queried ITPKA against the BioXpress database. When ITPKA gene is queried
using the HGNC-approved gene symbol or UniProt/RefSeq accession, BioXpress retrieves
three types of information: differential expression information (cancer vs. normal), tumor-
only expression data (where normal samples are not available) and baseline expression
information from normal human tissues (Illumina Human Body Map Project). Our research
primarily focuses on differential expression in normal vs cancer types. For the ITPKA gene
in THCA, over-expression is clearly observed from BioXpress results, there by validating
and reproducing the MEXPRESS study. In the default view, BioXpress provides expression
frequency (over- or under-expression) in the patients. Additionally, the number of patients
for a particular cancer type, P value and a variety of other information is available in the
table below which can be downloaded. Complete cancer names can be retrieved on clicking
the cancer abbreviations in the figure and additional details can be retrieved by clicking the
Table column description link. Data collected in BioXpress can be used to sort, filter and
further analyze the gene expression and to compare and contrast expression of genes across
many patients and cancer types. Such a computational approach wherein querying datasets
proves to be very useful in identifying expression levels between disease and normal pairs
leads to analysis of differential expression for a gene. Also, potential leads on biomarkers

or pathways involved in tumor formation can be identified and overall expression of specific
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genes across multiple cancer types can be conveniently studied.
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Chapter 5: CONCLUSION

The field of Oncogenomics (sub-field of genomics which characterizes cancer associated
genes) has three broad applications. To improve diagnosis (use molecular markers of gene
mutations for early cancer detection), prognosis (use markers of gene mutations to classify
cancers and predict their outcomes) and therapeutics (use gene mutations found in cancer
as targets of drug therapy). Oncogenomics is growing at an exponential rate with the
help of databases and datasets being created and available publically. Their value and
significance will continue to gain prominence. Such a rapid progress and implementation
creates a demand for developing intuitive and straightforward tools that enable researchers
to quickly analyze and visualize the data of interest. The Cancer Genome Atlas (TCGA)
is one such invaluable database. We have selected and used the MEXPRESS tool from a
list of methylation analysis tools based on its ease of use and the integrated visualization
of different data types over hundreds of samples from TCGA. Not only does this tool
help identify novel DNA methylation biomarker gene but also help in testing hypotheses
that concern the discovery of DNA methylation or expression-based biomarkers. We have
undertaken a set of five genes of interest based on literature search. BLCAP gene is observed
to be involved in at-least eight types of cancer (BLCA, BRCA, COAD, CRAD, KIRC,
KIRP, LUAD AND LUSC), wherein the methylation probes correspond to negative values
which are highly significant. In all these eight genes a strong negative correlation (between
methylation and expression) exists, indicating that the corresponding gene expression might
be controlled through DNA methylation. Of the eight cancer types mentioned above, six of
these cancer types (BRCA, COAD, CRAD, KIRP, LUAD AND LUSC) are novel hits and
have previously not found in literature or any research findings. GDF15 gene is observed

to be involved in at-least thirteen cancer types wherein the methylation probes correspond
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to negative values which are highly significant. These are (BRCA, COAD, CRAD, CESC,
ESCA, HNSC, KIRP, LIHC, LUAD, LUSC, PRAD, THCA and UCEC). We have shown
that, GDF15 gene can be potentially use as a DNA methylation biomarker in nine cancer
types as they showed either direct or inverse relation between DNA methylation and gene
expression. These nine cancer types are CRAD, CESC, ESCA, KIRP, LIHC, LUAD, LUSC,
THCA and UCEC. PIWILA4 gene is observed to be involved in at-least twelve types of cancer
(BLCA, BRCA, CESC, CHOL, COAD, CRAD, ESCA, HNSC, KIRC, KIRP, LIHC and
UCEC), wherein the methylation probes correspond to negative values which are highly
significant. Our study has shown that PIWIL4 gene can be utilized as an early stage DNA
methylation biomarker for eleven of the above mentioned cancer types with HNSC being
the exception. Our study has implicated ITPKA gene in eight cancer types (BLCA, BRCA,
HNSC, KIRC, KIRP, LTHC, LUAD and LUSC). Of the eight cancer types mentioned above,
ITPKA genes potential use as a DNA methylation biomarker is shown as a novel hit by us
in all these eight cancer types. Our study has implicated DMRT1 gene to be involved in
at-least four types of cancer (BRCA, LUSC, THCA and UCEC), wherein the methylation
probes correspond to negative values which are highly significant. We have also shown that
DMRT1 gene can be utilized as an early stage DNA methylation biomarker for all the four
cancer types (BRCA, LUSC, THCA and UCEC). Although our research has multiple novel
hits in terms of identifying novel DNA methylation biomarker genes, a greater challenge
still remains with regards to its clinical implementation and development. Never the less
our research is a first step in identification of novel DNA methylation biomarker genes using
a methylation tool that is easy to use with an added advantage of TCGA data visualization

involving clinical, gene expression and methylation data simultaneously for comparison.
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UCSCgenome  gioportal CGW IGV MEXPRESS

browser
All TCGA cancer and data types available  yes yes no no no
Integration of expression, DNA
§ v no no no no yes

methylation and clinical data
Statistical interpretation of the

: ; no yes no no yes
relationships
Registration and download required no no no yes no

Figure 5.1: A comparison of different tools for the visualization of TCGA data

LIST OF SUPPLEMENTAL TABLES

Supplemental Table 1

A comparison of different tools for the visualization of TCGA data. As illustrated by the
Additional file 1: Figures S1, S2, S3 and S4, there are obvious differences between existing
tools and MEXPRESS in both the data and the features these tools offer. This table
lists the most relevant of these differences, thereby highlighting some of the strengths and
weaknesses of each tool. (CGW Cancer Genomics Workbench, IGV Integrative Genomics
Viewer) (Figure

CGW Cancer Genomics Workbench, IGV Integrative Genomics Viewer

Supplemental Table 2(Figure
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Supplementary Table S5 — Gene promoter methylation status in bladder (BICa), renal (RCT)
and prostate (PCa) cancer cell lines analyzed by methylation-specific PCR (MSP).

GDF15 HSPA2 TMEFF2 ViM

BiCa cell lines

5637 M M UM U

182 M M UM UM

SCaBER UM M M M

TCCSUP UM U/M UM M
RCT cell lines

786-0 6] U UM u

ACHN M §) UM U

Caki-1 U U UM U

Caki-2 L6 18] UM U
PCa cell lines

22Rvl U u UM UM

DU145 M U M U

LNCaP UM M UM U

PC-3 U UM UM U

U, unmethylated; M, methylated; U/M, partial methylated

Figure 5.2: Gene promoter methylation status analyzed using PCR

Supplemental Table 3, 4 and 5

Supplemental Table 3,4 and 5(Figure|5.3) (Figure[5.4) (Figure[5.5) COHCAP qual-
ity control metrics. (A) Dendrogram: the sample ID for each sample is shown in the den-
drogram representing the hierarchical clustering of the genome-wide beta values for each
sample. Sample IDs are colored based on the sample grouping (in this case, the parental
HCT116 strain is shown in blue and the mutant strain is shown in red). Notice that the
samples in each group cluster together. (B) Sample histogram: density distribution for

all the samples in a COHCAP project is shown in the histogram. Again, the color for
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Figure 5.3: COHCAP quality control metrics: Dendrogram
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Figure 5.4: COHCAP quality control metrics: Histogram
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Figure 5.5: COHCAP quality control metrics: PCA plot
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Figure 5.6: Box plot

each sample is determined by the sample grouping. Notice the strong bimodal distribution,
corresponding to methylated and unmethylated CpG sites. Sample statistics (median, top
quartile, bottom quartile, minimum and maximum) are provided in a text file. (C) Princi-
pal component analysis (PCA) plot: samples are plotted based on their coordinates defined
by the first two principal components. All the principal component values can be found in
a text file. Samples are colored based on sample grouping. Notice that the groups show
clear clustering from one another in the PCA plot.

Supplemental Table 6 Box plot and Scatter plot

Box plot: the average beta value for a normal sample is higher than the primary
sample, indicating that this CpG island (mapped to ESR1) shows decreased methylation
in breast tumors. The box plot shows the median, minimum, maximum and quartiles for
beta values for each group. This figure was produced using the Average by Island workflow.
(Figure

Scatter plot: methylation levels of ESR1 are negatively correlated with RNA-Seq

expression levels. Individual samples are colored based on their sample grouping. This
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Figure 5.7: Scatter plot
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When you load genomic data, IGV displays the data in horizontal rows called tracks. Typically, each track represents one
sample or experiment. For each frack, IGV displays the track identifier, one or more attributes, and the data.
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When loading a data file, IGV uses the file extension to determine the file format (see File Formats), the file format to
determine the data type (Table 1), and the data type to determine the track default display options (Table 2).

Gibies Table 1. File Format Determines Data Type
[EViewing Data :
Default Display File Format Data Type
Changing the T
Display CBS, CN, MAF, SEG, SNP, VCF Copy number
Expression Data . e
RNAi Data
Segmented Data -
GWAS Data GCT Gene expression or RNAI
*RNA Secondary
Structure GISTIC GISTIC data
[FViewing Alignments
RES Gene expression

[¥Viewing Variants
Gene List View
‘Regions of Interest
Sample Attributes

Lo

BAM, bam list, Goby files, PSL, SAM Sequence alignments

BED, genePred, GFF, GFF3 Genome annotations

Figure 5.8: Integrative Genomics Viewer: Home page

figure was produced using the Average by Island workflow.(Figure
Supplemental Table 7

Integrative Genomics Viewer

When you load genomic data, IGV displays the data in horizontal rows called tracks.
Typically, each track represents one sample or experiment. For each track, IGV displays
the track identifier, one or more attributes, and the data. When loading a data file, IGV
uses the file extension to determine the file format (see File Formats), the file format to

determine the data type (Table 1), and the data type to determine the track default display

options (Figure (Figure .
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Figure 5.9: Integrative Genomics Viewer: File format determination data type
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