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Abstract

INTERPOLATING PIXEL ART

Anson Rutherford, M.S.

George Mason University, 2018

Thesis Director: Dr. Yotam Gingold

We present a method of generating plausible interpolations between frames from ani-

mated pixel art. We do this in the hopes of helping artists working in the style by providing

a simple method of interpolation, which would reduce the amount of by-hand work required

by the artists. We adapt an existing method for image interpolation, which uses energy cost

minimization to define motion for each pixel position in the image. The specific challenges

inherent in interpolating pixel art are discussed and examined. We describe the reasons

the original paper’s methods won’t adequately work for our specific problem. Then, we

describe the changes we make to the original paper’s energy cost function to attempt to

accommodate those challenges provided by pixel art. These changes focus on gathering

more information from the source images, to make up for the limited amount of color infor-

mation. We examine these changes and their results by interpolating the same images with

different weights for the various factors we propose. We discuss which methods work best

in general, and in specific cases.



Chapter 1: Introduction

1.1 Description of Pixel Art

We describe an interpolation technique designed to work with pixel art, a specific style of

image that has unique properties that set it apart from others. We start with an existing

method of image interpolation, and modify it to overcome pixel art’s specifics challenges.

When we talk about pixel art, we are referring to small raster images, usually not more

than a few thousand pixels, rendered in a very limited palette. Pixel art is typically created

not only by hand, but pixel by pixel. In addition, pixel art often depicts a single figure on

a solid background.

Because pixel art requires so much concentrated effort to create, animated pixel art often

animates at a rather infrequent rate. Artists will often animate only the bare minimum

number of frames to get the point of an animation across. By developing a method that

allows two frames to be interpolated between, we can lessen the amount of work required

by an artist, and can allow artists to produce pixel art animations with a higher frame rate.

Tweening, which uses a type of shape interpolation, is a tool utilized by artists who work

in vector art. This tool can be used to generate more frames in between those handcrafted

by the artist. We hope to develop our technique to fill the same role in the medium of pixel

art, and bring the same benefits to those who work in the style.

Despite the small size and limited palette of pixel art, these features actually make it

more difficult to interpolate. Less information in the image makes it harder to confidently

assert what motion is happening between those two frames. A smaller image size means

that errors and noise are more noticeable. Lastly, because of the infrequent frame rate,

the frames we want to interpolate between are typically further apart temporally than you

would see in other applications of this sort of algorithm.
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Figure 1.1: Frames from an example of a hand-drawn pixel art animation. Image courtesy
of user ArMM1998 at Open Game Art (CC0).

a b c d e a b c d e

Figure 1.2: Two frames to be interpolated between. Positions of importance labeled for
future reference.

1.2 Overview of Method

We base our method on the technique used in the work of Mahajan et al. [1]. We begin

with two source images to interpolate between. We think of these two frames as being

snapshots of a continuous motion. We consider the first image a sample at beginning of

this motion, and the second image a sample at the very end. We use this algorithm to

generate a description of the motion occurring between these two samples. The method

uses energy cost minimization to assign a vector of motion to each position in the frame.

This vector is not meant to represent the direction the pixel at this position is moving in,

rather it represents the flow of pixels through this position between the two source images.

Interpolation is done by sampling the pixels that lie along this vector of motion. Because of

this, we want to assign this vector to be opposite the motion at this position. In Figure 1.2

we see an example of two frames we might want to interpolate between. Figure 1.3 depicts a

well suited labelling of this example. Note that though the object depicted in these frames

2



moves to the right, the paths assigned, that we will interpolate along, move to the left.

During interpolation, we sample along the path defined by the assigned label at each

position. We start by interpolating from the original position along the labelled path in the

first frame. However, at some point, to better describe more complex scenarios, we want

to be able to switch to sampling from the second frame. To do this, we pick some point, at

which we swap to interpolating in the second frame. We want to follow the same motion,

but at the end of this motion return to the original position. To facilitate this, when we

swap to sampling from the second frame, we also move to a new position in the second

frame, so that the remainder of the path of motion will return us to the original position.

Essentially we split the total vector of motion into two colinear segments, which define how

we sample between the two source frames. See Figure 1.4 for an example of this in practice.

These labels of motion are assigned by the energy cost minimization algorithm. We

define a finite number of possible labels, covering every possible motion. Then we define

two costs to be assessed by the minimization algorithm. We define a ”unary” cost, which,

for each position and for each label, gives the cost of assigning that label to that position.

Secondly, we define a ”coherency” cost, which for each pair of labels, gives the cost of

those two labels neighboring each other. We then use a multi-label optimization algorithm

to produce a solution to this energy minimization problem. As each position has been

assigned a label, we can now produce any interpolation for any time between the two

original images. For each position, we linearly interpolate along the defined vector to find

the position between the beginning and end. We then copy the color at this position from

the associated frame to the original position. Doing this for each position produces our

interpolation.

3



(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (-4, 0) (-4, 0) (-4, 0) (-4, 0) (-4, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Figure 1.3: An ideal labelling of our example from Figure 1.2. Positions a, b, c, d, and e
are each labelled in accordance to the motion happening in that region, and the remaining
pixels are labelled corresponding to their lack of motion.

a b

c d

e

Figure 1.4: A depiction of a potential way of splitting the vectors for the positions labelled
in the previous figures. The red vector refers to the motion in the first frame, while the
green vector refers to the motion in the second. Note that while each pair of vectors sums
to the same total, some pairs couldn’t be placed in certain positions without leading outside
the size of the frame.

4



Chapter 2: Previous Work

2.1 Image Interpolation

There exist numerous methods of interpolating between frames of animation. We base our

methods most closely on the work of Mahajan et al. [1], which uses optical flow to interpolate

images. Rather than interpolating directly, their method derives a description of the motion

occurring between the two images by finding correspondence between the two images. While

this method could be applied as-is to pixel art, it would suffer due to the specifics of the

style. This is because the technique relies on the relative uniqueness of color information

in the source images to derive the correspondence it requires to interpolate confidently. In

pixel art, where we have fewer unique colors, it is harder to derive this. In addition, the

small size of pixel art, and large gaps between frames, highlight any noise or errors in the

solution, in a way typically not visible in larger images with a bigger palette. The work done

by Browning et al. [2] is one example of image interpolation that attempts to maintain a

specific style. They use an fluid simulation to generate new frames between hand-drawn key

frames. These interpolated images follow the underlying simulation, and match the style of

the hand-drawn frames of fluid simulation. Their work produces frames that are plausibly

fluid based, in contrast to the results of other methods. Whited et al. [3] offer another

example of stylized image interpolation. Their work focuses specifically on interpolating

between stroke-based vector images. These images are generated and manipulated by an

artist to save time during the inbetweening process, where the artist produces ”in between”

frames between two more disparate ”key frames”.

5



2.2 Pixel Art

Other work has been done on the subject of generating or modifying pixel art. The method

developed by Inglis and Kaplan [4] generates pixel art from vector art. Their algorithm,

Superpixelator, generates rasterized images that exhibit the stylistic properties of pixel

art. This is done by detecting and incorporating aspects of the original vector art into the

output, as well as correcting certain features typically avoided by pixel artists. In contrast,

the method developed by Kopf and Lischinski [5] generates vector art from pixel art. Their

method works by resolving ambiguities in the original image so that vectorization respects

the intended features of the image. Similar to our efforts, the work done there takes an

existing technique for vectorization and customizes it to accommodate the specific challenges

of pixel art. Gerstner et al. [6] developed a technique to translate high resolution raster

images into pixel art. Their algorithm works with an optimization method to establish and

modify the palette and pixels of their output image iteratively, until their result converges.

Again, more naive methods for the task of down-sampling exist, but were improved upon

for the specific case of pixel art. We hope to follow suit by adapting an existing image

interpolation technique to cooperate with pixel art.

6



Chapter 3: Algorithm

3.1 Description of Original Algorithm

We now describe the method used by Mahajan et al. [1], and describe the motivation and

implementation of the major innovations we test. To interpolate between two images, we

determine the motion occurring at every position in frame. We have a set of labels to

describe all possible motions, and use an energy minimization algorithm to assign a label

to each pixel position. For every position in the image, we associate a cost with assigning

each possible label to that position. We also associate a cost to assigning two given labels in

cardinally adjacent positions. This first cost, the unary cost, helps ensure the motions chosen

respect information present in the source frames. The second, the coherency cost, ensures

that the motions respect each other, rather than each choosing independently. The energy

minimization algorithm ensures that labels are chosen for every position that minimize the

total cost.

In order to assign motion to pixels, we must define a label for each possible motion.

So that we can deal with a discrete number of labels, we deal only with motions described

by whole number vectors. This motion defines where each position samples the original

images. Each motion samples the first frame, and then the second. We first limit ourselves

to motions that fit within the size of the original image. For example, in an image 10 pixels

wide, there’s no sense in allow for horizontal motion outside the range of (−10, 10). For

an image with width w and height h, we only consider vectors (x, y), where x is a whole

number within (−w,w), and y is similarly a whole number within (−h, h). Secondly, we’d

like to be able to split this total motion into two colinear vectors. Because we only want

whole number vectors, we allow for pairs of vectors that aren’t quite colinear. To facilitate

this, we run our original vector through Bresenham’s line algorithm, to produce a list of
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V = (5, 3)

v2

v1

Figure 3.1: Here we see our full vector of motion V . Running V through Bresenham’s line
algorithm produces a set of positions B(V ), which are highlighted. We set our first frame
vector v1 to any of the pixels within B(V ), and set our second frame vector v2 to V − v1.
Doing this ensures v1 and v2 sum to V and are roughly colinear. Here we highlight in green
one potential splitting position. This sets v1 to (3, 2), and v2 to (2, 1).

whole number positions that approximate our vector. We then select any position from this

list for our first vector, and set the remainder as our second. See Figure 3.1 for an example

of this splitting.

Rather than declaring one label for each possible pairs of vectors, we only create one

label for each full vector of motion. Our coherency cost is defined as the magnitude of

difference between the two full vectors. As such, no information about the split is taken

into account. However, the location of this split does change the unary cost. To simplify

things, when calculating unary cost for a given full vector of motion, we calculate the cost

for each possible split, and then store the minimum split along with its cost. When doing

energy minimization, we use this minimum cost for each unary cost. If that label is selected,

we then split that full vector of motion according to the minimum cost split we stored earlier.

This saves time during energy minimization by lowering the total number of labels we must

consider per position.

When we calculate coherency cost, we also implement a ”seam cap”, which lowers any
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t1

p1 v1= (3, 2) p2

t2 v2= (2, 1)

(0, 0)1 (0, 0)2

(6, 6)1 (6, 6)2

Figure 3.2: Here we illustrate a potential path for a given position p through the first and
second frames we interpolate. p1 and p2 are at the same position (3, 3) in their respective
frames. The positions we sample along this path are highlighted in red.

coherency cost above it down to match it. We use a coherency cost to prevent noisy choices

of motion, but we do expect there to be larger patches of motions that are dissimilar. We

don’t want to excessively penalize this expected behavior. So we cap the coherency cost, in

an attempt to only penalize smaller inconsistencies. As such, our full coherency cost is

C(l1, l2) = min(|l1 − l2|, δ) (3.1)

where l1 and l2 are two labels, each representing a vector, and δ is our seam cap. This

coherency cost is identical to the one employed in the work done by Mahajan et al. [1].

When we discuss unary cost, we talk about the cost of assigning a pair of vectors

to a given position, even though pairs with the same sum will fall under the same label

for energy cost minimization. This split drastically changes the unary cost defined in the

original paper, and many of the innovations we describe below. The original paper compares

the color at the end of the first frame vector to the color at the beginning of the second

frame vector. This discontinuity, referred to as the ”transition point” by the original paper,

9



is obviously entirely dependent on the choice of split. We can see clearly in Figure 3.2 why

this is important. We use the motion described in Figure 3.1, with v1 defining the motion in

frame 1, and v2 defining the motion frame 2. As we interpolate from the first frame to the

second, we sample colors along the path formed by following v1 from p1 the point labeled

t1, equal to p1 + v1 = (6, 5). At this transition point, we stop sampling from frame 1, and

switch to sampling from frame 2, starting from t2. t2 is defined as p − v2, which here is

(1, 2). We follow the path defined by v2 back to p2, the same position we started at, but

now in the second frame. When we jump from sampling one image to the other, we want

the transition to be as smooth as possible. Therefore, it is important that the colors at the

points t1 and t2 match.

3.2 Issues with Original Methods

In the original paper, the unary cost is calculated from the magnitude of difference in

color at the transition points. This method of determining energy cost is not as effective

at interpolating pixel art, because it relies heavily on the comparatively high amount of

information available in a full color image. In pixel art, a single color may make up half

the image. As a result, simply finding two closely matching colors between the two frames

is rarely enough to provide confidence in our choice of motion. In fact, often we can’t rely

on the similarity between two colors at all. Because of this, we instead choose to simply

compare if the two match or don’t, and add a penalty to the unary cost when they don’t

match.

This boolean comparison of color reduces the utility of this unary cost greatly, potentially

too far to glean enough information from the source image. To remedy this, many of our

innovations add terms to the unary cost which compare other pixels in the image as well. We

also attempt to take advantage of the presence of a flat background, and attempt to make

use of the knowledge that the background is non-moving to discourage certain options. The

small size and high contrast colors of pixel art images highlight what would otherwise be

minor errors or noise. In addition, frames of pixel art are usually fairly spaced out, and so
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two adjacent frames of animation may look wildly different. Because of these factors, there

may be many cases where a perfect solution either doesn’t match any general function, or is

only at best approximated. Below we see the possible additions to the unary cost we might

choose to experiment with when interpolating between frames.

3.3 Modifications to Original Methods

3.3.1 Boolean Transition Point Comparison

As mentioned above, we switch to only confirming whether or not the two transition points

match, rather than paying attention to the magnitude of difference in color data. Specif-

ically, we associate a cost of 1,000 between a given position, and a label that places the

transition points and pixels with mismatching color, and a prohibitively high cost of 10,000

if one or both of those transition points are out of bounds.

u(p, v1, v2) =


10000, if p1 + v1 or p2 − v2 is outside the bounds of the image

0, if p1 + v1 matches p2 − v2

1000, otherwise

(3.2)

In our figure 3.2 example, you can see a better representation of why p1 + v1 and p2 − v2

give us our transition points, there labelled as t1 and t2. In that example, because t1 and t2

are both within bounds, we will return a cost of 1,000 only if the colors at those positions,

(6, 5) and (1, 2), don’t match.

3.3.2 Transition Point Proximity Comparison

One way we attempt to improve upon existing results is to investigate the area around

the transition point. We calculate this cost by comparing the pixels neighboring the two

transition points to each other. We only consider the pixels adjacent in each cardinal

direction for this. The cost is determined by the number of pixels that match between the

11



two frames. As with the transition point, we penalize each mismatch, adding a cost of 250

for each of potentially four total mismatches. Any out of bounds pixels are ignored, in the

cases where the transition point is on the border of one of the images. This cost helps

get a better sense of how well two transition points match, hoping to make up for some of

the information loss in color. For our example in Figure 3.2, we would compare the points

around t1 to those around t2. We would add 250 to this cost for each pair of (6, 4)1 and

(1, 1)2, (5, 5)1 and (0, 2)2, (6, 6)1 and (1, 3)2. We would not add any cost for the comparison

of the neighbors to the right of the transition point, as the point to the right of t1 is outside

the bounds of the image.

3.3.3 Frame Path Comparison

This energy cost is calculated by comparing the values at all points along the full vector of

motion in both frames. Essentially, we calculate the transition point cost for all possible

transition points along the full vector of motion. This helps us to get a better idea if vector

chosen works in general, or if it is only suitable for a few chosen transition points. Barring

the interference of other motion in the frame, you’d expect all pairs of vectors to match,

since they represent the same spatial area. We sum up the number of mismatches along

the vector, and then divide by the number of points. Because of this, the final cost is

proportional to the percentage of mismatches, not the total sum. This helps us to avoid

penalizing longer motions unduly. We do not penalize pairs of pixels when one pixel is out

of bounds. Once again, we scale our cost in such a way that a complete mismatch produces

a cost of 1,000. For each point b on the Bresenham line algorithm representation of V , we

add 
0, if p1 + b and p2 − V + b match, or are out of bounds

1000/|B(V )|, otherwise

(3.3)

In Figure 3.2, this would involve comparing p1 + b = (3, 3) + b to p2 − V + b = (−2, 0) + b

for each value for b in {(0, 0), (1, 1), (2, 1), (3, 2), (4, 2), (5, 3)}, and adding 1, 000/6 for each

12



in bounds mismatch.

3.3.4 Path Consistency Measure

This cost is defined as the number of pixels that don’t match the end points of the frame

paths they exist within. For each pixel along the path in frame 1, we penalize pixels for not

matching the first pixel, and again for not matching the last pixel. Then we do the same

with the pixels in frame 2 with the first and last pixels along that path. This encourages

simpler paths, ones that don’t move through very many areas of different color. This is

done in the hopes of preventing unnecessarily complex motions being chosen. A path that

remains the same color is less likely to produce odd noise during interpolation. We again

divide the energy by the length of the path, as to not penalize longer motion. Because we

check against the first and last pixel, even if all but the last pixel of a frame’s path are the

same color, it’ll still be penalized at half the full possible amount, as none of those middle

pixels will match the final pixel, The worst case, which produces the ”full” cost, is one in

which the first and last pixels of a frame path are different colors from all other pixels on

that path, and the first and last pixels are different colors as well. Each pixel mismatch

is penalized at 500/the length of the full motion vector. It will be penalized twice if it

matches neither the beginning or end of its frame’s vector. Again, the full possible penalty

here would be 1000, though the beginning and end pixels of each vector will obviously match

themselves. Figure 3.2 highlights the pixels in question in red. In frame 1, we’d compare

the color at each red position to the color at p1, and to the color at t1. In frame 2, we’d

compare the colors at those highlighted positions to those at t2 and p2.

3.3.5 Motion Length Penalty

This cost simply adds the squared magnitude of the vector of motion. We use this to

encourage shorter movements. There are cases where motion is ambiguous in an image.

We typically want to encourage the lowest amount of movement. There are numerous cases

where two frames may be equally explained by two or more possible motions, where one

13



Figure 3.3: Two possible interpolations between two source frames (highlighted in blue).
We can use the Motion Length Penalty to encourage the former be chosen over the latter.

motion is considerably longer than the other. See Figure 3.3 for an example where this

penalty prevents a less expected movement from being chosen. We scale this cost by 1,000,

and divide it by the squared magnitude of the size of the image.

u(p, V ) = 1000|V |2/|(w, h)|2 (3.4)

In our example, our vector of motion (5, 3) has a squared magnitude of 52 + 32 = 34, which

we then multiply by 1,000 and divide by |(7, 7)|2 = 98.

3.3.6 Background Distance Penalty

This variant of the above cost applies this length penalty only to motions which place their

transition points in the background of the image. Because of what we know about the

background of the image, namely that it is static, we can choose penalize labels that posit

that the background does shift. In a way, placing a transition point in the background is

”cheating”. It disregards the initial intent of the idea, which is to find and transition between

two pixels that represent the same spatial object in the frame. We know the background

doesn’t move, and so we can say that two transition points in the background some distance

apart are assuming incorrectly by the magnitude of that distance. The cost associated is
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derived from the distance between these two transition points, which is the same length as

the full vector of motion. We simply apply the motion length penalty, though selectively so

it only penalizes transition points in the background.

u(p, V ) =


1000|V |2/|(w, h)|2, if p1 + v1 and p2 − v2 are background positions

0, otherwise

(3.5)

If, in our example, t1 and t2 were both background pixels, we’d apply the same cost we

calculate for the Motion Length Penalty.

3.3.7 Background Exclusion

Due to the odd and counterproductive nature of the background, it may be best to avoid

dealing with it whenever possible. This cost simply adds a prohibitively high cost of 10,000

to any pair of vectors that places both its transition points in the background of the image.

This is a more drastic option that arguably might prohibit certain solutions from being

found, but may help identify others in some cases. We make an exception for labels that

assign a motion of (0, 0). Background pixels outside the moving parts of the image should

have this label, and so we encourage it strongly here.

u(p, V ) =


10000, if V 6= (0, 0), and p1 + v1 and p2 − v2 are background positions

0, otherwise

(3.6)

If, in our example, t1 and t2 were both background pixels, we’d apply a penalty of 10,000,

since our vector of motion isn’t (0, 0).
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Chapter 4: Evaluation

4.1 Method of Experimentation

To compare the inclusion and exclusion of various factors, we show interpolated frames

alongside the original source frames. We ran our algorithm on a variety of animations,

including two simple ones drawn for demonstration purposes, as well as other animations

sourced externally. We used a prior developed library [7–9] for our multi-label optimization,

using their provided expansion method with no iteration limit.

We tested each of our proposed factors at several different weights, with a weight of

1 referring to the cost described in the previous chapter, and other weights scaling those

costs accordingly. At a weight of 1, most of these factors can produce a cost between 1 and

1,000, with the exception of Background Exclusion, which penalizes at 10,000 at a weight of

1, and the original transition point matching cost, which returns 10,000 for out-of-bounds

transition points. For the coherency cost we set our seam cap to be 20, meaning no two

labels could have a higher coherency cost than two with a magnitude of difference greater

than 20. We also tried scaling this cost by various amounts, expecting higher scalars to

bring it into comparable range to the penalties calculated from the unary cost.

4.2 Naive Results

If we run our algorithm naively, using just the Transition Point Mismatch penalty, the

algorithm immediately finds a trivial solution. This solution is possible because there is a

static, single color background that reaches to the borders of the image. When we only

derive cost from the similarity of the transition points, and the coherency of motion, the

algorithm can ”cheat”. By placing the transition points of all pixel positions at the far edges
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Figure 4.1: The results of an interpolation attempted with naive methods. We interpolate
four new frames for each source frame. Four original source frames highlighted in blue.

of the image, each transition point can be placed in the background, while keeping the full

vector of motion the same for each pixel. This produces a ”scrolling” effect, where the

entirety of the first image is moved out of frame to make way for the second. We illustrate

this result in Figure 4.1.

To prevent this, we can simply incorporate the Motion Length Penalty, to penalize longer

motions, and encourage the algorithm to work ”within” the frame. Or we can attempt to

force the algorithm not to abuse the background, as is the goal of the Background Distance

Penalty and Background Exclusion factors. Additionally, the Frame Path Comparison and

Path Consistency Measure prevent free choice of background pixels, by taking additional

information from other areas of the image. When we apply any combination of these factors,

we successfully prevent this trivial solution.

4.3 Specific Examples

Figure 4.2 depicts various interpolation methods of our first dummy animation. Each row

depicts a different weighting. Each weighting multiplied coherency cost by 10, and weighted

Motion Length Penalty, Background Distance Penalty, and Background Exclusion at weight

1. In the first row alone, we omit the Transition Point Proximity Comparison, for com-

parison. In the third row we incorporate the Frame Path Comparison at weight 1, and in

the fourth row we instead add the Path Consistency Measure. In the final row, we utilize
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Figure 4.2: Interpolations between the four frames that make up one of our looping dummy
animations. Source frames highlighted in blue. The fifth source frame represents the return
to the first frame.

both of these together. We see that in all cases where we use the Transition Point Prox-

imity Comparison, the cycling blue and green ”feet” of the animation retain more of their

cohesiveness, rather than being split into smaller chunks as is the case in the first row.

Figure 4.3 compares the differences between weightings of Motion Length Penalty, Back-

ground Distance Penalty, and Background Exclusion. Coherency cost was not multiplied.

The first row represents our naive case, where we only use the base factor at weight 1. Rows

two and three show Motion Length Penalty used at weight 0.1 and weight 1, respectively.

Rows four and five show Background Distance Penalty at weight 0.1 and weight 1, respec-

tively. Rows six and seven show Background Exclusion at 0.1 and 1, respectively, though

there are only minimal differences in out put in these two cases. Each of these working in-

dependently isn’t nearly enough to suit our needs. It’s interesting to note that at a weight

of 0.1, Motion Length Penalty and Background Distance Penalty look very similar, though

at weight 1 they diverge further. Background Exclusion is the most noticeably incorrect on
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Figure 4.3: Interpolations between the four frames that make up one of our looping dummy
animations. Source frames highlighted in blue. The fifth source frame represents the return
to the first frame.

its own.

In the remaining examples, we show exemplary outputs of our algorithm. In Figure

4.4, we see a case where things worked better without Frame Path Comparison and Path

Consistency Measure. Because the motion here is not linear, we wouldn’t expect this to

be handled appropriately by our algorithm, but in this case things work reasonably well.

The extra noise in these frames probably contributes to the ineffectiveness of the Frame

Path Comparison and Path Consistency Measure, and the rapid motion of parts around

the frame probably prevents Background Exclusion from working well.
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Figure 4.4: Interpolation of example animation. Coherency cost was not multiplied, all
factors included at weight 1, except for Frame Path Comparison, Path Consistency Measure,
and Background Exclusion. Several other sets of weights produced similar results. Image
courtesy of user ArMM1998 at Open Game Art (CC0).

Figure 4.5: Interpolation of looping example animation. Coherency cost was multiplied by
100, all factors included at weight 1. Image courtesy of user ArMM1998 at Open
Game Art (CC0).

Figure 4.5 shows an example of an animation handled exceptionally well by our algo-

rithm. The motion here is extremely linear, which means a higher coherency cost helps

things greatly, though we were still able to achieve good results with lower coherency cost.

The abstract design gives us more leeway in our intermediate frames, and the relative sim-

plicity of the shape leave little room for mistakes. Still, we’re able to maintain that shape

between frames, and shift colors around in a plausible manner.

Figure 4.6 depicts a more complex source. Note that the interpolation simultaneously

keeps the shape of the head intact while approximately moving the sword along its intended

path. Other weights produced results that rendered the head inconsistent during interpo-

lation, or had the sword jump between frames, or disappear altogether. We expected the

contrasting types of motions would complicate things too far, but we were able to produce

plausible results regardless.
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Figure 4.6: Interpolation of example animation. Coherency cost was multiplied by 10, all
factors included at weight 1, excluding Frame Path Comparison and Motion Length Penalty.
Image courtesy of user ArMM1998 at Open Game Art (CC0).

4.4 General Assessment

The Motion Length Penalty and Background Distance Penalty produced very similar results.

This seems to follow from the fact that the latter is a conditional implementation of the

former. In certain cases, the difference is apparent, though not always predictable. The

Background Exclusion factor seemed prone to causing issues. It seemed to cause problems

most often when the position of foreground pixels changed the most. It caused less trouble

in cases where the foreground pixels stayed in the same area between frames, even if they

swapped positions wildly within those bounds. These three factors seemed most suited to

avoid the trivial case, and in some cases, some combination of just these factors was enough

to produce suitable results.

The Transition Point Proximity Comparison factor seems to generally improve inter-

polation in most cases. We did not find any cases where its inclusion, at weighted cost 1,

was noticeably worse than omitting it. The Frame Path Comparison and Path Consistency

Measure both can be beneficial, but not always. Their effectiveness is highly dependent on

the noisiness of the source frames. In simpler cases, like our two dummy examples, they are

mostly beneficial. However, in more textured cases, they can force odd choices of motion.

Higher weighting of Coherency cost obviously helped in cases with simpler motion. It

became a hindrance in cases where motions were more varied, for example when a region

expanded, contracted, or rotated, rather than shifting linearly. In general, it did not seem
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to be the case that a higher coherency cost was required to find a suitable solution, it merely

made the choice of factors less important. Most cases could be solved with an unweighted

coherency cost, so long as the correct factors were chosen.
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Chapter 5: Conclusions and Future Work

Our algorithm takes in two frames of pixel art and generates any number of interpolations

between these two images. We also specify a number of factors to be used for this interpola-

tion. These factors are chosen in an attempt to mimic the style of hand-drawn pixel art, and

to generate plausible motion between the two source images. This algorithm successfully

avoids a trivial solution found by a simpler form of the same algorithm. The algorithm

allows for an existing animation to be increased in frame rate.

While we’ve shown the use of the different factors we introduced, determining if an

optimal set of weights exists, and if it is generally applicable, is of particular interest.

Additional by-hand investigation could be sufficient to make stronger claims. However,

as the set of weights and other properties is easily represented as a vector of numbers,

it could possibly be computed approximated by a neural network or similar optimization

technique. One could use a hand-drawn or more strongly derived intermediate frame as a

ground truth, and seek to find a set of weights that best approximates the truth for a wide

variety of different problems.

Though pixel art does have a very limited palette, there are cases where two approximate

colors may still have some spatial relationship with one another. In shaded images, it’s

common to see a color appear in a few different levels of brightness. Incorporating this

relationships between similar colors explicitly could be used to get more information from

the images provided.

In cases where we want to interpolate between more than just two frames, there is

additional information that could be put to use. Rather than treating the interpolation of

the first and second frame, the second and third frame, the third and fourth frame, etc. as

different problems, information could be shared between them. This may make it easier to

discover correspondence, or to produce more coherent motion.
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Because we end up defining the motion between two frames, its possible this could be

used to render intermediate frames at real time. A shader could be developed that would

use this motion, and the original source frames, to render the exact intermediate frame

for any given time, rather than quantizing to one of however many provided frames and

interpolations. This could be used to create ”real time” animation from just a few images

and motion sets.

Lastly, because we generate the motion, rather than interpolations directly, it’s possible

to apply motion derived from two images to different source images. One could apply

the same motion to multiple different images, so long as the motion was the same. This

could be used to save effort when interpolating multiple recolors or re-texturings of similar

animations. Additionally, more complex images could be reduced to something better

handled by the algorithm, and then those results could be applied back to the original

images.
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