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Around terabytes of unstructured electronic data are generated every day from twitter

networks, scientific collaborations, organizational emails, telephone calls and websites. Ex-

cessive communications in communication networks, particularly in organizational e-mail

networks, continue to be a major problem. In some cases, for example, Enron e-mails,

frequent contact or excessive activities on interconnected networks lead to fraudulent activ-

ities. Analyzing the excessive activity in a social network is thus important to understand

the behavior of individuals in subregions of a network. In a social network, anomalies can

occur as a result of abrupt changes in the interactions among a group of individuals. There-

fore, one needs to develop methodologies to analyze and detect excessive communications

in dynamic social networks. The motivation of this research work is to investigate the ex-

cessive activities and make inferences in dynamic sub networks. In this dissertation work,

I implement new methodologies and techniques to detect excessive communications, topic

activities and the associated influential individuals in the dynamic networks obtained from

organizational emails using scan statistics, multivariate time series models and probabilistic

topic modeling. Three major contributions have been presented here to detect anomalies

of dynamic networks obtained from organizational emails.



At first, I develop a different approach by invoking the log-likelihood ratio as a scan

statistic with overlapping and variable window sizes to rank the clusters, and devise a

two-step scan process to detect the excessive activities in an organizations e-mail network

as a case study. The initial step is to determine the structural stability of the e-mail

count time series and perform differencing and de-seasonalizing operations to make the

time series stationary, and obtain a primary cluster using a Poisson process model. I then

extract neighborhood ego subnetworks around the observed primary cluster to obtain more

refined cluster by invoking the graph invariant betweenness as the locality statistic using the

binomial model. I demonstrate that the two-step scan statistics algorithm is more scalable

in detecting excessive activity in large dynamic social networks.

Secondly, I implement for the first time the multivariate time series models to detect

a group of influential people and their dynamic relationships that are associated with ex-

cessive communications, which cannot be assessed using scan statistics models. For the

multivariate modeling, a vector auto regressive (VAR) model has been employed in time

series of subgraphs in e-mail networks constructed using the graph edit distance, as the

nodes or vertices of the subgraphs are interrelated. Anomalies or excessive communications

are assessed using the residual thresholds greater than three times the standard deviations,

obtained from the fitted time series models.

Finally, I devise a new method of detecting excessive topic activities from the unstruc-

tured text obtained from e-mail contents by combining the probabilistic topic modeling

and scan statistics algorithms. Initially, I investigate the major topics discussed using the

probabilistic modeling, such as latent Dirichlet allocation (LDA) modeling, then employ

scan statistics to assess the excessive topic activities, which has the largest log likelihood

ratio in the neighborhood of primary cluster.

These analyses provide new ways of detecting the excessive communications and topic

flow through the influential vertices in a dynamic network, and can be extended in other

dynamic social networks to critically investigate excessive activities.



Chapter 1: Introduction

Anomalies, which are clusters of events or excessive or unusual activities, are common in

science and technology. Some of the most commonly used methods for anomaly detec-

tion in data mining are density-based techniques such as k-nearest neighbor [KNT00] and

local outlier factor [BKNS00], one class support vector machines [SPST+01], neural net-

works [HHWB00], cluster analysis-based outlier detection [HXD03] and ensemble techniques

[LK05]. All these methods used to detect excessive activity, are mostly descriptive in na-

ture, and not effective in making statistical inferences. In other words, these methods do

not predict if these observed clusters of events are statistically significant or not [Kul79].

A very powerful statistical inference methodology that has been developed to detect the

region of unusual activity in a random process and to infer the statistical significance of

the observed excessive activity is scan statistics [Kul79], which is also termed as moving

window analysis in the engineering literature and has mostly been used in spatial statistics

and image analysis.

Scan statistic is defined as a maximum or minimum of local statistics estimated from

the local region of the data. Let {Xt, t ≥ 0} be a Poisson process with rate, λ, where Xt is

the number of points (events) occurring in the interval [0, t). In any subinterval of [0, T)

of length, w, let Yt be the number of points (events) in a window of the interval, [t, t+ w),

such that Yt = Xt+w - Xt. The one-dimensional continuous scan statistic, Sw, is written as

[GB99]:

Sw = max
0<t≤T−w

Yt(w). (1.1)

In other words, the scan statistic, Sw, is the largest number of points that are observed in

any subinterval of [0, T) of length w. In this Poisson process, λ is the expected (average)
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number of events in any unit interval and the number of points (events) in any interval,

[t, t + w), Yt follows a Poisson distribution with mean λw. The probability mass function

for the random variable, Yt, can be written as:

P (Yt(w) = k) =
e−λw(λw)k

k!
. (1.2)

In one-dimensional setting, it has been used by a number of authors to investigate the un-

usual clusters of events in various fields, for example, in visual perception [Gla79], molecular

biology [KB92], epidemiology [WN87], queueing theory [Gla81], material science [New63],

and telecommunication [Alm83]. Public health officials are often interested in finding expla-

nations of clusters of cancer cases. Kulldorff et al. [Kul79] have assessed the unusually large

number of brain cancer cases using spatial scan statistics. In medical imaging or screening

situation, detection of abnormalities in structural images is very important. In this situ-

ation, a one-dimensional scan statistic model may not be adequate for cluster detection.

It is, therefore, extended to two or three dimensional settings to study the mammography

images. Priebe et al. [POH98] have exploited the stochastic scan partitions in the mam-

mography images by studying the texture of the breast, and evaluated clusters of breast

calcification using spatial scan statistics, and provided an exact sampling distribution of the

spatial scan statistic under the null hypothesis of homogeneity. For the non-homogeneous

mammogram, a p value of 0.034 has been reported by Priebe et al [POH98].

Although considerable work has been done to detect clusters of events or anomaly using

scan statistics in spatial statistics and image analysis, relatively less attention has been given

to detect anomaly in social networks, where lots of interaction take place among individuals

or group of individuals. In addition to sharing knowledge and experience with one another

in social networks, each individual develops a pattern of interactions. Anomaly in social

network occurs when some individuals or group of individuals make sudden changes in their

patterns of interactions. Research on social networks includes both static and dynamic social

relations. Methods and theorems from graph theory and statistics are used intensively in
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analyzing social networks. Despite the fact that the majority of research focuses greatly on

static networks, they fail to capture information flow in dynamic networks.

Recently, a number of measures and algorithms have been developed for dichotomous

and symmetric relation matrices in the analysis of dynamic networks. As the amount

of unstructured electronic data created by various social networks, for example, twitter

network, research network, a network of scientific collaboration, organizational e-mails and

telephone calls increases enormously to terabyte range day by day, the need for tools and

techniques to analyze such unstructured massive data sets has grown. In some cases, one

needs to analyze the excessive activity in a social network to understand the behavior of the

network. The motivation of this research work is to investigate the excessive activities in

the network data from organizational e-mails by implementing statistical models and data

mining algorithms, particularly scan statistics, time series models and content analysis. The

methodologies developed here can be applied to other dynamic networks to assess excessive

activities in the network.

1.1 Prior Work on Network Data Using Scan Statistics

Priebe et al. [PCMP05] first applied temporal scan statistics to network data to detect

anomaly in time series of graphs, obtained from Enron email data. The full network was

partitioned into disjoint subregions or subnetworks over time, which results in a collection

of graphs or a time series of graphs. The large networks have computational difficulties, and

the visualization and statistical inference are almost impossible to apply to a global network.

An alternating approach to identify interesting features at a specific point of time is to split

the global network as subnetworks or subregions, and consider the network neighborhood

analysis as opposed to global network analysis. The subregions are modeled subsequently

by directed graphs indexed by time, Dt, which are a collection of vertices that are joined

by edges. Graph, Dt, can therefore be expressed as Dt = (V,Et), where each graph has

the same set of vertices, V, and different set of edges, Et. The order of the graph, Dt, is

n = |V | = number of vertices, and size of graph, Dt, is m = |Et| = number of edges. The
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adjacency matrix of Dt is defined as A = (Aij) such that

Aij =


1, if there is an edge between vertices i and j,

0, otherwise.

From the graph at each time point one can obtain local regions or neighborhoods of vertices.

The kth order neighborhood of a vertex, v, of the network, Dt, is defined as:

Nk[v;Dt] = {u ∈ V : dt(u, v) ≤ k; k = 0, 1, 2, ..}, (1.3)

where dt(u, v) is the geodesic distance, which is in fact the shortest path between u and v

within k. A family of sub graphs induced by neighborhood denoted by Ω(Nk[v;Dt]) with a

set of vertices, Nk[v;Dt], can then be obtained.

To quantify the characteristics of a node in subgraphs, the graph invariant feature, such

as degree, can be used. Priebe et al. [PCMP05] used outdegree as the locality statistics.

The degree of a node in a graph is the number of direct connections incident on it, while in

the directed network, the degree is defined based on both in-degree and out-degree, where

the in-degree is the number of inward edges and the out-degree is the number of outward

edges. Thus, a person having high out-degree will be able to send a lot of information to

other actors in the network. Priebe et al. [PCMP05] defined the locality statistic,Ψk,t(v),

the standardized locality statistic,Ψ̃k,t(v), and the scan statistics, Mk,t, as:

Ψk,t(v) = |E(Ω(Nk[v,Dt]))|; k = 0, 1, 2...; (1.4)

Ψ̃k,t(v) =
Ψk,t(v)− µ̂k,t,w(v)

max(1, σ̂k,t,w(v))
, (1.5)

Mk,t = max
v∈V

Ψk,t(v); k = 0, 1, 2, ..., (1.6)
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µ̂k,t,w(v) =
1

w

t−1∑
j=t−w

Ψk,j(v), (1.7)

σ̂2
k,t,w(v) =

1

w − 1

t−1∑
j=t−w

(Ψk,j(v)− µ̂k,t,w(v))2 , (1.8)

where µ̂k,t,w(v) and σ̂2
k,t,w(v) are the mean and the variance, respectively, of the local statistic

in the window w. The standardized scan statistic at the time t is written as:

M̃k,t = max
v∈V

Ψ̃k,t(v); k = 0, 1, 2, ... (1.9)

The standardized scan statistic, M̃k,t, was further normalized to temporally normalized scan

statistic, Sk,t, which is defined as:

Sk,t =
(M̃k,t − µ̃k,t,l)
max(1, σ̃k,t,l)

, (1.10)

where µ̃k,t,l and σ̃k,t,l are the estimated mean and standard deviation, respectively, of M̃k,t

corresponding to the lag or time step l. The M̃k,t have been estimated for k = 0, 1, 2 and

t = 1, 2, ..., 189 for the Enron data. For k = 2, t = 132 and l = 20, the M̃k,t is greater than

5 times standard deviations above its mean, indicating a clear anomaly. The corresponding

temporally-normalized scan statistic, S(2,132), is 7.3. Assuming normality, the observed p-

value is < 10−10. They also used the extreme value theory, Gumbel model, to estimate the

exceedance probability (p-value), which turned out to be < 10−10. Therefore, they could

infer using scan statistics that there exist anomalies in the Enron network data.

However, to implement scan statistic, a vertex-dependent local stationarity assumption

was required. The previous model is an oversimplified statistical inference model, and

a short-time near stationary (lag = 20 weeks) for null model was assumed. They did

not consider detrending and seasonal adjustment methods on the univariate time series to
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make the time series stationary. If xt is a stationary time series, then the distribution of

(xt, ..., xt+s) does not depend on t for all s. As the data are often non-stationary/non-

random, they can give rise to trends and non-constant variance over time. It is also very

common for dynamic email data to have seasonal effect, which can mask the non-seasonal

characteristics of the data. In order to better reveal the features of the data that are of

interest, removing trends, non-constant variance, and seasonal effects from time series data

are necessary.

To obtain temporal scan statistic, Sk,t, Priebe et al. [PCMP05] normalized the locality

statistic, Ψk,t(v), twice and obtained the p-value, assuming normality of the scan statistic.

In this model, it was assumed that the subgraphs are disjoint. However, the anomaly may

split among multiple windows, and the set of subgraphs may not be disjoint, suggesting

that the temporally-normalized scan statistic, Sk,t, is not independent.

They used the outdegree as a locality statistic. The degree, however, is not an effective

structural location of a node in a network. The degree of a node in a graph is the number

of direct connections that a node has with other nodes. If a node has high degree, the

individual will be simply a connector or a hub and will not play a vital role in the social

network. As a result, this metric is not very effective in detecting anomaly in a social

network. On the other hand, the betweenness of a node in global network measures its

influential position (broker, leader or bridge) in the network [PS00]. Thus, the betweenness

centrality applied to neighborhood network can be very useful in identifying locally impor-

tant individuals. Another measure for locality statistics is density applied to neighborhood

network, which reveals how tightly-coupled the neighborhood is [PS00]. This will also be

effective in detecting anomaly of a network.

1.2 Present Research

The objective of this research is to develop a fundamental understanding of methodologies

to discover network patterns, to detect anomalies of dynamic networks obtained from an
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organizational email, and to make statistical inferences by implementing statistical models

and data mining algorithms. The current research employs temporal scan statistics to detect

clusters, where the maximum log likelihood ratio is the test statistic [Kul79], and use the

betweenness as the locality statistic. Here the betweenness follows a binomial distribution

as it is related to the ratio of number of geodesic paths to the total number of geodesic

paths. In addition, this research develops a purely temporal scan statistics for email count

data based on the Poisson model.

The alternative approaches, such as the autoregressive moving average (ARMA) process

and the vector autoregressive (VAR) process to detect clusters in a point process are imple-

mented for the univariate time series of neighborhood ego subgraphs and the multiple time

series of neighborhood ego subgraphs, respectively. In addition, this research employs the

latent Dirichtlet allocation modeling on the e-mail content to model the topics associated

with the dynamic textual data, and to study any significant topic change associated with

the time series of the maximum topic proportion using scan statistics.

One of the scientific challenges of this research includes understanding the distribution

of the organizational email subnetworks. As in one dimension, the exact distribution of

the scan statistic under the null hypothesis is only available for special cases [PGKS05],

this research employs other methodologies, such as Monte Carlo (MC) simulations and the

extreme value theory to estimate p-values. Once the sampling distribution of scan statistic

is determined, the inference on anomaly can be performed. There are three equivalent ways

of performing a hypothesis test, such as the p-value approach, the classical approach, and

the confidence interval approach. The extreme value theory is a statistical model that is

used to model the extreme data in a given period of time, and is based on the location-

scale family. Gumbel distribution is the most well-known distribution that belongs to this

family, and has been widely used in engineering. The present work also applies the Gumbel

distribution to approximate the p-value.

Another challenge is the choice of local statistic as it provides important structural

location of a node and its neighborhood. I have proposed local graph invariant, such as the
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betweenness, as a measure to identify local structure in social networks. For building the

univariate time series of graphs, the challenges are to compute the graph distance metrics,

which are computationally intensive, and to fit time series model to assess anomalies based

on residuals.

Technical tasks to meet objectives and scientific challenges of the research are:

1. Scan Statistics: The temporal scan statistics models on email count and network data

over a time interval from an organizational email are developed using the maximum

log-likelihood ratio as the scan statistic. After applying detrending, variance stabi-

lization, and seasonal adjustment to the time series of email count, anomalies have

been assessed. A local statistic for subnetworks, such as betweenness is used. The

extreme value theory and the Monte Carlo simulation methods are employed to make

inferences, as the sampling distribution of the scan statistics is not known for most of

the cases. Also, the Monto Carlo simulations for testing one-change point in mean in

time series of count data is conducted.

2. Time Series: A univariate time series has been developed using the graph edit distance

(GED) between subgraphs. An ARMA model is fitted to the time series, and the

anomalies have been assessed using a residual threshold obtained from the ARMA

model fitted to the GED series. In addition, a VAR model for multivariate time series

of neighborhood ego subnetworks for each vertex using the GED has been developed

to identify anomalies and detect chatter.

3. Content analysis: A vector space model is implemented to construct the term doc-

ument matrix (TDM) obtained from the corpus extracted from unstructured email

content at every week. The probabilistic model, latent Dirichlet allocation (LDA)

process is then applied to the document term matrix (DTM) in order to estimate the

topic proportions to build a univariate time series. Subsequently, anomalies are as-

sessed using scan statistic model and residual analysis of the fitted time series model.

In addition, the multidimensional scaling (MDS) or the singular value decomposition
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(SVD) is conducted to reduce dimensionality to compare the optimal number of top-

ics obtained from the LDA. The K-means clustering is used to the reduced dimension

obtained from the MDS for the corpus of every vertex at each week to cluster the doc-

uments. Further, the k-nearest neighbor method is implemented to classify messages

at time, t, for pattern retrieval and to identify chatter.

The remainder of this chapter provides an overview on the distribution of the scan

statistics. A brief discussion on the critical region, time series methods, graph properties

are also presented. Finally, an overview of the prospective surveillance methods on the

social network data is presented.

1.3 Distribution of Scan Statistic

1.3.1 Exact Distribution

In one dimension, the exact distribution of the scan statistic is only available for special

cases. Naus [Nau65] has first presented the distribution of the maximum cluster of points

on a line. Here N ordered points, x1 ≤ x2 ≤ . . . ≤ xN , with respect to size are considered

and independently drawn from the uniform distribution on (0, 1). The P (k|N ;w) is the

probability that the largest number of points (events) within a sub interval of (0, 1) of length

w ≥ k. Let Sw be the largest number of points within a sun-interval of [0,1) of length w.

The right tail probability of the scan statistic, Sw, and the P (k|N ;w) are expressed as:

pvalue = P (Sw ≥ k|H0) = P (k|N ;w). (1.11)

Naus [Nau65] has derived the formulas of P (k|N ;w) as:

P (k|N ;w) =


C(k|N ;w)−R(k|N ;w), for w ≥ 1

2 , k >
(N+1)

2 ,

C(k|N ;w), for w ≤ 1
2 , k >

N
2 .
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Here C(k|N ;w) is the sum of cumulative binomial probabilities and defined as:

C(k|N ;w) = (N − k + 1)[Gb(k − 1|N ;w) +Gb(k + 1|N ;w)]− 2(N − k)Gb(k|N ;w), (1.12)

and Gb is the cumulative binomial probability such that:

Gb(k|N ;w) =

N∑
i=k

b(i|N ;w), (1.13)

b(k|N ;w) =

(
N

k

)
wk(1− w)N−k. (1.14)

R(k|N ;w) is the sum of the product of binomials and cumulative binomial probabilities

defined as:

R(k|N ;w) =

N∑
i=k

b(y|N ;w)F (N − k|y; v/w) +H(k|N ;w)b(k|N ;w), (1.15)

where

Fb(k|N ;w) =
k∑
i=0

b(i|N ;w), (1.16)

H(k|N ;w) =
nv

w
Fb(N − k|k − 1; v/w)− (N − k + 1)Fb(N − k + 1|k; v/w), (1.17)

and v = 1 − w. The exact distribution of Sw has been formulated by Wallenstein and

Naus [WN74] and Huntington and Naus [HN75]. Naus [Nau82] has given the following

approximation for a Poisson process with mean rate λ per unit time over the interval [0,T).

For µ = λw and L = T
w :

pvalue = PH0(Sw ≥ k|µ,L) ≈ 1−Q2

(
Q3

Q2

)L−2

. (1.18)
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Q2 and Q3 are defined as:

Q2 = (F (k − 1, µ))2 − (k − 1)p(k;µ)p(k − 2;µ)− (k − 1− µ)p(k;µ)F (k − 3;µ),

Q3 = (F (k − 1, µ))3 − E1 + E2 + E3 − E4. (1.19)

E1, E2, E3 and E4 are given by the following equations.

E1 = 2p(k;µ)F (k − 1;µ)[(k − 1)F (k − 2;µ)− µF (k − 3;µ)],

E2 = 0.5(p(k;µ))2[(k − 1)(k − 2)F (k − 3;µ)− 2(k − 2)µF (k − 4;µ) + µ2F (k − 5;µ)],

E3 =

k−1∑
i=1

p(2k − i;µ)(F (i− 1;µ))2,

E4 =
k−1∑
i=2

p(2k − i;µ)p(i;µ)[(i− 1)F (i− 2;µ)− µF (i− 3;µ)], (1.20)

where p(k;µ) = e−µµk

k! and F (k;µ) =
∑k

j=0 p(j;µ).

1.3.2 Order Statistics and Extreme Value Theory

Much of the literature focuses on approximations to the p-value based on the extreme

value theory [PCMP05]. The extreme value theory is mainly associated with the maxi-

mum or minimum of a sequence of random variables X1, X2, ..., Xn, and it would be ap-

propriate to discuss order statistics in order to estimate the distribution of the maximum

or minimum. Let X1, X2, ..., Xn be an independent and identically distributed (iid) ran-

dom variables with distribution function FX(x) and density function fX(x). Given ran-

dom variables X1, X2, ..., Xn, the order statistics are X(1), X(2), ..., X(n), such that X(1) <

X(2) < ... < X(n), where X(1) is called the smallest or the first order statistics and is

defined as X(1) = min{X1, ..., Xn}. The largest or the nth order statistics is defined as

X(n) = max{X1, ..., Xn}. Given the continuous iid random variables, X1, X2, ..., Xn, the
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cumulative distribution function of the sample maximum, X(n), is given by [Sut12]:

FX(n)
(x) = P (X(n) ≤ x) = P (X1 ≤ x,X2 ≤ x, ...,Xn ≤ x)

= P (X1 ≤ x)P (X2 ≤ x)...P (Xn ≤ x) = [FX(x)]n. (1.21)

The probability density function of the sample maximum, X(n), can be written as:

fX(n)
(x) =

d

dx
[FX(x)]n → fX(n)(x) = n[FX(x)]n−1fX(x). (1.22)

Similarly, given the continuous iid random variables, X1, X2..., Xn, the cumulative distri-

bution function of the sample minimum, X(1), is given by:

FX(1)(x) = P (X(1) ≤ x) = 1− P (X(1) > x)

= 1− P (X1 > x,X2 > x, ...,Xn > x) = 1− [1− FX(x)]n. (1.23)

The probability density function of the sample minimum, X(1), is given by:

fX(1)
=

d

dx
[1− [1− FX(x)]n] = n[1− FX(x)]n−1fX(x). (1.24)

The cumulative distribution and the probability density function of M̃k,t can be derived

from this formula. However, the cumulative distribution of X is not known. The alternative

approach would be to consider an approximate location-scale family for [FX(x)]n [GPW09].

There are only three types of distribution that belong to this location-scale family. They

are Frechet, Weibull and Gumbel. The cumulative distribution function of the Frechet

12



distribution for x ∈ R is:

F (x) =


0, x ≤ 0,

exp(−x−a), x > 0,

where a > 0 is the shape parameter. The cumulative distribution function of the Weibull

distribution is given by:

F (x) =


1− exp(−(−x−a)), x ≥ 0,

0, x < 0,

where a > 0 is the shape parameter. The cumulative distribution function of the Gumbel

distribution is:

F (x) = 1− exp(−e
x−α
β ), x ≥ 0, (1.25)

where α and β are the location and scale parameter, respectively.

1.4 The Critical Region

Let the data set, X, is partitioned into n disjoint nonempty intervals termed as windows

wi; i = 1, 2, ..., n such that Xi ∈ wi; i = 1, 2, ..., n, and X = ∪ni=1Xi ⊂ ∪ni=1wi. A set of local

statistics, Mw1(X1),Mw2(X2), ...Mwn(Xn) is estimated from data Xi ∈ wi; i = 1, 2, ..., n.

The scan statistic, Mw(x), is defined as the maximum of the set of the locality statistics

[Mar12]. The null hypothesis is that there is homogeneity across the subregions, and the

alternative hypothesis is that there is inhomogeneity i.e. the existence of local subregions

or windows of excessive activity. The null hypothesis (H0) and the alternative hypothesis
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(Ha) can be written as:

H0 : E(X1) = E(X2) = ... = E(Xn) = µ,

Ha : E(X1) = E(X2) = ... = E(Xk) 6= E(Xk+1) = ... = E(Xn),

 (1.26)

where 1 ≤ k ≤ n is unknown. Once the observed scan statistic has been estimated, the

inference on anomaly can be performed. There are three equivalent ways to perform a hy-

pothesis test which are p-value approach, the classical approach and the confidence interval

approach. For testing hypothesis, H0 is rejected in favor of Ha if p-value ≤ α, where the

size of the test, α, is the probability of rejecting H0 when H0 is true. Mathematically, it

can be written as:

PH0 [Mw(X) ≥ Cα] = α, (1.27)

where Cα is the critical value. Here the p-value has been estimated from the observed

sample. In the classical approach, one can reject H0 in favor of Ha if the observed value

of Mw(X) is greater than Cα. For the two-tailed test, one can use the confidence inter-

val approach. Therefore, if the sampling distribution of the scan statistic under the null

hypothesis, H0 is known, the p-values, Cα and the test size, α can be estimated.

1.5 Time Series

A time series is a collection of random variables, {Xt}, indexed by discrete time t. Let the

observed values of the random variable, Xt be x1, x2, x3, ..., xn. Here x1 is the observed

value of the series at the first time point, and x2 is the observed value at the second time

point and so on. The interesting feature of time series is that the current value, xt depends

on previous values xt−1, xt−2, .... Therefore, the adjacent time points are correlated. The

other features of time series are trends, seasonal variations and noise. The joint cumulative
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distribution function of the stochastic process {Xt} [SS06] is:

F (x1, x2..., xn) = P (X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn). (1.28)

If the random variables are iid standard normal, then the joint probability distribution

function of the stochastic process, {Xt}, is:

f(x1, x2, ..., xn) =
n∏
t=1

Φ(xt). (1.29)

If {Xt} are iid standard normal variables, then

Φ(x) =
1√
2π

∫ x

−∞
exp(−z

2

2
)dz. (1.30)

The one dimensional cumulative distribution function is:

Ft(x) = P (Xt ≤ x). (1.31)

The one dimensional density function is:

ft(x) =
∂Ft(x)

∂x
. (1.32)

The mean of the stochastic process, {Xt}, is defined as:

µt = EXt =

∫ ∞
−∞

xft(x)dx. (1.33)
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The autocovariance of the stochastic process, {Xt}, is defined as[SS06]:

γ(s, t) = cov(Xt, Xs) = E(Xt − µt)(Xs − µs), for all s & t. (1.34)

The auto correlation function (ACF) is defined as [SS06]:

ρ(t, s) =
γ(t, s)√

γ(t, t)γ(s, s)
, (1.35)

where −1 ≤ ρ(t, s) ≤ 1. The assumption in behavior of time series is that the data are

stationary. The time series is strictly stationary if the cumulative distribution function of

the stochastic process, {Xt}, remains unchanged under a shift in time. In other words, one

can write [SS06]:

P (X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn) = P (X1 + h ≤ x1, ..., Xn + h ≤ xn), (1.36)

where h = 0,±1,±2, ... is the time shift. Weak stationarity occurs if the mean does not

change over time, and the autocovariance depends on separation between time, t and s. In

other words, E(Xt) = µt = µ. Letting s = t+ h, one obtains [SS06]:

γ(s, t) = γ(t+ h, t) = E(Xt+h − µ)(Xt − µ) = E(Xh − µ)(X0 − µ) = γ(h, 0). (1.37)

The stationarity is assessed visually by investigating the sample autocorrelation function

and the sample partial autocorrelation function (PACF). Let Xt, t ∈ Z be a stationary time

series. The autocovariance function and the autocorrelation function (ACF) of Xt can be

written as [SS06]:

γ(h) = Cov(Xt+h, Xt) = E[(Xt+h − µ)(Xt − µ)] for t, h ∈ Z, (1.38)

ρ(h) =
γ(t+ h, t)√

(γ(t+ h, t+ h)γ(t, t))
=
γ(h)

γ(0)
. (1.39)
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Therefore, the properties of a stationary time series do not depend on the time at which the

series is observed. In fact, the trend and seasonality affect the value of the time series at

different times, suggesting the time series with trends or, and seasonality is not stationary.

Given a probability space (Ω, F, P ), where Ω is a sample space consisting of possible

outcomes of an experiment, F is a σ-algebra that is a collection of subsets of Ω satisfying

the following three properties [Str99], [Gra17]:

1. Ω ∈ F and Ωc = Φ => Φ ∈ F ,

2. F is closed under complementation i.e. if A ∈ F then Ac ∈ F ,

3. F is closed under countable union, i.e. if A1, A2, ... ∈ F then
⋃∞
i=1Ai ∈ F .

By De Morgans law,

∞⋂
i=1

Ai = (

∞⋃
i=1

Aci )
c, (1.40)

which implies F is closed under countable intersection, i.e. if A1, A2, ... ∈ F then
⋂∞
i=1Ai ∈

F . A probability measure P on F is a function P : F → [0, 1] satisfying

1. P(0) = 0,

2. P(Ω) = 1,

3. P(A) = 1 - P(Ac),

4. For any sequence An of pairwise disjoint sets, P (
⋃∞
n=1An) =

∑∞
i=1 P (An).

A random variable X defined on (Ω, F , P ) is a function X: Ω → R satisfying {ω ∈ Ω :

X(ω) ≤ x} ∈ F for all x ∈ R [Gra17]. Let X be a random variable that is indexed to time

t. The observations { xt, t ∈ T} is defined as a time series, where T is an integer set Z.

The properties of the time series {Xt, t ∈ Z} include that it has a finite dimensional joint

distribution and it has moments i.e. means, variances, and covariances.
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The time series {Xt, t ∈ Z} is said to be strictly stationary if P(Xt1 ≤ c1, ..., Xtk ≤

ck) = P (Xt1+h ≤ c1, ..., Xtk+h ≤ ck) i.e the finite dimensional joint distributions are time

invariant, and the properties of the weakly stationary are:

1. E(Xt) = µ, for all t ∈ Z,

2. Var(Xt) = σ2 for all t ∈ Z,

3. Cov(Xt, X(t−s)) = γs, for all s, t ∈ Z.

1.6 Graph Features: Degree, Betweenness and Density

For a graph G = (V,E) with n vertices, the degree, kv, of a vertex, v, is the number of

edges associated with it. Mathematically, if G is an undirected graph, then the degree can

be written as [New10]:

kv =
n∑
j=1

Avj . (1.41)

The betweenness of a vertex, v, [New10] is the number of geodesic (shortest) paths that

pass through the vertex, v.

nvij =


1, if vertex v is on the geodesic path from i to j,

0, otherwise.

Then, mathematically the betweenness, bv, is defined as:

bv =
∑
ij

nvij . (1.42)
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Betweenness is then standardized as:

bv =
∑
ij

nvij
σij

, (1.43)

where σij is the total number of geodesic paths from i and j. Although an individual

may have little direct connections or degrees, betweenness of a node in global network

measures its influential position (broker, leader or bridge) in the network. Here, betweenness

centrality is applied to neighborhood network and can thus be very useful in identifying

locally important individuals. The density of a network estimates community structure of

a network and mathematically can be defined as [New10]:

η =
m(
n
2

) , (1.44)

where m is the number of edges and
(
n
2

)
is the number of possible edges. However, density

is applied here to the neighborhood network, and therefore, can reveal how tightly-coupled

the neighborhood is.

1.7 Different Surveillance Methods

The present research work deals with the retrospective surveillance using conditional scan

statistics given that a fixed number of N events have occurred at random over a time period.

The objective of the proposed work is to develop methodologies to investigate the excessive

activities as well as identify vertices associated with these activities for inter-organization

e-mail networks from 1996 to 2009. Note that scan statistics can be also used prospectively

[GNW01] to monitor future data, where the number of events in the time period in not

fixed. Here, the other prospective surveillance methodologies are briefly outlined.

For network data, the surveillance consists of two phases, phase-I and phase- II. In

phase-I, the first step is to estimate the s-sampled statistics, St, which is the density of
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the subgraph, Gt, t = 1, 2, 3, ..., s. The statistical process monitoring techniques are then

introduced to identify if the future subnetworks are anomalous. The mean, µ, and the

variance σ2 of the statistics are then estimated. If St is approximately normally distributed,

one can estimate a region of bounds, R(µ, σ2). The bounds of this region are given by

[JSTW18]:

R(µ, σ2) = µ̂± 3σ̂. (1.45)

The fluctuation within this bound is regarded as a typical event. In phase-II, the statistic,

St, where t > s, for the new subgraph is calculated. If the estimated St for the new graph

is outside the bound, the subgraph is considered anomalous.

Recently, an adaptive cumulative sum (CUSUM) based surveillance technique has been

developed for detecting bioterrorism prospectively by monitoring time series of daily dis-

ease count [SKM10]. They used negative binomial regression to prospectively model the

background count and then to forecast the future count. The anomaly is detected when

the observed counts are greater than the threshold CUSUM score. For cyber security ap-

plications, a number of nonparametric change point detection anomaly methods have been

developed [SKM10].

1.8 Chapter Summary and Layouts

In this chapter, the fundamentals of scan statistics, and the previous models for the detec-

tion of excessive activities have been presented. In addition, the research and the approach

of the present research work have been discussed. Chapter 2 presents the models on network

neighborhood analysis and the likelihood ratio estimation using parametric and non para-

metric approach to detect the excessive activities on email data. Chapter 3 demonstrates

the use of univariate and multivariate time series models to detect the excessive activities

and show that the important vertices/nodes/IDs associated with the excessive activities.

Chapter 4 presents LDA model to obtain the proportion of topics from the content of e-

mails, demonstrate the use of scan statistics and time series to obtain excessive activities
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with respect to the topic. Chapter 5 provides the conclusions and future work. In addition,

the network data constructed from the e-mail edgelists from June 2003 to June 2004, and

a partial R code have been presented in appendix A and B, respectively.
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Chapter 2: Neighborhood Analysis using Scan Statistics

2.1 Introduction

Around terabytes of unstructured electronic data are generated every day from twitter net-

works, scientific collaborations, organizational emails, telephone calls and websites. Fraud-

ulent activities owing to excessive communication in communication networks continue to

be a major problem in different organizations. In fact, retrieving information relating to

detection of excessive activities is computationally intensive for large data sets. There-

fore, one needs useful tools and techniques to analyze such a massive data set and detect

anomaly. In a social network, anomalies can occur as a result of abrupt changes in the

interactions among a group of individuals [SZY+14]. Analyzing the excessive activity or

abnormal change [SKR99] in dynamic social networks is thus important to understand the

fraudulent behavior of individuals in a subregion of a network. Recently, a network neigh-

borhood mapping has been applied to investigate the excessive activities, particularly the

changes in local leadership in the terrorist network [Kre02]. The motivation of this research

work is to investigate the excessive activities and make inferences in dynamic subnetworks.

The most commonly used methods for anomaly detection in data mining are density-

based techniques, such as k-nearest neighbor [Adl84] and local outlier factor [BKNS00], one

class support vector machines [SPST+01], neural networks [HHWB00], cluster analysis-

based outlier detection [HXD03] and ensemble techniques [LK05]. However, all these meth-

ods used to detect excessive activity, are mostly descriptive in nature, and not effective in

making statistical inferences. On the other hand, scan statistics have been used to identify

and test if the cluster of events is statistically significant. The one-dimensional scan statis-

tic with a fixed scan window is first developed by Naus [Nau65] and later has been used

by a number of authors to investigate the unusual clusters of events in various fields, for
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example, in visual perception [Gla79], queueing theory [Gla81], telecommunication [Alm83],

epidemiology [WN87], and molecular biology [KB92]. It is then extended to two or higher

dimensional scan statistics with variable window size and shape by Kulldorff [Kul79].

Although considerable work has been done to detect clusters of events or anomaly using

scan statistics in spatial statistics and image analysis, relatively less attention has been

given to detect anomaly in social networks. Priebe et al. [PCMP05] first applied temporal

scan statistics for Enron email data to detect anomaly in time series of graphs. The full

network was partitioned into disjoint subregions or subnetworks over time to overcome the

computational complexity associated with a global network and to uncover the interesting

features of a node and neighborhood. However, this model normalized the locality statistic

twice to eliminate the trend and assumed short-time, near-stationarity for the null model.

They did not consider differencing, seasonal adjustment in the univariate time series of scan

statistics to make the time series stationary. Furthermore, they assumed that the subgraphs

are disjoint. However, the scan statistics with fixed and disjoint scan window may not be

appropriate because of the occurrence of window overlaps, which may result in loss of some

data on the time axis.

In this research work, scan statistics with overlapping and variable window sizes to detect

anomalies of dynamic networks obtained from organizational emails has been implemented,

and the log likelihood ratio (LLR) has been employed as the test statistic to rank the

clusters, as the cluster size is not known. Furthermore, the structural stability has been

assessed, and the differencing and seasonal adjustment have been applied to make the

time series of scan statistics stationary and estimate the p-value using Monte Carlo (MC)

simulation and the extreme value distribution, such as Gumbel, as the exact sampling

distribution of scan statistics under the null hypothesis is not known for most of the cases. In

addition, as the unstructured data set size becomes larger, the formation of dynamic network

structure is computationally intensive. Instead of applying temporal scan statistics on ego

sub networks directly, here the tasks have been divided into two regimes. A primary cluster

using the Poisson process model has been determined first, and then the neighborhood ego
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subnetworks around the primary cluster have been extracted to investigate the excessive

activities, utilizing the betweenness as a locality statistic and LLR as a scan statistic.

Furthermore, as an alternative approach, a univariate time series has been built using the

graph edit distance (GED) between subgraphs. An autoregressive moving average (ARMA)

process is then fitted to the time series, and the anomalies are assessed using residuals

from the fitted model. Statistical analyses are performed using R and SaTScan software

(http:www.satscan.org). The weekly network data from June 2003 to June 2004 obtained

from the e-mail edgelists over 52 weeks are given as a supplement.

Here I briefly outline the process that has been used throughout this chapter. Firstly,

a change point of mean using non-parametric statistical model has been detected in raw

e-mail count series. In order to obtain clusters of communications in the e-mail network,

a new approach, which is the two-step scan process, has been developed. In step-I of the

two-step scan process, I apply scan statistics using the Poisson model in the stationary

count series to get an excessive primary cluster of communication. In step-II, I extract

neighborhood networks around the primary cluster obtained from the step-I, and apply scan

statistics based on the binomial process to obtain more refined excessive communications

and influential nodes associated with the excessive communications.

2.2 Detection of Change Point in Time Series of Raw E-Mail

Count

Figs. 2.1(a,b) show the observed number of emails per month from March 1996 to November

2009, and the sample autocorrelation function (ACF), respectively. The sample ACF plot

of the email count series displays a slow decay, suggesting the email count series contains a

trend and the peak at 12 months, indicating the series has seasonal variation [CM09]. Fig.

2.2 shows that the count data is also highly serially correlated. All these suggest the email

count series is nonstationary. To apply one dimensional scan statistics, one needs to have

random or stationary time series, which is discussed below.

24



Here the structural stability of the univariate time series of the logarithm of email

counts has been investigated using nonparametric Kolmogorov-Smirnov (KS) test statistic.

Considerable work has been done to detect the structural stability using nonparametric KS

test statistic [BD93]. Recently, the KS test statistics have been extended [SZ10] to estimate

the size and power properties of the KS test statistics with different bandwidths. Fig. 2.3

shows that the observed number of logarithm of emails counts per month from March 1996

to November 2009 consists of two phases. The mean of the first phase between [1996−2003)

is much smaller than that of the second phase between [2003−2009), indicating the existence

of change point in mean in the email count series. Mathematically, it can be expressed for

ARMA (1,1) model as:

Xt =


vt, 1 ≤ t ≤ n/2,

vt + ∆µ, n/2 < t ≤ n,

where vt = ρvt−1 + θwt−1 + wt, vt is stationary, ρ and θ are constants (ρ 6= 0, θ 6= 0), ∆µ

is the magnitude of change and wt ∼ iid N(0, 1). The null hypothesis is that there is no

change point of the mean in the time series, and the alternative hypothesis considers that

there is a change point of the mean. The goal here is first in distinguishing the change point

in mean in the original email count series. The KS test statistic can be written as [BD93];

KS = sup|T (k)

σ
|, k = 1, ...., n, (2.1)

where T (k) = n−0.5
∑k

t=1(Xt− X̄), X̄ = n−1
∑n

t=1Xt, σ
2 =

∑b
k=−b γ(k)K(k/b) and γ(k) =

n−1
∑n−k

j=1 (Xj − X̄)(Xj+k − X̄), γ is the sample autocovariance estimate at lag k, K(.) is

the Kernel function, b is a bandwidth parameter and σ2 is the variance. To estimate σ here,

we use three types of bandwidths, fixed bandwidth (FBW), data dependent bandwidth-I

(DDBW-I) and data dependent bandwidth-II (DDBW-II). The Bartlett Kernel, K(x), can
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be written as:

K(x) =


1− |x|, |x|≤ 1,

0, otherwise,

and

b =


bn

1
3 c, for FBW,

b1.1447(
4ρ21n

(1−ρ21)2
)
1
3 c, for DDBW-I,

b1.1447(
4ρ22n

(1−ρ22)2
)
1
3 c, for DDBW-II,

where ρ1 =
∑n
t=2 utu(t−1)∑n
t=2 u

2
(t−1)

, ut = Xt − X̄, ut−1 = Xt−1 − X̄, ρ2 =
∑n
t=2 vtv(t−1)∑n
t=2 v

2
(t−1)

, vt = Xt −

k−1
∑k

t=1Xt; if t = 1, ..., k, and vt = Xt(n − k)−1
∑n

t=k+1Xt; if t = k + 1, ..., n. The

observed values estimated from the data and the critical values of the KS test statistics

using MC are given in Table 2.1. In addition, the asymptotic null distribution of KS

is supt∈[0,1]|B(t) − tB(1)|, where B(t) is the Brownian motion. The KS critical value,

obtained from the literature, is 1.36 at 0.05 significance level (SL) which is consistent with

the critical value obtained from the MC simulation. As the observed values exceed the

estimated critical values (see Table 2.1), it can be concluded that the time series has a

significant shift in mean implying that the statistically significant structural instability has

been observed in the count series(see Fig. 2.3). It can also suggest that significantly different

activity changes the mean of the series.

2.3 Discrete Scan Statistics Using Poisson Process

The discrete scan statistics have been employed here on organization emails collected be-

tween 1996 and 2009. Two kinds of data sets have been generated from the metadata of

the organization emails, email count data (see Fig. 2.1) and the network data, given in the

appendix.
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Table 2.1: Kolmogorov Smirnov Test Statistics for different bandwidth parameters, Ob-
served values and critical values.

Test Statistics Observed Values MC Critical Values (SL)

KSFB 2.10971 1.28 (0.05)

KSDDB1 1.359413 1.238 (0.05)

KSDDB2 2.845591 1.32 (0.05)

Mathematically, the scan statistic is defined as the extremum of local statistics, which

can be estimated from the scanned region of the data. If X1, X2, ..., Xn be i.i.d. non-

negative integer valued random variables, then the one-dimensional discrete scan statistic,

Sw, is written as [GB99]:

Sw = max
1≤t≤n−w+1

Yt(w), (2.2)

where Yt =
∑t+w−1

i=t Xi is the total number of events in the scanning window w. Below we

implement scan statistics for two different models, Poisson and Binomial.

As the number of emails per month has been generated from the metadata of the organi-

zation emails, one can model it as a Poisson process. Under the null hypothesis, observations

X1, X2, ..., Xn are from the i.i.d Poisson distribution with rate λ0 . For the alternative

hypothesis, there would be a scanning window of fixed width, w, where observations are

from an i.i.d Poisson process with different rate λ1, and the observations in the rest of the

intervals, [1, t) and [t + w, n], are from an i.i.d Poisson process with rate λ0 [Gen15]. For

testing, the null hypothesis, H0 : λ0 = λ1, over the alternative hypothesis, H1 : λ1 > λ0,

the likelihood under the null hypothesis LH0 =
∏n
i=1

e−λ0λ
xi
0

xi!
and the likelihood under the

alternate hypothesis LH1 =
(∏t−1

i=1
e−λ0λ

xi
0

xi!

)(∏t+w−1
i=t

e−λ1λ
xi
1

xi!

)(∏n
i=t+w

e−λ0λ
xi
0

xi!

)
[Gen15].
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Figure 2.1: (a) Monthly number of e-mails received for the period 1996-2009. (b,c) Sample
ACF and PACF of the monthly number of e-mails, respectively, showing that the time series
is not stationary.

The likelihood ratio (LR), Λ, chosen as test statistic, is given by:

Λ =
Likelihood under H1

Likelihood under H0
=

(
∏t+w−1
i=t

e−λ1λ
xi
1

xi!
)

(
∏t+w−1
i=t

e−λ0λ
xi
0

xi!
)
. (2.3)

Therefore, the log likelihood ratio can be written as:

log Λ =
∑t+w−1

i=t [(−λ1 + xi log(λ1)− log(xi! ))− (−λ0 + xi log(λ0)− log(xi! ))],

= w(λ0 − λ1) + log
(
λ1
λ0

)∑t+w−1
i=t xi,

= A1 +A2Nt,


(2.4)

where A1 = w(λ0−λ1), A2 = log(λ1λ0 ) and Nt =
∑t+w−1

i=t xi = the number of observed emails
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in the scanning window of size w for 1 ≤ t ≤ n−w+ 1. The one-dimensional discrete scan

statistic, Sw = max1≤t≤n−w+1 Nt. Since A1 < 0 and A2 > 0, log Λ can be expressed as a

monotonically increasing function of Nt for fixed w, and it can be written as for rejecting

Ho over H1:

max (log(Λ)) ≈ Sw. (2.5)

As the window size is not known a priori, we extend the fixed window formalism to different

window length. For variable and overlapping windows, the LR and the LLR can be written

as:

Λ =
(
∏t
i=s

e−λ1λ
xi
1

xi!
)

(
∏t
i=s

e−λ0λ
xi
0

xi!
)

=
t∏
i=s

e−(λ1−λ0)

(
λ1

λ0

)xi
, (2.6)

log(Λ) =
t∑
i=s

(λ0 − λ1) + log(
λ1

λ0
)

t∑
i=s

xi, (2.7)

where λ0 =
∑t
i=1 xi∑t
i=1Xi

, λ1 =
∑t
i=s xi∑t
i=sXi

and
∑t

i=1Xi = the total number of months in the whole

study region. To perform a hypothesis test, the p-value approach is used in this work. H0

is rejected in favor of H1 if p-value ≤ α, where the size of the test, α, is the probability of

rejecting H0 when H0 is true which can be written as PH0 [Sw ≥ Cα] = α, where Cα is the

critical value. In the present work, the p-value has been estimated using the MC simulation

[Kul79] or the extreme value distribution, Gumbel [PCMP05], to make an inference about

the cluster of events.

2.4 Detection of Cluster of Communications Using Two-Step

Scan Process

2.4.1 Removal of Trend and Seasonal Effects

As the time series data are often non-stationary/non-random, they can give rise to trends

and non-constant variance over time. It is also very common for dynamic email data to
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Figure 2.2: Scatter plot matrix showing the correlation of e-mail count with its own lagged
values.

have seasonal effect, which can conceal the non-seasonal characteristics of the data. In

order to better reveal the features of the data and apply scan statistics, removing trends

and seasonal effects from time series data are necessary. To estimate the long-term trend,

we fit kernel smoothing to the time series of email counts from March 1996 to November

2009, which shows a clear upward trend (See Fig. 2.4(a)).

The cycle plot which is shown in Fig. 2.4(b) is used to graph the seasonal component of

the email count series [Cle93]. One could see that for months January, February, May, and

July the cycle subseries appear to be increasing, whereas, for April, August, September,

November and December the cycle subseries appear to be decreasing (see Fig. 2.4(b)).

Therefore, the non-stationary behavior of the email count series can be due to trend and

seasonality. To remove trend and seasonal effect, we will apply both the first difference and

a seasonal difference to the monthly email count series where the time series is differenced
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Figure 2.3: The time plot of the natural logarithm showing the change in mean.

based on its seasonal data points which is given by [SS06]:

(1−B12)(1−B)xt = (1−B12 −B +B13)xt

= xt − xt−12 − xt−1 + xt−13

= (xt − xt−1)− (xt−12 − xt−13),


(2.8)

where B is the back shift operator. Fig. 2.5(a) shows that the seasonally differenced series

has neither the trend nor seasonal component that have been exhibited by the original

time series of email count. The standard deviation (SD) of the original email count series

turns out to be 50.31, while the SD for seasonally differenced email count series is 41.1,

suggesting that the seasonal differencing is effective. The sample ACF of the seasonally

differenced series has a very few smaller peak that are marginally statistically significant
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Figure 2.4: (a) Kernel smoothing of the raw e-mail count data showing an upward trend.
(b) Plot showing the seasonal variations of the raw e-mail count data.

[see Fig. 2.5 (b)], so one can conclude the time series of seasonally differenced email count

is nearly stationary. To confirm the stationarity, the Phillips-Perron (PP) unit root test (

value of the test statistic = -8.48, lag parameter = 4, p-value = 0.01) has been performed.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit root test (value of the test statistic

= 0.064, lag parameter = 2, p-value = 0.1) shows that the seasonally differenced series is

trend-stationary. In addition, no significant mean shift of the seasonally differenced count

series has been observed.

It was observed that there is a over-dispersion in the Poisson distribution of raw e-mail

counts (Fig 2.1(a), and the raw count data is also highly serially correlated (see Fig. 2.2)

or nonrandom, as observed by the auto correlation function (ACF) plot (see Fig. 2.1(b)

in the text). The trend and the seasonal behavior of the raw e-mail count data affect the

distribution, and makes it non-Poisson. The trend and the seasonal behavior in the raw

data are shown in Fig. 2.4. The over-dispersion, however, has significantly reduced in the
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seasonal difference count data (see Fig. 2.5(a) and the ACF plot, Fig. 2.5(b), shows the

distribution becomes random, and the time series is stationary. Here the seasonal difference

time series, which is stationary, has been used to estimate the maximum log likelihood ratio

(LLR) using the Poisson model to obtain the primary cluster. Furthermore, it was observed

that the left truncated seasonal difference data become normally distributed. It is known

that that the Poisson distribution would tend to be normal, when the rate of arrival is high.

The counting processes that deal with over-dispersion have been covered in the literature

by Weiss [Wei07], Weiss and Testik [WT09], Weiss [Wei09]. All those studies deal with the

time series of correlated processes of the Poisson counts with over-dispersion. They used

the modified ARMA models, such as integer valued ARMA (INARMA), INGARCH models

to fit the over-dispersed and correlated count data to get the critical cluster. Another

important part of our research, in addition to obtaining excessive activities, is to obtain the

nodes/vertices associated with the excessive activities. To obtain this information, the time

series of networks has been constructed using the maximum betweenness at a given time for

different neighborhoods (k = 1, 1.5, 2 and > 2) as part of the two-step process around the

primary cluster, and estimated the maximum LLR. In all cases the time series is stationary.

These models (INARMA and INGARCH), referred above, identify the critical cluster only.

However, these models will not provide the nodes or vertices associated with the critical

cluster.

2.4.2 Step-I of Two-Step Scan Process: Estimation of LLR using Poisson

Model

A purely temporal cluster analysis has now been applied to detect the temporal clusters

of emails with high rates using the discrete Poisson model to the stationary time series of

email count, as shown in Fig. 2.6 (upper panel), using SaTScan software [Kul79]. Here

the scanning window is an interval (in time). At each location, the number of observed

and expected observations inside the window has been compared. Different probability

models, depending on the type of data, can be applied to evaluate the cluster using scan
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Figure 2.5: (a) Time plot of email count after removing the trend and seasonal variation by
seasonal differencing. Note the change in the mean is removed. (b) The sample ACF (top
right) and PACF (lower right)of seasonally adjusted and trend removed email count series.

statistics. For count data, for example, the number of phone calls or number of e-mails

received over time, a Bernoulli or discrete Poisson model is used. For categorical data, a

multinomial model is used in scan statistics. In addition, an exponential model can be

applied for survival time data and a normal model for continuous data. In the present case,

for the number of emails over time, it has been assumed that the marginal distribution of the

stationary time series of integer email counts is a Poisson process. As the critical cluster size

is not known, the 50% of the study period have been set as the maximum temporal cluster

for the calculation of the LLR in SatScan. The p-value is obtained using MC simulation

with 1000 replications. We have identified two clusters, a primary cluster and a secondary

cluster using hierarchical way. The statistically significant most likely cluster is detected

from June 2003 until March 2004 (LLR = 82.07 and the MC p-value = 0.001). Similarly,

the statistically significant secondary cluster with log likelihood ratio of 88.94 and the MC

p-value of 0.001 is observed between January 2007 and July 2008 after excluding the effect
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Table 2.2: Temporal clusters of email count showing the estimated maximum loglikelihood
ratio (LLR), standard Monte critical values (SMCV), Gumbel critical values (GCV) and
significance level (SL) obtained using SaTSscan software.

Cluster Time Frame LLR p-value SMCV (SL) GCV (SL)

Primary 6/1/03 - 3/31/04 82.07 0.001 12.69 (0.001) 13.99 (0.001)

Secondary 1/1/07 - 7/31/08 88.94 0.001 9.93 (0.001) 12.59 (0.001)

of the primary cluster [ZAK10], [SWY75]. The primary and the secondary clusters are

shown by the rectangular boxes in Fig.2.6 (upper panel). One could see that the estimated

the LLR for the primary cluster of emails is greater than the standard Monte Carlo critical

value (SMCV), 12.69, and the Gumbel critical value (GCV), 13.99, at the 0.0001 level of

significance (See Table 2.2).

The relative risk (RR) is an important tool that is defined as the ratio of probabilities in

the two groups. In fact, the RR is the ratio of probabilities that there would be a scanning

window of width, w, where observations are from the i.i.d Poisson process with different

rate λ1 and the observations in the rest of the intervals [1, t) and [t + w,N) are from the

i.i.d Poisson process with rate λ0. The mathematical expression of RR is given by:

RR =
π1

π2
, (2.9)

log (RR) = log(π1)− log(π2), (2.10)

where π1 is the risk inside of the scanning window of width, w, and π2 is the risk outside of

the scanning window of width, w. The null hypothesis is H0 : RR = 1 and the alternative

hypothesis is Ha : RR > 1.

In order to compare these results, we estimate LLR as a function of using equation 2.6
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Figure 2.6: The primary and secondary clusters, obtained using SatScan software, are shown
by rectangular boxes in the count series (upper panel). The LLR estimated as a function
of variable and overlapping bin w, showing the primary and secondary clusters at the same
time period (lower panel).

(see Fig. 2.6 (lower panel)). Note that two broad peaks appear in the time period, which are

similar to the time periods estimated by SaTScan. The estimated maximum LLR is 13.75

and the estimated p-value using MC is 0.001. This analysis provides consistent result with

the result obtained from the SaTScan software. Note that the SaTScan software provides

the maximum likelihood for a large cluster that contains several smaller clusters.

2.5 Step-II of Two-Step Scan Process: Network Neighbor-

hood Analysis

2.5.1 Data Processing

To form subnetworks from edgelist, the date and time were extracted from the Date header,

and email addresses from the From, Cc, and To fields. In email network, an individual
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may have many different email addresses known as aliases. The manual inspection was

used to identify the aliases for the senders and receivers in the edge list. Usually, an

email message consists of the header and the body. The header contains information on

sender, receiver/receivers, subject, date, and time, and the body contains unstructured text,

including the content of the email and sometimes a signature block in the end. The message

may have a previous message and/or attachment. One can obtain three types of data from

emails: network data, count data and text data.

An email header mainly consists of information concerning the details of the sender (who

has sent the email), when the email was sent (date and time) and details of receiver (who

is/are receiving the email). The most commonly used email headers are: (i) From: Senders

name and email address, (ii) To: Recipients name and email address, (iii) Cc: Recipient

of copies of the email, (iv) Date: Departure date and time of the email, and (v) Subject:

Text entered by the sender. Furthermore, in an inter-organization, people communicate

worldwide using inter-organization emails and therefore, multiple time zones may appear

in Date header. In the current inter-organization emails, date header has Coordinated

Universal Time (UTC) as well as some older standards, such as EST for Eastern Standard

Time, PST for Pacific Standard Time. The UTC has a 4-digit numeric offset with a + or

prefix. In this work, the local time has been converted to UTC.

In order to construct a graph from such an inter-organizational network, the participants

in the emails are represented by the nodes, and the link between senders and receivers

are represented as edges. Thus, in this type of network, nodes represent individuals and

links represent emails, and the weight of a link between two nodes is given by the email

frequencies. In addition, as the emails are time stamped, it is suitable for conducting

dynamic social network analysis (DSNA). A time series of network for every week is thus

constructed from emails. Furthermore, one can estimate the number of emails per week, or

per month from Date header, thus obtaining count data.

The email data could be noisy due to the duplicate emails, multiple IDs for one person,

persons having similar names, etc. The data needs to be cleaned prior to constructing the
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Figure 2.7: The weekly subnetworks obtained from e-mails for the period September 2003-
October 2003.

network and conducting any analysis. Thus, data cleaning is a very important step, which

involves cleaning the date field obtained from the Date header for count data, identifying

the optional email addresses (aliases) for the senders and receivers in the edgelist, removing

the duplicate emails and cleaning the content in text data. Fig. 2.7 shows weekly networks

obtained form the email edgelist for the months of September and October, 2003.

To quantify the characteristics of a node in subgraphs, the graph invariant, such as be-

tweenness, is used. In fact, betweenness of a node in global network measures its influential

position. It is realized that more information transmits through the vertex with higher

betweenness and, as a result, the vertex with higher betweenness can dominate over the

entire network. A node with high betweenness can act as gatekeeper, bridge or a broker

[Fre79]. Thus, the betweenness centrality applied to neighborhood network can be very

useful in identifying locally important individuals and excessive activities in the network.

38



Figure 2.8: Weekly neighborhood ego subnetworks with maximum betweenness for k = 1.5
for the 32 week period in 2003 around the primary cluster obtained using Poisson model.

The betweenness of a vertex, v, [New10] is mathematically expressed as:

B(v) =
∑
ij

gij(v)

gij
, (2.11)

where gij is the total number of geodesic paths from vertex i to vertex j, and gij(v) is the

number of geodesic paths from i to j that pass through v.

2.5.2 Formation of Ego Subnetworks Around Most Likely Cluster

The network neighborhood analysis [PCMP05, PS00, Mar12] as opposed to global network

analysis is utilized here to identify interesting features at a specific point of time in which

the global network is partitioned into disjoint subnetworks or subregions. The subregions

are modeled subsequently by undirected binary graphs indexed by time, Dt, which are a

collection of vertices that are joined by edges. Therefore, graph, Dt, can be expressed as
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Figure 2.9: Weekly maximum betweenness series for k = 1 (top), 1.5 (upper middle), 2
(lower middle) and > 2 (lower).

Dt = (V,Et), where each graph has the same set of vertices, V, and different set of edges, Et.

Furthermore, a graph can be characterized by order and size, where the order of the graph,

Dt, is n = |V | = number of vertices, and size of graph, Dt, is m = |Et| = number of edges,

respectively. From the subgraph induced at each time point, one can obtain local regions

or neighborhoods of vertices. For example, mathematically the kth order neighborhood of a

vertex, v, of the network, Dt, is defined as Nk[v;Dt] = {u ∈ V : dt(u, v) ≤ k; k = 0, 1, 2, ..}

[PCMP05], where dt(u, v) is the geodesic distance between u and v at time, t. In fact, it

is a metric space which is a set of vertices with metric defined by dt(u, v) ≤ k and k is the

neighborhood level. A family of neighborhood sub graphs denoted by Ω(Nk[v;Dt]) with a

set of vertices, Nk[v;Dt], can then be generated over time.

In this work, for neighborhood network analysis, the entire data set, X, is partitioned

into n disjoint subintervals wi; i = 1, 2, ..., n such that Xi ∈ wi; and it can be expressed

as X = ∪ni=1Xi ⊂ ∪ni=1wi [Mar12]. In each sub interval, the betweenness, Bwi(Xi), was
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Figure 2.10: The sample ACF of the weekly maximum betweenness series for k = 1 (top),
1.5 (upper middle), 2 (lower middle) and ¿2 (lower).

estimated as the local statistics, for each vertex for k = 1, 1.5, 2, > 2 and then the vertex

with the maximum betweenness was chosen for each neighborhood level, MBwi, as the scan

statistics. Fig. 2.8 is the ego subnetworks, corresponding to the highest betweenness upto

32 weeks for k = 1.5. One could see that the ego subnetwork [HR05] with ID = 15 with a

betweenness of 66648.27 at 20th week is highly dense as compared to other ego subnetworks.

The corresponding time plots of the maximum betweenness for k = 1, 1.5, 2, > 2 are shown

in Fig. 2.9. Note that a large spike for ID 15 has been observed at the 20th week with a

betweenness of 66795, 66648.27, 138232.77, 167972.42 for k = 1, 1.5, 2 and > 2, respectively.

The corresponding sample ACF shows that the maximum betweenness series is stationary,

as autocorrelations does not differ significantly from zero (see Fig. 2.10).
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2.5.3 Estimation of LLR Using Binomial Model

As the betweenness is proportional to the number of geodesic distances around a vertex

and therefore, it can be modeled as Binomial distribution. Under the null hypothesis,

observations, x1, x2, ..., xN are from an i.i.d Binomial distribution with success probability

p0. For alternative hypothesis, there would be a scanning window of width, w, where

observations are from an i.i.d Binomial distribution with different success probability p1,

and the observations in the rest of the intervals, [1, t) and [t+w, N ], are from an i.i.d

Binomial distribution with success probability p0. Here Xi = the number of shortest paths

in the neighborhood such that:

Xi =


(ni − 1)(ni − 2), for directed graph,

(ni−1)(ni−2)
2 , for undirected graph.

For variable and overlapping windows, p0 and p1 can be estimated from the data as p̂0 =

∑t
i=1 xi∑t
i=1Xi

and p̂1 =
∑t
i=s xi∑t
i=sXi

[PS00], where xi = the number of shortest paths that is traversed

by the vertex, i, in the neighborhood. The null hypothesis is H0 : p0 = p1, and the

alternative hypothesis is H1 : p1 > p0. The likelihood under the null hypothesis is:

LH0 =

N∏
i=1

(
Xi

xi

)
pxi0 (1− p0)Xi−xi . (2.12)

The likelihood under the alternate hypothesis is:

LH1 =

(
m−1∏
i=1

(
Xi

xi

)
pxi0 (1− p0)Xi−xi

)
×

(
t∏

i=m

(
Xi

xi

)
pxi1 (1− p1)Xi−xi

)

×

(
N∏

i=t+1

(
Xi

xi

)
pxi0 (1− p0)Xi−xi

)
.

(2.13)
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The likelihood ratio, Λ, chosen as test statistic, is given by:

Λ =
Likelihood under H1

Likelihood under H0
=

(∏t
i=m

(
Xi
xi

)
pxi1 (1− p1)Xi−xi

)
(∏t

i=m

(
Xi
xi

)
pxi0 (1− p0)Xi−xi

) . (2.14)

Therefore, the LLR can be written as:

log(Λ) =
∑t

i=m[xi log(p1p0 ) + (Xi − xi) log (1−p1)
(1−p0) ]

= a1Nt + a2(
∑t

i=mXi −Nt),

 (2.15)

where a1 = log
(
p1
p0

)
, a2 = log (1−p1)

(1−p0) and Nt =
∑t

i=s xi. Using equation 2.1, one could write

for rejecting H0:

max (log(Λ)) ≈ Sw. (2.16)

Fig. 2.11 shows the estimated value of the LLR as a function of m. It is observed

that the maximum LLR and the second maximum LLR for k = 1.5, 2.0, ≥ 2 occur in the

20th week (the 4th week of October 2003) and at the 21st week (the first week of November

2003), respectively. The associated ego subgraphs corresponding to the largest LLR and the

second largest LLR are shown in Fig. 2.12, showing individuals with ID = 15 and 5 have the

highest and the second highest betweenness, respectively. The largest LLR and the second

largest LLR for k = 1.5, 2.0, > 2.0 are given in Table 2.3. All these estimated LLR values are

greater than the critical values and therefore, statistically significant. Therefore, the clusters

of shortest paths traversed by the vertices with ID = 15 (see Fig. 2.13)and 5 at the 20th

and the 21st week, respectively, in the neighborhood are statistically significant, suggesting

that excessive communications have been transmitted through these two individuals.
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Figure 2.11: The estimated LLR as a function of variable and overlapping w for k = 1.5(top
panel), 2(middle panel), > 2 (lower panel) for the 32 week period in 2003 around the primary
cluster.

Table 2.3: The maximum log likelihood ratio at week 20 and week 21 respectively with
Gumbel critical values (GCV), standard Monte critical values (SMCV), and significance
level (SL) for k = 1.5, 2.0 and > 2.0 using the Binomial model.

K LLR: x[20] LLR: x[21] GCV(SL) SMCV(SL)]

1.5 644.11 601.069 7.73 (0.0001) 8.47 (0.001)

2.0 602.74 599.95 7.60 (0.0001) 8.51 (0.001)

> 2 2583.92 2529.41 9.00 (0.0001) 8.50 (0.001)
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Figure 2.12: The anomalous ego sub network with ID = 15 (upper panel) detected at week
t = 20 in 2003 for k = 1.5 (top left), k = 2(middle) and k = > 2 (top right). The vertex
has maximum absolute betweenness score. Neighborhood ego sub networks with the second
maximum absolute betweenness score (lower panel) for ID = 5.

2.5.4 Maximum Likelihood Estimation Using Non-Parametric Model

Here a nonparametric method of obtaining an estimate of the maximum likelihood of a

unimodal density has been briefly discussed. This is initially reported for the continuous

case by Robertson [Rob67], when mode is known. This method has later been extended by

Wegman [Weg70], when the mode is unknown. He presented this estimate as conditional

expectation given a Σ-lattice, (E(f |ΣL)). Wegman [Weg70] showed that the MLE must

contain the mode located at one of the observations. However, the MLE that is used as the

unimodal estimator with the largest likelihood product, is not computationally very efficient

as the mode has been estimated for each observation to calculate the likelihood product.

In order to enhance the computational efficiency, Wegman [Weg11] later suggested placing

the mode at the smallest as well as the largest order statistic. In fact, he observed that if

the mode were set at the smallest order statistic, the left-hand side of the density estimate
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Figure 2.13: Circular plot showing ID = 15 associated with the maximum betweenness in
the middle.

would be flat and the right-hand side would be non-increasing and similarly, if the mode

were placed at the largest order statistic, the right-hand side would be flat and the left-hand

side would be non-decreasing. Thus, the MLE would set the mode between the two flat

regions/bounds. Let x1 ≤ x2 ≤ .... ≤ xn is the ordered sample drawn from a unimodal

density f and L and R be the left and right bounds such that ς = [L, R] = R - L = ε . Let

xl and xr be the largest observation ≤ L and the smallest observation ≥ R, respectively,

and h be any estimate, where [L, R] is the modal interval such that:

E(f |ΣL) =


h(xl), xl < x < L,

h(xr), R < x < xr,

h(x), otherwise.
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Figure 2.14: (a) The estimated pmf of the maximum betweenness as a function of ordered
observations. (b) The estimated density with mode placed at the smallest order statistic.
(c) The estimated density with mode placed at the largest order statistic.

Here this model was applied to estimate MLE for the unimodal discrete case. The raw

probability mass function of the maximum betweenness, f(xi), such that f(xi) =
(
Xi
xi

)
pxi(1−

p)Xi−xi was initially estimated. The likelihood for each conditional mass function is written

as:

Lj(p) =
32∏
i=1

fj(x(i)|p), j = 1, 2, ...8. (2.17)

Fig. 2.14(a) shows the raw estimate of the unimodal probability mass function (pmf) for

the maximum betweenness. At first, the mode was placed at the smallest order statistic in

the data sample of the maximum betweenness, which shows a flat region on the left hand

side, and the non increasing region at the right (see Fig. 2.14(b)). Similarly, the mode has

been placed at the largest order statistics (see Fig. 2.14 (c)) to obtain the flat region at

the right, while the non-increasing region can be seen in the left. The left (L) and right
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Figure 2.15: The Log likelihood estimate using a non-parametric method as a function of
mode.

bounds (R) are x[19] and x[26], respectively. Therefore, the estimated modal interval is [19,

26]. The log likelihood estimate between two bounds as a function of mode is shown in Fig.

2.15. In fact, the MLE is associated with mode at x[20] = 724.18 at week 20 (the 4th week

of October 2003) and the second most likely mode is x[21] = 724.16 (see Fig. 2.15 ) at week

21 (the first week of November 2003). One could see that these results are consistent with

the results obtained from the parametric method.

2.6 Monte Carlo Simulation

Monte Carlo procedure is a very important method to estimate the P values. Here are the

three reasons why this procedure is useful [NCS02].

1. Some test statistics do not have an exact sampling distribution.

2. Despite that a test statistic has an exact distribution, it may not be appropriate for
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an inadequate sample size.

3. Estimation of exact sampling distribution may be computationally intensive.

This procedure has some limitations. To obtain p-value precision, the number of simu-

lation needs to be increased, which is computationally intensive. On the other hand, Monte

Carlo technique requires no assumption of sampling distribution of the test statistic and

calculates an approximate P value. In the present work, the exact sampling distribution

is not known for most cases, as the anomaly splits among multiple windows, resulting in

overlapping windows and nonrandom clusters.

Let Z be the test statistic having the sampling distribution g under the null hypothesis

and z be its observed value from the data then p value = PH0(Z ≥ z) [CH74b]. The p value

can be estimated as:

p =
r

n
, (2.18)

where r = (i : zi ≥ z) = number of test statistic from the simulation that is greater than or

equal to the observed test statistic given that n is the simulated replicates and z1, z2, .., zn

are the test statistics from these simulation. However, this p value estimate is not strictly

correct. The unbiased estimate of the true p value is given by [DH97]

p =
(r + 1)

(n+ 1)
. (2.19)

The equation 2.19 can be derived as follows. Let Y be the random variable that denotes

the number that test statistic Z ≥ z. Here the model is:

Y |p ≈ Binomial(n, p), (2.20)

where p ≈ unif(0, 1). The probability that the test statistic Z is greater than or equal to
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the size z in exactly r simulations is given by [NCS02]:

p(Y = r) =

∫ 1

0
p(Y |p)f(p)dp =

(
n

r

)∫ 1

0
pr(1− p)n−rdp

=

(
n

r

)
Beta(r + 1, n− r + 1) =

n!

(n+ 1)n!
=

1

n+ 1
, (2.21)

where Beta(r + 1, n − r + 1) = Γ(r+1)Γ(n−r+1)
Γ(n+2) = r!(n−r)!

(n+1)! . The probability that the test

statistic exceeds r or greater in n simulated replicates = p(Y ≥ r) = r+1
n+1 .

2.6.1 Evaluation of Performance of Scan Statistic Model

The Monte Carlo simulation was used to evaluate the performance of the hypothesis test in

detecting the primary cluster of events. The power of the scan statistic is the probability

that the observed scan statistic exceeds the critical value k when the alternative hypothesis

is true. For the discrete scan statistic case, the power is written as [GNW01]

P (Sw ≥ k|HA), (2.22)

where Sw(w) = max Yt(w), and Yt(w) is the number of events in in the scanning window w.

The measured responses are the size (α) and the power of the test statistic, log likelihood

ratio. The factors are test statistic, sample size and λ. Here n = 200, 500 and 1000

replications were used for the simulations. The type-I error rate (size) is measured using

the proportion of the times the null hypothesis is rejected out of n replications when the

null hypothesus is true and can be mathematically written as [MM16].

α̂ =
1

n

n∑
i=1

δi, (2.23)
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Figure 2.16: The estimated power for the Log likelihood ratio as a function of λ.

where

δi =


1, type-I error,

0, no type-I error.

The simulated sizes and the critical values (CV) are presented in Tables 2.4 and 2.5, respec-

tively. It was observed that the size distortion for the test statistic improves as the sample

size increases. The sizes are quite closer to the nominal level when n = 500 and 1000.

For measuring the power, the probability of making type-II error (β), which is the

proportion of the times the null hypothesis is not rejected out of n replications when the

alternative hypothesis is true, has been estimated and can be mathematically expressed as

[MM16]:

β̂ =
1

n

n∑
i=1

ζi, (2.24)
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Table 2.4: Empirical sizes (in percentage) for the LLR in testing for a cluster of events for
scan statistic model.

Replications (n) Size

200 3.5

500 4.2

1000 4.5

where

ζi =


1, type-II error,

0, no type-II error.

Fig. 2.16 shows the estimated power as a function of λ in the range 158.8 to 170.9. The

LLR based test for detection of primary cluster shows the monotonic power as λ increases.

Thus, it can be concluded that the LLR based test has monotonic power, reasonable size

and power performance in testing for the primary cluster of events.

2.7 Chapter Summary

Excessive activities in communication networks continue to be a major problem. In some

cases, for example, Enron e-mails, frequent contact in interconnected networks could lead

to fraudulent activities. Here the purely temporal clustering of emails using a two-step scan

process has been investigated. In step I, the Poisson process model is initially employed

to identify the most likely cluster of emails using monthly email count data for 10 year

period. Initially, seasonal differencing is conducted to remove the trend and adjust the

seasonal variation of monthly email count series and the most likely statistically significant
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Table 2.5: The simulated critical values for the LLR for n = 1000.

(1- α) % value

90 1.349809

95 1.916925

97.5 2.70383

99 3.353406

99.5 4.547692

temporal primary cluster is detected using the maximum LLR as the scan statistic (LLR

= 82.07, p = 0.001). In step II, the binomial model is applied to weekly network data of

emails for the 32 week period in 2003 in the neighborhood of the most likely cluster, where

betweenness is implemented as the locality statistics and the most likely purely temporal

clusters of emails are observed for k = 1.5, 2 and > 2 using the maximum LLR as the scan

statistic. The two-step scan statistic process modeling to estimate the excessive activities

as well as identifying most important nodes/vertices here for the large data set would be

more scalable or computationally less intensive, as the most likely cluster in the entire data

set was first identified using count data, and then the network was extracted in the vicinity

of the primary cluster.
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Chapter 3: Anomaly Detection Using Univariate and

Multivariate Time Series Models

3.1 Introduction

In the previous chapter, the existence of significant excessive activities in the e-mail networks

has been demonstrated using scan statistics. It is not apparent from the study the dynamic

relationship between the influential vertices or nodes associated with excessive activities in

the e-mail network. As the scan statistics measure the maximum of locality statistics, it

can conceal the group of influential people in the network. In this chapter, two alternative

approaches to detect clusters in a point process are implemented using the graph edit

distance (GED).

Initially, the univariate time series of the GED between subsequent weekly subgraphs

has been constructed and then fitted the time series to the auto regressive moving average

(ARMA) model. The anomalies were then assessed using the residual thresholds obtained

from the fitted time series model. Additionally, this chapter considers multiple time series

of neighborhood ego subnetworks using the GED. A vector auto regressive (VAR) model

was applied to fit the multiple time series. The VAR model has previously been used in

economics and finance, accounting and marketing [Sim80]. In economics, this model is

applied to forecast and predict macroeconomic variables, such as gross domestic product

(GDP), money supply and unemployment. Here the VAR model has been implemented on

time series of ego subgraphs in e-mail networks to investigate the excessive activities, as the

nodes or vertices of the subgraphs are interrelated or cross correlated. Using this model,

the dynamic relationship between vertices, and the excessive activities associated a vertex

or node can be obtained. In addition, the group of influential persons (IDs) or vertices or

nodes in the e-mail subnetworks can be identified using this process.
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3.2 Univariate Time Series from e-mail Networks

3.2.1 Graph Distance Metrics

Several graph distance metrics, such as maximum common subgraph (MCS) edge distance,

MCS vertex distance, graph edit distance (GED), modality distance (MD), diameter dis-

tance (DD)and spectral distance (SD) can be used to form univariate time series. Here we

mostly use GED, d(G,H), which is a measure of similarity (or dissimilarity) between two

graphs, G and H. The GED can be defined as [Pin05]:

d(G,H) = |VG|+|VH |−2|VG ∩ VH |+|EG|+|EH |−2|EG ∩ EH |, (3.1)

where EG and VG are the edge set and vertex set of a graph, G, respectively, and EH and

VH are the edge set and vertex set of a graph, H, respectively [Pin05], [?]. The union of

two graphs G(VG, EG) and H(VH , EH) are the union of their vertex sets and edge sets. It

can be expressed as:

G ∪H = (VG ∪ VH , EG ∪ EH) . (3.2)

Similarly, the intersection of two graphs, G(VG, EG) and H(VH , EH), is the union of their

vertex sets and the intersection of their edge sets. It can be written as:

G ∩H = (VG ∪ VH , EG ∩ EH) . (3.3)

3.2.2 Graph Edit Distance to Time Series

The GED between the weekly networks, as shown in Fig. 3.1, was obtained using Eq. 3.1.

The distances between the networks for four weeks are given in Table 3.1. Fig. 3.2(a) shows

the time plot of observed graph edit distance for 52 weeks around the most likely cluster

obtained from scan statistics in Chapter 1. One could observe a spike at around week 20

(the 4th week of October 2003) and at week 21 (the first week of November 2003). The
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Figure 3.1: Weekly subnetworks at different time points. The GED was estimated from
adjacent periods to compare subgraphs sequentially.

sample ACF and PACF show that the series is stationary (see Fig. 3.2(b)). To further

validate this point, the unit root tests, such as augmented Dickey-Fuller, Phillips-Perron

[CM09], [Pfa08] and KPSS [Pfa08] tests were performed to show that the time series is

stationary. The values of the test statistics, lag parameters and the corresponding p-values

are given in Table 3.2. A time series model was then fitted to the graph distance time series,

as shown in Fig. 3.2(a) to get the residual. Here three time series models, ARMA, AR and

MA are discussed.

3.2.3 AR model

The autoregressive (AR) model of order p with no constant term can be written as [SS06]:

xt = φ1xt−1 + φ2xt−2 + ....+ φpxt−p + wt, (3.4)
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Figure 3.2: (a)Time Plots of observed and fitted GED series using ARMA Model for the
52 week period June 2003 - June 2004. (b) The sample ACF (top panel) and the sample
PACF (lower panel) of weekly GED series for the 52 week period June 2003 - June 2004,
respectively.

Table 3.1: The order of a graph G, the order of graph H, the size of graph G, size of a graph
H, and the graph edit distance between two graphs, G and H.

|VG| |VH | |EG| |EH | d(G,H)

w1-w2 73 38 93 55 73

w2-w3 38 39 55 41 15

w3-w4 39 76 41 168 164

where xt is stationary, φ1, φ2, ..., φp are parameters and φp 6= 0. Here wt is the white noise

with mean zero and variance σ2
w. The AR (p) model is also given in useful form using
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Table 3.2: Tests for unit roots showing that the time series is stationary.

Unit root test Value of test statistics Lag Parameter p-value

Augmented Dickey-Fuller Test -4.72 1 0.01

Phillips-Perron Test -4.18 3 0.01

KPSS Test 0.145 1 0.1

backshift operator, B, as

(1− φ1B − φ2B
2 − ...− φpBp)xt = wt,

φ(B)xt = wt,

 (3.5)

where Bxt = xt−1 and φ(B) = 1 − φ1B − φ2B
2 + ... − φqBq, and φ(B) is called an auto

regressive operator.

3.2.4 MA model

The moving average (MA) model with no constant term of order q can be written as [SS06]:

xt = wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q, (3.6)

where θ1, θ2, ..., θq are parameters and θq 6= 0. Using backshift operator, B, the model is

written as

xt = θ(B)wt, (3.7)

where θ(B) = 1 + θ1B + θ2B
2 + ...+ θqB

q, and θ(B) is called a moving average operator.
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3.2.5 ARMA model

The ARMA (p, q) models with no constant term are well-known statistical models for a

stationary time series xt and can be mathematically expressed as [SS06]:

xt = φ1xt−1 + ...+ φpxt−p + wt + θ1wt−1 + ...+ θqwt−q,

(1− φ1B − φ2B
2 − ...− φpBp)xt = (1 + θ1B + θ2B

2 + ...+ θqB
q)wt,

φ(B)xt = θ(B)wt,


(3.8)

where wt ∼ iid N(0, σ2
w) and (φ1, ..., φp, θ1, ..., θq) is a (p + q) × 1 vector of parameters,

such that φp 6= 0, θq 6= 0 and σ2
w > 0, and p, q are the orders of the autoregressive part

and the moving average part of the model, respectively. Here xt is the current value of the

time series, which is a linear function of past values of the time series and past values of the

errors. In fact, xt can be expressed as a function of autoregressive part and moving average

parts. The anomalies were then assessed using the residual threshold obtained from the

model fitted to the time series.

3.3 Estimation of Parameters

3.3.1 Maximum Likelihood for ARMA(p,q) Process

The likelihood function is given by [SS06]:

L(φ1, ....φp, θ1....θq, σ
2
w) =

∏n
t=1 f(xt|xt−1, ..., x1)

=

exp

−∑nt=1

[
xt−x

t−1
t (β)

]2
2σ2wr

t−1
t (β)


(2πσ2

w)
n
2 [(r01(β),r12(β),...,rn−1

n (β)]
1
2
,


(3.9)
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where β = (φ1, ...φp, θ1, ..., θq)
′ and xt|xt−1, ..., x1 ∼ N(xt−1

t , P t−1
t ), the conditional vari-

ance, P t−1
t = σ2

wr
t−1
t and the mean, xt−1

t = E(xt|xt−1, ..., x1). The logarithm of likelihood

function is given by:

l(β, σ2
w) = logL(β, σ2

w)

= −n
2 log(2πσ2

w)− 1
2

[
log r0

1(β) + log r2
1(β).....+ log rn−1

n (β)
]
−

∑n
t=1[xt−x

t−1
t (β)]

2

2σ2
wr

t−1
t (β)

.


(3.10)

Taking the partial derivative with respect to σ2
w one can obtain

∂l

∂σ2
= − n

2σ2
w

+

∑n
t=1

[
xt − xt−1

t (β)
]2

2σ4
wr

t−1
t (β)

= 0, (3.11)

σ̂2
w = n−1

∑n
t=1

[
xt − xt−1

t (β)
]2

rt−1
t (β)

. (3.12)

Newton-Raphson algorithm is a powerful numerical optimization technique for the maxi-

mum likelihood estimation of β. Let β = (β1, ......., βk) denote k parameters. The necessary

condition for maximizing l(β) is:

∂l(β)

∂βj
= 0, j = 1, ..., k. (3.13)

The k × 1 vector of partials is given by:

l(1)(β) =

(
∂l(β)

∂β1
, ....,

∂l(β)

∂βk

)′
. (3.14)
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Similarly, the k × k matrix of the second order partials can be written as:

l(2)(β) =

(
∂l2(β)

∂βi∂βj

)k
i,j=1

, (3.15)

assuming l2(β) is nonsingular. If β(0) is the initial estimate of β, then using the Taylor

expansion, one gets the following expressions:

0 = l(1)(β̂) ≈ l(1)(β(0))− l(2)(β(0))[β̂ − β(0)], (3.16)

β(1) = β(0) + [l(2)(β(0))]
−1l(1)(β(0)). (3.17)

Here β(2) is obtained by replacing of β(0) by β(1), and so on. The iteration has been carried

out until the sequence of estimators, β(1), β(2), ..., would converge to β̂, the MLE of β.

3.3.2 Yule-Walker Estimation for an AR(p) Process

One of the commonly used methods to estimate the AR(p) model parameters is Yule-Walker

estimation. If {xt} be an autoregressive stochastic process of order p then;

xt = φ1xt−1 + .....+ φpxt−p + wt. (3.18)

Multiplying Eq. 3.18 by xt−h and taking expectation gives the set of equations, known as

the Yule-Walker equation [SS06],

E[xt−hxt] = E[φ1xt−1xt−h + .....+ φpxt−pxt−h + wtxt−h],

γ(h) = φ1γ(h− 1) + .....+ φpγ(h− p), h = 1, 2, ..p,

 (3.19)

σ2
w = γ(0)− φ1γ(1)− ...− φpγ(p), h = 0. (3.20)
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In matrix notation,

Γpφ = γp, (3.21)

σ2
w = γ(0)− φ′γp. (3.22)

Γp =



γ(0) γ(1) ... γ(p− 1)

γ(1) γ(0) ... γ(p− 2)

.

.

.

γ(p− 1) γ(p− 2)...γ(0)


, φ =



φ1

φ2

.

.

.

φp


, γp =



γ(1)

.

.

.

.

γ(p)


, (3.23)

where Γp is (p× p) covariance matrix, and φ and γp are (p× 1) vectors. Using the method

of moments, in Eq. 3.21, replacing γ(h) by γ̂(h), one can get

φ̂ = Γ̂−1
p γ̂p, σ2

w = γ̂(0)− γ̂ ′pΓ̂−1
p γ̂p. (3.24)

These estimators are called the Yule-Walker estimators. In terms of sample ACF, one can

write the Yule-Walker estimators as

φ̂ = R̂−1
p ρ̂p, σ2

w = γ̂(0)
[
1− ρ̂′pR̂−1

p ρ̂p

]
, (3.25)
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where ρ̂p is a (p× 1) vector, and R̂p, a (p× p) matrix, is written as:

Rp =



1 ρ(1) ... ρ(p− 1)

ρ(1) 1 ... ρ(p− 2)

.

.

.

ρ(p− 1) ρ(p− 2)... 1


. (3.26)

3.3.3 Estimation Method for MA(1) Process

If {xt} is a moving average stochastic process of order 1, then

Xt = wt + θwt−1, |θ|< 1. (3.27)

Multiplying both sides by Xt−h and taking expectation, one gets E[XtXt−h] = E[wtXt−h+

θwt−1Xt−h]. For h = 0, the population autocovariance is γ(0) = σ2
w(1 + θ2). For h = 1,

γ(1) = σ2
wθ, and the estimate of θ can be obtained by solving [SS06]

ρ̂(1) =
γ̂(1)

γ̂(0)
=

θ̂

1 + θ̂2
. (3.28)

If |ρ̂(1)|≤ 1
2 , the solutions are real. When |ρ̂(1)|< 1

2 , the estimate is

θ̂ =
1−
√

1−4ρ̂(1)2

2ρ̂(1) ,

σ̂2
w = γ(0)

1+θ̂2
.

 (3.29)
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Table 3.3: The estimated parameters and AIC of ARMA models.

Parameter ARIMA(0,0,1) SE ARIMA(2,0,0) SE ARIMA(1,0,1) SE

ar1 0.5470 0.1336 -0.0412 0.2417

ma1 0.611 0.1198 0.6394 0.1963

ar2 -0.2617 0.1325

AIC 685.147 688.343 687.1195

Figure 3.3: The standardized residual series (upper panel) for the MA(1)fit to the GED
series and the ACF of standardized residuals for the MA(1) fit to the GED series (middle
panel), and p-values for the Ljung-Box-Pierce Q-statistic (lower panel for the MA(1) fit to
the GED series).
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3.4 Excessive Activities and Residuals

The residual, et and the standardized residuals, set, are mathematically expressed as [SS06]

et = xt − x̂tt−1,

set = (xt−x̂tt−1)√
P̂ t−1
t

,

 (3.30)

where x̂t
t−1 is the one-step-ahead prediction of xt and P̂ t−1

t is the estimated one-step-ahead

error variance. The residual has some properties with mean = 0 and constant variance,

i.e. homoscedasticity and normally distributed. As it is normally distributed, the 95% of

all values fall between twice the standard error. Therefore, the observations lying beyond

twice the standard deviations were identified as anomalies.

The augmented Dickey-Fuller test [CM09], Phillips-Perron test [CM09] and KPSS [Pfa08]

test have been applied to the time series of the observed graph edit distance for 52 weeks

around the most likely communication clusters obtained from the scan statistics with a spike

at around week 20 (the 4th week of October 2003) and week 21 (the first week of November

2003) to show that the time series is stationary. The distinct cutoff of the sample ACF

at lag1 combined with tailing off of the sample PACF suggests an MA(1) would be an

appropriate fitted model to the data [CM09]. Alternatively, the tailing off of the sample

ACF and the distinct cutoff of the sample PACF suggests the AR(2) model.

The MA(1), AR(2), ARMA(1,1), ARMA(2,1) models have been fitted to the time series

of GED. The optimal model is obtained based on the Akaike’s information criterion (AIC)

and the optimal model is an MA(1) that minimizes the AIC, followed by the ARMA(1,1),the

AR(2)(see Table 3.3). The time plot of the standardized residuals (below) shows variance

remains nearly constant except one observation that lies beyond the six times standard

deviations (see Fig. 3.3).

The Ljung-Box-Pierce Q-statistic [SS06] is Q = n(n + 2)
∑H

h=1
ρ̂2r(h)
n−h , where ρ̂r(h) is

the sample autocorrelations of the residuals. The Q-test has been applied on the residuals
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Figure 3.4: The histogram of the residuals (upper panel) and the Normal Q-Q plot of the
residuals of the MA(1) fit to the GED series (lower panel), showing the residuals are close
to normality except for an extreme value in the right tail.

obtained from the fitted model to check serial correlations of the residuals[Che02]. The null

hypothesis for the first H autocorrelations is H0 : ρr(1) = ρr(2) = ... = ρr(H) = 0, and the

alternative hypothesis is H1 : ρr(h) 6= 0 for some h = 1, 2, ...,H. Under the null hypothesis,

the asymptotic distribution of Q is Q ∼ χ2
H−p−q, where H is the number of lags. The sample

auto correlation function (ACF) of standardized residual and the Q-statistic show that the

residuals are random (see Fig. 3.3). One could see from the histogram and the normal Q-Q

plot of residuals that the residuals are approximately normal except for an extreme value

in the right tail (see Fig. 3.4). Therefore, from these analyses, it can be concluded that the

spike at week 20 in the GED series is associated with excessive activities.
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Figure 3.5: The neighborhood ego networks for k = 1 for ID = 5 for the 52 week period,
June 2003 - June 2004.

3.5 Graph Edit Distance to Multiple Time Series

Multivariate time series is a very useful technique in time series analysis and can be used

when one wants to regress a stationary time series in terms of its own past values and

past values of other stationary time series. The communications in the e-mail networks

are interrelated. As a result, these dynamic relationships in the email networks among IDs

cannot be modeled by the univariate time series. To overcome this, the vector autoregression

process has been employed to model the dynamic relationship between different IDs (nodes)

that are associated with the excessive communication, and detect the chatter.

Initially, the data set, X, is partitioned around the most likely cluster obtained from the

two-step scan process for 52 weeks into n disjoint weekly subintervals, wi, i = 1, 2, ..., n such

that Xi ∈ wi. A family of neighborhood ego subnetworks has been generated for different

IDs in the email networks for different neighborhood levels, k = 1, 1.5 and 2. Figs. 3.5 and

3.6 show the ego subnetworks of ID = 5 for 52 weeks for k = 1 and k = 1.5, respectively.
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Figure 3.6: The neighborhood ego networks for k = 1.5 for ID = 5 for the 52 week period,
June 2003 - June 2004 around the primary cluster estimated from monthly temporal scan
statistic model.

The distance metric, GED, was then estimated to quantify the difference between the two

consecutive ego subnetworks for k = 1, 1.5 and 2 to construct the multiple time series for

different IDs.

In the data set, it has been observed that a number of participants have high missing

values. Note that in chapter 2, the ID = 15 has been identified as the most influential person

at week 20 (4th week of October 2003) using the scan statistic model. It has been observed

that this individual (ID = 15) has missing values of 90% in the time series, suggesting that

the individual may not be the most influential person in the network. This node (ID = 15)

in the email network might be simply a connector or a hub in the email network and might

not play a vital role in the network. In this research work, five individuals, IDs = 1, 5, 7,

10 and 20, with missing values between 5 to 15 % have been considered to construct the

multiple time series of GED. Hence, a five-dimensional GED series has been generated.

Handling missing values is an important step in statistical analysis.In time series, the
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Figure 3.7: (a) Weekly GED series estimated from adjacent periods to compare subgraphs
sequentially with missing values for ID = 1. Weekly GED series for ID = 1 (lower panel)
after the imputation of missing values with mean. (b) The time plots of GED with different
imputation methods for ID = 1.

well-known imputation algorithms are based on multiple imputation [Rub87], expectation

maximization [DLR77] and nearest neighbors [VA80]. A variety of different imputation

algorithms, such as imputation by mean, median and mode, imputation by linear inter-

polation, spline interpolation and Stineman interpolation, imputation by structural model

and Kalman smoothing, and imputation by seasonally decomposed (seadec) missing values

exist in the literature to handle the missing values in the time series [MBB17]. Figs. 3.7

(a) shows the time plots with missing values (upper panel) and the corresponding time

plots with imputed values using mean (lower panel). Time series with the other imputation

methods, such as median, interpolation, Kalman and seadec is shown for comparison (see

Fig. 3.7(b)). Note that most of the algorithms give similar results. Here the mean impu-

tation to handle time series missing values has been considered, as the time series does not

show any trend and seasonality.
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Figure 3.8: (a) A five-dimensional GED series for IDs = 1, 5, 7, 10 and 20 for k = 1.0. Note
the spike at week = 20 for ID = 5. (b) The univariate GED series plotted separately for
these IDs.

The GED between the ego subnetworks for ID = 1, 5, 7, 10 and 15 was obtained using

Eq. 3.1. Figs., 3.8, 3.9 and 3.10 show the time plots of the observed graph edit distance for

52 weeks for k = 1, 1.5 and 2, respectively. One could see that the ego subnetworks show

a large spike in the GED for ID = 5 for k = 1.0 and all the IDs for k = 2 at week 20. To

implement the VAR model, the first step is to select the variables, and then investigate the

stationarity of the time series. The next step is to determine the order of the VAR model,

and to fit the model, and finally to perform the model checking using the residual analysis

[Tsa14].

3.6 Variable Selection of the VAR model

To select the variables, the correlation between the variables need to be determined. Here

the nodes with ID = 1, 5, 7, 10, and 20 have been selected for the multivariate analysis, and
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Figure 3.9: (a) A five-dimensional GED series for IDs = 1, 5, 7, 10 and 20 for k = 1.5. Note
the spike at week = 20 for IDs = 5 and 7. (b) The univariate GED series plotted separately
for these IDs.

the correlations among IDs have been checked using correlation bar plots, scatter plot matrix

and parallel coordinate plots. The correlation bar plots show the correlation magnitude of

the IDs increases with k (see Fig. 3.11). The different IDs are mostly positively correlated

for k = 2. The correlation strength is more than 75 % for k = 2 for all variables. A similar

trend for k = 2 can also be observed in scatter plot matrices of different variables, as shown

in Fig. 3.12. For k = 1 and 1.5, IDs are observed to be correlated to some extent.

To extract interesting data structures, the parallel coordinate plot, which is an efficient

way to represent multidimensional data, has been employed. The interesting data struc-

tures, such as the two-dimensional features (correlation and nonlinear structures) [Weg90]

can be observed. Here the graph edit distances of IDs = 20, 10, 7, 5 and 1 are plotted in

parallel fashion in two dimensions (see 3.13) for k = 2. One could see the crossing between

ID 10 and ID 20 for k = 1, 1.5, 2, suggesting a little negative correlation whereas an approx-

imate parallelism and relatively fewer crossings exists between the variables, suggesting a

71



Figure 3.10: (a) A five-dimensional GED series for IDs = 1,5, 7, 10 and 20 for k = 2.0.
Note the spike at week = 20 for IDs = 5 and 7. (b) The univariate GED series plotted
separately for these IDs.

positive correlation for k = 2 [Weg90], [GW16]. Also, one can observe the negative slope

connecting the low GED of ID 7 and ID 5 to moderate to high GED of ID 5 and ID 1,

respectively, which suggests the presence of an outlier. The other interesting feature is the

separation of observations for variables at high levels that is propagating across the parallel

coordinates for k = 2, suggesting the presence of two clusters that might be associated with

the excessive activities.

3.7 Vector Autoregressive Model

Let Yt = (y1,t, y2,t, ..., yn,t) be a n-dimensional multiple time series for t = 1, 2, ..., T , where

T is the sample size of each time series with the same sample period. The first-order vector
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Figure 3.11: (a,b,c) Correlation bar plots of the GED for ID = 1, 5, 7, 10 and 20 with
k = 1, 1.5 and 2, respectively.

autoregression model, VAR(1), is defined as [ZW06]:

y1,t = α1 + φ11y1,t−1 + φ12y2,t−1 + ...+ φ1nyn,t−1 + w1,t

y2,t = α2 + φ21y1,t−1 + φ22y2,t−1 + ...+ φ2nyn,t−1 + w2,t

.

.

yn,t = αn + φn1y1,t−1 + φn2y2,t−1 + ...+ φnnyn,t−1 + wn,t.



(3.31)
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Figure 3.12: A scatterplot matrix of five-dimensional GED data illustrating correlations for
k = 2.

The vector autoregression model of order p, VAR(p), can therefore be written as [ZW06]:

y1,t = α1 + φ1
11y1,t−1 + φ1

12y2,t−1 + ...+ φ1
1nyn,t−1 + φ2

11y1,t−2 + φ2
12y2,t−2+

...+ φ2
1nyn,t−2 + ...+ φp11y1,t−p + φp12Y2,t−p + ...+ φp1nyn,t−p + w1,t

y2,t = α2 + φ1
21y1,t−1 + φ1

22y2,t−1 + ...+ φ1
2nyn,t−1 + φ2

21y1,t−2 + φ2
22y2,t−2+

...+ φ2
2nyn,t−2 + ...+ φp21y1,t−p + φp22y2,t−p + + φp2nyn,t−p + w2,t

.

.

yn,t = αn + φ1
n1y1,t−1 + φ1

n2y2,t−1 + ...+ φ1
nnyn,t−1 + φ2

n1y1,t−2 + φ2
n2y2,t−2

+...+ φ2
nnyn,t−2 + ...+ φpn1y1,t−p + φpn2y2,t−p + + φpnnyn,t−p + wn,t.



(3.32)
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Figure 3.13: (a,b,c) Parallel coordinate plot of five-dimensional GED data showing correla-
tions for k = 1, k = 1.5, and k = 2 respectively.

In matrix notations, VAR(p) can be written as:



y1,t

y2,t

.

.

.

yn,t


=



α1

α2

.

.

.

αn


+



φ1
11 . φ1

1n

φ1
21 . φ1

2n

. . .

. . .

. . .

φ1
n1 . φ1

nn





y1,t−1

y2,t−1

.

.

.

yn,t−1


.+



φp11 φp12 . φp1n

φp21 φp22 . φp2n

. . . .

. . . .

. . . .

φpn1 φpn2 . φpnn





y1,t−p

y2,t−p

.

.

.

yn,t−p


+



w1,t

w2,t

.

.

.

wt,n


.

(3.33)

Similarly, one can write [Lut06]:

Yt = α+ Φ1Yt−1 + Φ2Yt−2 + ...+ ΦpYt−p +Wt. (3.34)
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Figure 3.14: (a) Weekly GED series for IDs = 1,5, 7, 10 and 20 for k = 1.0 with kernel
smoothing, showing no trend in the kernel fit to the series.

where

Yt =



y1,t

y2,t

.

.

.

yn,t


, α =



α1

α2

.

.

.

αn


, Wt =



w1,t

w2,t

.

.

.

wn,t


(3.35)
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Figure 3.15: (a) Weekly GED series for IDs = 1, 5, 7, 10 and 20 for k = 2.0 with kernel
smoothing, showing no trend in the kernel fit to the series.

are (n × 1) vectors and Φ1,Φ2...Φp are (n × n) coefficient matrices. Wt is a multivariate

white noise, such that[Pfa08]:

E(Wt) = 0,

E(WtW
′
τ ) = ΣW , if t = τ,

E(WtW
′
τ ) = 0, if t 6= τ,


(3.36)

where ΣW is time invariant positive definite covariance matrix.
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3.7.1 Bivariate VAR(1) Model

The bivariate VAR(1) model is given by [Tsa14]:

y1,t = α1 + φ11y1,t−1 + φ12y2,t−1 + w1,t,

y2,t = α2 + φ21y1,t−1 + φ22y2,t−1 + w2,t.

 (3.37)

In matrix notation,

Yt = α+ ΦYt−1 +Wt. (3.38)

Yt =

y1,t

y2,t

 , Yt−1 =

y1,t−1

y2,t−1

 , α =

α1

α2

 , Φ =

φ11 φ12

φ21 φ22

 , Wt =

w1,t

w2,t

 ,
(3.39)

such that E(WtW
′
t) =

σ2
w1

σ2
w1w2

σ2
w1w2

σ2
w2

 = ΣW and E(WtW
′
s) =

0 0

0 0

 = 0 for t 6= s. In

Eq.(3.41), Φ estimates the dynamic dependence in Y. Here the term, φ12 describes the

linear dependence of y1,t on y2,t−1 in presence of y1,t−1. Similarly, the term, φ21 describes

the linear dependence of y2,t on y1,t−1 in presence of y2,t−1. Here one can consider the

following three cases [Tsa14].

(i) In Φ, if the off diagonal elements, φ12 = φ21 = 0, then Eq. 3.40 reduces to the

following univariate AR(1) model

y1,t = α1 + φ11y1,t−1 + w1,t

y2,t = α2 + φ22y2,t−1 + w2,t.

 (3.40)

Note that two series, y1,t and y2,t, are uncoupled and dynamically uncorrelated.
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(ii) If φ12 = 0, but φ21 6= 0, then we get

y1,t = α1 + φ11y1,t−1 + w1,t

y2,t = α2 + φ21y1,t−1 + φ22y2,t−1 + w2,t.

 (3.41)

In this model, note that y1,t does not depend on the past value of y2,t. However y2,t

depends on the past value of y1,t.

(iii) If φ12 6= 0, but φ21 = 0, then we have

y1,t = α1 + φ11y1,t−1 + φ12y2,t−1 + w1,t

y2,t = α2 + φ22y2,t−1 + w2,t.

 (3.42)

In this case, note that y1,t depends on the past value of y2,t. However, y2,t does not

depend on the past value of y1,t.

3.8 The Stationarity of Time Series

3.8.1 Stationarity Condition

One can write the bivariate VAR(1) model in companion form without the constant term

as [Pfa08]:

Yt = ΦYt−1 +Wt. (3.43)

The characteristic polynomial of Φ is

det


φ11 φ12

φ21 φ22

− λ
1 0

0 1


 = det

φ11 − λ φ12

φ21 φ22 − λ

 = λ2−(φ11 +φ22)λ+(φ11φ22−φ12φ21).

(3.44)
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Table 3.4: Roots of the characteristic polynomial for k = 1, 1.5 and 2.

k 1 2 3 4 5

1 0.5664 0.3701 0.2957 0.2957 0.004345
1.5 0.6794 0.392 0.392 0.297 0.2318
2.0 0.5026 0.346 0.346 0.05812 0.05812

Thus, the eigenvalues of Φ are the values of λ such that

det(Φ− λI) = 0. (3.45)

Yt is a stationary process if and only if the eigenvalues of Φ have moduli less than 1

[Pfa08], i.e. the values are within the unit circle. One could observe that the roots of

the characteristic polynomial are less than 1, suggesting that all the variables in the VAR

process are integrated of order 0 ( see Table 3.4).

3.8.2 Stationarity Condition: ADF Tests

The observed GED series of ID1, ID5, ID7, ID10 and ID20 exhibits no increasing or de-

creasing trend with a nonzero mean (see Figs. 3.14 and 3.15). To check the stability of the

GED series for all IDs, the ADF test, which is one of the unit root tests [Bro08], has been

applied. The ADF test regression with constant only (no trend and nonzero mean) can be

written as [NP95]:

∆Yt = α+ ψYt−1 +

p∑
j=1

λj∆Yt−j + εt, (3.46)
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where α is a constant, ∆Yt = Yt − Yt−1 and p is the number of lagged differenced terms.

The test statistic, τ , for the ADF test is defined as [Bro08]:

τ2 =
ψ̂

SE(ψ̂)
. (3.47)

The ADF test hypothesis is as follows,

H0 : ψ = 0⇒ Yt ∼ I(1), without drift,

Ha : ψ < 0⇒ Yt ∼ I(0), with nonzero mean,

 (3.48)

where the I(1) series has one unit root, and the I(0) series is a stationary process. If a

nonstationary series, Yt, becomes stationary after differencing d times, then the series Yt is

said to be integrated of order d, which can be written as Yt ∼ I(d) and ∆dYt ∼ I(0) [Bro08].

If {Xt} and {Yt} are integrated of order 1, then Xt ∼ I(1) and Yt ∼ I(1), suggesting {Xt}

and {Yt} are stationary after differencing once. Then these two series, {Xt} and {Yt}, are

cointegrated if there exists a such that {Xt+aYt} is stationary [EG87], [EG87], [BDGH93].

For ADF test, one has to specify the order of the serial correlation (p) or the lag length

of the error term, εt [Sta10]. Ng and Perron [NP95] suggested the data dependent lag length

selection method for ADF test. In fact, it is observed that with this lag length selection the

size of the ADF test is reliable, and the loss of power is minimum [NP01]. The steps for this

selection procedure are [NP95]; (i) Select an upper bound pmax for p. (ii) Then estimate

the ADF test regression with p = pmax (iii) If the absolute value of the t statistic for testing

the significance of the last lagged difference is > 1.6, then the ADF test is performed.

Otherwise, the lag length is reduced by one, and the process is repeated.

For an upper bound pmax for p, Schwert [Sch89] suggested that Pmax = [x], where

x = 12 × ( T
100)

1
4 and [x] is the integer part of x. The pmax = 10 has been estimated for
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the 5-dimensional GED series. Since the observed processes contain no trend and have

nonzero mean, an ADF regression [Pfa06] with a constant (no trend and nonzero mean)

has been estimated using pmax = 10. Here lag = 1 is selected using the Ng-Perron [NP95]

algorithm. In addition, lag = 1 is obtained by minimizing the AIC. The critical values of

the test statistic, tau2, for the significance levels of 1%, 5%, and 10% [Pfa06] are -3.51, -2.89

and -2.58, respectively. The test statistics and critical values are given in Table 3.5 for the

observed series, ID1, ID5, ID7, ID10, and ID20 for k = 1, 1.5 and 2. It can be concluded

that the observed series, ID1, ID5, ID7, ID10, and ID20 are integrated of order zero or

stationary with a nonzero mean at 5% significance level. In addition, the autocorrelation

function of each of the series decays, suggesting the observed processes are stationary (see

Figs. 3.16 and 3.17).

Figure 3.16: The ACF and PACF plots of the weekly GED series for IDs = 1,5, 7, 10 and
20 for k = 1.0, showing the series is stationary.
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Figure 3.17: The ACF and PACF plots of the weekly GED series for IDs = 1, 5, 7, 10 and
20 for k = 2.0, showing the series is stationary.

3.8.3 Estimation of Parameters: Multivariate

In a VAR (p) model, the parameters of interest are (α, φ0,φ1, ...,φp) and Σw. Here the

multivariate least squares (MLS) and the ordinary least squares (OLS) estimation methods

have been discussed for estimating the parameters. Using the matrix notation, the VAR(p)

model can be written as [Lut06]:

Y = BZ +W ,

vec(Y ) = vec(BZ) + vec(W ),

vec(Y ) = (Z′
⊗
In)vec(B) + vec(W ),

y = (Z′
⊗
In)β +w,


(3.49)
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Table 3.5: Critical values for the ADF tests for the GED series of ID = 1, 5, 7, 10 and 20
for k = 1, 1.5 and 2.

variable τ2 (k = 1) τ2(k = 1.5) τ2 (k = 2) CV(1%) CV(5%) CV(10%)

ID1 -4.60 -4.25 -4.21 -3.51 -2.89 -2.58
ID5 -4.54 -2.92 -4.15 -3.51 -2.89 -2.58
ID7 -3.82 -3.87 - 4.58 -3.51 -2.89 -2.58
ID10 -4.22 -3.60 -4.26 -3.51 -2.89 -2.58
ID20 -5.20 -4.74 -4.23 -3.51 -2.89 -2.58

where Y = (y1, ...yT ) be a n×T matrix, Zt = [1, yt−1, ..., yt−p]
′ be a (np+ 1)×1 vector,

B = (α,Φ1, ....,Φp) be a n × (np + 1) matrix, Z = (Z1, ...ZT ) be a (np + 1) × T matrix,

Wt = (w1, ..., wT ) be a (n × T ) matrix, y = vec(Y ) is (nT × 1) vector by stacking the

column, β = vec(B) is a (n2p+ n)× 1 vector and w = vec(W ) be a (nT × 1) vector.

The covariance matrix, w, is

Σw = IT
⊗

Σw. (3.50)

The MLS estimation of β is obtained by minimizing

S(β) = w′(IT
⊗

Σw)−1w

= [y − (Z′
⊗
In)β]′(IT

⊗
Σw
−1)[y − (Z ′

⊗
In)β]

= y′(IT
⊗

Σw
−1)y + β′(ZZ ′

⊗
Σw
−1)β − 2β′(Z

⊗
Σw
−1)y.


(3.51)

Taking partial derivative with respect to β, one can get
∂S(β)

∂β
= 2(ZZ ′

⊗
Σw
−1)β −
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2(Z
⊗

Σw
−1)y, and setting it to zero, one can obtain:

(ZZ ′
⊗

Σw
−1)β̂ = (Z

⊗
Σw
−1)y. (3.52)

The least squares (LS) estimator is:

β̂ = ((ZZ ′)−1Z
⊗

In)y. (3.53)

The OLS estimation of β is obtained using:

S(β) = w′w = [y − (Z ′
⊗
In)β]′[y − (Z′

⊗
In)β]

= y′y + β′(ZZ′
⊗
In)β − 2β′(Z

⊗
In)y.

 (3.54)

Hence,
∂S(β)

∂β
= 2(ZZ′

⊗
In)β − 2(Z

⊗
In)y. Equating to zero, one obtains

β̂ = ((ZZ′)−1Z
⊗
In)y

⇒ vec(B̂) = ((ZZ′)−1Z
⊗
In)vec(Y )

= vec(Y Z′(ZZ′)−1.


(3.55)

Thus

B̂ = (Y Z′(ZZ′))−1. (3.56)
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Figure 3.18: (a,b) The information criteria for the VAR models fitted to 5-dimensional
series showing that the AIC, BIC and HQ are minimized when the order is 1 for k = 1 and
2, respectively.

The LS estimate of the covariance matrix, Σw = E(wtw
′
t), can be obtained as follows.

Σ̃w = 1
T

∑T
t=1 ŵtŵ

′
t

= 1
T ŴŴ ′ = 1

T (Y−B̂Z)(Y−B̂Z)′

= 1
T Y

(
IT −Z′(ZZ′)−1Z

)
Y ′.


(3.57)

Therefore, the LS estimate of Σw is

Σ̂w =
T

(T − np− 1)
Σ̃w. (3.58)
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3.8.4 Information Criteria for Order Selection of VAR Model

The information criteria can be used to determine the order or lag length for the VAR(p)

model. These methods have been demonstrated to be the most effective techniques for

selecting a statistical model. The approach is to select the value of p that minimizes the

information criteria, which is given by [ZW06]:

IC(p) = ln|Σ̂(p)|+cT × φ(n, p), (3.59)

where Σ̂(p) is the estimated residual covariance matrix from a VAR (p) model, cT is a

sequence indexed by the sample size, T , and φ(n, p) is the penalty function. The commonly

used criterion functions to determine the VAR (p) order are [Tsa14], [ZW06]:

AIC(p) = ln|Σ̂(p)|+2pn2

T ,

BIC(p) = ln|Σ̂(p)|+ln(T )pn2

T ,

HQ(p) = ln|Σ̂(p)|+2ln[ln(T )]pn2

T ,


(3.60)

where n is the number of variables, T is the sample size and Σ̂ is an estimate of the

covariance matrix, Σ. Here AIC is the Akaike information criterion [Aka73], BIC is the

Bayesian information criterion [Sch78], and HQ is proposed by Hannan and Quinn [HQ79].

Figs. 3.18(a,b) show the plots of the three information criteria, AIC, BIC and HQ as a

function of order p for k = 1 and 2, respectively. All three criteria show that the lag length

for the VAR (p) model would be 1 (see Table 3.6). A VAR(1) model, therefore, would be

appropriate for the five-dimensional GED series for k = 1, 1.5 and 2.0. The fitted VAR(1)
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model for the graph edit distance series of ID1, ID5, ID7, ID10 and ID20 for k = 1 is:



y1,t

y2,t

y3,t

y4,t

y5,t


=



4.804861

−11.45478

7.708346

8.11249

5.272634


+



0.2325 0.04513 0.1559 −0.0516 −0.0697

−0.2704 0.53579 1.2216 0.6363 1.0922

0.2684 −0.03356 0.1099 −0.0387 −0.2585

−0.5392 −0.00279 0.1053 0.2818 0.7557

0.0757 0.05101 0.0128 −0.1042 0.13630





y1,t−1

y2,t−1

y3,t−1

y4,t−1

y5,t−1


.

(3.61)

Similarly, the VAR(1) model for k = 2.0 for the graph edit distance series of ID1, ID5, ID7,

ID10, and ID20 can be written as:



y1,t

y2,t

y3,t

y4,t

y5,t


=



55.36

42.78

67.00

52.78

48.94


+



0.33 0.27 −0.24 −0.49 0.56

0.089 0.29 −0.14 −0.021 0.24

−0.25 0.076 0.12 −0.14 0.52

0.22 0.38 −0.41 −0.16 0.37

0.16 0.31 −0.25 −0.30 0.51





y1,t−1

y2,t−1

y3,t−1

y4,t−1

y5,t−1


. (3.62)

All estimates are significant at 5% level of significance. The fitted five-dimensional models

show that the graph edit distance of ID1 is dynamically related to the graph edit distance

of ID5, ID7, ID10, ID20. Similarly, the graph edit distance of ID5 depends on the lagged

graph edit distance of ID1, ID7, ID10, ID20, and the graph edit distance of ID7 depends on

the lagged graph edit distance of ID1, ID5, ID10, ID20 and so on. One can conclude that

these five individuals are interrelated. Now the residual analysis to investigate the excessive

activities using VAR(1) model can be performed.
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Table 3.6: Information Criteria for the VAR(p) model selection for k = 2.

p AIC BIC HQ

1 40.78 41.98 41.24
2 41.15 43.33 41.97
3 41.68 44.86 42.87
4 41.49 45.67 43.06
5 41.26 46.43 43.20
6 41.23 47.39 43.54

3.9 Excessive Activities Using Residual Analysis of VAR(1)

Model

The residual analysis for the VAR(1) model fitted to the 5-dimensional GED series has

been performed to investigate the execssive activity and detect chatter. Assumptions of

the model include that the residuals have no significant serial or cross-sectional correlations

and heteroscedasticity. In addition, the residuals are assumed to be multivariate normally

distributed. The residual matrix of a fitted VAR model is given by [LK04], [Lut06]

Ŵ = Y − B̂Z. (3.63)

To check the overall significance of the residual autocorrelations [LM81] up to lag h, the

Portmanteau test [Arr05], [CD04] has been performed. The null hypothesis is H0 : Rh =
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(R1 = ... = Rh) = 0 versus H1 : Rh 6= 0. The Portmanteau statistic is defined as [Lut06]:

Qh = T
∑h

l=1 tr
(
R̂i
′
R̂w
−1
R̂iR̂w

−1
)

= T
∑h

l=1 tr
(
R̂i
′
R̂w
−1
R̂iR̂w

−1
D̂−1D̂

)
= T

∑h
l=1 tr

(
D̂R̂i

′
D̂D̂−1R̂w

−1
D̂−1D̂R̂iD̂D̂

−1R̂w
−1
D̂−1

)
= T

∑h
l=1 tr

(
Ĉi
′
Ĉ0
−1
ĈiĈ0

−1
)
.


(3.64)

The lag i residual cross-correlation matrix is written as[Lut06]:

Ĉi = D̂R̂iD̂, (3.65)

where D̂ =

√
diag(Ĉ0) is the diagonal matrix of the standard errors of the residual series

and Ri is the residual correlation matrix. The test statistic has an approximate asymptotic

χ2 distribution [Lut06].

The fitted values and residuals for the VAR(1) fit to the 5-dimensional graph edit dis-

tance series of ID1, ID5, ID7, ID10, and ID20 are shown in the upper panel of the Figs.

3.19 and 3.20 for k = 1 and 2. For k = 1, the residual of ID5 at lag 20 is 113.96, which is

3.06 standard deviations above the mean indicating that it is an anomaly (see Table 3.7).

On the other hand, for k = 1, the residual of ID1 at lag 47 is 33.12, which is only 1.32

standard deviations above the mean, indicating that it is not an anomaly. Similarly, the

residuals of ID7 at lag 6, and of ID10 at lag 30, and of ID20 at lag 18 are 12.73 and 40.85

and 12.51, respectively. As these residuals are well below the 2.5 standard deviations above

the mean, they are not considered anomalies.

On the other hand, the scenarios are entirely different with respect to excessive activities,

when k increases to 2. For k = 2, the time plots of the residuals for the ID1, ID5, ID7, ID10,

and ID20 series show that the variance remains nearly constant except one observation at
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Figure 3.19: (a) Time plots of observed and fitted GED series (upper panel) and residual
series (middle panel) of the VAR(1) model fit to the 5-dimensional GED series of ID = 1,
5, 7, 10 and 20 for k = 1.0. The ACF and PACF of the residuals are shown in the lower
panel.

week 20 for each of the ID GED series that lies beyond the five times standard deviation,

indicating an outlier or anomaly. The value of the residual is 739.39, 720.046, 548.087,

737.47, 756.58, respectively, for the ID1, ID5, ID7, ID10, and ID20 series. The standard

deviations of the residuals obtained from the VAR(1) model fitted to the GED series of ID1,

ID5, ID7, ID10, and ID20 are 134.99, 127.16, 106.79, 134.81 and 135.99, respectively. One

could observe that residuals are greater than 5 times standard deviations at week 20 for all

IDs, suggesting the occurrence of excessive activities at this time point (see Table 3.7).

Furthermore, the residual correlograms, and the residual partial correlograms, (see Figs.

3.19 and 3.20, bottom panels), and the residual cross-correlation matrices of the VAR(1)

model (see Fig. 3.21 for k = 2), indicate that the residuals do not have significant serial or

cross correlations as the residuals of ACF, PACF and CCF are within the bounds at the 5%

level of significance. The multivariate Portmanteau test statistics have also been applied to
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Figure 3.20: (a) Plots showing the fit (upper panel) and residual (middle panel) for the
VAR(1) fit to the 5-dimensional GED series of ID = 1, 5, 7, 10 and 20 for k = 2.0. The
ACF and PACF of the residuals are shown in the lower panel.

the residuals of the fitted VAR(1) model. From the Table 3.8 and Fig. 3.22(a, b), it can

be concluded that the Q-statistic is never significant, and therefore, the residuals are not

serially correlated.

3.10 Detecting Chatter

Priebe et al. [PCMP05] have used scan statistic model for detecting chatter. They have

defined the order 2 (k = 2) statistic as the locality statistic, which is given by:

ψ̃t(v) =

(
ψ̃2t(v)It,τ (v)

)
max(γt(v), 1)

. (3.66)
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Figure 3.21: (a) The residual cross-correlation matrices for the VAR(1) model fit to the
5-dimensional GED series of ID = 1, 5, 7, 10 and 20 for k = 2.0.

Table 3.7: Excessive activity for k = 1, 1.5 and 2.

k ID Maximum Residual SD Times SD Lag Anomaly

1 ID1 33.12 25.11 1.32 47 Not an anomaly
1 ID5 113.96 37.21 3.06 20 Anomaly
1 ID7 12.73 8.22 1.55 6 Not an anomaly
1 ID10 40.85 26.18 1.56 30 Not an anomaly
1 ID20 12.51 14.99 0.83 18 Not an anomaly

2.0 ID1 739.39 134.99 5.477 20 Anomaly
2.0 ID5 720.046 127.16 5.662 20 Anomaly
2.0 ID7 548.087 106.79 5.13 20 Anomaly
2.0 ID10 737.47 134.81 5.47 20 Anomaly
2.0 ID20 756.58 135.99 5.56 20 Anomaly
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Figure 3.22: (a,b) The p-values of the multivariate Ljung-Box statistics (Qk(m)) applied to
the residuals of the VAR(1) model fit to the 5-dimensional GED series of ID = 1, 5, 7, 10
and 20 for k = 1 and 2, respectively.

where the indicator function, It,τ (v), is written as the product of three indicator functions,

I (µ̂0,t,τ > c1) ,

I (ψ0(v) < σ̂0,t,τ (v)C2 + µ̂0,t,τ (v)) ,

I (ψ1(v) < σ̂1,t,τ (v)C3 + µ̂1,t,τ (v)) .


(3.67)

However, the scan statistic measures the maximum of the locality statistic, which can

conceal the group of individuals that are associated with the excessive activity. In the

present work, the chatter has been identified using a different approach, which is based on

the residual obtained from the fitted VAR(1) model. The mean, µ, and the variance σ2

of the statistic, residual, are then estimated. As the residual for each ID is approximately
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Figure 3.23: Time plots of the residuals for the VAR(1) model fit to the 5-dimensional GED
series of ID = 1, 5, 7, 10 and 20 for k = 2.0. The chatter is detected at week = 20. The
dotted red line corresponds to the residual exceeding 2.5σ standard deviations above the
mean.

normally distributed with mean = 0, one can estimate a region of bounds, R(µ, σ2). The

bounds of this region are given by:

R(µ, σ2) = µ̂± 2.5σ̂. (3.68)

The fluctuation within this bound is regarded as a typical event. If the estimated residual

is outside the bound, the residual is considered anomalous. It has been observed that the

chatter is initiated by ID5 for k = 1, and as k increases, the information diffuses among the

other IDs, 1, 7, 10 and 20 at week 20 (see Fig. 3.23). Therefore, ID5 is the most influential

person in the email network.
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3.11 Chapter Summary

In this chapter, the influential vertices or nodes associated with excessive activities in the

e-mail network have been investigated. As the scan statistics measure the maximum of

locality statistics, it can conceal the group of influential people in the network. Two alter-

native approaches have been implemented based on time series model to detect the group of

influential nodes and their dynamic relationships in a point process. Initially, a univariate

time series has been built using the graph edit distance, which has been estimated by the

sequential comparison of the ego subnetworks for each week with those of the previous week.

An autoregressive moving average process is then fitted to the GED time series, and the

anomalies were assessed using residuals from the fitted model exceeding a threshold.

In addition, a vector autoregressive model fitted to the 5-dimensional GED series of

the email neighborhood ego subnetworks. This represents the first known application of the

VAR model to detect the chatter. This model considers the time series simultaneously of the

dynamic email ego networks for the kth order neighborhood, where the nodes or vertices

of the subgraphs are interrelated. Anomalies in the networks are investigated using the

residuals from the fitted model exceeding a threshold. A VAR(1) model using lag selection

methods based on the minimization of AIC for the 5-dimensional GED series has been

obtained. As the residuals for each ID is multivariate normally distributed with mean =

0, one can estimate a region of bounds, R(µ, σ2). The bounds of this region are given by

R(µ, σ2) = µ̂±2.5σ̂. The fluctuation within this bound is regarded as a typical event. If the

estimated residual is outside the bound, the residual is considered anomalous. One could

observe the residual greater than 3 times the standard deviations at week 20 for k = 1 only

for ID = 5. However, the pattern changes dramatically as k increases. For k = 2, the time

plots of the residuals show that the variance remains nearly constant except one observation

at week 20 that lies beyond the five times the standard deviations, indicating an outlier or

anomaly. From this multivariate time series analysis, it is concluded that the chatter has

been initiated by ID = 5, and as k increases, the information spreads among other IDs. In
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Table 3.8: Multivariate Portmanteau statistics of GED for k = 2.

m Q (m) df p-value

1.00 3.43 25.00 1.00
2.00 32.40 50.00 0.97
3.00 48.97 75.00 0.99
4.00 80.81 100.00 0.92
5.00 112.61 125.00 0.78
6.00 133.91 150.00 0.82
7.00 160.92 175.00 0.77
8.00 183.67 200.00 0.79
9.00 214.83 225.00 0.68
10.00 229.31 250.00 0.82
11.00 264.76 275.00 0.66
12.00 313.64 300.00 0.28
13.00 348.79 325.00 0.17
14.00 379.44 350.00 0.13
15.00 404.02 375.00 0.15
16.00 434.05 400.00 0.12
17.00 460.29 425.00 0.11
18.00 481.49 450.00 0.15
19.00 512.90 475.00 0.11
20.00 544.87 500.00 0.08
21.00 567.45 525.00 0.10
22.00 579.69 550.00 0.18
23.00 607.46 575.00 0.17
24.00 630.23 600.00 0.19

addition, this analysis clearly demonstrates the dynamic social relationship between ID = 5

and other IDs = 1, 7, 10 and 20. It can be concluded that the ID = 5 is the most influential

person of this email network.
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Chapter 4: Pattern Retrieval and Anomaly Detection from

E-Mail Content

4.1 Introduction

In the previous two chapters, purely temporal clustering of emails using scan statistics and

time series models was investigated. The Poisson process model is initially employed to

identify the most likely cluster of emails using email count data for 10 year period. The

most likely statistically significant temporal primary cluster is detected using the maximum

LLR as the scan statistic (LLR = 82.07, p = 0.001). Then the binomial model is applied to

network data of emails for 52 weeks in the neighborhood of the most likely cluster, where

betweennes is implemented as the locality statistic and the most likely purely temporal

clusters of emails are observed for k = 1.5, 2 and > 2 using the maximum LLR as the

scan statistic. I also perform the residual analysis of the MA(1) fitted to the GED series,

and observe the statistically significant excessive activity. Both approaches, scan statistics

applied to count and network data, and residual analysis of graph edit distance, provide

consistent results, exhibiting excessive activity in email data. Here I analyze an unstructured

textual data obtained from email contents around the primary cluster from June 2003 to

June 2004 (52 weeks), and investigate the major topic discussed in this period using text

mining algorithms and probabilistic modeling, such as latent Dirichlet allocation (LDA)

modeling. I then use scan statistics to get the excessive topic activities.

With the increasing amount of text documents, the need for extracting information

quickly from the massive unstructured textual data, such as, emails, tweets and other so-

cial media, websites, research reports, survey and blogs using statistical natural language

processing (SNLP) has grown. Applications and techniques of SNLP include text cluster-

ing, information retrieval, text categorization or text classification, and text summarization
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[MS02]. In text clustering, a corpus, which is a collection of documents, is partitioned

into groups [Ren94]. On the other hand, documents are classified through text categoriza-

tion into two or more specified classes, and text summarization automatically extracts a

summary of a document [SSBM96], [SM83]. The most widely used models for information

retrieval is a vector space model (VSM)[SM83], where documents are modeled as vectors

in multi-dimensional term space. The natural language processing (NLP) and VSM have

been used to represent the text document. In VSM, each dimension corresponds to a word

in the document set. Thus, one needs higher dimensions to represent a document. A num-

ber of classification techniques, such as Bayesian methods (BM) [BNJ03], decision trees

(DT) [ADW94], k-nearest neighbor (KNN) [MGW92], and support vector machines (SVM)

[Joa98] have been used to the vector space representation of text documents. Although

considerable efforts have been made to extract information from unstructured textual data

using text clustering, classification, and summarization, relatively few attempts have been

carried out to investigate the excessive topic activities using e-mail content. Pattern recog-

nition and probabilistic modeling on unstructured records, therefore, would be very useful

for further research to study fraudulent activities owing to excessive activities in some com-

munication networks.

4.2 Content Analysis and Anomaly

Recently, Priebe et al [PPM+10] reported a model by combining the graph features and

e-mail content to investigate the anomaly. They estimated a local topic parameter, θ̂t(v)

for each vertex, v, and time, t. This parameter represents the proportion of messages in the

local region Gt(v). For each vertex and time, the locality region, Gt(v), is defined as:

Gt(v) = Ω (N1[v;Gt];Gt)) . (4.1)
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They defined the test statistic as:

T ct = ΣvI

(
arg max

k
θ̂t(v) 6= arg max

k
θ̂t−1(v)

)
, (4.2)

where T ct is the number of vertices or nodes that experience a change in the main topic

between the two consecutive time points, t − 1 and t. The large values of T signifies

anomaly, suggesting an excessive number of vertices seeing a change in the main topic in

the neighborhood at time t.

Here I devise a different approach by combining the probabilistic topic model [SG07],

latent Dirichtlet allocation (LDA) algorithm [BNJ03], and the scan statistics. In this case,

the locality statistic is the topic proportion, θ̂t, obtained from LDA, and the maximum of

the topic proportion is the scan statistic, which can be written as:

St = max
k

θ̂t(k), (4.3)

where k is the topic obtained from LDA. The text processing, LDA and other dimension

reduction methods have been discussed below. I then apply temporal scan statistic to obtain

excessive topic activities.

4.3 Documents Preprocessing

The content of an email may contain a current message, previous message and a signa-

ture block. The signature block in the current inter-organization emails consists of name,

title, company, website, telephone number, email address and famous quotes. The previ-

ous message is called parent email usually attached with Original Message or Forwarded

by. Signature block and previous message have been removed from the current message.

Duplicate emails from the dataset have been removed.

The unstructured textual data has been preprocessed to reduce the size of the lexicon
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and to preserve the semantic content. It generally consists of two steps, denoising and

stemming. The denoising process removes stop words, such as the, for, and, of, are, but,

an, by, etc. One can also use own stop words, which are corpus dependent. A commonly

used measure for identifying the stop words is to use the term frequency-inverse document

frequency (TFIDF) [SM83], [Hoh08], which is defined as:

wij = TFij log(IDFj),

IDFj = D
bj
,

 (4.4)

where TFij is the term frequency, which is the number of times word j appears in a document

i, IDFj is the inverse document frequency of word j in the corpus, D is the total number of

documents in the corpus, and bj is the number of documents that have word j. A stemming

is a process that removes the suffix from words [Lov68]. Thus, by denoising and stemming,

the length of the lexicon is reduced and at the same time, the semantic content of the

lexicon is preserved. After denoising and stemming, and removing punctuation, numbers,

common stop words and own stop words, we obtain a histogram of words presented in Fig.

4.1.

4.4 The Term Document Matrix

The VSM is used to obtain a term document matrix (TDM), which is a t × d matrix,

where t is the number of terms and d is the number of documents in the pre-processed

lexicon, and rows and columns in the TDM represent terms and documents, respectively.

The TDM is usually a sparse matrix and the matrix entries is the term frequency count.

In the present case, the initial corpus consists of a list of 52 documents and 14883 words

around the primary cluster obtained from the scan statistics using Poisson count from June

2003 to June 2004 (see Chapter 1). After denoising, stemming, removing the header, footer

text, white space, stop words and own stop words, the preprocessed lexicon consists of 52
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Figure 4.1: Histogram showing frequency of words after denoising and stemming.

documents, d1, d2, d3, ...d52, and 10315 words around the primary cluster obtained from the

two-step scan process in chapter 1. Thus, the TDM turns out to be a 10315 × 52 matrix.

A partial document term matrix (DTM) (see Table 4.1) shows the frequency of different

terms in documents d1 to d9.

4.5 Document Similarity

The similarity between documents, sim(dj , dk), is measured by distance based on the angu-

lar separation between documents, which is estimated by the cosine of the angle between

documents [SM83]. Let dj and dk be the two document vectors. The cosine of the angle

between dj and dk is given by:

sim(dj , dk) = cos(dj , dk) =
dj .dk
|dj ||dk|

. (4.5)

102



Table 4.1: A partial document term matrix for e-mail content from June 2003 to June 2004
around the primary cluster obtained from scan statistics showing the frequency of words in
documents.

Docs abl academ accommod accompani accord account accur achiev

Jun.W1 5 1 1 1 1 1 1 1

Jun.W2 2 0 0 0 0 2 1 0

Jun.W3 1 1 0 0 3 1 0 0

Jun.W4 3 0 0 0 4 4 0 1

July.W1 3 0 0 0 3 2 0 0

July.W2 0 1 0 1 0 1 0 0

July.W3 1 0 1 0 3 1 0 0

July.W4 5 0 0 1 1 2 1 0

Aug.W1 2 3 0 0 0 1 0 1

where |dj | and |dk| are the L2 norm of the document vectors dj and dk. One can see that

large values of this measure imply small angular separation between vector documents dj

and dk, which indicate that the documents dj and dk are close to each other. On the other

hand, smaller values represent large angular separation between the documents dj and dk.

Documents d5 and d7 with cosine similarity (0.5), documents d1 and d4 with cosine similarity

(0.48), and documents d1 and d6 with the cosine similarity (0.39) are somewhat similar.

This measure is used in the multidimensional scaling and the hierarchical agglomerative

clustering processes.

4.5.1 Multidimensional Scaling (MDS)

A dimensionality reduction technique, known as multidimensional scaling which uses a

spectral decomposition of the dissimilarity matrix [Hoh08], has been used. The objective
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of multidimensional scaling is to find a pattern of proximities (i.e. similarities or distances)

among a collection of objects. The other widely used dimension reduction technique pro-

posed by Hofmann [Hof99] is probabilistic latent semantic indexing (LSI).

The steps to form the 52 × 52 dissimilarity matrix from the 10315 × 52 TDM, A, are

given below [Hoh08]:

(i) Construct a diagonal matrix, L, with diagonal entries Lii, such that Lii = log(IDFi),

where IDFi is the inverse document frequency for word, i, and IDFi = D
bi

. Here D is

the number of documents and bi is the number of documents that contain word i.

(ii) Obtain a matrix V such that V = ATL.

(iii) Create the 52× 52 similarity matrix, S, which is defined as:

Sij =
ViVj
|Vi||Vj |

, (4.6)

where Vi is the ith row of V . The Sij is the cosine of angel between the vector documents

i and j. The matrix, S, is transformed to a dissimilarity matrix, D by:

Dij =


0, if i = j,

max(S)− Sij , if i 6= j.

Therefore, the dissimilarity matrix, D, is a square matrix, where the diagonal elements are
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zero, and the off diagonal elements are distances, and is defined as [Gen02]:

D =



0 d12 d13 d14 . . . d1n

d21 0 d23 d24 . . . d2n

d31 d32 0 d34 . . . d3n

. . . . . . . .

. . . . . . . .

dn1 dn2 dn3 dn4 . . . 0


.

The multi-dimensional scaling is applied on D.

4.5.2 Singular Value Decomposition (SVD)

The singular value decomposition of the TDM, At×d, is written as [MS02]

At×d = T t×nSn×n(Dd×n)T , (4.7)

where T is a (t × n) matrix whose columns is left singular vectors, S is a diagonal n × n

matrix of singular values of A, and DT is the transpose of matrix D whose columns are

right singular vectors. The T and D matrices are orthonormal such that T TT = I and

DTD = I, where I is the identity matrix. The diagonal elements of S are all positive and

are in the decreasing order. The column vectors of T span the document space, while the

column vectors of D span the term space [Sol08]. In a lower dimensional space, the least

square approximation of A is estimated as:

Â = T t×kSk×k(Dd×k)
T , (4.8)

such that ||A− Â||2 is minimized. Here T , S and D are estimated based on k smaller than

the full rank (n columns) [MS02].
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4.6 Latent Dirichtlet Allocation Method (LDA)

This method is an unsupervised learning technique, which is used to obtain probabilistic

topic models across a large collection of documents. Such method has been applied in various

fields, such as Artificial Intelligence, Bioinformatics, Geography and Political Science. It has

been considered as the most effective generative probabilistic methods for topic modeling.

Here the latent Dirichtlet allocation (LDA) method [BNJ03] has been employed to obtain

topics from the content of e-mails received around the most likely (primary) cluster of e-mail

data, discussed in chapters 2 and 3. The LDA method has been briefly described below.

Let M be the number of documents in the corpus, D, where D = {w1,w2, ...,wM}.

Here each document is a vector of N words w = (w1, w2, ..., wN ), and is represented as a

vector space. In the vector space model, a word from a vocabulary indexed by {1,2,...,V }

is represented as unit basis vector. The vth word in the vocabulary is, in fact, a V -vector

w defined by [BNJ03]:

wv = 1,

wu = 0, for u 6= v.

 (4.9)

For each document w:

a. Draw N ∼ Poisson(ξ),

b. Draw topic proportion θ ∼ Dir(α),

c. For each of the N words wn: i) Draw a topic assignment zn ∼ Multinomial(θ), ii)

Draw wn, the nth word, from p(wn|zn, β), a multinomial probability conditioned on

the topic assignment, zn.

In Dirichlet distribution, a k-dimensional θ is enclosed by (k-1) simplex as θi ≥ 0 and
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∑K
i=1 θi = 1. The probability density of θ = (θ1, ..., θk) is

f(θ|α) =
Γ(
∑K

i−1 αi)∏K
i=1 Γ(αi)

K∏
i=1

θαi−1
i , (4.10)

where θ ∈ (K−1) simplex. The Dirichlet distribution is the conjugate prior to multinomial

distribution. The posterior distribution of the latent variables, θ = (θ1, ..., θk), given the

document is written as:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)
. (4.11)

The joint distribution of a topic mixture θ, a set of N topics z, and a set of N words w,

given that the parameters α and β are given by:

p(θ,z,w|α, β) = p(θ|α)

N∏
n=1

p(zn|θ)p(wn|zn, β). (4.12)

The marginal distribution of a document:

p(w|α, β) =

∫
p(θd|α)

(
N∏
n=1

ΣZn [p(zn|θ)p(wn|zn, β]

)
dθ. (4.13)

The probability of a corpus is written as:

p(D|α, β) =
M∏
d=1

∫
p(θd|α)

(
N∏
n=1

Σzn [p(zn|θd)p(wdn|Zdn, β]

)
dθd. (4.14)

4.6.1 Parameters estimation: Gibbs sampling

The Gibbs sampling, which is the most commonly used Monte Carlo Markov Chain (MCMC)

algorithm, is applied when the posterior distribution cannot be directly estimated. In order
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to estimate the posterior distribution, g(θ|x) = g(θ1, θ2, ...., θp|x), the Gibbs sampling is

used. The algorithm of the Gibbs sampling is given below [HTF11], [CG92].

a. Initialize
(
θ

(0)
1 , θ

(0)
2 , ..., θ

(0)
p

)
,

b. Compute
(
θ

(j)
1 , θ

(j)
2 , ..., θ

(j)
p

)
. For j = 1 to M:

(1) Sample, θ
(j)
1 ∼ g

(
θ1|θ(j−1)

2 , ..., θ
(j−1)
p ,x

)
,

(2) Sample, θ
(j)
2 ∼ g

(
θ2|θ(j)

1 , θ
(j−1)
3 ..., θ

(j)
p ,x

)
,

...

(i) Sample, θ
(j)
i ∼ g

(
θi|θ(j)

1 , ..., θ
(j)
(i−1), θ

(j−1)
(i+1) , ..., θ

(j−1)
p ,x

)
,

...

(p) Sample, θ
(j)
p ∼ g

(
θp|θ(j)

1 , ..., θ
(j)
(p−1),x

)
.

where θ(j) =
(
θ

(j)
1 , θ

(j)
2 , ..., θ

(j)
p

)T
converges in distribution to θ = (θ1, θ2, ..., θp)

T ∼ g(θ|x) =

g(θ1, θ2, ...., θp|x).

4.7 Evolution of Topics Across Time Using LDA

The LDA model has been applied to obtain topics from the e-mail content. This model

transforms the document-term matrix of dimension (n×m) into two matrices of the lower

dimensions, D1 and D2. Here the matrix, D1, is termed as the document-topic matrix

with dimension (n×k), and the matrix, D2, is called the topic-term matrix with dimension

(k×m), where n is the number of documents, k is the number of topics and m is the number

of terms. In the present case the DTM is (52 × 10315) matrix. Here k = 19 is initially

chosen, and the partial D1 matrix is given in Table 4.2. However, choosing the optimal

number of topics in LDA can be computationally complex and tedious. Recently, the log
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Figure 4.2: Model selection using the log likelihood for the number of topics showing that
it does not converge to a global maximum with the increase of number of topics.

likelihood has usually been used to select the number of topics [GS04]. However, in the

present case, the log likelihood increases with topics, as shown in Fig.4.2, suggesting that

the log likelihood does not converge to a global maximum, as k increases. To overcome this

condition, the information criterion techniques, AIC and BIC, have been used to select the

optimal number of topics. Fig. 4.3 shows the AIC becomes the minimum, when the number

of topics, k = 3, and the BIC is minimum when the number of topics equals 2. The number

of optimum topics turned out to be three, based on the minimum AIC that gives the best

fit to these data.

Recently, a heauristic approach based on analysis of variation of statistical perplexity

has been applied to determine the number of topics [ZCP+15]. In fact, this method mea-

sures the effectiveness of the statistical model fitted to the data set. To verify the number

of topics obtained from the information criterion technique, the dimensionality reduction

techniques, such as MDS and SVD have been applied to the document-topic matrix, D1.
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Figure 4.3: Model selection using the information criteria for the number of topics.

A reasonable drop can be observed after three dimensions (see 4.4 (b)), suggesting that the

three dimensions are sufficient. The inter-topic distance plot has been presented using MDS

in Fig. 4.4(a). Here topics are projected onto the first two dimensions, and each number

represents a topic. Note that a number of topics on the right are overlapped, and from this

analysis, three non-overlapping topics are obtained.

Similarly, SVD has been applied to the document-topic matrix, D1 and the analysis are

presented in Fig. 4.5. Note that the topics are projected onto the first two singular vectors

(see Fig. 4.5(a)). The majority of topics, which are overlapped, are at the lower right part

of the figure. The largest dimension is 19. The variance vs. the singular vector (see Fig.

4.5(b)) shows that the three dimensions are sufficient to adequately fit the documents into

the Euclidean space. The first two singular vectors explain ≈ 82% of the variance. The

partial estimated T , S and D matrices are shown in Tables 4.3, 4.4 and 4.5, respectively.

Note that the S matrix is diagonal with non-negative values in the decreasing order. One
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Figure 4.4: (a,b) Multidimensional scaling for the original 52 X 10315 DTM, showing 3
major dimensions. The largest dimension is 19.

could observe that both dimensionality reduction techniques, SVD and MDS, reveal three-

major similar components, which is consistent with the results obtained from LDA using

the AIC criterion.

Three topics are listed in Table 4.6, showing the top six terms in topics 1 through 3.

The topic 1 is associated with a paper, data used, review and response, and ID5, the topic 2

is related to the research work on global weather change, and the topic 3 is about the data

reflecting a temperature increase and weather change with time. Topic probabilities of three

topics for 52 documents are given in Tables 4.7 and 4.8. One could observe that the largest

probabilities of the topic 1 are 0.8333, 0.6331 and 0.6488, respectively, for documents 20,

21 and 22. The e-mail content of week 1 is represented in the LDA analysis as document 1,

and the content of week 2 is document 2, and so on. Further, one can plot the evolution of

topics across time, as the documents are time stamped. Fig. 4.6 (a) shows the proportion

of three topics over 52 weeks, exhibiting the major topic is the topic 1 at week 20. The
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Figure 4.5: (a,b) Singular value decomposition for the original 52 x 10315 DTM, showing 3
dimensions.

topics are shown separately in Fig. 4.6(b).

4.8 Clustering

Two clustering methods, such as hierarchical clustering and K-means clustering, have been

applied [MC85] to the document-topic matrix to group 52 documents. For hierarchical

clustering, the agglomerative (bottom-up) hierarchical clustering method [MS02] has been

used. In this method, initially each object is assigned as a separate cluster, and a new

cluster is formed in each step by merging two clusters based on the similarity between the

clusters. Three types of similarity functions, such as single-link, complete-link, and group-

average are used in selecting clusters to merge. Here, a single - link function is used to

the document-topic matrix to cluster 52 documents. The dendrogram is given in Fig. 4.7,

showing three clusters that consist of a large cluster having 42 documents and two small

clusters with two and eight documents.
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Table 4.2: The partial document-topic matrix.

Document Topic-1 Topic-2 Topic-3 Topic-4 Topic-5 Topic-6

1 0.0394170 0.0015138 0.0162988 0.1235568 0.0009762 0.0031267
2 0.0113448 0.0092984 0.0024772 0.3960651 0.0038414 0.0086163
3 0.0015130 0.0063491 0.0114539 0.3360106 0.0044684 0.0052744
4 0.0033900 0.0008414 0.0059387 0.0552899 0.0050119 0.0013048
5 0.0106559 0.0067150 0.0200155 0.1402126 0.0145968 0.0037593
6 0.0126032 0.0052728 0.0119924 0.0877407 0.0095489 0.0077162
7 0.0150977 0.0093834 0.0093834 0.0120501 0.0318596 0.0029072
8 0.2243859 0.0020768 0.0087188 0.0040303 0.0323562 0.0024675
9 0.1659811 0.0030672 0.0083652 0.0030672 0.0348553 0.0050540
10 0.0298719 0.0388809 0.0253674 0.0208629 0.0253674 0.0208629

Table 4.3: The partial T 52×19 matrix of e-mail content.

v1 v2 v3 v4 v5

1 -0.16184732 0.077103136 -0.18295134 -0.0074151010 -0.019091389
2 -0.13737595 -0.270722214 -0.43221408 -0.3703561140 0.052869896
3 -0.13777215 -0.061069179 -0.42583607 -0.2518886292 0.015319542
4 -0.13279061 0.021356232 -0.08141087 0.0097054464 -0.021760463
5 -0.13523075 0.137339256 -0.20861933 -0.0157525753 -0.071209642
6 -0.14248863 0.145744288 -0.15188913 0.0355148942 -0.069943338
7 -0.11550435 0.092063276 0.01841244 0.1088373227 -0.231220370
8 -0.13698574 0.242338464 -0.04709021 0.0943636136 -0.081727403
9 -0.14366957 0.049399435 0.03671274 0.0333295796 -0.044148842
10 -0.12355908 0.148173944 -0.02858152 0.0677259471 -0.034001568
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Figure 4.6: (a) Topic proportion of all three topics for the 52 week period around the
primary cluster using scan statistic model. (b) Topic proportion plotted separately with
time.

Table 4.4: The partial S19×19 matrix of e-mail content.

v1 v2 v3 v4 v5 v6 v7

1 3.338276 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.0000 0.7431123 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.0000 0.00000 0.6079248 0.00000 0.00000 0.00000 0.00000
4 0.0000 0.00000 0.00000 0.5386343 0.00000 0.00000 0.00000
5 0.0000 0.00000 0.00000 0.00000 0.4988096 0.00000 0.00000
6 0.0000 0.00000 0.00000 0.00000 0.00000 0.4680062 0.00000
7 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.4589441
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Table 4.5: The partial (D19×19)T matrix of e-mail content.

v1 v2 v3 v4 v5

1 -0.04045566 0.11565104 -0.015159817 0.047869952 -0.08160274
2 -0.04792393 -0.18657792 0.106860269 -0.027032479 0.01441465
3 -0.06423974 0.13939360 -0.012146631 0.297756953 0.78853319
4 -0.09435856 -0.11601124 -0.798778568 -0.493581174 0.02233819
5 -0.06998048 0.35691651 0.455700782 -0.739323117 0.14316247

The K-means clustering is a non-hierarchical clustering technique that divides the data

into K clusters such that the within-cluster variation is minimized[Gen02]. The objective

is to determine the optimal number of K using Calinski-Harabasz (CH) index. The null

hypothesis vs. the alternative hypothesis [CH74a], [DPL+15] is H0 : K = 1 vs. H1 : K > 1.

A pseudo-F statistic known as the CH index is defined as [CH74a], [Gen02] :

CH index =

b
(k−1)
w

(n−k)

, (4.15)

where b is the between cluster sum-of-square, w is within cluster sum-of-square, k is the

number of clusters and n is the number of observations. Here, k is chosen such that the

CH index is a global or a local maximum, or grows rapidly. The number of the clusters is

turned out to be 3 based on a local maximum or a rapid increase that corresponds to the

CH index of 141.58 (p-value < 0.0001). Fig. 4.8) reveals the similar structure in the reduced

dimensions, suggesting that there are three clusters with black dots indicating the centroids

of clusters. From both agglomerative and K-means clustering, three major clusters have

been obtained.
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Table 4.6: Three major topics with top six terms obtained using the LDA from e-mail
content around the most likely cluster.

Topic 1 Topic 2 Topic 3

data work temperatur
paper global weather
use weather change

review new warm
ID-5 chang data

respons research time

Figure 4.7: Hierarchical agglomerative clustering on the document term matrix, showing
the dendrogram with three major clusters using the single link method.
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Figure 4.8: K-means clustering showing three clusters.

4.9 Scan Statistics on Topic Proportions Using Normal Dis-

tribution

To carry out scan statistics for the time series of the maximum proportions, pt ∈ (0, 1), the

logistic transformation [Wal87] has been applied to the data. This is given by:

yt = logit pt = log

(
pt

1− pt

)
. (4.16)

This transformation stabilizes the variance, and the transformed data become normally

distributed [BVAMF07]. Figs. 4.9(a) shows the maximum topic proportion over 52 weeks

around the most likely cluster obtained from the two-step scan process. The logistic trans-

formation of the maximum proportion is shown in Fig. 4.9(b). The normal Q-Q plot shows

that the transformed maximum topic proportion is approximately normally distributed (see
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Fig. 4.10 ). The scan statistics have been applied here to investigate if there exists a critical

topic cluster. As discussed in chapter 1, the one-dimensional continuous scan statistic, Sw,

is the largest number of points that are observed in any subinterval of [0, T ) of length w.

Under the null hypothesis, observations x1, x2, .., xn are from the i.i.d normal distribution

with mean, µ, and variance, σ2 . For the alternative hypothesis, there would be a scanning

window of width, w, where observations are from an i.i.d normal distribution with mean, µ,

and common variance, σ2, and the observations in the rest of the intervals, [1, t) and [t+w,

n], are from an i.i.d normal distribution with mean, η, and variance, σ2 [Kul79], [Jun16].

For testing, the null hypothesis, H0 : µ = η, over the alternative hypothesis, H1 : µ > η,

the likelihood under the null hypothesis:

LH0 =
n∏
i=1

1√
2πσ

e−
(xi−µ)

2

2σ2 = (2π)−
n
2 σ−ne−

∑n
i=1

(xi−µ)
2

2σ2 . (4.17)

The log likelihood function under the null hypothesis is given by:

logLH0(µ, σ) = −n
2

log(2π)− n log(σ)−
n∑
i=1

(xi − µ)2

2σ2
. (4.18)

Taking the derivative of the log likelihood with respect to µ and setting to zero, one can

get:

∂ logLH0

∂µ
= 2

n∑
i=1

(xi − µ)

2σ̂2
= 0. (4.19)

Therefore,

µ̂ =

∑n
i=1 xi
n

. (4.20)
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Similarly, taking the derivative of the log likelihood with respect to σ and setting to zero,

one obtains:

∂ logLH0

∂σ
= −n

σ
+

n∑
i=1

(xi − µ̂)2

σ3
= 0. (4.21)

Therefore,

σ̂2 =

n∑
i=1

(xi − µ̂)2

n
. (4.22)

The likelihood under the alternate hypothesis:

LH1 =

(∏
i∈w

1√
2πσw

e−
(xi−µw)2

2σ2

)(∏
i 6=w

1√
2πσw

e
− (xi−ηw)2

2σ2w

)

= (2π)−
n
2 (σw)−ne

− 1

2σ2w
[
∑
i∈w(xi−µw)2+

∑
i6=w(xi−ηw)2]

.

 (4.23)

The log likelihood function under the alternative hypothesis is given by:

logLH1 = −n
2

log(2π)− n log(σw)− 1

2σ2
w

∑
i∈w

(xi − µw)2 +
∑
i 6=w

(xi − ηw)2

 . (4.24)

By taking the derivative of the log likelihood with respect to σ and setting to zero, one

obtains:

∂ logL

∂σw
= − n

σw
+

1

σ3
w

∑
i∈w

(xi − µw)2 +
∑
i 6=w

(xi − ηw)2

 = 0. (4.25)

Therefore, the estimated σ̂2
w, µ̂w and η̂w are given by the following equations.

σ̂2
w =

1

n

∑
i∈w

(xi − µw)2 +
∑
i 6=w

(xi − ηw)2

 , (4.26)
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µ̂w =
1

nw

∑
i∈w

xi, (4.27)

η̂w =

∑
i∈w xi

n− nw
, (4.28)

where nw is the number of observations inside the window, w. The log-likelihood ratio,

log Λ, is given by:

log Λ = n log(σ̂) +
n∑
i=1

(xi − µ̂)2

2σ̂2
− n

2
− n log(

√
σ̂2
w). (4.29)

The maximum log-likelihood ratio is given by:

max
w

(log Λ) = max
w

(
n log(σ̂) +

n∑
i=1

(xi − µ̂)2

2σ̂2
− n

2
− n log(

√
σ̂2
w)

)
. (4.30)

Therefore, the most likely cluster can be identified when variance will be minimized.

I now apply a purely temporal scan statistic to detect the primary clusters using the

normal model to the stationary time series (See Fig. 4.11) of the transformed maximum

topic proportion, as shown in Fig. 4.9. The stationarity of the transformed series has

been confirmed by the unit root tests (see Table 4.9). The p-value is obtained using the

MC simulation with 1000 replications. A primary cluster from October 22 to November

30 2003 has been identified, which is statistically significant with the maximum LLR =

10.24 and the MC p-value = 0.01. One could see that the estimated the maximum LLR

for the primary cluster of topics is greater than the standard Monte Carlo critical value,

7.81, at the 0.0001 level of significance (See Table 4.10). In addition, it is observed that the

primary cluster consists of mostly the topic 1. It can, therefore, be concluded that the scan

statistic identifies statistically significant excessive topic activities, where mostly the topic

1 is discussed. To investigate the topic proportion, I consider here compositional approach
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Figure 4.9: (a) The maximum proportion of topics for the 52 week period around the pri-
mary cluster using scan statistic model . (b) The logistic transformed maximum proportion
of topics for the 52 week period around the primary cluster using scan statistic model.

to the time series of topic 1 proportion [BVAMF07].

4.10 Time Series Models on Topic 1: Compositional ARIMA

(C-ARIMA) Model

A process of continuous proportions, pt, t = 0± 1,±2, ..., is a C-ARMA (p,q) process if for

every t [BVAMF07],

logit(pt) = φ1logit(pt−1)+ ...+φplogit(pt−p)+ logit(wt)−θ1logit(wt−1)− ....−θqlogit(wt−q),

(4.31)

where logit(wt) ∼ N(0, 2σ̃2
w). One can write in terms of odds [BVAMF07]:

odds pt = (odds pt−1)φ1 × ...× (odds pt−p)
φp × wt × (wt−1)−θ1 × ...× (wt−q)

−θq , (4.32)
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Figure 4.10: A normal Q-Q plot of the logistic transformed maximum proportion of topics
showing that the distribution is approximately normal.

where wt is log normally distributed. Here pt is a C-ARIMA(p, d, q) process if and only

if logit (pt) is an ARIMA (p, d, q) process. The ARIMA (p, d, q) models are well-known

statistical models for a non-stationary time series xt, and can be mathematically expressed

using backshift operator, B, as [SS06]:

φ(B)(1−B)dxt = θ(B)wt. (4.33)

Fig. 4.12 shows that the logit (topic 1 proportion) has a decreasing trend. Therefore, an

ADF regression with a trend has been applied. It is observed that the test statistic of

-3.394 is not lower than the critical value at 5% level of significance for the logit series (see

Table 4.11), suggesting that the series is not stationary. However, the first difference of the

logit(pt) series is stationary (see Table 4.12). Therefore, the logit(pt) series is an integrated

of order 1, i.e. I(1), and, as a result, the ARIMA (p, 1, q) models would be suitable.
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Figure 4.11: Sample ACF and PACF of the logistic transformed maximum proportion of
topics series showing that the time series is stationary.

The ARIMA(0,1,1), ARIMA(1,1,0), ARIMA(2,1,0) and ARIMA(1,1,1) models have

been fitted to the logarithm of odds series. The optimal model is an ARIMA(0,1,1) based

on minimizing the AIC, and the estimated model is (see Table 4.13):

logit(pt) = −0.731logit(wt−1) + logit(wt), (4.34)

where logit(wt) ∼ N(0, 2σ̃2
w). The standardized residual in Fig. 4.13(upper panel) at week

20, exceeds 3 times the standard deviations, indicating excessive activities. The sample

ACF of standardized residual and the Q-statistic show that the residuals are random (see

Fig. 4.13, middle and lower panels, respectively). Also, it is observed from the histogram

and the normal Q-Q plot of residuals that they are approximately normal except for an

extreme value in the right tail (see Fig. 4.14).
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Figure 4.12: The observed and fitted logistic transformed proportion of topic 1 series for
the ARIMA(0,1,1) fit to the logistic transformed proportion of topic 1 series.

4.11 Identifying Vertices with Excessive Messages using a

Combination of 1-Nearest Neighbor (1NN) and K-Means

Let θ̂t(v) be the proportions of messages in the local region Gt(v) = Ω(N1[v;Gt];Gt) for

each vertex v at time t, where θ = [θ1, θ2, ..., θk]
T . After preprocessing, for each vertex and

each week, the document term matrix (DTM) from the corpus obtained from unstructured

email textual data has been estimated. The DTM has then been split into a training set

(70%) and the test set (30%). First, the classical multidimensional scaling has been applied

to both the training set and the test set to reduce the dimensionality. The collection of

training documents have then been partitioned into K clusters/topics, where K = 3, using

K-means clustering [HTF11],[JWHT13] and then classified using the 1-nearest neighbor

(1NN)[HTF11], [JWHT13] to estimate θ̂t(v). Table 4.14 shows the proportion of messages
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Figure 4.13: Time Plots of the standardized residuals, the ACF of standardized residual
and the Q-statistic for the ARIMA(0,1,1) fit to the transformed topic 1.

for topic 1( θ1), topic 2( θ2), and topic 3( θ3) for week 20, 21 and 22. Here θ1 is the topic 1,

which is associated with the data used, review and ID5. This is approximately similar to

the topic 1 obtained from LDA model. It is observed that the ID1, ID5, ID7, ID10 and ID20

all have a maximum proportion of messages that are associated with the topic 1 (See Table

4.14). In order to verify this result, the betweenness associated with individuals obtained

from the metadata and the maximum topic proportions obtained from the LDA using the

textual data have been combined. Fig. 4.15 shows the time plot of the logistic transformed

maximum topic proportion, obtained from the LDA (see the bottom of Fig. 4.15) and the

time plots of betweenness of ID = 1, 5, 7, 10, 18, 20, 30 ( upper panel). One could see that

ID5, ID7, ID18, ID20, and ID30 have the maximum betweenness at week 20 and 21 (See

Fig. 4.15). The maximum betweenness represents the maximum information flow through

nodes or vertices. Therefore, it is apparent from this figure that the topic 1 (see Fig. 4.15,
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Figure 4.14: Histogram of the residuals (top), and a normal Q-Q plot of the residuals
(bottom) for the ARIMA(0,1,1) fit to the logistic transformed proportion of topic 1 series.

is mostly discussed by these individuals.

4.12 Chapter Summary

In this chapter, the scan statistic has been implemented in the unstructured text data of the

e-mail content. Such implementation of scan statistics on text data has not been done before.

Although considerable efforts have been made to extract information from unstructured

text data using text clustering, classification, and summarization, relatively few attempts

have been carried out to investigate the excessive activities associated with a particular

topic from the dynamic unstructured textual dataset. Pattern recognition and probabilistic

modeling on unstructured records, therefore, would be very useful for further research to

study fraudulent activities owing to excessive activities in communication networks. Here an

unstructured text obtained from e-mail contents around the most likely (primary) cluster,
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Figure 4.15: Comparison between time plots of betweenness for k > 2 for different IDs
obtained from metadata, and the maximum topic proportion obtained from LDA using
textual data, showing that the excessive topic activity relating to the topic 1, which is
associated with ID = 5, 7, 18, 20 and 30 at around week 20.

from June 2003 to June 2004, has been analyzed. The major topics discussed in this period

have been identified using text mining algorithms and probabilistic modeling, such as the

latent Dirichlet allocation modeling. In the LDA modeling, the e-mail content of week 1 is

represented as document 1, and the content of week 2 is document 2, and so on. Therefore,

one can plot the evolution of topics across time, as the documents are time stamped. The

optimal number of topics has been chosen to be three, based on the minimum AIC that gives

the best fit to these data. The scan statistic based on normal distribution is then applied to

the logistic transformed maximum topic proportions to obtain the excessive topic activities.

A primary cluster from November 01 2003 until November 30 2003 has been identified,

which is statistically significant with the maximum LLR = 10.24 and the MC p-value =

0.01.

The estimated maximum LLR of the primary topic cluster is greater than the standard
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Monte Carlo critical value, 7.81, at the 0.0001 level of significance. It can be concluded that

the scan statistic identifies statistically significant excessive topic activities, where mostly

the topic 1 is discussed. In order to identify the individuals that are discussing topic 1,

the betweenness associated with individuals from the metadata, and the maximum topic

proportions obtained from the LDA using textual data are combined. It can be concluded

that the topic 1 is mostly discussed by ID5, ID7, ID18, ID20, and ID30 at week 20 and 21.
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Table 4.7: Topic probabilities by document obtained using the LDA method.

Topic 1 Topic 2 Topic 3

1 0.4870072 0.12114695 0.39184588
2 0.2248749 0.08708504 0.68804002
3 0.3953967 0.05042092 0.55418234
4 0.3805993 0.20752240 0.41187828
5 0.4224959 0.20279146 0.37471264
6 0.4445123 0.18000407 0.37548361
7 0.2878730 0.44406349 0.26806349
8 0.4775672 0.33632871 0.18610406
9 0.3878587 0.45540839 0.15673289
10 0.3318318 0.32282282 0.34534535
11 0.5010635 0.23579459 0.26314190
12 0.3593337 0.23258176 0.40808450
13 0.3452609 0.13375932 0.52097977
14 0.2996117 0.37134682 0.32904149
15 0.3434343 0.37752525 0.27904040
16 0.5643217 0.13795748 0.29772080
17 0.4504685 0.22958501 0.31994645
18 0.4695216 0.20563272 0.32484568
19 0.4957613 0.22821295 0.27602577
20 0.8333829 0.07245083 0.09416625
21 0.6331434 0.20236898 0.16448765
22 0.6487928 0.23581982 0.11538739
23 0.2960980 0.66797526 0.03592672
24 0.2055872 0.66124220 0.13317060
25 0.4913804 0.33741282 0.17120674
26 0.4219797 0.35879763 0.21922267
27 0.3964082 0.45159877 0.15199299
28 0.2744511 0.49600798 0.22954092
29 0.5433990 0.29066375 0.16593727
30 0.2063568 0.65307906 0.14056416
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Table 4.8: Topic probabilities by document: Continued.

Topic 1 Topic 2 Topic 3

31 0.4036814 0.29296519 0.30335338
32 0.4279996 0.26344261 0.30855783
33 0.3720205 0.43192312 0.19605641
34 0.1886532 0.22590102 0.58544577
35 0.2555714 0.48885728 0.25557136
36 0.1977420 0.17560921 0.62664878
37 0.2976594 0.17610977 0.52623083
38 0.2239988 0.24150101 0.53450014
39 0.2536991 0.23175395 0.51454697
40 0.2856978 0.30749712 0.40680507
41 0.2466732 0.55972087 0.19360597
42 0.3687664 0.16404199 0.46719160
43 0.2730443 0.57349278 0.15346288
44 0.2794066 0.44432810 0.27626527
45 0.1883071 0.10742160 0.70427132
46 0.2648585 0.30398696 0.43115459
47 0.2827147 0.37664042 0.34064492
48 0.3394167 0.33512256 0.32546073
49 0.2053294 0.48880170 0.30586889
50 0.2409661 0.47216077 0.28687316
51 0.2805110 0.34058346 0.37890558
52 0.2193131 0.45579955 0.32488739
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Table 4.9: Unit root tests on the transformed maximum topic proportion.

Unit root test Value of test statistics Lag Parameter p-value

Augmented Dickey-Fuller Test -3.7573 1 0.0284

Phillips-Perron Test -4.9454 3 0.01

KPSS Test 0.43172 1 0.0635

Table 4.10: Temporal clusters of the topic proportion showing the estimated log likelihood
ratio (LLR), standard Monte critical values (SMCV) and significance level (SL) obtained
using SaTSscan software.

Cluster Time Frame LLR p-value SMCV (SL)

Primary 11/1/03 - 11/30/03 10.240 0.01 7.81 (0.001)

Table 4.11: Unit root tests for logit (p).

Test Statistics Value of Test Statistics CV (1%) CV (5%) CV (10%)

τ3 -3.394 -4.04 -3.45 -3.15

φ2 3.9337 6.50 4.88 4.16

φ3 5.8733 8.73 6.49 5.47
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Table 4.12: Unit root tests for the first difference logit (p) series.

Test Statistics Value of Test Statistics CV (1%) CV (5%) CV (10%)

τ3 -6.2506 -4.04 -3.45 -3.15

φ2 13.0303 6.50 4.88 4.16

φ3 19.5415 8.73 6.49 5.47

Table 4.13: ARIMA(0,1,1), ARIMA(1,1,0) and ARIMA(1,1,1) model results fitted to the
logit of topic 1 proportion series.

Parameter ARIMA(0,1,1) SE ARIMA(1,1,0) SE ARIMA(1,1,1) SE

ar1 -0.4843 0.1255 0.0912 0.1977

ma1 -0.7173 0.1106 -0.7781 0.1326

AIC 86.18 93.38 87.97
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Table 4.14: Proportion of massages obtained from the combination of K-means and nearest
neighbor.

Week ID θ = (θ1, θ2, θ3)

20 1 (0.481, 0.333, 0.037)

20 5 (0.446, 0.349, 0.059)

20 15 (0.6, 0.2, 0.000)

20 20 (0.533, 0.011, 0.367)

21 5 (0.553, 0.316, 0.079)

21 10 (0.667, 0.333, 0.000)

21 20 (0.524, 0.381, 0.048)

21 30 (0.667, 0.333, 0.000)

22 5 (0.364, 0.364, 0.136)

22 7 (0.667, 0.333, 0.000)
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Chapter 5: Conclusions

5.1 Summary of Contributions

Around terabytes of unstructured electronic data are generated every day from twitter net-

works, scientific collaborations, organizational emails, telephone calls and websites. Fraud-

ulent activities owing to excessive communication in communication networks continue to

be a major problem in different organizations. In fact, retrieving information relating to

detection of excessive activities is computationally intensive for large data sets. Therefore,

one needs useful tools and techniques to analyze such a massive data set and detect anomaly.

In a social network, anomalies can occur as a result of abrupt changes in the interactions

among a group of individuals. Analyzing the excessive activity in a social network is thus

important to understand the fraudulent behavior of individuals in a subregion of a network.

The motivation of this research work is to investigate the excessive activities and make

inferences in dynamic sub networks. Three major contributions have been presented for to

detect anomalies of dynamic networks obtained from inter-organizational emails.

(i) Implemented Scan Statistics with variable windows, and univeriate time

series: First, a temporal scan statistic was introduced to detect clusters using the

maximum likelihood ratio as the test statistic, and betweenness as a locality statistic.

Previous studies are mostly based on the fixed and disjoint windows, and on the

assumption of short term stationarity of the series under null, which might result in

loss of information and error in detecting excessive activities. In addition, the previous

model assumed that the subgraphs are disjoint, and normalized the locality statistic

twice to eliminate the trend and assumed short-time, near-stationarity for the null

model. However, the scan statistics with fixed and disjoint scan window may not be
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appropriate because of the occurrence of window overlaps, which may result in loss

of information on the time axis. In this research work, I implement scan statistics

with overlapping and variable window sizes to detect anomalies of dynamic networks

obtained from organizational emails. I employ the maximum likelihood ratio (LLR)

as the test statistic to rank the clusters, as the cluster size is not known. Furthermore,

I assess the structural stability and apply differencing, seasonal adjustment to make

the time series of scan statistics stationary and estimate the p-value using the Monte

Carlo (MC) simulation and the extreme value distribution, such as Gumbel, as the

exact sampling distribution of scan statistics under the null hypothesis is not known

for most of the cases. In addition, as the unstructured data set size becomes larger,

the formation of dynamic network structure is computationally intensive. Instead of

applying temporal scan statistics for ego sub networks directly, I employ scan statistics

of organizational emails with a two-step process, and use the likelihood function to

rank the clusters. I initially estimate the maximum log-likelihood ratio (LLR) to

obtain a primary cluster of communications (LLR = 82.07, p-value = 0.001) using the

Poisson model on email count series, and then extract neighborhood ego subnetworks

around the observed primary cluster to obtain more refined cluster (LLR = 644.11,

p-value = 0.001) by invoking the graph invariant betweenness as the locality statistic

using the binomial model. Furthermore, as an alternative approach, a univariate

time series has been built using the graph edit distance (GED) between subgraphs.

An autoregressive moving average (ARMA) process is then fitted to the time series,

and the anomalies were assessed using residuals obtained from the fitted model and

compared with the results obtained from the scan statistics.

(ii) Developed multivariate time series model: The second contribution is the devel-

opment of multivariate time series models, vector autoregressive (VAR) models on the

e-mail network obtained from the metadata. This represents the first known presen-

tation of the VAR model to detect excessive activities. As the scan statistics measure

the maximum of locality statistics, it can conceal the group of influential people in
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the network. To overcome this limitation, the multivariate time series models have

been used to identify the most influential node. I fit a VAR(1) model to the multivari-

ate time series of subgraphs for each vertex using the graph edit distance to identify

anomalies. This analysis considers multiple time series simultaneously, as the nodes or

vertices of the subgraphs are interrelated. The objective of the VAR model is to iden-

tify the dynamic relationship between vertices. The excessive activities or anomalies

associated with the nodes or vertices in email network have been assessed using resid-

ual threshold. One could clearly observe the residual greater than 5 times standard

deviations at week 20 for all IDs, suggesting the occurrence of excessive activities at

this time point. From this multivariate time series analysis, it can be concluded that

the chatter has been initiated by ID = 5, and as k increases, the excessive chatter

spread among other IDs. In addition, this analysis clearly demonstrates the social

relationship between ID5 with ID1, ID7, ID10 and ID20.

(iii) Implemented scan statistics on topic models of unstructured text: The third

contribution is the implementation of the scan statistics on topic models of the un-

structured text data of e-mail content. Such implementation of scan statistics on text

data has not been done before. Although considerable efforts have been made to ex-

tract information from unstructured textual data using text clustering, classification,

and summarization, relatively few attempts have been carried out to investigate the

excessive activities associated with a particular topic from the dynamic unstructured

textual data set. Pattern recognition and probabilistic modeling on unstructured

records, therefore, would be very useful for further research to study fraudulent ac-

tivities owing to excessive activities in communication networks. Here I analyze an

unstructured textual obtained from e-mail contents around the primary cluster, June

2003 to March 2004, and investigate the major topic discussed in this period using

text mining algorithms and probabilistic modeling, such as latent Dirichlet allocation

(LDA) modeling. I then use scan statistics to get excessive topic activities. It is

observed that the topic-1, which is related to data used in a paper, has the largest
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LLR in the neighborhood of the primary cluster using scan statistics.

(iv) One of the scientific challenges of this research includes understanding the distribution

of the organizational email subnetworks. As in one dimension, the exact distribution

of the scan statistic under the null hypothesis is only available for special cases, this

research employs other methodologies, such as Monte Carlo (MC) simulations and

the extreme value theory to estimate p-values. In addition, the size and power of the

scan statistic have been estimated. Once the sampling distribution of scan statistic is

determined, the inference on anomaly can be performed. The extreme value theory is

a statistical model that is used to model the extreme data in a given period of time,

and is based on the location-scale family. Gumbel distribution is the most well-known

distribution that belongs to this family, and has been widely used in engineering.

The present work also applies the Gumbel distribution to approximate the p-value.

Another challenge is the choice of local statistic as it provides important structural

location of a node and its neighborhood. Here I apply graph invariant, betweenness,

as a measure to identify local structure and anomaly in social networks. For building

time series of graphs, the challenges are to compute the graph distance metrics, which

are computationally intensive, and to fit time series model to assess anomalies based

on residuals.

The conclusions of this dissertation work are summarized below.

(i). The Poisson process model is employed to identify the most likely cluster of emails

using the email count data as a step-1 scan statistic process for a 10-year period.

The most likely statistically significant temporal primary cluster is detected using the

maximum LLR as the scan statistic (LLR = 82.07, p = 0.001).

(ii). The binomial model applied to network data in step-2 scan statistic process, using

betweennes as the locality statistics and the maximum LLR as the scan statistic,

detects the more refined purely temporal clusters around the primary cluster, obtained

from the step-1 scan process.

137



(iii). A univariate time series has been built using the graph edit distance metric to compare

subgraphs between two consecutive weeks. An autoregressive moving average process

is then fitted to the GED time series, and the anomalies were assessed using residuals

from the fitted model exceeding a threshold, and compared with the results obtained

from the scan statistics. The residual analysis demonstrates the statistically significant

excessive activity, consistent with the results obtained using scan statistics.

(iv). A vector autoregressive model has been fitted to the email ego-centered subnetworks.

From this multivariate time series analysis, it is concluded that the excessive chatter

has been initiated by ID5, and as k increases, the excessive chatter has been ob-

served to diffuse among ID1, ID7, ID10 and ID20. In addition, this analysis clearly

demonstrates the social relationship among ID1, ID5, ID7, ID10 and ID20.

(v). An excessive topic activity or topic chatter from the 4th week of October to 4th week

November 2003 have been identified by combining the LDA and the scan statistics.

The primary cluster consists of mostly the topic-1, which is related to data used in a

paper. Furthermore, it is concluded that ID1, ID5, ID7, ID10 and ID20 are mostly

discussing topic 1.

5.2 Future Work

This dissertation work opens up many potential areas of the future research. These method-

ologies can be applied to other networks, such as Twitter, Facebook, and telecommunication

networks. In particular, the detection of multiple excessive activities would be an area of in-

terest. These methods can be extended to investigate multiple clusters using scan statistics

with variable window sizes and overlapping windows.

The over-dispersion of the Poisson counts may occur in count data. In such cases, the

negative binomial distribution can be employed. Furthermore, one can employ the modified

ARMA models, such as integer valued ARMA (INARMA), INGARCH models to fit the

over-dispersed and correlated count data to get the critical cluster.
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The VAR model, in chapter 4, could be extended in different ways. It would be possible

to construct a VARMA model to detect the excessive activities. If the multiple time series

is co-integrated, one could use vector error correction model (VECM) instead of the VAR

models. An interesting area for further research would be forecasting the excessive activities

using the VAR models as a part of prospective surveillance.
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Chapter 6: Appendix A

The weekly networks (week 1 to week 4) from June 2003 to June 2004, extracted from

the e-mail edge lists, for the 52 week period are given below. Such networks have been

constructed around the most likely cluster, obtained from the two-step scan process.
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Chapter 7: Appendix B

Here the partial codes in R for size and power calculations and the maximum log likelihood

estimation using non-parametric method have been provided.

1. Size and Power Calculations

poisson2 <-function(M)

email <- rpois(153,158.8301)

llr = rep(0,M)

tim = rep(1,n)

SumE = 0

SumT = 0

llr = 0

for(i in 1:n)

SumE = email[i]+SumE

SumT =tim[i]+SumT

lambda1Tot = (SumE/SumT)

lambda0 = lambda1Tot

lambda1 = 158.88

A2 = log(lambda1/lambda0)

A1=(lambda0-lambda1)

llr=((SumT*A1)+(A2*SumE))

return(abs(llr))

M=1000

p2 = rep(0,M)

for(i in 1:M)
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p2[i] <-poisson2(i)

cv <- quantile(p2,c(0.9,0.95,0.975,0.99,0.995,0.999))

M = 1000

Im = 0

p2 = rep(0,M)

for(i in 1:M)

p2[i]< -poisson2(i)

if (p2[i] > cv[3])

Im = Im+1

alphahat < -Im/M

poisson3 < -function(M,lamda1)

email < -rpois(n,lamda1)

llr = rep(0,M)

tim = rep(1,n)

SumE = 0

SumT = 0

llr = 0

for(i in 1:n)

SumE = email[i]+SumE

SumT = tim[i]+SumT

lambda1Tot = (SumE/SumT)

lambda1 = lambda1Tot

lambda0 = 158.8301

A2 = log(lambda1/lambda0)

A1 =(lambda0-lambda1)

llr=-((SumT*A1)+(A2*SumE))

return(abs(llr))

M = 1000
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lambda1 = seq(from=158.81, to=170.9, by=0.1)

betahat = rep(0,length(lambda1))

powerhat = rep(0,length(lambda1))

for (j in 1:length(lambda1))

Im = 0

lamda1=lambda1[j]

p3 = rep(0,M)

for(i in 1:M)

p3[i] <-poisson3(i,lamda1)

if (p3[i] <cv)

Im = Im+1

betahat[j]<-Im/M

powerhat[j]<-1-betahat[j]

2. Maximum likelihood estimate: Non Parametric

z <- ufit(y,x = x,lmode = x[1],lc = TRUE,type = ”b”)

plot(x,y)

lines(z,col=”red”)

plot (z-h, do.points = TRUE,col.hor=”black”,col.vert=”black”,

add = FALSE,xlab=’x’,ylab=’f’)

text(1, 0.025, paste(”Mode at =”, x[1]),cex=1.0)

plot(z-x,z-y)

lines(z,type=’l’,lwd=2)

text(12,2.5e-8, paste(”Mode at =”, x[1]),cex=1.0)

qplot(zx, zy,data=df1,geom=c(”point”,”line”))

+annotate(”text”,x=10,y=2.5e-08,label=”Mode at 1”,cex=5)

z <- ufit(y,x=x,lmode=x[32],lc = TRUE,type=”b”)
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plot(x,y)

lines(z,col=”red”)

plot(zh,do.points=TRUE,col.hor=”black”,col.vert=”black”,

add=FALSE,xlab=’x’,ylab=’f’)

text(1, 0.025, paste(”Mode at =”, x[32]),cex=1.0)

text(25,0.0e+00, paste(”Mode at =”, x[32]),cex=1.0)

qplot(zx, zy,data=df1,geom=c(”point”,”line”))

+annotate(”text”,x=25,y=2e-08,label=”Mode at 32”,cex=5)

qplot(zx, zy,data=df1,geom=c(”point”,”line”))

for (i in 1:32)

{

z <- ufit(y,x=x,lmode=x[i],lc=TRUE,type=”b”)

plot(x,y)

lines(z,col=”red”)

plot(zh,do.points=TRUE,col.hor=”black”,col.vert=”black”,

add=FALSE,xlab=’x’,ylab=’f’)

text(-0.05, 0.05, paste(”Mode at =”, x[i]),cex=1.0)

plot(zx, zy)

lines(z,type=’l’,lwd=2)

text(-0.05, 0.05, paste(”Mode at =”, x[i]),cex=1.0)

print(-sum(log(zy)),digits=20) }
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