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Abstract

EFFICIENT DATA SPLITTING METHODS FOR MACHINE LEARNING MODEL FIT-
TING

Redouane Betrouni, PhD

George Mason University, 2021

Dissertation Director: Dr. Edward J. Wegman

In this PhD dissertation, I developed a new sampling method which I named PCA-

Systematic sampling as an improved stratified systematic sampling to optimally split data

into training and testing subsets. This procedure will help machine learning algorithms

avoid the classical mistake of overfitting. While it might be slightly more computationally

expensive, it makes up for this apparent weakness by having a better estimate of test error

and improving prediction accuracy. The dissertation provides computational and theoretical

evidence to support the benefits of the new proposed sampling design over traditional

approaches. Examples and mathematical evidence are presented to show how traditional

splitting methods such as simple random sampling to partition data can distort relationship

between important covariates and the variable of interest for the test dataset and as a

consequence leads to either poor model construction or poor model fitting assessment.

In this dissertation, I create a sampling utility score index as a data quality control tool

to assess data splits or sampling designs. This dissertation demonstrates the benefits of

my sampling utility index as its mathematical property is derived and studied, sensitivity

analysis is conducted to investigate how it behaves under different scenarios of sampling

designs.



Finally, this dissertation contributes to the field of survey sampling and predictive modeling

when the new developed methodology is implemented on three distinct publicly available

datasets. I show in this dissertation how this new scheme of new sampling design developed

and named PCA-Systematic can be used as an application on real surveys data like the

Annual Survey of Public Employment and Payroll (ASPEP) and the American Housing

Survey (AHS) data. I provide evidence of improvement in estimates with comparison to the

traditional methods of systematic sampling. My novel PCA-Stratified-Systematic sampling

method outperforms current and best state of the art sampling methods for the classification

problem of Fisher IRIS data.



Chapter 1: Introduction

This chapter begins with an overview of data splitting. It includes the methodology and its

purpose for both machine learning and statistical modeling. This chapter reveals a crucial

area of improvement for data splitting. Treating data splitting as a typical sampling prob-

lem will make it more efficient. Using the theory of sampling and best practices to create

the training data set will help mitigate overfitting and improve the fitted model’s prediction

accuracy. The typical use of simple random sampling for data splitting may distort impor-

tant information among the variables for the training data, test data, or validation data

(that is, the relationship between the target variable Y and the set of features X if random

data splitting is conducted poorly). Consequently, this will affect the fitted model’s quality,

the tuned model, and the estimation of the selected model’s test error. Thus, this chapter

presents diverse sampling designs and how and when to pick one strategy over another,

which essentially depends on the data structure.

This chapter describes Principal Component Analysis (PCA) at the end, a critical compo-

nent for my novel PCA-Systematic sampling design.

1.1 Data Splitting

Data splitting is used in statistical analyses, mainly in applications of variance and bias

estimation of estimators. For example, the Jackknife resampling technique, which was

initially developed in 1949 by Quenouille, Maurice H, then later in 1956 enhanced to correct

for bias [28,29] is one variant of splitting data using either Delete-one Jackknife or Delete-k

Jackknife [12]. These two methods of data splitting are operationally equivalent in terms of

implementation to cross-validation using either Leave-One-Out Cross-Validation (LOOCV)

or k-Fold Cross-Validation (k-fold CV), respectively [15]. In 1958 John Tukey made a

1



substantial adjustment to the technique, made it more generalizable, and coined the term

Jackknife. The technique rendered variance estimation of estimators plausible even when

a direct mathematical formula is hard to derive algebraically unless one uses numerical

approximations [38]. The other primary application of data splitting is in machine learning

for fitting models and error assessment of models. Data splitting is used as a strategy for

algorithm selection and estimation of risk associated with selecting a particular algorithm

[3]. There are two fundamental tasks needed while fitting a machine learning algorithm

� Model selection which involves estimating the performance of different candidate mod-

els in order to choose the best one [14]. Data splitting is one method that can be used

to accomplish this task. The portion of the data that is used for this purpose is known

as a validation set.

� Model assessment involves the task of estimating the prediction error (generalization

error) of the selected final model in the step of model selection above [14].

There are several tools to perform this task, but one way to achieve this task is to use

data splitting. This involves reserving a portion of data that is unseen by the fitted model

(data that has not been used while fitting and selecting the model). This portion of data

is known as test data. This task is done independently from the fit, which means it is done

at the beginning before the model is fitted.

Data splitting is an essential tool needed to estimate the test error associated with fit-

ting a given statistical learning model. The test data set can be used to evaluate model

performance. Another essential purpose of data splitting is to determine the appropriate

level of model complexity, such as determining the optimum number of parameters or tun-

ing parameters in the case of fitting parametric models.

Data splitting in machine learning is necessary because data used in estimation or fitting

a model cannot provide fair overall assessments of the sampling error inherent in the model.

Hence, there is a need to separate the fitting from the error assessment. To meet this goal

non-overlapping sets of the data are necessary.
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Numerous papers have been published in the past to show data splitting as a method

to determine the validity of statistical models. For example, Ronald D. Snee in 1977, in

the context of multiple linear regression and ridge regression models, compared multiple

validation methods with data splitting in which a portion of the data is used to estimate

the model coefficients, and the remainder of the data is used to measure the prediction

accuracy of the model [35]. He recommended using The DUPLEX algorithm, developed

by R. W. Kennard [27, 35], for dividing the data into the estimation set and prediction set

when there is no obvious variable such as time to use as a basis to split the data. [35]

In Ronald D. Snee work, data splitting based on the DUPLEX algorithm was compared

with three methods of validation that were based on comparison of the model prediction

of ŷ and coefficients β̂i with an assumed physical theoretical model, collection of new data

to check model prediction and comparison of results with theoretical models and simulated

data. [35]

Picard and Cook examined the principals of data splitting in the context of ordinary

least regression (OLS) models [26]. They discussed the topics of how many observations nV

should be allocated for assessment and model validation. They established a mathematical

framework that can quantify the trade-off between prediction and validation as a function

of nV and nE , where nE is the number of observations allocated for parameters estimation

and model development. They were able to devise a useful criterion that can serve a device

to be used as an objective function to be optimized. In their work, they mimicked the Cp

statistic developed by C. L. Mallows [22] and using the integrated mean squared (IMSE)

error of prediction of future observations [26]. Cp Statistic is an alternative criterion used

to assess the fit of multiple linear regression model similar to the adjusted coefficient of

determination R2 as it addresses the issue of overfitting by penalizing models with large

number of predictors p and favors less complex models.

In Picard and Cook work, the predicted value of an unseen future observation is com-

puted using the fitted model [26].

3



LeBaron and Weigend found that the impact of model accuracy and performance can be

significantly affected by the data splitting mechanism [19]. They evaluated data splits us-

ing residual bootstrapping, which assumes that the model is correctly specified and that

the residuals are independent and identically distributed but not necessarily normally dis-

tributed. Their work was conducted in the context of Artificial Neural Network (ANN)

models for financial time series model fitting using the New York Stock Exchange data.

They found that factors needed to construct models such as feature selection, random

weight initialization, and choice of the number of hidden units might not have the same

impact the data splitting has on the fitted model’s quality. Data splitting affect the vari-

ability in model performance substantially.

Having random noise in the training examples can lead to overfitting [24]. Overfitting

can occur when a given machine learning model fits the training data so well, but the model

performs poorly outside the training data; this can be caused if the model is to try to fit

every training data, including noisy data. If the dataset split is poorly implemented, the

data subsets will not sufficiently cover the data, and especially the variance will increase

[24,30].

There are different ways of splitting a dataset into training and validation sets:

� One time split into training and testing sets, this is known as the Holdout Method.

� Multiple times (Cross-validation), very similar to Jackknife operationally.

� 3-way splitting into training, testing, and validating, this is popular in ANN.

1. The training set is basically to train the model; this is the first stage of the 2-way

and 3-way splitting.

2. The testing set is a reserved data portion to tune parameters for parametric

learners.

4



3. The validation set is reserved for pure assessment for the model to be selected

in the testing stage above; this portion of data is untouched by model fitting in

the first stage or model pruning or tuning in the second stage.

When data exist with abundance, it is best to choose a 3-way split by randomly dividing

the data into three parts to form the training, validation, and testing data portions. It is

a difficult task, however, to achieve an optimum way to allocate sample sizes to the three

parts as this depends on the signal-to-noise ratio that will end up in each portion [14].

There are other alternative methods to approximate the validation step of data splitting

[14]. These methods use analytical expressions to be used for model selection and estimate

the selected model’s test error. These methods are based on the maximum likelihood

concept. In a nutshell, the goal is to maximize the probability of the assumed model

condition on the observed training data.

The mathematical expression penalizes having a large number of parameters to favor

less complex models. These methods are considered in-sample prediction error estimates,

which can be over-optimistic compared to the out-of-sample test error estimates that can

be provided by data splitting.

These methods include but not limited to

1. Mallow’s Cp metric was developed in 1973 by Colin Lingwood Mallows [22] for model

selection and to evaluate multiple linear regression models that are fit using ordinary

least squares as an objective function. The Cp metric is defined to be

Cp =
1

σ̂2
RSSp −N + 2p

2. Akaike information criterion (AIC) a statistic developed by Hirotugu Akaike in 1974

[1]. The value of the AIC for the model is the following

AIC = 2λ− 2 log(L̂)

5



where λ is the number of estimated parameters in the model and L̂ is the maximum

likelihood function for the model.

AIC explicitly includes the number of parameters to be fitted in the model. Models

with lower AIC are preferable. For smaller sample sizes, there is a higher risk that

AIC will select models that are too complex with a large number of parameters, which

leads to the issue of overfitting. It is suggested in this case to use a modified version

of AIC [8]; AICc given by

AICc = AIC +
2λ2 + 2λ

N − λ− 1

3. Bayesian information criterion (BIC) was developed for model selection using the

Bayesian approach. This statistic (divided by 2) is equal to the SC( Schwarz criterion),

which was developed in 1978 by Gideon E. Schwartz [34]. A model with higher

posterior distribution would be selected with this strategy. The standard formula for

BIC is

BIC = λ log(N) − 2 log(L̂)

where λ is the number of estimated parameters in the model, L̂ is the maximum

likelihood function for the model and N is the number of data points used by the

fitted model.

BIC imposes a heavier penalty on complexity than AIC.

As N → ∞, BIC outperforms AIC because most likely BIC will select the correct

model [14] for larger sample sizes while AIC tends to select models that are too

complex [14].

When N is relatively small, BIC favors models that are too simple (with low numbers

of parameters) [14].

4. The minimum description length (MDL)
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Vapnik–Chervonenkis theory was developed by Vladimir Vapnik and Alexey Chervo-

nenkis during 1960-1990, according to the Vapnik’s structural risk minimization (SRM)

principle, which stated that to achieve the smallest bound on the test error by control-

ling (minimizing) the number of training errors, the machine (the set or functions) with

the smallest VC dimension should he used.[40]. This approach circumvents the issue of

overfitting and strikes a balance between having a model that is too specific or too general.

1.2 Data Splitting a Sampling Problem

Subject matter experts and researchers are currently looking at ways to improve the data

splitting mechanism. Data splitting has a significant impact on model performance [44]

therefore appropriate methods of data splitting needs to be conducted.

The problem of appropriate data splitting can be handled as a statistical sampling problem

[30].

Numerous studies have been done to investigate whether different data splitting methods

can lead to an improvement in terms of bias and variance reduction. For example, Wu et

al. in 2013 have evaluated the performance of three different data splitting methods when

fitting an ANN model on three real datasets [44]. Earlier, Reitermanovà in 2010 presented a

survey of existing splitting methods applicable to the data splitting problem [30]. Selecting

a particular sampling design when performing data splitting can have major implications

on the quality of the data subsets resulted from the 3-way partitioning of the data into

training, testing, and validating during ANN model development [23].

May et al. in 2010 developed a novel approach to stratified sampling based on Neyman

sampling of the self-organizing map (SOM) that can reliably generate high-quality data

subsets used for training, testing, and validating ANN model [23].

This dissertation does not use any model assumption to develop an optimal validation

dataset. It addresses the issue of data splitting in machine learning as an appropriate sam-

pling problem to achieve efficient data splitting. The aim is to use sampling theory and
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best practices to form the training data.

The focus in this dissertation is for the training data portion to conserve the multivariate

probability distribution that exists between the features and the target variable over all

instances after the data split.

The core of efficient data splitting is to enable the best practices of sampling designs. Treat-

ing the training data as the best possible sample representing the full available data is a

fundamental step towards achieving the best model fit for machine learning.

This dissertation shows that fitting a given machine learning using training data created

by this strategy will minimize the risk of overfitting and increase the fitted model’s prediction

accuracy. This is demonstrated through the simulation work in Chapter 3 and real data

examples in Chapter 4.

In sampling, they generally want each subset to have three main fundamental properties:

� Randomness is the first requirement. For example, in survey sampling, the ideal goal is

to produce the smallest possible sample that allows the investigator to make inferences

about the population. This is done by taking a sample from the population of the

study. Usually, the population is quite large, and conducting an entire census which

consists of selecting every member of the population is costly and time-consuming.

Survey statisticians will design a probability sample such that every unit has a known,

non-zero probability of selection. The process of selection is made random. If the

selection of a sample denoted by S from a given population denoted by Ω is not

random, this is referred to as a non-probability sample. It can be shown that this could

potentially lead to serious bias in any scientific research study; without randomness,

results would not be reliable, and most likely, the conclusion inferred from the sample

will be misleading.

� Representativeness of the actual population. Following basic principles of sampling

theory to ensure that the sample units are diverse like the general population. Upon

doing this, estimates of the target variable parameters such as the mean, median, or
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quantiles using the sample will be similar and close enough to the entire population’s

target variable parameters.

� Replicability, reproducible randomization, refers to the idea that the selected random

sample taken from the population can be reproduced again. This way, reproducible

research can be achieved, and results can be repeated. For example, in the R soft-

ware package, the set.seed() function can be used to perform this task by setting

a non-random seed. The obtained random sample during simulation work can be

identically replicated if the same seed is used prior to simulation. This will provide

other researchers to independently replicate the randomization work to achieve similar

results.

There are various ways of doing this and multiple sampling designs to choose from.

Depending on the distribution of the population data, different designs should be selected.

1. Simple random sampling with replacement

Simple random sampling with replacement (SRSWR) is the simplest form of selecting a

probability sample [4]. In an SRSWR of size n from a population of size N , each unit must

have the same probability of being included in the sample. Units can be selected more

than once. In theory, a unit can be selected anywhere between 0 to n times. There are Nn

possibilities to select a sample of size n from a population of size N , this form of sampling

is mathematically attractive because the observed values that get sampled will result in an

iid (independent and identically distributed) sample; however, this is not practical in the

context of surveys, and other disciplines since the information gained by repeating a unit

more than once do not add any value or contribute any additional information about the

population.

2. Simple random sampling without replacement.

Simple random sampling without replacement (SRSWOR) is the second most simple

form of selecting a probability sample [4]. To select an SRSWOR sample of size n from a
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population of size N , each unit in the population must have an equal inclusion probability;

this means that all units in the population will have the same chance to be included in the

sample. Furthermore, once a unit is selected, it can not be drawn again. Typically the

selection is made “without replacement” to avoid choosing any member of the population

more than once. The simple random sampling model without replacement can be repre-

sented with an urn model where N balls are numbered 1 through N are placed in an urn,

and the process involves randomly shuffling the balls inside the urn and drawing n balls but

one a time. If a ball is selected, it will not be placed back in the urn.

There are
(
N
n

)
possible subsets that can be selected with this sampling procedure. Sev-

eral algorithms can be used to design an SRSWOR sample. These randomization processes

can be handled manually if the population is finite and relatively small, but it can be im-

plemented through programming and using a discrete or continuous uniform distribution,

which is a special probability distribution that plays an important role in simulation. The

random events generated by the uniform distribution have an equal probability of occur-

rence. One can number the units in the population from 1 to N or equivalently label the

elements in the population Ω = {ω1, . . . , ωn} and associate a randomly generated uniform

number between 0 and 1 to each element, then sort the generated numbers in ascending

or descending order and keep the first n numbers in the sorted list, at the end select their

associated (corresponding) units, because with the uniform distribution over the interval

[0, 1] all subintervals of [0,1] with equal lengths have the same probability measure. This

algorithm will ensure that each unit has the same probability of inclusion.

With SRSWOR sampling design, every one of the
(
N
n

)
distinct samples has an equal

chance of being drawn.

3. Stratified sampling.

In Stratified sampling the population is partitioned into L subpopulations called strata.

These strata form a partition of the population; means that they are disjoints; they do not

overlap, and their union is equal to the full population. The population Ω of size N units
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is divided into subpopulations Ω1, . . . ,ΩL of N1, . . . , NL sizes respectively. so that

N1 + . . . + NL = N

and

Ω1 ∪ . . . ∪ ΩL = Ω.

A probability sample is selected from each stratum. The selections of the L samples are

independent of each other. Combining the L samples by taking their union creates a sample

known as a stratified random sample.

Depending on the population, without stratification choosing simple random sampling

procedures with and without replacement might lead to a bad sample as it might not be

representative or does not reflect the diversity of the population if it misses an important

group in the population. If stratification is done properly by dividing a heterogeneous

population into layers that are internally homogeneous, then a stratified sample will have

better precision in the estimates of characteristics of the whole population compared to a

simple random sample.

4. Cluster sampling.

Oftentimes a reliable list of all elements in the population is not available, or construct-

ing such a list is prohibitively expensive. In these situations, sampling plans such as simple

random sampling and stratified sampling methods would not work because these methods

of sampling require direct access to the sampling units. Cluster sampling is a sampling plan

that can be used in this situation because even though a complete list that identifies each

and every population unit does not exist, a natural grouping of the population units into

groups or clusters often can easily be defined. Initially, cluster sampling was developed

in survey methodology mainly to reduce the cost for demographic surveys where the popu-

lation elements are scattered over a wide geographic area. For example, in order to select

a sample of households in a given city for purposes to investigate the utilization of public

transportation services among residents of the city and if there are administrative records
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or directory that list every household in the city, then it can serve as a sampling frame

from which the sample can be selected. However, if such a list does not exist, it would be

extremely costly to develop such a sampling frame.

It might be feasible, however, to construct a list of city blocks. The list of city blocks is

used as the sampling frame. Each city block is a cluster of households, and the desired sam-

ple of households can be randomly selected by first taking a probability sample of clusters

(city blocks), and every household in the selected block is surveyed and made part of the

sample. This is known as a one-stage cluster sampling; if instead, a subset of households

is selected in the selected block, this is known as a two-stage cluster sample. Generally,

cluster sampling can have multiple stages. Each element of the population belongs to one

and only one cluster.

Cluster sampling works best when the clusters and mutually homogenous but inter-

nally heterogeneous with respect to the variable(s) of interest. In other words, an optimum

cluster sample is obtained when the variance of the target variable y is small between the

clusters but large within the clusters.

5. Multi-Stage sampling.

Cluster sampling often requires multiple stages of selection to reduce cost. The selection

of the units is done in various stages. For example, The Centers for Disease Control and

Prevention (CDC) conducted an epidemiologic research study in April of 2020 to estimate

SARS-CoV-2 prevalence among frontline healthcare personnel who care for COVID-19 pa-

tients. [36] The sampling design involves three stages;

(a) Twelve states participated in the survey

(b) For each participating state, a specified number of enrolled hospitals were selected

(c) Finally, for each hospital, 250 medical workers were sampled

6. Systematic sampling.

Figure 1.1 describes the algorithm of random selection using systematic sampling. In

systematic random sampling, a random start and a sampling interval is determined based
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Figure 1.1: Diagram Describing Simple Systematic Sampling.

on the desired sample size. The choice of the starting point is the only random aspect of

systematic random sampling. If the starting point is chosen uniformly from the first N
n

elements, then every unit in the population has the same probability of inclusion in the

sample.

Suppose that N elements in the population are numbered 1 to N in some order. Suppose

that the desired sample size in n. Without loss of generality we can assume that N is a

multiple of n, that is N can be expressed as the product of n and some integer k

N = nk.

k is known as the sampling interval and basically calculated by dividing the population size

N by the desired sample size n.
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The steps needed to draw a systematic sample of size n are as follows:

(a) select a random number between 1 and k.

(b) if the selected number in step 1 is i then the first ith element in the list is selected to

be part of the sample.

(c) select every kth unit after the ith unit to be part of the sample.

In the end, the sample is the list with the following indices:

i, i + k, . . . , i + (n− 1)k

The current sampling methodology described above is known as linear systematic sampling

(LSS); it was first introduced by Madow, W.G. and Madow, L. H. in 1944 [21]. This de-

sign of sampling leads to k systematic samples with each of sample size n assuming the

population size N is a multiple of k, N = nk. Since N is not always a multiple of k, this

methodology will lead to k but different sample sizes. Lahiri suggested circular systematic

sampling (CSS) that will provide a constant sample size and unbiased sample mean [18].

Assume the N population units are arranged to form a circle, select a random number

r , 1 ≤ r ≤ N , then select the rth element in the circle and every kth unit going around the

circle thereafter, once n elements are accumulated stop the selection.

Systematic sampling is equivalent to simple random sampling if the population is ran-

domly ordered, that is; if the numbering in the population is random.

Systematic sampling is operationally convenient and leads to estimators with lower

mean square errors than simple random sampling if the data file is “sorted appropriately”.

Sorting will offer implicit stratification. Stratification will guarantee that the sample do not

misrepresent any groups in the population.

I recommend never to sort the data, but just the index vector for efficiency. Systematic

sampling outperforms simple random sampling if the data file to sample from is prepro-

cessed properly. The pre-process involves a sort by a variable that is highly correlated with
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the key variable of interest. Systematic sampling is related to cluster sampling as it can

be regarded as a special cluster sample, the population is divided into k = N/n possible

systematic samples and a simple random sample of one cluster is randomly chosen.

7. And much more complex sampling designs.

To properly design a sampling strategy that is efficient and at a manageable cost, both strat-

ification and clustering are required elements. The population to sample from is organized

hierarchically before the randomly selected sample is obtained [39]. Complex sampling de-

signs involving multiple stages are necessary to ensure that the sample selected represents

the population. Clustering is needed to reduce cost, and stratification is necessary to in-

crease the precision of the sample. For example, for household surveys in the United States,

such as the American Housing Survey (AHS), the first stage of the sample selection is ac-

complished by dividing the country into counties or groups of contiguous counties known

as PSUs (Primary Sampling Units). The second stage of sampling design involves selecting

the housing units within the selected PSUs in the previous step. The selection is made

systematically after sorting the file geographically for implicit stratification.

Data miners employ random sampling to create only a subset of the entire set of data

of interest. The goal is to reduce the size of the data to be processed when more expensive

algorithms are executed. This strategy is successful as long as the sample is representative.

[37].

Tan et al. [37] argued that this could be achieved if the sample has approximately the

same property (of interest) as the original set of data. For example, if the mean of the data

is the parameter of interest, then a sample is representative if its average is close to that

of the original data [37]. This dissertation provides a novel sampling algorithm that can

preserve the property (of interest) of the original data for the randomly selected sample.

One of the contributions in this dissertation is to use any known characteristic of the

population to ensure that the sample randomly drawn “covers” the variation of the target

variable in the population and also preserves the relationship between all variables. The
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variance-covariance matrix of the sample should resemble the variance-covariance matrix of

the population.

The Frobenius norm, also known as the Hilbert-Schmidt norm, can be used to assess

the quality of a given data split; for example, computing the difference of the two correlation

matrices and evaluating the Frobenius norm of the difference would provide us with useful

information about the data split.

The Frobenius norm for a given matrix A = (aij) is defined as follows

∥A∥F = (
∑
i,j

a2ij)
2

Because the variance is not bounded, I prefer to use the correlations matrix to compute

the Frobenius norm due to the fact that the correlations are bounded between -1 and +1.

So computing the Frobenius norm of the difference of the two correlation matrices and if

the difference is high, then this is an indication that the data split or the sampling scheme

produced a sample that has distorted the relationship between the original features. It

is important to design a sample or a data split that constraints to keep the norm of this

difference to a minimum. Preserving the relationship between the variables is important for

machine learning.

Using the correlation matrices instead of the variance covariance matrix renders compar-

ing data splits unit free and independent of the data. Thus, even if the data is astronomically

large or microscopically small, it would not differ.

1.3 Efficiency Comparison of Systematic Sampling Relative

to Stratified Sampling and Simple Random Sampling

The efficiency of simple systematic sampling designs has been studied by Madow, W.G. and

Madow, L. H. [21] and Cochran [10]. They compared its efficiency with both of stratified

and simple random sampling designs.
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The efficiency of systematic sampling is a function of the population ordering [32]. Sampling

designs that produce unbiased samples are desirable. The Mean Squared Errors of the

different sampling strategies were compared. Sampling designs associated with lower MSE

is the goal. The MSE can be written as the sum of variance and the bias squared. If the bias

is zero then comparing the MSE is equivalent to comparing the variances. If the sampling

designs produce unbiased estimates of the population means then it is sufficient to evaluate

their variances.

Each column in Table 1.1 represents one possible systematic sample. There are k possible

samples; they all contain n units each. The yij notation denotes the jth unit of the ith

systematic sample, which corresponds to the i + (j − 1)k th unit of the population, i =

1, 2, . . . , k and j = 1, 2, . . . , n.

The variance of the systematic sample as derived by Cochran [10] can be expressed as

follows:

var(ȳsys) =

(
N − 1

N

)
S2 − k(n− 1)

N
S2
wsy (1.1)

where S2 is the population variance of y

S2 =
1

N − 1

N∑
i=1

(yi − ȳ)2 (1.2)

and the mean of the population is

ȳ =
1

N

N∑
i=1

yi (1.3)

and S2
wsy is the variation that exist among the units that lie within the same systematic

sample defined by

17



Table 1.1: Layout of the k Systematic Samples

Sample number

1 2 . . . i . . . k

y1 y2 . . . yi . . . yk
yk+1 yk+2 . . . yk+i . . . y2k
...

...
. . .

...
. . .

...
y(n−1)k+1 y(n−1)k+2 . . . y(n−1)k+i . . . ynk

Means ȳ1 ȳ2 . . . ȳi . . . ȳk

S2
wsy =

1

k(n− 1)

k∑
i=1

n∑
j=1

(yij − ȳi.)
2,

where yij = yi+(j−1)k and ȳi. = 1
n

∑n
j=1 yij .

Cochran provided a second expression for the variance of the systematic sample [10], as

it can also be written as follows:

var(ȳsys) =

(
S2

n

)(
N − 1

N

)
[1 + (n− 1)ρw] (1.4)

where ρw is the correlation coefficient between pairs of units that are in the same systematic

sample. ρw is also known as the interclass correlation between the pairs of units that are in

the same systematic sample.

The efficiency of systematic sampling is more prevalent when the population is autocor-

related; that is when two observations yi and yj will be more nearly alike when their indices

i and j are close together in the frame than when they are distant [5].

A third way derived by Cochran [10] for the variance of systematic sample using the
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within strata variation is:

var(ȳsys) =

(
S2
wst

n

)(
N − n

N

)
[1 + (n− 1)ρwst] (1.5)

where S2
wst is the variance among units that lie in the same stratum, it is the mean sum of

squares within strata (or rows in this case) and can be expressed as follows

S2
wst =

1

n(k − 1)

n∑
j=1

k∑
i=1

(yij − ȳ.j)
2,

where ȳ.j = 1
k

∑k
k=1 yij .

ρwst is the correlation between the deviations from the stratum means of pairs of items that

are in the same systematic sample.

The variance of simple random sample is

var(ȳsrs) =

(
N − n

N

)(
S2

n

)
(1.6)

The variance of stratified random sample is

var(ȳst) =

(
N − n

N

)(
S2
wst

n

)
(1.7)

From equations: 1.1 and 1.6, it can be deduced that systematic sampling is more efficient

than simple random sampling if and only if S2
wsy > S2 (see Appendix A).

This important result implies that if the population is sorted such that units within the

same sample are heterogeneous, then the precision of systematic sampling increases, and if

the units are homogenous, then the precision will decrease.

By comparing the formulas 1.4 and 1.6, it can be proved that systematic sampling will
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have a larger variance than simple random sampling if ρw > 0 (see Appendix A), that is to

say, the existence of a positive correlation between units in the same sample will inflate the

variance of the sample mean if systematic sampling is used.

If the population is in random order, then systematic sampling is equivalent to simple

random sampling [5]. One study found that “when the sampling frame is in increasing or

decreasing order then systematic sampling is likely to be more precise than simple random

sampling, adjacent elements tend to be more similar than elements that are farther apart:

such a population is said to have positive autocorrelation.” (Sharon Lohr, 2019, p. 160)

[20].

1.4 Principal Component Analysis

Principal Component Analysis (PCA) was derived from the Principal axis theorem; it was

invented initially by Karl Pearson in 1901 [25] and then in the 1930s, Harold Hotelling

independently developed it by way of using covariance and correlation analysis [13]

PCA has mainly two objectives (1) data reduction and (2) interpretation [16].

Often, PCA is a technique used to simplify a large dataset; the idea is to reduce the number

of variables but not the number of observations. Suppose that we have an (n×p) data matrix

denoted by X(n× p)

We may write X = (X1, . . . , Xp), a row vector of p elements, where each element is itself a

column vector of n elements.

PCA constructs new variables Z1, . . . , Zp from X where the first principal component Z1 is

a linear combination of the components of X that has the largest variance

max
(α1,...,αp)

var(α1X1 + . . . + αpXp) = var(Z1)

Z2 is constructed linear combination of the components of X such that it has zero correlation
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with Z1 and has the maximum possible variance, each subsequent component Zj have the

largest possible variance and is mutually zero correlated with all Zi’s where i < j.

By definition, the variance-covariance structure requires the p set of components X to

be used, but PCA is a technique that commingles the original p components to develop

a new set of k components where k is smaller than p. PCA algorithm seeks to reduce

the dimension of data without much loss of information; that is, the variance-covariance

structure using the new set k components carries as much variability information as the

original variance-covariance structure [12]. If all variables Z1, . . . , Zp are retained, i.e., if

k = p, then no information is lost.

Technically, PCA analysis seeks to choose among all possible vectors that are linear

combinations of the original X = (X1, . . . , Xp) variables the linear compound that has a

maximum possible variance. This process is iterative.

The basic idea is to find the linear combination of axes, that is, the direction in which

there is the most variation in the data. That is the principal component or first prin-

cipal component. Next, the algorithm finds an orthogonal direction to the first principal

component in which there is the most remaining variation in the data.

Eigenvectors will be showing the direction of the spread of data, while eigenvalues will

be indicating the magnitude of the spread. Covariance measures how much two variables

change together.

PCA transformation takes the original p variables as an input to create p new variables.

This transformation projects the data into a new space. This projection is made using a

linear transformation. PCA attempts to engineer features that are linear combinations of

the original p features, such as most of the information will be carried by the first k principal

components.. The variation in the first component is greater than the variation in either

of the original variables. The variation within the second principal component is less than

the variation in the first principal component.

For any square symmetric matrix, It is a guarantee that the eigenvectors λi exist and
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that they are real numbers [17].

By design, covariance matrices are square and symmetric. Also, any covariance matrix

has the property of positive semi-definite. This property is a necessary condition to have

all its eigenvectors non-negative, that is:

λi ≥ 0 for all i′s.

1.5 Outline of Chapters to Follow in this Dissertation

The remainder of this dissertation is organized as follows.

In Chapter 2, the novel method of sampling of PCA-Systematic Sampling is developed

and the theoretical evidence to support its benefits over the traditional systematic sampling

is provided. The second contribution in this dissertation, which is the creation of an index

quality for sampling is derived.

In Chapter 3, Monte Carlo simulation is used to provide evidence for the novel PCA-

Systematic Sampling performance over state of the art sampling methods using simulated

data.

In Chapter 4, real publicly available datasets are used to show how the novel PCA-

Systematic can be used as an application on real surveys data using a demographic survey

and another economic survey. Fisher Iris Flowers data in the context of classification is

also used to show how novel PCA-Systematic outperforms current and best state of the art

sampling methods.

Chapter 5 summarizes results and present some promising future research.
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Figure 1.2: Diagram Describing PCA Change of Axis.
Length of principal component vector is proportional to the variance explained, plotting
the new axis formed by the first two principal components Z1 and Z2 along the original X
and Y -axis.
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Chapter 2: Theoretical Proof

This chapter contains the following three elements

� 2.1 is the theoretical development to mathematically formulates the evidence to sup-

port the hypothesis that with a higher probability conducting principal component

analysis (PCA) transformation will lead to an increase in Pearson correlation of the

two-dimensional case.

� 2.2 is the extension of the two-dimensional case to the multivariate situation using

the Bayesian approach.

� 2.3 is the development of the index of quality for data splitting.

The key contribution in this dissertation is to use linear algebra to engineer new features

by combining the set of all available variables, this include the use of the target variable as

well as all independent variables to create a set of new variables. In Linear Algebra, Spec-

tral Decomposition Theorem states that every symmetric matrix can be factorized using

its Eigenvectors [17]. This decomposition is sometimes referred to Eigen-Decomposition.

This decomposition is useful in many practical applications where the goal is to reduce the

dimensions of the data matrix.

In this dissertation, it is used for the decorrelation of the feature variables and to project

the data matrix into a new space engendered by new axis where the variation is maximized

along each axis [12].

To clarify the framework, I introduce the following standard definitions

Suppose that X is real valued continuous random variables with probability density function
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f(x) over a support R, the expected value of X is defined by

E(X) =

∫
R
xf(x)dx.

The variance of X is defined by

var(X) =

∫
R

(x− E(X))2f(x)dx.

The standard deviation of X denoted by σX is the square root of the variance of X; that is

σX =
√

var(X).

For any arbitrarily random variable Y , the covariance between X and Y is defined by

cov(X,Y ) = E [(X − E(X))(Y − E(Y ))] ,

and the Pearson’s correlation coefficient between X and Y denoted by cor(X,Y ) or σX,Y is

defined by

cor(X,Y ) =
cov(X,Y )

σXσY
.

Theorem 1 (Spectral decomposition theorem, or Jordan decomposition). Any symmetric

matrix A(p× p) can be written as:

A = ΓΛΓ′ =

p∑
i=1

λiγiγ
′
i (2.1)

where Λ is a diagonal matrix with eigenvalues of the matrix A, and Γ is an orthogonal

matrix whose columns γi’s are standardized eigenvectors.

In Theorem 1 the eigenvectors γi’s are chosen to be orthonormal which means they

satisfy the following two properties
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1. For every i The L2 norm of γi (which is defined as the square root of the sum of the

squares of its coordinates) is equal to 1, that is

L2(γi) = ∥γi∥2 =

p∑
j=1

γ2j,i = 1.

2. The γi’s are pairwise orthogonal, which means that distinct eigenvectors are orthog-

onal to one another, that is for each i and j if i ̸= j then γi ⊥ γj which will be true if

their inner product denoted by ⟨γi, γj⟩ or γi · γj is equal to 0, that is

p∑
j=1

γh,iγh,j = 0

The two properties above are satisfied if and only if Γ′ = Γ−1.

Λ is a diagonal matrix; that is Λ = diag(λ1, . . . , λp).

The lambdas are configured such that λ1 ≥ λ2 ≥ . . . ≥ λp, with this configuration, the first

eigenvector is associated with the largest eigenvalue.

In this dissertation I demonstrate how Theorem 1 is applied for machine learning. In

supervised machine learning we have a set of feature variables (X1, . . . , Xp) and a target

variable Y to be learned. One lets the multivariate vector composed by the response variable

and all feature variables combined together and let Γ to be the variance covariance matrix

of the multidimensional vector (Y,X1, . . . , Xp).

2.1 Two Dimensional Case

In this section I provide the mathematical proof that with a higher probability principal

component analysis transformation increases the correlation with the response variable Y .

The two dimensional is when there is one dependent variable and only one single feature
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(independent) variable X. From survey sampling, as shown in Chapter 1, sorting the data

file known as the frame by the most highly correlated variable with the study variable before

conducting systematic sampling is beneficial and increases prediction when the goal is to

estimate population parameters, such as the mean of the study variable. In machine learn-

ing, the goal is to determine the relationship between the study variable and how it relates

to the feature variables in order to perform prediction. In this dissertation data splitting

is treated as a sampling problem because when splitting data to create a testing data set

for example, it is necessary to have a good data portion that represents the distribution of

the target variable and how it relates to its predictors. From a practical point of view, the

variable Y is used to denote the target variable (dependent variable) to be predicted and

learned by a given machine learning algorithm and the X denotes a given feature variable

(independent variable).

In the context of survey sampling the Y usually is the variable of interest or some key

statistics to be estimated by the collected data sample, and X is another variable that could

either obtained by the survey data that was collected by the sampled unit that responded

to the survey, or it could very well be some auxiliary information existing in the sampling

frame before the unit was sampled out and sent for data collection.

Theorem 2 (PCA Increases Correlation in 2-D Theorem). If X and Y are continuous

variables and Z1 , Z2 are the principal components then:

max{|cor(Y,Z1)|, |cor(Y,Z2)|} ≥ |cor(Y,X)|. (2.2)

Proof. Suppose (X,Y ) is a random vector with mean µ and covariance matrix Σ. Then the

variance covariance matrix Σ in this case will be a 2×2 matrix and have the following form:

Σ =

 var(X) cov(X,Y )

cov(Y,X) var(Y )
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where cov(X,Y ) denote the covariance between X and Y defined as:

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

and E(·) is the expectation of random variables or function of random variables. Σ is a

square matrix that is symmetric because cov(X,Y ) = cov(Y,X), hence according to the

spectral decomposition theorem 1 I can decompose Σ as follows:

Σ = ΓΛΓ′ (2.3)

where Λ is a diagonal matrix of eigenvalues of Σ , and Γ is an orthogonal matrix whose

columns are standardized eigenvectors of Σ.

The principal component transformation is defined to be the following linear transfor-

mation:

(X,Y )′ → (Z1, Z2)
′ = Γ′(X,Y )′ (2.4)

For simplicity, I assume for now that X and Y are standardized to have variance 1 so

that

Σ =

1 ρ

ρ 1



The eigenvalues of Σ are the roots of |Σ − λI| = 0.

∣∣∣∣∣∣∣
1 − λ ρ

ρ 1 − λ

∣∣∣∣∣∣∣ = 0 ⇒ (1 − λ)2 − ρ2 = 0 ⇒ (1 − λ− ρ)(1 − λ + ρ) = 0
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This implies that λ = 1 − ρ or λ = 1 + ρ.

It is simple to verify that the eigenvalues of Σ are 1 + ρ and 1 − ρ with corresponding

standardized eigenvectors γ1 = ( 1√
2
, 1√

2
) and γ2 = ( 1√

2
, −1√

2
) and that Λ =

1 + ρ 0

0 1 − ρ



because

1 ρ

ρ 1


 1√

2

1√
2

 = (
1√
2

) ×

1 + ρ

1 + ρ

 = (1 + ρ)

 1√
2

1√
2



and 1 ρ

ρ 1


 1√

2

−1√
2

 = (
1√
2

) ×

1 − ρ

ρ− 1

 = (1 − ρ)

 1√
2

−1√
2



γ1 and γ2 are the columns vectors of Γ.

From (2.4) I can write:

 Z1

Z2

 =

γ′1
γ′2


 X

Y

 =

 1√
2

1√
2

1√
2

−1√
2


 X

Y

 =
1√
2

X + Y

X − Y



Z1 =
1√
2

[X + Y ] (2.5)

Z2 =
1√
2

[X − Y ] (2.6)

From the variance covariance matrix Σ, the correlation between Y and X can be com-

puted as:
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cor(X,Y ) =
cov(X,Y )√

var(X)
√

var(Y )
=

ρ√
1
√

1
= ρ.

The correlation between Y and the eigenvector Zi can be computed as follows:

cor(Y,Zi) =
cov(Y, Zi)√

var(Y )
√

var(Zi)
. (2.7)

From equation (2.4) The variance covariance matrix of (Z1, Z2) is:

var(Z1, Z2) = var(Γ′(X,Y )). (2.8)

The second right-hand side of equation (2.8) has the form

var(AV )

where A is constant and V is random which is equal to:

Avar(V )A′.

So this leads to

var(Z1, Z2) = Γ′var(X,Y )Γ = Γ′ΣΓ = Λ

But we know that

Λ =

1 + ρ 0

0 1 − ρ

 .
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This implies that we have the following

var(Z1, Z2) =

1 + ρ 0

0 1 − ρ

 .

In the meantime, by definition

var(Z1, Z2) =

 var(Z1) cov(Z1, Z2)

cov(Z1, Z2) var(Z2)



That means that the variance-covariance matrix of the principal components is diagonal,

because by matching the two equal matrices in the previous two equations element by

element we can conclude that the variance of the eigenvector Z1 is the first element of the

diagonal matrix Λ which is 1 + ρ.

The variance of the eigenvector Z2 is the second diagonal element which is 1 − ρ.

Furthermore Z1 and Z2 are uncorrelated because the off diagonal elements are zero.

So we have var(Z1) = 1 + ρ. and var(Z2) = 1 − ρ and cov(Z1, Z2) = 0.

cov(Y,Z1) = cov

Y,

[
1√
2

1√
2

]X
Y




of the form

cov(AV,BW )

where A and B are constant matrices and V and W are random matrices which is equal to

Acov(V,W )B′

31



In particular,

cov(V,BW ) = cov(V,W )B′

so because Z1 = 1√
2
[X + Y ] from (2.5)

cov(Y, Z1) = cov

Y,

X
Y


[

1√
2

1√
2

]′
,

cov(Y, Z1) =

[
cov(Y,X) cov(Y, Y )

] 1√
2

1√
2

 ,

cov(Y,Z1) =

[
ρ 1

] 1√
2

1√
2

 ,

cov(Y,Z1) =
1 + ρ√

2
,

cov(Y,Z2) = cov

Y,

[
1√
2

−1√
2

]X
Y


 ,

cov(Y, Z2) = cov

Y,

X
Y


[

1√
2

−1√
2

]′
,

cov(Y, Z2) =

[
cov(Y,X) cov(Y, Y )

] 1√
2

−1√
2

 ,
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cov(Y,Z2) =

[
ρ 1

] 1√
2

−1√
2

 ,

cov(Y,Z2) =
1 − ρ√

2
.

By substituting the numerator and denominator values obtained above, equation (2.7)

becomes:

cor(Y,Z1) =

1√
2
(1 + ρ)

(1 + ρ)(
1
2
)

=

√
1 + ρ√

2
,

and

cor(Y,Z2) =

1√
2
(1 − ρ)

(1 − ρ)(
1
2
)

=

√
1 − ρ√

2
.

max{cor(Y,Z1), cor(Y,Z2)} =


cor(Y,Z1) if ρ > 0;

cor(Y,Z2) if ρ ≤ 0.

max{cor(Y,Z1), cor(Y, Z2)} =


√
1+ρ√
2

if ρ > 0;

√
1−ρ√
2

if ρ ≤ 0.

max{cor(Y, Z1), cor(Y,Z2)} =

√
1 + |ρ|√

2
.

The differences between the absolute value of the correlations of Y and the feature

variable before and after the PCA transformation is:

δi(ρ) = |cor(Y,Zi)| − |cor(X,Y )|, i = 1, 2
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because |cor(Y,Zi)|+|cor(X,Y )| ≥ 0 and multiplication by a positive number doesn’t change the sign

then the sign of δi(ρ) is the same sign of:

(|cor(Y, Zi)| − |cor(X,Y )|) × (|cor(Y, Zi)| + |cor(X,Y )|)

which is the sign of:

(cor(Y,Zi))
2 − (cor(X,Y ))2,

cor(Y,Zi)
2 − (cor(X,Y ))2 =


1+ρ
2 − ρ2 if i = 1;

1−ρ
2 − ρ2 if i = 2.

The sign of δ1(ρ) is the same sign of the polynomial − 2ρ2 + ρ + 1.

of the form

ax2 + bx + c = 0.

The discriminant of the quadratic equation − 2ρ2 − ρ + 1 = 0 is ∆ = b2 − 4ac = 9 > 0.

So the polynomial has two roots ρ =
−b±

√
∆

2a
⇒ ρ1 =

−1

2
and ρ2 = 1,

sign(δ1(ρ)) =


− if ρ < −1

2 or ρ > 1;

0 if ρ = −1
2 or ρ = 1 ;

+ if −1
2 < ρ < 1.

(2.9)

Because the correlation ρ ∈ [−1,+1], 2.9 is reduced to:
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sign(δ1(ρ)) =


− if ρ ∈] − 1, −1

2 [;

+ if ρ ∈]−1
2 , 1[ ;

0 if ρ ∈ {−1
2 , 1}.

(2.10)

The sign of δ2(ρ) is the same sign of the polynomial − 2ρ2 − ρ + 1.

So the polynomial has two roots ρ1 = −1 and ρ2 =
1

2

sign(δ2(ρ)) =


− if ρ < −1 or ρ > 1

2 ;

0 if ρ = −1 or ρ = 1
2 ;

+ if −1 < ρ < 1
2 .

(2.11)

Similarly because the Pearson correlation is bounded between −1 and +1 equation 2.11

can be reduced to:

sign(δ2(ρ)) =


− if ρ ∈]12 , 1[;

+ if ρ ∈ [−1, 12 [ ;

0 if ρ ∈ {−1, 12}.

(2.12)

Combining 2.10 and 2.12 we have:

∀ρ ∈ [−1,+1] sign(δ1(ρ)) = + or sign(δ2(ρ)) = +

in other words:

∀ρ ∈ [−1,+1] max{δ1(ρ), δ2(ρ)} > 0.

35



Hence

max{|cor(Y,Z1)|, |cor(Y, Z2)|} ≥ |cor(Y,X)|}. (2.13)

Figures 2.1 and 2.2 show that PCA increases correlation in absolute value.

For a positive correlation between X and Y of value ρ, the first principal component Z1

will increase the correlation from ρ to
√
1+ρ√
2

by δ1(ρ) =
√
1+ρ√
2

− ρ. This increase reaches a

maximum of 1√
2
≈ 0.71 when ρ = 0 and a minimum of 0 when ρ = 1 (Figure 2.1).

For a negative correlation between X and Y of value ρ, the second principal component

Z2 should be used as it will increase the correlation of Y and −X from −ρ to
√
1−ρ√
2

by

δ2(ρ) =
√
1+ρ√
2

+ ρ. This increase reaches a maximum of 1√
2
≈ 0.71 when ρ = 0 and a

minimum of 0 when ρ = −1 (Figure 2.2).

Figure 2.1: Correlation Increase with First Eigenvector.
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Figure 2.2: Correlation Increase with Second Eigenvector.

For simplicity and without loss of generality one can consider only feature variables with

positive correlations with the target variable Y , If cor(Y,X) = ρ is negative, then if I let

X̃ = −X, cor(Y, X̃) = −ρ will be positive. In this case it is sufficient to use only the first

principal component and equation 2.10 will be reduced and gives:

sign(δ1(ρ)) = + > 0 for all possible values of ρ.

The result can be extended as this comes from the fact that correlation is invariant

to scaling and shift; that is, if a1, a2, b1 and b2 are arbitrary real constants, then for any

random variables V and W , the following result is true

cor(a1V + a2, b1W + b2) = cor(V,W ) (2.14)
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Now, to continue the proof for the case when the variances of X and Y are not both

equal to 1, that is when (σX , σY ) ̸= (1, 1) I consider X∗ = 1
σX

X and Y ∗ = 1
σY

Y where σX

and σY are the standard deviations of X and Y respectively.

Using (2.14), I have in particular

cor(X,Y ) = cor(X∗, Y ∗). (2.15)

if I let Z1 and Z2 be the principal components of (X∗, Y ∗) then because it was proven for

the unit variance case in the previous step, the following is inequality is true

max{|cor(Y ∗, Z1)|, |cor(Y ∗, Z2)|} ≥ |cor(Y ∗, X∗)|}. (2.16)

From (2.14), It is also true that

cor(Y,Zi) = cor(Y ∗, Zi) ; for i = 1, 2 (2.17)

combining (2.15), (2.15) and (2.17) I conclude that

max{|cor(Y,Z1)|, |cor(Y,Z2)|} ≥ |cor(Y,X)|. (2.18)

The result of inequality (2.13) in Theorem 2 states that PCA increases the correlation

of variables with Y ; that is, Y is more correlated with at least one of the eigenvectors

Z1 or Z2 than X. This gain in correlation is beneficial because the eigenvector associated

with the highest correlation can serve as a sort variable to boost implicit Stratification with

systematic sampling. This strategy of sampling will lead to a sample that better represents

the distribution of Y compared to simple random sampling and systematic sampling with

X being used as a sort variable.

Furthermore, in the inequality (2.13) X and Y are both arbitrarily continuous random
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variables with no additional properties for Y over X, so by interchanging the role of X and

Y, it is also true that

Figure 2.3: Design of Strata based on PCA Quantiles for Efficient Data Splitting.

max{|cor(X,Z1)|, |cor(X,Z2)|} ≥ |cor(X,Y )|. (2.19)

The result in (2.19) also indicates a gain in correlation for the variable X is achieved by

PCA.

Suppose that cor(X,Y ) = ρ and ρ > 0, the value of correlation coefficients between the first
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eigenvector Z1 and the two variables X and Y are

cor(X,Z1) = cor(Y,Z1) =

√
1 + ρ√

2
> ρ ( See Proof of Theorem and Appendix A)

Because of this important result, systematic sampling with Z1 as a sort variable will lead to a

sample that better represents both distributions of X and Y . Among all linear combinations

between X and Y , the first eigenvector Z1 has the largest variance; it accounts for as much

variation in the data as possible, then the second eigenvector Z2 captures the maximum

possible remaining variation in the data. The novel sampling design in this dissertation

uses the axis formed by the principal components as a stratification tool. For example, by

segmenting the axis formed by Z1 into regions using the quantiles, these regions will serve

as strata for sampling. The number of strata is a parameter of the novel sampling design;

it is proportional to the variance λ1 of Z1. This process of forming the strata can be done

for the second component Z2 and for each subsequent component.

The scatter plot in Figure 2.3 is an example of simulated 100 observations from a

bivariate standard normal distribution with a correlation between X and Y equals to ρ =

0.7.

To draw an efficient random sample from this population, the novel sampling methodology

in this dissertation introduces the step of conducting PCA on the full data as a first step;

the resulting eigenvectors Z1, Z2 are shown in red arrows with lengths proportional to the

variances they explained (λ1 = 1+ρ and λ2 = 1−ρ); with this, the ratio of the two variances

is approximately equal to 5.

Suppose the required sample size is n = 10, in that case, a five by two 2-D strata can

be formed by segmenting the axis formed by Z1 into five regions using the min, max and

the percentiles of Z1; the green dashed lines that are perpendicular to the axis formed by

Z1 passes through the min, max, and the following percentiles of Z1: p0.20, p0.40, p0.60 and

p0.80. The green dashed lines for the axis of Z2 are perpendicular to Z2 and passes through

the mix, max and median of Z2. In the end, to carry out the sampling, one data point is
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randomly selected from within each of the stratum.

Chapter three, through simulation work, shows that fitting a linear regression model

based on training data created by sampling from the strata formed by the PCA Quantiles

as described in Figure 2.3 resulted in a better predictive model than a model if the training

data was created using traditional data splitting methods such as simple random sampling

with or without sampling. PCA creates eigenvectors that can potentially be used as newly

engineered features as predictors in machine learning; however, this dissertation’s focus was

to only use these eigenvectors as implicit stratification variables tools at the stage of data

splitting to create training, testing, or validation datasets.

2.2 Bayesian Method

Proving the increase of correlation resulting from PCA transformation gets complicated

for higher dimensions; for example, in 3-D with a multivariate (Y,X1, X2), Σ becomes
1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1

; where ρ1, ρ2 and ρ3 are the correlation between the pairs (Y,X1), (Y,X2)

and (X1, X2) respectively.

Solving the roots of the characteristic polynomial |Σ−λI| = 0 requires solving the following

equation

−λ3 + 3λ2 + (ρ21 + ρ22 + ρ23 − 3)λ + 1 + 2ρ1ρ2ρ3 − ρ21 − ρ22 − ρ23 = 0

under the constraints det(Σ) ≥ 0 because it is a positive definite matrix. Fortunately,

statistical inference using frequentist or Bayesian methodology is a tool than can be used to

derive point estimates and interval estimates for the probability of increase in correlation.

For a 3-D case, the goal is to determine the validity of the statement that with a higher
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probability

max{|cor(Y,Z1)|, |cor(Y,Z2)|, |cor(Y,Z3)|} ≥ max{|cor(Y,X1)|, |cor(Y,X2)|}. (2.20)

Let ρA denote the left-hand side of inequality 2.20; ρA is the maximum correlation with

Y that can be achieved using PCA. Let ρB denote the right-hand side of inequality 2.20 ;

ρB is the maximum correlation with Y without PCA.

The goal is to compare the distributions of the correlations coefficients before and after

PCA. Obtaining an analytical expression for the posterior distribution for the difference of

correlations ρA − ρB can be tedious; however, Monte Carlo method can be used to derive

the distribution of functions of other random variables.

The Bayesian framework to handle the statistical inference for ρA − ρB is described in

the steps below

First, assume a given data model:

(Y,X1, X2) ∼ N

m =


1

0

−1

 ,Σ =


1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1


 .

The simulation;

1. For every replicate b = 1, . . . , B

� Draw (ρ2, ρ2, ρ3)b from U(−1, 1)

� Draw
(
Y,X1, X2

)
ib

∼ N

m =


0

0

0

 ,Σ =


1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1


 ; i = 1, . . . , n

� Conduct PCA on
(
Y,X1, X2

)
ib

; i = 1, . . . , n
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� Set a Boolean flag variable

T = max{|cor(Y, Z1)|, |cor(Y, Z2)|, |cor(Y,Z3)|} ≥ max{|cor(Y,X1)|, |cor(Y,X2)|}.

(T is computed using the n data points, and it is equal to 1 if the inequality 2.20

holds true and zero if false, and n is an arbitrarily data size.)

2. Estimate the Probability of statement 2.20 by 1
B

∑B
b=1 Tb

The estimated probability of statement 2.20 can be written as an expected value in

the three-dimensional probability measure of the random variable T created above. Using

Central Limit Theorem, this expected value can be approximated using Monte Carlo. The

probability above is only a point estimate. It is necessary to develop the uncertainty around

this estimate by computing the standard error to derive a lower and upper bound. One

way to achieve this is to repeat steps 1 and 2 above ten times and calculate the grand mean

and the standard deviation of T ; this will be used to determine the boundaries of the 90

percent approximate credible interval, which can be obtained using the following formula:

T̄ ± Zα/2se(T )

where se(T ) is the standard error of T computed using its 10 data point estimates.

Another possible approach assumes that T follows a binomial distribution with B trials

and a proportion parameter π. Based on the normal approximation of proportions for large

sample sizes using the Central Limit Theorem, π can be estimated by π̂ using

π̂ =
1

B

B∑
b=1

Tb

and I can obtain an approximate 100(1 − α) confidence interval for π by using
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π̂ ± Zα/2

√
(π̂(1 − π̂)

B
.

Figure 2.4: Bayesian Posterior and Prior Density plots (3-D).

A visual inspection of the superimposed distributions in Figure 2.4 shows that the values

of the quantiles of ρA in green are higher than those of ρB in blue. However, the question

that needs to be addressed is whether the difference is statistically significant. One way to

answer this question is through hypothesis testing; set an alpha level of 0.1 and derive a

confidence bound for the mean of the distribution of T or a 90% credible interval for the

distribution of T . If 0 is below the lower bound of the interval, then one will conclude that

the test statistic is significant at the alpha level of .10; that is, there is a higher probability

that statement 2.20 is true. For the normal distribution data, similar results were obtained,

the 90% approximate credible interval and the confidence interval were (0.9712, 0.9747) and

(0.9700, 0.9754) respectively; I conclude that there is a 90% confidence and credibility that

the estimated probability that PCA increases the correlation is greater than 0.97 with a

small margin of error. It is essential to recognize that this credible interval is not for the

difference of means of correlations between the after and before PCA is implemented; this
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credible interval is for the proportion of times PCA increased the correlation.

The data model applies to any multivariate distribution and not only the multivariate

normal distribution.

2.3 Utility Measure of Data Splitting

While data continues to grow and evolve, decision-makers need answers faster than ever,

including the choice of using the right data to be analyzed. However, the quality of the

analysis conducted by their statisticians and scientists is only as good as the quality of the

data they are studying (GIGO garbage in garbage out). Ensuring good quality of data

applies to the mechanic of data splitting when fitting machine learning methods. It is

essential to have a novel index measure of data quality for sampling and data splitting. In

this dissertation, I create a score (index) based on three different strategies:

1. I compute the five summary statistics for both S and Sc as a data quality control

tool to assess data split and how different S is from Sc or even from S ∪ Sc; a large

deviation between the five summary statistics of the two subsets is not favorable.

2. I compute a distance measure between the quantiles of S and S ∪ Sc; larger values

for this distance would be an indication that the sample S does not fully represent

S ∪ Sc.

3. I compute a utility sample using the algorithm explained in the next section.

Woo, et al. in 2009, in the context of disclosure avoidance and utility measure of

synthetic data, developed a framework for evaluating the utility of data masked to protect

confidentiality [43]; in their work, they used the following algorithm:

1. Append original data to synthetic data.

2. Created an indicator variable Z = 1 if data is synthetic and Z = 0 otherwise.
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3. Fit logistic regression and compute the propensity score mean square error as follows:

pMSE =
1

n1 + n2

n1+n2∑
i=1

(p̂i −
n1

n1 + n2
)2

Where n1 and n2 are respectively the size of original and synthetic datasets. Smaller

values are favorable with this quantity and will lead to conclude that the synthetic

data is similar to the original data which is the goal for data disclosure avoidance

synthetic data creation.

The propensity score is a concept in observational studies developed in 1983 by Rosenbaum

and Rubin where assignment to a particular treatment cannot be achieved using randomness

[31]. The propensity score is the conditional probability of treatment assignment conditional

on the observed covariates. The goal is for the distribution of covariates to be similar

between the treated subjects and untreated subjects. In this dissertation, I use a similar

idea, but I apply it in the framework of sampling. First, I change the above algorithm

slightly as follows:

1. I append Sc to S and create a new indicator variable Z to account for group mem-

bership, it is equal to 0 for all the N − n records that belong to Sc and equal to 1 for

all the n records that belong to S. If the original data denoted by Ω before taking

the sample can be represented by



X11 X12 . . . X1p

X21 X22 . . . X2p

...
...

. . .
...

Xn1 Xn2 . . . Xnp

...
...

. . .
...

XN1 XN2 . . . XNp


,
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then this step involves adding a column Z to the data matrix as follows:



X11 X12 . . . X1p Z1

X21 X22 . . . X2p Z2

...
...

. . .
...

...

Xn1 Xn2 . . . Xnp Zn

...
...

. . .
...

...

XN1 XN2 . . . XNp ZN



where

Zi =

 1 if i ≤ n,

0 if i > n.

2. Fit logistic regression and other binary prediction models such as: CART, RF (Ran-

dom Forest), SVM (Support Vector Machine), kNN, ANN, Naive Bayes and then I use

bagging ensemble method technique to build a more robust binary prediction model

to predict group membership.

3. Compute the propensity score mean square and compute the sampling utility score

using formula (2.21).

This dissertation introduces a novel index to assess sampling quality in definition 1,

which I named the sampling utility score.

Definition 1. If S is a sample from a population Ω, the Utility of the sample is defined as

U = 1 −
∑N

i=1(p̂i − f)2

n(1 − f)2 + (N − n)f2
(2.21)

where

f = n/N is the sampling fraction.
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and

pi = probability(Z = 1|X = xi)

p̂i is the estimated probability of pi by a binary prediction ensemble model that includes

logistic regression.

Theorem 3 (Sampling Utility Theorem). The Sampling Utility U defined in equation (2.21)

has an upper bound of 1 (U ≤ 1.)

U is equal to 0 when the prediction of the propensity score is fully accurate over Ω

U reaches a maximum of 1 when the prediction of propensity score is significantly weak.

Proof. If I assume that the prediction model is fully accurate, then I have

p̂i =

 1 if i ≤ n,

0 if i > n.

This implies that the term in the numerator of(2.21) (p̂i − f)2 will be equal to 1 − f2

whenever i ≤ n and equal to f2 whenever i ≥ n + 1 So we have

N∑
i=1

(p̂i − f)2 =

n∑
i=1

(p̂i − f)2 +

N∑
i=n+1

(p̂i − f)2

=

n∑
i=1

(1 − f)2 +

N∑
i=n+1

(0 − f)2

= n(1 − f)2 + (N − n)f2
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and therefore

U = 1 − n(1 − f)2 + (N − n)f2

n(1 − f)2 + (N − n)f2

= 0.

Both numerator and denominator of the fraction term in (2.21) are positive, that is

N∑
i=1

(p̂i − f)2 >= 0

and

n(1 − f)2 + (N − n)f2 > 0.

This implies that ∑N
i=1(p̂i − f)2

n(1 − f)2 + (N − n)f2
≥ 0

Hence

1 −
∑N

i=1(p̂i − f)2

n(1 − f)2 + (N − n)f2
≤ 1 − 0

We conclude that U ≤ 1

The denominator term does not depend on the pi’s, so the maximum value of U occur

when
∑n

i=1(p̂i − f)2 is minimized which will happen if and only if p̂i = f for all i’s so we

have

max(U) = 1 −
∑N

i=1(f− f)2

n(1 − f)2 + (N − n)f2

max(U) = 1.
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Upon fitting the binary prediction ensemble model, the propensity scores pi are esti-

mated for each of the N records, if the estimated probabilities for the sample S are very

close to the true proportion (sampling fraction) n
N then this is an indication that the split

resulted in two parts of data that very similar, that is S behaves similar to Sc however larger

deviation from this ratio is an indication that the data split resulted in a biased sample.

In other words the prediction propensity scores of the binary prediction model “belonging to

S and not Sc ” is a way to assess the risk associated with the data split. I run Monte Carlo

simulation to assess the efficiency of the sampling utility U under all traditional sampling

designs and also for skewed distributions and showed how our sampling utility is able to

detect nonrepresentative sample from representative samples, the Monte Carlo simulation

results are presented in Chapter 3
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Chapter 3: Monte Carlo Simulation

Monte Carlo (MC) methods are widely used in the research literature to evaluate proper-

ties of statistical methods, and more recently, computational inference using Monte Carlo

methods is replacing asymptotic approximations [12]. In this chapter of this dissertation,

Monte Carlo Simulation is used to evaluate the properties of my novel data splitting method

and evaluate its performance with the different data splitting methods. The initial version

of Monte Carlo was documented as early as the 1870s by Erastus Lyman while studying

the properties of a statistical procedure [12]. The method has been widely used since, it

has been applied as an alternative method to solve physics and mathematics problems that

are deterministic in nature and difficult to solve. The method uses randomness to generate

repeated random sampling to generate draws from a probability distribution. Monte Carlo

uses random simulation to study the performance of different estimators for example, and

evaluate different algorithms.

In this section of the dissertation controlling the seeds in Monte Carlo studies is impor-

tant as it allows to reproduce the same results. This is done by using the same seed from

one run of the program to another.

In this dissertation, Monte Carlo simulation tool is conducted to evaluate the perfor-

mance of the different data splitting methods with comparison to the novel PCA-Systematic

data splitting method. The next section introduces the metrics used to assess the method’s

performance.

This chapter describes the Monte Carlo simulations method to address three main do-

mains; the context of canonical correlation, survey sampling, and machine learning:

1. MC method performed to demonstrate how PCA transformation will increase the

correlation of the features with the target variable.
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2. MC method performed to evaluate my proposed PCA-Systematic sampling design

against traditional simple random sampling and best current systematic sampling

design.

3. MC method performed to evaluate and demonstrate the benefits of my proposed PCA-

Systematic data splitting method in the context of Machine learning, such as binary

classification and ordinary linear regression.

3.1 Monte Carlo Sample Size

Monte Carlo sample size is set to 10,000. The required number of simulated random samples

to test a given hypothesis h can be derived using power analysis, if I let p be the true

proportion of errors of the hypothesis h, then p can be estimated by assuming the draws

to be independent Bernouilli random variables. If I set the goal to have a two-sided 95%

confidence interval for p with a margin of error(MoE) of 0.01, then the minimum required

sample size can be determined.

MoE = zα
2
se(p̂) = z0.025 ×

√
p(1 − p)

M
≈ 2 ×

√
p(1 − p

M
.

Because p ∈ [0, 1] the quantity p(1 − p) has its maximum when p = 1
2 .

This can be verified by setting the first derivative to 0, solving for p and verifying that it

is a maximum because the sign of the second derivative is negative.

Therefore MoE ≤ 1√
M

, and since the goal is to have

MoE ≤ 0.01.

So it is sufficient to require M ≥ 10000.
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3.2 Measures of Accuracy

The properties of the methods are analyzed in terms of bias and variance. A method is

preferred if it reaches the goal of minimizing both the variance and the bias simultaneously;

however, there is a trade off between the two. The performance of data splitting methods

can be evaluated using different measures of accuracy.

Depends on the context, different metrics can be used.

If T is an estimator of some parameter θ, then by definition the bias of the estimator is

defined by:

Bias(T ) = E(T ) − θ. (3.1)

The bias is the difference between the expected mean (arithmetic mean) of the estimator T

and the true value θ being estimated by the estimator T . In the context of this dissertation

the estimator T is the data splitting method being employed, the parameter θ will depend

on the context of the machine learning the data splitting is being used.

The variance of T is defined by:

var(T ) = E(T − E(T ))2. (3.2)

The variance measures the overall average of square deviations from the estimator mean.

Estimators with small deviations are preferable therefore it is desirable to have estimators

with low variance.

In order to minimize both the mean and variance the MSE (mean squared error) can

be used, it is defined as follows:

MSE(T ) = E(T − θ)2. (3.3)
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We have the following result:

MSE(T ) = var(T ) + (Bias(T ))2.

The relative root mean squared error (RRMSE) is an interesting measure, it is defined by:

RRMSE(T ) =

√
MSE(T )

θ
=

√
MSE(T )

True Value
. (3.4)

The RRMSE is a unit free measure, hence can be used to evaluate different machine

methods and algorithms on completely different datasets. The relative bias is another unit

free measure of accuracy that can be used, it is denoted by RB and can be computed as

follows:

RB(T ) = E
(T
θ
− 1

)
. (3.5)

Sometimes the direction of the bias is not important and the absolute relative bias

(ARB) can be used instead of RB i.e.

ARB = |RB|.

3.3 Monte Carlo to Show Increase in Correlation

In this section, Monte Carlo Simulation investigates the hypothesis that states with a high

probability, principal component analysis transformation will increase the correlation be-

tween the response variable Y and the feature variables. After that, MC simulation is used

to evaluate the performance of the PCA-Systematic data splitting method for fitting Ma-

chine learning models such as Linear regression, k-NN, and CART. This evaluation involves

comparing its prediction accuracy with a comparison with other existing data splitting

methods.

My idea for machine learning in order to enhance the task of prediction problems is
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to engineer additional features that increase correlation with the target variable Y . These

would be suitable for situations where the target variable and the features are continuous

variables. It turns out that linear combinations of the original feature variables using PCA

will result in new variables for which their correlation with Y increases.

My hypothesis is the following for the 3-dimensional cases:

If Y is positively correlated with X1 with correlation cor(Y,X1) = ρ1 > 0

and if Y positively correlated with X2 with correlation cor(Y,X2) = ρ2 > 0,

and if however the is a conflict of direction between X1 and X2; with X1 being negatively

correlated with X2 with correlation cor(X1, X2) = ρ3 < 0,

If I let (Z1, Z2, Z3) be the PCA of (Y,X1, X2) then with a higher probability the following

inequality is true:

max{|cor(Y,Z1)|, |cor(Y,Z2)|, |cor(Y,Z3)|} ≥ max{|cor(Y,X1)|, |cor(Y,X2)|}. (3.6)

I conducted Monte Carlo experiment to evaluate and validate the Inequality 3.6 for

two scenarios. The first scenario is when ρ1 = ρ2 = 0.3 and a second scenario is when

ρ1 = ρ1 = 0.5.

For both scenarios I generated 10000 independent random samples simulated from a mul-

tivariate vector (Y,X1, X2). The 3-dimensional random vector (Y,X1, X2) is assumed to

follow the multivariate normal distribution with mean m = (1, 0,−1) and variance covari-

ance matrix Σ =


3 0.5 0.5

0.5 1 −0.5

0.5 −0.5 1


This can be denoted by

(Y,X1, X2) ∼ N

m =


1

0

−1

 ,Σ =


3 0.5 0.5

0.5 1 −0.5

0.5 −0.5 1


 .
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Figure 3.1: Correlation Increase for Mild Conflict between X1 and X2 Scenario.

With this setting the mutual correlations between the variables can be computed as follows:

cor(Y,X1) = ρ(Y,X1) = ρY,X1 =
σ2
Y,X1

ρY × ρX1

=
0.5√

3 ×
√

1
≈ 0.289.

cor(Y,X2) = ρ(Y,X2) = ρY,X2 =
σ2
Y,X2

ρY × ρX2

=
0.5√

3 ×
√

1
≈ 0.289.

cor(X1, X2) = ρ(X1, X2) = ρX1,X2 =
σ2
X1,X2

ρX1 × ρX2

=
−0.5√
1 ×

√
1

= −0.5.

The estimated probability of correlation increase is 0.893.

For this scenario where the conflict between X1 and X2 scenario is relatively mild, the

improvement in correlation between the target variable Y and the new feature variables

engineered by the PCA transformation is shown in Table 3.1. The correlation improves

from .3547 to .4675 in average.
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Table 3.1: Correlation increase for mild conflict between X1 and X2 scenario

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

max{ρ1, ρ2} 0.1652 0.3094 0.3529 0.3547 0.33946 0.5677

max{ρ̃1, ρ̃2} 0.2319 0.4124 0.4708 0.4675 0.5242 0.6846

In Figure 3.1, The green data points represent the correlation between the target variable

and the new transformed variables after I implemented the PCA, and the red data points

represent the correlation between the target variable y and the original feature variables.

For the second scenario,

(Y,X1, X2) ∼ N

m =


1

0

−1

 ,Σ =


1 0.5 0.5

0.5 1 −0.5

0.5 −0.5 1


 .

The notation above means that the multivariate random vector (Y,X1, X2) is distributed

as a multivariate normal with mean m = (1, 0,−1) and variance covariance matrix Σ =
1 0.5 0.5

0.5 1 −0.5

0.5 −0.5 1

 With this setting the correlation are as follows:

cor(Y,X1) = ρ(Y,X1) = ρY,X1 =
σ2
Y,X1

ρY × ρX1

=
0.5√

1 ×
√

1
= +0.5.

cor(Y,X2) = ρ(Y,X2) = ρY,X2 =
σ2
Y,X2

ρY × ρX2

=
0.5√

1 ×
√

1
= +0.5.

cor(X1, X2) = ρ(X1, X2) = ρX1,X2 =
σ2
X1,X2

ρX1 × ρX2

=
−0.5√
1 ×

√
1

= −0.5.
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Figure 3.2: Correlation between Y and X1 of + 0.5.

Table 3.2: Correlation Increase for Strong Conflict between X1 and X2 Scenario

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

max{ρ1, ρ2} 0.3984 0.5155 0.5482 0.5500 0.5795 0.7177

max{ρ̃1, ρ̃2} 0.5328 0.7631 0.8101 0.8052 0.8540 0.9902

0.5, 0.5 and -0.5 is the maximum conflict that one can have with 3 dimensional dataset.

This scenario is visualized in Figures 3-1 through 3-4.

The estimated probability of correlation increase is 0.983, the separation between the

green data points and red data points is clear in Figure 3.2.

The improvement in correlation between Y and the feature variables after the PCA trans-

formation is more prominent now. For this scenario where the conflict between X1 and X2

scenario is strong.

The improvement in correlation between the target variable Y and the new feature

variables engineered by the PCA transformation is shown in Table 3.2. The correlation
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Figure 3.3: Correlation between Y and X2 of + 0.5.

Figure 3.4: Correlation between X1 and X2 of - 0.5.
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Figure 3.5: Correlation Increase for Strong Conflict between X1 and X2 Scenario.

improves from .55 to .81 in average.

3.4 PCA-Systematic Sampling for Surveys Estimates

My Monte Carlo simulation work for PCA in the context of surveys is as follows:

If Y is positively correlated with X1 and Y is positively correlated with X2 ( but with less

correlation than with X1), however there is a conflict between X1 and X2 which means

they are negatively correlated, I demonstrate that sorting on the PCA between Y,X1, X2

produced better performance while fitting the model y = f(x) than just sorting by X1 and

X2 for both survey sampling and k-NN classification.

In the context of surveys, the model y = f(x) is equivalent to Ȳ = ȳ + ϵ where Ȳ is the

average of the variable Y when the entire populations members are used, i.e; Ȳ =
∑N

i=1 Yi

N

and ȳ =
∑n

i=1 yi
n is the average of the variable Y using the members selected by the sample

of size n.

60



In my Monte Carlo simulation work example, I simulate the data vector (Y,X1, X2) from a

multivariate normal distribution as follows:

(Y,X1, X2) ∼ N

m =


0

0

0

 ,Σ =


1 0.9 0.2

0.9 1 0.3

0.2 0.3 1


 . (3.7)

With this structure cor(Y,X1) = 0.9 and cor(Y,X2) = 0.2.

Current sampling methodology suggests to sort the file by X1 since it has the highest cor-

relation of 0.9 and then do systematic sampling in order to construct a good sample to

estimate the mean of Y which should be 0 in this case.

However in the novel PCA-systematic sampling, if I Let (Z̃1, Z̃2, Z̃3) be the PCA of (Y,X1, X2)

I sort by Z̃1 instead of X1.

The MC experiment consisted of

� Simulate a population of N = 1000 data points randomly according to (3.7),

� Select a sample of size n = 100 according to each sampling method; that is all the pos-

sible different sampling strategies, SRSWR, SRSWOR, optimum stratified sampling

with Neyman allocation of sample size, traditional systematic where the sort key is

X1, and finally using the novel PCA-Systematic using the sort key Z̃1.

� I compute the sample mean of the variable Y using the n data points.

Next, this process is repeated M = 10000 times, that is, the MC sample size not to be

confused with the population size N or the size of the sample n.

The goal is for sample mean to be close to the population’s true mean, which is com-

puted using all N data points. The RRMSE is computed for each data splitting method.

Table 3.3 shows how the mean squared error has the lowest value of 0.00362 for PCA-

systematic sampling.
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Table 3.3: Performance of PCA-Systematic in the Context of Survey Sampling

Data splitting Method MSE for Ȳ MSE for X̄1 MSE for X̄2 Overall MSE

SRSWR 0.01008 0.0099 0.01068 0.01022

SRSWOR 0.00895 0.0087 0.00967 0.00911

Optimum Stratified Sampling
Using Neyman Allocation

0.00572 0.00441 0.00915 0.00643

Cluster Sampling 0.06097 0.0534 0.01159 0.04199

Systematic Sampling after
sorting by X1

0.00194 0.00039 0.01095 0.00443

Systematic Sampling stratified by

Z̃1, Z̃2 and sort by Z̃1
0.00164 0.00079 0.00103 0.00115

PCA-Systematic outperforms both SRSWOR and traditional (best existing systematic prac-

tice).

3.5 PCA-Systematic Sampling for Statistical Learning

If the task is to fit a model Y = f(X), it is important to do some preliminary analysis to

determine the features that are highly correlated with the response variable Y .

The vector X is the set of feature variables used to predict the target variable y.

f is the learner to learn the relationship between the input x and y.

Sorting the data file by the feature with the highest correlation with the target variable

y prior systematic sampling “to randomly create the test data or training data” has great

benefits. Relation among the variables will be preserved and not distorted in the sample

training and test file.

Sorting on a Principal Component is my proposed PCA-modified systematic sampling.

In a situation where there is a group of features that are important to the target (response)

y variable, according to sampling theory if one wants to create systematic sample then the

recommended methodology is to sort the file by the variable that is highly correlated with

the target variable Y . In my method I do canonical correlation analysis by using principal

component analysis on all the variables combined together then sort the data file by the
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resulting PCA prior systematic sampling.

3.5.1 Simple Linear Regression

Simple linear regression is the most popular supervised machine learning tool to describe

a quantitative variable Y and a single predictor variable X. This is a parametric model

that assumes that the relationship between X and Y can be approximated using a linear

equation of the form:

Y = β0 + β1X + ε.

The two parameters β0 and β1 which are the Y intercept and the slope respectively are

known as the coefficient of the regression model and can be estimated using the observed

data. The term ε is an error term, it represents the noise not being explained by the

model. Fitting the model leads to choosing β0 and β1 that minimize the error term and

equivalently the distance between Y and β0 + β1X. This distance is also the norm ∥.∥ of

the vector difference

Y − (β0 + β1X)

There are different choices of norms that can be used. For example the L1 norm is based

on the least absolute deviations [6]. Let

(x1, y1), . . . , (xn, yn)

represent the n training example pairs, given the observed training examples, L1 can be

regarded as a multivariate function with respect to β0 and β1 and the goal is to minimize

this function;

L1(β0, β1) = ∥Y − (β0 + β1X)∥1 =

n∑
i=1

|yi − (β0 + β1xi)|.
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Solving the least absolute deviations minimization problem:

min
(β0,β1)

L1(β0, β1) = L1(β̂0, β̂1)

does not have an explicit analytic solution and often requires a numerical approximation.

Algorithms such as gradient descent can be used to achieve this goal.

Let yi = β̂0 + β̂1xi be the predicted value of Y when X = xi. Then the difference between

the true value yi and the predicted value ŷi, ei = yi − ŷi, represents the ith residual.

The L2 norm is based on the residual sum of squares (RSS) and defined as

L2(β0, β1) = ∥Y − (β0 + β1X)∥2 = RSS =
n∑

i=1

(yi − (β0 + β1xi))
2.

Unlike L1, Solving the least sum of squares minimization problem:

min
(β0,β1)

L2(β0, β1) = L2(β̂0, β̂1)

has an explicit analytic solution given by

β̂1 =
Sxy

Sxx
,

β̂0 = ȳ − β̂1x̄,

(3.8)
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where Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) is the sum of cross products,

and Sxx =
n∑

i=1

(xi − x̄)2 is the sum of squares.

The regression slope β1 is equal to the covariance between X and Y divided by the variance

of X.

In order to explain how my new data splitting method works, I had to show the steps

through an example in the context of simple linear regression. My method consists of an in-

novative method of sampling strategy, it uses PCA. The method is efficient in the sense that

it requires only a small sample size to be effective. In this section, I compare it with current

state-of-the-art one-time data splitting methods. I run it through simulation to show its

effectiveness, but first, I had to show all steps of how and why it works through the exam-

ple provided below. A simulated multivariate data (X,Y ) consisting of 100 observations

according to

(X,Y ) ∼ N

m =

1

0

 ,Σ =

 1 0.7

0.7 1


 (3.9)

Because the data is simulated from a known multivariate distribution that I specified in

(3.9), I know how the data were generated, and I know the true parameters, for example, the

correlation coefficient between the variables Y and X, ρ is equal to 0.7, it is the off-diagonal

entry of the matrix Σ, that is true in this case because both Y and X have a variance of 1.

For the simulated data in (3.9), the ordinary least squares fit for the regression of Y onto

X is shown in Figure 3.7. The fit is derived by minimizing the residual sum of squares.

The slope and the intercept of the black line are computed according to (3.8).

The equation of the fitted regression line to fit the simulated data according to (3.9) can

be obtained using the lm function of the stats package in R.
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y = −0.05 + 0.67x

after rounding to two digits.

The red arrows in Figure 3.7 represent the first and the second eigenvector Z1 and Z2

They are orthogonal and both having different lengths. The length of each vector is equal

to its variance.

as it was shown in Chapter 2

Z1 = X+Y√
2

and var(Z1) = 1 + ρ = 1.7

Z2 = X−Y√
2

and var(Z2) = 1 − ρ = 0.3

PCA projection used the variance covariance of the data to develop a new set of orthogonal

axis as shown in Figure 3.7.

The new x-axis is obtained using the direction of the vector Z1 that has the largest variance

of 1.7.

The new y-axis is defined using the direction of the vector Z2

So, I set the goal to split the dataset into training set denoted by S with sample size

equals to n, and testing dataset (which would be simply the complement of S denoted by

Sc) with sample size equals to N − n.

This is a two-way one time data split. If the sample size n is relatively large then the

effect of data splitting has less effect on the quality of the training dataset. Because as n

increases it will be close to N (meaning if n ≈ N) regardless of the method being used, it

will produce a training dataset that has properties similar to the full dataset Ω. So for this

reason in order to conduct a good assessment of data splitting methods with the novel data

splitting methods developed in this dissertation reserving only a small size for the training

is the approach that was used in this simulation work.

For the choice of the sample size of the training dataset denoted by n; it was set to 10. now,

I like to show two novel data splitting for this simulated data based on PCA. First, I set the

sample size to be 10. Given the obtained simulated data, I create a grid of values of Z1 from
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Table 3.4: RRMSE for Estimating the Intercept

Data Splitting Method β0 (True Intercept) β0 (Estimated Intercept) RRMSE

SRSWOR -0.0533 -0.0493 4.3079

SRSWR -0.0533 -0.0507 4.4451

Stratified by cubes
formed by PCA Quantiles

-0.0533 -0.0726 2.4442

its minimum value to its maximum value. This can be done by partitioning the interval

[min(Z1),max(Z1)] into M1 + 1 equally spaced grid points or using the quantiles of Z1.

Using the quantiles techniques will avoid having blank regions, especially if the distribution

is skewed. The number of subintervals M1 is an option but can I made it proportional to

the variance of Z1 and the requested sample size n. Similarly, I create a grid of values of

Z2 from its minimum value to its maximum value using M2 + 1 equally spaced grid points.

M2 is proportional to the variance of Z2 and the requested sample size n.

The method requires that n ≥ M1M2 M2 is smaller than M1. for this simulated data

[min(Z1),max(Z1)] = [−3.700, 3.647] and [min(Z2),max(Z2)] = [−1.399, 1.474] so I made a

5 × 2 grid and my sampling methods is to use stratified random sample using the M1M2

cubes as strata, ideally drawing a random sample of size 1 is the goal.

The coefficient of determination defined by

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

is a statistic that can be used to assess the goodness of fit and how well the fitted straight

line describes the data [9].

The RRMSE results shown in Table 3.4 are in absolute values show how data splitting

methods when stratification is added based on PCA outperform current splitting methods

based on SRSWOR and SRSWR.

The second column in the table is the true intercept β0 that resulted from fitting OLS

simple linear regression model on the full data consisting of the simulated 100 data points
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Figure 3.6: Simple Linear Regression Fit.

before a given data split is implemented.

For every replicate r of MC simulation, a slope using only the 10 data points that

resulted from a given data split is computed; this is an estimate of the true slope of the

linear regression. The process is repeated 10,000 times, and the third column is the average

of all these estimates.

Central Limit Theorem justifies that the MSE can be estimated using MC simulation, so
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Table 3.5: RRMSE for Estimating the Slope

Data Splitting Method β1 (True Slope) β1 (Estimated Slope) RRMSE

SRSWOR 0.6718 0.6524 0.4521

SRSWR 0.6718 0.6583 0.4612

Stratified by cubes
formed by PCA Quantiles

0.6718 0.6803 0.3260

that is

M̂SE =
1

M

M∑
r=1

(β̂0
(r) − β0)

2

and therefore RRMSE defined in equation (3.4) can be computed for column four of the

table as √
ˆMSE

β0
.

Table 3.5 show similar results for the slope estimation.

The data splitting methods were further evaluated in terms of their ability to predict the

unfitted 90 data points. For each MC replicate, and after a split is conducted to produce a

training data set S of size 10, OLS simple linear regression model is fitted, and the predicted

ŷi
′s are computed using β̂0 + β̂1xi for each data point in Sc and compared with the true

values yi. The testing prediction errors for each splitting method are computed using

the L2 and shown in Table 3.6 demonstrate how stratification based on PCA improved

the representativeness of the relationship between the variables Y and X using Linear

regression; The training data set formed when data splitting using a sample stratified by

cubes formed by PCA quantiles resulted is a better strategy than using a traditional simple

random sample.
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Table 3.6: Distribution of Test Prediction Errors for Simple Linear Regression

Data Splitting Method Min 1st Quantile Median Mean 3rd Quantile Max

SRSWR 0.5378 0.5763 0.6339 0.6843 0.7361 2.4231

SRSWOR 0.5378 0.5750 0.6304 0.6773 0.7277 3.7036

Stratified by cubes
formed by PCA Quantiles

0.5378 0.5549 0.5800 0.5996 0.6234 1.1190

3.5.2 K-Nearest Neighbors

K-Nearest Neighbors (k -NN) is a nonparametric method that addresses both classification

and regression prediction problems. When the target variable is categorical, it is known as

a classification problem, and if the target variable is continuous, it is a regression problem.

k -NN is conceptually a simple algorithm; the intuition behind it is that neighbors tend to

be alike. It is a reasonable assumption to predict a member’s class membership based on

the proximity to its neighbors.

To fit k -NN, a distance d measure to compute distances between the different data

points in the feature space is needed, and an arbitrarily positive integer k set by the user

is required, this parameter k is the number of nearest neighbors. To classify a given new

observation x∗, its distance to all training records is computed. The algorithm finds the

set denoted by N∗ of the k points in the training dataset that are closest to x∗ accord-

ing to the distance d. In classification, k -NN algorithm chooses the class with the highest

conditional probability of Y = j given x∗, so the x∗ will be classified to the class j∗ such that:

j∗ = argmax
j

P (Y = j|X = x∗).

Under no information about these conditional probabilities that are harder to obtain

unless some assumptions are made, but still need to be verified and validated, these con-

ditional probabilities can be estimated using the proportion of points in the neighborhood

N∗. This will be the same thing as using the majority vote to decide the class membership

that x∗ needs to belong to when the task is a classification problem.
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Therefore we have the following:

j∗ = argmax
j

P (Y = j|X = x∗) = argmax
j

∑
i∈N∗

I(yi = j∗)

K
.

The choice of k is critical for this algorithm and affects the results depending on the

data at hand. For example, choosing the parameter k to be an odd integer will eliminate

the possibility of ties in the case of binary classification, which is when the target variable

Y is dichotomous and take only two possible values. If k is too small, then the algorithm is

sensitive to outliers or noise points as the decision boundaries become complex, increasing

the risk of overfitting [15].

If k is too large, then the algorithm might create a neighborhood that may include

points from other classes.

Current methods of choosing the parameter k use data splitting as a tool to search for

an optimal k, measuring the prediction error for different values of k using the testing data

portion of the data split and picking the k associated with the lowest value.

This dissertation provides a method on how to optimally split the data without any

bias, it shows how the data split can affect the overall fit of the model enormously and how

the measure of the test error for the model can be affected as well.

Feature variables might need to be scaled to prevent that some variables might dominate

one another.

k -NN is considered to be a type of instance-based-learning or lazy learning because clas-

sification is deferred until all computation is completed.

I have done an additional MC simulation work in the context of k nearest neighbors

(k -NN) classification problem to evaluate my novel data splitting method and compare its

performance against standard methods of data splitting. The PCA-systematic seeks to

conserve the variance-covariance of data structure after it gets split, which will maintain

coverage of the relationship between Y and the covariate vector X.
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Table 3.5 shows the result from a 10000 simulation study.

The 10,000 independent samples are generated from a multivariate normal distribution

composed of the target variable Y along with the covariates X1, X2. The joint distribution

is assumed to be multivariate normal distribution with mean m = (1, 0,−1) and variance

covariance matrix Σ =


3 0.5 0.5

0.5 1 −0.5

0.5 −0.5 1



(Y,X1, X2) ∼ N

m =


1

0

−1

 ,Σ =


3 0.5 0.5

0.5 1 −0.5

0.5 −0.5 1


 .

From a population size of N = 1, 000, a training dataset of size 333 is formed, and the

remaining 667 records are used for testing.

I create a new target variable L with two labels that would take the value “+” or “-” de-

pending on the value of Y .

L =


“+” if |Y − 1| ≥ h;

“-” if |Y − 1| < h.

(3.10)

where h is an arbitrarily real number, in this experiment h is set to 2.5.

Then I used k-nearest neighbor(k -NN) to predict the “+”.

The green density curve SRSWOR in Figure 3.8 is the distribution of test error resulting

from fitting k -NN model when data splitting is done using the standard method, which

consists of using the traditional SRSWOR data splitting design.
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Figure 3.7: The data points colored in silver represent the prediction region, this corresponds
with label =”+” according to equation 3.9.

Table 3.7: Confusion Matrix

(+) (-)
(+) 20 84
(-) 561 2

Systematic curve in light blue is the distribution error resulting from fitting k -NN when

data splitting is done using systematic sampling.

PCASystematic represents the error resulting from fitting k -NN model using the PCA-

systematic proposed data splitting method.

The errors are the mean prediction errors resulting from predicting the model and

comparing it to the truth. Using the confusing matrix, the off diagonals counts are false

positive and false positives; adding the two numbers and dividing by the overall count will

give the mpe (mean prediction error).
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Table 3.8: Comparing Test Errors of Data Splitting Methods for k -NN

Data splitting Method Min 1st Quantile Median Mean 3rd Quantile Max

SRSWOR 0.01349 0.03298 0.03898 0.03943 0.04498 0.07196

SRSWR 0.00987 0.03395 0.04076 0.04143 0.04809 0.07576

Systematic 0.00600 0.02099 0.02549 0.02532 0.02999 0.05105

PCA-Systematic 0.00450 0.01349 0.01799 0.01798 0.02249 0.03748

Predicted labels

Positive Negative Total

True labels

Positive a b a + b

Negative c d c + d

Total a + c b + d N

Table 3.7 displays one confusion matrix that resulted from fitting a k -NN model on the

simulated data. This is for one single iteration of 10,000 replicates. From this table the

mean prediction error can be computed as follows

mpe =
2 + 20

2 + 84 + 20 + 561
≈ 0.033.

.

Table 3.8 illustrates how the PCA-systematic has better prediction accuracy compared

to both SRSWR, SRSWOR and simple systematic, the distribution of the errors mean

resulting from PCA-systematic has the lowest average of 0.01807.

Figure 3.8 shows the distribution errors superimposed, it is clear that the PCA-systematic

accuracy stochastically dominate both SRSWOR and simple systematic.

74



Figure 3.8: Performance of PCA-Systematic compared with SRSWR, SRSWOR and Tra-
ditional Systematic for k-NN.

3.5.3 Classification and Regression Tree

In this dissertation, PCA-Systematic was compared with traditional splitting methods such

as simple random sampling without replacement to create training datasets with Classifi-

cation and Regression Tree (CART) Methodology. CART methods for binary prediction

model to predict the probability of correctly labeling the labels of L was considered. The

same simulated data used in the previous section was used here.

CART partitions the predictor space, or the set of possible values of the covariates

(X1, X2) into J distinct non overlapping cells or regions Λ1,Λ2, . . . ,ΛJ .

Minimizing the within cell variability is the primary criterion to construct the cells. In

other words, the units inside the cells are as homogenous as possible with respect to the

label variable L. The CART algorithm partitions the feature space into smaller subsets

recursively. Step 0 of the algorithm starts with the root node, which is the entire dataset,

and then subsequent child nodes are formed iteratively. At each step, node impurity can

be measured using cross-entropy, Gini index, or residual sum of squares. I used entropy
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defined by:

Entropy(N) = −P(L = “ + ”) log2 P(L = “ + ”) − P(L = “ − ”) log2 P(L = “ − ”). (3.11)

where p(L = “+′′) and p(L = “−′′) are the proportion of positive labels and negative

labels at node N respectively. The algorithm splits a given node N into subsequent child

nodes NRight and NLeft by seeking to maximize the information gain defined by

Gain = Entropy(N) −
|Nright|
|N |

Entropy(Nright) −
|Nleft|
|N |

Entropy(Nleft). (3.12)

As shown in equation (3.12), the information gain is equivalent to the decrease in entropy

after a split. The decision to split at node N is made based on the values of a best single

predictor variable Xi among all predictors at one time. Thus the child nodes can be written

as:

Nleft = {Xi ∈ χ
left}

and

Nright = {Xi ∈ χ
right} = {Xi /∈ χ

left} = Nleft.

This will result in a recursive top-down binary splitting that is greedy because the

algorithm always makes the choice that seems best at that moment to maximize (3.12).

Once it makes its decision, the algorithm never goes back and reverses it [15].

In this dissertation, I used SAS/STAT software’s PROCHPSPLIT procedure [33] to

develop the output decision tree. This procedure implements the CART algorithm and has

multiple functions, including tree pruning. The pruning approach developed by Breiman et

al. in 1984 [7] is a technique that favors smaller trees rather than larger trees and includes

a cost-complexity parameter (Cp) as a criterion of pruning. SAS PROCHPSPLIT selects

a subtree instead of the full tree, starting from the bottom of the final three and then
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Table 3.9: Comparing Test Error of PCA-Systematic Data Splitting with Existing Methods
for Fitting CART Model

Data splitting Method Min 1st Quantile Median Mean 3rd Quantile Max

SRSWOR 0.00300 0.01502 0.02102 0.02318 0.03003 0.04805

SRSWR 0.00576 0.01769 0.02552 0.02593 0.03156 0.05780

Systematic 0.00387 0.00725 0.01354 0.01563 0.02369 0.03675

PCA-Systematic 0.00000 0.00601 0.00901 0.00946 0.01201 0.02703

going back to undo some of the splits as they are considered unnecessary according to the

cost-complexity parameter. This approach avoids overfitting and strikes a balance between

fitting training data and predicting unobserved data. This procedure allows the users to

specify a parameter that controls the minimum number of observations in a terminal node.

3.6 Cost Analysis

This section addresses the computation cost and impact of using the novel PCA-Systematic

data splitting method. The method has two main steps:

� Computing the covariance matrix of the data.

� Computing PCA on the covariance matrix from the previous step.

Computing the PCA involves deriving the eigenvalue decomposition as in Theorem 1.

The PCA is computed for the p× p covariance matrix and not the actual n× p data. The

computational complexity to derive the covariance matrix Σ is O(p2n). The eigenvalue

decomposition of PCA computational complexity is O(p3). So the overall complexity of

PCA-Systematic splitting method is O(p2n + p3).

The PCA algorithm in this dissertation performs spectral decomposition on the variance-

covariance matrix Σ, which is a p + 1 by p + 1 matrix. The principal components are the

results of matrix multiplication of the form Γ′ × (Y,X1, . . . , Xp)
′ where Γ is an orthogonal

matrix whose columns are the standardized eigenvectors of the Σ (See equation (2.4)).

The process of matrix multiplication can be optimized using parallel processing because
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Figure 3.9: Performance of PCA-Systematic Compared with SRSWR, SRSWOR and Tra-
ditional Systematic for CART.
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each principal component Zi is the product between the ith row of Γ′ and the data matrix

(Y,X1, . . . , Xp) which can be calculated independently from one another if multiple copies

of the data matrix are made available for each subprocess.

The execution time of running PCA on a simulated large-scale dataset composed of one

billion records and four variables using SAS took less than 5 minutes, as shown in Table

3.9. However, the file size exceeded 39 gigabytes.

Table 3.10: CPU and Real Time of Running PCA on a one Billion Records and Four
Variables Data File

Number of Records Real Time CPU Time File Size

105 0.04 seconds 0.03 seconds 4,032 KB

108 17.23 seconds 19.87 seconds 3.92 GB

109 5:19.96 4:12.68 39.22 GB
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Chapter 4: Real Data and Applications

In this dissertation, three real data sets have been used to demonstrate the effectiveness of

my data-splitting approach. The next section provide details of the data sets.

4.1 Iris Flower Dataset

Edgar Anderson an American botanist collected the Iris flower data to analyze the mor-

phology of three different species of Iris flowers [2]. This data became very popular when

Ronald Fisher, a famous British statistician, and biologist published his research work when

he introduced LDA (linear discriminant analysis) in 1936 paper in a an article titled “The

use of multiple measurements in taxonomic problems” [11]. At the time of writing this

dissertation, Ronald Fisher’s paper was cited 17,021 times in Google Scholar . The Fisher

Iris data is well known within the statistical community and machine learning experts and

became a mainstream test case of many classification problems. For each type of the three

species of Iris (Iris Setosa, Iris Virginica, and Iris Versicolor) 50 flower samples were ran-

domly selected. The structure of each flower was measured using four features: the length

and the width of the sepals and petals, in centimeters. The Iris data is a multivariate dataset

that consists of 150 observations and 5 variables, the fifth variable is the class membership

of the Iris flower.

The Iris data can be easily downloaded from the web, for example the University of

California Machine Learning Repository has these data. Iris data is available at Kaggle, an

online community acquired by Google LLC that maintains an online database with over 1

million users and more than 19,000 public datasets. Iris data are also available with almost

every statistical software such as SAS, R and STATA. Crystal Vision software has it avail-

able for testing as well. In SAS software it can be accessed in the SAShelp library among
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over 200 data sets for users to use for testing codes, in R it is available in the datasets

package.

The method of Linear Discriminant Analysis was introduced by Fisher as a classification

problem. He used the IRIS data as an application to predict the flowers membership, the

task is to be able to predict the correct membership of the Iris flowers to the possible species

Iris Setosa, Iris Virginica, or Iris Versicolor.

As part of any machine learning prediction modeling task, it is necessary to do data

splitting, which consists in this case of partition the 150 data points into two groups, the

first group is used for fitting the LDA model, I refer to this as the training dataset, the

second group, which is in this case the complement group, I refer to it as the testing dataset.

The traditional method of sample size allocation during data splitting to form the train-

ing and testing datasets is to designate a large percentage of data for the training dataset,

usually around 70 to 80 percent but sometimes it could be as large as 90 percent of the full

data. The remaining complement is dedicated to form the testing dataset.

This dissertation introduces a new sampling designs to randomly select the training and

testing data and compared it with the traditional data splitting using the state of the art

methods of sampling schemes.

The goal of this dissertation is to show how data splitting affects the prediction accuracy

of a given fitted model. The dissertation also introduces new data splitting methods for the

IRIS data. These methods can be generalized to other datasets as well.

To effectively demonstrate the effects of data splitting I will allocate only 15 data points

for the training data and the remaining 135 data points for testing, I used LDA as the

classification method.

Data splitting is used as a way to validate machine learning predictions model, but

current methodology is to allocate a large portion of data for fitting and the remainder

data portion for testing the model. Accuracy of the model is measured by comparing the

predicted values of the target variable against the true value of the response using the test

dataset. In this dissertation, my approach in order to ensure that the data splitting is
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optimal is to focus on randomly selecting the best test dataset possible. Because the test

dataset is small compare to the training dataset the risk is higher for the test to misrepre-

sent the full data set. Using the best sampling designs to form the test dataset is critical.

Once the test dataset is randomly selected using the best sampling design; the training

dataset is simply the complement of the test dataset. Choosing the best sampling designs is

a function of the full data set to sample from and especially the probability distribution of

the target variable and how it relates to the feature variables. There is no single sampling

design that works all the time for all types of data. Depending on the nature of data and

the target variable, different sampling designs should be selected accordingly.

Among numerous useful EDA (Exploratory data analysis) tools that can be used to

visualize Iris data, the overlay density plot based on the three Species for each of the four

features shown in figure 4.1 reveals, for example, how Petal Length and Petal Width are

both good predictors when it comes to discerning Virginica from Setosa.

CrystalVision is a Windows application designated as a multivariate visualization and ex-

ploration tool. One of the key features of this software is its ability to produce parallel

coordinates to analyze high dimensional data, Iris data has four continuous variables and a

label variable.

Parallel coordinates is data visualization tool that can be used with multi-dimensional

data [41]. Parallel coordinates is ideal to compare multiple variables and determine the

relationship in a single plot.

Tables 4.1 and 4.2 show the correlation analysis for the Iris predictor variables before and

after PCA is conducted.

The principal components can be used as engineered features to boost the classification

task; however, in this dissertation, they are not used as predictors but rather tools for data

splitting. In this dissertation, one of the novel data splitting tools involves conducting PCA

to create principal components and then used the components as sort key variables before

systematic sampling. Another novel splitting method involves using the components as a

stratification tool which will be explained in methods 4, 5, and 6 with Iris data.

82



Table 4.1: Correlation Analysis for Iris Flowers Data

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1 -0.12 0.87 0.82

Sepal.Width -0.12 1 -0.43 -0.37

Petal.Length 0.87 -0.43 1 0.96

Petal.Width 0.82 -0.37 0.96 1

Figure 4.1: Iris Flowers Data Overlay Density Plots.
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Table 4.2: Correlation Analysis of Iris Flowers Data with PCA

Sepal.Length Sepal.Width Petal.Length Petal.Width pc1 pc2
Sepal.Length 1 -0.12 0.87 0.82 0.90 0.39

Sepal.Width -0.12 1 -0.43 -0.37 -0.40 0.83

Petal.Length 0.87 -0.43 1 0.96 1.00 -0.05

Petal.Width 0.82 -0.37 0.96 1 0.97 -0.05

pc1 0.90 -0.40 1.00 0.97 1 0

pc2 0.39 0.83 -0.05 -0.05 0 1

Figure 4.2: Parallel Coordinates to Visualize Iris Data.

The data splitting methods are explained below

1. SRSWOR

15 data points out of 150 available data points are randomly selected without replacement.

With the SRSWOR design, the total number of all possible data splits is very large. Because

it is done without replacement, it is equal to the number of all subsets of size 15 that can
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be withdrawn from a dataset that has a size 150; it is 150 choose 15, and the formula is

(
150

15

)
=

150!

15!(150 − 15)!
≈ 1.623922 × 1020.

2. SRSWR

15 data points out of 150 available data points are randomly selected with replacement.

With this data splitting design, the total number of all possible data splits is very large and

equals 15015; this is larger than that of SRSWOR of
(
150
15

)
because duplicates are acceptable.

3. Stratified by Species

15 data points out of 150 are selected using a multistage stratified random sample with

an equal allocation of the sample size. Where the strata are the Species; this means from

within each species, 5 data points are randomly selected using SRSWOR. With this design,

for every stratum, each data point has the sample probability of inclusion of 1/10.

4. Stratified by regions created by the quadrants formed by the PCA.

The first step is to compute the variance-covariance Σ of the numerical part of the data

matrix, so for the Iris data, all four variables, the length and the width of the sepals and

petals are used. Then similar to how PCA was shown in Chapter 2, I perform PCA on Σ

and derive the eigenvectors. As a result, with Iris data, much of the variation is captured

by the first two principal components.

Then I consider the cartesian product created by the first two principal components for

this data. Using the first component PC1 as the X-axis and the second component PC2 as

the Y-axis four regions can be formed; they can be labeled North East (NE), North West

(NW), South East (SE) and South West (SW) defined as follows:
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Region =



NE if PC1 ≥ x0 and PC2 ≥ y0;

NW if PC1 ≤ x0 and PC2 ≥ y0;

SE if PC1 ≥ x0 and PC2 ≤ y0;

SW if PC1 ≤ x0 and PC2 ≤ y0.

(4.1)

where x0 = 1
n

∑n
i=1 PC1i and y0 = 1

n

∑n
i=1 PC2i are the sample means of PC1 and PC2

respectively

This Cartesian space can be expanded by including more axes, but for the Iris data the

first two components are sufficient and explains much of the variation. Once the regions

created by the quadrants formed by the PCA and created, the allocation of the sampled 15

data points is conducted using allocation proportion to the size of the regions. With these

Iris data, the value of PC1 ranges approximately from -3.23 to 3.80, and PC2 ranges from

-1.27 and 1.37. With this, the resulted population were partitioned to 32 data points to the

NW region, 42 data points to the NE region, 49 data points to the SE region, and 27 data

points to the SW region.

The sample size in each region is taken in proportion to the size of the region. With this

strategy, each region h gets a sample size nh according to the formula.

nh = n
Nh

N
(4.2)

where Nh is the size of the region (stratum) h;

N =
∑H

h=1Nh; and H = 4 here.

Table 4.3 shows the details of the sample size allocation. The 15 data points are

proportionally allocated to the size of the stratum. The stratum is defined based on the

PCA quadrant defined in (4.1).

With this sampling scheme, depending on the region h a given unit uk it belongs to; its
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Table 4.3: Proportional Allocation of Sample Size

PCA Quadrant Region Stratum Size (Nh) Sample Size nh

North East 42 4

North West 32 3

South East 49 5

South West 27 3

inclusion probability to be selected by the sample S denoted by pk can be computed as

follows

pk =
nh

Nh
.

However, because of the proportional allocation given by (4.2), this implies that pk = n
N .

With this design, the population elements have an equal probability of selection. This

property is known as EPSEM (equal probability of selection method)

5. Stratified by the grid formed by PCA.

With this sampling scheme the variance explained by each principal component is taking into

consideration. First I create a 2-D grid in the cartesian space formed by the two PCA com-

ponents. For the first PCA component PC1 partition the interval [min(PC1),max(PC1)]

into M + 1 equally spaced grid points, M is proportional to the relative variance explained

by PC1. For the second PCA component PC2 partition the interval [min(PC2),max(PC2)]

into N + 1 equally spaced grid points, N is proportional to the variance explained by the

PC2. There are M ×N squares created which then are used as strata for the data splitting.

Another way to create the M × N 2-D grid is to use the quantiles, so instead of creat-

ing equally spaced grid points across the axis formed by PC1 I can use p1, . . . , pM+1 the

M + 1 quantiles of PC1 this will be suitable when the data exhibits some volatility such as

financial and economic data. for the Iris data this was not needed. with skewed data using

equidistant points to subdivide an interval will lead most likely to sparse or empty regions

that has no data points.
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6. Stratified by Species PCA-Systematic.

An additional novel data splitting method that I developed in this dissertation is as follows

First, I create a synthetic sort key defined as follows:

srtkey = σ1PC1 + σ2PC2, (4.3)

where σi is the standard deviation of the ith principal component. Second, Sort the data

file by srtkey and then implement systematic sampling afterward. The two steps above are

implemented within each Species stratum.

The first three sampling designs described above are known as equal probability of selection

method (EPSEM) sampling because every unit that is actually included in the sample had

the sample probability of being selected in the sample.

Another measure that can be used to evaluate the performance of a particular data

splitting method is based on its variability, which is the dispersion of the validation errors

that can result by repeated implementation of that method.

The coefficient of Variation (CV) of the distribution of the errors also known as relative

standard deviation (RSD) measures the relative variability; it is defined as the ratio of the

standard deviation of the distribution to the mean of the distribution:

CV =
σ

µ
× 100 (4.4)

Coefficient of variation measures the spread of the distribution relative to its mean, it is a

unit free measure, which means it does not depend on the unit of measurements and often

expressed as percentages.

The variability of the test errors obtained using a particular data splitting method using

the variance and the coefficient of variation is given in table 4.11

As it can be seen, the variability of the validation errors obtained using our method

PCA-Systematic Stratified by Species is low with a coefficient of variation of 1.86 percent
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Table 4.4: Comparing Accuracy of Novel Data Splitting Methods against Standard Methods
in the Context of LDA on Iris Data

Data Splitting Method Min 1st Quantile Median Mean 3rd Quantile Max

SRSWOR 0.533 0.933 0.956 0.941 0.963 0.993

SRSWR 0.511 0.926 0.949 0.938 0.963 1.000

Stratified by Quadrants
formed by PCA

0.630 0.933 0.956 0.943 0.963 0.993

Stratified by grid
formed by PCA

0.689 0.933 0.956 0.947 0.970 1.000

Stratified by Species 0.667 0.933 0.956 0.947 0.963 0.993

Stratified by Species
and PCA-Systematic

0.933 0.950 0.956 0.960 0.974 0.985

which is desirable. In contrast, the variability of the validation errors obtained using current

state of the art method of data splitting which is stratified by species for these data resulted

in a coefficient of variation of 3.09 percent.

This dissertation used the Iris Flowers data as a prototype to describe the algorithms of

the different novel data splitting methods and how they can compare with traditional data

splitting methods.

Table 4.4 presents the results of comparing these novel splitting methods against current

methods of data splitting into testing and training. The quality of a given data splitting

method can be assessed by quantifying how much distortion of information resulted from

the split. Data splitting will sample from the full data Ω and creates a subset data set S.

Regardless of the specific machine learning model to be fitted, a distortion of information

can occur when the resulting sample S do not preserve the property of (interest); the target

and its relationship with the other variables.

This can be measured by computing the variance-covariance matrix for both Ω and S,

taking the difference of the two matrices and computing its Frobenius norm ∥ΣΩ − ΣS∥F

This resulting difference matrix is a square symmetric holding has p × p element wise

differences.

The element of the ith row and and jth column of ΣΩ is the covariance between Xi and Xj
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Table 4.5: Frobenius Distance between Covariance Matrix of the Full Data and the Training
Data

Data Splitting Method Min 1st Quantile Median Mean 3rd Quantile Max

SRSWOR 0.008 0.261 0.573 1.018 1.291 14.137

SRSWR 0.004 0.292 0.651 1.122 1.410 15.098

Stratified by Quadrants
formed by PCA

0.007 0.169 0.371 0.662 0.850 9.409

Stratified by grid
formed by PCA

0.012 0.164 0.292 0.371 0.496 2.781

Stratified by Species 0.005 0.166 0.341 0.538 0.692 6.006

Stratified by Species
and PCA-Systematic

0.083 0.121 0.210 0.244 0.286 0.714

using all data points. The element of the ith row and and jth column of ΣS is the covariance

between Xi and Xj when only the data points that belong to S are used. Table 4.5 presents

shows this result.

The second columns in Tables 4.7 through 4.10 labeled “True Value” holds the value

of the mean for the variables Sepal Length, Sepal Width, Petal Length and Petal Width

respectively; these averages are computed using the full data set of Iris of 150 data points,

these values are considered to be the truth. However the third columns are their corre-

sponding estimated values; they are estimated because they are derived using the training

examples that resulted from the various data splitting methods listed in the first columns.

The RRMSE column in each table is computed as follows
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Table 4.6: RRMSE for estimating Sepal Length

Data Splitting Method True Value Mean of Yhat RRMSE

SRSWOR 3.057 3.057 0.166

SRS 3.057 3.058 0.166

Stratified by Quadrants
formed by PCA

3.057 3.043 0.164

Stratified by grid
formed by PCA

3.057 2.988 0.339

Stratified by Species 3.057 3.057 0.166

Stratified by Species
and PCA-Systematic

3.057 3.057 0.044

Table 4.7: RRMSE for estimating Sepal Width

Data Splitting Method True Value Mean of Yhat RRMSE

SRSWOR 5.843 5.843 5.659

SRS 5.843 5.845 5.657

Stratified by Quadrants
formed by PCA

5.843 5.819 5.625

Stratified by grid
formed by PCA

5.843 5.929 5.592

Stratified by Species 5.843 5.844 5.659

Stratified by Species
and PCA-Systematic

5.843 5.843 4.760

Table 4.8: RRMSE for estimating Petal Length

Data Splitting Method True Value Mean of Yhat RRMSE

SRSWOR 3.758 3.758 0.086

SRS 3.758 3.762 0.087

Stratified by Quadrants
formed by PCA

3.758 3.738 0.085

Stratified by grid
formed by PCA

3.758 4.032 0.292

Stratified by Species 3.758 3.759 0.086

Stratified by Species
and PCA-Systematic

3.758 3.758 0.009
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Table 4.9: RRMSE for estimating Petal Width

Data Splitting Method True Value Mean of Yhat RRMSE

SRSWOR 1.199 1.199 5.131

SRS 1.199 1.201 5.132

Stratified by Quadrants
formed by PCA

1.199 1.190 5.097

Stratified by grid
formed by PCA

1.199 1.320 5.080

Stratified by Species 1.199 1.199 5.131

Stratified by Species
and PCA-Systematic

1.199 1.199 4.277

Table 4.10: RRMSE for each Data Splitting Method with regards to the True Mean of each
Feature

Data Splitting Method Sepal.Length Sepal.Width Petal.Length Petal.Width

SRSWOR 5.659 0.166 0.086 5.131

SRSWR 5.657 0.167 0.087 5.132

Stratified by Quadrants
formed by PCA

5.625 0.164 0.085 5.097

Stratified by grid
formed by PCA

5.592 0.339 0.292 5.080

Stratified by Species 5.659 0.166 0.086 5.131

Stratified by Species
and PCA-Systematic

4.760 0.044 0.009 4.277

Table 4.11: Variability of the Validation Errors for the Data Splitting Methods for LDA on
Iris Data

Method Variance CV

SRSWOR 0.0017 4.45 percent

SRSWR 0.0023 5.08 percent

Stratified by Quadrants formed by PCA 0.0014 4.00 percent

Stratified by the grid formed by PCA 0.0010 3.39 percent

Stratified by Species 0.0009 3.09 percent

Stratified by Species and PCA-Systematic 0.0003 1.86 percent
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Figure 4.3: Preservation of Variance-Covariance Comparison for Iris Flowers Data.

93



Figure 4.4: Performance of PCA-Systematic compared with all Data Splitting Methods.

4.2 The Annual Survey of Public Employment and Payroll

(U.S. Census Bureau)

This section used data from the ASPEP (Annual Survey of Public Employment and Payroll)

as a prototype of real survey data to illustrate how my novel PCA-Systematic sampling can

be employed and show how it outperforms standard systematic sampling.

4.2.1 ASPEP Suvey Data File and Study Variables

Let us give some details concerning the ASPEP survey, the collected file and the study

variables.

The U.S Census Bureau conducts economic Censuses of about 90,000 federal, state,

and local government units every five years to collect data on the number of full-time and

part-time federal, state, and local government employees and their payroll. Between two

consecutive censuses (in the years ending with 2 and 7, e.g., (2012 and 2017), the U.S. Census
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Bureau also conducts The Annual Survey of Public Employment and Payroll (ASPEP) to

collect similar data on a nationally representative sample basis on federal, state, and local

governments’ civilian employees and their gross payrolls [42].

ASPEP survey is of significant importance because it is the only source of public em-

ployment data that provide state and local government data on full-time and part-time

employment, part-time hours worked, full-time equivalent employment, and payroll statis-

tics by governmental function. These governmental functions include school data, which

covers elementary and secondary education, higher education, and other functions of the

government such as libraries, police protection, judicial and legal, parks and recreation, fire

protection, electric power, gas supply, financial administration, central staff services, high-

ways, public welfare, solid waste management, sewerage, social insurance administration,

health, hospitals, water supply, transit, natural resources, correction, air transportation,

water transport and terminals, and housing and community development. The data is in-

tended for public access and use and made available on the web online. This dissertation

used the 2017 Census of Governments: Employment Component (CoG-E). A Census is

an entire sample that covers the entire population. Census will include every unit in the

population. In probability sampling, a Census is a probability sample where every element

is taking by certainty.

The CoG-E collects government data classified into five types of governments: counties,

cities, townships, special districts, and school districts. The different types of governments

perform various governmental activities which are designated for the survey by governmen-

tal function codes.

The key statistics measured by this survey and variables of interest are:

� Total of Full-time employees

� Total of Full-time pay payroll

� Total of Part-time payroll

� Total of Part-time hours
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� Total to Total Pay

ASPEP defines Full-time employees as any person whose employment during a pay pe-

riod that averages at least 30 hours of service weekly or 130 hours of service monthly; with

this definition, regardless of the job type, full-time temporary or seasonal employees are

included.

Full-time pay for ASPEP survey is defined as Gross payroll amounts for the one-month

period of March for full-time employees. This includes all salaries, fees, commissions, and

overtime paid to employees before withholdings for taxes and insurance. It also includes

regular incentive payments that are paid at regular time-period intervals. But these gross

payroll amounts exclude employer share of fringe benefits like retirement, Social Security,

health and life insurance, lump-sum payments, and so forth.

ASPEP defines Part-time pay as gross payroll amounts for the one month of March for

part-time employees only. This gross payroll should include all salaries, fees, commissions,

and overtime paid to employees before withholdings for taxes and insurance. This definition

should also include incentive payments paid at regular pay intervals but exclude employer

share of fringe benefits like retirement, Social Security, health and life insurance, lump-sum

payments, and so forth.

Part-time hours can be defined as the number of hours worked by part-time employees

during the pay period. Note that these data are not collected for publication but rather are

used to calculate full-time equivalent employment statistics.
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4.2.2 PCA Impact on Correlation for ASPEP Data

Pearson correlation analysis is carried out to measure the linear dependence between ASPEP

variables before and after the PCA transformation is performed.

The correlation matrix results presented in Table 4.13 and Table 4.12 show how the first

component PCA Z1 improves the overall Pearson correlation for all of the study variables.
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Table 4.12: Correlation Analysis before PCA for ASPEP Variables

totpay17 ftemp17 ptemp17 pthours17

totpay17 1.00 0.96 0.55 0.53

ftemp17 0.96 1.00 0.46 0.41

ptemp17 0.55 0.46 1.00 0.96

pthours17 0.52 0.41 0.96 1.00

Table 4.13: Correlation Analysis after PCA for ASPEP Variables

Z1 totpay17 ftemp17 ptemp17 pthours17

Z1 1.00 0.86 0.83 0.87 0.85

totpay17 0.86 1.00 0.96 0.55 0.52

ftemp17 0.83 0.96 1.00 0.46 0.41

ptemp17 0.87 0.55 0.46 1.00 0.96

pthours17 0.85 0.52 0.41 0.96 1.00

The novel PCA-systematic sampling design is compared with the five possible systematic

sampling methods. For example, systematic sampling using FTEMP as a sort variable

method consists of two steps;

1. Sort the ASPEP data file by the variable FTEMP

2. Draw a systematic sample afterward

There are five choices of variables to sort by in step1. So that is why there are five methods

to be compared with PCA-systematic. The ASPEP data set is considered as the popula-

tion. First, I compute the population truths: the average of each variable using the full

(unsampled) ASPEP data file.

I denote The population average for a given study variable y by Ȳ . We have

Ȳ =
1

N

N∑
i=1

yi (4.5)

N is the population size and in this case is the number of observations of the ASPEP file.
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The second column in Table 4.15 labeled ”True Value” holds the value of the population

mean for the variable FTEMP

The same thing applies to Tables 4.16 through 4.19 but for the study variables FT-

PAY,PTHOURS,PTPAY, and TOTPAY respectively.

Each table presents the Monte Carlo simulation results of performance comparison be-

tween the different systematic sampling methods for one of the study variables. The Metric

used for performance is the RRMSE. Lower values are preferable.

With this simulation work, for each sampling design method, a replicate of 10,000 random

samples is produced and for each sample an estimated population parameter is derived us-

ing the weighted sample mean using the survey weights.

The weighted sample mean of the rth MC replicate is an estimate of the population average

Ỹ and computed as

Ŷ (r) =
1

n

n∑
i=1

y
(r)
i (4.6)

The Tables 4.16 through 4.19 are sorted by ascending order of RRMSE. Table 4.16 shows

how PCA-Systematic sampling which consists of sorting by the first principal component

Z1 has the lowest RRMSE of 13.3 and therefore outperforms all other systematic sampling

for the study variable FTPAY.
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Table 4.14: RRMSE for estimating FTEMP

Key Variable Sort Variable True Value Mean of Yhat RRMSE

FTEMP FTEMP 41 41 10.5

FTEMP Z1 41 41 10.7

FTEMP FTPAY 41 41 11.6

FTEMP PTPAY 41 41 13.0

FTEMP PTHOURS 41 41 13.7

FTEMP TOTPAY 41 41 16.3

Table 4.15: RRMSE for estimating FTPAY Full Time Pay

Key Variable Sort Variable True Value Mean of Yhat RRMSE

FTPAY Z1 202.73 199.608 13.3

FTPAY TOTPAY 202.73 199.225 13.4

FTPAY PTHOURS 202.73 209.944 15.3

FTPAY FTPAY 202.73 203.029 17.5

FTPAY PTPAY 202.73 203.598 19.6

FTPAY FTEMP 202.73 204.432 20.5

4.2.3 Results

I assess accuracy of PCA-Systematic data splitting method compared to traditional sys-

tematic data splitting methods by computing the Relative Root Mean Squared Error.

Tables 4.14 through 4.18 present RRMSE for the ASPEP study variables FTEMP, FTPAY,

PTHOURS, PTPAY and TOTPAY. The tables below show the results:

Table 4.16: RRMSE for estimating Part Time Hours

Key Variable Sort Variable True Value Mean of Yhat RRMSE

PTHOURS Z1 906 900 16.1

PTHOURS PTPAY 906 901 16.5

PTHOURS PTHOURS 906 914 17.3

PTHOURS TOTPAY 906 903 17.5

PTHOURS FTPAY 906 915 17.5

PTHOURS FTEMP 906 920 19.2
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Table 4.17: RRMSE for estimating Part Time Pay variable

Key Variable Sort Variable True Value Mean of Yhat RRMSE

PTPAY FTPAY 15,980 16,026 19.0

PTPAY PTHOURS 15,980 16,010 19.1

PTPAY FTEMP 15,980 16,008 19.8

PTPAY PTPAY 15,980 15,941 20.1

PTPAY TOTPAY 15,980 16,045 21.0

PTPAY Z1 15,980 16,238 22.0

Table 4.18: RRMSE for estimating Total Pay variable

Key Variable Sort Variable True Value Mean of Yhat RRMSE

TOTPAY TOTPAY 218,712 217,700 13.7

TOTPAY PTHOURS 218,712 217,326 13.8

TOTPAY Z1 218,712 219,055 14.9

TOTPAY FTPAY 218,712 218,170 15.8

TOTPAY PTPAY 218,712 219,831 16.7

TOTPAY FTEMP 218,712 220,283 17.9

I further combine the results from Tables 4.15-4.19 to derive a global RRMSE as a

measure of performance by computing for each sort-variable of the systematic data splitting

an average RRMSE across all the tables. Table 4.20 is the resulting global RRMSE which

shows how PCA-Systematic data splitting method outperforms all other possible systematic

data splitting methods.

Table 4.19: Overall RRMSE for all the Possible Sort Key Variables

Sort Variable RRMSE

Z1 15.4

PTHOURS 15.8

FTPAY 16.3

TOTPAY 16.4

PTPAY 17.2

FTEMP 17.6
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4.3 The American Housing Survey Public File (U.S. Census

Bureau)

In this section, I use a data from the 2011 American Housing Survey (AHS) to illustrate

the proposed data splitting technique.

4.3.1 AHS Data File

The American Housing Survey (AHS) is one of the oldest surveys in the U.S that started in

1997. The survey is authorized by an act of the U.S Congress with funding and oversight

by the Department of Housing and Urban Development agency (HUD).

HUD sponsors the AHS and delegates to the U.S census bureau the role and responsibility

of designing the sample, collecting the data, and producing the estimates at the national

level and at the state level for the selected metropolitan areas.

The mission of the American Housing Survey is to inform the public and help economists

and policymakers. The survey provides the public and data users from different backgrounds

and expertise with detailed and timely information about housing quality, housing costs,

and neighborhood assets to support effective housing policy, programs, and markets.

The AHS consists of two surveys; a national survey conducted every other odd-numbered

year and multiple metro surveys in selected regions. The surveys are independent of one

another. However, In 2011 both surveys were combined together to form one aggregated

big file. The Census Bureau developed a new set of weights to accommodate this change.

This combination resulted in a larger file compared to what a regular national file would

be.

One of the advantages of this survey is the fact that HUD, with collaboration with the

U.S Census bureau, release the entire microdata file and make it available online every year

the survey is conducted. the file is so detailed to the point that individual responses to

survey questions are available at the housing unit level and not just aggregated summary

tables like most other surveys do in the U.S and elsewhere.
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It is to be noted that the file is examined, and data disclosure avoidance techniques such

as top coding, bottom coding, and noise infusion are employed and performed before the

release of this microdata file to protect the identity of the respondents to the survey and

maintain confidentiality. This file is known as the Public use file (PUF); just as its name

indicates, it is a file to be used by everyone in public.

The AHS PUF file is offered in two different data sets:

� An integrated National Sample PUF which includes individual responses from a rep-

resentative sample of the entire nation, from representative samples of the largest

metropolitan areas, and from a representative sample of households receiving HUD

rental assistance.

� An independent Metropolitan Area Samples PUF includes individual responses from

representative samples of a number of metropolitan areas selected from among Amer-

ica’s top 51 largest metropolitan areas.

The 2011 AHS survey file that combined the National survey data with the metropoli-

tan areas contains a large number of variables. It has 186,448 records and 3,078 variables

that measure a comprehensive inventory of all housing in the United States of America.

This survey is considered to be demographic survey data. It covers data on a wide range

of housing subjects, including single-family homes, apartments, manufactured housing, va-

cant units, family composition, income, housing, and neighborhood quality, housing costs,

equipment, fuel type, and recent moves

4.3.2 Selected AHS Variables

AHS measures several cost variables that are good candidates for this dissertation as they

are continuous; some of these variables are monthly such as Average monthly cost of Gas

(AMTG) or the monthly average cost of electricity (AMTE); some are annual, such as

Homeowners insurance(AMTI) or the annual cost of water consumption (AMTW).
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Each cost variable can be treated as a dependent variable, and one possibility would be

to fit a prediction model for each cost separately, assuming independence. Statistical

learning methods can be employed after clustering is made on continuous variables af-

ter they get transformed to ordinal categorical variables by creating ranges. The methods

include but not limited to KNN(K nearest neighbors), LDA(Linear discriminant analysis),

QDA(Quadratic discriminant analysis). If the purpose is to make a prediction, then employ-

ing more flexible parametric methods would also be the right choice since the goal would be

to increase the prediction’s accuracy, not Statistical Inference. Depending on the purpose,

there is a tradeoff between Interpretability and increasing the accuracy of prediction.

I seek to select the best covariates or features or “independent variables” that can predict

each cost, since some explanatory variables are nominal, such as the type of the living unit,

for example, a housing unit could be located in an attached building, detached building,

or in a multi-Unit types building, etc.. . . It would have been a good idea to expand the

model above to account for that. one can either do an Analysis of Variance or do separate

regression for each type. This dissertation uses the AHS data to show how can traditional

systematic sampling be improved by using the novel PCA- Systematic sampling.

Related to cost variables that are used are presented in Table 4.20:

These variables are mainly chosen because they are good candidates as they are numeric

variables and, therefore, good candidates for this dissertation.

The variable AMTE is the response to the following survey question: In the past 12

months, what was the average MONTHLY cost for electricity?

For AMTG, the survey questionnaire is: In the past 12 months, what was the average

MONTHLY cost for gas?

For AMTI, it is: In the last 12 months, what was the total cost? If the head of household

(householder’s) response exceeds $5,582 or more, then for confidentiality reason, it is kept

at $5,582. This technique is known as top-coding and used for privacy protection as the risk

of disclosure increases; it would become easy to identify the housing unit if values become
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Table 4.20: American Housing Survey Cost Variables

Variable Name Description

AMTE Average monthly cost of electricity

AMTG Average monthly cost of gas

AMTI Annual cost of homeowners insurance

AMTO Annual cost of fuel oil

AMTT Annual cost of garbage and trash

AMTX Annual Real Estate Tax Payments

AMTW Annual cost of water and sewage

CPRICE Cost of construction plus value of land

CSTMNT Annual cost for routine maintenance

FMHOTF Average regular cost of other required monthly fees

HKRAC Cost of alteration/repair due to Hurricane Katrina

RAC Cost of replacements/additions to unit

ZSMHC Monthly housing costs

extreme or outliers, especially if they are combined with other information.

The variable AMTO is the answer to the following question: From 12 months ago to

the current month and year, what was the total cost for fuel oil? for this variable, responses

that are equal or greater than $ 6,057 are also kept at $ 6,057.

The variable AMTT is the answer to the following question: From 12 months ago to

the current month and year, what was the total cost for garbage and trash collection? the

minimum and maximum allowed values for this variable are $ 1 and $ 2,990.

To collect the variable AMTW, the surveyed housing unit head of the household is asked

the question: ”From 12 months ago to the current month and year, what was the total cost

for water supply and sewage disposal? ” Topcoding value for this variable is also $ 3,358.

4.3.3 AHS Exploratory Data Analysis

First, I start to explore the data for each of the selected variables. This process involves

the following:

� Compute summary statistics to include both measures of central tendency such as
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the mean, median, and mode and measures of spread, such as the variability and the

standard deviation.

� Compute descriptive statistics based on moments such as the skewness and kurtosis

to identify the shape of the probability distribution. Skewness measures asymmetry;

values near zero indicate that the distribution is symmetric. If the value is positive,

then it is positively skewed; otherwise, it is negatively skewed. Kurtosis provides a

measure for the tails of the distribution; If The value is higher than three, then the

distribution is heavy-tailed. Otherwise, if it is less than three, then the distribution

is considered to be platykurtic.

� Visualize the data distribution using the frequency histogram, compute the kernel

density estimate, and overlay the fitted density curve with the histogram; this helps

with outliers detections. Kernel density estimate is a non-parametric method and

does not make any assumptions about the data’s underlying probability distribution.

One can visually verify, for example, if normality assumptions about the distribution

are reasonable by adding and superimpose a fitted normal curve to the graph. In

addition to assessing normality, other parametric distributions can also be fitted and

verified.

Results from analyzing the data structure of the selected variables are shown in fig-

ures 4.5 through 4.11. For each cost variable, the analysis shows that the distribution is

positively skewed. It also reveals the presence of an outlier on the right tail of the distri-

bution. The outliers are essentially caused by top coding. With top coding, among other

techniques, a unique single estimate is allocated to a large group of housing units. Some

other characteristics and information were omitted or modified to protect the privacy of

respondents; for example, the state information is not made available for those units.

All selected variables except for AMTO, with a kurtosis value of 1.6, all variables have

heavy-tailed distributions.
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Figure 4.5: Distribution for Average Monthly Cost of Electricity.

4.3.4 PCA Impact on Correlation

This subsection analyzes the correlation among the study variables before and after PCA.

The PCA is used to engineer new features that can be used only as a tool for sorting

before Systematic method is implemented as data splitting and not as features variables or

predictors per se to have a fair comparison between different data splitting.
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Figure 4.6: Distribution for Average Monthly Housing Cost of Gas.

Table 4.21: Correlation Analysis Before PCA for AHS Variables

AMTE AMTF AMTG AMTI AMTO AMTT AMTW

AMTE 1.00 0.02 0.24 0.25 0.13 0.17 0.17

AMTF 0.02 1.00 0.01 -0.04 -0.11 -0.00 -0.03

AMTG 0.24 0.01 1.00 0.13 0.11 0.03 0.10

AMTI 0.25 -0.04 0.13 1.00 0.27 0.12 0.18

AMTO 0.13 -0.11 0.11 0.27 1.00 0.07 0.13

AMTT 0.17 -0.00 0.03 0.12 0.07 1.00 0.18

AMTW 0.17 -0.03 0.10 0.18 0.13 0.18 1.00
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Figure 4.7: Distribution for Average Monthly Housing Cost for Homeowners Insurance.

homeowners insurance

Table 4.22: Correlation Analysis After Adding The First PCA Component for AHS Vari-
ables

Z1 AMTE AMTF AMTG AMTI AMTO AMTT AMTW

Z1 1.00 0.92 -0.22 -0.06 0.90 0.41 0.06 0.73

AMTE 0.92 1.00 0.02 0.24 0.25 0.13 0.17 0.17

AMTF -0.22 0.02 1.00 0.01 -0.04 -0.11 -0.00 -0.03

AMTG -0.06 0.24 0.01 1.00 0.13 0.11 0.03 0.10

AMTI 0.90 0.25 -0.04 0.13 1.00 0.27 0.12 0.18

AMTO 0.41 0.13 -0.11 0.11 0.27 1.00 0.07 0.13

AMTT 0.06 0.17 -0.00 0.03 0.12 0.07 1.00 0.18

AMTW 0.73 0.17 -0.03 0.10 0.18 0.13 0.18 1.00
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Figure 4.8: Distribution for Annual Cost of Fuel Oil.

Table 4.23: Correlation Analysis After Adding the First and Second PCA components for
AHS variables

Z1 Z2 AMTE AMTF AMTG AMTI AMTO AMTT AMTW

Z1 1.00 0.00 0.92 -0.22 -0.06 0.90 0.41 0.06 0.73

Z2 0.00 1.00 -0.14 -0.26 0.80 -0.17 0.70 0.31 -0.04

AMTE 0.92 -0.14 1.00 0.02 0.24 0.25 0.13 0.17 0.17

AMTF -0.22 -0.26 0.02 1.00 0.01 -0.04 -0.11 -0.00 -0.03

AMTG -0.06 0.80 0.24 0.01 1.00 0.13 0.11 0.03 0.10

AMTI 0.90 -0.17 0.25 -0.04 0.13 1.00 0.27 0.12 0.18

AMTO 0.41 0.70 0.13 -0.11 0.11 0.27 1.00 0.07 0.13

AMTT 0.06 0.31 0.17 -0.00 0.03 0.12 0.07 1.00 0.18

AMTW 0.73 -0.04 0.17 -0.03 0.10 0.18 0.13 0.18 1.00
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Figure 4.9: Distribution for Annual Cost of Garbage and Trash.
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Figure 4.10: Distribution for Annual Cost of Water and Sewage.
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Figure 4.11: Distribution for Annual Cost of Real Estate Tax Payments.
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4.3.5 Data Splitting Methodology for AHS

Canonical correlation analysis carried out for AHS data shows that the number of com-

ponents to be kept is two as the first two eigenvectors capture the most of the variation.

Adding more vectors will only add noise. The stratification made using two principal com-

ponents is sufficient. Tables 4.22 and 4.23 show the correlation coefficients when the Z1 and

Z2 are sequentially added.
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4.3.6 Results

I assess accuracy of PCA-Systematic data splitting method compared to traditional sys-

tematic data splitting methods by computing the Relative Root Mean Squared Error.

Tables 4.25 through 4.31 present RRMSE for the key AHS study variables AMTE, AMTF,

AMTG, AMTI, AMTO, AMTT and AMTW. I further assessed the accuracy of PCA-

Systematic data splitting method by computing a global performance measure RRMSE...

Table 4.24: RRMSE for estimating Average Monthly Cost of Electricity

Study Variable Sort Variable True Value Mean of Yhat RRMSE

AMTE AMTE 116.75 116.58 0.0257

AMTE Z1 116.75 115.76 0.0527

AMTE AMTX 116.75 116.57 0.0573

AMTE AMTW 116.75 116.41 0.0826

AMTE AMTI 116.75 116.56 0.0843

AMTE AMTT 116.75 117.09 0.0873

AMTE AMTG 116.75 116.31 0.0882

AMTE AMTO 116.75 116.59 0.1490

AMTE SRSWR 116.75 116.62 0.0835

AMTE SRSWOR 116.75 116.62 0.0784
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Table 4.25: RRMSE for estimating Average Monthly Cost of Gas

Key Variable Sort Variable True Value Mean of Yhat RRMSE

AMTG AMTG 67.68 67.86 0.0359

AMTG Z1 67.68 67.70 0.0851

AMTG AMTE 67.68 67.49 0.0873

AMTG AMTT 67.68 67.70 0.1046

AMTG AMTI 67.68 67.52 0.1070

AMTG AMTX 67.68 67.86 0.1183

AMTG AMTO 67.68 67.56 0.1611

AMTG AMTW 67.68 67.16 0.1767

AMTG SRSWR 67.68 67.77 0.1239

AMTG SRSWOR 67.68 67.59 0.1164

Table 4.26: RRMSE for estimating Average Monthly Cost of Homeowners Insurance

Key Variable Sort Variable True Value Mean of Yhat RRMSE

AMTI AMTI 843.10 842.35 0.0259

AMTI Z1 843.10 825.42 0.0633

AMTI AMTG 843.10 844.87 0.0727

AMTI AMTW 843.10 841.85 0.0773

AMTI AMTE 843.10 843.42 0.0883

AMTI AMTX 843.10 840.36 0.0986

AMTI AMTT 843.10 840.79 0.1221

AMTI AMTO 843.10 848.54 0.1587

AMTI SRSWR 843.10 844.54 0.0961

AMTI SRSWOR 843.10 842.36 0.0899

Table 4.27: RRMSE for estimating Average Annual Cost of Fuel Oil

Key Variable Sort Variable True Value Mean of Yhat RRMSE

AMTO AMTO 1821.62 1819.92 0.0178

AMTO AMTE 1821.62 1819.97 0.0497

AMTO AMTW 1821.62 1820.46 0.0594

AMTO Z1 1821.62 1790.30 0.0617

AMTO AMTI 1821.62 1817.98 0.0735

AMTO AMTG 1821.62 1826.68 0.0759

AMTO AMTT 1821.62 1830.96 0.0782

AMTO AMTX 1821.62 1823.37 0.0870

AMTO SRSWR 1821.62 1823.64 0.0909

AMTO SRSWOR 1821.62 1821.59 0.0861
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Table 4.28: RRMSE for estimating Average Annual cost of Garbage and Trash

Key Variable Sort Variable True Value Mean of Yhat RRMSE

AMTT AMTT 330.64 331.62 0.0388

AMTT AMTG 330.64 331.89 0.0686

AMTT AMTI 330.64 330.55 0.0905

AMTT Z1 330.64 326.17 0.0945

AMTT AMTO 330.64 330.60 0.0946

AMTT AMTX 330.64 331.63 0.0995

AMTT AMTW 330.64 331.11 0.1214

AMTT AMTE 330.64 332.51 0.1303

AMTT SRSWR 330.64 330.11 0.1259

AMTT SRSWOR 330.64 330.64 0.1169

Table 4.29: RRMSE for estimating Average Annual Cost of Water and Sewage

Key Variable Sort Variable True Value Mean of Yhat RRMSE

AMTW AMTW 528.01 527.10 0.0500

AMTW AMTT 528.01 527.98 0.0715

AMTW AMTO 528.01 526.12 0.0849

AMTW AMTG 528.01 530.46 0.0934

AMTW Z1 528.01 540.59 0.0958

AMTW AMTE 528.01 525.65 0.1199

AMTW AMTI 528.01 528.00 0.1200

AMTW AMTX 528.01 529.54 0.1343

AMTW SRSWR 528.01 527.78 0.1154

AMTW SRSWOR 528.01 528.02 0.1100

Table 4.30: RRMSE for estimating Average Real Estate Tax Payments

Key Variable Sort Variable True Value Mean of Yhat RRMSE

AMTX AMTX 3240.32 3237.19 0.0310

AMTX AMTO 3240.32 3239.85 0.0749

AMTX Z1 3240.32 3161.62 0.0773

AMTX AMTT 3240.32 3250.79 0.0797

AMTX AMTG 3240.32 3221.13 0.1038

AMTX AMTW 3240.32 3235.97 0.1039

AMTX AMTE 3240.32 3252.38 0.1050

AMTX AMTI 3240.32 3231.33 0.1427

AMTX SRSWR 3240.32 3248.42 0.1195

AMTX SRSWOR 3240.32 3236.59 0.1118
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Table 4.31: Global RRMSE

Sort Variable/Method RRMSE%

Stratified by (Z1,Z2) 7.58

AMTG 7.69

AMTT 8.32

AMTE 8.66

AMTX 8.94

AMTI 9.20

AMTW 9.59

AMTO 10.59
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Chapter 5: Conclusion and Summary of Results

The goal of this section is to summarize and highlight the contribution of my dissertation.

This section explains how this work is novel and different from current methods and presents

future work and possible improvements.

There are two main contributions in this dissertation:

1. The first one is the development of a novel method of sampling. This novel sampling

design will benefit any application that requires sampling from a population. For

example, for survey sampling, the PCA-Systematic sampling introduced in this dis-

sertation is a methodology used as an alternative to existing sampling designs. This

methodology can also be used as an application for machine learning when allocating

parts of the main data into training and testing.

This sampling design, when applicable, renders the sample more representative of the

population to sample from in comparison to other sampling deigns, Chapter 2 explains

the reason for this theoretically, Chapter 3 shows the simulation work using multinor-

mal distributions, and Chapter 4 demonstrates how this works for real datasets such

as the famous Fisher Iris flowers data.

2. The second contribution is creating an index quality for sampling, regardless of the

sampling design used. For example, in the context of machine learning, when datasplit

is conducted, this index can be computed and used to assess the quality of both

training, testing, and validation datasets. If this index is below a certain threshold

set by the user, then the split is rejected and conducted again until all three thresholds

are above the threshold.
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� The training data is treated as a random sample that gets carefully derived from the

full dataset.

� Simple random sampling is not the only method in which the data can be split into

training and testing. There have been several methods in survey sampling from a

finite population in the literature that can serve machine learning. This dissertation’s

approach is interdisciplinary; it was to join survey sampling methods of sample se-

lection with data splitting in machine learning. The process involves running PCA,

then used its components to serve as sort variable(s) for systematic sampling. Chap-

ters 2 and 3 of this dissertation demonstrated how to use the PCA components as

a stratification tool. As shown in both simulated data and real data, The designed

samples, when stratified based on PCA, produced better representative samples than

traditional methods. the strata were formed based on two elements; the eigenvectors

to determine the number of axes and the eigenvalues to determine the length for the

grid in each dimension.

� Perhaps the most popular method that is currently used is SRSWOR. However, often,

it does not properly represent the entire dataset and leads to a biased sample, espe-

cially the relationship between important variables that are essential for the machine

learning model fitting is distorted. So the measure of the test error is not reliable.

� Splitting data can be handled as a proper randomized sampling procedure. For exam-

ple, this dissertation introduced a new sampling scheme that is based on systematic

random sampling procedure and PCA. In Chapter 3 of this dissertation, Monte Carlo

simulation analysis provided evidence to demonstrate how this novel method outper-

formed current known data splitting methods.In chapter 4, real datasets were used to

show how the novel sampling methodology, PCA systematic sampling, produced bet-

ter training data than traditional sampling methods for an array of different machine

learning methods; Models fitted using that training dataset had higher prediction

accuracy.

120



My contribution in this dissertation consisted of the development of a novel sampling

method; this method is used to efficiently split the data into training and testing for machine

learning. The method is based on using PCA as a stratification tool when data splitting is

conducted. My contribution consists of improving systematic sampling; the goal is to pre-

serve the relationship between important variables for the training dataset after the data

split is performed.

The best current existing method of systematic sampling in order to draw the best repre-

sentative sample consists of two steps:

1. Sorting the file to be sampled by the feature(s) that are highly correlated with the

variable of interest (the target variable).

2. Implement systematic sampling afterwards.

However, in my method, I added a step of canonical correlation analysis; so there are

three main steps:

1. Perform Principal component analysis (PCA) on the dataset and compute the cor-

relation between the target variable, all the features, and the principal components,

then determine the component with the maximum absolute value correlation; this is

the first principal component.

2. Sort the file by the variable chosen in step 1.

3. Implement systematic sampling afterward.

At the end of the three steps above, the method will create a systematic sample for a given

desired sample size. The three steps above can be repeated by sorting by the second, third,

or any other principal component instead of the first one.

The algorithm can also be used to create even a better training dataset that is fully

representative of the main dataset; it is best to create multiple samples and then take the

union of the subsamples.
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This modified version of implementing systematic sampling resulted in an improved

estimator for the population parameter such as the mean, this is of an important value

for survey sampling, also it resulted in an improved prediction accuracy in the context of

machine learning example are shown in section 3.5.

In my work(dissertation) I prove three hypotheses:

� Chapter 2 of this dissertation proved that with a higher probability, the correlation

between the first principal component and the target variable is higher than the cor-

relation between the target variable and the original feature variables.

� Using the PCA- Systematic sampling design produced a more efficient sample as it

represented the true population better than using standard systematic sampling.

� Using the PCA-Systematic sampling method as a data splitting method resulted in

better prediction accuracy for the testing data.

5.1 Limitations

� The novel sampling methods developed in this dissertation are based on the use of

principal component analysis methodology; however, PCA requires to have numerical

variables. At least two numerical and probably continuous variables are required in

order for PCA to be implemented. The absence of numeric feature variables renders

the PCA-Systematic splitting methodology not applicable; this is when all the vari-

ables are categorical. The remedy for this situation is to use stratified simple random

sampling without replacement to split the data into training and testing. A sensible

thing would be to use the proportional allocation methodology of the sample size when

creating the smaller data set of the data split, which is most likely the test dataset

for the two-way data split scheme. The target variable should be used as a stratum

variable for this multistage sampling, so the test data set should be a stratified sample

by y while preserving the test to train sample size ratio within each label of y.
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� The proposed method of data splitting in this dissertation does not apply to time

series data.

5.2 Future Work

1. In this dissertation, the focus was on using Pearson correlation. However, there are

other measures of statistical dependence among variables worth exploring. For exam-

ple, both Kendall and Spearman are nonparametric measures of correlation between

the ranking of two variables. Because these correlations are defined using the rank

of data and not the raw data, it gives them the property of being invariant under

monotone transformation, a property that makes them robust and less sensitive to

outliers than Pearson Correlation [45].

Other transformations might include Exponential, Quadratic, Power, Spearman, in-

verse, square root.

For example, Box-Cox is a popular transformation used to achieve linearity, Chapter

one mentions how a higher value of Pearson correlation will make systematic sampling

more efficient, and then Chapter two later shows how PCA transformation increases

this correlation. In future work, I like to explore the idea of using Kendall’s rank

correlation and also Spearman’s rank correlation instead of Pearson correlation. The

goal would be to:

(a) Initially investigate whether sorting by the variable that is highly Kendall-correlated

or Spearman-correlated with the response variable has an effect on the efficiency

of systematic sampling

(b) The second step would be to investigate if the use of PCA transformation would

still increase the correlation of Kendall and Spearman.

The end goal would still be to seek a transformation to engineer a new feature that will

increase these measures of correlation and the sort by the newly engineered variables.
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2. I like to explore the possibility and investigate if using perhaps a nonlinear transfor-

mation to increase the relationship between variables for example using some form of

a non linear PCA.

3. I like to explore the possibility of using MDS (Multidimensional scaling as an addi-

tional alternative method whenever PCA is not applicable. This would be the case

when all the feature variables are not continuous. This would be the case when all

the independent variables are categorical, for example, all nominal variables
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Appendix A: Efficiency of Systematic Sampling Proofs

This Appendix provides the Proof that (i) S2
wsy > S2 is a necessary and sufficient condition

for systematic sampling to be more efficient than simple random sampling and (ii) that

systematic sampling will have a larger variance than simple random sampling if ρw > 0.

The variance of simple random sample in 1.6 is:

var(ȳsrs) =

(
N − n

N

)(
S2

n

)
(A.1)

The variance of systematic sample in 1.1 is:

var(ȳsys) =

(
N − 1

N

)
S2 − k(n− 1)

N
S2
wsy (A.2)

Suppose that the following inequality is true

S2
wsy > S2 (A.3)
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Then the inequality A.3 is true if and only if the following inequalities are true

−k(n− 1)

N
S2
wsy < −k(n− 1)

N
S2 (Multiplication by a negative term)

(
N − 1

N

)
S2 − k(n− 1)

N
S2
wsy <

(
N − 1

N

)
S2 − k(n− 1)

N
S2 (Adding a constant to each side)

var(ȳsys) <
n(N − 1 − kn + k)

Nn
S2 (Left side of A.2)

var(ȳsys) <

(
n(k − 1)

N

)(
S2

n

)
(Because nk=N)

var(ȳsys) <

(
N − n)

N

)(
S2

n

)
(Also because nk=N)

var(ȳsys) < var(ȳsrs) (Left side of A.1)

A second expression for the variance of systematic sample as derived by Cochran [10] in 1.4

is

var(ȳsys) =

(
S2

n

)(
N − 1

N

)
[1 + (n− 1)ρw]. (A.4)

Subtracting 1.6 from 1.4, denotes that by ∆, analyzing that expression as a function of

ρw (i.e., ∆ = ∆(ρw))leads to
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∆(ρw) = var(ȳsys) − var(ȳsrs)

=

(
S2

n

)(
N − 1

N

)
[1 + (n− 1)ρw] −

(
N − n

N

)(
S2

n

)

=

(
S2

Nn

)[
(N − 1)(1 + (n− 1)ρw) − (N − n)

]

=

(
S2

Nn

)[
n− 1 + (n− 1)(N − 1)ρw

]

=

(
(n− 1)S2

Nn

)[
(N − 1)ρw + 1

]
.

From the equation above it is clear that because (n−1)S2

Nn > 0 and N − 1 > 0, then ρw > 0

implies that ∆(ρw) > 0.
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