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Abstract

DEVELOPMENT OF A COMPOSITE MATERIAL SHELL-ELEMENT MODEL FOR
IMPACT APPLICATIONS

Tobias Achstetter, PhD

George Mason University, 2019

Dissertation Director: Dr. Cing-Dao Kan

To achieve lower weight of vehicles and higher specific energy absorption in crush load

cases, automotive companies are moving towards the utilization of composite materials.

While the response to loading of traditional engineering materials, such as plastics and

steel, is well understood and can be simulated accurately, designers of composite structures

still rely heavily on physical testing of components to ensure the requirements of load

bearing capabilities are met. The majority of composite material models that have been

developed rely on non-physical material parameters that have to be calibrated in extensive

simulations. A predictive model, based on physically meaningful input, is currently not

available. The here presented material model is a step towards the goal of a truly predictive

material model for composite materials.

The developed orthotropic material model includes the ability to define tabulated hard-

ening curves for different loading directions with strain-rate and temperature dependency.

Strain-rate dependency was achieved by coupling the theories of viscoelasticity and vis-

coplasticity to allow for rate dependency in both the elastic and plastic regions of the

material deformation.



In crush and impact load cases the material is loaded beyond its capabilities, and there-

fore, accurate modeling of damage accumulation and failure is essential. A damage model

was implemented, where a reduction of stiffness and stress degradation in the individual

material directions can be tracked precisely. Modeling of failure and Finite Element erosion

was achieved by implementing a new strain-based generalized tabulated failure criterion,

where failure strains can be precisely defined for specific states of stresses.

Most components in the automotive industry are thin in comparison to their dimensions,

shell (plane stress) elements are usually the Finite Elements of choice in these applications.

Composite materials are generally used in a layup of plies with different fiber directions.

These individual plies are very thin which leads to impractically small mesh sizes when

modeled with three dimensional solid elements. The developed material model is, therefore,

made available for shell elements.

Composite materials show a large variation in their response to loading; the material

model incorporates the ability to define a statistical distribution for certain material pa-

rameters that were found to be of influence on a component level.

The tabulated nature of the input to the material model allows for the simulation of a

large variety of composite materials ranging from fiber reinforced polymers to metal matrix

composites.

In extensive verification and validation simulations during and after the development

process, accuracy and reliability of the model in numerically challenging situations and

realistic loading scenarios was ensured.

The presented material model can be implemented into most available Finite Element

software. As part of this research it was implemented into the commercial Finite Ele-

ment Solver LS-DYNA as *MAT COMPOSITE TABULATED PLASTICITY DAMAGE

(*MAT 213) for shell elements.



Chapter 1: Introduction

1.1 Background and Motivation

In recent years, the demand for higher fuel efficiency and electric vehicles with a longer range

has driven automotive manufacturers to invest in research of advanced composite materials

to achieve a weight reduction of their fleets. To meet increasing requirements of passenger

safety regulations and consumer tests, such as the US or European New Car Assessment

Program (NCAP), automotive companies are moving towards composite materials which

can achieve a high specific energy absorption when used efficiently.

As the material of choice in the automotive industry has historically been steel and

aluminum, the response to loading of these materials is well understood and can be predicted

accurately in simulations. These simulations, to a large extent, support the design process

of vehicles. With the introduction of composite materials, the commonly used isotropic

material models for metals are no longer able to predict the material response to loading

accurately for all automotive materials.

Many anisotropic material models have been developed and implemented into popular

finite element codes for composite material applications [1]. However, limitations of the

existing material models constrain them for the use in specific load cases. While these

models can predict linear loading fairly accurately, most are not well suited for crash anal-

ysis. Additionally, input parameters of the existing composite material models are often

not physically meaningful and have to be calibrated iteratively in extensive simulations to

match test results [2].

Composite materials are more difficult to model due to their non-homogeneous structure

and anisotropic, non-linear, strain-rate and temperature dependency in their response to

loading. Before failure occurs, composite materials exhibit damage and, therefore, gradually

1



decrease in the elastic stiffness when un- and reloaded. A numerical material model that

has predictive capabilities under these circumstances must incorporate all of these effects.

In a recent development, Arizona State University implemented a composite material model

to account for most of the stated effects [3]. This model can be used with solid elements

to simulate ballistic impacts, as done by the aerospace industry. As most structural parts

in the automotive industry are thin in comparison to their dimensions, shell elements are

usually the elements of choice in these applications. Therefore, the presented material model

was made available for shell elements.

As composite material properties exhibit a strong stochastic variation, the effects of

different distributions of material parameters on the macro-scale was evaluated. The user is

able to define a stochastic distribution for certain material parameters that were determined

to be influential on the component level.

Figure 1.1 summarizes the requirements for the presented material model with regards

to the automotive and aerospace industry. In addition, the material model incorporates

temperature effects which can be useful in other non-crash related load cases.

1.2 Research Objectives

The objective of this research was to develop and implement a composite material model

with accurate predictive capabilities for automotive and aerospace crash applications. This

orthotropic material model includes the ability to define tabulated hardening curves for

different loading directions with strain-rate and temperature dependency. Damage accumu-

lation in cyclic loading and a new generalized tabulated failure criterion were implemented.

As the material model was developed for automotive and aerospace applications, it was

implemented for use with shell (plane stress) elements.

The tabulated material model enables simulation engineers to reliably predict the re-

sponse of composite materials in various loading conditions using physically meaningful

material input.
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Figure 1.1: Requirements for a composite material model for crash analysis

As composite materials show a large variation in their response to loading, the mate-

rial model incorporates the ability to define a statistical distribution for certain material

parameters that were found to be of influence on a component level. Based on the mate-

rial property variation of the constitutive materials (fiber and matrix), the variation of the

material input for the developed continuum model was studied and its effects quantified.

The new constitutive model for deformation, damage accumulation, and fracture of com-

posite materials was fully verified and its reliability and robustness was examined. During

the development process of the material model and after completion of the implementa-

tion, the code was tested using single element verification simulations to ensure the basic

capabilities were implemented correctly.

The code was then validated in a comparison with a fully validated industry standard

material model. These validation simulations were chosen to demonstrate the benefits of

the new material model in impact applications. As a baseline comparison, the simulation

results were compared to a widely used composite material model that achieves a non-linear
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material response using damage mechanics available in the Finite Element solver LS-DYNA

[4]. The extensive verification and validation tasks ensure the reliability and robustness of

the newly developed material model in large simulation models of more than one million

elements.

The following summarizes the objectives of this research:

• Implementation of a fully tabulated material model for deformation with

– strain-rate dependency

– temperature dependency

– damage accumulation

– fracture

for use with shell elements;

• Physically meaningful material input;

• Implementation of a new tabulated failure criterion;

• Incorporation of capabilities to include statistical variation of material parameters

into the material model;

• Verification and validation of the material model based on use cases of the automotive

and aerospace industry.

No currently available plane stress material model for composites in commercially used

Finite Element software offers all of these capabilities. The presented material model can be

implemented into most Finite Element software and as part of this research was implemented

into the commercial solver LS-DYNA, which is commonly used in the automotive and

aerospace industries.
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Chapter 2: Literature Review

The second chapter describes the theoretical background of composite materials and their

damage and failure characteristics. It furthermore outlines current modeling approaches

and techniques along with their benefits and limitations.

Real world components made from unidirectional composite materials are generally

manufactured with a layup of plies oriented at different angles. As the interlaminar strength

holding these plies together can be weaker than the intralaminar strength, composites tend

to delaminate under many loading conditions. The material model that was developed and

is described in this work is focused on the intralaminar behavior of the composite. To model

delamination and the interaction between plies, existing cohesive materials that can be used

are described in this chapter.

2.1 Composite Materials

A composite is the combination of different materials which results in a new material that

better utilizes the beneficial attributes of the constitutive materials while minimizing some

of their deficiencies. Composite materials are not a human invention; for example, wood is

a natural composite consisting of cellulose fibers and a resinous matrix of another polymer

[5]. One of the first human-made composite materials was the combination of mud and

straw to build walls of houses. Since then, composite materials have evolved to be one

of the most advanced material classes in engineering use, with applications in all kinds of

engineering fields ranging from racing bikes to aerospace wings and fuselages.

The sheer number of possible combinations of materials indicates the need for cate-

gorization. One way of classifying advanced composite materials is based on the matrix

material [1]:
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Figure 2.1: Constituent materials of composites (adapted from [5])

• Polymer matrix composites (PMC): Composed of a matrix from either thermosets or

thermoplastics and embedded carbon, glass, kevlar or steel fibers.

• Metal matrix composites (MMC): Composed of a metallic matrix (e.g. iron, alu-

minum, magnesium, copper) and a dispersed ceramic or metallic phase.

• Ceramic matrix composites (CMC): Composed of a ceramic matrix and embedded

fibers of other ceramic materials.

Figure 2.1 shows the three different composite material types based on the matrix material.

Another method to classify composite materials is based on the reinforcing material

structure [1]:

• Particulate composite materials;

• Fibrous composite materials;

• Laminated composite materials;

• Combination of the first three types.

Figure 2.2 depicts the different reinforcing material structures of composites, with a par-

ticulate composite material shown in 2.2a, fibrous composite materials in Figure 2.2b, 2.2c

and 2.2d, and a laminate of a continuous fiber reinforced composite shown in Figure 2.2c.
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Figure 2.2: Architectures of composite materials

2.2 Modeling Techniques for Composites

Composite materials exhibit mechanical properties that are different from many commonly

used engineering materials. These conventionally used materials are often homogeneous

with the same proportions of their components throughout a given sample. Therefore,

they exhibit isotropic mechanical properties, meaning that the material behavior is not

dependent on the direction of the applied loading. On the other hand, composites are

inhomogeneous and the constitutive materials can generally be distinguished by eyesight.

The mechanical properties can depend highly on the orientation of the applied loading.

Fiber reinforced composites, for example, are in general much stiffer in the fiber direction

than in the transverse direction. Due to their inhomogeneous nature, composites are often

studied from a micro-mechanical view, in addition to the macro-mechanical point of view.

In the micro-mechanics-based approach, the interaction of constituent materials is ex-

amined on a microscopic scale to determine their effect on the properties of the composite

material [1]. The macro-mechanics, or continuum-based approach, presumes the material

as homogeneous and the effects of the constituent materials are detected only as averaged

(homogenized or “smeared”) apparent macroscopic properties of the composite material [1].

Both approaches have their advantages and disadvantages.

The micro-mechanics approach allows for a relatively easy switch of filler or matrix

material and one can model failure mechanisms on the constituent level. It remains chal-

lenging, however, to model the bond between the fibers and the matrix material. The

macro-mechanics approach, on the other hand, is the preferred method for problems on
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Figure 2.3: Micro-mechanics vs macro-mechanics modeling approach

the component or structural level (e.g., a full vehicle crash simulation) due to its higher

computational efficiency. Figure 2.3 shows the difference between the two ways of model-

ing composites; in the micro-mechanics approach the properties of the fibers (C1) and the

properties of the matrix (C0) are modeled individually, whereas in the macro-mechanics

approach only the resulting properties of the combined material is considered (Ĉ).

The material model that will be presented in the following chapters follows the macro-

mechanics approach. This approach is the more commonly used method in component and

full vehicle crash simulations and in structural designs of components due to its higher

computational efficiency. Additionally, due to the challenging nature of modeling the fiber-

matrix bond, macro-mechanical approaches offer advantages when modeling failure modes

of composite materials.

Most commercially used Finite Element software offer options to model composite mate-

rials. Table 2.1 summarizes the available composite material models of the general-purpose

Finite Element solver LS-DYNA with their capabilities that are important for crash analy-

sis. In crash analysis the material is loaded to the point when breakage of material begins,

so damage and failure progression must be considered. Significant strain-rate effects on the

response of fiber reinforced composite materials have been studied and were shown in tests

with the Split-Hopkinsons bar technique by Gilat et al. [6]. It was concluded that rate

sensitive constitutive relations are required for adequate modeling of polymer matrix com-

posites. Shen et al. [7] studied the effects of temperature on composite materials. While

temperature did not affect the ultimate tensile strength of the material in the fiber direc-

tion, in the transverse (matrix) direction a rise in temperature caused a significant decrease
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in the strength of the material. In the following paragraphs the available material models

will be discussed, regarding their capabilities of modeling these effects.

Material type 22 is a linear elastic orthotropic material model for use with solid and

shell elements. Many available models are at least to some degree based on this most basic

model for composites. Brittle failure can be defined following the criteria of Chang and

Chang [8]. This material model lacks the capabilities to model material non-linearity, with

the exception of shear, due to damage and/or plasticity as well as rate sensitivity.

Material type 54 and 55 are linear elastic composite material models in which non-

linearity is assigned entirely to damage accumulation. With MAT54, failure is modeled

using the Chang-Chang criterion [8] while MAT55 utilizes the Tsai-Wu criterion [9]. Limited

strain-rate sensitivity in both material types can be introduced by defining compressive,

tensile, and shear strength values as a function of strain-rates. No rate sensitivity in the

elastic region can be defined.

Material type 58 is available for solid and shell elements and models composites as linear

elastic. Non-linearity is created entirely due to damage accumulation. MAT58 allows for

the definition of rate sensitive moduli in the different material directions and, similarly

to MAT54 and MAT55, rate sensitive strength in compression, tension, and shear can be

defined [4]. To model damage, the continuum damage model developed by Matzenmiller et

al. is utilized [10].

MAT158 is an enhancement of MAT58 and incorporates simple strain-rate effects. A

viscous stress tensor is calculated on the basis of a generalized Maxwell model, where up

to six terms of the Prony series expansion can be defined through their shear relaxation

modulus and shear decay constant. This viscous stress tensor is then superimposed on the

rate-independent stress tensor. However, this viscous stress tensor approach only works

well for stress increases due to rate effects up to 15% [4].

Material type 59 is an orthotropic linear elastic material model that allows for definition

of non-linearity in shear. MAT59 can model limited damage mechanisms as well as brittle

failure by defining strength values in the different material directions [4].
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Material Type 116, 117 and 118 are available for shell elements only and are used to

model the elastic response of composite layups with an arbitrary number of layers through

the thickness. They utilize a pre-integration to compute the stiffness for use with the

Belytschko-Tsay resultant shell formulation [4]. No damage, failure, rate, or temperature

effects can be specified.

MAT161 utilizes continuum damage mechanics to determine the initiation of fiber- or

matrix-based failure using a stress to strength ratio in the different coordinate directions.

Progressive failure is modeled using the methodology developed by Hashin [11]. MAT162

is a generalization of the failure model in MAT161. Both MAT161 and MAT162 require

an additional license from Materials Sciences Corporation, which developed and supports

these models.

Shell elements are generally used in automotive crush simulations, therefore, MAT221

and MAT223 cannot be used in these applications and will therefore not be considered.

Material types 261 and 262 are orthotropic continuum damage models for laminated

fiber-reinforced composites that are implemented for shells and solid elements [4]. Both

consider non-linear behavior in shear loading. Material 261 was developed and implemented

by Pinho et al. [12], [13]. In Material 261 the matrix compression failure is based on

the Mohr–Coulomb criterion, while for fibre kinking an initial fibre-misalignment angle is

considered to trigger failure [12]. Material type 262 was developed and implemented by

Maimı́ et al. [14], [15]. Progressive failure mechanisms in fiber and transverse directions

are modeled by a set of scalar damage variables [14].

The goal of this research was to develop a composite material model for automotive and

aerospace crash applications. As the material exhibits a wide range of strain-rates in crash

analysis and composites show a high sensitivity to strain-rate variations, material models

that do not offer these capabilities are not suitable. Four of the presented material models do

not offer capabilities to define damage and failure, which renders them unusable for crash

applications, and none of the presented composite material models include temperature

effects as shown in Table 2.1.
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Table 2.1: LS-DYNA composite material models

Material Model Shells Damage Failure Rate effects Temperature effects

MAT 22 Yes No Yes No No
MAT 54 Yes Yes Yes Yes No
MAT 55 Yes Yes Yes Yes No
MAT 58 Yes Yes Yes Yes No
MAT 59 Yes Yes Yes No No
MAT 116 Yes No No No No
MAT 117 Yes No No No No
MAT 118 Yes No No No No
MAT 158 Yes Yes Yes Yes No
MAT 161/162 Yes Yes Yes Yes No
MAT 219 Yes Yes Yes No No
MAT 221 No Yes Yes No No
MAT 223 No Yes Yes No No
MAT 261 Yes Yes Yes No No
MAT 262 Yes Yes Yes No No

2.3 Damage and Damage Modeling in Composite Materials

Damage in a composite material is the forming of permanent microstructural changes to

the material due to irreversible physical (or chemical) processes resulting from thermal or

mechanical loading [16]. Different tensile or compression loads and loading directions can

lead to micro-mechanical cracks in the matrix, fiber breakage, or to debonding of the fibers.

The response to loading in the fiber direction of composites is primarily characterized

by the properties of the fiber due to their high strength and stiffness in comparison to the

matrix material. The stiffness of a composite in the fiber direction is generally not impaired

by damage of the matrix material. However, loading in the fiber direction may cause damage

of said matrix material or the interface between fiber and matrix due to fiber straightening.

A composite material damaged in such a way might not show a reduced stiffness in the fiber

direction, but its effects will show transverse to the fibers when reloaded. When loaded in

compression in the fiber direction, the fibers can kink, and damage to the matrix material

can occur that may lead to stiffness reduction in both the initial loading direction and

transverse to the fibers.
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Matrix cracking

Debonding

Figure 2.4: Damage mechanisms

Tension transverse to the fibers primarily leads to cracks in the matrix material that

tend to propagate to the fiber-matrix bond as it generally offers the lowest strength in

comparison to the constitutive materials [10]. Compression in the same direction leads to

a crushing of the matrix material that is likely to reduce the stiffness in both the loading

direction and in compression in the fiber direction.

Any damage to the matrix material can also have an effect on the material properties

in shear loading. When undergoing shear deformations, graphite-epoxy composites form

scallops in a saw tooth or wave-like pattern in the damaged resin [10]. This reduces their

stiffness in the directions where the matrix properties are of high importance (e.g. com-

pression, shear and tension transverse to the fibers). Figure 2.4 shows typical damage

mechanisms of a fiber-reinforced composite.

In continuum damage mechanics, the damage mechanisms are represented by their effect

on the macro (or continuum) scale of the composite. The degraded modulus is calculated

based on continuum assumptions and either strength or fracture mechanics failure crite-

ria. Strength and fracture mechanics failure criteria can both be utilized to characterize

the onset of damage. Other damage models try to model damage mechanisms on the

micro-scale such as micro-mechanics of damage, crack opening displacement methods, or

computational micro-mechanics. While in continuum damage mechanics the damage is ho-

mogenized, micro-mechanic models attempt to simulate the actual geometry of the damage

effects [17].
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Many available material models for composites include a form of damage modeling to

account for material non-linearity (e.g. Matzenmiller’s continuum damage approach [10])

and stress degradation, while others use a plasticity approach like Sun et al. [18].

When using the plasticity-based approach, non-linear unloading and strain softening

cannot be modeled. However, when using continuum damage mechanics, the shown rate

dependency in composite materials is difficult to account for. Additionally, for some epoxy

materials the fibers can straighten under tension without the fibers and the fiber-matrix

bond breaking. Once the load is released, the stretched geometry is retained. Mathemat-

ically, this can be modeled using a plasticity based approach rather than using a damage

model.

Damage and failure in composites are due to similar physical changes in the composite

material. Unlike failure, damage is limited to the matrix material and fiber-matrix inter-

face. While damage occurs on a micro-scale, failure mechanisms consider macro-mechanical

changes in the material.

2.4 Failure and Failure Modeling in Composite Materials

Due to the complexity of failure mechanisms in composites, the mathematical modeling of

the relationship between the loading of the material and the initiation and progression of

failure is significantly less developed than the analysis of other properties [19].

Traditional failure models for composite materials are able to predict the standard def-

inition of failure in the material. These failure models describe the onset of failure and

have therefore limited applicability as erosion criteria in finite element analysis of crush or

impact load cases. In these types of loading, element erosion should not occur once a critical

load was reached in a particular material direction because other directions might still be

able to take significant loads. The traditional failure models are able to predict the onset

of breakage well, which is generally the design criterion for composite components. The

progressive failure with increasing fiber breakage, fiber-matrix debonding and delamination

cannot be modeled with these traditional composite material failure models.
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In classical continuum mechanics, the material is regarded, as the name suggests, as

a continuum with the same properties throughout the solid. For composites, however,

this assumption cannot hold true as the material properties vary significantly between the

constituents of fiber and matrix. In many ways a composite could be regarded more as a

structure than a material. For these reasons, considering failure mechanisms on the basis

of the individual constituents can help to understand the nature of failure mechanisms of a

composite. Clearly the strength of a unidirectional fiber reinforced composite depends on

the orientation of the applied load with respect to the direction of the fibers. Furthermore,

whether the load is applied as tension or as a compressive load is important when considering

the different failure modes of a composite.

In the Department of Defense “Composite Materials Handbook”, failure modes in the

axial (fiber direction) tension and compression are described and failure modes in the trans-

verse (matrix direction) are reviewed [19].

Axial tensile strength

The distinctions between four different failure modes in the fiber direction and under tensile

loading are described in the following section. All of the presented models come with their

own limitations in predicting the tensile stress of a composite. The mode in which failure

occurs in a composite material is highly dependent upon the type of constituent material

and architecture used, as well as manufacturing techniques. All of the models, however,

highlight the importance of the variability of fiber strength and the characteristics of the

matrix material on the tensile properties of a composite material [19].

• Weakest link failure:

This failure mode assumes that uniform strain exists within the composite and that

failure occurs once the failure stress or strain of the fibers is reached. It is not taken

into account that the failure strain of the fibers is not uniformly distributed [20].

Once a single fiber ruptures, a catastrophic mode of failure is produced as the fracture

propagates freely without resistance [21]. The failure stress (or strain) calculated with

14



the weakest link approach is very low and, therefore, in practice with realistic layups

in structures, failure generally should not be expected in this mode [19].

• Cumulative weakening failure:

If failure does not occur with the weakest link failure mode, the composite can be

loaded further. While the stress increases, more fibers will start rupturing randomly

throughout the composite with stresses being redistributed equally onto fibers in the

vicinity [19]. The material will then fail once a critical load is met, at which point

a sufficient number of fibers will have ruptured in the weakest cross section [21].

Fracture of individual fibers can be observed at loads significantly below the failure

strength of the composite. The redistribution of load from the broken fiber happens

through the matrix and, therefore, the bonding strength between the matrix and fiber

is important in this failure mode [20].

• Fiber break propagation failure:

The cumulative weakening failure does not take into account how stress perturbations

on fibers in the vicinity of the broken fiber will increase the probability that a second

fiber will break; therefore, the likelihood increases that the crack propagates [19].

The failure mode of fiber break propagation failure considers the propagation of fiber

breaks as a mechanism of failure [22]. Once the load increases beyond the point of the

first initial fiber breakage, fiber ruptures accumulate until the material fails. Some of

these fibers fail as a result of the original load, while others rupture because of stress

concentrations due to being in the proximity of preceding fiber fractures [23].

• Cumulative group mode failure:

The cumulative group failure mode incorporates three effects that are presumed to

be important in axial tensile failure. There exists a variability in fiber strength that

leads to distributed fiber fractures at stress below the strength of the composite.

Load concentrations form in fibers in the vicinity of a broken fiber that affect the

crack propagation to additional fibers. Due to broken fibers and, in turn, stress
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concentrations, shear stresses cause matrix failure or fiber-matrix de-bonding which

can serve to stop the crack from propagating [22]. This mode of failure can be seen

as a generalization of the cumulative weakening model [19].

Axial compressive strength

For compressive loading in the fiber direction, both strength and stability failure has to be

considered as microbuckling or kinking can occur to the fibers [19]. Unidirectional carbon

fiber reinforced epoxy composites often offer less than 60% of their tensile strength when

loaded in compression [24]. As the fibers can buckle, the matrix properties are of great

importance in compression and the performance of the composite is limited by the matrix

yield strength [19].

Matrix mode strength

Tension and compression orthogonal to the fibers (matrix direction) and shear are the

remaining failure modes. The phrasing as “matrix mode strength” is due to the fact that

failure in these loading conditions can occur without rupture of fibers. The properties of the

matrix material are the dominating factor as the stiff fibers are not aligned in the direction

of the loading and therefore cannot carry the majority of the load. In shear, the properties

of the composite depend on the plane of loading. In a plane that contains the fibers they

are not contributing much to the reinforcement of the material while in a plane normal to

the fibers some reinforcement might occur, depending on the volume fraction of filaments

[19].

Composite strength in structures

The failure mechanisms that were discussed in the previous paragraphs do not consider

the layup of multidirectional laminates. Components made from many different layers of

composite plies can sustain higher amounts of intralaminar failure before structural failure

occurs. If a laminate from multidirectional plies is considered as a representative volume,
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Figure 2.5: Failure mechanisms

the failure in the single ply would have to be viewed as damage mechanisms. The distributed

microcracks lead to stiffness reductions of the corresponding ply with other layers picking

up the load from the damaged ply. This continues until a macrocrack is formed, stretching

over several plies, and the structure fails [14]. Figure 2.5 shows different intralaminar failure

modes of a composite materials.

In the following paragraphs, some of the most common existing composite failure cri-

terions will be presented. They have been used with some success to model the failure in

fiber reinforced composite materials.

Tsai-Wu failure criterion

The Tsai-Wu failure criterion allows one to model the failure of anisotropic composite

materials with different strengths in tension and compression. It is a stress-based failure

criterion and describes a surface in the six-dimensional stress space based upon the input

of failure stresses in the different material directions.
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The basic assumption behind the Tsai-Wu failure criterion is that a failure surface exists

in stress space of the following general form [9]:
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The linear stress terms (σij) take into account differences between positive and negative

failure stresses, while the quadratic stress terms (σijσij) describe an ellipsoid in stress space

[9].

For a closed and convex failure surface, the following inequality has to be satisfied:

FiiFjj − F 2
ij ≥ 0 (2.2)

For orthotropic composite materials and assuming symmetry and plane stress, Equation

2.1 can be simplified:
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The abstract components of the strength tensor can be expressed in terms of engineering

strengths, which can be measured in physical material tests.

Considering uniaxial loading in the fiber, or 1-direction (σ22 = σ12 = 0), Equation 2.3

simplifies to:

1 = F1σ11 + F11σ
2
11 (2.4)
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And for a positive (tensile) failure stress XT , one obtains:

1 = F1XT + F11XT
2 (2.5)

While for a negative (compressive) failure stress XC , Equation 2.4 simplifies to:

1 = −F1XC + F11XC
2 (2.6)

From Equation 2.5 and 2.6 the components of the strength tensor F1 and F11 can be

computed as:

F11 =
1

XTXC
F1 =

1

XT
− 1

XC
(2.7)

Similarly, for uniaxial tension and compression in the matrix, or 2-direction, the strength

tensor components F2 and F22 can be obtained:

F22 =
1

YTYC
F2 =

1

YT
− 1

YC
(2.8)

A pure shear test in the 1-2 plane provides the necessary results to obtain the shear

components of the strength tensor:

F44 =
1

S21S12
F4 =

1

S21
− 1

S12
(2.9)

where S21 is the shear stress at failure and S12 is assumed equal to S21.

Using a combined state of in-plane loading, component F12 can be determined. One

option is to use a 45° tension test. For σ11 = σ22 = U45
2 , where U45 is the tensile strength of

the 45° off-axis specimen, Equation 2.3 simplifies to:

U2
45

4
(F11 + F22 + 2F12) +

U45

2
(F1 + F2) = 1 (2.10)
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Figure 2.6: Tsai-Wu failure surface in the x-y-plane

From Equation 2.7, 2.8 and 2.10 one obtains:

F12 =
2

U2
45

1− U45

2

(
1

XT
− 1

XC
+

1

YT
− 1

YC

)
− U2

45

4

(
1

XTXC
+

1

YTYC
+

1

S2
21

) (2.11)

An example of a cutting plane through a Tsai-Wu failure surface is shown in Figure 2.6.

Chang-Chang failure criterion

The Chang-Chang failure model combines progressive damage and failure and degrades

the material properties once failure occurs. The degradation of the material properties is

dependent on the failure mechanism that the model predicts [8].

The Chang-Chang failure criterion, in plane-stress for a linear elastic material, is defined

as follows in this section [8].

Tensile fiber mode:

e2
f =

(
σ11

XT

)2

+

(
σ12

S21

)2

(2.12)

where failure is reached when ef ≥ 1 and, as a result, E11, E22, G12, ν12 and ν21 are set to

zero.
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Compressive fiber mode:

e2
c =

(
σ11

XC

)2

(2.13)

where failure is reached when ec ≥ 1 and, as a result, E11, ν12 and ν21 are set to zero.

Tensile matrix mode:

e2
m =

(
σ22

YT

)2

+

(
σ12

S21

)2

(2.14)

Failure due to matrix cracking occurs when em > 1 and, therefore, the transverse mod-

ulus E22, shear modulus G12, and the Poisson’s ratio ν21 are reduced to zero.

Compressive matrix mode:

e2
d =

(
σ22

2S21

)2

+

[(
YC

2S21

)2

− 1

]
σ22

YC
+

(
σ12

S21

)2

(2.15)

Compressive failure due to crushing of the matrix occurs when e2
d ≥ 1 and, as a result,

the transverse modulus E22, shear modulus G12, and the Poisson’s ratios ν12 and ν21 are

reduced to zero.

Puck failure criterion

Puck’s failure criterion is stress-based and distinguishes between fiber failure and inter-fiber

failure. In contrast to more traditional failure criteria, like the Tsai-Wu failure criterion,

Puck’s fracture surface consists of two sub-surfaces based on the two considered failure

modes: fiber failure and inter-fiber failure. This allows for a better representation of the

differences between both fracture types and for a more accurate representation of an ideal

failure surface for a unidirectional composite [25].

Fiber Fracture (FF):

The Fiber Fracture part of Puck’s model handles the two simple load cases of tension

and compression in the fiber direction [26].
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The fracture stress in the fiber σfr11f is computed using Hooke’s law while assuming the

fracture strain in the fiber is equal to the overall fracture strain in the loading direction. The

fracture strain can then be replaced, again using Hooke’s law, with the ratio of the strength

of the composite in tension (XT ) or compression (−XC) respectively, over the homogenized

modulus of the composite (E11). While the effects of residual stresses and non-linearity are

neglected, the stress in the fibers at failure, due to the application of a uniaxial stress, σ11

is, therefore, given as follows in Equation 2.16 [25]:

σfr11f = E11fε
fr
11 = E11f

±XT/C

E11
(2.16)

Considering the case of plane stress, the transverse stress (σ22) does influence the strain

in the fiber direction due to the Poisson’s effect. This effect is locally magnified as the

stress in the matrix is not equally distributed and increases closer to the fiber. Puck takes

this into account by the use of a stress magnification factor mσf [26]. The subscript f in

Equation 2.17 denotes a stress/stiffness/Poisson’s ratio in the fiber.

σfr11f

E11f
− ν12f

E22f
mσfσ22 =

σfr11

E11
− ν12

E22
σ22 (2.17)

For the two-dimensional case, it is now assumed that fiber fracture occurs when the

stress in the fiber reaches the same stress as given in Equation 2.16 for the one-dimensional

case. By using the relations ν12
E22

= ν21
E11

and
ν12f

E22f
=

ν21f

E11f
, from Equations 2.16 and 2.17,

then follows [25]:

σfr11 = ±XT/C +

(
ν21 − ν21f

E11

E11f
mσf

)
σ22 (2.18)

To make use of the failure criterion in Finite Element applications, we can replace the

fracture stress σfr11 with an arbitrary stress in the one-direction σ11 and define an equivalent
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Table 2.2: Required strength and elastic properties for FF

Component Input parameter

Tensile strength 1-direction XT

Compressive strength 1-direction XC

Composite stiffness 1-direction E11

Fiber stiffness 1-direction E11f

Poisson’s ratio of the composite ν21

Poisson’s ratio of the fibers ν21f

stress σ11eq to replace the tensile/compressive strength in Equation 2.18:

σ11eq = σ11 −
(
ν21 − ν21f

E11

E11f
mσf

)
σ22 (2.19)

where failure is defined to occur once
σ11eq

±XT/C
≥ 1.

For the onset of failure, when the stress in 1-direction σ11 reaches the fracture stress σfr11

and, therefore, σ11eq = ±XT/C , Equation 2.19 then becomes the same as Equation 2.18.

Inter-fiber fracture (IFF):

Puck’s inter-fiber fracture criterion is founded on Mohr’s hypothesis that the fracture

limit of a material is determined by the stresses on the fracture plane [27]. The combination

of stresses acting on that plane are related to the strength of the plane to determine whether

failure occurs or not [26]. While for a unidirectional loading orthogonal to the fibers, the

action plane (Figure 2.7a) on which the stress is applied to is parallel to the fracture plane

(Figure 2.7d). Stresses acting on a composite material in a specific plane do not necessarily

lead to failure in a plane parallel to that action plane. Due to large variations in stiffness

and strength between the material directions owing to the alignment of the fibers, a pure

compression loading, shown in Figure 2.7b for example, leads to fracture in a plane at an

angle compared to the action plane (see fracture plane in Figure 2.7e). Similarly, for a pure

in-plane shear loading, as shown in Figure 2.7c, the failure plane is parallel with the action
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(a) Action plane T2 (b) Action plane C2 (c) Action plane S12

(d) Fracture plane T2 (e) Fracture plane C2 (f) Fracture plane S12

Figure 2.7: Action and failure planes (adapted from [25])

Figure 2.8: Stresses acting on rotated plane

plane that is aligned with the fibers, as depicted in Figure 2.7f.

For a state of plane stress, the stresses acting on an arbitrarily inclined plane that is

rotated about the x1-axis (parallel to the fibers) are shown in Figure 2.8. The normal

and shear stresses acting on this plane at angle θ in terms of the applied stresses can be

computed following Equations 2.20:

σ11 = σ11 σn = σ22 cos2 θ

σnt = −σ22 sin θ cos θ σn1 = σ21 cos θ

(2.20)
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(a) MFB σn = 0 (b) MFB in σn-σn1-σnt-space (c) MFB ψ = const.

Figure 2.9: Puck’s master fracture body, representing the inter-fiber fracture surface
(adapted from [25])

These three stresses act on a common action plane and must, therefore, be compared

to the fracture resistance RA (superscript A representing the action plane) of this specific

action plane and not the strength in the principal material directions [28].

With the assumption that compressive stresses acting on the plane (−σn) impede fail-

ure, while tensile stresses (+σn) promote failure, Puck proposes a “Master Fracture Body

(MFB)” which is shown in Figure 2.9 [26]. It shows a visual representation of the IFF

criterion in the stress space of the action plane (σn, σnt, σn1). As shown in Figure 2.9a for

σn = 0, failure due to shear acting on the plane is represented by an ellipse which expands

for increasing compressive normal stress (impeding failure) and shrinks for increasing tensile

normal stresses (promoting failure) as described by the parabola in Figure 2.9c.

For different stresses on this plane, three failure modes are identified and are shown in

Table 2.3. For any normal tensile stress, failure occurs in Mode A with a fracture plane

angle of zero degrees. If isolated shear stress in the n1-direction occurs, the material fails at

Mode A as well. Mode B and C describe failure due to compressive normal stresses, where

Mode B occurs for a combination with n1-directional stress and leads to a fracture plane

at an angle of zero degrees. Mode C describes stress states that lead to an inclined failure

plane aligned with the fibers. As the plane is inclined, shear stresses in the nt-direction

develop.
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Table 2.3: Possible 2D stress combinations leading to the different IFF fracture modes [26]

Mode A Mode B Mode C
θfp = 0◦ θfp = 0◦ θfp 6= 0◦

{σnT 0 0}
{σnT 0 σn1}
{0 0 σn1}

{σnC 0 σn1} {σnC σnt σn1}
{σnC σnt 0}

Figure 2.10: Puck fracture curve for σ11 = 0, representing three fracture modes A, B, C
(adapted from [28])

Three-dimensional stress states could lead to fracture plane stress states of σnt and σn1

without the occurrence of normal stress σn. In this case, the differentiation by Mode A, B

and C is no longer adequate [26]. For two-dimensional stress states, the IFF-criterion can

be expressed in terms of the principal material directions. The failure envelopes of the three

modes are described using three separate equations that describe two ellipses (Mode A and

C) and one parabola (Mode B). Figure 2.10 shows an example of the failure envelopes for

the different failure modes in the σ22-σ21-space.
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Mode A (σ22 ≥ 0):

For tensile stresses in the 2-direction, failure occurs in a plane normal to the loading

direction. The failure envelope in the σ22-σ21-space can be described with an ellipse and is

defined by Equation 2.21 [28]:

√√√√√(σ21

S12

)2

+

1−
p

(+)
⊥‖

S12
YT

2(
σ22

YT

)2

+
p

(+)
⊥‖

S21
σ22 = 1−

∣∣∣∣ σ11

σ11D

∣∣∣∣ (2.21)

In Figure 2.10, an example of this ellipse is shown as a blue dashed line. The component∣∣∣ σ11
σ11D

∣∣∣ in Equation 2.21 describes the degradation effect of stresses occurring in the fiber

direction leading to a shrinking of the fracture surface under the condition of geometric

similarity [28].

Mode B

(
σ22 < 0 and 0 ≤

∣∣∣σ22
σ21

∣∣∣ ≤ RA⊥⊥
|σ21c|

)
:

Similar to Mode A, failure in Mode B occurs in a plane with the normal in the 2-

direction. The failure curve can be described using a parabola as defined by Equation 2.22

[28]:

1

S21

(√
σ2

21 +
(
p

(−)
⊥‖ σ22

)2
+ p

(−)
⊥‖ σ22

)
= 1−

∣∣∣∣ σ11

σ11D

∣∣∣∣ (2.22)

In Figure 2.10, an example of this parabola is shown as a green dashed line.

Mode C

(
σ22 < 0 and 0 ≤

∣∣∣σ21
σ22

∣∣∣ ≤ |σ21c|
RA⊥⊥

)
:

Mode C describes failure at an inclined fracture plane (θfp 6= 0) due to a combination of

shear and compressive normal stress. Puck showed that the normal stress σn in the fracture

plane is constant for all possible inclined fracture planes in Mode C failure. Between σ22 = 0

and, σ22 = −RA⊥⊥, the fracture angle is θfp = 0 and the normal stress σn is equal to the

compressive stress in 2-direction σ22. When the compressive stress exceeds the value of
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−RA⊥⊥, the fracture plane adjusts so that σn = σ22 cos2 θfp remains constant [28]. For a

two-dimensional state of loading stress, failure due to Mode C can therefore be expressed

by an ellipse described by Equation 2.23 [28]:


 σ21

2(1 + p
(−)
⊥⊥)S21

2

+

(
σ22

YC

)2

 YC
−σ22

= 1−
∣∣∣∣ σ11

σ11D

∣∣∣∣ (2.23)

In Figure 2.10 an example of this ellipse is shown as a red dashed line.

Table 2.4 lists all required parameters for the Puck IFF criterion and recommended

values for a Carbon Fiber Reinforced Plastic (CFRP) material. Similar to other failure

models, such as Tsai and Wu’s, the tensile and compressive strengths in the transverse di-

rection need to be defined as well as the shear strength in-plane. The inclination parameters

p
(+/−)
⊥‖ influence the shape of the failure surface and can be determined by fitting Equations

2.21 through 2.23 to experimental observations. Deuschle and Kröplin found values of 0.3

and 0.35 respectively to work well for carbon fiber reinforced plastics [29]. σ11D describes

the effect of individual fiber fractures due to loading in the fiber direction and leads to a

shrinkage of the failure surface while the stress in the fiber direction increases. This contin-

ues until failure occurs for a maximum stress as determined by the Fiber Failure criterion.

This value can be determined experimentally by combined loading in fiber and transverse

direction. Puck recommends a value of approximately 1.1 times the fiber strength in tension

or compression respectively [28].
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Table 2.4: Required strength properties for IFF

Component Input parameter Recommended value for CFRP

Tensile strength 2-direction YT Material-dependent
Compressive strength 2-direction YC Material-dependent
Shear strength in 12-plane S21 Material-dependent

Inclination parameter p
(−)
⊥‖ 0.3 [29]

Inclination parameter p
(+)
⊥‖ 0.35 [29]

Stress value for linear degradation σ11D ≈ 1.1XT or ≈ −1.1XC [28]

The other parameters that are not given by the user, but are utilized in Equations 2.21

through 2.23, are derived using the following relationships [28]:

RA⊥⊥ =
S21

2p
(−)
⊥‖

(√
1 + 2p

(−)
⊥‖

YC
S21
− 1

)

p
(−)
⊥⊥ = p

(−)
⊥‖

RA⊥⊥
S21

σ21c = S21

√
1 + 2p

(−)
⊥⊥

(2.24)

Unlike in the Tsai-Wu failure model, which is mathematically defined by a single equa-

tion, the Puck failure model is defined by essentially five individual surfaces (FF tension, FF

compression, Mode A, Mode B, Mode C) and therefore allows for a more accurate modeling

of failure in fiber reinforced composites.

Both failure models that were discussed in this chapter allow for modeling of the onset

of failure in composite materials. The knowledge of when onset of failure in the component

of interest occurs is helpful for designers to dimension layups and thicknesses of a part that

is not supposed to fail during its life cycle. In energy absorbing structures, or parts that

undergo impact loading, modeling of only the onset of failure is not enough to accurately

simulate the material behavior. In these cases, modeling the “post-peak” (maximum stress)

behavior of the material is essential.
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2.5 Delamination and Delamination Modeling

Plies of fiber reinforced composite materials are generally laminated together to create

layups that can be individually arranged to fulfill the load bearing capabilities of the com-

posite part. As these plies are combined into a layup, the interface between the two compos-

ite laminae is naturally weaker than the fiber reinforced ply itself. Considering delamination

as an additional failure mode can, therefore, be critical the capabilities of a part made from

composite materials.

Delamination is commonly accounted for by modeling the interface between composite

plies using cohesive zone elements. The material input data required for cohesive materials is

generally obtained by conducting Double Cantilever Beam (DCB) and end-notched flexure

(ENF) tests that will be described in the following two paragraphs. Examples of cohesive

zone material models available for the finite element solver LS-DYNA will be discussed later

in this section.

Double Cantilever Beam test

The Mode I composite material delamination that occurs primarily in tension can be char-

acterized using the Double Cantilever Beam specimen. This method is limited to unidirec-

tional carbon and glass fiber laminates. The aim of this test is to determine the Mode I

interlaminar fracture toughness GIc, which is the critical value of the strain energy release

rate GI for delamination growth as a result of an opening load or displacement. GI is

defined as follows [30]:

GI = −1

b

dU

da
(2.25)

where U is the total elastic energy in the test specimen, b the specimen width, and a the

delamination length.

Figure 2.11 shows the specimen and test setup. Forces are applied to the end of the

Double Cantilever Beam through hinges or loading blocks. The displacement or cross-head

movement is controlled while the load and delamination length are measured. With the

30



P
L

a0
P

2h

Figure 2.11: Double Cantilever Beam specimen and test setup

information from the load versus opening displacement data, the Mode I interlaminar frac-

ture toughness is calculated using either a modified beam theory or compliance calibration

method [30].

The Modified Beam Theory expression for the strain energy release rate of a double

cantilever beam, which is clamped at the delamination front, is given as the following

equation [30]:

GI =
3Pδ

2ba
(2.26)

where P is the applied load and δ the load point displacement length.

Formula 2.26 will overestimate GI due to possible rotation at the delamination front.

To correct for this overestimation, a slightly longer delamination length a + |∆| is used,

which may be determined in experiments. Therefore, equation 2.26 changes to:

GI =
3Pδ

2b(a+ |∆|) (2.27)

End Notched Flexure test

The Mode II composite material delamination that occurs in shear loading can be charac-

terized using the End-Notched Flexure test. This method is limited to unidirectional carbon

and glass fiber laminates. The aim of this test is to determine the Mode II interlaminar

fracture toughness GIIc [31].

Figure 2.12 shows the test setup with the specimen being loaded in the middle between

the two supports.
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Figure 2.12: End Notched Flexure specimen and test setup

A record of the applied force versus center roller displacement is to be obtained. The

Mode II interlaminar fracture toughness, GIIc is obtained using the Compliance Calibration

method. The standard recommends that static Mode II pre-cracking is performed [31]. A

procedure is outlined to obtain the non-pre-cracked and pre-cracked toughnesses from the

same specimen. In that approach, the advancement of the crack during the non-pre-cracked

test creates the pre-crack that is used for the pre-cracked test [31].

Compliance Calibration tests are performed by loading the specimen to the peak Com-

pliance Calibration force (50% of expected value of the critical force at that particular crack

length) and then unloading. The force and deflection data are to be recorded continuously,

or at frequent and regular intervals, only during the loading portion [31]. Non-pre-cracked

and pre-cracked initiation values of GIIc are to be obtained from the maximum force.

Cohesive zone material models to capture delamination

Cohesive zone material models can capture both Mode I and Mode II fracture behavior as

well as combined loading. The different cohesive material models offered in LS-DYNA can

be distinguished best by comparing their traction separation laws. Some of the material

models offer additional capabilities, such as rate and/or temperature dependency. In the

following, five cohesive material models are briefly introduced.

*MAT 184 (*MAT COHESIVE ELASTIC) is a simple linear elastic model. As input it

requires the stiffness in-plane and normal to the plane, as well as the traction at failure for

tensile and shear loading [4].
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*MAT 138 (*MAT COHESIVE MIXED MODE) is a simplification of *MAT 186 and

is restricted to linear softening. Traction-separation is modeled as bilinear with a quadratic

mixed mode delamination criterion and a damage formulation [4]. Figure 2.13a shows an

example of a bilinear traction separation law that can be defined with *MAT 138. The area

under the curve is the fracture toughness Gc that is determined by DCB (Mode I) or ENF

(Mode II) testing. Parameters T and S represent the peak traction in units of stress in

normal and tangential direction respectively.

*MAT 185 (*MAT COHESIVE TH) is a trilinear cohesive material model developed

by Tvergaard and Hutchinson [32]. The model is completely reversible with loading and

unloading following the same path [4]. Figure 2.13b shows the traction separation law for

this material.

*MAT 240 (*MAT COHESIVE MIXED MODE ELASTOPLASTIC RATE) is similar

to *MAT 185 in the sense that it is trilinear. Additionally, rate and plasticity effects are

considered. Due to the ideal plastic behavior, the loading and unloading paths are different.

Using the THERMAL option, some of the material properties can be defined as functions

of temperature. As the separation at failure is plastic, no brittle fracture can be modeled

with this material type [4]. The material model was developed by Marzi et al. [33] and an

example of the traction separation law is shown in Figure 2.13c.

*MAT 186 (*MAT COHESIVE GENERAL) allows the input of an arbitrarily shaped

normalized traction separation law with an example shown in Figure 2.13d. Interaction

between Mode I and Mode II is considered by choosing one of three mixed-mode interac-

tion formulations. Damage is modeled irreversible with the unloading and reloading paths

pointing to and from the origin respectively [4]. This material model was used by Khaled

et al. to simulate the delamination in ballistic impacts of composite plates [34].
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Figure 2.13: Traction separation laws of cohesive material models
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2.6 Stochastic Variation of Composite Material Properties

Composites exhibit a random variation of their material properties. Even with high stan-

dards in quality control, randomness of the material properties can not be fully avoided.

Micro-scale variations in material properties are often ignored on structural levels. How-

ever, in structures that undergo impact or crash loads, where failure initiation is a highly

locally driven event, the variability on the micro-scale in material properties cannot be ne-

glected when accurate results should be obtained. The variability of test and simulation

results of composite materials can be attributed to different causes that can be categorized

as being of intrinsic or extrinsic nature [35]. Intrinsic properties of the composite can be

characterized as the geometric and material properties of the fiber and matrix as well as the

geometric features of the architecture. Extrinsic sources are all other factors that are not

directly related to the composite material, but influence how results are measured or how

the composite material performs. In the following some of the most influential properties

are listed.

Intrinsic properties (properties of the material itself)[35]:

• Fiber diameter,

• Fiber arrangement (fiber angles, tow width, tow size),

• Fiber tensile strength,

• Fiber volume fraction,

• Matrix properties,

• Voids in the matrix material [36],

• Fiber matrix bonds,

• Manufacturing (surface treatments, layup process, heat treatments).

Extrinsic properties (external factors that influence the material behavior) [35]:
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• Boundary conditions in the material test (e. g. clamping slippage),

• Test temperature,

• Number of experiments,

• Post processing of test results.

This list does not claim comprehensiveness. All of the listed sources of variability are highly

coupled. All properties have an influence on the material behavior of the composite and

the test or simulation data obtained.

Much research has been conducted to identify which parameters are most important

to consider. Goldsmith [36] studied the effect of tow size, tow spacing and voids on the

material response and found that voids had the largest influence on transverse stiffness,

while tow width, tow spacing and tow volume fraction contributed as well, but did not

describe the variability completely. Figure 2.14a shows the cumulative probability plot by

Goldsmith [37] for the matrix strength ranging from approximately 100 MPa to 400 MPa.

Figure 2.14b shows the transverse tow strength of a woven ceramic matrix composites (5HS

CVI (Chemical Vapor Infiltration) SiC/SiC) which ranges from approximately 20 MPa to

90 MPa .

The effect of fiber strength variations have been incorporated using a multi-scale mod-

eling approach to link micro-mechanics and finite element analysys by Ricks et. al [38] and

[39]. Figure 2.15 shows an example of a fiber strength distribution that was measured for a

SCS-6 fiber, a high-stiffness, high-strength silicon carbide monofilament [38]. The variation

of fiber strength of individual fibers is quite large, ranging from about 1500 MPa to around

6000 MPa. While the contribution of fiber strength does generally not influence the defor-

mation and stiffness of a composite component, as soon as fracture occurs local differences

in fiber strength lead to variations of fracture patterns and sustainable loads.
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(a) Matrix strength (b) Transverse tow strength

Figure 2.14: Cumulative distribution functions (adapted from [36])
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Figure 2.15: Fiber strength distribution of SCS-6 vendor fiber (adapted from [39])

Liu studied the effects of tow volume fraction in textile and braided composites where a

multiscale modeling framework was used to analyse the effect on the stress strain response

of the material [40]. The stress versus strain curves obtained showed a variation in slope

and maximum stresses.

To accurately predict the physical behavior of composites, a material model should incor-

porate statistical variation of material parameters. Micro-mechanics modeling approaches

can be utilized to quantify the effects of variations of material properties of the constituent

materials on the continuum behavior of the composite material.
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Chapter 3: Methodology - Material Model Theory

This chapter describes the theory of the newly developed orthotropic viscoelastic viscoplas-

tic material model for composites. Figure 3.1 shows three different types of viscous material

behaviors. Viscoelastic behavior, as shown in Figure 3.1a, is typical for polymers and rub-

bers. This type of material model is used when non-linear behavior without permanent

deformation occurs and rate dependency in the elastic region should be modeled. Rate

dependency in metals is commonly modeled with a viscoplasticity model, as depicted in

Figure 3.1b. Both the yield stress of the material and the hardening can be rate-dependent

while the elastic modulus stays constant at different loading rates. Fiber reinforced com-

posites, on the other hand, exhibit characteristics of both viscoelasticity and viscoplasticity

with rate dependencies in both the elastic and plastic regions (Figure 3.1c). The presented

material model will, therefore, allow for both viscoelastic and viscoplastic behavior in com-

bination. The following sections will describe the theory behind the different parts of the

material model and the interaction between them. Section 3.1 presents the linear elastic

stress-strain relation for an orthotropic material in plane stress. To allow for rate depen-

dency in the elastic region, classical viscoelasticity is introduced and generalized into three

dimensions (Section 3.2). For material directions where plastic deformation occurs, a vis-

coplastic flow rule models the rate-dependent permanent deformation (Section 3.3). How

both viscoelasticity and viscoplasticity are coupled is described in Section 3.4.

3.1 Stress-Strain Relation for an Orthotropic Linear Elastic

Composite Material Model for Shell Elements

Composites are anisotropic materials, meaning that their physical and mechanical proper-

ties are directionally dependent. Typically, the stiffness and strength of a unidirectional
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Figure 3.1: Forms of viscous behavior

composite is higher along the fiber orientation, with the properties of the fiber dominating

the overall material response in that direction. Orthogonal to the fibers, however, the prop-

erties of the matrix material dominate and, therefore, the composite’s response to loading

is more similar to the response of the matrix material itself. The stress-strain relationship

for an anisotropic linear-elastic material is given in Equation 3.1 with C being the elastic

stiffness matrix:

σ = Cε (3.1)

In matrix form and with the assumptions for an orthotropic material, Equation 3.1 can

be written as follows:



σ11

σ22

σ33

σ12

σ23

σ31


=



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66





ε11

ε22

ε33

ε12

ε23

ε31


(3.2)
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Equation 3.3 shows the orthotropic elastic compliance matrix in terms of the nine inde-

pendent elastic constants. As the inverse of this matrix, the stiffness matrix is presented in

Equation 3.4:

S =



1
E11

− v21
E22

− v31
E33

0 0 0

1
E22

− v32
E33

0 0 0

1
E33

0 0 0

1
2G12

0 0

Sym 1
2G23

0

1
2G31


(3.3)

C = S−1 =



1−ν32ν23
E22E33∆

ν21+ν31ν23
E22E33∆

ν31+ν21ν32
E22E33∆ 0 0 0

1−ν13ν31
E11E33∆

ν32+ν12ν31
E11E33∆ 0 0 0

1−ν12ν21
E11E22∆ 0 0 0

2G12 0 0

Sym 2G23 0

2G31


(3.4)

where : ∆ =
1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν12ν23ν31

E11E22E33

For the compliance and stiffness matrices to be symmetric, the following relations be-

tween the Poisson’s ratios and Young’s moduli have to be satisfied:

ν12

E11
=
ν21

E22

ν23

E22
=
ν32

E33

ν13

E11
=
ν31

E33
(3.5)

The here described material model should be valid for shell elements and, therefore,

we require a plane stress state without a through-thickness stress component, as shown in

Figure 3.2. Equation 3.2 is first simplified by only taking into account the normal stresses
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Figure 3.2: The plane stress state, adapted from [41]

(σ11, σ22, σ33). For plane stress we require the through-thickness normal stress to vanish,

which then sets this stress (σ33) to zero:


σ11

σ22

0

 =


c11 c12 c13

c12 c22 c23

c13 c23 c33




ε11

ε22

ε33

 (3.6)

The third row of Equation 3.6 can now be rearranged to allow for the calculation of

the thickness strain (ε33) as a function of the in plane strain (ε11, ε22) in the absence of

through-thickness stress (σ33):

ε33 = −c13

c33
ε11 −

c23

c33
ε22 (3.7)
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We now replace ε33 in Equation 3.6 with Equation 3.7, which leaves us with a system

of three equations and two unknowns:


σ11

σ22

0

 =


c11 c12 c13

c12 c22 c23

c13 c23 c33




ε11

ε22

− c13
c33
ε11 − c23

c33
ε22

 (3.8)

This system of equations can be written in terms of two equations and two unknowns

as shown in Equation 3.9 or in a matrix notation as in Equation 3.10:

σ11 = (c11 −
c13c13

c33
)ε11 + (c12 −

c13c23

c33
)ε22

σ22 = (c12 −
c23c13

c33
)ε11 + (c22 −

c23c23

c33
)ε22

(3.9)

σ11

σ22

 =

c11 − c13c13
c33

c12 − c13c23
c33

c12 − c23c13
c33

c22 − c23c23
c33


ε11

ε22

 (3.10)

The calculation of the shear stresses (σ12, σ23, σ31) stays unchanged in comparison to

the 3D model as follows in Equations 3.11:

σ12 = c44ε12 σ23 = c55ε23 σ31 = c66ε31 (3.11)

Constraints on orthotropic elastic constants

Due to the significant variations in stiffness in different directions, Poisson’s ratios in com-

posites can often take values higher than unity, which highlights why composites should

generally be regarded as structures rather than materials. This is in contrast with the

widely known fact that in isotropic materials Poisson’s ratios with values larger than one
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half are thermodynamically unstable, as this could lead to negative strain energy in specific

loading conditions. To avoid numerical “creation of energy”, the sum of the work done by

all stress components must be positive. The elastic stiffness matrix must be positive-definite

and, therefore, have positive eigenvalues [42]. Assuming only one non-zero stress compo-

nent, the strain in the direction of the applied stress must be greater than zero to avoid

non-physical “creation of energy”. This means that the diagonal elements of the compliance

matrix all have to be greater than zero:

E11, E22, E33, G12, G23, G31 > 0 (3.12)

On the other hand, assuming only one non-zero strain component, the stress in the

direction of the applied strain must now be greater than zero. This means that the diagonal

elements of the stiffness matrix also have to be positive:

c11, c22, c33, c44, c55, c66 > 0 (3.13)

This leads to the following inequalities in terms of Poisson’s ratios:

(1− ν12ν21), (1− ν12ν12), (1− ν12ν12) > 0 (3.14)

∆ = 1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν12ν23ν31 > 0 (3.15)

Using the inequalities from 3.14 and the symmetry conditions from Equations 3.5, the

following conditions for the Poisson’s ratios can be formulated:

|ν21| <
√
E22

E11
|ν12| <

√
E11

E22

|ν32| <
√
E33

E22
|ν23| <

√
E22

E33
(3.16)

|ν13| <
√
E11

E33
|ν31| <

√
E33

E11
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Figure 3.3: Standard linear solid model (Maxwell representation)

While the inequality 3.15 leads to the following conditions using Equations 3.5:

ν12ν23ν31 <

[
1− ν21

2E11

E22
− ν32

2E22

E33
− ν13

2E33

E11

]
1

2
<

1

2
(3.17)

Measurements on an actual composite structure itself might not necessarily follow these

conditions. The presented inequalities are followed to ensure numerical stability.

3.2 Viscoelasticity

The theory of viscoelasticity is a well established method to mathematically describe the

material behavior of polymers that exhibit both viscous and elastic characteristics when

undergoing deformations. Viscous materials resist strain dependent on time, while elastic

materials return to their original state once the loading is removed [43]. Figure 3.1a shows

the typical response to loading of a viscoelastic polymer. An increase in strain-rate leads

to an increase in the Young’s modulus, making the material stiffer. When the stress on the

material is removed, it returns to its original state with no permanent deformation.

3.2.1 The Standard Linear Solid Model

A simple model to describe the behavior of a viscoelastic material is the standard linear

solid model (also called 3-parameter model) which includes practically all experimental

observations of rate-dependent phenomena [43]. The mechanical behavior of the standard
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linear solid model of two springs and one damper, shown in Figure 3.3, can be described

using a first order differential equation with constant coefficients. The differential equation

can then be solved for both displacement and stress-controlled loading. Using the method

of sections, the standard linear solid model can be described by Equation 3.18 [43].

σ = σv + σe

ε = εv + εη

σe = Eeε

σv = Evεv

σv = ηε̇η


⇒ σ̇ +

Ev
η
σ = (Ee + Ev)ε̇+

EeEv
η

ε (3.18)

For very slow processes
(
σ̇ << Ev

η σ and (Ee + Ev)ε̇ <<
EeEv
η ε

)
the final equation

shown in 3.18 simplifies to the well-known Hooke’s law [43]:

σ̇ +
Ev
η
σ = (Ee + Ev)ε̇+

EeEv
η

ε ⇒ σ = Eeε (3.19)

For very fast processes
(
σ̇ >> Ev

η σ and (Ee + Ev)ε̇ >>
EeEv
η ε

)
the final equation shown

in 3.18 simplifies to Equation 3.20 [43]:

σ̇ +
Ev
η
σ = (Ee + Ev)ε̇+

EeEv
η

ε ⇒ σ = (Ee + Ev)ε (3.20)

Figure 3.4 shows example results of viscoelastic behavior at different constant strain-

rates. For a very low strain-rate, the slope of the stress vs. strain response is equal to Ee

and follows the blue curve (see Equation 3.19), while for a high rate the slope approaches

(Ee + Ev) (see Equation 3.20).

45



Strain (-)

S
tr

es
s 

(M
P

a
)

Figure 3.4: Viscoelastic behavior at different rates

One can solve Equation 3.18 to compute the stress at a given time σ(t) for a given strain

ε(t):

σ̇ +
Ev
η
σ = (Ee + Ev)ε̇+

EeEv
η

ε

(
σ̇ +

Ev
η
σ

)
e
Ev
η
t

=

(
(Ee + Ev) ε̇+

EeEv
η

ε

)
e
Ev
η
t

(3.21)

By utilizing the product rule with
(
σ̇ + Ev

η σ
)
e
Ev
η
t

=
˙(

σe
Ev
η
t
)

, and
˙(

εe
Ev
η
t
)

= ε̇e
Ev
η
t

+

εEvη e
Ev
η
t
, Equation 3.21 becomes:

˙(
σe

Ev
η
t
)

= (Ee + Ev) ε̇e
Ev
η
t
+ Ee

˙(
εe

Ev
η
t
)
− Eeε̇e

Ev
η
t

˙(
σe

Ev
η
t
)

= Ev ε̇e
Ev
η
t
+ Ee

˙(
εe

Ev
η
t
)

(3.22)

Integration of Equation 3.22 in the interval from 0 to t yields:

σ(t)e
Ev
η
t − σ(0) =

∫ t

0
Eve

Ev
η
t
ε̇(s)ds+ Eeε(t)e

Ev
η
t − Eeε(0) (3.23)
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Using the initial conditions of σ(0) = 0 and ε(0) = 0, one obtains the following results:

σ(t) =

∫ t

0
Eve

−Ev
η

(t−s)
ε̇(s)ds+ Eeε(t) (3.24)

σ(t) = σv(t) + σe(t)

σv(t) =

∫ t

0
Eve

−Ev
η

(t−s)
ε̇(s)ds (3.25)

σe(t) = Eeε(t) (3.26)

Whereas Equation 3.25 describes the viscous stress over time, Equation 3.26 describes the

equilibrium stress.

To compute the viscous stress at time step tn+1, the viscous stress shown in Equation

3.25 is discretized in time. The integral to calculate the viscous stress is, therefore, split into

two integrals from t = 0 to tn and from tn to tn+1. It is now assumed that Ev
η = constant =

β. After simplifications and numerical integration, assuming a constant strain-rate ε̇ and

stiffness Ev during one time step, the viscous stress at time step tn+1 can be computed

using Equation 3.27.

σv

(
tn+1

)
=

∫ tn

0
Eve

−β(tn+1−s)ε̇(s)ds+

∫ tn+1

tn
Eve

−β(tn+1−s)ε̇(s)ds

σv

(
tn+1

)
=

∫ tn

0
Eve

−β(tn+1−tn+tn−s)ε̇(s)ds+

∫ tn+1

tn
Eve

−β(tn+1−s)ε̇(s)ds

σv

(
tn+1

)
=

∫ tn

0
Eve

−β∆te−β(tn−s)ε̇(s)ds+

∫ tn+1

tn
Eve

−β(tn+1−s)ε̇(s)ds

σv

(
tn+1

)
= e−β∆t

∫ tn

0
Eve

−β(tn−s)ε̇(s)ds+ Ev ε̇
n+ 1

2

∫ tn+1

tn
e−β(t

n+1−s)ds

σv

(
tn+1

)
= e−β∆tσv(t

n) + Ev ε̇
n+ 1

2
1− e−β∆t

β
(3.27)
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Figure 3.5: Non-linear viscoelastic model

3.2.2 Non-linear Viscoelasticity

To allow for an arbitrary tabulated relationship between the Young’s modulus and the total

strain-rate, the classical linear viscoelasticity described in the previous Section (3.2.1), is

replaced by a non-linear viscoelastic model. For this material model, the Young’s modulus

is derived from the tabulated stress-strain data for every current strain-rate value and,

therefore, the stiffness is a function of the strain-rate Ev(ε̇).

Figure 3.5 shows the modified Maxwell cell to include an arbitrary non-linear spring and

damper with the behavior as a function of the strain-rate.

To still allow for the use of the Taylor algorithm from Equation 3.27, the relaxation

function in the convolution integral needs to be an exponential with a constant value of the

decay constant. Therefore, a constant β is assumed, with a non-linear damper that adjusts

to the given non-linear spring in the solid model shown in Figure 3.5.

β =
Ev(ε̇)

η(ε̇)
(3.28)

By assuming a constant β, Equation 3.27 can be slightly modified to compute the viscous

stress and to allow for the non-linear spring Ev(ε̇):

σv

(
tn+1

)
= e−β∆tσv(t

n) + Ev(ε̇
n+ 1

2 )ε̇n+ 1
2

1− e−β∆t

β
(3.29)

The choice of a constant decay coefficient allows matching the initial slope of the dynamic

stress-strain curves with a single input variable. At large strains this model has limited

flexibility to match the measured data, however, at larger strains the viscoplastic fraction

of the material law (described in Section 3.3) is expected to dominate the response.
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3.2.3 Generalization to 3D

For the general 3D case, the equilibrium stiffness matrix with the rate-independent Young’s

and Shear moduli, derived from the quasistatic input curves, is defined as:

Ce = S−1
e =



1
E11e

− v21
E22e

− v31
E33e

0 0 0

1
E22e

− v32
E33e

0 0 0

1
E33e

0 0 0

1
2G12e

0 0

Sym 1
2G23e

0

1
2G31e



−1

(3.30)

The total, rate-dependent, stiffness matrix, where the rate-dependent Young’s moduli

Eiitot(ε̇) correspond to Ee+Ev(ε̇) in the previously discussed one dimensional case, is defined

as follows:

Ctot(ε̇) =



1
E11tot (ε̇)

− v21
E22tot (ε̇)

− v31
E33tot (ε̇)

0 0 0

1
E22tot (ε̇)

− v32
E33tot(ε̇)

0 0 0

1
E33tot (ε̇)

0 0 0

1
2G12tot (ε̇)

0 0

Sym 1
2G23tot (ε̇)

0

1
2G31tot (ε̇)



−1

(3.31)

The rate-dependent Young’s moduli represent the current stiffness at the given time

step and are derived from the tabulated stress-strain curves that are user input. While the

moduli are rate-dependent, the Poisson’s ratios are kept constant throughout the simulation.
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Additionally, the viscous stiffness matrix is defined as the difference between the total

and the equilibrium stiffness matrix:

Cv(ε̇) = Ctot(ε̇)−Ce (3.32)

The equilibrium trial stress can now be computed using Equation 3.33:

σn+1
e = σne + Ceε̇

n+1/2∆t (3.33)

To compute the viscous trial stress, the viscoelastic decay vector β and the viscoelastic

decay matrix B are defined as:

β =



e−β11∆t

e−β22∆t

e−β33∆t

e−β44∆t

e−β55∆t

e−β66∆t


(3.34)

B =



1−e−β11∆t

β11∆t
1−e−β12∆t

β12∆t
1−e−β13∆t

β13∆t 0 0 0

1−e−β12∆t

β12∆t
1−e−β22∆t

β22∆t
1−e−β23∆t

β23∆t 0 0 0

1−e−β13∆t

β13∆t
1−e−β23∆t

β23∆t
1−e−β33∆t

β33∆t 0 0 0

0 0 0 1−e−β44∆t

β44∆t 0 0

0 0 0 0 1−e−β55∆t

β55∆t 0

0 0 0 0 0 1−e−β66∆t

β66∆t


(3.35)
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The viscous trial stress then follows, as shown in the following equation:

σn+1
v = σnv ◦ β +

(
Cv(ε̇) ◦B

)
ε̇n+1/2∆t (3.36)

where the operator “◦” stands for the Hadamard product (element wise multiplication)

between the matrices or vectors.

By summing up both the viscous and the equilibrium stress, the total viscoelastic trial

stress is then computed as follows:

σn+1
t = σn+1

e + σn+1
v (3.37)

3.2.4 Strain-Rate Smoothing

As previously described, in the viscoelastic part of the model the Young’s moduli are rate-

dependent. To avoid numerical instabilities due to rapidly changing stiffness of the material,

smoothing techniques are applied on the total strain-rate.

The simplest way to smooth data is to apply a Simple Moving Average (SMA) which is

the unweighted mean of several data points as shown in Equation 3.38:

pSM =
pM + pM−1 + ...+ pM−(n−1)

n
=

1

n

n−1∑
i=0

pM−i (3.38)

An Exponential Moving Average (EMA) is a first-order response filter which applies

weighting factors that decrease exponentially but never reach zero. Equation 3.39 shows

the formula for the EMA. At the first time step, no average can be obtained and the St

takes the measured value.

St =


Z1, t = 1

(1− α)Zt + αSt−1, t > 1

(3.39)
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In Equation 3.39 the constant smoothing factor α represents the degree of weighting increase

(with 0 < α < 1). A higher α discounts older observations slower. Zt is the input value at

a time period t and St is the value of the EMA at any time period t.

3.3 Viscoplasticity

The theory of viscoplasticity is applied to model the irreversible and time-dependent defor-

mation of materials. Figure 3.6 shows an elastic-viscoplastic hardening model. The elastic

response of the system is modeled with a one-dimensional linear spring of stiffness E. When

the system is loaded, first only the spring deforms and the system responds linear elastic.

Once the yield stress σy is reached, which is represented by a sliding frictional element,

the system deforms plastically and permanently. This yield stress can be constant or rate-

dependent. With plastic deformation occurring, the rate-dependency is modeled using a

non-linear damper with viscosity η while the material hardening is represented by another

spring of stiffness K.

In contrast to a rate-independent plastic material, a viscoplastic material can undergo a

creep flow as a function of time. Creep describes how a material slowly deforms permanently

under a constant stress. Figure 3.7c shows an example of a constant stress load with the

corresponding creep in the strain response in Figure 3.7a. Similarly, for a constant strain

load (Figure 3.7b) a viscoplastic material will respond with stress relaxation (Figure 3.7d)

and, consequently, a continuous decay of the stress over time.

Essential for a viscoplasticity model is the decomposition of the total strain into the

sum of a recoverable elastic and a permanent plastic component:

ε = εel + εp (3.40)

where the elastic strain εel is again related to the elastic stress by means of the standard

linear elastic constitutive relation of Equation 3.1.
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Figure 3.6: Elastic-viscoplastic hardening model

In the example of one-dimensional plasticity theory, the existence of an elastic domain,

for which the material behavior is purely elastic, is defined by a yield stress. While the stress

is lower than the yield stress σy, the material response is linear elastic. This yield stress can

be dependent on different variables, such as the plastic strain εp, the plastic strain-rate ε̇p

where rate effects should be captured, and/or the temperature T in temperature-dependent

models:

σy = f
(
εp, ε̇p, T

)
(3.41)

In addition to the elastic constitutive relation, a flow rule is needed to describe the per-

manent plastic deformation once the yield stress is exceeded. For a loading under tension

(σ > 0) the plastic strain-rate should be positive (stretching) and negative under compres-

sion (σ < 0). The plastic flow rule for a uniaxial model can thus be established as follows

[41]:

ε̇p = λ̇ sign(σ) (3.42)

where the scalar λ̇ is the always positive plastic multiplier.

To generalize the described one-dimensional case to three dimensions, a yield function

replaces the simple yield stress. This yield function can take many forms and, in this case,

will depend on the yield stresses in the different directions and the stress state. The vector

q represents the yield stresses in different directions that are, in turn, dependent upon the
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Figure 3.7: Creep and relaxation

plastic strain, temperature, and the plastic strain-rate as previously depicted in Equation

3.41. In the plane stress case, the vector q would take the following form:

q =
[
σ11yT σ11yC σ22yT σ22yC σ12y

]T
(3.43)

with σ11yT being the yield stress in tension 1-direction and σ11yC the yield stress in com-

pression 1-direction and equivalently for the 2-direction and shear.

The following describes a typical simplified plasticity algorithm in the general case.

1. Assume a purely linear elastic response to obtain the elastic “trial” stress, which is a

function of the given total strains.

Compute: σt = Cε

2. Check if the stress is outside, inside, or on the yield surface, which is described by the

yield function. Compute the yield function for the given elastic trial stress and yield

stresses (f(σt, q)).
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(a) 0 ≥ f(σt, q): Stress is within or on the yield surface. Material behavior is purely

elastic.

Accept “trial” stress as final stress: σ = σt

(b) 0 < f(σt, q): Material behavior is elasto-plastic. Compute ε̇p

(
λ̇
)

that returns

the stress state back to the yield surface. Compute final stress as: σ = C(ε−εp)

In the subsequent sections, the actual chosen yield surface and flow rule will be further

explained.

3.3.1 Yield Surface

The yield surface for a composite material should allow for directionally different yield

stresses and, additionally, should be able to distinguish between tension and compression.

In general, a yield function is mapping from a state of three-dimensional stress (3x3

tensor) to a real value (f : R3x3 → R). The most general form of a yield function can be

expressed as described by Feng and Yang [44] as:

f(σ) = a+ btσ + σtCσ (3.44)

where σt = (σ11, σ22, σ33, σ12, σ13, σ23).

Special cases of a yield function of this type include Hill’s anisotropic yield function or

the von Mises yield function [44]. In this particular case, a quadratic function based on the

generalized Tsai-Wu failure surface [9] is chosen, similar to the yield surface as utilized by

Hoffarth [3]. Equation 3.45 shows the quadratic yield function for the plane stress case.

f(σ) = −1 +

[
F1 F2 0

]

σ11

σ22

σ12

+


σ11

σ22

σ12


T 

F11 F12 0

F12 F22 0

0 0 F44




σ11

σ22

σ12

 (3.45)
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Or after multiplication:

f(σ) = −1 + F1σ11 + F2σ22 + F11σ
2
11 + F22σ

2
22 + 2F12σ11σ22 + F44σ

2
12 (3.46)

where the yield function coefficients Fii are based on the current yield stresses which are

tabulated and defined for different temperatures, plastic strains, and plastic strain-rates.

Determining the yield function coefficients

The normal and linear yield function coefficients (F1 and F2), as well as the non-linear

coefficients (F11 and F22), can be determined by simplifying the yield function (Equation

3.46) for unidirectional loading in tension (subscript T) and compression (subscript C).

F1σ11yT + F11

(
σ11yT

)2
= 1 F1σ11yC + F11

(
σ11yC

)2
= 1

F2σ22yT + F22

(
σ22yT

)2
= 1 F2σ22yC + F22

(
σ22yC

)2
= 1

(3.47)

Which results in the following equations for the linear and non-linear normal yield

function coefficients:

F1 =
1

σ11yT

− 1

σ11yC

F11 =
1

σ11yT σ11yC

F2 =
1

σ22yT

− 1

σ22yC

F22 =
1

σ22yT σ22yC

(3.48)

Similarly, the yield function coefficient for the shear 12-direction (F44) can be deter-

mined by solving the yield function for pure 12-shear loading, which results in the following

equation:

F44 =
1

σ2
12y

(3.49)
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To determine the off-axis coefficient (F12), a 45° off-axis test is required, where the off-

axis coefficient describes the interactive effects in the yield stresses. A uniaxial test, with

loading at a 45° angle from the fiber direction (1-direction) in the 12-plane is conducted. By

using the rotation matrix from Equation 3.50, the uniaxial loading at an angle of α = 45°

with respect to the fiber direction, can be transformed into the material coordinate system,

as shown in Equation 3.51 [5].


σ11

σ22

σ12

 =


cos2(α) sin2(α) 2 sin(α) cos(α)

sin2(α) cos2(α) −2 sin(α) cos(α)

− sin(α) cos(α) sin(α) cos(α) cos2(α)− sin2(α)




σxx

σyy

σxy

 (3.50)


σ11

σ22

σ12

 =


1
2

1
2 1

1
2

1
2 −1

−1
2

1
2 0




σ45

0

0

 (3.51)

With the system of Equations from 3.51 and the yield function from Equation 3.46, one

can compute the off-axis coefficient (F12) using the following resulting equation for a given

stress in the loading direction:

F12 =
2

(σ45)2
− F1 + F2

σ45
− 1

2
(F11 + F22 + F44) (3.52)

Figure 3.8 shows an example of a yield surface that can be described using the chosen

yield function.
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Figure 3.8: Example of a yield surface

(a) Convex surface (b) Non-convex (concave) surface

Figure 3.9: Convexity of surfaces

Convexity of the yield surface

The yield function coefficients are computed based on the yield stresses in the material

directions, allowing for different hardening progression in different directions. As the Tsai-

Wu based yield surface is very general and dependent upon the yield stresses, it can result

in both convex and concave yield surfaces. Figure 3.9a shows an example of a convex

surface, while Figure 3.9b shows a concave surface. For numerical stability, in plasticity

algorithms in general, the yield surface must be convex at all times [45]. Therefore, if the

input parameters do not lead to a convex yield surface, a convex correction must take place.
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To verify whether a yield surface is concave or convex, the convex combination of two

vectors as described in Equation 3.53 can be used.

σ = ασ + (1− α)σ′ (3.53)

with 0 ≤ α ≤ 0.

In two dimensions, the combination of two vectors describes a line between the two head

points of the vectors as shown in Figure 3.9 as a dashed line.

To ensure convexity, the yield function f must satisfy the inequality:

f(σ) ≤ αf(σ) + (1− α)f(σ′) (3.54)

In two dimensions, this can now be visualized by the green point in Figure 3.9a for

a convex surface: where f(σ) satisfies the convexity condition and by the red point in

Figure 3.9b for a non-convex surface; and where f(σ) does not fulfill the inequality and lies

outside of the yield surface. In other words, a surface is convex if any point on a straight

line between two points lying on the surface itself falls on the surface or within it.

The yield function f in Equation 3.54 can be written in terms of the yield function

coefficient vector and matrix as:

f(σ) = a+ bTσ + σTFσ (3.55)

With Equation 3.54 and 3.55 one obtains:

a+ bTσ + σTFσ ≤ α
[
a+ bTσ + σTFσ

]
+ (1− α)

[
a+ bTσ′ + σ′TFσ′

]
(3.56)
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(a) Non-convex yield surface (b) Convex yield surface

Figure 3.10: Convexity correction of yield surface

The convex combination from 3.53 can now be substituted into Equation 3.56 and, after

simplification, this results in the following final equation:

(σ − σ′)TF (σ − σ′) ≥ 0 (3.57)

From Equation 3.57 follows the requirement that the matrix F has to be positive definite.

Therefore, the diagonal components of F must be non-negative, whereas the off-diagonal

components of F must satisfy the following inequalities:

F11 ≥ 0 F22 ≥ 0 F44 ≥ 0

F11F22 − F 2
12 ≥ 0

(3.58)

If these inequalities are not satisfied, the yield surface is corrected to be convex. Figure

3.10a shows a non-convex yield surface and Figure 3.10b the convex corrected yield surface

where the F12 component of the yield function matrix was changed to produce a convex

surface. Two dimensional cutting planes of the same yield surfaces are shown in Figure

3.11 (non-convex) and Figure 3.12 (convex). When viewed in the cutting planes, only the

σx − σy plane is effected.
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Figure 3.11: Example of a non-convex yield surface in 2D cutting planes

Figure 3.12: Example of a convex yield surface in 2D cutting planes
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3.3.2 Non-associated Flow Rule

The flow rule in a plasticity model describes the evolution of the plastic flow in the material.

Von Mises proposed in 1928 that a plastic potential function Q(σ) exists and the plastic

strain-rate ε̇p could be derived using the following equation [46]:

ε̇p = λ̇
∂Q(σ)

∂σ
(3.59)

where the plasticity variable, λ, is a proportional positive scalar factor.

In associated flow, the plastic potential function Q(σ) is taken to be the same as the yield

function (f), meaning that the plastic strain-rate is normal to the yield surface. Equation

3.60 shows the associated flow rule [47]:

ε̇p = λ̇
∂f

∂σ
(3.60)

Experiments have shown that this assumption works well to characterize the plastic

deformation of metals. For composites, however, a non-associated flow rule has been chosen

due to their strong anisotropy. In many unidirectional composites, for example, plastic

flow in the fiber direction does not occur at room temperature, and, therefore, a non-

associated flow rule was required allowing for non-consistent (non-associated) plastic flow.

As a plastic potential for the flow rule, a similar equation as the yield function is used, as

shown in Equation 3.61 similar to Hoffarth [3]. However, the equation does not include the

linear terms that can differentiate between tension and compression. The plastic potential

for the flow rule is now called h:

h2 = H11σ
2
11 +H22σ

2
22 + 2H12σ11σ22 +

1

2
H44σ

2
12 +

1

2
H44σ

2
21 (3.61)
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The symmetry of the Cauchy stress is used to combine the two in-plane shear terms σ12

and σ21, which yields:

h2 = H11σ
2
11 +H22σ

2
22 + 2H12σ11σ22 +H44σ

2
12 (3.62)

Or in matrix notation:

h2 =


σ11

σ22

σ12


T 

H11 H12 0

H12 H22 0

0 0 H44




σ11

σ22

σ12

 = σTHσ (3.63)

where Hij are the independent flow rule coefficients that are assumed to be constant.

Instead of the yield function as in associated flow, the plastic potential function from

Equation 3.61 is now used in the flow-law, resulting in non-associated flow:

ε̇p = λ̇
∂h

∂σ
(3.64)

The plastic flow is therefore not necessarily normal to the yield surface. From the flow-

law in Equation 3.64 and the plastic potential in Equation 3.61, the plastic strains can be

written in terms of the plastic multiplier, plastic potential, and the stresses as follows:

ε̇11p =
λ̇

2h
(2H11σ11 + 2H12σ22) (3.65)

ε̇22p =
λ̇

2h
(2H12σ11 + 2H22σ22) (3.66)

ε̇12p =
λ̇

2h
(H44σ12) (3.67)
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By defining the “plastic Poisson’s ratios” in terms of these plastic strains from Equations

3.65 and 3.66, for uniaxial loading in the 1-direction, the flow rule coefficients Hij can be

defined as follows [3]:

σ22 = 0 : ν12p = − ε̇22p

ε̇11p

= −H12

H11
(3.68)

And from uniaxial testing in the 2-direction one obtains:

σ11 = 0 : ν21p = − ε̇11p

ε̇22p

= −H12

H22
(3.69)

Equations 3.68 and 3.69 will be used to determine the flow rule coefficients in the next

subsection.

Determining the flow-law coefficients

The constant flow-law coefficients have to be determined individually for every composite

material and especially for different composite architectures. The procedures to identify

the coefficients are first described for a unidirectional composite and later for a braided

composite.

Unidirectional composites, in tension at room temperature, behave as linear elastic along

the fiber direction (1-direction), meaning the plastic strain in this direction should always

be zero. From Equation 3.65 then follows that H11 and H12 must be zero. Orthogonal to the

fiber direction (2-direction) for uniaxial loading, Equation 3.61 simplifies to the following:

h =
√
H22σ22 (3.70)

We can assume that the effective stress h is equal to the stress σ22 when uniaxial loading

is applied in this direction. It subsequently follows that H22 must be equal to one. Similar

to the flow rule coefficient in 2-direction, the in-plane coefficient H44 can be determined.
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Using Equation 3.67 with h =
√
H44σ12, assuming pure in-plane shear loading, yields:

ε̇12p =
λ̇

2
√
H44σ12

H44σ12

ε̇12p =
λ̇

2

√
H44

dε12p =
dεeffp

2

√
H44 (3.71)

where dεeffp is the effective plastic strain.

Using Equation 3.71, the shear coefficient can be determined by fitting the effective

stress versus effective plastic strain curve for the in-plane shear to the effective stress versus

effective plastic strain curve based on the transverse tension test [3].

The assumptions for a unidirectional composite do not apply for a braided composite,

however, the flow rule coefficients can be determined using similar procedures. In the

unidirectional case, no plastic flow was possible in the 1-direction and so H11 = 0. For a

braided composite, however, this is not the case and the flow rule can now be simplified for

uniaxial loading in the 1-direction as follows:

h =
√
H11σ11 (3.72)

One uses a similar assumption for the 2-direction in the unidirectional case, namely,

that the effective stress h is equal to the stress σ11 when loading is applied uniaxial in this

direction. It therefore follows, that H11 must now be equal to one. With H11 = 1 and

Equation 3.68 and 3.69 then follows:

H12 = −ν12p

H22 =
ν12p

ν21p

(3.73)
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(a) Unidirectional composite (H11 = 0) (b) Braided composite (H11 6= 0)

Figure 3.13: Example flow surfaces

The flow-law coefficient for the in-plane shear (H44) is determined using the same fitting

technique as in the unidirectional case.

Figure 3.13a shows an example of a flow surface for flow rule coefficients of H11 = 0,

H22 = 1.0, H12 = 0.0 and H44 = 4.2, which is typical for a unidirectional composite. The

flow surface is open in the fiber direction (σ11), which means that no plastic flow is possible

in that direction.

Figure 3.13b shows an example of a flow surface for flow rule coefficients of H11 = 1.0,

H22 = 1.0, H12 = 0.5 and H44 = 4.2, which could represent a braided composite. Plastic

flow is possible in all directions and, therefore, the flow surface is closed.

3.3.3 Rate Dependency

To avoid oscillation problems that occur in the total strain-rate due to the elastic com-

ponents (described in Section 3.2.4), the effective plastic strain-rate is utilized to look up

the yield stress for a given loading rate and temperature. This requires the conversion of

strain-rate versus stress versus strain tables into effective plastic strain-rate versus stress

versus plastic strain tables.
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For every increment in the load curve, the equivalent plastic strain-rate can be computed

as:

∆ε = εn+1 − εn = ε̇∆t

∆λ = λn+1 − λn = λ̇∆t

⇒ λ̇ =
∆λ

∆ε
ε̇ (3.74)

This results in a conversion factor for every increment in the user defined load curve.

The average of all factors is used to identify a single conversion factor from total strain-rate

to effective plastic strain-rate for every given curve.

The conversion from non-rate-dependent plasticity to viscoplasticity, therefore, only

requires changing the strain-rate value in the Table3D, the curve itself need not to be

modified further.

This practical approximation works perfectly for bilinear laws and remains acceptable

for most yield curves. For a bilinear curve, the equivalent plastic strain-rate will be the

same in all points if the curve is defined for a constant total strain-rate.

3.4 Coupling Viscoelasticity and Viscoplasticity

Viscoelasticity and viscoplasticity are coupled by replacing the computation of the elastic

trial stress for the plasticity algorithm (Section 3.3) by the viscoelastic trial stress as de-

scribed in Section 3.2.3. The plasticity algorithm stays unchanged, however, the final stress

after plasticity is then computed using Equation 3.75:

σn+1 = σn+1
t −∆σ

σn+1 = σn+1
t −

(
Ce + Cv(ε̇) ◦B

)
: ∆λ

∂h

∂σ
(3.75)

The equilibrium and viscous stress have to be updated accordingly to continue to satisfy

the requirement that the sum of the viscous and equilibrium stress equal the total stress:

σn+1 = σn+1
e + σn+1

v . To avoid relaxation below the quasistatic stress levels, equilibrium

67



and viscous stress are updated using the following algorithm, where fe is the yield function

corresponding to the equilibrium stress.

If fe ≤ 0:

σn+1
v = σn+1

v −∆σ

σn+1
v = σn+1

v −
(
Ce + Cv(ε̇) ◦B

)
: ∆λ

∂h

∂σ
(3.76)

σn+1
e = σn+1

e (3.77)

else:

σn+1
v = σn+1

v −∆σv

σn+1
v = σn+1

v −
(
Cv(ε̇) ◦B

)
: ∆λ

∂h

∂σ
(3.78)

σn+1
e = σn+1

e −∆σe

σn+1
e = σn+1

e −Ce : ∆λ
∂h

∂σ
(3.79)

Figure 3.14 visualizes the reasoning behind this process. Consider a bilinear, linear

elastic, ideal plastic stress-strain curve for quasistatic loading (green curve) and another

bilinear stress-strain curve with the same yield stress but higher Young’s modulus for a

given higher rate (blue curve).

Figure 3.14a shows the stress state from the previous time step (σn), where the yield

stress has just been reached and the visoelastic trial stress (σn+1
t ) for a loading at the higher

rate is shown in red. The viscoelastic trial stress is the sum of the viscous stress (σv) and the

equilibrium stress (σe), where the equilibrium stress has not yet yielded and, therefore, the

yield function for the given equilibrium stress is below zero (fe ≤ 0). During the plasticity

algorithm, the final total stress state (σn+1 = σy) and the corresponding plastic strain
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increment (∆λ ∂h∂σ ) are computed. Figure 3.14b shows how the equilibrium and viscous

stresses are updated. The total stress is reduced by ∆σ to return to the yield surface

(Equation 3.75). Because the equilibrium stress was within its corresponding yield surface,

the equilibrium trial stress is not changed (Equation 3.77). The viscous stress, however, is

reduced by ∆σ following Equation 3.76, fulfilling the requirement of σn+1 = σn+1
e + σn+1

v .

Figure 3.14c again shows the stress state from the previous time step (σn), where the

yield stress has been reached for both the total and the equilibrium stress. The viscoelastic

trial stress (σn+1
t ) for a loading at the higher rate is also shown in red. The viscoelastic trial

stress is always the sum of the viscous trial stress and the equilibrium trial stress, where

the latter is computed using the quasistatic Young’s modulus. The equilibrium stress has

already yielded and, therefore, the yield function for the given equilibrium stress is above

zero (fe > 0). The plasticity algorithm is then entered and the final total stress state

(σn+1 = σy) and the corresponding plastic strain increment (∆λ ∂h∂σ ) are computed. Figure

3.14d shows how the equilibrium and viscous stresses are updated. The total stress is again

reduced by ∆σ to return to the yield surface (Equation 3.75). Because the equilibrium

stress was outside of its corresponding yield surface, the equilibrium trial stress is updated

following Equation 3.79. The viscous stress is now reduced by ∆σv following Equation 3.78,

again fulfilling the requirement of σn+1 = σn+1
e + σn+1

v .

3.5 Temperature Dependency

Mechanical properties of polymeric materials are very temperature sensitive, with the effect

increasing as the glass transition temperature is approached. For example, the yield stress

of a polymer at the glass transition temperature tends to zero [48]. For many applications

it is important to model these effects accurately. In the following text, adiabatic heating

effects due to plastic work will be discussed.

When metal deforms plastically, a rise in temperature of the material can be measured.

Explanations of this phenomenon discuss the process of hardening due to phase changes of

69



Strain (-)

S
tr

es
s 

(M
P

a
)

(a) Elastic trial stress (fe ≤ 0)

Strain (-)

S
tr

es
s 

(M
P

a
)

(b) Final stress after plasticity (fe ≤ 0)

Strain (-)

S
tr

es
s 

(M
P

a
)

(c) Elastic trial stress (fe > 0)

Strain (-)

S
tr

es
s 

(M
P

a
)

(d) Final stress after plasticity (fe > 0)

Figure 3.14: Viscoelastic viscoplastic coupling
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the material and in turn changes of the internal energy of the material [49]. By comparing

the heat equivalent of the work done and the measured heat during the deformation, a

change in internal energy of the material can be verified. According to Taylor and Quinney,

“When a metal is subjected to plastic distortion most of the work done reappears in the

form of heat, but a certain proportion remains latent and is no doubt associated with the

changes to which cold working give rise in the physical properties of the metal” [50]. In

metals, generally between 5 and 15% of the work done is spent on phase changes of the

material, while the majority is converted to heat and leads to a rise in temperature of the

specimen. This temperature rise also depends on the rate of loading. If the generated heat

has time to conduct away, little temperature rise can be measured (isothermal conditions).

When the time scales of the experiment are very short, adiabatic conditions occur and the

temperature can rise noticeably [51].

Rittel discussed this phenomenon for polymers [51]. Trojanowski et al. [48] used in-

frared detectors to monitor temperature rise in epoxy specimens tested in a split Hopkinson

pressure bar. The achieved strain-rate was 25001
s and the measured temperature rise for a

specific epoxy reached 40°C.

According to Taylor and Quinney, the adiabatic rise in temperature in a material due

to plastic work (Wp) can be calculated as follows [50]:

dṪ =
βt
Cpρ

dẆp (3.80)

where Ṫ is the change in temperature, βt is the Taylor–Quinney coefficient that represents

the proportion of plastic work converted into heat, ρ is the density, and Cp is the specific

heat at constant pressure.
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With the equivalence of plastic work (Equation 3.81), Equation 3.80 can be expressed

in terms of the flow rule coefficient and plastic multiplier as follows in Equation 3.82.

Ẇp = σ : ε̇p = σ : λ̇
∂h

∂σ
= hλ̇ (3.81)

Ṫ =
βt
Cpρ

hλ̇ (3.82)

With the rise in temperature, the polymer matrix material softens, decreasing the yield

stress of the material in matrix dominated material directions.

3.6 Damage

When a composite material is loaded, irreversible micro-cracks and cavities can form. These

defects cause stiffness degradation in the composite [10].

To capture this softening of the stress-strain response, the material model is enhanced

by a damage model. Strain equivalence is assumed, meaning that in both the true and

effective stress space, elastic and plastic strains are the same [52]. This allows for the

damage calculations to be uncoupled and independent of the plasticity algorithm that takes

place in the effective stress space.

The effective (undamaged) stresses are related to the true (damaged) stresses by the

damage tensor M , as shown in Equation 3.83 [53]:


σ11

σ22

σ12

 =


M11 0 0

0 M22 0

0 0 M44




σ11eff

σ22eff

σ12eff

 (3.83)
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The use of a diagonal damage tensor suggests that loading in a specific material direction

leads to a reduction in stiffness in this direction only. Experimental research in composites

suggests that a load in one material direction can lead to damage in another material

direction. The in-plane shear modulus, for example, can decrease with increasing tensile

load due to transverse cracking of the matrix [54]. Similarly, the transverse stiffness can be

reduced due to damage accumulation in shear loading [55].

These effects are accounted for by including the coupling terms between material direc-

tions in the components of the damage tensor. These are computed as follows in Equations

3.84 to 3.88 [56]. The superscripts of the damage coefficients d denote in which direction

the damage is occurring, while the subscripts specify which loading direction caused the

damage. For example, d11T
11C

would be the coupled damage coefficient for damage in tension

1-direction due to loading in compression 1-direction. Depending on whether the current

state of stress is positive or negative, the corresponding component of the damage ten-

sor is computed using the coefficients for tension or compression. This can be viewed for

1-direction tension in Equation 3.84 or 1-direction compression in Equation 3.85.

σ11 > 0 : M11 =
(

1− d11T
11T

)(
1− d11T

11C

)(
1− d11T

22T

)(
1− d11T

22C

)(
1− d11T

12

)
(3.84)

σ11 < 0 : M11 =
(

1− d11C
11T

)(
1− d11C

11C

)(
1− d11C

22T

)(
1− d11C

22C

)(
1− d11C

12

)
(3.85)

σ22 > 0 : M22 =
(

1− d22T
11T

)(
1− d22T

11C

)(
1− d22T

22T

)(
1− d22T

22C

)(
1− d22T

12

)
(3.86)

σ22 < 0 : M22 =
(

1− d22C
11T

)(
1− d22C

11C

)(
1− d22C

22T

)(
1− d22C

22C

)(
1− d22C

12

)
(3.87)

M44 =
(

1− d22C
11T

)(
1− d22C

11C

)(
1− d22C

22T

)(
1− d22C

22C

)(
1− d22C

12

)
(3.88)

The damage terms are defined as a function of strain by the user. In the initialization

phase, the damage versus strain curves are transformed to damage versus plastic strain

curves to track damage accumulation in the different directions independently. The user

provided true (damaged) stress versus strain input curves in the individual directions are
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converted based on these damage versus strain curves to effective (undamaged) stress versus

effective plastic strain curves. This separates damage effects and plasticity in the algorithm.

For this conversion, only the plastic strain in the loading direction, for which the stress versus

strain curves was defined, is used.

The plastic strains in terms of the plastic multiplier, plastic potential, and the stresses

were defined in Equations 3.65 through 3.67. For the normal strains, these equations are

again shown in Equation 3.89:

ε̇11p =
λ̇

2h
(2H11σ11 + 2H12σ22) ε̇22p =

λ̇

2h
(2H12σ11 + 2H22σ22) (3.89)

For the two special cases of uniaxial tension or compression in the 1- and 2-direction, this

leads to the following plastic strains:

σ11 0

0 0

⇒
 ε̇11p = λ̇

2h(2H11σ11)

ε̇22p = λ̇
2h(2H12σ11)

0 0

0 σ22

⇒
 ε̇11p = λ̇

2h(2H12σ22)

ε̇22p = λ̇
2h(2H22σ22)

(3.90)

The transversal plastic strains caused by the longitudinal stress components will add

to the longitudinal damage if coupled damage terms are defined. This then leads to the

output curves not matching the user defined input, as during the curve conversion from true

(damaged) stress to effective (undamaged) stress only the longitudinal uncoupled damage

in this direction was considered. To counteract this issue, “corrected plastic strains” are

defined. Equation 3.91 shows the corrected plastic strains to only consider damage in

loading direction:

ε̇11pc =
λ̇

2h
(2H11σ11) ε̇22pc =

λ̇

2h
(2H22σ22) ε̇12pc =

λ̇

2h
(H44σ12) (3.91)

A formulation based on these corrected plastic strains guarantees that the output curves

match the input curves for uniaxial load cases.
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3.7 Generalized Tabulated Failure Criterion

Failure of material in finite element simulations is generally handled by removing elements

from the simulation where stresses or strains are determined to have exceeded a failure

criterion. In crash, crush or ballistic impact simulations of composites, however, removing

elements from the simulation once a failure criterion is satisfied in only one material direction

does lead to non-physical behavior. Consider loading a unidirectional composite in tension

2-direction until matrix cracks or fiber-matrix debonding occurs. In this uniaxial test, the

material would now be considered to have “failed”. In reality, however, many if not most

fibers might still be intact, and the material can still take load when reloaded in the fiber

direction. Following traditional failure models, elements in a finite element simulation would

have been eroded and load bearing capabilities in all directions would be lost.

In the following, a flexible erosion criterion for composites is introduced. The erosion

criterion can be used both as a traditional composite failure model, or to erode highly

deformed elements that have lost most of their load bearing capabilities in the different

material directions due to damage. Damage and erosion are therefore handled independent

from each other. This allows the use of the damage model to progressively degrade the

material in different directions and the Generalized Tabulated Failure Criterion to erode

the elements once damage has sufficiently decreased the ability of the material to take any

further loads.

To define when erosion should occur, a failure surface is introduced. This surface de-

scribes a surface in stress or strain space for which the material fails. If the stress state is

within the surface, failure does not occur. Once the stress or strain state lies on or beyond

the failure surface, the material fails. In traditional failure models, mathematical functions

describe the shape of this surface. This restricts the shape of the surface and failure of a

composite may or may not be accurately modeled. To overcome this restriction, a tabulated

approach similar to the one described by Goldberg et al. [57] is used.
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Figure 3.15: Failure angle

To describe a state of plane stress uniquely, two independent variables are necessary.

In the following approach, an angle is used as the first independent variable describing the

location of a point in the σ22-σ12 plane:

θ = cos−1

(
σ22√

σ2
22 + σ2

12

)
(3.92)

The meaning of this angle in bi-axial loading is visualized in Figure 3.15. In the case

of pure Tension 2-direction loading (σ12 = 0 and σ22 > 0) the computed angle θ is zero,

whereas in the case of pure Shear 12-direction loading (σ22 = 0) the computed angle is 90°.

As the second independent variable, the value of the stress in 1-direction σ11 is used.

These two independent variables describe the location of a point on the failure surface, while

a dependent variable defines the magnitude of said failure surface. In contrast to Goldberg

et al. [57], the dependent variable of choice is an equivalent strain, as defined in Equation

3.93:

εeq =
√
ε2

11 + ε2
22 + 2ε2

12 (3.93)

This equivalent strain is then compared with the user-defined value of an equivalent

failure strain εfail for the given angle and shear stress.

d =
εeq
εfail

(3.94)
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Figure 3.16: Failure surface

For d ≥ 1 the element fails and is eroded. The possibility to define a discrete value

for any state of plane stress allows one to include actual experimental data to construct

the failure surface. Failure variables for states of stress where the user cannot obtain ex-

perimental values can be calculated using traditional analytical failure models or numerical

experiments.

Figure 3.16 shows an example of such a failure surface. The in-plane axis “Fiber direction

stress” and “Angle” describe the state of stress the element undergoes, while the out-of-plane

axis “Equivalent failure strain” describes the magnitude of strains at which the element is

eroded.
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Chapter 4: Implementation

This chapter focuses on the implementation of the material model that is described in

Chapter 3. The described methodology can be implemented into most of the currently

available Finite Element codes. The implementation into the commercial Finite Element

solver LS-DYNA is described in the following text. LS-DYNA is written in the FORTRAN

programming language; as such, FORTRAN was chosen for the developed material subrou-

tine.

First, the required user input is discussed and then the algorithm is explained on the

basis of a high-level flowchart. The plasticity algorithm was based on the works by Hof-

farth [58], although additional capabilities and improvements have been added including

visoelastic-viscoplastic rate effects, improvements to the damage model, and a Generalized

Tabulated Failure model. Furthermore, capabilities of defining stochastic variation for a

selection of material parameters have been implemented.

4.1 Required User Input and Output from History Variables

A minimum of five stress versus strain input curves are required to utilize the material

model. Table 4.1 lists the results from uniaxial tension and compression tests, as well as

in-plane shear, that serve as input to the material model. Optionally, the stress versus

strain results from a 45° off-axis in-plane test can be defined. Leaving the off-axis input

empty modifies the yield function by setting F12 to zero (see Equation 3.55).

In Figure 4.1 the structure of the required input for one material direction is shown.

For the material direction (e.g. Tension 1-direction) a Table 3D ID is defined. This Table

3D holds a minimum of one Table 2D ID for a given temperature value. In the Table 2D a

minimum of two strain-rate values and corresponding stress versus strain input curves have
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Table 4.1: Required and optional stress vs. strain input

Material direction Input variable (Table 3D ID)

Tension 1-direction LT1
Tension 2-direction LT2
Compression 1-direction LT4
Compression 2-direction LT5
Shear 12-plane LT7
45° Off-axis 12-plane (optional) LT10

to be defined. If no rate effects are to be included, both curves can be given the same stress

versus strain data.

In addition to the tabulated stress versus strain curves for the different material di-

rections, several scalar values have to be defined in the actual material card. Table 4.2

shows the input to the material card excluding the options for failure modeling. Some of

the common options that are shared with many other composite materials, like the mate-

rial direction definition using AOPT , are not discussed. The user is here referred to the

LS-DYNA materials user manual [4].

As with any other LS-DYNA material, a material identification number (MID) has to

be defined as well as the density (ρ).

The moduli in the different material directions are needed for the initial time step

calculation, but will not influence the material response as the moduli are obtained from

the stress versus strain input in each of the material directions.

The elastic Poisson’s ratios have to be defined as well as the shear moduli in the different

material planes, similar to many other LS-DYNA composite materials.

The parameter PTOL sets the yield function tolerance that is used during the plasticity

algorithm during the secant iteration. When leaving this value blank, a default value of

1.0e−6 is used.

Changing the TCSYM parameter allows for the specification of tension-compression

symmetry in all material directions. In certain load cases, like minimally constrained single
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Table 4.2: MAT213 material cards one through seven

Variable Symbol Description

MID − Material identification.
RO ρ Mass density
EA Ea Young’s modulus in a-direction.
EB Eb Young’s modulus in b-direction.
EC Ec Young’s modulus in c-direction.
PRBA νba (elastic) Poisson’s ratio ba.
PRCA νca (elastic) Poisson’s ratio ca.
PRCB νcb (elastic) Poisson’s ratio cb.
GAB Gab Shear modulus a-b plane.
GBC Gbc Shear modulus b-c plane.
GCA Gca Shear modulus c-a plane.
PTOL − Yield function tolerance.
FILT − Factor for strain rate filtering (optional)
VEVP − Flag to control viscoelastic viscoplastic behavior.
TCSYM − Flag for handling tension-compression asymmetry.
H11 - H44 Hii Plastic flow rule coefficients.
LTi − Table 3D ID’s
YSC − Curve ID containing stress vs. strain curve ID’s

vs. yield strain
TEMP T Temperature to be used in the simulation.
DC − Damage Curve ID.
FTYPE − Faiure criterion type.
FV2 − Table ID for the table containing the stresses vs.

curve ID pairs for the failure model
CP Cp Specific heat capacity
BETAT βt Taylor-Quinney coefficient
BETA11 – BETA66 β Decay constants for the relaxation matrix

of the viscoelastic law
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Material Direction

Table 3D

Strain rate 1 Strain rate 2

Table 2D Table 2D

Temperature 1

Curve 1

Temperature 2

Curve 2

Strain rate 1 Strain rate 2

Curve 3 Curve 4

Required input

Figure 4.1: Required user input for each material direction

element simulations, tension-compression asymmetry might cause oscillations in the off-

axis direction as the modulus can switch between the tensile and compressive modulus for

stresses alternating between positive and negative values. The LS-DYNA material keyword

manual [4] describes the different options in detail.

Next in the input are the plastic flow rule coefficients that are determined using the

plastic Poisson’s ratios, as described in Section 3.3.2. For the shell element model, the flow

rule coefficients H11, H22, H12 and H44 are required while H23 and H13 can be used to

adjust the plastic flow in the thickness direction. For purely elastic directions (e.g. the fiber

direction in unidirectional composites), the corresponding flow rule coefficient H should be

zero. Additionally, the defined stress versus strain input curve for this direction should be

linear, with a yield strain value (defined in the YSC curve) that is larger then the maximum

strain that is defined in the stress versus strain input curve. The Table 3D ID’s are defined

as LT1 through LT10, as shown in Table 4.1.
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Table 4.3: Optional damage parameters

ID Parameter Description ID Parameter Description

1 d11T
11T

(ε11T ) D. in T1; due to T1 37 d11C
11T

(ε11C ) D. in T1; due to C1

2 d22T
22T

(ε22T ) D. in T2; due to T2 38 d11C
22T

(ε11C ) D. in T2; due to C1

4 d11C
11C

(ε11C ) D. in C1; due to C1 40 d11C
22C

(ε11C ) D. in C2; due to C1

5 d22C
22C

(ε22C ) D. in C2; due to C2 42 d11C
12 (ε11C ) D. in S12; due to C1

7 d12
12(ε12) D. in S12; due to S12 45 d22C

11T
(ε22C ) D. in T1; due to C2

13 d11T
22T

(ε11T ) D. in T2; due to T1 46 d22C
22T

(ε22C ) D. in T2; due to C2

15 d11T
11C

(ε11T ) D. in C1; due to T1 48 d22C
11C

(ε22C ) D. in C1; due to C2

16 d11T
22C

(ε11T ) D. in C2; due to T1 50 d22C
12 (ε22C ) D. in S12; due to C2

18 d11T
12 (ε11T ) D. in S12; due to T1 61 d12

11T
(ε12) D. in T1; due to S12

21 d22T
11T

(ε22T ) D. in T1; due to T2 62 d12
22T

(ε12) D. in T2; due to S12

23 d22T
11C

(ε22T ) D. in C1; due to T2 64 d12
11C

(ε12) D. in C1; due to S12

24 d22T
22C

(ε22T ) D. in C2; due to T2 65 d12
22C

(ε12) D. in C2; due to S12

26 d22T
12 (ε22T ) D. in S12; due to T2

The curve ID defined as variable Y SC contains all stress versus strain curve ID’s with

the corresponding yield strain. This yield strain is needed to compute the modulus in the

given direction and loading condition (tension/compression, temperature, and rate) and the

initial yield stress for these conditions. The initial temperature to be used in the simulation

is defined as parameter TEMP . A set of corresponding stress versus strain curves for this

temperature should be provided.

Optionally, parameter DC holds the damage curve ID of a curve of the different coupled

and uncoupled damage terms with corresponding curve IDs, which specify the damage with

respect to the strain. Table 4.3 shows all possible damage terms with ID one through seven

corresponding to the uncoupled terms and all other damage parameters to the coupling

terms. As an example, the damage parameter d11T
11C

with ID 15 holds the damage values

versus the tensile strain in 1-direction due to loading in tension 1-direction that effects

the material response when reloaded in compression 1-direction. In other words, damage

parameter 15 describes the damage in compression 1-direction due to loading in tension

1-direction.
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The Generalized Tabulated Failure Model described in Section 3.7 can be utilized by

using cards eight and nine of the MAT213 material card. Setting FTY PE to three and

specifying a Table ID for variable FV 2 that defines the shear stress versus curve ID’s invokes

the tabulated failure model. For every given shear stress, an angle versus equivalent failure

strain curve has to be defined, creating a failure surface in the shear stress and angle space

as described in Section 3.7.

For a detailed interpretation of simulation results obtained with this new material model,

many history variables can be output. History variables in LS-DYNA provide additional

output on material model specific variables that might be of interest to the user. Tables

4.4 and 4.5 list all history variables the material model provides as user output and the

corresponding history variable number to access them in LS-PrePost, the free of charge

pre- and post-processing utility by Livermore Software Technology Corp. The numbering

of these history variables is likely to change in the future and the user of the material model

is encouraged to obtain the most up to date list from the LS-DYNA materials manual [4].

The yield stresses in the different material directions and the effective plastic strain and

strain-rate is stored in history variables and can be accessed.

LS-DYNA, by default, outputs stresses and strains in the d3plot files in the global

coordinate system. The user can change this behavior by setting CMPFLG in the keyword

*DATABASE EXTEND BINARY (see [59]) to print out all stresses and strains in the local

material coordinate system. However, if both the global and local stresses and strains are of

interest, the user history variables of the material model allow access to the local material

stresses and strains without changing this option. All variables that can be accessed as user

history variables are always in the local material coordinate system.

Typical material model output like the strains, plastic strains and stresses are made

available to the user as history variables. Strain-rate dependent input can be defined with

the material model and, therefore, the total strain-rates in the different material directions

are accessible as history variables. The maximum damage parameter of all coupled and un-

coupled terms and the damage accumulation in any particular material direction is stored,
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as well as some important failure parameters, like whether the integration point has failed,

the equivalent erosion strain and the erosion angle. The temperature throughout the simu-

lation can be tracked using a history variable if temperature effects are considered. Whether

associated flow or radial return had to be used to compute a valid stress state on the yield

surface is tracked cumulatively in history variables to allow for a tracking of deviations from

the main material law. The user is urged to verify that radial return occurrences are kept

to a minimum. If the user defines stochastic variations of material parameters, the scale

factors for the different variables are stored in additional history variables. These scale

factors are constant over time and therefore do not have to be tracked. The user can output

this variables for visualization purpose after the initialization of the simulation and then

later remove these variables from the output to reduce the size of the output files. Section

4.3 describes in detail how stochastic variations can be defined.

The specific numbering of the history variables is available in the LS-DYNA material

manual [4].

4.2 Algorithm

This section describes the algorithm used in the implementation of the material model.

During the initialization phase, several pre-processing steps are performed to check and

prepare the user data to the correct format used by the stress update routine. The following

paragraphs explain the necessary pre-processing operations, the main stress update routine,

and finally the Generalized Tabulated Failure Criterion subroutine.

Pre-processing

During the initialization phase of a simulation, the user-defined input curves are read in and

converted from stress versus total strain to effective stress versus effective plastic strain.
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Table 4.4: User history variables (Part 1)

LS-PrePost Symbol Description

13 σ11yT Yield stress in tension a-direction
14 σ22yT Yield stress in tension b-direction
15 σ11yC Yield stress in compression a-direction
16 σ22yC Yield stress in compression b-direction
17 σ12y Yield stress in shear a-b plane
18 σ45y Yield stress in 45°off-axis a-b plane
19 εeffp Effective plastic strain
20 ε̇effp Effective plastic strain rate
21 ε11 Strain in a-direction
22 ε22 Strain in b-direction
23 ε33 Strain in c-direction
24 ε12 Tensorial shear strain in a-b plane
25 ε23 Tensorial shear strain in b-c plane
26 ε13 Tensorial shear strain in a-c plane
27 ε11pT Tensile plastic strain in a-direction
28 ε22pT Tensile plastic strain in b-direction
29 ε33pT Tensile plastic strain in c-direction
30 ε11pC Compressive plastic strain in a-direction
31 ε22pC Compressive plastic strain in b-direction
32 ε33pC Compressive plastic strain in c-direction
33 ε12p Tensorial plastic shear strain in a-b plane
34 σ11 Stress in a-direction
35 σ22 Stress in b-direction
36 σ12 Stress in shear a-b plane
37 σ23 Stress in shear b-c plane
38 σ13 Stress in shear a-c plane
39 ε̇11T Strain rate in a-direction tension
40 ε̇22T Strain rate in b-direction tension
41 ε̇11C Strain rate in a-direction compression
42 ε̇22C Strain rate in b-direction compression
43 ε̇12 Tensorial strain rate in ab-direction
44 max(d) Maximum damage
45 - Dissipated plastic energy
46 - Integration point failed if 0
47 εfail Equivalent erosion strain
48 θ Erosion angle
49 - Percent erosion strain reached
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Table 4.5: User history variables (Part 2)

LS-PrePost Symbol Description

69 - Uncoupled and coupled damage in T1
70 - Uncoupled and coupled damage in T2
71 - Uncoupled and coupled damage in C1
72 - Uncoupled and coupled damage in C2
73 - Uncoupled and coupled damage in S12
79 T Temperature
81 - Occurrences of associated flow
82 - Occurrences of radial return
83 E11T ; σ11yT Stochastic scale factor for tension 1
84 E22T ; σ22yT Stochastic scale factor for tension 2
85 E11C ; σ11yC Stochastic scale factor for compression 1
86 E22C ; σ22yC Stochastic scale factor for compression 2
87 G12; σ12y Stochastic scale factor for shear 12
88 εfail Stochastic variation of equivalent failure strain

First, the conversion from stress versus total strain to effective stress versus total strain

takes place, as shown in Equation 4.1 for the example of tension 1-direction:

σ11T , ε11T ⇒ σ̃11T =
σ11T

1− d11T
11T

, ε11T (4.1)

where d11T
11T

is the uncoupled damage parameter for damage in tension 1-direction due to

loading in the same direction. For cases without damage defined in the corresponding

direction, the effective stress will equal the true stress; therefore, no conversion will take

place.

In a second step, the effective stress versus total strain data is converted to effective

stress versus plastic strain, as shown in the following equation:

σ̃11T , ε11T ⇒ σ̃11T , ε11pT = ε11T −
σ̃11T

E11T

(4.2)
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As described by Goldberg et al. [45], the effective stress versus plastic strain is then

converted to effective stress versus effective plastic strain using Equation 4.3 for the example

in the 1-direction.

σ11dε11p = hdεeffp

σ11dε11p =
√
H11σ11dεeffp

dεeffp =
σ11dε11p√
H11σ11

εeffp =

∫
σ11dε11p√
H11σ11

(4.3)

The curves modified in this way are output to the user who is urged to verify that the

effective stress versus effective plastic strain curves at different rates and temperatures for

the individual directions do not intersect. Intersections of these curves can cause numerical

issues and would lead to unsatisfactory simulations results or even error terminations.

In addition to the stress versus strain input curves, the damage versus strain input is

modified to be stored in terms of plastic strains.

Stress update

The following operations are executed when the material model subroutine is called to

perform the stress update. The steps are executed for each integration point of all elements

at every time step.

1. Start: input to the stress updated routine are the strain increments ∆ε, the stresses

from the previous timestep σn, and the time step ∆t.

2. Transformation of stresses and strain increments from the global coordinate system

to the material coordinate system. The angles between the element local system and
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the material system remain constant during the simulation, therefore, the formulation

is corotational.

3. Read scalar user material input from keyword cards: H11, H22, H12, H23, H13, H44,

FILT , V EV P , β11, β22, β12, β44, Cp, βt and Y IELDTOL. Apply default values for

undefined parameters. Read Table 3D ID’s for stress versus strain tables from the

material card LTi.

4. Compute total strain from strain increments: εn+1 = εn + ∆ε.

5. Read required user history variables (plastic strain, corrected plastic strain) from

previous time step.

6. Compute strain-rate from strain increments and apply smoothing if FILT is defined.

ε̇n+1
cur = ∆ε

∆t , ε̇avg = ε̇n+1
cur +ε̇ncur+ε̇

n−1
cur +ε̇n−2

cur

4 , ε̇n+1 = (1 − FILT )ε̇avg + FILT ε̇n. Save

strain-rates to history variables.

7. Look up rate-independent and rate-dependent Young’s and shear moduli in different

material directions from input stress versus strain curves for given strain-rates and

temperature E(ε̇, T ), G(ε̇, T ). If defined, apply stochastic variation scale factors to

Young’s and Shear moduli.

8. Compute rate-independent stiffness matrix based on rate-independent moduli: Ce.

The rate-independent moduli are derived from the user-defined stress versus strain

curves for the lowest defined strain-rate, based on the user-defined yield strain (from

curve YSC).

9. Compute rate-dependent stiffness matrix based on rate-dependent moduli: Ctot. The

rate-dependent moduli are derived from the user-defined stress versus strain curves

for the given strain-rate, based on the user-defined yield strain (from curve YSC). For

stiffness matrix construction, read Poisson’s ratios from material card and recompute

if constraints are not satisfied (see Section 3.1).
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10. Read previous equilibrium and viscous stress from history σne , σnv .

11. If damage is defined: look up damage coefficients for corrected plastic strains from

last time step in different directions; convert true stresses, equilibrium stresses, and

viscous stresses to effective stresses.

12. Compute equilibrium stresses: σn+1
e = σne +Ce : ∆ε.

13. If VEVP = 0: set viscous stress to zero σn+1
v = 0, stiffness matrix is rate-independent:

C = Ce. Where VEVP is the flag that determines which viscoelastic-viscoplastic

option to use.

14. If VEVP = 1 or 2: compute viscoelastic decay vector and matrix β(β,∆t), B(β,∆t);

compute viscous stiffness matrix Cv = Ctot−Ce and viscous stress σn+1
v = σnv ◦β+(

Cv(ε̇) ◦B
)

∆εn+1.

15. Compute (visco)elastic trial stress σn+1
t = σn+1

e + σn+1
v .

16. If VEVP = 2: viscoelastic trial stress is accepted as final stress σn+1 = σn+1
t ; jump

to step 31.

17. Check if Flow surface is convex, if not: error termination.

18. Look up quasistatic yield stresses for given temperature and effective plastic strain

from previous time step q(T, εneffp) from the user-defined input stress versus strain

curves. If stochastic variation is defined: apply corresponding scale factors to yield

stresses.

19. Check if (visco)elastic trial stresses are below yield stresses for linear elastic directions

(directions with H = 0.0). If not, set yield stress in this direction equal to correspond-

ing trial stress q = σn+1
t to prevent an error termination as no plastic flow is possible

in linear elastic directions and stress state would not be possible to “return” to yield

surface.
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20. Compute yield function coefficients Fi and Fij as functions of the yield stresses.

21. If yield surface is non-convex: convex correction of yield surface F12 = −1
2

√
F11F22.

22. Compute yield function for (visco)elastic trial stress f(σn+1
t ,F ).

23. Compute derivatives with respect to trial stresses of yield function and flow potential

∂f
∂σt

and ∂h
∂σt

.

24. Decide whether or not time step at integration point is elastic (f ≤ 0) or plastic

(f > 0). If elastic: set ∆λ = 0 and jump to step 31.

25. Compute angle between flow and yield surface (see Section 4.4). If angle Φ > 90◦,

change direction of flow ∂h
∂σ ⇒

∂f
∂σ

σ: ∂h
∂σ

σ: ∂f
∂σ

to prevent error termination.

26. Plasticity algorithm: compute effective plastic strain increment ∆λ using secant iter-

ation. This process is described in detail in the following paragraph.

27. Compute elasto-plastic final stress:

σn+1 = σn+1
t −C : ∆λ

∂h

∂σ
(4.4)

and plastic strain increments:

∆ε11p =
∆λ

2h
(2H11σ11 + 2H12σ22) (4.5)

∆ε22p =
∆λ

2h
(2H12σ11 + 2H22σ22) (4.6)

∆ε12p =
∆λ

2h
(H44σ12) (4.7)

By summing the plastic strain from the previous time step and the computed incre-

ments, the new plastic strain can be computed.
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28. If VEVP=1: compute yield function for equilibrium stress and compute elasto-plastic

equilibrium and viscous stress.

If fe < 0:

σn+1
v = σn+1

v −
(
Ce + Cv(ε̇) ◦B

)
: ∆λ

∂h

∂σ
(4.8)

Else:

σn+1
v = σn+1

v −
(
Cv(ε̇) ◦B

)
: ∆λ

∂h

∂σ
(4.9)

σn+1
e = σn+1

e −Ce : ∆λ
∂h

∂σ
(4.10)

29. If damage is defined: look up damage coefficients for current corrected plastic strains in

different directions; convert effective stresses, equilibrium stresses, and viscous stresses

to true stresses.

30. If heat capacity defined: compute temperature increase due to adiabatic heating as a

result of plastic work.

31. End of plasticity algorithm.

32. Compute elastic (VEVP=2) or elasto-plastic (VEVP=1/2) thru thickness strain.

33. If heat capacity defined: compute temperature raise due to viscoelastic energy dissi-

pation.

34. Update history variables for temperature, stresses and strains.

35. If failure defined: call failure subroutine.

36. Material system to global system transformation of stresses.

37. End of stress update routine.
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Figures 4.2 through 4.5 show a high level flowchart of the stress update routine for better

visualization. The numbering is the same as of the algorithm description above.

Plasticity algorithm

The implemented plasticty algorithm in the material model is similar to plasticity in other

material models and further information on compuational plasticity can be found in litera-

ture, e.g. by Neto et al. [41].

After the (visco-)elastic trial stress is computed, if the yield function for the given stress

is positive, the time step is elasto-plastic. This means that the computed trial stress lies

outside of the yield surface and has to be returned to it following the relation σn+1 =

σn+1
t − C : ∆λ ∂h∂σ . The objective of the plasticity algorithm is to compute the plastic

multiplier increment ∆λ, that returns the stress state to the yield surface. In the following

paragraph, the general plasticity algorithm is described:

1. Set the lower bound for the plastic multiplier increment: ∆λ1 = 0.

2. Calculate the upper bound for the plastic multiplier increment: ∆λ2 =
∂f
∂σ

:(σn+1
t −σn)

∂f
∂σ
C: ∂h

∂σ

.

Note that the superscript here does not mean to the power of two.

3. Compute the new stress state for ∆λ2 and the corresponding yield function value.

4. If f(∆λ2) < 0, go to step 6.

5. Else: increase ∆λ2 by a factor of 1.1 to compute a new estimate. Compute the new

stress state for the new estimate of ∆λ2 and the corresponding yield function. Repeat

the process until a new estimate of ∆λ2 produces a yield function value below zero.

If no solution can be found within 1000 iterations: adjust the flow rule to change

direction towards the yield surface: ∂h
∂σ ⇒

∂f
∂σ

σ: ∂h
∂σ

σ: ∂f
∂σ

to prevent error termination. If

that was tried before, but did not lead to a valid stress state within the yield surface,

project radially towards the origin of the stress space. Go back to step 1.
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Figure 4.2: Material model subroutine flow chart (Part 1)
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Figure 4.5: Material model subroutine flow chart (Part 4)

6. A value of ∆λ1 with a corresponding yield function value above zero and a value of

∆λ2 with a corresponding yield function value below zero have been found in the

previous step. For a convex yield surface, this means a value of the plastic multiplier

increment can be found between the two values for which the yield function takes

a value of zero, indicating a stress state on the yield surface. The secant iteration

algorithm is used to find the plastic multiplier increment for which: f(∆λ) ≈ 0.

Secant iteration:

(a) Compute new estimate for plastic multiplier increment: ∆λ3 = ∆λ1−f1 ∆λ2−∆λ1

f2−f1

and the corresponding yield function f3. See Figure 4.6a for an example of the

first iteration of the secant algorithm, where from the first two estimates of ∆λ1

and ∆λ2 the new estimate ∆λ3 is computed.

(b) After the first iteration of the secant algorithm, the decision on the two new

starting values of ∆λ is made based on the computed yield function value f3, as
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shown in Equations 4.11 to 4.13. If the yield function value is within the range of

the user-defined value for the yield function tolerance, and therefore close to zero,

the value of the new estimate ∆λ3 is accepted as the plastic multiplier increment

(Equation 4.11). If the yield function value is greater than zero (see Equation

4.12), the starting value of ∆λ1, which corresponded to a positive yield function

value as well, is replaced with the new estimate ∆λ3. The second estimate ∆λ2,

corresponding to a negative yield function value, is kept the same as in the

previous iteration. If the yield function value is lower than zero (see Equation

4.13 and the example in Figure 4.6a), the starting value of ∆λ2 is replaced with

the new estimate ∆λ3 as both values correspond to negative yield functions. The

starting value ∆λ1 is now kept constant between the first and second iteration. In

the cases shown in Equations 4.12 and 4.13, the yield function has not converged

to zero and the secant iteration has to be repeated with the new values of ∆λ1

and ∆λ2. The algorithm proceeds as previously described in step (a) and as an

example in Figure 4.6b.

f3 ≈ 0⇒ ∆λ = ∆λ3 (4.11)

f3 > 0⇒


∆λ1 = ∆λ3, f1 = f3

∆λ2 = ∆λ2, f2 = f2

(4.12)

f3 < 0⇒


∆λ1 = ∆λ1, f1 = f1

∆λ2 = ∆λ3, f2 = f3

(4.13)

7. Once the secant iteration finds a solution for which the yield function corresponding

to ∆λ is equal to zero, the goal of the plasticity algorithm has been achieved and the

new elasto-plastic stress can be computed as: σn+1 = σn+1
t −C : ∆λ ∂h∂σ .
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(a) First secant iteration (b) Second secant iteration

Figure 4.6: Secant iteration example

Generalized Tabulated Failure Criterion subroutine

In the following, the algorithm of the Generalized Tabulated Failure Criterion is shown.

1. Compute the equivalent strain: εeq =
√
ε2

11 + ε2
22 + 2ε2

12.

2. Compute the angle representing the in-plane stress state: θ = cos−1

(
σ22√
σ2

22+σ2
12

)
.

3. Look up the equivalent failure strain εfail for the given angle θ and fiber direction

stress σ11 from the user-defined angle versus equivalent failure strain input curves.

4. If a stochastic variation is defined: apply the stochastic scale factor to the equivalent

failure strain value.

5. Compute d =
εeq
εfail

.

6. Save the equivalent strain, angle and d value to the history variables.

7. If d ≥ 1: set failure tracking variables to mark the integration point as failed.
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Table 4.6: Stochastic definition

*MAT 213 tabulated input Order in stochastic definition

Tension 1-direction 1
Tension 2-direction 2
Compression 1-direction 3
Compression 2-direction 4
Shear 12-plane 5
Equivalent failure strain 6

4.3 Stochastic Options

Stochastic variations of material parameters can be defined for the new material model. The

user can input stochastic distributions of scale factors for each of the material directions

and the equivalent failure strain shown in Table 4.6. The stochastic option for this material

was implemented into LS-DYNA as *DEFINE STOCHASTIC VARIATION MAT213 [59].

An example for this new LS-DYNA keyword card is shown in LS-DYNA Keyword 4.1.

In this example, the stochastic definition is given the ID (id sv) 1 which is valid for part ID

(pid) 2. The variable IRNG defines whether a pseudo or a true random number generator

should be used. This way a user can obtain the same results when running the same input

several times (pseudo-random) or possibly achieve variation in the results (true-random).

For IRNG=0, as in the shown example, a pseudo-random number generator creates the

random scale factors. The VARTYP variable defines what type of stochastic variation

should be used. Setting VARTYP to one allows for the definition of a uniform random

distribution in the interval R1 to R2 (see Figure 4.7a). If the variable should not follow a

distribution, the user can set VARTYP to zero and therefore set all scale factors to one,

which leaves the material parameters unchanged. With VARTYP equal to zero, the result

of the material model will be the same as not including the stochastic option at all. Other

options allow for the definition of a Gaussian distribution (Figure 4.7b) or a distribution

following an input curve of a probability distribution function or a cumulative distribution

function (Figure 4.7c). The use of the CORLGRP variable allows to specify which of the
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(a) Uniform distribution (b) Gaussian distribution (c) Distribution from load curve

Figure 4.7: Possible distribution definitions for stochastic option

parameters should be correlated or not. An example input could correlate the deformation

related variables (Tension and Compression in 1 and 2-direction, Shear 12) by specifying

the same integer value for their CORLGRP parameter and leaving the failure parameter

independent by assigning a different value to CORLGRP. Table 4.7 shows an overview of

all available options and explanations for the new keyword [59].

LS-DYNA Keyword 4.1: *DEFINE STOCHASTIC VARIATION MAT213 input

*DEFINE_STOCHASTIC_VARIATION_MAT213
$# id_sv pid pid_typ irng

1 2 0 0
$# vartyp corlgrp r1 r2 r3

1 0 0.75 1.25
1 0 0.75 1.25
1 0 0.75 1.25
1 0 0.75 1.25
1 0 0.75 1.25
1 0 0.75 1.25
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Table 4.7: Stochastic options (adapted from [59])

Variable Description

ID SV Stochastic variation ID.
A unique ID number must be used.

PID *PART ID or *SET PART ID.
PID TYP Flag for PID type.

If PID and PID TYP are both 0 then the properties defined here
apply to all shell and solid parts using materials with
the STOCHASTIC option.

EQ.0: PID is a *PART ID.
EQ.1: PID is a *SET PART ID

IRNG Flag for random number generation.
EQ.0: Use deterministic (pseudo-) random number generator.

The same input always leads to the same distribution.
EQ.1: Use non-deterministic (true) random number generator. With

the same input a different distribution is achieved in each run.
VARTYP Variation type for scaling the yield stress.

EQ.0: The scale factor is 1.0 everywhere.
EQ.1: The scale factor is a random number in the uniform random

distribution in the interval defined by R1 and R2.
EQ.2: The scale factor is a random number obeying the Gaussian

distribution defined by R1, R2 and R3.
EQ.3: The scale factor is defined by the probability distribution

function defined by curve LCID.
EQ.4: The scale factor is defined by the cumulative distribution

function defined by curve LCID.
CORLGRP Correlation group number.

If CORLGRP is 0, then the random number for the distribution is
uncorrelated with all the other distributions.
The same random number is used for evaluating all the distributions
having the same positive integer value for CORLGRP.

R1, R2, R3 Real values to define the stochastic distribution.
LCID Curve ID defining the stochastic distribution.
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4.4 Robustness: Switch to Associated Flow Rule or Radial

Return

In certain loading conditions and for specific user input, the non-associated flow rule might

not be able to find a solution that returns the trial stress to the yield surface. To visualize

this issue, the following input is used:

• Flow rule coefficients: H11 = 0.01, H22 = 1.0.

• Yield stresses: σ11yT = 1430, σ22yT = 42, σ11yC = 510, σ22yC = 145, σ12y = 63,

σ45y = 68.

The yield stresses result in a yield surface, as shown in Figure 4.8a, where a projected

view on the x-y-plane is shown. Figure 4.8b shows the same yield surface zoomed in on the

initial stress state (blue circle) and the elastic trial stress (red circle). Due to the chosen

flow rule coefficients, the plasticity algorithm is searching for possible stress states that

should lie within the yield surface along the green line, with the estimates computed by the

plasticity algorithm shown as green circles. None of the computed stress estimates lie within

the yield surface and, therefore, no solution in the non-associated case with the chosen flow

rule coefficients can be found. The problem lies in the angle between the yield surface and

the flow direction being greater than 90°. Figure 4.9 visualizes a case where this angle Φ is

greater than 90° and so the flow direction points away from the yield surface.

When the non-associated flow rule is not able to find a solution on the yield surface, the

flow rule is first modified to be associated. The plastic work equation is changed to use the

yield function instead of the plastic potential, where the variable k is introduced to keep

the equation at consistent dimensions:

Ẇp = σt : ε̇p = σt : λ̇
∂h

∂σt
= σt : λ̇mod

∂f

∂σt
k (4.14)

where variables h, and k are in units of stress while the yield function f is dimensionless.
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(a) Yield surface full view in x-y-plane (b) Yield surface zoomed

Figure 4.8: Yield surface with no solution in non-associated flow

Figure 4.9: Angle between flow and yield surface
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It is now ensured, that the scalar plastic multiplier increment λ̇ stays unchanged in

Equation 4.14 and, therefore, the following should be true:

λ̇mod = λ̇ (4.15)

Scale factor k can then be computed to ensure Equation 4.15 holds true.

σt :
∂h

∂σt
= σt :

∂f

∂σt
k ⇒ k =

σt : ∂h
∂σt

σt : ∂f
∂σt

(4.16)

Consequently, Equation 4.14 simplifies to:

Ẇp = σt : λ̇
∂f

∂σt

σt : ∂h
∂σt

σt : ∂f
∂σt

(4.17)

This effectively modifies the direction of the plastic strain increment without changing

the magnitude of the plastic strain increment. In many situations where the angle between

the flow direction and yield surface could lead to the plasticity algorithm not finding a

solution, modification of the flow rule to be associated can prevent this issue.

In some rare cases in complex loading conditions, even associated flow in anisotropic

materials might not allow for the plasticity algorithm to find a valid stress state on the yield

surface in the direction of plastic flow. To increase the robustness of the material model,

error terminations due to this problem have to be prevented.
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For the very rare instances where both the non-associated flow rule and associated flow

rule fail to find a solution, the flow direction is changed to project radially towards the

origin of the stress space to ensure a solution within the yield surface is found. Instead of

projecting non-associated towards −C ∂h
∂σt

, the projection from the trial stress towards the

origin is in the direction of −σt, as shown in Equation 4.18:

σn+1 = σn+1
t −C∆λ

∂h

∂σt
⇒ σn+1 = σn+1

t −∆λσtn = σn+1
t −CC−1∆λσtn (4.18)

where n ensures that the plastic multiplier keeps the same length as in the non-associated

case.

Similar to Equation 4.14, the scale factor n can then be computed from the plastic work

equation:

Ẇp = σt : ε̇p = σt : λ̇
∂h

∂σt
= σt : λ̇C−1σtn (4.19)

n =
σt : ∂h

∂σt

σt : C−1σt
(4.20)

And therefore Equation 4.19 simplifies to:

Ẇp = σt : λ̇C−1σt
σt : ∂h

∂σt

σt : C−1σt
(4.21)

This change of the plastic flow direction can be physically expressed by deriving the

flow rule coefficients and therefore plastic Poisson’s ratios that this modification produces.

For the case of radial return, from Equation 4.19 follows that:

∂h

∂σt
= C−1σtn ⇒ C

∂h

∂σt
= Iσtn ⇒ CH

1

ht
σt = Iσtn ⇒ CH = Inht (4.22)

where I is a 3x3 identity matrix.
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Equation 4.22 can now be expressed in tensor notation:


c11 c12 0

c12 c22 0

0 0 c44




H11 H12 0

H12 H22 0

0 0 H44

 = nht


1 0 0

0 1 0

0 0 1

 (4.23)

Two equations of this system can be written as:

c12H11 + c22H12 =0 ⇒ c12

c22
= −H12

H11
= νp12 (4.24)

c12H22 + c11H12 =0 ⇒ c12

c11
= −H12

H22
= νp21 (4.25)

With the projection operator from Equation 3.10, the ratios of the two dimensional

stiffness matrix coefficients are calculated as follows:

c12

c22
=
q12 − q13q23

q33

q22 − q23q23

q33

(4.26)

c12

c11
=
q12 − q13q23

q33

q22 − q23q23

q33

(4.27)

where the factors qij are the components of the three dimensional stiffness matrix from

Equation 3.4.

From Equations 4.26 and 4.27 then follows through simplifications (see Appendix B)

that:

c12

c22
= ν12 (4.28)

c12

c11
= ν21 (4.29)
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Using Equations 4.24, 4.25 and 4.28, 4.29, in the case of radial return the plastic Poisson’s

ratios, that can be derived from the modified radial flow surface, are equal to the elastic

Poisson’s ratios: ν12 = νp12 and ν21 = νp21. The imposed plastic Poisson’s ratios, that are

assumed during the radial return, do therefore not lead to unreasonable values.

Both the solution obtained using associated flow and the radial return are a deviation

from the non-associated theory described in Chapter 3. However, an error termination of

the simulation in the rare cases where the non-associated flow is not able to produce a valid

solution is both not acceptable and not practical in industry scale simulations.

During a simulation, the material subroutine is entered for every integration point at

every timestep. For example, in a ballistic impact simulation conducted using the new

material model, a composite plate was modeled with 396,508 fully integrated elements with

four integration points in-plane and two integration points through the thickness. The total

number of integration points in the example simulation was, therefore, 3.172 million. The

same ballistic impact simulation was then conducted using four different timestep scale

factors (TSSFAC) ranging from 0.6 to 0.9. The timestep scale factor provides an option to

scale the calculated timestep that is computed based on material parameters and element

size to insure stability in the explicit integration solution.

Table 4.8 lists the statistics of the four simulations regarding occurrences of associated

flow and radial return. Accumulated, approximately between 116 and 173 billion times a

stress state was computed by the material model, depending on the timestep scale factor.

With increasing scale factors from 0.7 to 0.9, the occurrences of both associated flow and

radial return increased as well. In this particular case, the ideal TSSFAC of the four cases

was 0.7 with the lowest occurrences of both associated flow and radial return. For a scale

factor of 0.7, associated flow was used in 1.86 million cases (1 in ≈ 80, 000).

Changing from non-associated flow to associated flow does change the behavior of the

model in these rare instances; however, associated plasticity is very commonly used to model

plastic behavior in materials and, therefore, can be regarded as an acceptable solution. The

associated flow rule still did not prevent the error in just 14 cases out of 149 billion (1 in 10.6
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Table 4.8: Occurrences of associated flow and radial return

TSSFAC Stress Computations Associated Flow Radial Return

0.6 1.73547e11 2,409,659 (0.00139%) 35 (2.01675e−8%)
0.7 1.48783e11 1,862,589 (0.00125%) 14 (9.40971e−9%)
0.8 1.30695e11 3,981,398 (0.00305%) 49,801 (3.81046e−5%)
0.9 1.15669e11 9,149,765 (0.00791%) 421,582 (3.64471e−4%)

billion), where radial return was used to find a valid stress state within the yield surface.

Due to the extremely rare occurrence of the radial return, its effect on the overall results

of the simulation were negligible for timestep scale factors of 0.6 and 0.7. In industrial use

of finite element software it is quite common to increase the timestep of the simulation,

for example by introducing mass scaling or by increasing the timestep scale factor, for

faster turn-around times to get results. When increasing the timestep, the probability of

not finding a valid solution using non-associated flow increases. In a future version of the

material model, a warning flag should be implemented that outputs the percentages of how

often the radial return method had to be applied, so the user can make adjustments to the

used timestep to find the right balance of accuracy and efficiency.

108



Chapter 5: Single Element Verification

The single element verification simulations in this chapter were conducted using material

test data obtained by Arizona State University and The Ohio State University of a unidirec-

tional T800/F3900 composite [60]. The graphite fiber T800 from Toray has a high failure

strain and the F3900 resin is a toughened epoxy with small elastomeric particles which form

an interface between fiber plies to resist impact damage and delamination [61].

5.1 Deformation

Load controlled single element verification simulations were conducted to demonstrate the

orthotropic elasto-plastic behavior in the different material directions. The required tabu-

lated user input (see Table 4.1) was populated with the corresponding stress versus strain

curves from quasistatic, room temperature, uniaxial tension and compression tests in fiber

and transverse direction, as well as results from a shear test in the 1-2 plane [60]. Optionally,

45°-off axis tension results can be input. To verify the elasto-plastic part of the model, no

rate dependency was defined and therefore the VEVP variable was left at the default value

(zero). As boundary conditions, only necessary nodal constraints were applied. Figure 5.1

shows the boundary conditions for all single element cases. For example, for loading in

tension 1-direction only the loading direction (x-axis) was constrained in the two nodes on

the opposite sides of the loaded nodes. These minimal boundary conditions help to identify

potential numerical instabilities as the elements are free to move out-of-plane or in-plane

orthogonal to the loading direction. LS-DYNA Keyword card 5.1 shows the complete in-

put card used for the load controlled single element simulations. The flow rule coefficients

H11, H22, H12, H23, H13, H44 were obtained using the procedures described in Section 3.3.
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Figure 5.1: Boundary conditions of single element verification simulations

LS-DYNA Keyword 5.1: *MAT 213 input

*MAT_213
$# mid ro ea eb ec prba prca prcb

1 1.4521E-4 23.46E6 1.066E6 0.966E6 0.016800 0.027000 0.4390
$# gab gbc gca ptol aopt macf FILT VEVP

0.5795 E6 0.37615 E6 0.32635 E6 2.0
$# xp yp zp a1 a2 a3

1 0 0
$# v1 v2 v3 d1 d2 d3 beta tcsym

1 1 0
$# H11 H22 H33 H12 H23 H13 H44 H55

0.00000 1.00000 0.000000 -0.77600 0.000000 4.23900
$# H66 LT1 LT2 LT3 LT4 LT5 LT6 LT7

1001 1002 1004 1005 1007
$# LT8 LT9 LT10 LT11 LT12 YSC TEMP DC

1010 100 36.0
$# FTYPE PFAIL FV1 FV2 FV3 FV4 FV5 FV6

$# FV7 FV8 FV9 FV10 FV11 FV12 CP BETAT

$# beta11 beta22 beta33 beta12 beta31 beta32 beta44 beta55

$# beta66

Tension and compression in 1-direction

Load driven tension and compression simulations were conducted in the fiber direction.

Figure 5.2 shows the stress versus strain input curves (blue) and the simulation output (red).

110



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Strain [-] ×10−2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S

tr
es

s
[p

si
]

×105

Input

Output

(a) Tension

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2
Strain [-] ×10−3

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

S
tr

es
s

[p
si

]

×105

Input

Output

(b) Compression

Figure 5.2: Single element verification in 1-direction

The unidirectional T800/F3900 behaves linear elastic in the 1-direction and therefore, the

flow rule coefficient in this direction (H11) was set to zero. The modulus in this direction

(E11) is then determined by the slope of the line between the origin of the given stress strain

curve and the defined “yield strain / yield stress” value from the data provided in the YSC

field of the material models keyword card. Figures 5.3 and 5.4 show the evolution of the

yield surface in cutting planes along the stress axis in tension and compression respectively.

In Figure 5.3 on the left the cutting plane for σ12 = 0 is shown with the 2D elliptic yield

surface. The stress states throughout the simulation are marked by the small colored crosses

with the first one at a state of zero stress in the origin. As the element is loaded, the state of

stress moves along the x-axis with only σ11 increasing. The “yield stress” was chosen to lie

beyond the curve as no yielding can occur in the linear elastic fiber direction and therefore,

the yield surface is not reached in tension and compression in 1-direction. In Figure 5.4 on

the left, the same yield surface can be seen in the σ11-σ22-plane with the states of stress

decreasing along the σx-axis.
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Figure 5.3: Yield surface evolution tension 1-direction

Figure 5.4: Yield surface evolution compression 1-direction
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Figure 5.5: Single element verification in 2-direction

Tension and compression in 2-direction

In the 2-direction, the matrix material properties are dominating the composite response

and plastic deformation of the polymer can occur. The results of load controlled single

element simulations in tension and compression in 2-direction are shown in Figure 5.5. In

tension 2-direction, the composite behaves almost linear elastic with very little plasticity in

the response. In compression, however, the material yields once the yield surface is reached

and permanent deformation occurs. The yield surface for tension 2-direction is shown in

Figure 5.6, where the elliptic yield surface expands with increasing σ22. Figure 5.7 shows

the yield surface evolution in compression 2-directional loading. As the stress decreases in

2-direction, the yield surface expands and the corresponding state of stress lies on the yield

surface.

In-plane shear

A single shell element with an edge length of one is loaded in pure in-plane shear (12-shear)

by applying equal forces in tension on two nodes on the side at x = 1 and in compression

on two nodes on the edge at y = 1 (see Figure 5.1). Figure 5.8 shows the stress versus
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Figure 5.6: Yield surface evolution tension 2-direction

Figure 5.7: Yield surface evolution compression 2-direction
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Figure 5.8: Single element verification in 12-shear direction

strain results. In shear loading, the fibers are not able to carry the majority of the load

and therefore, the matrix material properties are of great importance in shear loading. As

the matrix material is a polymer, the shear response shows a very non-linear elasto-plastic

response. In Figure 5.9 the yield surface evolution in the in-plane shear case is shown. The

yield surface expands along with increasing σ12 stress while the yield stress in the linear

elastic direction (1-direction) stays unchanged.

Out-of-plane shear

Pure out-of-plane shear loading is difficult to achieve in shell elements. To obtain the

highest proximity to pure shear loading for 13-directional shear the two nodes at x = 1

were constrained in y-translation while the nodes at x = 0 were fixed in all translational

degrees of freedom. Additionally, rotation around the y-axis was constrained. Loading was

applied in z-direction at the nodes at x = 0. Similarly, the boundary conditions were set

up for 23-directional shear loading with the element rotated around the z-axis for 90°. As

described in Section 3.3.1, the out-of-plane shear stresses are not considered in the yield

criterion. The out-of-plane stresses are updated linear elastically according to Equation
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Figure 5.9: Yield surface evolution shear 12-direction

3.11. Figure 5.10 shows the stress versus strain results for out-of-plane shear in the 23-

directional plane and the 13-directional plane.

45° off-axis

In addition to the normal and shear cases, elements with fiber angles of 45° with respect

to the loading direction, were analyzed. The yield stresses from the user defined 45°-

off-axis stress versus strain input curves are used when the yield surface is constructed.

However, due to the numerical necessity of convexity of the yield surface, this off-axis yield

stress might be adjusted automatically throughout the simulation to ensure a convex yield

surface. This convex correction leads to the possibility that the 45°-off-axis input curves

cannot be matched in the simulation. Figure 5.11 shows the results of 45° single element

simulations in tension and compression. The stress output in both tension and compression

does not match the input exactly once plasticity should have occurred. This mismatch can

be explained with the convex correction of the yield surface. The yield surface in Figure
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Figure 5.10: Single element verification in out-of-plane shear directions

5.9 on the left shows how for tensile and compressive stresses as well as biaxial loading

with the same sign (i.e. stress state in the upper right or lower left quadrants) the yield

stress increases in comparison to uniaxial loading. Therefore, yielding in 45°-off-axis loading

might occur at a greater magnitude of strain than the input.

5.2 Strain-Rate-Dependency

A major capability that has been implemented is the option to define strain-rate-dependent

stress versus strain input curves. To verify that the material model can match the user

input, the previously used quasistatic T800/F3900 stress versus strain input was scaled up

in all directions to create input curves for higher rates. The used scale factor for the input

at a rate of 101
s was 1.2, while the input at a rate of 1001

s was scaled up by 1.4. These

scaling values were chosen arbitrarily, but are not physically unrealistic.

Rate smoothing

In Section 3.3.3 the implementation of the smoothing of the total strain-rates was de-

scribed. As the stiffness of a composite can vary with the loading rate, oscillations in the
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Figure 5.11: 45° Off-axis single element verification

total strain-rate lead to sudden stiffness changes in the material model. This can lead

to numerical instabilities and therefore, the need for smoothing of said strain-rates. The

correct implementation of this option is verified by looking at the off-axis strain-rate in a

single element simulation. Figure 5.12 shows the total strain-rates in the loading direction

(compression 2-direction) in blue and the off-axis strain-rate (tension 1-direction) in red.

For a FILT value of zero (Figure 5.12a) the off-axis strain-rate oscillates between values

of 30% of the loading rate and zero. When setting FILT to a very low value (here 0.01 in

Figure 5.12b) the smoothing effect is almost entirely due to the moving average filter. By

increasing FILT to higher values (e.g. 0.9 in Figure 5.12c), the exponential moving average

filter is utilized to a higher degree and increases the effect of smoothing.

Tension 1

To verify the rate dependency of the model, single element simulations in the different

material directions are conducted at seven different loading rates. The material input was

defined for rates of 1.01
s , 101

s and 1001
s . The seven different loading rates were chosen to

test the interpolation between the rate-dependent input curves and the correct handling of
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(c) EMA and MA: FILT = 0.9

Figure 5.12: Effect of smoothing on the transverse and longitudinal strain-rates

rates below the lowest defined curve as well as rates beyond the highest defined rate. In

cases that exceed the user-defined input strain-rates, the curve defined for the highest rate

should be chosen and no extrapolation of the data should occur. The elements are loaded

displacement controlled at rates of 0.51
s , 1.01

s , 5.01
s , 10.01

s , 55.01
s , 100.01

s and 150.01
s . After

the maximum deformation is reached, the nodal displacement is stopped, and the nodes are

kept in place.

Stress versus strain results for the seven loading rates in tension 1-direction are shown

in Figure 5.13a. As the flow rule coefficient in the 1-direction was defined as zero (no plastic

flow in this direction), the material behaves linear elastic in the fiber direction. The rate-

dependent simulations in this direction are consequently a good verification test of the rate

dependency of the computed modulus from the stress versus strain input curves.

For a loading rate of 0.51
s (green curve in Figure 5.13a), which is a strain-rate below

the first user-defined stress versus strain input curve of 1.01
s , the output lies on top of this

lowest given input curve. When the loading rate is increased to 5.01
s (blue curve in Figure

5.13a), roughly half-way between the first input curve and the second input curve, the

modulus is interpolated between the two given curves and the stress versus strain output

lies between the two input curves for 1.01
s and 10.01

s . When the loading rate matches the

highest user-defined input rate (here 100.01
s ), or exceeds it (150.01

s ), the output matches

the highest input curve.
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All simulations were conducted with the viscoelastic-viscoplastic option (VEVP=1),

while keeping the viscoelastic β values at the default value of 0.001. This allowed for rate

dependency in the elastic region while not allowing for noticeable viscoelastic decay in

the stress response. As the total loading rate drops to zero when the deformation of the

elements is stopped, higher viscoelastic β values would lead to a decay of the stress over

time. The verification of this capability is explained in more detail in the text below (see

“Viscoelasticity only, VEVP = 2”).

Tension 2

Similar single element verification simulations as for tension 1-direction were conducted

in the 2-direction. Due to the non-zero flow rule coefficient in the 2-direction, plastic

deformation can occur. Again, seven loading rates were chosen to cover the spectrum of the

user-defined input rates. The results of the seven simulations are shown in Figure 5.13b.

The stress versus strain output matches the corresponding input curve at the given loading

rate with interpolation between the user input being handled correctly.

Some stress decay can be seen at the end of the output curves at the higher loading

rates. This stress decay only represents the viscoplastic relaxation due to the decay of the

effective plastic strain-rate when the loading is suddenly stopped and the nodes are held

in place. The viscoplastic “overstress” due to the rate effects is therefore slowly reduced

to zero. As previously explained, the viscoelastic β values were set to very low values and

therefore, no viscoelastic decay can occur and the stress does not decay all the way to the

quasistatic value.

Compression 1

The results of the compression 1-direction simulations show similar behavior as the 1-

direction and are shown in Figure 5.13c. Again, no viscoelastic stress decay can be seen

and, as the 1-direction is linear elastic, no viscoplastic decay occurs. The results match the

user-defined stress versus strain input at the corresponding loading rates.
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(f) Compression 2 - stress versus time (150 1/s)

Figure 5.13: Rate-dependent single element verification
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Compression 2

The most non-linear behavior in the T800/F3900 composite occurs in the 2-direction com-

pression and in-plane shear. It is, therefore, a good test case for the viscoplastic stress decay.

Figure 5.13d shows the results for the seven different loading rates. The stress versus strain

results in the y-direction match the input at the corresponding rate.

Figure 5.14 shows the effective plastic strain-rate versus time for a loading rate of 5.01
s

and 10.01
s . The effective plastic strain-rate increases from the onset of plastic deformation

with decreasing slope of the stress versus strain input curve as a lower slope indicates faster

plastic deformation with respect to the constant total strain-rate. As the nodes are held in

place at the maximum displacement, the effective plastic strain-rate then slowly decreases

from its maximum value towards zero. The decreasing effective plastic strain-rate then

leads to yield stress interpolations for the lower effective plastic strain-rate values and the

stress decays over time. In the stress versus strain plots in Figure 5.13, this effect is not

very visible, as the strain does not increase further, leading to a vertical drop in the stress

versus strain response. To visualize the decay over time, an additional plot of the stress

over time is shown in Figure 5.13f. This stress relaxation effect is explained in more detail

in the paragraph “Viscoplasticity only (VEVP=0)” below.

Shear 12

The results of pure in-plane shear single element simulations at seven different loading rates

are shown in Figure 5.13e. With increasing loading rates, the stress versus strain response

of the material model matches the corresponding input curve. Viscoplastic stress relaxation

occurs when the maximum deformation is reached and the nodes are held in place.

Viscoelasticity only (VEVP = 2)

The implemented material model can be used as a purely viscoelastic material by setting

VEVP to two. This also allows verification of the viscoelastic effects, independent of the

plasticity algorithm. Figure 5.15 shows the results of single element simulations at four
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Figure 5.14: Effective plastic strain-rate in compression 2-direction

different loading rates and a high viscoelastic decay constant β11 of 5000. With increasing

loading rates the modulus increases while at higher strains the slope of the stress versus

strain response tends towards being equal to the quasistatic modulus, as is typical for

viscoelastic behavior.

Using the same input, except with a lower decay constant, the effect of viscoelastic stress

relaxation and creep is shown in Figure 5.16. The top left picture (Figure 5.16a) shows a

constant strain load and the corresponding stress response of the material model for a decay

constant of zero. As the decay value is chosen as zero, no viscoelastic stress relaxation can

occur, and the stress stays constant for a given strain. When β11 is set to a non-zero value

(here β11 = 50) the same constant strain load (Figure 5.16c), as previously shown, now

leads to stress relaxation (Figure 5.16d). For a constant stress load on the single element

(Figure 5.16f), the strain in the element increases slowly (Figure 5.16e). This phenomenon

is called “creep”. When the stress is removed, the strain does not drop to zero but also

decays. This damping effect of creep and relaxation helps to ensure numerical stability

when rate-dependent moduli are defined.
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Figure 5.15: Viscoelasticity verification (β11 = 5000)

Viscoplasticity only (VEVP = 0)

To verify the viscoplastic implementation, input was defined that does not include rate

effects in the elastic region. Figure 5.17a shows the stress versus strain input with two

curves defined for strain-rates of 1.01
s and 100.01

s with different yield stresses.

When the element is loaded at a constant rate (constant slope of strain versus time),

as shown in Figure 5.17b, the stress increases following the corresponding input curve at

that rate. As maximum displacement is reached, the nodes to which the displacement was

applied were then held in place. This leads to stress relaxation as the stress versus time

plot in Figure 5.17c shows.

In Figure 5.17d the strain response to a constant stress load (Figure 5.17e) is shown.

The strain increases slowly until the yield strain for the applied stress is reached.

5.3 Temperature Dependency

Temperature dependency of the material model was verified in a single element simulation

in compression 2-direction. In this test, the effect of temperature on the yield stress and

the effect of the Tayler-Quinney coefficient (beta), describing the ratio of plastic work that

is converted to heat, is verified. The higher the Taylor-Quinney coefficient (beta) value,
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(b) Stress output (β11 = 0)
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(c) Constant strain load (β11 = 50)
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(d) Stress relaxation ((β11 = 50))
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(e) Creep strain (β11 = 50)
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(f) Constant stress load (β11 = 50)

Figure 5.16: Viscoelastic stress relaxation and creep
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(c) Stress relaxation
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(d) Creep strain
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(e) Constant stress load

Figure 5.17: Viscoplastic stress relaxation and creep
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the more the loaded element should heat up throughout the simulation. If temperature-

dependent stress versus strain curves are defined by the user, this rise in temperature leads

to a change in the yield stress of the material.

In this particular test, three temperature-dependent curves are defined in the loading

direction: a room temperature curve at 20°C; a scaled-down curve for 30°C; and as input for

a temperature of 40°C another curve that was created by scaling down the room temperature

input. Figure 5.18a shows the input curves for the different temperatures as gray and black

dotted lines. As the specific heat capacity of the material, a value from literature for an

epoxy material was obtained. Battaglia et al. measured a specific heat capacity of 817 J
kgK

for a CN 90 epoxy at 300° Kelvin [62]. Converted to imperial units, an input of the specific

heat capacity to the material model was used: cp = 817 J
kgK = 817 m2

s2K
≈ 1, 200, 000 in2

s2K
.

In Figure 5.18a, the stress versus strain results for three different values of beta are

shown. Corresponding in Figure 5.18b, the temperature versus strain is plotted. For an

input of beta=0, no plastic work is converted to heat and the temperature does not increase

from the initial room temperature of 20°C (blue curve in Figure 5.18b). Therefore, the yield

stress does not decrease and the output stress versus strain curve matches the input for 20°C

throughout the simulation (blue curve in Figure 5.18a).

For a higher value of beta of 0.75, 75% of plastic work is converted to heat and the

temperature rises with increasing plastic strain to around 40°C (orange curve in Figure

5.18b). While the temperature rises from 20°C to 30°C, the yield stress is interpolated

between the corresponding input curves (orange curve in Figure 5.18a). For temperatures

between 30°C to 40°C, the yield stress decreases faster as the distance between the input

curves corresponding to these temperatures is greater.

For a maximum beta of one, the temperature rise with increasing strain is shown in

Figure 5.18b. The temperature increases to around 45°C for a strain of approximately

37%. In the corresponding stress versus strain plot, the yield stress decreases according to

the temperature in the material until the input curve for the highest temperature of 40°C
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Figure 5.18: Single element verification of temperature effects

is reached (red curve in Figure 5.18a). No extrapolation of the yield stress is done with

further increasing temperatures and therefore, the stress versus strain output matches the

input curve defined for the highest temperature even if the temperature in the material goes

beyond this value.

5.4 Damage

Stiffness degradation of the material is modeled using the capabilities to define damage. By

defining a curve listing the chosen damage parameter versus its corresponding curve ID,

the user can define in which material directions damage should be accounted for and which

uncoupled and/or coupled damage terms should be active. Table 4.3 in the implementation

chapter lists all available damage parameters.

Uncoupled damage was verified by loading and unloading a single element force con-

trolled in compression 2-direction. Damage parameter five, describing damage in compres-

sion 2-direction due to loading in the same direction, was defined with a corresponding

strain versus damage curve. LS-DYNA Keyword 5.2 shows the damage definition for this
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verification test case. No damage accumulates in the elastic region up to a strain of 0.0083

while it increases linearly up to a value of 0.1 at a total strain of 4% as defined in the curve

with ID 10005 in LS-DYNA Keyword 5.2.

LS-DYNA Keyword 5.2: *MAT 213 input

*DEFINE_CURVE_TITLE
Damage parameter vs. Curve ID

$# lcid sidr sfa sfo offa offo dattyp
50

$# Damage in C2, due to loading in C2
$# damage_parameter curve_id

5 10005
$
*DEFINE_CURVE_TITLE
Damage in C2, due to loading in C2

$# lcid sidr sfa sfo offa offo dattyp
10005

$# strain damage
0 0

0.0083 0
0.04 0.1

Figure 5.19a shows the stress versus strain output for the single element that was loaded

force-driven in compression 2-direction to a stress of -20,000 psi, -23,000 psi, and finally

-25,000 psi with unloading to states of zero stress in between. The blue curve in Figure

5.19a shows the results for a simulation with the damage model inactive, while the red curve

shows the results for the damaged material. The slopes of the unloading and reloading paths

are reduced due to the accumulation of damage and the reduction of stiffness of the material.

In another simulation, coupled damage was verified by loading a single element in com-

pression 2-direction, unloading to a state of zero stress, and then reloading in tension

2-direction. LS-DYNA Keyword 5.3 shows the input to the damage model with damage

parameter 46 active, describing damage in tension 2-direction due to loading in compression

2-direction. For a compressive loading up to a strain of 0.04, the stiffness when reloaded in

tension 2-direction should be reduced by a factor of 0.5, as defined in curve 10046 and as

shown in LS-DYNA Keyword 5.3.
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Figure 5.19: Single element verification of damage model

Figure 5.19b shows the stress versus strain results with the damage model inactive (blue

curve) and active (red curve). While the unloading from compression followed the same

path in both simulations, the modulus in tension 2-direction was reduced by a factor of

close to 0.5 when the damage model was active.

This verifies that both uncoupled and coupled damage were giving results as intended.

LS-DYNA Keyword 5.3: *MAT 213 input

*DEFINE_CURVE_TITLE
Damage parameter vs. Curve ID

$# lcid sidr sfa sfo offa offo dattyp
50

$# Damage in T2, due to loading in C2
$# damage_parameter curve_id

46 10046
$
*DEFINE_CURVE_TITLE
Damage in T2, due to loading in C2

$# lcid sidr sfa sfo offa offo dattyp
10046

$# strain damage
0 0

0.0083 0
0.04 0.5
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The damage model can be used to model stress degradation in the material. This was

verified by defining a true stress versus strain curve as shown as a blue curve in Figure

5.20b with the stress level dropping with increasing strain. For the plasticity algorithm, a

monotonically increasing effective stress versus strain curve is needed and the material model

will not accept the input if this is not the case. In the pre-processing stage, the user-defined

true stress versus strain input is converted using the damage parameter input to compute

the effective stress versus strain curve as described in Equation 4.1. Therefore, the user can

define the intended true stress versus strain input curve and corresponding effective stress

versus strain curve that should be monotonically increasing. In Figure 5.20b, for example,

the effective stress versus strain curve flattens out and behaves ideal plastically. With a

given effective stress and true stress versus strain curve, the corresponding damage input

can be computed that converts the true stress input into the desired effective stress curve.

Figure 5.20a shows the matching damage versus strain curve that converts the blue true

stress versus strain input curve from Figure 5.20b to the dashed black effective stress curve.

A simple script that computes the damage versus strain input for a given true stress

input curve and desired effective stress curve is shown in Appendix A. The script was tested

with Octave [63] and Matlab [64] and a description on how to use it is shown in Appendix

A.

The simulation results with the described input are shown as a red dashed curve in

Figure 5.20b. The output matches the blue input curve. With the approach discussed

in this section, stiffness and stress degradation in individual material directions can be

accurately defined.

5.5 Generalized Tabulated Failure Criterion

The Generalized Tabulated Failure Criterion is verified in single element simulations using

the T800/F3900 data. A tabulated failure surface was constructed using the experimentally

obtained failure strains from the uniaxial tension, compression and in-plane shear tests. To

verify the newly developed failure model works as intended, the traditional definition of
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Figure 5.20: Single element verification of stress degradation

“failure” is used, i.e. erosion occurs once the load bearing capabilities have been exceeded

in any single material direction. As previously described in Section 3.7, using the failure

model in such a way does not provide physical results in a crash, crush or ballistic impact

load case, where material behavior after reaching the maximum stress is of importance.

The user has to define a table of fiber direction stresses with corresponding angle versus

equivalent failure strain curves. It is very important to highlight that the equivalent failure

strain is not equal to the failure strain in loading direction obtained in a uniaxial material

test. Due to Poisson’s effects, straining in the transverse direction will occur and the

equivalent failure strain will be higher than the strain in loading direction. The Generalized

Tabulated Failure Criterion should only be used in conjunction with the LS-DYNA keyword

card *DEFINE ELEMENT EROSION SHELL. With this card, the number of integration

points per layer that fails a layer, and the number of failed layers that triggers element

erosion have to be defined [59].

To analyze whether the element erosion criterion works as intended, consider for example

loading in tension 2-direction (σ12 = 0 and σ22 ≥ 0). Equation 3.92 can then be solved for

an expected angle of zero degrees that represents this state of stress, as shown in Equation
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5.1. For this angle, the equivalent failure strain from a uniaxial tension test in the matrix

direction is given by Equation 3.93, where ε22 is the tensile strain in 2-direction at failure,

ε11 is the compressive 1-direction strain at failure in the 2-direction test, and ε12 is the

in-plain shear strain at failure in the 2-direction test.

For shear in 12-direction, Equation 5.2 yields an angle of 90°, while in compression

2-direction the computed angle is 180° (Equation 5.3).

σ12 = 0

σ22 ≥ 0
θ = cos−1

(
σ22√

σ2
22 + σ2

12

)
= cos−1

(
σ22√
σ2

22

)
= cos−1 (1) = 0◦ (5.1)

σ22 = 0

σ12 6= 0
θ = cos−1

(
σ22√

σ2
22 + σ2

12

)
= cos−1 (0) = 90◦ (5.2)

σ12 = 0

σ22 ≤ 0
θ = cos−1

(
σ22√

σ2
22 + σ2

12

)
= cos−1

(
σ22√
σ2

22

)
= cos−1 (−1) = 180◦ (5.3)

The graph in Figure 5.21 shows the equivalent failure strain input to the single element

verification simulations. The equivalent failure strain values are defined by the user as a

function of the angle are shown. Only three discrete points on the failure curve at zero fiber

direction stress are known and values of stress states in between were interpolated using

splines. The curve from Figure 5.21 was used as the input for zero fiber direction stress.

In addition to the three equivalent failure strains for the tensile and compressive matrix

direction and in-plane shear, the failure strain for pure tension and compression 1-direction

loading were the final two points used to construct the example failure surface. The defined

fiber direction stresses should cover the expected range up to the failure stress in a pure

tension or compression 1-direction material test. Therefore, for the highest expected tensile

stress in the fiber direction, the equivalent failure strain for this stress state was input to

the failure model. For all angles from 0° to 180° the tensile 1-direction failure strain was
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Figure 5.21: Failure input

used as the equivalent failure strain. Equivalently, for compression in 1-direction, failure

strain for uniaxial compressive loading was input to the failure model.

The resulting failure surface is shown in Figure 5.22. The curve at zero fiber direc-

tion stress (green) represents the equivalent failure strains for tension and compression

2-direction tests and shear in the absence of fiber direction stresses. To the left, for a

failure stress of ∼366,000 psi, the equivalent failure strain determined in a pure tension

1-direction test is the input for all angles as represented by the light blue line. Similarly, for

a pure compression 1-direction loading, at the compressive failure stress of ∼-110,000 psi,

the failure strain in this loading condition is defined for all angles (blue curve). All other

shown lines for fiber direction stresses between zero and the failure stresses were linearly

interpolated. This effectively leads to element erosion becoming more likely with increasing

fiber direction stress in combined loading conditions.

Single element verification simulations were conducted to test the failure model. The

results for both tension 1- and 2-direction are shown in Figure 5.23. Figure 5.23a shows

the strain versus time for tension 1-direction. The element is failing right when the user-

defined failure strain in this direction, represented by the dotted grey line, is reached by

the strain in loading direction (X). According to Equation 3.92, the fiber direction stress

σ11 is not influencing the angle and is, therefore, of no importance for failure in pure fiber

direction loading. In tension 1-direction, the angle oscillates between 0° and 180°. As the
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Figure 5.22: Failure surface

element is loaded uniaxial, in theory a matrix direction stress of zero would occur, leading

to an analytical angle of 90° as shown in Equation 5.2. In numerical simulations, however,

a value of zero rarely occurs. Due to numerical noise, the value of the off-axis (tension

and compression 2-direction), stress oscillates between low values of positive and negative

stress and therefore between 0° and 180°. The oscillation of the angle does not cause the

equivalent failure strain to oscillate as the values for both zero and 180° are (and should

be) defined as the same in pure 1-directional loading (see Figure 5.22).

Figures 5.23c and 5.23d show the strain versus time and angle versus time for tension

2-direction respectively. The element again fails as the user-defined failure strain in the

loading direction is reached. In the angle vs. time plot of Figure 5.23d, the angle stays at

the previously computed analytical result (Equation 5.1) of zero.

The results of single elements loaded in compression are shown in Figure 5.24. In both

compression 1 and 2-direction, the element fails once the failure strain in the respective

direction is reached. In compression 1-direction, the angle again oscillates between 0° and

180°, for the same reason as described for the tensile load case. The angle in the 2-direction

stays at the analytically computed value of 180° until failure occurs, as was shown in Equa-

tion 5.3.
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Figure 5.23: Verification of Generalized Tabulated Failure Criterion - tension
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Figure 5.24: Verification of Generalized Tabulated Failure Criterion - compression and shear
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Figures 5.24f and 5.24e show the computed angle and strain versus time for an in-plane

shear verification simulation with the failure model active. The element fails once the

user-defined shear failure strain is reached. The angle in the pure in-plane shear loading

simulation matches the analytically computed value of 90° from Equation 5.2.

Overall, the Generalized Tabulated Failure Criterion is able to accurately represent

the user-defined input of different failure strains in the material directions, and will cause

element erosion at the correct strain.

5.6 Stochastic Effects

The correct implementation of the stochastic variation of material parameters was evaluated

in single element simulations. The elements were loaded displacement-controlled in tension

and compression, 1- and 2-direction. LS-DYNA Keyword card 5.4 shows the definition of

the stochastic variations for the different material directions.

LS-DYNA Keyword 5.4: Stochastic verification input

*DEFINE_STOCHASTIC_VARIATION_MAT213
$# id_sv pid pid_typ irng numv num_beg

1 2 0 1
$# vartyp corlgrp r1 r2 r3

1 0 0.9 1.1
1 0 0.9 1.1
1 0 0.9 1.1
1 0 0.9 1.1
1 0 0.9 1.1

In the first line of the keyword card the definition is given the ID one and is defined

for the part with ID 2. PID TYP is set to zero, which indicates that PID is referencing

an individual part and not a part set. By setting IRNG to one, a non-deterministic (true)

random number generator is used to achieve a difference in results between simulation runs.

Lines two through six follow the actual definitions of variations of the material parameters.

VARTYP = 1 defines a uniform distribution between the lower and upper bounds R1 and

R2 that are defined as 0.9 and 1.1 respectively for all material parameters. The definition

as shown in LS-DYNA Keyword card 5.4 should lead to scaling of the input curves in all

material directions by factors varying with a uniform random distribution between 0.9 and
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Figure 5.25: Stochastic single element verification

1.1. For a more detailed description of how stochastic variations are defined for the material

model see Section 4.3. Figure 5.25 shows the results of ten single element simulations in the

five material directions. The solid red line represents the deterministic results without a

stochastic variation defined, while the dotted black line shows the input stress versus strain

curve provided by the user. The results from the simulations with stochastic variation

defined are shown as dashed lines. In all directions, a scaling of the output curve by a

factor in the range of 0.9 and 1.1 is achieved in both the elastic and plastic region. This

confirms that the defined variations are accurately represented.
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Chapter 6: Validation

In Chapter 5 the material model was verified using single element simulations. The verifi-

cation ensures that the code produces the expected results in a stable manner. However in

verification simulations, it is only ensured that the model works as intended. Additional val-

idation simulations were performed to test the physical usefulness of the developed model.

Due to the lack of required mechanical property test data of crush tests, ballistic impact

tests were chosen to highlight the capabilities of the material model. For the tested com-

posite material in the ballistic impact, extensive material data was available. The ballistic

impact simulations additionally highlight the versatility of the model as they were simulated

using the same approach as the crush simulation shown in Section 6.2.

6.1 Validation in Ballistic Impact Loadcase

Several high velocity ballistic impact tests were conducted at NASA Glenn Research Cen-

ter (NASA-GRC) to validate the developed material model. Square 16 ply unidirectional

T800/F3900 composite panels with the dimensions of 12” x 12” x 0.122” were impacted by

projectiles with the weight of approximately 50 grams. The composite panels were manu-

factured with a layup of [0, 90,+45,−45]2S . The cylindrical clamping of the panel had an

inner radius of 5” and an outer radius of 6”.

In the simulation model, the square plate was modeled as a round plate that covered the

region of the clamping. The overhanging parts of the plate were not modeled, as they were

not considered to be important to the overall behavior of the plate. The panel was meshed

relatively coarsely in the clamping region while using a finer mesh in the impact region.

Based on the physical tests, the simulations were set up with single point constraints in

the region of the clamping. Figure 6.1 shows the simulation setup to replicate the real life
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(a) Bolt holes, constrained in XY (b) Clamping region, constrained in Z

Figure 6.1: Boundary conditions of the plate in the ballistic impact simulation

boundary conditions without having to rely on modeling of the clamping plates to reduce

the CPU time of the simulations. The bolts in the test were simulated by constraining the

nodes in the bolt holes in-plane (Figure 6.1a), while the nodes on top and on the bottom

of the plate in the clamping region were constrained out-of-plane (in impact direction, see

Figure 6.1b).

The projectile then impacts the plate in the center of the panel, as shown in an isometric

view of the simulation setup in Figure 6.2.

Every ply of the composite layup was modeled with an individual shell element while

also accounting for delamination by modeling the interface between the plies using cohesive

elements. Figure 6.3 on the left shows the layup of the shell elements with their thickness

shown and on the right with only the mid-plane of the shell elements. The solid cohesive

elements share the nodes with the shell elements and the cohesive material model chosen

was *MAT COHESIVE MIXED MODE (MAT138). Table 6.1 lists the material property

values after they were adjusted to match DCB and ENF tests (see Section 2.5).
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Figure 6.2: Isometric view of the ballistic impact simulation setup

Table 6.1: Cohesive material properties

LS-DYNA variable Description Value

EN Normal stiffness 6.16e8 [psi / in]
ET In-plane stiffness 6.16e8 [psi / in]
GIC Energy release rate for mode I 4.28 [psi · in]
GIIC Energy release rate for mode II 14.5 [psi · in]
XMU Exponent of the mixed mode criteria 1.0 [−]
T Peak traction in normal direction 4000 [psi]
S Peak traction in tangential direction 8000 [psi]
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Figure 6.3: Composite plate layup and modeling technique with cohesive elements

In Table 6.2 all ballistic impact tests conducted by NASA-GRC are listed, sorted by im-

pact velocities. For the lower velocities of 116 ft/s up to 384 ft/s, the projectile rebounded

off the plate with the velocity shown in the “Rebound Velocity” column. The higher veloc-

ities from 417 ft/s to 535 ft/s penetrated the plate and exited with a velocity as shown in

the column “Exit velocity”.

The impact velocities of the tests LVG1075, LVG1074 and LVG1076 (highlighted in bolt

font) were chosen to be simulated as they were in the region of the ballistic limit velocity,

the highest impact velocity at which the plate is able to contain the projectile. Additionally,

an impact velocity between LVG1075 and LVG1075, 406 ft/s, was simulated to verify that

consistent results in the region of the ballistic limit velocity are obtained.

In finite element simulations, failure of materials is generally modeled by eroding ele-

ments when stresses or strains reach a critical level. In engineering materials, when physical

material tests are conducted, the test is usually stopped once the force drops, which is con-

sidered as “failure” for the material. Composite materials, however, might still be able to

take load in the other material directions. Consider, for example, a tensile load transverse to

the fibers that leads to damage by debonding between fibers and the matrix material. The

material is now considered to have “failed”, however, most fibers will still be intact and the

material could very well still take tensile loads in the fiber direction. If in a finite element

simulation the element that reached that critical stress or strain in tension 2-direction is
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Table 6.2: LVG ballistic impact tests, impact and rebound/exit velocities (rounded)

Test ID Impact Velocity [ft/s] Rebound velocity [ft/s] Exit velocity [ft/s]

LVG1065 116 69 -
LVG1067 155 84 -
LVG1073 172 89 -
LVG1069 178 79 -
LVG1070 181 94 -
LVG1068 182 97 -
LVG1066 185 104 -
LVG1064 237 116 -
LVG1075 385 46 -
LVG1074 417 - 25
LVG1076 453 - 114
LVG1063 535 - 263

now eroded, the load bearing capabilities in other directions would be lost as well. The

finite element should therefore not be eroded once the “failure” strain measured in uniaxial

tension and compression tests is reached. Instead, in this validation study, the implemented

damage model was used to degrade the stress in the direction where the “failure” strain

from the uniaxial test occured. The stiffness and stress were degraded to a level of 10% of

the maximum stress and stiffness and the element therefore lost most of its load bearing

capabilities in this direction while maintaining it in others. Figure 6.4 shows the stress ver-

sus strain and damage input to the material model that achieved this behavior. Similar to

the methodology described in Section 5.4, a true stress versus strain (red) and an effective

stress versus strain curve (dashed blue) were defined as shown in Figure 6.4a. From these

curves, the damage versus strain curve was computed (Figure 6.4b), which converted the

true stress curve into the monotonically increasing effective stress curve (see Appendix A

for a damage curve calculation script). Input to the material model were then the true

stress versus strain curve and the damage curve for the uncoupled damage term. Similarly,

the input for tension 2-direction and 12-shear is prepared as shown in Figure 6.4c through

6.4f. The stress versus strain input for compression in 1 and 2-direction was left unchanged

from the material test data (see Figures 5.2b and 5.5b).
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As previously described, elements should not be eroded once the critical stress or strain

is reached in a single loading direction. However, as in ballistic impacts where the projectile

might fully penetrate the plate, some erosion of elements inevitably needs to take place to

create the opening for the projectile. The Generalized Tabulated Failure Criterion was used

to define a high equivalent erosion strain of 80% in all loading conditions by defining two

curves with two angles each (-180° and 180°) with a corresponding equivalent erosion strain

of 0.8 for both angles. Only when the element deforms very drastically will it erode to avoid

numerical instabilities and to allow for the projectile to penetrate the plate. The material

input was the same in the three ballistic impact simulations.

Figure 6.5 shows the projectile velocities over time for the simulations. A positive

velocity indicates the projectile was traveling forward, while a negative velocity can be

observed for a rebounding projectile. The solid red line represents the velocity in the

LVG1076 simulation over time, while the horizontal dashed red line marks the exit velocity

of 114 ft/s (1368 in/s) that was measured in the physical impact test. The projectile initially

had the impact velocity of 453 ft/s (5436 in/s) and was then slowed down while penetrating

the composite plate. It exited the plate with a velocity 6.2% of the delta v higher than

the measured velocity. However, if the physical test was repeated several times at the

exact same velocity, the variation in the results would likely be higher than the difference

between the test and simulation. In both the LVG1074 and LVG1075 simulations, the

projectile velocity at the end of the simulation was 3.1% of the delta v below the measured

exit velocity (LVG1074) and rebound velocity (LVG1075). The difference between test and

simulation was again relatively small, and the measured variations in tests would likely be

higher. The additional simulated impact velocity between LVG1075 and LVG1074 of 406

ft/s (4872 in/s) shows a resultant rebound velocity that falls between the rebound and exit

velocities of LVG1075 and LVG1074 (orange curve in Figure 6.5).

Figure 6.6 shows isometric views of the impacted region on the back side of the plate

in the LVG1075 simulation, where, in the physical test, the projectile rebounded the plate

with a relatively low velocity of 46 ft/s. In the simulation, the projectile caused significant
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Figure 6.4: Ballistic impact simulation material model input
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Figure 6.5: Projectile velocities in the LVG impact tests and simulations

damage to the plate leading to rupture in a “cross-like” pattern. However, the projectile

did rebound the plate in the simulation, similarly to the test.

Figure 6.7 shows isometric views of the impacted region on the back side of the plate

in the LVG1074 simulation, where, in the physical test, the projectile penetrated the plate

and exited with a relatively low velocity of 25 ft/s. In the simulation, similar to the lower

velocity (LVG1075) analysis, the plate again ruptured in a similar pattern. However, as the

velocity plot in Figure 6.5 showed, the projectile then continued to travel forward with a

positive velocity, similar to that of the test.

Figure 6.8 shows isometric views of the impacted region on the back side of the plate

in the LVG1076 simulation, where, in the physical test, the projectile penetrated the plate

and exited with a velocity of 114 ft/s. As in the test, the projectile ruptured the plate and

exited through the back side. The initial velocity was significantly reduced and and the exit

velocity matched the measured test velocity fairly well.

The failure patterns in the three different tests were relatively similar, as such, only one

exemplary test result is compared to the patterns obtained in the corresponding simulation.

Figure 6.9a shows the impacted side of the composite plate post-test at the LVG1076 impact
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(a) t = 0.00025s (b) t = 0.00050s

(c) t = 0.00075s (d) t = 0.00100s

(e) t = 0.00125s (f) t = 0.00150s

Figure 6.6: LVG1075 ballistic impact simulation
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(a) t = 0.00025s (b) t = 0.00050s

(c) t = 0.00075s (d) t = 0.00100s

(e) t = 0.00125s (f) t = 0.00150s

Figure 6.7: LVG1074 ballistic impact simulation
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(a) t = 0.00025s (b) t = 0.00050s

(c) t = 0.00075s (d) t = 0.00100s

(e) t = 0.00125s (f) t = 0.00150s

Figure 6.8: LVG1076 ballistic impact simulation
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velocity with a vertical fiber direction in the top ply. Figure 6.9b shows the corresponding

view at the last simulation time state. Visualization of deformation is turned off in the

simulation image to show the exact failure pattern. While the test images represent the

state of the plate after the projectile has long passed through the plate, simulating the

rebound of the opening in the plate in the simulation would require very long time scales

that cannot be simulated efficiently. The elements highlighted in turquoise are the eroded

elements, while the elements highlighted in red show the maximum damage value (0.9)

that the element reached. Apart from the “cross-like” failure pattern in both test and

simulation, elements that were highly damaged along the fiber direction of the top ply

can be seen extending up and down vertically from the horizontal crack. In the simulation

these damaged elements correspond to similar vertical cracks best seen in Figure 6.9c, which

shows a zoomed in view of Figure 6.9a. As a comparison to this zoomed view of the test

specimen, Figure 6.9d depicts a close-up view of the same area in the simulation.

Similar images of the back side of the composite plate are shown in Figure 6.10. The

fiber direction of the ply facing the camera is again aligned vertically. A “cross-like” fracture

pattern can be seen in both the test and the simulation. In the test, damage in the top ply

extended close to the clamping region of the plate with parts of this ply being completely

separated from the plate. In the simulation, the damaged region also extended further

outward in the fiber direction, and transverse to the fibers, showed a similar pattern as in

the test. The small vertical fractures parallel to the fibers, similar to the ply facing the

impact side, are again visible in both the test and the simulation.

The mesh sensitivity of the erosion criterion was analyzed by repeating one of the sim-

ulations (LVG1075) with a rotated mesh. The whole plate was rotated around the z-axis

by 45° without changing the fiber direction that was defined in the global coordinate sys-

tem. Figure 6.11 shows the failure patterns in the simulation with the rotated mesh. The

cross like failure pattern is rotated by 45°, which shows the sensitivity of failure to the

alignment of the mesh. This is a general problem of the finite element method, as crack

propagation can only occur along the mesh lines due to the erosion of elements. Reducing
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(a) Test impacted side (b) Simulation impacted side

(c) Test impacted side (zoom) (d) Simulation impacted side (zoom)

Figure 6.9: LVG1076 ballistic impact, failure patterns on impact side, test versus simulation
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(a) Test back side (b) Simulation back side

(c) Test back side (zoom) (d) Simulation back side (zoom)

Figure 6.10: LVG1076 ballistic impact, failure patterns on back side, test versus simulation
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(a) Front (b) Back

Figure 6.11: Failure patterns in LVG1075 simulation with rotated mesh

the size of the elements significantly can, in some cases, alleviate the sensitivity but might

be computationally prohibitive.

Figure 6.12a shows a CT scan of the delaminated area in the LVG1074 impact test. To

compare the delaminated area in the simulation, the eroded cohesive elements are high-

lighted in blue while making the cohesive part 90% transparent. This makes delaminated

areas in all plies visible, similar to the CT scan. In the test and simulation delamination

covered a similar area, while the shape seemed to be rotated about 45°. This might be

an attribute of mesh dependency and alignment; further research to identify the causes

would have to be conducted. Delamination can also be modeled using a tiebreak contact

in LS-DYNA. Very similar results for the projectile velocities and the delaminated area

were achieved using a tiebreak contact with the equivalent contact parameters, as shown in

Table 6.1 for the cohesive material. The main advantage of using the tiebreak contact in

the shown cases was a significant reduction in CPU time by factors of two to three.

For all three impact velocities, a good agreement between the projectile velocity and

failure patterns in test and simulation was achieved. The only parameter that had to be
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(a) Test CT scan (b) Simulation, cohesive elements at 90% trans-
parency

Figure 6.12: LVG1074 ballistic impact, delamination, test versus simulation

adjusted to match test and simulations was the equivalent erosion strain due to lack of

experimental data. With more available data on uncoupled and coupled damage terms,

the sensitivity of the erosion strain might diminish and make the material model more

predictive. Overall, the capabilities to accurately and robustly model ballistic impacts with

the shell element material model were shown.

6.2 Validation in Crush Loadcase

To reduce weight and increase specific energy absorption of components subjected to crush

loading, composite materials have properties that make them valuable in such scenarios. In

the best case, a composite component that crushes due to progressive splaying, fragmen-

tation, and localized delamination, can absorb large amounts of energy. If, however, the

crushing is not ideally initialized, buckling and global breakage of the part can occur, which

reduces the energy absorbing capabilities of the component [65].
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In a recent study, Dong et al. calibrated a material model in crush simulations using an

adaptive meta-model based on a global optimization strategy to match force-displacement

characteristics of several crush experiments [65]. The samples in the study were manufac-

tured using Vacuum assisted Resin Transfer molding (VaRTM) to infuse dry carbon fibers

with a low viscosity epoxy resin [65]. The LS-DYNA material model that was calibrated in

the study was the continuum damage mechanics model MAT58 and a match between tests

and simulations was achieved after several rounds of optimization.

To highlight the capabilities of the new material model, its results were compared to the

force-time history obtained by Dong et al. in simulations using MAT58. The material test

data that was available at the time of this study did not provide all required information

to fully define all necessary inputs for the new material model. For example, test data for

compression in fiber and transverse direction was not available. Some of the inputs were

therefore defined based on experience from other material combinations of fiber matrix

pairings or directly derived from the validated material input used by Dong et al. [65].

Tension in fiber and transverse direction was modeled similarly to what was shown in

Chapter 6.1 with the stress and stiffness being degraded to 10% once the maximum stress

was reached.

Test data was available for the in-plane shear direction and, therefore, the actual test

data was used with the stress and stiffness being degraded to 10% after reaching the max-

imum stress. Compression in fiber and transverse direction was approximated by linear

elastic-ideal plastic stress versus strain curves and no stress degradation. Overall, the ma-

terial input was defined in a very similar way as shown before for the ballistic impact simu-

lations with a different unidirectional composite. For the crush simulations, the equivalent

erosion strain in the general tabulated failure criterion was set to 0.6.

The tested component was a C-channel with a laminate layup of [45,−45, 0, 90]S that

was crushed with an angle of the loading plate of 0°. The total thickness of the 8 ply layup

was 1.889mm. Figure 6.13 shows the simulation setup with the composite plate in red, the

fixture plate on the bottom in yellow, and the transparent loading plate that was modeled
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Figure 6.13: Crush simulation setup

using a rigid body. The plate was displaced in z-direction, as shown by the blue arrows, to

crush the composite C-channel.

When modeling composites with shell elements, there are two approaches that are com-

monly used. First, the different plies with their material orientation can be accounted for

by defining a single element through the thickness and having different properties on an

integration point level. Figure 6.14a shows the edge of the composite C-channel modeled

with a single element through the thickness. For a better distribution of the initial load,

the plate was tapered at the top edge. This was modeled in the single element approach by

defining a single ply for the top row of elements and two plies for the second row of elements

until the full thickness of the plate was reached at the 8th element where all 8 plies were

modeled with 8 integration points. With this modeling approach, delamination cannot be

accounted for.

The second approach is to model the plies individually with one element per ply. Figure

6.14b shows the edge of the composite C-channel modeled following this approach. The

first yellow layer of elements on the left represents the first 45° ply with the following other

plies being slightly shorter to account for the tapering of the physical part. Delamination

is accounted for by using a tiebreak contact between the individual plies.
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(a) 1 element through the thickness,
8 integration points

(b) 8 elements through the thickness,
2 integration points each

Figure 6.14: C-Channel modeling techniques, edge view

Figure 6.16 shows the deformed geometries at the end of the crush simulations. Unfor-

tunately, no images of the deformed geometry after the physical tests were available. On

the left, in Figures 6.15a, 6.15c and 6.15e, the deformed geometry of the part simulated

with MAT58 is shown. The fringe colors represent the average amount of damage that has

accumulated in the fiber direction in all through-thickness integration points on a scale from

zero (blue) to one (red). The C-channel was highly damaged with significant stiffness degra-

dation that extended far beyond the buckled areas. This highlights a potential shortcoming

of the continuum damage model utilized in MAT58. Damage in MAT58 is fully coupled,

meaning that loading in any material direction will influence the load bearing capabilities

in all other directions. When observing a physical composite material, however, it is highly

unlikely that this is the case. Consider, for example, loading in tension 2-direction. This

type of loading will likely not affect tension in the fiber direction, as the fibers would stay

intact even at fracture.

Using the same material input, the crush was also simulated using the modeling approach

shown in Figure 6.14b. As the MAT58 material card was optimized for the modeling

technique with only one element through the thickness, the material parameters represented

an average of the material behavior including delamination and averaging the effects of

damage throughout the material. This lead to forces that where significantly lower to what
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was measured in the test and, therefore, this modeling approach was abandoned for MAT58.

In the images on the right, Figure 6.15b, 6.15d and 6.15f, the deformed geometry ob-

tained using the new material model (MAT213) is shown. The overall buckling modes in

the simulations using the validated material model MAT58 and the new material model

MAT213 are fairly similar. The maximum damage parameter (tension and shear) is fringe

plotted on a scale from zero (blue) to 0.9 (red). Even though only the top and bottom

plies are visible in this plot, damage obtained with the new material model is much more

localized throughout all plies in the material. This seems to be a better representation of

the physical composite material. Some localized delamination at the top of the C-channel

can be seen and the part buckles in a more brittle manner when compared to MAT58, where

the component folded more smoothly.

In Figure 6.16a the force versus displacement of the physical test specimen are shown

as dotted black lines, while the baseline simulation using MAT58 is shown in green. The

sudden increase of the force level in the MAT58 simulation can be attributed to the modeling

technique with only one element through the thickness. The results using the new material

model are shown in red with the maximum force matching the test results very well. Similar

to the test, the force increased more slowly as the tapered top of the C-channel was loaded.

The force in the tests then dropped to a level below what MAT213 predicted. This part of

the force versus displacement curve MAT58 matches fairly well, however, the later increase

of force in the region between a displacement of 20mm and 45mm is not represented by

the baseline simulation with MAT58. In the available physical test results, in this region

of the curve, a large variation between test one and the tests two and three is apparent.

This deviation between the different tests can most likely be attributed to different buckling

modes and highlights the need for stochastic modeling capabilities in composites. With the

new material model, a second peak of the force is visible between a displacement of 30 and

40mm.
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(a) MAT58 - tilted frontal view (b) MAT213 - tilted frontal view

(c) MAT58 - isometric view (d) MAT213 - isometric view

(e) MAT58 - tilted rear view (f) MAT213 - tilted rear view

Figure 6.15: Comparison of C-channel crush simulations using MAT58 and MAT213
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(b) Absorbed energy versus displacement

Figure 6.16: Comparison of crush simulations and test results

In automotive crush load cases, the energy absorbed by the component is of great

importance. As much impact energy as possible should be absorbed by the crumple zone of

the car. Figure 6.16b shows how much energy was absorbed by the composite C-Channel

at any given displacement throughout the compressive loading. In tests two and three the

absorbed energy was very similar, while the total absorbed energy in the first test was

significantly lower. The difference in the test results can most likely be attributed to a

different buckling mode that was excited in this test. This highlights the difficulty when

dealing with composite materials, which often show a high variability in their material

parameters and, consequently, in buckling and failure modes. The new material model

matches the total absorbed energy in tests two and three quite accurately, while MAT58

under-predicts the total energy when compared to all three tests.

Even with the limited material test data available, a correlation was achieved between

the test results and the simulation using the new material model. The overall buckling

modes of the simulation with the new material model resembled the deformed geometry of

the fully validated material (MAT58). With more available material test data available, the

full potential of the newly developed material model can be utilized and more predictive

simulations will be possible.
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Chapter 7: Summary and Conclusion

A new composite material model for plane stress shell elements was developed and imple-

mented that allows the user to simulate a wide variety of composite materials and load

cases.

The material model includes capabilities to define tabulated stress versus strain data

for the individual material directions with strain-rate and temperature dependency. Strain-

rate effects are accounted for in the elastic and plastic region by combining the theories of

viscoelasticity and viscoplasticity. Yield stresses in the material are tracked in the individual

directions using a generalized Tsai-Wu surface allowing for tension-compression asymmetry.

Plasticity in the material is modeled using a non-associated flow rule to allow for precise

definition in which material directions plastic flow is possible and to what extent.

Non-linearity of the material response due to damage is decoupled from plasticity based

on the assumption of strain equivalency. A diagonal damage tensor is used, which is com-

puted based on uncoupled and coupled damage terms, allowing to track damage accumu-

lation in the material precisely. This ensures that, based on user defined damage versus

strain curves, loading in a particular material direction can affect the stress and stiffness in

any other direction.

A general tabulated failure model was developed and implemented that makes precise

definition of erosion strains for any particular state of stress possible.

The stability of the model was improved by including abilities to smooth strain-rates in

simulations with rate-dependent moduli. Robustness improvements have been made to the

non-associated plasticity model by switching to an associated formulation on demand in

the rare cases where no valid solution with the non-associated flow rule are possible. These

robustness improvements are automatic and require no intervention of the user to invoke.
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Single element verification simulations were utilized to extensively test the individual

capabilities of the material model. Load controlled, minimally constrained single element

simulations were conducted to verify the orthotropy, stability, and accuracy of the mate-

rial model. The model matched the provided input stress versus strain curves precisely

without causing instabilities or rigid body rotations or displacements. The yield surface

evolution was visualized in these test cases showing the tension-compression asymmetry

and directional dependency of the yield stresses in different material directions.

In rate-dependent simulations with the rate-dependent stress versus strain input de-

fined, the model reproduced the corresponding input correctly in all material directions.

Additionally, the correct implementation of the rate smoothing was verified, showing how

oscillatory off-axis strain-rates can be dampened. Viscoelastic and viscoplastic creep and

relaxation were demonstrated in single element simulations under constant stress or strain

load, respectively.

When the material deforms plastically, part of the plastic work is converted to heat

which leads to a change of the materials response. In temperature-dependent single element

simulations, the thermal component of the material model was verified, showing the material

model can accurately simulate the rise in temperature and the change of the materials yield

stress.

With realistic material data, the material model was utilized in full scale ballistic impact

simulations of plates with layups of a unidirectional composite. Only minimal correlation

was required to match the measured exit velocities of projectiles in the test at three different

impact velocities. In addition, failure patterns and delamination in the ballistic impact

simulations were compared to test images and a close correlation was found.

To demonstrate the usability of the material model in crush load cases, a C-channel

simulation was compared to test results and to the results of a fully validated industry

standard material model. With the limited physical material test data available, a reason-

ably good correlation between test and simulation was accomplished and an improvement

over the previously used material model was achieved.
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High quality material data presupposed, the material model furthers the ability of sci-

entists and engineers to accurately model the material behavior of composites in a variety

of loading conditions. The model is based on physically meaningful material data and

does not rely on time intensive computational calibration. In its current state, while not

fully predictive, the new material model marks a step in the direction of achieving the first

predictive composite material model. Further research into obtaining erosion criteria from

mechanical property tests, rather than from correlation to impact or crush tests, will be

required to enhance the predictive capabilities of the model.

One of the current limitations is that constant flow rule coefficients are assumed. In the

physical unidirectional composite material, for example, while linear elastic in compression

1-direction at room temperature, plastic behavior at higher temperatures is highly likely.

For an improvement of the model, the flow rule coefficients should therefore be made de-

pendent on strain-rate and temperature to allow for a more precise definition of plastic flow

behavior of the material. Furthermore, the implemented tabulated failure model could be

further generalized to allow for definition of rate and temperature-dependent failure strains.

Future research and implementation efforts to improve the material model should focus

on these limitations. This will ensure that all available test data can be taken into account

in the future and improve the predictive capabilities of the material model.
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Appendix A: Matlab/Octave script

The simple Matlab [64] / Octave [63] script shown as Code A.1, allows to compute the

required damage input for the material model for a given effective stress and true stress

versus strain curve. Two CSV (Comma-separated value) files with the total strain in the first

column and the true stress (true stress vs strain input.csv) and effective stress (effective-

stress vs strain input.csv) in the second column should be provided in the same folder as

the script when executed. The total strain versus damage output will then be saved in the

file damage vs strain output.csv. The true stress versus strain curve will then act as the

input curve to the MAT213 material model while the damage versus strain curve is the

input to the damage model for the corresponding direction.

Code A.1: Matlab/Octave script to compute damage curve for given effective and true

stress versus strain curves

1 % Read filename of true stress vs. total strain input

2 filename_true = ’true_stress_vs_strain_input.csv’;

3 % Read filename of effective stress vs. total strain input

4 filename_effective = ’effective_stress_vs_strain_input.csv’;

5 % Read filename of damage vs. total strain output

6 filename_damage = ’damage_vs_strain_output.csv’;

7 % Read data from true stress vs. strain input

8 true = csvread(filename_true);

9 strain_true = true(:,1);

10 stress_true = true(:,2);

11 % Read data from effective stress vs. strain input

12 effective = csvread(filename_effective);

13 strain_effective = effective(:,1);

14 stress_effective = effective(:,2);

15 % Use interpolation to make strain axis equivalent

16 stress_effective = interp1(strain_effective,stress_effective,strain_true);

17 strain_effective = strain_true;

18 % Compute damage vs. strain

19 d = 1-stress_true./stress_effective;

20 % Plot damage vs. strain

21 subplot(1,2,1)

22 plot(strain_effective,d)

23 grid on

24 xlabel(’Strain [-]’);
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25 ylabel(’Damage parameter [-]’);

26 legend(’Damage parameter (output)’)

27 % Plot true stress vs. strain

28 subplot(1,2,2)

29 plot(strain_true,stress_true)

30 % Plot effective stress vs. strain

31 hold on

32 plot(strain_effective,stress_effective)

33 grid on

34 xlabel(’Strain [-]’);

35 ylabel(’Stress [psi]’);

36 legend(’True stress (input)’,’Effective stress (input)’)

37 % Write damage vs. strain output to file

38 csvwrite(filename_damage,[strain_true(:),d(:)])

Appendix B: Mathematica script

Figure B.1 shows the results obtained using Mathematica [66] to simplify Equations 4.26

and 4.27. Note that E22ν12
E11

= ν21.

Figure B.1: Simplification of Equations 4.26 and 4.27

166



Bibliography

167



Bibliography
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