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Detection of externally forced climate change and attribution of the causes of the 

externally forced and internally generated climate variability during the last century are 

the central scientific issues of current climate science and the subject of important 

controversies. This thesis systematically addresses fundamental problems in detection 

and attribution.  

 

A novel three-tier model ensemble strategy is developed and applied in the model world 

to address these issues. At the top tier, an ensemble of CGCMs with the same external 

forcing applied to each member is used to separate the results from each ensemble 

member into the externally forced and internally generated components. At the second 

tier, an ensemble of atmospheric GCMs (AGCM) with each member forced by the same 

SST, taken from a member of the CGCM ensemble, is used to separate the atmospheric 

variability in that CGCM member into SST-and-externally-forced and weather noise 
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components. The third tier, uses an interactive ensemble version of the CGCM, in which 

the AGCM is replaced by an AGCM ensemble, so that atmospheric weather noise in the 

CGCM is suppressed. Controlled experiments forcing the interactive ensemble with the 

atmospheric noise diagnosed in the AGCM ensemble tier isolate the role of the weather 

noise in generating the internal SST variability found in the CGCM Ensemble tier. 

 

The strategy is employed to examine three important detection and attribution issues. The 

first is why the AGCM ensemble forced by observed SST does not simulate the observed 

20th century sea level trends in the Indian Ocean. It has been suggested that this is 

because of an intrinsic failure of the AGCM Ensemble to correctly represent the SST 

forced response of the coupled system. The results show that the AGCM and CGCM 

ensembles are consistent with each other, and suggest that the failure to simulate the 

observed trends is due to model bias rather than coupling. 

 

Next, the spatial and temporal properties of the weather noise obtained from the CGCM 

and AGCM ensembles are examined in a preliminary fashion. This is the first attempt to 

document these properties. The temporal and spatial structures of the weather noise in the 

CGCM and AGCM simulations are very similar. The temporal structures of the noise 

spectra are white at timescales larger than approximately 5 months, although the noise is 

temporally non-Gaussian, while the spatial structures resemble those of major modes of 

observed climate variability. No change is detected between the statistical properties of 

the noise in the early and late 20th century.  
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The Atlantic Multidecadal Variability (AMV) sea surface temperature is decomposed 

into externally forced and internally generated components using the CGCM ensemble, 

and the weather noise contribution to the internal component is isolated using the AGCM 

ensemble and interactive ensemble. The AMV has a strong contribution from the external 

20th century forcing. The internal AMV variability is primary forced by the weather 

noise, but other sources of internal variability are also important. An important 

contribution to the internal AMV is associated with the internal variability of the oceanic 

Atlantic Meridional Overturning Circulation, and this contribution is distinct from the 

weather noise forced component.  
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PREFACE 

 

This thesis systematically addresses several problems in the attribution of climate 

variability using the same model framework. Attribution determines the reasons for 

climate variability, and is a central focus of climate research today. Understanding of the 

causes of the changing climate since the industrial revolution, and particularly the role of 

human society, is necessary in order to decide on the efficacy and consequences of 

actions proposed to address future anthropogenic climate change.  

Low frequency climate variability can be classified as either externally forced or 

internally generated. The externally forced variability is due to both natural and 

anthropogenic causes. The natural causes include changes in the incoming solar radiation, 

changes in the atmospheric composition due to volcanoes, and changes in the 

configuration of the continents and oceans due to geologic processes. Anthropogenic 

causes include changes in the atmospheric composition and distribution of vegetation due 

to human influences. Internally generated climate variability has as main sources the 

intrinsic internal variability of the atmosphere or ocean components, which can be 

thought of as noise internal to the individual components, and coupled processes 

involving intrinsically coupled interactions among the components. 

Figure INCR1 shows how the total Sea Surface Temperature (SST) variability can be 
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divided into externally forced and internally generated parts, and the internally generated 

part can be divided into atmospheric weather noise, ocean weather noise and coupled 

variability. 

 

            

Figure P1. Separation of SST variability into externally forced and internal variability   
 

In the real world, when using observations, isolating these sources is very difficult since 

there is only one realization of reality. However, using climate models allows us to 

perform experiments to separate the externally forced climate change from internally 

generated variability, and to isolate the role of atmospheric noise in forcing internal 

variability.  

A novel three-tier model ensemble attribution strategy is developed and applied in the 

model world. At the top tier, an ensemble of CGCMs with the same external forcing 

applied to each member is used to separate the results from each ensemble member into 

the externally forced and internally generated components. The sources of SST variability 

Total SST Variability

Internal  
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in each ensemble member follow the structure of Fig. P1. By averaging across ensemble 

members, the internally generated variability in the individual realizations can be 

sufficiently diminished so that the average ensemble mean represents the model’s 

response to external forcing. Once the externally forced response is obtained, it is 

subtracted from each model run to find the contribution from internal variability. 

 

At the second tier, an ensemble of atmospheric GCMs (AGCM) with each member 

forced by the same SST, taken from a member of the CGCM ensemble, is used to 

separate the atmospheric variability in that CGCM member into SST-and-externally-

forced and weather noise components. The weather noise component contributes to the 

internal SST variability as indicated in Fig. P1, while the SST and externally forced 

component participates in the both External and Coupled SST variability.  

 

The third tier uses an interactive ensemble version of the CGCM, in which an AGCM 

ensemble replaces the AGCM, so that atmospheric weather noise forcing of the SST is 

suppressed, and, as seen from Fig. P1, leaving only coupled processes and oceanic noise 

as sources for internal variability. Controlled experiments forcing the interactive 

ensemble with the atmospheric weather noise diagnosed in the AGCM ensemble tier 

isolate the role of the weather noise in generating the internal SST variability found in the 

CGCM Ensemble tier.  

Using the experimental design described above three main problems of study are 

addressed. In the first Chapter  we study why the AGCM ensemble forced by observed 
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SST does not simulate the observed 20th century sea level trends in the Indian Ocean. It 

has been suggested that this is because of an intrinsic failure of the AGCM Ensemble to 

correctly represent the SST forced response of the coupled system.Results from tier 1 and 

tier 2 simulations show that the AGCM and CGCM ensembles are consistent with each 

other, and suggest that the failure to simulate the observed trends is due to model bias 

rather than coupling.  

The second Chapter investigates in a preliminary fashion the spatial and temporal 

properties of the weather noise obtained from the tier 1 CGCM and tier 2 AGCM 

ensembles. This is the first attempt to document these properties, and is relevant to 

understanding the mechanisms by which climate change affects extreme events. The 

temporal structure of the noise is consistent with white noise for annual and longer 

periods, although the probability density functions (PDF) are not Gaussian. No change is 

detected between the statistical properties of the noise in the early and late 20th century, 

so that changes in extreme events can be attributed primarily to changes in the mean 

rather than the noise. 

In the third Chapter the Atlantic Multidecadal Variability (AMV) sea surface 

temperature is decomposed into externally forced and internally generated components 

using the CGCM ensemble. The weather noise studied in the second part is used in the 

tier 3 interactive ensemble to isolate the weather noise contribution to the internal 

component (Fig. P1). The AMV has a strong contribution from the external 20th century 

forcing. The internal AMV variability is primary forced by the weather noise, but other 

sources of internal variability are also important. An important contribution to the 
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internal AMV is associated with the internal variability of the oceanic Atlantic 

Meridional Overturning Circulation, and this contribution is distinct from the weather 

noise forced component.  

 



  

1 
 

CHAPTER 1 : CONSISTENCY OF 20TH CENTURY SEA LEVEL PRESSURE 
TRENDS AS SIMULATED BY A COUPLED AND UNCOUPLED GCM  

ABSTRACT 

A coupled CGCM, and an uncoupled AGCM forced with the Sea Surface 

Temperature (SST) and external forcing of the coupled model, simulate similar two-

meter air temperature (TS) trends and also similar sea level pressure (SLP) trends for the 

latter half of the 20th century. This suggests that the inability of atmospheric models 

forced by observed SST and external forcing to reproduce observed SLP trends in the 

Indian Ocean could be due to model bias rather than lack of coupling. The internally 

generated TS trend in the CGCM is found to be small in comparison to the externally 

forced component. Intrinsic atmospheric noise explains most of the CGCM’s internally 

generated high latitude SLP trend, while in low latitudes the response of the SLP trend to 

the internally generated SST trend is important. 

1.1 Introduction	
  	
  
 

Sea level pressure (SLP) trends, as simulated by AGCMs forced by observed SST 

and estimated external forcing for the latter half of the 20th century, do not agree with 

observed trends, particularly in the Indian Ocean. Using the HadAM3 AGCM  Copsey et 

al. (2006) found that the simulated SLP trend in the Indian Ocean was negative while the 

observed trend was positive (Vecchi et al. 2006). The explanations they suggested for this 
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result were that either the SST forced AGCMs have different responses in comparison to 

coupled models (even with the same SST), or that the AGCM has a biased response to 

SST forcing. Although Deser et. al. (2012) found better agreement between the observed 

DJF tropical SLP trend and the corresponding trend in the CAM3 AGCM, differences 

from the observed trend appear to have same sign and similar structure as in Copsey et al. 

(2006). Meng et al. (2011) found a similar inconsistency from forcing the ECHAM5 

AGCM with observed SST, although they found no inconsistency in a perfect model 

comparison (AGCM forced by the SST simulated by the CGCM) using the MPI CGCM 

and the ECHAM5 AGCM. The impact of observed SST trends in the latter half of 20th 

century on the trends of 500 hPa height (Z500) in Northern Hemisphere winter was 

analyzed by Schneider. et.al. (2003) using an ensemble of simulations made with the 

COLA AGCM. The study found that intra-ensemble Z500 trend variability, attributable 

to  intrinsic atmospheric noise, was comparable to the SST forced trend in high latitudes. 

The SST forced Z500 trend was attributed primarily to forcing by the tropical SST trend.  

          The mechanism of the internal variability of the SLP trend in CGCM simulations 

has been addressed by Deser et al. (2012) using CCSM3. The externally forced trend and 

its internal variability were evaluated from an ensemble of future climate simulations The 

main source of intra-ensemble variability in the CGCM simulated SLP trends depended 

on the region of study – in middle and high latitudes the structure of the coupled 

variability was similar to that of the intrinsic atmospheric variability, while in the tropics 

the structures in the coupled and uncoupled simulations differed in the tropics, 

demonstrating an important role for ocean-atmosphere coupling.  
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           Recently Chen.et.al (2013) examined the similarity between the SST forced 

response in a CGCM current climate control simulation (constant external forcing), and 

the AGCM component of the CGCM, forced by the CGCM-generated SST in the 

Community Climate System Model version 3 (CCSM3). The differences they found 

between the CGCM and AGCM fields were attributed to forcing of SST by intrinsic 

atmospheric noise in the CGCM, but not the AGCM, essentially as described by the 

simple model of  Barsugli and Battisti (1998). 

         If coupled and uncoupled models have different responses with/to the same SST, as 

suggested by Copsey et al. (2006) and if the SST forced AGCM does not correctly 

simulate the atmospheric response due to lack of coupling, conclusions drawn using SST 

forced AGCM simulations could be in error. Our study examines the issue of whether 

atmosphere-ocean coupling is essential to simulate the externally forced SLP trends, and 

identifies the role of intrinsic atmospheric noise in the coupled internal variability. The 

experiments use a perfect model framework, eliminating differences between CGCM and 

AGCM due to model bias and isolating the role of coupling.  

1.2 Models	
  and	
  Methods	
  	
  

	
  	
  
The experimental design and analysis extend these used by Chen et al. (2013) to 

include 20th century external forcing, and to examine trends in the latter half of the 20th 

century. The SLP trends in a CGCM and in an AGCM ensemble forced by the CGCM 

SST, sea ice, and external forcing are compared in a situation where uncertainty due to 

model bias is eliminated through the experimental design. Additionally, the design allows 
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attribution of the trends in the CGCM to external forcing and internally generated 

variability, and furthermore, for the internally generated variability to be decomposed 

into two components – a component where coupling to the SST internal variability is 

important and a noise component. The models used were the coupled model, the 

Community Climate System Model (CCSM3; Collins et al. 2006a), and its atmospheric 

component, the Community Atmosphere Model (CAM3; Collins et al. 2006b). The 

atmospheric model for both the coupled and uncoupled simulations had T42 spectral 

resolution in the horizontal and 26 levels. The ocean model configuration was an 

approximately 1º by 1º-horizontal grid and 40 levels.   

A CGCM simulation (CONTROL) for the period 1870-1998 with prescribed 20th 

Century historical forcing represents the observations. Extending the approach of 

Chen.et.al. (2013), the results for field V in the CGCM, VCGCM, are decomposed into 

externally forced, 𝑉!"!#!"# , and internally generated variability, 𝑉!"!#!"# . 

𝑉!"!# = 𝑉!"!#!"# + 𝑉!"!#!"#      

Equation 1.1 
 
 
For this study, V represents the SLP or surface air temperature (TS) trends evaluated over 

the 1950-1996, the period chosen for comparison with the results of Copsey et al. (2006).  

Similarly, the internally generated atmospheric variability is separated into the 

atmospheric response to the internally generated SST variability – coupled variability, 

𝑉!"!#
!"#  !"#$%&' - and the intrinsic atmospheric noise, 𝑉!"!#!"#$%: 
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𝑉!"!#!"# = 𝑉!"!#
!"#  !"#$%&' + 𝑉!"!#!"#$%        

Equation 1.2 
 

In order to estimate the externally forced trends an ensemble of four additional 

CCSM3 simulations with prescribed 20th Century historical external forcing was 

performed for the period 1870-1998. The differing initial conditions of the coupled 

ensemble members were obtained by choosing arbitrarily from a 500-year pre-industrial 

control run with external forcing fixed at 1870 levels (archived as run b30.043 in the 

Community Earth System Model database at the National Center for Atmospheric 

Research). 𝑉!"!#!"#  is determined by 

𝑉!"!#!"# = 𝑉!"!#!    

Equation 1.3 
where the subscript refers to the ith ensemble member (including CONTROL), and the 

brackets represent ensemble averaging. 𝑉!"!#!"#  is then found using (1) and (3) by 

𝑉!"!#!"# = 𝑉!"!# − 𝑉!"!#!"#    

Equation 1.4 
An ensemble of six AGCM simulations forced by the CONTROL SST and external 

forcing was made in order to decompose 𝑉!"!#!"#  into 𝑉!"!#
!"#  !"#$%&' and 𝑉!"!#!"#$%, as well as 

for comparison with the CONTROL trend. We improved the consistency of the SST 

forcing for the AGCM ensemble compared to Chen et al. (2013) by evaluating it from the 

CGCM monthly ocean model output rather than from the atmospheric model output. 

Taking the AGCM ensemble mean, 𝑉!"#$! , as the SST and externally forced trend, 

𝑉!"!#
!"#  !"#$%&'   is found by 
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𝑉!"!#
!"#  !"#$%&' = 𝑉!"#$! − 𝑉!"!#

!"#        

Equation 1.5 
Then 𝑉!"!#!"#$%is calculated from (2) and (5): 

𝑉!"!#!"#$% = 𝑉!"!#!"# − 𝑉!"!#
!"#  !"#$%&'      

Equation 1.6 
Two statistical tests are applied to the trends. One is a two-sided t-test of the 

significance of the linear trend with respect to the yearly residuals from the trend (47 

degrees of freedom if the the lag-1 autocorrelation of the residuals is small, a condition 

satisfied for the SLP). The other is a two-sided t-test of the reproducibility of the trend in 

the ensemble members, where the residuals are trends of the N individual ensemble 

members minus the ensemble mean trend (N-1 degrees of freedom) as in Deser et al. 

(2012).  This test will be called the “reproducibility” of the trend to distinguish it from 

the first test. 

1.3 Results	
  	
  
 
 

𝑆𝐿𝑃!"!#!"#  (Figure 1a)  shows reproducible positive trends in the Pacific, over India, 

and in the midlatitude North Atlantic, and reproducible negative trends in high latitudes 

of both hemispheres. The tropical Indian and Atlantic Oceans have large regions of 

negative SLP trend, but these are reproducible only in the Indian Ocean near 15°S and in 

the eastern tropical North Atlantic. 𝑇𝑆!"!#!"#  (Figure 1c) has significant positive values 

over most of the globe. Compared with the observed SST trend between ±40° latitude 

shown by Copsey et al. (2006), the externally forced trend in CCSM3 is similar in the 

Indian and Atlantic Oceans, but more uniform in the Pacific and weaker in the eastern 
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Pacific. The internally generated variability in the CGCM ensemble, taken as the 

unbiased standard deviations (SD) of 𝑆𝐿𝑃!"!#! and 𝑇𝑆!"!#!, Figures 1b and 1d 

respectively, are small in the tropics and increase with latitude. The increase is more 

pronounced in the case of the SLP. The increase of SD of 𝑆𝐿𝑃!"!#! with latitude is 

probably related in part to the internal atmospheric variability of NAO-like or annular 

modes of trend variability (Schneider et al. 2003,  Deser et.al. 2012). However, these 

modes do not appear to be responsible for the lack of reproducibility of the SLP trends in 

the middle latitudes of both hemispheres because the annular mode structures are clearly 

seen in the externally forced response (Figure 1a), and also because the irreproducible 

regions occur near the nodal surfaces of the annular modes. 

𝑆𝐿𝑃!"!# and 𝑇𝑆!"!#  (Figure 2) have areas of significant trends substantially 

smaller than the areas of reproducible trends shown in Figure 1.  

The AGCM ensemble means SLP trend, 𝑆𝐿𝑃!"#$!  (Figure 3a), has a spatial structure 

that is similar to 𝑆𝐿𝑃!"!# (area-weighted correlation 0.69 globally, 0.84 between ±30° 

latitude). 𝑆𝐿𝑃!"#$!  is reproducible in   regions where 𝑆𝐿𝑃!"!# trend is significant, but 

also in additional regions in the North Atlantic, North Pacific and Indian Ocean and 

Indian subcontinent. Over land and sea ice, 𝑇𝑆!"#$!  (Figure 3c) increases towards 

higher latitudes. 𝑇𝑆!"!# (Figure 2b) and 𝑇𝑆!"#$!  are similar even in regions where the 

significance of the trend is low, as long as the trends are reproducible. 𝑆𝑆𝑇!"#$!  is 

reproducible everywhere, of course, since the SST is identical in all of the AGCM 

ensemble members.  
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The variability of the intrinsic atmospheric noise trend in the AGCM ensemble is 

calculated as the SD of 𝑆𝐿𝑃!"#$! and 𝑇𝑆!"#$! (Figure 3b,d). SD of 𝑆𝐿𝑃!"#$! is smaller 

in the tropical and subtropical regions and increases with latitude. This increase is 

probably partly the result of internal atmospheric variability related to the NAO and 

annular modes.  SD of 𝑇𝑆!"#$!   over land shows the highest values over the Euro-Asian 

continent, and can be attributed to internal atmospheric variability, perhaps involving 

land surface feedbacks, since the SST and external forcing is the same in all of the 

AGCM ensemble members. .  

SD of 𝑆𝐿𝑃!"!#!
!"#  (Figure 1b) and SD of 𝑆𝐿𝑃!"#$! (Figure 3b) have similar structures. 

An f-test shows that the ratio of the intra-ensemble SLP trend variability between the 

CGCM and AGCM is not different from one at the 10% level except for a few isolated, 

small regions over land.  

𝑆𝐿𝑃!"!#!"#$% (Figure 4a) and 𝑆𝐿𝑃!"!#!"#  (Figure 4b) have similar structures in middle 

and high latitudes, but large areas where the sign differs in low latitudes, for example in 

the Indian Ocean. 𝑆𝐿𝑃!"!#
!"#  !"#$%!" (Figure 4c) is comparable to or larger than 𝑆𝐿𝑃!"!#!"#$%in 

low latitudes, and resembles the phase of the Southern Oscillation associated with La 

Nina there.  

𝑇𝑆!"!#!"#  (Figure 4d) shows cooling in the North and western Pacific, Indian Ocean 

and North Atlantic and warming over North America. The pattern is associated with a La 

Nina like structure, with warming in the western equatorial Pacific and cooling in the 

east, consistent with a positive coupled feedback between 𝑆𝐿𝑃!"!!
!"#  !"#$%&' and  𝑇𝑆!"!#!"# . 

The high  (low) temperature centers in the North Pacific (North Atlantic) correspond to 
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increased (decreased) westerlies inferred from 𝑆𝐿𝑃!"!#!"#$%. The configuration is consistent 

with the internally generated SST trends in those regions being forced by the SLP noise.  

1.4 Conclusions	
  	
  
 
 
The role of atmosphere-ocean coupling in the simulation of 1950-1996 TS and SLP 

trends was investigated in a perfect model setting, using coupled and SST forced 

simulations with specified 20th century external forcing. We found that the SLP trend of 

a coupled simulation was well reproduced over most of the globe by the mean trend of an 

AGCM ensemble forced by the SST from the coupled simulation. Our results show that 

the major characteristics of the trends are the response to the SST and external forcing in 

either the coupled or uncoupled models. While differences from the observed SLP trend 

over the Indian Ocean are seen both here and in the AGCM simulations of Copsey et al 

(2006), our results explain the error as a bias in the model, seen both with and without 

coupling rather than an error due to lack of coupling alone. Attribution of the trend errors 

to atmospheric model bias unrelated to coupling is supported by the model dependence of 

earlier results, i.e. the apparently better success of CAM3 in simulating the observed 

tropical SLP trends when forced by observed SST (Deser et al. 2012).  

It is important to note that our simulations were made with a single relatively low-

resolution model. The results might change in the model world or in comparison to the 

real world if a set of very much higher horizontal resolution climate models (e.g. Scaife 

et al. 2011) were used. In such a case qualitative changes in the strength of AGCM and 

CGCM atmospheric-ocean interactions, especially in the extratropics, should be expected 
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(Minobe et al. 2008). We recommend that similar perfect model experiments to those 

presented here be undertaken using other models, and especially high resolution coupled 

models, in order to determine the model dependence of the results. 
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Figure 1.1 a)   𝐒𝐋𝐏𝐂𝐆𝐂𝐌𝐄𝐱𝐭  c) 𝑻𝑺𝑪𝑮𝑪𝑴𝑬𝒙𝒕 for 1950-1996. Standard deviation of the trends in the 
CGCM ensemble for b) SLP and d) TS. Units are hPa per 100 years in a) and b), and K per 
100 years in c) where the reproducibility is significant at the 10% level are shaded and 
other areas are plotted with contours only. Contour lines represent same level as contour 
shading.  
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Figure 1.2 CONTROL coupled run linear trends for a) SLP  ( hPa century-1) and b) TS (°C 
century-1). Areas where the trend is significant at the 10% level are shaded and other areas 
are plotted with contours only. Contour lines represent same level as contour shading.  
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Figure 1.3 a) 𝑺𝑳𝑷𝑨𝑮𝑪𝑴𝒊 ,𝒃)  𝐒𝐃  𝐨𝐟  𝑺𝑳𝑷𝑨𝑮𝑪𝑴𝒊 , 𝒄)   𝑻𝑺𝑨𝑮𝑪𝑴𝒊 ,𝒅)  𝐒𝐃  𝐨𝐟  𝑻𝑺𝑨𝑮𝑪𝑴𝒊 for the six-
member AGCM ensemble forced by the CONTROL coupled run SST. Units and 
significance shading as in Fig. 1 for the respective panels. Contour lines represent same 
levels as contour shading 
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Figure 1.4 Trends in CONTROL: (a) 𝑺𝑳𝑷𝑪𝑮𝑪𝑴𝑵𝒐𝒊𝒔𝒆 , (b) 𝑺𝑳𝑷𝑪𝑮𝑪𝑴𝑰𝒏𝒕  (c) 𝑺𝑳𝑷𝑪𝑮𝑪𝑴

𝑰𝒏𝒕  𝑪𝒐𝒖𝒑𝒍𝒆𝒅 (d) 𝑻𝑺𝑪𝑮𝑪𝑴𝑰𝒏𝒕 . 
Units (hPa century-1) and upper color bar for (a)-(c), (°C century-1) and lower color bar for 
(d). Contour lines represent same levels as contour shading.  
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CHAPTER 2  WEATHER NOISE CHARACTERISTICS IN A SERIES OF 20TH 
CENTURY CCSM3 MODEL SIMULATIONS  

Abstract	
  	
  
 
Three main questions are investigated by the present study: 1) What are the statistical 

characteristics of model generated atmospheric weather noise? ; 2) Are these properties 

the same for the early and late 20th century?;  3) Are the characteristics of this noise 

depended on coupling between the ocean and the atmosphere? The weather noise is 

determined in post-industrial (1871-1998) Community Climate System Model 3 

simulations by removing the SST and externally forced responses from the total fields, 

where the forced responses are found from atmosphere-only simulations.  

The weather noise determined for the net surface heat flux is chosen for analysis. An 

empirical orthogonal function (EOF) analysis is performed globally, and for various 

regions. The spatial characteristics the noise are determined from the spatial structures of 

the EOFs, and by linear regressions of the SLP against the principal components (PCs), 

while the temporal characteristics are found from power spectra and probability density 

functions (PDFs) of the PCs. 

Our findings show that the temporal and spatial structures of the noise in the CGCM and 

AGCM simulations are very similar. The temporal structures of the noise are white at 

timescales larger than approximately 5 months, while the spatial structures resemble 
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those of major modes of observed climate variability. The comparison between the 

probability distribution functions for the noise PCs in the early and late periods shows 

that the main statistical properties of the noise do not change between the two periods. 

However, some of the noise PDFs, especially those for global patterns, departs 

substantially from a Gaussian structure, with enhanced probabilities for small anomalies.  

	
  

2.1.	
  Introduction	
  	
  
         

An important role for intrinsic atmospheric noise in forcing climate variability, and in 

particular, SST variability, was proposed by Hasselmann (1976). That single-point model 

represented forcing of SST by atmospheric noise as a specified white noise heat flux, and 

demonstrated that the large heat capacity of the ocean filters out the high frequency and 

leads to a red noise SST response that resembles the spectrum of observed SST 

variability. Since that time, other stochastically forced single column linear models have 

been developed to simulate the SST response to atmospheric noise forcing. The approach 

has also been extended to include the use of linear stochastically forced models for 

prediction of ENSO SST patterns in two spatial dimensions, including Gaussian white 

noise forcing to represent neglected process including atmospheric noise (Penland and 

Magorian1993; Newman et al. 2011). The role of atmospheric noise in ENSO irregularity 

has been addressed with stochastically forced linear models, for example by Blanke et al. 

(1997), where the spatial patterns of the monthly noise were estimated by removing the 

signal linearly and simultaneously related to the monthly SST anomalies. However, 
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Barsugli and Battisti (1998) demonstrated that if the SST anomalies are forced by the 

atmospheric noise, which can occur only in a coupled atmosphere-ocean system, the 

noise and the SST anomalies will be linearly correlated, and it is therefore not appropriate 

to assume that the noise is uncorrelated with the SST anomalies. In AMIP simulations 

forced by climatological SST and constant external forcing, that is when there is are no 

SST anomalies, all of the simulated atmospheric variability can be thought of as intrinsic 

noise. In this case, a single long simulation can be used to infer the properties of the 

noise. Schneider and Kinter (1994) examined properties of the noise in this way in multi-

century simulations with a low resolution AGCM. They identified Arctic Oscillation 

(AO) and Antarctic Oscillation (AAO) -like zonally symmetric modes as the leading 

EOFs of the global sea level pressure. Deser et al. (2012) made a 10,000 year run of the 

CAM3 AGCM with current day external forcing and climatological SST and used 56-

year trends in variables such as SLP in this run as a null hypothesis for the detection of 

externally forced climate change in CGCM simulations. 

A method consistent with the conceptual model of Barsugli and Battisti (1998) is used 

here to extract the space and time varying noise from an analysis of observations or a 

climate model simulation.  In order to determine the noise in this situation, the SST and 

externally forced signal needs to be determined and removed.  In the following, both the 

observed/analyzed and simulated fields are referred to as “observations” or “observed”. 

The method was first described and applied by Schneider and Fan (2007). In this 

approach, the SST forced signal is taken to be the ensemble mean of an ensemble of 

atmospheric model simulations forced by the observed SST (“AMIP ensemble”; Gates et 
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al. 1998). The noise in the AMIP ensemble members is uncorrelated with the SST, since 

the SST is specified and is not affected by the surfaces fluxes from the atmosphere. The 

noise in an AMIP ensemble member is also uncorrelated with the noise in the other 

ensemble members. The ensemble averaging then reduces the noise in the AMIP 

ensemble, but preserves the SST forced signal. The observed noise is then found by 

removing the time-dependent SST forced signal; however, only the noise in the 

observations can be related to the observed SST.  

Results from applying the AMIP ensemble method to determining the intrinsic 

atmospheric noise have been reported by Schneider and Fan (2007), where the 

observations were generated by a long coupled model simulation with constant external 

forcing using the COLA CGCM; by Fan and Schneider (2012), where the observations 

were from the 1950-2000 NCEP reanalysis (Kalnay et al. 2006); by Chen et al. (2013) 

and Chen and Schneider (2014), where it was argued that noise in the a long control 

simulation of the CCSM3 CGCM was indistinguishable from those the in the associated 

AMIP ensemble members, and that only the noise in the CGCM was consistent with 

noise forcing of the SST; and by Colfescu et al. (2013), where the method was extended 

to evaluating the noise in CCSM3 simulations with estimated 20th century external 

forcing. 

The studies described above did not examine the spatial or temporal properties of the 

noise in much detail. Here, having gained some confidence that the methodology 

produces meaningful results, we examine the statistical properties of the intrinsic 
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atmospheric noise in 20th century CCSM3 CGCM simulations more closely. In particular, 

the analysis is directed towards comparing the inferred properties of the presumably 

somewhat realistic CGCM noise to the noise properties are assumed in simplest 

stochastically forced models: 

• Is the noise temporally white, and if not, how can the temporal properties be 

characterized? 

• Is the noise spatially white, and if not, how can the spatial patterns be 

characterized? 

• Is the noise temporally Gaussian, and if not, how can the deviations be 

characterized? 

• Is the noise influenced by the changing external forcing, and if so, how? 

In addition, we apply the analysis to a more refined comparison between the statistical 

properties of the noise in the coupled and uncoupled simulations, since it is a prerequisite 

for the validity of the method that the noise statistics in the coupled and uncoupled 

simulations should be indistinguishable. 

2.2	
  Methodology	
  
 
 
The experimental design is the same as the one used in Colfescu et al. 2013. The models 

are the coupled model, the Community Climate System Model (CCSM3) (Collins 

et al., 2006a) and its atmospheric component, the Community Atmosphere Model 

(CAM3) (Collins et al., 2006b). As in Colfescu et al. 2013 a CGCM simulation 



  

20 
 

(CONTROL) covering the 1870-1998 period and including prescribed 20th century 

historical forcing represents the observations.  In order to calculate the weather CGCM 

weather noise an ensemble of six 20th century externally forced AGCM with SST forcing 

prescribed from the CONTROL is performed. The SST and externally forced response is 

defined as the ensemble mean of the atmosphere-only model simulations. The coupled 

CGCM weather noise (CGCM WN) is obtained by removing the forced component from 

the observations (CONTROL). The weather noise for each AGCM ensemble is obtained 

by removing the externally forced component from each AGCM member (AGCM WN).  

Monthly weather noise for CGCM WN and AGCM WN are calculated for total heat flux 

(THF). In order to study the regional differences in weather noise patterns four regions 

are used as described by Table 1: global domain (GD), Equatorial Pacific (EP), North 

Pacific (NP) and North Atlantic Ocean (NA). 

 

                                           Table 2.1 Index Names and Areas 
Index Name  Index Area  

Global Domain(GL) 60S to 60N and 0-360 

Equatorial Pacific (EP) -10S to 10N and 90E to 
100W 

North Pacific (NP) 20N to 60N and 90E to 
100W 

North Atlantic Ocean 
(NA) 

20N to 60N and 90W to 
40E 
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First, the main modes of variability of the weather noise are studied by calculating the 

Empirical functions ( EOFs) ( Storch and Zwiers 1999, Jolliffe 2000) and the 

corresponding principal components for THF WN. The first 3 EOFs and the associated 

PCs are used in this analysis. A spectral analysis of the PCs is performed in order to study 

the noise behavior in time. The significance of the spectrum is evaluated in each case 

using a Markov “red noise” confidence spectrum with upper and lower confidence curves 

of 5% and 99% respectively. In order to study the linkage of the noise with main climate 

variability modes, regressions of the Sea Level Pressure (SLP)  anomalies of noise fields 

onto the standardized noise PCs are performed  for each of the regions listed in Table 2.1. 

A two-sided t-test of the significance of the linear regressions with respect to the monthly 

(1536 degrees of freedom if the lag-1 autocorrelation of the residuals is small, a condition 

satisfied for the monthly data) is performed.  

Probability density functions (PDFs) of the nonstandardized  noise PCs are studied in 

order to assess changes in the noise patterns between the first and last 30 years of the 

period of study. A normal distribution is generated and compared to the PDFs of the 

standardized noise PCs in order check the similarity of the noise statistics to those of a 

Gaussian curve.  

2.3	
  Results	
  	
  
 

2.3.1	
  Total	
  Heat	
  Flux	
  EOF	
  Analysis	
  	
  
 
An EOF analysis was carried out for the CGCM WN and AGCM WN THF monthly 

values, for each of the regions defined by the indexes in Table 2.1.  
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The global patterns for the first 3 leading EOFs of the noise THF in the CGCM and 

AGCM are shown Fig. 2.1 left and right.  

The first EOFs explain - 6.5% and 6.1 % - for the CGCM  and AGCM  respectively. The 

CGCM EOF1 shows an east to west tripole pattern across the Atlantic Ocean with a small 

variation in the meridional direction. The centers are the Gulfstream, 40N and about 45N 

in East Atlantic along the European Coast. A wave like pattern with alternating centers of 

opposite sign, from West to East is seen in the Pacific Ocean. This pattern starts with a 

center over Kuroshio region and ends with an opposite sign center along the Western US 

coast. A very similar structure can be seen in the AGCM EOF1  ( Fig. 2.1a right). Neither 

the AGCM nor the CGCM patterns show much variability below 10N and the Southern 

Hemisphere.  

The second EOF (Fig. 2.1b right and left ) explains approximately 5% of the total 

variance for both the AGCM and CGCM and, as in the case of the first EOF, show little 

to no variability in the Southern Hemisphere. In the Pacific Ocean a dipole like pattern, 

extended on the meridional direction is seen. In the Atlantic Ocean a tripole pattern, with 

positive to negative alternative centers can, be seen from South to North. The tripole 

centers cover a much wider area than the first EOF, extends to both higher and lower 

latitudes and seem to be propagating from the tropical region. . 

The third EOF of is also similar between AGCM and CGCM. The Atlantic AGCM 

weather noise EOF3 (Fig.2.1 c) shows an east-west dipole in the Atlantic.  The third EOF 

of the is characterized by low to no variability in the Southern Hemisphere, a wave live 

structure over the Pacific Ocean, and a tripole structure in the Atlantic.  
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To study if such patterns occurred randomly the THF weather noise EOFs were 

compared to EOFs of a randomly generated timeseries with an average and standard 

deviation same to the noise (not shown). The comparison showed that in the northern 

hemisphere, in particular in the North Pacific and North Atlantic the spatial structures 

seen in Figure 3.1 cannot be found in the randomly generated weather noise..  

The global patterns have substantial amplitudes in both the Atlantic and Pacific. Thus the 

noise in the two oceans appears to be tied together somehow.  

2.3.2	
  Regional	
  EOFs	
  of	
  Total	
  Heat	
  Flux	
  	
  
 
 
The spatial patterns of EOFs 1-3 for the North Atlantic CGCM and AGCM weather noise 

are shown in Fig. 2.2. Again, all three EOFs for the AGCM and CGCM are very similar. 

The pattern of EOF1 is in agreement with that of global EOF2 (Fig. 2.1ba), showing a 

meridional tripole over the North Atlantic with centers  around the subpolar and 

subtropical gyres. The second EOF (Fig. 2.2b) shows also a dipole pattern in the zonal 

direction with one of the centers in the Western Atlantic and the other in the central and 

Eastern Atlantic. The third EOF is a tripole with zonal-meridional orientation, in both the 

CGCM and AGCM (Fig. 2.2 c ). The Pacific regional EOF1 (Fig. 2.3a) shows  in both 

the CGCM and AGCM a pattern with a negative center  over the western Pacific Ocean, 

North of 20N and with opposite sign in Eastern Pacific. The presence of a PDO like 

pattern here is in agreement with Newman et al. 2003 which shows that the PDO is 

caused by a "reddening" of the El Niño–Southern Oscillation (ENSO) combined with 
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stochastic atmospheric – weather noise – forcing. Pacific EOF1 is similar to the Pacific 

structure in global noise EOF2. 

The second NP EOF, Fig.2.3 b looks like a southward propagating wavelike structure in 

both AGCM and CGCM, similar to the Pacific structure in global EOF3. The third EOF 

(Fig. 2.3 c) shows  a wave train with four centers arcing across the Pacific, similar to the 

structure in global noise EOF1  

The EOFs in Fig. 2.4 show the main modes of noise variability found for the ENSO 

region. Again, CGCM and AGCM noise are indistinguishable. EOF1 (Fig. 2.4 a) has a 

monopole pattern concentrated over the western Pacific EOF2 is a north-south dipole 

centered on the equator and concentrated west of the dateline. EOF 3 has an east-west 

dipole structure more west of the dateline more or less symmetric about the equator. 

The EOF pattern analysis shows that the AGCM and CGCM noise EOFs are almost 

identical globally and regionally, and that the noise in the Atlantic and Pacific may have 

some connection. 

2.3.4	
  Regressions	
  of	
  noise	
  SLP	
  on	
  noise	
  THF	
  PCs	
  	
  
 

In order to have an understanding of what atmospheric structures are linked to the noise 

heat flux variability shown by the EOF patterns, regressions of the SLP noise anomalies 

onto the standardized THF noise PCs were carried out. For all the three global patterns, 

those found in the CGCM and AGCM correspond very well.  Wave like patterns can be 

seen in the Pacific and both north-south and east-west oriented structures in the Atlantic. 
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For the southern hemisphere there is little to no variability pattern thus, the SH 

hemisphere patterns are not shown.  

The SLP regressions on the North Atlantic THF noise PCs (Fig. 2.6) show that most of 

the Pacific variability is suppressed and a west to east wave like pattern can be seen in the 

Atlantic. As expected from the global EOFs, the SLP regressions on the regional Pacific 

THF noise index (Fig. 2.7) show a wave like patterns for all 3 PCs, both CGCM and 

AGCM. The regressions of SLP on the noise PCs of the “ENSO” region (Fig. 2.8) shows 

very low to no variability in the first PC (Fig 2.8 a, d ) and wave like patterns in PC2 and 

PC3  in both models.  

Thus, the regressions of the SLP onto the THF noise PCs show that the THF noise in the 

first three modes of EOF decomposition is associated to small-scale SLP structures.  

2.3.3	
  Noise	
  SLP	
  patterns	
  	
  
 
An EOF analysis was also made of the noise SLP in the CGCM and AGCMs. The first; 

three global patterns for the CGCM (Fig. 2.9) and AGCM (Fig. 2.10) are very similar. 

The first pattern has centers of opposite sign in the Pacific and Polar Regions and has 

some resemblance to the Arctic Oscillation pattern. The second pattern is a southern 

hemisphere analog first pattern and resembles the Antarctic Oscillation. The third pattern 

has centers of opposite sign in the North Atlantic and the polar region and resembles the 

North Atlantic Oscillation. These patterns are having much larger spatial scale than those 

associated with the THF. 

The regressions of noise SLP for CGCM and AGCM on the NA PCs indexes are shown 

in Fig. 2.11 and 2.12 respectively, and those on the NP PCs shown in Figs. 2.13 and 2.14. 



  

26 
 

CGCM and AGCM patterns closely correspond in both cases. The patterns are again 

much larger scale than those associated with the first the THF patterns, and are localized 

to the regions that the EOF decomposition was performed in. 

The regressions on ENSO regions noise SLP PCs ( Fig 2.15 and 2.16) have patterns that 

have large projections globally, in both hemispheres. The first pattern is symmetric about 

the equator with large projections, representing a mass exchange between low and high 

latitudes. The second is more or less antisymmetric about the equator, and the third 

represent redistribution of mass between the North Polar Region and the rest of the globe. 

	
  

2.3.4	
  Power	
  spectrum	
  Analysis	
  	
  
 
A power spectral analysis of the first three PCs for the THF noise has been carried out 

and the power spectra for AGCM PC1 from a single member of the AGCM ensemble is 

shown in Fig 2.17 and those for CGCM in Fig. 2.18. The significance of the spectrum is 

evaluated in each case using a Markov “red noise” confidence spectrum with upper and 

lower confidence curves of 5% and 95% respectively. There is a significant peak in the 

AGCM spectrum at about 39 month period in NA and another at about 100 month in GL, 

but these are do not appear in the spectra of the other AGCM members. Then for periods 

longer than 1 year the AGCM spectra are generally consistent with the temporal white 

noise. The CGCM ENSO spectrum has significant peaks at 63 and 30 months. We have 

not yet examined the other CGCM runs to see if these peaks are robust. Otherwise, the 

CGCM spectra are consistent with white noise.  
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2.3.5	
  Probability	
  Density	
  Functions	
  	
  
 
The probability density function ( PDF)  provides a probabilistic description of the PCs  , 

in particular the tails are critical in quantifying the density of occurrence of extreme 

values. The PDF shape, displacements and tails are investigated in order to study if:  

1) A shift in the noise standard deviation took place between 2 different periods – 1871-

1901 and 1951 -1998 – and second if the noise PDFs are in agreement with a randomly 

generated (Gaussian) curve i.e if the PDF of the noise PCs are approximately symmetric 

and bell-shaped. In order to study the changes between the 2 different periods the non-

standardized PCs were used while for comparison to the Gaussian curve the standardized 

PCs were used.  

For both periods the PDF was calculated, for every region of study. In Fig 2.19 the PDFs 

for the CGCM are shown. Although there are differences, the PDFs do not show 

substantial changes between the two periods.  

 The standardized PDFs are shown in Fig 2.21, in red for 1871-1901, in blue 1951-1991 

and in black for the Gaussian curve. 

Briefly, the properties for assessing if a PDF is a Gaussian are:  

- The highest point occurs at x = σ .  

-  It is symmetric about the mean.  

- It has inflection points at µ-σ and µ+σ.  

- The curve is asymptotic to the horizontal axis at the extremes.  

- The total area under the curve equals one.  



  

28 
 

For the PDFs analyzed (Fig 2.20  and Fig 2.21 ) the last condition is satisfied – namely 

the area under the curves is approximately 1 by construction. The curves are asymptotic 

to the horizontal axes for the extreme values however there is no perfect symmetry of the 

curves around the mean and the inflection points are not at µ-σ and µ+σ. 

When comparing to a Gaussian, both CGCM show that the global PDFs – panels j,k,l of 

the plots – are not a Gaussian  due to the fact that the median and around median 

probabilities are much higher than for a Gaussian curve. Outside +1 and -1 standard 

deviation the PCs (red and blue curves) the PDFs of the noise are close to the Gaussian 

curve therefore is probably the median values in the noise , not the extreme ones, that 

make the noise to diverge from a Gaussian curve. Similar behavior is seen for the 

Atlantic PC1 and PC2 PDFs in the AGCM however, the corresponding PCs in the 

CGCM (Fig 2.20 g and h ) are very close and could be approximated to the Gaussian 

curve. For the ENSO region both the CGCM and AGCM PCs 1 and 2 – Figures 1.20 and 

1.21 d , e , f  - are very close to the Gaussian curve and could be  considered 

approximately Gaussian while PC3 shows higher probability between -1 and +1 standard 

deviation than in the Gaussian.  

The PDFs for the North Pacific (Figures 1.20 and 1.21 a,b,c) are not Gaussian for PC2 

and PC3 but have very close to Gaussian values for PC1 in both periods.  

Therefore we could conclude the the standardized PCs for the regions of study are 

Gaussian outside +1 and -1 standard deviation but in general they show higher 

probability within those values than a Gaussian curve.  
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2.4	
  Conclusions	
  	
  
 

We investigated the statistical characteristics of atmospheric weather noise from the point 

of view of the total surface heat flux variability, as quantity is important for forcing SST 

variability, and compared the properties in a CGCM simulation with those in AGCM 

simulations forced by the CGCM SST. The first three EOF modes of the CGCM and 

AGCM THF weather noise, calculated globally and over several distinct regions, 

correspond closely to each other in terms of spatial patterns. They are associated with 

synoptic-scale SLP patterns. The dominant noise SLP patterns in CGCM and AGCM also 

corresponded closely, but had much larger spatial scales that those associated with the 

THF. The PCs of the THF noise are temporally not distinguishable from white noise at 

timescales longer than approximately a year.  The PDF’s of the THF noise did not show a 

strong response to the changing external forcing between 1871-1901 and 1951-1998. 

However, the PDF’s were not those of random noise, having higher probability than a 

Gaussian distribution for small amplitudes.  

 

 



  

30 
 

 

Figure 2.1 Noise EOFs for CGCM (left) and AGCM (right); EOF1 (a and d respectively); EOF2 (b and e 
respectively) and EOF3 (c and f respectively) 
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Figure 2.2 Atlantic CGCM THF noise EOF1 (a), EOF2 (b),EOF3 (c) and AGCM THF EOF1 (d), EOF2 (e) and  
EOF3 (f). 
 

  
Figure 2.3 North Pacific CGCM THF noise EOF1 (a), EOF2 (b),EOF3 (c) and AGCM THF EOF1 (d), EOF2 (e) 
and EOF3 (f). 
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Figure 2.4 Same as in Fig 2.4 but for ENSO region 
 
              a                                             b                                            c 

       
Figure 2.5 Regressions of Noise SLP onto Global Noise THF (-60S-60N and 0-360) PC1 ( column 1), PC2 
(column2) and PC3 (column3) for CGCM first row and AGCM second row.  
 
      



  

33 
 

           
Figure 2.6 Regressions of Noise SLP onto Noise THF (-20S-60N and 90W-40E) PC1 (column 1), PC2 (column2) 
and PC3 (column3) for CGCM first row and AGCM second row.  
 
        

               
Figure 2.7 Regressions of Noise SLP onto Noise THF (-20S-60N and 100W-270W) PC1 (column 1),PC2 
(column2) and PC3(column3) for CGCM first row and AGCM second row.  
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Figure 2.8 Regressions of Noise SLP onto Noise THF (-20S-60N and 100W-270W) for CGCM PC1 (a), PC2 (b) 
and PC3 (c) and for AGCM , PC1 (d), PC2(e) and PC3 (f). 
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Figure 2.9 Regressions of CGCM Noise SLP onto Global Noise PC1 (a), PC2 (b) and PC3 (c) 
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Figure 2.10 Regressions of AGCM Noise SLP onto Global Noise PC1 (a), PC2 (b) and PC3 (c)   
 

            
Figure 2.11. Same as Figure2 1.6 but for Atlantic Region, CGCM 
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Figure 2.12 Same as 1.7 but for Atlantic region,AGCM. 
 

                        
 
Figure 2.13 Same as in Fig.2.6 but for North Pacific 
 



  

38 
 

              
Figure 2.14 Same as in 1.7 but for North Pacific 

                 
Figure 2.15 Same as in 1.6 but for ENSO region index 
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Figure 2.16 Same as in 1.7 but for ENSO index 
 

                        
Figure 2.17 Spectrum of PC1 for NP(a), ENSO(b),NA(c) and GL(d) in the AGCM. The blue dotted curves 
represent 5(lower) and 95% white noise confidence intervals and the black curve the AR (1) white noise fitted 
model. 
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Figure 2.18 Spectrum of PC1 for NP(a), ENSO(b),NA(c) and GL(d) in the CGCM. The blue dotted curves 
represent 5(lower) and 95% white noise confidence intervals and the black curve the AR (1) white noise fitted 
model. 
 

                  
Figure 2.19 Probability Density Functions for CGCM PC1(column 1), PC2 (column 2) and PC3 (column3) for 
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NP(a,b,c),ENSO (d,e,f),NA(g,h,i) and Global(j,k,l). Red curve PDF for 1871-1901 and blue 1951-1998. 
 
 

           
Figure 2.20 Probability Density Functions for AGCM PC1(column 1), PC2 (column 2) and PC3 (column3) for 
NP(a,b,c),ENSO (d,e,f),NA(g,h,i) and Global(j,k,l). Red curve PDF for 1871-1901 and blue 1951-1998 
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Figure 2.21  CGCM PDFs  of  THF PC1 for NP(a),ENSO(b),NA(c) and Global(d) 
            
 

                 
 

Figure 2.22 Same as in 1.16 but for AGCM 
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CHAPTER 3  ATTRIBUTION OF ATLANTIC MULTIDECADAL 
VARIABILITY TO EXTERNAL FORCING, INTERNAL VARIABILITY AND 

WEATHER NOISE  

 
 

3.1	
  Introduction	
  	
  
 

Separating the SST variability forced by atmospheric weather noise from that due to 

other natural and external sources is a challenging problem. Hasselman (1976) suggested 

that the low frequency variability of sea surface temperature could be forced by 

atmospheric weather noise fluxes. Hasselmann’s ideas suggested the following null 

hypothesis: surface temperature climate variability is forced by weather noise (Schneider 

and Fan 2007). While Hasselmann's work was a first step in the direction of attributing 

the causes of SST variability to noise vs. more deterministic sources, other studies using 

both simple and more complex and realistic models followed, including Frankignoul and 

Hasselmann (1977), Barsugli and Battisti 1998 , Bretherton and Battisti 2000, Marshall et 

al. 2001, Kirtman et. al. 2009,,Kirtman et al. 2011, Fan and Schneider 2012, Schneider 

and Fan 2012, and Chen (2013). SF2007 introduced a new model-based method that 

separates the weather noise from other internal sources of climate variability. This 

method uses a generalization of the Interactive Ensemble introduced by Kirtman and 

Shukla (2002) to isolate the role of the atmospheric weather noise for the low frequency 

variability of SST and tests the null hypothesis for a coupled general circulation model 
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(CGCM) . A schematic description of the noise extracting procedure is shown in Fig. 3.1.   

The findings of SF2007, Kirtman et al. (2009), and Chen (2013) suggest that the 

null hypothesis is true in current climate CGCM (coupled general circulation model) 

control simulations (i.e. with constant external forcing on interannual and longer time 

scales) regionally over much of the world including much of the North Atlantic. 

However, these studies also identify important regions where the null hypothesis fails, 

including the equatorial Pacific, and some regions in the high latitude oceans. The results 

are consistent with an important role for unstable coupled atmosphere ocean dynamics in 

the equatorial Pacific related to ENSO (Kirtman et al 2002), and an significant influence 

of noise originating from internal ocean dynamics (oceanic noise) in high latitudes (Wu 

et al. 2004) of these models. 

This study extends previous work to isolate the role of the atmospheric weather 

noise forcing in the climate variability of a CGCM (coupled general circulation model) 

forced by an estimate of the 20th century external forcing. A decomposition of the origins 

of the simulated SST/climate variability for 1870-1999 of individual CGCM simulations 

into externally and internally generated components, and attribution of the internally 

generated variability to forcing by atmospheric noise and other causes is performed with 

the aid of an ensemble of externally forced CGCM simulations and interactive ensemble 

CGCM diagnoses. The focus of the investigation is attribution of the low-frequency 

variability in the North Atlantic of the CGCM to external forcing, atmospheric noise 

forcing, and other causes.  

The underlying issue that we are addressing is attribution of the climate variability 
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in the observed system. However, attribution inevitably involves the use of CGCM 

simulations, usually as analogues of the observed system, and always as spatial and 

temporal interpolators of the observed data for quantitative analysis. It follows that a 

thorough understanding of model-simulated climate variability, where data and model are 

“perfect”, is therefore reduced to a mathematical problem, and is a prerequisite to 

addressing the much more complex issues encountered in understanding the real system. 

Our techniques combine the ideas and framework for understanding provided by the 

simple models with the detailed representation of the physical laws and empirical 

relationships provided by the complex CGCMs. The use of the interactive ensemble 

allows the role of noise to be addressed deterministically rather than statistically, and 

produces a detailed representation of the internal variability amenable to a process-level 

decomposition.  

In the North Atlantic, two main modes of low frequency climate variability of SST 

have been documented during the period of instrumental observations: a biennial and a 

decadal time scale SST variability. The decadal one, now called Atlantic Multidecadal 

Variability (AMV) (Bjerknes 1964, Deser and Blackmon 1993, Kushnir 1994, 

Schlesinger, and Ramankutty 1994, Mann and Park 1996, Delworth et al. 2007), has a 

period of oscillation in the range of 30 to 70 years and a spatial pattern characterized by 

basin-wide fluctuations over in the North Atlantic SST with a single-signed SST structure 

(Fig. 3.2 ).  Beginning with the study of Folland, Palmer and Parker (1986), it has been 

understood that changes of the ocean sea surface temperature in the Atlantic might have a 

crucial role in producing 20th century Sahel droughts; other studies, such as Giannini et. 



  

46 
 

al 2003, Held et. al 2005 and Zhang et. al 2006, Enfield 2001 have made a strong case for 

the importance of the oceanic sea surface variability on the African climate variability, in 

particular on the precipitation at decadal and multidecadal timescales. These studies link 

AMV with land processes such over Africa, North America or Europe and with Atlantic 

hurricane activity.  

The role of internally versus externally forcing of AMV has been previously 

documented by many studies (Franckcobe 2009, 2008; Farnetti and Wallis 2009; Fan and 

Schneider 2012). The results show that although external forcing might have been 

contributed to the observed multidecaldal variations in SST over the Atlantic, the AMV 

seems to be a manifestation of internal climate variability. Studies find an important 

contribution of Atlantic Meridional Overturning Circulation (AMOC) on AMV 

modulation. Delworth and Greatbatch (2000) conclude that the AMV in their model was 

produced by a damped mode of the AMOC forced by the atmospheric weather noise, 

with both heat and salt transport playing a role. However other studies (e.g. Ottera et.al. 

2010) show that external forcing as solar forcing and the volcano activity might also be 

an important modulator of AMV.   

      Thus, different models and different approaches highlight different mechanisms. It it 

is has not been settled how much of the observed AMV variability is externally forced, 

how much is internal, or the roles played by the various dynamical mechanisms (weather 

noise forcing, coupled atmosphere-ocean modes, ocean dynamics including AMOC, 

Rossby waves, and gyre circulations) and their interrelationships.  

Our study addressed the following specific questions: 
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⁃  What are the roles of internally generated vs. externally forced variability in the AMV 

and AMOC time scale, mechanism and fluctuations in the 20th century model 

world of a specific CGCM.  

⁃  What is the effect of the weather noise and external  forcing interaction  (if any) on 

AMV, AMV-AMOC ?  

⁃  To what extent are the AMV and AMOC fluctuations generated internal in the North 

Atlantic, Subtropical Atlantic, or forced from other parts of the globe?    

⁃   What are the potential biases that the models and procedures introduce into the 

diagnosis?  

 

Also the present work will advance the conceptual understanding of the SF2007 method 

of extracting the atmospheric noise and apply it in a new, a state-of-the-art coupled global 

climate model with a 20th century forcing. 

In section 1.2 the models and experiments are described, the results are presented 

in section 1.3, while section 1.4 contains the summary and discussion. 

	
  

3.2	
  Models,	
  Experiments	
  	
  and	
  Methodology	
  
 

Diagnostic experiments are performed using the Interactive Ensemble (IE) 

based on CCSM3 (Chen 2013). All the experiments are carried out in “the model world” 

i.e the diagnostic models are perfect, in the sense that they have the same dynamics and 

physics as the CGCM used for the target simulations, and the data is perfect in that the 

model output data is known without error. 

3.2.1	
  Models	
  
 
3.2.1.1  The CGCM and AGCM 
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The base model used is Community Climate System Model 3 (CCSM3, Collins et 

al., 2006a) and its atmospheric component, the Community Atmosphere Model (CAM3) 

(Collins et al., 2006b). Both are the same models as used in Chapter 1 and 2.  

The model resolution, for both the coupled and atmospheric component, was T42 spectral 

resolution in the horizontal and 26 levels for the atmosphere, and 1º by 1º degree 

horizontal, 40 levels for the ocean (the T42gx1v3 resolution).   

 

3.2.1.2 The Interactive Ensemble CGCM 

The IE used here is based on the CCSM3 AGCM and includes identical physics 

and dynamical representations as in CCSM3. The resolutions of the component models 

are the same as described above. The only difference is in the coupling between the 

atmosphere and the other components. The IE (first applied by Kirtman and Shukla 2002) 

consists of the CCSM3 ocean, land, and sea ice models coupled to the ensemble mean of 

an ensemble of CAM3 atmospheric models (Fig. 3.3). The single CAM3 AGCM that is 

coupled to the other components is replaced by the ensemble mean of six CAM3 models, 

and the ensemble mean atmosphere forces and responds to the other components. The 

capability specified surface flux forcing of the ocean is also included, in order to force the 

ocean with atmospheric noise data. The data includes the observed estimates of the 1870-

1998 time evolving natural and anthropogenic forcing – greenhouse gases, volcanic 

effects (Amman et. al. 2003 ), ozone ( Meehl et. al 2004 ), and solar activity ( Lean et. al. 

1995). All AGCMs have the same boundary conditions; the SST from the OGCM is 

updated daily, as well as the same land and sea ice, but different initial conditions. The 
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atmospheric feedback fluxes, i.e. the response of the atmospheric surface fluxes to the 

SST are determined as the mean of the AGCM ensemble. The atmospheric weather noise 

surface fluxes obtained from CGCM simulations are used to force the IE-CGCM in a 

series of controlled experiments designed to isolate the sources of the decadal variability 

of the targeted simulation and regionally. Chen (2013) applied this version of the IE with 

constant current-climate external forcing.  

The rationale behind the IE is that the noise in one of the AGCM simulations is 

uncorrelated with that in each of the others, but the SST and externally forced part of the 

solution in each is the same, since each AGCM is started with different initial conditions, 

but each is forced by the same SST , land, and sea ice conditions. The ensemble mean of 

the AGCMs then approximates the atmosphere’s response by the boundary conditions 

only, as the noise is filtered out., assuming that each atmospheric ensemble member is 

statistically identical. When the ocean component is forced by the atmospheric feedback 

fluxes only, atmospheric noise due to the chaotic internal atmospheric dynamics is 

filtered out (Fig. 3.3), and climate variability due to atmospheric noise is eliminated. 

Forcing the IE with specified noise then reinserts the atmospheric noise back into the 

system, but in a controlled and deterministic manner. 

The current implementation of the IE is incomplete in that the atmosphere/land 

and atmosphere/sea ice components is inaccurate – the fluxes are computed from the 

ensemble mean atmosphere prognostic variables, whereas they should be computed 

separately for each of the atmospheric ensemble members and then averaged, and there is 

noise forcing only over ocean, not land or sea ice.  
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3.2.2	
  Experiments	
  	
  
 
The main purpose of these experiments is to study what are the roles of internally 

generated vs. externally forced variability in the fluctuations of Atlantic SST, in 

particular on AMV and AMOC at decadal and time scales, in the 20th century model 

world of a specific CGCM. The experimental design contains three parts. The first is an 

ensemble of CCSM3 simulations of the 1870-1999 climate, started from preindustrial 

initial conditions. The simulations are the same as the ones used in Colfescu et al. 2013, 

plus an additional ensemble member.   An  ensemble of  climate of the  20th century 

 produced with CCSM3 similar to the ones used here, but with different atmospheric 

resolution (T85) is used in Kirtman et al. (2011). The overall experimental design of 

Kirtman et al. 2011 is the same as the one used here with the main exception that the IE-

CGCM in Kirtman et.al is not forced by the weather noise. Therefore our experimental 

design is an extension of the one in Kirtman et al. (2011). The second part is a set of 

experiments carried out in order to define the weather noise surface fluxes for specific 

members of the CCSM3 ensemble. The third is a set of diagnostic simulations carried out 

to isolate the roles of external forcing and weather noise on the AMV and AMOC. of the 

target CGCM simulations. 

3.2.2.1. CGCM Simulations  

The CGCM_ens simulations (Table 3.1) will be used both as analogues of the 

observed climate system and to separate these “observations” into externally forced and 

internally generated variability. A set of 6 CCSM3 simulations of the 20th Century is 

performed. The period covered is 1870-1999. Each member of CGCM_ens is forced by 
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the standard “IPCC” forcing used in CCSM3 in the CMIP3 atmospheric model 

intercomparison project (the SRES A1B scenario, IPCC AR4 ). The initial conditions of 

the coupled ensemble members (both atmosphere and ocean) were obtained by choosing 

arbitrarily January 1 restart files from a 500 year pre-industrial control run with external 

forcing fixed at 1870 levels (archived as run b30.043 as part of the Community Earth 

System Model database at the National Center for Atmospheric Research). 

The first member and second members of the ensemble, Cont1 and Cont2, will 

represent the “observations” of the climate of the 20th century in the model world, and 

will be subject to diagnoses using the IE. Daily data for SST, surface foxes, wind and 

fresh water are saved for Cont1 and Cont2 and used for calculating the weather noise 

surface fluxes for each run. 

  
 
 
 
Table 3.1 SET 1 of experiments: CGCM Simulations. All simulations are from 1870-1998. 

Experiment Name Model Ensemble members External Forcing 
CGCM_ens CCSM3 Cont1 

Cont2 
Cont3 
Cont4 
Cont5 
Cont6 

20th century  

 

3.2.2.2	
  AGCM	
  Simulations	
  	
  

The AGCM ensembles are used in the calculation of the weather noise surface 

fluxes, which, will be used to force IE –CGCM simulations.  Two ensembles of 1870-

1998 AGCM simulations were carried out (Table 3.2). Each ensemble has six-members 
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with different initial conditions, but the same SST for each ensemble member. All of the 

AGCM simulations use the same, 20th century, external forcing as in the CGCM 

ensemble. The ensemble members of AGCM_ens_Cont1 and AGCM_ens_Cont2 are 

forced by the time evolving daily SST from Cont1 and Cont2, respectively. 

As described in Chapters 1 and 2, the ensemble mean of the results from the 

AGCM ensemble members estimates the response of the atmospheric model to the 

applied SST and external forcing (the “forced response”).  That is, the ensemble mean 

from AGCM_ens_Cont1 provides an estimate of the atmospheric response to the external 

forcing and SST in Cont1, and AGCM_ens_Cont2 estimates the forced response in 

Cont2. The weather noise for a field in Cont1 is then estimated by subtracting the 

AGCM_ens_Cont1 forced response from the Cont1 results for that field, and in Cont2 by 

subtracting the AGCM_ens_Cont2 forced response from the Cont2 results. Due to an 

oversight, the weather noise heat flux did not include the latent heat contribution from 

melting of snowfall. 

 

Table 3.2 SET 2 of experiments: AGCM Ensemble Simulations. All simulations are from 1870-1998. 
Experiment Name Model Ensemble members External Forcing SST Forcing 

ACGM_ens_Cont1 
 

CAM3  ACGM1_Cont1 
AGCM2_Cont1 
ACGM3_Cont1 
AGCM4_Cont1 
ACGM5_Cont1 
AGCM6_Cont1 

20th century  Cont1 

AGCM_ens_Cont2 CAM3 ACGM1_Cont2 
AGCM2_Cont2 
ACGM3_Cont2 
AGCM4_Cont2 
ACGM5_Cont2 
AGCM6_Cont2 

20th century  Cont2 
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3.2.2.3	
  IE	
  Simulations	
  

 The IE experiments are listed in Table 3.3 and described below. The noise 

forcing data is from Cont1 and AGCM_ens_Cont1, and ocean initial conditions are the 

same as in Cont1, except for IEAllCont2, where they are from Cont2/AGCM_ens_Cont2. 

3.2.2.3.1	
  No	
  weather	
  noise	
  -­‐	
  IEnn	
  	
  
 

IEnn is an IE-CGCM simulation with 20th century external forcing and no 

specified noise forcing. It corresponds to the IE simulation described in Kirtman et al. 

(2011). In this experiment, variability forced by atmospheric weather noise is suppressed, 

and all climate variability is due to external forcing, coupling between the forced solution 

of the atmosphere and the ocean, land, and/or ice, and internal variability of the ocean, 

land, and ice components. If the atmospheric noise and external forcing are the dominant 

sources of SST variability, then IEnn will simulate the externally forced variability.  

3.2.2.3.2 Global weather noise – IEAll 

IEAll is forced by prescribed 20th Century historical forcing and the Cont1 

atmospheric noise forcing over the ice-free parts of the oceans (heat flux, wind stress, and 

fresh water flux). If all climate variability in Cont1 is forced by atmospheric weather 

noise, then the SST variability in IEAll will reproduce that in Cont1. 

3.2.2.3.3 Weather Noise restricted to Atlantic regions - IE030,IE3060   

To study the response of the  SST to regional Cont1 weather noise forcing, two 

simulations  were  performed. In The first one –IE030- the SST is forced with weather 

noise surface fluxes restricted to the Atlantic ocean region from 0 to 30N. Outside of this 

region, no weather noise forcing is applied. In the second, IE3060, the noise forcing is 
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applied only in a more northern part of the Atlantic ocean basin, from 30N to 60N. Both 

simulations include 20th century external forcing. The simulations are designed to show 

to what extent the Atlantic SST variability is forced directly by local weather noise, as 

opposed to originating in other regions and transmitted by dynamical teleconnections. 

Moreover, since the forcing is local, the separation between the Northern and Southern 

parts of the basins will show the role from the noise forcing in the adjacent region.  

3.2.2.3.5	
  No	
  20th	
  century	
  forcing	
  	
  	
  -­‐	
  IENoIpcc	
  

IENoIpcc is a simulation forced with Cont1 atmospheric noise forcing over the 

global ice-free ocean in the absence of the external 20th Century forcing, IENoIpcc is 

used to isolate the role of noise forcing in the SST variability. This simulation is also 

used to evaluate secular drift in the IE. 

3.2.2.3.6	
  Global	
  weather	
  noise	
  –	
  IEAllCont2	
  	
  	
  

IEAllCont2 is the equivalent of IEAll, but the weather noise forcing used to 

forced the ocean model is obtained from Cont2 and AGCM_Ens_2, and Cont2 ocean 

initial conditions are used for the ocean.  
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Table 3.3 SET 3 of experiments: IE Simulations. All simulations are from 1870-1998. 
Experiment Name Model External Forcing Other forcing 

IEnn CCSM3 
Interactive Ensemble 

 

20th century  No noise forcing 

IEAll CCSM3 
Interactive Ensemble 

20th century  Noise evaluated from Cont1 
applied over the global ocean 

IE030 CCSM3 
Interactive Ensemble 

 

20th century  
 

Noise evaluated from Cont1 
applied only in the 0-30N box 
over the Atlantic 

IE3060 CCSM3 
Interactive Ensemble 

 

20th century  
 

Noise evaluated from Cont1 
applied only in the 30-60N 
box over the Atlantic 

IENoIpcc CCSM3 
Interactive Ensemble 

 

Preindustrial control  
 

Noise evaluated from Cont1 
applied over the global ocean 

IEAllCont2 CCSM3 
Interactive Ensemble 

20th century  Noise evaluated from Cont2 
applied over the global ocean 

 

3.1.2	
  Methodology	
  	
  

In this section we describe the methods used in separating and quantifying the 

SST variability, into weather noise forced, externally forced and other sources. An 

evaluation of the differences between the IE and CGCM simulations is presented in 

Section 3.1.2.3. We note unrealistic features in both the CGCM and the IE simulations. 

AMV and AMOC indices are defined that are appropriate for analysis of the externally 

forced and internal variability.  

3.1.2.1	
  Decomposition	
  of	
  CGCM	
  Simulations	
  

The decomposition of the solution for any variable from a CGCM simulation is 

the same as described in Chapter 1, Eqs. (1.1-1.6), but for variability on all time scales – 

not just the trends. The externally generated component is taken to be the ensemble mean 

from a CGCM ensemble with all members having the same external forcing. The 

internally generated component is then the CGCM solution minus the externally forced 
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component.  

The SST and externally generated component of an atmospheric variable is the 

ensemble mean of an AGCM ensemble, with each member forced by the external forcing 

and SST of the CGCM. The atmospheric noise in the CGCM is then the CGCM solution 

minus the SST and externally forced component.  

3.1.2.2	
  Decomposition	
  of	
  IE	
  simulations	
  
 

Similarly to the decomposition of a CGCM simulation, a given variable in an 

interactive ensemble simulation, 𝑉!", can be decomposed into an externally forced, 𝑉!"!"#, 

and an internally generated variability component, 𝑉!"!"#$%: 

𝑉!" = 𝑉!"!"! + 𝑉!"!"#           

Equation 3.1 
The internal variability of a single IE simulation made with the IE configuration 

used here (AGCM_ens Cont1, AGCM_ens_Cont2 ensemble coupled to single instances 

of the other component models) includes that due to process involving coupling between 

the atmosphere and the other component models, 𝑉!"
!"#  !"#$%&', that due to internal 

variability of the ocean, land, and, or sea ice components not involving the atmosphere, 

𝑉!"!"#  !"#$%  !"!!", and variability due to forcing by specified atmospheric noise, 

𝑉!"!"#  !"#$%  !"# 

  𝑉!"!"# = 𝑉!"
!"#  !"#$%&' + 𝑉!"!"#  !"#$%  !"!!" + 𝑉!"!"#  !"#$%  !"#                   

Equation 3.2 
A single simulation of the IE without atmospheric noise forcing includes externally 

forced variability and internal variability represented by Eq. 3.2. This is the case with 

simulation IEnn: 
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𝑉!"## = 𝑉!"##!"# + 𝑉!"##
!"#  !"#$%&' + 𝑉!"##!"#  !"#$%  !"!!"        

Equation 3.3 
The internal variability in the IE due to the atmospheric noise forcing is then found by  

𝑉!"!"#  !"#$%  !"# = 𝑉!" − 𝑉!"##                                                                                                                                   

− 𝑉!"
!"#  !"#$%&' − 𝑉!"##

!"#  !"#$%&'  

                                                −(𝑉!"!"#  !"#$%  !"!!" − 𝑉!"##!"#  !"#!"  !"!!")   

Equation 3.4 
The externally forced component is removed completely in Eq. 3.4. The internal 

variability due to coupled process is uncorrelated between two IE simulations, but should 

be otherwise be statistically the same. The same is true of the internal variability due to 

noise in the other components. Therefore, the variances of these components will be 

reduced by half compared to their variances in the original IE simulations in the 

computation of the response of the IE to the atmospheric noise.  

The coupled and other noise variability cannot be removed from the IE 

simulations without conducting ensembles of IE runs for each choice of external or 

atmospheric noise forcing. Because of the filtering effect of taking the difference between 

two simulations described above, we use 

𝑉!"!"#  !"#$%  !"# = 𝑉!" − 𝑉!"##           

Equation 3.5 
as an estimate of the IE response to the atmospheric noise forcing, but it should be 

remembered in interpreting the results that this estimate is accurate only as far as other 

sources of internal variability are unimportant in the IE. All variability in IENoIpcc is 

internal, as there is not external forcing.  
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3.1.2.3	
  Climatologies	
  of	
  CGCM	
  and	
  IE	
  simulations	
  
 

The 1871-1998 difference between the CGCM_ens climatology and the one in 

IEAll, normalized by the pooled standard deviation, is shown in Fig. 3.4. This difference 

is calculated as : the difference between the SST in IEAll minus the one in Cont1 divided 

by the pooled variance :  

𝜎!! =
𝑁! − 1 ∗ 𝜎!! + 𝑁! − 1 ∗ 𝜎!!

𝑁! + 𝑁! − 2
 

                                                                                       Equation 3.6 
 
where N1 is number of moments of times in IEAll , N2 number of moments of time in 

Cont1,  𝜎!  standard deviation in IEAll and 𝜎!  standard deviation in Cont1.  

 
Thus the pooled variance (Equation 3.1) is obtained from the IEAll and Cont1 SSTs with 

long term mean for 1871-1998 removed (similar to Kirtman et al. 2011).  

 
The normalized surface temperature differences are highest over ice and land but 

also the North Atlantic and North Pacific. Over the ocean, the large differences over the 

North Eastern Pacific and North Atlantic occur in the same regions as in Kirtman et. al 

(2011), and that study suggests that these differences might be to the fact that in these 

regions the SST variability is dominated by localized mixed-layer processes.  

Figure 3.5 shows that the CGCM_ens experiments substantially overestimate the 

ice extent compared to the observed (Fig. 3.6 ) system in the North Atlantic.. The ice 

extent in Cont1 is the largest in the entire CGCM_ens. On the other hand, the IE ( purple 

curve) also has issues although the ice extent is smaller in comparison to Cont1 and 
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closer to real one . The atmosphere/land and atmosphere/ice coupling are crude in the IE 

and are a potentially large source of bias compared to the CGCM. Additionally there are 

no noise fluxes applied over the ice and land in the IE. Then over regions with extended 

ice in CGCM_ens the CGCM results may not apply to the real climate system, and the IE 

is not useful for diagnosing the behavior the CGCM there. These considerations will 

influence the definition of the AMV index, described below.  

3.1.2.4	
  The	
  AMV	
  index	
  

In analyzing observations, some assumptions are necessary to separate externally forced 

and internal climate variability. Firstly, the 20th century external forcing is not well 

known, for example for solar variability and volcanic aerosols. Secondly, the calculation 

of the influence of this external forcing on the climate system must of necessity involve a 

model or simplifying assumptions about the behavior of the climate system. Some 

previous studies, including Schlesinger et al. (1994), Enfield et al. (2001), Sutton  and 

Hodson (2005), Trenberth and Shea (2006), and Knight et al. (2006) , calculate the AMV 

index as the annual SST average between 0-60N and 0-80W with the linear trend 

removed and then low-pass filtered (Fig. 3.2). The interpretation of this AMV index as 

representing internal variability in the North Atlantic is based on the assumption that that 

the linear trend is a good approximation to the response to the 20th century external 

forcing, and that trends due to internal variability are unimportant. Another method of 

calculating the AMV index is to use the global mean SST as a representation of the 

externally forced signal ( Trenberth and Shea 2006; Mann and Emanuel 2006) and then 

subtract it from the North Atlantic SST in order to remove the forced signal.  
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Ting et al. (2009) use regressions of the SST onto the globally averaged SST  to obtain an 

estimate of the internal component of AMV as the local difference between the total field 

and the regression. DelSole et al. (2011) shows that there is a global pattern of internal 

multidecadal variability, separable from the anthropogenic signal, centered in the 

Atlantic. This pattern is shown to contribute significantly to the global warming trend 

of the recent decades -1977–2008- suggesting thus clearly the necessity to separate 

accurately between the forced and internal SST patterns of variability in the North 

Atlantic. Thus there are assumptions, first that the global mean SST variability is 

predominantly due to external forcing, and second that internal AMV variability has no 

correlation with the global mean SST.  The assumptions made in the above examples 

avoid the necessity for either knowing the external forcing or modeling the climate 

system.  

At the other extreme, in the model world it is possible to determine the externally 

forced and internally generated signals without making any assumptions, as the ensemble 

mean of an ensemble of climate model simulations, all with the same external forcing 

(e.g. Deser et al. 2011). The ensemble can consist of one member for simple models, 

while for CGCMs, multiple ensemble members are necessary because of the chaotic 

behavior of weather disturbances. This is the approach we take. 

Here the total AMV is calculated as the annual SST average between 0-60N and 

0-80W with any grid point containing ice in Cont1 during the entire simulation masked 

out. This definition allows meaningful comparison of CGCM and IE AMV simulations, 

as the Cont1 ice mask covers all ice covered regions for all of the other simulations, but is 
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not the same as the ones commonly used. As in previous studies, the total index is then 

divided into internal and external components. However, our representation of the 

internal component doesn’t use the direct removing of a linear trend but is done 

according to the division in Section 3.1.2.1 and Section 3.1.2.2, for the CGCM and IE 

respectively. Namely, the external AMV component in the CGCM experiments is 

CGCM_ens AMV ensemble mean and is taken to be the AMV in IEnn for the IE 

experiments. As noted above, this definition of AMV includes some internal variability 

as well as the externally forced signal, but can be considered a first approximation subject 

to later examination. The internal AMV for a member of  CGCM_ens is the  difference 

between that particular member and the external component. For the IE experiments the 

internal component of a particular IE experiment will be taken to be the difference 

between that IE simulation and IEnn. Again, there is some contamination due to the 

presence of internal variability in IEnn.  

 

3.1.2.5 The AMOC index 

For the period 1871-1998, an EOF analysis of the annual mean stream function, 

𝜓 𝑧, 𝑙𝑎𝑡 = 𝑉𝑐𝑜𝑠(𝑙𝑎𝑡)!!
!!

!
! 𝑑𝑥𝑑𝑧, is performed  for both IE simulations and 

CGCM_ens. The first PCs are considered the Atlantic Meridional Overturning 

Circulation index. For the Cont_ens the AMOC reconstructed from the first EOF and 

associated PC explains 42%-50% of the AMOC variance. For the IE simulations, the first 

EOF and associated PC explains 58% to 67%.The structure of the EOFs varies only 

slightly between all the simulations; therefore, the first PC is a reasonable index for 
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comparison.  The AMOC index is also divided into an externally forced and a noise 

component in the same manner as for the AMV.  

	
  

3.3	
  Results	
  	
  
 
The externally forced IE simulates the CGCM externally forced global SST well whether 

noise forcing is included or not, so most global mean SST variability is externally forced, 

in agreement with Kirtman et al 2011. The internal component of the CGCM is simulated 

reasonably well by noise forced IE but the correlation between internal components is 

weaker than the total one. Therefore, the atmospheric noise is forces an important part of 

the internal global mean SST variability in particular in higher latitudes, in agreement 

with Chen 2013.  

The	
  total	
  global	
  SST	
  variability	
  is	
  also	
  similar	
  (well	
  correlated)	
  among	
  the	
  IE	
  

simulations	
  due	
  mainly	
  to	
  the	
  presence	
  of	
  the	
  same	
  external	
  forcing;	
  however	
  the	
  

internal	
  components	
  are	
  not	
  similar	
  among	
  the	
  IE	
  simulations.	
  The total SST 

variability in the IE reconstructs the one in the Cont1 with better accuracy in the higher 

latitudes than near the equator.	
  

 

3.3.1	
  Control	
  –	
  IE	
  Global	
  SST	
  Average	
  Comparison	
  	
  	
  	
  
 

The time series of anomalies of global mean SST for CGCM_ens, IEAll and 

IEAllCont2 are shown in Fig. 3.7. The global mean surface temperature for CGCM_Ens 

and IEAll (a) shows a positive trend starting in 1900s with a steeper slope for the period 
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1940–1998 in both the IE and Control1. The major volcanic eruptions - Krakatau around 

1890, Santa Maria 1910, Agung 1970, El Chichon 1982 and Pinatubo 1991 - are 

associated with sudden decrease in temperature for both the IE and Control as well as for 

the ensemble envelope. The spread of the ensemble envelope as well as the IE stays 

mostly within values of ±0.5	
  K.	
  The	
  noise	
  forced	
  IE	
  	
  is	
  a	
  good	
  reconstruction	
  of	
  Cont1	
  

-­‐	
  the	
  two	
  runs	
  global	
  average	
  SST	
  show	
  a	
  correlation	
  of	
  0.91.Similarly the correlation 

between Cont2 and IEAllCont2 it is 0.90 and shows positive temperature trends (b). The 

external components for Control_ens and IE, i.e the Control_ens ensemble mean and 

IEnn (c) show a correlation of 0.92. The IE values are above the ones in Control_ens for 

the period before 1940s and below after it. Thus considering the high correlation between 

the external components of IE and Control_ens simulations which is comparable/higher 

to the correlation between the total SST component we can conclude that the externally 

forced IE simulates externally forced CGCM well whether noise forcing is included or 

not, thus most global mean SST variability is externally forced. 

The internal components of the global temperature for IEAll and Cont1 are shown 

in Fig. 3.8a. The	
  correlation	
  between	
  the	
  two	
  is	
  0.52	
  and	
  the	
  IEAll	
  values	
  stay	
  mostly	
  

within	
  the	
  envelope	
  of	
  the	
  CGCM_ens1.	
  The	
  difference	
  between	
  the	
  two	
  time	
  series	
  

come	
  mostly	
  from	
  the	
  period	
  between	
  1930	
  –	
  1950,	
  the	
  period	
  when	
  sea	
  ice	
  is	
  much	
  

more	
  extensive	
  in	
  Cont1	
  than	
  in	
  IEAll.	
  The	
  correlation	
  between	
  internal	
  component	
  

in	
  Cont2	
  and	
  IEAllCont2	
  (Fig.	
  3.8	
  b)	
  is	
  0.55	
  slightly	
  larger	
  than	
  in	
  Cont1-­‐IEAll.	
  Thus,	
  

for	
   two	
   different	
   noise	
   realization	
   the	
   internal	
   component	
   in	
   the	
   respective	
   Cont	
  

runs	
   is	
   correlated	
   with	
   the	
   internal	
   component	
   in	
   the	
   IE	
   with	
   about	
   0.52-­‐0.55.	
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Therefore,	
   the internal component of the CGCM is simulated reasonably well by noise 

forced IE but agreement is weaker than for the trend-dominated external component.	
  

Annual	
  mean	
  SST	
  anomalies	
  averaged	
  globally	
  for	
  IEAll,	
  IEnn,	
  IENoIpcc,	
  

IEAtl030,	
  IEAtl3060	
  and	
  IEAll2	
  (Fig.	
  3.9	
  a)	
  show	
  a	
  positive	
  trend	
  in	
  all	
  simulations	
  

except	
  for	
  IENoIpcc.	
  The	
  IENoIpcc	
  trend	
  represents	
  a	
  cooling	
  drift	
  in	
  the	
  IE	
  model	
  

when	
  it	
  is	
  started	
  from	
  pre-­‐industrial	
  initial	
  conditions.	
  As	
  the	
  CGCM	
  preindustrial	
  

control	
  is	
  equilibrated	
  with	
  the	
  pre-­‐industrial	
  forcing,	
  the	
  IE	
  drift	
  can	
  be	
  considered	
  

to	
  be	
  a	
  model	
  bias	
  relative	
  to	
  the	
  CGCM	
  simulations.	
  Comparison	
  of	
  the	
  CGCM	
  and	
  IE	
  

global	
  means	
  indicates	
  that	
  this	
  drift	
  is	
  present	
  in	
  all	
  IE	
  simulations.	
  	
  	
  

The	
  overall	
  increasing	
  temperature	
  can	
  then	
  be	
  attributed	
  to	
  the	
  20th	
  century	
  

external	
  forcing.	
  The	
  correlation	
  between	
  IEAll	
  and	
  IEnn	
  of	
  0.81	
  and	
  the	
  similarity	
  of	
  

the	
  magnitude	
  of	
  the	
  trends	
  shows	
  that	
  the	
  external	
  component	
  dominates	
  the	
  

global	
  mean	
  SST	
  variability	
  in	
  IE.	
  The	
  correlations	
  of	
  the	
  IEAll	
  simulations	
  with	
  the	
  

other	
  IE	
  simulations	
  are	
  high	
  due	
  to	
  the	
  presence	
  of	
  the	
  same	
  external	
  forcing.	
  

However,	
  the	
  correlation	
  decreases	
  between	
  the	
  internal	
  components	
  of	
  IEAll,	
  	
  

IE030,	
  IE3060	
  and	
  IEAll2	
  (	
  Fig.	
  3.9b)	
  .	
  The	
  correlations	
  of	
  the	
  IE	
  indexes	
  shown	
  in	
  

Fig.	
  3.9b	
  have	
  a	
  maxima	
  of	
  0.38	
  which	
  occurs	
  between	
  IE030	
  and	
  IE3060	
  and	
  is	
  

about	
  zero	
  between	
  IENoIpcc	
  and	
  IEAll.	
  	
  	
  

There	
  are	
  several	
  potential	
  sources	
  for	
  the	
  differences	
  between	
  the	
  CGCM	
  

and	
  IE	
  external	
  or	
  internal	
  variability.	
  These	
  include	
  different	
  internal	
  coupled	
  (i.e.	
  

ENSO),	
  as	
  well	
  as	
  different	
  unconstrained	
  ocean,	
  land	
  surface,	
  and	
  sea	
  ice	
  variability,	
  

and	
  errors	
  in	
  the	
  noise	
  filtering	
  due	
  to	
  using	
  small	
  AGCM	
  ensembles	
  in	
  the	
  AMIP-­‐
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type	
  and	
  IE	
  simulations.	
  Differences	
  among	
  IE	
  simulations	
  also	
  reflect	
  the	
  impact	
  of	
  

noise	
  forcing	
  in	
  different	
  regions	
  on	
  the	
  global	
  mean	
  SST.	
  

3.3.2	
  Control-­‐IE	
  regional	
  comparisons	
  
 
 
           The time series of total, internal and external anomalies of North Atlantic(a,b,c), 

North Pacific(d,e,f) and Equatorial Pacific (g,h,i)  are shown in Fig. 3.10 for Cont1, IEAll 

and the ensemble of CGCM_ens envelope. The spread of the control ensemble members 

as well as the variability of IEAll are similar to the variability in the Cont1. As in the case 

of the global SST the regional total components ( a,d,g ) shows a positive trend in both 

the Control_ens simulations and IEAll. For the North Atlantic and North Pacific the 

correlation between the IEAll and Cont1 total components is 0.72 and 0.78 respectively. 

Comparisons of the North Atlantic and North Pacific total and external components 

between CGCM and IE show evidence of the IE systematic cooling drift revealed in 

IENoIPCC.   

The equatorial Pacific (g) has a lower correlation between IEAll and Cont1, 0.54. This 

can be explained by the fact that in the equatorial Pacific the main mode of variability is 

ENSO, which is a coupled variability mode somewhat independent of the atmospheric 

noise. Thus the influence of both external forcing and atmospheric weather noise is 

smaller there.  

The external components for all three regions show a positive trend with similar variance 

in the North Atlantic (c) and North Pacific (f) and with a higher variance in the IEnn than 

Cont_ens for Equatorial Pacific. The higher variance in IEnn is due to similar ENSO 
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variance in IEnn as in the individual CGCM runs. CGCM_ens filters out this variance 

(reduces it by 5/6), as the ENSO variability is not correlated between the individual 

ensemble members, but it is not reduced in IEnn. The unfiltered ENSO variance has a 

noticeable projection on the IEnn global mean temperature in Fig. 3.7c. This emphasizes 

that IEnn filters out only internal variability due to atmospheric noise – other sources still 

remain. The correlation of the external components between the two Control_ens and 

IEnn is 0.55 for North Pacific, 0.44 for equatorial Pacific and 0.50 for North Atlantic. 

Therefore the correlation of the external components of SST average regionally, between 

IEnn and Control_ens average is comparable to that of the total components of these two. 

The correlations of the internal components of IEnn and Cont1 SST for North Pacific (e) , 

Equatorial Pacific (h) and North Atlantic (b) is 0.47, 0.20 and 0.44 respectively. This 

suggests that the total SST variability in the IE reconstructs the one in the Cont1 

regionally with better accuracy in the higher latitudes than in the equator. Also, 

regionally, the externally forced component is the one that is most responsible for the 

similarity between the Control_ens and IE simulations while the internal components are 

less well correlated. Similar results are found for the case of IEAll2 and Cont2 (not 

shown).  

The SST monthly anomalies correlation values between the Cont1 and IEnn  (Fig. 

3.11 a) have a maximum of about 0.5 over the Western Equatorial the Pacific, Indian 

Ocean as well as subtropical and equatorial Atlantic in the Southern hemisphere. The 

high and mid-latitudes as well as the equatorial Pacific, show little correlation between 

the two simulations. Only a small fraction of the SST variance in Cont1 is captured by 
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the IEnn (Figure 3.11 b) and most of regions show STD ratios of under 0.5, with a 

minima of 0.2 occurring in the North Atlantic. The areas where the correlations are high 

– values of around 0.4-0.5 in the Eastern Pacific, Indian Ocean and South Atlantic are 

inferred to be regions where external forcing is locally detectible for the SST variability, 

since internal variability should be uncorrelated between the CGCM and IE.  The regions 

where the external forcing is locally detectible are also regions where the variance in 

IEnn is relatively strong compared with that forced by the weather noise (Figure 3.11b a, 

b), although the converse is not true because of the internal ENSO variability in IEnn. 

The inclusion of atmospheric weather noise forcing over the global oceans in 

IEAll improves the agreement between Cont1 and the IE simulation dramatically. The 

correlation coefficients between Cont1 and IEAll (Fig. 3.11b) are high  all over the globe, 

except the equatorial Pacific, northern North Atlantic and polar regions. Furthermore, the 

regions of high correlation correspond to regions where the variance ratio between the 

Cont1 and IEAll  (not shown) is close to one (Figure 3.11b a). Since the externally and 

weather noise forced IEAll reproduces most of SST variability in Cont1, while the 

external forcing without the weather noise has much less resemblance, we can conclude 

that the local SST variability over most of the oceans is forced primarily by a 

combination of external forcing and weather noise. The regions of low correlation in Fig. 

3.11b indicate that the SST variability there is produced by processes other than external 

forcing or atmospheric weather noise: namely (local or remote) coupled processes (e.g. 

ENSO) or intrinsic ocean-only variability (e.g. as found in the extratropical North 

Atlantic by Wu et al. 2004, tropical instability waves, shear instability of mean currents, 
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etc.).The differences in the northern North Atlantic are associated with large ice cover in 

the Cont1 in comparison to the IE. However, the values of the correlation between Cont2 

and IE2 (Fig. 3.11c) are very similar to Cont1-IEAll, and, the sea ice bias of IEAll_Cont2 

compared to Cont2 is much smaller than for Cont1, so it can be tentatively inferred that 

the low correlation cannot be attributed to the IE treatment of sea ice.  

The values of the correlations between Cont1 and IENoIpcc (Fig. 3.11 d) shows 

that that in the absence of external forcing, the patterns and correlation magnitudes are 

similar to the ones in Fig. 3.11b, but weaker. This is consistent with the role of external 

forcing of the SST. The areas where the correlation coefficients are  high correspond to 

areas of standard deviation (SD) close to one, indicating that  in those regions the SST 

variability is primarily forced by noise while areas where the correlation coefficients are 

lower than in Cont1-IE1 represent areas where the 20th century external forcing is 

contributing to the SST variability.  

The correlations between Cont1 and the IE experiments with regional noise 

forcing in the upper and lower North Atlantic Basin are shown in Figs. 3.11e,f. The 

Cont1-IEAtl030 and Cont1-IEAtl3060 correlations are very similar to those in IEnn (Fig. 

3.11a), except over the respective forcing regions, where they are much larger. 

 The SST monthly anomalies correlation values between the internal and 

external components of Cont_ens and the IE simulations are shown in Fig. 3.12. The 

correlation of the external components of Cont_ens and IEnn (Fig. 3.12a) is similar in 

distribution to the Cont1-IEnn correlation in Fig. 3.11a, but with substantially larger 

values.  This is consistent with IEnn being dominated by the forced component in the 
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regions of high correlation. The systematically higher correlations in Fig. 3.12a than in 

Fig. 3.11a result from the reduced noise variance in the Control_ens ensemble mean 

compared to Cont1, while the externally forced component is the same in both. The 

regions of low correlation in Fig. 3.12a indicate that the origin of the variability there is 

not primarily external forcing. The low correlations over the tropical Pacific are due to 

the fact that ENSO is an internal but noise influenced coupled mode in the model, and 

thus is not forced by external forcing but rather air-sea interactions and ocean dynamics, 

which can be different between IE and Cont_ens, runs. The influence of the weather 

noise forcing is demonstrated by the increased correlations in the Tropical Pacific 

between the internal components Cont1-IEAll (Fig.3.12b) and Cont2-IEAll_Cont2 (Fig. 

3.12c) compared to Fig. 3.12a. When weather noise forcing is included, the correlation 

also increases over the North Atlantic region and polar regions as well as North Pacific in 

both the Cont1-IEAll and Cont2-IEAll_Cont2 compared to ContEns-IEnn.  The 

correlation between internal component of Cont1 and IENoIpcc shows similar values as 

for the previous cases but with a higher correlation over the ENSO region. The 

correlation between the internal component in the regional noise forcing IE experiments 

and internal component of Cont1 shows values between 0.5-0.7 in the region where the 

forcing is applied in the case of IEAtl030. In the case of the forcing applied to the 30N-

60N region values of 0.3-0.5 are also localized within the forcing region.  

3.3.3	
  Atlantic	
  Multidecadal	
  Variability	
  	
  
 
 
3.3.3.1 Total index 
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The total AMV index, calculated as the annual SST average between 0-60N and 0-80W , 

with any grid point containing ice at any time in any of the CGCM_ens members masked, 

shows a correlation of 0.82 between IEAll and Cont1 and 0.81 between IEAll_Cont2 and 

Cont2 (Fig. 3.13 a and b). All the indices show a positive trend that becomes larger 

starting in 1940-1950. The external components of AMV in the Control_ens and IE, IEnn 

(Fig. 3.13c) have correlation 0.78 demonstrating an important role of the 20th century 

forcing in the total AMV variability.  

The internal AMV indexes are shown in Fig 3.14 a for Cont1 and and the associated IE 

run IEAll,, and in 3.13b for Cont2 and IEAllCont2.  The correlation between IEAll and 

Cont1 is 0.51, and 0.52 between IEAllCont2 and Cont2. The variance of the internal 

AMV for the CGCM and the associated IE runs is similar, and the IE internal AMV stays 

mostly within the values of the Control_ens envelope. Throughout most of the period but 

especially after the 1940s, the internal IEAll AMV index is higher than in Cont1. This 

can probably be linked to the different ice cover representation and evolution between the 

IE and Control_ens.  

The total AMV index for the IE simulations  (Fig. 3.15,a) shows that in the case of no 

external forcing, IENoIpcc, the AMV index has a decreasing trend, while the AMV in all 

of the other IE simulations has increasing trends. This supports the result in Fig. 3.13c 

that the AMV trend is externally forced. The decreasing trend in IENoIpcc indicates that 

the difference between the IEnn and Cont_ens estimates of the external AMV, positive 

before 1900 and negative after 1940, is probably due to the drift in the IE simulations. 

The correlations between internal AMV indexes of Cont1 and the various IE runs forced 
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by the noise from Cont1 are given in Table 3.2. The highest correlation with Cont1 is 

with the IEAll AMV index. The correlations with Cont1 are lower for the cases when the 

weather noise is applied locally only in the Atlantic, IE030, IE3060, as well for 

IENoIPCC, the run with the same global noise forcing as IEAll, but no external forcing. 

The lower correlation with IENoIPCC than with IEAll is probably due to the drift bias 

shown in Fig. 3.15a. As the internal response of SST to the noise forcing appears to be 

localized to the forcing region (Fig. 3.12), the higher correlation with IEAll is probably 

due to applying the noise forcing over the whole AMV region, rather than due to 

teleconnections from noise-forced SST in other oceans. From the Cont1/IE030 and 

Cont1/IE3060 correlations, the roles of noise forcing in the AMV region poleward and 

equatorward of 30N are roughly comparable. 

 The correlation of the IEAll internal AMV with the regionally forced internal 

AMV indexes is again roughly comparable for noise forcing poleward or equatorward of 

30N. The noise forcing in the two regions is not completely independent, as shown by the 

positive correlation between the IE030 and IE3060 AMV indexes. 

Table 3.4. Correlation of internal AMV among IEAll and IEnn,IE030,IE3060 and Control.   
 
Model  IEAll     

IEAll 1 IENoIpcc     

IENoIpcc 0.53 1 IE030   

IE030 0.60 0.33 1 IE3060  

IE3060 0.61 0.39 0.22 1 Cont1 

Cont1  0.53 0.35 0.31 0.35 1 
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The SST regression patterns of the SST on the AMV index, for each of the 

CGCM_ens members for the internal, total, and external components are shown in Fig. 

3.16. The regression patterns for the internal component (Fig. 3.16 a to f) are similar for 

all the six CGCM_ens simulations. The structure has negative values in the high 

latitudes, north of from 50N, a band of strong positive values near 40N, and positive 

values extending southward from this band in the eastern Atlantic to cover the subtropics 

and tropics. In the mid-latitude western Atlantic, the regressions pattern is weak. The 

pattern is similar to that obtained from a long constant 1990 external forcing control 

simulation with the same model (Chen and Schneider 2014). The patterns associated with 

the internal AMV in the CGCM_ens simulations have some similarity with the one 

obtained from observations in Trenenberth and Shea (2006), but with the exception of the 

negative values at high latitudes.  The externally forced AMV pattern (Fig. 3.16h) has a 

single-signed blander pattern throughout the AMV region with some intensification near 

40N as in the total pattern. The total AMV regression patterns (Fig. 3.16g-l) resemble the 

internal patterns, but with negative regressions replaced by weak regressions of both 

signs at high latitudes, and weak positive regressions in the western mid-latitude Atlantic. 

The more positive regressions at high latitudes and in the western mid-latitudes are due to 

the influence of the external component. 

The SST regression patterns of the IE SST on the respective IE experiment AMV 

indexes,(Fig. 3.17)  show  an internal AMV pattern in IEAll with negative values in the 

western Atlantic Basin and a structure similar to the Cont1 pattern but weaker. Thus, 
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excepting the small differences in the Eastern Atlantic and the weaker negative above 

50N the pattern reproduces well the one in Cont1. With noise forcing but not external 

forcing (Fig. 3.17b) the AMV internal component pattern has similar structure to IEAll 

but with positive sign throughout the AMV region. When the noise forcing is applied 

only over 0-30N (Fig. 3.17c) the pattern obtained is similar to the IEAll pattern, but 

emphasizes the lower latitude part. Applying the noise over the higher latitude AMV 

region in IE3060 (Fig. 3.17d) produces the IEAll pattern, but with the high latitude part 

emphasized.  Thus must be is a dynamical connection between the internal AMV 

variability forced in the lower and the higher latitudes. 

Lag regressions of the internal SST against the internal AMV index are shown for Cont1 

in Fig. 3.18 and for IEAll in Fig. 3.19. It is difficult to identify any coherent low 

frequency behavior in either the CGCM or the IE. The AMV pattern appears to pop up 

out of background SST noise on a time scale of less than five years, and disappear then 

into the background noise on a similar time scale. A similar view is obtained from lag 

regressions of the internal AMV onto itself for the members of Cont_ens and the noise 

forced IE runs (Fig. 3.21). On the other hand, the external AMV has strong persistence 

due to the large trend. 

The envelope of the power spectra of the AMV indexes for the CGCM_ens 

runs and the average of the spectra of the CGCM_ens members is shown in Fig. 3.20a. 

The significance of the spectrum is evaluated in each case using a Markov red noise 

confidence spectrum with upper and lower confidence curves of 5% and 95% 

respectively.  The average of the spectra shows no significant peak at 95% red noise 
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confidence level.The power of the spectral components for each individual CGCM as 

well as for the total average stays mostly under -0.8. The spectra of the externally forced 

part of the AMV, Fig. 3.20b, show that IEnn (red) and the Cont_ens (red) are very 

coherent but neither is significantly different from red noise at the 95% level. The power 

spectra of the internal AMV variability for IEAll and Cont1 also show strong coherence 

and no significant difference from red noise at the 95% level (Fig. 3.20c). The same 

result is obtained form the spectra of the internal components in Cont2 and IEAllCont2 

(Fig. 3.20d). The power spectra are consistent with the conclusions that the externally 

forced AMV variability in Cont_ens is reproduced by IEnn, that the internal AMV 

variability is indistinguishable from red noise, and that the internal AMV variability is 

forced by atmospheric noise.  

The lead-lag regressions of the AMV (internal component) onto itself for the 

CGCM_ens members (Fig. 3.21a) shows an abrupt drop from year 0 to ~year 2 after 

which all the correlation components are under 0.2-0.3. This, together with the results 

shown by the spectrum analysis, shows that the internal AMV component has no 

preferred time scale and is a random/white noise time series after one or at most 2 years.  

	
  

3.3.4	
  Atlantic	
  Meridional	
  Overturning	
  Circulation	
  	
  
 
The first EOFs of the annual mean Atlantic meridional overturning (AMOC) stream 

function were calculated for each simulation (Fig. 3.22a-k), and for the Cont_ens 

ensemble mean (Fig. 3.22l). They have similar structures and magnitudes. Each EOF1 

shows a cell with the maximum value centered at around 1.5-2 km at 30N-40N in the 
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Control_ens ensembles and 40N-50N in the IE. The PCs associated with these patterns 

are taken to be the AMOC indices for the total and external components. 

For the Control_ens runs (Fig. 3.22a-f) the structure explains 40%-50% of the total 

variance and for the IE experiments the variance explained is higher, with the maximum, 

66%, in the case of IE030 (Fig. 3.22i ). The Cont_ens EOF1 has two different cells: the 

main AMOC cell that is centered around 1.5 km, a shallow opposite sign cell at 60N and 

approximately 0.2 kilometers depth. The pattern explains 40%-50% of the total variance, 

depending on ensemble member.  The two separate centers of opposite signs appear in 

the external component of the AMOC ( Fig. 3.22k). The secondary high latitude cell does 

not appear in IE EOF1 (Fig. 3.22g-k). The patterns explain 58-68% of the AMOC IE 

variance when external forcing is included and 53% for IENoIpcc, where no external 

forcing is included.  

The PCs associated with the total and external AMOC  EOF1 (Fig. 3.23) show a negative 

trend, for both Control_ens and IE experiments. The decreasing trend represents the 

external signal (Fig. 3.23l) and its physical meaning is a decrease in the AMOC strength. 

As expected, in the absence of external forcing (Fig. 3.23k) the negative trend is weaker. 

The reduction in MOC strength associated with increasing greenhouse gases is well 

known and represents a negative feedback for the warming in and around the North 

Atlantic. That is, through reducing the transport of heat from low to high latitudes, SSTs 

are cooler than they would otherwise be if the MOC was unchanged. The external 

component PCs, Cont_ens and IEnn (Fig. 3.23l and h) are closely related with correlation 

0.71, so the externally forced AMOC behavior in the CGCM is well simulated by the IE. 
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The internal components of the AMOC are calculated by removing the external 

components of the streamfunction (before EOF decomposition) from the total. The PCs 

of the first EOF of the internal AMOC is then used as the internal AMOC index. The 

structures of the internal EOF1 are shown in Fig. 3.24, and are very similar to those of the 

total AMOC. While the IE and Cont_ens internal AMOC components have similar 

variance, the noise forced IE does not produce a good simulation of the Cont_ens internal 

AMOC. The internal AMOC indexes in Cont1and IEAll (Fig. 3.25a) have a negative 

correlation of -0.16. The correlation of internal AMOC in Cont2 and IEAll_cont2 (Fig. 

3.25b) is small, 0.08. Therefore, the internal AMOC variability in Cont_ens is not forced 

by atmospheric noise. On the other hand, there are high correlations between IE 

simulations forced by the Cont1 noise (Table 3.5), especially when the forcing region 

includes the high latitude North Atlantic (e.g. between IEAll and IENoIpcc, or between 

IEAll and IE3060). This indicates that the Cont1 internal AMOC in the IE is noise forced 

primarily in the high latitude North Atlantic. The internal AMOC variability in Cont1 or 

Cont2 that is not noise forced can then be estimated by removing the internal noise forced 

component given by the IEAll. We have not yet done this. 

 

Table 3.5 Correlation between internal AMOC indexes.   
Model  IEAll     

IEAll 1 IENoIpcc     

IENoIpcc 0.74 1 IE030   

IE030 0.24 0.19 1 IE3060  
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IE3060 0.63 0.65 0.31 1 Cont1 

Cont1 -0.15 -0.21 -0.12  -0.05 1 

 

The internal SST regression onto the internal Cont_ens AMOC indexes (Fig. 3.26a-f) has 

a similar pattern for Cont2-6, with negative values above 45N and strong positive values 

in a narrow zonal band near 42N, which will be called the Gulf Stream Extension or 

GSE. For Cont1 the SST regression pattern the negative values in the north are much 

weaker, and the GSE feature is not strong anymore. Thus, a qualitatively different 

projection of the AMOC onto the SST internal component is found in Cont1, in 

comparison to the other CGCM simulations. The total SST regressions against the total 

AMOC indices for Cont_ens members (Fig. 3.26g-i) have a number of different 

structures but they are predominantly negative above 50N and under 20S and positive 

along the GSE in three of the models (Cont3,Cont4 and Cont5 ). The regression of the 

Cont_ens external SST against the external AMOC index is negative, except for some 

small positive regions in the western high latitude North Atlantic, consistent with 

decreasing AMOC associated with increasing AMV index. 

The regression of the IE internal SST onto the internal AMOC for the various simulations 

(Fig. 3.27a-3) has positive values in the GSE region surrounded by negative values. 

There is also a region of positive or weak negative values to the southwest of Spain.  The 

Atl3060 internal regression (Fig. 3.27d) differs from the other in having positive 

regressions equatorwards of 30N. However the Atl030 internal regression has similar 

structure to Atl3060 north of 30N. The external IE regression is negative everywhere, and 
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stronger in high relative to low latitudes, basically the same sign, but contrasting in 

structure somewhat with the Cont_ens external regression 

The lag regression of the Int Cont1 SST onto its Int AMOC index mode is shown in Fig. 

3.28.  It is difficult to identify coherent features in this sequence. Rather it appears to 

consist of maps of uncorrelated noise.  

The lead-lag regressions of the AMOC internal component onto itself for every 

CGCM_ens components (Fig. 3.29a) shows, as in the AMV internal component case 

(Fig. 3.20) an abrupt drop from year 0 to ~year 2 after which all the correlation 

components are very low and close to 0. This shows that, similarly to the AMV internal 

component, the AMOC internal component behaves like a random/white noise time 

series after one or at most 2 years.  

 The correlations of AMOC with itself for External AMOC in Control_ens ( green curve 

in panel b), IEnn (red) as well as internal components of IEAll ( orange) and IEAllCont2 

(dark red) are shown in Fig. 3.29 b. The internal AMOC indexes in the IE behave in a 

similar manner to the internal components in Cont_ens showing an abrupt drop from 1 to 

0 in the first 2-4 years and then oscillation around 0 suggesting a random time series. The 

external component of  IE  (red) maintains a substantial positive values for all lags, as 

does the external component of Cont_ens, reflecting the long term trends of the externally 

forced AMOC component in both cases (a linear trend would have lag regression equal to 

one for all lags).  
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The relationship between the internal AMOC and AMV indices in Cont_ens (Fig. 3.30 a) 

shows that for five of the simulations (Cont2, Cont3, Cont5, Cont4, Cont6) lagging  

AMO is associated with positive AMOC values from lag -10 up to 0. At the simultaneous 

regression the AMV index is associated with positive AMOC. When AMV leads the 

AMOC, the regression decreases and after about 2 years positive AMV is associated with 

negative AMOC values. A correlations significance test was done for the AMV-AMOC 

relationship (not shown) and at 95% significance levels the  correlations for AMV-

AMOC when AMV leads were significant for lags 0 to 2 and for AMV lagging the 

correlations were significant for lags 0-6 and from 11 to 15.  

The case for Cont1 is different – at - 5 years positive AMV is associated with negative 

AMOC values. In the both of the global noise and externally forced IE runs (Fig. 3.25b) 

for 2 IE cases positive AMOC leads positive AMV when AMOC leads by 1-10, 

simultaneous correlations are small, and positive AMV leads negative (reduced) AMOC 

when AMV leads by 1-7 years. The noise forced internal AMOC therefore follows the 

expected sequence of strong AMOC transporting more heat poleward, leading to 

warming of AMV SST, leading to reduced upper ocean density and reduced AMOC.  

	
  

3.4	
  Conclusions	
  and	
  Summary	
  	
  	
  
 

The roles of weather noise forced versus externally forced variability in the AMV and 

AMOC were studied in a series of externally forced 20th century CCSM3 simulations.  

The present work is based on, and advanced the conceptual understanding of the SF2007 
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method of extracting the atmospheric noise by applying it in a new, a state-of-the-art 

coupled global climate model with a 20th century forcing. 

Few technical aspects in which our analysis is new are :  

•   It employed the IE-CGCM  to isolate the variability due to atmospheric weather 

noise from other sources of climate variability (namely ocean internal  

variability, intrinsic coupled variability, and external forcing) and from the one 

due to external forcing. Also, the analysis is improved in comparison to models 

used in previous studies on this topic.  

•    Used a perfect model/perfect data framework  

• The simulations were made in the context of the “Climate of the 20th century“  

•   The variability modes studied are the AMV and AMOC both of which have not 

been documented previously using this method 

Our main findings show that: 

• Most SST variability is forced by atmospheric noise after externally forced signal 

is removed. 

• AMV variability is predominantly noise forced. 

• Noise forcing 0-30 and 30-60 both produce similar AMV patterns 0-60 

• Internal AMV is noise (no preferred time scale) 

• Internal AMOC is noise (no preferred time scale) 

• Internal AMOC is not predominantly noise forced 

• The part of the internal AMOC that is noise forced acts to amplify and then 

terminate AMV events 
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• The internal AMV and AMOC relationships show a positive AMOC leads 

positive AMV. 

• The IE represents the response to external forcing well. In the global mean, this 

response dominates the internal variability. However, on a regional scales the 

internal variability dominates the external response.  

 

 

SUMMARY	
  
 

This thesis addressed several problems in the attribution of climate variability.  

Figure 1 shows how the total Sea Surface Temperature (SST) variability can be divided 

into externally forced and internally generated parts, and the internally generated part can 

be divided into atmospheric weather noise, ocean weather noise and coupled variability. 

            

The first question studied was why the AGCM ensemble forced by observed SST does 

not simulate the observed 20th century sea level trends in the Indian Ocean. Our findings 

show that the AGCM and CGCM ensembles are consistent with each other, and suggest 

that the failure to simulate the observed trends is due to model bias rather than coupling.  

Our preliminary investigation of the spatial and temporal properties of the weather noise 

shows that the temporal structure of the noise is consistent with white noise for annual 

and longer periods, although the probability density functions (PDF) are not Gaussian. 

No change is detected between the statistical properties of the noise in the early and late 
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20th century, so that changes in extreme events can be attributed primarily to changes in 

the mean rather than the noise. 

 

The AMV is shown to have a strong contribution from the external 20th century forcing. 

The internal AMV variability is primary forced by the weather noise, but other sources of 

internal variability are also important. An important contribution to the internal AMV is 

associated with the internal variability of the oceanic Atlantic Meridional Overturning 

Circulation, and this contribution is distinct from the weather noise forced component.  
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Figure 3.1  Noise Extracting Procedure. The SST from Cont1 (1) represents the boundary conditions for the ensemble 
of AGCMs (2). (3) The difference between the output of the Coupled Model (Cont1) minus the output from the SST 
forced ensemble of AGCMs represents the weather noise.   
 

                   
Figure 3.2 Correlation of the annual values AMV index with global surface air temperatures for 1900 to 2004. 
Values in the North Atlantic are considered significant (Fig.4 in Trenberth and Shea,2006). (Right) 1870-2005 
annual SST anomalies, relative to 1901 to 1970, averaged over the North Atlantic (0° to 60°N, 0° to 80°W)  
(°C) with global mean SST removed. The heavy line with fill from the low-pass filter shows the AMV (Fig.3 in 
Trenberth and Shea 2006). 
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Figure 3.3 The Interactive Ensemble – One ocean model coupled with an ensemble of ‘N’ atmospheric models. The 
output of the ensemble of atmospheric models is averaged among all the AGCM ensembles, thus the atmospheric noise 
forcing is filtered, and the filtered quantities are passed as input to the ocean model.  

                          
Figure 3.4 Annual  mean  surface  temperature  difference between IE and Control, normalized  by  the 
 pooled standard  deviation  from  the  two  simulations. The units are °C/𝝈𝟐. 
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Figure 3.5 Ice cover in CGCM_ens experiments for: Cont1(red), Cont5 (blue),Cont3 (dark blue), Cont6(green), 
Cont4(red) and Cont (yellow) and IEAll (purple).  
 
 
                                            

 
Figure 3.6 Sea ice climatology: Arctic sea ice concentration climatology from 1981-2010, at the approximate seasonal 
maximum and minimum levels based on microwave satellite data. Data provided by National Snow and Ice Data 
Center, University of Colorado, Boulder. 
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         a 

 

         b 

 
       
                                               c 

                                       
Figure 3.7 Annual SST anomalies averaged globally for (a) Cont1 (black), IEAll (red) and Control_ens envelope (blue) 
(b)  Cont2 (black), IEAllCont2(red) and Control_ens Envelope (blue)  (c) Cont_ens external (black), IEnn  
external(red).Units degC.  
 
 
 
               a 

         

 
 
       b 

 
Figure 3.8 Annual Internal SST anomalies averaged globally, for Control (green),IE(red) and Control Envelope (beige) 
in Cont1 and IEAll(a) and Cont2 and IEAll2(b). Units degC. 
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Figure 3.9 SST global 7 years running mean for (a) total IEAll (red), IEnn(yellow), IENoIpcc (dark blue), 
Atl030(green), Atl3060 (black) and IEAll2(light blue) and (b) Internal component for  IEAll (red), Atl030(yellow), 
Atl3060(blue) and IEAllCont2 (green). Units degC. 
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     h 

 

     i 

 
Figure 3.10 Annual SST anomalies for ), total in left column, internal in middle column and external in right column, 
averaged over the North Atlantic (0° to 20N-60°N, 0° to 80°W-60E)- top row,  North Pacific 20S-60N and 270W-
100W – middle row and  Equatorial Pacific ,10N-10S and 270W-100W bottom row for the period 1871-1998 for Cont1 
(green),IEall (red) and CGCM Envelope (beige). Units degC. 
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Figure 3.11 Point by point correlations of monthly SST in (a) Cont1-IEnn,(b)Cont1-IE1,(c)Cont2-IE2,(d)Cont1-
NoIpcc,(e)Cont1-030,(f)Cont1-IE3060. 
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Figure 3.11 b Point by point standard deviation ratios between monthly SST in (a) IEAll, (b) IEnn, (c) IENoIpcc, (d) 
IEAtl030, (f) IEAtl3060 and Control. 
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Figure 3.12 Point by point correlations of monthly SST in (a) ExtCont-Enn, (b)IntCont1-IntIE1,(c)IntCont2-
IntIE2,(d)IntCont1-IntNoIpcc,(e)IntCont1-Int030,(f)IntCont1-IntIE3060 
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Figure 3.13 AMV Index total for (a) IEAll1(red), Cont1 (green) and Cont_ens envelope (beige); (b) IEAllCont2(red) 
and Cont2(green) and  Cont_ens envelope ( beige );(c) External components for Cont_ens (green) and IEnn ( red). 
Units degC. 
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Figure 3.14 AMV Index internal component for (a) IEAll1(red), Cont1 (green) and Cont_ens envelope (beige); (b) 
IEAllCont2(red) and Cont2(green) Cont_ens envelope  (beige). Units degC. 
 
 

                 
Figure 3.15 AMV total and Internal (a) total IEAll (red), IEnn (yellow), IENoIpcc (dark blue), Atl030(green), 
Atl3060(black) and IEAll2(light blue) and (b) internal component for  IEAll (red), Atl030(green),Atl3060(black) and 
IEALl2(blue). Units degC. 
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Figure 3.16 Regressions of Internal SST in (a) Cont1,(b)Cont2,(c)Cont3,(d) Cont4, (e) Cont5 and (f) Cont6 onto its 
respective internal AMV index. Regressions of SST in (g) Cont1,(h)Cont2,(i)Cont3,(j) Cont4, (k) Cont5 and (l) Cont6 
and (m) External_ens onto its respective AMV index. Units degC/degC. 
 
               

                      
Figure 3.17 Regressions of SST Internal in (a) IEAll,(b) IENoIpcc ,(c)IE030 (d) IE3060 onto its respective AMV 
index. Regressions of SST Total in (e) IEAll,(f) IENoIpcc ,(g)IE030 (h) IE3060 onto its respective AMV index and (i) 
SST external (IEnn) onto IEnn AMV index. Units degC/degC. 
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Figure 3.18 Lag regressions of internal SST in Cont1  onto the Cont1 internal AMV index. Lag in years is given. The 
AMV index is leading for positive values and lagging for negative ones. Units degC/degC. 

                  
Figure 3.19 Lag regressions of Internal SST in IEAll  onto the AMV index in IEAll. Starting with lag 0 (years). The 
AMV mode is leading for positive values and lagging for negative ones. Units degC/degC. 
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Figure 3.20 AMV Spectrum for (a) the Cont_ens runs, average of the raw spectra and the spread.  
(b) spectrum of the externally forced AMV in Cont_ens and spectrum of IEnn (blue) (c) Spectra of internal for Cont1 
and for IEAll ( red) ; (d) Spectra of internal for Cont2 and for IEAll2 ( red)  
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Figure 3.21  (left) Lag regressions of   internal AMV onto itself in Cont1 (black) and the other Cont_ens members in 
blue; ( right ) Lead-Lag regressions of   internal AMV onto itself for IntIEAllCont2(orange), IntIEAll(yellow),and 
external AMV onto itself for,ExtIE (IEnn,red) and ExtControl (green). Units degC/degC. 
 
 
 
    

         
        
Figure 3.22 First EOF of the Atlantic meridional overturning stream function for (a) Control 1, (b) Control2, (c) 
Control 3, (d) Control 4, (e) Control 5, (f) Control 6, (g) IEAll, (h) IEnn,(i) IE030,(j) IE3060, (k) IENoIpcc and (l) 
Ensemble mean of Cont_ens.  
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Figure 3.23 First PC associated with the EOFs in Figure 0.17,  for (a) Control 1, (b) Control2, (c) Control 3, (d) 
Control 4, (e) Control 5, (f) Control 6, (g) IEAll, (h) IEnn,(i) IE030,(j) IE3060 and (k) IENoIpcc and (l) Ensemble 
mean of Cont_ens. Units Sverdrups.  
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Figure 3.24 First EOF of the Atlantic meridional overturning stream function for (a) Cont11, (b) Cont2, (c) Cont 3, (d) 
Control 4, (e) Control 5, (f) Control 6, (g) IEAll, (h) IE030,(i) IE3060, (j) IEAll_Cont2.  
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                      c 

                 
Figure 3.25 Internal AMOC index for (a) Cont_ens Envelope (beige), IEAll (red) and Cont1 (green) (b) same thing as 
in a) but for Cont2 and IEAllCont2; (c) IE runs with IEAll (red), IE030(green) and IE3060(orange).Units degC/degC. 
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Figure 3.26 Regressions of Internal SST in (a) Cont1,(b) Cont2,(c) Cont3,(d) Cont4, (e) Cont5 and (f) Cont6 onto its 
respective internal AMOC index. Regressions of total SST in (g) Cont1,(h) Cont2,(i) Cont3,(j) Cont4, (k) Cont5 and (l) 
Cont6 and (m) External Control_ens onto the AMOC external index. Units degC/Sv. 
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Figure 3.27 Regressions of internal SST in (a) IEAll, (b) IENoIpcc ,(c)IE030 (d) IE3060 onto its respective AMOC 
index. Regressions of total SST in (e) IEAll,(f) IENoIpcc ,(g)IE030 (h) IE3060 and (i) External IE ( IEnn) onto its 
respective AMOC index. Units degC/Sv. 
                

 
Figure 3.28 Lead-Lag regressions of  Internal SST in Cont1 onto the AMOC index in Cont1. Starting with lag 0 
(years). The AMOC  mode is leading for positive values and lagging for negative. Units degC/Sv. 
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        a 

 

       b 

 
Figure 3.29  (a) Lead-Lag regressions of   internal AMOC onto itself in Control (balck) and each Control Ensemble 
member in blue and (b) Lead-Lag regressions of  AMOC onto itself ExtCont1 (green), ExtIE (red), IntIEAll (yellow) 
and IntIEAll2 ( orange).  Units Sv/Sv. 
         a 

         b                  

                               
Figure 3.30 Lead-Lag regressions of internal AMV onto AMOC in (a) Control ( black) and each Control Ensemble 
member in blue and (b) IEAll and IEAll_Cont2 black and blue respectively. The AMOC is leading to the left and 
lagging to the right. Units degC/Sv. 
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