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Abstract

COMMUNICATION-EFFICIENT OPTIMIZATION AND LEARNING FORDISTRIBUTED
MULTI-AGENT SYSTEMS

Ping Xu, PhD

George Mason University, 2022

Dissertation Director: Dr. Zhi Tian

Distributed learning has attracted extensive interest in recent years, owing to the ex-

plosion of data generated from mobile sensors, social media services, and other networked

multi-agent applications. In many of these applications, the observed data are usually kept

private at local sites without being aggregated to a fusion center, either due to the pro-

hibitively high cost of raw data transmission or privacy concerns. Meanwhile, each agent

in the network only communicates with its neighbors within a one-hop local range to save

transmission power. Moreover, distributed learning is typically implemented in an iterative

manner for computational feasibility and efficiency. This incurs frequent communications

among agents to exchange their locally computed updates of the shared learning model,

which can cause tremendous communication overhead in terms of both link bandwidth

and transmission power. Under this circumstance, this dissertation focuses on develop-

ing communication-efficient distributed learning algorithms for multi-agent systems under

communication and privacy constraints.

To be specific, we utilize the random feature (RF) mapping method to circumvent the

curse of dimensionality issue in traditional kernel methods and bypass transmitting raw data

in distributed kernel learning. This approach enables the reformulation of decentralized



kernel learning as a decentralized consensus optimization problem in the RF space, which

is then solved distributedly and iteratively via the alternating direction method of multi-

pliers (ADMM), with a communication-censoring strategy incorporated to evaluate if an

update is informative enough to be transmitted. For online streaming data with possibly

unknown dynamics, this dissertation develops corresponding adaptive and dynamic decen-

tralized learning approaches to learn the optimal function “on the fly” via linearized ADMM

and conventional decentralized ADMM, respectively. Communication censoring and quanti-

zation strategies are utilized for both approaches to save communication resources. Finally,

the present dissertation offers a unified framework of learning nonlinear input-output maps

by bridging the gap in kernel methods and neural networks, which leads to the development

of an RF-based deep kernel learning network with multiple learning paths.



Chapter 1: Introduction

1.1 Motivation and context

Distributed multi-agent systems are deployed in broad applications such as unmanned vehi-

cles, distributed sensor networks, social media, health care, and environmental monitoring

devices, to name a few [1–5]. Here, the term agent 1 can be a single computational device

(e.g. smart phone, database, wireless sensor, etc.) or a collection of co-located computa-

tional systems (e.g. data centers, computer clusters, etc.). The explosion of data generated

from these systems, as well as technological advances in data collection and storage, have

propelled the ongoing boom of machine learning (ML) technologies which aim to auto-

matically learn useful information from data in order to attain high-performing predictive

models to assist future decision making.

ML is usually intertwined with mathematical optimization in the sense that an ML

model is often trained by solving an optimization problem whose objective function is data-

dependent. Traditional optimization approaches for ML work in a centralized way, in which

all training data are moved to a central node for further processing. While such central-

ized approaches can attain high accuracy, their implementation in many aforementioned

applications is unviable. This is because the observed data in many multi-agent systems

are kept private at local sites without being aggregated to a fusion center, due to either the

prohibitively high cost of raw data transmission or privacy and security concerns during

transmissions and centralized storage. Meanwhile, data collection is increasingly done by

massive sensing devices or distributed data centers where each agent in the network only

communicates with its neighbors within the one-hop local communication range to save

1Throughout this dissertation, “agent” and “node” are interchangeably used since the communication
network of the multi-agent system is usually described by graphs whose elements are nodes.
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transmission power. As a result, distributed learning is well-motivated, which has attracted

extensive interest in recent years in both academia and industry.

To solve a learning problem in a distributed manner, a number of distributed agents

collaboratively carry out a common learning task based on a shared ML model, without

exchanging their local private raw data. Global learning is then realized through network-

level optimization involving both local computation and communications among agents,

where the latter is especially important when the local data is inadequate to accurately

learn the ML model. Depending on the communication network topology, two distributed

learning paradigms arise (Figure 1.1): conventional federated learning in which all nodes

communicate to a central coordinator through a star topology [6, 7], and fully decentral-

ized (federated) learning in which all agents exchange information only with their neighbors

within a one-hop local communication range, without central coordination [8,9]. Under both

paradigms, distributed learning algorithms are typically implemented by iteratively com-

puting the model updates for computational feasibility and efficiency, and for coping with

streaming data as well. This incurs frequent communications among agents to exchange

their locally computed updates of the shared learning model, which can cause tremendous

communication overhead in terms of both link bandwidth and transmission power. Hence,

the communication efficiency in implementing iterative algorithms is of utmost importance,

which underpins the practical implementation of all distributed learning techniques, includ-

ing (semi)-supervised, unsupervised, and reinforcement learning.

For federated learning that adopts a star topology, the central node plays a crucial

role in not only synchronizing the iterative updating algorithms running at distributed

nodes during parallel computing but also performing possibly centralized communication

resource allocation [10]. However, for a fully decentralized network, each node has to make

autonomous decisions on the global learning task via communicating with linked or ad-

jacent nodes only, which is much more challenging. Nevertheless, due to the hindrance

of node synchronization requirements in parallel computing, there is growing interest in

2



(a) Centralized topology distributed data. (b) Decentralzied topology distributed
data.

Figure 1.1: Distributed learning paradigms: (a) conventional federated learning; (b) decen-
tralized learning with no central coordination.

fully decentralized learning to take advantage of its built-in robustness to both node fail-

ure and asynchronous computing in heterogeneous environments, at no cost of convergence

rates compares with its synchronous centralized counterpart [11,12]. This dissertation thus

focuses on investigating learning over decentralized networks (Figure 1.1(b)) since it is

technically more challenging and much less studied so far given its unique technical issues

related to big data analytics. Nonetheless, the algorithms we develop can be easily applied

to federated learning with centralized topology.

Conforming to the emerging need in data science, this dissertation aims to develop

efficient decentralized optimization techniques for distributed learning. Among many suc-

cessful centralized ML techniques, kernel methods and multilayer neural networks (NNs) are

representatives of the nonparametric learning and parametric methods, respectively. They

are both attractive for various learning tasks such as regression, classification, clustering,

as well as reinforcement learning [13,14], owing to their abilities in modeling the (complex)

nonlinear relationships behind the input-output samples. However, kernel methods adopt

nonparametric models where the number of model variables grows proportionally to the

data size. Under such a curse of dimensionality, it is formidably challenging to implement

kernel methods in a distributed or adaptive fashion when the data sizes vary at different

3



locations and across time. On the other hand, despite the practical success of NNs, they rely

much on intuition, heuristics, and trial-and-error, whereas the theoretical understanding of

them is still lagging. Thus, research on the distributed implementation of these methods

with a theoretical foundation is still at its early stage, which calls for substantial efforts and

investment to clearly understand its niche role in big data and real-time streaming applica-

tions, and to propel its development toward maturity. Moreover, an overwhelming amount

of data is transmitted nowadays over wireless networks to power intelligent applications,

making communication efficiency a priority, not an afterthought. To this end, this disser-

tation strives to systematically address the following challenging questions on distributed

learning:

• Communication-efficient learning: how can we design distributed optimization tech-

niques with built-in communication efficiency and provable convergence for practical

ML scenarios involving non-parametric kernel models in decentralized networks?

• Online adaptive learning: how can we enhance the adaptivity and computation effi-

ciency of communication-efficient distributed kernel learning for streaming data?

• Online dynamic learning: how can we perform distributed kernel learning under en-

vironments with unknown dynamics in a communication-efficient manner?

• Bridging kernel methods and neural networks: what are the differences/connections

between kernel methods and multilayer neural networks, and can we develop a method

that possesses the strengths of both methods and overcomes their weaknesses?

The key outcomes of this dissertation are algorithms and analysis of distributed ML

tools for big data analytics, including scalable nonlinear learning from high-dimensional

networked data. Such results may find broad applications in both designing data-driven

distributed social, biological, and financial systems and understanding their structures and

dynamics.

4



1.2 Network and communication models

Throughout this dissertation, we consider the decentralized network whose underlying graph

is in Figure 1.1 (b). The communication scheme considered is synchronous, although the

communication-efficient techniques employed in this dissertation can also be applied to asyn-

chronous scenarios. Next, we give a detailed description of the network and communication

models.

Network Model. Consider a bidirectionally connected network of N agents and r arcs,

whose underlying undirected communication graph is denoted as G = (N ,A), where N

is the set of agents with cardinality |N | = N and A is the set of undirected arcs with

cardinality |A| = 2r. Two agents i and j are called as neighbors when (i, j) ∈ A and, by

the symmetry of the network, (j, i) ∈ A. For agent i, its neighbors within one-hop local

communication range neighbors are in the set Ni = {j|(j, i) ∈ A}. The cardinality |Ni| is

also known as the degree di of agent i. The degree matrix of the communication graph is

D ∈ RN×N which is diagonal with the ith diagonal element being di,∀i, and the symmetric

adjacency matrix associated with the communication graph is W ∈ RN×N , whose (i, j)th

entry is 1 if agent i and j are neighbors or 0 otherwise.

Communication Model. In this dissertation, we consider synchronous communication

during ML training. For batch-form learning where agents have all the training data, the

iterative process of algorithm implementation consists of two alternating stages per itera-

tion: communication and computation. In the communication stage, each agent broadcasts

its state variable to its neighbors and receives state variables from its neighbors according

to the communication censoring rule which shall be introduced later. In the computation

stage, each agent carries out local updates based on its local objective function and state

variables. This two-stage iterative process continues until the algorithm converges or meets

the desired result. For online learning from streaming data, an observation stage is con-

ducted between the communication and computation stages. That is, after communicating

5



with its neighbors, each agent collects its streaming data and formulates its local objective

function in the observation stage. Then, in the computation stage, each agent carries out

local updates based on the local objective function, state variables, and the observed data.

Under such network and communication models, decentralized learning amounts to de-

signing both the local computation rule and communication policy, to reach the globally

optimal estimate of the shared learning model with provable convergence, in the absence of

any centralized aggregation or coordination.

1.3 Thesis outline and published results

This dissertation deals with communication-efficient scalable and adaptive distributed learn-

ing for networked multi-agent systems, along with some exploratory efforts to bridge the

nonparametric kernel methods and parametric neural networks. The outline of this dis-

sertation is presented next, followed by Table 1.1 that summarizes the main results and

relevant publications.

1.3.1 Communication-censored decentralized kernel learning

This dissertation starts with a general setting of decentralized kernel learning in complex yet

static environments. Nonparametric kernel methods are widely utilized in many nonlinear

function approximation tasks such as regression, classification, clustering, dimensionality

reduction, etc. [13, 15, 16]. However, it is challenging to directly apply them to a decen-

tralized multi-agent setting without any raw data sharing or aggregation. This is because

the decision variables of kernel-based local objective functions are data-dependent and thus

cannot be optimized in the absence of raw data exchange under the decentralized consensus

framework. Moreover, standard kernel learning for big data incurs the curse of dimen-

sionality issue when the number of training examples increases [15]. Furthermore, when

computation cost is more affordable than the communication cost in the big data scenario,

the communication cost of the iterative learning algorithms becomes the bottleneck for ef-

ficient distributed learning [7]. In this context, Chapter 2 advocates a new framework to

6



efficiently solve the nonlinear distributed learning problem under communication constraints

and privacy concerns. The proposed framework is based on the random feature (RF) map-

ping, decentralized optimization through the alternating direction method of multipliers

(ADMM), embedded with a communication-censoring technique. Theoretical analysis, as

well as numerical tests for both synthetic and real datasets, confirm the effectiveness of the

novel methods compared with existing methods [17,18]. Note that to save communications

for network multi-agent systems, we have also developed a class of event-triggered algo-

rithms in [19, 20] and an infrequent communication scheme in [21], which can be adopted

in the decentralized learning framework as well to reduce the communication load.

1.3.2 Quantized and communication-censored decentralized adaptive ker-

nel learning

Chapter 3 focuses on online kernel learning over a decentralized network to perform function

learning in an online fashion. The goal is to cope with online streaming data that exists

in many real-life applications such as wearable devices that collect health statistics from

sequential data or online spam detection [22, 23]. The RF mapping method is utilized to

convert the non-parametric kernel learning problem into a fixed-length parametric one in

the RF space. A novel online learning framework based on linearized ADMM is proposed

to efficiently solve the online decentralized kernel learning problem. To further improve

communication efficiency, two strategies (quantization and communication censoring) are

incorporated into the decentralized online learning algorithm. Theoretical analysis shows

that the proposed algorithm achieves the same level regret compared with the state-of-the-

art, and the simulation results corroborate the learning effectiveness, communication, and

computation efficiencies of the proposed methods [24].

1.3.3 Communication-efficient decentralized dynamic kernel learning

In addition to the online streaming data, in many cases, the dynamics underlying the

streaming data are also varying. Thus the optimal function to be estimated also varies
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over time with unknown dynamics, and no single estimate is universally good. Aiming to

obtain the best actions “on the fly”, Chapter 4 customizes the decentralized dynamic kernel

learning problem as a decentralized dynamic optimization problem, with the utilization of

RF mapping. Based on the reformulation, an ADMM-based algorithm with quantization

and communication-censoring strategies is proposed to solve the dynamic kernel learning

problem in a communication-efficient way. Further, the learning efficiency of the proposed

algorithm is evaluated by both theoretical analysis and simulations on real datasets [25].

1.3.4 Deep kernel learning networks: A unified framework of learning

nonlinear input-output maps

Neural networks and kernel methods are both capable of learning rich representations from

nonlinear input-output maps. Despite their successes, there is a lack of understanding

of their relationship and guidelines of which one should be applied for specific tasks. To

fill such a gap, Chapter 5 takes the first step toward developing a unified framework of

these two different learning techniques, which aims to not only unveil their underlying

relationship but also enhance the explainability of neural networks. By leveraging the

random feature mapping technique, kernel methods can be implemented by a two-layer

neural network with specific activation functions, at a drastically reduced workload on

weight training. The evident advantage in low complexity can be leveraged in a unified

way to trade for enhanced learning performance, by expanding the network structure in

depth and/or width. This motivates the development of a deep kernel learning (DKL)

network by performing random feature mapping at each layer and training the last output

layer only. To increase the representation power of DKL, we add multiple trainable paths

to connect all hidden layers with the output layer. It leads to a deep kernel learning

network structure with multiple learning paths (DKL-MLP), whose output functional is

linear in the trainable multi-path model parameters. In this way, DKL-MLP benefits not

only from the depth of DKL, but also from the (implicit) flexibility and computational

advantage of RF-based multi-kernel learning. Theoretical analysis in terms of universality
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Table 1.1: Main results and relevant publications (T is the total data size).

Chapter Algorithms Theoretical analysis Papers Status

2 DKLA, COKE
Linear convergence

[17,18] published
generalization error O(1/T )

3 ODKLA, QC-ODKLA Static regret O(
√
T ) [24] submitted

4 DDKL, QC-DDKL Dynamic regret O(
√
T ) [25] under preparation

5 DKL, DKL-MLP Universal approximation [26] published

other
Event-triggered and

Asymptotic convergence
[19,20]

published
energy-efficient algorithms [21]

shows that the developed DKL and DKL-MLP algorithms can represent a wide variety

of interesting functions with arbitrarily small errors and have no bad local minimum. In

addition, simulations on both the classification and regression tasks corroborate that DKL-

MLP enjoys both good generalization performance and low computational complexity [26].

1.4 Notational conventions

Throughout this dissertation, R denotes the set of real numbers. ∥·∥2 denotes the Euclidean

norm of vectors and ∥·∥F denotes the Frobenius norm of matrices. |·| denotes the cardinality

of a set. For letters, A denotes a matrix, a denotes a vector, and a denotes a scalar. The

identity matrix is denoted by I while A⊤ stands for the transposition of matrix A.
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Chapter 2: Communication-Censored Decentralized Kernel

Learning

2.1 Introduction

Kernel methods have proven to be successful in various learning tasks such as regression,

classification, and dimensionality reduction, to name just a few [13,15]. This is because they

utilize the so-called “kernel trick” to transform the originally nonlinear data into a higher

dimensional implicit feature space so that the transformed data are linearly separable.

Thus, many well-behaved linear learning algorithms are applicable in that high-dimensional

space [13, 15, 16]. However, in the absence of any raw data sharing or aggregation, it is

challenging to directly apply them to a decentralized multi-agent setting and solve them

under the consensus optimization framework using algorithms such as decentralized alter-

nating direction method of multipliers (ADMM) [27]. This is because decentralized learning

relies on solving local optimization problems and then aggregating the updates on the local

decision variables over the network through one-hop communications in an iterative man-

ner [28]. Unfortunately, these decision variables of local objective functions resulted from

the kernel trick are data-dependent and thus cannot be optimized in the absence of raw

data exchange under the decentralized consensus framework.

There are several works applying kernel methods in decentralized learning for various

applications under different settings [29–35]. These works, however, either assume that

agents have access to their neighbors’ observed raw data [29] or require agents to transmit

their raw data to their neighbors [35] to ensure consensus through collaborative learning.

These assumptions may not be valid in many practical applications that involve users’ pri-

vate data. Moreover, standard kernel learning for big data faces the curse of dimensionality

when the number of training examples increases [15]. For example, in [30,32], the nonlinear
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function learned at each node is represented as a weighted combination of kernel functions

centered on its local observed data. As a result, each agent needs to transmit both the

weights of kernel functions and its local data to its neighbors at every iterative step to

guarantee consensus of the common prediction function. Thus, both the computation and

communication resources are demanding in the distributed implementation. To alleviate

the curse of dimensionality problem, [31] and [35] have developed compression techniques

such as data selection and sparse subspace projection, respectively, but these techniques

typically incur considerable extra computation, and still involve raw data exchange with no

alleviation to the data privacy concern. Furthermore, when computation cost is more afford-

able than the communication in the big data scenario, communication cost of the iterative

learning algorithms becomes the bottleneck for efficient distributed learning [7]. Therefore,

it is crucial to design communication-efficient distributed kernel learning algorithms with

data privacy protection.

2.1.1 Related work

This work lies at the intersection of non-parametric kernel methods, decentralized learning

with batch-form data, and communication-efficient implementation. Related work to these

three subjects is reviewed below.

Centralized kernel methods. Centralized kernel methods assume data are collected

and processed by a single server and are known to suffer from the curse of dimension-

ality for large-scale learning tasks. To mitigate their computational complexity, various

dimensionality reduction techniques are developed for both batch-form or online stream-

ing learning, including stochastic approximation [36,37], restricting the number of function

parameters [38–42], and approximating the kernel during training [43–52]. Among them,

random feature (RF) mapping methods have gained popularity thanks to their ability to

map the large-scale data into a RF space of much reduced dimension by approximating the

kernel with a fixed (small) number of random features, which thus circumvents the curse of

dimensionality problem [47,50–52]. Enforcing orthogonality on random features can greatly
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reduce the error in kernel approximation [53,54], and the learning performance of RF-based

methods is evaluated in [55–57].

Decentralized kernel learning. For the decentralized kernel learning problem relevant

to our work [30–32, 35], gradient descent is conducted locally at each agent to update its

learning model, followed by diffusion-based information exchange among agents. However,

these methods either assume that agents have access to their neighbors’ observed raw data

or require agents to transmit their raw data to their neighbors to ensure convergence on

the prediction function. For the problem studied in this article where the observed data

are only locally available, these methods are not applicable since there are no common

decision parameters for consensus without any raw data exchange. Moreover, these methods

operate in the kernel space parameterized by training data, and still encounter the curse of

dimensionality when the local dataset goes large. Though data selection [31] and subspace

projection [35] are adopted to alleviate the curse of dimensionality problem, they typically

require significant extra computational resources. RF mapping [50] offers a viable approach

to overcome these issues, by having all agents map their datasets of various sizes onto the

same RF space. For instance, [58] proposes a diffusion-based combine-then-adapt (CTA)

method that achieves consensus on the model parameters in the RF space for the online

learning problem, without the exchange of raw data. Though the batch-form counterpart

of online CTA can be developed for off-line learning, the convergence speed of the diffusion-

based method is relatively slow compared with higher-order methods such as ADMM [59].

Communication-efficient optimization. Communication-efficient algorithms for decen-

tralized optimization and learning problems have attracted attention when data movement

among computing nodes becomes a bottleneck due to the high latency and limited band-

width of decentralized networks. To reduce the communication cost, one way is to transmit

the compressed information by quantization [60–62] or sparsification [63–66]. However, these

methods only reduce the required bandwidth at each communication round, not the number

of rounds or the number of transmissions. Alternatively, some works randomly select a num-

ber of nodes for broadcasting/communication and operate asynchronous updating to reduce
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the number of transmissions per iteration [7,67–72]. In contrast to random node selection, a

more intuitive way is to evaluate the importance of a message in order to avoid unnecessary

transmissions [10, 59, 73]. This is usually implemented by adopting a censoring scheme to

adaptively decide if a message is informative enough to be transmitted during the iterative

optimization process. Other efforts to improve the communication efficiency are made by

accelerating the convergence speed of the iterative algorithm implementation [74–76].

2.1.2 Contributions

The present chapter develops communication-efficient decentralized kernel learning algo-

rithms under the consensus optimization framework without any central coordination or

raw data exchange among agents for built-in privacy protection. Relative to prior art, our

contributions are summarized as follows.

• We first formulate the decentralized multi-agent kernel learning problem as a decen-

tralized consensus optimization problem in the RF space. Since most machine learning

scenarios can afford plenty computational capability but limited communication re-

sources, we solve this problem with ADMM, which has shown fast convergence at

the expense of relatively high computation cost per iteration [27]. To the best of our

knowledge, this is the first work to solve the decentralized kernel learning in the RF

space by ADMM without any raw data exchange. The key of our proposed Decen-

tralized Kernel Learning via ADMM (DKLA) algorithm is to apply the RF mapping,

which not only reduces the computational complexity but also enables consensus on a

set of model parameters of fixed size in the RF space. In addition, since no raw data

is exchanged among agents and the mapping from the original data space to the RF

space is not one-to-one mapping, data privacy is protected to a certain point.

• To increase the communication efficiency, we further develop a COmmunication-

censored KErnel learning (COKE) algorithm, which achieves desired learning per-

formance given limited communication resources and energy supply. Specifically, we
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devise a simple yet powerful censoring strategy to allow each user to autonomously

skip unnecessary communications when its local update is not informative enough for

transmission, without aid of a central coordinator. In this way, the communication

efficiency can be boosted at almost no sacrifice of the learning performance. When

the censoring strategy is absent, COKE degenerates to DKLA.

• In addition, we conduct theoretical analysis in terms of both functional convergence

and generalization performance to provide guidelines for practical implementations of

our proposed algorithms. We show that the individually learned functional at each

agent through DKLA and COKE both converges to the optimal one at a linear rate un-

der mild conditions. For the generalization performance, we show that O(
√
T log dλK)

features are sufficient to ensure O(1/
√
T ) learning risk for the decentralized kernel

ridge regression problem, where dλK is the number of effective degrees of freedom that

will be defined in Section 2.4.

• Finally, we test the performance of our proposed DKLA and COKE algorithms on

both synthetic and real datasets. The results corroborate that both DKLA and COKE

exhibit attractive learning performance and COKE is highly communication-efficient.

Organization. Section 2.2 formulates the problem of non-parametric learning and high-

lights the challenges in applying traditional kernel methods in the decentralized setting.

Section 2.3 develops the decentralized kernel learning algorithms, including both DKLA

and COKE. Section 2.4 presents the theoretical results and Section 2.5 reports the numer-

ical tests using both synthetic data and real datasets. Concluding remarks are provided in

Section 2.6.

2.2 Problem Statement

This section reviews basics of kernel-based learning and decentralized optimization, intro-

duces notation, and provides technical background for our novel DKLA and COKE schemes.
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Consider the N -agent network model described in Section 1.2, where each agent in

the network only has access to its locally observed data composed of independently and

identically distributed (i.i.d) input-label pairs {xi,t, yi,t}Ti
t=1 obeying an unknown probability

distribution p on X × Y, with xi,t ∈ Rd and yi,t ∈ R. The kernel learning task is to

find a prediction function f that best describes the ensemble of all data from all agents.

Suppose that f belongs to the reproducing kernel Hilbert space (RKHS) H := {f |f(x) =∑∞
t=1 αtκ(x,xt)} induced by a positive semidefinite kernel κ(x,xt) : Rd × Rd → R that

measures the similarity between x and xt, for all x,xt ∈ X . In a decentralized setting

with privacy concern, this means that each agent has to be able to learn the global function

f ∈ H such that yi,t = f(xi,t)+ei,t for {{xi,t, yi,t}Ti
t=1}Ni=1, without exchange of any raw data

and in the absence of a fusion center, where the error terms ei,t are minimized according to

certain optimality metric.

To evaluate the learning performance, a nonnegative loss function ℓ(y, ŷ) is utilized to

measure the difference between the true label value y and the predicted value ŷ = f(x).

Some common loss functions include the quadratic loss ℓ(y, ŷ) = (y − ŷ)2 for regression

tasks, the hinge loss ℓ(y, ŷ) = max(0, 1− yŷ) and the logistic loss ℓ(y, ŷ) = log(1+ e−yŷ) for

binary classification tasks. The above mentioned loss functions are all convex with respect

to ŷ. The learning problem is then to minimize the expected risk of the prediction function:

R(f) =

∫
X×Y

ℓ(f(x), y)dp(x, y), (2.1)

which indicates the generalization ability of f to new data.

However, the distribution p is unknown in most learning tasks. Therefore, minimizing

R(f) is not applicable. Instead, given the finite number of training examples, the problem

15



turns to minimizing the empirical risk:

min
f∈H

R̂(f) :=
N∑
i=1

R̂i(f), (2.2)

where R̂i(f) is the local empirical risk for agent i given by

R̂i(f) =
1

Ti

Ti∑
t=1

ℓ(f(xi,t), yi,t) + λi∥f∥2H, (2.3)

with ∥ · ∥H being the norm associated with H, and λi > 0 being a regularization parameter

that controls over-fitting.

The representer theorem states that the minimizer of a regularized empirical risk func-

tional defined over a RKHS can be represented as a finite linear combination of kernel

functions evaluated on the data pairs from the training dataset [77]. If {{xi,t, yi,t}Ti
t=1}Ni=1

are centrally available at a fusion center, the minimizer of (2.2) admits

f⋆(x) =

N∑
i=1

Ti∑
t=1

αi,tκ(x,xi,t) := α⊤κ(x), (2.4)

where α = [α1,1, . . . , αN,Tj ]
⊤ ∈ RT is the coefficient vector to be learned, T =

∑N
i=1 Ti is

the total number of samples, and κ(x) = [κ(x,x1,1), . . . , κ(x,xN,TN
)]⊤ ∈ RT is the kernel

function parameterized by the global data XT := {{xi,t}Ti
t=1}Ni=1 from all agents, for any x.

In RKHS, since ⟨κ(xt,x), κ(xτ ,x)⟩H = κ(xt,xτ ), it yields ∥f∥2H = α⊤Kα, where K is the

T × T kernel matrix that measures the similarity between any two data points in XT . In

this way, the local empirical risk (2.3) can be reformulated as a function of α:

R̂i(α) : =
1

Ti

Ti∑
t=1

ℓ(f⋆(xi,t), yi,t) + λi∥f⋆∥2H =
1

Ti

Ti∑
t=1

ℓ(α⊤κ(xi,t), yi,t) + λiα
⊤Kα. (2.5)
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Accordingly, (2.2) becomes

min
α∈RT

N∑
i=1

R̂i(α). (2.6)

Relating the decentralized kernel learning problem with the decentralized consensus

optimization problem, solving (2.6) is equivalent to solving

min
{αi∈RT }Ni=1

N∑
i=1

R̂i(αi)

s.t. αi = αj , ∀i, ∀j ∈ Ni,

(2.7)

where αi and αj are the local copies of the global decision variable α at agent i and

agent j, respectively. The problem can then be solved by ADMM [27] or other primal dual

methods [78]. However, it is worth noting that (2.7) reveals a subtle yet profound difference

from a general optimization problem for parametric learning. That is, each local function

R̂i depends on not only the global decision variable α, but also the global data XT because

of the kernel terms κ(xi,t) and K. As a result, solving the local objective for agent i requires

raw data from all other agents to obtain κ(xi,t) and K, which contradicts the situation that

private raw data are only locally available. Moreover, notice that αi is of the same size T as

that of the ensemble dataset, which incurs the curse of dimensionality and insurmountable

computational cost when T becomes large, even when the obstacle of making all the data

available to all agents is not of concern.

To resolve this issue, an alternative formulation is to associate a local prediction model

f̄i ∈ H with each agent i, with f̄⋆i =
∑Ti

t=1 ᾱi,tκ(x,xi,t) = ᾱ⊤
i κi(x) being the local optimal

solution that only involves local data {xi,t}Ti
t=1 [79]. Specifically, ᾱi = [ᾱi,1, . . . , ᾱi,Ti ] ∈ RTi ,

and κi(x) = [κ(x,xi,1), . . . , κ(x,xi,Ti)]
⊤ ∈ RTi is parameterized by the local data {xi,t}Ti

t=1
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only. In this way, the local cost function becomes

R̂i(ᾱi) : =
1

Ti

Ti∑
t=1

ℓ(f̄⋆i (xi,t), yi,t) + λi∥f̄⋆i ∥2H =
1

Ti

Ti∑
t=1

ℓ(ᾱ⊤
i κi(xi,t), yi,t) + λiᾱ

⊤
i Kiᾱi, (2.8)

where Ki is of size Ti × Ti and depends on local data only. With (2.8), the optimization

problem (2.7) is then modified to

min
{ᾱi∈RTi}Ni=1

N∑
i=1

R̂i(ᾱi)

s.t. f̄j(xi,t) = f̄i(xi,t), ∀i, ∀j ∈ Ni, t = 1, . . . , Ti,

(2.9)

and can be solved distributedly by ADMM. Note that the consensus constraint is the learned

prediction values f̄i(x), not the parameters ᾱi. This is because ᾱi are data-dependent and

may have different sizes at different agents (the dimension of ᾱi equals to the number of

training samples at agent i), and cannot be directly optimized through consensus.

Still, this method has four drawbacks. Firstly, it is necessary to associate a local learn-

ing model f̄i to each agent i for the decentralized implementation. However, the local

learning model f̄i and the global optimal model f in (2.2) may not be the same because

different local training data are used. Therefore, the optimization problem (2.9) is only an

approximation of (2.2). Even with the equality constraint to minimize the gap between

the decentralized learning output and the optimal centralized one, the approximation per-

formance is not guaranteed. Besides, the functional consensus constraint still requires raw

data exchange among agents in order for agent j ∈ Ni to be able to compute the values

f̄j(xi,t) from agent i’s data xi,t, for i ̸= j. Apparently, this violates the privacy-protection

requirement for practical applications. In addition, when Ti is large, both the storage and

computational costs are high for each agent due to the curse of dimensionality problem

at the local sites. Lastly, the frequent local communication is resource-consuming under

communication constraints. To circumvent all these obstacles, the goal of this chapter is to
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develop efficient decentralized algorithms that protect privacy and conserve communication

resources.

2.3 Algorithm Development

In this section, we leverage the RF approximation and ADMM to develop our algorithms.

We first introduce the RF mapping method. Then, we devise the DKLA algorithm that

globally optimizes a shared learning model for the multi-agent system. Finally, we take into

consideration of the limited communication resources in large-scale decentralized networks

and develop the COKE algorithm. Both DKLA and COKE are computationally efficient

and protect data privacy at the same time. Further, COKE is more communication efficient

than DKLA and both are more communication efficient than CTA.

2.3.1 RF-based kernel learning

As stated in previous sections, standard kernel methods incur the curse of dimensionality

issue when the data size grows large. To make kernel methods scalable for a large dataset,

RF mapping is adopted for approximation by using the shift-invariance property of kernel

functions [50].

For a shift-invariant kernel that satisfies κ(xt,xτ ) = κ(xt − xτ ), ∀t, ∀τ , if κ(xt − xτ )

is absolutely integrable, then its Fourier transform pκ(ω) is guaranteed to be nonnegative

(pκ(ω) ≥ 0), and hence can be viewed as its probability density function (pdf) when κ is

scaled to satisfy κ(0) = 1 [80]. Therefore, we have

κ(xt,xτ ) =

∫
pκ(ω)ejω

⊤(xt−xτ )dω := Eω[e
jω⊤(xt−xτ )] = Eω[ϕ(xt,ω)ϕ∗(xτ ,ω)], (2.10)

where E denotes the expectation operator, ϕ(x,ω) := ejω
⊤x with ω ∈ Rd, and ∗ is the

complex conjugate operator. In (2.10), the first equality is the result of the Fourier inversion

theorem, and the second equality arises by viewing pκ(ω) as the pdf of ω. In this chapter,
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we adopt a Gaussian kernel κ(xt,xτ ) = exp(−∥xt − xτ∥22/(2σ2)), whose pdf is a normal

distribution with pκ(ω) ∼ N(0, σ−2I).

The main idea of RF mapping is to randomly generate {ωl}Ll=1 from the distribution

pκ(ω) and approximate the kernel function κ(xt,xτ ) by the sample average

κ̂L(xt,xτ ) :=
1

L

L∑
l=1

ϕ(xt,ωl)ϕ
∗(xτ ,ωl) := ϕ†

L(xτ )ϕL(xt), (2.11)

where ϕL(x) :=
√

1
L [ϕ(x,ω1), . . . , ϕ(x,ωL)]

⊤ and † is the conjugate transpose operator.

The following real-valued mappings can be adopted to approximate κ(xt,xτ ), both

satisfying the condition Eω[ϕr(xt,ω)⊤ϕr(xτ ,ω)] = κ(xt,xτ ) [50]:

ϕr(x,ω) = [cos(ω⊤x), sin(ω⊤x)]⊤, (2.12)

ϕr(x,ω) =
√
2 cos(ω⊤x+ b), (2.13)

where b is drawn uniformly from [0, 2π].

With the real-valued RF mapping, the minimizer of (2.2) then admits the following

form:

f̂⋆(x) =

N∑
i=1

Ti∑
t=1

αi,tϕ
⊤
L (xi,t)ϕL(x) = θ⊤ϕL(x), (2.14)

where θ⊤ :=
∑N

i=1

∑Ti
t=1 αi,tϕ

⊤
L (xi,t) denotes the new decision vector to be learned in the

RF space and ϕL(x) =
√

1
L [ϕr(x,ω1), . . . , ϕr(x,ωL)]

⊤. If (2.12) is adopted, then ϕL(x)

and θ are of size 2L. Otherwise, if (2.13) is adopted, then ϕL(x) and θ are of size L. In

either case, the size of θ is fixed and does not increase with the number of data samples.
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2.3.2 DKLA: Decentralized kernel learning via ADMM

Consider the decentralized kernel learning problem described in Section 2.2 and adopt the

RF mapping described in Section 2.3.1. Let all agents in the network have the same set of

random features, i.e., {ωl}Ll=1. Plugging (2.14) into the local cost function R̂i(f) in (2.3)

gives

R̂i(θ) : =
1

Ti

Ti∑
t=1

ℓ(f̂⋆(xi,t), yi,t) + λi∥f̂⋆∥2H =
1

Ti

Ti∑
t=1

ℓ(θ⊤ϕL(xi,t), yi,t) + λi∥θ∥22. (2.15)

In (2.15), we have

∥θ∥22 : = (
N∑
i=1

Ti∑
t=1

αi,tϕ
⊤
L (xi,t))(

N∑
j=1

Ti∑
τ=1

αj,τϕL(xj,τ ))

=

N∑
i=1

Ti∑
t=1

N∑
j=1

Ti∑
τ=1

αi,tαj,τκ(xi,t,xj,τ ) := ∥f̂⋆∥2H.

Therefore, with RF mapping, the centralized benchmark (2.2) becomes

min
θ∈RL

N∑
i=1

R̂i(θ). (2.16)

Here for notation simplicity, we denote the size of θ by L × 1, which can be achieved by

adopting the real-valued mapping in (2.13). Adopting an alternative mapping such as (2.12)

only changes the size of θ while the algorithm development is the same. RF mapping is

essential because it results in a common optimization parameter θ of fixed size for all agents.

To solve (2.16) in a decentralized manner, we associate a model parameter θi with each

agent i and enforce the consensus constraint on neighboring agents i and j using an auxiliary

variable zij . Specifically, the RF-based decentralized kernel learning problem is formulated
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to jointly minimize the following objective function:

min
{θi∈RL},{zij∈RL}

N∑
i=1

R̂i(θi)

s.t. θi = zij , θj = zij , ∀i,∀j ∈ Ni.

(2.17)

Note that the new decision variables θi to be optimized are local copies of the global

optimization parameter θ and are of the same size for all agents. On the contrary, the

decision variables ᾱi in (2.9) are data-dependent and may have different sizes. In addition,

the size of θ is L, which can be much smaller than that of α (whose size equals to T ) in (2.6).

For big data scenarios where L ≪ T , RF mapping greatly reduces the computational

complexity. Moreover, as shown in the following, the updating of θ does not involve any raw

data exchange and the RF mapping from x to ϕL(x) is not one-to-one mapping, therefore

provides raw data privacy protection. Further, it is easy to set the regularization parameters

λi to control over-fitting. Specifically, since the parameters θi are of the same length among

agents, we can set them to be λi = 1
N λ,∀i, where λ is the corresponding over-fitting

control parameter assuming all data are collected at a center. In contrast, the regularization

parameters λi in (2.5) depend on local data and need to satisfy λ =
∑N

i=1 λi, which is

relatively difficult to tune in a large-scale network.

In the constraint, θi are separable when zij are fixed, and vice versa. Therefore, (2.17)

can be solved by ADMM. Following [27], we develop the DKLA algorithm where each agent

updates its local primal variable θi and local dual variable γi by

θk
i := argmin

θi

{
R̂i(θi) + ρ|Ni|∥θi∥22 + θ⊤

i

[
γk−1
i − ρ

∑
j∈Ni

(θk−1
i + θk−1

j )
]}
, (2.18a)

γk
i = γk−1

i + ρ
∑
j∈Ni

(
θk
i − θk

j

)
, (2.18b)

where |Ni| is the cardinality of Ni and ρ is the stepsize. The auxiliary variable zij can be
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Algorithm 1 DKLA Run at Agent i

Require: Kernel κ, the number of random features L, and λ to control over-fitting; ini-
tialize local variables to θ0

i = 0, γ0
i = 0; set step size ρ > 0.

1: Draw L i.i.d. samples {ωl}Ll=1 from pκ(ω) according to a common random seed.

2: Construct {ϕL(xi,t)}Ti
t=1 using the random features {ωl}Ll=1 via (2.12) or (2.13).

3: for iterations k = 1, 2, · · · do

4: Update local variable θk
i by (2.18a);

5: Transmit θk
i to all neighbor j (j ∈ Ni) and receive θk

j from all neighbor j;

6: Update local dual variable γk
i by (2.18b).

7: end for

written as a function of θi and then canceled out. Interested readers are referred to [27] for

detailed derivation. The learning algorithm DKLA is outlined in Algorithm 1. Note that

the random features need to be common to all agents, hence, in step 1, we restrict them to

be drawn according to a common random seed. Algorithm 1 is fully decentralized since the

updates of θi and γi depend only on local and neighboring information.

2.3.3 COKE: Communication-censored decentralized kernel learning

From Sections 2.3.1 and 2.3.2, we can see that decentralized kernel learning in the RF space

under the consensus optimization framework has much reduced computational complexity,

thanks to the RF mapping technique that transforms the learning model into a smaller

RF space. In this subsection, we consider the case when the communication resource is

limited and we aim to further reduce the communication cost of DKLA. To start, we notice

that in Algorithm 1, each agent i (i ∈ N ) maintains 2 + |Ni| local variables at iteration k,

i.e., its local primal variable θk
i , local dual variable γk

i and |Ni| state variables θk
j received

from its neighbors. While the dual variable γk
i is kept locally for agent i, the transmission

of its updated local variable θk
i to its one-hop neighbors happens in every iteration, which

consumes a large amount of communication bandwidth and energy along iterations for large-

scale networks. In order to improve the communication efficiency, we develop the COKE

algorithm by employing a censoring function at each agent to decide if a local update is

informative enough to be transmitted.
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To evaluate the importance of a local update at iteration k for agent i (i ∈ N ), we

introduce a new state variable θ̂k−1
i to record agent i’s latest broadcast primal variable up

to time k− 1. Then, at iteration k, we define the difference between agent i’s current state

θk
i and its previously transmitted state θ̂k−1

i as

ξki = θ̂k−1
i − θk

i , (2.19)

and choose a censoring function as

Hi(k, ξ
k
i ) = ∥ξki ∥2 − hi(k), (2.20)

where {hi(k)} is a non-increasing non-negative sequence. A typical choice for the censoring

function is Hi(k, ξ
k
i ) = ∥ξki ∥2 − vµk, where µ ∈ (0, 1) and v > 0 are constants. When

Hi(k, ξ
k
i ) < 0, θk

i is deemed not informative enough, and hence will not be transmitted to

its neighbors.

When executing the COKE algorithm, each agent i maintains 3 + |Ni| local variables

at each iteration k. Comparing with the DKLA update in (2.18), the additional local

variable is the state variable θ̂k
i that records its latest broadcast primal variable up to

time k. Moreover, the |Ni| state variables from its neighbors are θ̂k
j that record the latest

received primal variables from its neighbors, instead of the timely updated and broadcast

variables θk
j of its neighbors j ∈ Ni. While in COKE, each agent computes local updates at

every step, its transmission to neighbors does not always occur, but is determined by the

censoring criterion (2.20). To be specific, at each iteration k, if Hi(k, ξ
k
i ) ≥ 0, then θ̂k

i = θk
i ,

and agent i is allowed to transmit its local primal variable θk
i to its neighbors. Otherwise,

θ̂k
i = θ̂k−1

i and no information is transmitted. If agent i receives θk
j from any neighbor j,

then that neighbor’s state variable kept by agent i becomes θ̂k
j = θk

j , otherwise, θ̂
k
j = θ̂k−1

j .
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Algorithm 2 COKE Run at Agent i

Require: Kernel κ, the number of random features L, the censoring thresholds {hi(k)},
and λ to control over-fitting; initialize local variables to θ0

i = 0, θ̂0
i = 0, θ̂0

j = 0 for

j ∈ Ni, γ
0
i = 0; set step size ρ > 0.

1: Draw L i.i.d. samples {ωl}Ll=1 from pκ(ω) according to a common random seed.

2: Construct {ϕL(xi,t)}Ti
t=1 using the random features {ωl}Ll=1 via (2.12) or (2.13).

3: for iterations k = 1, 2, · · · do

4: Update local variable θk
i by (2.21a);

5: Compute ξki = θ̂k−1
i − θk

i ;

6: If Hi(k, ξ
k
i ) = ∥ξki ∥2 − hi(k) ≥ 0, transmit θk

i to neighbors and let θ̂k
i = θk

i ; else do

not transmit and let θ̂k
i = θ̂k−1

i ;

7: If receives θk
j from neighbor j, let θ̂k

j = θk
j ; else let θ̂k

j = θ̂k−1
j ;

8: Update local dual variable γk
i by (2.21b).

9: end for

Consequently, agent i’s local parameters are updated as follows:

θk
i := argmin

θi

{
R̂i(θi) + ρ|Ni|∥θi∥22 + θ⊤

i

[
γk−1
i − ρ

∑
j∈Ni

(
θ̂k−1
i + θ̂k−1

j

)]}
, (2.21a)

γk
i = γk−1

i + ρ
∑
j∈Ni

(
θ̂k
i − θ̂k

j

)
, (2.21b)

with a censoring step conducted between (2.21a) and (2.21b). We outline the COKE algo-

rithm in Algorithm 2.

The key feature of COKE is that agent i’s local variables θk
i and γk

i are updated all

the time, but the transmission of θk
i occurs only when the censoring condition is met. By

skipping unnecessary transmissions, the communication efficiency of COKE is improved. It

is obvious that large {hi(k)} saves more communication but may lead to divergence from

the optimal solution θ⋆ of (2.16), while small {hi(k)} does not contribute much to com-

munication saving. Noticeably, DKLA is a special case of COKE when the communication

censoring strategy is absent by setting hi(k) = 0,∀i, k.
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2.4 Theoretical Guarantees

In this section, we perform theoretical analyses to address two questions related to the

convergence properties of DKLA and COKE algorithms. First, do they converge to the

globally optimal point, and if so, at what rate? Second, what is their achieved generalization

performance in learning? Since DKLA is a special case of COKE, the analytic results

of COKE, especially the second one, extend to DKLA straightforwardly. For theoretical

analysis, we make the following assumptions.

Assumption 1. The local cost functions R̂i are strongly convex with constants mR̂i
> 0

such that ∀i ∈ N , ⟨∇R̂i(θ̃a)−∇R̂i(θ̃b), θ̃a− θ̃b⟩ ≥ mR̂i
∥θ̃a− θ̃b∥22, for any θ̃a, θ̃b ∈ RL. The

minimum convexity constant is mR̂ := minimR̂i
. The gradients of the local cost functions

are Lipschitz continuous with constants MR̂i
> 0,∀ i. That is, ∥∇R̂i(θ̃a) − ∇R̂i(θ̃b)∥2 ≤

MR̂i
∥θ̃a − θ̃b∥2 for any agent i given any θ̃a, θ̃b ∈ RL. The maximum Lipschitz constant is

MR̂ := maxiMR̂i
.

Assumption 2. The number of training samples of different agents is of the same order

of magnitude, i.e., maxi Ti−mini Ti
mini Ti

< 10,∀i ∈ N .

Assumption 3. There exists fH ∈ H, such that for all estimators f ∈ H, E(fH) ≤ E(f),

where E(f) := Ep [ℓ(f(x), y)] is the expected risk to measure the generalization ability of the

estimator f .

Assumption 1 is standard for decentralized optimization over decentralized networks [27],

Assumption 3 is standard in generalization performance analysis of kernel learning [57], and

Assumption 2 is enforced to exclude the case of extremely unbalanced data distributed over

the network.
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2.4.1 Linear convergence of DKLA and COKE

We first establish that DKLA enables agents in the decentralized network to reach consensus

on the prediction function at a linear rate. We then show that when the censoring func-

tion is properly chosen and the penalty parameter satisfies certain conditions, COKE also

guarantees that the individually learned functional on the same sample linearly converges

to the optimal solution.

Theorem 1. [Linear convergence of DKLA] Initialize the dual variables as γ0
i = 0, ∀i,

with Assumption 1 and Assumption 2, the learned functional at each agent through DKLA

is R-linearly convergent to the optimal functional f̂θ⋆(x) := (θ⋆)⊤ϕL(x) for any x ∈ X ,

where θ⋆ denotes the optimal solution to (2.16) obtained in the centralized case. That is,

lim
k→∞

f̂θk
i
(x) = f̂θ⋆(x),∀i. (2.22)

Proof. See Appendix 2.7.1. ■

Theorem 2. [Linear convergence of COKE] Initialize the dual variables as γ0
i = 0, ∀i,

set the censoring thresholds to be h(k) = vµk, with v > 0 and µ ∈ (0, 1), and choose the

penalty parameter ρ such that

0 < ρ < min

{
4mR̂

η1
,
(ν − 1)σ̃2min(S−)

νη3σ̃2max(S+)
,

(
η1
4

+
η2σ̃

2
max(S+)

8

)−1
(
mR̂ −

η3νM
2
R̂

σ̃2min(S−)

)}
,

(2.23)

where η1 > 0, η2 > 0, η3 > 0 and ν > 1 are arbitrary constants, mR̂ and MR̂ are the

minimum strong convexity constant of the local cost functions and the maximum Lipschitz

constant of the local gradients, respectively. σ̃max(S+) and σ̃min(S−) are the maximum

singular value of the unsigned incidence matrix S+ and the minimum non-zero singular value

of the signed incidence matrix S− of the network, respectively. Then, with Assumption 1 and

Assumption 2, the learned functional at each agent through COKE is R-linearly convergent
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to the optimal one f̂θ⋆(x) := (θ⋆)⊤ϕL(x) for any x ∈ X , where θ⋆ denotes the optimal

solution to (2.16) obtained in the centralized case. That is,

lim
k→∞

f̂θk
i
(x) = f̂θ⋆(x),∀i. (2.24)

Proof. See Appendix 2.7.1. ■

Remark 1. It should be noted that the kernel transformation with RF mapping is essential

in enabling convex consensus formulation with convergence guarantee. For example, in a

regular optimization problem with a local cost function (y − f(x))2, even if it is quadratic,

the nonlinear function f(x) inside destroys the convexity. In contrast, with RF mapping,

f(x) of any form is expressed as a linear function of θ, and hence the local cost function

is guaranteed to be convex. For decentralized kernel learning, many widely-adopted loss

functions result in (strongly) convex local objective functions in the RF space, such as the

quadratic loss in a regression problem and logistic loss in a classification problem.

Remark 2. For Theorem 2, notice that choosing larger v and µ in the design of the

censoring thresholds in COKE leads to less communication per iteration at the expense of

possible performance degradation, whereas smaller v and µ may not contribute much to

communication saving. However, it is challenging to acquire an explicit tradeoff between

communication cost and steady-state accuracy, since the designed censoring thresholds do

not have an explicit relationship with the update of the model parameter.

The above theorems establish the exact convergence of the functional learned in the

multi-agent system for the decentralized kernel regression problem via DKLA and COKE.

Different from previous works [34, 35], our analytic results are obtained by converting the

non-parametric data-dependent learning model into a parametric data-independent model

in the RF space and solved under the consensus optimization framework. In this way, we

not only reduce the computational complexity of the standard kernel methods and make

the RF-based kernel methods scalable to large-size datasets, but also protect data privacy

since no raw data exchange among agents is required and the RF mapping is not one-to-one
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mapping. RF mapping is crucial in our algorithms, with which we are able to show the

linear convergence of the functional by showing the linear convergence of the iteratively

updated decision variables in the RF space; see Appendix A for more details.

2.4.2 Generalization property of COKE

The ultimate goal of decentralized learning is to find a function that generalizes well for

the ensemble of all data from all agents. To evaluate the generalization property of the

predictive function learned by COKE, we are then interested in bounding the difference

between the expected risk of the predictive function learned by COKE at the k-th iteration,

defined as E(f̂k) :=
∑N

i=1 Ei(f̂θk
i
) :=

∑N
i=1 Ep[(y−θk⊤

i ϕL(x))
2], and the expected risk E(fH)

in the RKHS. This is different from bounding the approximation error between the kernel

κ and the approximated κ̂L by L random features as in the literature [50,81,82]. As DKLA

is a special case of COKE, the generalization performance of COKE can be extended to

DKLA straightforwardly.

To illustrate our finding, we focus on the kernel regression problem whose loss function

is least squares, i.e., ℓ(y, f(x)) = (y − f(x))2. With RF mapping, the objective function

(2.16) of the regression problem can be formulated as

R̂(θ) =

N∑
i=1

R̂i(θ) =

N∑
i=1

(
1

Ti
∥yi −Φi⊤

L θ∥22 +
λ

N
∥θ∥22

)
, (2.25)

where yi = [yi,1, . . . , yi,Ti ]
⊤ ∈ RTi×1, Φi

L = [ϕL(xi,1), . . . ,ϕL(xi,Ti)] ∈ RL×Ti , and ϕL(xi,t)

is the data mapped to the RF space.

The optimal solution of (2.25) is given in closed form by

θ⋆ = (Φ̃⊤Φ̃+ λI)−1Φ̃⊤ỹ, (2.26)

where Φ̃ = [Φ̃1
L, . . . , Φ̃

N
L ]⊤ ∈ RT×L with Φ̃i

L = 1√
Ti
Φi

L, ∀i ∈ N , and ỹ = [ỹ1; . . . ; ỹN ] ∈
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RT×1 with ỹi =
1√
Ti
yi, ∀i ∈ N . The optimal prediction model is then expressed by

f̂θ⋆(x) = θ⋆⊤ϕL(x). (2.27)

In the following theorem, we give a general result of the generalization performance of

the predictive function learned by COKE for the kernel regression problem, which is built

on the linear convergence result given in Theorem 2 and taking into account of the number

of random features adopted.

Theorem 3. Let λK be the largest eigenvalue of the kernel matrix K constructed by all

data, XT , and choose the regularization parameter λ < λK/T so as to control overfitting.

Under the Assumptions 1 - 3, with the censoring function and other parameters given in

Theorem 2, for all δp ∈ (0, 1) and ∥f∥H ≤ 1, if the number of random features L satisfies

L ≥ 1

λ
(
1

ϵ2
+

2

3ϵ
) log

16dλK
δp

,

then with probability at least 1−δp, the excess risk of E(f̂k) obtained by Algorithm 2 converges

to an upper bound, i.e.,

lim
k→∞

(E(f̂k)− E(fH)) ≤ 3λ+O(
1√
T
), (2.28)

where ϵ ∈ (0, 1), and dλK := Tr(K(K+λT I)−1) is the number of effective degrees of freedom

that is known to be an indicator of the number of independent parameters in a learning

problem [83].

Proof. See Appendix 2.7.2. ■

Theorem 3 states the tradeoff between the computational efficiency and the statistical

efficiency through the regularization parameter λ, effective dimension dλK, and the number of

random features adopted. We can see that to bound the excess risk with a higher probability,
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we need more random features, which results in a higher computational complexity. The

regularization parameter is usually determined by the number of training data and one

common practice is to set λ = O(1/
√
T ) for the regression problem [84]. Therefore, with

O(
√
T log dλK) features, COKE achieves a learning risk of O(1/

√
T ) at a linear rate. We

also notice that different sampling strategies affect the number of random features required

to achieve a given generalization error. For example, importance sampling is studied for

the centralized kernel learning in RF space in [57]. Interested readers are referred to [57]

and references therein.

2.5 Experiments

This section evaluates the performance of our COKE algorithm in regression tasks using

both synthetic and real-world datasets. Since we consider the case that data are only locally

available and cannot be shared among agents, the following RF-based methods are used to

benchmark our COKE algorithm.

CTA. This is a form of diffusion-based technique where all agents first construct their RF-

mapped data {ϕL(xi,t)}Ti
t=1, for t = 1, . . . , Ti,∀i, using the same random features {ωl}Ll=1 as

DKLA and COKE. Then at each iteration k, each agent i first combines information from its

neighbors, i.e., θj , ∀j ∈ Ni with its own parameter θi by aggregation. Then, it updates its

own parameter θi using the gradient descent method with the aggregated information [85].

The cost function for agent i is given in (2.15). Note that this method has not been formally

proposed in existing works for RF-based decentralized kernel learning with batch-form data,

but we introduced it here only for comparison purpose. An online version that deals with

streaming data is available in [58]. The batch version of CTA introduced here is expected

to converge faster than the online version.

DKLA. Algorithm 1 proposed in Section 2.3.2 where ADMM is applied and the commu-

nication among agents happen at every iteration without being censored.

The performance of all algorithms is evaluated using both synthetic and real-world
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datasets, where the entries of data samples are normalized to lie in [0, 1] and each agent uses

70% of its data for training and the rest for testing. The learning performance at each iter-

ation is evaluated using mean-squared-error (MSE) given by MSE(k) = 1
T

∑N
i=1

∑Ti
t=1(yi,t−

(θk
i )

⊤ϕL(xi,t))
2. The decision variable θi for CTA is initialized as θ0

i = 0,∀i, as that in

DKLA and COKE. For COKE, it should be noted that the design of the censoring function

is crucial. For the censoring thresholds adopted in Theorem 2, choosing larger v and µ to

design the censoring thresholds leads to less communication per iteration but may result

in performance degradation. For all simulations, the kernel bandwidth is fine-tuned for

each dataset individually via cross-validation. The parameters of the censoring function are

tuned to achieve the best learning performance at nearly no performance loss.

2.5.1 Synthetic dataset

In this setup, the connected graph is randomly generated with N = 20 nodes and 95

edges. The probability of attachment per node equals to 0.3, i.e., any pair of two nodes are

connected with a probability of 0.3. Each agent has Ti ∈ (4000, 6000) data pairs generated

following the model yi,t =
∑50

m=1 bmκ(cm,xi,t) + ei,t, where bm are uniformly drawn from

[0, 1], cm ∼ N(0, I5), xi,t ∼ N(0, I5), and ei,t ∼ N(0, 0.1). The kernel κ in the model is

Gaussian with a bandwidth σ = 5.

2.5.2 Real datasets

To further evaluate our algorithms, the following popular real-world datasets from UCI

machine learning repository are chosen [86].

Tom’s hardware. This dataset contains T = 11000 samples with xt ∈ R96 whose features

include the number of created discussions and authors interacting on a topic and yt ∈ R

representing the average number of displays to a visitor about that topic [87].

Twitter. This dataset consists of T = 13800 samples with xt ∈ R77 being a feature vector

reflecting the number of new interactive authors and the length of discussions on a given
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topic, etc., and yt ∈ R representing the average number of active discussion on a certain

topic. The learning task is to predict the popularity of these topics. We also include a

larger Twitter dataset for testing which has T = 98704 samples [87].

Energy. This dataset contains T = 19735 samples with xt ∈ R28 describing the humidity

and temperature in different areas of the houses, pressure, wind speed and viability outside,

while yt denotes the total energy consumption in the house [88].

Air quality. This dataset contains dataset collects T = 9358 samples measured by a gas

multi-sensor device in an Italian city, where xt ∈ R13 represents the hourly concentration

of CO, NOx, NO2, etc, while yt denotes the concentration of polluting chemicals in the

air [89].

2.5.3 Parameter setting and performance analysis

For synthetic data, we adopt a Gaussian kernel with a bandwidth σ = 1 for training and

use L = 100 random features for kernel approximation. Note that the chosen σ differs from

that of the actual data model. The censoring thresholds are h(k) = 0.95k, the regularization

parameter λ and stepsize ρ of DKLA and COKE are set to be 5×10−5 and 10−2, respectively.

The stepsize of CTA is set to be η = 0.99, which is tuned to achieve the same level of learning

performance as COKE and DKLA at its fastest speed.

To show the performance of all algorithms on real datasets concisely and comprehen-

sively, we present the experimental results on the Twitter dataset with T = 13800 samples

by figures and record the experimental results on the remaining datasets by tables. For the

Twitter dataset with T = 13800 samples, we randomly split it into 10 mini-batches each

with Ti ∈ (1200, 1400) data pairs while
∑10

i=1 Ti = T . The 10 mini-batches are distributed

to 10 agents connected by a random network with 28 edges. We use 100 random features to

approximate a Gaussian kernel with a bandwidth σ = 1 during the training process. The

parameters λ and ρ are set to be 10−3 and 10−2, respectively. The censoring thresholds are

h(k) = 0.97k. The stepsize of CTA is set to be η = 0.99 to balance the learning performance

and the convergence speed.
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Figure 2.1: Functional convergence via COKE for synthetic data (left) and the real dataset
(right). The learned functionals of all distributed agents converge to the optimal estimate
where data are assumed to be centrally available.

In Figure 2.1, we show that the individually learned functional at each agent via COKE

reaches consensus to the optimal estimate for both synthetic and real datasets. In Figure

2.2, we compare the MSE performance of COKE, DKLA, and CTA. Both figures show that

COKE converges slower than DKLA due to the communications skipped by the censoring

step. However, the learning performance of COKE eventually is the same as DKLA. For the

diffusion-based CTA algorithm, it converges the slowest. In Figure 2.3, we show the MSE

performance versus the communication cost (in terms of the number of transmissions). As

CTA converges the slowest and communicates all the time, its communication cost is much

higher than that of DKLA, and thus we do not include it in Figure 2.3 but rather focus on

the communication-saving of COKE over DKLA. We can see that to achieve the same level

of learning performance, COKE requires much less communication cost than DKLA. Both

the synthetic data and the real dataset show communication saving of around 50% in Figure

2.3 at an acceptable learning accuracy, which corroborate the communication efficiency of

COKE.

The performance of all three algorithms on the rest four datasets is listed in Table 2.1 -
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Figure 2.2: MSE performance for synthetic data (left) and the real dataset (right). ADMM-
based algorithms (COKE and DKLA) converge faster than the diffusion-based algorithm
(CTA) for both synthetic data (left) and the real dataset (right). Furthermore, DKLA and
COKE achieve better learning performance than CTA in terms of MSE on the real dataset.

10
2

10
3

Commun. cost

2

4

6

8

M
S

E

10
-3

COKE

DKLA

(a) Synthetic data.

10
2

10
3

Commun. cost

2

2.2

2.4

2.6

2.8

3

M
S

E

10
-3

COKE

DKLA

(b) Twitter data.

Figure 2.3: MSE performance versus communication cost for synthetic data (left) and the
real dataset (right). Compared with DKLA, COKE achieves around 50% communication
saving at an acceptable MSE performance for both synthetic data (left) and the real dataset
(right).
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Table 2.1: MSE performance on the Twitter dataset (large), σ = 1, L = 100, λ = 10−3,

stepsize η = 0.99 for CTA, stepsize ρ = 10−2 for DKLA and COKE, censoring thresholds

h(k) = 0.5 × 0.98k. DKLA and COKE achieve better MSE performance than CTA while
COKE requires the least communication resource than DKLA.

Training error (MSE (10−3)) / Commun. cost Test error (MSE(10−3))

Iteration CTA DKLA COKE CTA DKLA COKE

k = 50 3.9/500 2.4/500 4.5/13 4.0 2.6 4.2

k = 100 3.3/1000 2.4/1000 2.6/100 3.4 2.6 2.8

k = 200 3.0/2000 2.3/2000 2.4/298 3.2 2.5 2.6

k = 500 2.7/5000 2.3/5000 2.3/902 2.9 2.5 2.5

k = 1000 2.5/10000 2.2/10000 2.2/4648 2.7 2.5 2.5

k = 1500 2.5/15000 2.2/15000 2.2/9648 2.7 2.5 2.5

k = 2000 2.4/20000 2.2/20000 2.2/14648 2.6 2.5 2.5

2.6. All results show that COKE saves much communication (almost 50%) within a negligi-

ble learning gap from DKLA, and both DKLA and COKE require much less communication

resources than CTA. For example, the number of transmissions required to reach a training

estimation error of 2.3×10−3 on Twitter dataset by COKE is 577, which is only 53% of that

required by DKLA to reach the same level of learning performance. For Tom’s hardware

dataset, COKE requires 361 total transmissions to reach a learning error of 9.95 × 10−4,

which is 56.4% of that required by DKLA and 0.02% of that required by CTA. Note that

much of the censoring occurs at the beginning update iterations. While at the later stage,

COKE nearly transmits all parameters at every iteration since the censoring thresholds are

smaller than the difference between two consecutive updates.

2.6 Concluding Remarks

This chapter studies the decentralized kernel learning problem under privacy concern and

communication constraints for multi-agent systems. Leveraging the random feature map-

ping, we convert the non-parametric kernel learning problem into a parametric one in the

RF space and solve it under the consensus optimization framework by the alternating di-

rection method of multipliers. A censoring strategy is applied to conserve communication
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Table 2.2: MSE performance on the Tom’s hardware dataset, σ = 1, L = 100, λ = 10−2,
stepsize η = 0.99 for CTA, stepsize ρ = 10−2 for DKLA and COKE, censoring thresholds

h(k) = 0.5 × 0.95k. DKLA and COKE achieve better MSE performance than CTA while
COKE requires the least communication resource than DKLA.

Training error (MSE (10−4)) / Commun. cost Test error (MSE(10−4))

Iteration CTA DKLA COKE CTA DKLA COKE

k = 50 20.02/500 10.01/500 17.40/10 20.16 11.20 18.82

k = 100 16.6/1000 9.91/1000 10.67/112 17.09 11.10 11.86

k = 200 13.68/2000 9.90/2000 9.97/331 14.58 11.10 11.15

k = 500 11.19/5000 9.90/5000 9.90/1114 12.35 11.10 11.10

k = 1000 10.27/10000 9.90/10000 9.90/5600 11.47 11.10 11.10

k = 1500 10.01/15000 9.90/15000 9.90/10600 11.22 11.10 11.10

k = 2000 9.92/20000 9.90/20000 9.90/15600 11.13 11.10 11.10

Table 2.3: MSE performance (training error) versus communication cost on the Twitter
dataset (large) and the Tom’s hardware dataset. For both datasets, COKE saves around
50% communication resource than DKLA to achieve the same level of learning performance.

Twitter dataset (large) Tom’s hardware

MSE (10−3) Commun. cost MSE (10−4) Commun. cost

CTA DKLA COKE CTA DKLA COKE

5 360 20 10 18 680 20 3

4 480 30 10 16 1020 30 22

3 1860 60 48 14 1610 60 28

2.8 3250 100 55 12 2880 110 51

2.6 6120 180 100 10 7950 250 128

2.3 - 1080 577 9.95 17620 640 361

2.2 - 5660 4428 9.90 - 1550 984

Table 2.4: MSE performance on the Energy dataset, σ = 0.1, L = 100, λ = 10−3, stepsize

η = 0.99 for CTA, ρ = 10−2 for DKLA and COKE, censoring thresholds h(k) = 0.5×0.98k.
DKLA and COKE achieve better MSE performance than CTA while COKE requires the
least communication resource.

Training error (MSE (10−3)) / Commun. cost Test error (MSE(10−3))

Iteration CTA DKLA COKE CTA DKLA COKE

k = 50 25.65/500 22.52/500 25.22/0 26.45 22.97 26.02

k = 100 24.88/1000 22.12/1000 23.65/57 25.57 22.50 24.2

k = 200 24.17/2000 21.81/2000 22.57/254 24.77 22.15 23.02

k = 500 23.40/5000 21.55/5000 21.88/987 23.92 21.86 22.22

k = 1000 22.84/10000 21.48/10000 21.51/5752 23.31 21.79 21.82

k = 1500 22.54/15000 21.47/15000 21.47/10752 22.97 21.78 21.78

k = 2000 22.35/20000 21.47/20000 21.47/15752 22.75 21.78 21.78
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Table 2.5: MSE performance on the Air quality dataset, σ = 0.1, L = 200, λ = 10−5,
stepsize η = 0.99 for CTA, ρ = 10−2 for DKLA and COKE, censoring thresholds h(k) =

0.9 × 0.97k. DKLA and COKE achieve better MSE performance than CTA while COKE
requires the least communication resource than DKLA.

Training error (MSE (10−3)) / Commun. cost Test error (MSE(10−3))

Iteration CTA DKLA COKE CTA DKLA COKE

k = 50 6.4/500 1.8/500 3.7/72 6.7 2.1 4.0

k = 100 4.5/1000 1.6/1000 2.2/172 4.8 1.8 2.5

k = 200 3.2/2000 1.4/2000 1.7/384 3.5 1.7 2.0

k = 500 2.2/5000 1.3/5000 1.3/2263 2.5 1.6 1.6

k = 1000 1.7/10000 1.2/10000 1.2/7263 2.0 1.6 1.6

k = 1500 1.6/15000 1.2/15000 1.2/12263 1.8 1.6 1.6

k = 2000 1.5/20000 1.2/20000 1.2/17263 1.8 1.6 1.6

Table 2.6: MSE performance (training error) versus communication cost on the Energy
dataset and the Air quality dataset. For both datasets, COKE saves around 45%-55%
communication resource than DKLA to achieve the same level of learning performance.

Energy Air quality

MSE (10−3) Commun. cost MSE (10−3) Commun. cost

CTA DKLA COKE CTA DKLA COKE

25 860 20 11 5.0 810 60 49

24 2290 70 48 3.0 2290 180 81

23.5 4160 140 76 2.0 6010 360 211

23 7690 250 134 1.8 8160 490 285

22.5 14750 480 258 1.6 12300 750 424

22 - 1160 652 1.5 16190 1010 586

21.5 - 4950 4062 1.2 - 5990 5383
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resources. Through both theoretical analysis and simulations, we establish that the pro-

posed algorithms not only achieve linear convergence rate but also exhibit effective gener-

alization performance. Thanks to the fixed-size parametric learning model, the proposed

algorithms circumvent the curse of dimensionality problem and do not involve raw data

exchange among agents. Hence, they can be applied in distributed learning that involve

big-data and offer some level of data privacy protection.
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2.7 Appendix

2.7.1 Proof of Theorem 1 and Theorem 2

Proof. As discussed in Section 2.3.2, solving the decentralized kernel learning problem in

the RF space (2.17) is equivalent to solving the problem (2.16). From (2.14), it is evident

that the convergence of the optimal functional f in (2.16) hinges on the convergence of

the decision variables θ in the RF space. Since in the RF space, the decision variables are

data-independent, the convergence proof of DKLA boils down to proving the convergence

of a convex optimization problem solved by ADMM. However, the convergence proof of

COKE is nontrivial because of the error caused by the outdated information introduced by

the communication censoring strategy. Our proof for both theorems consists of two steps.

The first step is to show linear convergence of decision parameters θ for DKLA via Theo-

rem 4 and for COKE via Theorem 5 below, which are derived straightforwardly from [27]

and [59], respectively. The second step is to show how the convergence of θ translates to

the convergence of the learned functional, which are the same for both algorithms.

Compared to [27] and [59] that deal with general optimization problems for parametric

learning, this work focuses on the specific decentralized kernel learning problem which is

more challenging in both solution development and theoretical analysis. By leveraging

the RF mapping technique, we successfully develop the DKLA algorithm and the COKE

algorithm. Noticeably, a direct application of ADMM as in [27] on decentralized kernel

learning is infeasible without raw data exchanges. Moreover, we analyze the convergence of

the nonlinear functional to be learned and the generalization performance of kernel learning

in the decentralized setting. The analysis is built on the work of [27] and [59] but goes

further, and it is only attainable because of the adoption of the RF mapping.

For both algorithms, the linear convergence of decision variables in the RF space is

based on matrix reformulation of (2.17). Define Θ⋆ := [θ⋆,θ⋆, . . . ,θ⋆]⊤ ∈ RN×L and

Z⋆ := [z⋆, z⋆, . . . ,z⋆]⊤ ∈ RN×L be the optimal primal variables, and β⋆ be the optimal dual

variable. Then, for DKLA, Theorem 4 states that {Θk} (Θk := [θk
1 ,θ

k
2 , . . . ,θ

k
N ]⊤ ∈ RN×L)
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is R-linear convergent to the optimal Θ⋆. For detailed proof, see [27].

Theorem 4. [Linear convergence of decision variables in DKLA] For the optimiza-

tion problem (2.16), initialize the dual variables as γ0
i = 0, ∀i, with Assumptions 1 and 2,

then {Θk} is R-linearly convergent to the optimal Θ⋆ when k goes to infinity following from

∥Θk −Θ⋆∥2F ≤ 1

mR̂

[
ρ∥Zk−1 −Z⋆∥2F +

1

ρ
∥βk−1 − β⋆∥2F

]
, (2.29)

where {(Zk,βk)} is Q-linearly convergent to its optimal {(Z⋆,β⋆)}:

ρ∥Zk −Z⋆∥2F +
1

ρ
∥βk − β⋆∥2F ≤ 1

1 + δd

[
ρ∥Zk−1 −Z⋆∥2F +

1

ρ
∥βk−1 − β⋆∥2F

]
(2.30)

with

δd = min

{
(ν − 1)σ̃2min(S−)

νσ̃2max(S+)
,

mR̂
ρ
4 σ̃

2
max(S+) +

ν
ρM

2
R̂
σ̃2min(S−)

}
,

where ν > 1 is an arbitrary constant, σ̃max(S+) is the maximum singular value of the

unsigned incidence matrix S+ of the network, and σ̃2min(S−) is the minimum non-zero sin-

gular value of the signed incidence matrix S− of the network, mR̂ and MR̂ are the minimum

strong convexity constant of the local cost functions and the maximum Lipschitz constant of

the local gradients, respectively. The Q-linear convergence rate of {(Zk,βk)} to {(Z⋆,β⋆)}

satisfies

rc ≤
√

1

1 + δd
. (2.31)

To achieve linear convergence of decision variables in COKE, choosing appropriate cen-

soring functions is crucial. Moreover, the penalty parameter ρ also needs to satisfy certain

conditions, see Theorem 5 for details [59].
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Theorem 5. [Linear convergence of decision variables in COKE] For the optimiza-

tion problem (2.16) with strongly convex local cost functions whose gradients are Lipschitz

continuous, initialize the dual variables as γ0
i = 0, ∀i, set the censoring thresholds to be

h(k) = vµk, with v > 0 and µ ∈ (0, 1), and choose the penalty parameter ρ such that

0 < ρ < min

{
4mR̂

η1
,
(ν − 1)σ̃2min(S−)

νη3σ̃2max(S+)
,

(
η1
4

+
η2σ̃

2
max(S+)

8

)−1
(
mR̂ −

η3νM
2
R̂

σ̃2min(S−)

)}
,

(2.32)

where η1 > 0, η2 > 0, η3 > 0 and ν > 1 are arbitrary constants, mR̂ and MR̂ are the

minimum strong convexity constant of the local cost functions and the maximum Lipschitz

constant of the local gradients, respectively. σ̃max(S+) and σ̃2min(S−) are the maximum

singular value of the unsigned incidence matrix S+ and the minimum non-zero singular

value of the signed incidence matrix S− of the network, respectively. Then, {Θk} is R-

linearly convergent to the optimal Θ⋆ when k goes to infinity.

Remark 3. For the kernel ridge regression problem (2.25), the minimum strong convexity

constant of the local cost functions and the maximum Lipschitz constant of the local gra-

dients are mR̂ := mini σ̃
2
min(

1
Ti
Φi

L(Φ
i
L)

⊤ + 2λ
N I) and MR̂ := maxi σ̃

2
max(

1
Ti
Φi

L(Φ
i
L)

⊤ + 2λ
N I),

respectively.

With the convergence of decision variables in the RF space given in Theorem 4 and

Theorem 5, the second step is to prove the linear convergence of the learned functional

f̂θk
i
(x) to the optimal f̂θ⋆(x), which is straightforward for both algorithms.

Denote f̂Θk(x) = [f̂θk
1
(x), . . . , f̂θk

N
(x)]⊤ = ΘkϕL(x) and f̂Θ⋆(x) = [f̂θ⋆(x), . . . , f̂θ⋆(x)]⊤ =

Θ⋆ϕL(x), then we have
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∥f̂Θk(x)− f̂Θ⋆(x)∥2 = ∥ΘkϕL(x)−Θ⋆ϕL(x)∥2

≤ ∥Θk −Θ⋆∥2∥ϕL(x)∥2

≤ ∥Θk −Θ⋆∥2,

(2.33)

where the second inequality comes from the fact that ∥ϕL(x)∥2 ≤ 1 with the adopted RF

mapping.

For DKLA, we have

∥f̂Θk(x)− f̂Θ⋆(x)∥2 ≤ ∥Θk −Θ⋆∥2 ≤
1

mR̂

[
ρ∥Zk−1 −Z⋆∥2F +

1

ρ
∥βk−1 − β⋆∥2F

]
. (2.34)

Therefore, the Q-linear convergence of {Zk,βk} to the optimal (Z⋆,β⋆) translates to the R-

linear convergence of {f̂Θk(x)}. Similarly, the R-linear convergence of {Θk} to the optimal

Θ⋆ of COKE can be translated from the Q-linear convergence of {Zk,βk} to the optimal

(Z⋆,β⋆), see [59] for detailed proof.

It is then straightforward to see that the individually learned functionals converge to

the optimal one when k goes to infinity, that is, ∀i ∈ N ,

lim
k→∞

|f̂θk
i
(x)− f̂θ⋆(x)| = lim

k→∞
|(θk

i )
⊤ϕL(x)− (θ⋆)⊤ϕL(x)|

≤ lim
k→∞

∥θk
i − θ⋆∥2∥ϕL(x)∥2

≤ lim
k→∞

∥θk
i − θ⋆∥2

= 0,

(2.35)

which completes the proof of Theorem 1 and 2. ■
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2.7.2 Proof of Theorem 3

Proof. The empirical risk (2.6) to be minimized for the kernel regression problem in the

RKHS is

min
α∈RT

R̂(α) =

N∑
i=1

R̂i(α) =

N∑
i=1

(
1

Ti
∥yi −K⊤

i α∥22 + λiα
⊤Kα

)
, (2.36)

where yi = [yi,1, . . . , yi,Ti ]
⊤ ∈ RTi×1, the matrices Ki ∈ RT×Ti and K ∈ RT×T are used to

store the similarity of the total data and data from agent i, and the similarity of all data,

respectively, with the assumption that all data are available to all agents. The optimal

solution is given in closed form by

α⋆ = (K̃⊤K̃+ λK)−1K̃ỹ, (2.37)

where K̃ = [K̃1, . . . , K̃N ] ∈ RT×T with K̃i =
1√
Ti
Ki, ∀i ∈ N , ỹ = [ỹ1; . . . ; ỹN ] ∈ RT×1 with

ỹi =
1√
Ti
yi, ∀i ∈ N , and λ =

∑N
i=1 λi. Denote the predicted values on the training examples

using α⋆ as f iα⋆ ∈ RTi for node i and the overall predictions as fα⋆ = [f1α⋆ ; . . . ; fNα⋆ ] ∈ RT .

In the corresponding RF space, we can denote the predicted values obtained for node i by

θ⋆ in (2.26) as f iθ⋆ ∈ RTi and the overall prediction by fθ⋆ = [f1θ⋆ ; . . . ; fNθ⋆ ] ∈ RT .

To prove Theorem 3, we start by customizing several lemmas and theorems from the

literature, which facilitate proving our main results.

Definition 1. [90, Definition 2] Let {xq}Qq=1 be i.i.d samples drawn from the probability

distribution pX . Let F be a class of functions that map X to R. Define the random variable

R̂Q(F) := Eϵ

sup
f∈F

∣∣∣∣∣∣ 2Q
Q∑

q=1

ϵqf(xq)

∣∣∣∣∣∣ |x1, . . . ,xQ

 , (2.38)

where {ϵq}Qq=1 are i.i.d. {±1}-valued random variables with P(ϵq = 1) = P(ϵq = −1) = 1
2 .
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Then, the Rademacher complexity of F is defined as

RQ(F) := E
[
R̂Q(F)

]
. (2.39)

Rademacher complexity is adopted in machine learning and theory of computation to

measure the richness of a class of real-valued functions with respect to a probability distri-

bution. Here we adopt it to measure the richness of functions defined in the RKHS induced

by the positive definite kernel κ with respect to the sample distribution p.

Lemma 1. [90, Lemma 22] Let H be a RKHS associated with a positive definite kernel κ

that maps X to R. Then, we have R̂Q(H) ≤ 2
Q

√
Tr(K), where K is the kernel matrix for

kernel κ over the i.i.d. sample set {xq}Qq=1. Correspondingly, the Rademacher complexity

satisfies RQ(H) ≤ 2
QE
[√

Tr(K)
]
.

The next theorems state that the generalization performance of a particular estimator

in H not only depends on the number of data points, but also depends on the complexity

of H.

Theorem 6. [90, Theorem 8, Theorem 12] Let {xq, yq}Qq=1 be i.i.d samples drawn from

the distribution p defined on X × Y. Assume the loss function ℓ : Y × R → [0, 1] is

Lipschitz continuous with a Lipschitz constant Mℓ. Define the expected risk for all f ∈ H be

E(f) = Ep [ℓ(f(x), y)], and its corresponding empirical risk be Ê(f) = 1
Q

∑Q
q=1 ℓ(yq, f(xq)).

Then, for δp ∈ (0, 1), with probability at least 1− δp, every f ∈ H satisfies

E(f) ≤ Ê(f) +RQ(ℓ̃ ◦ H) +

√
8 log(2/δp)

Q
, (2.40)

where ℓ̃ ◦ H = {(x, y) → ℓ(y, f(x))− ℓ(y, 0)|f ∈ H}.

Theorem 7. [90, Theorem 12] If ℓ : Y × R → [0, 1] is Lipschitz with constant Mℓ and
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satisfies ℓ(0) = 0, then RQ(ℓ̃ ◦ H) ≤ 2MℓRQ(H).

Lemma 2. [91, Modified Proposition 1] For the RKHS induced by the kernel κ with ex-

pression (2.10), define Ĥk := {f̂k : f̂k = (θk)⊤ϕL(x) =
∑L

l=1 θ
k
l ϕ(x,ωl)}, then we have

∀f̂k ∈ Ĥk, ∥f̂k∥2Ĥk
≤ ∥θk∥22, where Ĥk is the RKHS of functions f̂k at the k-th step. The

kernel that induces Ĥk is the approximated kernel κ̂L defined in (2.11).

Lemma 3. [91, Lemma 6] For the decentralized kernel regression problem defined in Section

2.2, let fα⋆, fθ⋆ be the predictions obtained by (2.37) and (2.26), respectively. Then, we have

⟨y − fα⋆ , fθ⋆ − fα⋆⟩ = 0. (2.41)

Theorem 8. [91, Modified Theorem 5] For the decentralized kernel regression problem

defined in Section 2.2, let λK be the largest eigenvalue of the kernel matrix K, and choose

the regularization parameter λ < λK/T so as to control overfitting. Then, for all δp ∈ (0, 1)

and ∥f∥H ≤ 1, if the number of random features L satisfies

L ≥ 1

λ
(
1

ϵ2
+

2

3ϵ
) log

16dλK
δp

,

then with probability at least 1− δp, the following equation holds

sup
∥f∥H≤1

inf
∥θ∥≤

√
2/L

1

T
∥fx − fθ⋆∥22 ≤ 2λ, (2.42)

where fx ∈ RT is the predictions evaluated by fH on all samples and ϵ ∈ (0, 1).

With the above lemmas and theorems, we are ready to prove Theorem 3, which relies
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on the following decomposition:

E(f̂k)− E(fH) = E(f̂k)− Ê(f̂k)︸ ︷︷ ︸
(1) estimation error

+ Ê(f̂k)− Ê(f̂θ⋆)︸ ︷︷ ︸
(2) convergence error

+ Ê(f̂θ⋆)− Ê(f̂α⋆)︸ ︷︷ ︸
(3) approximation error of RF mapping

+ Ê(f̂α⋆)− E(f̂α⋆)︸ ︷︷ ︸
(4) estimation error

+ E(f̂α⋆)− E(fH)︸ ︷︷ ︸
(5) approximation error of kernel representation

,

(2.43)

where E(f̂k), Ê(f̂k), E(f̂θ⋆), Ê(f̂θ⋆), Ê(f̂α⋆), E(f̂α⋆) are defined as follows for the kernel

regression problem:

E(f̂k) :=
N∑
i=1

Ei(f̂θk
i
) =

N∑
i=1

Ep[(y − (θk
i )

⊤ϕL(x))
2] := Ep[∥yN −ΦNΘ̃k∥22],

Ê(f̂k) :=
N∑
i=1

Êi(f̂θk
i
) =

N∑
i=1

1

Ti

Ti∑
t=1

∥yi − (Φi
L)

⊤θk
i ∥22 =

N∑
i=1

∥ỹi − (Φ̃i
L)

⊤θk
i ∥22 = ∥ỹ − Φ̃BΘ̃

k∥22,

Ê(f̂θ⋆) :=
N∑
i=1

Êi(f̂θ⋆) =
N∑
i=1

1

Ti

Ti∑
t=1

∥yi − (Φi
L)

⊤θ⋆∥22 =
N∑
i=1

∥ỹi − (Φ̃i
L)

⊤θ⋆∥22 = ∥ỹ − Φ̃BΘ̃
⋆∥22,

E(f̂α⋆) :=

N∑
i=1

Êi(f̂α⋆) =

N∑
i=1

Ep[(y − (α⋆)⊤κ(x))2] := Ep[(y − (α⋆)⊤κ(x))2],

Ê(f̂α⋆) :=
N∑
i=1

1

Ti
∥yi −Kiα

⋆∥22 =
N∑
i=1

∥ỹi − K̃iα
⋆∥22,

where yN = y1N ,ΦN =


ϕL(x) · · · 0

...
. . .

...

0 · · · ϕL(x)

 ∈ RN×NL, Φ̃B =


(Φ̃1

L)
⊤ · · · 0

...
. . .

...

0 · · · (Φ̃N
L )⊤

 ∈

RT×NL, Θ̃k = [θk
1 ; . . . ;θ

k
i ] ∈ RNL, and Θ̃⋆ = [θ⋆; . . . ;θ⋆] ∈ RNL.

Then, we upper bound the excessive risk of E(f̂k) learned by COKE by upper bounding

the decomposed five terms. For term (1), for δp1 ∈ (0, 1), with probability at least 1− δp1 ,
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we have

E(f̂k)− Ê(f̂k) ≤ 2Mℓ1RT (ℓ̃1 ◦ Ĥk) +

√
8 log(2/δp1)

T

≤ 2Mℓ1RT (Ĥk) +

√
8 log(2/δp1)

T

≤ 4Mℓ1

T
E[Tr(K̂)] +

√
8 log(2/δp1)

T

≤ 4Mℓ1

T

√
T +

√
8 log(2/δp1)

T

=
C1√
T
,

(2.44)

where C1 := 4Mℓ1 +
√
8 log(2/δp1), and Mℓ1 is the Lipschitz constant for loss function

ℓ1(f̂θk
i
, y) = ((θk

i )
⊤ϕL(x) − y)2. The first inequality comes from Theorem 6, the second

inequality comes from Theorem 7, and the third inequality comes from Lemma 1. For

the last inequality, each element in the Gram matrix K̂ ∈ RT×T is given by (2.11), thus

Tr(K̂) ≤ T∥ϕL(x)∥22 ≤ T with the adopted RF mapping such that ∥ϕL(x)∥22 ≤ 1.

Similarly, for term (4), with probability at least 1 − δp2 for δp2 ∈ (0, 1), the following

holds,

Ê(f̂α⋆)− E(f̂α⋆) ≤ 2Mℓ2RT (ℓ̃2 ◦ H) +

√
8 log(2/δp2)

T

≤ 2Mℓ2RT (H) +

√
8 log(2/δp2)

T

≤ 4Mℓ2

T
E[Tr(K)] +

√
8 log(2/δp2)

T

≤ 4Mℓ2

T

√
T +

√
8 log(2/δp2)

T

=
C2√
T
,

(2.45)
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where C2 := 4Mℓ2 +
√

8 log(2/δp2), and Mℓ2 is the Lipschitz constant for the loss function

ℓ2(f̂α⋆ , y) = ((α⋆)⊤κ(x)− y)2.

For term (2), we have

Ê(f̂k)− Ê(f̂θ⋆) = ∥ỹ − Φ̃BΘ̃
k∥22 − ∥ỹ − Φ̃BΘ̃

⋆∥22

≤ ∇
(
∥ỹ − Φ̃BΘ̃

⋆∥22
)
∥Θ̃k − Θ̃⋆∥2 +

Mℓ3

2
∥Θ̃k − Θ̃⋆∥2

≤
(
∥Φ̃⊤

B(Φ̃BΘ̃
⋆ − ỹ)∥2 +

Mℓ3

2

)
∥Θ̃k − Θ̃⋆∥2

= C3∥Θ̃k − Θ̃⋆∥2,

(2.46)

where C3 := ∥Φ̃⊤
B(Φ̃BΘ̃

⋆−ỹ)∥2+
Mℓ3
2 , andMℓ3 is the Lipschitz constant of the loss function

ℓ3(ỹ, Θ̃) = ∥ỹ − Φ̃BΘ̃∥22. From Theorem 4 and 5, we conclude {Θ̃k} converges linearly to

Θ̃⋆.
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Term (3) is the approximation error caused by RF mapping, which is bounded by

Ê(f̂θ⋆)− Ê(f̂α⋆) =
N∑
i=1

∥ỹi − (Φ̃i
L)

⊤θ⋆∥22 −
N∑
i=1

∥ỹi − K̃iα
⋆∥22

= ∥ỹ − f̃θ⋆∥22 − ∥ỹ − f̃α⋆∥22

= ∥(ỹ − f̃α⋆) + (f̃α⋆ − f̃θ⋆)∥22 − ∥ỹ − f̃α⋆∥22

= inf
∥f̃θ∥

(
∥ỹ − f̃α⋆∥22 + ∥f̃α⋆ − f̃θ∥22 + 2⟨ỹ − f̃α⋆ , f̃α⋆ − f̃θ⟩

)
− ∥ỹ − f̃α⋆∥22

= inf
∥f̃θ∥

∥f̃α⋆ − f̃θ∥22 + 2inf
∥f̃θ∥

⟨ỹ − f̃α⋆ , f̃α⋆ − f̃θ⟩

≤ inf
∥f̃θ∥

∥f̃α⋆ − f̃θ∥22 + 2⟨ỹ − f̃α⋆ , f̃α⋆ − f̃θ⋆⟩

= inf
∥f̃θ∥

∥f̃α⋆ − f̃θ∥22

≤ sup
∥f̃x∥

inf
∥f̃θ∥

∥f̃x − f̃θ∥22

≤ 2λ,

(2.47)

where the seventh equality comes from Lemma 3 while the last inequality comes from

Theorem 8 with f̃x := [ 1√
T1
f1; . . . ;

1√
TN

fN ] ∈ RT and fi = [f(xi,1), . . . , f(xi,Ti)]
⊤ ∈ RTi for

f ∈ H.

To bound term (5) of the approximation error of the models in the RKHS H, we refer

to the following lemma.

Lemma 4. [56, Modified Lemma 5] For the kernel κ that can be represented as (2.10)

and bounded RF mapping, that is ∥ϕ(x,ω)∥ ≤ 1 for any x ∈ X , under Assumption 3, the
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following holds for any regularization parameter λ > 0,

E(f̂α⋆)− E(fH) = ∥f̂α⋆ − Pfp∥2pX ≤ (Rλr)2.

In Lemma 4, fp is the ideal minimizer given the prior knowledge of the marginal distri-

bution pX of x and P is a projection operator on fp so that Pfp is the optimal minimizer

in RKHS. The parameter r ∈ [1/2, 1) is equivalent to assuming fH exits, and R can take

value as either 1 or ∥f̂α⋆∥pX . Setting r = 1/2 and R = 1, we have

E(f̂α⋆)− E(fH) ≤ λ. (2.48)

Combining (2.44)-(2.48) gives

lim
k→∞

E(f̂k)− E(fH)) ≤ lim
k→∞

[
C1√
T

+ C3∥Θ̃k − Θ̃⋆∥2 + 2λ+
C2√
T

+ λ

]

= lim
k→∞

[
3λ+

C1 + C2√
T

+ C3∥Θ̃k − Θ̃⋆∥2
]

= 3λ+O(
1√
T
),

(2.49)

and completes the proof of Theorem 3. ■
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Chapter 3: Quantized and Communication-Censored Online

Decentralized Kernel Learning via Linearized ADMM

3.1 Introduction

In Chapter 2, we developed two algorithms (DKLA and COKE) to tackle the decentralized

kernel learning problem under the consensus optimization framework, with COKE further

reducing the communication overhead by skipping unnecessary communications. However,

both DKLA and COKE operate in batch-form where they assume that all data are avail-

able at local agents when the training starts. Whereas in many real-life applications such

as wearable devices that collect health statistics from sequential data, or online spam de-

tection [22,23], data usually come in a streaming manner. In these cases, function learning

tasks are expected to perform in an online fashion. Here, the term online captures the fact

that the data is received by agents in a streaming sequence and agents process the data

adaptively.

Online (convex) learning problems have been widely studied in the literature of machine

learning, and have been proven to be powerful in making sequential decisions [92,92]. This

scheme can be viewed as a game between a learner (an algorithm) and an adversary (a loss

function). Consider only one agent, then at each time instant t, a data pair {xt, yt}(t ∈ [T ])

arrives to this agent, then learner (algorithm) selects an action at ∈ Rp, and a loss Lt(at)

parameterized by at is revealed to the learner by the adversary. The main objective of an

online learning algorithm is to seek a sequence of actions {at, t ∈ [T ]} over the time horizon

t = 1, . . . , T , such that the cumulative regret is minimized:

RegS
T =

T∑
t=1

Lt(at)−
T∑
t=1

Lt(a
⋆), (3.1)
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where a⋆ = argmina∈Rp

∑T
t=1 Lt(at). Since a⋆ is the fixed single best action in hindsight,

we also refer the cumulative regret as static regret. Note that actions at are usually assumed

to lie in a Euclidean space Rp in standard online convex optimization problems, which is too

optimistic. Motivated by the wide applications of non-parametric kernel methods in various

learning tasks [13], in contrast to assume actions at are linear parameters, we hypothesize

that the actions are nonlinear functions ft (t ∈ [T ]) that lie in the reproducing kernel Hilbert

space H. In this way, the static regret in (3.1) is customized to

RegS
T =

T∑
t=1

Lt(ft)−
T∑
t=1

Lt(f
⋆), (3.2)

where f⋆ = argminf∈H
∑T

t=1 Lt(f).

According to the Representer theorem [77], the estimate of ft at time instant t admits

f̂t(x) =
t−1∑
τ=1

ατκ(x,xτ ), (3.3)

where ατ ’s are some coefficients to be optimized given all received data pairs {xτ , yτ}t−1
τ=1.

To learn the nonlinear relationship ft “on the fly”, we then need to estimate ατ ’s at each

time instant when new data comes. Note that the number of coefficients ατ needs to be

estimated increases across time, making online kernel learning challenging even for a single

agent. For many decentralized systems such as mobile sensor networks, the data observed by

an agent are kept private without being communicated with others [3,5]. Thus, it is not easy

to directly implement traditional kernel methods in a fully decentralized multi-agent setting

for online learning. To circumvent these issues, we adopt the random feature (RF) mapping

technique to approximate the nonlinear function f̂t by a fixed size parameter θt ∈ R2L in

the RF space. Agents in the distributed network thus iteratively communicate and compute

the local copy θi,t of θt with their neighbors within a one-hop local communication range.
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The goal of decentralized online learning turns to minimizing the static regret defined as

the difference between the sum of the online loss over all agents and across time suffered by

the learning algorithm and that by the best model in hindsight:

RegS
T =

T∑
t=1

N∑
i=1

(Li,t(θi,t)− Li,t(θ
⋆)) , (3.4)

where θ⋆ = argminθ∈R2L

∑T
t=1

∑N
i=1 Li,t(θ).

Still, as discussed in Chapter 2, the iterative communications among agents introduce

considerable communication overhead. Although the computing capability keeps rising to

reduce the computation cost nowadays, a computation-efficient algorithm is still desired to

accelerate the learning process for online decision making. In this chapter, we thus focus on

decentralized online kernel learning problems in distributed multi-agent systems and aim to

develop both communication- and computation-efficient algorithms to minimize the static

regret (3.4).

3.1.1 Related work

This work lies at the intersection of (distributed) online convex optimization, scalable online

kernel learning, and efficient communication-computation schemes. Related work to these

three subjects is reviewed below.

Online convex optimization. Online convex optimization has been widely studied,

both in centralized [93–96] and distributed scenarios [97–101]. With an online gradient

descent based algorithm [92] or through an online alternating direction method of multipli-

ers (ADMM) [98], a static regret O(
√
T ) can be achieved over a time horizon T . Further, if

the cost functions are strictly convex, an efficient algorithm based on the Newton method

that achieves a regret bound of O(log T ) [94]. In addition to static environments, online

learning in dynamic environments has attracted more and more attention recently [102–106].

Scalable online kernel learning. To mitigate the curse of dimensionality issue in online
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kernel learning, various techniques are developed, including stochastic approximation [37],

restricting the number of function parameters [41, 42, 107], and approximating the kernel

during training [45, 47, 52]. Among them, RF mapping methods have gained popularity

thanks to their ability to map the large-scale data into an RF space of much-reduced di-

mension by approximating the kernel with a fixed (small) number of random features, which

circumvents the curse of dimensionality problem [47, 50, 52]. For the online decentralized

kernel learning problem relevant to our work [58,108], gradient descent is conducted locally

for each agent to update its learning model, followed by diffusion-based information ex-

change among agents. Quantization is also considered in [108] to improve communication

efficiency. Both works achieve a sublinear regret in the RF space for the online decentral-

ized kernel learning problem. In addition to gradient descent, ADMM is also utilized for

online decentralized kernel learning problems [109], where both single kernel learning and

multi-kernel learning are studied.

Computation- and communication-efficient optimization. Many methods have been

proposed to improve the computation efficiency in decentralized learning, such as [110–113]

and references therein. While [111–113] are all based on distributed (sub)gradient descent,

they either utilize the gradients of the last two iterates, harness the function smoothness,

or leverage the Nesterov gradient, to accelerate the convergence speed. [110] proposes to

linearize ADMM to reduce the computation burden of the standard ADMM method while

enjoying fast convergence speed. For the iterative learning process, fast convergence also

contributes to low communication costs. Other methods to reduce the communication

cost include transmitting the compressed information by quantization [60,62] or sparsifica-

tion [63,66]. However, these methods only reduce the required bandwidth at each commu-

nication round, not the number of rounds or the number of transmissions. Alternatively,

some works suggest randomly selecting a number of nodes for broadcasting/communication

and operating asynchronous updating to reduce the number of transmissions per itera-

tion [7, 21, 68, 70–72]. In contrast to random nodes selection, a more intuitive way is to

evaluate the importance of a message to avoid unnecessary transmissions [10,18–20,59,73].
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This is usually implemented by designing a rule to trigger the communications or adopting

a communication censoring scheme to adaptively decide if a message is informative enough

to be transmitted during the iterative optimization process.

3.1.2 Contributions

Online kernel learning is challenging even for a single agent because the kernel space is

data-centric and evolves as new data arrives. To circumvent this obstacle, we first formu-

late the online decentralized kernel learning problem as an online consensus optimization

problem in the random feature (RF) space. In contrast to solving this problem with stan-

dard ADMM as in Chapter 2, we propose to solve it by using linearized ADMM and develop

the Online Decentralized Kernel learning via Linearized ADMM (ODKLA) algorithm. In

ODKLA, the local cost function of each agent is replaced by its first-order approxima-

tion centered at the current iterate, which results in a closed-form primal update if the

local cost function is convex. In this way, the computation efficiency of ODKLA is im-

proved compared with the standard ADMM where the primal update involves solving a

suboptimization problem every time. To further reduce the communication cost, we de-

velop the Quantized and Communication-censored Online Decentralized Kernel learning

via Linearized ADMM (QC-ODKLA) algorithm by introducing a communication censoring

strategy and a quantization strategy. The communication censoring strategy allows each

agent to autonomously skip unnecessary communications when its local update is not in-

formative enough for transmission. The quantization strategy restricts the total number of

bits transmitted in the learning process. Our key contributions are summarized as follows.

• We develop the ODKLA that utilizes linearized ADMM to solve the online decentral-

ized multi-agent kernel learning problem in the RF space. ODKLA is fully decentral-

ized and does not involve solving sub-optimization problems, thus is more computa-

tionally efficient compared with a standard ADMM algorithm.

• We develop the QC-ODKLA algorithm, which utilizes both communication-censoring

and quantization strategies and achieves desired learning performance given limited
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communication resources and energy supply. When both strategies are absent, QC-

ODKLA degenerates to ODKLA.

• We analyze the regret bound of QC-ODKLA and show that QC-ODKLA achieves the

optimal sublinear regret O(
√
T ) over T time slots under mild conditions.

• Finally, we test the performance of our proposed ODKLA and QC-ODKLA algo-

rithms on extensive real datasets. The results corroborate that both ODKLA and

QC-ODKLA exhibit attractive learning performance and computation efficiency. In

addition, QC-ODKLA is highly communication-efficient. Such salient features make

it an attractive solution for broad applications where decentralized learning from

streaming data is at its core.

Organization. The remaining of this chapter is organized as follows. Section 3.2 for-

mulates the online decentralized kernel learning problem. Section 3.3 develops the online

decentralized kernel learning algorithms, including both ODKLA and QC-ODKLA. Section

3.4 presents the theoretical results and Section 3.5 reports the numerical tests using real

datasets. Concluding remarks are summarized in Section 3.6.

3.2 Problem Statement

Consider the network and communication model described in Section 1.2. Assume that each

agent in the network only has access to its locally observed data composed of independently

and identically distributed (i.i.d) input-label pairs {xi,t, yi,t}Tt=1 obeying an unknown proba-

bility distribution p on X×Y, with xi,t ∈ Rd and yi,t ∈ R. The decentralized learning task is

to find a nonlinear prediction function f such that yi,t = f(xi,t)+ei,t for {{xi,t, yi,t}Tt=1}Ni=1,

where the error term ei,t is minimized accordingly to certain optimality metric. When all

data are available offline, and the nonlinear function f belongs to the reproducing ker-

nel Hilbert space (RKHS) H := {f |f(x) =
∑∞

t=1 αtκ(x,xt)} induced by a shift-invariant

positive semidefinite kernel κ(x,xt) : Rd × Rd → R, decentralized kernel learning can be
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achieved by minimizing the empirical risk (2.2) - (2.3), which we rewrite as follows:

f⋆ = arg min
f∈H

N∑
i=1

T∑
t=1

ℓ(f(xi,t), yi,t) + λ∥f∥2H, (3.5)

where ℓ(·, ·) is a nonnegative loss function and λ > 0 is a regularization parameter that

controls over-fitting.

As discussed in Chapter 2 and in Section 3.1, directly utilizing the Representer theorem

to learn f as a data-centric function is computationally intense. Thus, we utilize the RF

mapping method to approximate the function to be learned in (3.5) as

f(x) = θ⊤ϕL(x), (3.6)

where θ ∈ R2L is the decision vector to be learned in the RF space, and ϕL(x) is the

mapped data in the RF space given by

ϕL(x) :=
√

1
L [ϕ(x,ω1), . . . , ϕ(x,ωL)]

⊤, (3.7)

with ϕ(x,ω) defined as

ϕ(x,ω) = [cos(ω⊤x), sin(ω⊤x)]⊤, (3.8)

and {ωl}Ll=1 are randomly drawn from pκ(ω), which is the inverse Fourier transform of κ.

For a Gaussian kernel κ(xt,xτ ) = exp(−∥xt − xτ∥22/(2σ2)), we have pκ(ω) ∼ N (0, σ−2I).

With the approximation (3.6), the decentralized kernel learning problem is formulated

in Chapter 2 as (2.16) and solved by ADMM-based methods (DKLA and COKE). However,

both DKLA and COKE operate in batch-form when all data are available. Whereas in many

real-life applications, function learning tasks are expected to perform in an online fashion

with sequentially arriving data.

In this chapter, we consider the case that each agent i(i ∈ N ) receives the data points
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{xi,t, yi,t}Tt=1 in an online fashion, and the parameter is estimated based on instantaneous

data samples. That is, at each time instant t, each agent i will receive a new data pair

Si,t := (xi,t, yi,t), which will be used to incur a local cost Li,t(θi,t;Si,t) := ℓ(θ⊤
i,tϕL(xi,t), yi,t)+

λ
N ∥θi,t∥22. Note that, this cost depends on the new data only. With the associated local

copy θi,t of θt, the local cost Li,t(θi,t;Si,t), and information from their neighbors, i.e.,

θj,t,∀j ∈ Ni, agent i then update the estimate of θi,t+1.

To achieve an optimal sublinear regret, we formulate decentralized online kernel learning

as the following optimization problem:

min
{θi,zij}

N∑
i=1

Li,t(θi;Si,t) +
ηt
2

N∑
i=1

∥θi − θi,t∥22

s.t. θi = zij ,θj = zij , ∀(i, j) ∈ A,

(3.9)

where zij is an auxiliary variable that enforces consensus on neighboring agents, and the

term ∥θi − θi,t∥22 captures the influence from all the past data. At every time t, decentral-

ized online kernel learning (approximately) solves an optimization problem to obtain the

update θi,t+1 from the current decision θi,t and the new data Si,t. The formulation (3.9) is

customized from the general online decentralized learning problem [98].

In the next section, we first propose a computation-efficient algorithm to solve (3.9).

We then utilize communication-censoring and quantization strategies to improve the com-

munication efficiency of the proposed algorithm.

3.3 Algorithm Development

In this section, we first utilize linearized ADMM to efficiently solve (3.9). For notational

clarity, we define Θ = [θ⊤
1 ;θ

⊤
2 ; . . . ;θ

⊤
N ] ∈ RN×2L that contains all the local copies θi and

Z = [· · · ; z⊤
ij ; · · · ] ∈ R2r×2L that contains all auxiliary variables zij . We further define the

aggregated function as Lt(Θ;St) :=
∑N

i=1 Li,t(θi;Si,t). With these definitions, we rewrite
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(3.9) in a matrix form for the update of Θt+1 at time t:

min
{Θ,Z}

Lt(Θ;St) +
ηt
2
∥Θ−Θt∥2F

s.t. AΘ+BZ = 0,

(3.10)

where A = 1
2 [S

⊤
+ + S⊤

−;S
⊤
+ − S⊤

−] ∈ R4r×N and B = [−I2r;−I2r]. Here S+ ∈ RN×2r and

S− ∈ RN×2r are the unsigned incidence matrix and the signed incidence matrix of the

communication graph, respectively.

3.3.1 ODKLA: online decentralized kernel learning via linearized ADMM

The optimization problem (3.10) can be solved via ADMM. To explain, we first get the

augmented Lagrangian form of (3.10) as

Lt(Θ,Z,Λ) = Lt(Θ;St) +
ηt
2 ∥Θ−Θt∥2F + ⟨Λ,AΘ+BZ⟩+ ρ

2∥AΘ+BZ∥2F , (3.11)

where ρ is the penalty parameter or stepsize, Λ = [β;λ] ∈ R4r×2L is the Lagrange multiplier

associated with the constraint AΘ+BZ = 0. Then, at time t, the updates of the primal

variables Θ,Z and the dual variable Λt are respectively given by

Θt+1 := argmin
Θ

Lt(Θ,Zt,Λt), (3.12)

Zt+1 := argmin
Z

Lt(Θt+1,Z,Λt), (3.13)

Λt+1 = Λt + ρ(AΘt+1 +BZt+1). (3.14)

Note that given the instantaneous loss Lt, iterates (3.12)-(3.14) only run once, the opti-

mization problem in (3.10) is thus only approximately solved. It has been proven in [98]

that with initializations β1 = −λ1, and Z1 = 1
2S

⊤
+Θ1, the update of the auxiliary variable

Zt is not necessary and the Lagrange multiplier Λ can be replaced by a lower dimensional
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variable Γ := [γ⊤
1 ; · · · ;γ⊤

N ] ∈ RN×2L. The explicit updating rules via ADMM are provided

in [98].

To further simplify the computation, here we utilize the linearized ADMM to develop

the Online Decentralized Kernel learning via Linearized ADMM (ODKLA) algorithm.

Specifically, we replace Lt(Θ) in (3.12) by its linear approximation Lt(Θt)+ ⟨∂Lt(Θt),Θ−

Θt⟩ atΘ = Θt. In this way, the iterates ofΘt+1 and Γt+1 can be generated by the simplified

recursions:

Θt+1 = (ηtI+ 2ρD)−1
[
(ρ(D+W) + ηtI)Θt − Γt − ∂Lt(Θt)

]
, (3.15)

Γt+1 = Γt + ρ(D−W)Θt+1. (3.16)

For distributed implementation of the ODKLA algorithm, each agent i only needs to

update a primal variable θi and a dual variable γi with the following iterations:

θi,t+1 = θi,t −
1

ηt + 2ρdi

[
∂Li,t(θi,t) + ρ

∑
j∈Ni

(θi,t − θj,t) + γi,t

]
, (3.17)

γi,t+1 = γi,t + ρ
∑
j∈Ni

(θi,t+1 − θj,t+1). (3.18)

Note that with linearized ADMM, at each time t, ODKLA has closed-form solutions for

all agents to update their primal variables, instead of solving optimization problems as in

(3.12). Thus, the computational efficiency is improved. The ODKLA algorithm is outlined

in Algorithm 3.

3.3.2 QC-ODKLA: quantized and communication-censored ODKLA

ODKLA resolves the challenges caused by streaming data in decentralized kernel learn-

ing in a computationally efficient manner. However, as seen in (3.17) - (3.18), agents

communicate all the time, resulting in low communication efficiency. Thus, we introduce
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Algorithm 3 ODKLA (run at agent i)

Require: Kernel κ, hyper-parameters (L, ρ, ηt), initialize local variables to θi,1 = 0, and γi,1 = 0.

1: Draw L i.i.d. samples {ωl}Ll=1 from pκ(ω) according to a common random seed.
2: for iterations t = 1, 2, . . . , T do
3: Receive a streaming data (xi,t, yi,t).

4: Construct ϕ(xi,t) via (3.7).

5: Update local primal variable θi,t+1 via (3.17).
6: Transmit θi,t+1 to neighbors and receive θj,t+1 from neighbors j ∈ Ni.

7: Update local dual variable γi,t+1 via (3.18).
8: end for

communication censoring and quantization strategies to cope with the limited communica-

tion resource situation. The resulting algorithm is Quantized and Communication-censored

Online Decentralized Kernel learning via Linearized ADMM (QC-ODKLA).

As in Chapter 2, we first introduce a new state variable θ̂i,t for each agent i to record

its latest broadcast primal variable up to time t. Then, the difference between agent i’s

updated state θi,t+1 and its previously transmitted state θ̂i,t at time t is defined as

hi,t = θi,t+1 − θ̂i,t, (3.19)

and the evaluation function that evaluates if the local updates θi,t+1 are informative enough

to be transmitted is given by

Hi,t = ∥hi,t∥2 − ϱµt, (3.20)

with predefined positive constants ϱ > 0 and µ < 1.

We also introduce a quantization scheme to reduce the communication cost from the

perspective of bit numbers per transmission, and adopt the difference-based quantization

scheme to facilitate the measurement and analysis of the impact of quantization [114]. To

be specific, for each element hli,t(l = 1, . . . , 2L) of hi,t within the range of [u, v), if we restrict

the number of transmission bits to be b, then we can evenly divided the range [u, v) to be

q = 2b intervals of equal length ∆ = (v − u)/q. Then the rounding quantizer Q(·) applied
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to hli,t outputs

Q(hli,t) = u+

(⌊
hli,t − u

∆

⌋
+

1

2

)
∆, (3.21)

where ⌊·⌋ is the floor operation. In practice, it is not necessary to transmit Q(hli,t), instead,

we can simply transmit the integer k :=

⌊
hl
i,t−u

∆

⌋
using the b bits. Thus, the total number

of bits for agent i to transmit the quantized difference Q(hi,t) to its neighbors is only 2Lb

bits.

The whole communication process thus involves three parts: evaluation, quantization,

and state update. If Hi,t ≥ 0, then θi,t+1 is deemed informative, and agent i is allowed

to transmit a quantized difference Q(hi,t) to its neighbors and updates its local state as

θ̂i,t+1 = θ̂i,t + Q(hi,t). Otherwise, θi,t+1 is censored, agent i sets θ̂i,t+1 = θ̂i,t, and no

information is transmitted. Similarly, upon receiving Q(hj,t) from its neighbor j, agent

i updates the state variable of its neighbor’s as θ̂j,t+1 = θ̂j,t + Q(hj,t), otherwise, sets

θ̂j,t+1 = θ̂j,t.

With the communication censoring rule and the quantization scheme, the primal and

dual updates in (3.17) and (3.18) become

θi,t+1 = θi,t −
1

ηt + 2ρdi

[
∂Li,t(θi,t) + ρ

∑
j∈Ni

(θ̂i,t − θ̂j,t) + γi,t

]
, (3.22)

γi,t+1 = γi,t + ρ
∑
j∈Ni

(
θ̂i,t+1 − θ̂j,t+1

)
. (3.23)

Compared with ODKLA, the total numbers of transmissions and bits required by QC-

ODKLA are both reduced in the optimization and learning process. We summarize the

QC-ODKLA algorithm in Algorithm 4.
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Algorithm 4 QC-ODKLA (run at agent i )

Require: Kernel κ, hyper-parameters (L, ρ, ηt, ϱ, µ), initialize local variables to θi,1 = 0, and γi,1 =

0, θ̂i,1 = Q(θi,1), and θ̂j,1 = Q(θj,1) for all j ∈ Ni.

1: Draw L i.i.d. samples {ωl}Ll=1 from pκ(ω) according to a common random seed.
2: for iterations t = 1, 2, . . . , T do
3: Receive a streaming data (xi,t, yi,t).

4: Construct ϕ(xi,t) via (3.7).

5: Update local primal variable θi,t+1 by solving (3.22).

6: Calculate the difference hi,t via (3.19) and quantize it as Q(hi,t) via (3.21).

7: If (3.20) is nonnegative, transmit Q(hi,t) to neighbors and set θ̂i,t+1 = θ̂i,t + Q(hi,t). Else,

set θ̂i,t+1 = θ̂i,t and do not transmit.

8: If receiving Q(hj,t) from neighbors j, update θ̂j,t+1 = θ̂j,t +Q(hj,t). Else, set θ̂j,t+1 = θ̂j,t.

9: Update local dual variable γi,t+1 via (3.23).
10: end for

3.4 Regret Analysis

In this section, we analyze the regret bound of QC-ODKLA, as defined in (3.4). We prove

that QC-ODKLA achieves the optimal sublinear regret O(
√
T ) for convex local cost func-

tions Li,t. Since ODKLA is a special case of QC-ODKLA where both the quantization and

communication-censoring strategies are absent, the regret analysis of QC-ODKLA extends

to ODKLA straightforwardly. The following commonly used assumptions are adopted.

Assumption 4. The local cost functions Li,t(θ) are convex and differentiable with respect

to θ. Also, assume the gradient norm is upper bounded by a positive constant G, or equiv-

alently, ∥∂Li,t(θ)∥2 ≤ G, ∀i.

Assumption 5. The optimal solution of (3.9) is upper bounded by Cθ, i.e., ∥θ⋆∥2 ≤ Cθ.

Note that all assumptions are standard in online decentralized kernel learning [58, 108,

109]. The convexity of local cost functions are easily satisfied in learning problems if the

local cost functions are square loss or the hinge loss.

To study the regret bound for QC-ODKLA, we notice that the difference of QC-ODKLA

and ODKLA is the communication censoring step and the quantization step in the com-

munication stage, which introduces an error if an update is censored and/or quantized in a
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transmission. We define the introduced error of agent i at time t as

ei,t := θi,t − θ̂i,t, (3.24)

and the overall introduced error at time t as Et := [e⊤1,t; e
⊤
2,t; . . . ; e

⊤
N,t]. We first show that

the overall introduced error in QC-ODKLA is upper bounded by the quantization error and

the pre-defined threshold parameters.

Lemma 5. For the updates (3.22) and (3.23), under Assumptions 4 and 5, if the quantized

difference Q(hi,t) is only allowed to transmit when Hi,t ≥ 0 for the pre-defined threshold

parameters v and µ, then, for any time t > 0, the overall error introduced in the QC-ODKLA

is upper bounded by

∥Et∥2F ≤ ζ := max{
√
Nϱµ,

√
2NL∆/2}, (3.25)

where ∆ is the length of the quantization interval.

Proof. Define δθ̂i,t = θ̂i,t−θ̂i,t−1, the introduced error for each agent i is then represented

as

ei,t = θi,t − θ̂i,t

= θi,t − θ̂i,t−1 − δθ̂i,t

= hi,t−1 − δθ̂i,t.

(3.26)

According to the censoring rule, if ∥hi,t−1∥2 ≥ ϱµt−1 for t ≥ 1, we have δθ̂i,t = Q(hi,t−1),

which implies ∥ei,t∥2 = ∥hi,t−1 − Q(hi,t−1)∥2 ≤
√
2L∆/2. Otherwise, if ∥hi,t−1∥2 < ϱµt−1

for t ≥ 1, we have δθ̂i,t = 0, which implies ∥ei,t∥2 = ∥hi,t−1∥2 ≤ ϱµt−1 ≤ ϱµ since µ < 1.

Therefore, the overall introduced error ∥Et∥2F ≤ max{
√
Nϱµ,

√
2NL∆/2}. ■

With Lemma 5, we are ready to establish the network regret bound of QC-ODKLA.
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Theorem 9. Under the assumptions 4 - 5, if the quantized difference Q(hi,t) is only allowed

to transmit when Hi,t ≥ 0 for the pre-defined threshold parameters ϱ > 0 and µ < 1, then,

for any time t > 0, the cumulative network regret (3.4) generated by the updates (3.22) and

(3.23) satisfies

RegS
T ≤ (

√
NCθ +

√
NG

σ2max(S−)
+ σ2max(S−)ζ)O(

√
T ) (3.27)

if ηt = ρ = 1/O(
√
T ).

Proof. See Appendix 3.7.1. ■

Remark 1. Comparing the regret bound generated by QC-ODKLA and ODKLA, we

notice that the censoring and quantization strategies also affect the cumulative network

regret, in addition to the network size and topology.

3.5 Experiments

This section evaluates the performance of our proposed ODKLA and QC-ODKLA algo-

rithms in regression tasks for streaming data from real-world datasets.

Benchmarks. Since we consider the case that data are only locally available and cannot

be shared among agents, the RFF-DOKL algorithm which is developed based on online

gradient descent and a diffusion strategy [58] and the DOKL algorithm which is developed

based on online ADMM [109] will be simulated and compared in our experiments with the

proposed ODKLA and QC-ODKLA algorithms.

Datasets. The regression tasks are carried out on six datasets available at the UCI machine

learning repository [86]: (i) Tom’s hardware (Ttotal = 11000, d = 96); (ii) Twitter (Ttotal =

98700, d = 77); (iii) Energy (Ttotal = 18600, d = 28); (iv) Air quality (Ttotal = 7320,

d = 28); (v) Conductivity (Ttotal = 21260, d = 81); and (vi) Blood (Ttotal = 61000, d = 2).

The detailed description on all datasets is deferred to Appendix 3.7.2.

Settings and parameter tuning. All experiments are conducted using Matlab 2021

on an Intel CPU @ 3.6 GHz (32 GB RAM) desktop. For each dataset, the Ttotal data
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Figure 3.1: Learning performance on Tom’s hardware dataset.

samples are randomly shuffled and then partitioned among N nodes so that each node has

T = Ttotal/N samples. The features are normalized so that all values are between 0 and

1. The number of random features adopted for RF approximation is L = 50 throughout

the simulations. The Gaussian kernel bandwidth is fined tuned to be σ = 0.5 for Tom’s

hardware, Twitter, Air quality, and Blood datasets. For Conductivity and Energy datasets,

σ = 1 and 0.1, respectively. The regularization parameter λ = 10−4. The stepsize ρ and ηt

are fine-tuned via grid-search for each method and each dataset individually. The connected

graph is randomly generated with N = 5 or N = 10 nodes. For Twitter, Conductivity, and

Blood datasets, we use a 10-node network. The remaining datasets use a 5-node network.

The censoring threshold parameters are ϱ = 2, µ = 0.9 for energy data, and ϱ = 4, µ = 0.99

for all the other datasets.

MSE performance. We first evaluate the learning performance of all algorithms by the

mean-squared error (MSE), which is commonly adopted in online learning problems [58,109].

From Figures 3.1 (a) - 3.6 (a), we can see that the learning performance of ODKLA, RFF-

DOKL, and DOKL is very close while the trivial difference comes from the distinction of

specific datasets. Further, the learning performance of QC-ODKLA is always comparable

to that of the ODKLA, after introducing the communication censoring and quantization

strategies. The quantization level is set to be q = 8,
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Figure 3.2: Learning performance on Twitter dataset.
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Figure 3.3: Learning performance on Energy dataset.

Communication efficiency. We then evaluate the communication efficiency among dif-

ferent algorithms. We present the MSE performance versus trigger counts in Figures 3.1

(b) - 3.6 (b) and MSE performance versus communication bits in Figures 3.1 (c) - 3.6 (c).

Figures 3.1 (b) - 3.6 (b) show that QC-ODKLA triggers a few transmissions in the early

learning stage, which greatly improves the communication efficiency. Further, thanks to the

quantization, QC-ODKLA only needs 3 bits to transmit an element, the total number of

communication bits is also greatly reduced accordingly. For other methods to transmit each

element of updates, suppose the agent uses a 32-bit CPU operating mode, and then the

communication cost is 32 bits per iteration per agent per element. Therefore, QC-ODKLA

is corroborated to greatly reduce the communication cost.

Computation efficiency. Finally, we evaluate the computation efficiency of all algorithms
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Figure 3.4: Learning performance on Air dataset.
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Figure 3.5: Learning performance on Conductivity dataset.

by their running time on six datasets, which is recorded in Table 3.1. RFF-DOKL is a gra-

dient descent-based first-order algorithm, which achieves the highest computation efficiency.

Comparing ODKLA with DOKL, we see that the linearization step reduces a large amount

of computation to standard ADMM. Under the circumstance that online streaming data

vary fast, a computation-efficient algorithm is preferred, reflecting the advantages of the

proposed ODKLA and QC-ODKLA algorithms. Also, note that QC-ODKLA is compu-

tationally slower than ODKLA since the communication censoring and quantization steps

consume computation resources.
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Figure 3.6: Learning performance on Blood dataset.

Data set RFF-DOKL DOKL ODKLA QC-ODKLA

Tom’s hardware 0.3541s 2.0613s 0.4455s 0.7247s
Twitter 4.6148s 21.8808s 6.2351s 9.4218s
Energy 0.8584s 4.2681s 1.1600s 1.7928s
Air quality 0.2760s 1.6808s 0.4717s 0.5510s
Conductivity 0.7952s 4.4285s 0.9784s 1.6201s
Blood 2.6194s 13.6249s 3.6104s 5.4290s

Table 3.1: The running time of four algorithms on six datasets.

3.6 Concluding Remarks

This chapter studies the online decentralized kernel learning problem under communication

constraints for multi-agent systems. We utilize RF mapping to circumvent the curse of

dimensionality issue caused by the increasing size of sequentially arriving data. To effi-

ciently solve such a challenging problem, we then develop a novel online decentralized ker-

nel learning algorithm via linearized ADMM (ODKLA). We integrate the communication-

censoring and quantization strategies into the proposed ODKAL as QC-ODKLA to further

save communication overheads. We derive the sublinear regret bounds for both algorithms

theoretically and verify their effectiveness in learning performance and efficiency in both

communication and computation via simulations on various real datasets.
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3.7 Appendix

3.7.1 Proof of Theorem 9

Proof. Define Θ⋆ = [θ⋆⊤; . . . ;θ⋆⊤] ∈ RN×2L, which is the stack of N copies of θ⋆, and

Lt(Θ
⋆) :=

∑N
i=1 Li,t(θ

⋆), we rewrite (3.4) as

RegS
T =

T∑
t=1

(
N∑
i=1

Li,t(θi,t)−
N∑
i=1

Li,t(θ
⋆)

)

=
T∑
t=1

(Lt(Θt)− Lt(Θ
⋆)) .

(3.28)

To analyze the regret bound of QC-ODKLA, we first represent the matrix form of QC-

ODKLA updates (3.22) - (3.23) as

Θt+1 = Θt − (ηtI+ 2ρD)−1
[
∂Lt(Θt) + ρ(D−W)Θ̂t + Γt

]
, (3.29)

Γt+1 = Γt + ρ(D−W)Θ̂t+1, (3.30)

where Θ̂t = [θ̂⊤
1,t; . . . ; θ̂

⊤
N,t] ∈ RN×2L. Note that the censoring and quantization are imple-

mented after step (3.29) and before step (3.30).

For the network model we adopt, according to [115], we have

D+W =
1

2
S+S

⊤
+,

D−W =
1

2
S−S

⊤
−.

(3.31)

Using the second equality of (3.31) and denoting the introduced error of all agents Et
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as Et := Θt − Θ̂t, we obtain the equivalent form of (3.29) and (3.30) respectively as

Θt+1 = Θt − (ηtI+ 2ρD)−1
[
∂Lt(Θt) +

ρ

2
S−S

⊤
−Θt −

ρ

2
S−S

⊤
−Et + Γt

]
, (3.32)

Γt+1 = Γt +
ρ

2
S−S

⊤
−Θt+1 −

ρ

2
S−S

⊤
−Et+1. (3.33)

Observe from (3.33) that Γt+1 stays in the column space of S−S
⊤
− if Γ1 is also initialized

therein. Therefore, we introduce variables βt ∈ R2r×2L, which stay in the column space of

S⊤
−, and let Γt = S−βt for any t ≥ 1. Then, (3.33) is equivalent to

βt+1 = βt +
ρ

2
S⊤
−Θt+1 −

ρ

2
S⊤
−Et+1. (3.34)

Using (3.33) and Γt = S−βt to eliminate Γt, we rewrite (3.32) as

Θt+1 = Θt−(ηtI+2ρD)−1
[
∂Lt(Θt)+

ρ

2
S−S

⊤
−(Et+1−Et)+

ρ

2
S−S

⊤
−(Θt−Θt+1)+S−βt+1

]
.

(3.35)

The following analysis is based on the equivalent form of the QC-ODKLA algorithm

given by (3.35) and (3.34). The Karush–Kuhn–Tucker (KKT) conditions of (3.10) are

∂Lt(Θ
⋆) + ηt(Θ

⋆ −Θt) + S−β
⋆ = 0, (3.36a)

S⊤
−Θ

⋆ = 0, (3.36b)

1

2
S⊤
+Θ

⋆ = Z⋆, (3.36c)

where (Θ⋆,Z⋆,β⋆) is the optimal primal-dual triplet.
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Rearrange terms in (3.35) to place ∂Lt(Θt) at the left side, we have

∂Lt(Θt) = (ηtI+ 2ρD− ρ

2
S−S

⊤
−)(Θt −Θt+1) +

ρ

2
S−S

⊤
−(Et −Et+1)− S−βt+1

= (ηtI+
ρ

2
S+S

⊤
+)(Θt −Θt+1) +

ρ

2
S−S

⊤
−(Et −Et+1)− S−βt+1,

(3.37)

where the second equality utilizes (3.31) such that 2D = 1
2S−S

⊤
− + 1

2S+S
⊤
+. We consider

to bound the instantaneous regret Lt(Θt)− Lt(Θ
⋆) at time t first. With Assumption 4, it

holds

Lt(Θt)− Lt(Θ
⋆) ≤ ⟨∂Lt(Θt),Θt −Θ⋆⟩. (3.38)

Substitute the expression of ∂Lt(Θt) in (3.37) into (3.38) yields

Lt(Θt)− Lt(Θ
⋆) ≤ ⟨(ηtI+

ρ

2
S+S

⊤
+)(Θt −Θt+1),Θt −Θ⋆⟩

+ ⟨ρ
2
S−S

⊤
−(Et −Et+1)− S−βt+1,Θt −Θ⋆⟩.

(3.39)

Now we reorganize the two terms on the right-hand side of (3.39). For the first term, we

have

⟨(ηtI+
ρ

2
S+S

⊤
+)(Θt −Θt+1),Θt −Θ⋆⟩

≤ σmax(ηtI+
ρ

2
S+S

⊤
+)⟨Θt −Θt+1,Θt −Θ⋆⟩

=
σmax(ηtI+

ρ
2S+S

⊤
+)

2

(
∥Θt −Θ⋆∥2F − ∥Θt+1 −Θ⋆∥2F + ∥Θt −Θt+1∥2F

)
,

(3.40)

where σmax(ηtI+
ρ
2S+S

⊤
+) denotes the maximum singular value of ηtI+

ρ
2S+S

⊤
+.
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For the second term, we have

⟨ρ
2
S−S

⊤
−(Et −Et+1)− S−βt+1,Θt −Θ⋆⟩

= ⟨ρ
2
S⊤
−(Et −Et+1)− βt+1,S

⊤
−(Θt −Θ⋆)⟩

(a)
= ⟨ρ

2
S⊤
−(Et −Et+1)− βt+1,S

⊤
−Θt⟩

(b)
= ⟨ρ

2
S⊤
−(Et −Et+1)− βt+1,

2

ρ
(βt − βt−1) + S⊤

−Et⟩

= ⟨βt−1 − 2βt +
ρ

2
S⊤
−(Θt −Θt+1),

2

ρ
(βt − βt−1) + S⊤

−Et⟩

(c)
= −2

ρ
⟨βt − βt−1,βt − βt−1⟩ −

2

ρ
⟨βt,βt − βt−1⟩+ ⟨βt−1 − βt,S

⊤
−Et⟩

− ⟨βt,S
⊤
−Et⟩+ ⟨S⊤

−(Θt −Θt+1),βt − βt−1⟩+
ρ

2
⟨S⊤

−(Θt −Θt+1),S
⊤
−Et⟩

= −2

ρ
∥βt − βt−1∥2F − 2

ρ
∥βt∥2F +

2

ρ
⟨βt,βt−1⟩+ ⟨βt−1 − βt,S

⊤
−Et⟩

− ⟨βt,S
⊤
−Et⟩+ ⟨S⊤

−(Θt −Θt+1),βt − βt−1⟩+
ρ

2
⟨S⊤

−(Θt −Θt+1),S
⊤
−Et⟩,

(3.41)

where (a) comes from the KKT condition (3.36b), (b) and (c) come from (3.34).

We then utilize Young’s inequality to bound the inner product terms in (3.41), which are

2

ρ
⟨βt,βt−1⟩ ≤

2

ρ
(
1

2η1
∥βt∥2F +

η1
2
∥βt−1∥2F ) =

1

ρη1
∥βt∥2F +

η1
ρ
∥βt−1∥2F , (3.42)

⟨βt−1 − βt,S
⊤
−Et⟩ ≤

1

2η2
∥βt−1 − βt∥2F +

η2
2
∥S⊤

−Et∥2F , (3.43)

− ⟨βt,S
⊤
−Et⟩ ≤

1

2η3
∥βt∥2F +

η3
2
∥S⊤

−Et∥2F , (3.44)

⟨S⊤
−(Θt −Θt+1),βt − βt−1⟩ ≤

1

2η4
∥S⊤

−(Θt −Θt+1)∥2F +
η4
2
∥βt − βt−1∥2F , (3.45)

ρ

2
⟨S⊤

−(Θt −Θt+1),S
⊤
−Et⟩ ≤

ρ

4η5
∥S⊤

−(Θt −Θt+1)∥2F +
ρη5
4

∥S⊤
−Et∥2F , (3.46)
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where η1, η2, η3, η4, η5 are any positive constants.

Substitute (3.42) - (3.46) into (3.41) gives

⟨ρ
2
S−S

⊤
−(Et −Et+1)− S−βt+1,Θt −Θ⋆⟩

≤ (−2

ρ
+

1

2η2
+
η4
2
)∥βt − βt−1∥2F + (−2

ρ
+

1

ρη1
+

1

2η3
)∥βt∥2F +

η1
ρ
∥βt−1∥2F

+ (
1

2η4
+

ρ

4η5
)∥S⊤

−(Θt −Θt+1)∥2F + (
η2
2

+
η3
2

+
ρη5
4

)∥S⊤
−Et∥2F

= (−2

ρ
+

1

2η2
+
η4
2
)(∥βt∥2F + ∥βt−1∥2F − 2⟨βt,βt−1⟩) + (−2

ρ
+

1

ρη1
+

1

2η3
)∥βt∥2F +

η1
ρ
∥βt−1∥2F

+ (
1

2η4
+

ρ

4η5
)∥S⊤

−(Θt −Θt+1)∥2F + (
η2
2

+
η3
2

+
ρη5
4

)∥S⊤
−Et∥2F

= (−4

ρ
+

1

2η2
+
η4
2

+
1

ρη1
+

1

2η3
)∥βt∥2F + (−2

ρ
+

1

2η2
+
η4
2

+
η1
ρ
)∥βt−1∥2F

+ (
1

2η4
+

ρ

4η5
)∥S⊤

−(Θt −Θt+1)∥2F + (
η2
2

+
η3
2

+
ρη5
4

)∥S⊤
−Et∥2F + (

2

ρ
− 1

2η2
− η4

2
)⟨βt,βt−1⟩

≤ (−4

ρ
+

1

2η2
+
η4
2

+
1

ρη1
+

1

2η3
+

2

ρη6
− 1

2η2η6
− η4

2η6
)∥βt∥2F

+ (−2

ρ
+

1

2η2
+
η4
2

+
η1
ρ

+
2η6
ρ

− η6
2η2

− η4η6
2

)∥βt−1∥2F

+ (
1

2η4
+

ρ

4η5
)∥S⊤

−(Θt −Θt+1)∥2F + (
η2
2

+
η3
2

+
ρη5
4

)∥S⊤
−Et∥2F .

(3.47)
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With (3.47) and (3.40), we obtain an upper bound for (3.39), which is

Lt(Θt)− Lt(Θ
⋆)

≤
σmax(ηtI+

ρ
2S+S

⊤
+)

2

(
∥Θt −Θ⋆∥2F − ∥Θt+1 −Θ⋆∥2F

)

+
σmax(ηtI+

ρ
2S+S

⊤
+)

2
∥Θt −Θt+1∥2F

+ (
1

2η2
− 4

ρ
+
η4
2

+
1

ρη1
+

1

2η3
+

2

ρη6
− 1

2η2η6
− η4

2η6
)∥βt∥2F

+ (
η1
ρ

− 2

ρ
+

1

2η2
+
η4
2

+
2η6
ρ

− η6
2η2

− η4η6
2

)∥βt−1∥2F

+ (
1

2η4
+

ρ

4η5
)∥S⊤

−(Θt −Θt+1)∥2F + (
η2
2

+
η3
2

+
ρη5
4

)∥S⊤
−Et∥2F

≤
σmax(ηtI+

ρ
2S+S

⊤
+)

2

(
∥Θt −Θ⋆∥2F − ∥Θt+1 −Θ⋆∥2F

)
+ (

1

2η2
− 4

ρ
+
η4
2

+
1

ρη1
+

1

2η3
+

2

ρη6
− 1

2η2η6
− η4

2η6
)∥βt∥2F

+ (
η1
ρ

− 2

ρ
+

1

2η2
+
η4
2

+
2η6
ρ

− η6
2η2

− η4η6
2

)∥βt−1∥2F

+ (
σmax(ηtI+

ρ
2S+S

⊤
+)

2
+
σ2max(S−)

2η4
+
ρσ2max(S−)

4η5
)∥Θt −Θt+1∥2F

+ (
η2
2

+
η3
2

+
ρη5
4

)σ2max(S−)∥Et∥2F .

(3.48)

We then utilize (3.35) to rewrite Θt −Θt+1 as

Θt −Θt+1 = (ηtI+ 2ρD)−1
(
∂Lt(Θt) + 2S−βt − S−βt−1

)
, (3.49)
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and bound ∥Θt −Θt+1∥2F as

∥Θt −Θt+1∥2F = ∥(ηtI+ 2ρD)−1
(
∂Lt(Θt) + 2S−βt − S−βt−1

)
∥2F

≤ 1

σ2min(ηtI+ 2ρD)
∥∂Lt(Θt)∥2F +

4σ2max(S−)

σ2min(ηtI+ 2ρD)
∥βt∥2F

+
σ2max(S−)

σ2min(ηtI+ 2ρD)
∥βt−1∥2F ,

(3.50)

where σmin(ηtI+ 2ρD) is the lower bound of the nonzero singular values of ηtI+ 2ρD.

Substitute (3.50) into (3.48) we obtain

Lt(Θt)− Lt(Θ
⋆) ≤

σmax(ηtI+
ρ
2S+S

⊤
+)

2

(
∥Θt −Θ⋆∥2F − ∥Θt+1 −Θ⋆∥2F

)
+ (c1 + 4cN )∥βt∥2F + (c2 + cN )∥βt−1∥2F

+
cN

σ2max(S−)
∥∂Lt(Θt)∥2F + (

η2
2

+
η3
2

+
ρη5
4

)σ2max(S−)∥Et∥2F ,

(3.51)

where c1, c2 and cN are defined as follows:

c1 :=
1

2η2
− 4

ρ
+
η4
2

+
1

ρη1
+

1

2η3
+

2

ρη6
− 1

2η2η6
− η4

2η6
,

c2 :=
η1
ρ

− 2

ρ
+

1

2η2
+
η4
2

+
2η6
ρ

− η6
2η2

− η4η6
2
,

cN :=
(σmax(ηtI+

ρ
2S+S

⊤
+)

2
+
σ2max(S−)

2η4
+
ρσ2max(S−)

4η5

) σ2max(S−)

σ2min(ηtI+ 2ρD)
.

Carefully choose η1, η2, η3, η4, η5, and η6, we can make c1 + 4cN = −(c2 + cN ) = −c, where
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c > 0. Then (3.51) can be further simplified as

Lt(Θt)− Lt(Θ
⋆) ≤

σmax(ηtI+
ρ
2S+S

⊤
+)

2

(
∥Θt −Θ⋆∥2F − ∥Θt+1 −Θ⋆∥2F

)
+

cN
σ2max(S−)

∥∂Lt(Θt)∥2F + c(∥βt−1∥2F − ∥βt∥2F )

+ (
η2
2

+
η3
2

+
ρη5
4

)σ2max(S−)∥Et∥2F .

(3.52)

To satisfy c1 + 4cN = −(c2 + cN ), one example is to set η4 = 2η6
(η6−1)2

(1ρ(η1 +
1
η1

+ 2
η6

+

2η6) +
1

2η2
(2− η6 − 1

η6
) + 1

2η3
+ 5cN ).

Summarizing both sides of (3.52) from t = 1 to t = T leads to the accumulated network

regret RegS
T :

RegS
T ≤

σmax(ηtI+
ρ
2S+S

⊤
+)

2

(
∥Θ1 −Θ⋆∥2F − ∥ΘT+1 −Θ⋆∥2F

)
+ c(∥β0∥2F − ∥βT ∥2F )

+
T∑
t=1

cN
σ2max(S−)

∥∂Lt(Θt)∥2F +
T∑
t=1

(
η2
2

+
η3
2

+
ρη5
4

)σ2max(S−)∥Et∥2F

≤
σmax(ηtI+

ρ
2S+S

⊤
+)

2
∥Θ1 −Θ⋆∥2F + c∥β0∥2F +

T∑
t=1

cN
σ2max(S−)

∥∂Lt(Θt)∥2F

+
T∑
t=1

(
η2
2

+
η3
2

+
ρη5
4

)σ2max(S−)∥Et∥2F

=
σmax(ηtI+

ρ
2S+S

⊤
+)

2
∥Θ⋆∥2F +

T∑
t=1

cN
σ2max(S−)

∥∂Lt(Θt)∥2F

+
T∑
t=1

(
η2
2

+
η3
2

+
ρη5
4

)σ2max(S−)∥Et∥2F .

(3.53)

The last equality comes from the initialization that Θ1 = 0 and β1 = 0 and thus β0 = 0.
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Assumption 5 assumes that ∥θ⋆∥F ≤ Cθ, which implies that ∥Θ⋆∥F ≤
√
NCθ. Assumption

4 assumes that ∥∂Li,t(θt)∥F ≤ G, which indicates that the aggregated cost functions Lt

satisfy ∥∂Lt(θ)∥2 ≤
√
NG. Setting ρ = ηt = η2 = η3 = 1/O(

√
T ), QC-ODKLA achieves

the sublinear regret:

RegS
T ≤ (

√
NCθ +

√
NG

σ2max(S−)
+ σ2max(S−)ζ)O(

√
T ), (3.54)

where ζ := max{
√
Nϱµ,

√
2NL∆/2}, with ϱ and µ being the predefined censoring threshold

parameters and ∆ being the length of the quantization interval. ■

3.7.2 Datasets descriptions

The detailed descriptions of the six datasets are listed below.

Tom’s hardware. This dataset contains Ttotal = 9725 samples with xt ∈ R96 including the

number of created discussions and authors interacting of a topic and yt ∈ R representing

the average number of displays to a visitor about that topic [87].

Twitter. This dataset consists of Ttotal = 98700 samples with xt ∈ R77 being a feature

vector reflecting the number of new interactive authors and the length of discussions on a

given topic, etc., and yt ∈ R representing the average number of active discussions on a

certain topic. The learning task is to predict the popularity of these topics [87].

Energy. This dataset contains Ttotal = 18600 samples with xt ∈ R28 describing the hu-

midity and temperature in different areas of the house, pressure, wind speed, and viability

outside, while yt ∈ R denoting the total energy consumption in the house [88].

Air quality. This dataset contains Ttotal = 7320 samples measured by a gas multi-sensor

device in an Italian city, where xt ∈ R13 represents the hourly concentration of CO, NOx,

NO2, etc and yt ∈ R denotes the concentration of polluting chemicals in the air [89].

Conductivity: This dataset contains Ttotal = 21260 samples extracted from superconduc-

tors, where xt ∈ R81 represents critical information to construct superconductor such as
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density and mass of atoms. The task is to predict the critical temperature yt ∈ R which

creates a superconductor [116].

Blood data: This dataset contains Ttotal = 61000 samples recorded by patient monitors at

different hospitals where xt ∈ R2 and the goal is to predict the blood pressure yt ∈ R based

on several physiological parameters from Photoplethysmography and Electrocardiogram

signals [117].
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Chapter 4: Communication-Efficient Decentralized Dynamic

Kernel Learning

4.1 Introduction

Online learning problems where data arrive in a streaming manner have been considered in

Chapter 3, with kernel-based algorithms developed to tackle them in a communication and

computation efficient way. In this chapter, we further consider cases where the dynamics

underlying the streaming data is varying, where the optimal function to be estimated could

be the state in brain graphs, the temporal process propagating over a time-varying network,

or human’s activity in motion [118]. In these cases, the function of interest itself may

vary over time with unknown dynamics, in addition to the evolving data. Thus, no single

policy is always good, and thus minimizing the static regret against a fixed policy is no

longer suitable. It is because the static regret is the difference between the cumulative loss

caused by the learning algorithm and that caused by the best static model in hindsight.

Meanwhile, since Chapter 3 assumes that the sampling distribution of the streaming data is

stationary, the optimization problem therein enforces consensus between the current state

and its previous state, which may not be suitable when the function of interest varies over

time. In this chapter, instead of assuming the streaming data come from a stationary

distribution, we aim to solve the online learning problem with unknown dynamics.

Online (convex) learning/optimization problem in dynamic non-stationary environments

was investigated in [119,120], where instead of assuming there exists an optimal determin-

istic action in hindsight, a sequence of optimal actions (minimizers) corresponding to a

sequence of cost functions are taken to minimize a dynamic regret. For a single agent case,

the dynamic regret is the cost accumulation of an action at as compared with a best action
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a∗t at each time:

RegD
T =

T∑
t=1

Lt(at)−
T∑
t=1

Lt(a
∗
t ), (4.1)

where a∗t = argminat∈Rp Lt(at), and actions at are usually assumed to lie in a Euclidean

space Rp in standard online convex optimization problems. As in the static case, on-

line convex optimization concerns designing methods such that RegD
T grows sublinearly in

T [121–126]. Distributed online convex learning has also been investigated [101, 103, 127–

129]. However, all these methods assume that the best decisions lie in the Euclidean space,

while nonlinear function learning in environments with unknown dynamics remains a largely

exploited territory.

In this chapter, we continue our research on utilizing kernels for nonlinear function es-

timation in a dynamic environment to leverage the representation power of nonparametric

kernel methods. More specifically, we focus on dynamic kernel learning over a decentral-

ized network, where all agents receive online streaming data collected from non-stationary

environments. Notice that [130,131] also investigated the dynamic kernel learning problem

in non-stationary environments; however, they all focus on the centralized case and utilize

gradient descent based method for optimization. The curse of dimensionality issue of online

kernel learning is circumvented by random feature (RF) mapping in [130] and by restricting

the number of function parameters in [131]. We also utilize RF mapping to alleviate the

computational complexity issue in decentralized dynamic kernel learning as in [130]. How-

ever, the significance of RF mapping is beyond reducing computational complexity, it also

enables the formulation of the decentralized dynamic kernel learning problem as a decen-

tralized dynamic convex optimization problem. Instead of the gradient descent method, we

utilize the alternating direction method of multipliers (ADMM) for distributed implemen-

tation. We further add the communication censoring and quantization strategies to save

communication resources. Notice that [128] utilizes the “event-triggered” rule in decentral-

ized online convex optimization with unknown dynamics to save communication resources,
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where the design of their events shares similarities with our communication-censoring rules.

However, they assume that the best decisions lie in the Euclidean space, and thus are not

the same as our kernel methods.

This work lies in the intersection of (distributed) online convex optimization in non-

stationary environments, scalable online kernel learning, and efficient communication-computation

schemes. Related literature in (distributed) online convex optimization in non-stationary

environments has been reviewed above. The related literature in scalable online kernel learn-

ing and efficient communication-computation schemes is referred to the reviews in Chapter

2 and Chapter 3.

Relative to prior art, our contributions are summarized as follows.

• We formulate the decentralized dynamic kernel learning problem as a decentralized

convex optimization problem and solve it under the consensus optimization framework

using ADMM. To the best of our knowledge, this is the first work that solves the

decentralized dynamic kernel learning problem. The key of our solution is to apply RF

mapping, which not only circumvents the curse of dimensionality issue of conventional

kernel methods but also enables consensus on a set of model parameters of fixed size

in the RF space.

• Utilizing both communication-censoring and quantization strategies, we develop the

quantized and communication-censored decentralized dynamic kernel learning via

ADMM (QC-DDKL) algorithm, which achieves desired learning performance given

limited communication resources and energy supply.

• In addition, we analyze the dynamic regret bound of QC-ODKLA. We show that

by carefully tuning the communication censoring parameters such that the censoring

thresholds converge to zero asymptotically in time, QC-DDKL achieves sublinear re-

gretO(
√
T ) over T time slots under mild conditions, which is on the same order as that

of the state-of-the-art online algorithms for the static case with full communication.
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• Finally, we test the performance of our proposed QC-DDKL algorithm on both syn-

thetic and real datasets. The results corroborate that QC-DDKL exhibits attractive

learning performance and communication efficiency. Such salient features make it an

attractive solution for broad applications where decentralized learning from streaming

data with unknown dynamics is at its core.

Organization. The remaining of this chapter is organized as follows. Section 4.2 for-

mulates the decentralized dynamic kernel learning problem and Section 4.3 develops the

quantized and communication-censored decentralized dynamic kernel learning algorithm.

Section 4.4 presents the theoretical results and Section 4.5 reports the numerical tests using

real datasets. Concluding remarks are summarized in Section 4.6.

4.2 Problem Statement

In this chapter, we consider the same network model and communication model described

in Section 1.2. The network with N agents and r arcs is bidirectionally connected with an

underlying undirected communication graph denoted as G = (N ,A). Here the cardinality

of N and A are N and 2r, respectively. Two agents i and j are called as neighbors when

(i, j) ∈ A and, by the symmetry of the network, (j, i) ∈ A. For agent i, its neighbors

within a one-hop communication range are in the set Ni = {j|(j, i) ∈ A}. The cardinality

|Ni| is also known as the degree di of agent i and the degree matrix of the communication

graph is D ∈ RN×N whose ith diagonal element is di,∀i. Define the symmetric adjacency

matrix associated with the communication graph as W ∈ RN×N whose (i, j)th entry is 1

if agent i and j are neighbors or 0 otherwise. Define the unsigned incidence matrix and

the signed incidence matrix of the communication graph as S+ ∈ RN×2r and S− ∈ RN×2r,

respectively. Equations (3.31) associated with this network also apply in this chapter, and
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we repeat them here for reference:

D+W =
1

2
S+S

⊤
+,

D−W =
1

2
S−S

⊤
−.

(4.2)

Consider the case that each agent in the network only has access to its locally observed

sequential data {xi,t, yi,t}, with xi,t ∈ Rd and yi,t ∈ R. In a decentralized setting with un-

known dynamics and privacy concerns, agents seek to collaboratively find the best function

ft, t ∈ [T ] “on the fly” and without exchanging their raw data such that yi,t = ft(xi,t) + ei,t

for {{xi,t, yi,t}}Ni=1, where ei,t is minimized accordingly to certain optimality metric. The

dynamic regret in this case (4.1) is modified to

RegD
T =

N∑
i=1

T∑
t=1

(Li,t(ft(xi,t), yi,t)− Li,t(f
∗
t (xi,t), yi,t)) , (4.3)

where Li,t(·, ·) represents the cost measure at agent i at time t, and f∗t = argminf
∑N

i=1 Li,t

is the best network action at time t.

Suppose that the function of interest ft belongs to the reproducing kernel Hilbert

space (RKHS) H := {f |f(x) =
∑∞

t=1 αtκ(x,xt)} induced by a positive semidefinite kernel

κ(x,xt) : Rd×Rd → R that measures the similarity between x and xt, for all x,xt ∈ X . Due

to the nature of streaming data, ft is estimated using the received data {{(xi,τ , yi,τ )}t−1
τ=1}Ni=1

up till time t. When all data are centrally available, the Representer theorem indicates that

an estimate of the optimal function ft admits

f̂t(x) =

N∑
i=1

t−1∑
τ=1

αi,τκ(xi,τ ,x), (4.4)

where {{αi,τ}t−1
τ=1}Ni=1 are coefficients to be learned at each time instant.
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It is clear that learning αi,τ ’s becomes more and more computationally intense when the

number of streaming data increases. In addition, in a decentralized setting, agents need to

communicate αi,τ ’s and their raw data xi,t with their neighbors to facilitate collaborative

learning, which not only incurs high communication costs but also violates the privacy

concern. RF mapping is thus utilized to tackle these challenges, which approximates (4.4)

as

f̂t(x) = θ⊤
t ϕL(x), (4.5)

where θ ∈ R2L is the new decision vector to be learned in the RF space, and ϕL(x) is the

RF-mapped data given by

ϕL(x) :=

√
1

L
[ϕ(x,ω1), . . . , ϕ(x,ωL)]

⊤, (4.6)

with ϕ(x,ωl) defined as

ϕ(x,ωl) = [cos(ω⊤
l x), sin(ω

⊤
l x)]

⊤, (4.7)

and {ωl}Ll=1 are randomly drawn from pκ(ω), which is the inverse Fourier transform of κ.

For a Gaussian kernel κ(xt,xτ ) = exp(−∥xt − xτ∥22/(2σ2)), we have pκ(ω) ∼ N (0, σ−2I).

In this way, the dynamic regret (4.3) is customized to

RegD
T =

N∑
i=1

T∑
t=1

(Li,t(θi,t;Si,t)− Li,t(θ
∗
t ;Si,t)), (4.8)

where Li,t(θi,t;Si,t) := Li,t(θ
⊤
i,tϕL(xi,t), yi,t), Si,t = (xi,t, yi,t), and θi,t is agent i’s local copy

of θt.

With data coming in a streaming manner and function estimation operated in an online

fashion, the decentralized dynamic kernel learning problem then turns to be the following
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optimization problem:

{θi,t+1}Ni=1 := argmin
{θi}Ni=1

N∑
i=1

Li,t(θi;Si,t)

s.t. θi = θj , ∀(i, j) ∈ A.

(4.9)

At time t, each agent i receives a new data pair Si,t, which incurs a local cost Li,t. Note

that, this cost depends on the new data only. Together with the current local copy θi,t

of θt, the local cost Li,t, and information from their neighbors, i.e., θj,t,∀j ∈ Ni, agent

i then updates the estimate of θi,t+1. In the next section, we first propose an ADMM-

based decentralized dynamic kernel learning algorithm to show how θi,t+1, ∀i, are estimated,

then we utilize the communication-censoring and quantization strategies to improve the

communication efficiency of the proposed algorithm.

4.3 Algorithm Development

In this section, we first utilize ADMM to solve (4.9) and then add the communication-

censoring and quantization techniques to develop a communication efficient solution to

decentralized dynamic kernel learning.

To utilize ADMM, we first introduce an auxiliary variables zij to enforce consensus

constraints such that θi = θj for all arcs (i, j) ∈ A, which converts the optimization

problem (4.9) into

min
{θi,zij}Ni=1

N∑
i=1

Li,t(θi;Si,t)

s.t. θi = zij ,θj = zij , ∀(i, j) ∈ A.

(4.10)

Note that {θi} are separable when {zij} are fixed, and vice versa. The auxiliary variable

zij can be written as a function of θi and then be canceled out. Following [114], we develop
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the dynamic decentralized kernel learning (DDKL) algorithm via ADMM where each agent

updates its local primal variable θi and local dual variable γi by

θi,t+1 := argmin
θi

{
Li,t(θi;Si,t) + ρdi∥θi∥22 + θ⊤

i

[
γi,t − ρ

∑
j∈Ni

(θi,t + θj,t)
]}
, (4.11)

γi,t+1 =γi,t + ρ
∑
j∈Ni

(
θi,t+1 − θj,t+1

)
, (4.12)

where di is the degree of agent i. Interested readers are referred to [114] for detailed

derivation.

The iterative process (4.11) - (4.12) involves frequent communication, thus incurs high

communication cost. To save communication resources, we utilize the communication-

censoring strategy to avoid unnecessary communications and the quantization strategy to

reduce the total number of bits transmitted in the learning process. The developed algo-

rithm is called quantized and communication-censored decentralized dynamic kernel learn-

ing via ADMM (QC-DDKL).

The algorithm development process of QC-DDKL is the same as that of QC-ODKLA

in Chapter 3.3.2. For clarity and consistency purposes, we briefly summarize the process.

First, a new state variable θ̂i,t is introduced for each agent i to record its latest broadcast

primal variable up to time t. Then, the difference between agent i’s updated state θi,t+1

and its previously transmitted state θ̂i,t at time t is calculated:

hi,t = θi,t+1 − θ̂i,t. (4.13)

The magnitude of the state difference hi,t, an indicator of the informativeness of the

local update, is assessed by an evaluation function

Hi,t = ∥hi,t∥2 − ϱt−µ, (4.14)
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where ϱt−µ is a predefined time-dependent threshold function with ϱ > 0 and µ < 1. If

Hi,t ≥ 0, then θi,t+1 is deemed informative, and agent i is allowed to transmit the quantized

difference Q(hi,t) to its neighbors. Instead of quantizing and transmitting θi,t+1, we adopt

the difference-based quantization scheme to facilitate the measurement and analysis of the

impact of quantization [114]. Specifically, for each element hli,t(l = 1, . . . , 2L) within the

range of [u, v), if we restrict the number of transmission bits to be b, then we can evenly

divided the range [u, v) to be q = 2b intervals of equal length ∆ = (v − u)/q. Then the

rounding quantizer Q(·) applied to hli,t outputs

Q(hli,t) = u+

(⌊
hli,t − u

∆

⌋
+

1

2

)
∆, (4.15)

where ⌊·⌋ is the floor operation. In practice, it is not necessary to transmit Q(hli,t); instead,

we can simply transmit the integer k :=

⌊
hl
i,t−u

∆

⌋
using the b bits. Thus, the total number

of bits for agent i to transmit the quantized difference Q(hi,t) to its neighbors is only 2Lb

bits.

The whole communication process thus involves three parts: evaluation, quantization,

and state update. If Hi,t ≥ 0, then θi,t+1 is deemed informative, and agent i is allowed

to transmit a quantized difference Q(hi,t) to its neighbors and updates its local state as

θ̂i,t+1 = θ̂i,t + Q(hi,t). Otherwise, θi,t+1 is censored, agent i sets θ̂i,t+1 = θ̂i,t, and no

information is transmitted. Similarly, upon receiving Q(hj,t) from its neighbor j, agent i

updates the state variables of its neighbor’s as θ̂j,t+1 = θ̂j,t+Q(hj,t), otherwise, θ̂j,t+1 = θ̂j,t.

With the communication censoring rule and the quantization scheme, the primal and
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Algorithm 5 QC-DDKL (run at agent i )

Require: Kernel κ, hyper-parameters (L, ρ, ηt, ϱ, µ), initialize local variables to θi,1 = 0, and γi,1 =

0, θ̂i,1 = Q(θi,1), and θ̂j,1 = Q(θj,1) for all j ∈ Ni.

1: Draw L i.i.d. samples {ωl}Ll=1 from pκ(ω) according to a common random seed.
2: for iterations t = 1, 2, . . . , T do
3: Receive a streaming data (xi,t, yi,t).

4: Construct ϕ(xi,t) via (4.6).

5: Update local primal variable θi,t+1 by solving (4.16).

6: Calculate the difference hi,t via (4.13) and quantize it as Q(hi,t) via (4.15).

7: If (4.14) is nonnegative, transmit Q(hi,t) to neighbors and set θ̂i,t+1 = θ̂i,t + Q(hi,t). Else,

set θ̂i,t+1 = θ̂i,t and do not transmit.

8: If receiving Q(hj,t) from neighbors j, update θ̂j,t+1 = θ̂j,t +Q(hj,t). Else, set θ̂j,t+1 = θ̂j,t.

9: Update local dual variable γi,t+1 via (4.17).
10: end for

dual updates in (4.11) and (4.11) become

θi,t+1 = argmin
θi

{
Li,t(θi;Si,t) + ρ|Ni|∥θi∥22 + θ⊤

i

[
γi,t − ρ

∑
j∈Ni

(θ̂i,t + θ̂j,t)
]}
, (4.16)

γi,t+1 = γi,t + ρ
∑
j∈Ni

(
θ̂i,t+1 − θ̂j,t+1

)
. (4.17)

The QC-DDKL algorithm is summarized Algorithm 5.

4.4 Regret Analysis

In this section, we analyze the dynamic regret bound of QC-DDKL, which is defined in

(4.8). We prove that QC-DDKL achieves the optimal sublinear regret O(
√
T ) for convex

local cost functions Li,t. The following commonly used assumptions are adopted.

Assumption 6. The local cost functions Li,t(θ) are strongly convex with constants mLi,t >

0 such that ∀i ∈ N , ⟨∇Li,t(θ̃a)−∇Li,t(θ̃b), θ̃a− θ̃b⟩ ≥ mLi,t∥θ̃a− θ̃b∥22, for any θ̃a, θ̃b ∈ R2L.

The minimum convexity constant is mL := infi,tmLi,t. The gradients of the local cost

functions are Lipschitz continuous with constants MLi,t > 0,∀ i, t. That is, ∥∇Li,t(θ̃a) −

∇Li,t(θ̃b)∥2 ≤ MLi,t∥θ̃a − θ̃b∥2 for any agent i given any θ̃a, θ̃b ∈ R2L. The maximum
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Lipschitz constant is ML := supi,tMLi,t.

Assumption 6 ensures that the aggregated objective functions Lt :=
∑L

i=1 Li,t are

strongly convex with constant mL and have Lipschitz continuous gradients with constant

ML. The strong convexity also guarantees that there is a unique optimal solution θ∗
t at

every time t, which is bounded by the following standard assumption, together with the

bounded gradient norm to ensure that the losses are bounded.

Assumption 7. The optimal solution θ∗ of (4.10) are bounded. That is ∥θ∗∥2 ≤ Cθ. Also,

the gradient norm is upper bounded by a positive constant G, or equivalently, ∥∂Li,t(θ)∥2 ≤

G, ∀i.

We further assume that the variation of the decentralized kernel learning problem is

sufficiently slow by the following assumptions to guarantee a bounded tracking error.

Assumption 8. The time varying optimal solutions Θ∗
t := [θ∗⊤

t ; . . . ;θ∗⊤
t ] ∈ RN×2L, which

is the stack of N copies of θ∗⊤
t , and their corresponding gradients ∇Lt(Θ

∗
t ) both have

bounded variations, that is, ∥Θ∗
t −Θ∗

t−1∥F ≤ ϵ1 and ∥∇Lt(Θ
∗
t )−∇Lt−1(Θ

∗
t−1)∥F ≤ ϵ2 with

finite positive constants ϵ1 and ϵ2 for all times t.

For analysis, we also concatenate all local copies, state variables, and dual variables

into matrices as Θt = [θ⊤
1,t; . . . ;θ

⊤
N,t] ∈ RN×2L, Θ̂t = [θ̂⊤

1,t; . . . ; θ̂
⊤
N,t] ∈ RN×2L, and Γt =

[γ⊤
1,t; . . . ;γ

⊤
N,t] ∈ RN×2L, respectively. Then the updates (4.16) and (4.17) can be rewritten

in matrix form as

Θt+1 := argmin
Θ

{
Lt(Θ; {Si,t}Ni=1) + ⟨Θ, ρDΘ⟩+ ⟨Θ,Γt − ρ(D+W)Θ̂t⟩

}
, (4.18)

Γt+1 =Γt + ρ(D−W)Θ̂t+1, (4.19)

where D ∈ RN×N is the diagonal matrix associated with the communication graph whose

diagonal elements are dii = |Ni| and 0 elsewhere. W ∈ RN×N is the symmetric adjacency
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matrix associated with the communication graph whose (i, j)th entry is 1 when i and j are

neighbors or 0 otherwise.

We first introduce the following lemma to quantify the upper bound of the asymptotic

tracking error obtained by Algorithm 5. Then, we establish the regret bound for QC-DDKL.

Note that Lemma 6 is adapted from [114] whose focus is on dynamic tracking. Since data

arrives at each node in an online fashion, we thus view it as a dynamic learning problem.

However, we should emphasize the importance of RF mapping. It is only because of the

RF mapping that we can view the fixed-length data-independent parameter θ as the model

parameter to be optimized in the decentralized dynamic tracking problem [114]. Without

RF mapping, the connections of our kernel learning problem with the dynamic optimization

problem in [114] may not be easily established.

Lemma 6. Suppose that assumptions 6 - 8 are satisfied, and the dual variable Γ1 :=

[γ⊤
1,1, . . . ,γ

⊤
N,1] is initialized in the column space of S−S

⊤
−. For the QC-DDKL updates

(4.18) and (4.19), let the penalty parameter ρ satisfies

0 < ρ < min

{
4mL
η1

,
(ν − 1)σ̃2min(S−)

νη3σ2max(S+)
,

(
η1
4

+
η2σ

2
max(S+)

8

)−1(
mL −

η3νM
2
L

σ̃2min(S−)

)}
,

(4.20)

where η1 > 0, η2 > 0, η3 > 0, and ν > 1 are arbitrary constants, mL and ML are the

minimum strong convexity constant of the local cost functions and the maximum Lipschitz

constant of the local gradients, respectively. σmax(S+) and σ̃2min(S−) are the maximum

singular value of the unsigned incidence matrix S+ and the minimum non-zero singular

value of the signed incidence matrix S− of the network, respectively. Then, we have

∥Θt −Θ∗
t ∥F

≤
(√

mL − ρη1
4

)−1

×

[(
max

{√
η2
2
,

√
ρη3
2

}
+ 1
)
× g + ψζ

1−
√
1 + δ

−1 + g +
√
sζ

]
.

(4.21)
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Here

g :=

√
ρϵ1

2
σmax(S+) +

ϵ2√
ρσ̃min(S−)

, (4.22a)

ψ :=

√
(
η3
2

+
δ

ρ
)

ρ2

σ̃2min(S−)

(
σ4max(S+) + σ4max(S−)

)
+ s, (4.22b)

s :=
ρσ4max(S−)

4η1
+
ρσ2max(S+)

2η2
+
σ2max(S−)

2η3
, (4.22c)

ζ := max{
√
Nϱ,

√
2NL

∆

2
}, (4.22d)

δ ≤ min

{
(ν − 1)σ̃2min(S−)

2νσ2max(S+)
− ρη3

2
,
(ρσ2max(S+)

4
+

2νM2
L

σ̃2min(S−)

)−1

×
(
mL − ρη1

4
− ρη2σ

2
max(S+)

8
−

η3νM
2
L

σ̃2min(S−)

)}
. (4.22e)

Lemma 6 shows the convergence of the asymptotic tracking error of Θt, which is in-

fluenced by the network topology (characterized by σmax(S+) and σ̃min(S−)), slopes of the

objective functions (characterized by the Lipschitz continuous gradient constant ML and

the strong convexity constant mL), the variation of the objective functions (characterized

by ϵ1 and ϵ1), as well as the quantization and communication-censoring strategies imple-

mented to improve the communication efficiency (characterized by ϱ and ∆, respectively).

For detailed proof of the tracking error of Θt, interested readers are referred to [114].

Denote f̂Θt(x) = [f̂1,t(x), . . . , f̂N,t(x)]
⊤ and f̂Θ∗

t
(x) = [f̂∗t (x), . . . , f̂

∗
t (x)]

⊤. Accordingly,

we have f̂Θt(x) = ΘtϕL(x) and f̂Θ∗
t
(x) = Θ∗

tϕL(x), respectively. Then, we have

∥f̂Θt(x)− f̂Θ∗
t
(x)∥2 = ∥ΘtϕL(x)−Θ∗

tϕL(x)∥2

≤ ∥Θt −Θ∗
t ∥2∥ϕL(x)∥2

≤ ∥Θt −Θ∗
t ∥2,

(4.23)
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where the second inequality comes from the fact that ∥ϕL(x)∥2 ≤ 1 with the adopted RF

mapping. Therefore, with Lemma 6, we can directly conclude that QC-DDKL is able to

asymptoticly track the error of the the nonlinear functions f̂i,t,∀i, t..

Remark 1. Note that there exists an approximately linear dependence of the asymptotic

tracking error on ζ := max{
√
Nϱ,

√
2NL∆

2 }, which is determined by the communication-

censoring error and the quantization error, see Chapter 3.4 for the derivation of this bound

and proof.

With Lemma 6, we then establish the dynamic regret of our QC-DDKL algorithm in

the following theorem.

Theorem 10. Under the assumptions 6 - 8, and setting ρ = O(1/T ), then the dynamic

regret (4.8) generated by the updates (4.16) and (4.17) satisfies

RegD
T ≤ αGO(

√
T ), (4.24)

where α is an implicit parameter that incorporates the effects of communication censoring

and quantization.

Proof. The proof is relatively straightforward. For notational brevity, we denote

Li,t(θi,t;Si,t) and Li,t(θ
∗
t ;Si,t) by Li,t(θi,t) and Li,t(θ

∗
t ), respectively. The dynamic regret

(4.8) is then rewritten as

RegD
T =

N∑
i=1

T∑
t=1

(Li,t(θi,t;Si,t)− Li,t(θ
∗
t ;Si,t))

=

T∑
t=1

(
N∑
i=1

Li,t(θi,t)−
N∑
i=1

Li,t(θ
∗
t )

)

=
T∑
t=1

(Lt(Θt)− Lt(Θ
∗
t )) ,

(4.25)

where Lt(Θt) :=
∑N

i=1 Li,t(θi,t) and Lt(Θ
∗
t ) :=

∑N
i=1 Li,t(θ

∗
t ).
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Then, by Assumption 6 and Assumption 7, we have

Lt(Θt)− Lt(Θ
∗
t ) ≤ G∥Θt −Θ∗

t ∥F . (4.26)

Summing up both sides of (4.26) from 1 to T , we have the dynamic regret, which is

bounded by

RegD
T =

T∑
t=1

(Lt(Θt)− Lt(Θ
∗
t ))

≤ G

T∑
t=1

∥Θt −Θ∗
t ∥F .

(4.27)

Setting ρ = O(1/T ), we can further upper bound (4.21) by

∥Θt −Θ∗
t ∥F ≤ αO(

1√
T
), (4.28)

where α incorporates the effects of communication censoring and quantization.

Thus the sublinear dynamic regret is achieved:

RegD
T ≤ G

T∑
t=1

∥Θt −Θ∗
t ∥F

≤ GTαO(
1√
T
)

≤ αGO(
√
T ),

(4.29)

which completes the proof. ■
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4.5 Simulation Results

This section evaluates the performance of our proposed QC-DDKL algorithm in regression

tasks for streaming data from real-world datasets.

Datasets. We carry out regression tasks on two datasets available at the UCI machine

learning repository [86]: (i) Tom’s hardware (Ttotal = 9725, d = 96); (ii) Twitter (Ttotal =

98700, d = 77). The detailed description on both datasets is available in Appendix 3.7.2.

Benchmarks. Although RFFDOKL proposed by [58] and the DOKL-ADMM algorithm

developed by [109] are not specified for dynamic kernel learning, we simulate them in this

experiment to show the advantages of DDKL-based algorithm in dynamic kernel learning

problems. Details about those benchmarks are listed below.

• RFFDOKL: A gradient descent based online kernel learning algorithm proposed

by [58].

• DOKL-ADMM:An ADMM based online kernel learning algorithm proposed by [109].

• DDKL: The vanilla decentralized dynamic kernel learning algorithm described by

(4.11) and (4.12),

• CoDDKL: The communication-censored DDKL algorithm that applies communication-

censoring at each agent to evaluate the informativeness of its local primal update.

• QDDKL: The quantized DDKL algorithm that applies difference quantization at

each agent to save communication cost.

Settings and parameter tuning. All experiments are conducted using Matlab 2021

on an Intel CPU @ 3.6 GHz (32 GB RAM) desktop. For each dataset, the Ttotal data

samples are randomly shuffled and then partitioned among N nodes so that each node has

T = Ttotal/N samples. The features are normalized so that all values are between 0 and 1.

The number of random features adopted for RF approximation is L = 50 throughout the

simulations. The Gaussian kernel bandwidth is fined tuned to be σ = 0.5 for both datasets.

96



The regularization parameter λ = 10−3. Using evaluation data, the stepsize ρ and ηt are

fine-tuned via grid-search for each method and each dataset individually. The connected

graph is randomly generated with N = 5 nodes for Tom’s hardware dataset and N = 10

nodes for Twitter dataset. The censoring threshold parameters are ϱ = 0.1, µ = 0.9 for

Twitter data, and ϱ = 0.1, µ = 0.95 for Tom’s hardware data.

The learning performance of Twitter dataset and Tom’s hardware dataset are shown in

Figure 4.1 and Figure 4.2, respectively. For Twitter dataset, the MSE performance versus

time of DDKL (Figure 4.1(a)) is comparable to that of RFFDOKL and DOKL-ADMM,

although not better. This may because the environment from which this dataset is collected

is static. While for Tom’s hardware dataset, the MSE performance versus time of DDKL

(Figure 4.2(a)) is better than that of RFFDOKL and DOKL-ADMM. This also makes sense.

Although both datasets are buzz prediction tasks, Twitter dataset may have less dynamics

than Tom’s hardware because Twitter is a social platform with much more users than the

forum platform Tom’s hardware. The communication efficiency of QC-DDKL in terms of

total bits communicated is better than that of all other benchmarks’. For Figure 4.1 (a)

and (b), we use a 6-bit quantization level. This quantization level is chosen based on Figure

4.1(c) and (d), from which we can see that the 6-bit quantization level achieves comparable

MSE performance as 7-bit or 8-bit quantization while its MSE performance versus total

communication cost is the best. For Figure 4.2 (a) and (b), we use a 5-bit quantization

level, with the same rationale as Twitter dataset.

In summary, the simulation results corroborate that our proposed DDKL-based algo-

rithm can capture the dynamics in online streaming learning tasks while our QC-DDKL

algorithm can achieve the desired communication efficiency.

4.6 Concluding Remarks

This chapter studies the decentralized dynamic kernel learning problem under communi-

cation constraints for multi-agent systems. We utilize the random feature mapping to
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Figure 4.1: Learning performance on Twitter dataset.

formulate the decentralized dynamic kernel learning problem as a decentralized dynamic

convex optimization problem. We then adopt the alternating direction method of mul-

tipliers, a quantization strategy, and a communication censoring strategy to develop a

communication-efficient decentralized dynamic kernel learning algorithm. We prove that by

properly choosing the learning rate, the developed algorithm achieves a sublinear dynamic

regret bound. The learning performance and communication efficiency are demonstrated

via simulations on various real datasets.
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Chapter 5: Deep Kernel Learning Networks: A Unified

Framework of Learning Nonlinear Input-Output Maps

5.1 Introduction

Kernel methods and neural networks (NNs) are both attractive in various learning tasks

such as regression, classification, clustering, as well as reinforcement learning [13, 14]. The

success owes to their abilities to model the (complex) nonlinear relationships behind the

input-output samples {xt, yt}Tt=1, with xt ∈ Rd and yt ∈ R. That is, they are able to find

a function f , which is often nonlinear, by minimizing the total cost R̂ :=
∑T

t=1 ℓ(f(xt), yt).

Here ℓ(f(xt), yt) is a non-negative cost function that measures the discrepancy between the

predicted value f(xt) and the true value yt.

The difference between kernel methods and NNs is how f is represented, which classi-

fies them into two categories, i.e., the non-parametric and parametric methods. As one of

the representatives of non-parametric methods, kernel methods are able to model a highly

nonlinear function f(·) that belongs to a reproducing kernel Hilbert space(RKHS) H. Ac-

cording to the Representer theorem, the optimal solution that minimizes the total cost R̂

has the form f̂κ(x) =
∑T

t=1 αtκ(x,xt), which is linear in the model parameters {αt} [77].

On the other hand, an NN of N layers approximates f(·) as a composite of functions of all

layers: f̂NN(x;W) = hN (WNhN−1(WN−1 · · ·h1(W1a
[0]) · · · )), where a[0] = x, Wn and hn

are the linear and nonlinear operators of the n-th layer, respectively, and W denotes the

ensemble of parameters of all layers [132].

While both NNs and kernel methods are appealing in a wide range of areas, their

strengths and weaknesses are different. Learning algorithms that utilize linearly-parameterized

kernel methods often arise from convex optimization formulations, and hence are amenable
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to theoretical analysis, permit globally optimal parameters, and enjoy rigorous statistical

learning guarantees [77]. However, the curse of dimensionality issue prevents their applica-

tion in large-scale learning scenarios. Moreover, the choice of pre-defined kernel κ also affects

the learning performance of kernel-based learning algorithms. In practice, it is not always

feasible that the selected kernel is suitable for a given task, especially when data are taken

from complex and possibly unknown distributions. On the other hand, the representation

power of NNs can be adjusted by the depth and width of their architecture, as well as the

activation functions. However, optimizing NN models involves solving nonconvex functions;

as a result, they rely much on intuition, heuristics, and trial-and-error, and our theoretical

understanding of them is still incomplete [133]. Though both methods are broadly investi-

gated, there is a lack of explainability on why one outperforms the other in different tasks

and which one should be chosen for various tasks. Some preliminary efforts in seeking the

connection between kernel methods and infinite NNs have been found in [134,135], but such

an infinite network size leads to impractical setting and implementation.

Motivated by these observations, in this chapter, we adopt the random feature (RF)

mapping method to circumvent the curse of dimensionality issue in kernel methods [50],

which also enables us to implement the kernel learning with a finite number of neurons

as a two-layer NN (termed RF-KL), at drastically reduced workload on weight training.

Different from existing work where the representation abilities of RF-KL and NNs are

explored and compared for high degree polynomials [136, 137], this chapter reviews them

from a different angle. We show that RF-KL can be viewed as a special case of NNs with

much improved computational simplicity. We further develop a unified framework with a

low-computation advantage, which leads to the desired trade-off between the capability of

representation power and the control of training overload. We then extend RF-KL to deep

kernel learning (DKL) by performing RF mapping at each layer and training the last output

layer only. To increase the representation power of DKL, we add multiple trainable paths to

connect all hidden layers with the output layer. It leads to a deep kernel learning network

structure with multiple learning paths (DKL-MLP), whose output functional is linear in
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the trainable multi-path model parameters. In this way, DKL-MLP benefits not only from

the depth of DKL but also from the (implicit) flexibility and computational advantage of

RF-based multi-kernel learning.

5.1.1 Related work

To put our work in context, we review prior art under four categories.

Random feature based kernel learning. To mitigate the computational complex-

ity of kernel methods, various techniques are developed, including stochastic approxima-

tion [36, 47], restricting the number of function parameters [38], and approximating the

kernel during training [49–52]. Among them, random feature (RF) mapping methods have

gained popularity thanks to their ability to map the large-scale data into an RF space of

much reduced dimension by approximating the kernel with a fixed (small) number of random

features, which thus circumvents the curse of dimensionality problem [50–52]. Enforcing or-

thogonality on random features can greatly reduce the error in kernel approximation [53,54].

The learning performance of RF-based methods is evaluated in [55,56,138].

Deep kernel learning in kernel space. Deep kernel learning combines the non-parametric

flexibility of kernel methods and the multi-layer nature of DNNs and has found successful

applications in many tasks, such as image annotation problem [139], classification [140,141],

and regression [142]. [141] proposes a deep kernel method that can learn the kernel func-

tion from data using DNN, which appears to be an application of DNN on kernel learning.

[140, 142] utilize the Gaussian process as the base kernel and take features produced by a

DNN to train the resulting model end-to-end. Most of the literature on deep kernel learning

in original kernel space goes no further than adopting the depth architecture of DNN but

does not tackle the curse of dimensionality issue inherent in non-parametric learning. Fur-

ther, they do not explore the theoretical properties such as universality and generalization

properties of functions learned by the deep kernel networks.

Deep kernel learning via random features. To better tackle the learning tasks and
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circumvent the curse of dimensionality issue in traditional kernel methods, a deep struc-

ture is usually incorporated with the RF-based kernel methods [143–145]. In [143], random

features are adopted to address the scalability issue in phone recognition and speech under-

standing tasks by stacking the kernel modules to form a deep architecture. [144] proposes

a deep hybrid NN structure where a trainable layer and a fixed random layer are concate-

nated. In [145], the random Fourier feature layer is proposed as a building block of the

deep architecture. Although initialized from a Gaussian distribution, their random features

are trained end-to-end through back-propagation for the goal of kernel learning, thus the

final optimized RF-related parameters may not follow Gaussian distribution anymore. A

deep semi-random network is proposed in [146], where each layer consists of both train-

able and fixed parameters, which differs from [144]. More recently, generative models and

their extension to a multi-layer structure are employed to jointly solve the learning task

and learn the random Fourier features [147]. Note that among all recent works, the deep

semi-random kernel method shares some similarities with our proposed method. However,

their method requires much more computational resources for their trainable weights to get

updated compared with our method, due to back-propagation through all layers.

5.1.2 Contributions

This chapter proposes a unified framework for nonlinear input-out put maps as well as a

deep kernel learning network with multiple learning paths. Relative to the prior art, our

contributions are summarized as follows.

• We leverage the RF mapping method to implement kernel learning as a two-layer neu-

ral network (termed RF-KL), which enables the development of a unified framework

with low-computation advantage, with a desired trade-off between the capability of

representation power and the control of training overload.

• The RF-KL method is extended to a deep kernel learning (DKL) method by perform-

ing RF mapping at each hidden layer and training the last output layer only, which
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can be seen as a randomized DNN with only the last layer trainable (DKL). Compared

with extreme learning machine [148], the randomized parameters are generated from

specific distributions related to pre-selected kernels. Statistical accuracy guarantees

of standard kernel methods are applicable to the RF-based kernel methods.

• We add multiple trainable paths to DKL to increase its expressiveness and develop the

DKL-MLP method. These paths directly connect the hidden layer with the output

layer in a linear manner and do not change the convexity of the learning problem if the

original DKL is convex. Moreover, updating all trainable parameters in DKL-MLP

does not involve back-propagation, the gradient diminishing problem is thus avoided

and the computational complexity is much reduced compared with [146].

• We provide theoretical analysis in terms of universality to show that the developed

algorithms can represent a wide variety of interesting functions with arbitrarily small

errors and have no bad local minimum, which is lacking in most of the current deep

kernel learning work. In addition, we test the performance of our proposed algorithm

on real datasets to solve both the classification and regression tasks. The results

corroborate that DKL-MLP enjoys both good generalization performance and low

computational complexity.

5.2 Problem Statement

Consider the learning task that aims to find a nonlinear function f ∈ Ω such that yt =

f(xt) + et for the ensemble of data samples {xt, yt}Tt=1, with xt ∈ Rd and yt ∈ R, and the

error term et are minimized accordingly to certain optimality metric. The optimal function

f is obtained by solving the following optimization problem:

min
f∈Ω

R̂(f) :=
1

T

T∑
t=1

ℓ(f(xt), yt) + λ∥f∥2Ω, (5.1)
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where ℓ(·, ·) is a loss function, ∥ · ∥Ω is the norm associated with the function space Ω, and

λ > 0 is a regularization parameter that controls over-fitting. Depending on different tasks,

ℓ(·, ·) can be selected to be the least-squares in regression tasks or the logistic or the hinge

loss in classification tasks.

5.3 A Unified Learning Framework

This section first reviews the standard NN and kernel methods. Then, the random feature

based kernel method is implemented as a two-layer NN, which leads to a unified learning

framework.

5.3.1 Learning with a standard NN

To minimize the total cost in (5.1), a NN of M layers approximates the nonlinear function

f as a composite of functions learned from a cascade of all layers, where each layer consists

of a linear and a nonlinear operator. Take a fully connected two-layer neural network for

illustration, whose structure is given in Figure 5.1. The approximated function f̂NN admits

f̂NN(x;W) = h2(W
[2]h1(W

[1]x+ b[1]) + b[2]). (5.2)

Here {W[m],b[m]} and hm are the linear and nonlinear operator of the m-th layer, respec-

tively. Depending on different applications, hm can be selected to be, e.g., Relu, Sigoid or

Tanh functions, and W = {W[1],W[2],b[1]b[2]} denotes the ensemble of weight matrices

and bias.

The total cost in (5.1) can then be reformulated as

R̂(W) :=
1

T

T∑
t=1

ℓ(f̂NN(xt;W), yt) + λ∥W∥22. (5.3)
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The network parameters are then updated using gradient descent through backpropa-

gation.

Figure 5.1: Structure of a two-layer neural network.

5.3.2 Learning with kernel methods

Alternatively, kernel methods can be utilized to approximate f given the assumption that

f ∈ H. Then, by the Representer theorem [77], the optimal solution of (5.1) admits

f̂κ(x) =
∑T

t=1 αtκ(x,xt) := α⊤κ(x), (5.4)

where κ(x) = [κ(x,x1), . . . , κ(x,xT )]
⊤ with κ(x,xt) measures the similarity between x and

xt, and α = [α1, . . . , αT ]
⊤ ∈ RT is the coefficient vector to be learned.

In this way, the total cost in (5.1) can be reformulated as a function of α:

R̂(α) :=
1

T

T∑
t=1

ℓ(α⊤κ(xt), yt) + λα⊤Kα, (5.5)

where K ∈ RT×T has entry [K]t,t′ = κ(xt,xt′).
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5.3.3 RF-KL implemented using a two-layer NN

The connection of kernel methods and NNs with infinite number of neurons has been found

in [134,135]. However, the direct implementation of kernel methods with a NN is infeasible

in practice due to the infinite network size. To overcome this problem, we adopt the RF

mapping method which enables us to build a unified learning framework of applying kernel

methods over a NN. Specifically, it maps the kernel function κ(x,xt) in (5.4) by the sample

average

κ̂L(x,xt) :=
1

L

L∑
l=1

ϕ(x,ωl)ϕ(xt,ωl), (5.6)

where ϕ(x,ω) = [cos(ω⊤x), sin(ω⊤x)]⊤ or ϕ(x,ω) =
√
2 cos(ω⊤x + b). Here {ωl}Ll=1 are

randomly drawn from pκ(ω), which is the inverse Fourier transform of selected kernel κ, and

b is drawn uniformly from [0, 2π]. For a Gaussian kernel κ(xt,xt′) = exp(∥xt−xt′∥22/(2σ2)),

we have pκ(ω) ∼ N (0, σ−2I).

Then, the function f̂κ in (5.4) can be expressed as

f̂RF(x) =
T∑
t=1

αtϕ
⊤
L (xt)ϕL(x) = θ⊤ϕL(x), (5.7)

where ϕL(x) =
√

1
L [ϕ(x,ω1), . . . , ϕ(x,ωL)]

⊤ and θ :=
∑T

t=1 αtϕL(xt) denotes the new

decision vector to be learned in the RF space. Note that the size of θ is fixed and does not

increase with the number of data samples.

The total cost in (5.1) can then be reformulated as

R̂(θ) : =
1

T

T∑
t=1

ℓ(θ⊤ϕL(xt), yt) + λ∥θ∥22. (5.8)

The algorithm that solves (5.8) is termed as RF-KL. Comparing RF-KL and the standard
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Table 5.1: Unification and comparison of RF-KL and standard NNs

Standard two layer NNs A NN implementation of RF-KL

input x ∈ Rd

first layer a = h1(W
[1]x+ b[1])

second layer y = h2(W
[2]a+ b[2])

activation h1 relu, tanh, or sigmoid cosine function

activation h2 linear or sigmoid

cost function (5.3) (5.8)

parameters
W[1] ∈ Rm1×d, b[1] ∈ Rm1 W[1] = {ωl}Ll=1 ∈ RL×d, b[1] ∈ RL

W[2] ∈ R1×m1 and b[2] ∈ R W[2] = θ⊤ ∈ R1×L, b[2] = 0
m1: # of neurons of first layer L: # of random features

initialization
all parameters are W[1] and b[1] are prefixed

randomly initialized W[2] are randomly initialized

update at update all parameters only update W[2] = θ⊤

kth iteration Wk+1 = Wk − η∇R̂Wk(Wk) θk+1 = θk − η∇R̂θk(θk)

two-layer NN, we notice that with RF mapping, kernel methods play as a special case of

a two-layer NN, where the random features {ω}Ll=1 are equivalent to the weights W[1] of

the first layer, the parameters θ to be learned are equivalent to the weights W[2] of the

second layer, and the activation function of first layer is cosine. Depending on the objective

function (5.8), there may exist a closed-form solution for θ [18]. Otherwise, the model

parameters can be updated through gradient descent. The two approaches are summarized

in Table 5.1 for comparison.

5.3.4 Unification of RF-KL and standard NNs

The above sections naturally lead to a unified framework for RF-based kernel methods and

NNs, where the RF-KL is implemented with a two-layer NN whose network structure is

shown in Figure 5.1.

Remark 1 (Complexity). Note that in RF-KL, the first layer’s weights are fixed and

do not need to be trained. If there does not exist a closed-form solution, we only need

to train the weights in the second/output layer. Therefore, compared to a standard NN

where weights from all layers need to be trained, RF-KL can afford to have a larger network
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size given the same training overload and computation complexity. For distributed learning,

RF-KL drastically saves communication costs in exchanging the training parameters among

network nodes. Moreover, RF-KL does not need back-propagation to train the weights since

they are in the output layer, hence bypassing the diminishing gradient issue.

Remark 2 (Representation power). The simplicity of RF-KL coming from the fixed

weights and the activation function of the first layer is a double-sword. In the extreme case

where only one kernel is applied in a NN with one hidden layer, RF-KL has limited rep-

resentation power and results in degraded learning performance compared to the standard

NN.

Remark 3 (Generalization and unification). Balancing the above two remarks, our

unified framework of RF-KL and NNs enables to achieve a desired trade-off between com-

plexity and representation power, by enlarging the network width with multiple kernels, or

by expanding the network depth with multiple layers.

5.4 Deep Kernel Learning Networks with Multiple Learning

Paths

With RF mapping, a vanilla deep kernel learning (DKL) network of M layers is designed

and modeled by

f̂M (x) = ϑ⊤ϕM−1(· · · (ϕ1(x))), (5.9)

where ϕ1(x) =
√

1
L1

[ϕ(x;ω1
1, b

1
1), . . . , ϕ(x;ω

1
L1
, b1L1

)]⊤ performs RF mapping to the input

and ϕ2(ϕ1(x)) performs RF mapping to ϕ1(x), until the last hidden layer. Each hidden

layer has Lm neurons that do not have to be the same across all layers, and ϑ ∈ RLM−1 are

trainable parameters that connect the last hidden layer and the output layer.

Compared with a standard DNN of the same network structure, DKL enjoys drastically

reduced workload on weight training since ωm
l and bml , ∀l,m, are fixed once the kernel

functions of all layers are fixed, and it only needs to train the last layer’s parameters ϑ.
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However, the simplicity coming from the fixed weights is a double-sword, and DKL may

not have enough representation power for complex learning tasks.

To enhance the learning ability of DKL, we add multiple paths to connect the output

of each hidden layer with the output layer and form the deep kernel learning with multiple

learning paths (DKL-MLP) model. Compared with DKL, DKL-MLP has more trainable

weights resulting from multiple paths. The network structure is shown in Figure 5.2 and

can be modeled as

f̃M (x) = f̂M−1(x) + f̂M−2(x) + · · ·+ f̂1(x) =

M−1∑
m=1

f̂m(x), (5.10)

where f̂m(x) := ϑm⊤ϕm(· · · (ϕ1(x)) with learnable parameters ϑm ∈ RLm associated with

the mth hidden layer.

Remark 4 (Difference between DKL-MLP and deep residual networks). The

multiple-learning-path (MLP) model differs from the deep residual network [149] in that

short cuts in a deep residual network skip learning for some layers to avoid the vanishing

gradient problem. In contrast, we employ ϑ1, . . . ,ϑM−2 as trainable parameter vectors to

enhance the learning performance.

Remark 5 (Difference between DKL-MLP and deep semi-random networks). It

should be noted that our work differs from the deep semi-random network proposed in [146],

which formulates a nonconvex learning problem for the parameter estimation. Moreover,

updating all trainable parameters in DKL-MLP does not involve back-propagation. On the

other hand, [146] requires much more computational resources for their trainable weights

to get updated due to back-propagation through all layers.

5.5 Theoretical Analysis

This section analyzes the generalization performance of RF-KL for both the regression and

binary classification tasks, as well as the university of DKL and DKL-MLP.
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Figure 5.2: A general structure of DKL-MLP with M layers.

Theorem 11. Let λK be the largest eigenvalue of the kernel matrix K in (5.5), and choose

the regularization parameter λ < λK/T so as to control over-fitting. Assume there exists

fH ∈ H, such that for all estimators f ∈ H, E(fH) ≤ E(f), where E(f) := Ep [ℓ(f(x), y)]

is the expected risk to measure the generalization ability of the estimator f . Then, for all

δp ∈ (0, 1) and ∥f∥H ≤ 1, there exists ϵ ∈ (0, 1) such that

• (regression problem) if the number of random features L satisfies

L ≥ 1

λ
(
1

ϵ2
+

2

3ϵ
) log

16dλK
δp

,

then with probability at least 1− δp, the excess risk of E(f̂RF) obtained by RF-KL can

be upper bounded as

E(f̂RF)− E(fH) ≤ 3λ+O( 1√
T
); (5.11)

• (binary classification problem) if the number of random features L satisfies

L ≥ 5

λ
log

16dλK
δp

,
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then with probability at least 1− δp, the excess risk of E(f̂RF) obtained by RF-KL can

be upper bounded as

E(f̂RF)− E(fH) ≤ λ+
√
λ+O(

1√
T
). (5.12)

Here dλK := Tr(K(K+ λT I)−1) is the number of effective degrees of freedom that indicates

the number of independent parameters in a learning problem [83].

The above theorem expresses the trade-off between the computational efficiency and the

statistical efficiency through the regularization parameter λ, effective dimension dλK, and the

number of random features adopted for both regression and classification tasks using plain

RF mapping. We derive the generation bound for the regression task while the bound for the

binary classification task is adapted from [91, Corollary 4]. The bounds of random features

can be further tightened by leveraging the data-dependent sampling strategies [91]. We can

see that to bound the excess risk with a higher probability, we need more random features,

which results in a higher computational complexity. The regularization parameter is usually

determined by the number of training data. In particular, [84] shows that setting λ =

O(1/
√
T ) achieves the minimax risk convergence rate for kernel ridge regression problem.

In general, kernel learning is amenable to theoretical analysis, and its unification with NNs

suggests a viable path to theoretical understanding of NNs.

Theorem 12. (Universal approximation of DKL.) Let C ̸= {0} be any fixed nonempty

subset of Rd, then, for any f ∈ L2(C), δ ∈ (0, 1), and ϵ > 0, there exists a positive integer

LM−1 such that with probability greater than 1− δ, we can find coefficients ϑ ∈ RLM−1 that

satisfy

∥f̂M − f∥L2(C) ≤ ϵ. (5.13)

Proof. The proof relies on mathematic induction. Consider two positive definite kernels:

κ1 : X 2 → R and its RKHS H1 with mapping φ1 : X → H1; and κ2 : H2
1 → R and its
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RKHS H2 with mapping φ2 : H1 → H2. Then, [150] proves κ3 : X 2 → R below is also

positive definite

κ3(x,xt) = κ2(φ1(x), φ1(xt)), (5.14)

and its RKHS mapping is φ3 = φ2 ◦φ1. Therefore, by mathematic induction the composed

kernel κM−1 of M − 1 layers is also positive definite if the deep kernel model is equipped

with positive definite kernels across all layers. Specifically, for Gaussian kernels adopted

in this paper, the composed kernel κM−1 is also a Gaussian kernel and its corresponding

RKHS HM−1 is dense, which indicates that HM−1 is universal [151]. Then, for f ∈ HM−1

and by the mapping equivalence between the Gaussian kernel and its random features, we

conclude that f can be approximated by f̂M with high probability by random choices of

ωm
l from the distribution pκm(ω), ∀l,m. ■

The following theorem shows the universality of (5.10).

Theorem 13. (Universal approximation of DKL-MLP.) Let C ̸= {0} be any fixed nonempty

subset of Rd, then, for any f ∈ L2(C), δ ∈ (0, 1) and ϵ > 0, there exists a positive integer

LΣ = L1 + · · ·+LM−1 such that with probability greater than 1− δ, we can find coefficients

Θ ∈ RLΣ that satisfy

∥f̃M − f∥L2(C) ≤ ϵ, (5.15)

where Θ = [ϑM−1; · · · ;ϑ2;ϑ1] ∈ RLΣ.

Proof. To prove that (5.10) admits universality, we can view it as a multi-kernel learning

problem. Theorem 5.7 in [150] states that the space induced by the summation of two

reproducing kernels is also a RKHS. Hence, by mathematical induction, the summation

of M − 1 reproducing kernels also induces a RKHS. For our model where all kernels are

Gaussian, the composed kernel is also Gaussian, and its corresponding RKHS is dense.

Thus, by the mapping equivalence between the Gaussian kernel and its random Fourier

features, we conclude that f can be approximated by f̃M with high probability by random

choices of ωm
l that follows the distribution pκm(ω), ∀l,m. ■
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Remark 6 (No bad local minimum). With Θ defined in Theorem 13, we can rewrite

(5.10) as

f̃Θ(x) = Θ⊤Φ(x), (5.16)

where Φ(x) = [ϕM−1(· · · (ϕ1(x))); · · · ;ϕ2(ϕ1(x));ϕ1(x)]. Then, (5.1) becomes

min
Θ

R̂(Θ) :=
1

T

T∑
t=1

ℓ(f̃Θ(xt), yt) + λ∥Θ∥22. (5.17)

It is clear that the globally optimal parameters can be found via convex optimization.

Therefore, our model has no bad local minimum by Theorem 13.

5.6 Extension to Distributed Multi-agent Settings

Although this chapter focuses on single-agent learning, it can be easily extended to dis-

tributed learning over multi-agent systems. In fact, implementing RF-KL (5.8) at each

agent with θ being the model parameter that to be collaboratively learned is exactly the

distributed RF-based kernel learning problem (2.16) discussed in Chapter 2. Similarly, for

the DKL-MLP method, each agent i will be equipped with a local cost function 5.17 param-

eterized by parameter Θi, which is the local copy of Θ. Then these agents collaboratively

solve an objective function which is the summation of all local cost functions with the

consensus constraint enforced on neighboring agents, as given by (2.17). ADMM is then

utilized for iterative and distributed implementation, communication censoring and quan-

tization can then be utilized to save communication resources. A similar extension can be

achieved in online and dynamic settings where the data is collected in a streaming manner

with possibly unknown dynamics. Note that for the single-agent case, gradient descent is

utilized to learn the model parameter, which can also be utilized in the distributed case.

For distributed learning with a coordinate center, the central node plays a role to combine

and average the model updates from all other nodes, and we can utilize the censoring rule
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proposed in [10] to save communication. For a fully decentralized network, we can apply

the combine-then-adapt scheme for information aggregation over the network, as proposed

by [58] for decentralized online kernel learning. The communication censoring and quan-

tization strategies can be embedded to increase communication efficiency, and theoretical

analysis needs to be further investigated to ensure convergence. to ensure convergence.

5.7 Experiments

In this section, we conduct experiments to compare DKL-MLP with several benchmarks

using real datasets from UCI repository [86] for regression and classification tasks, detailed

descriptions of all datasets are listed in Table 5.2.

Table 5.2: Datasets details.
Dataset training data test data data dimension task

Twitter 10500 3500 77 regression

Tom’s hardware 8250 2750 96 regression

Adult 31655 13567 103 classification

Sensor 40956 17553 48 classification

Human activity 5514 1838 30 classification

Letter 14000 6000 16 classification

RF-KL is the RF-based kernel method in the structure of a two-layer neural network, as

described by the model (5.7).

DKL is the vanilla RF-based deep kernel learning network described by (5.9).

Deep-semi is the work proposed in [146]. For fair comparison, we utilize Gaussian kernels

and their corresponding random Fourier features instead of the proposed Heaviside step

function.

DNN is the vanilla deep neural network that all parameters need to be trained.

All kernel-based methods use Gaussian kernels with their best kernel bandwidth opti-

mized through grid search for each dataset and for each algorithm, whereas DNN employs

Relu functions for all hidden layers. Depending on the tasks, the output layer equips
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with a sigmoid function, a softmax function, or directly outputs the results. All methods

are trained using gradient descent with their learning rate optimized through grid search

for each dataset for each method. For all tests, the regularization parameter is set to be

λ = 10−4 and we use 75% of the data for training and the remaining data for testing for all

datasets.

In our simulations, since the regression and classification problems are not too compli-

cated with mild-size datasets, we apply 2 hidden layers which are sufficient for good learning

performance. We have conducted extensive simulations on these datasets and selected to

present the results for one regression (Twitter) and one classification (Letter) problems us-

ing figures and the simulations results on the other datasets using tables considering the

simulation results on the other datasets present the similar trend as shown in Figure 5.3.

Specifically, the Twitter dataset consists of T = 14000 samples with xt ∈ R77 being a

feature vector reflecting the number of new interactive authors and the length of discussions

on a given topic, etc., and yt ∈ R representing the average number of active discussions on a

certain topic. The learning task is to predict the popularity of these topics. Letter dataset

consists of T = 20000 samples with xt ∈ R16 and yt represents letters from A to Z. The

learning task is to identify the capital letters. RF-KL has 50 neurons for the Twitter dataset

and 200 for the Letter dataset. All other deep networks have 50 neurons in each hidden

layer for the Twitter dataset and 200 neurons in each hidden layer for the Letter dataset.

Figure 5.3 (a) and Figure 5.3 (b) show that eventually DNN and Deep-semi methods perform

better than the other methods, which makes sense. Take the Twitter dataset as an example,

Deep-semi has 6400 parameters and DNN has 6501 trainable parameters, while DKL-MLP

only has 100 trainable parameters. Also, DKL-MLP performs better than DKL and RF-KL

since the latter two only have 50 trainable parameters, respectively. The running time of

all algorithms on the two datasets is presented in Figure 5.3 (c) and Figure 5.3 (d), and

suggests that RF-based kernel methods enjoy low complexity. Simulation results on the

other datasets are listed in Tables 5.3 5.6. These experimental results corroborate that

DKL-MLP achieves a good trade-off of learning performance and computational complexity
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compared with the benchmark methods. Note that if the training resource is limited, DNN

and Deep-semi methods may not be able to train a large model and their representation

power would degrade. On the other hand, if the training time is limited, which means DNN

and Deep-semi methods may not have enough time to converge, their learning performance

will also be affected.
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(a) MSE on Twitter dataset.

0 200 400
iteration

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

RF-KL
DKL
DKL-MLP
Deep-semi
DNN

(b) Accuracy on Letter dataset.

(c) Run time on Twitter dataset. (d) Run time on Letter dataset.

Figure 5.3: Performance comparison.
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Table 5.3: Performance comparison on Tom’s hardware.

Algorithms network structure # parameters MSE (10−4) running time (s)

RF-KL
L = 100 100 1.94 14.92
L = 200 200 1.61 33.01

DKL
L1 = L2 = 100 100 1.86 16.94
L1 = L2 = 200 200 1.80 34.09

DKL-MLP
L1 = L2 = 100 200 1.68 35.07
L1 = L2 = 200 400 1.54 67.9

Deep-semi L1 = L2 = 100 19700 1.17 729.59

DNN L1 = L2 = 25 3101 0.8 208

Table 5.4: Performance comparison on Sensor dataset.

Algorithms network structure # parameters accuracy (%) running time (s)

RF-KL
L = 200 200 90.83 42.4
L = 400 400 93.27 61.7

DKL
L1 = L2 = 200 200 90.3 43.45
L1 = L2 = 400 400 93.52 58.59

DKL-MLP
L1 = L2 = 200 400 94.41 60.86
L1 = L2 = 400 800 96.09 97.12

Deep-semi
L1 = L2 = 20 1380 75.81 81.59
L1 = L2 = 200 15400 97.07 599

Table 5.5: Performance comparison on Adult dataset.

Algorithms network structure # parameters accuracy (%) running time (s)

RF-KL
L = 100 100 73.66 8.86
L = 500 500 75.1 32.92

DKL
L1 = L2 = 100 100 73.14 9.42
L1 = L2 = 500 500 74.45 33.58

DKL-MLP
L1 = L2 = 100 200 75.1 16.27
L1 = L2 = 500 1000 76.31 63.65

Deep-semi L1 = L2 = 100 20400 79.51 439.09

DNN L1 = L2 = 100 20601 79.98 391.89

5.8 Conclusion

In this chapter, we first build a unified framework of kernel learning and neural network by

leveraging the random feature mapping method, where kernel methods can be implemented
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Table 5.6: Performance comparison on Human activity dataset.

Algorithms network structure # parameters accuracy (%) running time (s)

RF-KL
L = 10 10 95.13 0.15
L = 20 20 97.48 0.19

DKL
L1 = L2 = 10 10 94.37 0.15
L1 = L2 = 20 20 97.99 0.19

DKL-MLP
L1 = L2 = 10 20 97.3 0.21
L1 = L2 = 20 40 98.46 0.25

Deep-semi L1 = L2 = 10 410 98.89 0.73

DNN L1 = L2 = 10 431 98.92 1.07

using the same neural network structure. We then develop a deep kernel learning network

with multiple learning paths. Leveraging the theory from traditional kernel methods, we

prove that our proposed deep kernel learning networks admit universality. The learnability

of our method can be improved by the trainable paths and the computational complexity

is greatly reduced via random feature mapping. It should be noted that the multiple-

learning-path scheme can also be applied to other deep networks such as deep extreme

learning machines and deep neural networks.
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Chapter 6: Summary and Future Research Directions

This chapter summarizes the research problems investigated in the present dissertation and

proposes some potential research directions highly related to this dissertation.

6.1 Summary

This dissertation mainly tackles the communication efficiency problem in distributed learn-

ing over multi-agent systems, as well as makes the first step to bridge the gap between

non-parametric kernel methods and neural networks. To summarize, our efforts are de-

voted to solving the following problems.

P1: How to develop distributed kernel learning algorithms under the consensus optimiza-

tion framework that do not involve raw data transmission?

P2: How to ensure convergence/generalization performance as well as communication ef-

ficiency of the developed distributed algorithms?

P3: How should the distributed kernel algorithms developed for P1 be adapted to cope

with online streaming data as well as streaming data with unknown dynamics?

P4: Can communication efficiency still be guaranteed at almost no cost of the learning

performance for the online setting?

P5: What are the differences and connections between kernel methods and neural net-

works? Can they be combined to obtain a more powerful version that inherits the

advantages of both methods while bypassing the disadvantages of them?

To solve these problems, we mainly utilize the following tools.
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Table 6.1: Dissertation summary
Chapter Problems Tools Algorithms Theoretical analysis

2 P1, P2 T1, T2, T3 DKLA, COKE Convergence, generalization

3 P3, P4 T1, T3, T4, T5 ODKLA, QC-ODKLA Static regret

4 P3, P4 T1, T2, T3, T4 DDKL, QC-DDKL Dynamic regret

5 P5 T1, T6 DKL, DKL-MLP Universal approximation

T1: Random feature mapping: approximates kernel functions in the original data space

to a random feature space.

T2: Alternating direction method of multipliers: a distributed implementation for consen-

sus optimization problems with fast convergence rate.

T3: Communication-censoring strategy: evaluates if a message is informative enough to

be transmitted.

T4: Quantization strategy: restricts the total number of bits transmitted in the learning

process.

T5: Linearized alternating direction method of multipliers: a computation-light distributed

implementation for consensus optimization problems.

T6: Multiple-learning-paths scheme: adds flexibility and representation power for deep

kernel methods.

Table 6.1 summarizes the corresponding tools utilized for the research problems, the

developed algorithms, and the theoretical foundations backing these algorithms.

6.2 Future Research Directions

Moving forward, we would like to investigate the following directions that are closely related

to our current research.

• Designing state-dependent censoring rules. The simulation results in Chapter 2

- 4 validate the communication reduction of communication censoring rules. However,
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how to adaptively design the censoring parameters remains a question. Based on our

previous research on event-trigger control [19,20] and the state-dependent rule devised

in [10], we propose to utilize the Lyapunov function related with the loss functions

and state information of the networked agents to develop stat-dependent censoring

rules so that agents can adaptively adjust their censoring parameters according to

the network structure and their local information. Direct designing these rules for

conventional ADMM may be challenging, we will start from linearized ADMM where

a closed-form solution for the primal update exists and shows some similarities with

the gradient descent method in [10].

• Adopting dynamic linearized ADMM. Chapter 4 utilizes conventional ADMM

to solve the dynamic kernel learning problem, and it requires more computation than

linearized ADMM since conventional ADMM needs to solve optimization problems

for the primal update at each iteration. To reduce the computational complexity for

real-time implementation, a direct way would be to implement the dynamic linearized

ADMM.

• Interpreting DNNs using kernel methods. Chapter 5 proposes a unified learning

framework for kernel methods and neural networks and proposes a DKL-MLP method

to combine the benefits of both methods by adding multiple learning paths to the DKL

structure. The combination should not be unique, and we would like to investigate

other combination possibilities, such as implementing random feature mapping in the

first several layers and training the remaining hidden layers using backpropagation

as in standard neural networks. The DKL-MLP method proposed in Chapter 5 can

be viewed as a deep multiple kernel learning problem, and if trained by the gradient

descent method, we can use the algorithm unrolling technique to reveal the connection

between it and the iterative algorithms used in signal processing. As such, it may also

shed light on the interpretability of DNNs.

• Going from kernel methods to Gaussian process and beyond.The RF-based
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distributed kernel methods proposed in this dissertation are efficient for distributed

learning. However, they are not able to quantify uncertainty in learning problems.

Uncertainty is important in machine learning since we need to know how confident

we can be about a decision with the change environment and observations. Many

applications of machine learning depend on accurate estimation of the uncertainty,

such as forecasting, decision making, learning from limit, noisy, and missing data, as

well as automating scientific modeling and experiment design. We propose to utilize

the RF method for scalable distributed Gaussian process learning and to quantify

the uncertainty of the function estimates. Some preliminary research on RF-based

Gaussian process and distributed Gaussian process are available in [152, 153]. Going

beyond, we can also explore the connections between DNNs and the deep Gaussian

process to interpret DNNs [154]. Another direction can be devising distributed deep

Gaussian process for function estimation. Apart from that, uncertainty-aware multi-

agent reinforcement learning is also worth investigating [155,156].
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