
COMMUNICATING SEQUENTIAL AGENTS:
AN ANALYSIS OF CONCURRENT AGENT SCHEDULING

by

Stefan D. McCabe
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
In Partial Fulfillment of

The Requirements for the Degree
of

Master of Arts
Interdisciplinary Studies

Committee:

Director

Program Director

Dean, College of
Humanities and Social Sciences

Date: Spring Semester 2016
George Mason University
Fairfax, VA

Communicating Sequential Agents: An Analysis of Concurrent
Agent Scheduling

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Arts at George Mason University

By

Stefan D. McCabe
Bachelor of Arts

George Mason University, 2013

Director: Robert L. Axtell, Professor
Department of Computational and Data Sciences

Spring Semester 2016
George Mason University

Fairfax, VA

Copyright © 2016 by Stefan D. McCabe
All Rights Reserved

ii

Dedication

For Mom—I couldn’t have done it without your support every step of the way.

iii

Acknowledgments

First, I must thank my committee for their massive contributions to this project:

Dr. Robert Axtell, who mentored me throughout this process and supported my research in
this area.

Dr. Kenneth Comer, whose dissertation provided a foundation for my own work, and who
encouraged me along the way.

Dr. Andrew Crooks, without whom I would never have finished writing.

I owe a great deal of thanks to Matthew Oldham, who encouraged me throughout the thesis-
writing process and who served as a sounding board for many of my ideas.

I also would like to thank my friends and family for putting up with my endless worrying
and complaining.

iv

Table of Contents

Page

List of Tables . vii
List of Figures . viii

List of Abbreviations . x
Abstract . xi
1 Introduction . 1

1.1 Overview . 1
1.2 Literature Review . 3

1.2.1 Agent-Based Modeling: An Overview 3

1.2.2 Agent-Based Modeling and High-Performance Computing 6

1.2.3 Activation and Updating in Agent-Based Models 11

2 A Typology of Agent Activation Regimes . 20

2.1 Agent Selection . 21

2.2 Uniformity . 22

2.3 Reproducibility . 24

2.4 Updating . 25

2.5 Endogeneity . 26

2.6 Parallelization . 27
2.7 Discussion . 29

3 A Systematic Review of the Usage of Different Agent Activation Regimes 31

3.1 Overview . 31
3.2 Data . 31
3.3 Methodology . 32

3.4 Results . 34
3.5 Discussion . 37

3.5.1 Future Work . 38
4 Studying Agent Activation in a Model of Bilateral Exchange 41

4.1 Overview . 41

v

4.2 Model Specification . 41

4.2.1 Overview . 41
4.2.2 Motivation . 42
4.2.3 Behavior . 43
4.2.4 Performance . 45

4.3 Methodology and Results . 47

4.3.1 Environment . 47
4.3.2 Serial Activation Regimes . 47

4.3.3 Parallel Activation Regimes . 52

4.3.4 Fork-and-Join Activation Regimes 55

4.4 Performance . 55
4.4.1 Scaling in Fork-and-Join . 58

4.5 Discussion . 61
4.5.1 Future Work . 62

A ODD Protocol for Exchange Model . 64

A.1 Overview . 64
A.1.1 Purpose . 64

A.1.2 State Variables and Scales . 64
A.1.3 Process Overview and Scheduling 66

A.2 Design Concepts . 68

A.2.1 Emergence . 68

A.2.2 Interaction . 69
A.2.3 Stochasticity . 69

A.3 Details . 69
A.3.1 Initialization . 69
A.3.2 Input . 69

A.3.3 Submodels . 69
B OpenABM Entries Excluded From Review . 70

C OpenABM Review Data . 73

D Model Code . 89
D.1 RNG.h . 89
D.2 RNG.cpp . 90

D.3 main.h . 92
D.4 main.cpp . 99

D.5 Dockerfile . 141

vi

List of Tables

Table Page

2.1 Overview of activation regime typology. In bold are the design choices

represented by NetLogo’s ask command. 21

3.1 Deviations from the mode for different aspects of the activation regime,

contingent on model’s use of the ODD protocol. 37

3.2 Deviations from the mode for different aspects of the activation regime,

contingent on the modeling platform used. 37

4.1 Parameterization of the exchange model. 43

4.2 Overview of serial activation regimes examined. 48

vii

List of Figures

Figure Page

1.1 A typology of agent-based models, from Crooks and Castle (2012, p. 228). 5

1.2 Dynamics of standard deviation of wealth in a Leveller model with different

activation regimes. From Comer (2014, p. 136). 16

3.1 Pie charts showing the distribution of different areas of the activation regime

across all public OpenABM models. 35

3.2 Adoption rate of ODD protocol over time. Note that the high early adoption

rate is likely an artifact of researchers updating very old models. 36

3.3 Selection orders used, contingent on ODD adoption. “F” is fixed, “R” is

random, “P” is Poisson. Multiple letters means the model includes multiple

activation regimes. 38

3.4 Selection orders used, contingent on modeling platform used. “F” is fixed,

“R” is random, “P” is Poisson. Multiple letters means the model includes

multiple activation regimes. 39

3.5 Updating systems used, contingent on modeling platform used. 40

4.1 Runtime of the bilateral exchange model, N = 2. 46

4.2 Memory usage of the bilateral exchange model, N = 2. 46

4.3 Number of interactions (successful trades) over time, serial activation. . . . 48

4.4 Histograms of agent activations, serial activation. Note that the second row

has log-10 axes. 49

4.5 Histograms of successful agent trades, serial activation. Note that the sec-

ond row has log-10 axes. 50

4.6 QQ plot of agent activations, serial random selection. 51

4.7 Minimum agent wealth over time, serial activation. 52

4.8 Standard deviation of agent marginal rates of substitution, serial activation. 53

4.9 Number of interactions (successful trades) over time, parallel activation. . . 53

viii

4.10 Histograms of agent activations, parallel activation. Note that the second

row has log-10 axes. 54

4.11 Histograms of successful agent trades, parallel activation. Note that the

second row has log-10 axes. 54

4.12 Number of interactions (successful trades) over time, fork-and-join activation. 56

4.13 Histograms of agent activations, fork-and-join activation. Note that the

second row has log-10 axes. 56

4.14 Histograms of successful agent trades, fork-and-join activation. Note that

the second row has log-10 axes. 57

4.15 Standard deviation of agent marginal rates of substitution, fork-and-join

activation. 57
4.16 Performance measures for different implementations. 58

4.17 Scaling of fork-and-join implementation. Random and random-with-shuffle

only. The dashed line represents the average runtime of the serial model. . . 59

4.18 Number of interactions as the number of threads are varied. Above is ran-
dom activation, below is random-shuffle activation. 60

4.19 Change in mean agent utility as the number of threads are varied. Above is

random activation, below is random-shuffle activation. 60

4.20 Change the standard deviation of agent MRSes as the number of threads

are varied. Above is random activation, below is random-shuffle activation. 61

ix

List of Abbreviations

ABM Agent-based model
CA Cellular automata
CoMSES Computational Modeling for SocioEcological

Science
CPU Central processing unit
CSP Communicating Sequential Processes
CUDA Compute Unified Device Architecture
DM Deviation from the mode
D-MASON Distributed MASON
FLAME FLexible Agent Modeling Environment
GPU Graphics processing unit
HPC High-performance computing
IBM Individual-based model
MASON Multi-Agent Simulator of Neighborhoods or

Networks
MPI Message Passing Interface
MRS Marginal rate of substitution
ODD Overview, Design Concepts, Details
PPHPC Predator-Prey for High-Performance Computing
PRNG Pseudorandom number generator
RNG Random number generator
TRNG True random number generator
UI User interface

x

Abstract

COMMUNICATING SEQUENTIAL AGENTS: AN ANALYSIS OF CONCURRENT
AGENT SCHEDULING

Stefan D. McCabe

George Mason University, 2016

Thesis Director: Robert L. Axtell

Concurrent scheduling of agents presents a challenge for researchers who wish to de-

velop scalable agent-based models (ABMs) without sacrificing intelligibility or fine control

over model elements. In this thesis, I advance our understanding of the requirements and

challenges of concurrent scheduling by investigating the problem outside of existing ABM

modeling frameworks. I examine the possibility space of agent activation regimes, consid-

ering as axes: parallelization, selection order, updating regime, endogenous or exogenous

access to model state, uniformity of activation, and reproducibility.

This analysis informs a systematic review of ABMs on a popular repository of ABM

source code to determine how researchers are currently addressing agent activation issues.

The review suggests that there is currently widespread homogeneity of modeling practices

regarding agent activation.

I also expand an existing ABM of economic exchange to demonstrate the effects of

varying activation regime on model results and model runtime, extending the analysis to a

parallel computing context. This work also extends previous work on agent activation by

applying the examination on a more complex model. Varying the activation regime

produces significant differences in behavior and model outcomes in this more complex

model.

This research contributes to the existing literature on the implementation of agent-based

models and may be of use for further advances in ABM library development. The results of

the case study may also be of interest to researchers of the foundations of economic theory.

Chapter 1: Introduction

1.1 Overview

Agent-based models (ABMs) allow researchers to simulate interactions between a popula-

tion of agents. These agents will have novel behaviors and properties but the precise pattern

of their interactions, the activation regime, can be of interest in its own right (Comer, 2014).

Unfortunately, these interactions—the source of the ABM’s novelty—are also a hindrance

to parallelization, a common way to improve the runtime of a computer program. Until

recently, the there has been a trade-off between fine control of the activation regime and

model parallelization. This trade-off has remained underexamined. For example, are some

activation regimes intrinsically better-suited to parallelization than others? The literature is

silent.

The central question animating this work is therefore: do advances in our understanding

of the activation regime in serial (non-parallel) ABMs also hold for parallel ABMs? This

opens up a number of related sub-questions, each of which will be handled in a different

chapter.

In Chapter 2, I examine what is known about ABM activation and updating and present

a typology of activation regimes. The typology raises the question of relative suitability of

different activation regimes in a parallel computing context. Finally, I examine the ques-

tion: does there exist a class of activation regimes that are specifically parallel regimes?

The single-threaded focus in the agent activation literature means that these have likely not

been identified or explored yet.

1

This typology also touches on issues of reproducibility. How desirable is it that an ABM

be reproducible from a random seed, given that some methods of parallelizing ABMs are

explicitly nondeterministic? Is this a grave problem for those ABMs or is it sufficient to

demonstrate that the range of outcomes follow some probability distribution? Compared to

traditional social science methodologies, the requirements to fall under the aegis of “repro-

ducible research” may be significantly different.

In Chapter 3, I conduct a systematic review of a set of publicly-available ABMs and

their source code in order to better understand how modelers have attended to agent acti-

vation. How many modelers make explicit their assumptions in this area, and how often

is activation regime implemented in novel fashion? Does the default behavior of mod-

eling software constrain the number of activation regimes used? The data suggest that,

although modeling software does not constrain modeler decision-making, there is never-

theless widespread homogeneity with respect to agent activation and parallelization.

Chapter 4 connects activation issues and parallelization at the implementation level by

extending the bilateral exchange model of Axtell (2005) to include a range of activation

regimes in serial and in parallel. Model runtimes and quantitative outcomes are both ana-

lyzed. The results support the notion that activation regime continues to play an important

role in the behavior of increasingly complex agent-based models while also providing rea-

son to believe that performance gains are likely to be modest and are affected by the choice

of activation regime.

This research should be of interest to much of the agent-based modeling community.

Though many models are prototyped in NetLogo or Python, once a model becomes suf-

ficiently large it is more efficient to re-implement that model in a language with faster

performance. This research contributes to that effort. It also draws on extant literature

in the computer science and software engineering disciplines and may have implications

there. From a practical standpoint, it may serve as the basis for the development of an

2

agent-based modeling library or framework or a set of revisions to an existing library or

framework.

This research contributes to a severely neglected strand of the agent-based modeling lit-

erature dealing with agent scheduling. It has been well-established (Axtell, 2000a; Comer,

2014) that agent activation regimes have a significant effect on model behavior and out-

comes, but it is relatively rare for modelers to make their assumptions here explicit. The

earlier work of Axtell and Comer operate in a purely single-threaded context, where I ad-

dress agent activation regimes potentially unique to concurrently-structured models.

1.2 Literature Review

This review will begin with a discussion of agent-based models as a methodology: their

origin, motivation, and areas of use. I will then introduce concerns about the computational

performance of ABMs, the ways in which previous researchers have attempt to speed up

their models, and how related disciplines (like scientific computing) have attempted to

address the same issue. Research on agent scheduling, a relatively small and neglected

branch of the ABM literature, will then be introduced and it will be shown that these two

branches of research—scheduling and performance—have rarely overlapped. I will also

address how similar computational modeling paradigms, like cellular automata (CA), have

(or have not) addressed scheduling issues.

1.2.1 Agent-Based Modeling: An Overview

Complex Systems

Computational social science is the study of social systems using an approach informed

by complexity theory. Complexity can present an obstacle to studying a system because of

the challenge it presents to traditional statistical and mathematical tools, but also because

3

“complexity” is a difficult and elusive term. Herbert Simon (1996) defines a complex system

as a system “made up of a large number of parts that have many interactions” (pp. 183-

184). A complex system has two defining features: hierarchy and near-decomposability.

Hierarchy refers to the fact that complex systems consist of interacting subsystems; near-

decomposability implies that these subsystems can (at least in the short-term) be analyzed

as systems in their own right. Complexity theory builds on prior work in chaos theory and

catastrophe theory, implying that many complex systems may have nonlinear dynamics and

multiple equilibria.

There are a number of texts addressing the relationship between complex systems

and social science (Cioffi-Revilla, 2014; Gilbert & Troitzsch, 2005; Miller & Page, 2007;

Mitchell, 2011). Of particular interest to computational social scientists is the concept of

emergence: when a “phenomenon. . . requires new categories to describe it which are not re-

quired to describe the behavior of the underlying components” (Gilbert & Troitzsch, 2005,

p. 11). In other words, relatively simplistic behavior at a micro level can produce com-

plex patterns at the macro level. Emergence can be difficult to identify using statistics or

mathematical equations because the level of analysis for those methods is typically at the

population level, not the individual level.

Agent-Based Models

For many classes of research questions, complexity implies that a given system cannot be

productively analyzed using mathematical equations. Axtell (2000b) presents the justifi-

cation for using agent-based models in these scenarios. An agent based-model is simply

a collection of computational agents, with “states and rules of behavior” (p. 2), that in-

teract for a period of time. When instantiating a population of agents, it is trivial to vary

agent attributes along some distribution, allowing for agent heterogeneity and thereby al-

lowing researchers to move away from “ideal types” (p. 1) like the representative agent

4

Figure 1.1: A typology of agent-based models, from Crooks and Castle (2012, p. 228).

of economics. Furthermore, agent-based models scale easily: increasing the agent popu-

lation may require more computational power or more memory, but it does not require the

researcher to write more lines of code.

Agent-based models have proven useful in a wide variety of disciplines, including ecol-

ogy (Bennett & Tang, 2006; Mooij, Bennetts, Kitchens, & DeAngelis, 2002), epidemiol-

ogy (Crooks & Hailegiorgis, 2014), economics (Geanakoplos et al., 2012; Gode & Sunder,

1993) and political science (Laver & Sergenti, 2012). They also provide value across the

applied-theoretical divide: the most simple agent-based models are essentially Monte Carlo

simulations (Axtell, 2000b, pp. 6–7) whereas more complex models are extensively cali-

brated and validated against empirical data (Crooks & Castle, 2012). Figure 1.1 provides a

representative typology of (spatial) ABMs and their various use cases.

5

Software

As shown in Figure 1.1, agent-based models can be implemented in a variety of ways.

Historically they have been written in low-level programming languages but in recent years

frameworks like Repast (North, Collier, & Vos, 2006) and MASON (Luke, Cioffi-Revilla,

Panait, Sullivan, & Balan, 2005) have attempted to make the development process easier

and more consistent.

NetLogo (Wilensky, 2015) is an increasingly popular integrated modeling environment,

written in Java. It provides an intuitive interface and simplified domain-specific language

for agent-based models. Different agent types can be declared using breeds; all agents

of a given type can be queried using the ask primitive: ask agents [DoSomething

]. NetLogo is particularly well-suited to developing spatial ABMs; where representing and

visualizing space can be time-consuming in lower-level languages, it is built in to NetLogo.

1.2.2 Agent-Based Modeling and High-Performance Computing

Motivation

Axtell (2000b, p. 6) noted that, due to the ability to vary the size and behavior of the agent

population, “a relatively short ‘program’ at compile-time is actually a very large ‘program’

at runtime.” The ability to scale models easily is one of the great advantages of ABMs, but

it comes at a steep cost in performance. Agent-based models consist of dense interactions

between agents (and, potentially, their environment).

Jaffry and Treur (2011) examined the performance of a relatively simple agent-based

model of trust dynamics against a population-based model that produced similar results.

They found that the time complexities of the agent-based and the population-based models

were O(N2τ) and O(τ) respectively, where N is the size of the agent population and τ is

the number of time steps analyzed. In other words, run time scaled linearly with τ for

6

the population-based model but ran in polynomial time for the agent-based model.1 This

result suggests that ABMs often scale poorly as the agent population increases, forcing

researchers to investigate methods to improve performance.

Axtell (2005) discusses the theoretical relevance of time complexity for economics. The

prevailing Walrasian model of exchange, as formalized by Arrow and Debreu, postulates

a hypothetical “auctioneer” that computes the prices for a market of agents exchanging

heterogeneous goods. The auctioneer cannot efficiently calculate these prices; the time

complexity is non-polynomial (p. F193). An alternative theoretical model, in which dis-

tributed agents independently and asynchronously trade goods at local prices, has a much

better time complexity and a computational complexity of this process is P. The model

presented by Axtell will be extended in Chapter 4.

The simplest way of speeding up model performance is often simply to write the agent-

based model in a different language. Many agent-based models are prototyped in NetLogo

(a Java-based integrated modeling environment) or in Python. These high-level languages

allow for rapid development but often perform more slowly than lower-level languages like

C or C++. NetLogo in particular struggles with large numbers of agents (Comer, 2014,

p. 6). Figure 1.1 acknowledges this tendency; as model complexity increases (that is,

moves from the top left of the typology to the bottom right), the recommended development

environment changes from high-level languages or toolkits to low-level languages.2

Parallel Computing

Significant performance gains can often be made simply by writing in a lower-level pro-

gramming language, but that can be insufficient. Simple C or C++ code still runs serially,

1Note that usually one cannot simply reduce the size of the agent population to improve model runtime—
in some models (e.g., Crooks & Hailegiorgis, 2014) it can result in different outcomes.

2ReLogo, a variant of RePast that uses many of the design concepts of NetLogo, may ease the transition
from high-level to low-level, but Lytinen and Railsback (2012) report extremely poor performance results.

7

that is, along a single thread of execution. A more fruitful approach can be found in par-

allelism—“harnessing multiple processors to work on a single task” (Herlihy & Shavit,

2012, p. 1)—which improves scalability, subject to Amdahl’s law.3 Achieving parallelism

is sometimes easy (so-called embarrassingly parallel tasks) but typically requires more

attention to the structure of the program.

The traditional paradigm of parallel programming has been multithreaded program-

ming, implemented in languages like C, C++, and Java. In this paradigm the key abstrac-

tion is the idea of threads, “sequential processes that share memory” (Lee, 2006, p. 33).

Each processor (or logical processor) can execute a thread. Therefore, on an octal-core

system there can theoretically be 8 threads executing in parallel (16 if the processor is hy-

perthreaded). If memory must be shared between threads, extreme care must be taken to

ensure mutual exclusion—that is, to make sure that two threads do not attempt to access or

modify the same piece of information at the same time. For example, in a parallel ABM

two execution threads should not try to move the same agent simultaneously. Although

sometimes difficult to work with, threads are immensely powerful tools.

Lee (2006) is highly critical of the thread-based paradigm, however. The thread is

too low-level an abstraction; programmers are too easily bogged down in the minutiae

of memory management. More problematically, threads introduce nondeterminism, the

possibility that the same program can return different results. Lee thinks this is a serious

problem:

Threads, on the other hand, are wildly nondeterministic. The job of the pro-

grammer is to prune away that nondeterminism. We have, of course, devel-

oped tools to assist in the pruning. Semaphores, monitors, and more modern

overlays on threads. . . offer the programmer ever more effective prunings. But

3Amdahl’s law simply notes that the proportion of a model that cannot be parallelized significantly affects
the speed-up that can be obtained through parallelization. (Herlihy & Shavit, 2012)

8

pruning a wild mass of brambles rarely yields a satisfactory hedge. (p. 35)

While controversial and possibly overstated, Lee’s critique of threads exposes some real

weaknesses of the thread-based paradigm. Lee (2009) presents some of his own proposals,

but they have not been widely accepted. In “The Problem With Threads,” however, he

suggests that message-passing processes (see below) may be a helpful approach.

Hoare (1978) anticipated many of the problems that would appear in the thread-based

paradigm. He proposed his own language, CSP (for Communicating Sequential Processes),

that treated process inputs and outputs as basic primitives of the language. Hoare’s pro-

posed language incorporated seven central ideas, most importantly the guarded command4

of Dijkstra (1975), for communication between processes. A command within a process

can specify that it is receiving input from another (named) process and will simply block

until it receives such input; the same process is followed for outputs. For interested read-

ers, Hoare (p. 674) includes a parallel implementation of the Sieve of Eratosthenes as an

example of how these concepts can be used in a scientific computing context.

Hoare (1985) later formalized his CSP language further, but the insights of the initial

proposal are more important than the semantics of the language itself. Languages that

implement CSP or draw heavily on Hoare’s insights include Occam (the first language

to use this model), Limbo, Plan 9, Clojure, and Go. Libraries emulating CSP have been

written for other languages, including C++, Haskell, and Scala. CSP has not yet been

used in an ABM context, and the languages that prominently implement CSP have not

traditionally been used for ABMs.

Two frameworks for parallel or distributed ABMs have recently appeared. Cordasco

et al. (2013) present D-MASON (Distributed MASON) is a framework-level approach to

writing distributed ABMs. Using a “master/worker paradigm” (p. 1236), they distribute

4A guarded command is a command of the form G→ X , where G is the guard. If G is true, X is executed,
otherwise something else happens.

9

the execution of spatial ABMs using field partitioning. In this technique, the global model

state is synchronously updated from multiple spatial subcomponents. As of publication, the

authors reported some limitations on agent movement as a result of this technique, summa-

rized as a rule against “teleportation” (p. 1241), and it is not clear how field partitioning

applies to aspatial models. However, field partitioning does allow for fully reproducible

parallel models by placing a pseudo-random number generator (see below) on each field.

Another extension of a currently-existing ABM library is Repast-HPC, a C++ library

for distributed ABMs (Collier & North, 2013; North, Collier, & Murphy, 2016). Designed

to support parallel simulation of “either relatively few heavy, computationally complex

agents per process or a multitude of lighter-weight agents per process” (Collier & North,

2013, p. 1221), Repast-HPC uses the discrete-event scheduler of Repast Simphony, with

agents scattered across different threads. Synchronization across threads is managed using

the Message Passing Interface (MPI) framework for distributed computing. The generation

of random numbers is handled by a single, central random number generator in order to

guarantee reproducibility.

GPU Programming

A second approach to writing high-performance ABMs involves programming on graphics

processing units (GPUs). GPUs were originally developed to facilitate graphics-intensive

tasks like computer gaming and video editing but have also proven quite useful for sci-

entific computing. A GPU consists of a number of shaders, lightweight CPUs designed

for efficient calculation of 3D graphics. Because there are a number of shaders and these

shaders are extremely fast, GPUs are well-suited for many scientific computing tasks, e.g.

the solving of very complicated differential equations (Kindratenko, 2014). Perhaps the

best-known example of how GPUs can be leveraged for scientific computing is the Fold-

ing@Home project (Beberg, Ensign, Jayachandran, Khaliq, & Pande, 2009), which uses

10

distributed GPU programming to simulate protein folding for biomedical research.

GPU programming was first used for ABMs by D’Souza, Lysenko, and Rahmani (2007),

who implemented the well-known Sugarscape model of Epstein and Axtell (1996). They

successfully ran the model with over two million interacting agents on a large grid while

still calculating over 50 model turns per second. Their model demonstrates well the perfor-

mance gains that can be achieved on relatively cheap hardware by using the GPU, but also

some of the pitfalls: because shaders are designed to perform calculating on relatively light

objects, the memory structure used on the GPU is very different from a traditional com-

puting context. In particular, agents are represented as graphical textures and their state is

changed by modifying a texture’s color.

Their work predated the development of more general-purpose GPU programming li-

braries like Nvidia’s Compute Unified Device Architecture (CUDA), so these problems

have been mitigated somewhat. For most mathematical analysis tasks, CUDA is quite

effective at speeding up these calculations (Kindratenko, 2014), but the memory require-

ments of agent-based models still impose some difficulties. Richmond, Coakley, and Ro-

mano (2009) use CUDA to develop a framework for writing ABMs for the GPU, based on

the FLexible Agent Modeling Environment (FLAME) (Coakley, Smallwood, & Holcombe,

2006). Their framework, FLAME-GPU, mitigates this problem somewhat. Note, however,

that their approach provides explicitly nondeterministic models (Rousset, Herrmann, Lang,

& Philippe, 2014).

1.2.3 Activation and Updating in Agent-Based Models

Overview

Agent-based models are essentially the aggregation of a series of interactions between com-

putational agents. The manner and order in which agents interact is therefore of paramount

11

importance. Axtell (2000a) discusses the effect agent activation regime can have on the

behavior of an ABM. He identifies two activation regimes—uniform and parallel. Under

uniform activation, all agents activate once per turn. In the most naïve implementation,

each agent activates in order (agent 1, then agent 2, and so forth). This can bias the model,

so more commonly the agents are randomly shuffled before the turn. A random activation

regime simply activates agents at random; agents are not guaranteed to activate once per

turn. He finds, using a simple firm dynamics model that the choice of activation regime

can bias the model significantly. It is well-known that the variance in firm growth rates de-

creases as firm size increases. Under a random activation regime, the outputs of his model

closely match the distribution of firm growth rates in the United States—the variances fol-

lows a power law with negative exponent. With uniform activation, his model produces

demonstrably incorrect results—the variances of firm growth rates follow a power law with

positive exponent.

Earlier Work: Contributions from Cellular Automata

Axtell (2000a) did not have to develop this idea in a vacuum, for a similar literature on up-

dating and activation exists in the field of cellular automata (CA). Nowak and May (1992)

developed a CA representation of the prisoner’s dilemma in a spatial context. They found,

contrary to existing theory, outcomes in which some agents persisted in cooperating over

long periods of time. This finding was criticized by Huberman and Glance (1993), who

demonstrated that this finding was a product of synchronous updating.5 That is, all agents

at time t made their decisions using information from time t−1, and then the state changed

5Note that updating and activation are closely related but slightly different: activation refers to the order
in which agents interact and updating refers to the information they have when the interact. Using just the
examples of Axtell (2000a) and Huberman and Glance (1993), one can construct a matrix of potential designs:
asynchronous-random, asynchronous-uniform, synchronous-random, synchronous-uniform. This point will
be elaborated upon later.

12

globally. With asynchronous updating,6 in which agents used the most up-to-date infor-

mation about their state when making a decision, agents overwhelmingly defected, as pre-

dicted by game theory (but see Nowak, Bonhoeffer, & May, 1994, for a rejoinder).

Schönfisch and de Roos (1999) present a rigorous explication of CA updating schemes,

including various asynchronous regimes. They distinguish asynchronous event-driven and

asynchronous time-driven regimes, the latter incorporating activation via a “Poisson clock”

calculating arrival times for different cells (for more on Poisson activation, see below).

They note that the Poisson clock is likely the most “satisfying” (p. 193) regime for many

CAs. Time-driven updating avoids the arbitrariness that comes from assuming that events

happen with some regularity or some even spacing, as event-driven updating does. They

also caution that many asynchronous activation regimes “usually introduce a lot of addi-

tional, unintended structure into the dynamics and patterns of the cellular automaton” (p.

139).

Baetens, Van der Weeën, and De Baets (2012) summarize a number of reports of quali-

tative changes in model behavior observed by switching between synchronous and asynch-

ronous updating. They also quantitatively measure the effect of varying both activation or-

der and updating scheme on the stability of their CA using Lyapunov exponents. They find

that moving from synchronous to asynchronous updating has the largest effect on model

stability, with varying between different asynchronous activation orders producing signifi-

cant but more modest effects.

Radax and Rengs (2010) connect the CA updating literature to ABMs. While stressing

that “there is no definite best choice” (p. 1), they note that asynchronous updating often

has higher external validity. They also warn that within asynchronous updating, there may

6The definition used by Caron-Lormier, Humphry, Bohan, Hawes, and Thorbek (2008, p. 523) may be
verbose but helpful: “asynchronous updating refers to a method by which the objects’ characteristics are
updated and made available for the other objects as the simulations run through the interactions within a time
step.”

13

be significant effects from the choice of agent selection order. Based on this, they caution

that integrated modeling environments (e.g., NetLogo) that obscure the activation regime

from users should face particular scrutiny.

Agent Selection

While ABM development is significantly affected by choice of activation regime, there is

still little mention of it as a choice made by modelers. Although Railsback and Grimm

(2012)—a standard textbook—includes a few pages on execution order, a cursory exami-

nation of the ABM literature shows that the decision is rarely considered (or at least, rarely

made explicit when specifying the model) and a review of errors and artifacts in ABMs

(Galán et al., 2009) mentions scheduling only briefly. Part of the reason for this neglect is

that modelers are often nudged into a default activation regime by their choice of software.

In particular, the popular ABM framework NetLogo (Wilensky, 2015) implements uniform

activation through the ask command, obscuring the choice of activation regime from the

modeler (Comer, 2014; Radax & Rengs, 2010). Frameworks with flexible discrete-event

schedulers (e.g., MASON and RePast) offer more flexibility, limited by the modelers’ cre-

ativity.

The difficulties posed by poor documentation of activation regime can impede the repli-

cation process. For example, Axtell, Axelrod, Epstein, and Cohen (1996) attempted to dock

two relatively similar ABMs: Axelrod’s cultural transmission model and Epstein and Ax-

tell’s Sugarscape model. Because the two models used different activation regimes, they

produced subtly different outcomes. In a relatively large-scale version of the docking ex-

periment, Sugarscape’s uniform activation regime produced fewer stable regions than the

Axelrod model, which used random, non-uniform activation. This difference was statis-

tically significant. In this particular case the differences were minor but notable; in other

cases it can be more severe.

14

Page (1997) is among the first papers to examine the importance of activation and up-

dating for ABMs. Examining two CAs7—the game of life and the conformity game—Page

finds only modest effects of synchronous versus random asynchronous updating on these

CAs. However, he introduces a third activation regime (“incentive-based updating”, where

an agent’s chance to activate is governed by a utility function) which increases the sensi-

tivity of the model to initial conditions, i.e., it strengthens first-mover advantage.

The dissertation of Comer (2014) examines the effect of activation regime in a more

systematic fashion. Comer argues that “policy-centric” (p. 12) models (those tending to-

ward the bottom right of the typology represented in Figure 1.1) have generally neglected

addressing issues with activation regime, leaving the choice unspecified. He implements

a number of models and demonstrates how different activation regimes can alter their be-

havior. Importantly, he imports two notable concepts from the CA and econophysics lit-

erature: the Poisson activation regime, in which time is modeled in a more continuous

fashion than random or uniform activation; and endogenous activation regimes, in which

the state changes of the model can effect the agents’ rates of activation. For example, in

an endogenous Poisson activation regime, agent activation is governed by a heterogeneous

parameter λ . As the model runs, agents can change their λ and therefore the rate at which

they activate relative to other agents.

Comer (2014) applies these insights to a set of ABMs: the spatial prisoner’s dilemma

(Nowak & May, 1992), the civil violence model of Epstein (2002), the zero-intelligence

traders model (Gode & Sunder, 1993) and a wealth distribution model based on a prior

model of interacting particles in physics (Aldous, 2013). In all cases, he finds that changing

activation regimes can affect model behavior. For example, in the last case—what Comer

calls the “Leveller” model—the activation regime affects gradient of change in the standard

7Although the paper is directed to the agent-based modeling literature, the models examined are actually
cellular automata. Presumably at this time the boundaries between these two approaches were less clear.

15

Figure 1.2: Dynamics of standard deviation of wealth in a Leveller model with different
activation regimes. From Comer (2014, p. 136).

deviation of wealth in an agent population, as shown in Figure 1.2. Comer’s models were

developed in NetLogo and Python and all were single-threaded.

Alizadeh and Cioffi-Revilla (2015) examine the effect of similar activation regimes on

an agent-based model of opinion dynamics. Examining two forms of Poisson activation

regimes in addition to uniform and random activation, they find that the choice of activa-

tion regime has significant effect upon the emergence of opinion extremists. In the first

Poisson activation regime, more extreme agents activate more frequently, while in the sec-

ond moderates activate more frequently. Perhaps counterintuitively, the former produces

fewer opinion extremists than the latter, a result that supports increased engagement with

individuals harboring extreme opinions.

Since Page (1997) introduced updating into the ABM literature, it has received compar-

atively little attention. Caron-Lormier et al. (2008) also examine updating in a “deliberately

16

simple” individual-based model8 (IBM) of proteins with multiple trophic levels. They find

that synchronous updating introduces a burn-in process resembling a periodic function and

slightly lower overall energy levels for the proteins. They tie this result to an extant lit-

erature on the role of delay in ecosystems; more important here is their discussion of the

difficulties of implementing synchronously-updating IBMs, where numerous dummy vari-

ables have to be attended to in order to create this artificial delay.

Fatès and Chevrier (2010) examine the effects of updating schemes on a simple IBM,

the multiple Langton’s ants model. Using this very simple model (scarcely more complex

than a CA), they introduce the difficulties of resolving collisions in synchronously updated

IBMs. With certain collision rules, they produce deadlock behavior previously unseen in

earlier analysis of the multiple Langton’s ants model. They note that many “artefacts” (p.

540) of updating regimes may disappear in more complex models, meaning investigation

into more complex models is needed.

Related Issues

A related concern is the precise method in which agents activate within a given regime.

A random activation regime means that agents are activated randomly, but it says nothing

about how the random order is determined. The typical approach is to use a pseudorandom

number generator (PRNG) (Katzgraber, 2010). PRNGs are a class of algorithms that re-

turn a series of numbers by repeatedly applying a transformation to a seed number. PRNGs

are not truly random; they eventually repeat themselves once the seed value is reached

again. This typically takes many iterations; one commonly used PRNG, the Mersenne

Twister, generates 219937−1 unique numbers before repeating itself. However, PRNGs can

produce numbers that correlate with each other in subtle ways. PRNGs are deterministic;

8“Individual-based model” is the preferred nomenclature of ecologists; the term is effectively interchange-
able with “agent-based model” (Railsback & Grimm, 2012, p. xi).

17

provided the seed is unchanged running a single-threaded program that uses pseudorandom

numbers will always generate the same output. This determinism enables reproducibility;

the simulation can be run again with the same seed. If a program needs so many random

numbers that the period of a PRNG is exhausted or if there is some concern about autocor-

relation, a true random number generator (TRNG) can be used (Katzgraber, 2010, pp. 3–4).

TRNGs use some sort of physical process—for example, atmospheric noise—to produce a

non-deterministic stream of numbers. Because a TRNG is bound to some physical process,

they are typically much slower than PRNGs and they are not reproducible. Rouly (2015)

reports on a scenario in which enough random numbers were required of an ABM that it

became advantageous to use a commercially-available TRNG, TrueRNG.9

Agent activation issues are typically considered to be a subset of a larger literature on

verification and validation of agent-based models. This is an important and difficult area;

Crooks, Castle, and Batty (2008, p. 419) summarizes some of the difficulties presented in

verifying and validating ABMs. The choice of activation regime may be empirically tied

to real-world phenomena, so it is therefore a matter of ABM validation.

Other Reasons for Parallelization

Performance is not the only motivation for parallelization. Many multithreaded programs

use separate threads to handle visualization and input/output. These are important tasks for

ABMs as well; additionally Auble (2015) presents another possible motivation. He devel-

ops the idea of narrative agents that report on interesting features of the model dynamics.

One approach he presents is the “journalist” agent that summarizes different sections of the

model. This sort of agent would be an ideal candidate for parallelization, since it does not

change the model state. All of these applications, however, are outside the scope of this

thesis.
9http://ubld.it/products/truerng-hardware-random-number-generator/

18

http://ubld.it/products/truerng-hardware-random-number-generator/

The pursuit of high-performance ABMs, in the form of environments like FLAME-

GPU and D-MASON, has succeeded in providing helpful tools for writing very fast ABMs.

Unfortunately, the designs of these frameworks has obscured an important decision—the

choice of activation order and updating system—from the modeler. A better understanding

of activation and updating—in a parallel, high-performance context—is needed in order to

equip modelers with the knowledge to choose between these tools and construct more valid

models.

19

Chapter 2: A Typology of Agent Activation Regimes

Activation and updating issues are typically presented in a selective or non-systematic fash-

ion. Activation is often treated differently from updating and both are typically kept siloed

away from discussions of reproducibility and parallelization, as if they were unrelated con-

cepts. They are not; all these issues are intimately connected. The goal of this chapter is to

explicate something close to a full typology of activation regimes.

The possibility space of agent activation regimes is not well-explored. Existing re-

search (Comer, 2014) on agent activation, by focusing narrowly on the order in which

agents are selected, neglects the effect of closely related design decisions, including the

model updating process and the source of the random numbers used to generate the selec-

tion order. Even where analyses of agent activation acknowledge the choice of updating

regime, as in the study of asynchronous activation regimes by Alizadeh and Cioffi-Revilla

(2015), the treatment of updating is incomplete. There appear to be legitimate use cases for

synchronous agent-based models; as such, researchers of ABM methodology should also

examine synchronous updating.

I define an agent activation regime broadly, encompassing agent selection order, uni-

formity of agent selection, model updating, reproducibility, and parallelization. Table 2.1

provides a high-level representation of this typology. Many of these issues have tradition-

ally been treated as concepts separate from agent activation; I propose that they are, if

not inseparable, at the very least intimately connected. A model turn is defined, follow-

ing Comer (2014, p. 88), as a number of agent activations equal to the size of the agent

population.

20

Table 2.1: Overview of activation regime typology. In bold are the design choices repre-
sented by NetLogo’s ask command.

Category Description Potential values

Selection criteria In what order are agents selected for
activation?

Random, Fixed, Pois-
son Clock

Uniformity Is each agent guaranteed one activa-
tion per model turn?

Yes/No

Updating regime Does the model state change immedi-
ately or do all agents act on informa-
tion from the start of a turn?

Asynchronous,
Synchronous

Reproducibility Can a given model run be repeated
consistently (i.e., through use of a ran-
dom seed)?

Yes/No

Endogeneity If the selection criteria is based on
some agent characteristic, can that
characteristic change over the course
of a model run?

Yes/No

Parallelization Can the agents be activated in parallel? Yes/No

2.1 Agent Selection

Much of the extant literature on agent activation, including Axtell (2000a) and Comer

(2014) focus primarily on the choice of which agent goes when. For clarity, I will refer

to this as agent selection rather than agent activation. Deciding the agent selection pro-

cess is, for many modelers, the beginning and ending of deciding their model’s activation

regime. The overwhelming majority of models feature a random selection order. To il-

lustrate, let A = {a1, a2, . . . an}. In random selection, agents are drawn from a discrete

uniform distribution ax = AU(1,n).

Another possibility is some sort of fixed selection order. Agents may simply activate in

the order in which they were initialized, following the form a1,a2, . . . an. (This is typically

poor practice that produces unwanted interaction biases. Another possibility, raised by

Railsback and Grimm (2012, pp. 186–187) is to encourage positive feedback by sorting

agent selection on some attribute of the agent population. For example, agents could have

21

some attribute governing speed or initiative; it might be intuitive to set the selection order

based on that attribute.

Comer (2014) presents the idea of using a Poisson clock to govern agent selection.1

Agents are given some (presumably heterogeneous) parameter λ ; “agents have activation

times taken as arrival times from an exponential distribution with the arrival rate parameter,

λ” (p. 21). That is, the probability of an agent being selected follows Poisson(λ). Poisson

activation regimes are more complex to implement, particularly while tracking model turns,

but have a number of attractive qualities. Algorithm 1 provides an example of how to

implement a Poisson activation scheme. Some phenomena are better represented using a

Poisson-distributed variable. For example, transit systems can be studied using queuing

theory; arrivals of buses or trains can be modeled using a Poisson process. Poisson clocks

also provide a way to introduce positive feedback without the possible bias of a fixed, and

therefore deterministic, selection order.

Many models require more than one agent to be activated at a time, e.g., an economic

model in which agents trade with each other. Taking the simple example of pairwise activa-

tion (two agents activated at a time), two agents are selected using the usual criteria (some

check must be performed to prevent the same agent from being selected twice) and then

activation occurs. A model turn therefore consists of n
2 activations of two agents.

2.2 Uniformity

The idea of uniformity is closely related to agent selection. The central question here is:

are agents allowed to activate more than once per turn? The overwhelming majority of

1Note that Comer is not the originator of the Poisson clock; it has been discussed in earlier work by Axtell
(2000a), Newth and Cornforth (2009), and Schönfisch and de Roos (1999). However, Comer provides a better
overview and his algorithm is better suited for event-driven scheduling of ABMs.

22

Algorithm 1 Example of a Poisson activation method. λ is based on parameter w.
1: procedure SETPOISSONDISTRIBUTION
2: totalLambda← 0
3: assignLambdas :
4: for all Agents do
5: lambda← w
6: totalLambda← totalLambda+ lambda
7: normalizeLambdas :
8: for all Agents do
9: lambda← lambda∗ (NumberO f Agents∗1.1/totalLambda)

10: if lambda = 0 then
11: lambda← 0.00001
12: scheduleAgents :
13: for all Agents do
14: nextT ←−1∗ log(U(0,1)/lambda)
15: while nextT < 1 do
16: Schedule.add(Agent)
17: nextT ← nextT +−1∗ log(U(0,1)/lambda)

ABMs choose a random selection order; within that group there is less unanimity regard-

ing uniformity.2 The combination of random and uniform selection is often called uniform

activation; non-uniform random selection then becomes random activation. The distribu-

tions described above no longer hold; a uniform activation regime does not follow U(1,n)

but rather each agent’s probability of activation approaches one as a turn progresses. Uni-

form activation imposes a measure of “fairness” on the model.3

Axtell (2000a) discusses the effect uniformity can have on the behavior of an ABM.

He identifies two activation regimes—uniform and random. He finds, using a simple firm

dynamics model, that the choice of activation regime can bias the model significantly. It is

well-known that the variance in firm growth rates decreases as firm size increases. Under

a random activation regime, the outputs of his model closely match the distribution of

firm growth rates in the United States—the variances follows a power law with negative

2Quantitative evidence for this claim is presented in Chapter 3.
3The idea of each agent getting their “fair” share of activations is from Axtell et al. (1996, p. 131).

23

exponent. With uniform activation, his model produces demonstrably incorrect results—

the variances of firm growth rates follow a power law with positive exponent.

2.3 Reproducibility

It is not immediately obvious why reproducibility would be a concern when developing

a typology of agent activation regimes. However, because the activation and updating

regimes play such a large effect on the behavior of the model—they are an important part

of what Axtell (2000a) calls the “interaction topology”—they are an important determinant

of a model’s reproducibility. Reproducibility is especially important here because many

activation regimes require the generation of large amounts of random numbers.

ABMs are rarely trivial to replicate. If a model features identical behavior from run

to run, then it has missed many of the advantages of being an ABM. Agent heterogeneity

entails randomness; the ability of agents to interact suggests that there should be something

novel about the manner and order in which they interact.

An ABM’s activation regime can be fully reproducible without the model itself being

fully reproducible. For example, if the criteria by which agents are selected is fixed based

on some attribute of the agents, and that attribute is randomly distributed, then the model’s

reproducibility is contingent on how the random numbers governing the agent attributes

were randomly generated.

There are two main approaches to the generation of random numbers: the use of a

truly random number generator (TRNG) or the use of a pseudorandom number generator

(PRNG). A TRNG uses some process, such as the monitoring of atmospheric noise, to

generate random numbers (Katzgraber, 2010). These numbers are not predictable, though

they may be biased in some fashion. Katzgraber (p. 3) notes that many TRNGs apply some

mathematical function to the raw numbers to “remove any bias in the process.” By contrast,

24

a PRNG is an algorithm that produces a deterministic stream of random-looking numbers

from a seed value. Though not truly random, PRNGs are preferred in many applications,

including simulations. Katzgraber (p. 4) notes three advantages of using PRNGs: (1) they

are much faster than TRNGs, (2) they are portable and not system-specific, and (3) the

values can be reproduced by using the same random seed.

I focus here on the distinction between PRNGs and TRNGs, and therefore the distinc-

tion between reproducible and nonreproducible random numbers, but closely related in

importance is RNG quality. Not all RNGs are equal in quality; many are biased in ways

that can vary in significance. A poorly designed TRNG is in many ways the worst thing

to use in an ABM, as it is both non-reproducible and biased. The Mersenne Twister (Mat-

sumoto & Nishimura, 1998) is a popular PRNG that is both fast and high-quality. The

period of a PRNG—the amount of numbers it can generate before repeating itself—may

be particularly important for ABMs, which, like many Monte Carlo simulations, generates

very large amounts of random numbers.

2.4 Updating

The updating regime is the system under which the model resets its global state in reac-

tion to changes in the model. It is closely tied to the cellular automata literature; because

CA cells have fixed rules and do not move, the choice of updating regime and the choice

of selection regime are interwoven. There are two broad categories of updating regime:

synchronous and asynchronous.4 Under synchronous updating, state is changed for the

model as a whole at some specific time, likely the beginning or ending of a time step. Most

CAs work this way: each cell evaluates its neighbors, decides to change state according to

4One should be careful of treating (a)synchronicity as a rigid binary; in complex systems differences in
subsystem behavior and attributes may create “semi-synchronous” states where information about the model
state is rapidly received by some parts of the agent but not others.

25

some decision rule, and then all cells change state (update) simultaneously. By contrast,

in asynchronous updating regimes, one cell would evaluate its neighbors and change state,

and then another cell would evaluate its neighbors based on that new model state.

The application of updating regimes to ABMs is not as direct as it is for CAs. For CAs,

selection and updating issues are usually considered together under the aegis of “updating,”

where for ABMs the two are usually folded into “activation.” Asynchronous updating

seems to be the norm for ABMs.

I have already asserted that activation (in terms of agent selection) and updating are

intimiately related. Why? The extant literature on activation and updating have typically

treated them separately for reasons of parsimony. This has allowed for deep analyses of

activation (Axtell, 2000a; Comer, 2014) and updating (Baetens et al., 2012) but has also

reinforced the perception that they are distinct issues. Many (though not all) activation or-

ders depend on updating regime to be coherent, however. For example, under synchronous

updating all uniform selection orders are identical, but this is not true of all non-uniform

selection orders, as Alizadeh and Cioffi-Revilla (2015) assume. In endogenous activation

regimes, the time at which the activation parameter is updated may bias the model. When

focusing on simple regimes, this is typically not a problem. The choice of asynchronous

versus synchronous updating also has serious implications for parallelization, as seen be-

low.

2.5 Endogeneity

In the event that a non-random selection order is chosen, there is likely some agent attribute

governing the selection order. This may be a constant value, like a number assigned at

initialization, or it may be a variable. If the agent has a variable attribute that influences the

selection order, the agent activation regime is endogenous rather than exogenous. (Because

26

most ABMs use random selection, most ABM activation regimes are exogenous.)

To illustrate the concept, consider the Leveller model of Comer (2014, pp. 117–136).

A population of agents is initialized with an unequal distribution of wealth. Two agents

are activated and their wealth is distributed evenly. If the activation regime is set to an

endogenous, non-uniform Poisson clock regime, with λ equal to agent wealth, the wealth

distribution of the population is quickly redistributed (see the results for “Poisson” in Fig-

ure 1.2). However, if λ is instead based on the closeness of agent wealth to the mean,

wealth is redistributed much more slowly (the “Inverse Poisson” results in Figure 1.2).

Alizadeh and Cioffi-Revilla (2015) show how similar tweaking of the parameter λ can

produce interesting results in models of opinion dynamics.

2.6 Parallelization

The vast majority of agent-based models run along a single thread of execution. Such

models execute serially. In contrast, agent-based models can run in parallel, with multiple

simultaneous threads of execution. Parallel computing is highly hardware-dependent, but

this typically entails tasks being evaluated on different processors.

The primary motivation for running an agent-based model in parallel is performance.

Especially in models with very large agent populations, the dense interactions of the agents

can cause a superlinear or even polynomial increase in run time—i.e., increasing the size of

the agent population by 10% may increase the run time by much more than 10%. Because

the size of the agent population is a relevant parameter for many models (e.g., Crooks &

Hailegiorgis, 2014), some models must be examined with extremely large agent popula-

tions to produce valid results.5

Performance may not be the only motivation to move to a parallel ABM. Although

5Note, however, that there be ways to run the model at reduced scale, see Osgood (2009) and Richardson,
Richiardi, and Wolfson (2015).

27

more difficult to implement, parallel ABMs can be easier to reason about and explain to lay

audiences because of their increased verisimilitude. Most real-world behaviors are parallel

and asynchronous—all the relevant agents perform behaviors simultaneously and the model

state (i.e., the world) updates accordingly. Some concurrency models, like Communicating

Sequential Processes (Hoare, 1978), are said to “provid[e] a natural abstraction that can

make some programs much simpler” (Cox, n.d.). Parallelization can also be used outside

of the activation regime to render user interface (UI) elements or to perform logging and

reporting functions (Auble, 2015); these applications are outside the scope of this thesis.

The difficulty of parallelizing an agent-based model depends substantially upon whether

or not it is synchronously or asynchronously updated. Much of the challenging in imple-

mentation parallelizaion involves the management of shared memory (Lee, 2006); by using

synchronous updating the global model state and therefore the shared memory is modified

less often.

Spatial models present a unique challenge for parallelization. The global model state,

now including the environment, is much larger. Depending on the specific model, collision

detection may be necessary to prevent two agents from staying at the same location. For

example, the Schelling (1971) segregation model assumes that two agents cannot reside at

the same location, and therefore an agent has no more than eight neighbors. For this reason,

some distributed ABM frameworks, including D-MASON, use synchronous updating.6

Another critical challenge in writing parallel ABMs is maintaining reproducibility.

Many parallel-executing programs become nondeterministic (Lee, 2006), even if any ran-

dom numbers are generated from a PRNG with fixed seed. Maintaining determinism of-

ten requires careful attention to the manner in which random numbers are generated and

how memory is shared within the program. Reproducibility is often a valuable quality

6Specifically, D-MASON uses field partitioning, where the landscape is divided into segments; these
segments are evaluated in parallel and synchronously updated (Cordasco, Milone, Spagnuolo, & Vicidomini,
2014).

28

in a model, but it is sometimes reasonable to trade off reproducibility for performance.

For example, the GPU programming library FLAME-GPU, like most GPU architectures

(but not all, see Jooybar, Fung, O’Connor, Devietti, & Aamodt, 2013), is explicitly non-

deterministic (Coakley et al., 2006).

One common approach to parallelizing agent-based models is to divide the agent popu-

lation into smaller subpopulations, then run these as if they were the full model on different

cores. This “fork-and-join” method is extremely simple to implement and typically pro-

duces good speedups—it is “embarrassingly parallel” (Herlihy & Shavit, 2012)—but can

bias the results in certain cases, by preventing the interaction of certain important agents

with each other. For example, imagine an agent population A with attribute w that is dis-

tributed according to a Pareto distribution. If the population is partitioned into N equally-

sized segments, it is possible that one of these partitions contains no agents whose w resides

in the tail of the distribution.

2.7 Discussion

I believe it is worthwhile to think of agent activation as incorporating a number of inter-

related subconcepts. Doing so allows for added clarity: for example, all synchronous and

uniform activation regimes are the same but not all synchronous and non-uniform activa-

tion regimes. The presentation of these results are incomplete, probably by necessity. For

example, in presenting selection methods I have limited myself to methods with a clear

use case. However, many probability distributions could be used, for example a Weibull

distribution of agent activations.

The lack of an obvious use case for such a selection order points to a caveat: more exotic

activation regimes are not necessarily better. The choice of activation regime should tell

a story about intended behavior of your model; random selection should imply a different

29

social process than Poisson selection. However, the diversity of possible stories and social

processes also implies that there should not be a monoculture of activation regimes used.

The definition of a model turn provided at the beginning of this chapter has elided one

notable distinction: the different between event-driven and time-driven updating regimes.

In an effort to provide a comprehensive framework, I have ignored the case of time-driven

updating. Many authors (Radax & Rengs, 2010; Schönfisch & de Roos, 1999, e.g.,) dis-

tinguish time-driven and event-driven updating as subsets of asynchronous updating. Con-

sidering time-driven updating requires a different definition of a model turn (and therefore

uniformity) and the reward of doing so is fairly minimal. Not many agent-based models

use time-driven updating and most can be easily represented as asynchronous event-driven

models. Repast’s scheduler uses a “ticks” mechanism that resembles time-driven updating

but is implicitly converted to a discrete event scheduler (Collier & North, 2013, p. 1220).

Comer (2014) shows how a nominally time-driven Poisson selection order can be converted

to an event-driven one.

This analysis has assumed for simplicity and clarity that there is only one type of agent.

This is true for many models, but not nearly all of them. An important question regard-

ing activation with multiple agent type is: is it acceptable, feasible, or desirable to mix

activations of agents of different types?

This analysis has omitted discussion of agent entry and exit. Exit is straightforward

to handle under this framework, although it does change the length of the model turn

over time. Handling agent entry should not be difficult either; the primary question be-

ing whether the agent is well-mixed into the original population or appended to it.

30

Chapter 3: A Systematic Review of the Usage of Different
Agent Activation Regimes

3.1 Overview

I present a systematic review of how modelers have heretofore handled agent scheduling

issues. The documentation and source code of 268 agent-based models were examined and

classified according to the typology of Chapter 2. The analysis suggests major homogeneity

regarding many of these decisions.

This appears to be the first time modeling decisions regarding agent activation have

been examined in any large scale or systematic fashion. Angus and Hassani-Mahmooei

(2015), in their survey of articles published in the Journal of Artificial Societies and So-

cial Simulation, touch briefly on how agent scheduling issues are represented in published

figures, but this is not a focus of their analysis.

3.2 Data

The data is sourced from OpenABM1, maintained by the Network for Computational Mod-

eling for SocioEcological Science (CoMSES). OpenABM provides a repository for re-

searchers to host the source code for their agent-based models. As of March 5, 2016,

OpenABM had 330 publicly-viewable entries; private source code was excluded from the

analysis.

1https://www.openabm.org/

31

https://www.openabm.org/

I downloaded all the files hosted for examination. Some models (approximately 20%)

were thrown out for not being agent-based models; they were libraries, pedagogical ex-

amples, or microsimulations. Other models were thrown out because the source code was

not provided or because they were designed for proprietary software, making the code too

difficult to examine. The specific OpenABM entries that were excluded can be seen in

Appendix B.

3.3 Methodology

Each model’s source code and documentation was examined and categorized in terms of

the components of the activation regime described in Chapter 2. The models were also

categorized by whether or not the documentation was provided using the Overview, Design

concepts, Details (ODD) protocol recommended by Grimm et al. (2010) and by whether

or not the activation regime could be considered “default behavior” for the given modeling

environment. In low-level programming languages, this means that agents were activated

serially using a range-based for loop; in NetLogo, this means agents were activated using

the ask command.

In some cases, one OpenABM entry contained multiple models. If the models were

closely related, i.e., they were in the same language and had similar behavior, they were

treated as one model. In cases where the models were written in different languages, this

has been noted.

One difficulty when it comes to classifying NetLogo models is that the model behavior

can be affected by the NetLogo version. In versions of NetLogo prior to version 4, the ask

primitive (the primary way to query and activate agents) used what the documentation2 de-

scribes as “simulated concurrent behavior.” Within the ask block, each action that affects
2https://ccl.northwestern.edu/netlogo/docs/programming.html#ask-concurrent

32

https://ccl.northwestern.edu/netlogo/docs/programming.html##ask-concurrent

the model state is broken up as finely as possible and each agent takes turns (randomly, of

course), executing these chunks. This is still not full synchrony, so this behavior will be la-

beled semi-synchronous. If ask-concurrent is paired with the without-interruption

primitive, the updating regime will be labeled fully asynchronous.

Another difficulty in examining NetLogo models is that most call ask more than once.

Each time agent behavior is divided into its own ask, the model’s activation regime be-

comes slightly less asynchronous (though not necessarily synchronous). For example, con-

sider otherwise identical NetLogo models that do the following:

Model A

ask agents[

doX

doY

doZ

]

Model B

ask agents [doX]

ask agents [doY]

ask agents [doZ]

The agents in Model A each perform doX, then doY, and then doZ. In Model B, each

agent performs doX, then each agent performs doY, and then each agent performs doZ.

However, within each task, the model state is still updated asynchronously. This “repeated

ask” style therefore represents a sort of partial asynchrony.

This classification is a subjective process, and there is undoubtedly some error involved.

In particular, deciding when a NetLogo model exhibits fully or partially asynchronous up-

dating should be viewed as having relatively large error bars.

Much of the data is binary or categorical. In many cases predicting the modal result

of categorical is not interesting; here we are interested in the variability of the data, which

represents a heterogeneity of practices in the modeling community. The variance cannot be

applied as it would with numerical data so the deviation from the mode (DM) is preferred

33

instead (Wilcox, 1973):

1− ∑
k
i=1(fm− fi)

N(K−1)

where fi is the frequency, K is the number of categories, and N is the sample size. DM

produces a normalized uncertainty measure comparable to the variance. A value of 0 in-

dicates exclusion of all but one category from the sample; a value of 1 indicates that the

frequencies are uniformly distributed.

3.4 Results

In total 268 models (and their documentation) were analyzed. The full list of models can

be found in Appendix C. The models exhibited significant homogeneity in many respects.

Most (207) were developed in NetLogo. A notable minority were developed in Java (6 MA-

SON, 25 Repast, 1 JADE, 12 other Java). One model was implemented in two languages

(NetLogo and Cormas). Surprisingly, Python is quite poorly represented in the sample;

only six models used Python. The overall distribution of activation methods is summarized

in Figure 3.1

Most models (85%) use some form of random selection to activate their agents, per

Figure 3.4, and nearly all (94%) activate their agents uniformly. There is near-unanimity

with regards to reproduciblity (most models are) and parallelization (most models aren’t).

Only three models run in parallel; of those, two are implemented in such a way that agent

activation is non-reproducible. These models are presented in Fachada, Lopes, Martins,

and Rosa (2016); Rubio-Campillo, Cela, and Cardona (2013); and Sutcliffe, Wang, and

Dunbar (2015).

34

Selection

Fixed

Fixed/Rand

Random

Rand/Poisson

Uniform

Non−Uniform

Uniform

Both

Endogenous

Exogenous

Endogenous

Both

Updating

Async

Mutiple

Field

Partial−asnyc

Sync

Semi−sync

Parallel

False

True

Reproducible

False

True

Selection Order Uniform Endogeneity

Updating Parallelization Reproducibility

Figure 3.1: Pie charts showing the distribution of different areas of the activation regime
across all public OpenABM models.

There is a pleasant heterogeneity in terms of updating regime: mostly thanks to Net-

Logo, only 178 models are fully asynchronous, while 17 are fully synchronous and the

rest are in intermediate states. Most surprising is the unpopularity of endogenous updating

methods; only two models (Alizadeh & Cioffi-Revilla, 2015; Crooks et al., 2015) select

agents for updating based on some endogenous feature of the model.

A sizable minority (41%) of models included their documentation in a manner con-

forming to the ODD protocol, as shown in Figure 3.2. This represents a substantial buy-in

to a fairly recent protocol (it was first promulgated in 2006 and updated in 2010).

One might hypothesize that the ODD protocol, by encouraging modelers to explicitly

describe the scheduling process (the protocol contains a section labeled “Process overview

and scheduling”), thereby encourages reflection about the activation process itself. This

could lead to an increased heterogeneity of activation regimes, as modelers consider the

best fit for the system under analysis. This hypothesis was examined quantitatively using

35

0.00

0.25

0.50

0.75

1.00

2008 2010 2012 2014 2016
Date

O
D

D
 A

do
pt

io
n

%

Adoption Rate of ODD Protocol Over Time

Figure 3.2: Adoption rate of ODD protocol over time. Note that the high early adoption
rate is likely an artifact of researchers updating very old models.

the DM of each portion of the activation regime. Table 3.1 presents the relevant data; see

Figure 3.3 for a visual representation of the variability with regard to the selection order.

The data do not support the hypothesis. The deviations from the mode go in both

directions and are typically minor. If anything, the larger changes in DMs for selection and

uniformity suggest the opposite effect: ODDs may induce conformity.

The choice of modeling platform, presented in Table 3.2, also has little effect on activa-

tion regime. NetLogo’s ask primitive encourages the use of random selection, substantially

decreasing heterogeneity with respect to selection order, but this is offset by much greater

heterogeneity with regard to updating, as seen in Figures 3.4 to 3.5. These findings ease

the concern by Radax and Rengs (2010) that NetLogo leads to increased conformity of

modeling practices.

36

Table 3.1: Deviations from the mode for different aspects of the activation regime, contin-
gent on model’s use of the ODD protocol.

Type ODD NoODD
Selection 0.09 0.27
Uniformity 0.06 0.11
Updating 0.42 0.39
Endogeneity 0.01 0.02
Reproducibility 0.02 0.01
Parallel 0.03 0.01
n 119 149

Table 3.2: Deviations from the mode for different aspects of the activation regime, contin-
gent on the modeling platform used.

Type C Java MASON Repast NetLogo
Selection 0.59 0.56 0.44 0.64 0.03
Uniformity 0.17 0.00 0.00 0.06 0.08
Updating 0.13 0.50 0.20 0.14 0.45
Endogeneity 0.00 0.00 0.25 0.00 0.01
Reproducibility 0.22 0.17 0.00 0.00 0.00
Parallel 0.22 0.33 0.00 0.00 0.00
n 9 12 6 25 207

3.5 Discussion

An encouraging finding of this research is that modeling practices with regards to activation

regime are not significantly affected by the choice of modeling platform. That this is true

because there is such widespread conformity with respect to the activation is less encour-

aging. While heterogeneity with respect to reproducibility may not be desirable (ceteris

parbius, reproducibility is better), relatively few modelers develop agent-based models in

parallel or with endogenously changing selection orders. This is a disappointing finding

because endogenous activation encourages positive feedback, something that is typically

of interest to computational modelers.

37

0

25

50

75

100

F FR R RP
Selection Order

C
ou

nt

ODD
FALSE

TRUE

Selection Order of OpenABM Models

Figure 3.3: Selection orders used, contingent on ODD adoption. “F” is fixed, “R” is ran-
dom, “P” is Poisson. Multiple letters means the model includes multiple activation regimes.

While the concerns of Radax and Rengs (2010) about NetLogo appear to be overstated,

that the overwhelming majority of models in the repository used NetLogo warrants some

attention. Radax and Rengs is correct that NetLogo encourages certain behaviors vis-à-vis

agent activation, but in the case of selection this is probably a good thing. Around 10%

of all models use non-endogenous fixed selection; while heterogeneity of practices is to

be encouraged, Chapter 4 and other research (Axtell, 2000a) indicates that this particular

activation regimes introduces serious bias. Additionally, NetLogo users seem to be far

more inventive with regards to updating: the simplicity of using the ask primitive seems to

encourage flexible usage.

This research suggests that parallel models are still extremely rare within the ABM

community.

3.5.1 Future Work

Systematic, large-scale analysis of ABMs is a relatively rare thing. This analysis con-

tributes to our understanding of how modelers are approaching agent activation issues but

38

0

50

100

150

200

F FR R RP
Selection Order

C
ou

nt

Platform
C/C++

FORTRAN

JADEX

Java

MASON

Multiple

NetLogo

Python

Repast

Selection Order of OpenABM Models

Figure 3.4: Selection orders used, contingent on modeling platform used. “F” is fixed, “R”
is random, “P” is Poisson. Multiple letters means the model includes multiple activation
regimes.

there is clearly more work that can be done.

It may be the case that the OpenABM repository is biased in some fashion. For exam-

ple, perhaps that certain research institutions encourage the use of OpenABM, and these

institutions also encourage the use of NetLogo, explaining its prominence within the repos-

itory. An extension of this review should therefore include other potential sources: the

electronic appendices of prominent ABM-related journals, GitHub, etc.

One weakness of the approach used here is the subjectivity of the asynchronous/syn-

chronous distinction for updating. As mentioned above and in Chapter 2, updating is more

of a continuum than the other parts of the activation regime, which are typically fairly easy

to classify. Developing a more objective or quantitative measure of how (a)synchronous a

model is would likely be very insightful. The work of Baetens et al. (2012) using Lyapunov

exponents may be helpful here.

Another approach that may be insightful is to distinguish ABMs from IBMs from the

39

0

50

100

150

A B F P S SS
Updating Regime

C
ou

nt

Platform
C/C++

FORTRAN

JADEX

Java

MASON

Multiple

NetLogo

Python

Repast

Updating Regime of OpenABM Models

Figure 3.5: Updating systems used, contingent on modeling platform used.

review. It may be the case that many biological and ecological systems are better repre-

sented through synchronous updating than messier and more chaotic social systems. Is this

represented in the modeling decisions of ABM and IBM researchers?

The same is true with regards to environment. There is intuitive reason to believe that

spatial models are less sensitive to changes in the activation regime because agents’ actions

are mediated by the the environment.

One pleasant surprise of this research has been the widespread adoption of ODDs. Be-

cause ODDs include a great deal of information about the model workings (although not

enough about activation) and are generally consistently structured and formatted, they may

be well-suited for text mining.

40

Chapter 4: Studying Agent Activation in a Model of
Bilateral Exchange

4.1 Overview

The most straightforward way to demonstrate the effect of varying agent activation regimes

is to present a detailed analysis of how the regime effects a specific agent-based model.

I present an agent-based model of economic exchange, originally developed by Axtell

(2005), and demonstrate how different activation regimes affect model dynamics. This

approach follows the recent work of Alizadeh and Cioffi-Revilla (2015) and Comer (2014),

extending it to include a more diverse range of activation regimes, including parallel acti-

vation. The model presented is significantly more complex that those analyzed in previous

work, demonstrating, contra the speculation of Fatès and Chevrier (2010), that these issues

persist outside of so-called “toy models.”

4.2 Model Specification

4.2.1 Overview

The model presented here was originally developed by Axtell (2005). In contrast to Wal-

rasian exchange models, a group of economic agents engages in decentralized exchange of

a number of commodities. The number of interactions between these decentralized agents

required to equilibrate the population is a function of population size and the number of

41

commodities traded. For example, if equilibration is quantified based on the largest vari-

ance of the marginal rate of substitutions for each commodity, the number of bilateral in-

teractions required is increases linearly with the size of the agent population (Axtell, 2005,

p. F205).

4.2.2 Motivation

Chen (2012) identifies a number of motivations for agent computing in economics. The

most prominent of these is the markets approach, which involves the “pursuit of a real

construction... and hence a real understanding of markets” (p. 2). In particular, this research

agenda often focuses on alternatives to the Walrasian model of price formation. Axtell

(2005) focuses on the implausible computational complexity of the Walrasian auctioneer

as a model of exchange. Extending existing work on fixed-point theorems (Geanakoplos,

2003; Hirsch, Papadimitriou, & Vavasis, 1989; Papadimitriou, 1994), Axtell concludes that

“there are no polynomial time algorithms for the general case [of calculation of Brouwer

fixed points] with nonlinear utility functions” (p. F196). The complexity of this algorithm

places the task faced by Walrasian auctioneer outside of the class of “those that can be

realistically solved by computers” (p. F197).

Axtell (2005) instead proposes a decentralized exchange process that can be simulated

using agent-based modeling. This bilateral exchange model is as effective as the Walrasian

model at converging to equilibrium but does so much more quickly. A list of model pa-

rameters can be found in Table 4.1. An agent population of size A trades N commodities.

Agents interact randomly, trading commodities to satisfy their individual (heterogeneous)

utility functions. Axtell demonstrates (p. F203) that the computational complexity of this

mechanism is in polynomial time, making it a significantly more efficient, and therefore

more plausible, model of price formation.

42

Table 4.1: Parameterization of the exchange model.

Symbol Description

A Size of the agent population
N Number of commodities traded
τ Time step
α Cobb-Douglas preferences
w Wealth
ε Threshold required to initiate trade

4.2.3 Behavior

The model is written in C++, a low-level object-oriented programming language.1 At run-

time, a population of A agents and N commodities is instantiated. Each agent possesses

an endowment of each commodity, uniformly distributed in the range [wmin,wmax]. By

default, 50 ≤ w ≤ 150. The average size of each agent’s endowment is therefore approxi-

mately N wmin+wmax
2 . Agents possess Cobb-Douglas preferences for each commodity. These

preferences are also uniformly distributed in the range (αmin,αmax). These preferences are

then normalized such that α1 +α2 + . . .+αN = 1.

Agents are activated in pairs to evaluate potential trades. Each agent selects different

commodities. If the positive increase in utility (evaluated using the marginal rate of substi-

tution) from a potential trade is greater than e raised to a parameter ε, 0≤ ε ≤ 1, exchange

occurs. The number of trades per model turn can be specified by the user, but for consis-

tency with the definitions earlier, experiments in this paper will define the number of trades

per turn as A
2 .

The marginal rate of substitution is calculated for each agent and each commodity. For

C1, the first commodity, the marginal rate of substitution is always one; that is, all other

1A specification of the model in terms of the ODD protocol (Grimm et al., 2010) can be found in Ap-
pendix A.

43

MRSes are defined in terms of the first commodity. For all other commodities the marginal

rate of substitution is given by

MRS(Cn>1) =
αnS1

α1Sn

where αn is the Cobb-Douglas preference for Cn and Sn is the size of the allocation of Cn.

Upon activation, the two agents a1 and a2 each randomly select different commodities,

Cx and Cy. If the ratio of their marginal rates of substitution for each commodity is greater

than the model parameter ε , a trade is initiated. The amount of each commodity exchanged

is given by:

∆x =
α1

x α2
y S1

xS2
y−α1

y α2
x S1

yS2
x

α2
x S2

y +α1
x S1

y

∆y =
α1

x α2
y S1

xS2
y−α1

y α2
x S1

yS2
x

α2
y S2

x +α1
y S1

x

The model can terminate under various conditions, but for simplicity in this analysis

the model continues for 100 turns.

The utility function of the agents is given by:

U = S1
α1×S2

α2× . . . ×SN
αN

where S is the size of the allocation and α is the preference for commodities one through

N.

There are only local prices in the model. The global price is only an aggregate of

individual preferences for commodities. An individual’s “wealth function,” its evaluation

44

of the size of its allocation of commodities, is the dot product of the vector of MRSes and

the vector of commodity allocations:

w =

MRS1

MRS2

. . .

MRSN

·

S1

S2

. . .

SN

The MRSes are the subjective marginal rates of substitution for the individual agent.

Synchronous updating was a priori rejected for this model. In a model of exchange, it

makes little sense to have synchronous updating. There is no global state considered by the

agents and it is not clear what collision resolution would look like in this case.2

4.2.4 Performance

The model is capable of handling very large agent populations trading a number of com-

modities, subject to processing power and time. Its moderate runtime and large number

of interactions make it well-suited as a test model for parallelization. Figures 4.1 and 4.2

present some benchmarking results for the serial version of the model. As predicted by

Proposition 11 of Axtell (2005), the basic relationship between A and the runtime of the

model is linear.

For compatibility with parallel execution, the model uses an array of PRNGs, one for

each thread of execution. To ensure that each PRNG has a different random seed, their

randomly-assigned hash value is added to the base random seed used. This means that as

2Note that this does not mean that all economic ABMs should be asynchronous; for example it may make
sense to represent stock markets, with their bid and ask orders, synchronously.

45

0.1

10.0

1,000.0

1,000 10,000 100,000 1,000,000
Number of agents

T
im

e
(s

)

Runtime of Exchange Model

Figure 4.1: Runtime of the bilateral exchange model, N = 2.

1 k

1 M

1 G

1,
00

0

5,
00

0

10
,0

00

50
,0

00

10
0,

00
0

50
0,

00
0

1,
00

0,
00

0

5,
00

0,
00

0

Number of agents

M
em

or
y

us
ed

Memory Usage of Exchange Model

Figure 4.2: Memory usage of the bilateral exchange model, N = 2.

46

implemented the model is not reproducible from run to run. Future work will tweak this

implementation in an effort to improve reproducibility of model results.

4.3 Methodology and Results

4.3.1 Environment

All experiments were run within a Docker session on a 16-core computer with 256 GB of

RAM running Fedora Linux.3 Docker is a service for maintaining and running lightweight

virtual machines that may be useful for ensuring reproducible research (Boettiger, 2015).

4.3.2 Serial Activation Regimes

The class of serial activation regimes were examined first. For each regime, 25 model

runs were performed, each lasting 100 turns. For these runs, A = 100000 agents traded

N = 10 commodities. Initial endowments were uniformly distributed in the range [50,150]

for each commodity and preferences were uniformly distributed in the range [0.01,0.99]

for each commodity. Trades were executed if there was a mutual gain in utility of at least

one percent.

Six activation regimes were examined for this experiment. For consistency, some facets

of the activation regime were held constant—serialized activation, asnychnrouous updat-

ing, non-reproducible random number generation. Table 4.2 provides an overview of the

six regimes. All three Poisson regimes are similar, differing only in how the endogenous

activation parameters λ is defined:

3The model code, including the Dockerfile used to generate the runtime environment, is available in
Appendix D or at https://bitbucket.org/mccabe_s/bilateral-exchange. The model was written
to compile with GCC 5.3; compatibility with other compilers is not guaranteed.

47

https://bitbucket.org/mccabe_s/bilateral-exchange

Table 4.2: Overview of serial activation regimes examined.

Regime Label Selection order Uniform? Endogenous?

1 Fixed Fixed Yes No
2 Random Random No No
3 Uniform Random Yes No
4 Poisson-Poor Poisson No Yes
5 Poisson-Rich Poisson No Yes
6 Poisson-Middle Poisson No Yes

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

0 25 50 75 100
Time

N
um

be
r

of
 In

te
ra

ct
io

ns Activation Method
Fixed

Random

Uniform

Poisson−Poor

Poisson−Rich

Poisson−Middle

Number of Interactions over Time

Figure 4.3: Number of interactions (successful trades) over time, serial activation.

• In Poisson-Poor, the activation parameter λ is defined as the inverse of the agent’s

wealth.4

• In Poisson-Rich, the activation parameter λ is defined as the agent’s wealth.

• In Poisson-Middle, the activation parameter λ is defined as the distance of the agent’s

wealth from the population’s mean wealth.

48

Fixed Random Uniform

0

25000

50000

75000

100000

50 75 100 125 15050 75 100 125 15050 75 100 125 150
Number of agent activations

C
ou

nt

Distribution of Agent Activations

Poisson−Poor Poisson−Rich Poisson−Middle

0

5000

10000

15000

20000

1 10 100 1 10 100 1 10 100
Number of agent activations

C
ou

nt

Figure 4.4: Histograms of agent activations, serial activation. Note that the second row has
log-10 axes.

Results

Varying the activation regime has significant effects on model behavior and outcomes.

Varying the activation regime does not, however, significantly affect the total number of

interactions (successful exchanges) within the model, as seen in Figure 4.3. Therefore,

one is led to the conclusion that changes in activation regime are successfully affecting the

“interaction topology” (Axtell, 2000a) rather than simply the raw number of trades.

The effect of activation regime on the “interaction topology” can be further demon-

strated by examining the distribution of trade opportunities afforded each agent. Figure 4.4

4Because there is no currency in this model, there is no “objective” wealth as would typically be under-
stood in the model. Wealth here is a subjective measure computed by the dot product of two vectors, the
agent’s current endowments and its current marginal rates of substitution.

49

Fixed Random Uniform

0

20000

40000

60000

50 75 100 125 15050 75 100 125 15050 75 100 125 150
Number of agent trades

C
ou

nt

Distribution of Agent Trades

Poisson−Poor Poisson−Rich Poisson−Middle

0

5000

10000

15000

20000

1 10 100 1 10 100 1 10 100
Number of agent trades

C
ou

nt

Figure 4.5: Histograms of successful agent trades, serial activation. Note that the second
row has log-10 axes.

50

−4 −2 0 2 4
60

12
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.6: QQ plot of agent activations, serial random selection.

shows the histograms of agent activations for a single, representative run for each activa-

tion regime, while Figure 4.5 shows the histogram of successful trades. The two uniform

activation regimes (including fixed activation here) have no variability, of course: they

have been defined such that each agent gets exactly the same number of activations. The

(non-uniform) random activation regime has some variability but it follows a normal dis-

tribution,5 as shown by the Q-Q plot in Figure 4.6.

The Poisson activation regimes exhibit more interesting behavior. To make visualiza-

tion easier, log10 axes were used here. In the Poisson-Poor regime, the distribution of

activations is slightly left-skewed with a much higher standard deviation (σ u 49) than the

random activations. In the Poisson-Poor activation, a very small number of agents actually

fail to get any activations. This is not true of the Poisson-Rich regime, though it has a

higher standard deviation (σ u 60). It is relatively right-skewed. The Poisson-Poor is also

right-skewed and has similar variability (σ u 63).

Perhaps the most notable effect of varying activation regime can be seen in the effect on

the poorest agents in the simulations. Figure 4.7 shows the increase in the poorest agents’

wealths over time. Under the Poisson-Rich regime (activation favors the richest agents),

5Specifically it is distributed N(100,100).

51

200

300

400

500

0 25 50 75 100
Time

M
in

im
um

 A
ge

nt
 W

ea
lth Activation Method

Fixed

Random

Uniform

Poisson−Poor

Poisson−Rich

Poisson−Middle

Minimum Agent Wealth over Time

Figure 4.7: Minimum agent wealth over time, serial activation.

the systematic exclusion of the poorest agents from the model prevents any meaningful

increase in the wealth of the poorest agent. Perhaps counterintuitively, while Poisson-Poor

increases the minimum wealth more than the others in the short run, this does not hold over

the long run.

In Axtell (2005), the exchange model terminated when the variance of the agents’

MRSes fell below some threshold, typically equal to the trade parameter ε . Figure 4.8

shows how the convergence rate of the model is affected by the activation regime. Fixed ac-

tivation models never converge: the population is not sufficiently well-mixed for widespread

trade. The Poisson-Middle regime converges nearly as quickly as the uniform and random

regimes, but the other two Poisson regimes have much more gentle slopes, suggesting that

these also do not produce well-mixed populations within the market.

4.3.3 Parallel Activation Regimes

The same set of activation regimes was examined in a parallel computing environment.

Once the scheduler activated a pair of agents, their trade function was sent to a thread pool

for processing. The size of the thread pool was determined by the system hardware; the

number of threads used should not be a relevant model parameter in this scenario. This

52

1.5

2.0

2.5

3.0

3.5

4.0

0 25 50 75 100
Time

L2
 S

. D
. o

f A
ge

nt
 M

R
S

es

Activation Method
Fixed

Random

Uniform

Poisson−Poor

Poisson−Rich

Poisson−Middle

Standard Deviation of Agent MRSes over Time

Figure 4.8: Standard deviation of agent marginal rates of substitution, serial activation.

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

0 25 50 75 100
Time

N
um

be
r

of
 In

te
ra

ct
io

ns Activation Method
Fixed

Random

Uniform

Poisson−Poor

Poisson−Rich

Poisson−Middle

Number of Interactions over Time

Figure 4.9: Number of interactions (successful trades) over time, parallel activation.

design pattern should produce functionally similar results to the serial activation case.

Parallel execution of the model produces generally similar interaction topologies when

compared with the serial case. Figures 4.9 to 4.11 provide visual evidence that the dis-

tribution of agent activations is not affected at either the macro-level or the micro-level.

These results suggest that the model can be effectively parallelized with respect to program

correctness; the performance of the parallel model will be discussed below.

53

Fixed Random Uniform

0

25000

50000

75000

100000

50 75 100 125 150 50 75 100 125 150 50 75 100 125 150
Number of agent activations

C
ou

nt

Distribution of Agent Activations

Poisson−Poor Poisson−Rich Poisson−Middle

0

5000

10000

15000

20000

1 10 100 1 10 100 1 10 100
Number of agent activations

C
ou

nt

Figure 4.10: Histograms of agent activations, parallel activation. Note that the second row
has log-10 axes.

Fixed Random Uniform

0

25000

50000

75000

100000

50 75 100 125 15050 75 100 125 15050 75 100 125 150
Number of agent trades

C
ou

nt

Distribution of Agent Trades

Poisson−Poor Poisson−Rich Poisson−Middle

0

5000

10000

15000

20000

1 10 100 1 10 100 1 10 100
Number of agent trades

C
ou

nt

Figure 4.11: Histograms of successful agent trades, parallel activation. Note that the second
row has log-10 axes.

54

4.3.4 Fork-and-Join Activation Regimes

Another approach to parallelizing agent-based models is to divide the agent population

into a number of subsections and then run these subpopulations in parallel. Particularly

for economic models, where interactions are mostly decentralized, this can be an attractive

way of increasing model performance; the code used is a rather simple extension of the

serial case. However, there is some risk that it could bias the model. The circumstances

under which fork-and-join is a safe approach are not well-known.

For this model, only fixed, random, and uniform activation were considered. The Pois-

son regimes are not well-defined for fork-and-join; are the λ s of the agents defined relative

to the model population as a whole, or just to the subpopulations? Should each subpopula-

tion get an equal number of activations?

Visual insepction of the results in Figures 4.12 to 4.15 suggest that this model is well-

suited to parallelization via fork-and-join; the key model variables do not appear obviously

biased in any fashion by division into subpopulations. In some ways, this is unsurprising; in

a model of decentralized exchange it does not necessarily matter who you interact with as

long as there is sufficient heterogeneity. However, it is surprising in other respects. If some

important variable of the model followed a skew distribution, the behavior of the model

could have changed significantly between subpopulations. This will be explored further in

the next section.

4.4 Performance

For the previous experiments, model runtimes were also recorded. The runtimes of dif-

ferent models can be found in Figure 4.16. Performance gains from parallelization were

modest. In the best case (random activation), moving from serial to parallel activation pro-

duced a 29% speedup. Using fork-and-join activation had a poor effect on model runtimes,

55

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

0 25 50 75 100
Time

N
um

be
r

of
 In

te
ra

ct
io

ns

Activation Method
Fixed

Random

Uniform

Random w/shuffle

Number of Interactions over Time

Figure 4.12: Number of interactions (successful trades) over time, fork-and-join activation.

Fixed Random Uniform

0

25000

50000

75000

100000

75 100 125 150 75 100 125 150 75 100 125 150
Number of agent activations

C
ou

nt

Distribution of Agent Activations

Poisson−Poor Poisson−Rich Poisson−Middle

0

10000

20000

30000

10 1000 10 1000 10 1000
Number of agent activations

C
ou

nt

Figure 4.13: Histograms of agent activations, fork-and-join activation. Note that the second
row has log-10 axes.

56

Fixed Random Uniform

0

20000

40000

60000

50 100 150 50 100 150 50 100 150
Number of agent trades

C
ou

nt

Distribution of Agent Trades

Poisson−Poor Poisson−Rich Poisson−Middle

0

10000

20000

30000

10 1000 10 1000 10 1000
Number of agent trades

C
ou

nt

Figure 4.14: Histograms of successful agent trades, fork-and-join activation. Note that the
second row has log-10 axes.

2.0

2.5

3.0

3.5

4.0

0 25 50 75 100
Time

L2
 S

. D
. o

f A
ge

nt
 M

R
S

es

Activation Method
Fixed

Random

Uniform

Random w/shuffle

Standard Deviation of Agent MRSes over Time

Figure 4.15: Standard deviation of agent marginal rates of substitution, fork-and-join acti-
vation.

57

0

50

100

150

200

Fixed

Random

Uniform

Random w/shuffle

Poisson−Poor

Poisson−Rich

Poisson−Middle

Activation Method

W
al

l T
im

e
(s

)

Parallelization Method
Serial

Parallel

Fork−and−join

Performance Measures for Parallelization

Figure 4.16: Performance measures for different implementations.

producing negative speedups across the board.

Although parallel activation improved model runtimes without sacrificing model cor-

rectness, the increase in developer workload likely would not justify the effort of transi-

tioning an existing model from serial to parallel activation.

4.4.1 Scaling in Fork-and-Join

In the previous section, the fork-and-join implementation used the system default number

of threads. In that case, 32 threads were used. Here I examine the effect of varying the

number of threads—and therefore the number of model subdivisions—on model behavior

and performance.

As before, A = 100000 traded N = 10 commodities. The effect on model runtime of

varying the model parameter t, the number of threads, can be seen in Figure 4.17. Twenty-

five runs were performed.

Changing the number of threads used by the model can improve the performance of the

model. Although initially slower than the serial model, once t > 50, the runtime falls below

the serial case.. However, even in this case the speedup is relatively minor. If the model

population is shuffled after each turn to avoid bias, this speedup essentially vanishes.

58

100

1000

10 100 1000
Number of Threads

T
im

e
(s

) Shuffling
Yes

No

Performance Scaling of Fork−And−Join

Figure 4.17: Scaling of fork-and-join implementation. Random and random-with-shuffle
only. The dashed line represents the average runtime of the serial model.

More important than performance is, of course, model correctness. The first concern is

that dividing the population into subpopulations may reduce the number of opportunities

for trade. Figure 4.18 shows the number of trades made by agents over time. Varying the

number of threads6 does not affect the the raw number of successful trades in any mean-

ingful sense, a finding consistent with earlier results regarding the activation regime. The

question is therefore: is the interaction topology biased by the division into subpopulations?

The answer to that question appears to be yes. Figure 4.19 and Figure 4.20 present two

key model outputs—the average agent utility and the standard deviation of agent MRSes—

over time. As the number of threads increases, the convergence rate of the model slows

down. (Note, however, that the highest values for the number of threads are quite extreme:

1000 threads for 10000 agents.) This result suggests that there is a trade-off: fork-and-join

can improve performance but at the cost of slightly biasing model results. This can be ame-

liorated by shuffling the subpopulations between turns, but then the performance benefit

of fork-and-join is lost. Combined, these results suggest that fork-and-join activation is

poorly suited to (some subset of) economic ABMs.

6To clarify: a specific set of threads was used in the parameter sweep. To be considered, the number of
threads must be a divisor of both A and A

2 . This is to prevent any bias from truncating the model or running
too few trades during a turn.

59

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

0 25 50 75 100
Time

In
te

ra
tio

ns

1000

2000

3000

4000

5000
Number of Threads

Interactions over Time

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

0 25 50 75 100
Time

In
te

ra
ct

io
ns

1000

2000

3000

4000

5000
Number of Threads

Interactions over Time

Figure 4.18: Number of interactions as the number of threads are varied. Above is random
activation, below is random-shuffle activation.

100

105

110

115

0 25 50 75 100
Time

A
ve

ra
ge

 U
til

ity

1000

2000

3000

4000

5000
Number of Threads

Change in Utilities over Time

100

105

110

115

0 25 50 75 100
Time

A
ve

ra
ge

 U
til

ity

1000

2000

3000

4000

5000
Number of Threads

Change in Utilities over Time

Figure 4.19: Change in mean agent utility as the number of threads are varied. Above is
random activation, below is random-shuffle activation.

60

2.0

2.5

3.0

3.5

4.0

0 25 50 75 100
Time

S
D

 o
f M

R
S

es

1000

2000

3000

4000

5000
Number of Threads

Change in MRSes over Time

2.0

2.5

3.0

3.5

4.0

0 25 50 75 100
Time

S
D

 o
f M

R
S

es

1000

2000

3000

4000

5000
Number of Threads

Change in MRSes over Time

Figure 4.20: Change the standard deviation of agent MRSes as the number of threads are
varied. Above is random activation, below is random-shuffle activation.

4.5 Discussion

Aside from the parallel results, in the serial case it has been demonstrated that the distri-

bution of agent activations continue to play an essential role in ABM outcomes even as the

complexity of the model increases.

In terms of model correctness, only reproducibility is compromised by parallelization,

regardless of whether thread pools or fork-and-join are used. In terms of performance, the

fork-and-join implementations perform quite poorly, suggesting that this model, though

more complex than the toy models typically used to test agent activation regimes, still

has agent behavior too simple to be efficiently parallelized through fork-and-join. Parallel

activation using a thread pool can deliver modest speedups but may not be worth the effort.

A productive way to think of agent activation, particularly in economic ABMs with

pairwise activation, is to analogize the agent-based model to a random graph model. In

the highly biased fixed activation case, there is no giant component to the network, only

61

an assortment of random dyads. The random activation process is quite similar to the

random graph model of Erdős and Rényi (1960). There is no direct analogue to the scale-

free model (Barabási & Albert, 1999), but one could imagine perhaps some lognormal

activation process producing similar results. All of these models are viewed as extremely

different and the choice of which algorithm is correct to use in a given case generates

serious discussion; the same should be true of agent activation.

4.5.1 Future Work

This model is extremely powerful and there are many natural extensions. The most directly

relevant to this research is to introduce an exogenous Poisson activation regime. Agents

have some initiative parameter, distributed uniformly or normally, represented their level

of entrepreneurship. How does the exogenous Poisson model compare to the random acti-

vation model? How does it compare to the endogenous Poisson model? Is the behavior of

the endogenous Poisson model a function of its exponential arrival times or of its positive

feedback?

Another extension is to increase the resolution of the micro-level data produced by the

model. Generating a list of proposed and successful trades between agents can produce a

weighted graph of economic exchange. Are there interesting features of the network, e.g.

do more central agents benefit more from trade? At a minimum, this extension would be

useful as a visualization tool for demonstrating the wide-ranging effects of changing the

activation regime.

One current limitation of the model is, because exchange is decentralized, there are

only local prices. This is, of course, a positive feature of the model (there is no Walrasian

auctioneer), but it does mean that model outputs are subjective to the agent. Future work

could focus on refining model outputs, either in terms of raw commodity allocations or in

terms of estimating a global price.

62

Finally, to make parallelization slightly easier the random number generator was im-

plemented in a nondeterministic fashion. Future work should improve the implementation

of the random number generator to improve reproducibility of model results.

63

Appendix A: Overview, Design Concepts and Details for
Exchange Model

A.1 Overview

This is a specification of the exchange model in terms of the ODD protocol (Grimm et al.,

2010). The model was originally developed and presented in Axtell (2005); I have only

extended it.

A.1.1 Purpose

The purpose of the exchange model, as presented in this thesis, is as a reference model for

experimenting with parallelization methods and activation regimes; in this sense its purpose

is pedagogical and comparable to the PPHPC model of Fachada, Lopes, Martins, and Rosa

(2015).

In its original implementation, it was an effort to use computational methods to es-

tablish a competing foundation to microeconomic theory, replacing the theoretically im-

plausible concept of the Walrasian auctioneer (as formalized in the Arrow-Debreu model).

The decentralized exchange process represented in the model was more plausible and more

efficient than the idea of the auctioneer setting prices.

A.1.2 State Variables and Scales

The model contains a population of agents exchanging some number of commodities; the

specific numbers here are key model parameters. There is no entry or exit of agents in the

model. Agents possess a random (uniformly distributed) endowment of each commodity

and a random (uniformly distributed) preference (α) for each commodity. The minimum

64

and maximum values for these two attributes are specificied by the user; with the limitations

that endowment sizes belong to the set of natural numbers and preferences are floating-

point numbers that should be in the range 0 < α < 1.

After α has been assigned for each commodity, they are normalized such that the sum

of the αs for each commodity equals one. From their current allocation of commodities and

preferences they construct a series of indifference curves for each good, i.e. the marginal

rate of substitution (MRS) for each good.

The marginal rate of substitution is calculated for each agent and each commodity. For

C1, the first commodity, the marginal rate of substitution is always one; that is, all other

MRSes are defined in terms of the first commodity. For all other commodities the marginal

rate of substitution is given by

MRS(Cn>1) =
αnS1

α1Sn

where αn is the Cobb-Douglas preference for Cn and Sn is the size of the allocation of Cn.

The utility function of the agents is given by:

U = S1
α1×S2

α2× . . . ×SN
αN

where S is the size of the allocation and α is the preference for commodities one through

N.

There are only local prices in the model. The global price is only an aggregate of

individual prefrences for commodities. An individual’s “wealth function,” its evaluation of

the size of its allocation of commodities, is the dot product of the vector of MRSes and the

65

vector of commodity allocations:

w =

MRS1

MRS2

. . .

MRSN

·

S1

S2

. . .

SN

The MRSes are the subjective marginal rates of substitution for the individual agent.

A key behavioral parameter of the model is the trade parameter ε . When two agents

consider a trade (see below), it only occurs if their prospective increase in utility is greater

than eε . The other important behavioral parameter is the number of trades per turn; for

consistency with the terminology used in Chapter 2 this is fixed at the number of agents

divided by two.

Most of the other model parameters govern the activation regime and the parallelization

of the model. The exchange model currently has six activation regimes, summarized in

Table 4.2. The model can be run serially or in parallel. If the model is run in parallel, the

task handled in parallel can either be each agent’s trade or trades within a subpopulation of

agents (“fork-and-join”).

A.1.3 Process Overview and Scheduling

Upon activation, two agents a1 and a2 each randomly select different commodities, Cx and

Cy. If the ratio of their marginal rates of substitution for each commodity is greater than eε ,

a trade is initiated. The amount of each commodity exchanged is given by:

66

∆x =
α1

x α2
y S1

xS2
y−α1

y α2
x S1

yS2
x

α2
x S2

y +α1
x S1

y

∆y =
α1

x α2
y S1

xS2
y−α1

y α2
x S1

yS2
x

α2
y S2

x +α1
y S1

x

The order in which the agents is, of course, a key concern of the thesis. The activation

regimes used in the analysis are summarized below.

• In the fixed activation regime, a1 and a2 are activated, then a3 and a4, and so on. This

regime is extremely poorly suited to economic exchange models and is included only

for demonstration purpose.

• In the random activation regime, two agents are selected at random from a uniform

distribution. This regime is non-uniform; i.e., the same agent can activate more than

once per turn and agents are not guaranteed an activation each turn.

• In the uniform activation regime, agents are selected randomly but are guaranteed

exactly one activation per turn (i.e., sampling without replacement). At the imple-

mentation level this is represented as a fixed activation regime on a permutation of

the agent population, with a new permutation generated at the end of each turn.

• There are three Poisson activation regimes. These regimes are slight adaptations of

the ideal Poisson clock to be event-driven rather than time-driven. The algorithm

used for all three can be seen in Algorithm 1 in Chapter 2, with the difference being

how the activation parameter λ is defined. In the Poisson-Poor regime, λ = 1
w , where

w is the agent’s wealth. In the Poisson-Rich regime, λ = w. In the Poisson-Middle

regime, λ = |w− w̄|.

67

If fork-and-join activation is used, the Poisson regimes are not available. Agents can

only interact with agents inside their own subpopulation; the random number generator is

bound by the size of the subpopulation. A separate model parameter governs whether the

subpopulations are randomized each turn.

The model updates asynchronously. In parallel activation the global model state is kept

consistent through the use of mutexes.

The model continues until a termination condition is met. The model has five termina-

tion conditions:

1. The model terminates after a fixed period of time.

2. The model terminates after the variance of all the MRSes for the various commodities

falls below some threshold.

3. The model terminates after the largest variance of the MRSes for the various com-

modities falls below some threshold.

4. The model terminates after the sum of agent utilities falls below some amount in one

turn.

5. The model terminates after the sum of agent utilities falls below some threshold.

A.2 Design Concepts

A.2.1 Emergence

The key contribution of Axtell (2005) is to show how prices can arise through a decentral-

ized process in the absence of the Walrasian auctioneer. This is an emergent feature of the

model.

68

A.2.2 Interaction

The economic exchange of the model consists of repeated pairwise interactions. One of the

fundamental questions of the thesis is how the patterns of interactions—i.e., the activation

regime—affect the model behavior.

A.2.3 Stochasticity

The model is highly stochastic. Most model parameters are randomly distributed; agent

activation and commodity selection are also random. That the model outputs are so con-

sistent in the face of so much stochasticity suggests that the underlying behavior is quite

robust.

A.3 Details

A.3.1 Initialization

As mentioned above, an agent population of size A is initialized. Each agent possesses a

random allocation of N commodities and Cobb-Douglas preferences for each commodity.

A.3.2 Input

The model parameters are read in from a configuration file. There is no other model input.

A.3.3 Submodels

There are no submodels of note.

69

Appendix B: OpenABM Entries Excluded From Review

Author Date Reason

2235 Lee 2009-01-29 No source code

2236 Voronovitsky 2009-01-24 No source code

2241 Lee 2009-01-09 No source code

2243 Zhang 2009-05-29 Proprietary software

2244 Murray-Rust 2009-07-20 Pedagogical example

2248 Jaffe 2009-09-14 Incomplete source code

2254 Abrami 2009-12-03 No source code

2263 Hufschlag 2010-04-09 Not an ABM

2272 rolanmd 2010-08-09 Proprietary software

2280 Grazzini 2010-11-28 Not an ABM

2281 Holzhauer 2010-12-01 No source code

2282 Grazzini 2010-11-28 Not an ABM

2441 Siebers 2011-02-23 Proprietary software

2466 Kim 2011-03-25 Not an ABM

2492 Bommel 2011-04-05 System not well-documented

2524 Zhang 2011-05-19 Proprietary software

2589 Truscott 2011-08-14 System not well-documented

2611 Levinson 2011-08-29 No source code

2617 Levinson 2011-08-29 No source code

2623 Nye 2011-08-30 System not well-documented

2656 Nazari 2011-10-05 Not an ABM

2717 Macedo 2011-11-07 Not an ABM

70

Author Date Reason

2756 Andrade 2011-11-20 Not an ABM

2870 Briner 2012-01-31 Proprietary software

2880 Bohensky 2012-02-06 System not well-documented

2905 Lawson 2012-02-27 Not an ABM

2908 Lawson 2012-02-27 Not an ABM

2965 Garip 2012-04-27 Proprietary software

3002 Shamsaee 2012-05-14 Not an ABM

3172 Schenk 2012-09-20 System not well-documented

3368 Magliocca et al. 2012-11-02 Proprietary software

3613 Boyle 2013-02-03 No source code

3760 Sibertin-Blanc et al. 2013-05-19 No source code

3792 Sibertin-Blanc et al. 2013-05-16 No source code

3807 Becu et al. 2013-05-27 Source code readability

3865 Dolado et al. 2013-07-11 No source code

3900 Hu 2013-08-09 Proprietary software

3936 Ozbas et al. 2013-09-09 Not an ABM

3939 Magliocca et al. 2013-09-09 Proprietary software

3983 Teran and Sibertin 2013-10-20 Incomplete source code

4025 Grimaldo and Paolucci 2013-11-10 System not well-documented

4036 Le Page and Bobo 2013-11-14 Incomplete source code

4079 Leighton 2014-01-06 Incomplete source code

4159 Tian 2014-03-21 Proprietary software

4161 Edali and Yasarcan 2014-03-21 Not an ABM

4163 Edali and Yasarcan 2014-03-21 Not an ABM

4166 Edali and Yasarcan 2014-03-26 Not an ABM

71

Author Date Reason

4220 Reardon et al. 2014-05-23 Not an ABM

4310 Smarzhevskiy 2014-08-19 Proprietary software

4486 Ceschi 2015-01-12 System not well-documented

4490 Zinn 2015-01-14 No source code

4499 Martin 2015-01-15 Not an ABM

4503 Martin and Karan 2015-01-16 Not an ABM

4557 Wren 2015-03-04 Not an ABM

4571 Voronovitsky 2015-03-11 Proprietary software

4606 Teran et al. 2015-04-27 No source code

4609 Barton et al. 2015-05-04 Source code readability

4727 Bell 2015-09-26 Proprietary software

4746 Garcia-Diaz 2015-10-16 Proprietary software

4780 Thron 2015-11-06 Proprietary software

4808 Diarisso et al. 2015-11-23 Source code readability

4850 Thron 2016-01-01 Proprietary software

72

Appendix C: OpenABM Review Data

The following pages present the full results of the systematic review of OpenABM models.

A note on interpreting the data: for brevity, only the first author’s name is included.

Columns with “T” and “F” values are binary; these represent true and false. For the “En-

dogenous” column, “NE” means “not endogenous”, “E” means “endogenous”, and “B”

means both are present. For uniformity, “U” indicates uniform activation, “NU” the oppo-

site, and “B” indicates that both options are available. For updating, “A” and “S” correspond

to asynchronous and synchronous updating, respectively, while “PA” indicates partial asyn-

chrony, “SS” the semi-synchronous state described in Appendix C, and “F” indicates that

the modeling platform parallelizes using field partitioning. For selection, as in Figure 3.3,

“F” means fixed selection, “R” means random selection, and “P” means Poisson selection;

multiple letters indicate multiple activation regimes.

73

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

2216 Bergin 2008-01-25 Repast T F U A T NE F

2218 Janssen 2012-08-19 NetLogo T R U A T NE F

2219 Janssen 2010-10-15 NetLogo T R NU A T NE F

2220 Barton 2008-04-27 NetLogo T R U A T NE F

2221 Janssen 2008-06-16 NetLogo T R U P T NE F

2222 Janssen 2008-06-18 NetLogo T R U A T NE F

2223 Janssen 2008-09-03 NetLogo T R U A T NE F

2224 Barton 2008-11-22 NetLogo F R U A T NE F

2225 Barton 2008-11-26 NetLogo F R U A T NE F

2226 Rollins 2010-01-22 NetLogo T R U P T NE F

2227 Zhong 2008-12-20 NetLogo T R U P T NE F

2228 Ouyang 2008-12-15 NetLogo T R U A T NE F

2229 Stotts 2008-12-15 NetLogo T R U A T NE F

2230 Cherif 2008-12-15 NetLogo T R U A T NE F

2232 Salau 2008-12-16 NetLogo T R U A T NE F

2233 Salau 2008-12-16 NetLogo T R U P T NE F

2234 Tovinen 2008-12-16 NetLogo T R U A T NE F

2242 Genovese 2009-06-23 NetLogo F R U SS T NE F

74

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

2245 Radtke 2009-08-31 MASON T F U A T NE F

2247 Will 2009-08-29 FORTRAN F F U P T NE F

2249 Poza 2009-09-24 NetLogo F R U A T NE F

2250 Koch 2009-09-24 NetLogo F R U P T NE F

2251 Radax 2013-05-02 Repast F F U B T NE F

2252 Koch 2009-10-28 NetLogo F R U P T NE F

2253 Dwyer 2009-11-28 NetLogo F R U A T NE F

2255 Heckbert 2009-12-04 NetLogo F R U A T NE F

2256 Heckbert 2009-12-04 NetLogo F R U A T NE F

2257 Zhang 2009-12-07 NetLogo F R U A T NE F

2258 Janssen 2010-05-04 NetLogo T R U A T NE F

2259 EconGame 2010-01-26 Java F F U A T NE F

2260 Delre 2010-02-11 C/C++ F F U A T NE F

2261 Gilbert 2010-03-03 NetLogo F R U A T NE F

2262 van 2010-03-10 NetLogo F R NU A T NE F

2264 Janssen 2010-05-16 NetLogo T R U A T NE F

2265 Janssen 2010-05-16 NetLogo T R U A T NE F

2267 Janssen 2010-06-04 NetLogo T R U A T NE F

75

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

2268 Lettieri 2010-06-23 NetLogo F R U A T NE F

2269 Savarimuthu 2010-06-28 Java F F U A T NE F

2271 Aktipis 2010-07-17 NetLogo T R U SS T NE F

2273 Zappala 2010-08-11 MASON F F U A T NE F

2274 Janssen 2011-10-25 NetLogo F R NU A T NE F

2275 Garcia 2010-09-22 NetLogo F R U A T NE F

2276 Kochanski 2010-10-21 NetLogo F R U P T NE F

2277 Janssen 2010-10-22 NetLogo T R NU A T NE F

2278 Rebaudo 2010-10-26 NetLogo F R U P T NE F

2279 Kim 2010-11-07 NetLogo F R U P T NE F

2283 Schindler 2010-11-30 NetLogo F R U A T NE F

2284 Janssen 2010-12-02 NetLogo F R U P T NE F

2285 Haghnevis 2010-12-06 NetLogo T R U A T NE F

2286 Peters 2010-12-13 NetLogo T R U A T NE F

2288 Cegielski 2010-12-13 NetLogo T R U A T NE F

2289 Shanafelt 2010-12-13 NetLogo T R U P T NE F

2290 Haghnevis 2010-12-13 NetLogo T R U A T NE F

2291 Weisbrod 2010-12-13 NetLogo T R U P T NE F

76

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

2292 Barton 2010-12-13 NetLogo T R U SS T NE F

2293 Wang 2010-12-14 Java F F U A T NE F

2294 Bravo 2010-12-16 Multiple F FR U A T NE F

2296 Gilbert 2010-12-31 NetLogo F R U P T NE F

2297 Bergin 2013-02-13 NetLogo T R U P T NE F

2310 Wijermans 2012-09-07 Repast F F U A T NE F

2312 Balbi 2012-12-09 NetLogo F R U S T NE F

2313 Kochanski 2011-02-13 NetLogo F R U P T NE F

2461 Valbuena 2011-03-25 NetLogo T R U A T NE F

2470 Watts 2011-03-14 NetLogo F R U P T NE F

2475 Fatemi 2011-03-15 JADEX F R U A T NE F

2483 Garcia 2011-03-28 NetLogo F R U A T NE F

2516 Kim 2011-05-12 NetLogo F R U P T NE F

2518 ipem 2011-05-27 C/C++ F R U A T NE F

2522 Quesada 2011-05-18 NetLogo F R U A T NE F

2539 Nolan 2011-06-21 NetLogo F R U SS T NE F

2549 Holtz 2011-06-30 Repast T R U A T NE F

2552 Kahl 2012-12-06 NetLogo T R U P T NE F

77

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

2554 Kahl 2012-03-27 NetLogo T R U P T NE F

2558 Wang 2011-11-17 Java F F U P T NE F

2587 Janssen 2011-08-14 NetLogo T R U A T NE F

2592 Rixin 2011-08-08 NetLogo F R U A T NE F

2606 Salau 2011-08-29 NetLogo T R U A T NE F

2609 Rixin 2011-09-19 NetLogo T R U P T NE F

2613 Levinson 2011-08-29 NetLogo F R U A T NE F

2620 Nardin 2011-08-30 NetLogo F R U A T NE F

2626 Murphy 2011-08-31 Java F R U S T NE F

2634 Delre 2011-10-09 C/C++ F F U A T NE F

2639 Barton 2012-01-09 NetLogo T R U A T NE F

2648 Barton 2011-11-14 NetLogo T R U A T NE F

2659 Lawson 2011-10-06 NetLogo F R U S T NE F

2661 Dixon 2011-10-07 NetLogo F FR U A T NE F

2682 Rixin 2011-10-19 NetLogo F R U A T NE F

2702 Delre 2011-10-24 C/C++ F F U A T NE F

2724 Baggio 2011-11-10 NetLogo T R U P T NE F

2746 Xianyu 2011-11-16 Repast F F U A T NE F

78

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

2762 Knittel 2011-11-04 Repast F F U A T NE F

2789 Watkins 2012-12-02 NetLogo T R U A T NE F

2791 Radtke 2011-12-30 MASON T F U S T NE F

2831 Baggio 2013-02-15 NetLogo T R U P T NE F

2924 Lawson 2012-03-16 NetLogo F R U A T NE F

2934 Wang 2012-03-20 Java F F U P T NE F

2942 Hartshorn 2012-03-29 Java F F U P T NE F

2986 Damaceanu 2012-05-03 NetLogo F R U A T NE F

2988 Damaceanu 2012-05-03 NetLogo F R U A T NE F

2999 Kasmire 2012-05-09 NetLogo F R U P T NE F

3004 Vallino 2012-05-14 NetLogo F R U A T NE F

3045 Millington 2012-07-15 NetLogo T R U A T NE F

3051 Schindler 2012-06-29 NetLogo F R U P T NE F

3063 Heckbert 2012-09-28 NetLogo T R U P T NE F

3073 Janssen 2012-07-22 NetLogo T R U A T NE F

3081 Nunes 2012-08-02 NetLogo F R U S T NE F

3105 Barton 2012-09-18 NetLogo T R U A T NE F

3119 Schindler 2012-08-18 NetLogo F R U P T NE F

79

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

3125 Holzhauer 2012-08-22 Repast F F U B T NE F

3137 Rebaudo 2012-09-20 NetLogo T R U A T NE F

3145 Squazzoni 2012-09-05 NetLogo F R U A T NE F

3154 Tamburino 2012-08-07 NetLogo T R U A T NE F

3163 Bergin 2012-09-14 NetLogo T R NU A T NE F

3168 Millington 2012-09-28 NetLogo T R U A T NE F

3175 Ibarra 2013-01-15 NetLogo T R U P T NE F

3241 Baggio 2012-10-01 NetLogo T R U P T NE F

3257 White 2012-10-09 Repast F R U A T NE F

3274 Schindler 2012-11-05 NetLogo F R U P T NE F

3294 Knoeri 2012-10-21 NetLogo T R U A T NE F

3352 Brown 2012-11-30 Repast F R U A T NE F

3359 Gravel-Miguel 2012-11-01 NetLogo T R U A T NE F

3361 Lim 2012-11-10 NetLogo F R NU A T NE F

3364 Millington 2012-11-02 NetLogo T R U A T NE F

3366 Kim 2012-11-03 NetLogo T R NU A T NE F

3372 Sarkar 2012-11-02 NetLogo T R U S T NE F

3377 Udiani 2012-11-03 NetLogo T R U A T NE F

80

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

3391 Jansson 2012-11-10 Java F R U A T NE F

3418 Dykstra 2012-11-28 NetLogo F R U A T NE F

3420 Biondo 2012-11-29 NetLogo F R U A T NE F

3549 Silverman 2012-12-20 Repast F R U A T NE F

3551 Millington 2012-12-21 NetLogo F R U A T NE F

3554 Millington 2012-12-21 NetLogo F R U P T NE F

3556 Millington 2012-12-21 NetLogo F R NU A T NE F

3575 Shiba 2013-01-09 NetLogo F R U A T NE F

3577 Shiba 2013-01-09 NetLogo F R U A T NE F

3580 Ibarra 2013-02-18 NetLogo T R U A T NE F

3582 Premo 2013-01-09 NetLogo F R U A T NE F

3597 Fernandez 2013-01-22 Repast F R U A T NE F

3626 Smaldino 2013-02-08 MASON F R U A T NE F

3640 Zvoleff 2013-02-23 Python F F U A T NE F

3679 Dennehy 2013-03-11 NetLogo T R U P T NE F

3695 Maroulis 2013-03-22 NetLogo F R U SS T NE F

3705 Rodriguez 2013-03-26 NetLogo T R U A T NE F

3708 Bravo 2013-03-27 NetLogo T R U A T NE F

81

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

3796 Nebel 2013-05-20 Repast F R U A T NE F

3813 Klabunde 2013-05-29 NetLogo T R U P T NE F

3817 Holtz 2013-06-04 Repast F R U A T NE F

3819 Maroulis 2013-06-04 NetLogo F R U P T NE F

3824 Kasmire 2013-06-07 NetLogo F R U A T NE F

3826 Barton 2013-06-12 NetLogo T R U A T NE F

3840 Fioretti 2013-06-22 NetLogo F R U A T NE F

3842 Stoica 2013-06-23 C/C++ F F U A T NE F

3846 Wren 2013-06-24 NetLogo F R U A T NE F

3851 Doubleday 2013-07-01 Java T R U A T NE F

3854 Baggio 2013-07-02 NetLogo T R U A T NE F

3860 Boyle 2013-07-06 C/C++ T R U A T NE F

3867 Shaffer 2013-07-11 NetLogo F R U A T NE F

3872 Bert 2013-07-16 Repast T R U A T NE F

3887 Janssen 2013-07-31 NetLogo T R U A T NE F

3890 Kahn 2013-08-05 NetLogo F R U S T NE F

3893 Klabunde 2013-08-07 NetLogo T R U A T NE F

3902 Janssen 2013-08-13 NetLogo T R U A T NE F

82

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

3918 Lawson 2013-08-23 NetLogo F R U S T NE F

3920 Hayes 2013-08-26 NetLogo F R U P T NE F

3934 Janssen 2013-09-05 NetLogo T R U A T NE F

3942 Sun 2013-09-10 Repast F F U A T NE F

3946 Dobbie 2013-09-15 NetLogo F R U S T NE F

3949 Barton 2013-09-17 NetLogo F R U A T NE F

3957 Janssen 2013-09-30 NetLogo T R U A T NE F

3960 Gooding 2013-10-01 NetLogo F R U A T NE F

3967 Frantz 2013-10-08 MASON F R U A T NE F

3976 Ibarra 2013-10-17 NetLogo T R U A T NE F

3978 White 2013-10-17 Repast F FR B A T NE F

3987 Daloglu 2013-10-21 Repast T R U A T NE F

3993 Hayes 2013-10-24 NetLogo F R U P T NE F

4015 Garcia-Diaz 2013-10-13 NetLogo F R U A T NE F

4031 Galic 2013-11-12 NetLogo T R U A T NE F

4039 Rubio-Campillo 2013-11-20 C/C++ T R U F F NE T

4042 Boone 2013-11-21 NetLogo T R U P T NE F

4048 Markisic 2013-12-01 Repast F R U P T NE F

83

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

4050 Janssen 2013-12-01 NetLogo T R U A T NE F

4055 Zellner 2013-12-05 NetLogo F R U A T NE F

4061 Natalini 2013-12-08 NetLogo T R U A T NE F

4063 Barcelo 2013-12-09 NetLogo T R U P T NE F

4065 Zellner 2013-12-09 NetLogo F R U A T NE F

4084 Cardona 2014-01-09 Python F F U P T NE F

4087 White 2014-01-13 Repast F F U A T NE F

4093 Bell 2014-01-23 Repast T F U A T NE F

4110 Waldherr 2014-02-11 NetLogo T R U P T NE F

4112 Sie 2014-02-11 NetLogo F F U A T NE F

4122 Nakai 2014-02-16 C/C++ F R NU A T NE F

4128 Rebaudo 2014-02-25 NetLogo T R U A T NE F

4144 Bellaubi 2014-03-08 NetLogo T F U A T NE F

4154 Alizadeh 2014-03-14 Python F R NU A T NE F

4180 Ruedin 2014-04-12 NetLogo T R U S T NE F

4184 Hintze 2014-04-14 NetLogo F R U A T NE F

4187 Janmaat 2014-04-17 NetLogo F R U A T NE F

4204 Edmonds 2014-05-04 NetLogo T R U S T NE F

84

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

4216 Grow 2014-05-18 NetLogo T R NU A T NE F

4222 Nisar 2014-05-26 NetLogo T R U A T NE F

4224 Nisar 2014-05-26 NetLogo T R U A T NE F

4234 Pereda 2014-06-12 NetLogo F R U A T NE F

4242 Moritz 2014-06-19 NetLogo T R U P T NE F

4273 Piou 2014-07-23 NetLogo T R U P T NE F

4276 Schwarz 2014-07-25 Repast T F U A T NE F

4293 Rasch 2014-08-02 Repast T F U A T NE F

4298 Ligmann-Zielinska 2014-08-06 Python F F U S T NE F

4316 Alizadeh 2014-08-24 Python F R NU A T NE F

4327 Alizadeh 2014-09-09 Python F RP B A T B F

4338 Castilla-Rho 2014-09-18 NetLogo T R U S T NE F

4347 Brughmans 2014-09-25 NetLogo T R U P T NE F

4368 Edmonds 2014-10-13 NetLogo T R U A T NE F

4377 Zhao 2014-10-19 NetLogo T R U A T NE F

4385 Watts 2014-10-25 NetLogo T R U P T NE F

4396 Malik 2014-10-30 NetLogo T R U P T NE F

4409 Atwater 2014-11-04 NetLogo T R U P T NE F

85

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

4411 Meyer 2014-11-05 NetLogo T R U A T NE F

4428 Gooding 2014-11-26 NetLogo F R U A T NE F

4433 Kasmire 2014-12-02 NetLogo F R U S T NE F

4435 Kasmire 2014-12-02 NetLogo F R U P T NE F

4437 Kasmire 2014-12-02 NetLogo F R U P T NE F

4439 Kasmire 2014-12-02 NetLogo F R U P T NE F

4441 Kasmire 2014-12-02 NetLogo F R U P T NE F

4443 Kasmire 2014-12-02 NetLogo F R U P T NE F

4447 Bergin 2014-12-11 NetLogo T R U A T NE F

4458 Wang 2014-12-07 Java F F U A F NE T

4464 Combs 2015-01-05 Repast F R U A T NE F

4466 Ozik 2015-01-05 Repast F R U A T NE F

4475 Yavas 2015-01-08 NetLogo F R U A T NE F

4510 Shutters 2015-01-20 NetLogo T R U P T NE F

4520 Dzutsati 2015-01-30 NetLogo T R U A T NE F

4525 Boyle 2015-01-31 NetLogo F F U A T E F

4536 Badham 2015-02-10 NetLogo F R U A T NE F

4545 Aktipis 2015-02-19 NetLogo T R U P T NE F

86

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

4552 Scalco 2015-02-24 NetLogo F R U A T NE F

4561 Paige 2015-03-05 NetLogo T R U A T NE F

4564 Schmid 2015-03-07 NetLogo T R U P T NE F

4581 Sasaki 2015-03-16 NetLogo T R U A T NE F

4589 Camus 2015-03-25 Java T R U A T NE F

4615 Rorabaugh 2015-05-17 NetLogo F R U A T NE F

4627 Waring 2015-06-10 NetLogo T R U P T NE F

4637 Sissa 2015-06-16 NetLogo T R U S T NE F

4661 Le 2015-07-13 NetLogo F R U S T NE F

4686 Lafuerza 2015-07-30 C/C++ F F U A T NE F

4688 Watts 2015-08-01 NetLogo F R U A T NE F

4693 Fachada 2015-08-08 NetLogo T R U A T NE F

4696 Kasmire 2015-08-11 NetLogo F R U P T NE F

4706 Crooks 2015-08-27 MASON T F U A T E F

4710 Huff 2015-09-01 NetLogo T R U P T NE F

4716 Secchi 2015-09-09 NetLogo F R U A T NE F

4718 Bianchi 2015-09-10 NetLogo F R U A T NE F

4724 Scott 2015-09-02 NetLogo F R U P T NE F

87

Author Date Platform ODD Selection Uniform Updating Reproducible Endogenous Parallel

4734 Lawson 2015-10-06 NetLogo F R U S T NE F

4744 Hales 2015-10-16 NetLogo F R U A T NE F

4756 Rouchier 2015-10-21 NetLogo F R NU A T NE F

4760 Sasaki 2015-10-27 NetLogo T R U SS T NE F

4771 Fachada 2015-10-31 Java T R U B T NE T

4778 Vinai 2015-11-06 NetLogo F R U A T NE F

4795 Snitker 2015-11-16 NetLogo F R U A T NE F

4828 Czaczkes 2015-12-17 NetLogo F R U A T NE F

4830 Czaczkes 2015-12-17 NetLogo F R U A T NE F

4841 Sasaki 2015-12-21 NetLogo F R U A T NE F

4843 Biondo 2015-12-22 NetLogo F R U A T NE F

4871 Edmonds 2016-01-29 NetLogo F R U A T NE F

4873 Adelberg 2016-01-29 NetLogo F R NU A T NE F

4880 Angourakis 2016-02-03 NetLogo T R U A T NE F

4892 Smarzhevskiy 2016-02-14 NetLogo F R U P T NE F

4917 Anderson 2016-03-02 Repast F R U A T NE F

88

Appendix D: Model Code

D.1 RNG.h
// Copyright 2015 <Stefan McCabe >
/*
Bilateral Exchange Model
Originally written by Rob Axtell
Extended by Stefan McCabe

12/11/2015
*/

#ifndef RNG_H_
#define RNG_H_
#endif // RNG_H_

#include <random >
#include <fstream >

class RNG {
unsigned int seed;
std:: mt19937 rng;

unsigned long num_agents , num_com;
double alpha_min , alpha_max , shock_min , shock_max ,

wealth_min , wealth_max;

public:
RNG (bool randSeed , unsigned int s, unsigned int numagents ,

unsigned int numcom , double shockmin , double shockmax ,
double minalpha , double maxalpha , double minwealth ,
double maxwealth);

unsigned int GetSeed () { return seed; }
void SetSeed(unsigned int s) {

seed = s;
rng.seed(s);

}
std:: mt19937 GetGenerator () { return rng; }

int ValueInRange(int min , int max);
unsigned long ValueInRange(unsigned long min , unsigned long

max);

89

double ValueInRange(double min , double max);

unsigned long RandomAgent () { return ValueInRange (0L,
num_agents -1); }

unsigned long RandomCommodity () { return ValueInRange (0L,
num_com -1); }

int RandomBinary () { return ValueInRange (0, 1); }
double RandomShock () { return ValueInRange(shock_min ,

shock_max); }
double RandomAlpha () { return ValueInRange(alpha_min ,

alpha_max); }
double RandomWealth () { return ValueInRange(wealth_min ,

wealth_max); }
double RandomDouble () { return ValueInRange (0.0, 1.0); }

};

typedef RNG *RNGptr;

D.2 RNG.cpp

// Copyright 2015 <Stefan McCabe >
/*
Bilateral Exchange Model
Originally written by Rob Axtell
Extended by Stefan McCabe

12/11/2015
*/

// The key mechanism here - the use of thread_local mt19337
pointers -

// was suggested on Stack Exchange.
// https :// stackoverflow.com/questions /21237905/ how -do-i-

generate -thread -safe -uniform -random -numbers

#include "./RNG.h"
#include <thread >
#define ELPP_THREAD_SAFE
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wundef"
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wsign -conversion"
#pragma GCC diagnostic ignored "-Wunused -parameter"
#pragma GCC diagnostic ignored "-Wctor -dtor -privacy"

90

#include "./ easylogging ++.h"
#pragma GCC diagnostic pop

int RNG:: ValueInRange(int min , int max) {
static thread_local std:: mt19937* generator = nullptr;
if (! generator) generator = new std:: mt19937(std::clock() +

std::hash <std:: thread ::id >()(std:: this_thread :: get_id ()
));

std:: uniform_int_distribution <int > distribution(min , max);
return distribution (* generator);

}

unsigned long RNG:: ValueInRange(unsigned long min , unsigned
long max) {
static thread_local std:: mt19937* generator = nullptr;
if (! generator) generator = new std:: mt19937(std::clock() +

std::hash <std:: thread ::id >()(std:: this_thread :: get_id ()
));

std:: uniform_int_distribution <unsigned long > distribution(
min , max);

return distribution (* generator);
}

double RNG:: ValueInRange(double min , double max) {
static thread_local std:: mt19937* generator = nullptr;
if (! generator) generator = new std:: mt19937(std::clock () +

std::hash <std:: thread ::id >()(std:: this_thread :: get_id ()
));

std:: uniform_real_distribution <double > distribution(min ,
max);

return distribution (* generator);
}

RNG::RNG (bool randSeed , unsigned int s, unsigned int numagents
, unsigned int numcom , double shockmin , double shockmax ,
double minalpha , double maxalpha , double minwealth , double
maxwealth) {

// Seed the random number generator.
if (! randSeed) {

std:: random_device rd;
seed = rd();
rng.seed(seed);
LOG(INFO) << "Using random seed " << seed;

} else {
seed = s;

91

LOG(INFO) << "Using fixed seed " << seed;
rng.seed(s);

}

alpha_min = minalpha;
alpha_max = maxalpha;
shock_min = shockmin;
shock_max = shockmax;
num_agents = static_cast <unsigned long >(numagents);
num_com = static_cast <unsigned long >(numcom);
wealth_min = minwealth;
wealth_max = maxwealth;

}

D.3 main.h

// Copyright 2015 <Stefan McCabe >
/*
Bilateral Exchange Model
Originally written by Rob Axtell
Extended by Stefan McCabe

12/11/2015
*/

#ifndef MAIN_H_
#define MAIN_H_
#endif // MAIN_H_

#include "./RNG.h"
#include "tbb/tbb.h"
#include "tbb/concurrent_vector.h"
#include <mutex >

// Global variables specifying model parameters. See parameters
.cfg for documentation.

bool UseRandomSeed;
unsigned int NonRandomSeed;
double Version = 1.0;
unsigned int NumberOfAgents;
unsigned int NumberOfCommodities;
unsigned int PairwiseInteractionsPerPeriod;
double alphaMin;

92

double alphaMax;
unsigned int wealthMin;
unsigned int wealthMax;
bool DefaultSerialExecution;
int AgentsToRandomize;
int RandomizationMethod;
int RequestedEquilibrations;
bool SameAgentInitialCondition;
double trade_eps;
double exp_trade_eps;
int termination_criterion;
long long TerminationTime;
double termination_eps;
long long CheckTerminationThreshold;
int CheckTerminationPeriod;
bool ShockPreferences;
int ShockPeriod;
double MinShock;
double MaxShock;
bool debug;
bool PrintEndowments;
bool PrintIntermediateOutput;
int IntermediateOutputPrintPeriod;
bool PrintConvergenceStats;
bool PrintFinalCommodityList;
int activationMethod;
const char* outputFilename = NULL;
bool fileAppend;
bool writeToFile;
std:: ofstream outfile;
int NumberOfThreads;
bool ForkAndJoin;
bool ShuffleAfterJoin;
bool DumpAgentInformation;

RNGptr Rand;

typedef tbb:: concurrent_vector <double > CommodityArray;
typedef CommodityArray *CommodityArrayPtr;

// Functions
double inline Dot(CommodityArrayPtr vector1 , CommodityArrayPtr

vector2);
void ReadConfigFile(std:: string file);

93

void InitMiscellaneous ();
void OpenFile(const char * filename);
void WriteHeader ();
void WriteLine ();

// Classes and methods
class MemoryObject {

long long start;

public:
MemoryObject ();
void WriteMemoryRequirements ();

} MemoryState;

class Data {
int N;
double min;
double max;
double sum;
double sum2;

public:
Data();
void Init();
void AddDatum(double Datum);
int GetN() { return N; }
double GetMin () { return min; }
double GetMax () { return max; }
double GetDelta () { return max - min; }
double GetAverage () {

if (N > 0) {
return sum/N;

} else {
return 0.0;

}}
double GetExpAverage () { return exp(GetAverage ()); }
double GetVariance ();
double GetStdDev () { return sqrt(GetVariance ()); }

};

typedef Data *DataPtr;

class CommodityData {
tbb:: concurrent_vector <Data > data;

94

public:
CommodityData ();
void Clear();
DataPtr GetData(size_t index) { return &data[index]; }
double L2StdDev ();
double LinfStdDev ();

};

class Agent {
size_t id;

CommodityArray alphas;
CommodityArray endowment;
CommodityArray initialMRSs;
CommodityArray allocation;
CommodityArray currentMRSs;

Agent();
double initialUtility;
double initialWealth;
double lambda; // for Poisson activation
double nextTime; // for Poisson activation
double initiative; // exogenous Poisson variable ,

distributed U(0,1)
long long interactions = 0;
long long activations = 0;

public:
explicit Agent(int size , size_t x);
void Init();
void Reset();

std::mutex m;
void MarkActivated () {

//std::lock_guard <std::mutex > lock(m);
activations ++;

}
long long GetNumberOfActivations () {

return activations;
}
void MarkSuccessfulTrade () {

interactions ++;
}
long long GetNumberOfTrades () {

return interactions;

95

}
size_t GetId() {

return id;
}
double GetAlpha(size_t CommodityIndex) {

//std::lock_guard <std::mutex > lock(m);
return alphas[CommodityIndex];

}
void SetAlpha(size_t CommodityIndex , double alpha) {

//std::lock_guard <std::mutex > lock(m);
alphas[CommodityIndex] = alpha;

}
void SetLambda(double lam) {

//std::lock_guard <std::mutex > lock(m);
lambda = lam;

}
double GetLambda () {

//std::lock_guard <std::mutex > lock(m);
return lambda;

}
void SetNextTime(double nextT) {

//std::lock_guard <std::mutex > lock(m);
nextTime = nextT;

}
double GetNextTime () {

//std::lock_guard <std::mutex > lock(m);
return nextTime;

}
double GetEndowment(size_t CommodityIndex) {

//std::lock_guard <std::mutex > lock(m);
return endowment[CommodityIndex];

}
double MRS(size_t CommodityIndex , size_t Numeraire);
void ComputeMRSs ();
double GetInitialMRS(size_t CommodityIndex) {

//std::lock_guard <std::mutex > lock(m);
return initialMRSs[CommodityIndex];

}
double GetAllocation(size_t CommodityIndex) {

//std::lock_guard <std::mutex > lock(m);
return allocation[CommodityIndex];

}
void IncreaseAllocation(size_t CommodityIndex , double

amount) {
//std::lock_guard <std::mutex > lock(m);

96

allocation[CommodityIndex] += amount;
}
double GetCurrentMRS(size_t CommodityIndex) {

//std::lock_guard <std::mutex > lock(m);
return currentMRSs[CommodityIndex];

}
CommodityArrayPtr GetCurrentMRSs () {

//std::lock_guard <std::mutex > lock(m);
return ¤tMRSs;

}
double Utility ();
double GetInitialUtility () {

//std::lock_guard <std::mutex > lock(m);
return initialUtility;

}
double Wealth(CommodityArrayPtr prices) {

//std::lock_guard <std::mutex > lock(m);
return Dot(&allocation , prices);

}
double GetInitialWealth () {

//std::lock_guard <std::mutex > lock(m);
return initialWealth;

}
double GetInitiative () {

return initiative;
}

};

typedef std:: shared_ptr <Agent > AgentPtr;

class AgentPopulation {
//tbb:: concurrent_vector <AgentPtr > Agents;
tbb:: concurrent_vector <AgentPtr > Agents;
tbb:: concurrent_vector <size_t > AgentIndices;
tbb:: concurrent_vector <std::pair <double ,AgentPtr >>

PoissonActivations;
size_t AgentIndex = 0;
bool PoissonUpToDate;
Data InitialOwnWealthData;
CommodityArray Volume;
CommodityData AlphaData , EndowmentData , LnMRSsData;
bool LnMRSsDataUpToDate;
tbb:: concurrent_vector <std::tuple <long long , double , size_t

, double , size_t >> results;
void ComputeLnMRSsDistribution ();

97

double LastSumOfUtilities;
double ComputeSumOfUtilities ();
double ComputeIncreaseInSumOfUtilities () {

return ComputeSumOfUtilities () - LastSumOfUtilities;
}
double ComputeRelativeIncreaseInSumOfUtilities () {

return ComputeIncreaseInSumOfUtilities () /
LastSumOfUtilities;

}

void GetRandomAgentPair(AgentPtr& Agent1 , AgentPtr& Agent2)
;

void GetUniformAgentPair(AgentPtr& Agent1 , AgentPtr& Agent2
);

void GetFixedAgentPair(AgentPtr& Agent1 , AgentPtr& Agent2);
void GetPoissonAgentPair(AgentPtr& Agent1 , AgentPtr& Agent2

);
void SetPoissonAgentDistribution ();
void Trade(AgentPtr a1, AgentPtr a2);

void(AgentPopulation ::* GetAgentPair) (AgentPtr& Agent1 ,
AgentPtr& Agent2);

std::tuple <long long , double , size_t , double , size_t >
ParallelTrade (AgentPtr a1 , AgentPtr a2);

void TradeInFork (tbb:: concurrent_vector <AgentPtr > a);

void(AgentPopulation ::* GetAgentPairInFork) (AgentPtr&
Agent1 , AgentPtr& Agent2 , tbb:: concurrent_vector <
AgentPtr > a, tbb:: concurrent_vector <AgentPtr >:: iterator
&ait);

void GetRandomAgentPairInFork(AgentPtr& Agent1 , AgentPtr&
Agent2 , tbb:: concurrent_vector <AgentPtr > a, tbb::
concurrent_vector <AgentPtr >:: iterator &ait);

void GetUniformAgentPairInFork(AgentPtr& Agent1 , AgentPtr&
Agent2 , tbb:: concurrent_vector <AgentPtr > a, tbb::
concurrent_vector <AgentPtr >:: iterator &ait);

void GetFixedAgentPairInFork(AgentPtr& Agent1 , AgentPtr&
Agent2 , tbb:: concurrent_vector <AgentPtr > a, tbb::
concurrent_vector <AgentPtr >:: iterator &ait);

void GetPoissonAgentPairInFork(AgentPtr& Agent1 , AgentPtr&
Agent2 , tbb:: concurrent_vector <AgentPtr > a, tbb::
concurrent_vector <AgentPtr >:: iterator &ait);

98

void SetPoissonAgentDistributionInFork(tbb::
concurrent_vector <AgentPtr > a, tbb:: concurrent_vector <
AgentPtr >:: iterator &ait);

void IntermediateOutput ();
bool TestConvergence ();
void DumpAgentInfo ();

public:
explicit AgentPopulation(int size);
bool Converged;
long long theTime;
long long TotalInteractions;

void IncreaseTotalInteractions(long long x) {
TotalInteractions += x;

}
void Init();
void Reset();
long long Equilibrate(int NumberOfEquilibrationsSoFar);
long long ParallelEquilibrate(int

NumberOfEquilibrationsSoFar);
long long ForkAndJoinEquilibrate(int

NumberOfEquilibrationsSoFar);
void ConvergenceStatistics(CommodityArray VolumeStats);
void CompareTwoAgents(AgentPtr Agent1 , AgentPtr Agent2);
void ShockAgentPreferences ();
std:: string WriteWealthInfo ();
std:: string WriteUtilityInfo ();
void WriteLine ();
std::mutex m;

};

typedef AgentPopulation *AgentPopulationPtr;

D.4 main.cpp

// Copyright 2015 <Stefan McCabe >
/*
Bilateral Exchange Model
Originally written by Rob Axtell
Extended by Stefan McCabe

12/11/2015

99

*/

#include "./main.h"
#include "tbb/tbb.h"
#include "tbb/concurrent_vector.h"
#include <libconfig.h++>
#define ELPP_THREAD_SAFE
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wundef"
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wsign -conversion"
#pragma GCC diagnostic ignored "-Wunused -parameter"
#pragma GCC diagnostic ignored "-Wctor -dtor -privacy"
#include "./ easylogging ++.h"
#pragma GCC diagnostic pop

// Initialize the logger. This should come immediately after
the #includes are finished.

INITIALIZE_EASYLOGGINGPP

/* ===========
== Methods ==
=========== */
double inline Dot(CommodityArrayPtr vector1 ,

CommodityArrayPtr vector2) {
double sum = 0.0;
for (size_t i = 0; i < static_cast <size_t >(

NumberOfCommodities); ++i) {
sum += (* vector1)[i] * (* vector2)[i];

}
return sum;

}

MemoryObject :: MemoryObject ():
start (0)

{} // MemoryObject :: MemoryObject ()

void MemoryObject :: WriteMemoryRequirements () {
if (debug) {

100

LOG(DEBUG) << "Size of Agent in memory: " << sizeof(
Agent) << " bytes";

LOG(DEBUG) << "Size of Data in memory: " << sizeof(Data
) << " bytes";

LOG(DEBUG) << "Size of CommodityData in memory: " <<
sizeof(CommodityData) << " bytes";

LOG(DEBUG) << "Size of AgentPopulation in memory: " <<
sizeof(AgentPopulation) << " bytes";

LOG(DEBUG) << "Total bytes required (approximate): " <<
\

(sizeof(Rand) + sizeof(MemoryObject) + sizeof(
CommodityData) \
+ sizeof(AgentPopulation) + sizeof(Agent) *

static_cast <unsigned long >(NumberOfAgents)) << "
bytes";

}
}

Data::Data():
N(0), min (1000000.0) , max (0.0), sum (0.0), sum2 (0.0)
{} // Data::Data()

void Data::Init() {
N = 0;
min = 1000000.0; // 10^6
max = 0.0;
sum = 0.0;
sum2 = 0.0;

} // Data::Data()

void Data:: AddDatum(double Datum) {
N = N + 1;
if (Datum < min) {

min = Datum;
}
if (Datum > max) {

max = Datum;
}
sum += Datum;
sum2 += Datum * Datum;

} // Data:: AddDatum ()

double Data:: GetVariance () {
double avg , arg;

101

if (N > 1) {
avg = GetAverage ();
arg = sum2 - N * avg * avg;
return arg / (N - 1);

} else {
return 0.0;

}
} // Data:: GetVariance ()

CommodityData :: CommodityData () {
// Constructor resizes the data vector to the appropriate

size.
// It is initially zero -initialized , which is obviously

problematic.
data.resize(static_cast <size_t >(NumberOfCommodities));

}

void CommodityData ::Clear() {
// Initialize data objects
//
for (auto& commodity : data) {

commodity.Init();
}

} // CommodityData ::Clear()

double CommodityData :: L2StdDev () {
double sum = 0.0;

// Instead of computing the standard deviation for each
commodity (and calling sqrt() N times),

// find the largest variance and from it get the std dev
for (auto& commodity : data) {

sum += commodity.GetVariance ();
}
return sqrt(sum);

} // CommodityData :: L2StdDev

double CommodityData :: LinfStdDev () {
double var , max = 0.0;

// Instead of computing the standard deviation for each
commodity (and calling sqrt() N times),

// find the largest variance and from it get the std dev
for (auto& commodity : data) {

var = commodity.GetVariance ();

102

if (var > max) {
max = var;

}
}
return sqrt(max);

} // CommodityData :: LinfStdDev

Agent::Agent(int size , size_t x): initialUtility (0.0),
initialWealth (0.0) {
// Constructor resizes the data vector to the appropriate

size.
// It is initially zero -initialized , which is obviously

problematic.
// This allows me to replace arrays with vectors.
id = x;
alphas.resize(static_cast <size_t >(size));
endowment.resize(static_cast <size_t >(size));
initialMRSs.resize(static_cast <size_t >(size));
allocation.resize(static_cast <size_t >(size));
currentMRSs.resize(static_cast <size_t >(size));
initiative = Rand ->ValueInRange (0.0, 1.0);
Init();

}

void Agent::Init() {
//std::lock_guard <std::mutex > lock(m);
size_t CommodityIndex;

// First generate and normalize the exponents ...
double sum = 0.0;
for (auto& alpha : alphas) {

alpha = Rand ->RandomAlpha ();
sum += alpha;

}
// Next , fill up the rest of the agent fields ...
for (auto& alpha : alphas) {

auto i = static_cast <size_t >(& alpha - &alphas [0]);
alpha = alpha / sum;
endowment[i] = Rand ->RandomWealth ();
allocation[i] = endowment[i];
initialMRSs[i] = MRS(i, 0);
currentMRSs[i] = initialMRSs[i];

}
initialUtility = Utility ();

103

initialWealth = Wealth (& initialMRSs);

} // Agent:Init()

void Agent::Reset() {
//std::lock_guard <std::mutex > lock(m);
for (auto& currentAgentMRS : currentMRSs) {

auto i = static_cast <size_t >(& currentAgentMRS - &
currentMRSs [0]);

allocation[i] = endowment[i];
currentAgentMRS = initialMRSs[i];

}
} // Agent::Reset

// MRS = marginal rate of substitution
double Agent::MRS(size_t CommodityIndex , size_t Numeraire) {

//std::lock_guard <std::mutex > lock(m);
return (alphas[CommodityIndex] * allocation[Numeraire]) / (

alphas[Numeraire] * allocation[CommodityIndex]);
} // Agent::MRS()

void Agent:: ComputeMRSs () {
//std::lock_guard <std::mutex > lock(m);
for (auto& currentAgentMRS : currentMRSs) {

auto i = static_cast <size_t >(& currentAgentMRS - &
currentMRSs [0]);

if (i == 0) {
currentAgentMRS = 1.0;

} else {
currentMRSs[i] = MRS(i, 0);

}
}

} // Agent:: ComputeMRSs ()

double Agent:: Utility () {
//std::lock_guard <std::mutex > lock(m);
double product = 1.0;

for (size_t i = 0; i < allocation.size(); ++i) {
product *= pow(allocation[i], alphas[i]);

}

return product;
} // Agent:: Utility ()

104

void AgentPopulation :: ComputeLnMRSsDistribution () {
LnMRSsData.Clear();

for (auto& agent : Agents) {
agent ->ComputeMRSs ();
for (size_t j = 0; j < static_cast <size_t >(

NumberOfCommodities); ++j) {
LnMRSsData.GetData(j)->AddDatum(log(agent ->

GetCurrentMRS(j)));
}

} // for i...
LnMRSsDataUpToDate = true;

} // AgentPopulation :: ComputeLnMRSsDistribution ()

std:: string AgentPopulation :: WriteUtilityInfo () { //TODO: This
is basically a Data()
double sum = 0.0;
double min = 100000.0;
double max = 0;
double avg = 0.0;
double x = 0.0;
std:: stringstream s;

for (auto& agent : Agents) {
double utility = agent ->Utility ();
sum += utility;
min = (utility < min) ? utility : min;
max = (utility > max) ? utility : max;

}
avg = sum / static_cast <double >(NumberOfAgents);

for (auto& agent : Agents) {
x += (avg - agent ->Utility ()) * (avg - agent ->Utility ()

);
}

double sd = std::sqrt(x/static_cast <double >(NumberOfAgents)
);

s << min << "," << max << "," << avg << "," << sd << ",";
return s.str();

}

105

std:: string AgentPopulation :: WriteWealthInfo () { //TODO: This
is basically a Data()
double sum = 0.0;
double min = 100000.0;
double max = 0;
double avg = 0.0;
double x = 0.0;
std:: stringstream s;

for (auto& agent : Agents) {
double w = agent ->Wealth(agent ->GetCurrentMRSs ());
sum += w;
min = (w < min) ? w : min;
max = (w > max) ? w : max;

}
avg = sum / static_cast <double >(NumberOfAgents);

for(auto& agent : Agents) {
x += (avg - agent ->Wealth(agent ->GetCurrentMRSs ())) * (

avg - agent ->Wealth(agent ->GetCurrentMRSs ()));
}

double sd = std::sqrt(x/static_cast <double >(NumberOfAgents)
);

s << min << "," << max << "," << avg << "," << sd << ",";
return s.str();

}

double AgentPopulation :: ComputeSumOfUtilities () {
double sum = 0.0;

for (auto& agent : Agents) {
sum += agent ->Utility ();

}
return sum;

} // AgentPopulation :: ComputeSumOfUtilities ()

void AgentPopulation :: GetRandomAgentPair(AgentPtr& Agent1 ,
AgentPtr& Agent2) {
Agent1 = Agents[Rand ->RandomAgent ()];
do {

Agent2 = Agents[Rand ->RandomAgent ()];
} while (Agent2 == Agent1);

106

} // AgentPopulation :: GetRandomAgentPair ()

void AgentPopulation :: GetUniformAgentPair(AgentPtr& Agent1 ,
AgentPtr& Agent2) {
if (NumberOfAgents % 2 > 0 && AgentIndex == 0) {

LOG(WARNING) << "Warning: Uniform activation requires
an even number of agents.";

}
std::lock_guard <std::mutex > lock(m);
Agent1 = Agents[AgentIndices[AgentIndex ++]];
Agent2 = Agents[AgentIndices[AgentIndex ++]];
if (AgentIndex >= static_cast <size_t >(NumberOfAgents)) {

// if (debug) { LOG(DEBUG) << "Rolling over uniform
indices ..."; }

AgentIndex = 0;
std:: shuffle(AgentIndices.begin(), AgentIndices.end(),

Rand ->GetGenerator ());
}

}

void AgentPopulation :: GetFixedAgentPair(AgentPtr& Agent1 ,
AgentPtr& Agent2) {
if (NumberOfAgents % 2 > 0 && AgentIndex == 0) {

LOG(WARNING) << "Warning: Fixed activation requires an
even number of agents.";

}
std::lock_guard <std::mutex > lock(m);
Agent1 = Agents[AgentIndices[AgentIndex ++]];
Agent2 = Agents[AgentIndices[AgentIndex ++]];
if (AgentIndex >= static_cast <size_t >(NumberOfAgents)) {

// if (debug) { LOG(DEBUG) << "Rolling over uniform
indices ..."; }

AgentIndex = 0;
}

}

void AgentPopulation :: GetPoissonAgentPair(AgentPtr& Agent1 ,
AgentPtr& Agent2) {
std::lock_guard <std::mutex > lock(m);
if (! PoissonUpToDate) {

SetPoissonAgentDistribution ();
}
size_t AgentIndex1 = AgentIndex ++;
size_t AgentIndex2 = AgentIndex;

107

Agent1 = PoissonActivations[AgentIndex1]. second;
Agent2 = PoissonActivations[AgentIndex2]. second;

size_t swap = 1;
while (Agent1 == Agent2 || Agent2 == nullptr) {

++swap; // get some value close to the "correct" one
Agent2 = PoissonActivations[Rand ->ValueInRange(

static_cast <int >(AgentIndex2 -swap),static_cast <int >(
AgentIndex2+swap))]. second;

}
++ AgentIndex;
if (AgentIndex >= static_cast <size_t >(NumberOfAgents)) {

PoissonUpToDate = false;
}
if (Agent1 == nullptr) {

LOG(WARNING) << "null pointer in Agent1" << std::endl;
std:: terminate ();

}
if (Agent2 == nullptr) {

LOG(WARNING) << "null pointer in Agent2" << std::endl;
std:: terminate ();

}
if (Agent1 == NULL) {

LOG(WARNING) << "null pointer in Agent1" << std::endl;
std:: terminate ();

}
if (Agent2 == NULL) {

LOG(WARNING) << "null pointer in Agent2" << std::endl;
std:: terminate ();

}
}

void AgentPopulation :: SetPoissonAgentDistribution () {
// reset data structures
PoissonActivations.clear();
PoissonActivations.shrink_to_fit (); // memory leaks are bad
tbb:: concurrent_vector <std::pair <double ,AgentPtr >>().swap(

PoissonActivations);
// more ritual to stave off memory leaks
AgentIndex = 0;

double totalWealth = 0.0;
double totalDistanceFromMean = 0.0;
double denom;

108

double totalLambda = 0.0;

// determine mean wealth
for (auto &a : Agents) {

totalWealth += a->Wealth(a->GetCurrentMRSs ());
}
double meanWealth = totalWealth / static_cast <double >(

NumberOfAgents);

// determine total distance from the mean
for (auto &a : Agents) {

double distFromMean = std::abs(a->Wealth(a->
GetCurrentMRSs ()) - meanWealth);

totalDistanceFromMean += distFromMean;
}

// update lambdas based on distance from the mean
//this is where the Poisson activation methods are

differentiated
for (auto &a : Agents) {

double lam;
switch (activationMethod) {

case 2: // furthest from mean activate faster
//LOG(WARNING) << "WARNING: This Poisson method is

still buggy .";
denom = std::abs(a->Wealth(a->GetCurrentMRSs ()) -

meanWealth);
if (denom == 0) {

denom = 0.0001;
}
lam = totalDistanceFromMean / denom;
a->SetLambda(lam);
totalLambda += lam;
break;
case 3: // poor activate faster
denom = a->Wealth(a->GetCurrentMRSs ());
if (denom == 0) {

denom = 0.0001;
}
lam = 1 / denom;
a->SetLambda(lam);
totalLambda += lam;
break;
case 4: // rich activate faster
denom = a->Wealth(a->GetCurrentMRSs ());

109

if (denom == 0) {
denom = 0.0001;

}
lam = denom;
a->SetLambda(lam);
totalLambda += lam;
break;
case 5: // closest to mean activate faster
lam = std::abs(a->Wealth(a->GetCurrentMRSs ()) -

meanWealth);
a->SetLambda(lam);
totalLambda += lam;
break;
default:
LOG(WARNING) << "Error: Accessing Poisson

activation out of scope";
std:: terminate ();

}

}

// normalize lambdas
for (auto &a : Agents) {

auto i = static_cast <size_t >(&a - &Agents [0]);
double lam = a->GetLambda () * static_cast <double >(

NumberOfAgents) * 1.25/ totalLambda; // was 1.1
if (lam == 0) {

lam = 1.0 / static_cast <double >(NumberOfAgents);
}
//done normalizing lambdas

// schedule agents based on lambda
a->SetLambda(lam);
a->SetNextTime (-1 * log(Rand ->RandomDouble ()) / a->

GetLambda ());
while (a->GetNextTime () < 1) {

PoissonActivations.push_back(std:: make_pair(a->
GetNextTime (), a)); // double -check the order
here

a->SetNextTime(a->GetNextTime () + -1 * log(Rand ->
RandomDouble ()) / a->GetLambda ());

}
}

//sort the activations vector

110

std::sort(PoissonActivations.begin(), PoissonActivations.
end(), [](const std::pair <double , AgentPtr > &left , const
std::pair <double , AgentPtr > &right) {
return left.first < right.first;

});

PoissonUpToDate = true;
}

void AgentPopulation :: GetRandomAgentPairInFork(AgentPtr& Agent1
, AgentPtr& Agent2 , tbb:: concurrent_vector <AgentPtr > a, tbb
:: concurrent_vector <AgentPtr >:: iterator &ait) {
auto s = a.size();
Agent1 = a[Rand ->ValueInRange (0L,s-1)];
do {

Agent2 = a[Rand ->ValueInRange (0L,s-1)];
} while (Agent2 == Agent1);

}

void AgentPopulation :: GetUniformAgentPairInFork(AgentPtr&
Agent1 , AgentPtr& Agent2 , tbb:: concurrent_vector <AgentPtr > a
, tbb:: concurrent_vector <AgentPtr >:: iterator &ait) {
if (NumberOfAgents % 2 > 0 && AgentIndex == 0) {

LOG(WARNING) << "Warning: Uniform activation requires
an even number of agents.";

}

Agent1 = *ait;
ait++;
Agent2 = *ait;
ait++;
if (ait == a.end()) {

ait == a.begin();
}

}

void AgentPopulation :: GetFixedAgentPairInFork(AgentPtr& Agent1 ,
AgentPtr& Agent2 , tbb:: concurrent_vector <AgentPtr > a, tbb::

concurrent_vector <AgentPtr >:: iterator &ait) {
if (NumberOfAgents % 2 > 0 && AgentIndex == 0) {

LOG(WARNING) << "Warning: Fixed activation requires an
even number of agents.";

}

Agent1 = *ait;

111

ait++;
Agent2 = *ait;
ait++;
if (ait == a.end()) {

ait == a.begin();
}

}

void AgentPopulation :: GetPoissonAgentPairInFork(AgentPtr&
Agent1 , AgentPtr& Agent2 , tbb:: concurrent_vector <AgentPtr > a
, tbb:: concurrent_vector <AgentPtr >:: iterator &ait) {
LOG(WARNING) << "Warning: NYI";
return;

}

void AgentPopulation :: SetPoissonAgentDistributionInFork(tbb::
concurrent_vector <AgentPtr > a, tbb:: concurrent_vector <
AgentPtr >:: iterator &ait) {
SetPoissonAgentDistribution ();

}

AgentPopulation :: AgentPopulation(int size):
AlphaData (), EndowmentData (), LnMRSsData (), LnMRSsDataUpToDate(

true), LastSumOfUtilities (0.0), GetAgentPair(NULL) {
Volume.resize(static_cast <size_t >(size));
AgentIndices.resize(static_cast <size_t >(NumberOfAgents));
for (size_t i = 0; i < AgentIndices.size(); ++i) {

AgentIndices[i] = i;
}

if (activationMethod == 1) { std:: shuffle(AgentIndices.
begin(), AgentIndices.end(), Rand ->GetGenerator ()); }

AgentIndex = 0;
for (size_t i = 0; i < static_cast <size_t >(NumberOfAgents);

++i) {
Agents.emplace_back(new Agent{NumberOfCommodities , i});
// Agents.push_back(Agent{NumberOfCommodities , i});

}

PoissonUpToDate = false;
switch (activationMethod) {

case -1:
GetAgentPair = &AgentPopulation :: GetFixedAgentPair;

112

GetAgentPairInFork = &AgentPopulation ::
GetFixedAgentPairInFork;

LOG(INFO) << "Using fixed activation";
LOG(INFO) << "WARNING: Do not use fixed activation.";
break;
case 0:
GetAgentPair = &AgentPopulation :: GetRandomAgentPair;
GetAgentPairInFork = &AgentPopulation ::

GetRandomAgentPairInFork;
LOG(INFO) << "Using random activation";
break;
case 1:
GetAgentPair = &AgentPopulation :: GetUniformAgentPair;
GetAgentPairInFork = &AgentPopulation ::

GetUniformAgentPairInFork;
LOG(INFO) << "Using uniform activation";
break;
case 2:
GetAgentPair = &AgentPopulation :: GetPoissonAgentPair;
GetAgentPairInFork = &AgentPopulation ::

GetPoissonAgentPairInFork;
LOG(INFO) << "Using Poisson activation (λ = 1/| wealth -

mean(wealth)|)";
LOG(WARNING) << "WARNING: This Poisson method is still

buggy.";
break;
case 3:
GetAgentPair = &AgentPopulation :: GetPoissonAgentPair;
GetAgentPairInFork = &AgentPopulation ::

GetPoissonAgentPairInFork;
LOG(INFO) << "Using Poisson activation (λ = 1/ wealth)";
break;
case 4:
GetAgentPair = &AgentPopulation :: GetPoissonAgentPair;
GetAgentPairInFork = &AgentPopulation ::

GetPoissonAgentPairInFork;
LOG(INFO) << "Using Poisson activation (λ = wealth)";
break;
case 5:
GetAgentPair = &AgentPopulation :: GetPoissonAgentPair;
GetAgentPairInFork = &AgentPopulation ::

GetPoissonAgentPairInFork;
LOG(INFO) << "Using Poisson activation (λ = |wealth -

mean(wealth)|)";
break;

113

default:
LOG(ERROR) << "Invalid activation method (or NYI)";
std:: terminate ();
break;

}
} // Constructor ...

void AgentPopulation ::Init() {
size_t CommodityIndex;

AlphaData.Clear();
EndowmentData.Clear ();
LnMRSsData.Clear();

// Cycle through the agents ...
for (auto& ActiveAgent : Agents) {

ActiveAgent ->Init();

// Next , fill up the rest of the agent fields ...
for (CommodityIndex = 0; CommodityIndex < static_cast <

size_t >(NumberOfCommodities); ++ CommodityIndex) {
AlphaData.GetData(CommodityIndex)->AddDatum(

ActiveAgent ->GetAlpha(CommodityIndex));
EndowmentData.GetData(CommodityIndex)->AddDatum(

ActiveAgent ->GetEndowment(CommodityIndex));
LnMRSsData.GetData(CommodityIndex)->AddDatum(log(

ActiveAgent ->GetInitialMRS(CommodityIndex)));
} // for (CommodityIndex ...
InitialOwnWealthData.AddDatum(ActiveAgent ->

GetInitialWealth ());
} // for (AgentIndex ...

LnMRSsDataUpToDate = true;
LastSumOfUtilities = ComputeSumOfUtilities ();

// Finally , display stats on the instantiated population
...

if (PrintEndowments) {
LOG(INFO) << "Initial endowments:";
for (CommodityIndex = 0; CommodityIndex < static_cast <

size_t >(NumberOfCommodities); ++ CommodityIndex) {

114

LOG(INFO) << "Commodity " << CommodityIndex << ": <
exp.> = " << AlphaData.GetData(CommodityIndex)->
GetAverage () << "; s.d. = " << AlphaData.GetData
(CommodityIndex)->GetStdDev () <<

"; <endow.> = " << EndowmentData.GetData(
CommodityIndex)->GetAverage () << "; s.d. = " <<
EndowmentData.GetData(CommodityIndex)->GetStdDev
() << "; <MRS > = " <<

LnMRSsData.GetData(CommodityIndex)->GetExpAverage ()
<< "; s.d. = " << LnMRSsData.GetData(

CommodityIndex)->GetStdDev ();
}

}
LOG(INFO) << "Average initial wealth (@ own prices) = " <<

InitialOwnWealthData.GetAverage () << "; standard
deviation = " << InitialOwnWealthData.GetStdDev ();

LOG(INFO) << "Initial sum of utilities = " <<
LastSumOfUtilities;

} // AgentPopulation ::Init()

void AgentPopulation ::Reset() {
for (auto& agent : Agents) {

agent ->Reset();
}

} // AgentPopulation ::Reset

void AgentPopulation :: IntermediateOutput () {
LOG(INFO) << "Through time " << theTime << ", " <<

TotalInteractions << " total exchanges; ";

switch (termination_criterion) {
case -2:
if (! LnMRSsDataUpToDate) {

ComputeLnMRSsDistribution ();
}
LOG(INFO) << "current L2 s.d. in MRS = " << LnMRSsData.

L2StdDev ();
break;
case -1:
if (! LnMRSsDataUpToDate) {

ComputeLnMRSsDistribution ();
}
LOG(INFO) << "current L2 s.d. in MRS = " << LnMRSsData.

L2StdDev ();
break;

115

case 0:
if (! LnMRSsDataUpToDate) {

ComputeLnMRSsDistribution ();
}
LOG(INFO) << "current max s.d. in MRS = " << LnMRSsData

.LinfStdDev ();
break;
case 1:
LOG(INFO) << "relative increase in ΣU = " <<

ComputeRelativeIncreaseInSumOfUtilities ();
break;
case 2:
LOG(INFO) << "increase in ΣU = " <<

ComputeIncreaseInSumOfUtilities ();
break;
default:
LOG(ERROR) << "Invalid termination criterion";
std:: terminate ();
break;

} // switch ...
}

bool AgentPopulation :: TestConvergence () {
switch (termination_criterion) {

case -2:
if (theTime >= TerminationTime) {

return true;
}
break;
case -1: // Termination based on L2 norm of MRS

distribution
ComputeLnMRSsDistribution ();
if (LnMRSsData.L2StdDev () < termination_eps) {

return true;
}
break;
case 0: // Termination based on L∞ norm of MRS

distribution
ComputeLnMRSsDistribution ();
if (LnMRSsData.LinfStdDev () < termination_eps) {

return true;
}
break;
case 1: // Termination based on relative increase in

V

116

if (ComputeRelativeIncreaseInSumOfUtilities () <
termination_eps) {
return true;

}
break;
case 2: // Termination based on absolute increase in

V
if (ComputeIncreaseInSumOfUtilities () < termination_eps

) {
return true;

}
break;
default:
LOG(ERROR) << "Invalid termination criterion";
std:: terminate ();
break;

} // switch ...
return false;

}
void AgentPopulation ::Trade (AgentPtr a1, AgentPtr a2) {

AgentPtr LargerMRSAgent , SmallerMRSAgent;
size_t id1 = a1->GetId();
size_t id2 = a2->GetId();
size_t Commodity1 , Commodity2;
double MRSratio12 , MRSratio;
double LAgentalpha1 , LAgentalpha2 , LAgentx1 , LAgentx2 ,

SAgentalpha1 , SAgentalpha2 , SAgentx1 , SAgentx2;
double num , denom , delta1 , delta2;
double Agent1PreTradeUtility , Agent2PreTradeUtility;

if (debug) {
Agent1PreTradeUtility = a1->Utility ();
Agent2PreTradeUtility = a2->Utility ();

}
// Next , select the commodities to trade ...
if (NumberOfCommodities == 2) {

Commodity1 = 0;
Commodity2 = 1;

} else {
Commodity1 = Rand ->RandomCommodity ();
do {

Commodity2 = Rand ->RandomCommodity ();
} while (Commodity2 == Commodity1);

}
// Compare MRSs ...

117

MRSratio12 = a1->MRS(Commodity2 , Commodity1) / a2->MRS(
Commodity2 , Commodity1);

if (MRSratio12 > 1.0) {
MRSratio = MRSratio12;

} else {
MRSratio = 1.0/ MRSratio12;

}

if (MRSratio >= exp_trade_eps) { // do exchange
if (MRSratio12 > 1.0) {

LargerMRSAgent = a1;
SmallerMRSAgent = a2;

} else {
LargerMRSAgent = a2;
SmallerMRSAgent = a1;

}
// Here are the guts of bilateral Walrasian exchange
SAgentalpha1 = SmallerMRSAgent ->GetAlpha(Commodity1);
SAgentalpha2 = SmallerMRSAgent ->GetAlpha(Commodity2);
SAgentx1 = SmallerMRSAgent ->GetAllocation(Commodity1);
SAgentx2 = SmallerMRSAgent ->GetAllocation(Commodity2);
LAgentalpha1 = LargerMRSAgent ->GetAlpha(Commodity1);
LAgentalpha2 = LargerMRSAgent ->GetAlpha(Commodity2);
LAgentx1 = LargerMRSAgent ->GetAllocation(Commodity1);
LAgentx2 = LargerMRSAgent ->GetAllocation(Commodity2);

num = (SAgentalpha1 * LAgentalpha2 * LAgentx1 *
SAgentx2) - (LAgentalpha1 * SAgentalpha2 * LAgentx2
* SAgentx1);

denom = LAgentalpha1 * LAgentx2 + SAgentalpha1 *
SAgentx2;

delta1 = num / denom;
denom = LAgentalpha2 * LAgentx1 + SAgentalpha2 *

SAgentx1;
delta2 = num / denom;

//std::cout << delta1 << std::endl;
SmallerMRSAgent ->IncreaseAllocation(Commodity1 , delta1)

;
SmallerMRSAgent ->IncreaseAllocation(Commodity2 , -delta2

);
LargerMRSAgent ->IncreaseAllocation(Commodity1 , -delta1)

;

118

LargerMRSAgent ->IncreaseAllocation(Commodity2 , delta2);

SmallerMRSAgent ->MarkSuccessfulTrade ();
LargerMRSAgent ->MarkSuccessfulTrade ();

std::lock_guard <std::mutex > lock(m); // lock the global
updates

++ TotalInteractions;
Volume[Commodity1] += delta1;
Volume[Commodity2] += delta2;

}

if (debug) {
if (a1->Utility () < Agent1PreTradeUtility) {

LOG(WARNING) << "!!! Utility decreasing trade by
agent #1!!! Actual utility change = " << a1->
Utility () - Agent1PreTradeUtility;

}
if (a2->Utility () < Agent2PreTradeUtility) {

LOG(WARNING) << "!!! Utility decreasing trade by
agent #2!!! Actual utility change = " << a2->
Utility () - Agent2PreTradeUtility;

}
}

}

std::tuple <long long , double , size_t , double , size_t >
AgentPopulation :: ParallelTrade (AgentPtr a1, AgentPtr a2) {
AgentPtr LargerMRSAgent , SmallerMRSAgent;
size_t id1 = a1->GetId();
size_t id2 = a2->GetId();
size_t Commodity1 , Commodity2;
double MRSratio12 , MRSratio;
double LAgentalpha1 , LAgentalpha2 , LAgentx1 , LAgentx2 ,

SAgentalpha1 , SAgentalpha2 , SAgentx1 , SAgentx2;
double num , denom;
double Agent1PreTradeUtility , Agent2PreTradeUtility;

long long interaction = 0;
double delta1 = 0.0;
double delta2 = 0.0;

if (debug) {
Agent1PreTradeUtility = a1->Utility ();

119

Agent2PreTradeUtility = a2->Utility ();
}
// Next , select the commodities to trade ...
if (NumberOfCommodities == 2) {

Commodity1 = 0;
Commodity2 = 1;

} else {
Commodity1 = Rand ->RandomCommodity ();
do {

Commodity2 = Rand ->RandomCommodity ();
} while (Commodity2 == Commodity1);

}
// Compare MRSs ...

MRSratio12 = a1->MRS(Commodity2 , Commodity1) / a2->MRS(
Commodity2 , Commodity1);

if (MRSratio12 > 1.0) {
MRSratio = MRSratio12;

} else {
MRSratio = 1.0/ MRSratio12;

}

if (MRSratio >= exp_trade_eps) { // do exchange
if (MRSratio12 > 1.0) {

LargerMRSAgent = a1;
SmallerMRSAgent = a2;

} else {
LargerMRSAgent = a2;
SmallerMRSAgent = a1;

}
// Here are the guts of bilateral Walrasian exchange
SAgentalpha1 = SmallerMRSAgent ->GetAlpha(Commodity1);
SAgentalpha2 = SmallerMRSAgent ->GetAlpha(Commodity2);
SAgentx1 = SmallerMRSAgent ->GetAllocation(Commodity1);
SAgentx2 = SmallerMRSAgent ->GetAllocation(Commodity2);
LAgentalpha1 = LargerMRSAgent ->GetAlpha(Commodity1);
LAgentalpha2 = LargerMRSAgent ->GetAlpha(Commodity2);
LAgentx1 = LargerMRSAgent ->GetAllocation(Commodity1);
LAgentx2 = LargerMRSAgent ->GetAllocation(Commodity2);

num = (SAgentalpha1 * LAgentalpha2 * LAgentx1 *
SAgentx2) - (LAgentalpha1 * SAgentalpha2 * LAgentx2
* SAgentx1);

120

denom = LAgentalpha1 * LAgentx2 + SAgentalpha1 *
SAgentx2;

delta1 = num / denom;
denom = LAgentalpha2 * LAgentx1 + SAgentalpha2 *

SAgentx1;
delta2 = num / denom;

SmallerMRSAgent ->IncreaseAllocation(Commodity1 , delta1)
;

SmallerMRSAgent ->IncreaseAllocation(Commodity2 , -delta2
);

LargerMRSAgent ->IncreaseAllocation(Commodity1 , -delta1)
;

LargerMRSAgent ->IncreaseAllocation(Commodity2 , delta2);

SmallerMRSAgent ->MarkSuccessfulTrade ();
LargerMRSAgent ->MarkSuccessfulTrade ();

++ interaction;
}

if (debug) {
if (a1->Utility () < Agent1PreTradeUtility) {

LOG(WARNING) << "!!! Utility decreasing trade by
agent #1!!! Actual utility change = " << a1->
Utility () - Agent1PreTradeUtility;

}
if (a2->Utility () < Agent2PreTradeUtility) {

LOG(WARNING) << "!!! Utility decreasing trade by
agent #2!!! Actual utility change = " << a2->
Utility () - Agent2PreTradeUtility;

}
}
return std:: make_tuple(interaction , delta1 , Commodity1 ,

delta2 , Commodity2);
}

void AgentPopulation :: TradeInFork (tbb:: concurrent_vector <
AgentPtr > a) {
long long interactionsInFork , timeInFork;
bool convergedInFork;
AgentPtr Agent1 , Agent2;
tbb:: concurrent_vector <AgentPtr >:: iterator ait = a.begin();
tbb:: concurrent_vector <double > VolumeInFork;
VolumeInFork.resize(NumberOfCommodities);

121

//int t = std::max(std:: thread :: hardware_concurrency (),
static_cast <unsigned int >(NumberOfThreads));

int t = NumberOfThreads;
if (t == 0) {

t = std:: thread :: hardware_concurrency ();
}
//std::cout << t << std::endl;

interactionsInFork = 0;
for (int i = 0; i < PairwiseInteractionsPerPeriod/t; ++i) {

//std::cout << i << std::endl;
(this ->* GetAgentPairInFork) (Agent1 , Agent2 , a, ait);
Agent1 ->MarkActivated ();
Agent2 ->MarkActivated ();

AgentPtr LargerMRSAgent , SmallerMRSAgent;
size_t id1 = Agent1 ->GetId();
size_t id2 = Agent2 ->GetId();
size_t Commodity1 , Commodity2;
double MRSratio12 , MRSratio;
double LAgentalpha1 , LAgentalpha2 , LAgentx1 , LAgentx2 ,

SAgentalpha1 , SAgentalpha2 , SAgentx1 , SAgentx2;
double num , denom , delta1 , delta2;
double Agent1PreTradeUtility , Agent2PreTradeUtility;

if (debug) {
Agent1PreTradeUtility = Agent1 ->Utility ();
Agent2PreTradeUtility = Agent2 ->Utility ();

}

// Next , select the commodities to trade ...
if (NumberOfCommodities == 2) {

Commodity1 = 0;
Commodity2 = 1;

} else {
Commodity1 = Rand ->RandomCommodity ();
do {

Commodity2 = Rand ->RandomCommodity ();
} while (Commodity2 == Commodity1);

}
// Compare MRSs ...

122

MRSratio12 = Agent1 ->MRS(Commodity2 , Commodity1) /
Agent2 ->MRS(Commodity2 , Commodity1);

if (MRSratio12 > 1.0) {
MRSratio = MRSratio12;

} else {
MRSratio = 1.0/ MRSratio12;

}

if (MRSratio >= exp_trade_eps) { // do exchange
if (MRSratio12 > 1.0) {

LargerMRSAgent= Agent1;
SmallerMRSAgent= Agent2;

} else {
LargerMRSAgent= Agent2;
SmallerMRSAgent= Agent1;

}

// Here are the guts of bilateral Walrasian exchange
SAgentalpha1 = SmallerMRSAgent ->GetAlpha(Commodity1);
SAgentalpha2 = SmallerMRSAgent ->GetAlpha(Commodity2);
SAgentx1 = SmallerMRSAgent ->GetAllocation(Commodity1);
SAgentx2 = SmallerMRSAgent ->GetAllocation(Commodity2);
LAgentalpha1 = LargerMRSAgent ->GetAlpha(Commodity1);
LAgentalpha2 = LargerMRSAgent ->GetAlpha(Commodity2);
LAgentx1 = LargerMRSAgent ->GetAllocation(Commodity1);
LAgentx2 = LargerMRSAgent ->GetAllocation(Commodity2);

num = (SAgentalpha1 * LAgentalpha2 * LAgentx1 *
SAgentx2) - (LAgentalpha1 * SAgentalpha2 * LAgentx2
* SAgentx1);

denom = LAgentalpha1 * LAgentx2 + SAgentalpha1 *
SAgentx2;

delta1 = num / denom;
denom = LAgentalpha2 * LAgentx1 + SAgentalpha2 *

SAgentx1;
delta2 = num / denom;

SmallerMRSAgent ->IncreaseAllocation(Commodity1 , delta1)
;

SmallerMRSAgent ->IncreaseAllocation(Commodity2 , -delta2
);

LargerMRSAgent ->IncreaseAllocation(Commodity1 , -delta1)
;

LargerMRSAgent ->IncreaseAllocation(Commodity2 , delta2);

123

SmallerMRSAgent ->MarkSuccessfulTrade ();
LargerMRSAgent ->MarkSuccessfulTrade ();

interactionsInFork ++;
VolumeInFork[Commodity1] += delta1;
VolumeInFork[Commodity2] += delta2;

}
}

std::lock_guard <std::mutex > lock(m); // lock the global
updates

//std::cout << "acquired lock" << std::endl;
TotalInteractions += interactionsInFork;

for (auto& vol : Volume) {
auto i = static_cast <size_t >(&vol - &Volume [0]);
vol += VolumeInFork[i];

}
return;

}

long long AgentPopulation :: ForkAndJoinEquilibrate(int
NumberOfEquilibrationsSoFar) {
Converged = false;
theTime = 0;
TotalInteractions = 0;

size_t split = static_cast <size_t >(NumberOfThreads);
if (split == 0) {

split = std:: thread :: hardware_concurrency ();
}
//std::cout << split << std::endl;

tbb:: concurrent_vector <std::pair <size_t , size_t >>
populations;

// split the population
for (size_t i = 0; i < split; ++i) {

std::pair <size_t , size_t > population = std:: make_pair(i
(NumberOfAgents/split), (i+1)(NumberOfAgents/split
));

populations.push_back(population);
}

124

tbb:: concurrent_vector <std::thread > threadPool;

do {
LnMRSsDataUpToDate = false; // Since these data are

gonna change ...

++ theTime;

if ((ShockPreferences) && (theTime % ShockPeriod == 0))
{
ShockAgentPreferences ();

}
// std::cout << "Fork" << std::endl;
tbb:: parallel_for(static_cast <size_t >(0), split ,

static_cast <size_t >(1), [=](size_t i) {
//std::cout << "reached" << std::endl;
auto pop = tbb:: concurrent_vector <AgentPtr >(Agents.

begin() + populations[i].first , Agents.begin() +
populations[i]. second);

TradeInFork(pop);
});
if (ShuffleAfterJoin) {

std:: shuffle(Agents.begin(), Agents.end(), Rand ->
GetGenerator ());

}

// Check for termination ...
if ((theTime > CheckTerminationThreshold) && (theTime %

CheckTerminationPeriod == 0)) {
Converged = TestConvergence ();

}

// Display stats if the time is right ...
if (PrintIntermediateOutput) {

if (theTime % IntermediateOutputPrintPeriod == 0) {
IntermediateOutput ();

} // theTime ...

// Store the sum of utilities if it will be needed
next period for either termincation check or
printing
if (termination_criterion > 0) {

125

if (((theTime > CheckTerminationThreshold) &&
((theTime + 1) % CheckTerminationPeriod ==
0)) || ((PrintIntermediateOutput) && ((
theTime + 1) % IntermediateOutputPrintPeriod
== 0))) {
LastSumOfUtilities = ComputeSumOfUtilities

();
}

}

if (writeToFile) { WriteLine (); }
}

} while (! Converged);

// Agents are either equilibrated or user has asked for
termination; display stats for the former case

if (! Converged) {
LOG(INFO) << "Terminated by user!";
return 0;

} else { // the economy has converged ...
LOG(INFO) << "Equilibrium achieved at time " << theTime

<< " via " << TotalInteractions << " interactions";
LOG(INFO) << "Equilibration #" <<

NumberOfEquilibrationsSoFar << " ended";
if (PrintConvergenceStats) {

ConvergenceStatistics(Volume);
}
if(DumpAgentInformation) {

DumpAgentInfo ();
}
return TotalInteractions;

}
}

long long AgentPopulation :: ParallelEquilibrate(int
NumberOfEquilibrationsSoFar) {
Converged = false;
theTime = 0;
TotalInteractions = 0;
// AgentPtr Agent1 , Agent2;

LOG(INFO) << "Equilibration #" <<
NumberOfEquilibrationsSoFar << " starting";

126

// Next , initialize some variables ...
for (auto& vol : Volume) {

vol = 0.0;
}

// Start up the exchange process here ...
do {

LnMRSsDataUpToDate = false; // Since these data are
gonna change ...

++ theTime;

if ((ShockPreferences) && (theTime % ShockPeriod == 0))
{
ShockAgentPreferences ();

}

results.clear();
results.resize(PairwiseInteractionsPerPeriod);

tbb:: parallel_for(static_cast <size_t >(0), static_cast <
size_t >(PairwiseInteractionsPerPeriod), static_cast <
size_t >(1), [this](size_t i) {
AgentPtr Agent1 , Agent2;
(this ->* GetAgentPair) (Agent1 , Agent2);
std::lock_guard <std::mutex > lock1(Agent1 ->m);
std::lock_guard <std::mutex > lock2(Agent2 ->m);
Agent1 ->MarkActivated ();
Agent2 ->MarkActivated ();
results[i] = ParallelTrade(Agent1 , Agent2);

});

for (auto &r : results) {
TotalInteractions += std::get <0>(r);
Volume[std::get <2>(r)] += std::get <1>(r);
Volume[std::get <4>(r)] += std::get <3>(r);

}

// Check for termination ...
if ((theTime > CheckTerminationThreshold) && (theTime %

CheckTerminationPeriod == 0)) {
Converged = TestConvergence ();

}

127

// Display stats if the time is right ...
if (PrintIntermediateOutput && (theTime %

IntermediateOutputPrintPeriod == 0)) {
IntermediateOutput ();

}

// Store the sum of utilities if it will be needed
next period for either termincation check or
printing

if (termination_criterion > 0) {
if (((theTime > CheckTerminationThreshold) && ((

theTime + 1) % CheckTerminationPeriod == 0)) ||
((PrintIntermediateOutput) && ((theTime + 1) %
IntermediateOutputPrintPeriod == 0))) {
LastSumOfUtilities = ComputeSumOfUtilities ();

}
}

if (writeToFile) { WriteLine (); }

} while (! Converged);

// Agents are either equilibrated or user has asked for
termination; display stats for the former case

if (! Converged) {
LOG(INFO) << "Terminated by user!";
return 0;

} else { // the economy has converged ...
LOG(INFO) << "Equilibrium achieved at time " << theTime

<< " via " << TotalInteractions << " interactions";
LOG(INFO) << "Equilibration #" <<

NumberOfEquilibrationsSoFar << " ended";
if (PrintConvergenceStats) {

ConvergenceStatistics(Volume);
}
if(DumpAgentInformation) {

DumpAgentInfo ();
}
return TotalInteractions;

}
}

long long AgentPopulation :: Equilibrate(int
NumberOfEquilibrationsSoFar) {

128

Converged = false;
theTime = 0;
TotalInteractions = 0;

LOG(INFO) << "Equilibration #" <<
NumberOfEquilibrationsSoFar << " starting";

// Next , initialize some variables ...
for (auto& vol : Volume) {

vol = 0.0;
}

// Start up the exchange process here ...
do {

LnMRSsDataUpToDate = false; // Since these data are
gonna change ...

++ theTime;

if ((ShockPreferences) && (theTime % ShockPeriod == 0))
{
ShockAgentPreferences ();

}

for (int i = 1; i <= PairwiseInteractionsPerPeriod; ++i
) {
AgentPtr Agent1 , Agent2;
(this ->* GetAgentPair) (Agent1 , Agent2);
Agent1 ->MarkActivated ();
Agent2 ->MarkActivated ();
Trade(Agent1 ,Agent2);

} // for i...

// Check for termination ...
if ((theTime > CheckTerminationThreshold) && (theTime %

CheckTerminationPeriod == 0)) {
Converged = TestConvergence ();

}

// Display stats if the time is right ...
if (PrintIntermediateOutput && (theTime %

IntermediateOutputPrintPeriod == 0)) {
IntermediateOutput ();

}

129

// Store the sum of utilities if it will be needed
next period for either termincation check or
printing

if (termination_criterion > 0) {
if (((theTime > CheckTerminationThreshold) && ((

theTime + 1) % CheckTerminationPeriod == 0)) ||
((PrintIntermediateOutput) && ((theTime + 1) %
IntermediateOutputPrintPeriod == 0))) {
LastSumOfUtilities = ComputeSumOfUtilities ();

}
}
if (writeToFile) { WriteLine (); }

} while (! Converged);

// Agents are either equilibrated or user has asked for
termination; display stats for the former case

if (! Converged) {
LOG(INFO) << "Terminated by user!";
return 0;

} else { // the economy has converged ...
LOG(INFO) << "Equilibrium achieved at time " << theTime

<< " via " << TotalInteractions << " interactions";
LOG(INFO) << "Equilibration #" <<

NumberOfEquilibrationsSoFar << " ended";
if (PrintConvergenceStats) {

ConvergenceStatistics(Volume);
}

if(DumpAgentInformation) {
DumpAgentInfo ();

}
return TotalInteractions;

}
} // AgentPopulation :: Equilibrate

void AgentPopulation :: DumpAgentInfo () {
const char* filename = "dump.csv";
std:: ofstream dumpfile;

dumpfile.open(filename , std::ios::trunc);

for (auto &a : Agents) {

130

dumpfile << a->GetId() << "," << a->
GetNumberOfActivations () << "," << a->
GetNumberOfTrades () << std::endl;

}
dumpfile.close();

}

void AgentPopulation :: ConvergenceStatistics(CommodityArray
VolumeStats) {
Data InitialMarketWealthData , FinalMarketWealthData ,

DeltaMarketWealthData;
Data FinalOwnWealthData , DeltaOwnWealthData , DeltaUtility;
double price , AgentsInitialWealth , AgentsFinalWealth;

for (auto& agent : Agents) {
// First compute agent wealth one commodity at a time

...
AgentsInitialWealth = 0.0;
AgentsFinalWealth = 0.0;
for (size_t j = 0; j < static_cast <size_t >(

NumberOfCommodities); ++j) {
price = LnMRSsData.GetData(j)->GetExpAverage ();
AgentsInitialWealth += agent ->GetEndowment(j) *

price;
AgentsFinalWealth += agent ->GetAllocation(j) *

price;
}
InitialMarketWealthData.AddDatum(AgentsInitialWealth);
FinalMarketWealthData.AddDatum(AgentsFinalWealth);
DeltaMarketWealthData.AddDatum(AgentsFinalWealth -

AgentsInitialWealth);

// The following line is a minor optimization ...
variable name should include ’own’ to be mnemonic ...

AgentsFinalWealth = agent ->Wealth(agent ->GetCurrentMRSs
());

FinalOwnWealthData.AddDatum(AgentsFinalWealth);
DeltaOwnWealthData.AddDatum(AgentsFinalWealth - agent ->

GetInitialWealth ());
DeltaUtility.AddDatum(agent ->Utility () - agent ->

GetInitialUtility ());
} // for i...

131

LOG(INFO) << "Average initial wealth (@ market prices) = "
<< InitialMarketWealthData.GetAverage () << "; standard
deviation = " << InitialMarketWealthData.GetStdDev ();

LOG(INFO) << "Average final wealth (@ market prices) = "
<< FinalMarketWealthData.GetAverage () << "; standard
deviation = " << FinalMarketWealthData.GetStdDev ();

LOG(INFO) << "Average change in market wealth = "
<< DeltaMarketWealthData.GetAverage () << "; standard
deviation = " << DeltaMarketWealthData.GetStdDev ();

LOG(INFO) << "Average final wealth (@ own prices) = "
<< FinalOwnWealthData.GetAverage () << "; standard
deviation = " << FinalOwnWealthData.GetStdDev ();

LOG(INFO) << "Average change in own wealth = "
<< DeltaOwnWealthData.GetAverage () << "; standard
deviation = " << DeltaOwnWealthData.GetStdDev ();

LOG(INFO) << "Minimum increase in utility = "
<< DeltaUtility.GetMin () << "; maximum increase = " <<
DeltaUtility.GetMax ();

LOG(INFO) << "Final sum of utilities = "
<< ComputeSumOfUtilities ();

if (PrintFinalCommodityList) {
for (size_t i = 0; i < static_cast <size_t >(

NumberOfCommodities); ++i) {
LOG(INFO) << "Commodity " << i << ": volume = " <<

VolumeStats[i] << "; avg. MRS = " << LnMRSsData.
GetData(i)->GetExpAverage () <<

"; s.d. = " << LnMRSsData.GetData(i)->GetStdDev ();
}

}
} // AgentPopulation :: ConvergenceStatistics ()

void AgentPopulation :: CompareTwoAgents(AgentPtr Agent1 ,
AgentPtr Agent2) {
for (size_t j = 0; j < static_cast <size_t >(

NumberOfCommodities); ++j) {
if (Agent1 ->GetAlpha(j) != Agent2 ->GetAlpha(j)) {

LOG(WARNING) << "Bad alpha copying!";
}
if (Agent1 ->GetEndowment(j) != Agent2 ->GetEndowment(j))

{
LOG(WARNING) << "Bad endowment copying!";

}
if (Agent1 ->GetAllocation(j) != Agent2 ->GetAllocation(j

)) {
LOG(WARNING) << "Bad allocation copying!";

132

}
if (Agent1 ->GetInitialMRS(j) != Agent2 ->GetInitialMRS(j

)) {
LOG(WARNING) << "Bad InitialMRSs copying!";

}
if (Agent1 ->GetCurrentMRS(j) != Agent2 ->GetCurrentMRS(j

)) {
LOG(WARNING) << "Bad CurrentMRSs copying!";

}
}
if (Agent1 ->GetInitialUtility () != Agent2 ->

GetInitialUtility ()) {
LOG(WARNING) << "Bad InitialUtility copying!";

}
if (Agent1 ->GetInitialWealth () != Agent2 ->GetInitialWealth

()) {
LOG(WARNING) << "Bad InitialWealth copying!";

}
} // AgentPopulation :: CompareTwoAgents ()

void AgentPopulation :: ShockAgentPreferences () {
if (debug) { LOG(DEBUG) << "Shocking agent preferences ...";

}
double oldPref , newPref , pref;

size_t CommodityToShock = Rand ->RandomCommodity ();
bool sign = Rand ->RandomBinary ();
double shock = Rand ->RandomShock ();
if (debug) {

if (sign) {
LOG(DEBUG) << "Shocking commodity " <<

CommodityToShock << " * " << shock;
} else {

LOG(DEBUG) << "Shocking commodity " <<
CommodityToShock << " * 1/" << shock;

}
}
for (auto& ActiveAgent : Agents) {

oldPref = ActiveAgent ->GetAlpha(CommodityToShock);
if (sign) {

newPref = oldPref * shock;
} else {

newPref = oldPref/shock;
}
ActiveAgent ->SetAlpha(CommodityToShock , newPref);

133

for (size_t CommodityIndex = 0; CommodityIndex <
static_cast <size_t >(NumberOfCommodities); ++
CommodityIndex) {
pref = ActiveAgent ->GetAlpha(CommodityIndex);
ActiveAgent ->SetAlpha(CommodityIndex , pref /(1.0 -

oldPref + newPref));
} // for (CommodityIndex ...

} // for (AgentIndex ...
} // AgentPopulation :: ShockAgentPreferenes ()

void AgentPopulation :: WriteLine () {
// This can obviously be made more elegant.
outfile << theTime <<"," << TotalInteractions << "," <<

WriteWealthInfo () << WriteUtilityInfo ();
outfile << LnMRSsData.L2StdDev () << "," << LnMRSsData.

LinfStdDev () << "," << InitialOwnWealthData.GetMin () <<
"," << InitialOwnWealthData.GetMax () << "," ;

outfile << alphaMin << "," << alphaMax << "," <<
activationMethod << ",";

outfile << NumberOfAgents << "," << NumberOfCommodities <<
"," << trade_eps << ",";

outfile << termination_criterion << "," << termination_eps
<< "," << TerminationTime << "," <<
CheckTerminationThreshold;

outfile << std::endl;
}

/* ================= End of Methods ================= */
void OpenFile(const char * filename) {

bool fileExists = false;

std:: ifstream file_to_check (filename);
if(file_to_check.is_open ()) {

fileExists = true;
}
file_to_check.close ();

if(debug) {
LOG(DEBUG) << "Opening file " << filename;

}

if (fileAppend) {
outfile.open(filename , std::ios::app);

134

if (! fileExists) {
WriteHeader ();

}
} else {

outfile.open(filename , std::ios:: trunc);
WriteHeader ();

}
}

void WriteHeader () {
outfile << "time ,interactions ,currentwealth.min ,

currentwealth.max ,currentwealth.avg ,currentwealth.sd ,";
outfile << "utility.min ,utility.max ,utility.avg ,utility.sd,

";
outfile << "L2.sd.MRS ,max.sd.MRS ,initialwealth.min ,

initialwealth.max ,";
outfile << "alpha.min ,alpha.max ,activation.method ,num.

agents ,num.commodities ,";
outfile << "trade.eps ,termination_criterion ,termination.eps

,termination.time ,termination.threshold";
outfile << std::endl;

}

void InitMiscellaneous () {
LOG(INFO) << "Model version: " << Version;
LOG(INFO) << "Number of agents: " << NumberOfAgents;
LOG(INFO) << "Number of commodities: " <<

NumberOfCommodities;
LOG(INFO) << "Trade epsilon: " << trade_eps;
LOG(INFO) << "Time period: " << 2 *

PairwiseInteractionsPerPeriod;
LOG(INFO) << "Termination period check rate: " <<

CheckTerminationPeriod;
LOG(INFO) << "Termination period check threshold: " <<

CheckTerminationThreshold;
switch (termination_criterion) {

case -2:
LOG(INFO) << "Termination criterion: After " <<

TerminationTime << " time steps";
break;
case -1:
LOG(INFO) << "Termination criterion: L2 norm of

standard deviation of agent MRSes";
break;
case 0:

135

LOG(INFO) << "Termination criterion: Maximum standard
deviation of agent MRSes";

break;
case 1:
LOG(INFO) << "Termination criterion: relative increase

in sum of agent utilities";
break;
case 2:
LOG(INFO) << "Termination criterion: increase in the

sum of agent utilities";
break;
default:
LOG(ERROR) << "Invalid termination criterion";
std:: terminate ();
break;

}
LOG(INFO) << "Termination threshold: " << termination_eps;
if (DefaultSerialExecution) {

LOG(INFO) << "Parallel activation: FALSE";
} else {

LOG(INFO) << "Parallel activation: TRUE";
LOG(INFO) << "Agent randomization size: " <<

AgentsToRandomize;
}
LOG(INFO) << "Number of equilibrations: " <<

RequestedEquilibrations;
LOG(INFO) << "Vary agent initial conditions: " << !

SameAgentInitialCondition;

MemoryState.WriteMemoryRequirements ();
} // InitMiscellaneous ()

void ReadConfigFile(std:: string file) {
// This function sets all relevant model parameters by

reading from a config file (libconfig).
// If there’s some issue with the formatting or reading of

the config file , it catches the exception
// and terminates the program. The config file *must* be

proper for the model to run. See parameters.cfg
// in the repository for an example.

libconfig :: Config config;
try {

LOG(INFO) << "Loading configuration from " << file << "
...";

136

config.readFile(file.c_str());
LOG(INFO) << "Loaded configuration from " << file;
if (config.lookupValue("debug.enabled", debug) && debug

) { LOG(DEBUG) << "debug: " << debug; }
if (config.lookupValue("number.commodities",

NumberOfCommodities) && debug) { LOG(DEBUG) << "
NumberOfCommodities: " << NumberOfCommodities; }

if (config.lookupValue("number.agents", NumberOfAgents)
&& debug) { LOG(DEBUG) << "NumberOfAgents: " <<

NumberOfAgents; }
if (config.lookupValue("rand.use_seed", UseRandomSeed)

&& debug) { LOG(DEBUG) << "UseRandomSeed: " <<
UseRandomSeed; }

if (config.lookupValue("rand.seed", NonRandomSeed) &&
debug) { LOG(DEBUG) << "NonRandomSeed: " <<
NonRandomSeed; }

if (config.lookupValue("interactions_per_period",
PairwiseInteractionsPerPeriod) && debug) { LOG(DEBUG
) << "PairwiseInteractionsPerPeriod: " <<
PairwiseInteractionsPerPeriod; }

if (config.lookupValue("alpha.min", alphaMin) && debug)
{ LOG(DEBUG) << "alphaMin: " << alphaMin; }

if (config.lookupValue("alpha.max", alphaMax) && debug)
{ LOG(DEBUG) << "alphaMax: " << alphaMax; }

if (config.lookupValue("wealth.min", wealthMin) &&
debug) { LOG(DEBUG) << "wealthMin: " << wealthMin; }

if (config.lookupValue("wealth.max", wealthMax) &&
debug) { LOG(DEBUG) << "wealthMax: " << wealthMax; }

if (config.lookupValue("parallel.disabled",
DefaultSerialExecution) && debug) { LOG(DEBUG) << "
DefaultSerialExecution: " << DefaultSerialExecution;
}

if (config.lookupValue("parallel.number_of_threads",
NumberOfThreads) && debug) { LOG(DEBUG) << "
NumberOfThreads: " << NumberOfThreads; }

if (config.lookupValue("parallel.fork_and_join",
ForkAndJoin) && debug) { LOG(DEBUG) << "ForkAndJoin:
" << ForkAndJoin; }

if (config.lookupValue("parallel.shuffle_after_join",
ShuffleAfterJoin) && debug) { LOG(DEBUG) << "
ShuffleAfterJoin: " << ShuffleAfterJoin; }

if (config.lookupValue("num_equilibrations",
RequestedEquilibrations) && debug) { LOG(DEBUG) << "
RequestedEquilibrations: " <<
RequestedEquilibrations; }

137

if (config.lookupValue("
same_conditions_each_equilibration",
SameAgentInitialCondition) && debug) { LOG(DEBUG) <<
"SameAgentInitialCondition: " <<

SameAgentInitialCondition; }
if (config.lookupValue("trade.eps", trade_eps) && debug

) { LOG(DEBUG) << "trade_eps: " << trade_eps; }
if (config.lookupValue("termination.criterion",

termination_criterion) && debug) { LOG(DEBUG) << "
termination_criterion: " << termination_criterion; }

if (config.lookupValue("termination.time",
TerminationTime) && debug) { LOG(DEBUG) << "
TerminationTime: " << TerminationTime; }

if (config.lookupValue("termination.eps",
termination_eps) && debug) { LOG(DEBUG) << "
termination_eps: " << termination_eps; }

if (config.lookupValue("termination.threshold",
CheckTerminationThreshold) && debug) { LOG(DEBUG) <<
"CheckTerminationThreshold: " <<

CheckTerminationThreshold; }
if (config.lookupValue("termination.period",

CheckTerminationPeriod) && debug) { LOG(DEBUG) << "
CheckTerminationPeriod: " << CheckTerminationPeriod;
}

if (config.lookupValue("shock.enabled",
ShockPreferences) && debug) { LOG(DEBUG) << "
ShockPreferences: " << ShockPreferences; }

if (config.lookupValue("shock.period", ShockPeriod) &&
debug) { LOG(DEBUG) << "ShockPeriod: " <<
ShockPeriod; }

if (config.lookupValue("shock.min", MinShock) && debug)
{ LOG(DEBUG) << "MinShock: " << MinShock; }

if (config.lookupValue("shock.max", MaxShock) && debug)
{ LOG(DEBUG) << "MaxShock: " << MaxShock; }

if (config.lookupValue("debug.print_endowments",
PrintEndowments) && debug) { LOG(DEBUG) << "
PrintEndowments: " << PrintEndowments; }

if (config.lookupValue("debug.print_intermediate_output
", PrintIntermediateOutput) && debug) { LOG(DEBUG)
<< "PrintIntermediateOutput: " <<
PrintIntermediateOutput; }

138

if (config.lookupValue("debug.
intermediate_output_print_period",
IntermediateOutputPrintPeriod) && debug) { LOG(DEBUG
) << "IntermediateOutputPrintPeriod: " <<
IntermediateOutputPrintPeriod; }

if (config.lookupValue("debug.print_convergence_stats",
PrintConvergenceStats) && debug) { LOG(DEBUG) << "

PrintConvergenceStats: " << PrintConvergenceStats; }
if (config.lookupValue("debug.

print_final_commodity_list", PrintFinalCommodityList
) && debug) { LOG(DEBUG) << "PrintFinalCommodityList
: " << PrintFinalCommodityList; }

if (config.lookupValue("debug.dump_agent_information",
DumpAgentInformation) && debug) { LOG(DEBUG) << "
DumpAgentInformation: " << DumpAgentInformation; }

if (config.lookupValue("activation.method",
activationMethod) && debug) { LOG(DEBUG) << "
Activation Method: " << activationMethod; } // TODO:
make this an enum

if (config.lookupValue("file.filename", outputFilename)
&& debug) { LOG(DEBUG) << "Output filename: " <<

outputFilename; }
if (config.lookupValue("file.write_to_file",

writeToFile) && debug) { LOG(DEBUG) << "Write to
file?: " << writeToFile; }

if (config.lookupValue("file.append", fileAppend) &&
debug) { LOG(DEBUG) << "Append to file?: " <<
fileAppend; }

exp_trade_eps = exp(trade_eps);

} catch (...) {
LOG(ERROR) << "Error reading config file";
std:: terminate ();

}
} // ReadConfigFile

int main(int argc , char** argv) {
// Preliminaries: Parse flags , etc.
std:: string usage = "An agent -based model of bilateral

exchange. Usage:\n";
usage += argv [0];
// gflags :: SetUsageMessage(usage);
// gflags :: ParseCommandLineFlags (&argc , &argv , true);
LOG(INFO) << "Opening log file ...";

139

// Read the config file passed through the -file flag , or
read the default parameters.cfg.

std:: string param_file = "";
if (argv [1] != NULL) {

param_file = argv [1];
}
if (param_file.empty()) {

param_file = "parameters.cfg";
}
ReadConfigFile(param_file);

outputFilename = "data.csv"; // workaround for libconfig ++
issue , TODO: correct

if (writeToFile) { OpenFile(outputFilename); }

if (! DefaultSerialExecution && NumberOfThreads > 0) {
tbb:: task_scheduler_init init(NumberOfThreads);

}

Rand = new RNG(UseRandomSeed , NonRandomSeed , NumberOfAgents
, NumberOfCommodities , MinShock , MaxShock , alphaMin ,
alphaMax , wealthMin , wealthMax);

// Initialize the model and print preliminaries to the log
.

InitMiscellaneous ();
AgentPopulationPtr PopulationPtr = new AgentPopulation(

NumberOfCommodities);

PopulationPtr ->Init();

// Equilibrate the agent economy once ...
int EquilibrationNumber = 1;
long long sum;

if (DefaultSerialExecution) {
sum = PopulationPtr ->Equilibrate(EquilibrationNumber);

} else {
if (ForkAndJoin) {

sum = PopulationPtr ->ForkAndJoinEquilibrate(
EquilibrationNumber);

} else {

140

sum = PopulationPtr ->ParallelEquilibrate(
EquilibrationNumber);

}
}
long long sum2 = sum*sum;
// Equilibrate again if the user has requested this ...
long long interactions;

EquilibrationNumber = 2;
while (EquilibrationNumber <= RequestedEquilibrations) {

if (SameAgentInitialCondition) {
PopulationPtr ->Reset();

} else {
PopulationPtr ->Init();

}
interactions = PopulationPtr ->Equilibrate(

EquilibrationNumber);
sum += interactions;
sum2 += interactions*interactions;
++ EquilibrationNumber;

}

double avg = static_cast <double >(sum)/(EquilibrationNumber
-1);

LOG(INFO) << "Average number of interactions: " << avg;
if (EquilibrationNumber > 2) {

LOG(INFO) << "std. dev.: " << sqrt((sum2 - (
EquilibrationNumber - 1) * avg * avg)/(
EquilibrationNumber - 2));

}

if (outfile.is_open ()) { outfile.close(); }
} // main()

D.5 Dockerfile

#FROM ubuntu :14.04
FROM ubuntu :15.10

RUN apt -get clean
RUN rm -rf /var/lib/apt/lists /* /tmp/* /var/tmp/*
RUN echo "deb http ://dl.bintray.com/sbt/debian /" | tee -a /etc

/apt/sources.list.d/sbt.list

141

RUN apt -key adv --keyserver hkp:// keyserver.ubuntu.com:80 --
recv 642 AC823

RUN apt -get update
RUN apt -get install -yqq time git curl build -essential

checkinstall autotools -dev wget cmake software -properties -
common libtbb -dev vim

RUN apt -get clean
RUN rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
RUN mkdir -p model/serial -activation -suite

COPY RNG.cpp model/
COPY RNG.h model/
COPY main.cpp model/
COPY main.h model/
COPY parameters.cfg model/
COPY easylogging ++.h model/
COPY ctpl_stl.h model/
COPY Makefile model/
COPY serial -activation -suite/ model/serial -activation -suite
COPY parallel -activation -suite/ model/parallel -activation -suite
COPY forkjoin -activation -suite/ model/forkjoin -activation -suite
COPY forkjoin -threading -suite/ model/forkjoin -threading -suite
WORKDIR /model/

RUN wget http ://www.hyperrealm.com/libconfig/libconfig -1.5. tar.
gz

RUN tar xvf libconfig -1.5. tar.gz
RUN wget https :// github.com/gflags/gflags/archive/v2.1.2. tar.gz
RUN tar xvf v2.1.2. tar.gz
WORKDIR /model/libconfig -1.5
RUN ./ configure && make && make install
WORKDIR /model/gflags -2.1.2/ build
RUN cmake .. && make && make install
RUN ldconfig

WORKDIR /model/serial -activation -suite
CMD ["bash"]

#CMD /
#CMD go build zi -traders.go
#CMD echo "Built Go model"
#CMD bash -c "/usr/bin/time -f ’1,%e,%U,%S’ ./zi-traders"

142

#docker -machine create -d virtualbox --virtualbox -boot2docker -
url file :// $HOME/Dropbox/boot2docker -v1.9.1- fix1.iso --
virtualbox -memory 1536 --virtualbox -disk -size 10000
fixedjava

#docker -machine create -d virtualbox --virtualbox -boot2docker -
url https :// github.com/tianon/boot2docker -legacy/releases/
download/v1.10.0-rc1/boot2docker.iso --virtualbox -memory
1536 --virtualbox -disk -size 10000 --virtualbox -cpu -count 2
fixedjava

#docker -machine create -d virtualbox --virtualbox -boot2docker -
url https :// github.com/tianon/boot2docker -legacy/releases/
download/v1.10.0-rc1/boot2docker.iso --virtualbox -memory
1024 --virtualbox -disk -size 10000 --virtualbox -cpu -count 2
fixedjava

143

Bibliography

Aldous, D. (2013). Interacting particle systems as stochastic social dynamics. Bernoulli, 19(4),
1122–1149. doi: 10.3150/12-BEJSP04

Alizadeh, M., & Cioffi-Revilla, C. (2015). Activation regimes in opinion dynamics: Comparing
asynchronous updating schemes. Journal of Artificial Societies and Social Simulation, 18(3).
doi: 10.18564/jasss.2733

Angus, S. D., & Hassani-Mahmooei, B. (2015). "Anarchy" reigns: A quantitative analysis of
agent-based modelling publication practices in JASSS, 2001-2012. Journal of Artificial Societies
and Social Simulation, 18(4). Retrieved from http://jasss.soc.surrey.ac.uk/18/4/16
.html doi: 10.18564/jasss.2952

Auble, B. D. (2015). Narrative agents as a reporting mechanism for agent-based models (Mas-
ter’s thesis). George Mason University, Fairfax, VA.

Axtell, R. L. (2000a). Effects of interaction topology and activation regime in several multi-
agent systems (Working Paper No. 12). Center on Social & Economic Dynamics: Brookings
Institution.

Axtell, R. L. (2000b). Why agents?: On the varied motivations for agent computing in the
social sciences (Working Paper No. 17). Center on Social & Economic Dynamics: Brookings
Institution.

Axtell, R. L. (2005). The complexity of exchange. The Economic Journal, 115(504), F193–
F210. doi: 10.1111/j.1468-0297.2005.01001.x

Axtell, R. L., Axelrod, R., Epstein, J. M., & Cohen, M. D. (1996). Aligning simulation models:
A case study and results. Computational and Mathematical Organization Theory, 1(2), 123–141.
doi: 10.1007/BF01299065

Baetens, J., Van der Weeën, P., & De Baets, B. (2012). Effect of asynchronous updating on
the stability of cellular automata. Chaos, Solitons & Fractals, 45(4), 383–394. doi: 10.1016/
j.chaos.2012.01.002

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science,
286(5439), 509–512. doi: 10.1126/science.286.5439.509

Beberg, A. L., Ensign, D. L., Jayachandran, G., Khaliq, S., & Pande, V. S. (2009). Fold-
ing@Home: Lessons from eight years of volunteer distributed computing. In Proceedings of the
2009 IEEE International Symposium on Parallel & Distributed Processing (pp. 1–8). Washing-
ton, DC: IEEE Computer Society. doi: 10.1109/IPDPS.2009.5160922

144

http://jasss.soc.surrey.ac.uk/18/4/16.html
http://jasss.soc.surrey.ac.uk/18/4/16.html

Bennett, D. A., & Tang, W. (2006). Modelling adaptive, spatially aware, and mobile agents: Elk
migration in Yellowstone. International Journal of Geographical Information Science, 20(9),
1039–1066. doi: 10.1080/13658810600830806

Boettiger, C. (2015). An introduction to Docker for reproducible research. ACM SIGOPS
Operating Systems Review, 49(1), 71–79. (arXiv: 1410.0846v1 [cs.SE]) doi: 10.1145/2723872
.2723882

Caron-Lormier, G., Humphry, R. W., Bohan, D. A., Hawes, C., & Thorbek, P. (2008). Asynch-
ronous and synchronous updating in individual-based models. Ecological Modelling, 212(3-4),
522–527. doi: 10.1016/j.ecolmodel.2007.10.049

Chen, S.-H. (2012). Varieties of agents in agent-based computational economics: A historical
and an interdisciplinary perspective. Journal of Economic Dynamics and Control, 36(1), 1–25.
doi: 10.1016/j.jedc.2011.09.003

Cioffi-Revilla, C. (2014). Introduction to computational social science: Principles and applica-
tions. London: Springer-Verlag.

Coakley, S., Smallwood, R., & Holcombe, M. (2006). Using X-machines as a formal basis for
describing agents in agent-based modelling. Simulation Series, 38(2), 33.

Collier, N. T., & North, M. J. (2013). Parallel agent-based simulation with Repast for High
Performance Computing. Simulation, 89(10), 1215–1235. doi: 10.1177/0037549712462620

Comer, K. W. (2014). Who goes first? An examination of the impact of activation on outcome
behavior in agent-based models (Ph.D. dissertation). George Mason University, Fairfax, VA.

Cordasco, G., Chiara, R. D., Mancuso, A., Mazzeo, D., Scarano, V., & Spagnuolo, C. (2013).
Bringing together efficiency and effectiveness in distributed simulations: The experience with
D-Mason. Simulation, 89(10), 1236–1253. doi: 10.1177/0037549713489594

Cordasco, G., Milone, F., Spagnuolo, C., & Vicidomini, L. (2014). Exploiting D-Mason on
parallel platforms: A novel communication strategy. In Euro-Par 2014: Parallel Processing
Workshops (pp. 407–417). Cham: Springer International.

Cox, R. (n.d.). Bell Labs and CSP threads. Retrieved 2015-09-18, from https://swtch.com/
~rsc/thread/

Crooks, A. T., Castle, C., & Batty, M. (2008). Key challenges in agent-based modelling for
geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417–430. doi:
10.1016/j.compenvurbsys.2008.09.004

Crooks, A. T., & Castle, C. J. E. (2012). The integration of agent-based modelling and geo-
graphical information for geospatial simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See,
& M. Batty (Eds.), Agent-based models of geographical systems (pp. 219–251). Dordrecht:
Springer.

Crooks, A. T., Croitoru, A., Lu, X., Wise, S., Irvine, J., & Stefanidis, A. (2015). Walk this way:
Improving pedestrian agent-based models through scene activity analysis. ISPRS International
Journal of Geo-Information, 4(3), 1627–1656. doi: 10.3390/ijgi4031627

145

https://swtch.com/~rsc/thread/
https://swtch.com/~rsc/thread/

Crooks, A. T., & Hailegiorgis, A. B. (2014). An agent-based modeling approach applied to the
spread of cholera. Environmental Modelling & Software, 62, 164–177. doi: 10.1016/j.envsoft
.2014.08.027

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18(8), 453–457. doi: 10.1145/360933.360975

D’Souza, R. M., Lysenko, M., & Rahmani, K. (2007). Sugarscape on steroids: Simulating over
a million agents at interactive rates. In Proceedings of the Agent 2007 Conference on Complex
Interaction and Social Emergence (Vol. 20). Argonne, IL.

Epstein, J. M. (2002). Modeling civil violence: An agent-based computational approach. Pro-
ceedings of the National Academy of Sciences, 99(Supplement 3), 7243–7250. doi: 10.1073/
pnas.092080199

Epstein, J. M., & Axtell, R. L. (1996). Growing artificial societies: Social science from the
bottom up. Washington, DC: Brookings Institution Press.

Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. In Publication of the
Mathematical Institute of the Hungarian Academy of Sciences (pp. 17–61).

Fachada, N., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2015). Towards a standard model
for research in agent-based modeling and simulation. PeerJ Computer Science, 1, e36. doi:
10.7717/peerj-cs.36

Fachada, N., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2016). Parallelization strategies
for spatial agent-based models. International Journal of Parallel Programming, 1–33. doi:
10.1007/s10766-015-0399-9

Fatès, N., & Chevrier, V. (2010). How important are updating schemes in multi-agent systems?
An illustration on a multi-turmite model. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (Vol. 1, pp. 533–540). Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems.

Filatova, T., Parker, D., & van der Veen, A. (2009). Agent-based urban land markets: agent’s
pricing behavior, land prices and urban land use change. Journal of Artificial Societies and Social
Simulation, 12(1), 3. Retrieved from http://jasss.soc.surrey.ac.uk/12/1/3.html

Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., del Olmo, R., López-Paredes,
A., & Edmonds, B. (2009). Errors and artefacts in agent-based modelling. Journal of Artificial
Societies and Social Simulation, 12(1), 1. Retrieved from http://jasss.soc.surrey.ac.uk/
12/1/1.html

Geanakoplos, J. (2003). Nash and Walras equilibrium via Brouwer. Economic Theory, 21(2-3),
585–603. doi: 10.1007/s001990000076

Geanakoplos, J., Axtell, R., Farmer, D. J., Howitt, P., Conlee, B., Goldstein, J., . . . Yang, C.-Y.
(2012). Getting at systemic risk via an agent-based model of the housing market. American
Economic Review, 102(3), 53–58. doi: 10.1257/aer.102.3.53

146

http://jasss.soc.surrey.ac.uk/12/1/3.html
http://jasss.soc.surrey.ac.uk/12/1/1.html
http://jasss.soc.surrey.ac.uk/12/1/1.html

Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist (2nd ed.). Maidenhead,
England: Open University Press.

Gode, D. K., & Sunder, S. (1993). Allocative efficiency of markets with zero-intelligence
traders: Market as a partial substitute for individual rationality. Journal of Political Economy,
101(1), 119–137.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010).
The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768. doi:
10.1016/j.ecolmodel.2010.08.019

Herlihy, M., & Shavit, N. (2012). The art of multiprocessor programming (Revised ed.). Ams-
terdam: Morgan Kaufmann.

Hirsch, M. D., Papadimitriou, C. H., & Vavasis, S. A. (1989). Exponential lower bounds for
finding Brouwer fix points. Journal of Complexity, 5(4), 379–416. doi: 10.1016/0885-064X(89)
90017-4

Hoare, C. A. R. (1978). Communicating sequential processes. Communications of the ACM,
21(8), 666–677. doi: 10.1145/359576.359585

Hoare, C. A. R. (1985). Communicating sequential processes. Englewood Cliffs, N.J: Prentice-
Hall International.

Huberman, B. A., & Glance, N. S. (1993). Evolutionary games and computer simulations.
Proceedings of the National Academy of Sciences, 90(16), 7716–7718.

Jackson, J., Forest, B., & Sengupta, R. (2008). Agent-based simulation of urban residential
dynamics and land rent change in a gentrifying area of Boston. Transactions in GIS, 12(4),
475–491. doi: 10.1111/j.1467-9671.2008.01109.x

Jaffry, S. W., & Treur, J. (2011). Modelling trust for communicating agents: Agent-based and
population-based perspectives. In P. Jędrzejowicz, N. T. Nguyen, & K. Hoang (Eds.), Computa-
tional Collective Intelligence. Technologies and Applications (pp. 366–377). Berlin: Springer.

Jooybar, H., Fung, W. W., O’Connor, M., Devietti, J., & Aamodt, T. M. (2013). GPUDet: A
deterministic GPU architecture. In Proceedings of the 8th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (pp. 1–12). Houston, TX:
ACM Press. doi: 10.1145/2451116.2451118

Katzgraber, H. G. (2010). Random numbers in scientific computing: An introduction. (arXiv:
1005.4117v1 [physics.comp-ph])

Kindratenko, V. (Ed.). (2014). Numerical computations with GPUs. New York: Springer.

Laver, M., & Sergenti, E. (2012). Party competition: An agent-based model. Princeton: Prince-
ton University Press.

Lee, E. A. (2006). The problem with threads. Computer, 39(5), 33–42. doi: 10.1109/MC.2006
.180

147

Lee, E. A. (2009). Computing needs time. Communications of the ACM, 52(5), 70–79. doi:
10.1145/1506409.1506426

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G. (2005). MASON: A multiagent
simulation environment. Simulation: Transactions of The Society for Modeling and Simulation
International, 81(7), 517–527. doi: 10.1177/0037549705058073

Lytinen, S. L., & Railsback, S. F. (2012). The evolution of agent-based simulation plat-
forms: A review of NetLogo 5.0 and ReLogo. In Proceedings of the 21st European Meet-
ing on Cybernetics and Systems Research. Vienna: Bertalanffy Center for the Study of Sys-
tems. Retrieved from http://www2.econ.iastate.edu/tesfatsi/NetLogoReLogoReview
.LytinenRailsback2012.pdf

Mathevet, R., Bousquet, F., Le Page, C., & Antona, M. (2003). Agent-based simulations of
interactions between duck population, farming decisions and leasing of hunting rights in the
Camargue (Southern France). Ecological Modelling, 165(2-3), 107–126. doi: 10.1016/S0304
-3800(03)00098-X

Matsumoto, M., & Nishimura, T. (1998). Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling and Com-
puter Simulation, 8(1), 3–30. doi: 10.1145/272991.272995

Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: An introduction to computational
models of social life. Princeton, NJ: Princeton University Press.

Mitchell, M. (2011). Complexity: A guided tour. Oxford: Oxford University Press.

Mooij, W. M., Bennetts, R. E., Kitchens, W. M., & DeAngelis, D. L. (2002). Exploring the effect
of drought extent and interval on the Florida snail kite: Interplay between spatial and temporal
scales. Ecological Modelling, 149(1-2), 25–39. doi: 10.1016/S0304-3800(01)00512-9

Newth, D., & Cornforth, D. (2009). Asynchronous spatial evolutionary games. Biosystems,
95(2), 120–129. doi: 10.1016/j.biosystems.2008.09.003

North, M. J., Collier, N., & Murphy, J. T. (2016). High performance agent-based modeling.
Boca Raton, FL: CRC Press.

North, M. J., Collier, N. T., & Vos, J. R. (2006). Experiences creating three implementations of
the Repast agent modeling toolkit. ACM Transactions on Modeling and Computer Simulation,
16(1), 1–25. doi: 10.1145/1122012.1122013

Nowak, M. A., Bonhoeffer, S., & May, R. M. (1994). Spatial games and the maintenance of
cooperation. Proceedings of the National Academy of Sciences, 91(11), 4877–4881.

Nowak, M. A., & May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359(6398),
826–829. doi: 10.1038/359826a0

Osgood, N. (2009). Lightening the performance burden of individual-based models through
dimensional analysis and scale modeling. System Dynamics Review, 25(2), 101–134. doi: 10
.1002/sdr.417

148

http://www2.econ.iastate.edu/tesfatsi/NetLogoReLogoReview.LytinenRailsback2012.pdf
http://www2.econ.iastate.edu/tesfatsi/NetLogoReLogoReview.LytinenRailsback2012.pdf

Page, S. E. (1997). On incentives and updating in agent based models. Computational Eco-
nomics, 10(1), 67–87. doi: 10.1023/A:1008625524072

Papadimitriou, C. H. (1994). On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3), 498–532. doi: 10.1016/
S0022-0000(05)80063-7

Radax, W., & Rengs, B. (2010). Timing matters: Lessons from the CA literature on updating.
In Proceedings of the 3rd World Congress of Social Simulation. Kassel, Germany. (arXiv:
1008.0941v1 [cs.MA])

Railsback, S. F., & Grimm, V. (2012). Agent-based and individual-based modeling: A practical
introduction. Princeton, NJ: Princeton University Press.

Richardson, R., Richiardi, M., & Wolfson, M. (2015). We ran one billion agents. Scaling in sim-
ulation models. (Working Paper No. 142). Laboratorio Riccardo Revelli: Collegio Carlo Alberto.
Retrieved 2015-10-04, from http://www.laboratoriorevelli.it/_pdf/wp142.pdf

Richmond, P., Coakley, S., & Romano, D. M. (2009). A high performance agent based modelling
framework on graphics card hardware with CUDA. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems (Vol. 2, pp. 1125–1126). Richland,
SC: International Foundation for Autonomous Agents and Multiagent Systems.

Rouly, O. C. (2015). Towards emergent social complexity (Ph.D. dissertation). George Mason
University, Fairfax, VA.

Rousset, A., Herrmann, B., Lang, C., & Philippe, L. (2014). A survey on parallel and distributed
multi-agent systems. In L. Lopes et al. (Eds.), Euro-Par 2014: Parallel Processing Workshops
(pp. 371–382). Cham: Springer International Publishing.

Rubio-Campillo, X., Cela, J. M., & Cardona, F. X. H. (2013). The development of new infantry
tactics during the early eighteenth century: A computer simulation approach to modern military
history. Journal of Simulation, 7(3), 170–182. doi: 10.1057/jos.2012.25

Schelling, T. C. (1971). Dynamic models of segregation. The Journal of Mathematical Sociol-
ogy, 1(2), 143–186. doi: 10.1080/0022250X.1971.9989794

Schönfisch, B., & de Roos, A. (1999). Synchronous and asynchronous updating in cellular
automata. Biosystems, 51(3), 123–143. doi: 10.1016/S0303-2647(99)00025-8

Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, Mass: MIT Press.

Sutcliffe, A. G., Wang, D., & Dunbar, R. I. M. (2015). Modelling the role of trust in social
relationships. ACM Transactions on Internet Technology, 15(4), 1–24. doi: 10.1145/2815620

Wilcox, A. R. (1973). Indices of qualitative variation and political measurement. The Western
Political Quarterly, 26(2), 325. doi: 10.2307/446831

Wilensky, U. (2015, April). NetLogo. Northwestern University: Center for Connected Learning
and Computer-Based Modeling. Retrieved from http://ccl.northwestern.edu/netlogo/

149

http://www.laboratoriorevelli.it/_pdf/wp142.pdf
http://ccl.northwestern.edu/netlogo/

Curriculum Vitae

Stefan D. McCabe received a Bachelor of Arts in Government and International Politics from
George Mason University in 2013.

150

	List of Tables
	List of Figures
	List of Abbreviations
	Abstract
	 Introduction
	Overview
	Literature Review
	Agent-Based Modeling: An Overview
	Agent-Based Modeling and High-Performance Computing
	Activation and Updating in Agent-Based Models

	 A Typology of Agent Activation Regimes
	Agent Selection
	Uniformity
	Reproducibility
	Updating
	Endogeneity
	Parallelization
	Discussion

	 A Systematic Review of the Usage of Different Agent Activation Regimes
	Overview
	Data
	Methodology
	Results
	Discussion
	Future Work

	 Studying Agent Activation in a Model of Bilateral Exchange
	Overview
	Model Specification
	Overview
	Motivation
	Behavior
	Performance

	Methodology and Results
	Environment
	Serial Activation Regimes
	Parallel Activation Regimes
	Fork-and-Join Activation Regimes

	Performance
	Scaling in Fork-and-Join

	Discussion
	Future Work

	 ODD Protocol for Exchange Model
	Overview
	Purpose
	State Variables and Scales
	Process Overview and Scheduling

	Design Concepts
	Emergence
	Interaction
	Stochasticity

	Details
	Initialization
	Input
	Submodels

	 OpenABM Entries Excluded From Review
	 OpenABM Review Data
	 Model Code
	RNG.h
	RNG.cpp
	main.h
	main.cpp
	Dockerfile

