SELECTION OF MOST REPRESENTATIVE
TRAINING EXAMPLES AND INCREMENTAL
GENERATION OF VI., HYPOTHESES:
the underlying fiethodology
and the description of programs
ESEL and AQll

by

R. 8. Michalski and J. B. Larson

May 1978

Department of Computer Science
University of Illinois at Urbana~Champaign
Urbana, Illinois 61801

This work was supported in part by National Science Foundation Grant

NSF MCS 76~22940 and in part by a Senior Visiting Fellowship from
British Science Research Council '

% -3

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

ABSTRACT

The paper describes the underlying theoretical framework
and operational details of two programs, ESEL and AQll, for computer
induction within the framework of the varlable-valued logic system
VL (i.e., a statement calculus which involves variables with an
arbitrary number of discrete values [Michalski 1974])!

ESEL - A supporting program for selecting 'most represen-
. tative' learning and/or testing VL; events from
a large data base of events. The program provides
the input to the program AQll%

AQll -~ A program for incremental generation of VL1 hypo-

‘ theses, which are generalized and optimized des-
criptions of input event sets. The program also
provides a facility for evaluating the performance
of these inferred hypotheses on testing events.

Given a large set of examples describing certain objects
or situations, program ESEL selects from them a small subset of
the most representative ones. The examples have to be in the
form of VL, events, l.e., in the form sequences of values of cer-
tain discrete variables (or descriptors). In selecting the events,
the program distinguishes among three types of descriptors: nominal
descriptors, whose value set 18 an unordered set, linear descrip~
tors, whose value set is & linearly ordered set, and structured
descriptors, whose value set is a tree~ordered set,

Events selected by ESEL are Input to program AQll,
which generates VLj hypotheses describing the events. The program
‘can work incrementally, i.e., given a working hypothesis (a set of
rules) obtained at some 8stage, and a set of events, the program can
modify the hypothesis to make it consistent with the events.

Program AQll also has the facility to test the performance
of a given hypothesis on a set of testing events, and to compute
an extended confusion matrix.

1. SELECTION OF THE MOST REPRESENTATIVE TRAINING EXAMPLES: Program ESEL

1.1 Basic Concepts and Notation

The burpose of program ESEL 18 to select a Subset.of
most rgprééentative events from a large number of VLl events
(see definition below), The need for ﬁsing this program arises
when a given tréining-set of events is very large (say, a few hundred
or more eventsj and AQVAL/1l inductive brograms {program AQll, des-
cribed here, also AQ7 [Larson, Michalski 75], Uniclass-RS [Stepp 76],
AQ9 [Cuneo 751, AQPLUS (Forsburg 75], SYM-4 [Jensen 75], YAL [Yalow 77])
could not accept such a large number of events or would run very
inefficiently,
The theoretical background for ESEL is given in [Michalski
75]. Here, for completeness, we will summarize {it, and then describe
the program itself, |
Let a(dl, dz, — dn) or,.briefly, &, denote a set of
~all n-tuples (xi, xé, oy x;), x! € Di’ i=1,2,..., n, where Di are

i

certain finite sets and di is the cardinality of D Thus:

iu

&(dl, = dn) = Dl XDy X ... an 1)

& is called the universe of events, and its elements are called events. xi :

.and Di’ i= 1,2,3..., denote a value and the domain (value set) of the

descriptor xi,-respectively. Descriptors* are certain direct (or derived)

measurements or characteristics of objects or situations.

*
A descriptor, as described here, 1s equivalent to a variable. (In a more
general sense, not considered here, a descriptor can also be an n-ary
relation or n~argument function,)

Depending on the nature of a descriptor, its domain
may have a different structure, e.g., 1t can be a linearly ordered set, a
partially ordered set, or an unordered set.

Three categories of descriptors are distinguished here:

I. Nominal or cartesilan descriptors whose domains are sets that

have no order.

Tk
II. Linear (interval) descriptors whose domains are any linearly

ordered sets. Thus, this category includes ordinal, interval, ratio and absolute
variables, as defined in mathematical psychology.

- ITI. Structured descriptors whose domains are partially ordered

sets < 5, > > that are neither linearly ordered nor totally unordered. In
this paper we will restrict ourselves to the case of partially ordered sets
having the property that for any two elements a, b € §, there exists at 1¢ast
-one element ¢ such that

a< cand b < e

Sets with such structures will be called generalization structures or g-struc-

tures, Figure 1 presents a Hasse dilagram of a g-structure.

An example of g-structure

Figure 1

% The term used in our previous papers on this subject.

In the diagram, a relation a > b 1s represented by placing node a above
node b and linking the nodes by an arc.

Examples of descriptors: the blood type of a person 1is a
- nominal descriptor, the height or weight of a person is a

linear descriptor, and the position of the person in an

hierarchy of an institution is a structured descriptor.

Suppose, without loss of generality, that we are given two
event sets, El and EQ, where El, EO C &, each associated with a certain
decfsion or actlon k fk =1 and 0, resPectively); These sets define a set of
functions
(f: &=+ D) | (2)
such that |

{e | £(e) = k} = Fk, k = 1,0 " | (3)
where e € & and D = {0,1,*}; '*' in D means 'no decision'.

A problem of inductive inference is to determine an expression V
of a function f, which is most desirable, with regpect to some criterion, among
all the expressions of all funetions (2). Such an expression will usually
alsc assign values 1 or 0 to events not included in Ek; i.e., the expression
will be a certain genéralization of the sets Ek. Namely, the initial set Ek
will be transferred into sets Ek(V) 2 Ek, where

Ek(V) = {e | V(e) = k}, k = 1,0
V{(e) ~ the value of the expression V for thé event e.

AQVAL/1 programs {Michalski 77) can be used to solve the problem
1f the expression V is festricted to the class of DVLl'expressions and the sizes
of the sets Ek do not exceed certain limitg. When sets Ek are very |
large (say, a few hundred elements or more), then the computational time of
the programs may be too long, The problem arises as to whether sets Ek could
not be reduced to more manageable sizes and still provide sufficient information
about decision classes from the viewpoint of inductive inference.

1f a precise measure of a "degree of representativeness" of each

event e € Ek were available, then an event reduction process could be performed

simply by selecting events whose 'daegree of representativeness' is above a
certain threshold. Fér example, the frequency of occurrence of an object with the
désaription e in the class k could serve as an estimate of such a measure.
This estimate, however, in many practical problems is either ndt available or
is not adequate. Consequently, some other means must be developed for selecting
the ‘'most representative' events, |

There can be a ﬁumber of different methods of solving this problem
(see, e.g., [Michalskl 75]). Program ESEL implements a method called 'outstanding
representativeé‘_(bR). |

1.2 An Outline of the QR Method

In this method, the original event set 1s reduced to a set consisting
of events which are most 'distant' from each other. An important feature of
this method is that the resulting set will include events which delineate the
toutside' of the events in the original set. For example, if the 'true' but
unknown decision clasé is a.circle and its interior and the original event
set consists of a number of randomly selected points from this class, then
the redgced set will be a set of points lying on or close to the perimeter of
the circle and spanning a polygon of approximately equal sides.

This method iz, however, very sensitive to events which differ
significantly from the rest of the events in the original set. If such events
happened to be errors, then these errors would have a strong effect on the
result. To circumvent this problem, an additional test could be done, which
selects an event only if it has a certain number of ‘close' neighbors*. Figure

1 1llustrates this method.

*This feature is not implemented.

Let e and e, denote two given events:

- ' 1 : 1 t 1 t 1 T]
LT D Xpeee Xy Xnpars Kuiaaeeor Xugr Xogurs Kloupeeees Y
- " 1 . 1 it [h} 11} M u (2}
27 O Xpoeees KOs Xap Xuiapeceer Xags Xigupe Xaggpeeees 25
\‘ S ~ \‘— g — \ T 4
tinear structured ' nominal
varlables variables _ ' variables
where xi and xz denote values of variable X, in e and €)s respectively. Assume,

without loss of generality, that the first nl variables in the events above are
interval variables, the following n2 variables are structured variables and
those remaining are nominal wvariablest.

First, we will define a measure of the distance d(xi, xI} between

the values of a variable depending on the type of the variable:

o For linear variables:
: |xi - x;|
¥ MY = s i
Ay, %) = —3 » 124 <nl (4)

assuming that the domain of each linear variable is represented

by the set {0, 1, 2,..., 1, =3 .1 (d, - the cardinalit§ of D,, i.e.0f the
ui \“1 El t domain of xi) .1

@ ' For structured variables:
L] e - NB
d0xgs %) = g (5)
nl <i < n2 (see Figure 2)

where NB is the number of branches on the shortest path linking xi with'xg

in the Hasse diagram representing the domain of X and MNB is the maximum number
of branches on the shortest path linking any two nodes -of the diagram.
) For nominal variables:
1, if x} is not identical to x"
L} 17 i i
dx', x") =
0, otherwise

(n2 < i < n)

Two types of distance measures between events are considered:

tIt is assumed here that if the domain of a structured variable is not a g-
structure, then the variable is treated as a cartesian variable.

NB(a,b) = 3 d(a,B) = 3/9
NB(b,c) = 6 MNB = 9 d(b,c) = 6/9
NB{(a,c) = 7 &(a,c) = 7/9

I1lustration of a distance between values of a structured variable-

Figure 2

(1) Quantized measure:

2 n
o 3 T, z ()
dq(el,ez) = q(d(xi.xi) ’Ti) + Lan+] wd(xi,xi) (6)
where 'ri = (til’ tiZ""’ tip) is a sequence of thresholds tij associated with
varilable x,, 1 = 1, 2, veey n2

i
q is a quantization function q:[d(xi, xng}->{0, 1; 2, o4, p}
defined as |

.] [}]
| : | - 0, if d(xi, xi)-i til

L} L1}
1, if til~<d(xi, xi) < tiz

], ¥my = {

[} (1]
L p, if tip < d(xi, xi)

w - a 'weight' assigned to nominal variables in relation to non-

nominal variables.

{2) Continuous measure

i n
d.eyrep) = B wdtx],) 7

where v, is a weight associated with the yariable X
The threshold sequence Ti in the quantized measure and weight
wy in the continuous measure represent two different meané tb'control'the'
effect of a single_linear or structured variable on the distance between events.
A8 we can see, control by a threshold sequence avolds a nultipli-
cation operation in computing the distance, unlike in control by weight, and
thus is computationally simpler than the latter. It requires, however, that

the user specifies the value of p and p thresholds for each variable, as

opposed to the single number (weight) required in control by weight.

1.3

method.

k=1, 2,....

Algorithm

We will now describe a specific algorithm implementing the OR.

The algorithm is applied in the same way to every set Ek,

Let us then assume that E stands for any one of these sets,

Either of the distance measures introduced in section 1.2 can be used in

the algorithm.

l.

;s
For each e € E determine the distance d(e, eo), where

eo=(0s 0, 0,..., 0).
Find events e and e such that
min max

d(, e.) = min d{e, eo)

g e€E

e 2
min

d(emax, eO) =eméxEd(e, eo)

Determine the distance d(e , & } and divide it into
min’® Tmax

r intervals*, where r is between 0.01 and 0.1 of the

size ¢(E) of the original set E (e.g., if c(E) = 3000

then r is between 30 and 300).

Partition E into r subsets, El’ Ez,..,, Er’ such that

Ei consists of events whose distance d(e, eo) lies in

‘the ith interval, 1 =1, 2,..., I3

ay_, < d(e, eo) < ay

where a;_q and a, are the endpoints of the ith interval

(a0 = d(eﬁin’ eo) and a_ = d(emaxf eo)).

*

The intervals do not have to be equal. The desired situation here is to
have intervals which will lead to the subsets Ei (determined in step 4)
of approximately the same size.

5, TFrom each subset Ei’ i=1, 2, ..., 4, select a subset

E18 cbnsisting of s events (where s is such that r-s g;ves
the desired size of the reduced event set). The
selection 15 made in the following wayi

1.} PFind e, and e, in E, such that

i
d(el, ez) - max d(ea, eb)*

2.} ¥Find e, such that

d(es, el) . d(e3, e2) = max: (d(e,el) . d(e,ez))

eGEi
s-1.) Find e, guch that
s-1 s—1
Hd(es, ejJ = max I d(e, e,
j=1 e€E, f=1 3

where Il denotes the arithmetic multiplication.T

6. The union of the sets Eis=

gives the reduced aveur set.

*A more computat fonally wificient process, though one which mighf lead to a
less desirable result, is to replace step 1 by two steps:
la) find ey such that

d{s, _ = d{a, e
(ey, ey) Gmé%i » eg)
1b) find ey such that

d(eq, ez) = max d({e, e;).

(=3
a Ei

tThe reason for using multiplication in steps 2,

«ov3 8~1, i3 to select
events which are at similar distances from each

other,

10

The number of operations required by the algorithm Is

approximately:
g-1
N = c(B) + r (c(E))) + j§2 e
where c(E), c(Ei) is the cardinality of E and Ei, respectively. (Ei are
assumed to be all of equal size.) An 'operation' may involve computing the
distance between two events, the comparisonlof two distances, the comﬁarison
of the distance with a threshold, etc. In the modified form of the algorithm
we have: |
s-1
N' = ¢(E) + r jgl je(E)).
For example, if c(E) = 3000, c(Ei) = 100; r = 30, s = 10, then N = 273000

(N' = 268000), and the cardinality of the reduced set would be C(ES) = 300.

1.4 User's Guide for ESEL

INPUT FILES

PARMSX - A file with information about variables.

INST ~ A file with information about the sizes of event sets
which are in the data base and the sizes of representa-
tive sets of events.

. EVNT - The file containing the data base.
PARMSX FILE

This file contains the number of variables in the event descriptions
in the data base, the range of values for each variable, the domain structure
for each variable, and the weight which should be giwven to each v;riable, The
first number in this file must be the number of variablesfin each ayent descfip-
tion. The next three specifications are all in the same form: a mumber, optioually

followed by a set of numbers. The first number may be used to set all values of

11

the rangé, structure, or weight to a single value. If all values in a specifi—
cation are to be set to one value, then this first number should be this value
and there is no following set of values. If a value is to be Specified'fo: each
variable, the first number should be (0). For example, suppose there are 3

variables with the following situation:

X X2 %3
max. value K 2 4
structure interval nominal interval
weight : 5 6 3

The file PARMSX would look like thias:
3 0 324 Q0 303 0 563
__\,_.J e~

max value structure weights

The fifst 3.indicates 3 variables, the first 0 indicates that the
range will.be speclfied for each variable (another value than 0 would indicate
that all variable ranges will be of that value). The second 0 indicates that
the structure of all variables will be individually specified. An interval
structure is specified by the number 3, aﬁy other number gives a nominal struc-
ture. The final 0 indicates that weights will he specified independently for
each variable,.

- Heré is another example: suppose there are 4 variables in the

data base with the following characteristics:

1 %o 3 4
max, value 3 3 3 3
structure interval interval 1interval interval
weight 6 5 1 1

Then the PARMSX file would look like this:

4 3 3 0 6511

12

‘The & indicates that there are 4 variables describing objects in
the data bagse. The next two 3's indicate that all ranges are from 0 to 3 and
that all variables are of interval structure, The 0 indicates that weights will

be specified independently.

INST FILE

This file contains 1nfofma£ion about the number of events in each
class in the daFa base and the number of eventé from each class the program ié
to select. Each class is épecified by two lines in this.file. The first line
specifies the number of events in the data base which correspond to the class,
the second line specifies the number of partitions and the total number of
events which are to be selected from the class. A class with O_events, 0 par-
titions, and O selectednevents terminatés the file.

For example, a data base with 100 evehts, the first 50 of which are
to Be in the first clasgs, the ﬁgxt 20 in the second class and the last 30 in

the third may be specified as follows:

INST: .
blank - the first line must be blank.
50 - the first 50 events are in the first class
15 - using 1 partition, select 5 events
20 - the second class has 20 events
16 - using 1 partition, select 6 events
30 - the last class has 30 events
3 20 - .using 3 partitions, select 20 events
0o
0 0 - the last class

EVNT FILE

This file contains the actﬁal_data base. Events are stored as lists
of integers. Irrelevant values are stored as -1. The first line of this file
must be blank.

For example, a situation with 5 events and 3 variables:

13

EVNT FILE
blank
0 -1 3
2 2 3
3 31
3 1 1
0 1 0

QUTPUT FILES
OFILEX - A file with the selected events.

TOPT - A file with the remaining events which were not selected,

Each file is in the same form as the input file EVNT except that a class
number is appended to the beginning of each event. This output format is compatible
with the VLl mode of the INDUCE-1 (Larson, Michalski 77, Larson 77 a,b) program

and the program AQll.

14

2. INCREMENTAL GENERATION AND TESTING OF VLl HYPOTHESES: Program AQll

2.1 Introduction

There are many situations when one starts with certain initial
hypotheses about given data and then, in the process of experimenting with
these hypotheses, has to modify them in order to preserve consistency with new
acquired facts. .Such situations arise, e.g., in rule-based expert systems, where
in the course of a system's performanﬁe some rules are discovered to be incorrect
or incomplete and have to be modified.

A procesé of generating hypotheses (or descriptions) in steps, where
each step starts with certain working hypotheses and a set of (new) data and

ends with appropriately modified hypotheses, is called an incremental (or multi-

step) generation of hypotheses.

' The purpose of program AQLl is to implement such an incremental
generation of hypotheses in the framework of the variable-valued loglc system
'VLl (Michalski 74). Although from the ﬁiewpoint of the complexity of real
scigntific research this framework is extreﬁely restricted; nevertheless,
it is-still sufficiently rich to provide an intereéting regsearch subject and,
also, to gbtain solutions which may have practical applicatiouns.

Hypotheses are expressed here aé (constant-free) disjunctive
normal VLl expressions (DVLl expfessions*). A DVLl expression is a disjunctian -
of terms, wherea term isalogical product of selectors. A selector is a
statement in the form: |
[x # R]

where x is a unary descriptor (variable)

denotes any of the relational operators = = £

R iz a list of.constants which are eiements of the domain of x (R is called

the reference of the selector)

*In the general case, DVLj expressions involve constants and are multiple-valued logic
expressions [Michalskil 74]. Here, for simplicity, we will assume initially, that
~ they are just binary (i.e., either satisfied or not satisfied), and have no constants.

15

When a DVLl expression is evaluated for a given event, selectors are
interpreted as conditions (or questions). A pelector is satisfied if the value of t

variable in the event satisfies the condition, otherwise, it is not satigfied,

Some examples of selectors and their interpretation as conditions follows:

= 9
[xi 1] is X equal to 17
[xi_= 1,3] 1s x; equal to 1 or 37
[xi = 1..3] is Xy between 1 and 3, inclusively?

An example of a term:

[xl = 3][x3 = 2,&,5][x5 = (]

The above term is satisfied if Xy equala 2, X4 has value 2, 4, or 5 and

x5 has value 0,

An example of DVL1 formula:

T1VT2VT3
where Tl’ T2, T3 are terms. The formula is satisfied if term T1 or T2
or T3 1s satisfied.

A DVLl'formula is interpreted as a description of a set of

events, namely events which satisfy 1it,

2.2. Description of Methodology

Suppose there is given a set of hypotheses (DVLl'descriptions),
V= {Vi}, i=1;...,m, and a family of event sets ('facts'), F={Fi}, which thesg
hypotheses are supposed to describe, Suppose that for any i, Vi describes cor-
rectly only a part of the events from Fi' -

The problem is to produce a new set of hypotheses, Vl= {Vi}, where .
each Vi describes ail events from set Fi’ and does not describé events from
any other event set Fj,,j# i,

The following solution to this problem is based on the multiple

application of a computer program implementing an efficlent algdrithm [Michalski 71]

for determ}ning a cover, C(El/Eo), of an event set El against the event set Eo‘

16

Such a cover can be interpreted as a DVLl expression, which 1is satisfied by every
event in El and not satisfied by any event in Eo (or in Eo\El, if Eo and El intersect).
The solution conslsts of 3 major steps:
Step 1. The first step isolates those facts which are not consistent
with the given hypotheses. For each hypothesis, two sets
are created:
F+ - a set of events which should be covered by the hypothesis,
but are not
F‘_f a éet of events which are covered by the hypothesis, but.
should not be covered.
(An event is said to be covered by a hypothesis if the event

satisfies the VL1 formula which represents the hypothesis.)

Specifically, this step determines, for each 1, i=1,2,...,m, the sets#*:

+—- .

Fi-z«'i\'#i (8)
- Ny 3

Fij =V 8} Fj, j=1,2,...,m5 J#i (9)

(see Figure 3).

+ &
Thus, Fi denotes events which should be covered by Vi but are not, and

F_ . denotes 'exception' events, 1l.e., events in Fi’ j#1i, which are

ij

covered by Vi, but should not be covered.

Step 2. This step determines, for each i, a generalized formula V;
describing all exception events (the union of sets F;j, j=1,2,...,10,
j#1). This 1is done by generating, for given i and each j, a cover of

+
Fij agalnst the events in the sets ?1 U Fi, i=1,2,...,m:

- +
U .

vij ij /i J) VU FD) | (10)
and then taking the logical union of Vlj:

(11)

18

The reason for this step is that it is computationally more efficient

tb use fqrmulas Vl than the union of E;j. 1=1,2,...,m; J¥i.

Step 3. New fcorrect' hypotheses could be obtained now by 'subtracting”’
from each V, the formula Vl and 'adding' to it the set FI. To do this

directly, however, is difficult. Again, an advantage is taken of the

available computer program for generating covers C(EllEo).

Namely, the new hypotheses, Vi, i=1,2,...,m, are determined as covers:
1 m
vhecr, N IENY) v FL D) (12)
i ik=l k 'k k
k#i

(The point is that directly simplifying a union of terms is difficult;
but "substracting' a term from a term or generating a cover of an
event set against a DVL formula is easier).

Step 4. This step determines the final representation of hypotheses

l i
Vi. The Vi are DVLl expressions which are unions of terme. Some terms
in a Vi may represent (cover) only a few events in Fi' Such 'low

weight' terms are replaced by the events (facts) themselves (since an
event takes less memory than a term). In program AQll, parametér
PUNY specifies the minimum percent of events which a term has to covef
to be a "high weight' term.

Fﬁr example, if PUNY = 0.02, and a set Fi has 100 events, then all
terms which cover 3 or more events (3 > 0.02 ﬁ 100) are 'high weight'’

terms. Terms which cover 1 or 2 events are replaced with those events.

2.3 An alternative way of handling exception events

In the procedure above, the exception events were represented by terms
in V;’ If the number of exception events is small, it can be easier to hgndle the
events wi;hout turning them iﬁto expressions V;. The 'substraction' (denoted by)
of an event e from a tefm T (in a given formula) 1s done by logically mulitiplying

the term by the negation of the event:

19

TN e=T A e | (13)

‘In order to use this way of handling exception events, in program
AQLl thé parameter STGY should be set to wvalue 2 (STGY=2).

The result of operation (13) can produce several terms. Anyone of them
1s sufficient to be used in the new hypothesis. In program AQll, there is a-pﬁra-
meter #EX which specifies how many such terms a user wants to store for representing
a hypotheéis. If the number of generated terwms is larger than #Ex, the program

B8elects #EX 'best' terms according to the criteria list.

2.4 Additional Features

There may exist certain restrictions on the event space which must

hold in the resulting formulas. A restriction may be of the form
[x3=2] *>[xl=NA] (NA = not applicable)

which is read "if X, has the value 2 then the variable X is not applicable.”
The implementation of these restrictions can be viewed as an extra set of

hypotheses vn+1 which 1s included in the set E- of all covers!

/EC UV
C(Fi_E uvn)

+1

Due to the techniques used in the covering algorithm (namely, the use of para--
meter 'maxstar', see p. 27), this may not be the best approach since only a
few terms‘in each intermediate quantity are retained. Therefore, the program
. imposes these restrictions on all facts in the set F={Fi}f Using the above
restrictions, an event

e = (1 3_2)
is replaced with

e = (NA 3 2)

20

2.5 Testing Procedure

By applying the above described part of A1l program one can determine
DVLl descriptions (hypotheses) of classes.of objects from examples of objects
representing individual classes. An obvious problem arises of testing the validity
of the derived descriptions. This 1is done by applying the descriptions to néw
examples of objects with known class membership. .The results of such testing are

usually represented 1in a form of a confusion matrix. This matrix specifies for

each class (a row in the matrix), the numbers of testing objects of this class,
which were assigned by the descriptions to individual classes (corresponding to
colums of the matrix).

Below is an example of a confusion matrix involving 2 classes: a

class of cancer cells, and a class of non-cancer cells:

Class
(Correct Assignment) Assigned Decision
Cancer cells Non-cancer cells
Cancer cells 28 2
Non-cancer cells 7 23

Entries on the diagonal indicate the correct decisions, entries outside of the

diagonal - incorrect decisions, For example the number 7 in the recond row

indicates that 7 (testing) non—-cancer cells were classified incorrectly as cancer cells,

This form of confusion matrix is adequate if an event (object) either
gatisfies or does not satisfy a formula. In general, however, it is desirable te

consider the dgree to which a given event e satisfles or matches a formula. BSuch

a degree, called degree of consonance (or degree of match) and denoted DC(e,V),

is computed according to an evaluation scheme. An evaluation scheme consists
of definitions for computing:
(1) DC(S,e) - a degree of consonance between a gelector and an event (briefly,

degree of consonance of a selector),

(2) DC(T,e) - a degree of consonance of a term (a product of selectors),

(@) DC(V,e) - a degree of consonance of a DVLl formula {(union of terms),

21

DC({Vi}; e) - a degree of consonance of a set of forﬁulas (describing the -
same class),
Many different evaluations schemes can be applied for evaluating
DVLi formulas., Methods developed in many-valued logic (e.g., Recher 69) and
fuzzy reasoniﬁg (e.g., Zadeh 74, Gaines 76) are applicable here. We will
describe thé evaluation scheme currently implemented in program AQll,
and give suggestions for other evaluation schemes.
(1) Definition:Of degree of eonsonance of a selector,
The basiec definition of the degree of consonance, DC(S,e}, of a
selector comes from the evaluatiﬁn rules in VLl {Michalski 74]. Assuming
that the output domain of the formulas b = {0,1} we have:

1, if the value of appropriate variable in e
satisfies the selector S

DC(S,e) = 0, if it does not satisfy §

* the value is unspecified

For ex&mple; suppose event e = (;1,x2,x3) = {3, 1, 1}, and seleqtor S is [x2=l,3];
We have D{e,5) = 1, becéuse valne of Xy in e is a member of the reference of the
selector (l.e., 1 is member of {1, 3}). {Pig. 4}.-

Alternative evaluation schemes can take into consideration the
structure of the domainof the variable in the selector.If a variable is linear,
it seems that the above definition of DC(e,8) is too rigid. For example, if a
linear variable xi=13 aﬁd S: [xi=14..18], the selector 1s evaluated to 0, while
it seems desirable to evaluate it to some value greateé than 0 (since 13 is so
'close' to 14), This means that one could accept a 'bell-shaped' function for
evaluating interval selectors (Fig. 5).

The concept of 'trimming'a term can be also useful here. In an untrimmed-
(extended) term, references of selectors (sets of values) are.as large as possible
without leading to a contradiction, i.e., intersectionmwith formulas of different classes,
In the trimmed term, references are as small as possible, providing that the term

still covers the same learning events as the extended term and preserves the Foma

=22-

och
1 F
‘Selector S:[x=1,3]
0 ' -
0 1 2 3 4 X5
A graphical illustration for evaluation selector [xz=1,3]
Figure 4
DC%
B
A
‘L_
- kS
”
’ ~
-~ ~
0_.--1’,1 L t l\"l-..._l ——
o 1 2 3 4 5 6 7 8 X

A bell-shaped (A) versus step-shaped (B) function for
evaluating a linear selector [xi=3"5]

Figure 5

23

of selectors,e.g., if the reference of a linear selector is @..b, then in
the trimmed selector it will be an interval a. bl' asa, y b <b

An evaluation function can agsign DC =] when a variable has value
within the 'trimmed' reference, assign DC = 0, when the variable has value
outside of the extended reference, and assign DC = B, Q< B« 1, otherwise.

(Fig. 6 a and b).

@) Definition of the degree of consonance of a term,

In the definition of VLl,.the degree ¢f comsonance of a term was defined aa
minimumm of values of selectors in the term. In AQll, the degree of con-
sonance of a term is computed as the ratio of the number of selectofs
satisfied in the term to the total number of selectors in the term.

If all selectors in a term are satisfied, then both definitions
give the same value. If this 1s not the case, the latter definition differ-
entiates between the terms with different numbers of selectors
satisfied, while the former does not, (which is a desirable feature),

As an alternative, one could use here also a probabilistic logic
evaluation, which evaiuates & term into the arithmetic product of DC-s of

selectors.

@) Definition of the degree of consonance of a formula.

The degree of consonance of a formula V and an event e, DC(V,e),
1s defined as the maximum of degrees of comsonance DC(Ti,e), of terms Ti
in the formula (i.e., as defined in VI,),i.e.:

DC(V,e) = MAX {DC(T se)}

Ti v

(&) Definition of the degree of consonance of a get of formulas of the same class.
It is useful sometimes to generate more than one formula describing

a given class, The reason is that having more than one formula per class may

=0

DC &
1k
Bt ;;;/
0 /A R —
0 1 2 3 4 X;
Generalized selector 5: [xi=l:3] Triﬁmed gelector S': [xi-zl
a. Evaluation function for an interval
selector using the concept of 'trimming'
DC§
1=
1 2222259 i2222;§
0 A /A —
_ 0 1 - 2 3 4 5 Xt
Generalized selector Trimmed selector
8: [x,=1,2,4,5] S: [xi=2,5]

b. Evaluation function for a nominal
selector using the concept of 'trimming'

Figure 6

25

3

improve the reliability of decision making. We have accepted in AQll the.
definition that the degree of consonance DC({Vi},e), of a set of formulas,

.{Vi}, as the average of the DC-s of the formulas in the set:

DC({Vi},e) = AVG fDC(Vi,e)}

vy

Given a set of formulas of different classes apd an event, the DC is
camputed between the formula (or é set of formulas) of each class and the event.
The classification decisions are ordered according to the value of DC., All de-h
cisions with ﬁalﬁe DC within the distance TAU (sée parameter TAU in section 2.5)
from the maximum value of DC, are rank 1 decisions (i.e., each of
" these decisions are treated as equally justified). Then the next 'hest'
decision which {s not of rank 1 is selected, and all decisions with DC within
TAU distance from DC of the selected decision are assigned rank 2. The
process repeats IRK times (see input parameter IRK in section 2.5),

For each testing event, values of DC of ranked decisions are printed
by the program AQll as rows in an 'extended' confusion maﬁrix (see Fig. 7
for an example). 1In the matrix, a decision of rank 1 which is correct is
underlined, and the number of rank 1 decisions for the given event is printed
in the 'TIES' column. If an event has some unspecified values, it may still
be poésible to compute DC for certain classes, and for certain classes DC wouid
depend on the value of unspecified variableg. If a decision of rank 1
is correct and would remain so no matter what values unspecified Qariables
take, then the decision is treated as a correct decision. In any other case, the
decision 1Is excluded from computing total correctness staéistics, and the column
"UNSP' corresponding to the given event has entry * .

The performance statistics for each group of events of one class are
printed in the last 2 rows of the group of rows associated with these events.

The rows contain the number and percentage, respectively, of events classified

26

to each class. The percentage of correct decisions is braced by

vertical bars. The matrix also contains a column #DEC/event specifying an

'indecision ratio',which is a ratio of all decisions of ramk 1 to the total

number of events in the group (excluding rows with USP=#). Figure 7 gives

an example of an extended confusion matrix. The matrix was computed for 3 classes

D1, D2 and D3 described by formulas:
Dl: [x1=2]{x3=1][x4=1]
Dl: [x1=2][x2=0)
D3: [x2=1][x4=1]

and for 3 testing events of class DIl:

el: (1011)
e2: (2111)
el: (*011)

The parameters were: TAU=0.1 and IRK=2:

(* denotes unspecified value)

Assigned Decision

Correct Assign | #DEC/Event | TIE UNSP! D1 D2 D3
.68 | .50 | .50
2 1.00 | .50 |1.00
D1 * 0.50
2 0]
1.33 k74 07 | 33%

An example of an extended confusion matrix

Figure

7

The percentages
braced by
vertical bars
indicate the
correct
decisions.

The value of #DEC/Event is 1.33 because there were 4 decisjons of :ank 1

(including new with UNSP=*) and 3 events (4/3=1.33).

Concluding, the program AQll permits a user to determine dedéision

formulas in an incremental way and then automatically test them on the testing

data. Thus, it is a 'complete' tool for making experiments in inductive learning

of DVLl.descriptions of data.

27

2.6 Program iiser's guide

The program requires two sets of input parameters' control
parameters (read in PL/1 date format } and data parameters (read in PL/1
list format). All but two control parameters have default values, there-.
fore only two (NV, NCL) must be specified. All data parameters must be
specified (although some may be omitted if certain control parsmeters
are set)., The following is s 1list of all parameters which the program

currently accepts. Default values (if any) are given in the exsmples,

2.6.1 Control parameters
® NV (no default value)
Example: | NV = 50
Possible values: inﬁeger in the range 1:50

This parameter specifies the number of variables which are
availeble to describe each event.

® NCL (no default value)
" Example: NCL = 19
Possible values: eny pesitive integer

NCL specifies the number of classes ofevents (or event sets)
which are %o be input to the program. The program will then
generate a cover of each event set,

® MAXSTAR
Example: MAXSTAR = 10 (default value)

Possible values: any positive integer

MAXSTAR 1is the maximum number of complexes (terms) which are kept
in any intermediate star (see AQ7 documentation for a further
description [Larson, Michalski 75)}). The procedure for selecting
'best terms' is somewhat different in this program than in
AQ7. (When each intermediate star is trimmed, the user-specified
cost function 1s used rather than only the first twe criteria).

28

® NPASS
Example: NPASS = 1 (default value)
Possible values: any non-negative integer

If NPASS = O, the program will only execute the confusion
matrix phase and then terminate (Set TEST = 'l'B).

If NPASS = 1, the progrem will form a cover of the facts
using input formulas {if any), then evaluate the formulas
if TEST = '1'EB,

If NPASS > 1, the program will partition the set of facts into
sets whose size depends on the PCT parsmeter (see below) and form
hypotheses based on cld hypotheses and the partitioned facts.
Then, new sets of events will be taken in turn and hypotheses
formed based on the entire set of events taken up to the point
and the hypotheses from the last pass.

& TEST
Exemple: TEST = 'a'B ' (default value)
Possible values; '1'B or '0'B

If TEST is '1'B, then a confusion matrix will be computed
after each pass. The testing events must be given toc the
program in the file TESTF.

® RESTRICT
Example: RESTRICT = 'O'B (default value)
Possible values: '1'B or '0'B

If RESTRICT is '1'B, then a set of restrictions 1s accepted

by the program (see parsmeter REST) and applied to all events.
® RTEST

Example RTEST = 'O'B (default value)

Possible values: '1'B or 'O'B

If RTEST is '1'B, the restriction will also be applied
to testing events. '

29

® TRANS
Example: TRANS = 'O'B (default value)
Possible values: '1'B or 'OB

If TRANS is set to '1'B, then the variable names and values
are translated into descriptive names in the output. In this
case, a file TRAN must be given to the program (see TRAN below),

® DPUNY
Example: PUNY = 0.C@ (default value)
Possible values: real value in interval [0:1]

All terms which cover less than a percent (PUNY*100) of the
events of the corresponding set will be discarded in the next
pass (i.e., if a term covers 2 events, PUNY = 1, and there are
23 events in the training set, this term will not be used in the
next pass).

® TAU
Example: TAU = .019 (default value)

Possible values: real values in interval T0O:11

This parameter relates to the computation of the confusion
matrix, Any two values (degrees of consonance) within TAU
of each other are considered to be of the same rank. For
example, if .98 is the highest decision value for a testing
event, any decision with a value between .96 and .98 would
be a rank 1 decision (assuming default value of TAU),

® IRK
Exemple: IRK = 2 : (default ‘value)

Possible values: positive integer less than NCL

This parameter also relates to the computation of the confusion
- matrix and controls the number of decisions printed out. All
degrees of consonance of rank not greater than IRK_are printed,
others are not printed. If IRK = 1, only rank 1 degrees are
printed. One exception to this is that the degree associated
with the correct decision is always printed. :

30

. ® NCRIT

Example NCRIT = 2 (default value)
Possible values: integer in range [1:k]

NCRIT specifies the number of cost criteria which should be applied
when computing the cost of a formula (see CRIT). CRIT(1l) through
CRIT(NCRIT) will be used, all others will be ignored.

® CRIT(I)
Example: CRIT(1) = 1 CRIT(2) = 2 (default value)
Possible values: each CRIT(I) may have values 1, 2, 3,5 and 9

CRIT(I) = J specifies that the I-th criterion in order will be the
cost function J. There should be NCRIT specifications indi-
cating the cost function which will be used (J) and the order
in which they will be applied (I). Available cost functions
are the following:

1. Maximize the number of events covered By the given term,
and not covered by previous terms

2, Minimize number of gselectors

3. Minimize cost of all variables in this term. If
this criterion is specified, costs of variables
mist also be specified (see Z parameter)

5. Minimize the number of events of K0 covered

9, Maximize total number of events covered by a term

& HEY
Example : FX =1 (default value)
Possible values: positive integer

During scme phagse of the program, exception terms are
formed (description of events which are covered by hypotheses
but should not have been). #EX gives the mmber of redundant
exception terms (i.e., the terms which cover the same
event). ’

Example TR = '0'B (default value)
Possible values: '1' or 'Q' R
TR gives a trace of the multi-step process glving the exception
terms and the size of the seta F' and F~ described in Section 2.1.
L STGY
Example : STGY = 1 (default value)
Pogsible values: 1 or 2
If STGY has the wvalue 1, then exception terms are formed
for events in the gsets F~, If STGY has the value 2, then the
previous hypotheses are multiplied by the complement of the
exception events of the set F~.
® INDEP
Example: INDEP = 'Q'B (default value)
Posgible values: 'O'B or '1'B
If INDEP is '1'B, then the mmber of independently covered
events are printed for each complex, Otherwise, only the mum-
ber of new events and the total number of events covered sre
printed.
® TITLE
 Example: TITIE = O (default value)
Possible values: non-negative integer
TITLE specifies the mmber of cards which are in the title.
- The title cards must follow the semi-colon which terminates
the set of control parameters,
® QOPT
Example: OPT = '1'B (default value)
Pogsible values: '1'B or '0'B

If OPT is 'l'B, then after each pass a table 18 printed indicating the
numbers of times each cost criterion 1s evaluated (number of
terms for which the cost function is evaluated).

32

® MODE
Example: MODE = 'IC! (default value)
Possible values: 'IC', 'DCY, *VLI!

If MODE = 'IC', then covers are allowed to intersect over 'DON'T
CARE'areas of the event space. If MODE = 'IC', the covers are
constrained to be disjoint. MODE = 'VL' gives order dependent
covers.

& CPXEV
Example: CPXEV = '1'B (default value)
Pogsible values: '1'B or 'O'B

If this paremeter is '1'B, then during the testing phase a
table 1s printed which gives the number of times each term
was needed to give a correct decision.

® GEN
Example: GEN = '1'B (default value)
Posgible values: °'1'B or 'O'B

If this parameter is "1'B, then only the necessary parts of
the reference of each output complex are printed (i.e., a new
term is created from the generated term which has the following
properties):

a. The new term covers the same events.

b. The new term contains the same variables.

¢. The references in the new term are as small as possible.

ECEO
Exemple: ECHO = 'ERZ! (default value)
Possible values: A string contains any of the characters ZERF
Tf the letter appears, the corresponding input data.is.echoed;
Events
Restrictions

Variable costs
Input formulas

nuw i n

g 030 =

The defsult echos events, restrictions and variable costs if
they are in the input.

33

® TOLERANCE(I)
Example: ; TOLERANCE(2) = 0.0 (default value)
Possible values: integer or real in [0:1]

TOLERANCE(J) 1is the tolerance for the J-theriterion gpecifiad.

If 1t 13 an integer, then it 1s assumed to be an absolute tolerance.
Otherwise, it is a relative tolerance caleulated by finding
TOLERANCE * (MAX~MIN) when MAX or MIN are the maximum and minimum
elements in the list of costs to be sorted.

® ORD
Example: ORD = '"1'B (default value)

Pussible values: '1'B, '0'B

If ORD is '1'B, then the program will reorder events in EQ,

in decreaging order, with rvegard to the distance from e -

® N-TAU
Example: N-TAU = ¢ (default value)
Possible values: 1integer in [0:8]

This parameter, if not zefo, generates a TAU estimation table
giving summary information for each class in the evaluation
Procedure using N-TAU values of TAU beginning at 0 with increments
of TAU-INC.

® TAU-INC
Example: TAU-INC = .02 (default value)
Possible values: Real in [0:1]

This is the increment used in the TAU estimation table.,

34

Semi colon (;): This must be entered to terminate the control

parameters.

2.6.2 Data parameters
These parameters have the names as used in the program. In the
input to the program only their values are specified, in the order
given here (See fig. B-1l (a) for an example.)
® TITLEC

Possible values: The number of lines specified by the TITLE
parameter :

These lines are printed at the top of the output.

® NSPEC
Possible values: An integer in the range [OiﬁV]

Number of variables for which a structure is to be specified.

® VTYPE
Possible values: 'F', 'I'
The NSPEC variables will be of this type ('F' - nominal
varlable, 'I' -linear variable).
® TYPE

Possible values: A list of NSPEC integers in the range [1L:NV]

The list indicates variables of VIYPE.
Example of NSPEC, VIYPE, TYPE: 3'r* 135

There are 3 variables of type 'F' (nominal) namely,
variables 1, 3, and 5. The rest will have type 'I’.

® L
Possible values: A list of NV positive integers in the range {1:8]

This parameter gives the number of values which each variable
can assume.

Example: 1 2 4

35

NE
Example:: 3 1 4
Pogsible values: A list of NCL integers in the range [O:NEVE]
The parameter specifies the number of events in each event
set, The sum should add up to NEVE.
NF
Example: 341
Pﬁssible values: A list of NCL non-negative integers
This parameter specifies the mumber of terms. of the hypothesis
for each event set, :
PCT
Example : | | 20k 1

Possible values: A list of NPASS real values in range {0:1]
(except if NPASS = 1, PCT is assumed to be 1)

in this example, 20% of the events will be described first,
then an extrs 20% of the events will be added and a description
formed using previous hypotheses. Finally, the complete get of
events is used (see NPASS above). :

REST

1)-> (x4 = =),
2)=> (x1 = *¥) (x4 = 1),

Example: (x12
(x13

Possible values: A list of decision rules separated with semi-
colons and terminated with a period

This restriction will be applied to all events (i.e., added to
current specifications). RESTRICT mist be set to specify restric-
tions. An * in the reference indicates that this varisble is not
applicable. Restrictions are separated by semi-colons and the
list of all restrictions is terminated by a period,

36

® LEVENT
Possible values: NEVE lists of events, NEVE = SUM(NE)

There are two ways in which events can be specified, and the
two types of specifications can be mixed.

1. An event can be specified as a list of values, one value for
each variable. The values can be:

a) non-negative integer--indicating value of the variable
b) ~-l--variable does not apply
¢) =2--do not know the value

Example: 3 2 0 -1 -2 0
L 1 2 0 0 0

2. An event can also be specified by a VL1 formula which is

preceeded by a line which says FORMUIA. Each formula
must be terminated by a semi-colon.

Example: FORMUTA
(21 = 2) (x3 = 0);

FORMUIA .
(x3 = 1) (x@1 =2);
® TFORMUTA
Possible values: NCL lists of formulas, each having NF coamplexes
There are two ways to speclfy a formula:
1. as a FORMULA as in the event speﬁification,

2. as a binary positional bit string in PL/1 List Format.

® 7z
Example: 2{1,2) = 9 Z(3,4) = 573

Possible values: Integer values terminated by semi-colon in
PL/1 Data Format

These are costs of the varlables which are accepted if CRIT(1I) = 3
has been specified for the event set I. If Z value is not specified
for some variables, it is assumed to be 1. 2(1,J) = Y means that

variable xJ has cost Y for event set I.

37

2,6.3 Files

® TEST
This file must be included if the parsmeter TEST is set to '1'B.
The first line of this file contains a list of NCL velues
indicating the number of test events for each event set.
The list of testing events follows., FEach event is specified

as a list of variable values with coding of -1 and -2 as
above,

® TRAN
This file must be included if TRANS is '1'B. It contains the
names of all varigbles and variable values. BEach name will be

truncated: variable names to 20 characters, value names to 10
characters. The format is the following: For each variasble

one specifies:
variable name, variable value names
Each name must be in single quotes.
Example:
//TRAN DD *
' TEMPERATURE!
'COLD!
'MODERATE'
YWARM!
'HUMIDITY"

'DAMP' 'DRY'

® TESTF
This is a temporary file which the Drogram uses to store test

events from one pass to the next. See JCL set up for specifi-
cation of this file. ' :

This completes a description of the input specification to the pro-
gram AQll. For a user's convenience, appendix A gives a summary of the input
specification. Appendix B gives an example of input and output from the

program.

38

2.6.4 Program.Output

Most of the output is self-explanatory (see appendix B). The input
data is echoed when specified. Then, the formulas for each pass are printed.
To the right of each term 1s a pair of numbers which specify the number
of new events covered and the total number of events covered by that term.

After all the formulas for one pass are printed, a confusion matrix
is printed for these formulas and given testing data. Information about each
pass is printed in turn until all passes are complete.

1f two events of different classes are identical, then a message
is printed indicating a non-disjoint representation of classes. In such a
situation, if a cover C(E1/EQ) 1s being created, then the eyent of EQ is
ignored.

The output from the evaluation part of the program comnsists of an
extended confusion matrix, as descrihed iﬁ section 2.5.

Two other tables are printed at the user's option. If CPXEU is
set, then a table listing the number of correct decisions for each compléx
is given. If N-TAU is not zero, then TAU estimation table is printed, giving the
indecision ratio and number of correct decisions for each class for N-TAU

values of TAU, beginning with O in increments of TAU-INC.

3. SUMMARY
We have described here the underlying methodology and computer programs

for selecting 'best' learning VL. events (program ESEL), and incrementally

1

generating VL. hypotheses for given event sets (e.g., selected by program ESEL),

1
and then automatically testing them on the supplied testing events (program AQll),

These two programs constitute a package which can be used for makineg

experiments in induction of descriptions from examples in various applied fields.

39

ACKHOWLEDGMENT

This work was supported in part by the National Science Foundatién
under Grant NSF MCS 76-22940, and in part by a Senior Visiting Fellowship
from the Science Regearch Council in U. K. .

The paper was written while one of the authors, R. 5. Michaiski,
was spending his sabbatical leave at the Univérsity of Essex in England.
-This author would like to express here his deepest gratitude fo Professor
Brian Galnes, the head of Electrical Engineering Depaftment of University
of EssexlUniversity, for unusual hospitality and help to organize
life in the new environment, as well as for the numerous and inspiring
discussions.

Thanks are also due to Tom Dietterich for the strenuous job of

proofreading of this paper.

10.

11,

. 12.

13.

14,

40

REFERENCES

guneo, R. P. Selected Problems of Minimization of Variable-~Valued Logic
ormulas. Report No. 726, Department of Computer Scilence, University
of Illinois, Urbana, Illincis, 1975. '

Forsburg, A. S. A user's guide for AQPLUS, on internal report, Department
of Computer Science, University of Illinois, Urbana 1975.

Gaines, B. R. Foundations of Fuzzy Reasoning, International Journal
of Man-Machine Studies, No. 8, 1976.

Jensen, G. M. Determination of Symmetric VL, Formulas: Algorithm
and Program SYM4., Report No. 774, Departmeiit of Computer Science,
University of Itlinois, Urbana, T1linois, 1975.

Larson, J. Inductive Inference in the Variable Valued Predicated Logic
System VL, : Methodology and Computer Implementation, Report No. 869,
Department of Computer Science, University of I1linois, Urbana, Illinois,
1977. :

Larson, J. Induce 1: An Interactive Inductive Inference Program in
VL 1 Logic System. Report No. 876, Department of Computer Science,
Un%versity of Iltinois, Urbana, Illinois, 1977,

Larson, J., Michalski, R. g, Inductive Inference of VL, Rules.
Workshop on Pattern Directed Inference Systems, Honolulu, Hawaii,
May 1977,

Larson, J., Michalski, R. S. AQVAL/1 (AQ7) User's Gulde and Frogram
Description, Report No. 731, Department of Computer Science, University
of Illinois, Urbana, Illinois, 1975.

Michalski, R. S. TOWARD COMPUTER-AIDED INDUCTION: A Brief Review of
Currently Tmplemented AQVAL Programs, Report No. 874, Department of
Computer Science, University of Illinois, Urbana, Illinois, May 1977.

Michalski, R. S. On the Selection of Representative Samples from Large
Relational Tables for Inductive Inference, Department of Information
Engineering, University of Illinois at Chicago Circle, July 1975.

Michalski, R. 5. VL.: Variable-Valued logic System. 1974 International
Symposium on Multiplé-Valued Logic, West Virginia University, Morgantown,
West Virginia, May 1974. o

Michalski, R. 8. A Geometrical Model for the Synthesis of Interval
Covers. Report No. 461, Department of Computer Sclence, University of
I1linois, Urbana, Illinols, 1971

Reacher, M. Many-Valued Logic. McGraw-Hill, New York, 1969.
Stepp, R. Uniclass Cover Synthesis: Methodology and a Computer Program
Description, Report No. , Department of Computer Science, University

of I1iinois, Urbana, Illinois,

7adeh, L. A. Fuzzy Loglc and its Application to Approximate Reasoning,
Proceedings IFIP Congress 1874, Vol. 3, North-Holland, 1974.

l.

41

APPENDIX A

AQll Imput Specifications

ID parameters

Allow 150 to 180 K Bytes of storage for large problems. A very small
problem may be run in 120 K. Very few IOREQ's are used by the program;
500K ismore than enough. Time ia the main variable which must be ad-
justed. Using the following parameters, an estimate of the time re-
quired for a large job can be given,

MAXSTAR = 1 NPASS = 3 NV = 35

NCL = 19 NEVE(training) = 307 _ No evaluation
Time: 1 min. Region: 174K

Changing MAXSTAR to 7 and requesting evaluation using 388 events, the
time increased to 3 minutes for the training phase and 1 minute and 30
gseconds for evaluation.

JCL

.The following JCL is recommended:

// EXEC PGM=ITCN3, REGION=180K, PARM="'1SA(N) , REPORT'
//STEPLIB DD DSN=USER.P2123.ITCN3,DISP=SHR
//SYSPRINT DD SYSOUT=A

//PLIDUMP DD SYSOUT=A ‘ :

/ /SAVEF DD DSN=&&TEMP, UNIT=DISK, SPACE=(TRK, (10,1))

- //FTO6F001 DD SYSOUT=A

//SYSIN DD *
input parameters and data

//TEST DD *
test data (if evaluation requested)

//TRAN DD *
translation data (if TRANS 1s set)

ISA(N): N should be the region requested minug 125,
e.g. 51K

42

Control parameters

Parameter ' Default Description

NV -—— Mumber of variables

NEVE —-- Total number of training events

NCL - _ Mumber of classes -

MODE Ict Mode of operation

MAXSTAR 10 Maximum star size

ECHO VERZ! Fcho input

NCRIT 2 Mumber of criteria

CRIT(1) 1 Criterion 1

CRIT(2) 2 Criterion 2

CRIT(3)" 5 Criterion 3

CRIT(4) 9 Criterion &

TITLE 0 Number of lines in title

RESTRICT QB Accept restrictions

SAVE _ 0B Save formulas in a file
SAVEF

GEN titg Trim eomplexes for output and
evaluation '

PUNY : 02 The minimum percent of events which have

to be covered by a term

TR IC'B Trace multi-step procedure

NPASS : 1 Number cof steps

STGY 1 _ Way in which events of F sets
are handled

#EX ' 1 Numbers of redundant exception
complexes

QPT 1R Print statistics sbout number of times
each cost function is evaluated

TRANS 'O'B Translate ocutput using TRAN file

TEST '0'B : Evaluate formulas

RTEST 0'B Apply restrictions to test events

TAU .019 Equivalent threshold for rank 1
decisions

IRK 2 Mumber of ranked decisions which
are printed

CPXEV LB Print statistics aboubt satisfied
complexes during evaluation

NGE 200 - Initial storage for complexes

INDEP QB Prints independent events if set

TOLERANCE(I) 0 Tolerance for Ith specified test

_ function
N-TAU ' 0 Number of columns in 'tau' estimation
table '
TAU-INC .02 _ Increment in tau estimation table
ORD : '1'B Reorder the events in EO, in

decreasing order, with regard
to the distance from e_.
Semi-colon () Terminate control parafeters

Data parameters

Parameter Description

TITLE Lines of title (if any)

NSPEC | Number of variables for which type
TYPE 1s specified

| TYPE Type of these variables

VSPEC
PCT

NL
NE
NF
RESTRICTIONS

EVENTS
FORMUTAS

‘Files

File

TEST

SAVEF

43

Indicies of variables of type TYPE

If NPASS > 1, the percent of events
to use in learning phase for egch
pass

Nunber of values for each variable

Number of events in each set

Number of formulas in each set

If RESTRICT is set. Fach pair of
rules must be separated with a
- 8Semi-colon; the entire list is
terminated with a period,

Lists of events in either of two-
forms

Lists of formulas as in either of
two forms

If any CRIT(I) = 3, costs of variasbl
terminated with semi-colon

Descrigtion

TRANS is '1'B, the file names of
classes, variables and variable
values, Each name must be in
quotes

TEST 1s '1'B, the file of test
events

SAVE 1s '1'B, the output file of
formulss in bit positioned form
(list format)

44

APPENDIX B

An Example of an Input to
and an Output from AQLL

This appendix contains an example of the program input and output
which involves most of the features of the program. Figure B-1 gives the
input specification for this example. Figure B-2 gives the output which was
obtained. The first page of output repeats the input in a slightly extended
form. The next pages show formulas which were generated [in which variables
X 3%XgiXqs %, are substituted by their names, and defined in the input (item P in

Fig. B-1))] and the results of the evaluation of formulas on testing events,

Explanation of Figure B-l.

The example involves four variables (NV=4; see item B in Figure B-1(a)),
- which can take 2, 3, 4 and 2 values, respectively (item E}. All variables are

nominal, except variable x,_,which is interval (item D). There are 2 classes

3’
{NCL=2; item B), each represented by 6 learning events {(items F, J). The

last event of set (class) 1 is specified as a DV‘Ll formula (in the middle of
item JS. Item H defines the percentage of learning events to be used in each

iteration (pass). The restriction on event space is given by a VLl decision

rule (item I). There are O initial hypotheses for class 1 and 2 hypotheses for
class 2 (item G). Item K (fig. B-1(b)) lists the hypotheses for class 2, The cost of

variablelforset 1 is svecified as 2 (item L): the cost eriteria for the selection of

complexes (terms) in the synthesis of covers are in the order 1, 2, 3, 9

tl and 2 by default; 3 and 9 defined by CRIT(3)=3, CRIT(4)=9 in itém B).. (For

the definition of cost of variables and cost criteria see [Larson, Michalski ?5]){
Evaluation of the formulas to be generated is requested ()/TEST DD*)

and sets of test events supplied, 4 events per class (items M, N). A file

containing names of each class (set), each variable and eagh value of thé variable

is also supplied (items O, P).

L

OO M E

45

Input for Example

// EXEC PGM=ITCN3,REGION=160K, PARM="ISA (23K), REPORT'

//STEPLIB DD DSN=USER.P0012. ITCN3, UNIT=DISK,DISP=SHR

//SYSPRINT DD SYSOUT=A

//PLIDUMP DD SYSOUT=A

//SAVEF DD SYSQUT=B

//FTO6FO0L DD SYSOUT=A

//TEST DD DSNRJIM,UNIT-DISK,DISP-(NEH,DELETE),SPACE-(TRK,(10,10))
//SYSIN DD *

NPASS=2 NV=4 - MAXSTAR=30 CRIT(3)=3 CRIT(4)=9
TITLE=3 - NEVE=12 ECHO="ERFZ' TEST='1'B TRANS='1'B
RESTRICT='1'E NCL=2 INDEP='1'B NGE=100 NCRIT=4
NTAU=4;

**

TEST RUN

**

1 T 3
2 34 2 '
6 6
o 2
.51
(X1=0} (X2=0) (X3=0) ~> (X4=0).
(‘0 00
_g g g g A JCL
011 o0 B Control parameters
0 22 1 C Title
P S U et
) umber . of lavels/variable
0 (§4IO) ixznl 2) (X1=0) (X3=1); F Number of events/paqs
003 o G Number of formulas/set
1 2 0 o B Fraction of events/pass
111 0 I Restriction :
1 02 1 J Event list (6 events/set)
1 23 0

4

Figure B-1 (a)

46

Figure B-1 (b}

FORMULA

(X1=1) (X2=1 2) (X4=0) (X3=0 1);

FORMULA

(X1=1) (X3=2 3) ;

Z(1,1)=2;

//TEST DD *

4 4

00190

0r10

0130

0011

1101

1231

0130

0131

//TRAN DD *

'ACCEPT'

'REJECT'

TNEW!' : l variable xl
,;g? } values

'COLOR' variable x2

: 'RED’ '
'BRLUE" } values
' ORANGE'

1g1ZEF! variable x3
YSMALL'
'MEDIUM' values
'LARGE' R

. 'X LARGE'

"WEIGTH' variable x4
:HEAVY' } values
LIGHT'

Ll

o

Formulas (2 guesses for set 2)
Cost of variables (variable 1
has cost 2 for set 1)

- Number of test events/set
List of test events

Name of each set
Variable names and variable
value names

47
Explanation of Figure B-2,

The first part contains an echo of the input (item A).. Next (item B)
prints thg formulas obtained after the first iteration (pass), which used
30% of the input events (first 3 events in both classes; see item H in
Fig. B-1). The classes, variables and values of variables are specified by
names. Together with each complex (term) a triple of numbers is printed
(NEW, IND, COV) * (item C)}, where

NEW ~ denotes the number of events covered by the given complex and mot
covered by the previous complexes on the list of complexes generated for this elas
. .

IND--'denbtes the number of evente covered only by the given complex
COV - the total number of events covered by the given complex,

The program aléo lists the number of times each cost criterion has
been evaluated (iteﬁ D). Item E gives a symbolic specification of the obtained
formulas, Next, an extended confusion matrix is printed (item F) as the result
of evaluating the obtained formulas for the testing events (item N in Fig. B-1).
We can see from the matrix that all testing events of the firgt ciass ("ACCEPT')
have been misclassified, and all the events of the second class ('REJECT') have
been correctly classified.

| Item G specifies the number of times each complex in the cover of
each élass has been satisfied by testing events in the case of correct decisions
(second complex, C2, of elags D2 correctly classified 3 testing events, and the
third one, (3, correctly classified 1 testing event).

Item H specifies the percentage of correct decisions and the indecisiﬁn
ratio for various values of parameter TAU (generally, the higher TAU, the

~greater is the number of correct decisions, but also the greater is the indecision

ratio).

Item I lists the formulas obtained in the second iteratiop (which
used all thé learning events), and item J - the corresponding confusion matrix.
We can see that this time 50% of testing events of class 1, and 100% of
class 2 were correctly classified. Items K and L give the same information

as items G and H, respectively, but for the formulas obtained in the second iteration.

. 48
detky e e o e ook vk e A e e e e g vk e e e o e e e Tk e vl vie e e e ek ke e e ok ok e e e e e v e ok e de e de e e e e ek ek ke ko de e

TEST RUN
RRRAREARAARIRRARRAARRF AR A RTRR R RAR AL AR ATRRR KRR kT dRhkhildkkhkkhhhiokhhhkihk

TR="0'8 NPASS=2 NV=4 MAXSTAR=30
TITLE=} NCL=2 TEST='1'B MODE='IC'
STGY=1 INDEP='1'RB GEN='1'B ' ECHO='ERFZ'
NGE=100 TAU=1.89999E-02 IRK=2 CPXEV="'1'B
TRANS="1'R NTAU=4 TAU_INC=1.99999E-02 ORD='1'8";
CRIT LIST 1 0.00 2 0.00 3 0.00 9 0.00
1 1 3
2 PASSES 0.50 1.00
NUMBER OF LEVELS / VARIABLE 2 3 4 2 #EX=1
NUMBER OF EVENTS / CLASS 6 6 SAVE='Q'B
NUMBER OF FORMUAS / CLASS o 2 PUNY=1.99999E~02
: RESTRICT='1'3
RTEST='0'B

RESTRICTIONS ON EVENT SPACE
(X1=0) (X2=0) (X3=0) -> (X4=0).

LIST OF INPUT EVENTS

[I - S S
HHHHDOQDOOOOD
[

MOHRMOMRMEERNDPFPNOODO

N
0
2
0
1
2 :
0) (X2al,2) (X1=0) (X3=1);
7 1
8 3
9 0
1o 1
11 2
12 3

INPUT FORMULAS
(X1=1) (X2=1,2) (X4=0} (X3=0,1);
(X1=1) (X3=2,3);

COSTS OF VARTABLES WHICH ARE NOT 1: z2(1,)= 23

L TIME FOR INPUT OF DATA 36 CENTISECONDS

- NEW IND COV

F *kkAKXKCOVER OF ACCEPTH sk
CPX 1: (NEW= YES) (SIZE= SMALL) (2 2 2
CPX 2: (NEW= YES) (SIZE= LARGE) (1 1 1
B ﬁ *%k*k*COVER OF REJECT**#*k% ¢ §
CPX 1: (SIZE= MEDIUM) (1 1 1
CPX 2: (SIZE= X LARGE) (1 1 1
L CPX 3: (NEW= NO) L(1 1 1
i CRIT # - # TIMES EV.
1 12
: 2 11
D< 3 ' 4
9 4
_ TIME FOR THIS PASS 19 CENTISECONDS

Fieure B-2 (a)

49

(FORMULAS FOR CLASS 1

CPX :(X1 0) (X3 0)

0) (x3

[}

2)

CPX :(x1
FORMULAS FOR CLASS 2

" CPX (X3 = 1)

CPX :(X3 = 3)

CPX (X1 = 1) :
NUMBER OF EVENTS IN EACH CLASS 6 6

| ASSIGNED DECISION
" CORRECT # EVENTS/ TIE UNSP |! D1 p 2

ASSIGN # RR1 DEC il
i
D 1 ACCEPT ' s0 1.00
'; .50 1.00
:f .50 1.00
|| 50 1.00
4/ 4 }f | 0] 4
1.00 It 0% 100%
F< -
: N
D 2 REJECT .50 1.00
I 1.00
|| 50 1200
lf 30 1.00
4/ 4 ﬁf 0 | 4|
1.00 Il oz 1ooz

NUMBER OF CORRECT DECISTONS/COMPLEX

r COMPLEXES |
EVENT SETS €1C2C3C4C5C6C7C8C9 clocll €12 C13

' 1 3 1
¢ !

Figure B-2 (b)

50

TAU ESTIMATION TABLE (% CORRECT / INDECISION RATIO)

CLASS VALUE OF TAU
0.00 0.02 0.04 0.06
1. 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
2 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
TOTALS 0.50/1.00 0,50/1.00 9.5G/1.00 0.50/1.00

FINAL STATISTICS
INDECISION RATIO: 1.00
PERCENT CORRECT: 50.00

TIME TO EVALUATE FORMULAS 35 CENTISECONDS
CPX 1:(NEW= YES) (SIZE= SMALL MEDIUM) (WEIGHT= HEAVY) (3 2 3
CPX 2:(NEW= YES) (SIZE= LARGE) _ (2 2
CPX 3:(NEW= YES) (SIZE= SMALL) (1 1 2

x%%COVER OF REJECT#**&¥%%

CPX 1:(SIZE= MEDIUM) (WEIGHT= LIGHT) (1 1 D
CPX 2:(SIZE= X LARGE) ' ¢ 2 1 2)
CPX 3:(NEW= NO) _ ' (3 3 &)
CRIT # # TIMES EV.

1 8

2 7

3 4

9 . 3

TIME FOR THIS PASS 20 CENTISECONDS

ASSTGNED DECISTNN
CORRECT # EVENTS/ TIE UNSP || D1 D 2

 ASSIGN # RKL DEC I

|
D 1 ACCEPT { 1,00 .50
1700 .50
I 167 1.00
I
|
|
I

.67 1.00

| 21 2
50% 50%

0% 100%

Figure B-2 (e¢)

EVENT SETS

1
» 2

CLASS

LS

TOTALS

51

NUMBER OF CORRECT DECISIONS/COMPLEX

COMPLEXES
€Clc2Cc3C4CS5C6C7C8CSYCLOCLLCI2 c13
2
3 1
TAU ESTIMATION TABLE (% CORRECT / INDECISION RATIOD)
VALUE OF TAU
0.00 0.02 0.04 0.06

0.50/1.00 0.50/1.00 0.50/1.00 0.50/1.00
1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

0.75/1.00 0.75/1.00 0.75/1.00 0.75/1.00

' FINAL STATISTICS
INDECISION RATIO: 1.00
PERCENT CORRECT: 75.00

TIME TO EVALUATE FORMULAS 28 CENTISECONDS

Figure B-2 (d)

BIBLIOGRAPHIC DATA). Repost No, 2) Rccipien:'_a Accession Ne.

SHEET _ UIUCDCS~R-78-867

4. Title and Subcitle 3 Report Date
SELECTION OF MOST REPRESENTATIVE TRAINING EXAMPLE! May 1978

AND INCREMENTAL GENERATION OF VL HYPOTHESES: the underlying

.

methodology and the description %f programs ESEL and AQll

7. Auwhor(s) 8 Performing Organization Repe.
et g, §. Michalski and J. B. Larson i No. -

9. Performing Otganizacion Name and Address 10. Project/Task/Work Unit ‘No.

Department of Computer Science
University of Illinois at Urbana-Champaign

1. Conteact/Grant No,

Urbana, IL 61801 NSF MCS 76-22940
12 Sponscring Organization Name and Address 13 ggge :g Report & Period
er
National Science Foundation
Washington, D.C, T

15. Supplementary Notes

16. Abatracts qp o paper describes the underlying theoretical framework and operational de-

tails of two programs, ESEL and AQll, for computer induction within the framework of th*

variable-valued logic system VLy (i.e., a statement calculus which involves variables

with an arbitrary number of discrete values [Michalski 18747):

ESEL - A supporting program for selecting 'most representative' learning
and/or testing VL) events from a large data base of events, The
programs provides the input to the program AQl1l,

AQll - A program for incremental generation of VL; hypotheses, which are
generalized and optimized descriptions of input event sets. The
program also provides a facility for evaluating the performance
of these inferred hypotheses on testing events. :

Given a large set of examples describing certain objects or gituations,program
ESEL selects from them a small subset of the mosgt representative ones. The examples
have to be 1n the form of VL, events, i.e., in the form sequences of values of certain
discrete variables (or descriptors). In selecting the events, the program distinguishes
among three types of descriptors: nominal descriptors, whose value set ig an unordered
set, linear deseriptors, whose value set is a linearly ordered set, and structured des-
criptors, whose value set is a tree-ordered set, -

Events selected by ESEL are input to program AQll, which generates VL hypo-

theses describing the events. The program can work incrementally, i.e., given a worke

-1 ing hypothesis (a set of rules) obtained at some stage, and a get of events, the pro-

gram can modify the hypothesis to make it consistent with the eventg.

Program AQll also has the facility to test the performance of a given hypothe-

|81s on a set of testing events, and to compute an extended confusion matrix,

mords snd Document Analysis. 17a. Descriptora

VL., Variable-valued logie, inductive inference, incremental hyrothesis generation,

InCremental induction, hypothesis modification, rulebaged deduction, deductive
inference '

8. Availability Statement T¥. Security Class (This 21. No. of Pages
Report)
. Security (lass is 22, Price
Page
%NCLASS_]FIED

FORM MTI3-38 (10-70) g LECOMM-DC 4629271

